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REGRESSION ANALYSIS:
SOME ADDITIONAL TECHNIQUES

CHAPTER OVERVIEW

This chapter provides an introduction to some additional tools and concepts
that are useful in regression analysis. The presentation includes expansions of
the basic ideas and techniques of regression analysis that were introduced in
Chapters 9 and 10.

TOPICS

11.1 INTRODUCTION

11.2 QUALITATIVE INDEPENDENT VARIABLES
11.3 VARIABLE SELECTION PROCEDURES
11.4 LOGISTIC REGRESSION

11.5 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how to include qualitative variables in a regression analysis.

2. understand how to use automated variable selection procedures to develop
regression models.

3. be able to perform logistic regression for dichotomous and polytomous depen-
dent variables.
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11.1

INTRODUCTION

The basic concepts and methodology of linear regression analysis are covered in
Chapters 9 and 10. In Chapter 9 we discuss the situation in which the objective is to
obtain an equation that can be used to make predictions and estimates about some
dependent variable from knowledge of some other single variable that we call the
independent, predictor, or explanatory variable. In Chapter 10 the ideas and techniques
learned in Chapter 9 are expanded to cover the situation in which it is believed that the
inclusion of information on two or more independent variables will yield a better equation
for use in making predictions and estimations. Regression analysis is a complex and
powerful statistical tool that is widely employed in health sciences research. To do the
subject justice requires more space than is available in an introductory statistics textbook.
However, for the benefit of those who wish additional coverage of regression analysis, we
present in this chapter some additional topics that should prove helpful to the student and
practitioner of statistics.

Regression Assumptions Revisited As we learned in Chapters 9 and 10,
there are several assumptions underlying the appropriate use of regression procedures.
Often there are certain measurements that strongly influence the shape of a distribution
or impact the magnitude of the variance of a measured variable. Other times, certain
independent variables that are being used to develop a model are highly correlated, leading
to the development of a model that may not be unique or correct.

Non-Normal Data Many times the data that are used to build a regression model
are not normally distributed. One may wish to explore the possibility that some of the
observed data points are outliers or that they disproportionately affect the distribution of
the data. Such an investigation may be accomplished informally by constructing a scatter
plot and looking for observations that do not seem to fit with the others. Alternatively,
many computer packages produce formal tests to evaluate potential outlying observa-
tions in either the dependent variable or the independent variables. It is always up to the
researcher, however, to justify which observations are to be removed from the data set
prior to analysis.

Often one may wish to attempt a transformation of the data. Mathematical transfor-
mations are useful because they do not affect the underlying relationships among variables.
Since hypothesis tests for the regression coefficients are based on normal distribution
statistics, data transformations can sometimes normalize the data to the extent necessary to
perform such tests. Simple transformations, such as taking the square root of measurements
or taking the logarithm of measurements, are quite common.

EXAMPLE 11.1.1

Researchers were interested in blood concentrations of delta-9-tetrahydrocannabinol
(A-9-THC), the active psychotropic component in marijuana, from 25 research subjects.
These data are presented in Table 11.1.1, as are these same data after using a logig
transformation.
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TABLE 11.1.1 Data from a Random Sample of 25 Research
Subjects Tested for A-9-THC, Example 11.1.1

Case No. Concentration (1g/ml) Logqo Concentration (xg/ml)
1 .30 —.52
2 2.75 44
3 2.27 .36
4 2.37 .37
5 1.12 .05
6 .60 -.22
7 .61 -.21
8 .89 —-.05
9 .33 —.48

10 .85 -.07

11 2.18 .34

12 3.59 .56

13 .28 —.55

14 1.90 .28

15 1.71 .23

16 .85 -.07

17 1.53 .18

18 2.25 .35

19 .88 —-.05

20 .49 -.31

21 4.35 .64

22 .67 -.17

23 2.74 44

24 .79 -.10

25 6.94 .84

Box-and-whisker plots from SPSS software for these data are shown in Figure 11.1.1. The
raw data are clearly skewed, and an outlier is identified (observation 25). A log;, transfor-
mation, which is often useful for such skewed data, removes the magnitude of the outlier and
results in a distribution that is much more nearly symmetric about the median. Therefore, the
transformed data could be used in lieu of the raw data for constructing the regression model.
Though symmetric data do not, necessarily, imply that the data are normal, they do resultin a
more appropriate model. Formal tests of normality, as previously mentioned, should always
be carried out prior to analysis. [

Unequal Error Variances When the variances of the error terms are not equal, we
may obtain a satisfactory equation for the model, but, because the assumption that the error
variances are equal is violated, we will not be able to perform appropriate hypothesis tests on
the model coefficients. Just as was the case in overcoming the non-normality problem,
transformations of the regression variables may reduce the impact of unequal error variances.
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FIGURE 11.1.1 Box-and-whisker plots of data from Example 11.1.1.

Correlated Independent Variables Multicollinearity is a common problem that
arises when one attempts to build a model using many independent variables. Multicolli-
nearity occurs when there is ahigh degree of correlation among the independent variables. For
example, imagine that we want to find an equation relating height and weight to blood
pressure. A common variable that is derived from height and weight is called the body mass
index (BMI). If we attempt to find an equation relating height, weight, and BMI to blood
pressure, we can expect to run into analytical problems because BMI, by definition, is highly
correlated with both height and weight.

The problem arises mathematically when the solutions for the regression coefficients
are derived. Since the data are correlated, solutions may not be found that are unique to a
given model. The least complex solution to multicollinearity is to calculate correlations
among all of the independent variables and to retain only those variables that are not highly
correlated. A conservative rule of thumb to remove redundancy in the data set is to
eliminate variables that are related to others with a significant correlation coefficient
above 0.7.

EXAMPLE 11.1.2

A study of obesity and metabolic syndrome used data collected from 15 students, and
included systolic blood pressure (SBP), weight, and BMI. These data are presented in
Table 11.1.2.

Correlations for the three variables are shown in Figure 11.1.2. The very large and
significant correlation between the variables weight and BMI suggests that including both
of these variables in the model is inappropriate because of the high level of redundancy in
the information provided by these variables. This makes logical sense since BMI is a
function of weight. The researcher is now faced with the task of deciding which of the
variables to retain for constructing the regression model.
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TABLE 11.1.2 Data from 8 Random Sample of 15

Students
Case No. SBP Weight (Ibs.) BMI
1 126 125 24.41
2 129 130 23.77
3 126 132 20.07
4 123 200 27.12
5 124 321 39.07
6 125 100 20.90
7 127 138 22.96
8 125 138 24.44
9 123 149 23.33
10 119 180 25.82
1 127 184 26.40
12 126 251 31.37
13 122 197 26.72
14 126 107 20.22
15 125 125 23.62
Correlations: SBP, Weight, BMI
SBP Wi ght
Wi ght —0. 289
p-val ue 0. 296
BM —0. 213 0. 962
p- val ue 0. 447 0. 000

FIGURE 11.1.2 Correlations calculated in MINITAB software for the data in Example 11.1.2.
|

11.2 QUALITATIVE INDEPENDENT
VARIABLES

The independent variables considered in the discussion in Chapter 10 were all quantitative;
that is, they yielded numerical values that were either counts or measurements in the usual
sense of the word. For example, some of the independent variables used in our examples
and exercises were age, education level, collagen porosity, and collagen tensile strength.
Frequently, however, it is desirable to use one or more qualitative variables as independent
variables in the regression model. Qualitative variables, it will be recalled, are those
variables whose “values” are categories and that convey the concept of attribute rather than
amount or quantity. The variable marital status, for example, is a qualitative variable whose
categories are ‘“‘single,” “married,” “widowed,” and ‘“divorced.” Other examples of
qualitative variables include sex (male or female), diagnosis, race, occupation, and
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immunity status to some disease. In certain situations an investigator may suspect that
including one or more variables such as these in the regression equation would contribute
significantly to the reduction of the error sum of squares and thereby provide more precise
estimates of the parameters of interest.

Suppose, for example, that we are studying the relationship between the dependent
variable systolic blood pressure and the independent variables weight and age. We might
also want to include the qualitative variable sex as one of the independent variables. Or
suppose we wish to gain insight into the nature of the relationship between lung capacity
and other relevant variables. Candidates for inclusion in the model might consist of such
quantitative variables as height, weight, and age, as well as qualitative variables such
as sex, area of residence (urban, suburban, rural), and smoking status (current smoker,
ex-smoker, never smoked).

Dummy Variables In order to incorporate a qualitative independent variable
in the multiple regression model, it must be quantified in some manner. This may be
accomplished through the use of what are known as dummy variables.

DEFINITION

A dummy variable is a variable that assumes only a finite number of
values (such as 0 or 1) for the purpose of identifying the different
categories of a qualitative variable.

The term “dummy” is used to indicate the fact that the numerical values (such as
0 and 1) assumed by the variable have no quantitative meaning but are used merely to
identify different categories of the qualitative variable under consideration. Qualitative
variables are sometimes called indicator variables, and when there are only two categories,
they are sometimes called dichotomous variables.

The following are some examples of qualitative variables and the dummy variables
used to quantify them:

Qualitative Variable Dummy Variable
Sex (male, female): __ | 1for male
=9 0for female”

Place of residence (urban, rural, suburban): 1 for urban

0 for rural and suburban’

Smoking status [current smoker, ex-smoker
(has not smoked for 5 years or less), ex-smoker
(has not smoked for more than 5 years), never smoked]:

1 for current smoker
0 for otherwise

1 for ex-smoker(< 5 years)
0 otherwise ’

X1
X2
X =
X2
X3

1 for ex-smoker(> 5 years)

1 for rural
0 for urban and suburban”
{ 0 otherwise
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Note in these examples that when the qualitative variable has k categories, k — 1
dummy variables must be defined for all the categories to be properly coded. This rule is
applicable for any multiple regression containing an intercept constant. The variable sex,
with two categories, can be quantified by the use of only one dummy variable, while three
dummy variables are required to quantify the variable smoking status, which has four
categories.

The following examples illustrate some of the uses of qualitative variables in
multiple regression. In the first example we assume that there is no interaction between
the independent variables. Since the assumption of no interaction is not realistic in many
instances, we illustrate, in the second example, the analysis that is appropriate when
interaction between variables is accounted for.

EXAMPLE 11.2.1

In a study of factors thought to be associated with birth weight, a simple random sample of
100 birth records was selected from the North Carolina 2001 Birth Registry (A-1).
Table 11.2.1 shows, for three variables, the data extracted from each record. There are
two independent variables: length of gestation (weeks), which is quantitative, and
smoking status of mother (smoke), a qualitative variable. The dependent variable is birth
weight (grams).

TABLE 11.2.1 Data from a Simple Random Sample of 100 Births from the
North Carolina Birth Registry, Example 11.2.1

Case No. Grams Weeks Smoke Case No. Grams Weeks Smoke
1 3147 40 0 51 3232 38 0
2 2977 41 0 52 3317 40 0
3 3119 38 0 53 2863 37 0
4 3487 38 0 54 3175 37 0
5 4111 39 0 55 3317 40 0
6 3572 41 0 56 3714 34 0
7 3487 40 0 57 2240 36 0
8 3147 41 0 58 3345 39 0
9 3345 38 1 59 3119 39 0

10 2665 34 0 60 2920 37 0

11 1559 34 0 61 3430 a1 0

12 3799 38 0 62 3232 35 0

13 2750 38 0 63 3430 38 0

14 3487 40 0 64 4139 39 0

15 3317 38 0 65 3714 39 0

16 3544 43 1 66 1446 28 1

17 3459 45 0 67 3147 39 1

18 2807 37 0 68 2580 31 0

19 3856 40 0 69 3374 37 0

20 3260 40 0 70 3941 40 0

(Continued)
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Case No. Grams Weeks Smoke Case No. Grams Weeks Smoke

21 2183 42 1 71 2070 37 0

22 3204 38 0 72 3345 40 0

23 3005 36 0 73 3600 40 0

24 3090 40 1 74 3232 41 0

25 3430 39 0 75 3657 38 1

26 3119 40 0 76 3487 39 0

27 3912 39 0 77 2948 38 0

28 3572 40 0 78 2722 40 0

29 3884 41 0 79 3771 40 0

30 3090 38 0 80 3799 45 0

31 2977 42 0 81 1871 33 0

32 3799 37 0 82 3260 39 0

33 4054 40 0 83 3969 38 0

34 3430 38 1 84 3771 40 0

35 3459 41 0 85 3600 40 0

36 3827 39 0 86 2693 35 1

37 3147 44 1 87 3062 45 0

38 3289 38 0 88 2693 36 0

39 3629 36 0 89 3033 41 0

40 3657 36 0 90 3856 42 0

41 3175 41 1 91 4111 40 0

42 3232 43 1 92 3799 39 0

43 3175 36 0 93 3147 38 0

44 3657 40 1 94 2920 36 0

45 3600 39 0 95 4054 40 0

46 3572 40 0 96 2296 36 0

47 709 25 0 97 3402 38 0

48 624 25 0 98 1871 33 1

49 2778 36 0 99 4167 41 0

50 3572 35 0 100 3402 37 1

Source: John P. Holcomb, sampled and coded from North Carolina Birth Registry data found at www.irss.unc.

edu/ ncvital/bfd1down.html.

Solution: For the analysis, we quantify smoking status by means of a dummy variable
that is coded 1 if the mother is a smoker and 0 if she is a nonsmoker. The data
in Table 11.2.1 are plotted as a scatter diagram in Figure 11.2.1. The scatter
diagram suggests that, in general, longer periods of gestation are associated
with larger birth weights.

To obtain additional insight into the nature of these data, we may enter
them into a computer and employ an appropriate program to perform further
analyses. For example, we enter the observations y; =3147,x;; =40, x; =0,
for the first case; Y, =2977, x;, =41, x», = 0 for the second case; and so on.
Figure 11.2.2 shows the computer output obtained with the use of the
MINITAB multiple regression program.


http://www.irss.unc.edu/ncvital/bfd1down.html
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FIGURE 11.2.1 Birth weights and lengths of gestation for 100 births: (A) smoking and (®)

nonsmoking mothers.

