APPENDICES

APPENDIX 1

Infrared Absorption Frequencies of Functional Groups

Approximate ¹H Chemical Shift Ranges (ppm) for Selected Types of Protons^a

R-CH ₃	0.7 – 1.3	R-N-C-H	2.2 - 2.9
R_3CH	1.2 - 1.4 1.4 - 1.7	R-S-C-H	2.0 - 3.0
$\mathbf{R} - \mathbf{C} = \mathbf{C} - \mathbf{C} - \mathbf{H}$	1.6 - 2.6	I - C - H	2.0 - 4.0
$\begin{array}{c} O & O \\ H & H \\ R - C - C - H, H - C - C - H \end{array}$	2.1 - 2.4	$Br - C_l - H$	2.7 – 4.1
		Cl - Cl - H	3.1 - 4.1
$RO-\ddot{C}-\dot{C}-H$, $HO-\ddot{C}-\dot{C}-H$	2.1 – 2.5	$\mathbf{R} = \mathbf{S} - \mathbf{O} - \mathbf{C} - \mathbf{H}$	ca. 3.0
$N \equiv C - C - H$	2.1 - 3.0	0	
_с_н	2.3 - 2.7	$RO-\dot{C}-H$, $HO-\dot{C}-H$	3.2 - 3.8
R−C≡C−H	1.7 – 2.7	$\mathbf{R} - \mathbf{C} - \mathbf{O} - \mathbf{C} - \mathbf{H}$	3.5 - 4.8
R-S-H var	$1.0 - 4.0^{b}$	$O_2N-c_1^{\dagger}-H$	4.1 - 4.3
R–N–H var	$0.5 - 4.0^{b}$	F - C - H	4.2 - 4.8
R–O–H var	$0.5 - 5.0^{b}$		
O-H var	$4.0 - 7.0^{b}$	R-C=C-H	4.5 - 6.5
	2.0.5.0h	н	6.5 - 8.0
N-H var	3.0 - 5.0		0.0 10.0
O II R-C-N-H var	$5.0 - 9.0^{b}$	к-С- н О	9.0 - 10.0
		R−C−OH	11.0 - 12.0

^a For those hydrogens shown as -C-H, if that hydrogen is part of a methyl group (CH_3) the shift is generally at the low end of the range given, if the hydrogen is in a methylene group $(-CH_2-)$ the shift is intermediate, and if the hydrogen is in a methine group (-CH-) the shift is typically at the high end of the range given.

^b The chemical shift of these groups is variable, depending not only on the chemical environment in the molecule, but also on concentration, temperature, and solvent.

2

-

ci

ŝ

4

Ś

9

∟.

×.

6

 $\infty \infty$

-

ų

ŝ

4

ŝ

9

∟.

\$ Solution

6

4

 CH_3Br

CH,I

 CH_2Br

 CH_2CI

CHOH

^aChemical shift values refer to the boldface protons ${f H},$ not to regular ${f H}.$

^bAdapted with permission from Landgrebe, J. A., Theory and Practice in the Organic Laboratory, 4th ed., Brooks/Cole Publishing, Pacific Grove, CA, 1993.

¹H Chemical Shifts of Selected Heterocyclic and Polycyclic Aromatic Compounds

Typical Proton Coupling Constants

Туре		Typical Value (Hz)	Range (Hz)	
C H ² .	/ geminal	12	12–15	(For a 109° H–C–H angle)
H H ³ C—C	V vicinal	7	6–8	(Depends on HCCH dihedral angle)
\sim H 3	Ja,a	10	8-14	In conformationally rigid systems
3	Ja,e	5	0–7	(in systems undergoing inversion,
H 3	J e,e	3	0–5	all $J \approx 7-8$ Hz)
$\mathbf{R} \rightarrow \mathbf{H}^{3}$	I cis (H _b H _a)	9	6–12	
	J trans (H _a H _c)	6	4-8	
H _c H _b 2	$J gem (H_aH_b)$	6	3–9	
R_{1} O_{1} H_{2} H_{3}	<i>I</i> cis (H _b H _c)	4	2–5	
	J trans (H _a H _c)	2.5	1–3	
H_c H_b 2	$J gem (H_aH_b)$	6	4–6	
H H 4	I	0	0–7	(<i>W</i> -configuration obligatory—strained systems have the larger values)

ALKENES AND CYCLOALKENES (²/ AND ³/)

Туре	Typical Value (Hz)	Range (Hz)	Туре	Typical Value (Hz)	Range (Hz)
H ^{2}J gem H ^{2}J gem	<1	0–5	H ^{3}J H	2	0–2
H H ^{3}J cis	10	6–15	H ³ J	4	2–4
H ³ J trans	16	11–18	H	<i>,</i>	
$\overset{H}{\longrightarrow}_{C-H}^{J}$	5	4–10	Н у	6	5-7
$ \begin{array}{c} $	10	9–13	H^{3J}	10	8–11

ALKENES AND ALKYNES (⁴/ AND ⁵/)

Туре			Typical Value (Hz)	Range (Hz)	Туре		Typical Value (Hz)	Range (Hz)
H-C=C-C-H Allylic	^{4}J	(cis or trans)	1	0–3	H−C≡C−C−H Allylic	^{4}J	2	2–3
H-C-C=C-C-H Homoallylic	⁵ J		0	0–1.5	H−C−C≡C−C−H ⁴ Homoallylic	^{5}J	2	2–3

AROMATICS AND HETEROCYCLES

Туре		Typical Value (Hz)	Range (Hz)	Туре	Range (Hz)
H	³ J ortho ⁴ J meta ⁵ J para	8 3 <1	6–10 1–4 0–2	$H_{\alpha} \qquad H_{\alpha'}$	4.6–5.8 1.0–1.5 2.1–3.3 3.0–4.2
$H_{\beta} H_{\beta'}$ $H_{\alpha'} H_{\alpha'}$			1.6–2.0 0.3–0.8 1.3–1.8 3.2–3.8	H_{β} H_{α} $H_{\alpha'}$	4.9–5.7 1.6–2.0 0.7–1.1 0.2–0.5 7.2–8.5 1.4–1.9
$H_{\alpha} \xrightarrow{H_{\beta'}} H_{\alpha'}$	^{3}J $\alpha\beta$ ^{4}J $\alpha\beta'$ ^{4}J $\alpha\alpha'$ ^{3}J $\beta\beta'$		2.0–2.6 1.0–1.5 1.8–2.3 2.8–4.0		

ALCOHOLS			 ALDEHYDE	S		
Туре	Typical Value (Hz)	Range (Hz)	Туре		Typical Value (Hz)	Range (Hz)
$ \begin{array}{c} H & {}^{3}J \\ - C - OH \\ \\ \end{array} $	5	4–10		³ Ј Н	2	1–3
 (No exchange occur	ring)		 Н ОНН	³ J	6	5–8

PROTON-OTH	IER NUCLEUS COUF	LING CONSTANTS				
Туре	Typical Value (Hz)	Туре		Typical Value (Hz)	Туре	Typical Value (Hz)
C F F F F F F	44-81	R-PH	^{1}J	~190	N-H H H 	~52 0
$ \begin{array}{ccc} H & F & {}^{3}J \\ $	3–25	0 ■ —P—	^{1}J	~650	C—N	
$ \begin{array}{c} H & F & {}^{4}J \\ $	~0	H 	^{2}J	~13		
C H	~2	H O 	³ J	~17		
$ \begin{array}{c} \text{H} \text{D} {}^{3}J \\ \mid \mid \\ \text{C} - \text{C} \end{array} $	<1 (Leads only to peak broadening)	H O −C−O−P− 	³ J	~8		

Example:

7.03 ppm, doublet of douiblets 2H ($H_aH_b = 8.8$ Hz, ³J $H_aF = 8.9$ Hz). Looks like a triplet with fine structure

7.30 ppm, triplet of doublets, 2H (H_bH_a and $H_bH_c = 7.8$, ⁴J $H_bF = 5.8$. Looks like a H_b quartet, with fine structure

7.10 ppm, triplet of doublets 1H ($H_cH_b = 7.4$, ${}^5JH_cF = 0.8$. Looks like a triplet

