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CHAPTER OVERVIEW

This chapter is intended to provide an overview of the basic statistical
concepts used throughout the textbook. A course in statistics requires the
student to learn many new terms and concepts. This chapter lays the founda-
tion necessary for understanding basic statistical terms and concepts and the
role that statisticians play in promoting scientific discovery and wisdom.
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LEARNING OUTCOMES

After studying this chapter, the student will

1. understand the basic concepts and terminology of biostatistics, including the
various kinds of variables, measurement, and measurement scales.

2. be able to select a simple random sample and other scientific samples from a
population of subjects.

3. understand the processes involved in the scientific method and the design of
experiments.

4. appreciate the advantages of using computers in the statistical analysis of data

generated by studies and experiments conducted by researchers in the health
sciences.
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INTRODUCTION

We are frequently reminded of the fact that we are living in the information age.
Appropriately, then, this book is about information—how it is obtained, how it is analyzed,
and how it is interpreted. The information about which we are concerned we call data, and
the data are available to us in the form of numbers.

The objectives of this book are twofold: (1) to teach the student to organize and
summarize data, and (2) to teach the student how to reach decisions about a large body of
data by examining only a small part of it. The concepts and methods necessary for
achieving the first objective are presented under the heading of descriptive statistics, and
the second objective is reached through the study of what is called inferential statistics.
This chapter discusses descriptive statistics. Chapters 2 through 5 discuss topics that form
the foundation of statistical inference, and most of the remainder of the book deals with
inferential statistics.

Because this volume is designed for persons preparing for or already pursuing a
career in the health field, the illustrative material and exercises reflect the problems and
activities that these persons are likely to encounter in the performance of their duties.

1.2 SOME BASIC CONCEPTS

Like all fields of learning, statistics has its own vocabulary. Some of the words and phrases
encountered in the study of statistics will be new to those not previously exposed to the
subject. Other terms, though appearing to be familiar, may have specialized meanings that
are different from the meanings that we are accustomed to associating with these terms.
The following are some terms that we will use extensively in this book.

Data The raw material of statistics is data. For our purposes we may define data as
numbers. The two kinds of numbers that we use in statistics are numbers that result from
the taking—in the usual sense of the term—of a measurement, and those that result
from the process of counting. For example, when a nurse weighs a patient or takes
a patient’s temperature, a measurement, consisting of a number such as 150 pounds or
100 degrees Fahrenheit, is obtained. Quite a different type of number is obtained when a
hospital administrator counts the number of patients—perhaps 20—discharged from the
hospital on a given day. Each of the three numbers is a datum, and the three taken
together are data.

Statistics The meaning of statistics is implicit in the previous section. More
concretely, however, we may say that statistics is a field of study concerned with (1)
the collection, organization, summarization, and analysis of data; and (2) the drawing of
inferences about a body of data when only a part of the data is observed.

The person who performs these statistical activities must be prepared to interpret and
to communicate the results to someone else as the situation demands. Simply put, we may
say that data are numbers, numbers contain information, and the purpose of statistics is to
investigate and evaluate the nature and meaning of this information.
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Sources of Data The performance of statistical activities is motivated by the
need to answer a question. For example, clinicians may want answers to questions
regarding the relative merits of competing treatment procedures. Administrators may
want answers to questions regarding such areas of concern as employee morale or
facility utilization. When we determine that the appropriate approach to seeking an
answer to a question will require the use of statistics, we begin to search for suitable data
to serve as the raw material for our investigation. Such data are usually available from
one or more of the following sources:

1. Routinely kept records. It is difficult to imagine any type of organization that
does not keep records of day-to-day transactions of its activities. Hospital medical
records, for example, contain immense amounts of information on patients, while
hospital accounting records contain a wealth of data on the facility’s business
activities. When the need for data arises, we should look for them first among
routinely kept records.

2. Surveys. If the data needed to answer a question are not available from routinely
kept records, the logical source may be a survey. Suppose, for example, that the
administrator of a clinic wishes to obtain information regarding the mode of
transportation used by patients to visit the clinic. If admission forms do not contain
a question on mode of transportation, we may conduct a survey among patients to
obtain this information.

3. Experiments. Frequently the data needed to answer a question are available only as
the result of an experiment. A nurse may wish to know which of several strategies is
best for maximizing patient compliance. The nurse might conduct an experiment in
which the different strategies of motivating compliance are tried with different
patients. Subsequent evaluation of the responses to the different strategies might
enable the nurse to decide which is most effective.

4. External sources. The data needed to answer a question may already exist in the
form of published reports, commercially available data banks, or the research
literature. In other words, we may find that someone else has already asked the
same question, and the answer obtained may be applicable to our present
situation.

Biostatistics The tools of statistics are employed in many fields—business,
education, psychology, agriculture, and economics, to mention only a few. When the
data analyzed are derived from the biological sciences and medicine, we use the term
biostatistics to distinguish this particular application of statistical tools and concepts. This
area of application is the concern of this book.

Variable If, as we observe a characteristic, we find that it takes on different values
in different persons, places, or things, we label the characteristic a variable. We do this
for the simple reason that the characteristic is not the same when observed in different
possessors of it. Some examples of variables include diastolic blood pressure, heart rate,
the heights of adult males, the weights of preschool children, and the ages of patients
seen in a dental clinic.
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Quantitative Variables A quantitative variable is one that can be measured in
the usual sense. We can, for example, obtain measurements on the heights of adult males,
the weights of preschool children, and the ages of patients seen in a dental clinic. These are
examples of quantitative variables. Measurements made on quantitative variables convey
information regarding amount.

Qualitative Variables Some characteristics are not capable of being measured
in the sense that height, weight, and age are measured. Many characteristics can be
categorized only, as, for example, when an ill person is given a medical diagnosis, a
person is designated as belonging to an ethnic group, or a person, place, or object is
said to possess or not to possess some characteristic of interest. In such cases
measuring consists of categorizing. We refer to variables of this kind as qualitative
variables. Measurements made on qualitative variables convey information regarding
attribute.

Although, in the case of qualitative variables, measurement in the usual sense of the
word is not achieved, we can count the number of persons, places, or things belonging to
various categories. A hospital administrator, for example, can count the number of patients
admitted during a day under each of the various admitting diagnoses. These counts, or
frequencies as they are called, are the numbers that we manipulate when our analysis
involves qualitative variables.

Random Variable Whenever we determine the height, weight, or age of an
individual, the result is frequently referred to as a value of the respective variable.
When the values obtained arise as a result of chance factors, so that they cannot be
exactly predicted in advance, the variable is called a random variable. An example of a
random variable is adult height. When a child is born, we cannot predict exactly his or her
height at maturity. Attained adult height is the result of numerous genetic and environ-
mental factors. Values resulting from measurement procedures are often referred to as
observations or measurements.

Discrete Random Variable Variables may be characterized further as to
whether they are discrete or continuous. Since mathematically rigorous definitions of
discrete and continuous variables are beyond the level of this book, we offer, instead,
nonrigorous definitions and give an example of each.

A discrete variable is characterized by gaps or interruptions in the values that it can
assume. These gaps or interruptions indicate the absence of values between particular
values that the variable can assume. Some examples illustrate the point. The number of
daily admissions to a general hospital is a discrete random variable since the number of
admissions each day must be represented by a whole number, such as 0, 1, 2, or 3. The
number of admissions on a given day cannot be a number such as 1.5, 2.997, or 3.333. The
number of decayed, missing, or filled teeth per child in an elementary school is another
example of a discrete variable.

Continuous Random Variable A continuous random variable does not
possess the gaps or interruptions characteristic of a discrete random variable. A
continuous random variable can assume any value within a specified relevant interval
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of values assumed by the variable. Examples of continuous variables include the various
measurements that can be made on individuals such as height, weight, and skull
circumference. No matter how close together the observed heights of two people, for
example, we can, theoretically, find another person whose height falls somewhere in
between.

Because of the limitations of available measuring instruments, however, observa-
tions on variables that are inherently continuous are recorded as if they were discrete.
Height, for example, is usually recorded to the nearest one-quarter, one-half, or whole
inch, whereas, with a perfect measuring device, such a measurement could be made as
precise as desired.

Population The average person thinks of a population as a collection of entities,
usually people. A population or collection of entities may, however, consist of animals,
machines, places, or cells. For our purposes, we define a population of entities as the
largest collection of entities for which we have an interest at a particular time. If we take a
measurement of some variable on each of the entities in a population, we generate a
population of values of that variable. We may, therefore, define a population of values as
the largest collection of values of a random variable for which we have an interest at a
particular time. If, for example, we are interested in the weights of all the children enrolled
in a certain county elementary school system, our population consists of all these weights.
If our interest lies only in the weights of first-grade students in the system, we have a
different population—weights of first-grade students enrolled in the school system. Hence,
populations are determined or defined by our sphere of interest. Populations may be finite
or infinite. If a population of values consists of a fixed number of these values, the
population is said to be finite. If, on the other hand, a population consists of an endless
succession of values, the population is an infinite one.

Sample A sample may be defined simply as a part of a population. Suppose our
population consists of the weights of all the elementary school children enrolled in a certain
county school system. If we collect for analysis the weights of only a fraction of these
children, we have only a part of our population of weights, that is, we have a sample.

1.3 MEASUREMENT AND
MEASUREMENT SCALES

In the preceding discussion we used the word measurement several times in its usual sense,
and presumably the reader clearly understood the intended meaning. The word measure-
ment, however, may be given a more scientific definition. In fact, there is a whole body of
scientific literature devoted to the subject of measurement. Part of this literature is
concerned also with the nature of the numbers that result from measurements. Authorities
on the subject of measurement speak of measurement scales that result in the categoriza-
tion of measurements according to their nature. In this section we define measurement and
the four resulting measurement scales. A more detailed discussion of the subject is to be
found in the writings of Stevens (1,2).
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Measurement This may be defined as the assignment of numbers to objects or
events according to a set of rules. The various measurement scales result from the fact that
measurement may be carried out under different sets of rules.

The Nominal Scale The lowest measurement scale is the nominal scale. As the
name implies it consists of “naming” observations or classifying them into various
mutually exclusive and collectively exhaustive categories. The practice of using numbers
to distinguish among the various medical diagnoses constitutes measurement on a nominal
scale. Other examples include such dichotomies as male—female, well-sick, under 65 years
of age—65 and over, child—adult, and married—not married.

The Ordinal Scale Whenever observations are not only different from category to
category but can be ranked according to some criterion, they are said to be measured on an
ordinal scale. Convalescing patients may be characterized as unimproved, improved, and
much improved. Individuals may be classified according to socioeconomic status as low,
medium, or high. The intelligence of children may be above average, average, or below
average. In each of these examples the members of any one category are all considered
equal, but the members of one category are considered lower, worse, or smaller than those
in another category, which in turn bears a similar relationship to another category. For
example, a much improved patient is in better health than one classified as improved, while
a patient who has improved is in better condition than one who has not improved. It is
usually impossible to infer that the difference between members of one category and the
next adjacent category is equal to the difference between members of that category and the
members of the next category adjacent to it. The degree of improvement between
unimproved and improved is probably not the same as that between improved and
much improved. The implication is that if a finer breakdown were made resulting in
more categories, these, too, could be ordered in a similar manner. The function of numbers
assigned to ordinal data is to order (or rank) the observations from lowest to highest and,
hence, the term ordinal.

The Interval Scale Theinterval scaleisa more sophisticated scale than the nominal
or ordinal in that with this scale not only is it possible to order measurements, but also the
distance between any two measurements is known. We know, say, that the difference between
a measurement of 20 and a measurement of 30 is equal to the difference between
measurements of 30 and 40. The ability to do this implies the use of a unit distance and
a zero point, both of which are arbitrary. The selected zero point is not necessarily a true zero
in that it does not have to indicate a total absence of the quantity being measured. Perhaps the
best example of an interval scale is provided by the way in which temperature is usually
measured (degrees Fahrenheit or Celsius). The unit of measurement is the degree, and the
point of comparison is the arbitrarily chosen “zero degrees,” which does not indicate a lack of
heat. The interval scale unlike the nominal and ordinal scales is a truly quantitative scale.

The Ratio Scale The highest level of measurement is the ratio scale. This scale is
characterized by the fact that equality of ratios as well as equality of intervals may be
determined. Fundamental to the ratio scale is a true zero point. The measurement of such
familiar traits as height, weight, and length makes use of the ratio scale.



1.4 SAMPLING AND STATISTICAL INFERENCE =~ 7

1.4 SAMPLING AND
STATISTICAL INFERENCE

As noted earlier, one of the purposes of this book is to teach the concepts of statistical
inference, which we may define as follows:

DEFINITION
Statistical inference is the procedure by which we reach a conclusion
about a population on the basis of the information contained in a sample
that has been drawn from that population.

There are many kinds of samples that may be drawn from a population. Not every
kind of sample, however, can be used as a basis for making valid inferences about a
population. In general, in order to make a valid inference about a population, we need a
scientific sample from the population. There are also many kinds of scientific samples that
may be drawn from a population. The simplest of these is the simple random sample. In this
section we define a simple random sample and show you how to draw one from a
population.

If we use the letter N to designate the size of a finite population and the letter n to
designate the size of a sample, we may define a simple random sample as follows:

DEFINITION
If a sample of size n is drawn from a population of size N in such a way
that every possible sample of size n has the same chance of being selected,
the sample is called a simple random sample.

The mechanics of drawing a sample to satisfy the definition of a simple random
sample is called simple random sampling.

We will demonstrate the procedure of simple random sampling shortly, but first let us
consider the problem of whether to sample with replacement or without replacement. When
sampling with replacement is employed, every member of the population is available at
each draw. For example, suppose that we are drawing a sample from a population of former
hospital patients as part of a study of length of stay. Let us assume that the sampling
involves selecting from the shelves in the medical records department a sample of charts of
discharged patients. In sampling with replacement we would proceed as follows: select a
chart to be in the sample, record the length of stay, and return the chart to the shelf. The
chart is back in the “population” and may be drawn again on some subsequent draw, in
which case the length of stay will again be recorded. In sampling without replacement, we
would not return a drawn chart to the shelf after recording the length of stay, but would lay
it aside until the entire sample is drawn. Following this procedure, a given chart could
appear in the sample only once. As a rule, in practice, sampling is always done without
replacement. The significance and consequences of this will be explained later, but first let
us see how one goes about selecting a simple random sample. To ensure true randomness of
selection, we will need to follow some objective procedure. We certainly will want to avoid
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using our own judgment to decide which members of the population constitute a random
sample. The following example illustrates one method of selecting a simple random sample
from a population.

EXAMPLE 1.4.1

Gold et al. (A-1) studied the effectiveness on smoking cessation of bupropion SR, a
nicotine patch, or both, when co-administered with cognitive-behavioral therapy. Consec-
utive consenting patients assigned themselves to one of the three treatments. For illustrative
purposes, let us consider all these subjects to be a population of size N = 189. We wish to
select a simple random sample of size 10 from this population whose ages are shown in
Table 1.4.1.

TABLE 1.4.1 Ages of 189 Subjects Who Participated in a Study on Smoking
Cessation

Subject No. Age Subject No. Age Subject No. Age Subject No. Age

1 48 49 38 97 51 145 52
2 35 50 44 98 50 146 53
3 46 51 43 99 50 147 61
4 44 52 47 100 55 148 60
5 43 53 46 101 63 149 53
6 42 54 57 102 50 150 53
7 39 55 52 103 59 151 50
8 44 56 54 104 54 152 53
9 49 57 56 105 60 153 54
10 49 58 53 106 50 154 61
11 44 59 64 107 56 155 61
12 39 60 53 108 68 156 61
13 38 61 58 109 66 157 64
14 49 62 54 110 71 158 53
15 49 63 59 111 82 159 53
16 53 64 56 112 68 160 54
17 56 65 62 113 78 161 61
18 57 66 50 114 66 162 60
19 51 67 64 115 70 163 51
20 61 68 53 116 66 164 50
21 53 69 61 117 78 165 53
22 66 70 53 118 69 166 64
23 71 71 62 119 71 167 64
24 75 72 57 120 69 168 53
25 72 73 52 121 78 169 60
26 65 74 54 122 66 170 54
27 67 75 61 123 68 171 55
28 38 76 59 124 71 172 58

(Continued)
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Subject No. Age Subject No. Age Subject No. Age Subject No. Age
29 37 77 57 125 69 173 62
30 46 78 52 126 77 174 62
31 44 79 54 127 76 175 54
32 44 80 53 128 71 176 53
33 48 81 62 129 43 177 61
34 49 82 52 130 47 178 54
35 30 83 62 131 48 179 51
36 45 84 57 132 37 180 62
37 47 85 59 133 40 181 57
38 45 86 59 134 42 182 50
39 48 87 56 135 38 183 64
40 47 88 57 136 49 184 63
a1 47 89 53 137 43 185 65
42 44 90 59 138 46 186 71
43 48 91 61 139 34 187 71
44 43 92 55 140 46 188 73
45 45 93 61 141 46 189 66
46 40 94 56 142 48

47 48 95 52 143 47

48 49 96 54 144 43

Source: Data provided courtesy of Paul B. Gold, Ph.D.

Solution:

One way of selecting a simple random sample is to use a table of random
numbers like that shown in the Appendix, Table A. As the first step, we locate
a random starting point in the table. This can be done in a number of ways,
one of which is to look away from the page while touching it with the point of
a pencil. The random starting point is the digit closest to where the pencil
touched the page. Let us assume that following this procedure led to a random
starting point in Table A at the intersection of row 21 and column 28. The
digit at this point is 5. Since we have 189 values to choose from, we can use
only the random numbers 1 through 189. It will be convenient to pick three-
digit numbers so that the numbers 001 through 189 will be the only eligible
numbers. The first three-digit number, beginning at our random starting point
is 532, a number we cannot use. The next number (going down) is 196, which
again we cannot use. Let us move down past 196, 372, 654, and 928 until we
come to 137, a number we can use. The age of the 137th subject from Table
1.4.1 is 43, the first value in our sample. We record the random number and
the corresponding age in Table 1.4.2. We record the random number to keep
track of the random numbers selected. Since we want to sample without
replacement, we do not want to include the same individual’s age twice.
Proceeding in the manner just described leads us to the remaining nine
random numbers and their corresponding ages shown in Table 1.4.2. Notice
that when we get to the end of the column, we simply move over three digits
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TABLE 1.4.2 Sample of
10 Ages Drawn from the
Ages in Table 1.4.1

Random Sample

Number Subject Number Age
137 1 43
114 2 66
155 3 61
183 4 64
185 5 65
028 6 38
085 7 59
181 8 57
018 9 57
164 10 50

to 028 and proceed up the column. We could have started at the top with the
number 369.

Thus we have drawn a simple random sample of size 10 from a
population of size 189. In future discussions, whenever the term simple
random sample is used, it will be understood that the sample has been drawn
in this or an equivalent manner. [

The preceding discussion of random sampling is presented because of the important
role that the sampling process plays in designing research studies and experiments. The
methodology and concepts employed in sampling processes will be described in more
detail in Section 1.5.

DEFINITION

A research study is a scientific study of a phenomenon of interest.
Research studies involve designing sampling protocols, collecting and
analyzing data, and providing valid conclusions based on the results of
the analyses.

DEFINITION

Experiments are a special type of research study in which observations
are made after specific manipulations of conditions have been carried
out; they provide the foundation for scientific research.

Despite the tremendous importance of random sampling in the design of research
studies and experiments, there are some occasions when random sampling may not be the
most appropriate method to use. Consequently, other sampling methods must be consid-
ered. The intention here is not to provide a comprehensive review of sampling methods, but
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rather to acquaint the student with two additional sampling methods that are employed in
the health sciences, systematic sampling and stratified random sampling. Interested readers
are referred to the books by Thompson (3) and Levy and Lemeshow (4) for detailed
overviews of various sampling methods and explanations of how sample statistics are
calculated when these methods are applied in research studies and experiments.

Systematic Sampling A sampling method that is widely used in healthcare
research is the systematic sample. Medical records, which contain raw data used in
healthcare research, are generally stored in a file system or on a computer and hence are
easy to select in a systematic way. Using systematic sampling methodology, a researcher
calculates the total number of records needed for the study or experiment at hand. A
random numbers table is then employed to select a starting point in the file system. The
record located at this starting point is called record x. A second number, determined by the
number of records desired, is selected to define the sampling interval (call this interval k).
Consequently, the data set would consist of records x, x + k, x + 2k, x 4+ 3k, and so on, until
the necessary number of records are obtained.

EXAMPLE 1.4.2

Continuing with the study of Gold et al. (A-1) illustrated in the previous example, imagine
that we wanted a systematic sample of 10 subjects from those listed in Table 1.4.1.

Solution: To obtain a starting point, we will again use Appendix Table A. For purposes
of illustration, let us assume that the random starting point in Table A was the
intersection of row 10 and column 30. The digit is a 4 and will serve as our
starting point, x. Since we are starting at subject 4, this leaves 185 remaining
subjects (i.e., 189—4) from which to choose. Since we wish to select 10
subjects, one method to define the sample interval, k, would be to take
185/10 = 18.5. To ensure that there will be enough subjects, it is customary to
round this quotient down, and hence we will round the result to 18. The
resulting sample is shown in Table 1.4.3.

TABLE 1.4.3 Sample of 10 Ages Selected Using a
Systematic Sample from the Ages in Table 1.4.1

Systematically Selected Subject Number Age

4 44
22 66
40 47
58 53
76 59
94 56
112 68
130 47
148 60
166 64
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Stratified Random Sampling A common situation that may be encountered
in a population under study is one in which the sample units occur together in a grouped
fashion. On occasion, when the sample units are not inherently grouped, it may be possible
and desirable to group them for sampling purposes. In other words, it may be desirable to
partition a population of interest into groups, or strata, in which the sample units within a
particular stratum are more similar to each other than they are to the sample units that
compose the other strata. After the population is stratified, it is customary to take a random
sample independently from each stratum. This technique is called stratified random
sampling. The resulting sample is called a stratified random sample. Although the benefits
of stratified random sampling may not be readily observable, it is most often the case that
random samples taken within a stratum will have much less variability than a random
sample taken across all strata. This is true because sample units within each stratum tend to
have characteristics that are similar.

EXAMPLE 1.4.3

Hospital trauma centers are given ratings depending on their capabilities to treat various
traumas. In this system, a level 1 trauma center is the highest level of available trauma care
and a level 4 trauma center is the lowest level of available trauma care. Imagine that we are
interested in estimating the survival rate of trauma victims treated at hospitals within a
large metropolitan area. Suppose that the metropolitan area has a level 1, a level 2, and a
level 3 trauma center. We wish to take samples of patients from these trauma centers in such
a way that the total sample size is 30.

Solution: We assume that the survival rates of patients may depend quite significantly
on the trauma that they experienced and therefore on the level of care that
they receive. As a result, a simple random sample of all trauma patients,
without regard to the center at which they were treated, may not represent
true survival rates, since patients receive different care at the various trauma
centers. One way to better estimate the survival rate is to treat each trauma
center as a stratum and then randomly select 10 patient files from each of the
three centers. This procedure is based on the fact that we suspect that the
survival rates within the trauma centers are less variable than the survival
rates across trauma centers. Therefore, we believe that the stratified random
sample provides a better representation of survival than would a sample taken
without regard to differences within strata. [ ]

It should be noted that two slight modifications of the stratified sampling technique
are frequently employed. To illustrate, consider again the trauma center example. In the
first place, a systematic sample of patient files could have been selected from each trauma
center (stratum). Such a sample is called a stratified systematic sample.

The second modification of stratified sampling involves selecting the sample from a
given stratum in such a way that the number of sample units selected from that stratum is
proportional to the size of the population of that stratum. Suppose, in our trauma center
example that the level 1 trauma center treated 100 patients and the level 2 and level 3
trauma centers treated only 10 each. In that case, selecting a random sample of 10 from
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each trauma center overrepresents the trauma centers with smaller patient loads. To avoid
this problem, we adjust the size of the sample taken from a stratum so that it is proportional
to the size of the stratum’s population. This type of sampling is called stratified sampling
proportional to size. The within-stratum samples can be either random or systematic as
described above.

EXERCISES

1.4.1 Using the table of random numbers, select a new random starting point, and draw another simple
random sample of size 10 from the data in Table 1.4.1. Record the ages of the subjects in this new
sample. Save your data for future use. What is the variable of interest in this exercise? What
measurement scale was used to obtain the measurements?

1.4.2 Select another simple random sample of size 10 from the population represented in Table 1.4.1.
Compare the subjects in this sample with those in the sample drawn in Exercise 1.4.1. Are there any
subjects who showed up in both samples? How many? Compare the ages of the subjects in the two
samples. How many ages in the first sample were duplicated in the second sample?

1.4.3 Using the table of random numbers, select a random sample and a systematic sample, each of size 15,
from the data in Table 1.4.1. Visually compare the distributions of the two samples. Do they appear
similar? Which appears to be the best representation of the data?

1.4.4 Construct an example where it would be appropriate to use stratified sampling. Discuss how you
would use stratified random sampling and stratified sampling proportional to size with this example.
Which do you think would best represent the population that you described in your example? Why?

1.5 THE SCIENTIFIC METHOD
AND THE DESIGN OF EXPERIMENTS

Data analyses using a broad range of statistical methods play a significant role in scientific
studies. The previous section highlighted the importance of obtaining samples in a
scientific manner. Appropriate sampling techniques enhance the likelihood that the results
of statistical analyses of a data set will provide valid and scientifically defensible results.
Because of the importance of the proper collection of data to support scientific discovery, it
is necessary to consider the foundation of such discovery—the scientific method—and to
explore the role of statistics in the context of this method.

DEFINITION

The scientific method is a process by which scientific information is
collected, analyzed, and reported in order to produce unbiased and
replicable results in an effort to provide an accurate representation of
observable phenomena.

The scientific method is recognized universally as the only truly acceptable way to
produce new scientific understanding of the world around us. It is based on an empirical
approach, in that decisions and outcomes are based on data. There are several key elements
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associated with the scientific method, and the concepts and techniques of statistics play a
prominent role in all these elements.

Making an Observation First, an observation is made of a phenomenon or a
group of phenomena. This observation leads to the formulation of questions or uncer-
tainties that can be answered in a scientifically rigorous way. For example, it is readily
observable that regular exercise reduces body weight in many people. It is also readily
observable that changing diet may have a similar effect. In this case there are two
observable phenomena, regular exercise and diet change, that have the same endpoint.
The nature of this endpoint can be determined by use of the scientific method.

Formulating a Hypothesis In the second step of the scientific method a
hypothesis is formulated to explain the observation and to make quantitative predictions
of new observations. Often hypotheses are generated as a result of extensive background
research and literature reviews. The objective is to produce hypotheses that are scientifi-
cally sound. Hypotheses may be stated as either research hypotheses or statistical
hypotheses. Explicit definitions of these terms are given in Chapter 7, which discusses
the science of testing hypotheses. Suffice it to say for now that a research hypothesis from
the weight-loss example would be a statement such as, “Exercise appears to reduce body
weight.” There is certainly nothing incorrect about this conjecture, but it lacks a truly
quantitative basis for testing. A statistical hypothesis may be stated using quantitative
terminology as follows: “The average (mean) loss of body weight of people who exercise is
greater than the average (mean) loss of body weight of people who do not exercise.” In this
statement a quantitative measure, the “average” or “mean” value, is hypothesized to be
greater in the sample of patients who exercise. The role of the statistician in this step of the
scientific method is to state the hypothesis in a way that valid conclusions may be drawn
and to interpret correctly the results of such conclusions.

Designing an Experiment The third step of the scientific method involves
designing an experiment that will yield the data necessary to validly test an appropriate
statistical hypothesis. This step of the scientific method, like that of data analysis, requires
the expertise of a statistician. Improperly designed experiments are the leading cause of
invalid results and unjustified conclusions. Further, most studies that are challenged by
experts are challenged on the basis of the appropriateness or inappropriateness of the
study’s research design.

Those who properly design research experiments make every effort to ensure that the
measurement of the phenomenon of interest is both accurate and precise. Accuracy refers
to the correctness of a measurement. Precision, on the other hand, refers to the consistency
of a measurement. It should be noted that in the social sciences, the term validity is
sometimes used to mean accuracy and that reliability is sometimes used to mean precision.
In the context of the weight-loss example given earlier, the scale used to measure the weight
of study participants would be accurate if the measurement is validated using a scale that is
properly calibrated. If, however, the scale is off by +3 pounds, then each participant’s
weight would be 3 pounds heavier; the measurements would be precise in that each would
be wrong by 43 pounds, but the measurements would not be accurate. Measurements that
are inaccurate or imprecise may invalidate research findings.
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The design of an experiment depends on the type of data that need to be collected to
test a specific hypothesis. As discussed in Section 1.2, data may be collected or made
available through a variety of means. For much scientific research, however, the standard
for data collection is experimentation. A true experimental design is one in which study
subjects are randomly assigned to an experimental group (or treatment group) and a control
group that is not directly exposed to a treatment. Continuing the weight-loss example, a
sample of 100 participants could be randomly assigned to two conditions using the
methods of Section 1.4. A sample of 50 of the participants would be assigned to a specific
exercise program and the remaining 50 would be monitored, but asked not to exercise for a
specific period of time. At the end of this experiment the average (mean) weight losses of
the two groups could be compared. The reason that experimental designs are desirable
is that if all other potential factors are controlled, a cause—effect relationship may be tested;
that is, all else being equal, we would be able to conclude or fail to conclude that the
experimental group lost weight as a result of exercising.

The potential complexity of research designs requires statistical expertise, and
Chapter 8 highlights some commonly used experimental designs. For a more in-depth
discussion of research designs, the interested reader may wish to refer to texts by Kuehl (5),
Keppel and Wickens (6), and Tabachnick and Fidell (7).

Conclusion In the execution of a research study or experiment, one would hope to
have collected the data necessary to draw conclusions, with some degree of confidence,
about the hypotheses that were posed as part of the design. It is often the case that
hypotheses need to be modified and retested with new data and a different design.
Whatever the conclusions of the scientific process, however, results are rarely considered
to be conclusive. That is, results need to be replicated, often a large number of times, before
scientific credence is granted them.

EXERCISES

1.5.1

1.5.2

Using the example of weight loss as an endpoint, discuss how you would use the scientific method to
test the observation that change in diet is related to weight loss. Include all of the steps, including the
hypothesis to be tested and the design of your experiment.

Continuing with Exercise 1.5.1, consider how you would use the scientific method to test the
observation that both exercise and change in diet are related to weight loss. Include all of the steps,
paying particular attention to how you might design the experiment and which hypotheses would be
testable given your design.

1.6 COMPUTERS AND
BIOSTATISTICAL ANALYSIS

The widespread use of computers has had a tremendous impact on health sciences research
in general and biostatistical analysis in particular. The necessity to perform long and
tedious arithmetic computations as part of the statistical analysis of data lives only in the
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memory of those researchers and practitioners whose careers antedate the so-called
computer revolution. Computers can perform more calculations faster and far more
accurately than can human technicians. The use of computers makes it possible for
investigators to devote more time to the improvement of the quality of raw data and the
interpretation of the results.

The current prevalence of microcomputers and the abundance of available statistical
software programs have further revolutionized statistical computing. The reader in search
of a statistical software package may wish to consult The American Statistician, a quarterly
publication of the American Statistical Association. Statistical software packages are
regularly reviewed and advertised in the periodical.

Computers currently on the market are equipped with random number generating
capabilities. As an alternative to using printed tables of random numbers, investigators may
use computers to generate the random numbers they need. Actually, the “random” numbers
generated by most computers are in reality pseudorandom numbers because they are the
result of a deterministic formula. However, as Fishman (8) points out, the numbers appear
to serve satisfactorily for many practical purposes.

The usefulness of the computer in the health sciences is not limited to statistical
analysis. The reader interested in learning more about the use of computers in the health
sciences will find the books by Hersh (4), Johns (5), Miller et al. (6), and Saba and
McCormick (7) helpful. Those who wish to derive maximum benefit from the Internet may
wish to consult the books Physicians’ Guide to the Internet (13) and Computers in
Nursing’s Nurses’ Guide to the Internet (14). Current developments in the use of computers
in biology, medicine, and related fields are reported in several periodicals devoted to
the subject. A few such periodicals are Computers in Biology and Medicine, Computers
and Biomedical Research, International Journal of Bio-Medical Computing, Computer
Methods and Programs in Biomedicine, Computer Applications in the Biosciences, and
Computers in Nursing.

Computer printouts are used throughout this book to illustrate the use of computers in
biostatistical analysis. The MINITAB, SPSS, R, and SAS® statistical software packages for
the personal computer have been used for this purpose.

1.7 SUMMARY

In this chapter we introduced the reader to the basic concepts of statistics. We defined
statistics as an area of study concerned with collecting and describing data and with making
statistical inferences. We defined statistical inference as the procedure by which we reach a
conclusion about a population on the basis of information contained in a sample drawn
from that population. We learned that a basic type of sample that will allow us to make valid
inferences is the simple random sample. We learned how to use a table of random numbers
to draw a simple random sample from a population.

The reader is provided with the definitions of some basic terms, such as variable
and sample, that are used in the study of statistics. We also discussed measurement and
defined four measurement scales—nominal, ordinal, interval, and ratio. The reader is
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also introduced to the scientific method and the role of statistics and the statistician in
this process.

Finally, we discussed the importance of computers in the performance of the
activities involved in statistics.

REVIEW QUESTIONS AND EXERCISES

1. Explain what is meant by descriptive statistics.

2. Explain what is meant by inferential statistics.

3. Define:
(a) Statistics (b) Biostatistics
(¢) Variable (d) Quantitative variable
(e) Qualitative variable (f) Random variable
(g) Population (h) Finite population
(i) Infinite population (j) Sample
(k) Discrete variable (1) Continuous variable
(m) Simple random sample (n) Sampling with replacement

(o) Sampling without replacement

4. Define the word measurement.
5. List, describe, and compare the four measurement scales.

6. For each of the following variables, indicate whether it is quantitative or qualitative and specify the
measurement scale that is employed when taking measurements on each:

(a) Class standing of the members of this class relative to each other

(b) Admitting diagnosis of patients admitted to a mental health clinic

(c) Weights of babies born in a hospital during a year

(d) Gender of babies born in a hospital during a year

(e) Range of motion of elbow joint of students enrolled in a university health sciences curriculum
(f) Under-arm temperature of day-old infants born in a hospital

7. For each of the following situations, answer questions a through e:
(a) What is the sample in the study?
(b) What is the population?
(¢) What is the variable of interest?
(d) How many measurements were used in calculating the reported results?
(e) What measurement scale was used?

Situation A. A study of 300 households in a small southern town revealed that 20 percent had at least
one school-age child present.

Situation B. A study of 250 patients admitted to a hospital during the past year revealed that, on the
average, the patients lived 15 miles from the hospital.

8. Consider the two situations given in Exercise 7. For Situation A describe how you would use a
stratified random sample to collect the data. For Situation B describe how you would use systematic
sampling of patient records to collect the data.
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CHAPTER 2

DESCRIPTIVE STATISTICS

CHAPTER OVERVIEW

This chapter introduces a set of basic procedures and statistical measures for
describing data. Data generally consist of an extensive number of measure-
ments or observationsthat are too numerous or complicated to be understood
through simple observation. Therefore, this chapter introduces several tech-
niques including the construction of tables, graphical displays, and basic
statistical computations that provide ways to condense and organize infor-
mation into a set of descriptive measures and visual devices that enhance the
understanding of complex data.

TOPICS

2.1 INTRODUCTION

2.2 THE ORDERED ARRAY

2.3 GROUPED DATA: THE FREQUENCY DISTRIBUTION

2.4 DESCRIPTIVE STATISTICS: MEASURES OF CENTRAL TENDENCY
2.5 DESCRIPTIVE STATISTICS: MEASURES OF DISPERSION

2.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how data can be appropriately organized and displayed.
2. understand how to reduce data sets into a few useful, descriptive measures.

3. beableto calculate and interpret measures of central tendency, such as the mean,
median, and mode.

4. be able to calculate and interpret measures of dispersion, such as the range,
variance, and standard deviation.
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INTRODUCTION

In Chapter 1 we stated that the taking of a measurement and the process of counting yield
numbers that contain information. The objective of the person applying the tools of
statistics to these numbers is to determine the nature of this information. This task is made
much easier if the numbers are organized and summarized. When measurements of a
random variable are taken on the entities of a population or sample, the resulting values are
made available to the researcher or statistician as a mass of unordered data. Measurements
that have not been organized, summarized, or otherwise manipulated are called raw data.
Unless the number of observations is extremely small, it will be unlikely that these raw data
will impart much information until they have been put into some kind of order.