The regression equation is

grams = —1724 + 130 x1 — 294 x2

Predictor Coef SE Coef T P
Constant —1724.4 558.8 —-3.09 0.003
weeks (x1) 130.05 14.52 8.96 0.000
smoke (x2) —294.4 135.8 —-2.17 0.033
S = 484.6 R-Sq = 46.4% R-Sq(adj) = 45.3%

Analysis of Variance

SOURCE DF SS MS F
Regression 2 19689185 9844593 41.92
Residual Error 97 22781681 234863

Total 99 42470867

SOURCE DF Seq SS

x1 1 18585166

X2 1 1104020

0.000

FIGURE 11.2.2 Partial computer printout, MINITAB multiple regression analysis.
Example 11.2.1.
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We see in the printout that the multiple regression equation is

Y = Bo +B1x1; +Boxr
S’j = —1724.4 4-130.05x1; — 294.4xy;

(11.2.1)

To observe the effect on this equation when we wish to consider only
the births to smoking mothers, we let x,; = 1. The equation then becomes

§; = —1724.4 +130.05x;; — 294.4(1)
= —2018.8 + 130.05x,;

(11.2.2)

which has a y-intercept of —2018.8 and a slope of 130. Note that the y-intercept
for the new equation is equal to (Bo + [3,) =[-1724.4 4 (—294.4)] = -2018.

Now let us consider only births to nonsmoking mothers. When we let
x, =0, our regression equation reduces to

¥; = —1724.4 + 130.05x;; — 294(0)
= —1724.4 + 130.05x;

(11.2.3)

The slope of this equation is the same as the slope of the equation for
smoking mothers, but the y-intercepts are different. The y-intercept for the
equation associated with nonsmoking mothers is larger than the one for the
smoking mothers. These results show that for this sample, babies born to

Smoking
mothers
Nonsmoking
mothers
°
A
°
.
25 30 35 40 45 50

Length of gestation (weeks)

FIGURE 11.2.3 Birth weights and lengths of gestation for 100 births and the fitted regression
lines: (A) smoking and (®) nonsmoking mothers.
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mothers who do not smoke weighed, on the average, more than babies born to
mothers who do smoke, when length of gestation is taken into account. The
amount of the difference, on the average, is 294 grams. Stated another way,
we can say that for this sample, babies born to mothers who smoke weighed,
on the average, 294 grams less than the babies born to mothers who do not
smoke, when length of gestation is taken into account. Figure 11.2.3 shows
the scatter diagram of the original data along with a plot of the two regression
lines (Equations 11.2.2 and 11.2.3). [ ]

EXAMPLE 11.2.2

At this point a question arises regarding what inferences we can make about the sampled
population on the basis of the sample results obtained in Example 11.2.1. First of all, we
wish to know if the sample difference of 294 grams is significant. In other words, does
smoking have an effect on birth weight? We may answer this question through the
following hypothesis testing procedure.

Solution:

. Data. The data are as given in Example 11.2.1.

. Assumptions. We presume that the assumptions underlying multiple

regression analysis are met.

. Hypotheses. Hy: 8, =0; Hp: B, #0. Suppose we let o =.05.
. Test statistic. The test statistic is 7 = (8, — 0)/sB,.
. Distribution of test statistic. When the assumptions are met and H is

true the test statistic is distributed as Student’s ¢ with 97 degrees of
freedom.

. Decision rule. We reject Hy if the computed ¢ is either greater than or

equal to 1.9848 or less than or equal to —1.9848 (obtained by
interpolation).

. Calculation of test statistic. The calculated value of the test statistic

appears in Figure 11.2.2 as the ¢ ratio for the coefficient associated with
the variable appearing in Column 4 of Table 11.2.1. This coefficient, of
course, is §,. We see that the computed ¢ is —2.17.

. Statistical decision. Since —2.17 < —1.9848, we reject H,.
. Conclusion. We conclude that, in the sampled population, whether the

mothers smoke is associated with a reduction in the birth weights of their
babies.

10. p value. For this test we have p =.033 from Figure 11.2.2. -

A Confidence Interval for B, Given that we are able to conclude that in the
sampled population the smoking status of the mothers does have an effect on the birth
weights of their babies, we may now inquire as to the magnitude of the effect. Our best
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point estimate of the average difference in birth weights, when length of gestation is taken
into account, is 294 grams in favor of babies born to mothers who do not smoke. We may
obtain an interval estimate of the mean amount of the difference by using information from
the computer printout by means of the following expression:

/32 :t tSBz
For a 95% confidence interval, we have

—294.4 + 1.9848(135.8)
(—563.9, —24.9)

Thus, we are 95% confident that the difference is somewhere between about 564 grams and
25 grams.

Advantages of Dummy Variables The reader may have correctly surmised
that an alternative analysis of the data of Example 11.2.1 would consist of fitting two
separate regression equations: one to the subsample of mothers who smoke and another to
the subsample of those who do not. Such an approach, however, lacks some of the
advantages of the dummy variable technique and is a less desirable procedure when the
latter procedure is valid. If we can justify the assumption that the two separate regression
lines have the same slope, we can get a better estimate of this common slope through the
use of dummy variables, which entails pooling the data from the two subsamples. In
Example 11.2.1 the estimate using a dummy variable is based on a total sample size of 100
observations, whereas separate estimates would be based on a sample of 85 smokers and
only 15 nonsmokers. The dummy variables approach also yields more precise inferences
regarding other parameters since more degrees of freedom are available for the calculation
of the error mean square.

Use of Dummy Variables: Interaction Present Now letus consider the
situation in which interaction between the variables is assumed to be present. Suppose, for
example, that we have two independent variables: one quantitative variable X; and one
qualitative variable with three response levels yielding the two dummy variables X, and X3.
The model, then, would be

yi = Bo + BiX1j + BXoj + B3 Xz + BaX1jXoj + BsX1jX5 + € (11.2.4)

in which 8,X;X5; and B5X;X3; are called interaction terms and represent the interaction
between the quantitative and the qualitative independent variables. Note that there is no
need to include in the model the term containing X,;X3;; it will always be zero because
when X; = 1, X3 = 0, and when X3 = 1, X; = 0. The model of Equation 11.2.4 allows for
a different slope and Y-intercept for each level of the qualitative variable.

Suppose we use dummy variable coding to quantify the qualitative variable as follows:

X, — 1 for level 1
27 ] Ootherwise

X — 1 for level 2
? 7 ) Ootherwise
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The three sample regression equations for the three levels of the qualitative variable,
then, are as follows:

Level 1 (X, =1,X3=0)

Vi = /?0 Jr/?13511‘ +@2(1)A+l§3(0) Jr,343611‘(1) Jr,35361,‘(0)
= By +B1x1j +B +Baxy; (11.2.5)
= (,30 +B,) + (ﬂ1 +/34)x1j

Level 2 (Xz = 0, X3 = 1)

V= éo +é1xl.i +1§2(0)A+,33(1) +Byx1j(0) +Bsxi;(1)
= ﬂq +,31Ax1j +.3§ +ﬁ§xlj (11.2.6)
= (Bo+8s) + (B +B5)xy

Level 3 (X2 =0, X3 = 0)

5)] = /?0 +ﬁ§1xlj +B2(O) +B3(0) +B4xlj(0) +185x11(0) (1127)
= Bo +B1x;

Let us illustrate these results by means of an example.

EXAMPLE 11.2.3

A team of mental health researchers wishes to compare three methods (A, B, and C) of
treating severe depression. They would also like to study the relationship between age
and treatment effectiveness as well as the interaction (if any) between age and treatment.
Each member of a simple random sample of 36 patients, comparable with respect to
diagnosis and severity of depression, was randomly assigned to receive treatment A, B,
or C. The results are shown in Table 11.2.2. The dependent variable Y is treatment
effectiveness, the quantitative independent variable X is patient’s age at nearest birthday,
and the independent variable type of treatment is a qualitative variable that occurs at three
levels. The following dummy variable coding is used to quantify the qualitative variable:

X, — 1 for treatment A
27 1 Ootherwise

Ya — 1 for treatment B
37 ) Ootherwise

The scatter diagram for these data is shown in Figure 11.2.4. Table 11.2.3 shows the
data as they were entered into a computer for analysis. Figure 11.2.5 contains the printout
of the analysis using the MINITAB multiple regression program.

Solution: Now let us examine the printout to see what it provides in the way of insight
into the nature of the relationships among the variables. The least-squares
equation is

)Alj =621+ 1.03X1j + 41.3)(?2j + 22.7X3j - .703)61j)€2j — .510xle3j
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TABLE 11.2.2 Data for Example 11.2.3

Measure of Effectiveness Age Method of Treatment
56 21 A
41 23 B
40 30 B
28 19 C
55 28 A
25 23 C
46 33 B
71 67 C
48 42 B
63 33 A
52 33 A
62 56 C
50 45 C
45 43 B
58 38 A
46 37 C
58 43 B
34 27 C
65 43 A
55 45 B
57 48 B
59 47 C
64 48 A
61 53 A
62 58 B
36 29 C
69 53 A
47 29 B
73 58 A
64 66 B
60 67 B
62 63 A
71 59 C
62 51 C
70 67 A
71 63 C

The three regression equations for the three treatments are as follows:
Treatment A (Equation 11.2.5)
j)j = (6.214+41.3) 4+ (1.03 — .703)xy;
= 47.51 4 .327xy;
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FIGURE 11.2.4 Scatter diagram of data for Example 11.2.3: (®) treatment A, (A) treatment B,
(M) treatment C.

Treatment B (Equation 11.2.6)

§; = (6.21 +22.7) + (1.03 — 510)x;
= 28.91 +.520x

Treatment C (Equation 11.2.7)
y; =621 + 1.03x);

Figure 11.2.6 contains the scatter diagram of the original data
along with the regression lines for the three treatments. Visual inspection
of Figure 11.2.6 suggests that treatments A and B do not differ greatly with
respect to their slopes, but their y-intercepts are considerably different. The
graph suggests that treatment A is better than treatment B for younger
patients, but the difference is less dramatic with older patients. Treatment C
appears to be decidedly less desirable than both treatments A and B for
younger patients but is about as effective as treatment B for older patients.
These subjective impressions are compatible with the contention that there is
interaction between treatments and age.

Inference Procedures

The relationships we see in Figure 11.2.6, however, are sample results. What can we
conclude about the population from which the sample was drawn?

For an answer let us look at the 7 ratios on the computer printout in Figure 11.2.5.
Each of these is the test statistic
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TABLE 11.2.3 Data for Example 11.2.3 Coded for Computer Analysis

Y X X, X; X X, X X3

56 21 1 0 21 0

55 28 1 0 28 0

63 33 1 0 33 0

52 33 1 0 33 0

58 38 1 0 38 0

65 43 1 0 43 0

64 48 1 0 48 0

61 53 1 0 53 0

69 53 1 0 53 0

73 58 1 0 58 0

62 63 1 0 63 0

70 67 1 0 67 0

41 23 0 1 0 23

40 30 0 1 0 30

46 33 0 1 0 33

48 42 0 1 0 42

45 43 0 1 0 43

58 43 0 1 0 43

55 45 0 1 0 45

57 48 0 1 0 48

62 58 0 1 0 58

47 29 0 1 0 29

64 66 0 1 0 66

60 67 0 1 0 67

28 19 0 0 0 0

25 23 0 0 0 0

71 67 0 0 0 0

62 56 0 0 0 0

50 45 0 0 0 0

46 37 0 0 0 0

34 27 0 0 0 0

59 47 0 0 0 0

36 29 0 0 0 0

71 59 0 0 0 0

62 51 0 0 0 0

71 63 0 0 0 0

for testing Hy: B; = 0. We see by Equation 11.2.5 that the y-intercept of the regression line for
treatment A is equal to ,30 + Bz- Since the 7 ratio of 8.12 for testing Hy: 8, =0 is greater than
the critical ¢ of 2.0423 (for o =.05), we can reject Hy that 8, =0 and conclude that the y-
intercept of the population regression line for treatment A is different from the y-intercept of
the population regression line for treatment C, which has a y-intercept of B,. Similarly,
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The regression equation is
y =6.21 + 1.03x1 + 41.3x2 + 22.7x3 — 0.703x4 — 0.510 x5

Predictor Coef Stdev t-ratio p
Constant 6.211 3.350 1.85 0.074
x1 1.03339 0.07233 14.29 0.000
x2 41.304 5.085 8.12 0.000
X3 22.707 5.091 4.46 0.000
x4 —0.7029 0.1090 —6.45 0.000
x5 —0.5097 0.1104 —4.62 0.000
s = 3.925 R-sq = 91.4% R-sq(adj) = 90.0%

Analysis of Variance

SOURCE DF SS MS F p
Regression 5 4932.85 986.57 64.04 0.000
Error 30 462.15 15.40

Total 35 5395.00

SOURCE DF SEQ SS

x1 1 3424.43

X2 1 803.80

X3 1 1.19

x4 1 375.00

x5 1 328.42

FIGURE 11.2.5 Computer printout, MINITAB multiple regression analysis, Example 11.2.3.
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FIGURE 11.2.6 Scatter diagram of data for Example 11.2.3 with the fitted regression lines: (®)
treatment A, (A) treatment B, (Hl) treatment C.
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since the fratio of 4.46 for testing Hy: 83 = Ois also greater than the critical # of 2.0423, we can
conclude (at the .05 level of significance) that the y-intercept of the population regression line
for treatment B is also different from the y-intercept of the population regression line for
treatment C. (See the y-intercept of Equation 11.2.6.)