Calculation of Proton (¹H) Chemical Shifts

X-CH ₂ -X	or $X-CH_2-Y$	$\delta_{\rm H}$ ppm = 0.23 + Σ cons	stants
Substituents	Constants	Substituents	Constant
Substituents	Constants	Substituents	Constant
Alkanes, alkenes, alkyn	es, aromatics	Bonded to oxygen	
-R	0.47	-OH	2.56
C=C	1.32	-OR	2.36
$-C \equiv C -$	1.44	-OCOR	3.13
$-C_{6}H_{5}$	1.85	$-OC_6H_5$	3.23
Bonded to nitrogen and	sulfur	Bonded to halogen	
$-NR_2$	1.57	-F	4.00
-NHCOR	2.27	-Cl	2.53
$-NO_2$	3.80	-Br	2.33
-SR	1.64	—I	1.82
Ketones		Derivatives of carboxy	lic acids
-COR	1.70	-COOR	1.55
-COC ₆ H ₅	1.84	-CONR ₂	1.59
		−C≡N	1.70

Example Calculations

The formula allows you to calculate the *approximate* chemical-shift values for protons (¹H) based on methane (0.23 ppm). Although it is possible to calculate chemical shifts for any proton (methyl, methylene, or methine), agreement with actual experimental values is best with *disubstituted* compounds of the type $X-CH_2-Y$ or $X-CH_2-X$.

Cl-CH ₂ -Cl	$\delta_{\rm H} = 0.23 + 2.53 + 2.53 = 5.29$ ppm; actual = 5.30 ppm
$C_6H_5-CH_2-O-C-CH_3$	$\delta_{\rm H} = 0.23 + 1.85 + 3.13 = 5.21$ ppm; actual = 5.10 ppm
$C_6H_5-CH_2-C-O-CH_3$	$\delta_{\rm H} = 0.23 + 1.85 + 1.55 = 3.63$ ppm; actual = 3.60 ppm
$CH_3 - CH_2 - CH_2 - NO_2$	$\delta_{\rm H} = 0.23 + 3.80 + 0.47 = 4.50$ ppm; actual = 4.38 ppm

TABLE A6.2 ¹ H CHEMICAL-SHIFT CALCULATIONS FOR SUBSTITUTED ALKENES				
$\begin{array}{c} R_{trans} \\ R_{cis} \end{array} C = C \\ H \end{array}$	$\delta_{ m H}$ p	$pm = 5.25 + \delta_{gem} + \delta_{cis} + \delta_{trans}$		
Substituents (—R)	δ_{gem}	$\pmb{\delta}_{cis}$	δ_{trans}	
Saturated carbon groups				
Alkyl	0.44	-0.26	-0.29	
-CH ₂ -O-	0.67	-0.02	-0.07	
Aromatic groups				
$-C_6H_5$	1.35	0.37	-0.10	
Carbonyl, acid derivatives, and nitrile				
COR	1.10	1.13	0.81	
-соон	1.00	1.35	0.74	
-COOR	0.84	1.15	0.56	
−C≡N	0.23	0.78	0.58	
Oxygen groups				
-OR	1.18	-1.06	-1.28	
-OCOR	2.09	-0.40	-0.67	
Nitrogen groups				
$-NR_2$	0.80	-1.26	-1.21	
$-NO_2$	1.87	1.30	0.62	
Halogen groups				
-F	1.54	-0.40	-1.02	
-Cl	1.08	0.19	0.13	
-Br	1.04	0.40	0.55	
 -I	1.14	0.81	0.88	

Example Calculations

 $H_{gem} = 5.25 + 2.09 = 7.34 \text{ ppm}; \text{ actual} = 7.25 \text{ ppm}$ $H_{cis} = 5.25 - 0.40 = 4.85 \text{ ppm}; \text{ actual} = 4.85 \text{ ppm}$ $H_{trans} = 5.25 - 0.67 = 4.58 \text{ ppm}; \text{ actual} = 4.55 \text{ ppm}$

$$\begin{split} H_{gem} &= 5.25 + 0.84 = 6.09 \text{ ppm; actual} = 6.14 \text{ ppm} \\ H_{cis} &= 5.25 + 1.15 = 6.40 \text{ ppm; actual} = 6.42 \text{ ppm} \\ H_{trans} &= 5.25 + 0.56 = 5.81 \text{ ppm; actual} = 5.82 \text{ ppm} \end{split}$$

$$H_{a} \begin{cases} \delta_{gem} \text{ for } -\text{COOR} = 0.84 \\ \delta_{cis} \text{ for } -\text{C}_{6}\text{H}_{5} = 0.37 \\ H_{a} = 5.25 + 0.84 + 0.37 = 6.46 \text{ ppm}; \\ \text{actual} = 6.43 \text{ ppm} \end{cases}$$

$$H_{b} \begin{cases} \delta_{gem} \text{ for } -\text{C}_{6}\text{H}_{5} = 1.35 \\ \delta_{cis} \text{ for } -\text{COOR} = 1.15 \\ H_{b} = 5.25 + 1.35 + 1.15 = 7.75 \text{ ppm}; \\ \text{actual} = 7.69 \text{ ppm} \end{cases}$$

Substituents (—R)	δ_{ortho}	δ_{meta}	$\pmb{\delta}_{para}$
Saturated carbon groups			
Alkyl	-0.14	-0.06	-0.17
-CH ₂ OH	-0.07	-0.07	-0.07
Aldehydes and ketones			
-СНО	0.61	0.25	0.35
-COR	0.62	0.14	0.21
Carboxylic acids and derivatives			
-соон	0.85	0.18	0.34
-COOR	0.71	0.10	0.21
−C≡N	0.25	0.18	0.30
Oxygen groups			
—ОН	-0.53	-0.17	-0.45
-OCH ₃	-0.48	-0.09	-0.44
-OCOCH ₃	-0.19	-0.03	-0.19
Nitrogen groups			
$-NH_2$	-0.80	-0.25	-0.65
$-NO_2$	0.95	0.26	0.38
Halogen groups			
-F	-0.29	-0.02	-0.23
-C1	0.03	-0.02	-0.09
-Br	0.18	-0.08	-0.04
—I	0.38	-0.23	-0.01

Example Calculations

The formula allows you to calculate the *approximate* chemical-shift values for protons (¹H) on a benzene ring. Although the values given in the table are for *monosubstituted benzenes*, it is possible to estimate chemical shifts for disubstituted and trisubstituted compounds by adding values from the table. The calculations for *meta-* and *para-*disubstituted benzenes often agree closely with actual values. More significant deviations from the experimental values are expected with *ortho*-disubstituted benzenes. With these types of compounds, steric interactions cause groups such as carbonyl and nitro to turn out of the plane of the ring and thereby lose conjugation. Calculated values are often lower than the actual chemical shifts for *ortho*-disubstituted and trisubstituted benzenes.

Approximate ¹³C Chemical-Shift Values (ppm) for Selected Types of Carbon

Types of Carbon	Range (ppm)	Types of Carbon	Range (ppm)
R-CH ₃	8–30	C=C	65–90
R_2CH_2	15-55	C=C	100-150
R ₃ CH	20-60	C≡N	110-140
С-І	0–40	\bigcap	110–175
C–Br	25-65	O R-C-OR, R-C-OH	155–185
C–N	30–65	$\mathbf{R} - \mathbf{C} - \mathbf{NH}_2$	155–185
C–Cl	35-80	O II R-C-Cl	160–170
С-0	40-80	O R-C-R, R-C-H	185–220

Calculation of ¹³C Chemical Shifts

Compound	Formula	C1	C2	C3	C4	
Methane	CH_4	-2.3				
Ethane	CH ₃ CH ₃	5.7				
Propane	CH ₃ CH ₂ CH ₃	15.8	16.3			
Butane	CH ₃ CH ₂ CH ₂ CH ₃	13.4	25.2			
Pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	13.9	22.8	34.7		
Hexane	CH ₃ (CH ₂) ₄ CH ₃	14.1	23.1	32.2		
Heptane	CH ₃ (CH ₂) ₅ CH ₃	14.1	23.2	32.6	29.7	
Octane	CH ₃ (CH ₂) ₆ CH ₃	14.2	23.2	32.6	29.9	
Nonane	CH ₃ (CH ₂) ₇ CH ₃	14.2	23.3	32.6	30.0	
Decane	CH ₃ (CH ₂) ₈ CH ₃	14.2	23.2	32.6	31.1	
2-Methylpropane		24.5	25.4			
2-Methylbutane		22.2	31.1	32.0	11.7	
2-Methylpentane		22.7	28.0	42.0	20.9	
2,2-Dimethylpropane		31.7	28.1			
2,2-Dimethylbutane		29.1	30.6	36.9	8.9	
2,3-Dimethylbutane		19.5	34.4			
Ethylene	CH ₂ =CH ₂	123.3				
Cyclopropane		-3.0				
Cyclobutane		22.4				
Cyclopentane		25.6				
Cyclohexane		26.9				
Cycloheptane		28.4				
Cyclooctane		26.9				
Cyclononane		26.1				
Cyclodecane		25.3				
Benzene		128 5				