In this chapter we learn several techniques for organizing and summarizing data so
that we may more easily determine what information they contain. The ultimate in
summarization of data is the calculation of a single number that in some way conveys
important information about the data from which it was calculated. Such single numbers
that are used to describe data are called descriptive measures. After studying this chapter
you will be able to compute several descriptive measures for both populations and samples
of data.

The purpose of this chapter is to equip you with skills that will enable you to
manipulate the information—in the form of numbers—that you encounter as a health
sciences professional. The better able you are to manipulate such information, the better
understanding you will have of the environment and forces that generate the information.

2.2 THE ORDERED ARRAY

A first step in organizing data is the preparation of an ordered array. An ordered array is a
listing of the values of a collection (either population or sample) in order of magnitude from
the smallest value to the largest value. If the number of measurements to be ordered is of
any appreciable size, the use of a computer to prepare the ordered array is highly desirable.

An ordered array enables one to determine quickly the value of the smallest
measurement, the value of the largest measurement, and other facts about the arrayed
data that might be needed in a hurry. We illustrate the construction of an ordered array with
the data discussed in Example 1.4.1.

EXAMPLE 2.2.1

Table 1.4.1 contains a list of the ages of subjects who participated in the study on smoking
cessation discussed in Example 1.4.1. As can be seen, this unordered table requires
considerable searching for us to ascertain such elementary information as the age of the
youngest and oldest subjects.

Solution: Table 2.2.1 presents the data of Table 1.4.1 in the form of an ordered array. By
referring to Table 2.2.1 we are able to determine quickly the age of the
youngest subject (30) and the age of the oldest subject (82). We also readily
note that about one-third of the subjects are 50 years of age or younger.
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TABLE 2.2.1 Ordered Array of Ages of Subjects from Table 1.4.1

30 34 35 37 37 38 38 38 38 39 39 40 40 42 42
43 43 43 43 43 43 44 44 44 44 44 44 44 45 45
45 46 46 46 46 46 46 47 47 47 47 47 47 48 48
48 48 48 48 48 49 49 49 49 49 49 49 50 50 50
50 50 50 50 50 51 51 51 51 52 52 52 52 52 52
53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
53 53 54 54 54 54 54 54 54 54 54 54 54 55 55
55 56 56 56 56 56 56 57 57 57 57 57 57 57 58
58 59 59 59 59 59 59 60 60 60 60 61 61 61 61
61 61 61 61 61 61 61 62 62 62 62 62 62 62 63
63 64 64 64 64 64 64 65 65 66 66 66 66 66 66
67 68 68 68 69 69 69 70 71 71 71 71 71 71 71
72 73 75 76 77 78 78 78 82

Computer Analysis If additional computations and organization of a data set
have to be done by hand, the work may be facilitated by working from an ordered array. If
the data are to be analyzed by a computer, it may be undesirable to prepare an ordered array,
unless one is needed for reference purposes or for some other use. A computer does not
need for its user to first construct an ordered array before entering data for the construction
of frequency distributions and the performance of other analyses. However, almost all
computer statistical packages and spreadsheet programs contain a routine for sorting data
in either an ascending or descending order. See Figure 2.2.1, for example.

Dialog box: Session command:

Data » Sort MIB > Sort Cl1 C(C2;
SUBC> By Cl.

FIGURE 2.2.1 MINITAB dialog box for Example 2.2.1.
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2.3 GROUPED DATA: THE
FREQUENCY DISTRIBUTION

Although a set of observations can be made more comprehensible and meaningful by
means of an ordered array, further useful summarization may be achieved by grouping the
data. Before the days of computers one of the main objectives in grouping large data sets
was to facilitate the calculation of various descriptive measures such as percentages and
averages. Because computers can perform these calculations on large data sets without first
grouping the data, the main purpose in grouping data now is summarization. One must bear
in mind that data contain information and that summarization is a way of making it easier to
determine the nature of this information. One must also be aware that reducing a large
quantity of information in order to summarize the data succinctly carries with it the
potential to inadvertently lose some amount of specificity with regard to the underlying
data set. Therefore, it is important to group the data sufficiently such that the vast amounts
of information are reduced into understandable summaries. At the same time data should
be summarized to the extent that useful intricacies in the data are not readily obvious.

To group a set of observations we select a set of contiguous, nonoverlapping intervals
such that each value in the set of observations can be placed in one, and only one, of the
intervals. These intervals are usually referred to as class intervals.

One of the first considerations when data are to be grouped is how many intervals to
include. Too few intervals are undesirable because of the resulting loss of information. On
the other hand, if too many intervals are used, the objective of summarization will not be
met. The best guide to this, as well as to other decisions to be made in grouping data, is your
knowledge of the data. It may be that class intervals have been determined by precedent, as
in the case of annual tabulations, when the class intervals of previous years are maintained
for comparative purposes. A commonly followed rule of thumb states that there should be
no fewer than five intervals and no more than 15. If there are fewer than five intervals, the
data have been summarized too much and the information they contain has been lost. If
there are more than 15 intervals, the data have not been summarized enough.

Those who need more specific guidance in the matter of deciding how many class
intervals to employ may use a formula given by Sturges (1). This formula gives
k=14 3.322(log,,n), where k stands for the number of class intervals and n is the
number of values in the data set under consideration. The answer obtained by applying
Sturges’s rule should not be regarded as final, but should be considered as a guide only. The
number of class intervals specified by the rule should be increased or decreased for
convenience and clear presentation.

Suppose, for example, that we have a sample of 275 observations that we want to
group. The logarithm to the base 10 of 275 is 2.4393. Applying Sturges’s formula gives
k =1+ 3.322(2.4393) ~ 9. In practice, other considerations might cause us to use eight
or fewer or perhaps 10 or more class intervals.

Another question that must be decided regards the width of the class intervals. Class
intervals generally should be of the same width, although this is sometimes impossible to
accomplish. This width may be determined by dividing the range by k, the number of class
intervals. Symbolically, the class interval width is given by

R

W= 2.3.1)
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where R (the range) is the difference between the smallest and the largest observation in the
data set, and k is defined as above. As a rule this procedure yields a width that is
inconvenient for use. Again, we may exercise our good judgment and select a width
(usually close to one given by Equation 2.3.1) that is more convenient.

There are other rules of thumb that are helpful in setting up useful class intervals.
When the nature of the data makes them appropriate, class interval widths of 5 units, 10
units, and widths that are multiples of 10 tend to make the summarization more
comprehensible. When these widths are employed it is generally good practice to have
the lower limit of each interval end in a zero or 5. Usually class intervals are ordered from
smallest to largest; that is, the first class interval contains the smaller measurements and the
last class interval contains the larger measurements. When this is the case, the lower limit
of the first class interval should be equal to or smaller than the smallest measurement in the
data set, and the upper limit of the last class interval should be equal to or greater than the
largest measurement.

Most statistical packages allow users to interactively change the number of class
intervals and/or the class widths, so that several visualizations of the data can be obtained
quickly. This feature allows users to exercise their judgment in deciding which data display
is most appropriate for a given purpose. Let us use the 189 ages shown in Table 1.4.1 and
arrayed in Table 2.2.1 to illustrate the construction of a frequency distribution.

EXAMPLE 2.3.1

We wish to know how many class intervals to have in the frequency distribution of the data.
We also want to know how wide the intervals should be.

Solution: To get an idea as to the number of class intervals to use, we can apply
Sturges’s rule to obtain

k =1+ 3.322(log 189)
=1+ 3.322(2.27646138)
~9

Now let us divide the range by 9 to get some idea about the class
interval width. We have

R 2 — 2
:8 30:53:5.778

k 9

It is apparent that a class interval width of 5 or 10 will be more
convenient to use, as well as more meaningful to the reader. Suppose we
decide on 10. We may now construct our intervals. Since the smallest value in
Table 2.2.1 is 30 and the largest value is 82, we may begin our intervals with
30 and end with 89. This gives the following intervals:

30-39
40-49
50-59
60-69
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70-79
80-89

We see that there are six of these intervals, three fewer than the number
suggested by Sturges’s rule.

It is sometimes useful to refer to the center, called the midpoint, of a
class interval. The midpoint of a class interval is determined by obtaining the
sum of the upper and lower limits of the class interval and dividing by 2.
Thus, for example, the midpoint of the class interval 30-39 is found to be
(30 +39)/2 = 34.5. [ |

When we group data manually, determining the number of values falling into each
class interval is merely a matter of looking at the ordered array and counting the number
of observations falling in the various intervals. When we do this for our example, we
have Table 2.3.1.

A table such as Table 2.3.1 is called a frequency distribution. This table shows the
way in which the values of the variable are distributed among the specified class intervals.
By consulting it, we can determine the frequency of occurrence of values within any one of
the class intervals shown.

Relative Frequencies It may be useful at times to know the proportion, rather
than the number, of values falling within a particular class interval. We obtain this
information by dividing the number of values in the particular class interval by the total
number of values. If, in our example, we wish to know the proportion of values between 50
and 59, inclusive, we divide 70 by 189, obtaining .3704. Thus we say that 70 out of 189, or
70/189ths, or.3704, of the values are between 50 and 59. Multiplying .3704 by 100 gives us
the percentage of values between 50 and 59. We can say, then, that 37.04 percent of the
subjects are between 50 and 59 years of age. We may refer to the proportion of values
falling within a class interval as the relative frequency of occurrence of values in that
interval. In Section 3.2 we shall see that a relative frequency may be interpreted also as the
probability of occurrence within the given interval. This probability of occurrence is also
called the experimental probability or the empirical probability.

TABLE 2.3.1 Frequency Distribution of
Ages of 189 Subjects Shown in Tables 1.4.1

and 2.2.1

Class Interval Frequency
30-39 1
40-49 46
50-59 70
60-69 45
70-79 16
80-89 1

Total 189
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TABLE 2.3.2 Frequency, Cumulative Frequency, Relative Frequency,
and Cumulative Relative Frequency Distributions of the Ages of Subjects
Described in Example 1.4.1

Cumulative
Class Cumulative Relative Relative
Interval Frequency Frequency Frequency Frequency
30-39 11 11 .0582 .0582
40-49 46 57 .2434 .3016
50-59 70 127 .3704 .6720
60-69 45 172 .2381 .9101
70-79 16 188 .0847 .9948
80-89 1 189 .0053 1.0001

Total 189 1.0001

Note: Frequencies do not add to 1.0000 exactly because of rounding.

In determining the frequency of values falling within two or more class intervals, we
obtain the sum of the number of values falling within the class intervals of interest.
Similarly, if we want to know the relative frequency of occurrence of values falling within
two or more class intervals, we add the respective relative frequencies. We may sum, or
cumulate, the frequencies and relative frequencies to facilitate obtaining information
regarding the frequency or relative frequency of values within two or more contiguous
class intervals. Table 2.3.2 shows the data of Table 2.3.1 along with the cumulative
frequencies, the relative frequencies, and cumulative relative frequencies.

Suppose that we are interested in the relative frequency of values between 50 and 79.
We use the cumulative relative frequency column of Table 2.3.2 and subtract .3016 from
.9948, obtaining .6932.

‘We may use a statistical package to obtain a table similar to that shown in Table 2.3.2.
Tables obtained from both MINITAB and SPSS software are shown in Figure 2.3.1.

The Histogram We may display a frequency distribution (or a relative frequency
distribution) graphically in the form of a histogram, which is a special type of bar graph.

When we construct a histogram the values of the variable under consideration are
represented by the horizontal axis, while the vertical axis has as its scale the frequency (or
relative frequency if desired) of occurrence. Above each class interval on the horizontal
axis a rectangular bar, or cell, as it is sometimes called, is erected so that the height
corresponds to the respective frequency when the class intervals are of equal width. The
cells of a histogram must be joined and, to accomplish this, we must take into account the
true boundaries of the class intervals to prevent gaps from occurring between the cells of
our graph.

The level of precision observed in reported data that are measured on a continuous
scale indicates some order of rounding. The order of rounding reflects either the reporter’s
personal preference or the limitations of the measuring instrument employed. When a
frequency distribution is constructed from the data, the class interval limits usually reflect
the degree of precision of the raw data. This has been done in our illustrative example.
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Dialog box: Session command:

Stat » Tables » Tally Individual Variables MIB > Tally C2;
SUBC>  Counts;

Type C2 in Variables. Check Counts, Percents, SUBC>  Cunfounts;

Cumulative counts, and Cumulative percents in SUBC>  Percents;

Display. Click OK. SUBC>  CunPercents;

Output:

Tally for Discrete Variables: C2

MINITAB Output SPSS Output
C2 Count Cuntnt Percent CunPct Valid |Cunulative
0 11 11 5.82 5.82 Frequency | Percent |Percent Per cent
1 46 57 24.34 30.16 Valid 30-39 11 5.8 5.8 5.8
2 70 127 37.04 67.20 40- 49 46 24.3 24.3 30.2
3 45 172 23.81 91.01 50- 59 70 37.0 37.0 67.2
4 16 188 8.47 99.47 60- 69 45 23.8 23.8 91.0
5 1 189  0.53 100.00 70-791 16 8.5 8.5 99.5
80- 89 1 .5 .5 100.0
N= 189 Tot al 189 100.0 100.0

FIGURE 2.3.1 Frequency, cumulative frequencies, percent, and cumulative percent
distribution of the ages of subjects described in Example 1.4.1 as constructed by MINITAB and
SPSS.

We know, however, that some of the values falling in the second class interval, for example,
when measured precisely, would probably be a little less than 40 and some would be a little
greater than 49. Considering the underlying continuity of our variable, and assuming that
the data were rounded to the nearest whole number, we find it convenient to think of 39.5
and 49.5 as the true limits of this second interval. The true limits for each of the class
intervals, then, we take to be as shown in Table 2.3.3.

If we construct a graph using these class limits as the base of our rectangles, no gaps
will result, and we will have the histogram shown in Figure 2.3.2. We used MINITAB to
construct this histogram, as shown in Figure 2.3.3.

We refer to the space enclosed by the boundaries of the histogram as the area of the
histogram. Each observation is allotted one unit of this area. Since we have 189
observations, the histogram consists of a total of 189 units. Each cell contains a certain
proportion of the total area, depending on the frequency. The second cell, for example,
contains 46/189 of the area. This, as we have learned, is the relative frequency of
occurrence of values between 39.5 and 49.5. From this we see that subareas of the
histogram defined by the cells correspond to the frequencies of occurrence of values
between the horizontal scale boundaries of the areas. The ratio of a particular subarea to the
total area of the histogram is equal to the relative frequency of occurrence of values
between the corresponding points on the horizontal axis.
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TABLE 2.3.3 The Data of 70—

Table 2.3.1 Showing True Class

Limits 60 —

True Class Limits Frequency S0~

20.5-39.5 1 g a0}

39.5-49.5 46 >

49.5-59.5 70 g 30

59.5-69.5 45 20l

69.5-79.5 16

79.5-89.5 1 10~

Total 189 ‘ ‘ ‘ | =
34.5 445 54,5 64.5 74.5 84.5

Age

FIGURE 2.3.2 Histogram of ages of
189 subjects from Table 2.3.1.

The Frequency Polygon A frequency distribution can be portrayed graphically
in yet another way by means of a frequency polygon, which is a special kind of line graph.
To draw a frequency polygon we first place a dot above the midpoint of each class interval
represented on the horizontal axis of a graph like the one shown in Figure 2.3.2. The height
of a given dot above the horizontal axis corresponds to the frequency of the relevant class
interval. Connecting the dots by straight lines produces the frequency polygon. Figure 2.3.4
is the frequency polygon for the age data in Table 2.2.1.

Note that the polygon is brought down to the horizontal axis at the ends at points that
would be the midpoints if there were an additional cell at each end of the corresponding
histogram. This allows for the total area to be enclosed. The total area under the frequency
polygon is equal to the area under the histogram. Figure 2.3.5 shows the frequency polygon
of Figure 2.3.4 superimposed on the histogram of Figure 2.3.2. This figure allows you to
see, for the same set of data, the relationship between the two graphic forms.

Dialog box: Session command:
Graph » Histogram » Simple » OK MIB > Hi stogram ' Age';

SUBC> M dPoi nt 34.5:84.5/10;
Type Age in Graph Variables: Click OK. SUBC> Bar .

Now double click the histogram and click Binning Tab.
Type 34.5:84.5/10 in MidPoint/CutPoint positions:

Click OK.

FIGURE 2.3.3 MINITAB dialog box and session command for constructing histogram from
data on ages in Example 1.4.1.
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Age Age
FIGURE 2.3.4 Frequency polygon for the ages of FIGURE 2.3.5 Histogram and frequency polygon
189 subjects shown in Table 2.2.1. for the ages of 189 subjects shown in Table 2.2.1.

Stem-and-Leaf Displays Another graphical device that is useful for represent-
ing quantitative data sets is the stem-and-leaf display. A stem-and-leaf display bears a
strong resemblance to a histogram and serves the same purpose. A properly constructed
stem-and-leaf display, like a histogram, provides information regarding the range of the
data set, shows the location of the highest concentration of measurements, and reveals the
presence or absence of symmetry. An advantage of the stem-and-leaf display over the
histogram is the fact that it preserves the information contained in the individual
measurements. Such information is lost when measurements are assigned to the class
intervals of a histogram. As will become apparent, another advantage of stem-and-leaf
displays is the fact that they can be constructed during the tallying process, so the
intermediate step of preparing an ordered array is eliminated.

To construct a stem-and-leaf display we partition each measurement into two parts.
The first part is called the stem, and the second part is called the leaf. The stem consists of
one or more of the initial digits of the measurement, and the leaf is composed of one or
more of the remaining digits. All partitioned numbers are shown together in a single
display; the stems form an ordered column with the smallest stem at the top and the largest
at the bottom. We include in the stem column all stems within the range of the data even
when a measurement with that stem is not in the data set. The rows of the display contain
the leaves, ordered and listed to the right of their respective stems. When leaves consist of
more than one digit, all digits after the first may be deleted. Decimals when present in the
original data are omitted in the stem-and-leaf display. The stems are separated from their
leaves by a vertical line. Thus we see that a stem-and-leaf display is also an ordered array of
the data.

Stem-and-leaf displays are most effective with relatively small data sets. As a rule
they are not suitable for use in annual reports or other communications aimed at the general
public. They are primarily of value in helping researchers and decision makers understand
the nature of their data. Histograms are more appropriate for externally circulated
publications. The following example illustrates the construction of a stem-and-leaf display.
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Stem Leaf

04577888899

0022333333444444455566666677777788888889999999
0000000011112222223333333333333333344444444444555666666777777788999999
000011111111111222222233444444556666667888999

0111111123567888

2

o ~NOoO Olh W

FIGURE 2.3.6 Stem-and-leaf display of ages of 189 subjects shown in Table 2.2.1 (stem
unit = 10, leaf unit = 1).

EXAMPLE 2.3.2

Let us use the age data shown in Table 2.2.1 to construct a stem-and-leaf display.

Solution: Since the measurements are all two-digit numbers, we will have one-digit
stems and one-digit leaves. For example, the measurement 30 has a stem of 3
and a leaf of 0. Figure 2.3.6 shows the stem-and-leaf display for the data.

The MINITAB statistical software package may be used to construct
stem-and-leaf displays. The MINITAB procedure and output are as shown in
Figure 2.3.7. The increment subcommand specifies the distance from one
stem to the next. The numbers in the leftmost output column of Figure 2.3.7

Dialog box: Session command:

Graph » Stem-and-Leaf MIB > Stem and-Leaf 'Age';
SUBC>  Increment 10.

Type Age in Graph Variables. Type 10 in Increment.

Click OK.

Output:

Stem-and-Leaf Display: Age

Stem and-| eaf of Age N = 189
Leaf Unit = 1.0

11 3 04577888899
57 4 0022333333444444455566666677777788888889999999
(70) 5 00000000111122222233333333333333333444444444445556666667777777889+
62 6 000011111111111222222233444444556666667888999
17 7 0111111123567888
1 8 2

FIGURE 2.3.7 Stem-and-leaf display prepared by MINITAB from the data on subjects’ ages
shown in Table 2.2.1.
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Stem and- | eaf of Age N = 189
Leaf Unit = 1.0

2 3 04

11 3 577888899

28 4 00223333334444444

57 4 55566666677777788888889999999
(46) 5 0000000011112222223333333333333333344444444444
86 5 555666666777777788999999

62 6 000011111111111222222233444444
32 6 556666667888999

17 7 0111111123

7 7 567888

1 8 2

FIGURE 2.3.8 Stem-and-leaf display prepared by MINITAB from the data on subjects’ ages
shown in Table 2.2.1; class interval width = 5.

provide information regarding the number of observations (leaves) on a given
line and above or the number of observations on a given line and below. For
example, the number 57 on the second line shows that there are 57
observations (or leaves) on that line and the one above it. The number 62
on the fourth line from the top tells us that there are 62 observations on that
line and all the ones below. The number in parentheses tells us that there are
70 observations on that line. The parentheses mark the line containing the
middle observation if the total number of observations is odd or the two
middle observations if the total number of observations is even.

The + at the end of the third line in Figure 2.3.7 indicates that the
frequency for that line (age group 50 through 59) exceeds the line capacity,
and that there is at least one additional leaf that is not shown. In this case, the
frequency for the 50-59 age group was 70. The line contains only 65 leaves,
so the + indicates that there are five more leaves, the number 9, that are not
shown. [ ]

One way to avoid exceeding the capacity of a line is to have more lines. This is
accomplished by making the distance between lines shorter, that is, by decreasing the
widths of the class intervals. For the present example, we may use class interval widths of 5,
so that the distance between lines is 5. Figure 2.3.8 shows the result when MINITAB is used
to produce the stem-and-leaf display.

EXERCISES

2.3.1 In a study of the oral home care practice and reasons for seeking dental care among individuals on
renal dialysis, Atassi (A-1) studied 90 subjects on renal dialysis. The oral hygiene status of all
subjects was examined using a plaque index with a range of 0 to 3 (0 = no soft plaque deposits,
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3 = an abundance of soft plaque deposits). The following table shows the plaque index scores for all

90 subjects.
1.17 250 200 233 1.67 133
.17 217 217 133 217  2.00
217 117 250 200 150 1.50
1.00 217 217 167 2.00 2.00
133 217 283 150 250 233
033 217 1.83 200 217 2.00
1.00 217 217 133 217 250
083 1.17 217 250 200 250
050 150 200 2.00 200 2.00
1.17 133 167 217 150 2.00
1.67 033 150 217 233 233
1.17 000 150 233 1.83 267
083 1.17 150 217 267 1.50
200 217 133 200 233 2.00
217 217 200 217 200 2.17

Source: Data provided courtesy of Farhad
Atassi, DDS, MSc, FICOI.

(a) Use these data to prepare:
A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon
(b) What percentage of the measurements are less than 2.00?
(c) What proportion of the subjects have measurements greater than or equal to 1.50?
(d) What percentage of the measurements are between 1.50 and 1.99 inclusive?
(e) How many of the measurements are greater than 2.49?
(f) What proportion of the measurements are either less than 1.0 or greater than 2.49?

(g) Someone picks a measurement at random from this data set and asks you to guess the value.
What would be your answer? Why?

(h) Frequency distributions and their histograms may be described in a number of ways depending
on their shape. For example, they may be symmetric (the left half is at least approximately a mirror
image of the right half), skewed to the left (the frequencies tend to increase as the measurements
increase in size), skewed to the right (the frequencies tend to decrease as the measurements increase
in size), or U-shaped (the frequencies are high at each end of the distribution and small in the center).
How would you describe the present distribution?

Janardhan et al. (A-2) conducted a study in which they measured incidental intracranial aneurysms
(ITAs) in 125 patients. The researchers examined postprocedural complications and concluded that
IIAs can be safely treated without causing mortality and with a lower complications rate than
previously reported. The following are the sizes (in millimeters) of the 159 IIAs in the sample.

8.1 10.0 5.0 7.0 10.0 3.0

20.0 4.0 4.0 6.0 6.0 7.0
(Continued)
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10.0 4.0 3.0 5.0 6.0 6.0
6.0 6.0 6.0 5.0 4.0 5.0
6.0 250 10.0 14.0 6.0 6.0
40 15.0 5.0 5.0 80 19.0

21.0 8.3 7.0 8.0 5.0 8.0
5.0 7.5 70 10.0 15.0 8.0

10.0 30 150 6.0 100 8.0
7.0 50 100 3.0 7.0 33

15.0 5.0 5.0 3.0 7.0 8.0
3.0 6.0 60 10.0 15.0 6.0
3.0 3.0 7.0 5.0 4.0 9.2

16.0 7.0 8.0 50 100 10.0
9.0 5.0 5.0 4.0 8.0 4.0
3.0 4.0 5.0 80 300 140

15.0 2.0 8.0 70 120 4.0
38 100 250 8.0 9.0 14.0

30.0 20 100 5.0 50 10.0

22.0 5.0 5.0 3.0 4.0 8.0
7.5 5.0 8.0 3.0 5.0 7.0
8.0 5.0 9.0 11.0 20 100
6.0 5.0 50 120 9.0 8.0

150 18.0 10.0 9.0 5.0 6.0
6.0 80 120 10.0 5.0
50 160 8.0 5.0 8.0
40 16.0 3.0 70 130

Source: Data provided courtesy of
Vallabh Janardhan, M.D.

(a) Use these data to prepare:
A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon

(b) What percentage of the measurements are between 10 and 14.9 inclusive?

(c) How many observations are less than 20?

(d) What proportion of the measurements are greater than or equal to 25?

(e) What percentage of the measurements are either less than 10.0 or greater than 19.95?

(f) Referto Exercise 2.3.1, part h. Describe the distribution of the size of the aneurysms in this sample.

2.3.3 Hoekema et al. (A-3) studied the craniofacial morphology of patients diagnosed with obstructive
sleep apnea syndrome (OSAS) in healthy male subjects. One of the demographic variables the
researchers collected for all subjects was the Body Mass Index (calculated by dividing weight in kg
by the square of the patient’s height in cm). The following are the BMI values of 29 OSAS subjects.

33.57 27.78 40.81
38.34 29.01 47.78

26.86 54.33 28.99
(Continued)
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25.21
36.42
24.54
24.49
29.07
26.54
31.44

30.49
41.50
41.75
33.23
28.21
27.74
30.08

27.38
29.39
44.68
47.09
42.10
33.48

Source: Data provided courtesy
of A. Hoekema, D.D.S.

(a) Use these data to construct:

A frequency distribution
A relative frequency distribution

A cumulative frequency distribution
A cumulative relative frequency distribution

A histogram
A frequency polygon

(b) What percentage of the measurements are less than 30?

EXERCISES

(¢) What percentage of the measurements are between 40.0 and 49.99 inclusive?

(d) What percentage of the measurements are greater than 34.99?

33

(e) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1, part h.

(f) How many of the measurements are less than 40?

David Holben (A-4) studied selenium levels in beef raised in a low selenium region of the United
States. The goal of the study was to compare selenium levels in the region-raised beef to selenium
levels in cooked venison, squirrel, and beef from other regions of the United States. The data below
are the selenium levels calculated on a dry weight basis in g/ 100 g for a sample of 53 region-raised

cattle.

11.23
29.63
20.42
10.12
39.91
32.66
38.38
36.21
16.39
27.44
17.29
56.20
28.94
20.11
25.35
21.77
31.62
32.63
30.31
46.16

15.82
27.74
22.35
34.78
35.09
32.60
37.03
27.00
44.20
13.09
33.03

9.69
3245
37.38
3491
27.99
22.36
22.68
26.52
46.01

(Continued)
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56.61 38.04
24.47 30.88
29.39 30.04
40.71 2591
18.52 18.54
27.80 25.51
19.49

Source: Data provided courtesy
of David Holben, Ph.D.

(a) Use these data to construct:
A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon
(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1, part h.
(¢) How many of the measurements are greater than 40?
(d) What percentage of the measurements are less than 25?

2.3.5 The following table shows the number of hours 45 hospital patients slept following the administration
of a certain anesthetic.

7 10 12 4 8 7 3 8 5
12 11 3 8 1 1 13 10 4
4 5 5 8 77 3 2 3
8 13 1 7 17 3 4 5 5
3 1 17 10 4 7 7 11 8

(a) From these data construct:

A frequency distribution

A relative frequency distribution
A histogram

A frequency polygon

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.
2.3.6 The following are the number of babies born during a year in 60 community hospitals.

30 55 27 45 56 48 45 49 32 57 47 56
37 55 52 34 54 42 32 59 35 46 24 57
32 26 40 28 53 54 29 42 42 54 53 59
39 56 59 58 49 53 30 53 21 34 28 50
52 57 43 46 54 31 22 31 24 24 57 29

(a) From these data construct:
A frequency distribution
A relative frequency distribution
A histogram
A frequency polygon

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.
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2.3.7 Inastudy of physical endurance levels of male college freshman, the following composite endurance
scores based on several exercise routines were collected.

254 281 192 260 212 179 225 179 181 149
182 210 235 239 258 166 159 223 186 190
180 188 135 233 220 204 219 211 245 151
198 190 151 157 204 238 205 229 191 200
222 187 134 193 264 312 214 227 190 212
165 194 206 193 218 198 241 149 164 225
265 222 264 249 175 205 252 210 178 159
220 201 203 172 234 198 173 187 189 237
272195 227 230 168 232 217 249 196 223
232 191 175 236 152 258 155 215 197 210
214 278 252 283 205 184 172 228 193 130
218 213 172 159 203 212 117 197 206 198
169 187 204 180 261 236 217 205 212 218
191 124 199 235 139 231 116 182 243 217
251 206 173 236 215 228 183 204 186 134
188 195 240 163 208

(a) From these data construct:
A frequency distribution
A relative frequency distribution
A frequency polygon
A histogram

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.

2.3.8 The following are the ages of 30 patients seen in the emergency room of a hospital on a Friday night.
Construct a stem-and-leaf display from these data. Describe these data relative to symmetry and
skewness as discussed in Exercise 2.3.1, part h.

35 32 21 43 39 60
36 12 54 45 37 53
45 23 64 10 34 22
36 45 55 44 55 46
22 38 35 56 45 57

2.3.9 The following are the emergency room charges made to a sample of 25 patients at two city hospitals.
Construct a stem-and-leaf display for each set of data. What does a comparison of the two displays
suggest regarding the two hospitals? Describe the two sets of data with respect to symmetry and
skewness as discussed in Exercise 2.3.1, part h.

Hospital A

249.10 202.50 222.20 214.40 205.90
214.30 195.10 213.30 225.50 191.40
201.20 239.80 245.70 213.00 238.80
171.10 222.00 212.50 201.70 184.90
248.30 209.70 233.90 229.80 217.90
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2.3.10

2.3.11

Hospital B
199.50 184.00 173.20 186.00 214.10
125.50 143.50 190.40 152.00 165.70
154.70 145.30 154.60 190.30 135.40
167.70 203.40 186.70 155.30 195.90
168.90 166.70 178.60 150.20 212.40

Refer to the ages of patients discussed in Example 1.4.1 and displayed in Table 1.4.1.

(a) Use class interval widths of 5 and construct:

A frequency distribution
A relative frequency distribution

A cumulative frequency distribution

A cumulative relative frequency distribution

A histogram
A frequency polygon

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1, part h.

The objectives of a study by Skjelbo et al. (A-5) were to examine (a) the relationship between
chloroguanide metabolism and efficacy in malaria prophylaxis and (b) the mephenytoin metabolism
and its relationship to chloroguanide metabolism among Tanzanians. From information provided
by urine specimens from the 216 subjects, the investigators computed the ratio of unchanged

S-mephenytoin to R-mephenytoin (S/R ratio). The results were as follows:

0.0269
0.0760
0.0990
0.0990
0.0990
0.0990
0.1050
0.1190
0.1460
0.1550
0.1690
0.1810
0.2070
0.2390
0.2470
0.2710
0.2990
0.3400
0.3630
0.4090
0.4300
0.4680
0.5340
0.5930

0.0400
0.0850
0.0990
0.0990
0.0990
0.0990
0.1050
0.1200
0.1480
0.1570
0.1710
0.1880
0.2100
0.2400
0.2540
0.2800
0.3000
0.3440
0.3660
0.4090
0.4360
0.4810
0.5340
0.6010

0.0550
0.0870
0.0990
0.0990
0.0990
0.0990
0.1080
0.1230
0.1490
0.1600
0.1720
0.1890
0.2100
0.2420
0.2570
0.2800
0.3070
0.3480
0.3830
0.4100
0.4370
0.4870
0.5460
0.6240

0.0550
0.0870
0.0990
0.0990
0.0990
0.0990
0.1080
0.1240
0.1490
0.1650
0.1740
0.1890
0.2140
0.2430
0.2600
0.2870
0.3100
0.3490
0.3900
0.4160
0.4390
0.4910
0.5480
0.6280

0.0650
0.0880
0.0990
0.0990
0.0990
0.0990
0.1090
0.1340
0.1500
0.1650
0.1780
0.1920
0.2150
0.2450
0.2620
0.2880
0.3110
0.3520
0.3960
0.4210
0.4410
0.4980
0.5480
0.6380

0.0670
0.0900
0.0990
0.0990
0.0990
0.1000
0.1090
0.1340
0.1500
0.1670
0.1780
0.1950
0.2160
0.2450
0.2650
0.2940
0.3140
0.3530
0.3990
0.4260
0.4410
0.5030
0.5490
0.6600

0.0700
0.0900
0.0990
0.0990
0.0990
0.1020
0.1090
0.1370
0.1500
0.1670
0.1790
0.1970
0.2260
0.2460
0.2650
0.2970
0.3190
0.3570
0.4080
0.4290
0.4430
0.5060
0.5550
0.6720

0.0720
0.0990
0.0990
0.0990
0.0990
0.1040
0.1160
0.1390
0.1540
0.1677
0.1790
0.2010
0.2290
0.2460
0.2680
0.2980
0.3210
0.3630
0.4080
0.4290
0.4540
0.5220
0.5920
0.6820

(Continued)
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0.6870  0.6900 0.6910 0.6940 0.7040 0.7120 0.7200 0.7280
0.7860  0.7950 0.8040 0.8200 0.8350 0.8770  0.9090 0.9520
0.9530 09830 09890 1.0120 1.0260 1.0320 1.0620 1.1600

Source: Data provided courtesy of Erik Skjelbo, M.D.

(a) From these data construct the following distributions: frequency, relative frequency, cumulative
frequency, and cumulative relative frequency; and the following graphs: histogram, frequency
polygon, and stem-and-leaf plot.

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1, part h.
(c) The investigators defined as poor metabolizers of mephenytoin any subject with an S/R

mephenytoin ratio greater than .9. How many and what percentage of the subjects were poor
metabolizers?

(d) How many and what percentage of the subjects had ratios less than .7? Between .3 and .6999
inclusive? Greater than .4999?

Schmidt et al. (A-6) conducted a study to investigate whether autotransfusion of shed mediastinal
blood could reduce the number of patients needing homologous blood transfusion and reduce the
amount of transfused homologous blood if fixed transfusion criteria were used. The following table
shows the heights in centimeters of the 109 subjects of whom 97 were males.

1.720  1.710 1.700  1.655 1.800 1.700
1.730  1.700 1.820 1.810 1.720  1.800
1.800  1.800 1.790  1.820 1.800 1.650
1.680 1.730 1.820 1.720 1.710  1.850
1.760  1.780 1.760  1.820 1.840  1.690
1.770  1.920 1.690  1.690 1.780 1.720
1.750  1.710 1.690 1.520 1.805 1.780
1.820  1.790 1.760  1.830 1.760  1.800
1.700  1.760 1.750  1.630 1.760  1.770
1.840  1.690 1.640 1.760 1.850 1.820
1.760  1.700 1.720  1.780 1.630  1.650
1.660 1.880 1.740  1.900 1.830

1.600  1.800 1.670  1.780 1.800

1.750  1.610 1.840 1.740 1.750

1.960 1.760 1.730  1.730 1.810

1.810 1.775 1.710  1.730 1.740

1.790  1.880 1.730  1.560 1.820

1.780  1.630 1.640  1.600 1.800

1.800 1.780 1.840  1.830

1.770  1.690 1.800 1.620

Source: Data provided courtesy of Erik Skjelbo, M.D.