Now let us consider the slopes. We see by Equation 11.2.5 that the slope of the
regression line for treatment A is equal to ,31 (the slope of the line for treatment C) +ﬂ4
Since the 7 ratio of —6.45 for testing Hy: 84 = 0 is less than the critical ¢ of —2.0423, we can
conclude (for o =.05) that the slopes of the population regression lines for treatments A
and C are different. Similarly, since the computed ¢ ratio for testing Hy: s =0 is also less
than —2.0423, we conclude (for a =.05) that the population regression lines for treatments
B and C have different slopes (see the slope of Equation 11.2.6). Thus, we conclude that
there is interaction between age and type of treatment. This is reflected by a lack of
parallelism among the regression lines in Figure 11.2.6. [

Another question of interest is this: Is the slope of the population regression line for
treatment A different from the slope of the population regression line for treatment B? To
answer this question requires computational techniques beyond the scope of this text. The
interested reader is referred to books devoted specifically to regression analysis.

In Section 10.4 the reader was warned that there are problems involved in making
multiple inferences from the same sample data. Again, books on regression analysis are
available that may be consulted for procedures to be followed when multiple inferences,
such as those discussed in this section, are desired.

We have discussed only two situations in which the use of dummy variables is
appropriate. More complex models involving the use of one or more qualitative indepen-
dent variables in the presence of two or more quantitative variables may be appropriate in
certain circumstances. More complex models are discussed in the many books devoted to
the subject of multiple regression analysis.

At this point it may be evident that there are many similarities between the use of a linear
regression model using dummy variables and the basic ANOVA approach. In both cases, one is
attempting to model the relationship between predictor variables and an outcome variable.
In the case of linear regression, we are generally most interested in prediction, and in ANOVA,
we are generally most interested in comparing means. If the desire is to compare means
using regression, one could develop a model to predict mean response, say w;, instead of an
outcome, y;. Modeling the mean response using regression with dummy variables is equivalent
to ANOVA. For the interested student, we suggest the book by Bowerman and O’Connell (1),
who provide an example of using both approaches for the same data.

EXERCISES

For each exercise do the following:

(a) Draw a scatter diagram of the data using different symbols for the different categorical variables.
(b) Use dummy variable coding and regression to analyze the data.

(c) Perform appropriate hypothesis tests and construct appropriate confidence intervals using your
choice of significance and confidence levels.

(d) Find the p value for each test that you perform.
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For subjects undergoing stem cell transplants, dendritic cells (DCs) are antigen-presenting cells that
are critical to the generation of immunologic tumor responses. Bolwell et al. (A-2) studied lymphoid
DC:s in 44 subjects who underwent autologous stem cell transplantation. The outcome variable is the
concentration of DC2 cells as measured by flow cytometry. One of the independent variables is the
age of the subject (years), and the second independent variable is the mobilization method. During
chemotherapy, 11 subjects received granulocyte colony-stimulating factor (G-CSF) mobilizer
(glkg/day) and 33 received etoposide (2 g/m?). The mobilizer is a kind of blood progenitor
cell that triggers the formation of the DC cells. The results were as follows:

G-CSF Etoposide

DC Age DC Age DC Age DC Age
6.16 65 3.18 70 4.24 60 4.09 36
6.14 55 2.58 64 4.86 40 2.86 51
5.66 57 1.69 65 4.05 48 2.25 54
8.28 47 2.16 55 5.07 50 0.70 50
2.99 66 3.26 51 4.26 23 0.23 62
8.99 24 1.61 53 11.95 26 1.31 56
4.04 59 6.34 24 1.88 59 1.06 31
6.02 60 243 53 6.10 24 3.14 48

10.14 66 2.86 37 0.64 52 1.87 69

27.25 63 7.74 65 221 54 8.21 62
8.86 69 11.33 19 6.26 43 1.44 60

Source: Data provided courtesy of Lisa Rybicki, M.S.

According to Pandey et al. (A-3) carcinoma of the gallbladder is not infrequent. One of the primary
risk factors for gallbladder cancer is cholelithiasis, the asymptomatic presence of stones in the
gallbladder. The researchers performed a case-control study of 50 subjects with gallbladder cancer
and 50 subjects with cholelithiasis. Of interest was the concentration of lipid peroxidation products in
gallbladder bile, a condition that may give rise to gallbladder cancer. The lipid peroxidation product
melonaldehyde (MDA, p1g/mg) was used to measure lipid peroxidation. One of the independent
variables considered was the cytochrome P-450 concentration (CYTO, nmol/mg). Researchers used
disease status (gallbladder cancer vs. cholelithiasis) and cytochrome P-450 concentration to predict
MDA. The following data were collected.

Cholelithiasis Gallbladder Cancer
MDA CYTO MDA CYTO MDA CYTO MDA CYTO
0.68 12.60 11.62 4.83 1.60 22.74 9.20 8.99
0.16 4.72 2.71 3.25 4.00 4.63 0.69 5.86
0.34 3.08 3.39 7.03 4.50 9.83 10.20 28.32
3.86 5.23 6.10 9.64 0.77 8.03 3.80 4.76
0.98 4.29 1.95 9.02 2.79 9.11 1.90 8.09
3.31 21.46 3.80 7.76 8.78 7.50 2.00 21.05
1.11 10.07 1.72 3.68 2.69 18.05 7.80 20.22
4.46 5.03 9.31 11.56 0.80 3.92 16.10 9.06
1.16 11.60 3.25 10.33 3.43 22.20 0.98 35.07

(Continued)
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11.2.3

Cholelithiasis Gallbladder Cancer
MDA CYTO MDA CYTO MDA CYTO MDA CYTO
1.27 9.00 0.62 5.72 2.73 11.68 2.85 29.50
1.38 6.13 2.46 4.01 1.41 19.10 3.50 45.06
3.83 6.06 7.63 6.09 6.08 36.70 4.80 8.99
0.16 6.45 4.60 4.53 5.44 48.30 1.89 48.15
0.56 478 12.21 19.01 4.25 4.47 2.90 10.12
1.95 34.76 1.03 9.62 1.76 8.83 0.87 17.98
0.08 15.53 1.25 7.59 8.39 5.49 4.25 37.18
2.17 12.23 2.13 12.33 2.82 348 1.43 19.09
0.00 0.93 0.98 5.26 5.03 7.98 6.75 6.05
1.35 3.81 1.53 5.69 7.30 27.04 4.30 17.05
3.22 6.39 391 7.72 4.97 16.02 0.59 7.79
1.69 14.15 2.25 7.61 1.11 6.14 5.30 6.78
4.90 5.67 1.67 4.32 13.27 13.31 1.80 16.03
1.33 8.49 5.23 17.79 7.73 10.03 3.50 5.07
0.64 2.27 2.79 15.51 3.69 17.23 4.98 16.60
5.21 12.35 1.43 12.43 9.26 9.29 6.98 19.89

Source: Data provided courtesy of Manoj Pandey, M.D.

The purpose of a study by Krantz et al. (A-4) was to investigate dose-related effects of methadone
in subjects with torsades de pointes, a polymorphic ventricular tachycardia. In the study of
17 subjects, 10 were men (sex = 0) and seven were women (sex = 1). The outcome variable, is
the QTc interval, a measure of arrhythmia risk. The other independent variable, in addition to sex,
was methadone dose (mg/day). Measurements on these variables for the 17 subjects were as
follows.

Sex Dose (mg/day) QTc (msec)
0 1000 600
0 550 625
0 97 560
1 90 585
1 85 590
1 126 500
0 300 700
0 110 570
1 65 540
1 650 785
1 600 765
1 660 611
1 270 600
1 680 625
0 540 650
0 600 635
1 330 522

Source: Data provided courtesy of Mori J. Krantz, M.D.
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11.2.4 Refer to Exercise 9.7.2, which describes research by Reiss et al. (A-5), who collected samples from
90 patients and measured partial thromboplastin time (aPTT) using two different methods: the
CoaguChek point-of-care assay and standard laboratory hospital assay. The subjects were also
classified by their medication status: 30 receiving heparin alone, 30 receiving heparin with warfarin,
and 30 receiving warfarin and enoxaparin. The data are as follows.

Heparin Heparin and Warfarin Warfarin and Enoxaparin
CoaguChek Hospital CoaguChek Hospital CoaguChek Hospital
aPTT aPTT aPTT aPTT aPTT aPTT

49.3 714 18.0 77.0 56.5 46.5
57.9 86.4 31.2 62.2 50.7 349
59.0 75.6 58.7 53.2 37.3 28.0
77.3 54.5 75.2 53.0 64.8 523
423 57.7 18.0 45.7 41.2 375
443 59.5 82.6 81.1 90.1 47.1
90.0 77.2 29.6 40.9 23.1 27.1
55.4 63.3 82.9 754 532 40.6
20.3 27.6 58.7 55.7 27.3 37.8
28.7 52.6 64.8 54.0 67.5 50.4
64.3 101.6 37.9 79.4 33.6 342
90.4 89.4 81.2 62.5 45.1 34.8
64.3 66.2 18.0 36.5 56.2 442
89.8 69.8 38.8 32.8 26.0 28.2
74.7 91.3 95.4 68.9 67.8 46.3
150.0 118.8 53.7 71.3 40.7 41.0
324 30.9 128.3 111.1 36.2 35.7
20.9 65.2 60.5 80.5 60.8 47.2
89.5 77.9 150.0 150.0 30.2 39.7
44.7 91.5 38.5 46.5 18.0 31.3
61.0 90.5 58.9 89.1 55.6 53.0
36.4 33.6 112.8 66.7 18.0 274
52.9 88.0 26.7 29.5 18.0 35.7
57.5 69.9 49.7 47.8 78.3 62.0
39.1 41.0 85.6 63.3 75.3 36.7
74.8 81.7 68.8 43.5 73.2 85.3
325 333 18.0 54.0 42.0 383
125.7 142.9 92.6 100.5 493 39.8
77.1 98.2 46.2 524 22.8 423
143.8 108.3 60.5 93.7 35.8 36.0

Source: Data provided courtesy of Curtis E. Haas, Pharm.D.

Use the multiple regression to predict the hospital aPTT from the CoaguCheck aPTT level as well as
the medication received. Is knowledge of medication useful in the prediction? Let o = .05 for all
tests.
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11.3 VARIABLE SELECTION PROCEDURES

Health sciences researchers contemplating the use of multiple regression analysis to
investigate a question usually find that they have a large number of variables from which to
select the independent variables to be employed as predictors of the dependent variable.
Such investigators will want to include in their model as many variables as possible in order
to maximize the model’s predictive ability. The investigator must realize, however, that
adding another independent variable to a set of independent variables always increases the
coefficient of determination R%. Therefore, independent variables should not be added to
the model indiscriminately, but only for good reason. In most situations, for example, some
potential predictor variables are more expensive than others in terms of data-collection
costs. The cost-conscious investigator, therefore, will not want to include an expensive
variable in a model unless there is evidence that it makes a worthwhile contribution to the
predictive ability of the model.

The investigator who wishes to use multiple regression analysis most effectively
must be able to employ some strategy for making intelligent selections from among those
potential predictor variables that are available. Many such strategies are in current use, and
each has its proponents. The strategies vary in terms of complexity and the tedium involved
in their employment. Unfortunately, the strategies do not always lead to the same solution
when applied to the same problem.

Stepwise Regression Perhaps the most widely used strategy for selecting inde-
pendent variables for a multiple regression model is the stepwise procedure. The procedure
consists of a series of steps. At each step of the procedure each variable then in the model is
evaluated to see if, according to specified criteria, it should remain in the model.

Suppose, for example, that we wish to perform stepwise regression for a model
containing k predictor variables. The criterion measure is computed for each variable.
Of all the variables that do not satisfy the criterion for inclusion in the model, the one that
least satisfies the criterion is removed from the model. If a variable is removed in this step,
the regression equation for the smaller model is calculated and the criterion measure is
computed for each variable now in the model. If any of these variables fail to satisfy the
criterion for inclusion in the model, the one that least satisfies the criterion is removed. If a
variable is removed at this step, the variable that was removed in the first step is reentered
into the model, and the evaluation procedure is continued. This process continues until no
more variables can be entered or removed.

The nature of the stepwise procedure is such that, although a variable may be deleted
from the model in one step, it is evaluated for possible reentry into the model in subsequent
steps.

MINITAB’s STEPWISE procedure, for example, uses the associated F' statistic as
the evaluative criterion for deciding whether a variable should be deleted or added to
the model. Unless otherwise specified, the cutoff value is F' = 4. The printout of the
STEPWISE results contains ¢ statistics (the square root of F) rather than F statistics. At
each step MINITAB calculates an F statistic for each variable then in the model. If the F
statistic for any of these variables is less than the specified cutoff value (4 if some other
value is not specified), the variable with the smallest F is removed from the model. The
regression equation is refitted for the reduced model, the results are printed, and the
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procedure goes to the next step. If no variable can be removed, the procedure tries to add a
variable. An F statistic is calculated for each variable not then in the model. Of these
variables, the one with the largest associated F statistic is added, provided its F statistic is
larger than the specified cutoff value (4 if some other value is not specified). The regression
equation is refitted for the new model, the results are printed, and the procedure goes on to
the next step. The procedure stops when no variable can be added or deleted.

The following example illustrates the use of the stepwise procedure for selecting
variables for a multiple regression model.

EXAMPLE. 11.3.1

A nursing director would like to use nurses’ personal characteristics to develop a regression
model for predicting the job performance (JOBPER). The following variables are available
from which to choose the independent variables to include in the model:

X, = assertiveness (ASRV)

X, = enthusiasm (ENTH)

X3 = ambition (AMB)

X4 = communication skills (COMM)
Xs = problem-solving skills (PROB)
Xe = initiative (INIT)

We wish to use the stepwise procedure for selecting independent variables from those
available in the table to construct a multiple regression model for predicting job
performance.

Solution: Table 11.3.1 shows the measurements taken on the dependent variable,
JOBPER, and each of the six independent variables for a sample of
30 nurses.