TABLE A8.2 ¹³C CHEMICAL-SHIFT CALCULATIONS FOR LINEAR AND BRANCHED ALKANES

 $\delta_{\rm C} = -2.3 + 9.1\alpha + 9.4\beta - 2.5\gamma + 0.3\delta + 0.1\varepsilon + \Sigma$ (steric corrections) ppm

 α , β , γ , δ , and ε are the numbers of carbon atoms in the α , β , γ , δ , and ε positions relative to the carbon atom being observed.

$$\cdots C_{\varepsilon} - C_{\delta} - C_{\gamma} - C_{\beta} - C_{\alpha} - C_{\alpha} - C_{\beta} - C_{\gamma} - C_{\delta} - C_{\varepsilon} \cdots$$

Steric corrections are derived from the following table (use all that apply, even if they apply more than once).

	Ste	ric Corrections (ppn	ו)	
Type of Carbons Attached				
Carbon Atom Observed	Primary	Secondary	Tertiary	Quaternary
Primary	0	0	-1.1	-3.4
Secondary	0	0	-2.5	-7.5
Tertiary	0	-3.7	-8.5	-10.0
Quaternary	-1.5	-8.4	-10.0	-12.5

Example

CH3		Actual values:	C1	29.1 ppm
1 2 3 4			C2	30.6 ppm
$CH_3 - C - CH_2 - CH_3$			C3	36.9 ppm
CH ₃	2,2-Dimethylbutane		C4	8.9 ppm

- C1 = -2.3 + 9.1(1) + 9.4(3) 2.5(1) + 0.3(0) + 0.1(0) + [1(-3.4)] = 29.1 ppmSteric correction (boldface) = primary with 1 adjacent quaternary
- C2 = -2.3 + 9.1(4) + 9.4(1) 2.5(0) + 0.3(0) + 0.1(0) + [3(-1.5)] + [1(-8.4)] = 30.6 ppmSteric corrections = quaternary/3 adj. primary, and quaternary/1 adj. secondary
- C3 = -2.3 + 9.1(2) + 9.4(3) 2.5(0) + 0.3(0) + 0.1(0) + [1(0)] + [1(-7.5)] = 36.6 ppmSteric corrections = secondary/1 adj. primary, and secondary/1 adj. quaternary
- C4 = -2.3 + 9.1(1) + 9.4(1) 2.5(3) + 0.3(0) + 0.1(0) + [1(0)] = 8.7 ppmSteric correction = primary/1 adj. secondary

	Termin	al: Y-C _a -C	e-C.,	Internal:	$C_{\mu} - C_{\rho} - C_{\mu}$	$-\mathbf{C}_{q}-\mathbf{C}_{q}$
			$\frac{\beta}{\gamma} = \gamma$		$\frac{c_{\gamma} c_{\beta} c_{\alpha}}{c_{\beta}}$	
Substituent Y	α	β	γ	α	β	γ
-D	-0.4	-0.1	0			
-CH ₃	9	10	-2	6	8	-2
$-CH=CH_2$	19.5	6.9	-2.1			-0
−C≡CH	4.5	5.4	-3.5			-3
$-C_{6}H_{5}$	22.1	9.3	-2.6	17	7	-2
-СНО	29.9	-0.6	-2.7			
-COCH ₃	30	1	-2	24	1	-2
-COOH	20.1	2	-2.8	16	2	-2
-COOR	22.6	2	-2.8	17	2	-2
$-CONH_2$	22	2.5	-3.2			-0
-CN	3.1	2.4	-3.3	1	3	-3
$-NH_2$	29	11	-5	24	10	-5
-NHR	37	8	-4	31	6	-4
$-NR_2$	42	6	-3			-3
$-NO_2$	61.6	3.1	-4.6	57	4	
-OH	48	10	-6.2	41	8	-5
-OR	58	8	-4	51	5	-4
-OCOCH ₃	56.5	6.5	-6.0	45	5	-3
-F	70.1	7.8	-6.8	63	6	-4
-Cl	31	10	-5.1	32	10	-4
-Br	20	11	-3	25	10	-3
-I	-7.2	10.9	-1.5	4	12	-1

TABLE A8.3 ¹³C SUBSTITUENT INCREMENTS FOR ALKANES AND CYCLOALKANES (PPM)^a

^aAdd these increments to the values given in Table A8.1.

Example 1

$$\begin{array}{c} \stackrel{1}{\text{CH}}_{3} \stackrel{2}{-} \stackrel{3}{\text{CH}} \stackrel{3}{-} \stackrel{4}{\text{CH}}_{3} \quad \textbf{2-Butanol}\\ \stackrel{1}{\text{OH}} \quad \textbf{0} \end{array}$$

Using the values for butane listed in Table A8.1 and the internal substituent corrections from Table A8.3, we calculate:

	Actual value
C1 = 13.4 + 8 = 21.4 ppm	22.6 ppm
C2 = 25.2 + 41 = 66.2 ppm	68.7 ppm
C3 = 25.2 + 8 = 33.2 ppm	32.0 ppm
C4 = 13.4 + (-5) = 8.4 ppm	9.9 ppm

Example 2

$$HO - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$
 1-Butanol

Using the values for butane listed in Table A8.1 and the terminal substituent corrections from Table A8.3, we calculate:

Actual value

48 = 61.4 ppm	61.4 ppm
10 = 35.2 ppm	35.0 ppm
-6.2) = 19.0 ppm	19.1 ppm
= 13.4 ppm	13.6 ppm
	48 = 61.4 ppm 10 = 35.2 ppm -6.2) = 19.0 ppm = 13.4 ppm

Example 3

$$Br - CH_2 - CH_2 - CH_2 - CH_3$$
 1-Bromopropane

Using the values for propane listed in Table A8.1 and the terminal substituent corrections from Table A8.3, we calculate:

	Actual value
C1 = 15.8 + 20 = 35.8 ppm	35.7 ppm
C2 = 16.3 + 11 = 27.3 ppm	26.8 ppm
C3 = 15.8 + (-3) = 12.8 ppm	13.2 ppm

	Y — C =	$=$ C^2 $-X$
Substituent	Y	х
—Н	0	0
-CH ₃	12.9	-7.4
-CH ₂ CH ₃	19.2	-9.7
-CH ₂ CH ₂ CH ₃	15.7	-8.8
$-CH(CH_3)_2$	22.7	-12.0
-C(CH ₃) ₃	26.0	-14.8
$-CH=CH_2$	13.6	-7
$-C_6H_5$	12.5	-11
-CH2Cl	10.2	-6.0
-CH ₂ Br	10.9	-4.5
-CH ₂ I	14.2	-4.0
-CH ₂ OH	14.2	-8.4
-СООН	5.0	9.8
$-NO_2$	22.3	-0.9
-OCH ₃	29.4	-38.9
-OCOCH ₃	18.4	-26.7
-CN	-15.1	14.2
-CHO	15.3	14.5
-COCH ₃	13.8	4.7
-COCl	8.1	14.0
-Si(CH ₂) ₃	16.9	6.7
-F	24.9	-34.3
-Cl	2.6	-6.1
-Br	-8.6	-0.9
—I	-38.1	7.0

TABLE A8.4 ¹³C SUBSTITUENT INCREMENTS FOR ALKENES (PPM)^{a,b}

^aCorrections for C1; add these increments to the base value of ethylene (123.3 ppm).

^bCalculate C1 as shown in the diagram. Redefine C2 as C1 when estimating values for C2.