(a) For these data construct the following distributions: frequency, relative frequency, cumulative
frequency, and cumulative relative frequency; and the following graphs: histogram, frequency
polygon, and stem-and-leaf plot.

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1, part h.
(¢) How do you account for the shape of the distribution of these data?

(d) How tall were the tallest 6.42 percent of the subjects?

(e) How tall were the shortest 10.09 percent of the subjects?
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2.4 DESCRIPTIVE STATISTICS:
MEASURES OF CENTRAL TENDENCY

Although frequency distributions serve useful purposes, there are many situations that
require other types of data summarization. What we need in many instances is the ability to
summarize the data by means of a single number called a descriptive measure. Descriptive
measures may be computed from the data of a sample or the data of a population. To
distinguish between them we have the following definitions:

DEFINITIONS

1. A descriptive measure computed from the data of a sample is called a
statistic.

2. A descriptive measure computed from the data of a population is
called a parameter.

Several types of descriptive measures can be computed from a set of data. In this
chapter, however, we limit discussion to measures of central tendency and measures of
dispersion. We consider measures of central tendency in this section and measures of
dispersion in the following one.

In each of the measures of central tendency, of which we discuss three, we have a
single value that is considered to be typical of the set of data as a whole. Measures of central
tendency convey information regarding the average value of a set of values. As we will see,
the word average can be defined in different ways.

The three most commonly used measures of central tendency are the mean, the
median, and the mode.

Arithmetic Mean The most familiar measure of central tendency is the arithmetic
mean. It is the descriptive measure most people have in mind when they speak of the
“average.” The adjective arithmetic distinguishes this mean from other means that can be
computed. Since we are not covering these other means in this book, we shall refer to the
arithmetic mean simply as the mean. The mean is obtained by adding all the values in a
population or sample and dividing by the number of values that are added.

EXAMPLE 2.4.1

We wish to obtain the mean age of the population of 189 subjects represented in Table 1.4.1.
Solution: We proceed as follows:

48+354+46+---+73+66
mean age = Rl = 55.032
189 n

The three dots in the numerator represent the values we did not show in order to save
space.
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General Formula for the Mean 1t will be convenient if we can generalize the
procedure for obtaining the mean and, also, represent the procedure in a more compact
notational form. Let us begin by designating the random variable of interest by the capital
letter X. In our present illustration we let X represent the random variable, age. Specific
values of a random variable will be designated by the lowercase letter x. To distinguish one
value from another, we attach a subscript to the x and let the subscript refer to the first, the
second, the third value, and so on. For example, from Table 1.4.1 we have

X1:48,XQ:35, ey x189=66

In general, a typical value of a random variable will be designated by x; and the final value,
in a finite population of values, by xy, where N is the number of values in the population.
Finally, we will use the Greek letter u to stand for the population mean. We may now write
the general formula for a finite population mean as follows:

N
DX
i=1
=— 24.1
W= ( )
The symbol Zivzl instructs us to add all values of the variable from the first to the last. This
symbol 3, called the summation sign, will be used extensively in this book. When from the
context it is obvious which values are to be added, the symbols above and below 3, will be
omitted.

The Sample Mean When we compute the mean for a sample of values, the
procedure just outlined is followed with some modifications in notation. We use X to
designate the sample mean and # to indicate the number of values in the sample. The
sample mean then is expressed as

&

Il
-

(2.4.2)

EXAMPLE 2.4.2

In Chapter 1 we selected a simple random sample of 10 subjects from the population of
subjects represented in Table 1.4.1. Let us now compute the mean age of the 10 subjects in
our sample.

Solution: We recall (see Table 1.4.2) that the ages of the 10 subjects in our sample were
X1 = 43, Xy = 66, X3 = 61, X4 = 64, X5 = 65, X6 = 38, X7 = 59, Xg = 57,
x9 = 57, x10 = 50. Substitution of our sample data into Equation 2.4.2 gives

n

,-:le"_43+66+-~-+50_56

n 10 [ ]

=l
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Properties of the Mlean The arithmetic mean possesses certain properties, some
desirable and some not so desirable. These properties include the following:

1. Uniqueness. For a given set of data there is one and only one arithmetic mean.
2. Simplicity. The arithmetic mean is easily understood and easy to compute.

3. Since each and every value in a set of data enters into the computation of the mean, it
is affected by each value. Extreme values, therefore, have an influence on the mean
and, in some cases, can so distort it that it becomes undesirable as a measure of
central tendency.

As an example of how extreme values may affect the mean, consider the following
situation. Suppose the five physicians who practice in an area are surveyed to determine
their charges for a certain procedure. Assume that they report these charges: $75, $75, $80,
$80, and $280. The mean charge for the five physicians is found to be $118, a value that is
not very representative of the set of data as a whole. The single atypical value had the effect
of inflating the mean.

Median The median of a finite set of values is that value which divides the set into
two equal parts such that the number of values equal to or greater than the median is
equal to the number of values equal to or less than the median. If the number of values is
odd, the median will be the middle value when all values have been arranged in order of
magnitude. When the number of values is even, there is no single middle value. Instead
there are two middle values. In this case the median is taken to be the mean of these two
middle values, when all values have been arranged in the order of their magnitudes. In
other words, the median observation of a data set is the (n+ 1)/2th one when the
observation have been ordered. If, for example, we have 11 observations, the median is
the (11 4 1)/2 = 6th ordered observation. If we have 12 observations the median is the
(12 4+ 1)/2 = 6.5th ordered observation and is a value halfway between the 6th and 7th
ordered observations.

EXAMPLE 2.4.3

Let us illustrate by finding the median of the data in Table 2.2.1.

Solution: The values are already ordered so we need only to find the two middle values.
The middle value is the (n+1)/2 = (189 +1)/2 = 190/2 = 95th one.
Counting from the smallest up to the 95th value we see that it is 54.
Thus the median age of the 189 subjects is 54 years. [ |

EXAMPLE 2.4.4

We wish to find the median age of the subjects represented in the sample described in
Example 2.4.2.

Solution: Arraying the 10 ages in order of magnitude from smallest to largest gives 38,
43,50,57,57,59, 61, 64,65, 66. Since we have an even number of ages, there
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is no middle value. The two middle values, however, are 57 and 59. The
median, then, is (57 +59)/2 = 58. ]

Properties of the Median Properties of the median include the following:

1. Uniqueness. As is true with the mean, there is only one median for a given set of
data.

2. Simplicity. The median is easy to calculate.

3. It is not as drastically affected by extreme values as is the mean.

The Mode The mode of a set of values is that value which occurs most frequently. If
all the values are different there is no mode; on the other hand, a set of values may have
more than one mode.

EXAMPLE 2.4.5

Find the modal age of the subjects whose ages are given in Table 2.2.1.

Solution: A count of the ages in Table 2.2.1 reveals that the age 53 occurs most
frequently (17 times). The mode for this population of ages is 53. [

For an example of a set of values that has more than one mode, let us consider
a laboratory with 10 employees whose ages are 20, 21, 20, 20, 34, 22, 24, 27, 27,
and 27. We could say that these data have two modes, 20 and 27. The sample
consisting of the values 10, 21, 33, 53, and 54 has no mode since all the values are
different.

The mode may be used also for describing qualitative data. For example, suppose the
patients seen in a mental health clinic during a given year received one of the following
diagnoses: mental retardation, organic brain syndrome, psychosis, neurosis, and personal-
ity disorder. The diagnosis occurring most frequently in the group of patients would be
called the modal diagnosis.

An attractive property of a data distribution occurs when the mean, median, and
mode are all equal. The well-known “bell-shaped curve” is a graphical representation of
a distribution for which the mean, median, and mode are all equal. Much statistical
inference is based on this distribution, the most common of which is the normal
distribution. The normal distribution is introduced in Section 4.6 and discussed further
in subsequent chapters. Another common distribution of this type is the ¢-distribution,
which is introduced in Section 6.3.

Skewness Data distributions may be classified on the basis of whether they are
symmetric or asymmetric. If a distribution is symmetric, the left half of its graph
(histogram or frequency polygon) will be a mirror image of its right half. When the
left half and right half of the graph of a distribution are not mirror images of each other, the
distribution is asymmetric.
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DEFINITION
If the graph (histogram or frequency polygon) of a distribution is
asymmetric, the distribution is said to be skewed . If a distribution is

not symmetric because its graph extends further to the right than to

the left, that is, if it has a long tail to the right, we say that the distribution
is skewed to the right or is positively skewed. If a distribution is not
symmetric because its graph extends further to the left than to the right,
that is, if it has a long tail to the left, we say that the distribution is
skewed to the left or is negatively skewed.

A distribution will be skewed to the right, or positively skewed, if its mean is greater
than its mode. A distribution will be skewed to the left, or negatively skewed, if its mean is
less than its mode. Skewness can be expressed as follows:

VAL (-5 VAL ()]
= S— (2.4.3)
n 3 =1V —1s

<Z (s — x)2> (n—1) 1

i=1

Skewness =

In Equation 2.4.3, s is the standard deviation of a sample as defined in Equation 2.5.4. Most
computer statistical packages include this statistic as part of a standard printout. A value of
skewness > 0 indicates positive skewness and a value of skewness < 0 indicates negative
skewness. An illustration of skewness is shown in Figure 2.4.1.

EXAMPLE 2.4.6

Consider the three distributions shown in Figure 2.4.1. Given that the histograms represent
frequency counts, the data can be easily re-created and entered into a statistical package.
For example, observation of the “No Skew” distribution would yield the following data:
5,5,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9, 10, 10, 10, 11, 11. Values can be obtained from

Frequency
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FIGURE 2.4.1 Three histograms illustrating skewness.
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the skewed distributions in a similar fashion. Using SPSS software, the following
descriptive statistics were obtained for these three distributions

No Skew Right Skew Left Skew

Mean 8.0000 6.6667 8.3333
Median 8.0000 6.0000 9.0000
Mode 8.00 5.00 10.00
Skewness .000 .627 —.627

2.5 DESCRIPTIVE STATISTICS:
MEASURES OF DISPERSION

The dispersion of a set of observations refers to the variety that they exhibit. A measure of
dispersion conveys information regarding the amount of variability present in a set of data.
If all the values are the same, there is no dispersion; if they are not all the same, dispersion is
present in the data. The amount of dispersion may be small when the values, though
different, are close together. Figure 2.5.1 shows the frequency polygons for two popula-
tions that have equal means but different amounts of variability. Population B, which is
more variable than population A, is more spread out. If the values are widely scattered, the
dispersion is greater. Other terms used synonymously with dispersion include variation,
spread, and scatter.

The Range One way to measure the variation in a set of values is to compute the
range. The range is the difference between the largest and smallest value in a set of
observations. If we denote the range by R, the largest value by x;, and the smallest value
by xs, we compute the range as follows:

R=x; —xg (2.5.1)

Population A

u

FIGURE 2.5.1 Two frequency distributions with equal means but different amounts
of dispersion.
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EXAMPLE 2.5.1

We wish to compute the range of the ages of the sample subjects discussed in Table 2.2.1.

Solution: Since the youngest subject in the sample is 30 years old and the oldest is 82,
we compute the range to be

R=82-30=52 [ |

The usefulness of the range is limited. The fact that it takes into account only two values
causes it to be a poor measure of dispersion. The main advantage in using the range is the
simplicity of its computation. Since the range, expressed as a single measure, imparts
minimal information about a data set and therefore is of limited use, it is often preferable to
express the range as a number pair, [xs, xL], in which xg and x;_are the smallest and largest
values in the data set, respectively. For the data in Example 2.5.1, we may express the range
as the number pair [30, 82]. Although this is not the traditional expression for the range, it is
intuitive to imagine that knowledge of the minimum and maximum values in this data set
would convey more information than knowing only that the range is equal to 52. An infinite
number of distributions, each with quite different minimum and maximum values, may
have a range of 52.

The Variance When the values of a set of observations lie close to their mean, the
dispersion is less than when they are scattered over a wide range. Since this is true, it would
be intuitively appealing if we could measure dispersion relative to the scatter of the values
about their mean. Such a measure is realized in what is known as the variance. In
computing the variance of a sample of values, for example, we subtract the mean from each
of the values, square the resulting differences, and then add up the squared differences. This
sum of the squared deviations of the values from their mean is divided by the sample size,
minus 1, to obtain the sample variance. Letting s2 stand for the sample variance, the
procedure may be written in notational form as follows:

> (6 — 37
== (2.5.2)

It is therefore easy to see that the variance can be described as the average squared
deviation of individual values from the mean of that set. It may seem nonintuitive at this
stage that the differences in the numerator be squared. However, consider a symmetric
distribution. It is easy to imagine that if we compute the difference of each data point in the
distribution from the mean value, half of the differences would be positive and half would
be negative, resulting in a sum that would be zero. A variance of zero would be a
noninformative measure for any distribution of numbers except one in which all of the
values are the same. Therefore, the square of each difference is used to ensure a positive
numerator and hence a much more valuable measure of dispersion.

EXAMPLE 2.5.2

Let us illustrate by computing the variance of the ages of the subjects discussed in
Example 2.4.2.
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Solution: o (W3- 56)> + (66 — 56)% + - - - + (50 — 56)?
810 ?
=2_-=90
9 n

Degrees of Freedom The reason for dividing by n — 1 rather than n, as we might
have expected, is the theoretical consideration referred to as degrees of freedom. In
computing the variance, we say that we have n — 1 degrees of freedom. We reason as
follows. The sum of the deviations of the values from their mean is equal to zero, as can be
shown. If, then, we know the values of n — 1 of the deviations from the mean, we know the
nth one, since it is automatically determined because of the necessity for all n values to add
to zero. From a practical point of view, dividing the squared differences by n — 1 rather than
n is necessary in order to use the sample variance in the inference procedures discussed
later. The concept of degrees of freedom will be revisited in a later chapter. Students
interested in pursuing the matter further at this time should refer to the article by Walker (2).

When we compute the variance from a finite population of N values, the procedures
outlined above are followed except that we subtract  from each x and divide by N rather
than N — 1. If we let o stand for the finite population variance, the formula is as follows:

ot=0 (2.5.3)

Standard Deviation The variance represents squared units and, therefore, is not
an appropriate measure of dispersion when we wish to express this concept in terms of the
original units. To obtain a measure of dispersion in original units, we merely take the square
root of the variance. The result is called the standard deviation. In general, the standard
deviation of a sample is given by

s =Vs2 = (2.5.4)

The standard deviation of a finite population is obtained by taking the square root of the
quantity obtained by Equation 2.5.3, and is represented by o.

The Coefficient of Variation The standard deviation is useful as a measure of
variation within a given set of data. When one desires to compare the dispersion in two sets
of data, however, comparing the two standard deviations may lead to fallacious results. It
may be that the two variables involved are measured in different units. For example, we
may wish to know, for a certain population, whether serum cholesterol levels, measured in
milligrams per 100 ml, are more variable than body weight, measured in pounds.

Furthermore, although the same unit of measurement is used, the two means may be
quite different. If we compare the standard deviation of weights of first-grade children with
the standard deviation of weights of high school freshmen, we may find that the latter
standard deviation is numerically larger than the former, because the weights themselves
are larger, not because the dispersion is greater.
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What is needed in situations like these is a measure of relative variation rather than
absolute variation. Such a measure is found in the coefficient of variation, which expresses
the standard deviation as a percentage of the mean. The formula is given by

CV.= % (100)% (2.5.5)

We see that, since the mean and standard deviations are expressed in the same unit of
measurement, the unit of measurement cancels out in computing the coefficient of
variation. What we have, then, is a measure that is independent of the unit of measurement.

EXAMPLE 2.5.3

Suppose two samples of human males yield the following results:

Sample 1 Sample 2
Age 25 years 11 years
Mean weight 145 pounds 80 pounds
Standard deviation 10 pounds 10 pounds

We wish to know which is more variable, the weights of the 25-year-olds or the weights of
the 11-year-olds.

Solution: A comparison of the standard deviations might lead one to conclude that the
two samples possess equal variability. If we compute the coefficients of
variation, however, we have for the 25-year-olds

10
CV.= E(IOO) =6.9%
and for the 11-year-olds
10
C.V.=_—(100) = 12.5
g0 (100) 7

If we compare these results, we get quite a different impression. It is clear
from this example that variation is much higher in the sample of 11-year-olds
than in the sample of 25-year-olds. [

The coefficient of variation is also useful in comparing the results obtained by
different persons who are conducting investigations involving the same variable. Since the
coefficient of variation is independent of the scale of measurement, it is a useful statistic for
comparing the variability of two or more variables measured on different scales. We could,
for example, use the coefficient of variation to compare the variability in weights of one
sample of subjects whose weights are expressed in pounds with the variability in weights of
another sample of subjects whose weights are expressed in kilograms.
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Variable N N Mean SE Mean St Dev M ni mum QL Medi an @ Maxi mum
c1 10 0 56.00 3.00 9.49 38.00 48.25 58.00 64.25 66.00

FIGURE 2.5.2 Printout of descriptive measures computed from the sample of ages in
Example 2.4.2, MINITAB software package.

Computer Analysis Computer software packages provide a variety of possibilit-
ies in the calculation of descriptive measures. Figure 2.5.2 shows a printout of the
descriptive measures available from the MINITAB package. The data consist of the
ages from Example 2.4.2.

In the printout O, and Q3 are the first and third quartiles, respectively. These
measures are described later in this chapter. N stands for the number of data observations,
and N* stands for the number of missing values. The term SEMEAN stands for standard
error of the mean. This measure will be discussed in detail in a later chapter. Figure 2.5.3
shows, for the same data, the SAS® printout obtained by using the PROC MEANS
statement.

Percentiles and Quartiles The mean and median are special cases of a family
of parameters known as location parameters. These descriptive measures are called
location parameters because they can be used to designate certain positions on the
horizontal axis when the distribution of a variable is graphed. In that sense the so-called
location parameters “locate” the distribution on the horizontal axis. For example, a
distribution with a median of 100 is located to the right of a distribution with a median
of 50 when the two distributions are graphed. Other location parameters include percentiles
and quartiles. We may define a percentile as follows:

DEFINITION
Given a set of n observations xy, x5, ... x,, the pth percentile P is the
value of X such that p percent or less of the observations are less than P
and (100 — p) percent or less of the observations are greater than P.

The MEANS Procedure
Anal ysi s Variabl e: Age

N Mean Std Dev M ni mum Maxi mum
10 56. 0000000 9. 4868330 38. 0000000 66. 0000000
Coef f of
Std Error Sum Vari ance Vari ation

3. 0000000 560. 0000000 90. 0000000 16. 9407732

FIGURE 2.5.3 Printout of descriptive measures computed from the sample of ages in
Example 2.4.2, SAS® software package.
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Subscripts on P serve to distinguish one percentile from another. The 10th percentile,
for example, is designated P, the 70th is designated Py, and so on. The 50th percentile is
the median and is designated Psg. The 25th percentile is often referred to as the first quartile
and denoted Q,. The 50th percentile (the median) is referred to as the second or middle
quartile and written Q,, and the 75th percentile is referred to as the third quartile, Q5.

When we wish to find the quartiles for a set of data, the following formulas are used:

1
0, = " I th ordered observation
2 1 1
0, = # -0 ; th ordered observation (2.5.6)
3 1
Qs = # th ordered observation

It should be noted that the equations shown in 2.5.6 determine the positions of the quartiles
in a data set, not the values of the quartiles. It should also be noted that though there is a
universal way to calculate the median (Q,), there are a variety of ways to calculate Q,, and
0, values. For example, SAS provides for a total of five different ways to calculate the
quartile values, and other programs implement even different methods. For a discussion of
the various methods for calculating quartiles, interested readers are referred to the article
by Hyndman and Fan (3). To illustrate, note that the printout in MINITAB in Figure 2.5.2
shows O =48.25 and Q3 =64.25, whereas program R yields the values Oy =52.75 and
0;=063.25.

Interquartile Range As we have seen, the range provides a crude measure of
the variability present in a set of data. A disadvantage of the range is the fact that it is
computed from only two values, the largest and the smallest. A similar measure that
reflects the variability among the middle 50 percent of the observations in a data set is
the interquartile range.

DEFINITION

The interquartile range (IQR) is the difference between the third and first
quartiles: that is,

IQR = 0, - 0, 2.5.7)

A large IQR indicates a large amount of variability among the middle 50 percent of the
relevant observations, and a small IQR indicates a small amount of variability among the
relevant observations. Since such statements are rather vague, it is more informative to
compare the interquartile range with the range for the entire data set. A comparison may
be made by forming the ratio of the IQR to the range (R) and multiplying by 100. That is,
100 (IQR/R) tells us what percent the IQR is of the overall range.

Kurtosis Just as we may describe a distribution in terms of skewness, we may
describe a distribution in terms of kurtosis.
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DEFINITION
Kurtosis is a measure of the degree to which a distribution is “peaked” or
flat in comparison to a normal distribution whose graph is characterized
by a bell-shaped appearance.

A distribution, in comparison to a normal distribution, may possesses an excessive
proportion of observations in its tails, so that its graph exhibits a flattened appearance.
Such a distribution is said to be platykurtic. Conversely, a distribution, in comparison to a
normal distribution, may possess a smaller proportion of observations in its tails, so that its
graph exhibits a more peaked appearance. Such a distribution is said to be leptokurtic. A
normal, or bell-shaped distribution, is said to be mesokurtic.

Kurtosis can be expressed as

nZ(x,-—fc)4 nZ(x,-—)_c)4
Kurtosis = —=—"+ 3 =-=L 3 2.5.8
o e 239
(xi —X)
i=1

Manual calculation using Equation 2.5.8 is usually not necessary, since most statistical
packages calculate and report information regarding kurtosis as part of the descriptive
statistics for a data set. Note that each of the two parts of Equation 2.5.8 has been reduced
by 3. A perfectly mesokurtic distribution has a kurtosis measure of 3 based on the equation.
Most computer algorithms reduce the measure by 3, as is done in Equation 2.5.8, so that the
kurtosis measure of a mesokurtic distribution will be equal to 0. A leptokurtic distribution,
then, will have a kurtosis measure > 0, and a platykurtic distribution will have a kurtosis
measure < (. Be aware that not all computer packages make this adjustment. In such cases,
comparisons with a mesokurtic distribution are made against 3 instead of against 0. Graphs
of distributions representing the three types of kurtosis are shown in Figure 2.5.4.

EXAMPLE 2.5.4

Consider the three distributions shown in Figure 2.5.4. Given that the histograms represent
frequency counts, the data can be easily re-created and entered into a statistical package.
For example, observation of the “mesokurtic” distribution would yield the following data:
1,2,2,3,3,3,3,3,...,9,9,9,9,9, 10, 10, 11. Values can be obtained from the other
distributions in a similar fashion. Using SPSS software, the following descriptive statistics
were obtained for these three distributions:

Mesokurtic Leptokurtic Platykurtic

Mean 6.0000 6.0000 6.0000
Median 6.0000 6.0000 6.0000
Mode 6.00 6.00 6.00
Kurtosis .000 .608 —1.158
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Mesokurtic Leptokurtic Platykurtic
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FIGURE 2.5.4 Three histograms representing kurtosis.

Box-and-Whisker Plots A useful visual device for communicating the infor-
mation contained in a data set is the box-and-whisker plot. The construction of a box-and-
whisker plot (sometimes called, simply, a boxplor) makes use of the quartiles of a data set
and may be accomplished by following these five steps:

1. Represent the variable of interest on the horizontal axis.

2. Draw a box in the space above the horizontal axis in such a way that the left end of the
box aligns with the first quartile Q, and the right end of the box aligns with the third
quartile Q.

3. Divide the box into two parts by a vertical line that aligns with the median Q,.

4. Draw a horizontal line called a whisker from the left end of the box to a point that
aligns with the smallest measurement in the data set.

5. Draw another horizontal line, or whisker, from the right end of the box to a point that
aligns with the largest measurement in the data set.

Examination of a box-and-whisker plot for a set of data reveals information
regarding the amount of spread, location of concentration, and symmetry of the data.
The following example illustrates the construction of a box-and-whisker plot.

EXAMPLE 2.5.5

Evans et al. (A-7) examined the effect of velocity on ground reaction forces (GRF) in
dogs with lameness from a torn cranial cruciate ligament. The dogs were walked and
trotted over a force platform, and the GRF was recorded during a certain phase of their
performance. Table 2.5.1 contains 20 measurements of force where each value shown is
the mean of five force measurements per dog when trotting.

TABLE 2.5.1 GRF Measurements When Trotting of 20 Dogs with a Lame
Ligament

14.6 24.3 24.9 27.0 27.2 27.4 28.2 28.8 29.9 30.7
31.5 31.6 32.3 32.8 33.3 33.6 34.3 36.9 38.3 44.0

Source: Data provided courtesy of Richard Evans, Ph.D.
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14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
GRF Measurements

FIGURE 2.5.5 Box-and-whisker plot for Example 2.5.5.

Solution: The smallest and largest measurements are 14.6 and 44, respectively. The
first quartile is the Q; = (20+ 1)/4 = 5.25th measurement, which is
272+ (25)(27.4 — 27.2) = 27.25. The median is the Q, + (20 + 1)/2 =
10.5th measurement or 30.7 + (.5)(31.5 — 30.7) = 31.1; and the third
quartile is the Q3 + 3(20 + 1)/4 = 15.75th measurement, which is equal
to 33.3+(.75)(33.6 —33.3) =33.525. The interquartile range is
IQR = 33.525 — 27.25 = 6.275. The range is 29.4, and the IQR is
100(6.275/29.4) = 21 percent of the range. The resulting box-and-whisker
plot is shown in Figure 2.5.5. [

Examination of Figure 2.5.5 reveals that 50 percent of the measurements are between
about 27 and 33, the approximate values of the first and third quartiles, respectively. The
vertical bar inside the box shows that the median is about 31.

Many statistical software packages have the capability of constructing box-and-
whisker plots. Figure 2.5.6 shows one constructed by MINITAB and one constructed by
NCSS from the data of Table 2.5.1. The procedure to produce the MINTAB plot is shown in
Figure 2.5.7. The asterisks in Figure 2.5.6 alert us to the fact that the data set contains one
unusually large and one unusually small value, called outliers. The outliers are the dogs
that generated forces of 14.6 and 44. Figure 2.5.6 illustrates the fact that box-and-whisker
plots may be displayed vertically as well as horizontally.

An outlier, or a typical observation, may be defined as follows.

45 " °
40 o

35 - | 35
30—

25 - | 25 i
20

15 — * 15— o

45—

FIGURE 2.5.6 Box-and-whisker plot constructed by MINITAB (left) and by R (right) from the
data of Table 2.5.1.
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Dialog box: Session command:
Stat » EDA » Boxplot » Simple MIB > Boxpl ot ‘ Force’;
Click OK. SUBC> | QRbox;

SUBC> CQutlier.
Type Force Graph Variables.
Click OK.

FIGURE 2.5.7 MINITAB procedure to produce Figure 2.5.6.

DEFINITION

An outlier is an observation whose value, x, either exceeds the value

of the third quartile by a magnitude greater than 1.5(IQR) or is less than
the value of the first quartile by a magnitude greater than 1.5(IQR).
That is, an observation of x > Q; + 1.5(IQR) or an observation of

x < 07 — 1.5(IQR) is called an outlier.

For the data in Table 2.5.1 we may use the previously computed values of Q;, Os,
and IQR to determine how large or how small a value would have to be in order to be
considered an outlier. The calculations are as follows:

X <27.25-15(6.275) = 17.8375 and x > 33.525+ 1.5(6.275) = 42.9375

For the data in Table 2.5.1, then, an observed value smaller than 17.8375 or larger than
42.9375 would be considered an outlier.

The SAS® statement PROC UNIVARIATE may be used to obtain a box-and-whisker
plot. The statement also produces other descriptive measures and displays, including stem-
and-leaf plots, means, variances, and quartiles.

Exploratory Data Analysis Box-and-whisker plots and stem-and-leaf displays
are examples of what are known as exploratory data analysis techniques. These tech-
niques, made popular as a result of the work of Tukey (4), allow the investigator to examine
data in ways that reveal trends and relationships, identify unique features of data sets, and
facilitate their description and summarization.

EXERCISES

For each of the data sets in the following exercises compute (a) the mean, (b) the median, (c) the
mode, (d) the range, (e) the variance, (f) the standard deviation, (g) the coefficient of variation, and (h)
the interquartile range. Treat each data set as a sample. For those exercises for which you think it
would be appropriate, construct a box-and-whisker plot and discuss the usefulness in understanding
the nature of the data that this device provides. For each exercise select the measure of central
tendency that you think would be most appropriate for describing the data. Give reasons to justify
your choice.
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EXERCISES B3

Porcellini et al. (A-8) studied 13 HIV-positive patients who were treated with highly active
antiretroviral therapy (HAART) for at least 6 months. The CD4 T cell counts (>< 106/ L) at baseline
for the 13 subjects are listed below.

230 205 313 207 227 245 173
58 103 181 105 301 169

Source: Simona Porcellini, Guiliana Vallanti, Silvia Nozza,
Guido Poli, Adriano Lazzarin, Guiseppe Tambussi,

Antonio Grassia, “Improved Thymopoietic Potential in

Aviremic HIV Infected Individuals with HAART by

Intermittent IL-2 Administration,” AIDS, 17 (2003),

1621-1630.

Shair and Jasper (A-9) investigated whether decreasing the venous return in young rats would affect
ultrasonic vocalizations (USVs). Their research showed no significant change in the number of
ultrasonic vocalizations when blood was removed from either the superior vena cava or the carotid
artery. Another important variable measured was the heart rate (bmp) during the withdrawal of blood.
The table below presents the heart rate of seven rat pups from the experiment involving the carotid
artery.

500 570 560 570 450 560 570
Source: Harry N. Shair and Anna Jasper, “Decreased
Venous Return Is Neither Sufficient nor Necessary to Elicit
Ultrasonic Vocalization of Infant Rat Pups,” Behavioral
Neuroscience, 117 (2003), 840-853.

Butz et al. (A-10) evaluated the duration of benefit derived from the use of noninvasive positive-
pressure ventilation by patients with amyotrophic lateral sclerosis on symptoms, quality of life, and
survival. One of the variables of interest is partial pressure of arterial carbon dioxide (PaCO,). The
values below (mm Hg) reflect the result of baseline testing on 30 subjects as established by arterial
blood gas analyses.

40.0 47.0 340 420 540 480 536 569 580 450
545 540 430 443 539 418 33.0 431 524 379
345 401 330 599 626 541 457 406 56,6 59.0

Source: M. Butz, K. H. Wollinsky, U. Widemuth-Catrinescu, A. Sperfeld,

S. Winter, H. H. Mehrkens, A. C. Ludolph, and H. Schreiber, “Longitudinal Effects
of Noninvasive Positive-Pressure Ventilation in Patients with Amyotrophic Lateral
Sclerosis,” American Journal of Medical Rehabilitation, 82 (2003), 597-604.

According to Starch et al. (A-11), hamstring tendon grafts have been the “weak link” in anterior
cruciate ligament reconstruction. In a controlled laboratory study, they compared two techniques for
reconstruction: either an interference screw or a central sleeve and screw on the tibial side. For eight
cadaveric knees, the measurements below represent the required force (in newtons) at which initial
failure of graft strands occurred for the central sleeve and screw technique.

172.5 216.63 212.62 98.97 66.95 239.76 19.57 195.72
Source: David W. Starch, Jerry W. Alexander, Philip C. Noble, Suraj Reddy, and David M.
Lintner, “Multistranded Hamstring Tendon Graft Fixation with a Central Four-Quadrant or
a Standard Tibial Interference Screw for Anterior Cruciate Ligament Reconstruction,” The
American Journal of Sports Medicine, 31 (2003), 338-344.
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Cardosi et al. (A-12) performed a 4-year retrospective review of 102 women undergoing radical
hysterectomy for cervical or endometrial cancer. Catheter-associated urinary tract infection was
observed in 12 of the subjects. Below are the numbers of postoperative days until diagnosis of the
infection for each subject experiencing an infection.

16 10 49 15 6 15
8 19 11 22 13 17

Source: Richard J. Cardosi, Rosemary Cardosi, Edward

C. Grendys Jr., James V. Fiorica, and Mitchel S. Hoffman,

“Infectious Urinary Tract Morbidity with Prolonged

Bladder Catheterization After Radical Hysterectomy,” American

Journal of Obstetrics and Gynecology,

189 (2003), 380-384.

The purpose of a study by Nozawa et al. (A-13) was to evaluate the outcome of surgical repair of pars
interarticularis defect by segmental wire fixation in young adults with lumbar spondylolysis. The
authors found that segmental wire fixation historically has been successful in the treatment of
nonathletes with spondylolysis, but no information existed on the results of this type of surgery in
athletes. In a retrospective study, the authors found 20 subjects who had the surgery between 1993 and
2000. For these subjects, the data below represent the duration in months of follow-up care after the
operation.

103 68 62 60 60 54 49 44 42 41
38 36 34 30 19 19 19 19 17 16

Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and

Mizuo Tanaka, “Repair of Pars Interarticularis Defect

by Segmental Wire Fixation in Young Athletes with

Spondylolysis,” American Journal of Sports Medicine, 31 (2003),

359-364.

See Exercise 2.3.1.
See Exercise 2.3.2.
See Exercise 2.3.3.
See Exercise 2.3.4.
See Exercise 2.3.5.
See Exercise 2.3.6.
See Exercise 2.3.7.

In a pilot study, Huizinga et al. (A-14) wanted to gain more insight into the psychosocial
consequences for children of a parent with cancer. For the study, 14 families participated in
semistructured interviews and completed standardized questionnaires. Below is the age of the
sick parent with cancer (in years) for the 14 families.

37 48 53 46 42 49 44

38 32 32 51 51 48 41
Source: Gea A. Huizinga, Winette T.A. van der Graaf, Annemike
Visser, Jos S. Dijkstra, and Josette E. H. M. Hoekstra-Weebers, “Psychosocial
Consequences for Children of a Parent with Cancer,” Cancer Nursing, 26
(2003), 195-202.
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In this chapter various descriptive statistical procedures are explained. These include the
organization of data by means of the ordered array, the frequency distribution, the relative
frequency distribution, the histogram, and the frequency polygon. The concepts of
central tendency and variation are described, along with methods for computing their
more common measures: the mean, median, mode, range, variance, and standard
deviation. The reader is also introduced to the concepts of skewness and kurtosis,
and to exploratory data analysis through a description of stem-and-leaf displays and box-
and-whisker plots.

We emphasize the use of the computer as a tool for calculating descriptive measures
and constructing various distributions from large data sets.

SUMMARY OF FORMULAS FOR CHAPTER 2

Formula
Number Name Formula
231 Class interval width W R
using Sturges’s Rule iy
24.1 Mean of a population N
DX
=l
H="N
2.4.2 Skewness n _ 1 _
NZD SRS UND SYC
Skewness = =l = =l
I n—-1)Vn—1s
(S 0-22)
i=1
2.4.2 Mean of a sample 1
p Z X
X = i=1
n
2.5.1 Range R =x; — xq
2.52 Sample variance “
P > (5 —%)°
52 ==
n—1
253 Population variance N
> (X — M)2
02 _ i=1
N

(Continued)
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¢ IQR = Interquartile range

¢ k = number of class intervals

e 1 = population mean

e N = population size

e n = sample size

e (n— 1) = degrees of freedom
e (O, = first quartile

* (), = second quartile = median

e (J; = third quartile

* R =range

e 5 = standard deviation
o 57 = sample variance

* o2 = population variance
e x; = i data observation

e x. = largest data point

e xs = smallest data point
* X = sample mean

e w = class width

254 Standard deviation
2.5.5 Coefficient of variation | ¢y 2 (100)%
X
2.5.6 Quartile location in 1
ordered array Q= 4 (nt1)
1
Q=3 (n+1)
3
Q3 = 1 (n+1)
2.5.7 Interquartile range IOR = 05 — O
- n n
2.5.8 Kurtosis S (i — Fc)4 S (x — )’c)4
Kurtosis = —= —3=_=! -3
n 2 2 n— 1)254
5 (-2
i=1
Symbol Key | » C.V. = coefficient of variation
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REVIEW QUESTIONS AND EXERCISES

1.

® XA kW

10.
11.

12.