TABLE 11.3.1 Measurements on Seven Variables
for Examples 11.3.1

Y X X X3 Xa Xs Xs
45 74 29 40 66 93 47
65 65 50 64 68 74 49
73 71 67 79 81 87 33
63 64 44 57 59 85 37
83 79 55 76 76 84 33
45 56 48 54 59 50 42
60 68 41 66 71 69 37
73 76 49 65 75 67 43
74 83 71 77 76 84 33

(Continued)
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Y X X, Xs X, Xs Xs
69 62 44 57 67 81 43
66 54 52 67 63 68 36
69 61 46 66 84 75 43
71 63 56 67 60 64 35
70 84 82 68 84 78 37
79 78 53 82 84 78 39
83 65 49 82 65 55 38
75 86 63 79 84 80 a1
67 61 64 75 60 81 45
67 71 45 67 80 86 48
52 59 67 64 69 79 54
52 71 32 44 48 65 43
66 62 51 72 71 81 43
55 67 51 60 68 81 39
42 65 41 45 55 58 51
65 55 41 58 71 76 35
68 78 65 73 93 77 42
80 76 57 84 85 79 35
50 58 43 55 56 84 40
87 86 70 81 82 75 30
84 83 38 83 69 79 a4

We use MINITAB to obtain a useful model by the stepwise procedure.
Observations on the dependent variable job performance (JOBPER) and the
six candidate independent variables are stored in MINITAB Columns 1
through 7, respectively. Figure 11.3.1 shows the appropriate MINITAB
procedure and the printout of the results.

To obtain the results in Figure 11.3.1, the values of F to enter and F to
remove both were set automatically at 4. In step 1 there are no variables to be
considered for deletion from the model. The variable AMB (Column 4) has
the largest associated F statistic, which is F= (9.74)2 =94.8676. Since
94.8676 is greater than 4, AMB is added to the model. In step 2 the variable
INIT (Column 7) qualifies for addition to the model since its associated F of
(—2.2)>=4.84 is greater than 4 and it is the variable with the largest
associated F statistic. It is added to the model. After step 2 no other variable
could be added or deleted, and the procedure stopped. We see, then, that the
model chosen by the stepwise procedure is a two-independent-variable model
with AMB and INIT as the independent variables. The estimated regression
equation is

¥ =31.96 4 .787x3 — .45x¢ n
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Dialog box: Session command:

Stat » Regression » Stepwise MIB > Stepwi se Cl C2-C7;

SUBC> FEnter 4.0;

Type C1 in Response and C2—C7 in Predictors. SUBC> FRenpbve 4.0.

Stepwise Regression

F-to-Enter: 4.00 F-to-Renpve: 4.00
Response is Cl on 6 predictors, with N=30
Step 1 2

Constant 7.226 31. 955

07} 0. 888 0. 787

T-Ratio 9.74 8.13

cr -0.45

T-Ratio -2.20

S 5.90 5.53

R- Sq 77.21 80. 68

FIGURE 11.3.1

MINITAB stepwise procedure and output for the data of Table 11.3.1.

To change the criterion for allowing a variable to enter the model from 4 to some
other value K, click on Options, then type the desired value of K in the Enter box. The new
criterion F statistic, then, is K rather than 4. To change the criterion for deleting a variable
from the model from 4 to some other value K, click on Options, then type the desired value
of K in the Remove box. We must choose K to enter to be greater than or equal to K to
remove.

Though the stepwise selection procedure is a common technique employed by
researchers, other methods are available. Following is a brief discussion of two such tools.
The final model obtained by each of these procedures is the same model that was found by
using the stepwise procedure in Example 11.3.1.

Forward Selection This strategy is closely related to the stepwise regression
procedure. This method builds a model using correlations. Variables are retained that meet
the criteria for inclusion, as in stepwise selection. The first variable entered into the model
is the one with the highest correlation with the dependent variable. If this variable meets the
inclusion criterion, it is retained. The next variable to be considered for inclusion is the one
with the highest partial correlation with the dependent variable. If it meets the inclusion
criteria, it is retained. This procedure continues until all of the independent variables have
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been considered. The final model contains all of the independent variables that meet the
inclusion criteria.

Backward Elimination This model-building procedure begins with all of the
variables in the model. This strategy also builds a model using correlations and a
predetermined inclusion criterion based on the F statistic. The first variable considered
for removal from the model is the one with the smallest partial correlation coefficient. If
this variable does not meet the criterion for inclusion, it is eliminated from the model. The
next variable to be considered for elimination is the one with the next lowest partial
correlation. It will be eliminated if it fails to meet the criterion for inclusion. This procedure
continues until all variables have been considered for elimination. The final model contains
all of the independent variables that meet the inclusion criteria.

EXERCISES

11.3.1 Refer to the data of Exercise 10.3.2 reported by Son et al. (A-6), who studied family caregiving in
Korea of older adults with dementia. The outcome variable, caregiver burden (BURDEN), was
measured by the Korean Burden Inventory (KBI) where scores ranged from 28 to 140 with higher
scores indicating higher burden. Perform a stepwise regression analysis on the following independent
variables reported by the researchers:

CGAGE: caregiver age (years)
CGINCOME: caregiver income (Won-Korean currency)
CGDUR: caregiver-duration of caregiving (month)

ADL: total activities of daily living where low scores indicate the elderly perform activities
independently.

MEM: memory and behavioral problems with higher scores indicating more problems.
COG: cognitive impairment with lower scores indicating a greater degree of cognitive impairment.

SOCIALSU: total score of perceived social support (25-175, higher values indicating more
support). The reported data are as follows.

CGAGE CGINCOME CGDUR ADL MEM COG SOCIALSU BURDEN

41 200 12 39 4 18 119 28
30 120 36 52 33 9 131 68
41 300 60 89 17 3 141 59
35 350 2 57 31 7 150 91
37 600 48 28 35 19 142 70
42 90 4 34 3 25 148 38
49 300 26 42 16 17 172 46
39 500 16 52 6 26 147 57
49 309 30 88 41 13 98 89
40 250 60 90 24 3 147 48

(Continued)
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CGAGE CGINCOME CGDUR ADL MEM COG

SOCIALSU BURDEN

40
70
49
55
27
39
39
44
33
42
52
48
53
40
35
47
33
41
43
25
35
35
45
36
52
41
40
45
48
50
31
33
30
36
45
32
55
50
37
40
40
49
37
47
41
33
28

300
60
450
300
309
250
260
250
200
200
200
300
300
300
200
150
180
200
300
309
250
200
200
300
600
230
200
400
75
200
250
300
200
250
500
300
200
309
250
1000
300
300
309
250
200
1000
309

36
10
24
18
30
10
12
32
48
12
24
36
12
11

8
60
19
48
36
24
12

6

7
24
60

6
36
96

6
30
30

2
30

6
12
60
24
20
30
21
12
18
18
38
60
18
12

38
83
30
45
47
90
63
34
76
26
68
85
22
82
80
80
81
30
27
72
46
63
45
77
42
60
33
49
89
72
45
73
58
33
34
90
48
47
32
63
76
79
48
90
55
83
50

22
41

9
33
36
17
14
35
33
13
34
28
12
57
51
20
20

7
27

9
15
52
26
57
10
34
14
30
64
31
24
13
16
17
13
42

Z
17
13
32
50
44
57
33
11
24
21

13
11
24
14
18

0
16
22
23
18
26
10
16

3

3
18

1
17
27

0
22
13
18

0
19
11
14
15

0

3
19

3
15
21
18

6
23
18
15
15

5
11

9

6
20
11
25

146

97
139
127
132
142
131
141
106
144
119
122
110
121
142
101
117
129
142
137
148
135
144
128
148
141
151
124
105
117
111
146

99
115
119
134
165
101
148
132
120
129
133
121
117
140
117

74
78
43
76
72
61
63
71
85
31
79
92
76
91
78
103
99
73
88
64
52
71
41
85
52
68
57
84
91
83
73
57
69
81
71
91
48
94
57
49
88
54
73
87
47
60
65

(Continued)
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CGAGE CGINCOME CGDUR ADL MEM COG SOCIALSU BURDEN

33 400 120 44 31 18 138 57
34 330 18 79 30 20 163 85
40 200 18 24 5 22 157 28
54 200 12 40 20 17 143 40
32 300 32 35 15 27 125 87
44 280 66 55 9 21 161 80
44 350 40 45 28 17 142 49
42 280 24 46 19 17 135 57
44 500 14 37 4 21 137 32
25 600 24 47 29 3 133 52
41 250 84 28 23 21 131 42
28 1000 30 61 8 7 144 49
24 200 12 35 31 26 136 63
65 450 120 68 65 6 169 89
50 200 12 80 29 10 127 67
40 309 12 43 8 13 110 43
47 1000 12 53 14 18 120 47
44 300 24 60 30 16 115 70
37 309 54 63 22 18 101 99
36 300 12 28 9 27 139 53
55 200 12 35 18 14 153 78
45 2000 12 37 33 17 111 112
45 400 14 82 25 13 131 52
23 200 36 88 16 0 139 68
42 1000 12 52 15 0 132 63
38 200 36 30 16 18 147 49
41 230 36 69 49 12 171 42
25 200 30 52 17 20 145 56
47 200 12 59 38 17 140 46
35 100 12 53 22 21 139 72
59 150 60 65 56 2 133 95
49 300 60 90 12 0 145 57
51 200 48 88 42 6 122 88
54 250 6 66 12 23 133 81
53 30 24 60 21 7 107 104
49 100 36 48 14 13 118 88
44 300 48 82 41 13 95 115
36 200 18 88 24 14 100 66
64 200 48 63 49 5 125 92
51 120 2 79 34 3 116 97
43 200 66 71 38 17 124 69
54 150 96 66 48 13 132 112
29 309 19 81 66 1 152 88

Source: Data provided courtesy of Gwi-Ryung Son, R.N., Ph.D.
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11.3.2 Machiel Naeije (A-7) identifies variables useful in predicting maximum mouth opening (MMO,
millimeters) for 35 healthy volunteers. The variables examined were:

AGE: years

DOWN_CON: downward condylar translation, mm
FORW_CON: forward condylar translation, mm
Gender: 0 =Female, 1 =Male
MAN_LENG: mandibular length, mm
MAN_WIDT: mandibular width, mm

Use the following reported measurements to perform a stepwise regression.

AGE DOWN_CON FORW_CON GENDER MAN_LENG MAN_WIDT MMO

21.00 4.39 14.18 1 100.86 121.00 52.34
26.00 1.39 20.23 0 93.08 118.29 51.90
30.00 242 13.45 1 98.43 130.56 52.80
28.00 —.18 19.66 1 102.95 125.34 50.29
21.00 4.10 22.71 1 108.24 125.19 57.79
20.00 4.49 13.94 0 98.34 113.84 49.41
21.00 2.07 19.35 0 95.57 115.41 53.28
19.00 =77 25.65 1 98.86 118.30 59.71
24.00 7.88 18.51 1 98.32 119.20 53.32
18.00 6.06 21.72 0 92.70 111.21 48.53
22.00 9.37 23.21 0 88.89 119.07 51.59
21.00 3.77 23.02 1 104.06 127.34 58.52
20.00 1.10 19.59 0 98.18 111.24 62.93
22.00 2.52 16.64 0 91.01 113.81 57.62
24.00 5.99 17.38 1 96.98 114.94 65.64
22.00 5.28 22.57 0 97.86 111.58 52.85
22.00 1.25 20.89 0 96.89 115.16 64.43
22.00 6.02 20.38 1 98.35 122.52 57.25
19.00 1.59 21.63 0 90.65 118.71 50.82
26.00 6.05 10.59 0 92.99 119.10 40.48
22.00 —1.51 20.03 1 108.97 129.00 59.68
24.00 —41 24.55 0 91.85 100.77 54.35
21.00 6.75 14.67 1 104.30 127.15 47.00
22.00 4.87 17.91 1 93.16 123.10 47.23
22.00 .64 17.60 1 94.18 113.86 41.19
29.00 7.18 15.19 0 89.56 110.56 42.76
25.00 6.57 17.25 1 105.85 140.03 51.88
20.00 1.51 18.01 0 89.29 121.70 42.77
27.00 4.64 19.36 0 92.58 128.01 52.34
26.00 3.58 16.57 1 98.64 129.00 50.45
23.00 6.64 12.47 0 83.70 130.98 43.18
25.00 7.61 18.52 0 88.46 124.97 41.99
22.00 5.39 11.66 1 94.93 129.99 39.45
31.00 5.47 12.85 1 96.81 132.97 38.91
23.00 2.60 19.29 0 93.13 121.03 49.10
Source: Data provided courtesy of Machiel Naeije, D.D.S.
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11.3.3 One purpose of a study by Connor et al. (A-8) was to examine reactive aggression among
children and adolescents referred to a residential treatment center. The researchers used the
Proactive/Reactive Rating Scale, obtained by presenting three statements to clinicians who
examined the subjects. The respondents answered, using a scale from 1 to 5, with 5 indicating
that the statement almost always applied to the child. An example of a reactive aggression
statement is, “When this child has been teased or threatened, he or she gets angry easily and strikes
back.” The reactive score was the average response to three statements of this type. With this
variable as the outcome variable, researchers also examined the following: AGE (years),
VERBALIQ (verbal 1Q), STIM (stimulant use), AGEABUSE (age when first abused), CTQ
(a measure of hyperactivity in which higher scores indicate higher hyperactivity), TOTALHOS
(total hostility as measured by an evaluator, with higher numbers indicating higher hostility).
Perform stepwise regression to find the variables most useful in predicting reactive aggression in
the following sample of 68 subjects.