Example 1

 $Br - CH = CH - CH - CH_3$ **1-Bromopropene**

	Actual values	
	cis	trans
C1 = 123.3 + (-8.6) + (-7.4) = 107.3 ppm	108.9	104.7 ppm
C2 = 123.3 + 12.9 + (-0.9) = 135.3 ppm	129.4	132.7 ppm

Example 2

$$HOOC^{1} \xrightarrow{2} CH \xrightarrow{3} CH \xrightarrow{4} CH_{3}$$
 Crotonic acid

	Actual value (trans)
C2 = 123.3 + 5 + (-7.4) = 120.9 ppm	122.0 ppm
C3 = 123.3 + 12.9 + 9.8 = 146.0 ppm	147.0 ppm

TABLE A8.5 ¹³C CHEMICAL-SHIFT CALCULATIONS FOR LINEAR AND BRANCHED ALKENES^a

 $\delta_{C1} = 123.3 + [10.6\alpha + 7.2\beta - 1.5\gamma] - [7.9\alpha' + 1.8\beta' - 1.5\gamma'] + \Sigma$ (steric corrections)

 α , β , γ and α' , β' , γ' are the numbers of carbon atoms in those same positions relative to C1:

$$C\gamma - C\beta - C\alpha - \overset{1}{C} = \overset{2}{C} - C\alpha' - C\beta' - C\gamma'$$

Steric corrections are applied as follows (use all that apply):

$C\alpha$ and $C\alpha'$ are <i>trans</i> (<i>E</i> -configuration)	0
$C\alpha$ and $C\alpha'$ are <i>cis</i> (Z-configuration)	-1.1
Two alkyl substituents at C1 (two C α)	-4.8
Two alkyl substituents at C2 (two C α')	+2.5
Two or three alkyl substituents at $C\beta$	+2.3

^aCalculate C1 as shown in the diagram. Redefine C2 as C1 when calculating values for C2.

Example 1

$$\overset{1}{C}H_{3} - \overset{2}{\overset{}{C}} = \overset{3}{C}H - \overset{4}{C}H_{3}$$
 2-Methyl-2-butene

Actual value

C2 = 123.3 + [10.6(2)] - [7.9(1)] + [(-4.8) + (-1.1)] = 130.7 ppm	131.4 ppm
C3 = 123.3 + [10.6(1)] - [7.9(2)] + [(+2.5) + (-1.1)] = 119.5 ppm	118.7 ppm

Example 2

$$\overset{1}{C}H_2 = \overset{2}{C}H - \overset{3}{C}H - \overset{4}{C}H_2 - \overset{5}{C}H_3$$
 3-Methyl-1-pentene
$$\overset{1}{C}H_3$$

Actual value

C1 = 123.3 + [0] - [7.9(1) + 1.8(2) - 1.5(1)]	= 113.3 ppm	112.9 ppm
C2 = 123.3 + [10.6(1) + 7.2(2) - 1.5(1)] - [0] + [(+2)] + [(-1)]	2.3)] = 149.1 ppm	144.9 ppm

Example 3

$$\overset{1}{\mathrm{CH}_{3}}$$
- $\overset{2}{\mathrm{CH}}$ - $\overset{3}{\mathrm{CH}}$ - $\overset{4}{\mathrm{CH}_{3}}$ **2-Butene**

Actual value

C2 (cis isomer)	= C3 = 123.3 + [10.6(1)] - [7.9(1)] + [(-1.5)]	1)] = 124.9 ppm	124.6 ppm
C2 (trans isomer)	C = C3 = 123.3 + [10.6(1)] - [7.9(1)] + [0]	= 126.0 ppm	126.0 ppm

¹³ C SUBSTITUENT IN	¹³ C SUBSTITUENT INCREMENTS FOR ALKENE (VINYL) CARBONS ^{a,b}						
	$\gamma - \beta - \alpha \qquad \alpha' - \beta' - \gamma'$						
		α'^{c}	ά				
Substituent	α	β	γ	α'	β΄	γ	
Carbon	10.6	7.2	-1.5	-7.9	-1.8	-1.5	
$-C_6H_5$	12			-11			
-OR	29	2		-39	-1		
-OCOR	18			-27			
-COR	15			6			
-СООН	4			9			
-CN	-16			15			
-Cl	3	-1		-6	2		
-Br	-8	0		-1	2		
—I	-38			7			

TABLE A8.6 13 C SUBSTITUENT INCREMENTS FOR ALKENE (VINYL) CARBONS^{a,b}

^{*a*}In the upper chains, if a group is in the β or γ position, the preceding atoms (α and/or β) are assumed to be carbon atoms. Add these increments to the base value of ethylene (123.3 ppm).

^bCalculate C1 as shown in the diagram. Redefine C2 as C1 when estimating values for C2.

Example 1

Br
$$-$$
¹CH $=$ ²CH $-$ ³CH₃ **1-Bromopropene**

	Actual values	
	cis	trans
C1 = 123.3 - 8 - 7.9 = 107.4 ppm	108.9	104.7 ppm
C2 = 123.3 + 10.6 - 1 = 132.9 ppm	129.4	132.7 ppm

Example 2

Actual value

C3 = 123.3 + 15 - 7.9 - 7.9 = 122.5 ppm	124.3 ppm
C4 = 123.3 + 10.6 + 10.6 + 6 = 150.5 ppm	154.6 ppm

Substituent Y	α (ipso)	o (ortho)	m (<i>meta</i>)	p (<i>para</i>
-CH ₃	9.3	0.7	-0.1	-2.9
-CH ₂ CH ₃	11.7	-0.5	0	-2.6
-CH(CH ₂) ₂	20.1	-2.0	-0.3	-2.5
-C(CH ₃) ₃	18.6	-3.4	-0.4	-3.1
-CH=CH ₂	9.1	-2.4	0.2	-0.5
−С≡СН	-6.2	3.6	-0.4	-0.3
$-C_{6}H_{5}$	8.1	-1.1	-0.5	-1.1
-СНО	8.2	1.2	0.6	5.8
-COCH ₃	8.9	-0.1	-0.1	4.4
$-COC_6H_5$	9.1	1.5	-0.2	3.8
-СООН	2.1	1.6	-0.1	5.2
-COOCH ₃	2.0	1.2	-0.1	4.3
-CN	-16.0	3.6	0.6	4.3
-NH ₂	18.2	-13.4	0.8	-10.0
-N(CH ₃) ₂	16.0	-15.7	0.8	-10.5
-NHCOCH ₃	9.7	-8.1	0.2	-4.4
$-NO_2$	19.6	-4.9	0.9	6.0
-OH	28.8	-12.7	1.6	-7.3
-OCH ₃	33.5	-14.4	1.0	-7.7
-OCOCH ₃	22.4	-7.1	-0.4	-3.2
-F	33.6	-13.0	1.6	-4.5
-Cl	5.3	0.4	1.4	-1.9
-Br	-5.4	3.4	2.2	-1.0
—I	-31.2	8.9	1.6	-1.1

 TABLE A8.7

 ¹³C SUBSTITUENT INCREMENTS FOR BENZENE RINGS (PPM)^a

^aAdd these increments to the base value for benzene-ring carbons (128.5 ppm).