Define:

(a) Stem-and-leaf display (b) Box-and-whisker plot
(c) Percentile (d) Quartile

(e) Location parameter (f) Exploratory data analysis
(g) Ordered array (h) Frequency distribution
(i) Relative frequency distribution (j) Statistic

(k) Parameter (I) Frequency polygon
(m) True class limits (n) Histogram

Define and compare the characteristics of the mean, the median, and the mode.
What are the advantages and limitations of the range as a measure of dispersion?
Explain the rationale for using n — 1 to compute the sample variance.

What is the purpose of the coefficient of variation?

What is the purpose of Sturges’s rule?

What is another name for the 50th percentile (second or middle quartile)?

Describe from your field of study a population of data where knowledge of the central tendency and
dispersion would be useful. Obtain real or realistic synthetic values from this population and compute
the mean, median, mode, variance, and standard deviation.

Collect a set of real, or realistic, data from your field of study and construct a frequency distribution, a
relative frequency distribution, a histogram, and a frequency polygon.

Compute the mean, median, mode, variance, and standard deviation for the data in Exercise 9.

Find an article in a journal from your field of study in which some measure of central tendency and
dispersion have been computed.

The purpose of a study by Tam et al. (A-15) was to investigate the wheelchair maneuvering in
individuals with lower-level spinal cord injury (SCI) and healthy controls. Subjects used a modified
wheelchair to incorporate a rigid seat surface to facilitate the specified experimental measurements.
Interface pressure measurement was recorded by using a high-resolution pressure-sensitive mat with
a spatial resolution of 4 sensors per square centimeter taped on the rigid seat support. During static
sitting conditions, average pressures were recorded under the ischial tuberosities. The data for
measurements of the left ischial tuberosity (in mm Hg) for the SCI and control groups are shown
below.

Control‘13l 115 124 131 122 117 88 114 150 169

SCI‘60 150 130 180 163 130 121 119 130 148

Source: Eric W. Tam, Arthur F. Mak, Wai Nga Lam, John H. Evans, and York Y.
Chow, “Pelvic Movement and Interface Pressure Distribution During Manual Wheel-
chair Propulsion,” Archives of Physical Medicine and Rehabilitation, 84 (2003),
1466-1472.

(a) Find the mean, median, variance, and standard deviation for the controls.
(b) Find the mean, median variance, and standard deviation for the SCI group.
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13.

14.

15.

(c) Construct a box-and-whisker plot for the controls.
(d) Construct a box-and-whisker plot for the SCI group.

(e) Do you believe there is a difference in pressure readings for controls and SCI subjects in this
study?

Johnson et al. (A-16) performed a retrospective review of 50 fetuses that underwent open fetal
myelomeningocele closure. The data below show the gestational age in weeks of the 50 fetuses
undergoing the procedure.

25 25 26 27 29 29 29 30 30 31

32 32 32 33 33 33 33 34 34 34

35 35 35 35 35 35 35 35 35 36

36 36 36 36 36 36 36 36 36 36

36 36 36 36 36 36 36 36 37 37
Source: Mark P. Johnson, Leslie N. Sutton, Natalie Rintoul, Timothy M. Crom-
bleholme, Alan W. Flake, Lori J. Howell, Holly L. Hedrick, R. Douglas Wilson, and

N. Scott Adzick, “Fetal Myelomeningocele Repair: Short-Term Clinical Outcomes,”
American Journal of Obstetrics and Gynecology, 189 (2003), 482-487.

(a) Construct a stem-and-leaf plot for these gestational ages.

(b) Based on the stem-and-leaf plot, what one word would you use to describe the nature of the data?
(¢) Why do you think the stem-and-leaf plot looks the way it does?

(d) Compute the mean, median, variance, and standard deviation.

The following table gives the age distribution for the number of deaths in New York State due to
accidents for residents age 25 and older.

Number of Deaths
Age (Years) Due to Accidents
25-34 393
35-44 514
45-54 460
55-64 341
65-74 365
75-84 616
85-94* 618

Source: New York State Department of Health, Vital
Statistics of New York State, 2000, Table 32: Death
Summary Information by Age.

*May include deaths due to accident for adults over
age 94.

For these data construct a cumulative frequency distribution, a relative frequency distribution, and a
cumulative relative frequency distribution.

Krieser et al. (A-17) examined glomerular filtration rate (GFR) in pediatric renal transplant
recipients. GFR is an important parameter of renal function assessed in renal transplant recipients.
The following are measurements from 19 subjects of GFR measured with diethylenetriamine penta-
acetic acid. (Note: some subjects were measured more than once.)
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18 42
21 43
21 43
23 48
27 48
27 51
30 55
32 58
32 60
32 62
36 67
37 68
41 88
42 63

Source: Data provided courtesy of D. M. Z. Krieser, M.D.

(a) Compute mean, median, variance, standard deviation, and coefficient of variation.
(b) Construct a stem-and-leaf display.
(c) Construct a box-and-whisker plot.

(d) What percentage of the measurements is within one standard deviation of the mean? Two
standard deviations? Three standard deviations?

The following are the cystatin C levels (mg/L) for the patients described in Exercise 15 (A-17).
Cystatin C is a cationic basic protein that was investigated for its relationship to GFR levels. In
addition, creatinine levels are also given. (Note: Some subjects were measured more than once.)

Cystatin C (mg/L) Creatinine (mmol/L)
1.78 4.69 0.35 0.14
2.16 3.78 0.30 0.11
1.82 2.24 0.20 0.09
1.86 4.93 0.17 0.12
1.75 2.71 0.15 0.07
1.83 1.76 0.13 0.12
2.49 2.62 0.14 0.11
1.69 2.61 0.12 0.07
1.85 3.65 0.24 0.10
1.76 2.36 0.16 0.13
1.25 3.25 0.17 0.09
1.50 2.01 0.11 0.12
2.06 2.51 0.12 0.06
2.34

Source: Data provided courtesy of D. M. Z. Krieser, M.D.

(a) For each variable, compute the mean, median, variance, standard deviation, and coefficient of
variation.

(b) For each variable, construct a stem-and-leaf display and a box-and-whisker plot.

(c) Which set of measurements is more variable, cystatin C or creatinine? On what do you base your
answer?
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17.
18.

19.

20.

21.

22,

Give three synonyms for variation (variability).

The following table shows the age distribution of live births in Albany County, New York, for
2000.

Mother’s Age Number of Live Births
10-14 7
15-19 258
20-24 585
25-29 841
30-34 981
35-39 526
40-44 99
45-49* 4

Source: New York State Department of Health, Annual
Vital Statistics 2000, Table 7, Live Births by Resident
County and Mother’s Age.

"May include live births to mothers over age 49.

For these data construct a cumulative frequency distribution, a relative frequency distribution, and a
cumulative relative frequency distribution.

Spivack (A-18) investigated the severity of disease associated with C. difficilie in pediatric inpatients.
One of the variables they examined was number of days patients experienced diarrhea. The data for
the 22 subjects in the study appear below. Compute the mean, median, variance, and standard
deviation.

3 11 3 4 14 2 4 5 3 11 2
2 3 2 1 1 7 2 1 1 3 2
Source: Jordan G. Spivack, Stephen C. Eppes, and Joel D. Klien,

“Clostridium Difficile-Associated Diarrhea in a Pediatric
Hospital,” Clinical Pediatrics, 42 (2003), 347-352.

Express in words the following properties of the sample mean:
—\2 ..
(a) 2(x —X)° = a minimum
(b) nx = 3x
() Z(x—x)=0
Your statistics instructor tells you on the first day of class that there will be five tests during the term.
From the scores on these tests for each student, the instructor will compute a measure of central
tendency that will serve as the student’s final course grade. Before taking the first test, you must

choose whether you want your final grade to be the mean or the median of the five test scores. Which
would you choose? Why?

Consider the following possible class intervals for use in constructing a frequency distribution of
serum cholesterol levels of subjects who participated in a mass screening:

(a) 50-74 (b) 50-74 (c) 50-75
75-99 75-99 75-100
100-149 100-124 100-125

150-174 125-149 125-150
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24.

25.

26.

27.

28.

29.
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175-199 150-174 150-175

200-249 175-199 175-200

250-274 200-224 200-225

etc. 225-249 225-250
etc. etc.

Which set of class intervals do you think is most appropriate for the purpose? Why? State specifically
for each one why you think the other two are less desirable.

On a statistics test students were asked to construct a frequency distribution of the blood creatine
levels (units/liter) for a sample of 300 healthy subjects. The mean was 95, and the standard deviation
was 40. The following class interval widths were used by the students:

(a1 @) 15
(b) 5 (e) 20
(c) 10 ® 25

Comment on the appropriateness of these choices of widths.

Give a health sciences-related example of a population of measurements for which the mean would
be a better measure of central tendency than the median.

Give a health sciences-related example of a population of measurements for which the median would
be a better measure of central tendency than the mean.

Indicate for the following variables which you think would be a better measure of central tendency,
the mean, the median, or mode, and justify your choice:

(a) Annual incomes of licensed practical nurses in the Southeast.
(b) Diagnoses of patients seen in the emergency department of a large city hospital.
(c) Weights of high-school male basketball players.

Refer to Exercise 2.3.11. Compute the mean, median, variance, standard deviation, first quartile, third
quartile, and interquartile range. Construct a boxplot of the data. Are the mode, median, and mean
equal? If not, explain why. Discuss the data in terms of variability. Compare the IQR with the range.
What does the comparison tell you about the variability of the observations?

Refer to Exercise 2.3.12. Compute the mean, median, variance, standard deviation, first quartile, third
quartile, and interquartile range. Construct a boxplot of the data. Are the mode, median, and mean
equal? If not, explain why. Discuss the data in terms of variability. Compare the IQR with the range.
What does the comparison tell you about the variability of the observations?

Thilothammal et al. (A-19) designed a study to determine the efficacy of BCG (bacillus
Calmette-Guérin) vaccine in preventing tuberculous meningitis. Among the data collected on
each subject was a measure of nutritional status (actual weight expressed as a percentage of
expected weight for actual height). The following table shows the nutritional status values of the
107 cases studied.

73.3 54.6 824 76.5 722 73.6 74.0
80.5 71.0 56.8 80.6 100.0 79.6 67.3
50.4 66.0 83.0 72.3 55.7 64.1 66.3
50.9 71.0 76.5 99.6 79.3 76.9 96.0
64.8 74.0 72.6 80.7 109.0 68.6 73.8
74.0 72.7 65.9 73.3 84.4 73.2 70.0
72.8 73.6 70.0 774 76.4 66.3 50.5
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72.0 97.5 130.0 68.1 86.4 70.0 73.0
59.7 89.6 76.9 74.6 67.7 91.9 55.0
90.9 70.5 88.2 70.5 74.0 55.5 80.0
76.9 78.1 63.4 58.8 923 100.0 84.0
71.4 84.6 123.7 93.7 76.9 79.6
45.6 92.5 65.6 61.3 64.5 72.7
71.5 76.9 80.2 76.9 88.7 78.1
60.6 59.0 84.7 78.2 72.4 68.3
67.5 76.9 82.6 854 65.7 65.9

Source: Data provided courtesy of Dr. N. Thilothammal.

(a) For these data compute the following descriptive measures: mean, median, mode, variance,
standard deviation, range, first quartile, third quartile, and IQR.

(b) Construct the following graphs for the data: histogram, frequency polygon, stem-and-leaf plot,
and boxplot.

(c) Discuss the data in terms of variability. Compare the IQR with the range. What does the
comparison tell you about the variability of the observations?

(d) What proportion of the measurements are within one standard deviation of the mean? Two
standard deviations of the mean? Three standard deviations of the mean?

(e) What proportion of the measurements are less than 100?
(f) What proportion of the measurements are less than 50?

Exercises for Use with Large Data Sets Available on the Following Website: www.wiley.com/

college/daniel

1.

Refer to the dataset NCBIRTH800. The North Carolina State Center for Health Statistics and
Howard W. Odum Institute for Research in Social Science at the University of North Carolina at
Chapel Hill (A-20) make publicly available birth and infant death data for all children born in the
state of North Carolina. These data can be accessed at www.irss.unc.edu/ncvital/bfd1down.html.
Records on birth data go back to 1968. This comprehensive data set for the births in 2001 contains
120,300 records. The data represents a random sample of 800 of those births and selected variables.
The variables are as follows:

Variable Label  Description

PLURALITY Number of children born of the pregnancy

SEX Sex of child (1 = male, 2 = female)

MAGE Age of mother (years)

WEEKS Completed weeks of gestation (weeks)
MARITAL Marital status (1 = married, 2 = not married)

RACEMOM Race of mother (0 = other non-White, 1 = White, 2 = Black, 3 = American
Indian, 4 = Chinese, 5 = Japanese, 6 = Hawaiian, 7 = Filipino, 8 = Other
Asian or Pacific Islander)

HISPMOM Mother of Hispanic origin (C = Cuban, M = Mexican, N = Non-Hispanic,
O = other and unknown Hispanic, P = Puerto Rican, S = Central /South
American, U = not classifiable)

GAINED Weight gained during pregnancy (pounds)

SMOKE 0 = mother did not smoke during pregnancy
1 = mother did smoke during pregnancy


http://www.wiley.com/college/daniel
http://www.wiley.com/college/daniel
http://www.irss.unc.edu/ncvital/bfd1down.html
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DRINK 0 = mother did not consume alcohol during pregnancy
1 = mother did consume alcohol during pregnancy
TOUNCES Weight of child (ounces)
TGRAMS Weight of child (grams)
LOW 0 = infant was not low birth weight
1 = infant was low birth weight
PREMIE 0 = infant was not premature

1 = infant was premature
Premature defined at 36 weeks or sooner

For the variables of MAGE, WEEKS, GAINED, TOUNCES, and TGRAMS:
Calculate the mean, median, standard deviation, IQR, and range.

For each, construct a histogram and comment on the shape of the distribution.
Do the histograms for TOUNCES and TGRAMS look strikingly similar? Why?
Construct box-and-whisker plots for all four variables.

Construct side-by-side box-and-whisker plots for the variable of TOUNCES for women who
admitted to smoking and women who did not admit to smoking. Do you see a difference in birth
weight in the two groups? Which group has more variability?

Construct side-by-side box-and-whisker plots for the variable of MAGE for women who are and are
not married. Do you see a difference in ages in the two groups? Which group has more variability?
Are the results surprising?

Calculate the skewness and kurtosis of the data set. What do they indicate?
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CHAPTER 3

SOME BASIC PROBABILITY
CONCEPTS

CHAPTER OVERVIEW

Probability laysthe foundation for statistical inference. This chapter provides a
brief overview of the probability concepts necessary for understanding topics
covered in the chapters that follow. It also provides a context for under-
standing the probability distributions used in statistical inference, and intro-
duces the student to several measures commonly found in the medical
literature (e.g., the sensitivity and specificity of a test).

TOPICS

3.1 INTRODUCTION

3.2 TWO VIEWS OF PROBABILITY: OBJECTIVE AND SUBJECTIVE
3.3 ELEMENTARY PROPERTIES OF PROBABILITY

3.4 CALCULATING THE PROBABILITY OF AN EVENT

3.5 BAYES' THEOREM, SCREENING TESTS, SENSITIVITY, SPECIFICITY,
AND PREDICTIVE VALUE POSITIVE AND NEGATIVE

3.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand classical, relative frequency, and subjective probability.

2. understand the properties of probability and selected probability rules.
3. be able to calculate the probability of an event.

4. be able to apply Bayes’ theorem when calculating screening test results.

3.1 INTRODUCTION

The theory of probability provides the foundation for statistical inference. However, this
theory, which is a branch of mathematics, is not the main concern of this book, and,
consequently, only its fundamental concepts are discussed here. Students who desire to
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pursue this subject should refer to the many books on probability available in most college
and university libraries. The books by Gut (1), Isaac (2), and Larson (3) are recommended.
The objectives of this chapter are to help students gain some mathematical ability in the
area of probability and to assist them in developing an understanding of the more important
concepts. Progress along these lines will contribute immensely to their success in under-
standing the statistical inference procedures presented later in this book.

The concept of probability is not foreign to health workers and is frequently
encountered in everyday communication. For example, we may hear a physician say
that a patient has a 50-50 chance of surviving a certain operation. Another physician may
say that she is 95 percent certain that a patient has a particular disease. A public health
nurse may say that nine times out of ten a certain client will break an appointment. As these
examples suggest, most people express probabilities in terms of percentages. In dealing
with probabilities mathematically, it is more convenient to express probabilities as
fractions. (Percentages result from multiplying the fractions by 100.) Thus, we measure
the probability of the occurrence of some event by a number between zero and one. The
more likely the event, the closer the number is to one; and the more unlikely the event, the
closer the number is to zero. An event that cannot occur has a probability of zero, and an
event that is certain to occur has a probability of one.

Health sciences researchers continually ask themselves if the results of their efforts
could have occurred by chance alone or if some other force was operating to produce the
observed effects. For example, suppose six out of ten patients suffering from some disease
are cured after receiving a certain treatment. Is such a cure rate likely to have occurred if
the patients had not received the treatment, or is it evidence of a true curative effect on the
part of the treatment? We shall see that questions such as these can be answered through the
application of the concepts and laws of probability.

3.2 TWO VIEWS OF PROBABILITY:
OBJECTIVE AND SUBJECTIVE

Until fairly recently, probability was thought of by statisticians and mathematicians only as
an objective phenomenon derived from objective processes.

The concept of objective probability may be categorized further under the headings
of (1) classical, or a priori, probability, and (2) the relative frequency, or a posteriori,
concept of probability.

Classical Probability The classical treatment of probability dates back to the
17th century and the work of two mathematicians, Pascal and Fermat. Much of this theory
developed out of attempts to solve problems related to games of chance, such as those
involving the rolling of dice. Examples from games of chance illustrate very well the
principles involved in classical probability. For example, if a fair six-sided die is rolled, the
probability that a 1 will be observed is equal to 1/6 and is the same for the other five faces.
If a card is picked at random from a well-shuffled deck of ordinary playing cards, the
probability of picking a heart is 13/52. Probabilities such as these are calculated by the
processes of abstract reasoning. It is not necessary to roll a die or draw a card to compute
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these probabilities. In the rolling of the die, we say that each of the six sides is equally likely
to be observed if there is no reason to favor any one of the six sides. Similarly, if there is no
reason to favor the drawing of a particular card from a deck of cards, we say that each of the
52 cards is equally likely to be drawn. We may define probability in the classical sense
as follows:

DEFINITION

If an event can occur in N mutually exclusive and equally likely ways,
and if m of these possess a trait E, the probability of the occurrence of E
is equal to m/N.

If we read P(E) as “the probability of E,” we may express this definition as

P(E) =~ (3.2.1)

Relative Frequency Probability The relative frequency approach to prob-
ability depends on the repeatability of some process and the ability to count the number
of repetitions, as well as the number of times that some event of interest occurs. In this
context we may define the probability of observing some characteristic, E, of an event
as follows:

DEFINITION

If some process is repeated a large number of times, n, and if some
resulting event with the characteristic E occurs m times, the relative
frequency of occurrence of E, m/n, will be approximately equal to the
probability of E.

To express this definition in compact form, we write

P(E) =" (3.2.2)

n
We must keep in mind, however, that, strictly speaking, m/n is only an estimate of P(E).

Subjective Probability In the early 1950s, L. J. Savage (4) gave considerable
impetus to what is called the “personalistic” or subjective concept of probability. This view
holds that probability measures the confidence that a particular individual has in the truth of
a particular proposition. This concept does not rely on the repeatability of any process. In
fact, by applying this concept of probability, one may evaluate the probability of an event
that can only happen once, for example, the probability that a cure for cancer will be
discovered within the next 10 years.

Although the subjective view of probability has enjoyed increased attention over the
years, it has not been fully accepted by statisticians who have traditional orientations.
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Bayesian Methods Bayesian methods are named in honor of the Reverend
Thomas Bayes (1702-1761), an English clergyman who had an interest in mathematics.
Bayesian methods are an example of subjective probability, since it takes into considera-
tion the degree of belief that one has in the chance that an event will occur. While
probabilities based on classical or relative frequency concepts are designed to allow for
decisions to be made solely on the basis of collected data, Bayesian methods make use of
what are known as prior probabilities and posterior probabilities.

DEFINITION
The prior probability of an event is a probability based on prior
knowledge, prior experience, or results derived from prior
data collection activity.

DEFINITION

The posterior probability of an event is a probability obtained by using
new information to update or revise a prior probability.

As more data are gathered, the more is likely to be known about the “true” probability of the
event under consideration. Although the idea of updating probabilities based on new
information is in direct contrast to the philosophy behind frequency-of-occurrence proba-
bility, Bayesian concepts are widely used. For example, Bayesian techniques have found
recent application in the construction of e-mail spam filters. Typically, the application of
Bayesian concepts makes use of a mathematical formula called Bayes’ theorem. In Section
3.5 we employ Bayes’ theorem in the evaluation of diagnostic screening test data.

3.3 ELEMENTARY PROPERTIES
OF PROBABILITY

In 1933 the axiomatic approach to probability was formalized by the Russian mathemati-
cian A. N. Kolmogorov (5). The basis of this approach is embodied in three properties from
which a whole system of probability theory is constructed through the use of mathematical
logic. The three properties are as follows.

1. Given some process (or experiment) with » mutually exclusive outcomes (called
events), £y, E,, ..., E,, the probability of any event E; is assigned a nonnegative
number. That is,

P(E;) >0 (3.3.1)

In other words, all events must have a probability greater than or equal to zero,
a reasonable requirement in view of the difficulty of conceiving of negative prob-
ability. A key concept in the statement of this property is the concept of mutually
exclusive outcomes. Two events are said to be mutually exclusive if they cannot occur
simultaneously.
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2. The sum of the probabilities of the mutually exclusive outcomes is equal to 1.
P(E\)+P(E))+---+P(E,) =1 (3.3.2)

This is the property of exhaustiveness and refers to the fact that the observer of
a probabilistic process must allow for all possible events, and when all are taken
together, their total probability is 1. The requirement that the events be mutually
exclusive is specifying that the events E |, E, . . . , E, do not overlap; that is, no two of
them can occur at the same time.

3. Consider any two mutually exclusive events, E; and E;. The probability of the
occurrence of either E; or E; is equal to the sum of their individual probabilities.

P(E; + Ej) = P(E;) + P(E)) 3.3.3)

Suppose the two events were not mutually exclusive; that is, suppose they could
occur at the same time. In attempting to compute the probability of the occurrence of either
E; or E; the problem of overlapping would be discovered, and the procedure could become
quite complicated. This concept will be discusses further in the next section.

3.4 CALCULATING THE PROBABILITY
OF AN EVENT

We now make use of the concepts and techniques of the previous sections in calculating the
probabilities of specific events. Additional ideas will be introduced as needed.

EXAMPLE 3.4.1

The primary aim of a study by Carter et al. (A-1) was to investigate the effect of the age at
onset of bipolar disorder on the course of the illness. One of the variables investigated was
family history of mood disorders. Table 3.4.1 shows the frequency of a family history of

TABLE 3.4.1 Frequency of Family History of Mood Disorder by
Age Group among Bipolar Subjects

Family History of Mood Disorders Early = 18(E) Later > 18(L) Total

Negative (A) 28 35 63
Bipolar disorder (B) 19 38 57
Unipolar (C) 41 44 85
Unipolar and bipolar (D) 53 60 113
Total 141 177 318

Source: Tasha D. Carter, Emanuela Mundo, Sagar V. Parkh, and James L. Kennedy,
“Early Age at Onset as a Risk Factor for Poor Outcome of Bipolar Disorder,” Journal of
Psychiatric Research, 37 (2003), 297-303.
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mood disorders in the two groups of interest (Early age at onset defined to be 18 years or
younger and Later age at onset defined to be later than 18 years). Suppose we pick a person
at random from this sample. What is the probability that this person will be 18 years old
or younger?

Solution: For purposes of illustrating the calculation of probabilities we consider this
group of 318 subjects to be the largest group for which we have an interest. In
other words, for this example, we consider the 318 subjects as a population.
We assume that Early and Later are mutually exclusive categories and that the
likelihood of selecting any one person is equal to the likelihood of selecting
any other person. We define the desired probability as the number of subjects
with the characteristic of interest (Early) divided by the total number of
subjects. We may write the result in probability notation as follows:

P(E) = number of Early subjects/total number of subjects
= 141/318 = .4434 [

Conditional Probability On occasion, the set of “all possible outcomes” may
constitute a subset of the total group. In other words, the size of the group of interest may be
reduced by conditions not applicable to the total group. When probabilities are calculated
with a subset of the total group as the denominator, the result is a conditional probability.

The probability computed in Example 3.4.1, for example, may be thought of as an
unconditional probability, since the size of the total group served as the denominator. No
conditions were imposed to restrict the size of the denominator. We may also think of this
probability as a marginal probability since one of the marginal totals was used as the
numerator.

We may illustrate the concept of conditional probability by referring again to
Table 3.4.1.

EXAMPLE 3.4.2

Suppose we pick a subject at random from the 318 subjects and find that he is 18 years or
younger (E). What is the probability that this subject will be one who has no family history
of mood disorders (A)?

Solution: The total number of subjects is no longer of interest, since, with the selection
of an Early subject, the Later subjects are eliminated. We may define the
desired probability, then, as follows: What is the probability that a subject has
no family history of mood disorders (A), given that the selected subject is
Early (E)? This is a conditional probability and is written as P(A | E)) in which
the vertical line is read “given.” The 141 Early subjects become the
denominator of this conditional probability, and 28, the number of Early
subjects with no family history of mood disorders, becomes the numerator.
Our desired probability, then, is

P(A|E) = 28/141 = .1986 -
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Joint Probability Sometimes we want to find the probability that a subject picked
at random from a group of subjects possesses two characteristics at the same time. Such a
probability is referred to as a joint probability. We illustrate the calculation of a joint
probability with the following example.

EXAMPLE 3.4.3

Let us refer again to Table 3.4.1. What is the probability that a person picked at random
from the 318 subjects will be Early (E) and will be a person who has no family history of
mood disorders (A)?

Solution: The probability we are seeking may be written in symbolic notation as
P(E N A) in which the symbol N is read either as “intersection” or “and.” The
statement £ N A indicates the joint occurrence of conditions E and A. The
number of subjects satisfying both of the desired conditions is found in
Table 3.4.1 at the intersection of the column labeled E and the row labeled A
and is seen to be 28. Since the selection will be made from the total set of
subjects, the denominator is 318. Thus, we may write the joint probability as

P(ENA) = 28/318 = .0881 -

The Multiplication Rule A probability may be computed from other probabili-
ties. For example, a joint probability may be computed as the product of an appropriate
marginal probability and an appropriate conditional probability. This relationship is known
as the multiplication rule of probability. We illustrate with the following example.

EXAMPLE 3.4.4

We wish to compute the joint probability of Early age at onset (E) and a negative family
history of mood disorders (A) from a knowledge of an appropriate marginal probability and
an appropriate conditional probability.

Solution: The probability we seek is P(E N A). We have already computed a marginal
probability, P(E) = 141/318 = 4434, and a conditional probability,
P(A|E) = 28/141 = .1986. It so happens that these are appropriate marginal
and conditional probabilities for computing the desired joint probability. We
may now compute P(ENA)=P(E)P(A|E) = (.4434)(.1986) = .088]1.
This, we note, is, as expected, the same result we obtained earlier for P(E N A).

We may state the multiplication rule in general terms as follows: For any two events
A and B,

P(ANB) =P(B)P(A|B),  ifP(B)#0 (3.4.1)

For the same two events A and B, the multiplication rule may also be written as
P(ANB)=P(A)P(B|A), if P(A) #0.

We see that through algebraic manipulation the multiplication rule as stated in
Equation 3.4.1 may be used to find any one of the three probabilities in its statement if the
other two are known. We may, for example, find the conditional probability P(A | B) by
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dividing P(A N B) by P(B). This relationship allows us to formally define conditional
probability as follows.

DEFINITION

The conditional probability of A given B is equal to the probability of
A N B divided by the probability of B, provided the probability of B
is not zero.

That is,
P(ANB)

PAIB) =5

P(B) #0 (3.4.2)

We illustrate the use of the multiplication rule to compute a conditional probability with the
following example.

EXAMPLE 3.4.5

We wish to use Equation 3.4.2 and the data in Table 3.4.1 to find the conditional probability,
P(A|E)

Solution: According to Equation 3.4.2,
P(A|E)=P(ANE)/P(E) [ ]

Earlier we found P(ENA) = P(ANE) = 28/318 = .0881. We have also determined that
P(E) = 141/318 = .4434. Using these results we are able to compute P(A|E) =
.0881/.4434 = .1987, which, as expected, is the same result we obtained by using the
frequencies directly from Table 3.4.1. (The slight discrepancy is due to rounding.)

The Addition Rule The third property of probability given previously states that
the probability of the occurrence of either one or the other of two mutually exclusive events
is equal to the sum of their individual probabilities. Suppose, for example, that we pick a
person at random from the 318 represented in Table 3.4.1. What is the probability that this
person will be Early age at onset (E) or Later age at onset (L)? We state this probability
in symbols as P(E U L), where the symbol U is read either as “union” or “or.” Since the
two age conditions are mutually exclusive, P(ENL)= (141/318) + (177/318) =
4434 4 5566 = 1.

What if two events are not mutually exclusive? This case is covered by what is known
as the addition rule, which may be stated as follows:

DEFINITION

Given two events A and B, the probability that event A, or event B, or
both occur is equal to the probability that event A occurs, plus the
probability that event B occurs, minus the probability that the events
occur simultaneously.
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The addition rule may be written

P(AUB) = P(A) + P(B) — P(AN B) (3.4.3)

When events A and B cannot occur simultaneously, P(A N B) is sometimes called
“exclusive or,” and P(AUB) =0. When events A and B can occur simultaneously,
P(A UB) is sometimes called “inclusive or,” and we use the addition rule to calculate
P(A UB). Let us illustrate the use of the addition rule by means of an example.

EXAMPLE 3.4.6

If we select a person at random from the 318 subjects represented in Table 3.4.1, what is the
probability that this person will be an Early age of onset subject (E) or will have no family
history of mood disorders (A) or both?

Solution: The probability we seek is P(EUA). By the addition rule as expressed
by Equation 3.4.3, this probability may be written as P(EUA) =
P(E) + P(A) — P(ENA). We have already found that P(E) = 141/318 =
4434 and P(ENA) = 28/318 = .0881. From the information in Table 3.4.1
we calculate P(A) = 63/318 = .1981. Substituting these results into the
equation for P(EUA) we have P(EUA) = .4434 4 .1981 —.0881 =
.5534. [

Note that the 28 subjects who are both Early and have no family history of mood disorders
are included in the 141 who are Early as well as in the 63 who have no family history of
mood disorders. Since, in computing the probability, these 28 have been added into the
numerator twice, they have to be subtracted out once to overcome the effect of duplication,
or overlapping.

Independent Events Suppose that, in Equation 3.4.2, we are told that event B has
occurred, but that this fact has no effect on the probability of A. That is, suppose that the
probability of event A is the same regardless of whether or not B occurs. In this situation,
P(A|B) = P(A). In such cases we say that A and B are independent events. The
multiplication rule for two independent events, then, may be written as

P(ANB) = P(A)P(B);  P(A)#£0,  P(B)#0 (3.4.4)

Thus, we see that if two events are independent, the probability of their joint
occurrence is equal to the product of the probabilities of their individual occurrences.

Note that when two events with nonzero probabilities are independent, each of the
following statements is true:

P(A|B) = P(A), P(B|A) = P(B), P(ANB) = P(A)P(B)

Two events are not independent unless all these statements are true. It is important to be
aware that the terms independent and mutually exclusive do not mean the same thing.
Let us illustrate the concept of independence by means of the following example.
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EXAMPLE 3.4.7

In a certain high school class, consisting of 60 girls and 40 boys, it is observed that 24 girls
and 16 boys wear eyeglasses. If a student is picked at random from this class, the
probability that the student wears eyeglasses, P(E), is 40/100, or .4.

(a) What is the probability that a student picked at random wears eyeglasses, given that
the student is a boy?

Solution: By using the formula for computing a conditional probability, we find this
to be
P(ENB) 16/100
P(B)  40/100

P(E|B) =

Thus the additional information that a student is a boy does not alter the
probability that the student wears eyeglasses, and P(E) = P(E|B). We say
that the events being a boy and wearing eyeglasses for this group are
independent. We may also show that the event of wearing eyeglasses, E,
and not being a boy, B are also independent as follows:

p(g|B) = PENB) _24/100 24

P(B) ~ 60/100 60

(b) What is the probability of the joint occurrence of the events of wearing eyeglasses
and being a boy?

Solution: Using the rule given in Equation 3.4.1, we have
P(ENB) = P(B)P(E|B)

but, since we have shown that events E and B are independent we may replace
P(E|B) by P(E) to obtain, by Equation 3.4.4,

P(ENB) = P(B)P(E)

- (i) (o)

= .16 -

Complementary Events Earlier, using the data in Table 3.4.1, we computed the
probability that a person picked at random from the 318 subjects will be an Early age of
onset subject as P(E) = 141/318 = .4434. We found the probability of a Later age at onset
to be P(L) = 177/318 = .5566. The sum of these two probabilities we found to be equal
to 1. This is true because the events being Early age at onset and being Later age at onset are
complementary events. In general, we may make the following statement about comple-
mentary events. The probability of an event A is equal to 1 minus the probability of its



3.4 CALCULATING THE PROBABILITY OF ANEVENT 75

complement, which is written A and
P(A) =1-P(A) (34.5)

This follows from the third property of probability since the event, A, and its
complement, A are mutually exclusive.

EXAMPLE 3.4.8

Suppose that of 1200 admissions to a general hospital during a certain period of time, 750
are private admissions. If we designate these as set A, then A is equal to 1200 minus 750, or
450. We may compute

P(A) = 750/1200 = .625

and
P(A) = 450/1200 = .375
and see that
P(A) = 1—P(A)
375 =1-.625

375 = 375
|

Marginal Probability Earlier we used the term marginal probability to refer
to a probability in which the numerator of the probability is a marginal total from a table
such as Table 3.4.1. For example, when we compute the probability that a person picked
at random from the 318 persons represented in Table 3.4.1 is an Early age of onset
subject, the numerator of the probability is the total number of Early subjects, 141. Thus,
P(E) = 141/318 = .4434. We may define marginal probability more generally as follows:

DEFINITION
Given some variable that can be broken down into m categories
designated by Ay, A,, ..., A;,..., A, and another jointly occurring

variable that is broken down into n categories designated by B;,
B,,...,B;,...,B,, the marginal probability of 4;, P(A4;), is equal to the
sum of the joint probabilities of 4; with all the categories of B. That is,

P(A;) =3P(4;N B)), for all values of j (3.4.6)

The following example illustrates the use of Equation 3.4.6 in the calculation of a marginal
probability.

EXAMPLE 3.4.9

We wish to use Equation 3.4.6 and the data in Table 3.4.1 to compute the marginal
probability P(E).
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Solution: The variable age at onset is broken down into two categories, Early for onset
18 years or younger (E) and Later for onset occurring at an age over 18 years
(L). The variable family history of mood disorders is broken down into four
categories: negative family history (A), bipolar disorder only (B), unipolar
disorder only (C), and subjects with a history of both unipolar and bipolar
disorder (D). The category Early occurs jointly with all four categories of the
variable family history of mood disorders. The four joint probabilities that
may be computed are

P(ENA)=128/318 = .0881

P(ENB) =19/318 = .0597

P(ENC) =41/318 = .1289

P(END)=153/318 = .1667
We obtain the marginal probability P(E) by adding these four joint probabili-
ties as follows:

P(E)=P(ENA)+P(ENB)+P(ENC)+PEND)
= .0881 + .0597 + .1289 + .1667

= .4434 u

The result, as expected, is the same as the one obtained by using the marginal total for
Early as the numerator and the total number of subjects as the denominator.

EXERCISES

3.4.1 In a study of violent victimization of women and men, Porcerelli et al. (A-2) collected information

from 679 women and 345 men aged 18 to 64 years at several family practice centers in the
metropolitan Detroit area. Patients filled out a health history questionnaire that included a question
about victimization. The following table shows the sample subjects cross-classified by sex and the
type of violent victimization reported. The victimization categories are defined as no victimization,
partner victimization (and not by others), victimization by persons other than partners (friends,
family members, or strangers), and those who reported multiple victimization.