REACTIVE AGE VERBALIQ STIM AGEABUSE CTQ TOTALHOS

4.0 17 91 0 0 0 8
3.7 12 94 0 1 29 10
2.3 14 105 0 1 12 10
5.0 16 97 0 1 9 11
2.0 15 97 0 2 17 10
2.7 8 91 0 0 6 4
2.0 10 111 0 0 6 6
33 12 105 0 0 28 7
2.0 17 101 1 0 12 9
4.3 13 102 1 1 8 11
4.7 15 83 0 0 9 9
4.3 15 66 0 1 5 8
2.0 15 90 0 2 3 8
4.0 13 88 0 1 28 8
2.7 13 98 0 1 17 10
2.7 9 135 0 0 30 11
2.7 18 72 0 0 10 9
2.0 13 93 0 2 20 8
3.0 14 94 0 2 10 11
2.7 13 93 0 1 4 8
3.7 16 73 0 0 11 11
2.7 12 74 0 1 10 7
2.3 14 97 0 2 3 11
4.0 13 91 1 1 21 11
4.0 12 88 0 1 14 9
4.3 13 90 0 0 15 2
3.7 14 104 1 1 10 10
3.0 18 82 0 0 1 7
4.3 14 79 1 3 6 7
1.0 16 93 0 0 5 8
4.3 16 99 0 1 21 11

(Continued)
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REACTIVE AGE VERBALIQ STIM AGEABUSE CTQ TOTALHOS

23 14 73 0 2 8 9
3.0 12 112 0 0 15 9
1.3 15 102 0 1 1 5
3.0 16 78 1 1 26 8
23 9 95 1 0 23 10
1.0 15 124 0 3 11
3.0 17 73 0 1 1 10
33 11 105 0 0 23 5
4.0 11 89 0 0 27 8
1.7 9 88 0 1 2 8
23 16 96 0 1 5 7
4.7 15 76 1 1 17 9
1.7 16 87 0 2 0 4
1.7 15 90 0 1 10 12
4.0 12 76 0 0 22 10
5.0 12 83 1 1 19 7
4.3 10 88 1 0 10 5
5.0 9 98 1 0 8 9
3.7 12 100 0 0 6 4
33 14 80 0 1 3 10
23 16 84 0 1 3 9
1.0 17 117 0 2 1 9
1.7 12 145 1 0 0 5
3.7 12 123 0 0 1 3
2.0 16 94 0 2 6 6
3.7 17 70 0 1 11 13
43 14 113 0 0 8 8
2.0 12 123 1 0 2 8
3.0 7 107 0 0 11 9
3.7 12 78 1 0 15 11
4.3 14 73 0 1 2 8
23 18 91 0 3 8 10
4.7 12 91 0 0 6 9
3.7 15 111 0 0 2 9
1.3 15 71 0 1 20 10
3.7 7 102 0 0 14 9
1.7 9 89 0 0 24 6

Source: Data provided courtesy of Daniel F. Connor, M.D. and Lang Lin.

11.4 LOGISTIC REGRESSION

Up to now our discussion of regression analysis has been limited to those situations in
which the dependent variable is a continuous variable such as weight, blood pressure,
or plasma levels of some hormone. Much research in the health sciences field is
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motivated by a desire to describe, understand, and make use of the relationship
between independent variables and a dependent (or outcome) variable that is discrete.
Particularly plentiful are circumstances in which the outcome variable is dichotomous.
A dichotomous variable, we recall, is a variable that can assume only one of two
mutually exclusive values. These values are usually coded Y = 1 for a successand ¥ =0
for a nonsuccess, or failure. Dichotomous variables include those whose two possible
values are such categories as died—did not die; cured—not cured; disease occurred—
disease did not occur; and smoker—nonsmoker. The health sciences professional who
either engages in research or needs to understand the results of research conducted by
others will find it advantageous to have, at least, a basic understanding of logistic
regression, the type of regression analysis that is usually employed when the dependent
variable is dichotomous. The purpose of the present discussion is to provide the
reader with this level of understanding. We shall limit our presentation to the case in
which there is only one independent variable that may be either continuous or
dichotomous.

The Logistic Regression Model Recall that in Chapter 9 we referred to
regression analysis involving only two variables as simple linear regression analysis. The
simple linear regression model was expressed by the equation

y=PBy+Bix+e (11.4.1)

in which y is an arbitrary observed value of the continuous dependent variable. When the
observed value of Yis u,),, the mean of a subpopulation of Y values for a given value of X,
the quantity €, the difference between the observed Y and the regression line (see
Figure 9.2.1) is zero, and we may write Equation 11.4.1 as

W = Bo + Bix (11.42)

which may also be written as
E(ylx) = By + Bix (11.4.3)

Generally, the right-hand side of Equations (11.4.1) through (11.4.3) may assume any value
between minus infinity and plus infinity.

Even though only two variables are involved, the simple linear regression model is
not appropriate when Y is a dichotomous variable because the expected value (or mean)
of Y is the probability that ¥ = 1 and, therefore, is limited to the range O through 1,
inclusive. Equations (11.4.1) through (11.4.3), then, are incompatible with the reality of
the situation.

If we let p = P(Y = 1), then the ratio p/(1 — p) can take on values between 0 and
plus infinity. Furthermore, the natural logarithm (In) of p/(1 — p) can take on values
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between minus infinity and plus infinity just as can the right-hand side of Equations 11.4.1
through (11.4.3). Therefore, we may write

1n[1 fp} = Bo+ Byx (11.4.4)

Equation 11.4.4 is called the logistic regression model and the transformation of w,,
(that is, p) to In[p/(1 — p)] is called the logit transformation. Equation 11.4.4 may also be
written as

_explfo + Aiv)
I+ exp(By + A1)

(11.4.5)

in which exp is the inverse of the natural logarithm.

The logistic regression model is widely used in health sciences research. For
example, the model is frequently used by epidemiologists as a model for the probability
(interpreted as the risk) that an individual will acquire a disease during some specified time
period during which he or she is exposed to a condition (called a risk factor) known to be or
suspected of being associated with the disease.

Logistic Regression: Dichotomous Independent Variable The
simplest situation in which logistic regression is applicable is one in which both the
dependent and the independent variables are dichotomous. The values of the dependent
(or outcome) variable usually indicate whether or not a subject acquired a disease or
whether or not the subject died. The values of the independent variable indicate the
status of the subject relative to the presence or absence of some risk factor. In the
discussion that follows we assume that the dichotomies of the two variables are coded
0 and 1. When this is the case the variables may be cross-classified in a table, such as
Table 11.4.1, that contains two rows and two columns. The cells of the table contain
the frequencies of occurrence of all possible pairs of values of the two variables: (1, 1),
(1, 0), (O, 1), and (0, 0).

An objective of the analysis of data that meet these criteria is a statistic known as the
odds ratio. To understand the concept of the odds ratio, we must understand the term odds,

TABLE 11.4.1 Two Cross-Classified
Dichotomous Variables Whose Values
Are Coded 1 and O

Independent
Variable (X)
Dependent
Variable (Y) 1 0
1 Nyq Nio

2 No1 No,0
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which is frequently used by those who place bets on the outcomes of sporting events or
participate in other types of gambling activities. Using probability terminology, we may
define odds as follows.

DEFINITION

The odds for success is the ratio of the probability of success to the
probability of failure.

The odds ratio is a measure of how much greater (or less) the odds are for subjects
possessing the risk factor to experience a particular outcome. This conclusion assumes that
the outcome is a rare event. For example, when the outcome is the contracting of a disease,
the interpretation of the odds ratio assumes that the disease is rare.

Suppose, for example, that the outcome variable is the acquisition or nonacquisition
of skin cancer and the independent variable (or risk factor) is high levels of exposure to the
sun. Analysis of such data collected on a sample of subjects might yield an odds ratio of 2,
indicating that the odds of skin cancer are two times higher among subjects with high levels
of exposure to the sun than among subjects without high levels of exposure.

Computer software packages that perform logistic regression frequently provide as
part of their output estimates of 8, and B, and the numerical value of the odds ratio. As it
turns out the odds ratio is equal to exp(B,).

EXAMPLE 11.4.1

LaMont et al. (A-9) tested for obstructive coronary artery disease (OCAD) among 113 men
and 35 women who complained of chest pain or possible equivalent to their primary care
physician. Table 11.4.2 shows the cross-classification of OCAD with gender. We wish to
use logistic regression analysis to determine how much greater the odds are of finding
OCAD among men than among women.

Solution: We may use the SAS® software package to analyze these data. The
independent variable is gender and the dependent variable is status with
respect to having obstructive coronary artery disease (OCAD). Use of the
SAS® command PROC LOGIST yields. as part of the resulting output, the
statistics shown in Figure 11.4.1.

TABLE 11.4.2 Cases of Obstructive Coronary
Artery Disease (OCAD) Classified by Sex

Disease Males Females Total
OCAD present 92 15 107
OCAD not present 21 20 41
Total 113 35 148

Source: Data provided courtesy of Matthew J. Budoff, M.D.
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The LOGQ STIC Procedure
Anal ysi s of Maxi mum Likelihood Estimates

Parameter DF Estinate Standard Wal d
Error Chi-Square Pr > Chi Sq

I ntercept 1 -0.2877 0. 3416 0. 7090 0. 3997
sex 1 1.7649 0. 4185 17.7844 <. 0001

FIGURE 11.4.1 Partial output from use of SAS® command PROC LOGISTIC with the data of
Table 11.4.2.

We see that the estimate of « is —0.2877 and the estimate of B is
1.7649. The estimated odds ratio, then, is OR = exp(1.7649) = 5.84. Thus,
we estimate that the odds of finding a case of obstructive coronary artery
disease to be almost six times higher among men than women. [

Logistic Regression: Continuous Independent Variable Now let
us consider the situation in which we have a dichotomous dependent variable and a
continuous independent variable. We shall assume that a computer is available to perform
the calculations. Our discussion, consequently, will focus on an evaluation of the adequacy
of the model as a representation of the data at hand, interpretation of key elements of the
computer printout, and the use of the results to answer relevant questions about the
relationship between the two variables.

EXAMPLE 11.4.2

According to Gallagher et al. (A-10), cardiac rehabilitation programs offer “information,
support, and monitoring for return to activities, symptom management, and risk factor
modification.” The researchers conducted a study to identify among women factors that are
associated with participation in such programs. The data in Table 11.4.3 are the ages of 185
women discharged from a hospital in Australia who met eligibility criteria involving
discharge for myocardial infarction, artery bypass surgery, angioplasty, or stent. We wish to
use these data to obtain information regarding the relationship between age (years) and
participation in a cardiac rehabilitation program (ATT = 1, if participated, and ATT =0,
if not). We wish also to know if we may use the results of our analysis to predict the
likelihood of participation by a woman if we know her age.

Solution: The independent variable is the continuous variable age (AGE), and the
dependent or response variable is status with respect to attendance in a
cardiac rehabilitation program. The dependent variable is a dichotomous
variable that can assume one of two values: 0 = did not attend, and 1 =did
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TABLE 11.4.3 Ages of Women Participating and Not
Participating in a Cardiac Rehabilitation Program
Nonparticipating Participating
(ATT=0) (ATT=1)
50 73 46 74 74 62
59 75 57 59 50 74
42 71 53 81 55 61
50 69 40 74 66 69
34 78 73 77 49 76
49 69 68 59 55 71
67 74 72 75 73 61
44 86 59 68 41 46
53 49 64 81 64 69
45 63 78 74 46 66
79 63 68 65 65 57
46 72 67 81 50 60
62 64 55 62 61 63
58 72 71 85 64 63
70 79 80 84 59 56
60 75 75 39 73 70
67 70 69 52 73 70
64 73 80 67 65 63
62 66 79 82 67 63
50 75 71 84 60 65
61 73 69 79 69 67
69 71 78 81 61 68
74 72 75 74 79 84
65 69 71 85 66 69
80 76 69 92 68 78
69 60 77 69 61 69
77 79 81 83 63 79
61 78 78 82 70 83
72 62 76 85 68 67
67 73 84 82 59 47
80 64 57
66
Source: Data provided courtesy of Robyn Gallagher, R.N., Ph.D.
attend. We use the SAS® software package to analyze the data. The SAS®
command is PROC LOGISTIC, but if we wish to predict attendance in the
cardiac program, we need to use the “descending” option with PROC
LOGISTIC. (When you wish to predict the outcome labeled “1” of the
dependent variable, use the ‘“descending option” in SAS®. Consult
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St andar d wal d
Par anet er DF Esti mate Error Chi - Squar e Pr > ChiSq
I ntercept 1 1.8744 0. 9809 3. 6518 0. 0560
age 1 —0. 0379 0.0146 6. 7083 0. 0096

FIGURE 11.4.2 Partial SAS® printout of the logistic regression analysis of the data in Table 11.4.3.

SAS®documentation for further details.) A partial printout of the analysis is
shown in Figure 11.4.2.

The slope of our regression is —.0379, and the intercept is 1.8744. The
regression equation, then, is

$, = 1.8744 — .0379x;

where ; = In[p;(1 — p;)] and p; is the predicted probability of attending
cardiac rehabilitation for a woman aged x;.

Test of Hy that 8, =0

We reach a conclusion about the adequacy of the logistic model by testing the null
hypothesis that the slope of the regression line is zero. The test statistic is z = B 1 / s; where
z is the standard normal statistic, ,3, is the sample slope (—.0379), and S, is its standard
error (.0146) as shown in Figure 11.4.2. From these numbers we compute z=
—.0379/.0146 = —2.5959, which has an associated two-sided p value of .0094. We
conclude, therefore, that the logistic model is adequate. The square of z is chi-square
with 1 degree of freedom, a statistic that is shown in Figure 11.4.2.

Using the Logistic Regression to Estimate p

We may use Equation 11.4.5 and the results of our analysis to estimate p, the probability
that a woman of a given age (within the range of ages represented by the data) will
attend a cardiac rehabilitation program. Suppose, for example, that we wish to estimate
the probability that a woman who is 50 years of age will participate in a rehabilitation
program. Substituting 50 and the results shown in Figure 11.4.2 into Equation 11.4.5
gives

_ exp[1.8744 — (.0379)(50)]
=Tt expl1.8744 — (0379)(50)] %

e’

SAS® calculates the estimated probabilities for the given values of X. We can see the
estimated probabilities of attending cardiac rehabilitation programs for the age range
of the subjects enrolled in the study in Figure 11.4.3. Since the slope was negative,
we see a decreasing probability of attending a cardiac rehabilitation program for older
women.
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FIGURE 11.4.3 Estimated probabilities of attendance for ages within the study for
Example 11.4.2. |

Multiple Logistic Regression Practitioners often are interested in the rela-
tionships of several independent variables to a response variable. These independent
variables may be either continuous or discrete or a combination of the two.