Example 1

Mesitylene

·	Observed
C1,C3,C5 = 128.5 + 9.3 - 0.1 - 0.1 = 137.6 ppm	137.4 ppm
C2,C4,C6 = 128.5 + 0.7 + 0.7 - 2.9 = 127.0 ppm	127.1 ppm

Example 2

Salicylaldehyde

	Observed
C1 = 128.5 + 8.2 - 12.7 = 124.0 ppm	121.0 ppm
C2 = 128.5 + 28.8 + 1.2 = 158.5 ppm	161.4 ppm
C3 = 128.5 - 12.7 + 0.6 = 116.4 ppm	117.4 ppm
C4 = 128.5 + 1.6 + 5.8 = 135.9 ppm	136.6 ppm
C5 = 128.5 - 7.3 + 0.6 = 121.8 ppm	119.6 ppm
C6 = 128.5 + 1.2 + 1.6 = 131.3 ppm	133.6 ppm

Example 3

4-Nitrophenol

-	Observed
C1 = 128.5 + 28.8 + 6.0 = 163.3 ppm	161.5 ppm
C2 = 128.5 - 12.7 + 0.9 = 116.7 ppm	115.9 ppm
C3 = 128.5 + 1.6 - 4.9 = 125.2 ppm	126.4 ppm
C4 = 128.5 + 19.6 + 7.3 = 140.8 ppm	141.7 ppm

¹³C Coupling Constants

¹³C-proton coupling constants (¹*J*)

$$sp^{3}$$
 ¹³C-H 115-125 Hz
 sp^{2} ¹³C-H 150-170 Hz
 sp ¹³C-H 250-270 Hz

¹³C-deuterium coupling constants (¹*J*) ¹³C-D 20-30 Hz

¹³C-fluorine coupling constants (¹*J*) ¹³C-F 165-370 Hz

13
C-proton coupling constants (²J)
 13 C-C-H 0-60 Hz

¹³C-fluorine coupling constants (²J) ¹³C-C-F 18-45 Hz

Example

$$4$$
 2 F 5 3 F

C1 = 84.2 ppm, doublet, ${}^{1}J$ = 165 Hz C2 = 30.2 ppm, doublet, ${}^{2}J$ = 19.5 Hz C3 = 27.4 ppm, doublet, ${}^{3}J$ = 6.1 Hz C4 = 22.4 ppm, singlet, ${}^{4}J$ = 0 Hz C5 = 13.9 ppm, singlet, ${}^{5}J$ = 0 Hz

$${}^{13}C$$
-phosphorus coupling constants (${}^{1}J$)
 ${}^{13}C$ -P 48-56 Hz

Example

$$(CH_3 - CH_2)_4 P^+ X^-$$

¹³C-phosphorus coupling constants (²J and ³J) ¹³C-O-P 6-7 Hz ¹³C-C-O-P 6-7 Hz

$$CH_{3} \xrightarrow{P} O - CH_{2} - CH_{3}$$

¹H and ¹³C Chemical Shifts for Common NMR Solvents

TABLE A10.1¹H CHEMICAL-SHIFT VALUES (PPM) FOR SOME COMMON NMR SOLVENTS

Solvent	Deuterated Form	Chemical Shift (Multiplicity) ^a
Acetone	Acetone-d ₆	2.05 (5)
Acetonitrile	Acetonitrile-d ₃	1.93 (5)
Benzene	Benzene-d ₆	7.15 (broad)
Carbon tetrachloride	_	
Chloroform	Chloroform-d	7.25 (1)
Dimethylsulfoxide	Dimethylsulfoxide-d ₆	2.49 (5)
Water	Deuterium oxide	4.82 (1)
Methanol	Methanol-d ₄	4.84 (1) hydroxyl
		3.30 (5) methyl
Methylene chloride	Methylene chloride- d_2	5.32 (3)

^aWhere multiplets apply, the center peak is given and the number of lines is indicated in parentheses. No proton peak should be observed in the completely deuterated solvents listed. However, multiplets will arise from coupling of a proton with deuterium because the solvents are not 100% isotopically pure. For example, acetone- d_6 has a trace of acetone- d_5 in it, while CDCl₃ has some CHCl₃ present.

	¹⁹ C CHEMICAL-SHIFT VALUES FOR SOME COMMON NMR SOLVENTS (PPM)				
	Solvent	Deuterated Form	Chemical Shift (Multiplicity) ^a		
	Acetone	Acetone-d ₆	206.0 (1) carbonyl		
			29.8 (7) methyl		
	Acetonitrile	Acetonitrile-d ₃	118.3(1) CN		
			1.3(7) methyl		
	Benzene	Benzene-d ₆	128.0 (3)		
	Chloroform	Chloroform-d	77.0 (3)		
	Dimethylsulfoxide	Dimethylsulfoxide-d ₆	39.5 (7)		
Dioxane Methanol		Dioxane-d ₈	66.5 (5)		
		Methanol-d ₄	49.0 (7)		
	Methylene chloride	Methylene chloride-d ₂	54.0 (5)		

TABLEA10.2¹³C CHEMICAL-SHIFT VALUES FOR SOME COMMON NMR SOLVENTS (PPM)

^{*a*}Where multiplets apply, the center peak is given and the number of lines is indicated in parentheses. These multiplets arise from the coupling of carbon with the deuterium.

Tables of Precise Masses and Isotopic Abundance Ratios for Molecular Ions under Mass 100 Containing Carbon, Hydrogen, Nitrogen, and Oxygen^a

	Precise Mass	<i>M</i> + 1	<i>M</i> + 2
16 CH ₄	16.0313	1.15	
17 NH ₃	17.0266	0.43	
18 H ₂ O	18.0106	0.07	0.20
26 C ₂ H ₂	26.0157	2.19	0.01
27 CHN	27.0109	1.48	
28 N ₂ CO	28.0062 27.9949 28.0012	0.76	0.01
C ₂ H ₄ 29 CH ₃ N	29.0266	1.51	0.01
30 CH ₂ O C ₂ H ₆	30.0106 30.0470	1.15 2.26	0.20 0.01
31 CH ₅ N	31.0422	1.54	
32 O ₂ N ₂ H ₄ CH ₄ O	31.9898 32.0375 32.0262	0.08 0.83 1.18	0.40
40 C ₃ H ₄	40.0313	3.31	0.04
41 C ₂ H ₃ N	41.0266	2.59	0.02
$\begin{array}{c} \textbf{42} \\ CH_2N_2 \\ C_2H_2O \\ C_3H_6 \end{array}$	42.0218 42.0106 42.0470	1.88 2.23 3.34	0.01 0.21 0.04

^aAdapted with permission from Beynon, J. H., Mass Spectrometry and Its Application to Organic Chemistry, Elsevier, Amsterdam, 1960. The precise masses are calculated on the basis of the most abundant isotope of carbon having a mass of 12.0000.

	Precise Mass	<i>M</i> + 1	M +
43			
CH ₂ N ₂	43.0297	1.89	0.01
C_2H_5N	43.0422	2.62	0.02
44			
N ₂ O	44.0011	0.80	0.20
$\tilde{CO_2}$	43.9898	1.16	0.40
CH ₄ N ₂	44.0375	1.91	0.01
C ₂ H ₄ O	44.0262	2.26	0.21
C ₃ H ₈	44.0626	3.37	0.04
45			
CH ₂ NO	45.0215	1.55	0.21
C ₂ H ₇ N	45.0579	2.66	0.02
	10.0075	2.00	0.02
40 NO-	45 9929	0.46	0.40
	45.9929	1 10	0.40
CH_2O_2	46.00034	1.19	0.40
CIL N	40.0295	1.37	0.21
CH_6N_2	46.0532	1.94	0.01
C_2H_6O	46.0419	2.30	0.22
47 CH NO	17.0271	1.50	0.01
CH ₅ NO	47.0371	1.58	0.21
48	15 00 15	0.10	
O_3	47.9847	0.12	0.60
CH_4O_2	48.0211	1.22	0.40
52		4.00	
C_4H_4	52.0313	4.39	0.07
53			
C ₃ H ₃ N	53.0266	3.67	0.05
54			
$C_2H_2N_2$	54.0218	2.96	0.03
C_3H_2O	54.0106	3.31	0.24
C_4H_6	54.0470	4.42	0.07
55			
C_2HNO	55.0058	2.60	0.22
C ₃ H ₅ N	55.0422	3.70	0.05
56			
$C_2H_4N_2$	56.0375	2.99	0.03
C ₃ H ₄ O	56.0262	3.35	0.24
C_4H_8	56.0626	4.45	0.08
57			
CH ₃ N ₃	57.0328	2.27	0.02
C ₂ H ₃ NO	57.0215	2.63	0.22
C ₃ H ₇ N	57.0579	3.74	0.05