No Victimization = Partners  Nonpartners  Multiple Victimization = Total

‘Women 611 34 16 18 679
Men 308 10 17 10 345
Total 919 44 33 28 1024

Source: Data provided courtesy of John H. Porcerelli, Ph.D., Rosemary Cogan, Ph.D.

(a) Suppose we pick a subject at random from this group. What is the probability that this subject
will be a woman?

(b) What do we call the probability calculated in part a?
(¢) Show how to calculate the probability asked for in part a by two additional methods.
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(d) If we pick a subject at random, what is the probability that the subject will be a woman and have
experienced partner abuse?

(e) What do we call the probability calculated in part d?

(f) Suppose we picked a man at random. Knowing this information, what is the probability that he
experienced abuse from nonpartners?

(g) What do we call the probability calculated in part f?

(h) Suppose we pick a subject at random. What is the probability that it is a man or someone who
experienced abuse from a partner?

(i) What do we call the method by which you obtained the probability in part h?

Fernando et al. (A-3) studied drug-sharing among injection drug users in the South Bronx in New
York City. Drug users in New York City use the term “split a bag” or “get down on a bag” to refer to
the practice of dividing a bag of heroin or other injectable substances. A common practice includes
splitting drugs after they are dissolved in a common cooker, a procedure with considerable HIV risk.
Although this practice is common, little is known about the prevalence of such practices. The
researchers asked injection drug users in four neighborhoods in the South Bronx if they ever
“got down on” drugs in bags or shots. The results classified by gender and splitting practice are
given below:

Gender Split Drugs Never Split Drugs Total

Male 349 324 673
Female 220 128 348
Total 569 452 1021

Source: Daniel Fernando, Robert F. Schilling, Jorge Fontdevila,
and Nabila El-Bassel, “Predictors of Sharing Drugs among
Injection Drug Users in the South Bronx: Implications for HIV
Transmission,” Journal of Psychoactive Drugs, 35 (2003), 227-236.

(a) How many marginal probabilities can be calculated from these data? State each in probability
notation and do the calculations.

(b) How many joint probabilities can be calculated? State each in probability notation and do the
calculations.

(¢) How many conditional probabilities can be calculated? State each in probability notation and do
the calculations.

(d) Use the multiplication rule to find the probability that a person picked at random never split
drugs and is female.

(e) What do we call the probability calculated in part d?

(f) Use the multiplication rule to find the probability that a person picked at random is male, given
that he admits to splitting drugs.

(g) What do we call the probability calculated in part f?

Refer to the data in Exercise 3.4.2. State the following probabilities in words and calculate:
(a) P(Male N Split Drugs)

(b) P(Male U Split Drugs)

(c) P(Male | Split Drugs)

(d) P(Male)
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344

345

3.4.6

3.4.7

Laveist and Nuru-Jeter (A-4) conducted a study to determine if doctor—patient race concordance was
associated with greater satisfaction with care. Toward that end, they collected a national sample of
African-American, Caucasian, Hispanic, and Asian-American respondents. The following table
classifies the race of the subjects as well as the race of their physician:

Patient’s Race

African- Asian-
Physician’s Race Caucasian American Hispanic American  Total
White 779 436 406 175 1796
African-American 14 162 15 5 196
Hispanic 19 17 128 2 166
Asian/Pacific-Islander 68 75 71 203 417
Other 30 55 56 4 145
Total 910 745 676 389 2720

Source: Thomas A. Laveist and Amani Nuru-Jeter, “Is Doctor—Patient Race Concordance Associated with Greater
Satisfaction with Care?” Journal of Health and Social Behavior, 43 (2002), 296-306.

(a) What is the probability that a randomly selected subject will have an Asian/Pacific-Islander
physician?

(b) What is the probability that an African-American subject will have an African-American
physician?

(¢) What is the probability that a randomly selected subject in the study will be Asian-American and
have an Asian/Pacific-Islander physician?

(d) What is the probability that a subject chosen at random will be Hispanic or have a Hispanic
physician?

(e) Use the concept of complementary events to find the probability that a subject chosen at random
in the study does not have a white physician.

If the probability of left-handedness in a certain group of people is .05, what is the probability of
right-handedness (assuming no ambidexterity)?

The probability is .6 that a patient selected at random from the current residents of a certain hospital
will be a male. The probability that the patient will be a male who is in for surgery is .2. A patient
randomly selected from current residents is found to be a male; what is the probability that the patient
is in the hospital for surgery?

In a certain population of hospital patients the probability is .35 that a randomly selected patient will
have heart disease. The probability is .86 that a patient with heart disease is a smoker. What is the prob-
ability that a patient randomly selected from the population will be a smoker and have heart disease?

3.5 BAYES' THEOREM, SCREENING TESTS,
SENSITIVITY, SPECIFICITY, AND PREDICTIVE
VALUE POSITIVE AND NEGATIVE

In the health sciences field a widely used application of probability laws and concepts is
found in the evaluation of screening tests and diagnostic criteria. Of interest to clinicians is
an enhanced ability to correctly predict the presence or absence of a particular disease from
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knowledge of test results (positive or negative) and/or the status of presenting symptoms
(present or absent). Also of interest is information regarding the likelihood of positive and
negative test results and the likelihood of the presence or absence of a particular symptom
in patients with and without a particular disease.

In our consideration of screening tests, we must be aware of the fact that they are not
always infallible. That is, a testing procedure may yield a false positive or a false negative.

DEFINITION

1. A false positive results when a test indicates a positive status when
the true status is negative.

2. A false negative results when a test indicates a negative status when
the true status is positive.

In summary, the following questions must be answered in order to evaluate the
usefulness of test results and symptom status in determining whether or not a subject has
some disease:

1. Given that a subject has the disease, what is the probability of a positive test result (or
the presence of a symptom)?

2. Given that a subject does not have the disease, what is the probability of a negative
test result (or the absence of a symptom)?

3. Given a positive screening test (or the presence of a symptom), what is the probability
that the subject has the disease?

4. Given a negative screening test result (or the absence of a symptom), what is the
probability that the subject does not have the disease?

Suppose we have for a sample of n subjects (where n is a large number) the
information shown in Table 3.5.1. The table shows for these n subjects their status with
regard to a disease and results from a screening test designed to identify subjects with the
disease. The cell entries represent the number of subjects falling into the categories defined
by the row and column headings. For example, a is the number of subjects who have the
disease and whose screening test result was positive.

As we have learned, a variety of probability estimates may be computed from the
information displayed in a two-way table such as Table 3.5.1. For example, we may

TABLE 3.5.1 Sample of n Subjects (Where nls
Large) Cross-Classified According to Disease Status
and Screening Test Result

Disease
Test Result Present (D) Absent (D) Total
Positive (T) a b a+b
Negative (T) c d c+d

Total a+c b+ d n
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compute the conditional probability estimate P(T|D) = a/(a + c). This ratio is an
estimate of the sensitivity of the screening test.

DEFINITION

The sensitivity of a test (or symptom) is the probability of a positive test
result (or presence of the symptom) given the presence of the disease.

We may also compute the conditional probability estimate P(T | D) = d/(b + d).
This ratio is an estimate of the specificity of the screening test.

DEFINITION

The specificity of a test (or symptom) is the probability of a negative test
result (or absence of the symptom) given the absence of the disease.

From the data in Table 3.5.1 we answer Question 3 by computing the conditional
probability estimate P(D | T). This ratio is an estimate of a probability called the predictive
value positive of a screening test (or symptom).

DEFINITION
The predictive value positive of a screening test (or symptom) is the
probability that a subject has the disease given that the subject has a
positive screening test result (or has the symptom).

Similarly, the ratio P(D | T) is an estimate of the conditional probability that a subject
does not have the disease given that the subject has a negative screening test result (or does
not have the symptom). The probability estimated by this ratio is called the predictive value
negative of the screening test or symptom.

DEFINITION
The predictive value negative of a screening test (or symptom) is the
probability that a subject does not have the disease, given that the subject
has a negative screening test result (or does not have the symptom).

Estimates of the predictive value positive and predictive value negative of a test (or
symptom) may be obtained from knowledge of a test’s (or symptom’s) sensitivity and
specificity and the probability of the relevant disease in the general population. To obtain
these predictive value estimates, we make use of Bayes’s theorem. The following statement
of Bayes’s theorem, employing the notation established in Table 3.5.1, gives the predictive
value positive of a screening test (or symptom):

P(T'|D)P(D)

P(D|T) = BT |D)P(D) + P(T | D)P(D) (3.5.1)
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It is instructive to examine the composition of Equation 3.5.1. We recall from
Equation 3.4.2 that the conditional probability P(D|T) is equal to P(DNT)/P(T). To
understand the logic of Bayes’s theorem, we must recognize that the numerator of Equation
3.5.1 represents P(D N T) and that the denominator represents P(T). We know from the
multiplication rule of probability given in Equation 3.4.1 that the numerator of Equation
3.5.1, P(T|D) P(D), is equal to P(DNT).

Now let us show that the denominator of Equation 3.5.1 is equal to P(T'). We know
that event T is the result of a subject’s being classified as positive with respect to a
screening test (or classified as having the symptom). A subject classified as positive may
have the disease or may not have the disease. Therefore, the occurrence of T'is the result
of a subject having the disease and being positive [P(D N T)] or not having the disease
and being positive [P(D N T)]. These two events are mutually exclusive (their intersec-
tion is zero), and consequently, by the addition rule given by Equation 3.4.3, we
may write

P(Ty=P(DNT)+P(DNT) (3.5.2)

Since, by the multiplication rule, P(DNT)=P(T|D)P(D) and P(DNT)=
P(T | D) P(D), we may rewrite Equation 3.5.2 as

P(T) = P(T|D)P(D) + P(T | D)P(D) (3.5.3)

which is the denominator of Equation 3.5.1.

Note, also, that the numerator of Equation 3.5.1 is equal to the sensitivity times the
rate (prevalence) of the disease and the denominator is equal to the sensitivity times the rate
of the disease plus the term I minus the sensitivity times the term I minus the rate of the
disease. Thus, we see that the predictive value positive can be calculated from knowledge
of the sensitivity, specificity, and the rate of the disease.

Evaluation of Equation 3.5.1 answers Question 3. To answer Question 4 we
follow a now familiar line of reasoning to arrive at the following statement of Bayes’s
theorem:

| D)P(
)+ P(

*]‘ b\

)| (3.5.4)

Equation 3.5.4 allows us to compute an estimate of the probability that a subject who is
negative on the test (or has no symptom) does not have the disease, which is the predictive
value negative of a screening test or symptom.

We illustrate the use of Bayes’ theorem for calculating a predictive value positive
with the following example.

EXAMPLE 3.5.1

A medical research team wished to evaluate a proposed screening test for Alzheimer’s
disease. The test was given to a random sample of 450 patients with Alzheimer’s disease
and an independent random sample of 500 patients without symptoms of the disease.
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The two samples were drawn from populations of subjects who were 65 years of age or
older. The results are as follows:

Alzheimer’s Diagnosis?

Test Result Yes (D) No (D) Total
Positive (T) 436 5 441
Negative (T) 14 495 509
Total 450 500 950

Using these data we estimate the sensitivity of the test to be P(T' | D) = 436/450 = .97. The
specificity of the testis estimated to be P(T | D) = 495/500 = .99. We now use the results of
the study to compute the predictive value positive of the test. That is, we wish to estimate the
probability that a subject who is positive on the test has Alzheimer’s disease. From the
tabulated data we compute P(T|D) = 436/450 = .9689 and P(T|D) = 5/500 = .01.
Substitution of these results into Equation 3.5.1 gives

(.9689)P(D)
(.9689)P(D) + (.01)P(D)

P(D|T) = (3.5.5)

We see that the predictive value positive of the test depends on the rate of the disease in the
relevant population in general. In this case the relevant population consists of subjects who
are 65 years of age or older. We emphasize that the rate of disease in the relevant general
population, P(D), cannot be computed from the sample data, since two independent samples
were drawn from two different populations. We must look elsewhere for an estimate of P(D).
Evans et al. (A-5) estimated that 11.3 percent of the U.S. population aged 65 and over have
Alzheimer’s disease. When we substitute this estimate of P(D) into Equation 3.5.5 we
obtain

(.9689)(.113)
(.9689)(.113) + (.01)(1 — .113)

P(D|T) = — .93

As we see, in this case, the predictive value of the test is very high.

Similarly, let us now consider the predictive value negative of the test. We have
already calculated all entries necessary except for P(T | D) = 14/450 = .0311. Using the
values previously obtained and our new value, we find

(.99)(1 — .113)

POIT) = o0 = 113) + (031D (113)

=.996

As we see, the predictive value negative is also quite high. [ ]
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EXERCISES

3.5.1

3.5.2

3.5.3

A medical research team wishes to assess the usefulness of a certain symptom (call it S) in the
diagnosis of a particular disease. In a random sample of 775 patients with the disease, 744 reported
having the symptom. In an independent random sample of 1380 subjects without the disease, 21
reported that they had the symptom.

(a) In the context of this exercise, what is a false positive?

(b) What is a false negative?

(c) Compute the sensitivity of the symptom.

(d) Compute the specificity of the symptom.

(e) Suppose it is known that the rate of the disease in the general population is. 001. What is the
predictive value positive of the symptom?

(f) What is the predictive value negative of the symptom?

(g) Find the predictive value positive and the predictive value negative for the symptom for the
following hypothetical disease rates: .0001, .01, and .10.

(h) What do you conclude about the predictive value of the symptom on the basis of the results
obtained in part g?

In an article entitled “Bucket-Handle Meniscal Tears of the Knee: Sensitivity and Specificity of MRI
signs,” Dorsay and Helms (A-6) performed a retrospective study of 71 knees scanned by MRI. One of
the indicators they examined was the absence of the “bow-tie sign” in the MRI as evidence of a
bucket-handle or “bucket-handle type” tear of the meniscus. In the study, surgery confirmed that 43 of
the 71 cases were bucket-handle tears. The cases may be cross-classified by “bow-tie sign” status and
surgical results as follows:

Tear Surgically Tear Surgically Confirmed As

Confirmed (D) Not Present (D) Total
Positive Test 38 10 48
(absent bow-tie sign) (T)
Negative Test 5 18 23
(bow-tie sign present) (7)
Total 43 28 71

Source: Theodore A. Dorsay and Clyde A. Helms, “Bucket-handle Meniscal Tears of the Knee: Sensitivity
and Specificity of MRI Signs,” Skeletal Radiology, 32 (2003), 266-272.

(a) What is the sensitivity of testing to see if the absent bow tie sign indicates a meniscal tear?
(b) What is the specificity of testing to see if the absent bow tie sign indicates a meniscal tear?

(c) What additional information would you need to determine the predictive value of the test?

Oexle et al. (A-7) calculated the negative predictive value of a test for carriers of X-linked ornithine
transcarbamylase deficiency (OTCD—a disorder of the urea cycle). A test known as the “allopurinol
test” is often used as a screening device of potential carriers whose relatives are OTCD patients. They
cited a study by Brusilow and Horwich (A-8) that estimated the sensitivity of the allopurinol test as
.927. Oexle et al. themselves estimated the specificity of the allopurinol test as .997. Also they
estimated the prevalence in the population of individuals with OTCD as 1/32000. Use this
information and Bayes’s theorem to calculate the predictive value negative of the allopurinol
screening test.
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3.6 SUMMARY

In this chapter some of the basic ideas and concepts of probability were presented. The
objective has been to provide enough of a “feel” for the subject so that the probabilistic
aspects of statistical inference can be more readily understood and appreciated when this
topic is presented later.

We defined probability as a number between 0 and 1 that measures the likelihood of
the occurrence of some event. We distinguished between subjective probability and
objective probability. Objective probability can be categorized further as classical or
relative frequency probability. After stating the three properties of probability, we defined
and illustrated the calculation of the following kinds of probabilities: marginal, joint, and
conditional. We also learned how to apply the addition and multiplication rules to find
certain probabilities. We learned the meaning of independent, mutually exclusive, and
complementary events. We learned the meaning of specificity, sensitivity, predictive value
positive, and predictive value negative as applied to a screening test or disease symptom.
Finally, we learned how to use Bayes’s theorem to calculate the probability that a subject
has a disease, given that the subject has a positive screening test result (or has the symptom
of interest).

SUMMARY OF FORMULAS FOR CHAPTER 3

Formula number | Name Formula
3.2.1 Classical probability P(E) = m
N
3.2.2 Relative frequency P(E) = m
probability n
3.3.1-3.3.3 Properties of probability P(E;)) >0

P(E1) +P(Ey) + -+ P(E,) = 1
P(Ei+ B) = P(E) + P(E)

3.4.1 Multiplication rule P(ANB)=P(B)P(A|B) =P(A)P(B|A)
342 Conditional probability P(A|B) — P(ANB)
P(B)
343 Addition rule P(AUB) = P(A) + P(B) — P(ANB)
344 Independent events P(ANB)=P(A)P(B)
345 Complementary events P(A) =1- P(A)
3.4.6 Marginal probability P(A;)) =3 P(AiNB))
Sensitivity of a screening test P(T|D) = a
(a+c¢)
Specificity of a screening test P(T|D) = d
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3.5.1 Predictive value positive of a P(D|T) = P(T|D)P(D)
screening test P(T |D)P(D) + P(T | D)P(D)
352 Predictive value negative of a P(D|T) = P(T|D)P(D)
screening test ~ P(T|D)P(D) + P(T|D)P(D)
Symbol Key e D = disease

e F = Event

e m = the number of times an event E; occurs

e n = sample size or the total number of times a process occurs

e N = Population size or the total number of mutually exclusive and
equally likely events

e P(A) = a complementary event; the probability of an event A, not
occurring

e P(E;) = probability of some event E; occurring

¢ P(ANB) = an “intersection” or “and” statement; the probability of
an event A and an event B occurring

¢ P(AUB) = an “union” or “or” statement; the probability of an event
A or an event B or both occurring

e T = test results

e P(A|B) = a conditional statement; the probability of an event A
occurring given that an event B has already occurred

REVIEW QUESTIONS AND EXERCISES

1. Define the following:

(a) Probability
(c) Subjective probability
(e) The relative frequency concept of probability
(g) Independence
(i) Joint probability
(K) The addition rule
(m) Complementary events
(o) False negative
(q) Specificity
(s) Predictive value negative

2. Name and explain the three properties of probability.

(b) Objective probability

(d) Classical probability

(f) Mutually exclusive events
(h) Marginal probability

(j) Conditional probability
(I) The multiplication rule
(n) False positive

(p) Sensitivity

(r) Predictive value positive
(t) Bayes’s theorem

3. Coughlin et al. (A-9) examined the breast and cervical screening practices of Hispanic and non-
Hispanic women in counties that approximate the U.S. southern border region. The study used data
from the Behavioral Risk Factor Surveillance System surveys of adults age 18 years or older
conducted in 1999 and 2000. The table below reports the number of observations of Hispanic and
non-Hispanic women who had received a mammogram in the past 2 years cross-classified with

marital status.
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Marital Status Hispanic Non-Hispanic Total
Currently Married 319 738 1057
Divorced or Separated 130 329 459
Widowed 88 402 490
Never Married or Living As 41 95 136

an Unmarried Couple

Total 578 1564 2142

Source: Steven S. Coughlin, Robert J. Uhler, Thomas Richards, and Katherine
M. Wilson, “Breast and Cervical Cancer Screening Practices Among Hispanic
and Non-Hispanic Women Residing Near the United States—Mexico Border,
1999-2000,” Family and Community Health, 26 (2003), 130-139.

(a) We select at random a subject who had a mammogram. What is the probability that she is
divorced or separated?

(b) We select at random a subject who had a mammogram and learn that she is Hispanic. With that
information, what is the probability that she is married?

(c) We select at random a subject who had a mammogram. What is the probability that she is non-
Hispanic and divorced or separated?

(d) We select at random a subject who had a mammogram. What is the probability that she is
Hispanic or she is widowed?

(e) We select at random a subject who had a mammogram. What is the probability that she is not
married?

Swor et al. (A-10) looked at the effectiveness of cardiopulmonary resuscitation (CPR) training in
people over 55 years old. They compared the skill retention rates of subjects in this age group who
completed a course in traditional CPR instruction with those who received chest-compression only
cardiopulmonary resuscitation (CC-CPR). Independent groups were tested 3 months after training.
The table below shows the skill retention numbers in regard to overall competence as assessed by
video ratings done by two video evaluators.

Rated Overall

Competent CPR CC-CPR Total
Yes 12 15 27
No 15 14 29
Total 27 29 56

Source: Robert Swor, Scott Compton, Fern Vining, Lynn Ososky

Farr, Sue Kokko, Rebecca Pascual, and Raymond E. Jackson,

“A Randomized Controlled Trial of Chest Compression Only

CPR for Older Adults—a Pilot Study,” Resuscitation, 58 (2003),
177-185.

(a) Find the following probabilities and explain their meaning:

1. A randomly selected subject was enrolled in the CC-CPR class.

2. A randomly selected subject was rated competent.

3. A randomly selected subject was rated competent and was enrolled in the CPR course.

4. A randomly selected subject was rated competent or was enrolled in CC-CPR.

5. A Randomly selected subject was rated competent given that they enrolled in the CC-CPR
course.
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(b) We define the following events to be

A = a subject enrolled in the CPR course
B = a subject enrolled in the CC-CPR course
C = a subject was evaluated as competent
D = a subject was evaluated as not competent

Then explain why each of the following equations is or is not a true statement:

1.P(ANC)=P(CNA) 2.P(AUB) =P(BUA)
3.P(A)=P(AUC)+ P(AUD) 4.P(BUC) =P(B)+ P(C)
5.P(D|A) = P(D) 6. P(CNB) =P(C)P(B)
7.P(ANB) =0 8.P(CNB) = P(B)P(C|B)

9. P(AND) = P(A)P(A|D)

5. Pillman et al. (A-11) studied patients with acute brief episodes of psychoses. The researchers
classified subjects into four personality types: obsessiod, asthenic/low self-confident, asthenic/high
self-confident, nervous/tense, and undeterminable. The table below cross-classifies these personality
types with three groups of subjects—those with acute and transient psychotic disorders (ATPD),
those with “positive” schizophrenia (PS), and those with bipolar schizo-affective disorder (BSAD):

Personality Type ATPD(1) PS(2) BSAD@3) Total
Obsessoid (O) 9 2 6 17
Asthenic/low Self-confident (A) 20 17 15 52
Asthenic /high Self-confident (S) 5 3 8 16
Nervous/tense (V) 4 7 4 15
Undeterminable (U) 4 13 9 26
Total 42 42 42 126

Source: Frank Pillmann, Raffaela Bloink, Sabine Balzuweit, Annette Haring, and
Andreas Marneros, “Personality and Social Interactions in Patients with Acute Brief
Psychoses,” Journal of Nervous and Mental Disease, 191 (2003), 503-508.

Find the following probabilities if a subject in this study is chosen at random:

@ PO) () P(AU2) (o) P(D) ) P(A)
© P(A[3) () P(3) @® P(2N3) () P(2|A)

6. A certain county health department has received 25 applications for an opening that exists for a public
health nurse. Of these applicants 10 are over 30 and 15 are under 30. Seventeen hold bachelor’s
degrees only, and eight have master’s degrees. Of those under 30, six have master’s degrees. If a
selection from among these 25 applicants is made at random, what is the probability that a person
over 30 or a person with a master’s degree will be selected?

7. The following table shows 1000 nursing school applicants classified according to scores made on a
college entrance examination and the quality of the high school from which they graduated, as rated
by a group of educators:

Quality of High Schools
Score Poor (P) Average (A) Superior (S) Total
Low (L) 105 60 55 220
Medium (M) 70 175 145 390
High (H) 25 65 300 390

Total 200 300 500 1000
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10.

11.

(a) Calculate the probability that an applicant picked at random from this group:
1. Made a low score on the examination.
2. Graduated from a superior high school.
3. Made a low score on the examination and graduated from a superior high school.
4. Made a low score on the examination given that he or she graduated from a superior high
school.
5. Made a high score or graduated from a superior high school.

(b) Calculate the following probabilities:

1. P(A) 2. P(H) 3. P(M)
4.P(A|H) 5.P(MNP) 6. (H|S)

If the probability that a public health nurse will find a client at home is .7, what is the probability
(assuming independence) that on two home visits made in a day both clients will be home?

For a variety of reasons, self-reported disease outcomes are frequently used without verification in
epidemiologic research. In a study by Parikh-Patel et al. (A-12), researchers looked at the relationship
between self-reported cancer cases and actual cases. They used the self-reported cancer data from a
California Teachers Study and validated the cancer cases by using the California Cancer Registry
data. The following table reports their findings for breast cancer:

Cancer Reported (A) Cancer in Registry (B) Cancer Not in Registry Total

Yes 2991 2244 5235
No 112 115849 115961
Total 3103 118093 121196

Source: Arti Parikh-Patel, Mark Allen, William E. Wright, and the California Teachers Study Steering Committee,
“Validation of Self-reported Cancers in the California Teachers Study,” American Journal of Epidemiology,
157 (2003), 539-545.

(a) Let A be the event of reporting breast cancer in the California Teachers Study. Find the
probability of A in this study.
(b) Let B be the event of having breast cancer confirmed in the California Cancer Registry. Find the
probability of B in this study.

(c¢) Find P(ANB)

(d) Find (A|B)

(e) Find P(B|A)

(f) Find the sensitivity of using self-reported breast cancer as a predictor of actual breast cancer in
the California registry.

(g) Find the specificity of using self-reported breast cancer as a predictor of actual breast cancer in
the California registry.

In a certain population the probability that a randomly selected subject will have been exposed to
a certain allergen and experience a reaction to the allergen is .60. The probability is .8 that a
subject exposed to the allergen will experience an allergic reaction. If a subject is selected at
random from this population, what is the probability that he or she will have been exposed to the
allergen?

Suppose that 3 percent of the people in a population of adults have attempted suicide. It is also known
that 20 percent of the population are living below the poverty level. If these two events are
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independent, what is the probability that a person selected at random from the population will have
attempted suicide and be living below the poverty level?

In a certain population of women 4 percent have had breast cancer, 20 percent are smokers, and 3
percent are smokers and have had breast cancer. A woman is selected at random from the population.
What is the probability that she has had breast cancer or smokes or both?

The probability that a person selected at random from a population will exhibit the classic symptom
of a certain disease is .2, and the probability that a person selected at random has the disease is .23.
The probability that a person who has the symptom also has the disease is .18. A person selected at
random from the population does not have the symptom. What is the probability that the person has
the disease?

For a certain population we define the following events for mother’s age at time of giving birth: A =
under 20 years; B = 20-24 years; C = 25-29 years; D = 30-44 years. Are the events A, B, C, and D
pairwise mutually exclusive?

Refer to Exercise 14. State in words the event E = (A UB).
Refer to Exercise 14. State in words the event F = (BU C).
Refer to Exercise 14. Comment on the event G = (A N B).

For a certain population we define the following events with respect to plasma lipoprotein levels
(mg/dl): A = (10-15); B = (> 30); C = (< 20). Are the events A and B mutually exclusive? A and
C? B and C? Explain your answer to each question.

Refer to Exercise 18. State in words the meaning of the following events:

(@ AUB (b)) ANB (¢) ANC () AUC

Refer to Exercise 18. State in words the meaning of the following events:

(@) A (b) B (© C

Rothenberg et al. (A-13) investigated the effectiveness of using the Hologic Sahara Sonometer, a
portable device that measures bone mineral density (BMD) in the ankle, in predicting a fracture. They
used a Hologic estimated bone mineral density value of .57 as a cutoff. The results of the
investigation yielded the following data:

Confirmed Fracture

Present (D)  Not Present (D)  Total

BMD = .57(T) 214 670 884
BMD > .57(T) 73 330 403
Total 287 1000 1287

Source: Data provided courtesy of Ralph J. Rothenberg, M.D., Joan
L. Boyd, Ph.D., and John P. Holcomb, Ph.D.

(a) Calculate the sensitivity of using a BMD value of .57 as a cutoff value for predicting fracture and
interpret your results.
(b) Calculate the specificity of using a BMD value of .57 as a cutoff value for predicting fracture and
interpret your results.
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22.

23.

Verma et al. (A-14) examined the use of heparin-PF4 ELISA screening for heparin-induced
thrombocytopenia (HIT) in critically ill patients. Using C-serotonin release assay (SRA) as the
way of validating HIT, the authors found that in 31 patients tested negative by SRA, 22 also tested
negative by heparin-PF4 ELISA.

(a) Calculate the specificity of the heparin-PF4 ELISA testing for HIT.

(b) Using a “literature derived sensitivity” of 95 percent and a prior probability of HIT occurrence as
3.1 percent, find the positive predictive value.

(¢) Using the same information as part (b), find the negative predictive value.

The sensitivity of a screening test is .95, and its specificity is .85. The rate of the disease for which the
test is used is .002. What is the predictive value positive of the test?

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

Refer to the random sample of 800 subjects from the North Carolina birth registry we investigated in
the Chapter 2 review exercises.

1. Create a table that cross-tabulates the counts of mothers in the classifications of whether the baby
was premature or not (PREMIE) and whether the mother admitted to smoking during pregnancy
(SMOKE) or not.

(a) Find the probability that a mother in this sample admitted to smoking.

(b) Find the probability that a mother in this sample had a premature baby.

(c) Find the probability that a mother in the sample had a premature baby given that the mother
admitted to smoking.

(d) Find the probability that a mother in the sample had a premature baby given that the mother
did not admit to smoking.

(e) Find the probability that a mother in the sample had a premature baby or that the mother did
not admit to smoking.

2. Create a table that cross-tabulates the counts of each mother’s marital status (MARITAL) and
whether she had a low birth weight baby (LOW).

(a) Find the probability a mother selected at random in this sample had a low birth weight baby.

(b) Find the probability a mother selected at random in this sample was married.

(c) Find the probability a mother selected at random in this sample had a low birth weight child
given that she was married.

(d) Find the probability a mother selected at random in this sample had a low birth weight child
given that she was not married.

(e) Find the probability a mother selected at random in this sample had a low birth weight child
and the mother was married.
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PROBABILITY DISTRIBUTIONS

CHAPTER OVERVIEW

TOPICS

Probability distributions of random variables assume powerful roles in statis-
tical analyses. Since they show all possible values of arandom variable and the
probabilities associated with these values, probability distributions may be
summarized in ways that enable researchers to easily make objective deci-
sions based on samples drawn from the populations that the distributions
represent. This chapter introduces frequently used discrete and continuous
probability distributions that are used in later chapters to make statistical
inferences.
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After studying this chapter, the student will

1.

understand selected discrete distributions and how to use them to calculate
probabilities in real-world problems.
understand selected continuous distributions and how to use them to calculate
probabilities in real-world problems.
be able to explain the similarities and differences between distributions of the
discrete type and the continuous type and when the use of each is appropriate.
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4.1 INTRODUCTION

In the preceding chapter we introduced the basic concepts of probability as well as methods
for calculating the probability of an event. We build on these concepts in the present chapter
and explore ways of calculating the probability of an event under somewhat more complex
conditions. In this chapter we shall see that the relationship between the values of a random
variable and the probabilities of their occurrence may be summarized by means of a device
called a probability distribution. A probability distribution may be expressed in the form of
a table, graph, or formula. Knowledge of the probability distribution of a random variable
provides the clinician and researcher with a powerful tool for summarizing and describing
a set of data and for reaching conclusions about a population of data on the basis of a
sample of data drawn from the population.

4.2 PROBABILITY DISTRIBUTIONS
OF DISCRETE VARIABLES

Let us begin our discussion of probability distributions by considering the probability
distribution of a discrete variable, which we shall define as follows:

DEFINITION
The probability distribution of a discrete random variable is a table,
graph, formula, or other device used to specify all possible values of a
discrete random variable along with their respective probabilities.

If we let the discrete probability distribution be represented by p(x), then p(x) =
P(X = x) is the probability of the discrete random variable X to assume a value x.

EXAMPLE 4.2.1

In an article appearing in the Journal of the American Dietetic Association, Holben et al.
(A-1) looked at food security status in families in the Appalachian region of southern Ohio.
The purpose of the study was to examine hunger rates of families with children in a local
Head Start program in Athens, Ohio. The survey instrument included the 18-question U.S.
Household Food Security Survey Module for measuring hunger and food security. In
addition, participants were asked how many food assistance programs they had used in the
last 12 months. Table 4.2.1 shows the number of food assistance programs used by subjects
in this sample.

We wish to construct the probability distribution of the discrete variable X, where
X = number of food assistance programs used by the study subjects.

Solution: The values of X are x; = 1,x, = 2,...,x; = 7, and x3 = 8. We compute the
probabilities for these values by dividing their respective frequencies by
the total, 297. Thus, for example, p(x;) = P(X = x;) = 62/297 = .2088.
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TABLE 4.2.1 Number of Assistance
Programs Utilized by Families with
Children in Head Start Programs in
Southern Ohio

Number of Programs Frequency

62
47
39
39
58
37

4
11

0 N o WN -

Total 297

Source: Data provided courtesy of David H. Holben,
Ph.D. and John P. Holcomb, Ph.D.

TABLE 4.2.2 Probability Distribution
of Programs Utilized by Families
Among the Subjects Described in
Example 4.2.1

Number of Programs (x) P(X =x)

0 N O OB WN =
-
©
o1
w

Total 1.0000

distribution.

We display the results in Table 4.2.2, which is the desired probability

Alternatively, we can present this probability distribution in the form of a graph, as in
Figure 4.2.1. In Figure 4.2.1 the length of each vertical bar indicates the probability for the

corresponding value of x.

It will be observed in Table 4.2.2 that the values of p(x) = P(X =x) are all
positive, they are all less than 1, and their sum is equal to 1. These are not phenomena
peculiar to this particular example, but are characteristics of all probability distributions
of discrete variables. If x,x,,x3,...,x; are all possible values of the discrete random
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Probability
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1 2 3 4 5 6 7 8
x (number of assistance programs)

FIGURE 4.2.1 Graphical representation of the probability
distribution shown in Table 4.2.1.

0.00

variable X, then we may then give the following two essential properties of a probability
distribution of a discrete variable:

(1) 0<PX=x)<1
(2) >PX=x)=1, forallx

The reader will also note that each of the probabilities in Table 4.2.2 is the relative
frequency of occurrence of the corresponding value of X.

With its probability distribution available to us, we can make probability statements
regarding the random variable X. We illustrate with some examples.

EXAMPLE 4.2.2

What is the probability that a randomly selected family used three assistance programs?

Solution: We may write the desired probability as p(3) = P(X =3). We see in
Table 4.2.2 that the answer is .1313. [ ]

EXAMPLE 4.2.3
What is the probability that a randomly selected family used either one or two programs?
Solution: To answer this question, we use the addition rule for mutually exclusive

events. Using probability notation and the results in Table 4.2.2, we write the
answer as P(1U2) = P(1) + P(2) = .2088 + .1582 = .3670. ]
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TABLE 4.2.3 Cumulative Probability Distribution of
Number of Programs Utilized by Families Among the
Subjects Described in Example 4.2.1

Number of Programs (x) Cumulative Frequency P(X < x)

.2088
.3670
4983
.6296
.8249
.9495
.9630
1.0000

0 N O B~ WN =

Cumulative Distributions Sometimes it will be more convenient to work with
the cumulative probability distribution of a random variable. The cumulative probability
distribution for the discrete variable whose probability distribution is given in Table 4.2.2
may be obtained by successively adding the probabilities, P(X = x;), given in the last
column. The cumulative probability for x; is written as F(x;) = P(X < x;). It gives the
probability that X is less than or equal to a specified value, x;.

The resulting cumulative probability distribution is shown in Table 4.2.3. The graph
of the cumulative probability distribution is shown in Figure 4.2.2. The graph of a
cumulative probability distribution is called an ogive. In Figure 4.2.2 the graph of F(x)
consists solely of the horizontal lines. The vertical lines only give the graph a connected
appearance. The length of each vertical line represents the same probability as that of the
corresponding line in Figure 4.2.1. For example, the length of the vertical line at X = 3
in Figure 4.2.2 represents the same probability as the length of the line erected at X = 3 in
Figure 4.2.1, or .1313 on the vertical scale.

1.0 — I

0.9 —

0.8

0.7

0.6

f(x)

0.5

0.4 -

0.3

0.2 —
0.1

0.0 | | | | | | |
1 2 3 4 5 6 7 8

x (number of programs)

FIGURE 4.2.2 Cumulative probability distribution of number of assistance programs
among the subjects described in Example 4.2.1.
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By consulting the cumulative probability distribution we may answer quickly
questions like those in the following examples.