Multiple logistic models are constructed by expanding Equations (11.4.1) to (11.4.4).
If we begin with Equation 11.4.4, multiple logistic regression can be represented as

In [1 l_?p} = Bo + Brixij + Boxa + -+ By (11.4.6)
Using the logit transformation, we now have

_ exP(ﬂo + Bix1; + Boxgj + - + ,kakj)
1+ exp(By + Bixyj + Boxgj + -+ + Bixy)

(11.4.7)

EXAMPLE 11.4.3

Consider the data presented in Review Exercise 24. In this study by Fils-Aime et al. (A-21),
data were gathered and classified with regard to alcohol use. Subjects were classified
as having either early (< 25 years) or late (> 25 years) onset of excessive alcohol use.



11.4 LOGISTIC REGRESSION 577

Parameter B S.E. Wald Df Sig. Exp(B)
5- H AA —. 013 . 006 5.878 1 . 015 . 987
TRYPT . 000 . 000 . 000 1 . 983 1. 000
Const ant 2.076 1.049 3.918 1 . 048 7.970

FIGURE 11.4.4 SPSS output for the data in Example 11.4.3.

Levels of cerebrospinal fluid (CSF) tryptophan (TRYPT) and 5-hydroxyindoleacetic acid
(5-HIAA) concentrations were also obtained.

Solution: The independent variables are the concentrations of TRYPT and 5-HIAA, and
the dependent variable is the dichotomous response for onset of excessive
alcohol use. We use SPSS software to analyze the data. The output is
presented in Figure 11.4.4.

The equation can be written as

)A/l» =2.076 — .013X1j + Ox2j

Note that the coefficient for TRYPT is 0, and therefore it is not playing a role in the
model.

Test of Hy that 8, =0

Tests for significance of the regression coefficients can be obtained directly from
Figure 11.4.4. Note that both the constant (intercept) and the 5-HIAA variables are
significant in the model (both have p values, noted as “Sig.” in the table, <.05); however,
TRYPT is not significant and therefore need not be in the model, suggesting that it is not
useful for identifying those study participants with early or late alcoholism onset.

As above, probabilities can be easily obtained by using Equation 11.4.7 and
substituting the values obtained from the analysis. [ |

Assessing Goodness of Fit A natural question that arises when doing logistic
regression is: “How good is my model?” In classical linear regression we discussed
measures such as R* for determining how much variation is explained by the model, with
values of R? approaching 1 as a good indicator of model adequacy based on the predictors
chosen to model the outcome. Given the nature of the response variable in logistic
regression, a coefficient of determination does not provide the same information as it does
in linear regression. This is because in logistic regression values of the parameters are not
derived to minimize sums of squares, but rather are iterative estimates; hence, there is no
equivalent measure of R” in logistic regression. Below, we provide an explanation of some
commonly used approaches to evaluate logistic regression models, and follow these
explanations with two illustrative examples.

Many authors have attempted to develop what are known as “pseudo-R*” values that
range from O to 1, with higher values indicating better fit. In general, these measures are
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based on comparisons of a derived model with a model that contains only an intercept. In
other words, they are comparative measures designed to indicate “how much better” a
model with predictor variables is when compared to a model with no predictors. Two
commonly used pseudo-R? statistics were developed by Cox and Snell (4) and Nagelkerke
(5). These are often provided in standard outputs of statistical software. The value of these
measures is the fact that they may be useful for comparing models with different predictor
variables, but provide little relative use for examining a single model. Both of these
approaches are based on the idea of using a measure of fit known as the log-likelihood
statistic. The log-likelihood for the intercept-only model is used to represent the total sum
of squares, while the log-likelihood for the model with predictor variables is used to
represent the error sum of squares. Interested readers may find an explanation of the log-
likelihood statistic in Hosmer and Lemeshow (2).

Another intuitive approach is to consider a classification table. Using this method,
one develops a contingency table that provides frequency counts of the number of data
points that were observed to be either O or 1 in the raw data, along with whether the raw data
were classified as O or 1 based on the predictive equation. One can then estimate how many
of the data points were correctly classified. As a general rule-of-thumb, correctly
classifying 70 percent or greater is considered evidence of a satisfactory model from a
statistical viewpoint. However, the model may not provide great enough predictive ability
to be useful in a practice sense. A problem does arise, however, in that reclassifying the
same data used to build a model with the model itself may bias the results. There are two
practical ways to deal with this issue. First, one may use part of the data set to construct the
model and the other part of the data set to develop a classification table. This strategy, of
course, requires a sample large enough to accommodate adequately the needs of both
procedures. A second approach is to construct a model using the data in hand and then
collect additional data to test the adequacy of the model using a classification table. This
strategy, too, has its shortcomings, as the collection of additional data can be both time-
consuming and expensive.

A third approach that also has intuitive visual appeal is to develop a plot that shows
the frequency of observations against their predicted probability. In this type of plot, one
would hope to see a complete separation of 0 and 1 values. When there is misclassification
of the outcome variable, this type of plot provides a means of determining where the
misclassification occurred, and how frequently observations were misclassified.

Finally, in a commonly used approach known as the Hosmer and Lemeshow test, one
develops a table of observed and expected frequencies and uses a chi-square test to
determine if there is a significant deviation between the observed and expected frequen-
cies. For the interested reader, we suggest the text by Hosmer and Lemeshow (2).

EXAMPLE 11.44

Consider the logistic regression model that was constructed from the cardiac rehabilitation
program data in Example 11.4.2.

Figure 11.4.5 shows standard SPSS output for this logistic regression model. In this
figure, we see that both the Cox and Snell and the Nagelkerke pseudo—R2 values are
provided. Since they are both > 0, the model with the predictor provides more information
than the intercept-only model. One can readily see that only 63% of the data were correctly
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Model Summary
Cox & Snell R Nagelkerke R

Square Square
.037 .051

Classification Table?

Predicted
att Percentage
Observed 0 1 Correct
att 0 111 10 91.7
1 58 5 7.9
Overall Percentage 63.0

Observed Groups and Predicted Probabilities

16 + +

I I

1 11 I

F I 1 1 I

R 12 + 11 +

E I 1 11 I

Q I 0 11 I

u I 0 0 01 I

E 8 + 0 10 00 +

N I 01 10 00 11 I

[ I 101110001 00 1111 I

Y I 1 00000000100111111 1 1 I

4 + 00 00000000100111201101 1 1 +

I 00000000000100110101101 1 01 1 I

I 00000000000000100000000 1 0 00 0 1 I

I 0 0000000000000000000000010 00 00 1000 000 0 I
Predicted

Prob: 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Group: 00000000000000000000000000000000600000000000000000011112131212123331313111133131313111111113131311111111

FIGURE 11.4.5 Partial SPSS output for the logistic regression analysis of the data in Example
11.4.2.

reclassified, with those participating in the rehabilitation program much more poorly classi-
fied than those who did not attend the program. The frequency distribution shows the large
number of ATT = 1 subjects who were misclassified as ATT = 0 based on the model. [ ]

EXAMPLE 11.4.5

Consider the logistic regression model that was constructed from the cardiac rehabilitation
program data in Example 11.4.3.

Figure 11.4.6 shows standard SPSS output for this logistic regression model. In this
figure, we see that both the Cox and Snell and the Nagelkerke pseudo-R” values are provided,
and since they are both > 0, the model with the predictors provides more information than
the intercept-only model. One can readily see that only 69% of the data were correctly
reclassified, with the model reclassifying those with onset of excessive alcohol use at a much
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Model Summary
Cox & Snell R Nagelkerke R
Square Square
0.49 .069
Classification Table?
Predicted
Onset Percentage
Observed 0 1 Correct
onset 0 2 37 5.1
1 3 87 96.7
Overall Percentage 69.0
a. The cut value is. 500
Observed Groups and Predicted Probabilities
16 + +
I I
I 1
F I I
R 12 + +
E I I
Q I I
U I 1 I
E 8 + 1 1 +
N I 1 11 1 I
c I 1 111 1111 11 I
Y I 1 11111110 11 1 I
4 + 1 0 11111110 1111 +
I 11 10 11110110 11111111 I
I 111 10110101010010111113111 I
I 0 01 1 1 000111 000 00000000010000100111010011 I
Predicted
Prob: 0 .1 .2 .3 .4 .S .6 7 .8 .9 1
Group: 000000000000000000000000000006000000000000000000001111111111111313111111133333313131112313123131111131111
FIGURE 11.4.6 Partial SPSS output for the logistic regression analysis of the data in Example 11.4.3.
higher rate than those without such onset. The frequency distribution shows the large number
of those without onset of excessive alcohol use predicted by the model to develop early onset
of alcoholism. [

Polytomous Logistic Regression Thus far we have limited our discussion
to situations in which there is a dichotomous response variable (e.g., successful or
unsuccessful). Often, we have a situation in which multiple categories make up the
response. We may, for example, have subjects that are classified as positive, negative, and
undetermined for a given disease (a standard polytomous response). There may also be
times when we have a response variable that is ordered. We may, for example, classify our
subjects by BMI as underweight, ideal weight, overweight, or obese (an ordinal poly-
tomous response). The modeling process is slightly more complex and requires the use of a
computer program. For those interested in exploring these valuable methods further, we
recommend the book by Hosmer and Lemeshow (2).
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Further Reading We have discussed only the basic concepts and applications of
logistic regression. The technique has much wider application. Stepwise regression analysis
may be used with logistic regression. There are also techniques available for constructing
confidence intervals for odds ratios. The reader who wishes to learn more about logistic
regression may consult the books by Hosmer and Lemeshow (2) and Kleinbaum (3).

EXERCISES

114.1

114.2

In a study of violent victimization of women and men, Porcerelli et al. (A-11) collected information
from 679 women and 345 men ages 18 to 64 years at several family-practice centers in the
metropolitan Detroit area. Patients filled out a health history questionnaire that included a question
about victimization. The following table shows the sample subjects cross-classified by gender and
whether the subject self-identified as being “hit, kicked, punched, or otherwise hurt by someone
within the past year.” Subjects answering yes to that question are classified “violently victimized.”
Use logistic regression analysis to find the regression coefficients and the estimate of the odds ratio.
Write an interpretation of your results.

Victimization Women Men Total
No victimization 611 308 919
Violently victimized 68 37 105
Total 679 345 1024

Source: John H. Porcerelli, Rosemary Cogan, Patricia P. West, Edward A. Rose, Dawn
Lambrecht, Karen E. Wilson, Richard K. Severson, and Dunia Karana, “Violent Victimization
of Women and Men: Physical and Psychiatric Symptoms,” Journal of the American Board of
Family Practice, 16 (2003), 32-39.

Refer to the research of Gallagher et al. (A-10) discussed in Example 11.4.2. Another covariate of
interest was a score using the Hospital Anxiety and Depression Index. A higher value for this score
indicates a higher level of anxiety and depression. Use the following data to predict whether a woman
in the study participated in a cardiac rehabilitation program.

Hospital Anxiety
and Depression
Index Scores for
Hospital Anxiety and Depression Index Participating
Scores for Nonparticipating Women Women

17 14 19 16 23 25
7 21 6 9 3 6
19 13 8 22 24 29
16 15 13 17 13 22
23 21 4 14 26 11
27 12 15 14 19 12
23 9 23 5 25 20
18 29 19 5 15 18
21 4 14 14 22 24
27 18 19 20 13 18

(Continued)
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Hospital Anxiety
and Depression
Index Scores for

Hospital Anxiety and Depression Index Participating
Scores for Nonparticipating Women Women

14 22 17 21 21 8
25 5 13 17 15 10
19 27 14 17 12 17
23 16 14 10 25 14

6 11 17 13 29 21

8 19 26 10 17 25
15 23 15 20 21 25
30 22 19 3 8 16
18 25 16 18 19 23
10 11 10 9 16 19
29 20 15 10 24 24

8 11 22 5 17 11
12 28 8 15 26 17
27 12 15 13 12 19
12 19 20 16 19 20

9 18 12 13 17
16 13 2 23 31

6 12 6 11 0
22 7 14 17 18
10 12 19 29 18

9 14 14 6 15
11 13 19 20

Source: Data provided courtesy of Robyn Gallagher, R.N., Ph.D.

11.5 SUMMARY

This chapter is included for the benefit of those who wish to extend their understanding of
regression analysis and their ability to apply techniques to models that are more complex
than those covered in Chapters 9 and 10. In this chapter we present some additional topics
from regression analysis. We discuss the analysis that is appropriate when one or more of
the independent variables is dichotomous. In this discussion the concept of dummy
variable coding is presented. A second topic that we discuss is how to select the most
useful independent variables when we have a long list of potential candidates. The
technique we illustrate for the purpose is stepwise regression analysis. Finally, we present
the basic concepts and procedures that are involved in logistic regression analysis. We
cover two situations: the case in which the independent variable is dichotomous, and the
case in which the independent variable is continuous.

Since the calculations involved in obtaining useful results from data that are
appropriate for analysis by means of the techniques presented in this chapter are
complicated and time-consuming when attempted by hand, it is recommended that a
computer be used to work the exercises.



REVIEW QUESTIONS AND EXERCISES 583

SUMMARY OF FORMULAS FOR CHAPTER 11

Formula
Number Name Formula
11.4.1- Representations of the simple y=PBy+Bix+e
1143 linear regression model Myl = Bo + Bix
E(y\x) = :30 + ﬂlx
11.44 Simple logistic regression model | |, [ﬁ] = By + Py
11.4.5 Alternative representation of the _exp(By + Bix)
simple logistic regression model "1 +exp(By + Bix)
11.4.6 Alter.natlve representation of the In [ ﬁ } = Bo+ Buxy + Botsy + - + P
multiple logistic regression model
11.4.7 Alternative representation of the exp(By + Bixij + Boxoj + - + Bixij)
multiple logistic regression model | 7 = 1+ exp(ﬁo + Bixyj + Boxaj + -+ ﬂkxkj)
Symbol * f, = regression intercept
Key * B; = regression coefficient
* ¢ = regression model error term
* E(yx = expected value of yatx
e In [1177,;] = log it transformation
* iy, = mean of yatx
e x; = value of independent variable ati

REVIEW QUESTIONS AND EXERCISES

—
= e

R A L T o

What is a qualitative variable?