	Precise Mass	<i>M</i> + 1	M +
58			
CH ₂ N ₂ O	58.0167	1.92	0.2
C ₂ H ₂ O ₂	58 0054	2 27	0.4
C ₂ H ₂ O ₂	58 0532	3.02	0.0
C ₂ H ₆ N ₂	58.0332	3 38	0.0
C_4H_{10}	58.0783	4.48	0.0
59			
CHNO	59,0007	1 56	0.4
CH _z N ₂	59 0484	2 31	0.0
C ₂ H ₂ NO	59.0371	2.51	0.0
C H N	59.0371	2.00	0.2
	37.0730	5.77	0.0
60 CH ₄ N ₂ O	60 0324	1 95	0.2
Call Oa	60.0211	2 30	0.2
C H N	60.0688	3.05	0.0
$C_2H_8W_2$	60.0000	3.05	0.0
C ₃ Π ₈ U	00.0575	3.41	0.2
61 CH-NO-	61 0164	1 50	0.4
CH N	61.0641	1.57	0.4
C II NO	61.0528	2 60	0.2
C_2H_7NO	61.0528	2.09	0.2
62			
CH_2O_3	62.0003	1.23	0.6
CH_6N_2O	62.0480	1.98	0.2
$C_2H_6O_2$	62.0368	2.34	0.4
63			
CH_5NO_2	63.0320	1.62	0.4
64			
CH ₄ O ₃	64.0160	1.26	0.6
66			
C ₅ H ₆	66.0470	5.50	0.1
67			
C_4H_5N	67.0422	4.78	0.0
68			
$C_3H_4N_2$	68.0375	4.07	0.0
C_4H_4O	68.0262	4.43	0.2
C ₅ H ₈	68.0626	5.53	0.1
69			
$C_2H_3N_3$	69.0328	3.35	0.0
C ₃ H ₃ NO	69.0215	3.71	0.2
C_4H_7N	69.0579	4.82	0.0
70			
$C_2H_2N_2O$	70.0167	3.00	0.2
$C_3H_2O_2$	70.0054	3.35	0.4
$C_3H_6N_2$	70.0532	4.10	0.0
C ₄ H ₆ O	70.0419	4.46	0.2
C ₅ H ₁₀	70.0783	5.56	0.1

	Precise Mass	<i>M</i> + 1	N
71			
C ₂ HNO ₂	71.0007	2.64	(
C ₂ H _e N ₂	71.0484	3.39	(
C ₂ H ₂ NO	71 0371	3 74	
C ₄ H ₀ N	71.0736	4.85	
	110100		
72 C.H.N.O	72 0324	3 03	
	72.0324	2 29	
$C_3\Pi_4O_2$	72.0211	5.58	
$C_3H_8N_2$	72.0688	4.13	
C_4H_8O	72.0575	4.49	•
$C_{5}H_{12}$	72.0939	5.60	
73			
$C_2H_3NO_2$	73.0164	2.67	
$C_2H_7N_3$	73.0641	3.42	(
C ₃ H ₇ NO	73.0528	3.77	
$C_4H_{11}N$	73.0892	4.88	
74			
C2H2O2	74,0003	2.31	
$C_2H_2N_2O$	74.0480	3.06	
C_H_O_	74.0368	3.42	
С Н М	74.0845	3. 4 2 4.17	
$C_{3}\Pi_{10}\Pi_{2}$	74.0722	4.17	
C ₄ II ₁₀ O	74.0732	4.32	
75	74.0057	1.60	
CHNO ₃	74.9956	1.60	
$C_2H_5NO_2$	75.0320	2.70	
$C_2H_9N_3$	75.0798	3.45	
C ₃ H ₉ NO	75.0684	3.81	
76			
$C_2H_4O_3$	76.0160	2.34	
C ₂ H ₈ N ₂ O	76.0637	3.09	
$C_3H_8O_2$	76.0524	3.45	(
77			
CH ₃ NO ₃	77.0113	1.63	
C ₂ H ₇ NO ₂	77.0477	2.73	
78			
C ₂ H ₂ O ₂	78.0317	2.38	
C-H-	78 0470	6.58	
-0110	10.0770	0.50	
79 CH NO	70.02.00	1.44	
CH_5NO_3	79.0269	1.66	
C ₅ H ₅ N	79.0422	5.87	
80			
C ₆ H ₈	80.0626	6.61	
81			
CeH-N	81 0579	5 90	

	Precise Mass	<i>M</i> + 1	M + 2
82			
$C_4H_6N_2$	82.0532	4.18	0.11
C ₅ H ₆ O	82.0419	5.54	0.32
C_6H_{10}	82.0783	6.64	0.19
83			
C ₃ H ₅ N ₃	83.0484	4.47	0.08
C ₄ H ₅ NO	83.0371	4.82	0.29
C ₅ H ₉ N	83.0736	5.93	0.15
84			
$C_3H_4N_2O$	84.0324	4.11	0.27
$C_4H_4O_2$	84.0211	4.47	0.48
$C_4H_8N_2$	84.0688	5.21	0.11
C _z H _o O	84 0575	5 57	0.33
$C_{6}H_{12}$	84.0939	6.68	0.19
85			
$C_3H_3NO_2$	85.0164	3.75	0.45
C ₃ H ₇ N ₃	85.0641	4.50	0.08
C ₄ H ₇ NO	85.0528	4.86	0.29
$C_5H_{11}N$	85.0892	5.96	0.15
86			
C ₂ H ₂ O ₂	86 0003	3 39	0.64
$C_{2}H_{2}O_{3}$	86 0480	4 14	0.27
C.H.O.	86.0368	4.50	0.27
C H N	86.0845	5 25	0.40
$C_{4}\Pi_{10}\Pi_{2}$	86.0722	5.25	0.11
$C_5\Pi_{10}O$ $C_6\Pi_{14}$	86.1096	6.71	0.19
0 7			
o/ CaHNOa	86 9956	2 68	0.62
C ₂ H ₂ NO ₂	87 0320	3 78	0.02
С Н М	87.0320	4 53	0.45
	87.0798	4.55	0.08
C H N	87.0084	4.09	0.30
C511131N	87.1049	5.97	0.15
88	88 0160	2 40	0.64
$C_3\Pi_4O_3$	88.0100	5.42	0.04
$C_3H_8N_2O$	88.0037	4.17	0.27
$C_4H_8O_2$	88.0524	4.53	0.48
$C_4H_{12}N_2$	88.1001	5.28	0.11
$C_5H_{12}O$	88.0888	5.63	0.33
89	00.0112	0.71	0.62
$C_2H_3NO_3$	89.0113	2.71	0.63
$C_3H_7NO_2$	89.0477	3.81	0.46
$C_3H_{11}N_3$	89.0954	4.56	0.84
$C_4H_{11}NO$	89.0841	4.92	0.30
90			
$C_3H_6O_3$	90.0317	3.46	0.64
$C_3H_{10}N_2O$	90.0794	4.20	0.27
$C_4H_{10}O_2$	90.0681	4.56	0.48

	Precise Mass	<i>M</i> + 1	М
91			
C ₂ H ₂ NO ₂	91 0269	2.74	0
C-H-N-O	91.0209	3 49	0
C-H-NO-	91.0740	3.85	0
C31191002	71.0034	5.05	0
92 CHO	02 0473	3 40	0
$C_3\Pi_8 O_3$	92.0475	7.60	0
C7H8	92.0020	7.09	U
93 C H NO	93 0426	2 77	0
$C_2 \Pi_7 \Pi O_3$	02 0570	2.77	0
C ₆ Π ₇ Ν	93.0379	0.98	U
94 CHN	04 0532	6 76	C
$C_{5}\Pi_{6}\Pi_{2}$	94.0332	6.62	
С И	94.0419	0.02	
$C_7 H_{10}$	94.0783	1.12	t
95 CHN	05 0484	5 55	ſ
$C_4\Pi_5N_3$	95.0464	5.55	
$C_5 \Pi_5 NO$	95.0571	5.90	
C6H9N	93.0730	7.01	t
96 CHNO	06.0224	5 10	ſ
$C_4 \Pi_4 N_2 O$	90.0324	5.19	
$C_5H_4O_2$	96.0211	5.55	
$C_5H_8N_2$	96.0688	6.29	
C ₆ H ₈ O	96.0575	0.05	
C ₇ H ₁₂	96.0939	/./0	t
97 C H NO	07.0164	1 92	ſ
$C_4 \Pi_3 \Pi O_2$	97.0104	4.03	
$C_4 \Pi_7 \Pi_3$	97.0041	5.04	
C_5H_7NO	97.0328	5.94 7 04	
09	,		
90 C4HeN2O	98.0480	5.22	(
C _c H _c O ₂	98.0368	5.58	(
$C_5H_{10}N_2$	98,0845	6.33	0
$C_6H_{10}O$	98.0732	6.68	(
C ₇ H ₁₄	98.1096	7.79	0
99			
C ₄ H ₅ NO ₂	99.0320	4.86	0
$C_4H_9N_3$	99.0798	5.61	C
C ₅ H ₉ NO	99.0684	5.97	C
C ₆ H ₁₃ N	99.1049	7.07	C
100			
$C_4H_8N_2O$	100.0637	5.25	C
$C_5H_8O_2$	100.0524	5.61	C
$C_{5}H_{12}N_{2}$	100.1001	6.36	C
$C_6H_{12}O$	100.0888	6.72	C
C ₇ H ₁₆	100.1253	7.82	C