EXAMPLE 4.2.4

What is the probability that a family picked at random used two or fewer assistance
programs?

Solution: The probability we seek may be found directly in Table 4.2.3 by reading the
cumulative probability opposite x = 2, and we see that it is .3670. That is,
P(X < 2) = .3670. We also may find the answer by inspecting Figure 4.2.2
and determining the height of the graph (as measured on the vertical axis)
above the value X = 2. [ ]

EXAMPLE 4.2.5

What is the probability that a randomly selected family used fewer than four programs?

Solution: Since a family that used fewer than four programs used either one, two, or
three programs, the answer is the cumulative probability for 3. That is,
P(X <4) =P(X <3)=.4983. ]

EXAMPLE 4.2.6

What is the probability that a randomly selected family used five or more programs?

Solution: To find the answer we make use of the concept of complementary probabili-
ties. The set of families that used five or more programs is the complement of
the set of families that used fewer than five (that is, four or fewer) programs.
The sum of the two probabilities associated with these sets is equal to 1. We
write this relationship in probability notation as P(X > 5) + P(X < 4) = 1.
Therefore, P(X > 5) =1 - P(X <4) =1 — .6296 = .3704. [ |

EXAMPLE 4.2.7

What is the probability that a randomly selected family used between three and five
programs, inclusive?

Solution: P(X < 5) = .8249 is the probability that a family used between one and five
programs, inclusive. To get the probability of between three and five
programs, we subtract, from .8249, the probability of two or fewer. Using
probability notation we write the answer as P(3 <X <5)=P(X <5)—
P(X <2)=.8249 — 3670 = .4579. ]

The probability distribution given in Table 4.2.1 was developed out of actual experience, so
to find another variable following this distribution would be coincidental. The probability
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distributions of many variables of interest, however, can be determined or assumed on the
basis of theoretical considerations. In later sections, we study in detail three of these
theoretical probability distributions: the binomial, the Poisson, and the normal.

Mean and Variance of Discrete Probability Distributions The
mean and variance of a discrete probability distribution can easily be found using the
formulae below.

w= pr(x) 4.2.1)
o’ = Z (x — u)’plx) = szp(x) —u? 4.2.2)

where p(x) is the relative frequency of a given random variable X. The standard deviation is
simply the positive square root of the variance.

EXAMPLE 4.2.8

What are the mean, variance, and standard deviation of the distribution from Example 4.2.1?

Solution:
n o= (1)(.2088) + (2)(.1582) + (3)(.1313) + - - - + (8)(.0370) = 3.5589
02 = (1 —3.5589)%(.2088) + (2 — 3.5589)(.1582) + (3 — 3.5589)*(.1313)
+---+ (8 —3.5589)*(.0370) = 3.8559

We therefore can conclude that the mean number of programs utilized was 3.5589 with a
variance of 3.8559. The standard deviation is therefore /3.8559 = 1.9637 programs. m

EXERCISES

4.2.1.

4.2.2.

4.2.3.

In a study by Cross et al. (A-2), patients who were involved in problem gambling treatment were
asked about co-occurring drug and alcohol addictions. Let the discrete random variable X represent
the number of co-occurring addictive substances used by the subjects. Table 4.2.4 summarizes the
frequency distribution for this random variable.

(a) Construct a table of the relative frequency and the cumulative frequency for this discrete
distribution.

(b) Construct a graph of the probability distribution and a graph representing the cumulative
probability distribution for these data.

Refer to Exercise 4.2.1.

(a) What is probability that an individual selected at random used five addictive substances?

(b) What is the probability that an individual selected at random used fewer than three addictive
substances?

(c) What is the probability that an individual selected at random used more than six addictive
substances?

(d) What is the probability that an individual selected at random used between two and five addictive
substances, inclusive?

Refer to Exercise 4.2.1. Find the mean, variance, and standard deviation of this frequency distribution.
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TABLE 4.2.4 Number of Co-occurring Addictive Substances
Used by Patients in Selected Gambling Treatment Programs

Number of Substances Used Frequency
0 144
1 342
2 142
3 72
4 39
5 20
6 6
7 9
8 2
9 1
Total 777

4.3 THE BINOMIAL DISTRIBUTION

The binomial distribution is one of the most widely encountered probability distributions in
applied statistics. The distribution is derived from a process known as a Bernoulli trial,
named in honor of the Swiss mathematician James Bernoulli (1654—1705), who made
significant contributions in the field of probability, including, in particular, the binomial
distribution. When a random process or experiment, called a trial, can result in only one of
two mutually exclusive outcomes, such as dead or alive, sick or well, full-term or
premature, the trial is called a Bernoulli trial.

The Bernoulli Process A sequence of Bernoulli trials forms a Bernoulli process
under the following conditions.

1. Each trial results in one of two possible, mutually exclusive, outcomes. One of the
possible outcomes is denoted (arbitrarily) as a success, and the other is denoted a failure.

2. The probability of a success, denoted by p, remains constant from trial to trial. The
probability of a failure, 1 — p, is denoted by g¢.

3. The trials are independent; that is, the outcome of any particular trial is not affected
by the outcome of any other trial.

EXAMPLE 4.3.1

We are interested in being able to compute the probability of x successes in n Bernoulli
trials. For example, if we examine all birth records from the North Carolina State Center for
Health Statistics (A-3) for the calendar year 2001, we find that 85.8 percent of the
pregnancies had delivery in week 37 or later. We will refer to this as a full-term birth. With
that percentage, we can interpret the probability of a recorded birth in week 37 or later as
.858. If we randomly select five birth records from this population, what is the probability
that exactly three of the records will be for full-term births?
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Solution:

Let us designate the occurrence of a record for a full-term birth (F) as a
“success,” and hasten to add that a premature birth (P) is not a failure, but
medical research indicates that children born in week 36 or sooner are at risk
for medical complications. If we are looking for birth records of premature
deliveries, these would be designated successes, and birth records of full-term
would be designated failures.

It will also be convenient to assign the number 1 to a success (record for
a full-term birth) and the number O to a failure (record of a premature birth).

The process that eventually results in a birth record we consider to be a
Bernoulli process.

Suppose the five birth records selected resulted in this sequence of full-
term births:

FPFFP

In coded form we would write this as
10110

Since the probability of a success is denoted by p and the probability of
a failure is denoted by ¢, the probability of the above sequence of outcomes is
found by means of the multiplication rule to be

P(1,0,1,1,0) = pgppq = ¢*p’

The multiplication rule is appropriate for computing this probability since we
are seeking the probability of a full-term, and a premature, and a full-term,
and a full-term, and a premature, in that order or, in other words, the joint
probability of the five events. For simplicity, commas, rather than intersection
notation, have been used to separate the outcomes of the events in the
probability statement.

The resulting probability is that of obtaining the specific sequence of
outcomes in the order shown. We are not, however, interested in the order of
occurrence of records for full-term and premature births but, instead, as has
been stated already, the probability of the occurrence of exactly three records of
full-term births out of five randomly selected records. Instead of occurring in
the sequence shown above (call it sequence number 1), three successes and two
failures could occur in any one of the following additional sequences as well:

Number Sequence

11100
10011
11010
11001
10101
01110
00111
01011
01101

SO 0NN B W

—_
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Each of these sequences has the same probability of occurring, and this
probability is equal to ¢>p?, the probability computed for the first sequence
mentioned.

When we draw a single sample of size five from the population
specified, we obtain only one sequence of successes and failures. The
question now becomes, What is the probability of getting sequence number
1 or sequence number 2 . . . or sequence number 10? From the addition rule
we know that this probability is equal to the sum of the individual probabili-
ties. In the present example we need to sum the 10¢%p*’s or, equivalently,
multiply ¢*>p? by 10. We may now answer our original question: What is the
probability, in a random sample of size 5, drawn from the specified popula-
tion, of observing three successes (record of a full-term birth) and two failures
(record of a premature birth)? Since in the population, p = .858,¢ =
(1 —p) = (1 —.858) = .142 the answer to the question is

10(.142)%(.858)* = 10(.0202)(.6316) = .1276
|

Large Sample Procedure: Use of Combinations We can easily
anticipate that, as the size of the sample increases, listing the number of sequences
becomes more and more difficult and tedious. What is needed is an easy method of
counting the number of sequences. Such a method is provided by means of a counting
formula that allows us to determine quickly how many subsets of objects can be formed
when we use in the subsets different numbers of the objects that make up the set from which
the objects are selected. When the order of the objects in a subset is immaterial, the subset
is called a combination of objects. When the order of objects in a subset does matter, we
refer to the subset as a permutation of objects. Though permutations of objects are often
used in probability theory, they will not be used in our current discussion. If a set consists of
n objects, and we wish to form a subset of x objects from these n objects, without regard to
the order of the objects in the subset, the result is called a combination. For examples, we
define a combination as follows when the combination is formed by taking x objects from a
set of n objects.

DEFINITION

A combination of n objects taken x at a time is an unordered subset of x
of the n objects.

The number of combinations of n objects that can be formed by taking x of them at a
time is given by

n!

2Cx “4.3.1)

- xl(n—x)!
where x!, read x factorial, is the product of all the whole numbers from x down to 1. That is,
xl=x(x—1)(x—2)...(1). We note that, by definition, 0! = 1.

Let us return to our example in which we have a sample of n = 5 birth records and we
are interested in finding the probability that three of them will be for full-term births.
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TABLE 4.3.1 The Binomial Distribution

Number of Successes, x Probability, f(x)
0 nCOq’Ho pO
nC'I qn71 p1
2 nCZ(IWZ p2
X n C’anix p-’(
n 2Cag""p"
Total 1

The number of sequences in our example is found by Equation 4.3.1 to be

5! 5-4-3-2-1 120
aCs = = ==

31(5 — 3)! (3.2-1)(2-1)_3_10

In our example we let x = 3, the number of successes, so that n — x = 2, the number
of failures. We then may write the probability of obtaining exactly x successes in n trials as

fix) =,Gq"*p* = ,Cp*q"* forx=0,1,2,...,n (4.3.2)

= 0, elsewhere

This expression is called the binomial distribution. In Equation4.3.2 f(x) = P(X = x),
where X is the random variable, the number of successes in n trials. We use f(x) rather
than P(X = x) because of its compactness and because of its almost universal use.

We may present the binomial distribution in tabular form as in Table 4.3.1.

We establish the fact that Equation 4.3.2 is a probability distribution by showing the
following:

1. f(x) > 0 for all real values of x. This follows from the fact that n and p are both
nonnegative and, hence, ,Cy, p*, and (1 — p)”fx are all nonnegative and, therefore,
their product is greater than or equal to zero.

2. > f(x) = 1. This is seen to be true if we recognize that >, C,q" *p* is equal to
[(1 = p) + p]" = 1" = 1, the familiar binomial expansion. If the binomial (g + p)" is
expanded, we have

aet 1 nn—=1) , 5, 1 n—1

(g+p)" =4"+nq""'p + p 4 +ngp" +p"
2

If we compare the terms in the expansion, term for term, with the f(x) in Table 4.3.1
we see that they are, term for term, equivalent, since

f(0) = ,Cog" °p° = ¢"
f(1) =.Cig" 'pt =ng" 'p
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f(z) — nc2qn72p2 _ I’l(l’l — 1) n—2. 2

f(n) = ,Cog" "p" =p"

EXAMPLE 4.3.2

As another example of the use of the binomial distribution, the data from the North
Carolina State Center for Health Statistics (A-3) show that 14 percent of mothers admitted
to smoking one or more cigarettes per day during pregnancy. If a random sample of size 10
is selected from this population, what is the probability that it will contain exactly four
mothers who admitted to smoking during pregnancy?

Solution: We take the probability of a mother admitting to smoking to be .14. Using
Equation 4.3.2 we find

£(4) = 10Ca(:86)°(.14)*
10!
= el (.4045672)(.0003842)

= .0326 ]

Binomial Table The calculation of a probability using Equation 4.3.2 can be a
tedious undertaking if the sample size is large. Fortunately, probabilities for different
values of n, p, and x have been tabulated, so that we need only to consult an appropriate
table to obtain the desired probability. Table B of the Appendix is one of many such tables
available. It gives the probability that X is less than or equal to some specified value. That
is, the table gives the cumulative probabilities from x = 0 up through some specified
positive number of successes.

Let us illustrate the use of the table by using Example 4.3.2, where it was desired to
find the probability that x = 4 when n = 10 and p = .14. Drawing on our knowledge of
cumulative probability distributions from the previous section, we know that P(x = 4) may
be found by subtracting P(X < 3) from P(X < 4). If in Table B we locate p = .14 for
n = 10, we find that P(X < 4) = .9927 and P(X < 3) = .9600. Subtracting the latter from
the former gives .9927 — .9600 = .0327, which nearly agrees with our hand calculation
(discrepancy due to rounding).

Frequently we are interested in determining probabilities, not for specific values of
X, but for intervals such as the probability that X is between, say, 5 and 10. Let us illustrate
with an example.

EXAMPLE 4.3.3

Suppose it is known that 10 percent of a certain population is color blind. If a random
sample of 25 people is drawn from this population, use Table B in the Appendix to find the
probability that:

(a) Five or fewer will be color blind.
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Solution: This probability is an entry in the table. No addition or subtraction is
necessary, P(X < 5) = .9666.

(b) Six or more will be color blind.

Solution: We cannot find this probability directly in the table. To find the answer, we
use the concept of complementary probabilities. The probability that six or
more are color blind is the complement of the probability that five or fewer
are color blind. That is, this set is the complement of the set specified in part
a; therefore,

P(X>6)=1—P(X<5)=1-.9666 = 0334

(¢) Between six and nine inclusive will be color blind.

Solution: We find this by subtracting the probability that X is less than or equal to 5
from the probability that X is less than or equal to 9. That is,

P(6<X <9)=P(X <9)—P(X <5)=.9999 — 9666 = .0333

(d) Two, three, or four will be color blind.

Solution: This is the probability that X is between 2 and 4 inclusive.

P2 <X <4)=P(X <4)—P(X <1)=.9020— 2712 = .6308

Using Table B When p > .5 Table B does not give probabilities for values of p
greater than .5. We may obtain probabilities from Table B, however, by restating the
problem in terms of the probability of a failure, 1 — p, rather than in terms of the probability
of a success, p. As part of the restatement, we must also think in terms of the number of
failures, n — x, rather than the number of successes, x. We may summarize this idea
as follows:

P(X =x|n,p > .50) =P(X=n—x|n,1 —p) (4.3.3)

In words, Equation 4.3.3 says, “The probability that X is equal to some specified value
given the sample size and a probability of success greater than .5 is equal to the probability
that X is equal to n — x given the sample size and the probability of a failure of 1 — p.” For
purposes of using the binomial table we treat the probability of a failure as though it were
the probability of a success. When p is greater than .5, we may obtain cumulative
probabilities from Table B by using the following relationship:

P(X <x|n,p>.50) =P(X >n—x|n,1 —p) (4.3.4)

Finally, to use Table B to find the probability that X is greater than or equal to some x when
P > .5, we use the following relationship:

P(X > x|n,p > .50) = P(X <n—x|n,1—p) (4.3.5)
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EXAMPLE 4.3.4

According to a June 2003 poll conducted by the Massachusetts Health Benchmarks project
(A-4), approximately 55 percent of residents answered “serious problem” to the question,
“Some people think that childhood obesity is a national health problem. What do you
think? Is it a very serious problem, somewhat of a problem, not much of a problem, or not a
problem at all?” Assuming that the probability of giving this answer to the question is .55
for any Massachusetts resident, use Table B to find the probability that if 12 residents are
chosen at random:

(a) Exactly seven will answer “serious problem.”

Solution: We restate the problem as follows: What is the probability that a randomly
selected resident gives an answer other than “serious problem” from exactly
five residents out of 12, if 45 percent of residents give an answer other than
“serious problem.” We find the answer as follows:

P(X =5|n=12,p=45) = P(X <5) — P(X < 4)
= 5269 — 3044 = 2225

(b) Five or fewer households will answer “serious problem.”

Solution: The probability we want is

P(X<5n=12,p=.55) = P(X > 12— 5|n = 12,p = 45)
= P(X >7|n=12,p = 45)
= 1—P(X<6|n=12,p=45)
= 1—.7393 = 2607

(c) Eight or more households will answer “serious problem.”

Solution: The probability we want is

P(X > 8ln=12,p =55 =P(X <4ln=12,p = 45) = 3044

Figure 4.3.1 provides a visual representation of the solution to the three parts of
Example 4.3.4.

The Binomial Parameters The binomial distribution has two parameters, n and
p. They are parameters in the sense that they are sufficient to specify a binomial
distribution. The binomial distribution is really a family of distributions with each possible
value of n and p designating a different member of the family. The mean and variance of the
binomial distribution are & = np and o> = np(1 — p), respectively.

Strictly speaking, the binomial distribution is applicable in situations where sam-
pling is from an infinite population or from a finite population with replacement. Since
in actual practice samples are usually drawn without replacement from finite populations,
the question arises as to the appropriateness of the binomial distribution under these
circumstances. Whether or not the binomial is appropriate depends on how drastic the
effect of these conditions is on the constancy of p from trial to trial. It is generally agreed
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Part b

Part a

Part ¢

Possible number Possible number
of successes of failures
(serious) = x Probability (not serious) =n —x Probability
P(SUCCESS) = .55 statement P(FAILURE) = 45 statement
12
i B

10

P(X = 5|12, .55) P(Xx = 7|12, .45)

6

@ P(X = 7|12, .55)
8

9

10 P(X
11

12

@G\HJG)'-D
v

o

1}

5|12, .45)

IV
A

8|12, .55) P(X = 4|12, .45)

FIGURE 4.3.1 Schematic representation of solutions to Example 4.3.4 (the relevant numbers
of successes and failures in each case are circled).

that when n is small relative to NV, the binomial model is appropriate. Some writers say that
n is small relative to N if N is at least 10 times as large as n.

Most statistical software programs allow for the calculation of binomial probabilities
with a personal computer. EXCEL, for example, can be used to calculate individual or
cumulative probabilities for specified values of x, n, and p. Suppose we wish to find the
individual probabilities for x = 0 through x = 6 when n = 6 and p = .3. We enter the
numbers 0 through 6 in Column 1 and proceed as shown in Figure 4.3.2. We may follow a
similar procedure to find the cumulative probabilities. For this illustration, we use MINITAB
and place the numbers 1 through 6 in Column 1. We proceed as shown in Figure 4.3.3.

Using the following cell command:
BINOMDIST(A*, 6, .3, false), where A* is the appropriate cell reference
We obtain the following output:

0 0.117649
0.302526
0.324135
0.185220
0.059535
0.010206
0.000729

|| PRI W|IN|-

FIGURE 4.3.2 Excel calculation of individual binomial probabilities for x = 0 through x =6
when n=6 and p = .3.
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Data:

Cl: 012 3 456

Dialog box: Session command:
Calc » Probability Distributions » MIB > CDF Ci1;
Binomial SUBC> BINOM AL 6 O.3.

Choose Cumulative probability. Type 6 in Number of
trials. Type 0.3 in Probability of success. Choose
Input column and type C1. Click OK.

Output:

Cumulative Distribution Function

Binomal with n = 6 and p = 0.300000

X P( X <= Xx)
0. 00 0.1176
1.00 0. 4202
2.00 0.7443
3.00 0. 9295
4.00 0.9891
5. 00 0.9993
6. 00 1. 0000
FIGURE 4.3.3 MINITAB calculation of cumulative binomial probabilities for x = 0 through x =
6 when n=6 and p = .3.
EXERCISES

In each of the following exercises, assume that N is sufficiently large relative to n that the
binomial distribution may be used to find the desired probabilities.

4.3.1 Based on data collected by the National Center for Health Statistics and made available to the public
in the Sample Adult database (A-5), an estimate of the percentage of adults who have at some point in
their life been told they have hypertension is 23.53 percent. If we select a simple random sample of 20
U.S. adults and assume that the probability that each has been told that he or she has hypertension is
.24, find the probability that the number of people in the sample who have been told that they have
hypertension will be:

(a) Exactly three (b) Three or more
(c¢) Fewer than three (d) Between three and seven, inclusive
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4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

Refer to Exercise 4.3.1. How many adults who have been told that they have hypertension would you
expect to find in a sample of 20?

Refer to Exercise 4.3.1. Suppose we select a simple random sample of five adults. Use Equation 4.3.2
to find the probability that, in the sample, the number of people who have been told that they have
hypertension will be:

(a) Zero (b) More than one
(¢) Between one and three, inclusive (d) Two or fewer
(e) Five

The same survey database cited in exercise 4.3.1 (A-5) shows that 32 percent of U.S. adults indicated
that they have been tested for HIV at some point in their life. Consider a simple random sample of 15
adults selected at that time. Find the probability that the number of adults who have been tested for
HIV in the sample would be:

(a) Three (b) Less than five
(¢) Between five and nine, inclusive (d) More than five, but less than 10
(e) Six or more

Refer to Exercise 4.3.4. Find the mean and variance of the number of people tested for HIV in samples
of size 15.

Refer to Exercise 4.3.4. Suppose we were to take a simple random sample of 25 adults today and find
that two have been tested for HIV at some point in their life. Would these results be surprising? Why
or why not?

Coughlin et al. (A-6) estimated the percentage of women living in border counties along the southern
United States with Mexico (designated counties in California, Arizona, New Mexico, and Texas) who
have less than a high school education to be 18.7. Assume the corresponding probability is .19.
Suppose we select three women at random. Find the probability that the number with less than a high-
school education is:

(a) Exactly zero (b) Exactly one
(¢) More than one (d) Two or fewer
(e) Two or three (f) Exactly three

In a survey of nursing students pursuing a master’s degree, 75 percent stated that they expect to be
promoted to a higher position within one month after receiving the degree. If this percentage holds for
the entire population, find, for a sample of 15, the probability that the number expecting a promotion
within a month after receiving their degree is:

(a) Six (b) At least seven

(¢) No more than five (d) Between six and nine, inclusive

Given the binomial parameters p = .8 and n = 3, show by means of the binomial expansion given in
Table 4.3.1 that > f(x) = 1.

4.4 THE POISSON DISTRIBUTION

The next discrete distribution that we consider is the Poisson distribution, named for the
French mathematician Simeon Denis Poisson (1781-1840), who is generally credited for
publishing its derivation in 1837. This distribution has been used extensively as a
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probability model in biology and medicine. Haight (1) presents a fairly extensive catalog of
such applications in Chapter 7 of his book.

If x is the number of occurrences of some random event in an interval of time or space
(or some volume of matter), the probability that x will occur is given by

7)»)\/(
fl = x=01,2,.. (44.1)
X

The Greek letter A (lambda) is called the parameter of the distribution and is the
average number of occurrences of the random event in the interval (or volume). The symbol
e is the constant (to four decimals) 2.7183.

It can be shown that f(x) > 0 for every x and that > f(x) = 1 so that the distribution
satisfies the requirements for a probability distribution.

The Poisson Process We have seen that the binomial distribution results from a
set of assumptions about an underlying process yielding a set of numerical observations.
Such, also, is the case with the Poisson distribution. The following statements describe
what is known as the Poisson process.

1. The occurrences of the events are independent. The occurrence of an event in an
interval' of space or time has no effect on the probability of a second occurrence of
the event in the same, or any other, interval.

2. Theoretically, an infinite number of occurrences of the event must be possible in the
interval.

3. The probability of the single occurrence of the event in a given interval is
proportional to the length of the interval.

4. In any infinitesimally small portion of the interval, the probability of more than one
occurrence of the event is negligible.

An interesting feature of the Poisson distribution is the fact that the mean and
variance are equal. Both are represented by the symbol A.

When to Use the Poisson Model The Poisson distribution is employed
as a model when counts are made of events or entities that are distributed at random
in space or time. One may suspect that a certain process obeys the Poisson law, and
under this assumption probabilities of the occurrence of events or entities within some
unit of space or time may be calculated. For example, under the assumptions that the
distribution of some parasite among individual host members follows the Poisson
law, one may, with knowledge of the parameter A, calculate the probability that a
randomly selected individual host will yield x number of parasites. In a later chapter we
will learn how to decide whether the assumption that a specified process obeys the
Poisson law is plausible. An additional use of the Poisson distribution in practice occurs
when 7 is large and p is small. In this case, the Poisson distribution can be used to

! For simplicity, the Poisson distribution is discussed in terms of intervals, but other units, such as a volume of
matter, are implied.
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approximate the binomial distribution. In other words,

—)\)\'x
WCopiq ™ = C S x=0,12,...
X!

where A = np.
To illustrate the use of the Poisson distribution for computing probabilities, let us
consider the following examples.

EXAMPLE 4.4.1

In a study of drug-induced anaphylaxis among patients taking rocuronium bromide as part
of their anesthesia, Laake and Rgttingen (A-7) found that the occurrence of anaphylaxis
followed a Poisson model with A = 12 incidents per year in Norway. Find the probability
that in the next year, among patients receiving rocuronium, exactly three will experience
anaphylaxis.

Solution: By Equation 4.4.1, we find the answer to be

712123
P(X =3)= eT = .00177

EXAMPLE 4.4.2

Refer to Example 4.4.1. What is the probability that at least three patients in the next year
will experience anaphylaxis if rocuronium is administered with anesthesia?

Solution: We can use the concept of complementary events in this case. Since P(X < 2)
is the complement of P(X > 3), we have

PX>3) = 1—P(X<2)=1—[P(X=0)+P(X = 1)+ P(X = 2)]
e—12120 e—12121 e—12122
o T T
1 — 00000614 + 00007373 + .00044238]
— 1 — 00052225
— 99947775

In the foregoing examples the probabilities were evaluated directly from the equation.
We may, however, use Appendix Table C, which gives cumulative probabilities for various
values of A and X.

EXAMPLE 4.4.3

In the study of a certain aquatic organism, a large number of samples were taken from a
pond, and the number of organisms in each sample was counted. The average number of
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organisms per sample was found to be two. Assuming that the number of organisms follows
a Poisson distribution, find the probability that the next sample taken will contain one or
fewer organisms.

Solution: In Table C we see that when A = 2, the probability that X < 1 is .406. That is,
P(X < 1]2) = .406. [ ]

EXAMPLE 4.4.4

Refer to Example 4.4.3. Find the probability that the next sample taken will contain exactly
three organisms.

Solution:

P(X =3[2) = P(X <3)— P(X <2) = 857 — .677 = .180

Data:
Cl: 0123456
Dialog box: Session command:
Calc » Probability Distributions » Poisson MIB > PDF C1;
SUBC> Poi sson . 70.
Choose Probability. Type .70 in Mean. Choose Input column and
type C1. Click OK.
Output:
Probability Density Function

Poi sson with mu = 0.700000

X P( X = Xx)
0.00 0. 4966
1.00 0. 3476
2.00 0.1217
3.00 0. 0284
4.00 0. 0050
5.00 0. 0007
6. 00 0. 0001

FIGURE 4.4.1 MINITAB calculation of individual Poisson probabilities for x = 0 through x =6
and \=.7.



112 CHAPTER4 PROBABILITY DISTRIBUTIONS

Using commands found in:
Analysis » Other » Probability Calculator

We obtain the following output:

0<=X Prob(x <= X)

0.4966

0.8442

0

1

2 0.9659
3 0.9942
4

5

6

0.9992
0.9999

1.0000

FIGURE 4.4.2 MINITAB calculation of cumulative Poisson probabilities for x =0
through x =6 and A = .7.

EXAMPLE 4.4.5

Refer to Example 4.4.3. Find the probability that the next sample taken will contain more
than five organisms.

Solution: Since the set of more than five organisms does not include five, we are asking
for the probability that six or more organisms will be observed. This is
obtained by subtracting the probability of observing five or fewer from one.
That is,

P(X>52)=1-P(X<5)=1-.983= 017

Poisson probabilities are obtainable from most statistical software packages. To illustrate
the use of MINITAB for this purpose, suppose we wish to find the individual probabilities
for x = 0 through x = 6 when A = .7. We enter the values of x in Column 1 and proceed as
shown in Figure 4.4.1. We obtain the cumulative probabilities for the same values of x and A
as shown in Figure 4.4.2 .

EXERCISES

4.4.1 Singh et al. (A-8) looked at the occurrence of retinal capillary hemangioma (RCH) in patients with
von Hippel-Lindau (VHL) disease. RCH is a benign vascular tumor of the retina. Using a
retrospective consecutive case series review, the researchers found that the number of RCH tumor
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incidents followed a Poisson distribution with A = 4 tumors per eye for patients with VHL. Using this
model, find the probability that in a randomly selected patient with VHL:

(a) There are exactly five occurrences of tumors per eye.

(b) There are more than five occurrences of tumors per eye.

(¢) There are fewer than five occurrences of tumors per eye.

(d) There are between five and seven occurrences of tumors per eye, inclusive.

4.4.2 Tubert-Bitter et al. (A-9) found that the number of serious gastrointestinal reactions reported to
the British Committee on Safety of Medicine was 538 for 9,160,000 prescriptions of the anti-
inflammatory drug piroxicam. This corresponds to a rate of .058 gastrointestinal reactions per 1000
prescriptions written. Using a Poisson model for probability, with A = .06, find the probability of
(a) Exactly one gastrointestinal reaction in 1000 prescriptions
(b) Exactly two gastrointestinal reactions in 1000 prescriptions
(¢) No gastrointestinal reactions in 1000 prescriptions

(d) At least one gastrointestinal reaction in 1000 prescriptions

4.4.3 If the mean number of serious accidents per year in a large factory (where the number of employees
remains constant) is five, find the probability that in the current year there will be:

(a) Exactly seven accidents (b) Ten or more accidents
(¢) No accidents (d) Fewer than five accidents

4.4.4 In a study of the effectiveness of an insecticide against a certain insect, a large area of land was
sprayed. Later the area was examined for live insects by randomly selecting squares and counting the
number of live insects per square. Past experience has shown the average number of live insects per
square after spraying to be .5. If the number of live insects per square follows a Poisson distribution,
find the probability that a selected square will contain:

(a) Exactly one live insect (b) No live insects
(c) Exactly four live insects (d) One or more live insects

4.4.5 Ina certain population an average of 13 new cases of esophageal cancer are diagnosed each year. If
the annual incidence of esophageal cancer follows a Poisson distribution, find the probability that in a
given year the number of newly diagnosed cases of esophageal cancer will be:

(a) Exactly 10 (b) At least eight
(¢) No more than 12 (d) Between nine and 15, inclusive
(e) Fewer than seven

4.5 CONTINUOUS PROBABILITY
DISTRIBUTIONS

The probability distributions considered thus far, the binomial and the Poisson, are dis-
tributions of discrete variables. Let us now consider distributions of continuous random
variables. In Chapter 1 we stated that a continuous variable is one that can assume any
value within a specified interval of values assumed by the variable. Consequently,
between any two values assumed by a continuous variable, there exist an infinite number
of values.
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To help us understand the nature of the distribution of a continuous random variable,
let us consider the data presented in Table 1.4.1 and Figure 2.3.2. In the table we have 189
values of the random variable, age. The histogram of Figure 2.3.2 was constructed by
locating specified points on a line representing the measurement of interest and erecting a
series of rectangles, whose widths were the distances between two specified points on the
line, and whose heights represented the number of values of the variable falling between
the two specified points. The intervals defined by any two consecutive specified points we
called class intervals. As was noted in Chapter 2, subareas of the histogram correspond to
the frequencies of occurrence of values of the variable between the horizontal scale
boundaries of these subareas. This provides a way whereby the relative frequency of
occurrence of values between any two specified points can be calculated: merely determine
the proportion of the histogram’s total area falling between the specified points. This can be
done more conveniently by consulting the relative frequency or cumulative relative
frequency columns of Table 2.3.2.

Imagine now the situation where the number of values of our random variable is very
large and the width of our class intervals is made very small. The resulting histogram could
look like that shown in Figure 4.5.1.

If we were to connect the midpoints of the cells of the histogram in Figure 4.5.1 to
form a frequency polygon, clearly we would have a much smoother figure than the
frequency polygon of Figure 2.3.4.

In general, as the number of observations, n, approaches infinity, and the width of the
class intervals approaches zero, the frequency polygon approaches a smooth curve such as
is shown in Figure 4.5.2. Such smooth curves are used to represent graphically the
distributions of continuous random variables. This has some important consequences when
we deal with probability distributions. First, the total area under the curve is equal to one, as
was true with the histogram, and the relative frequency of occurrence of values between
any two points on the x-axis is equal to the total area bounded by the curve, the x-axis,
and perpendicular lines erected at the two points on the x-axis. See Figure 4.5.3. The

f(x)

FIGURE 4.5.1 A histogram resulting from a large number of values
and small class intervals.
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f(x)

X

FIGURE 4.5.2 Graphical representation of a continuous
distribution.

probability of any specific value of the random variable is zero. This seems logical, since a
specific value is represented by a point on the x-axis and the area above a point is zero.

Finding Area Under a Smooth Curve With a histogram, as we have seen,
subareas of interest can be found by adding areas represented by the cells. We have no cells
in the case of a smooth curve, so we must seek an alternate method of finding subareas.
Such a method is provided by the integral calculus. To find the area under a smooth curve
between any two points a and b, the density function is integrated from a to b. A density
function is a formula used to represent the distribution of a continuous random variable.
Integration is the limiting case of summation, but we will not perform any integrations,
since the level of mathematics involved is beyond the scope of this book. As we will see
later, for all the continuous distributions we will consider, there will be an easier way to find
areas under their curves.

Although the definition of a probability distribution for a continuous random variable
has been implied in the foregoing discussion, by way of summary, we present it in a more
compact form as follows.

DEFINITION

A nonnegative function f (x) is called a probability distribution
(sometimes called a probability density function) of the continuous
random variable X if the total area bounded by its curve and the x -axis is
equal to 1 and if the subarea under the curve bounded by the curve, the

x -axis, and perpendiculars erected at any two points a and b give the
probability that X is between the points a and b.

a b X

FIGURE 4.5.3 Graph of a continuous distribution
showing area between a and b.
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Thus, the probability of a continuous random variable to assume values between a
and b is denoted by P(a < X < b).

4.6 THE NORMAL DISTRIBUTION

We come now to the most important distribution in all of statistics—the normal dis-
tribution. The formula for this distribution was first published by Abraham De Moivre
(1667-1754) on November 12, 1733. Many other mathematicians figure prominently in
the history of the normal distribution, including Carl Friedrich Gauss (1777-1855). The
distribution is frequently called the Gaussian distribution in recognition of his
contributions.

The normal density is given by

1 2
flx) = e g <y < oo (4.6.1)
2o
In Equation 4.6.1, w and e are the familiar constants, 3.14159 ... and 2.71828

. ., respectively, which are frequently encountered in mathematics. The two parameters
of the distribution are u, the mean, and o, the standard deviation. For our purposes we may
think of ¢ and o of a normal distribution, respectively, as measures of central tendency and
dispersion as discussed in Chapter 2. Since, however, a normally distributed random
variable is continuous and takes on values between —oo and +o0, its mean and standard
deviation may be more rigorously defined; but such definitions cannot be given without
using calculus. The graph of the normal distribution produces the familiar bell-shaped
curve shown in Figure 4.6.1.

Characteristics of the Normal Distribution The following are some
important characteristics of the normal distribution.

1. It is symmetrical about its mean, w. As is shown in Figure 4.6.1, the curve on either
side of w is a mirror image of the other side.

2. The mean, the median, and the mode are all equal.
3. The total area under the curve above the x-axis is one square unit. This characteristic
follows from the fact that the normal distribution is a probability distribution.

Because of the symmetry already mentioned, 50 percent of the area is to the right
of a perpendicular erected at the mean, and 50 percent is to the left.

u X
FIGURE 4.6.1 Graph of a normal distribution.
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A~

.16 10 1o .16

u-1oc u u+1o X
(a)
025 025
u-20 u u+20 X
(b)
.997
0015 3¢ 3o .0015
u-3o u u+3c X

(c)
FIGURE 4.6.2 Subdivision of the area under the normal curve
(areas are approximate).

4. If we erect perpendiculars a distance of 1 standard deviation from the mean in both
directions, the area enclosed by these perpendiculars, the x-axis, and the curve will be
approximately 68 percent of the total area. If we extend these lateral boundaries a
distance of two standard deviations on either side of the mean, approximately
95 percent of the area will be enclosed, and extending them a distance of three
standard deviations will cause approximately 99.7 percent of the total area to be
enclosed. These approximate areas are illustrated in Figure 4.6.2.