What is a dummy variable?

Explain and illustrate the technique of dummy variable coding.

Why is a knowledge of variable selection techniques important to the health sciences researcher?
What is stepwise regression?

Explain the basic concept involved in stepwise regression.

When is logistic regression used?

Write out and explain the components of the logistic regression model.

Define the word odds.

What is an odds ratio?

Give an example in your field in which logistic regression analysis would be appropriate when the
independent variable is dichotomous.
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12.

13.

14.

Give an example in your field in which logistic regression analysis would be appropriate when the
independent variable is continuous.

Find a published article in the health sciences field in which each of the following techniques is employed:
(a) Dummy variable coding

(b) Stepwise regression

(c) Logistic regression

Write a report on the article in which you identify the variables involved, the reason for the choice of
the technique, and the conclusions that the authors reach on the basis of their analysis.

In Example 10.3.1, we saw that the purpose of a study by Jansen and Keller (A-12) was to predict the
capacity to direct attention (CDA) in elderly subjects. The study collected information on 71
community-dwelling older women with normal mental status. Higher CDA scores indicate better
attentional functioning. In addition to the variables age and education level, the researchers
performed stepwise regression with two additional variables: IADL, a measure of activities of
daily living (higher values indicate greater number of daily activities), and ADS, a measure of
attentional demands (higher values indicate more attentional demands). Perform stepwise regression
with the data in the following table and report your final model, p values, and conclusions.

CDhA Age Edyrs TADL ADS CDhA Age Edyrs TIADL ADS
4.57 72 20 28 27 3.17 79 12 28 18
—3.04 68 12 27 96 -1.19 87 12 21 61
1.39 65 13 24 97 0.99 71 14 28 55
—3.55 85 14 27 48 —2.94 81 16 27 124
—2.56 84 13 28 50 -2.21 66 16 28 42
—4.66 90 15 27 47 —0.75 81 16 28 64
—2.70 79 12 28 71 5.07 80 13 28 26
0.30 74 10 24 48 —5.86 82 12 28 84
—4.46 69 12 28 67 5.00 65 13 28 43
—6.29 87 15 21 81 0.63 73 16 26 70
—4.43 84 12 27 44 2.62 85 16 28 20
0.18 79 12 28 39 1.77 83 17 23 80
—1.37 71 12 28 124 -3.79 83 8 27 21
3.26 76 14 29 43 1.44 76 20 28 26
—-1.12 73 14 29 30 =5.77 77 12 28 53
-0.77 86 12 26 44 =5.77 83 12 22 69
3.73 69 17 28 47 —4.62 79 14 27 82
—-5.92 66 11 28 49 —2.03 69 12 28 71
5.74 65 16 28 48 —2.22 66 14 28 38
2.83 71 14 28 46 0.80 75 12 28 28
—2.40 80 18 28 25 —0.75 71 16 27 85
-0.29 81 11 28 27 —4.60 78 12 22 82
4.44 66 14 29 54 2.68 83 20 28 34
3.35 76 17 29 26 —3.69 85 10 20 72
-3.13 70 12 25 100 4.85 76 18 28 24
—2.14 76 12 27 38 —0.08 75 14 29 49
9.61 67 12 26 84 0.63 70 16 28 29
7.57 72 20 29 44 5.92 79 16 27 83

(Continued)
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CDA Age Edyrs TADL ADS CDA Age Edyrs IADL ADS
2.21 68 18 28 52 3.63 75 18 28 32
—2.30 102 12 26 18 —7.07 94 8 24 80
1.73 67 12 27 80 6.39 76 18 28 41
6.03 66 14 28 54 —0.08 84 18 27 75
—0.02 75 18 26 67 1.07 79 17 27 21
—7.65 91 13 21 101 5.31 78 16 28 18
4.17 74 15 28 90 0.30 79 12 28 38

Source: Data provided courtesy of Debra Jansen, Ph.D., R.N.

In the following table are the cardiac output (L/min) and oxygen consumption (Vo,) values for a
sample of adults (A) and children (C), who participated in a study designed to investigate the
relationship among these variables. Measurements were taken both at rest and during exercise. Treat
cardiac output as the dependent variable and use dummy variable coding and analyze the data by
regression techniques. Explain the results. Plot the original data and the fitted regression equations.

Cardiac Vo, Age Cardiac Vo,

Output (L/min) (L/min) Group Output (L/min) (L/min) Age Group
4.0 21 A 4.0 25 C
7.5 91 C 6.1 22 A
3.0 22 C 6.2 .61 C
8.9 .60 A 4.9 45 C
5.1 .59 C 14.0 1.55 A
5.8 .50 A 12.9 1.11 A
9.1 .99 A 11.3 1.45 A
3.5 23 C 5.7 .50 C
7.2 51 A 15.0 1.61 A
5.1 48 C 7.1 .83 C
6.0 74 C 8.0 .61 A
5.7 .70 C 8.1 .82 A

14.2 1.60 A 9.0 1.15 C
4.1 .30 C 6.1 .39 A

A simple random sample of normal subjects between the ages of 6 and 18 yielded the data on total
body potassium (mEq) and total body water (liters) shown in the following table. Let total potassium
be the dependent variable and use dummy variable coding to quantify the qualitative variable.
Analyze the data using regression techniques. Explain the results. Plot the original data and the fitted
regression equations.

Total Body Total Body Total Body Total Body

Potassium Water Sex Potassium Water Sex
795 13 M 950 12 F

1590 16 F 2400 26 M

1250 15 M 1600 24 F

1680 21 M 2400 30 M

(Continued)
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17.

18.

Total Body Total Body Total Body Total Body
Potassium Water Sex Potassium Water Sex
800 10 F 1695 26 F
2100 26 M 1510 21 F
1700 15 F 2000 27 F
1260 16 M 3200 33 M
1370 18 F 1050 14 F
1000 11 F 2600 31 M
1100 14 M 3000 37 M
1500 20 F 1900 25 F
1450 19 M 2200 30 F
1100 14 M

The data shown in the following table were collected as part of a study in which the subjects were
preterm infants with low birth weights born in three different hospitals. Use dummy variable coding
and multiple regression techniques to analyze these data. May we conclude that the three sample
hospital populations differ with respect to mean birth weight when gestational age is taken into
account? May we conclude that there is interaction between hospital of birth and gestational age?
Plot the original data and the fitted regression equations.

Birth Gestation Hospital Birth Gestation Hospital
Weight (kg) Age (weeks) of Birth Weight (kg) Age (weeks) of Birth
14 30 A 1.0 29 C
9 27 B 1.4 33 C
1.2 33 A 9 28 A
1.1 29 C 1.0 28 C
1.3 35 A 1.9 36 B
.8 27 B 1.3 29 B
1.0 32 A 1.7 35 C
7 26 A 1.0 30 A
1.2 30 C 9 28 A
8 28 A 1.0 31 A
1.5 32 B 1.6 31 B
1.3 31 A 1.6 33 B
14 32 C 1.7 34 B
1.5 33 B 1.6 35 C
1.0 27 A 1.2 28 A
1.8 35 B 1.5 30 B
1.4 36 C 1.8 34 B
1.2 34 A 1.5 34 C
1.1 28 B 1.2 30 A
1.2 30 B 1.2 32 C

Refer to Chapter 9, Review Exercise 18. In the study cited in that exercise, Maria Mathias (A-13)
investigated the relationship between ages (AGE) of boys and improvement in measures of
hyperactivity, attitude, and social behavior. In the study, subjects were randomly assigned to two
different treatments. The control group (TREAT = 0) received standard therapy for hyperactivity,
and the treatment group (TREAT = 1) received standard therapy plus pet therapy. The results are
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shown in the following table. Create a scatter plot with age as the independent variable and ATT
(change in attitude with positive numbers indicating positive change in attitude) as the dependent
variable. Use different symbols for the two different treatment groups. Use multiple regression
techniques to determine whether age, treatment, or the interaction are useful in predicting ATT.
Report your results.

Subject TREAT AGE ATT Subject TREAT AGE ATT
1 1 9 -1.2 17 0 10 0.4
2 1 9 0.0 18 0 7 0.0
3 1 13 —-0.4 19 0 12 1.1
4 1 6 —-0.4 20 0 9 0.2
5 1 9 1.0 21 0 7 0.4
6 1 8 0.8 22 0 6 0.0
7 1 8 —0.6 23 1 11 0.6
8 1 9 -1.2 24 1 11 0.4
9 0 7 0.0 25 1 11 1.0

10 0 12 0.4 26 1 11 0.8

11 0 9 —-0.8 27 1 11 1.2

12 0 10 1.0 28 1 11 0.2

13 0 12 1.4 29 1 11 0.8

14 0 9 1.0 30 1 8 0.0

15 0 12 0.8 31 1 9 0.4

16 0 9 1.0

Source: Data provided courtesy of Maria Mathias, M.D. and the Wright State University Statistical Consulting
Center.

For each study described in Exercises 19 through 21, answer as many of the following questions as
possible:

(a) Which is the dependent variable?

(b) What are the independent variables?

(c) What are the appropriate null and alternative hypotheses?
(d) Which null hypotheses do you think were rejected? Why?

(e) Which is the more relevant objective, prediction or estimation, or are the two equally relevant?
Explain your answer.

(f) What is the sampled population?
(g) What is the target population?

(h) Which variables are related to which other variables? Are the relationships direct or
inverse?

(i) Write out the regression equation using appropriate numbers for parameter estimates.

(j) Give numerical values for any other statistics that you can.

(k) Identify each variable as to whether it is quantitative or qualitative.

() Explain the meaning of any statistics for which numerical values are given.

Golfinopoulos and Arhonditsis (A-14) used a multiple regression model in a study of trihalomethanes

(THMs) in drinking water in Athens, Greece. THMs are of concern since they have been related to
cancer and reproductive outcomes. The researchers found the following regression model useful in
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20.

21.

22,

predicting THM:

THM = —.26chla + 1.57 pH + 28.74Br — 66.72Br?
—43.635 + 1.135p + 2.62T x S — 72T x CL

The variables were as follows: chla = chlorophyll concentration, pH = acid/base scale,
Br = bromide concentration, S = dummy variable for summer, Sp = dummy variable for spring,
T = Temperature, and CL = chlorine concentration. The researchers reported R = .52, p < .001.

In a study by Takata et al. (A-15), investigators evaluated the relationship between chewing ability
and teeth number and measures of physical fitness in a sample of subjects ages 80 or higher in Japan.
One of the outcome variables that measured physical fitness was leg extensor strength. To measure
the ability to chew foods, subjects were asked about their ability to chew 15 foods (peanuts, vinegared
octopus, and French bread, among others). Consideration of such variables as height, body weight,
gender, systolic blood pressure, serum albumin, fasting glucose concentration, back pain, smoking,
alcohol consumption, marital status, regular medical treatment, and regular exercise revealed that the
number of chewable foods was significant in predicting leg extensor strength (Bl = .075,p = .0366).
However, in the presence of the other variables, number of teeth was not a significant predictor
(B, = .003,p = .9373).

Varela et al. (A-16) examined 515 patients who underwent lung resection for bronchogenic
carcinoma. The outcome variable was the occurrence of cardiorespiratory morbidity after surgery.
Any of the following postoperative events indicated morbidity: pulmonary atelectasis or pneu-
monia, respiratory or ventilatory insufficiency at discharge, need for mechanical ventilation at any
time after extubation in the operating room, pulmonary thromboembolism, arrhythmia, myocar-
dial ischemia or infarct, and clinical cardiac insufficiency. Performing a stepwise logistic
regression, the researchers found that age (p < .001) and postoperative forced expiratory volume
(p = .003) were statistically significant in predicting the occurrence of cardiorespiratory
morbidity.

For each of the data sets given in Exercises 22 through 29, do as many of the following as you think

appropriate:

(a) Apply one or more of the techniques discussed in this chapter.

(b) Apply one or more of the techniques discussed in previous chapters.

(c) Construct graphs.

(d) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(e) State the statistical decisions and clinical conclusions that the results of your hypothesis tests
justify.

(f) Describe the population(s) to which you think your inferences are applicable.

A study by Davies et al. (A-17) was motivated by the fact that, in previous studies of contractile
responses to B-adrenoceptor agonists in single myocytes from failing and nonfailing human
hearts, they had observed an age-related decline in maximum response to isoproterenol, at
frequencies where the maximum response to high Ca>* in the same cell was unchanged. For the
present study, the investigators computed the isoproterenol/Ca®* ratio (ISO/CA) from measure-
ments taken on myocytes from patients ranging in age from 7 to 70 years. Subjects were
classified as older (> 50 years) and younger. The following are the (ISO/CA) values, age,
and myocyte source of subjects in the study. Myocyte sources were reported as donor and
biopsy.
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Age ISO/CA Myocyte Source
7 1.37 Donor
21 1.39 Donor
28 1.17 Donor
35 0.71 Donor
38 1.14 Donor
50 0.95 Donor
51 0.86 Biopsy
52 0.72 Biopsy
55 0.53 Biopsy
56 0.81 Biopsy
61 0.86 Biopsy
70 0.77 Biopsy

Source: Data provided courtesy of Dr. Sian E. Harding.

Hayton et al. (A-18) investigated the pharmacokinetics and bioavailability of cefetamet and
cefetamet pivoxil in infants between the ages of 3.5 and 17.3 months who had received the antibiotic
during and after urological surgery. Among the pharmacokinetic data collected were the following
measurements of the steady-state apparent volume of distribution (V). Also shown are previously
collected data on children ages 3 to 12 years (A-19) and adults (A-20). Weights (W) of subjects are
also shown.