Common Fragment Ions under Mass 105^a

m/z	lons	m/z	lons
14	CH ₂	44	$CH_2CH=O+H$
15	CH ₃		CH ₃ CHNH ₂
16	0		CO ₂
17	OH		NH ₂ C=O
18	H ₂ O		(CH ₃) ₂ N
	NH_4	45	CH ₃ CHOH
19	F		CH ₂ CH ₂ OH
	H ₃ O		CH ₂ OCH ₃
26	C≡N		Q
27	C_2H_3		∥ С—ОН
28	C_2H_4		CH-CH-O+H
	CO	16	NO.
	N_2 (air)	40	CH-SH
	CH=NH	· · ·	CH ₂ SH
29	C_2H_5	48	$CH_{2}S + H$
	СНО	40	CH ₂ Cl
30	CH ₂ NH ₂	51	CHF
	NO	51	C ₄ H ₂
31	CH ₂ OH	53	C4He
	OCH ₃	54	CH ₂ CH ₂ CH ₂ C≡N
32	O_2 (air)	55	C4H7
33	SH		$CH_2 = CHC = O$
	CH_2F	56	C ₄ H ₈
34	H_2S	57	C ₄ H ₉
35	Cl		C ₂ H ₅ C=O
36	HCl	58	$CH_2 - C = O$
39	C ₃ H ₃		J + H
40	C≡N		CH ₂
41	C_3H_5		$C_2H_5CHNH_2$
	$CH_2C=H+H$		(CH ₃) ₂ NHCH ₂
	C ₂ H ₂ NH		C ₂ H ₅ NHCH ₂
42	C_3H_6		C_2H_2S
43	C ₃ H ₇		
	CH ₃ C=O		
	C_2H_5N		

^aAdapted with permission from Silverstein, R. M. and F. X. Webster, Spectrometric Identification of Organic Compounds, 6th ed., John Wiley & Sons, New York, 1998.

m/z	lons	m/z	lons
59	(CH ₃) ₂ COH	74	O II
	$CH_2OC_2H_5$		$CH_2 - C - OCH_3 + H$
	0	75	0
	C ^L OCH ₃		$\ $
	NH ₂ C=O		CH ₂ SC ₂ H ₅ + 2H
	H_{2} + H CH ₂		(CH ₃) ₂ CSH
	CH ₃ OCHCH ₃		(CH ₃ O) ₂ CH
	CH ₃ CHCH ₂ OH	77	C_6H_5
60	$CH_2C=O$	78	$C_6H_5 + H$
	H + H OH	79	$C_{6}H_{5} + 2H$
	CH ₂ ONO		Br
61	0	80	$CH_3SS + H$
		81	C ₆ H ₉
	$C = OCH_3 + 2H$		\downarrow
	CH ₂ SCH ₂		
65	Н		
	Ĺ.	82	CH.CH.CH.CH.C=N
		02	
	$(or C_5H_5)$		C_6H_{10}
66	НН	83	C_6H_{11}
	÷		CHCl ₂
	(or C ₂ H ₂)	85	C ₆ H ₁₃
67	С-Н-		$C_4H_9C=0$
68	CH ₂ CH ₂ CH ₂ CH ₂ C≡N		CCIF ₂
69	C ₅ H ₉	86	Q
	CF ₃		C_3H_7C — $CH_2 + H$
	CH ₃ CH=CHC=O		C ₄ H ₉ CHNH ₂ and isomers
	$CH_2 = C(CH_3)C = O$	87	Q
70	$C_{5}H_{10}$		C ₂ H ₇ CO
71	$C_{5}H_{11}$		Homologs of 73
	$C_3H_7C=O$		CH ₂ CH ₂ COCH ₂
72	0		
	$C_2H_5C - CH_2$	<u> </u>	0
	C ₃ H ₇ CHNH ₂	00	
	$(CH_3)N=C=O$		$CH_2 - C - OC_2H_5 + H$
	C ₂ H ₅ NHCHCH ₃ and isomers		
73	Homologs of 59		

A Handy-Dandy Guide to Mass Spectral Fragmentation Patterns

Alkanes

Good M⁺ 14-amu fragments

Alkenes

Distinct M⁺ Loss of 15, 29, 43, and so on

Cycloalkanes

Strong M^+ Loss of $CH_2 = CH_2$ M - 28Loss of alkyl

Aromatics

Strong M⁺ C₇H₇⁺ m/z = 91, weak m/z = 65 (C₅H₅⁺)

Halides

Cl and Br doublets (M⁺ and M + 2) $m/z = 49 \text{ or } 51 \text{ CH}_2 = \text{Cl}^+$ $m/z = 93 \text{ or } 95 \text{ CH}_2 = \text{Br}^+$ M - 36 Loss of HCl $m/z = 91 \text{ or } 93 \text{ Cl}^+$ $m/z = 135 \text{ or } 137 \text{ Br}^+$

M - 79 (M - 81) Loss of Br· M - 127 Loss of I·

Alcohols

M⁺ weak or absent Loss of alkyl CH₂=OH⁺ m/z = 31RCH=OH⁺ m/z = 45, 59, 73, ...R₂C=OH⁺ m/z = 59, 73, 87, ... M - 18 Loss of H₂O M - 46 Loss of H₂O + CH₂=CH₂

Phenols	
	Strong M ⁺
	Strong $M - 1$ Loss of H.
	M - 28 Loss of CO
Fthors	
Liners	M ⁺ stronger than alcohols
	Loss of alkyl
	Loss of OR' $M - 31$, $M - 45$, $M - 59$, and so on
	$CH_2 = OR'^+$ $m/z = 45, 59, 73,$
A	
Amines	M ⁺ weak or absent
	Nitrogen Rule
	m/z = 30 CH ₂ =NH ₂ ⁺ (base peak)
	Loss of alkyl
	5
Aldehydes	
	Weak M ⁺
	M = 29 Loss of HCO M = 42 Loss of CU CUO
	M = 43 LOSS OF CH ₂ =CHO m/z = 44
	⁺ OH Transfer of <i>gamma</i> hydrogens
	$\cdot CH_2 - C - H$
	or 58, 72, 86,
Aromatic Ala	lehydes
1110111111111111	Strong M ⁺
	M-1 Loss of H.
	M - 29 Loss of H · and CO
Ketones	M+ internet
	M = 15 $M = 29$ $M = 43$ Loss of alkyl group
	m/7 = 43 CH ₂ CO ⁺
	$m/z = 58, 72, 86, \dots$ Transfer of <i>gamma</i> hydrogens
	m/z = 55 +CH ₂ -CH=C=O Base peak for cyclic ketones
	$m/z = 83$ $C \equiv O^+$ in cyclohexanone
	$m/z = 42$ $\left[\sum_{i=1}^{\infty} \right]^{+}$ in cyclohexanone
	m/z = 105 $C \equiv O^+$ in aryl ketones
	100 tox
	m/z = 120 ⁺ OH
	$\langle \rangle$ \neg \ddot{C} -CH ₂ · Itansfer of gamma hydrogens

Carboxylic Acids M⁺ weak but observable M - 17 Loss of OH M - 45 Loss of COOH m/z = 45 + COOHTransfer of gamma hydrogens m/z = 60+O+ $HO - C - CH_2 \cdot$ Aromatic Acids M⁺ large M - 17 Loss of OH M - 45 Loss of COOH M - 18 Ortho effect Methyl Esters M⁺ weak but observable M - 31 Loss of OCH₃ $m/z = 59 + COOCH_3$ m/z = 74+OHTransfer of gamma hydrogens CH₃O−C−CH₂