5. The normal distribution is completely determined by the parameters i and . In other
words, a different normal distribution is specified for each different value of x and o.
Different values of u shift the graph of the distribution along the x-axis as is shown in
Figure 4.6.3. Different values of o determine the degree of flatness or peakedness of
the graph of the distribution as is shown in Figure 4.6.4. Because of the character-
istics of these two parameters, u is often referred to as a location parameter and o is
often referred to as a shape parameter.
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Hq Hy Ha X
Hy < Hy < H3

FIGURE 4.6.3 Three normal distributions with different means but the same amount of
variability.

&2

&

03

0y < 0y < 03 X

FIGURE 4.6.4 Three normal distributions with different standard deviations but the
same mean.

The Standard Normal Distribution The last-mentioned characteristic
of the normal distribution implies that the normal distribution is really a family of
distributions in which one member is distinguished from another on the basis of the
values of © and o. The most important member of this family is the standard normal
distribution or unit normal distribution, as it is sometimes called, because it has a mean of
0 and a standard deviation of 1. It may be obtained from Equation 4.6.1 by creating a
random variable.

1= (x—p)/o (4.6.2)

The equation for the standard normal distribution is written

1
f@)=—=e7 —co<z<oo (4.6.3)

The graph of the standard normal distribution is shown in Figure 4.6.5.

The z-transformation will prove to be useful in the examples and applications that
follow. This value of z denotes, for a value of a random variable, the number of standard
deviations that value falls above (+z) or below (—z) the mean, which in this case is 0. For
example, a z-transformation that yields a value of z = 1 indicates that the value of x used in
the transformation is 1 standard deviation above 0. A value of z = —1 indicates that the
value of x used in the transformation is 1 standard deviation below 0. This property is
illustrated in the examples of Section 4.7.
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u=0 z
FIGURE 4.6.5 The standard normal distribution.

0 2y z

FIGURE 4.6.6 Area given by Appendix Table D.

To find the probability that z takes on a value between any two points on the z-axis,
say, 7o and z;, we must find the area bounded by perpendiculars erected at these points, the
curve, and the horizontal axis. As we mentioned previously, areas under the curve of a
continuous distribution are found by integrating the function between two values of the
variable. In the case of the standard normal, then, to find the area between z; and z; directly,
we would need to evaluate the following integral:

21 1 B
e Ty
/ZO V2

Although a closed-form solution for the integral does not exist, we can use numerical
methods of calculus to approximate the desired areas beneath the curve to a desired
accuracy. Fortunately, we do not have to concern ourselves with such matters, since there
are tables available that provide the results of any integration in which we might be
interested. Table D in the Appendix is an example of these tables. In the body of Table D are
found the areas under the curve between —oo and the values of z shown in the leftmost
column of the table. The shaded area of Figure 4.6.6 represents the area listed in the table as
being between —oo and z,, where z; is the specified value of z.

We now illustrate the use of Table D by several examples.

EXAMPLE 4.6.1

Given the standard normal distribution, find the area under the curve, above the z-axis
between z = —o0 and z = 2.
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Solution:

Solution:

0 2 z

FIGURE 4.6.7 The standard normal distribution showing
area between z = —oo0 and z = 2.

It will be helpful to draw a picture of the standard normal distribution and
shade the desired area, as in Figure 4.6.7. If we locate z = 2 in Table D and
read the corresponding entry in the body of the table, we find the desired area
to be .9772. We may interpret this area in several ways. We may interpret it as
the probability that a z picked at random from the population of z’s will have a
value between —oo and 2. We may also interpret it as the relative frequency of
occurrence (or proportion) of values of z between —oo and 2, or we may say
that 97.72 percent of the z’s have a value between —oo and 2. [

EXAMPLE 4.6.2

What is the probability that a z picked at random from the population of z’s will have a
value between —2.55 and +2.557

Figure 4.6.8 shows the area desired. Table D gives us the area between —oo
and 2.55, which is found by locating 2.5 in the leftmost column of the table
and then moving across until we come to the entry in the column headed by
0.05. We find this area to be .9946. If we look at the picture we draw, we see
that this is more area than is desired. We need to subtract from .9946 the area
to the left of —2.55. Reference to Table D shows that the area to the left of
—2.55 is .0054. Thus the desired probability is

P(—2.55 < z < 2.55) = .9946 — .0054 = .9892

-2.55 0 2.55 X

FIGURE 4.6.8 Standard normal curve showing
P(—2.55 < z < 2.55). |
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-2.74 0 1.53 z

FIGURE4.6.9 Standard normal curve showing proportion of
z values between z = —-2.74 and z = 1.53.

Suppose we had been asked to find the probability that z is between —2.55 and 2.55
inclusive. The desired probability is expressed as P(—2.55 < z < 2.55). Since, as we noted
in Section 4.5, P(z = z9) = 0, P(—2.55 < 7 <2.55) = P(—2.55 < z < 2.55) = .9892.
EXAMPLE 4.6.3

What proportion of z values are between —2.74 and 1.53?

Solution: Figure 4.6.9 shows the area desired. We find in Table D that the area between

—oo and 1.53 is .9370, and the area between —oo and —2.74 is .0031. To
obtain the desired probability we subtract .0031 from .9370. That is,

P(—2.74 <z <1.53) =.9370 — .0031 = .9339 [

EXAMPLE 4.6.4

Given the standard normal distribution, find P(z > 2.71).

Solution: The area desired is shown in Figure 4.6.10. We obtain the area to the right of
z = 2.71 by subtracting the area between —oo and 2.71 from 1. Thus,

P(z>271) =1—-P(z<271)

=1-.9966
= .0034
\
0 2.71 z
FIGURE 4.6.10 Standard normal distribution showing

P(z>271).
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EXAMPLE 4.6.5

Given the standard normal distribution, find P(.84 < z < 2.45).

Solution: The area we are looking for is shown in Figure 4.6.11. We first obtain the area
between —oo and 2.45 and from that subtract the area between —oo and .84.
In other words,
P(.84<z<245)=P(z<245)—P(z< .84)
= .9929 — .7995
= .1934

\
0 .84 245 z

FIGURE 4.6.11 Standard normal curve showing
P(.84 < z<2.45).

EXERCISES

Given the standard normal distribution find:
4.6.1 The area under the curve between z = 0 and z = 1.43

4.6.2 The probability that a z picked at random will have a value between z = —2.87 and z = 2.64

4.63 P(z>.55) 4.64 P(z> —.55)
4.65 P(z < —2.33) 4.6.6 P(z<2.33)
4.6.7 P(—1.96 <z < 196) 4.6.8 P(—2.58 <z<2.58)
469 P(—1.65<z< 1.65) 4.6.10 P(z = .74)

Given the following probabilities, find z;:
4.6.11 P(z <z)=.0055 4.6.12 P(—2.67 <z<z)=.9718
4.6.13 P(z>z)=.0384 4.6.14 P(z; <z<298)=.1117
4.6.15 P(—z1 <z<z)= 8132

4.7 NORMAL DISTRIBUTION APPLICATIONS

Although its importance in the field of statistics is indisputable, one should realize that the
normal distribution is not a law that is adhered to by all measurable characteristics
occurring in nature. It is true, however, that many of these characteristics are approximately
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normally distributed. Consequently, even though no variable encountered in practice is
precisely normally distributed, the normal distribution can be used to model the distribu-
tion of many variables that are of interest. Using the normal distribution as a model allows
us to make useful probability statements about some variables much more conveniently
than would be the case if some more complicated model had to be used.

Human stature and human intelligence are frequently cited as examples of variables
that are approximately normally distributed. On the other hand, many distributions relevant
to the health field cannot be described adequately by a normal distribution. Whenever it is
known that a random variable is approximately normally distributed, or when, in the
absence of complete knowledge, it is considered reasonable to make this assumption, the
statistician is aided tremendously in his or her efforts to solve practical problems relative to
this variable. Bear in mind, however, that “normal” in this context refers to the statistical
properties of a set of data and in no way connotes normality in the sense of health or
medical condition.

There are several other reasons why the normal distribution is so important in
statistics, and these will be considered in due time. For now, let us see how we may answer
simple probability questions about random variables when we know, or are willing to
assume, that they are, at least, approximately normally distributed.

EXAMPLE 4.7.1

The Uptimer is a custom-made lightweight battery-operated activity monitor that records
the amount of time an individual spends in the upright position. In a study of children ages
8 to 15 years, Eldridge et al. (A-10) studied 529 normally developing children who each
wore the Uptimer continuously for a 24-hour period that included a typical school day. The
researchers found that the amount of time children spent in the upright position followed a
normal distribution with a mean of 5.4 hours and standard deviation of 1.3 hours. Assume
that this finding applies to all children 8 to 15 years of age. Find the probability that a child
selected at random spends less than 3 hours in the upright position in a 24-hour period.

Solution: First let us draw a picture of the distribution and shade the area corresponding
to the probability of interest. This has been done in Figure 4.7.1.

|
3.0 u=54

FIGURE 4.7.1 Normal distribution to approximate

distribution of amount of time children spent in upright

position (mean and standard deviation estimated).
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‘ z
-1.85 0

FIGURE 4.7.2 Normal distribution of time spent upright
(x) and the standard normal distribution ().

If our distribution were the standard normal distribution with a
mean of 0 and a standard deviation of 1, we could make use of Table D
and find the probability with little effort. Fortunately, it is possible for
any normal distribution to be transformed easily to the standard normal.
What we do is transform all values of X to corresponding values of z. This
means that the mean of X must become 0, the mean of z. In Figure 4.7.2
both distributions are shown. We must determine what value of z, say, zo,
corresponds to an x of 3.0. This is done using formula 4.6.2,z = (x — u) /o,
which transforms any value of x in any normal distribution to the corre-
sponding value of z in the standard normal distribution. For the present
example we have

30-54
_20 70 85
. 1.3

The value of z5 we seek, then, is —1.85. ]

Let us examine these relationships more closely. It is seen that the distance from the
mean, 5.4, to the x-value of interest, 3.0, is 3.0 — 5.4 = —2.4, which is a distance of 1.85
standard deviations. When we transform x values to z values, the distance of the z value
of interest from its mean, 0, is equal to the distance of the corresponding x value from its
mean, 5.4, in standard deviation units. We have seen that this latter distance is 1.85
standard deviations. In the z distribution a standard deviation is equal to 1, and
consequently the point on the z scale located a distance of 1.85 standard deviations
below 0 is z = —1.85, the result obtained by employing the formula. By consulting



4.7 NORMAL DISTRIBUTION APPLICATIONS 125

Table D, we find that the area to the left of z = —1.85 is .0322. We may summarize this
discussion as follows:

30-54

P 0)=P
(x <3.0) (z< 3

) = P(z < —1.85) = .0322

To answer the original question, we say that the probability is .0322 that a randomly
selected child will have uptime of less than 3.0 hours.

EXAMPLE 4.7.2

Diskin et al. (A-11) studied common breath metabolites such as ammonia, acetone,
isoprene, ethanol, and acetaldehyde in five subjects over a period of 30 days. Each day,
breath samples were taken and analyzed in the early morning on arrival at the laboratory.
For subject A, a 27-year-old female, the ammonia concentration in parts per billion (ppb)
followed a normal distribution over 30 days with mean 491 and standard deviation 119.
What is the probability that on a random day, the subject’s ammonia concentration is
between 292 and 649 ppb?

Solution: In Figure 4.7.3 are shown the distribution of ammonia concentrations and the
z distribution to which we transform the original values to determine the
desired probabilities. We find the z value corresponding to an x of 292 by

292 — 491
T 67
. 119
o=119
292 491 649 X
o=1
-1.67 0 1.33 z

FIGURE 4.7.3 Distribution of ammonia concentration (x) and
the corresponding standard normal distribution (z).
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Similarly, for x = 649 we have

649 — 491

=133
119

From Table D we find the area between —oo and —1.67 to be .0475 and the
area between —oo and 1.33 to be .9082. The area desired is the difference
between these, .9082 — .0475 = .8607. To summarize,

292 — 491 649 — 491
<x< = 7T T <<
P(292 < x < 649) P( 119 Z 119 )

= P(—1.67 <z<1.33)
= P(—00 <z<1.33) - P(—o0 <z < —1.67)

= .9082 — .0475
= .8607
The probability asked for in our original question, then, is .8607. [ |

EXAMPLE 4.7.3

In a population of 10,000 of the children described in Example 4.7.1, how many would you
expect to be upright more than 8.5 hours?

Solution: We first find the probability that one child selected at random from the
population would be upright more than 8.5 hours. That is,

85— 5.4
P(x >8.5) = P(z > T) = P(z>2.38) = 1—.9913 = .0087

Out of 10,000 people we would expect 10,000(.0087) = 87 to spend more
than 8.5 hours upright. [

We may use MINITAB to calculate cumulative standard normal probabilities. Suppose
we wish to find the cumulative probabilities for the following values of z:
—-3,-2,—-1,0,1,2, and 3. We enter the values of z into Column 1 and proceed as
shown in Figure 4.7.4.

The preceding two sections focused extensively on the normal distribution, the most
important and most frequently used continuous probability distribution. Though much of
what will be covered in the next several chapters uses this distribution, it is not the only
important continuous probability distribution. We will be introducing several other
continuous distributions later in the text, namely the t-distribution, the chi-square
distribution, and the F-distribution. The details of these distributions will be discussed
in the chapters in which we need them for inferential tests.
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Data:
Cl: -3-2-10123
Dialog box: Session command:

Calc » Probability Distributions » Normal MIB > CDF Ci;

SUBC> Normal O 1.
Choose Cumulative probability. Choose Input column
and type C1. Click OK.

Output:

Cumulative Distribution Function

Normal with mean = 0 and standard
deviation = 1.00000

X P( X <= x)
—3. 0000 0. 0013
—2. 0000 0. 0228
—1. 0000 0. 1587
0. 0000 0. 5000
1. 0000 0. 8413
2. 0000 0.9772
3. 0000 0. 9987

FIGURE 4.7.4 MINITAB calculation of cumulative standard normal probabilities.

EXERCISES

4.7.1 For another subject (a 29-year-old male) in the study by Diskin et al. (A-11), acetone levels were
normally distributed with a mean of 870 and a standard deviation of 211 ppb. Find the probability that
on a given day the subject’s acetone level is:

(a) Between 600 and 1000 ppb
(b) Over 900 ppb

(¢) Under 500 ppb

(d) Between 900 and 1100 ppb

4.7.2 In the study of fingerprints, an important quantitative characteristic is the total ridge count for the
10 fingers of an individual. Suppose that the total ridge counts of individuals in a certain population
are approximately normally distributed with a mean of 140 and a standard deviation of 50. Find the
probability that an individual picked at random from this population will have a ridge count of:
(a) 200 or more
(b) Less than 100
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4.7.3

4.74

4.7.5

4.7.6

4.7.7

(c¢) Between 100 and 200

(d) Between 200 and 250

(e) In a population of 10,000 people how many would you expect to have a ridge count of 200 or
more?

One of the variables collected in the North Carolina Birth Registry data (A-3) is pounds gained during
pregnancy. According to data from the entire registry for 2001, the number of pounds gained during
pregnancy was approximately normally distributed with a mean of 30.23 pounds and a standard
deviation of 13.84 pounds. Calculate the probability that a randomly selected mother in North
Carolina in 2001 gained:

(a) Less than 15 pounds during pregnancy (b) More than 40 pounds
(c) Between 14 and 40 pounds (d) Less than 10 pounds
(e) Between 10 and 20 pounds

Suppose the average length of stay in a chronic disease hospital of a certain type of patient is 60 days with
astandard deviation of 15. Ifitis reasonable to assume an approximately normal distribution of lengths of
stay, find the probability that a randomly selected patient from this group will have a length of stay:

(a) Greater than 50 days (b) Less than 30 days
(c) Between 30 and 60 days (d) Greater than 90 days

If the total cholesterol values for a certain population are approximately normally distributed with a
mean of 200mg/100ml and a standard deviation of 20 mg/100 ml, find the probability that an
individual picked at random from this population will have a cholesterol value:

(a) Between 180 and 200 mg/100 ml (b) Greater than 225 mg/100 ml
(c) Less than 150 mg/100 ml (d) Between 190 and 210 mg/100 ml

Given a normally distributed population with a mean of 75 and a variance of 625, find:

(a) P(50 < x < 100) (b) P(x > 90)
(¢) P(x < 60) (d) P(x > 85)
(e) P(30 < x < 110)

The weights of a certain population of young adult females are approximately normally distributed
with a mean of 132 pounds and a standard deviation of 15. Find the probability that a subject selected
at random from this population will weigh:

(a) More than 155 pounds (b) 100 pounds or less
(c) Between 105 and 145 pounds

4.8 SUMMARY

In this chapter the concepts of probability described in the preceding chapter are further
developed. The concepts of discrete and continuous random variables and their probability
distributions are discussed. In particular, two discrete probability distributions, the
binomial and the Poisson, and one continuous probability distribution, the normal, are
examined in considerable detail. We have seen how these theoretical distributions allow us
to make probability statements about certain random variables that are of interest to the
health professional.
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SUMMARY OF FORMULAS FOR CHAPTER 4

Formula
Number Name Formula
42.1 Mean of a frequency w=>xp(x)
distribution
422 V_ariz.mce. of a frequency =3 (x— M)zp(x)
distribution or
o? = Y p(x) — 2
431 Combination of objects n!
nCX = . a1\
xl(n—1)!
432 Binomial distribution function | f(x) =, Cyp*¢"*,x=0,1,2,...
43.3-435 Tabled binomial probability P(X =x|n,p > .50) = P(X =n—x|n,1 — p)
lities
cqualities P(X < x|n,p > .50) = P(X > n—x|n,1 — p)
P(X > x|n,p > 50) = P(X <n—x|n,1—p)
4.4.1 Poisson distribution function e\
flx) = ,x=0,1,2,...
x!
4.6.1 Normal distribution function 1 , ., Too<x<oo
flx) = e~ O oo << o0
2o >0
4.6.2 z-transformation L= X—p
o o
4.6.3 Standard normal distribution L _2p
. flz) = e, —o<z< 0
function V2
Symbol Key e ,C, = acombination of nevents taken x at a time
e ¢ = Euler’sconstant = 2.71828. ..
¢ f(x) = function of x
e ) = the parameter of the Poisson distribution
e n = sample size or the total number of time a process occurs
e p = binomial “success” probability
e p(x) = discrete probability of random variableX
* g =1 — p = binomial “failure” probability
* 7 = pi = constant = 3.14159.. ..
e ¢ = population standard deviation
* o = population variance
e 1 = population mean
e x = a quantity of individual value of X
* X = random variable
¢ 7 = standard normal transformation
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REVIEW QUESTIONS AND EXERCISES

O = e = )
PR b =2

p—
n

16.

17.

AR A L T

What is a discrete random variable? Give three examples that are of interest to the health
professional.

What is a continuous random variable? Give three examples of interest to the health professional.
Define the probability distribution of a discrete random variable.

Define the probability distribution of a continuous random variable.

What is a cumulative probability distribution?

What is a Bernoulli trial?

Describe the binomial distribution.

Give an example of a random variable that you think follows a binomial distribution.

Describe the Poisson distribution.

Give an example of a random variable that you think is distributed according to the Poisson law.
Describe the normal distribution.

Describe the standard normal distribution and tell how it is used in statistics.

Give an example of a random variable that you think is, at least approximately, normally distributed.

Using the data of your answer to Question 13, demonstrate the use of the standard normal distribution
in answering probability questions related to the variable selected.

Kanjanarat et al. (A-12) estimate the rate of preventable adverse drug events (ADEs) in hospitals to
be 35.2 percent. Preventable ADEs typically result from inappropriate care or medication errors,
which include errors of commission and errors of omission. Suppose that 10 hospital patients
experiencing an ADE are chosen at random. Let p = .35, and calculate the probability that:

(a) Exactly seven of those drug events were preventable
(b) More than half of those drug events were preventable
(c) None of those drug events were preventable

(d) Between three and six inclusive were preventable

In a poll conducted by the Pew Research Center in 2003 (A-13), a national sample of adults answered
the following question, “All in all, do you strongly favor, favor, oppose, or strongly oppose . . .

making it legal for doctors to give terminally ill patients the means to end their lives?”” The results
showed that 43 percent of the sample subjects answered “strongly favor” or “favor” to this question.
If 12 subjects represented by this sample are chosen at random, calculate the probability that:

(a) Exactly two of the respondents answer “strongly favor” or “favor”
(b) No more than two of the respondents answer “strongly favor” or “favor”
(c) Between five and nine inclusive answer “strongly favor” or “favor”

In a study by Thomas et al. (A-14) the Poisson distribution was used to model the number of patients
per month referred to an oncologist. The researchers use a rate of 15.8 patients per month that are
referred to the oncologist. Use Table C in the Appendix and a rate of 16 patients per month to
calculate the probability that in a month:

(a) Exactly 10 patients are referred to an oncologist
(b) Between five and 15 inclusive are referred to an oncologist

(c) More than 10 are referred to an oncologist
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(d) Less than eight are referred to an oncologist

(e) Less than 12, but more than eight are referred to an oncologist

On the average, two students per hour report for treatment to the first-aid room of a large elementary
school.

(a) What is the probability that during a given hour three students come to the first-aid room for
treatment?
(b) Whatisthe probability that during a given hour two or fewer students will report to the first-aid room?

(c) What is the probability that during a given hour between three and five students, inclusive, will
report to the first-aid room?

A Harris Interactive poll conducted in Fall, 2002 (A-15) via a national telephone survey of adults
asked, “Do you think adults should be allowed to legally use marijuana for medical purposes if their
doctor prescribes it, or do you think that marijuana should remain illegal even for medical purposes?”
The results showed that 80 percent of respondents answered “Yes” to the above question. Assuming
80 percent of Americans would say “Yes” to the above question, find the probability when eight
Americans are chosen at random that:

(a) Six or fewer said “Yes” (b) Seven or more said “Yes”
(c) All eight said “Yes” (d) Fewer than four said “Yes”
(e) Between four and seven inclusive said “Yes”

In a study of the relationship between measles vaccination and Guillain-Barré syndrome (GBS),
Silveira et al. (A-16) used a Poisson model in the examination of the occurrence of GBS during latent
periods after vaccinations. They conducted their study in Argentina, Brazil, Chile, and Colombia.
They found that during the latent period, the rate of GBS was 1.28 cases per day. Using this estimate
rounded to 1.3, find the probability on a given day of:

(a) No cases of GBS (b) At least one case of GBS
(c¢) Fewer than five cases of GBS

The 1Qs of individuals admitted to a state school for the mentally retarded are approximately
normally distributed with a mean of 60 and a standard deviation of 10.

(a) Find the proportion of individuals with IQs greater than 75.

(b) What is the probability that an individual picked at random will have an IQ between 55 and 75?
(c) Find P(50 < X < 70).

A nurse supervisor has found that staff nurses, on the average, complete a certain task in 10 minutes.

If the times required to complete the task are approximately normally distributed with a standard
deviation of 3 minutes, find:

(a) The proportion of nurses completing the task in less than 4 minutes

(b) The proportion of nurses requiring more than 5 minutes to complete the task

(c) The probability that a nurse who has just been assigned the task will complete it within 3 minutes
Scores made on a certain aptitude test by nursing students are approximately normally distributed
with a mean of 500 and a variance of 10,000.

(a) What proportion of those taking the test score below 200?

(b) A person is about to take the test. What is the probability that he or she will make a score of
650 or more?

(c) What proportion of scores fall between 350 and 675?

Given a binomial variable with a mean of 20 and a variance of 16, find n and p.
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25.

26.

27.

28.
29.
30.
31.
32.
33.

34.

35.

Suppose a variable X is normally distributed with a standard deviation of 10. Given that .0985 of the
values of X are greater than 70, what is the mean value of X?

Given the normally distributed random variable X, find the numerical value of k such that
P(p—ko <X < p+ko) = .754.

Given the normally distributed random variable X with mean 100 and standard deviation 15, find the
numerical value of k such that:

(@) P(X <k)=.0094

(b) P(X > k) =.1093

(c) P(100 < X < k)= .4778

(d) P(K <X <k)=.9660, where k' and k are equidistant from p

Given the normally distributed random variable X with o = 10 and P(X < 40) = .0080, find p.
Given the normally distributed random variable X with o = 15 and P(X < 50) = .9904, find L.
Given the normally distributed random variable X with o = 5 and P(X > 25) = .0526, find pu.
Given the normally distributed random variable X with u = 25 and P(X < 10) = .0778, find o.
Given the normally distributed random variable X with ;1 = 30 and P(X < 50) = .9772, find o.

Explain why each of the following measurements is or is not the result of a Bernoulli trial:
(a) The gender of a newborn child

(b) The classification of a hospital patient’s condition as stable, critical, fair, good, or poor
(c) The weight in grams of a newborn child

Explain why each of the following measurements is or is not the result of a Bernoulli trial:
(a) The number of surgical procedures performed in a hospital in a week
(b) A hospital patient’s temperature in degrees Celsius

(c) A hospital patient’s vital signs recorded as normal or not normal

Explain why each of the following distributions is or is not a probability distribution:

(a) (b)
x P(X = x) x P(X = x)
0 0.15 0 0.15
1 0.25 1 0.20
2 0.10 2 0.30
3 0.25 3 0.10
4 0.30
© x P(X = x) @ x P(X = x)
0 0.15 —1 0.15
1 -0.20 0 0.30
2 0.30 1 0.20
3 0.20 2 0.15
4 0.15 3 0.10
4 0.10
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CHAPTER 5

SOME IMPORTANT SAMPLING
DISTRIBUTIONS

CHAPTER OVERVIEW

This chapter ties together the foundations of applied statistics: descriptive
measures, basic probability, and inferential procedures. This chapter also
includes a discussion of one of the most important theorems in statistics, the
central limit theorem. Students may find it helpful to revisit this chapter from
time to time as they study the remaining chapters of the book.

TOPICS

5.1 INTRODUCTION

5.2 SAMPLING DISTRIBUTIONS

5.3 DISTRIBUTION OF THE SAMPLE MEAN

5.4 DISTRIBUTION OF THE DIFFERENCE BETWEEN TWO SAMPLE MEANS

5.5 DISTRIBUTION OF THE SAMPLE PROPORTION

5.6 DISTRIBUTION OF THE DIFFERENCE BETWEEN TWO SAMPLE PROPORTIONS
5.7 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. be able to construct a sampling distribution of a statistic.

2. understand how to use a sampling distribution to calculate basic probabilities.
3. understand the central limit theorem and when to apply it.
4

understand the basic concepts of sampling with replacement and without
replacement.

5.1 INTRODUCTION

Before we examine the subject matter of this chapter, let us review the high points of
what we have covered thus far. Chapter 1 introduces some basic and useful statistical
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vocabulary and discusses the basic concepts of data collection. In Chapter 2, the
organization and summarization of data are emphasized. It is here that we encounter
the concepts of central tendency and dispersion and learn how to compute their
descriptive measures. In Chapter 3, we are introduced to the fundamental ideas of
probability, and in Chapter 4 we consider the concept of a probability distribution. These
concepts are fundamental to an understanding of statistical inference, the topic that
comprises the major portion of this book.

This chapter serves as a bridge between the preceding material, which is essentially
descriptive in nature, and most of the remaining topics, which have been selected from the
area of statistical inference.

5.2 SAMPLING DISTRIBUTIONS

The topic of this chapter is sampling distributions. The importance of a clear understanding
of sampling distributions cannot be overemphasized, as this concept is the very key to
understanding statistical inference. Sampling distributions serve two purposes: (1) they
allow us to answer probability questions about sample statistics, and (2) they provide the
necessary theory for making statistical inference procedures valid. In this chapter we use
sampling distributions to answer probability questions about sample statistics. We recall
from Chapter 2 that a sample statistic is a descriptive measure, such as the mean, median,
variance, or standard deviation, that is computed from the data of a sample. In the chapters
that follow, we will see how sampling distributions make statistical inferences valid.
We begin with the following definition.

DEFINITION

The distribution of all possible values that can be assumed by some
statistic, computed from samples of the same size randomly drawn from
the same population, is called the sampling distribution of that statistic.

Sampling Distributions: Construction Sampling distributions may be
constructed empirically when sampling from a discrete, finite population. To construct a
sampling distribution we proceed as follows:

1. From a finite population of size N, randomly draw all possible samples of size n.
2. Compute the statistic of interest for each sample.

3. List in one column the different distinct observed values of the statistic, and in
another column list the corresponding frequency of occurrence of each distinct
observed value of the statistic.

The actual construction of a sampling distribution is a formidable undertaking if the
population is of any appreciable size and is an impossible task if the population is infinite.
In such cases, sampling distributions may be approximated by taking a large number of
samples of a given size.
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Sampling Distributions: Important Characteristics We usually are
interested in knowing three things about a given sampling distribution: its mean, its
variance, and its functional form (how it looks when graphed).

We can recognize the difficulty of constructing a sampling distribution according to
the steps given above when the population is large. We also run into a problem when
considering the construction of a sampling distribution when the population is infinite. The
best we can do experimentally in this case is to approximate the sampling distribution of a
statistic.

Both of these problems may be obviated by means of mathematics. Although the
procedures involved are not compatible with the mathematical level of this text,
sampling distributions can be derived mathematically. The interested reader can consult
one of many mathematical statistics textbooks, for example, Larsen and Marx (1) or
Rice (2).

In the sections that follow, some of the more frequently encountered sampling
distributions are discussed.

5.3 DISTRIBUTION OF THE SAMPLE MEAN

An important sampling distribution is the distribution of the sample mean. Let us see how
we might construct the sampling distribution by following the steps outlined in the previous
section.

EXAMPLE 5.3.1

Suppose we have a population of size N = 5, consisting of the ages of five children who are
outpatients in a community mental health center. The ages are as follows:
x1 =6,x =38, x3 =10, x4 = 12, and x5 = 14. The mean, u, of this population is equal
to > x;/N = 10 and the variance is

Let us compute another measure of dispersion and designate it by capital S as
follows:

2
22 (i—p)” 40
:7:—:1
S N-—-1 4 0

We will refer to this quantity again in the next chapter. We wish to construct the sampling
distribution of the sample mean, X, based on samples of size n = 2 drawn from this
population.

Solution: Let us draw all possible samples of size n = 2 from this population. These
samples, along with their means, are shown in Table 5.3.1.
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TABLE 5.3.1 All Possible Samples of Size n=2 from a Population of Size
N =5. Samples Above or Below the Principal Diagonal Result When Sampling Is
Without Replacement. Sample Means Are in Parentheses

Second Draw
6 8 10 12 14
6 6,6 6,8 6,10 6,12 6,14
(6) (7) (8) (9) (10)
8 8,6 8,8 8,10 8,12 8, 14
(7) (8) (9) (10) (11)
First Draw 10 10,6 10, 8 10, 10 10,12 10,14
(8) (9) (10) (11 (12)
12 12,6 12,8 12,10 12,12 12,14
(9) (10) (11) (12) (13)
14 14,6 14,8 14,10 14,12 14,14
(10) (11) (12) (13) (14)

TABLE 5.3.2 Sampling
Distribution of x Computed
from Samples in Table 5.3.1

Relative

X Frequency Frequency
6 1 1/25
7 2 2/25
8 3 3/25
9 4 4/25
10 5 5/25
1 4 4/25
12 3 3/25
13 2 2/25
14 1 1/25
Total 25 25/25

We see in this example that, when sampling is with replacement, there
are 25 possible samples. In general, when sampling is with replacement, the
number of possible samples is equal to N".

We may construct the sampling distribution of X by listing the different
values of x in one column and their frequency of occurrence in another, as in
Table 5.3.2. ]

We see that the data of Table 5.3.2 satisfy the requirements for a probability
distribution. The individual probabilities are all greater than O, and their sum is equal
to 1.
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FIGURE 5.3.1 Distribution of population and sampling distribution of Xx.

It was stated earlier that we are usually interested in the functional form of a sampling
distribution, its mean, and its variance. We now consider these characteristics for the
sampling distribution of the sample mean, x.

Sampling Distribution of x: Functional Form Let us look at the
distribution of x plotted as a histogram, along with the distribution of the population,
both of which are shown in Figure 5.3.1. We note the radical difference in appearance
between the histogram of the population and the histogram of the sampling distribution of
X. Whereas the former is uniformly distributed, the latter gradually rises to a peak and then
drops off with perfect symmetry.

Sampling Distribution of x: Mean Now let us compute the mean, which we
will call p4, of our sampling distribution. To do this we add the 25 sample means and divide
by 25. Thus,

Y% 6+T+T+8+--+ 14 250

N 25 =55 10

Mx

We note with interest that the mean of the sampling distribution of x has the same
value as the mean of the original population.
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Sampling Distribution of x: Variance Finally, we may compute the
variance of x, which we call a% as follows:

2 Z(Xi _Mx—)z

Nn
~(6—10)* + (7~ 10)° + (7 —10)° + - + (14 — 10)°
R 100 >
=_—=4

25

We note that the variance of the sampling distribution is not equal to the population
variance. It is of interest to observe, however, that the variance of the sampling distribution
is equal to the population variance divided by the size of the sample used to obtain the
sampling distribution. That is,

The square root of the variance of the sampling distribution, /o § = o/+/n is called the
standard error of the mean or, simply, the standard error.

These results are not coincidences but are examples of the characteristics of sampling
distributions in general, when sampling is with replacement or when sampling is from an
infinite population. To generalize, we distinguish between two situations: sampling from a
normally distributed population and sampling from a nonnormally distributed population.

Sampling Distribution of x: Sampling from Normally Distrib-
uted Populations When sampling is from a normally distributed population, the
distribution of the sample mean will possess the following properties:

1. The distribution of X will be normal.

2. The mean, p3, of the distribution of x will be equal to the mean of the population from
which the samples were drawn.

3. The variance, o2 of the distribution of x will be equal to the variance of the population
divided by the sample size.

Sampling from Nonnormally Distributed Populations For the case
where sampling is from a nonnormally distributed population, we refer to an important
mathematical theorem known as the central limit theorem. The importance of this theorem
in statistical inference may be summarized in the following statement.

The Central Limit Theorem

Given a population of any nonnormal functional form with a mean | and finite variance
o, the sampling distribution of X, computed from samples of size n from this population,
will have mean . and variance o° /n and will be approximately normally distributed
when the sample size is large.
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A mathematical formulation of the central limit theorem is that the distribution of

X—p

o/Vn

approaches a normal distribution with mean O and variance 1 as n — oo. Note that the
central limit theorem allows us to sample from nonnormally distributed populations with a
guarantee of approximately the same results as would be obtained if the populations were
normally distributed provided that we take a large sample.

The importance of this will become evident later when we learn that a normally
distributed sampling distribution is a powerful tool in statistical inference. In the case of the
sample mean, we are assured of at least an approximately normally distributed sampling
distribution under three conditions: (1) when sampling is from a normally distributed
population; (2) when sampling is from a nonnormally distributed population and our
sample is large; and (3) when sampling is from a population whose functional form is
unknown to us as long as our sample size is large.

The logical question that arises at this point is, How large does the sample have to be
in order for the central limit theorem to apply? There is no one answer, since the size of the
sample needed depends on the extent of nonnormality present in the population. One rule
of thumb states that, in most practical situations, a sample of size 30 is satisfactory. In
general, the approximation to normality of the sampling distribution of X becomes better
and better as the sample size increases.

Sampling Without Replacement The foregoing results have been given on
the assumption that sampling is either with replacement or that the samples are drawn from
infinite populations. In general, we do not sample with replacement, and in most practical
situations it is necessary to sample from a finite population; hence, we need to become
familiar with the behavior of the sampling distribution of the sample mean under
these conditions. Before making any general statements, let us again look at the data
in Table 5.3.1. The sample means that result when sampling is without replacement are
those above the principal diagonal, which are the same as those below the principal
diagonal, if we ignore the order in which the observations were drawn. We see that there are
10 possible samples. In general, when drawing samples of size n from a finite population of
size N without replacement, and ignoring the order in which the sample values are drawn,
the number of possible samples is given by the combination of N things taken n at a time. In
our present example we have

N! 50 5-4.3

Cn:—:_—i
NI W(N = n)! 231 213

= 10 possible samples.

The mean of the 10 sample means is

Y% T+H849+ -+ 13 100

= =—=10
NCn 10 10

Mz

We see that once again the mean of the sampling distribution is equal to the population
mean.
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The variance of this sampling distribution is found to be

Ug:Z(Xi—Mi)ZZ@:3
* NCh 10

and we note that this time the variance of the sampling distribution is not equal to the
population variance divided by the sample size, since a)% =3 #£8/2 =4. There is,
however, an interesting relationship that we discover by multiplying o?/n by
(N —mn)/(N —1). That is,

S8}

oc° N—n 8 5-2
n N—1 2 4

This result tells us that if we multiply the variance of the sampling distribution that would
be obtained if sampling were with replacement, by the factor (N — n)/(N — 1), we obtain
the value of the variance of the sampling distribution that results when sampling is without
replacement. We may generalize these results with the following statement.

When sampling is without replacement from a finite population, the sampling distribu-
tion of x will have mean p and variance

0270_2 N-—n
Y n N-1

If the sample size is large, the central limit theorem applies and the sampling
distribution of x will be approximately normally distributed.

The Finite Population Correction The factor (N —n)/(N — 1) is called the
finite population correction and can be ignored when the sample size is small in
comparison with the population size. When the population is much larger than the sample,
the difference between o2 /n and (o2 /n)[(N —n)/(N — 1)] will be negligible. Imagine a
population of size 10,000 and a sample from this population of size 25; the finite population
correction would be equal to (10,000 — 25)/(9999) = .9976. To multiply 0% /n by .9976 is
almost equivalent to multiplying it by 1. Most practicing statisticians do not use the finite
population correction unless the sample is more than 5 percent of the size of the population.
That is, the finite population correction is usually ignored when n/N < .05.

The Sampling Distribution of x: A Summary Let us summarize the
characteristics of the sampling distribution of X under two conditions.

1. Sampling is from a normally distributed population with a known population

variance:
@ pz=n
(b) Oy — G/\/ﬁ

(¢) The sampling distribution of x is normal.
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2. Sampling is from a nonnormally distributed population with a known population variance:

@ puy=pn
(b) 0z = 0/y/n, when n/N < .05

‘N —
oz = (o/+/n)4 /N——Ill’ otherwise

(¢) The sampling distribution of X is approximately normal.

Applications As we will see in succeeding chapters, knowledge and understanding
of sampling distributions will be necessary for understanding the concepts of statistical
inference. The simplest application of our knowledge of the sampling distribution of the
sample mean is in computing the probability of obtaining a sample with a mean of some
specified magnitude. Let us illustrate with some examples.

EXAMPLE 5.3.2

Suppose it is known that in a certain large human population cranial length is approxi-
mately normally distributed with a mean of 185.6 mm and a standard deviation of 12.7 mm.
What is the probability that a random sample of size 10 from this population will have a
mean greater than 190?

Solution: We know that the single sample under consideration is one of all possible
samples of size 10 that can be drawn from the population, so that the mean
that it yields is one of the X’s constituting the sampling distribution of x that,
theoretically, could be derived from this population.

When we say that the population is approximately normally distrib-
uted, we assume that the sampling distribution of x will be, for all practical
purposes, normally distributed. We also know that the mean and standard
deviation of the sampling distribution are equal to 185.6 and

\/(12.7)%/10 = 12.7/1/10 = 4.0161, respectively. We assume that the pop-

ulation is large relative to the sample so that the finite population correction
can be ignored.

We learn in Chapter 4 that whenever we have a random variable that is
normally distributed, we may very easily transform it to the standard normal
distribution. Our random variable now is X, the mean of its distribution is s,
and its standard deviation is oz = o//n. By appropriately modifying the
formula given previously, we arrive at the following formula for transforming
the normal distribution of X to the standard normal distribution:

X — [z
= 5.3.1
o/vn ( .)

Z

The probability that answers our question is represented by the area to the right of x = 190
under the curve of the sampling distribution. This area is equal to the area to the right of

1901856 4.4

ao0i61  aoter 10
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o=12.7mm

= 185.6mm x
(a)

us=185.6 190
()

=

.1357

0 1.10
(¢
FIGURE 5.3.2 Population distribution, sampling distribution, and standard normal

distribution, Example 5.3.2: (a) population distribution; (b) sampling distribution of x for
samples of size 10; (¢) standard normal distribution.

e

By consulting the standard normal table, we find that the area to the right of 1.10 is .1357;
hence, we say that the probability is .1357 that a sample of size 10 will have a mean greater
than 190.

Figure 5.3.2 shows the relationship between the original population, the sampling
distribution of x and the standard normal distribution.

EXAMPLE 5.3.3

If the mean and standard deviation of serum iron values for healthy men are 120 and
15 micrograms per 100 ml, respectively, what is the probability that a random sample of
50 normal men will yield a mean between 115 and 125 micrograms per 100 ml?

Solution: The functional form of the population of serum iron values is not specified,
but since we have a sample size greater than 30, we make use of the central
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limit theorem and transform the resulting approximately normal sampling
distribution of x (which has a mean of 120 and a standard deviation of
15/4/50 = 2.1213) to the standard normal. The probability we seek is

115 — 120 125 — 120
P(115§x§125)P< sy SIS )
= P(—2.36 < 7 < 2.36)
= .9909 — .0091
= 9818 n

EXERCISES

5.3.1

53.2

533

534

535

The National Health and Nutrition Examination Survey of 1988—1994 (NHANES III, A-1) estimated
the mean serum cholesterol level for U.S. females aged 20-74 years to be 204 mg/dl. The estimate of
the standard deviation was approximately 44. Using these estimates as the mean p and standard
deviation o for the U.S. population, consider the sampling distribution of the sample mean based on
samples of size 50 drawn from women in this age group. What is the mean of the sampling
distribution? The standard error?

The study cited in Exercise 5.3.1 reported an estimated mean serum cholesterol level of 183 for
women aged 20-29 years. The estimated standard deviation was approximately 37. Use these
estimates as the mean p and standard deviation o for the U.S. population. If a simple random sample
of size 60 is drawn from this population, find the probability that the sample mean serum cholesterol
level will be:

(a) Between 170 and 195 (b) Below 175
(c) Greater than 190

If the uric acid values in normal adult males are approximately normally distributed with a mean and
standard deviation of 5.7 and 1 mg percent, respectively, find the probability that a sample of size 9
will yield a mean:

(a) Greater than 6 (b) Between 5 and 6
(¢) Lessthan5.2

Wright et al. [A-2] used the 1999-2000 National Health and Nutrition Examination Survey
(NHANES) to estimate dietary intake of 10 key nutrients. One of those nutrients was calcium
(mg). They found in all adults 60 years or older a mean daily calcium intake of 721 mg with a
standard deviation of 454. Using these values for the mean and standard deviation for the U.S.
population, find the probability that a random sample of size 50 will have a mean:

(a) Greater than 800 mg (b) Less than 700 mg
(c) Between 700 and 850 mg

In the study cited in Exercise 5.3.4, researchers found the mean sodium intake in men and women
60 years or older to be 2940 mg with a standard deviation of 1476 mg. Use these values for the
mean and standard deviation of the U.S. population and find the probability that a random sample of
75 people from the population will have a mean:

(a) Less than 2450 mg (b) Over 3100 mg
(c) Between 2500 and 3300 mg (d) Between 2500 and 2900 mg



5.4 DISTRIBUTION OF THE DIFFERENCE BETWEEN TWO SAMPLE MEANS 145

5.3.6 Given a normally distributed population with a mean of 100 and a standard deviation of 20, find the
following probabilities based on a sample of size 16:

(a) P(x > 100) (b) P(x < 110)
(¢) P(96 < x < 108)

5.3.7 Given u =50, 0 = 16, and n = 64, find:

(@) P45<x<55)  (b) P(x>53)
(¢) P(x < 47) (d) P(49 < x < 56)

5.3.8 Suppose a population consists of the following values: 1, 3, 5, 7, 9. Construct the sampling
distribution of X based on samples of size 2 selected without replacement. Find the mean and
variance of the sampling distribution.

5.3.9 Use the data of Example 5.3.1 to construct the sampling distribution of X based on samples of size 3
selected without replacement. Find the mean and variance of the sampling distribution.

5.3.10 Use the data cited in Exercise 5.3.1. Imagine we take samples of size 5, 25, 50, 100, and 500 from the
women in this age group.

(a) Calculate the standard error for each of these sampling scenarios.

(b) Discuss how sample size affects the standard error estimates calculated in part (a) and the
potential implications this may have in statistical practice.

5.4 DISTRIBUTION OF THE DIFFERENCE
BETWEEN TWO SAMPLE MEANS

Frequently the interest in an investigation is focused on two populations. Specifically, an
investigator may wish to know something about the difference between two population
means. In one investigation, for example, a researcher may wish to know if it is reasonable
to conclude that two population means are different. In another situation, the researcher
may desire knowledge about the magnitude of the difference between two population
means. A medical research team, for example, may want to know whether or not the mean
serum cholesterol level is higher in a population of sedentary office workers than in a
population of laborers. If the researchers are able to conclude that the population means are
different, they may wish to know by how much they differ. A knowledge of the sampling
distribution of the difference between two means is useful in investigations of this type.

Sampling from Normally Distributed Populations The following
example illustrates the construction of and the characteristics of the sampling distribution
of the difference between sample means when sampling is from two normally distributed
populations.

EXAMPLE 5.4.1

Suppose we have two populations of individuals—one population (population 1) has
experienced some condition thought to be associated with mental retardation, and the other
population (population 2) has not experienced the condition. The distribution of
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intelligence scores in each of the two populations is believed to be approximately normally
distributed with a standard deviation of 20.

Suppose, further, that we take a sample of 15 individuals from each population and
compute for each sample the mean intelligence score with the following results: x; = 92
and x, = 105. If there is no difference between the two populations, with respect to their
true mean intelligence scores, what is the probability of observing a difference this large or
larger (X; — X) between sample means?

Solution: To answer this question we need to know the nature of the sampling
distribution of the relevant statistic, the difference between two sample
means, X| — X;. Notice that we seek a probability associated with the
difference between two sample means rather than a single mean. [

Sampling Distribution of x; — x2: Construction Although, in prac-
tice, we would not attempt to construct the desired sampling distribution, we can
conceptualize the manner in which it could be done when sampling is from finite
populations. We would begin by selecting from population 1 all possible samples of
size 15 and computing the mean for each sample. We know that there would be y, C,,, such
samples where N; is the population size and n; = 15. Similarly, we would select all
possible samples of size 15 from population 2 and compute the mean for each of these
samples. We would then take all possible pairs of sample means, one from population 1 and
one from population 2, and take the difference. Table 5.4.1 shows the results of following
this procedure. Note that the 1’s and 2’s in the last line of this table are not exponents, but
indicators of population 1 and 2, respectively.

Sampling Distribution of x; — x2: Characteristics It is the distribu-
tion of the differences between sample means that we seek. If we plotted the sample
differences against their frequency of occurrence, we would obtain a normal distribution
with a mean equal to p; — w,, the difference between the two population means, and a
variance equal to (o7 /ny) + (03 /n,). That is, the standard error of the difference between

TABLE 5.4.1 Working Table for Constructing the Distribution of the Difference
Between Two Sample Means

Samples Samples Sample Sample All Possible
from from Means Means Differences
Population 1 Population 2 Population 1 Population 2 Between Means
N N2 X1 X12 X1 — X12

N2 na; X21 X22 X11 — X22

N3y N3 X31 X32 X11 — X32

nNTCnJ nNZCnZZ )?N1Cn11 )’(NZCHZZ )7(N1Cn117)7(/\/zcn22




5.4 DISTRIBUTION OF THE DIFFERENCE BETWEEN TWO SAMPLE MEANS 147
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FIGURE 5.4.1 Graph of the sampling distribution of x; — x, when there is no difference
between population means, Example 5.4.1.

sample means would be equal to \/ (a% /nl) + (U% /I’lz) It should be noted that these

properties convey two important points. First, the means of two distributions can be
subtracted from one another, or summed together, using standard arithmetic operations.
Second, since the overall variance of the sampling distribution will be affected by both
contributing distributions, the variances will always be summed even if we are interested in
the difference of the means. This last fact assumes that the two distributions are
independent of one another.

For our present example we would have a normal distribution with a mean of 0
(if there is no difference between the two population means) and a variance of
[(20)/15] 4 [(20)*/15] = 53.3333. The graph of the sampling distribution is shown in
Figure 5.4.1.

Converting to z We know that the normal distribution described in Example 5.4.1
can be transformed to the standard normal distribution by means of a modification of a
previously learned formula. The new formula is as follows:

(X1 —X2) — (1) — 112)

.= (5.4.1)
0.2 2
9, %
noom

The area under the curve of x| — X, corresponding to the probability we seek is the
area to the left of x; — X, = 92 — 105 = —13. The z value corresponding to —13, assuming
that there is no difference between population means, is

—13 - -1 -1
(202 (20)° V533 7.3
=~ 7 _|_ =~ 7
15 15

By consulting Table D, we find that the area under the standard normal curve to the left of
—1.78 is equal to .0375. In answer to our original question, we say that if there is no
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difference between population means, the probability of obtaining a difference between
sample means as large as or larger than 13 is .0375.

Sampling from Normal Populations The procedure we have just followed
is valid even when the sample sizes, n; and n,, are different and when the population
variances, o] and o3 have different values. The theoretical results on which this procedure
is based may be summarized as follows.

Given two normally distributed populations with means |1, and w, and variances o2

and O’%, respectively, the sampling distribution of the difference, X| — X,, between the
means of independent samples of size ny and n, drawn from these populations is

normally distributed with mean |, — L, and variance (0% / n1) + (a% / nz).

Sampling from Nonnormal Populations Many times a researcher is
faced with one or the other of the following problems: the necessity of (1) sampling from
nonnormally distributed populations, or (2) sampling from populations whose functional
forms are not known. A solution to these problems is to take large samples, since when the
sample sizes are large the central limit theorem applies and the distribution of the
difference between two sample means is at least approximately normally distributed
with a mean equal to 41 — , and a variance of (07 /n1) + (03 /n,). To find probabilities
associated with specific values of the statistic, then, our procedure would be the same as
that given when sampling is from normally distributed populations.

EXAMPLE 5.4.2

Suppose it has been established that for a certain type of client the average length of a home
visit by a public health nurse is 45 minutes with a standard deviation of 15 minutes, and that
for a second type of client the average home visit is 30 minutes long with a standard
deviation of 20 minutes. If a nurse randomly visits 35 clients from the first and 40 from the
second population, what is the probability that the average length of home visit will differ
between the two groups by 20 or more minutes?

Solution: No mention is made of the functional form of the two populations, so let us
assume that this characteristic is unknown, or that the populations are not
normally distributed. Since the sample sizes are large (greater than 30) in
both cases, we draw on the results of the central limit theorem to answer the
question posed. We know that the difference between sample means is at
least approximately normally distributed with the following mean and
variance:

Mgz, = M1 — My =45-30= 15

2 2 2 2
,  _ o, 0 (15 (207
= L= = 164286

X1 —X2
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0 1.53 z
FIGURE 5.4.2 Sampling distribution of x; — X, and the corresponding standard normal
distribution, home visit example.

The area under the curve of x; — X, that we seek is that area to the right of 20.
The corresponding value of z in the standard normal is

Z:()?l—sz)—(Hl—Mz):20—15 _ S — 123
2 o2 V16.4286 4.0532
m

In Table D we find that the area to the right of z=1.23 is
1 —.8907 = .1093. We say, then, that the probability of the nurse’s random
visits resulting in a difference between the two means as great as or greater
than 20 minutes is .1093. The curve of X; — X, and the corresponding
standard normal curve are shown in Figure 5.4.2. [ ]

EXERCISES
5.4.1 The study cited in Exercises 5.3.1 and 5.3.2 gives the following data on serum cholesterol levels in
U.S. females:
Population Age Mean Standard Deviation
A 20-29 183 37.2

B 30-39 189 34.7
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Use these estimates as the mean p and standard deviation o for the respective U.S. populations.
Suppose we select a simple random sample of size 50 independently from each population. What is
the probability that the difference between sample means X — X4 will be more than 8?

5.4.2 In the study cited in Exercises 5.3.4 and 5.3.5, the calcium levels in men and women ages 60 years or
older are summarized in the following table:

Mean Standard Deviation
Men 797 482
Women 660 414

Use these estimates as the mean p and standard deviation o for the U.S. populations for these age
groups. If we take a random sample of 40 men and 35 women, what is the probability of obtaining a
difference between sample means of 100 mg or more?

5.4.3 Given two normally distributed populations with equal means and variances of o7 = 100 and
a% = 80, what is the probability that samples of size n; = 25 and n, = 16 will yield a value of x; — X,
greater than or equal to 8?

5.4.4 Given two normally distributed populations with equal means and variances of cr% =240 and
03 = 350, what is the probability that samples of size n; = 40 and n, = 35 will yield a value of
X1 — X, as large as or larger than 127

5.4.5 For a population of 17-year-old boys and 17-year-old girls, the means and standard deviations,
respectively, of their subscapular skinfold thickness values are as follows: boys, 9.7 and 6.0; girls,
15.6 and 9.5. Simple random samples of 40 boys and 35 girls are selected from the populations. What
is the probability that the difference between sample means Xgjris — Xpoys Will be greater than 10?

5.5 DISTRIBUTION OF THE
SAMPLE PROPORTION

In the previous sections we have dealt with the sampling distributions of statistics
computed from measured variables. We are frequently interested, however, in the sampling
distribution of a statistic, such as a sample proportion, that results from counts or frequency
data.

EXAMPLE 5.5.1

Results [A-3] from the 2009-2010 National Health and Nutrition Examination Survey
(NHANES), show that 35.7 percent of U.S. adults aged 20 and over are obese (obese as
defined with body mass index greater than or equal to 30.0). We designate this population
proportion as p = .357. If we randomly select 150 individuals from this population, what is
the probability that the proportion in the sample who are obese will be as great as .40?

Solution: To answer this question, we need to know the properties of the sampling
distribution of the sample proportion. We will designate the sample propor-
tion by the symbol p.
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You will recognize the similarity between this example and those
presented in Section 4.3, which dealt with the binomial distribution. The
variable obesity is a dichotomous variable, since an individual can be classi-
fied into one or the other of two mutually exclusive categories: obese or not
obese. In Section 4.3, we were given similar information and were asked to
find the number with the characteristic of interest, whereas here we are
seeking the proportion in the sample possessing the characteristic of interest.
We could with a sufficiently large table of binomial probabilities, such as
Table B, determine the probability associated with the number corresponding
to the proportion of interest. As we will see, this will not be necessary, since
there is available an alternative procedure, when sample sizes are large, that is
generally more convenient. [ ]

Sampling Distribution of p: Construction The sampling distribution of
a sample proportion would be constructed experimentally in exactly the same manner as
was suggested in the case of the arithmetic mean and the difference between two means.
From the population, which we assume to be finite, we would take all possible samples
of a given size and for each sample compute the sample proportion, p. We would then
prepare a frequency distribution of p by listing the different distinct values of p along
with their frequencies of occurrence. This frequency distribution (as well as the
corresponding relative frequency distribution) would constitute the sampling distribu-
tion of p.

Sampling Distribution of p: Characteristics When the sample size
is large, the distribution of sample proportions is approximately normally distributed
by virtue of the central limit theorem. The mean of the distribution, M that is, the
average of all the possible sample proportions, will be equal to the true population
proportion, p, and the variance of the distribution, a]%, will be equal to p(1 —p)/n or
pq/n, where ¢ =1 — p. To answer probability questions about p, then, we use the

following formula:

g=—— (5.5.1)

The question that now arises is, How large does the sample size have to be for the use
of the normal approximation to be valid? A widely used criterion is that both np and
n(l — p) must be greater than 5, and we will abide by that rule in this text.

We are now in a position to answer the question regarding obesity in the sample of
150 individuals from a population in which 35.7 percent are obese. Since both np and
n(1 — p) are greater than 5(150 x .357 = 53.6 and 150 x .643 = 96.5), we can say that, in
this case, p is approximately normally distributed with a mean w;,=p = .357 and
o3 = p(1 —p)/n = (.357)(.643) /150 = .00153. The probability we seek is the area under
the curve of p that is to the right of .40. This area is equal to the area under the standard
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normal curve to the right of

= p—p _.40—.357:1.10

\/p(l —p) .00153

n

The transformation to the standard normal distribution has been accomplished in
the usual manner. The value of z is found by dividing the difference between a value of a
statistic and its mean by the standard error of the statistic. Using Table D we find that the
area to the right of z = 1.101is 1 — .8643 = .1357. We may say, then, that the probability
of observing p > .40 in a random sample of size n = 150 from a population in which
p = .357is .1357.

Correction for Continuity The normal approximation may be improved by
using the correction for continuity, a device that makes an adjustment for the fact that a
discrete distribution is being approximated by a continuous distribution. Suppose we let
x = np, the number in the sample with the characteristic of interest when the proportion is
p. To apply the correction for continuity, we compute

x+.5 _
ze=—"—n, forx<np (55.2)
Vpa/n
or
x—.5
—P (5.5.3)
ze=—"2 forx > np -

Vpa/n

where ¢ = 1 — p. The correction for continuity will not make a great deal of difference
when 7 is large. In the above example np = 150(.4) = 60, and

60 — .5
150 =1.01
(:357)(.643)/150

—.357

.c —

and P(p > .40) = 1 — .8461 = .1539, a result not greatly different from that obtained
without the correction for continuity. This adjustment is not often done by hand, since most
statistical computer programs automatically apply the appropriate continuity correction
when necessary.

EXAMPLE 5.5.2

Blanche Mikhail [A-4] studied the use of prenatal care among low-income African-
American women. She found that only 51 percent of these women had adequate prenatal
care. Let us assume that for a population of similar low-income African-American women,
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51 percent had adequate prenatal care. If 200 women from this population are drawn at
random, what is the probability that less than 45 percent will have received adequate
prenatal care?

Solution: We can assume that the sampling distribution of p is approximately normally
distributed with p; = .51 and 0]% = (.51)(.49)/200 = .00125. We compute

4551 —.06
v.00125 0353

The area to the left of —1.70 under the standard normal curve is .0446.
Therefore, P(p < .45) = P(z < —1.70) = .0446. [}

—-1.70

EXERCISES

5.5.1

5.5.2

5.5.3

554

5.5.5

5.5.6

Smith et al. [A-5] performed a retrospective analysis of data on 782 eligible patients admitted with
myocardial infarction to a 46-bed cardiac service facility. Of these patients, 248 (32 percent) reported
a past myocardial infarction. Use .32 as the population proportion. Suppose 50 subjects are chosen at
random from the population. What is the probability that over 40 percent would report previous
myocardial infarctions?

In the study cited in Exercise 5.5.1, 13 percent of the patients in the study reported previous episodes
of stroke or transient ischemic attack. Use 13 percent as the estimate of the prevalence of stroke or
transient ischemic attack within the population. If 70 subjects are chosen at random from the
population, what is the probability that 10 percent or less would report an incidence of stroke or
transient ischemic attack?

In the 1999-2000 NHANES report, researchers estimated that 64 percent of U.S. adults ages 20-74
were overweight or obese (overweight: BMI 25-29, obese: BMI 30 or greater). Use this estimate
as the population proportion for U.S. adults ages 20-74. If 125 subjects are selected at random
from the population, what is the probability that 70 percent or more would be found to be
overweight or obese?

Gallagher et al. [A-6] reported on a study to identify factors that influence women’s attendance
at cardiac rehabilitation programs. They found that by 12 weeks post-discharge, only 64
percent of eligible women attended such programs. Using 64 percent as an estimate of the
attendance percentage of all eligible women, find the probability that in a sample of 45 women
selected at random from the population of eligible women less than 50 percent would attend
programs.

Given a population in which p = .6 and a random sample from this population of size 100, find:

(@) P(p > .65) (b) P(p < .58)
(€) P(56 < p < .63)

It is known that 35 percent of the members of a certain population suffer from one or more chronic
diseases. What is the probability that in a sample of 200 subjects drawn at random from this
population 80 or more will have at least one chronic disease?
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5.6 DISTRIBUTION OF THE DIFFERENCE
BETWEEN TWO SAMPLE PROPORTIONS

Often there are two population proportions in which we are interested and we desire to
assess the probability associated with a difference in proportions computed from samples
drawn from each of these populations. The relevant sampling distribution is the distribution
of the difference between the two sample proportions.

Sampling Distribution of p, — p,: Characteristics The character-
istics of this sampling distribution may be summarized as follows:

If independent random samples of size ny and ny, are drawn from two populations
of dichotomous variables where the proportions of observations with the character-
istic of interest in the two populations are p, and p,, respectively, the distribution
of the difference between sample proportions, p, — p,, is approximately normal
with mean

Kp,—p, =P1 — D2
and variance

2 _P1(1*P1)+P2(1*P2)
Pi—P2 n 1o

when ny and ny are large.

We consider n; and n, sufficiently large when np,, nap,, ni(1 — p;),and n2(1 — p,)
are all greater than 5.

Sampling Distribution of p; — p,: Construction To physically con-
struct the sampling distribution of the difference between two sample proportions, we
would proceed in the manner described in Section 5.4 for constructing the sampling
distribution of the difference between two means.

Given two sufficiently small populations, one would draw, from population 1, all
possible simple random samples of size n; and compute, from each set of sample data, the
sample proportion p,. From population 2, one would draw independently all possible
simple random samples of size n, and compute, for each set of sample data, the sample
proportion p,. One would compute the differences between all possible pairs of sample
proportions, where one number of each pair was a value of p; and the other a value of p,.
The sampling distribution of the difference between sample proportions, then, would
consist of all such distinct differences, accompanied by their frequencies (or relative
frequencies) of occurrence. For large finite or infinite populations, one could approximate
the sampling distribution of the difference between sample proportions by drawing a large
number of independent simple random samples and proceeding in the manner just
described.
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To answer probability questions about the difference between two sample propor-
tions, then, we use the following formula:
= (P —P2) — (P1 —P2) (5.6.1)
\/P1(1 —P1) +1’2(1 —P2)

nj ny

EXAMPLE 5.6.1

The 1999 National Health Interview Survey, released in 2003 [A-7], reported that
28 percent of the subjects self-identifying as white said they had experienced lower
back pain during the three months prior to the survey. Among subjects of Hispanic origin,
21 percent reported lower back pain. Let us assume that .28 and .21 are the proportions for
the respective races reporting lower back pain in the United States. What is the probability
that independent random samples of size 100 drawn from each of the populations will yield
a value of p; — p, as large as .10?

Solution: We assume that the sampling distribution of p; — p, is approximately normal
with mean

Wy, 5, = 28— 21 =07

and variance

o (28)(7) | (21)(79)
PP 100 100
= .003675

The area corresponding to the probability we seek is the area under the curve
of p; — p, to the right of .10. Transforming to the standard normal distribu-
tion gives
_ (1 —P2) — (p1 — P2) _ 10 —.07 _
\/Pl(l —p)  pa(l—=py) .003675

+
ni np

Consulting Table D, we find that the area under the standard normal curve
that lies to the right of z = .49 is 1 —.6879 = .3121. The probability of
observing a difference as large as .10 is, then, .3121. ]

EXAMPLE 5.6.2

In the 1999 National Health Interview Survey [A-7], researchers found that among U.S.
adults ages 75 or older, 34 percent had lost all their natural teeth and for U.S. adults ages
65-74, 26 percent had lost all their natural teeth. Assume that these proportions are the
parameters for the United States in those age groups. If a random sample of 200 adults ages
65-74 and an independent random sample of 250 adults ages 75 or older are drawn from
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these populations, find the probability that the difference in percent of total natural teeth
loss is less than 5 percent between the two populations.

Solution: We assume that the sampling distribution p;, — p, is approximately normal.
The mean difference in proportions of those losing all their teeth is

Wp,—p, = 34 — .26 = .08
and the variance is
2 pi(1 =p1)  po(1 —py)  (:34)(.66)  (.26)(.74)
2 = = =.00186
Tp1=n n T om 250 200

The area of interest under the curve of p; — p, is that to the left of .05. The
corresponding z value is

.05 — (.08)
/00186

Consulting Table D, we find that the area to the left of z = —.70 is .2420.m

EXERCISES

5.6.1

5.6.2

5.6.3

According to the 2000 U.S. Census Bureau [A-8], in 2000, 9.5 percent of children in the state of
Ohio were not covered by private or government health insurance. In the neighboring state of
Pennsylvania, 4.9 percent of children were not covered by health insurance. Assume that these
proportions are parameters for the child populations of the respective states. If a random sample
of size 100 children is drawn from the Ohio population, and an independent random sample of size
120 is drawn from the Pennsylvania population, what is the probability that the samples would yield a
difference, p; — p, of .09 or more?

In the report cited in Exercise 5.6.1 [A-8], the Census Bureau stated that for Americans in the age
group 18-24 years, 64.8 percent had private health insurance. In the age group 25-34 years, the
percentage was 72.1. Assume that these percentages are the population parameters in those age
groups for the United States. Suppose we select a random sample of 250 Americans from the 18-24
age group and an independent random sample of 200 Americans from the age group 25-34; find the
probability that p, — p; is less than 6 percent.

From the results of a survey conducted by the U.S. Bureau of Labor Statistics [A-9], it was estimated
that 21 percent of workers employed in the Northeast participated in health care benefits programs
that included vision care. The percentage in the South was 13 percent. Assume these percentages are
population parameters for the respective U.S. regions. Suppose we select a simple random sample of
size 120 northeastern workers and an independent simple random sample of 130 southern workers.
What is the probability that the difference between sample proportions, p; — p,, will be between .04
and .20?
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5.7 SUMMARY

This chapter is concerned with sampling distributions. The concept of a sampling
distribution is introduced, and the following important sampling distributions are covered:

1. The distribution of a single sample mean.

. The distribution of the difference between two sample means.

2
3. The distribution of a sample proportion.
4

. The distribution of the difference between two sample proportions.

‘We emphasize the importance of this material and urge readers to make sure that they

understand it before proceeding to the next chapter.

SUMMARY OF FORMULAS FOR CHAPTERS5

Formula Number | Name Formula
5.3.1 z-transformation for sample mean P X — 1us
"o/
54.1 z-transformation for difference (X1 —Xy) — (g — )
between two means - >
91,9
—_— + —=
ng  np
5.5.1 z-transformation for sample 7 p—r
proportion o (1 —p)
n
552 Continuity correction when x < np x+.5
z,=—"
pa/n
553 Continuity correction when x > np X+.5 »
Z=—"——
Vpq/n
5.6.1 z-transformation for difference 7 Py —P2) — (P — P2)
between two proportions “ \/p] T=p) p(1—py)
np + ny
Symbol Key e u; = mean of population i
* u; = mean of sampling distribution if X
¢ n; = sample size for sample i from population i
e p; = proportion for population i
® p; = proportion for sample i from population i
e o2 = variance for population i
e X; = mean of sample i from population i
e z = standard normal random variable
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REVIEW QUESTIONS AND EXERCISES

10.

11.

12.

13.

14.

15.

What is a sampling distribution?
Explain how a sampling distribution may be constructed from a finite population.

Describe the sampling distribution of the sample mean when sampling is with replacement from a
normally distributed population.

Explain the central limit theorem.

How does the sampling distribution of the sample mean, when sampling is without replacement,
differ from the sampling distribution obtained when sampling is with replacement?

Describe the sampling distribution of the difference between two sample means.
Describe the sampling distribution of the sample proportion when large samples are drawn.

Describe the sampling distribution of the difference between two sample means when large samples
are drawn.

Explain the procedure you would follow in constructing the sampling distribution of the difference
between sample proportions based on large samples from finite populations.

Suppose it is known that the response time of healthy subjects to a particular stimulus is a normally
distributed random variable with a mean of 15 seconds and a variance of 16. What is the
probability that a random sample of 16 subjects will have a mean response time of 12 seconds or
more?

Janssen et al. [A-10] studied Americans ages 60 and over. They estimated the mean body mass index
of women over age 60 with normal skeletal muscle to be 23.1 with a standard deviation of 3.7. Using
these values as the population mean and standard deviation for women over age 60 with normal
skeletal muscle index, find the probability that 45 randomly selected women in this age range with
normal skeletal muscle index will have a mean BMI greater than 25.

In the study cited in Review Exercise 11, the researchers reported the mean BMI for men ages 60
and older with normal skeletal muscle index to be 24.7 with a standard deviation of 3.3. Using
these values as the population mean and standard deviation, find the probability that 50
randomly selected men in this age range with normal skeletal muscle index will have a mean
BMI less than 24.

Using the information in Review Exercises 11 and 12, find the probability that the difference in mean
BMI for 45 women and 50 men selected independently and at random from the respective
populations will exceed 3.

In the results published by Wright et al. [A-2] based on data from the 1999-2000 NHANES study
referred to in Exercises 5.4.1 and 5.4.2, investigators reported on their examination of iron levels. The
mean iron level for women ages 20-39 years was 13.7 mg with an estimated standard deviation of
8.9 mg. Using these as population values for women ages 20-39, find the probability that a random
sample of 100 women will have a mean iron level less than 12 mg.

Refer to Review Exercise 14. The mean iron level for men between the ages of 20 and 39 years is
179 mg with an estimated standard deviation of 10.9mg. Using 17.9 and 10.9 as population
parameters, find the probability that a random sample of 120 men will have a mean iron level higher
than 19 mg.
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22,

23.
24,
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26.
27.

28.
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Using the information in Review Exercises 14 and 15, and assuming independent random samples of
size 100 and 120 for women and men, respectively, find the probability that the difference in sample
mean iron levels is greater than 5 mg.

The results of the 1999 National Health Interview Survey released in 2003 [A-7] showed that among
U.S. adults ages 60 and older, 19 percent had been told by a doctor or other health care provider that
they had some form of cancer. If we use this as the percentage for all adults 65 years old and older
living in the United States, what is the probability that among 65 adults chosen at random more than
25 percent will have been told by their doctor or some other health care provider that they have
cancer?

Refer to Review Exercise 17. The reported cancer rate for women subjects ages 65 and older is 17
percent. Using this estimate as the true percentage of all females ages 65 and over who have been told
by a health care provider that they have cancer, find the probability that if 220 women are selected at
random from the population, more than 20 percent will have been told they have cancer.

Refer to Review Exercise 17. The cancer rate for men ages 65 and older is 23 percent. Use this
estimate as the percentage of all men ages 65 and older who have been told by a health care provider
that they have cancer. Find the probability that among 250 men selected at random that fewer than
20 percent will have been told they have cancer.

Use the information in Review Exercises 18 and 19 to find the probability that the difference in the
cancer percentages between men and women will be less than 5 percent when 220 women and
250 men aged 65 and older are selected at random.

How many simple random samples (without replacement) of size 5 can be selected from a population
of size 10?

It is estimated by the 1999-2000 NHANES [A-7] that among adults 18 years old or older 53 percent
have never smoked. Assume the proportion of U.S. adults who have never smoked to be .53. Consider
the sampling distribution of the sample proportion based on simple random samples of size 110
drawn from this population. What is the functional form of the sampling distribution?

Refer to Exercise 22. Compute the mean and variance of the sampling distribution.

Refer to Exercise 22. What is the probability that a single simple random sample of size 110 drawn
from this population will yield a sample proportion smaller than .50?

In a population of subjects who died from lung cancer following exposure to asbestos, it was found
that the mean number of years elapsing between exposure and death was 25. The standard deviation
was 7 years. Consider the sampling distribution of sample means based on samples of size 35 drawn
from this population. What will be the shape of the sampling distribution?

Refer to Exercise 25. What will be the mean and variance of the sampling distribution?

Refer to Exercise 25. What is the probability that a single simple random sample of size 35 drawn
from this population will yield a mean between 22 and 29?

For each of the following populations of measurements, state whether the sampling distribution of the
sample mean is normally distributed, approximately normally distributed, or not approximately
normally distributed when computed from samples of size (A) 10, (B) 50, and (C) 200.

(a) The logarithm of metabolic ratios. The population is normally distributed.
(b) Resting vagal tone in healthy adults. The population is normally distributed.

(c) Insulin action in obese subjects. The population is not normally distributed.
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29.

For each of the following sampling situations indicate whether the sampling distribution of the
sample proportion can be approximated by a normal distribution and explain why or why not.

@ p=.50,n=28 (b) p= .40, n =30
() p=.10,n =130 (d) p=.01, n =1000
(e) p=.90, n =100 ) p=.05n=150
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