Higher Esters

M⁺ weaker than for RCOOCH₃ Same pattern as in methyl esters M - 45, M - 59, M - 73 Loss of OR m/z = 73, 87, 101 +COOR m/z = 88, 102, 116 +OH RO-C-CH₂. Transfer of *gamma* hydrogens

m/z = 28, 42, 56, 70 Beta hydrogens on alkyl group

$$m/z = 61, 75, 89$$
 ⁺OH Long alkyl chain
R—C—OH

$$m/z = 108$$
 Loss of CH₂=C=O Benzyl or acetate ester
 $m/z = 105$ \bigcirc - C=O⁺
 $m/z = 77$ \bigcirc + weak

$$M - 32, M - 46, M - 60$$
 ortho effect—loss of ROH

Index of Spectra

Infrared Spectra

Acetophenone, 59 Acetyl chloride, 72 Anisole, 51 Benzaldehyde, 57 Benzenesulfonamide, 83 Benzenesulfonyl chloride, 83 Benzenethiol, 81 Benzoic acid, 63 Benzonitrile, 78 Benzoyl chloride, 72 Benzyl isocyanate, 78 2-Butanol, 48 Butylamine, 75 Butyronitrile, 77 Carbon dioxide (background spectrum), 87 Carbon tetrachloride, 85 Chloroform, 86 para-Cresol, 48 Crotonaldehyde, 57 Cyclohexane, 33 Cyclohexene, 34 Cyclopentanone, 60 Decane, 32 Dibutyl ether, 51 Dibutylamine, 75 meta-Diethylbenzene, 44 ortho-Diethylbenzene, 44 para-Diethylbenzene, 44 Ethyl 3-aminobenzoate, 526 Ethyl butyrate, 65 Ethyl crotonate, 617 Ethyl cyanoacetate, 529 Ethyl propionate, 522 1-Hexanol, 47 1-Hexene, 34 Isobutyric acid, 63 Leucine, 81 Mesityl oxide, 59 4-Methoxyphenylacetone, 524 Methyl benzoate, 66 Methyl methacrylate, 65 Methyl p-toluenesulfonate, 83 Methyl salicylate, 66 3-Methyl-2-butanone, 27

N-methylacetamide, 71 N-Methylaniline, 76 Mineral oil. 32 Nitrobenzene, 79 1-Nitrohexane, 79 Nonanal, 57 Nujol, 32 1-Octyne, 35 4-Octyne, 36 2,4-Pentanedione, 60 cis-2-Pentene. 34 trans-2-Pentene, 35 Propionamide, 70 Propionic anhydride, 74 Styrene, 45 Toluene, 43 Tributylamine, 75 Vinyl acetate, 66

Mass Spectra

Acetophenone, 477 p-Anisic acid, 483 Benzaldehyde, 474 Benzene, 460 Benzonitrile, 490 Benzyl alcohol, 468 Benzyl laurate, 480 Bicyclo[2.2.1]heptane, 455 1-Bromo-2-chloroethane, 496 1-Bromohexane, 492 Butane, 451 2-Butanone, 475 Butyl butyrate, 479 Butyl methacrylate, 424 Butylbenzene, 463 Butyric acid, 483 Butyrophenone, 478 1-Chloro-2-methylbenzene, 497 2-Chloroheptane, 493 Cyclohexanol, 468 Cyclohexanone, 476 Cyclopentane, 454 Dibromomethane, 495 Dichloromethane, 495

Diethvlamine, 485 Diisopropyl ether, 470 Di-sec-butyl ether, 471 Dopamine, 436 Ethyl bromide, 494 Ethyl chloride, 494 Ethyl propionate, 522 2-Ethyl-2-methyl-1,3-dioxolane, 471 Ethylamine, 485 Hexanenitrile, 489 α -Ionone, 458 β -Ionone, 458 Isobutane, 452 Isobutyl salicylate, 482 Isopropylbenzene, 462 Lavandulyl acetate, 423 Limonene, 457 Lysozyme, 428 Methyl benzoate, 481 Methyl butyrate, 478 Methyl dodecanoate, 433 2-Methyl-2-butanol, 466 Methylcyclopentane, 455 4-Methylphenetole, 472 2-Methylphenol, 469 3-Methylpyridine, 487 Nitrobenzene, 491 1-Nitropropane, 490 Octane, 452 2-Octanone, 475 3-Pentanol, 465 1-Pentanol, 464 2-Pentanol, 465 1-Pentene, 456 (*E*)-2-Pentene, 457 (Z)-2-Pentene, 456 1-Pentyne, 459 2-Pentyne, 460 Phenol, 469 Toluene, 461 Triethylamine, 486 2,2,4-Trimethylpentane, 453 Valeraldehyde, 473 m-Xylene, 462 o-Xylene, 461

¹H NMR Spectra

Acetone-d₅, 202 Acetylacetone, 339

4-Allyloxyanisole, 281, 290 Anethole, 290 Anisole, 287 Benzaldehyde, 289 Benzyl acetate, 122, 123 Butyl methyl ether, 151 Butylamine, 340 Butyramide, 160 Chloroacetamide, 348 1-Chlorobutane, 149 2-Chloroethanol, 276, 334 β -Chlorophenetole, 275 α -Chloro-*p*-xylene, 146 trans-Cinnamic acid, 278 Citric acid. 257 Crotonic acid, 280 Diethyl succinate, 274 N,N-Dimethylformamide, 347 2,4-Dinitroanisole, 291 Ethanol, 331, 332 Ethyl 2-methyl-4-pentenoate (in various solvents), 350 Ethyl 3-aminobenzoate, 526 Ethyl crotonate, 620 Ethyl cyanoacetate, 529 Ethyl iodide, 132 Ethyl methacrylate, 361 Ethyl propionate, 523 Ethylbenzene, 287 Ethylmalonic acid, 159 N-Ethylnicotinamide, 345 Furfuryl alcohol, 295 1-Hexanol, 353 Isobutyl acetate, 157 4-Methoxyphenylacetone, 524 2-Methyl-1-pentene, 145 2-Methyl-1-propanol, 150 5-Methyl-2-hexanone, 156 4-Methyl-2-pentanol, 254, 255 2-Methylpropanal, 155 2-Methylpyridine, 296 2-Nitroaniline, 292 3-Nitroaniline, 292 4-Nitroaniline, 292 3-Nitrobenzoic acid, 294 1-Nitrobutane, 161 2-Nitrophenol, 293 1-Nitropropane, 142 2-Nitropropane, 133 Octane, 143

1-Pentyne, 148 2-Phenyl-4-penten-2-ol (in various solvents), 349 Phenylacetone, 115 Phenylethyl acetate, 274 1-Phenylethylamine, 341, 355 2-Picoline, 296 Propylamine, 153 Pyrrole, 344 Styrene oxide, 258 1,1,2-Trichloroethane, 131 Valeronitrile, 154 Vinyl acetate, 279

¹³C NMR Spectra

Chloroform-d, 200 Citronellol, 596 Cyclohexanol, 196 Cyclohexanone, 197 Cyclohexene, 196 1,2-Dichlorobenzene, 199 1,3-Dichlorobenzene, 199 1,4-Dichlorobenzene, 199 Dimethyl methylphosphonate, 205 2,2-Dimethylbutane, 195 Dimethylsulfoxide-d₆, 200 Ethyl crotonate, 618 Ethyl cyanoacetate, 529 Ethyl phenylacetate, 182 Ethyl propionate, 523 4-Methyl-2-pentanol, 253 1-Propanol, 184, 193 Toluene, 198 Tribromofluoromethane, 203 2,2,2-Trifluoroethanol, 204

COSY Spectra

Citronellol, 607 Ethyl crotonate, 621 Isopentyl acetate, 606 2-Nitropropane, 605

DEPT Spectra

Citronellol, 597 Ethyl crotonate, 618 Isopentyl acetate, 194, 595

HETCOR Spectra

Ethyl crotonate, 622 Isopentyl acetate, 610 4-Methyl-2-pentanol, 611 2-Nitropropane, 609

NOE Difference Spectra

Ethyl methacrylate, 361

Ultraviolet-Visible Spectra

Anthracene, 409 Benzene, 404 Benzoic acid, 385 Dimethylpolyenes, 390 Isoquinoline, 410 9-Methylanthracene, 411 Naphthalene, 409 Phenol, 386 Pyridine, 410 Quinoline, 410