Infants Children Adults

W (kg) V (liters) W (kg) V (liters) W (kg) V (liters)

6.2 2.936 13 4.72 61 19.7
7.5 3.616 14 5.23 80 23.7
7.0 1.735 14 5.85 96 20.0
7.1 2.557 15 4.17 75 19.5
7.8 2.883 16 5.01 60 19.6
8.2 2318 17 5.81 68 21.5
8.3 3.689 17 7.03 722 21.9
8.5 4.133 17.5 6.62 87 30.9
8.6 2.989 17 4.98 66.5 204
8.8 3.500 17.5 6.45

10.0 4.235 20 7.73

10.0 4.804 23 7.67

10.2 2.833 25 9.82

10.3 4.068 37 14.40

10.6 3.640 28 10.90

10.7 4.067 47 15.40

10.8 8.366 29 9.86

11.0 4.614 37 14.40

12.5 3.168

13.1 4.158

Source: Data provided courtesy of Dr. Klaus Stoeckel.
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According to Fils-Aime et al. (A-21), epidemiologic surveys have found that alcoholism is the most
common mental or substance abuse disorder among men in the United States. Fils-Aime and
associates investigated the interrelationships of age at onset of excessive alcohol consumption, family
history of alcoholism, psychiatric comorbidity, and cerebrospinal fluid (CSF) monoamine metabolite
concentrations in abstinent, treatment-seeking alcoholics. Subjects were mostly white males
classified as experiencing early (25 years or younger) or late (older than 25 years) onset of excessive
alcohol consumption. Among the data collected were the following measurements on CSF trypto-
phan (TRYPT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations (pmol/ml).

Onset Onset
1 = Early 1 = Early
5-HIAA TRYPT 0 = Late 5-HIAA TRYPT 0 = Late
57 3315 1 102 3181 1
116 2599 0 51 2513 1
81 3334 1 92 2764 1
78 2505 0 104 3098 1
206 3269 0 50 2900 1
64 3543 1 93 4125 1
123 3374 0 146 6081 1
147 2345 1 96 2972 1
102 2855 1 112 3962 0
93 2972 1 23 4894 1
128 3904 0 109 3543 1
69 2564 1 80 2622 1
20 8832 1 111 3012 1
66 4894 0 85 2685 1
90 6017 1 131 3059 0
103 3143 0 58 3946 1
68 3729 0 110 3356 0
81 3150 1 80 3671 1
143 3955 1 42 4155 1
121 4288 1 80 1923 1
149 3404 0 91 3589 1
82 2547 1 102 3839 0
100 3633 1 93 2627 0
117 3309 1 98 3181 0
41 3315 1 78 4428 0
223 3418 0 152 3303 0
96 2295 1 108 5386 1
87 3232 0 102 3282 1
96 3496 1 122 2754 1
34 2656 1 81 4321 1
98 4318 1 81 3386 1
86 3510 0 99 3344 1
118 3613 1 73 3789 1
84 3117 1 163 2131 1
99 3496 1 109 3030 0
114 4612 1 90 4731 1

(Continued)
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Onset Onset
1 = Early 1 = Early
5-HIAA TRYPT 0 = Late 5-HIAA TRYPT 0 = Late
140 3051 1 110 4581 1
74 3067 1 48 3292 0
45 2782 1 77 4494 0
51 5034 1 67 3453 1
99 2564 1 92 3373 1
54 4335 1 86 3787 0
93 2596 1 101 3842 1
50 2960 1 88 2882 1
118 3916 0 38 2949 1
96 2797 0 75 2248 0
49 3699 1 35 3203 0
133 2394 0 53 3248 1
105 2495 0 77 3455 0
61 2496 1 179 4521 1
197 2123 1 151 3240 1
87 3320 0 57 3905 1
50 3117 1 45 3642 1
109 3308 0 76 5233 0
59 3280 1 46 4150 1
107 3151 1 98 2579 1
85 3955 0 84 3249 1
156 3126 0 119 3381 0
110 2913 0 41 4020 1
81 3786 1 40 4569 1
53 3616 1 149 3781 1
64 3277 1 116 2346 1
57 2656 1 76 3901 1
29 4953 0 96 3822 1
34 4340 1

Source: Data provided courtesy of Dr. Markku Linnoila.

The objective of a study by Abrahamsson et al. (A-22) was to investigate the anti-thrombotic effects
of an inhibitor of the plasminogen activator inhibitor-1 (PAI-1) in rats given endotoxin. Experimental
subjects were male Sprague-Dawley rats weighing between 300 and 400 grams. Among the data
collected were the following measurements on PAI-1 activity and the lung '*I-concentration in
anesthetized rats given three drugs:

Plasma PAI-1 1251_Fibrin in the Lungs
Drugs Activity (U/ml) (% of Ref. Sample)
Endotoxin 127 158
175 154
161 118
137 71
219 172

(Continued)
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Plasma PAI-1 1251_Fibrin in the Lungs

Drugs Activity (U/ml) (% of Ref. Sample)
260 277
203 216
195 169
414 272
244 192
Endotoxin + PRAP = 1 low dose 107 49
103 28
248 187
164 109
176 96
230 126
184 148
276 17
201 97
158 86
Endotoxin 4+ PRAP = 1 high dose 132 86
130 24
75 17
140 41
166 114
194 110
121 26
111 53
208 71
211 90

Source: Data provided courtesy of Dr. Tommy Abrahamsson.

26. Pearse and Sylvester (A-23) conducted a study to determine the separate contributions of ischemia
and extracorporeal perfusion to vascular injury occurring in isolated sheep lungs and to determine the
oxygen dependence of this injury. Lungs were subjected to ischemia alone, extracorporeal perfusion
alone, and both ischemia and extracorporeal perfusion. Among the data collected were the following
observations on change in pulmonary arterial pressure (mm Hg) and pulmonary vascular perme-
ability assessed by estimation of the reflection coefficient for albumin in perfused lungs with and
without preceding ischemia:

Ischemic—Perfused Lungs Perfused Lungs
Change in Change in
Pulmonary Reflection Pulmonary Reflection
Pressure Coefficient Pressure Coefficient
8.0 0.220 34.0 0.693
3.0 0.560 31.0 0.470
10.0 0.550 4.0 0.651

23.0 0.806 48.0 0.999
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Ischemic—Perfused Lungs Perfused Lungs

Change in Change in
Pulmonary Reflection Pulmonary Reflection
Pressure Coefficient Pressure Coefficient
15.0 0.472 32.0 0.719
43.0 0.759 27.0 0.902
18.0 0.489 25.0 0.736
27.0 0.546 25.0 0.718
13.0 0.548

0.0 0.467

Source: Data provided courtesy of Dr. David B. Pearse.

The purpose of a study by Balzamo et al. (A-24) was to investigate, in anesthetized rabbits, the effects
of mechanical ventilation on the concentration of substance P (SP) measured by radioimmunoassay
in nerves and muscles associated with ventilation and participating in the sensory innervation of the
respiratory apparatus and heart. SP is a neurotransmitter located in primary sensory neurons in the
central and autonomic nervous systems. Among the data collected were the following measures of SP
concentration in cervical vagus nerves (X) and corresponding nodose ganglia (NG), right and left

sides:

SPXright SPNGright SPXleft SPNGleft
0.6500 9.6300 3.3000 1.9300
2.5600 3.7800 0.6200 2.8700
1.1300 7.3900 0.9600 1.3100
1.5500 3.2800 2.7000 5.6400

35.9000 22.0000 4.5000 9.1000

19.0000 22.8000 8.6000 8.0000

13.6000 2.3000 7.0000 8.3000
8.0000 15.8000 4.1000 4.7000
7.4000 1.6000 5.5000 2.5000
3.3000 11.6000 9.7000 8.0000

19.8000 18.0000 13.8000 8.0000
8.5000 6.2000 11.0000 17.2000
5.4000 7.8000 11.9000 5.3000

11.9000 16.9000 8.2000 10.6000

47.7000 35.9000 3.9000 3.3000

14.2000 10.2000 3.2000 1.9000
2.9000 1.6000 2.7000 3.5000
6.6000 3.7000 2.8000 2.5000
3.7000 1.3000

Source: Data provided courtesy of Dr. Yves Jammes.

Scheeringa and Zeanah (A-25) examined the presence of posttraumatic stress disorder (PTSD), the
severity of posttraumatic symptomatology, and the pattern of expression of symptom clusters in
relation to six independent variables that may be salient to the development of a posttraumatic
disorder in children under 48 months of age. The following data were collected during the course of

the study.
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Response Variables

Predictor Variables

Threat to

Wit./

Injury Exper.

FrAgg

Caregiver Reexp Numb Arous

Age Acute/Rept.

Gender
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Predictor Variables

Response Variables

Wit./ Threat to

Gender Age Acute/Rept. Injury Exper. Caregiver Reexp Numb Arous FrAgg
Key: Gender 0=male
1 =female
Age 0 = younger than 18 months at time of trauma
1 =older than 18 months
Acute/Rept. 0 = trauma was acute, single blow
1 =trauma was repealed or chronic
Injury 0 = subject was not injured in the trauma
1 = subject was physically injured in the trauma
Wit./Exper. 0 = subject witnessed but did not directly experience trauma

Threat to Caregiver

1 = subject directly experienced the trauma
0 = caregiver was not threatened in the trauma
1 = caregiver was threatened in the trauma

Reexp = Reexperiencing cluster symptom count

Numb = Numbing of responsiveness/avoidance cluster symptom count
Arous = Hyperarousal cluster symptom count

FrAgg = New fears/aggression cluster symptom count

Source: Data provided courtesy of Dr. Michael S. Scheeringa.

One of the objectives of a study by Mulloy and McNicholas (A-26) was to compare ventilation and
gas exchange during sleep and exercise in chronic obstructive pulmonary disease (COPD). The
investigators wished also to determine whether exercise studies could aid in the prediction of
nocturnal desaturation in COPD. Subjects (13 male, 6 female) were ambulatory patients attending an
outpatient respiratory clinic. The mean age of the patients, all of whom had severe, stable COPD, was
64.8 years with a standard deviation of 5.2. Among the data collected were measurements on the
following variables:

Lowest Mean Lowest Fall

Age PaO, PaCO, FEV, Ex. Sleep Sleep  Sleep
(years) BMI (mm Hg) (mm Hg) (% Predicted) Sao*  Sao,” Sao*  Saoy”
67 2346 525 54 22 74 70.6 56 29.6
62 2531 5775 49.575 19 82 85.49 76 11.66
68 23.11 72 43.8 41 95 88.72 82 11.1
61 25.15 72 474 38 88 91.11 76 18.45
70 2454 78 40.05 40 88 92.86 92 0.8
71 2547  63.75 45.375 31 85 88.95 80 13
60 19.49  80.25 42.15 28 91 94.78 90 4
57 21.37 84.75 40.2 20 91 93.72 89 5.8
69 25.78  68.25 43.8 32 85 90.91 79 13

57 22.13  83.25 43.725 20 88 94.39 86 9.5
74 26.74  57.75 51 33 75 89.89 80 14.11
63 19.07 78 44.175 36 81 93.95 82 13
64 19.61  90.75 40.35 27 90 95.07 92 4

73 3030 69.75 38.85 53 87 90 76 18

(Continued)
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Lowest Mean Lowest Fall
Age PaO, PaCoO, FEV, Ex. Sleep Sleep  Sleep
(years) BMI (mmHg) (mm Hg) (% Predicted) Sao,*  Sao,” Sao*  Sao,”

63 26.12  51.75 46.8 39 67 69.31 46 349
62 2171 72 41.1 27 88 87.95 72 22
67 2475 8475 40.575 45 87 92.95 90 2.17
57 2598  84.75 40.05 35 94 934 86 8.45
66 32.00 51.75 53.175 30 83 80.17 71 16

“Treated as dependent variable in the authors’ analyses. BMI=body mass index; Pao, =arterial oxygen
tension: Paco, = arterial carbon dioxide pressure; FEV| = forced expiratory volume in 1 second; Sao, = arterial
oxygen saturation.

Source: Data provided courtesy of Dr. Eithne Mulloy.

Exercises for Use with the Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

1. The goal of a study by Gyurcsik et al. (A-27) was to examine the usefulness of aquatic exercise-
related goals, task self-efficacy, and scheduling self-efficacy for predicting aquatic exercise attend-
ance by individuals with arthritis. The researchers collected data on 142 subjects participating in
Arthritis Foundation Aquatics Programs. The outcome variable was the percentage of sessions
attended over an 8-week period (ATTEND). The following predictor variables are all centered values.
Thus, for each participant, the mean for all participants is subtracted from the individual score. The
variables are:

GOALDIFF—higher values indicate setting goals of higher participation.

GOALSPEC—higher values indicate higher specificity of goals related to aquatic exercise.

INTER—interaction of GOALDIFF and GOALSPEC.

TSE—higher values indicate participants’ confidence in their abilities to attend aquatic classes.

SSE—higher values indicate participants’ confidence in their abilities to perform eight tasks related
to scheduling exercise into their daily routine for 8 weeks.

MONTHS—months of participation in aquatic exercise prior to start of study.

With the data set AQUATICS, perform a multiple regression to predict ATTEND with each of the
above variables. What is the multiple correlation coefficient? What variables are significant in
predicting ATTEND? What are your conclusions?

2. Rodehorst (A-28) conducted a prospective study of 212 rural elementary school teachers. The
main outcome variable was the teachers’ intent to manage children demonstrating symptoms of
asthma in their classrooms. This variable was measured with a single-item question that used a
seven-point Likert scale (INTENT, with possible responses of 1 = extremely probable to 7 =
extremely improbable). Rodehorst used the following variables as independent variables to predict
INTENT:

SS = Social Support. Scores range from 7 to 49, with higher scores indicating higher perceived
social support for managing children with asthma in a school setting.

ATT = Attitude. Scores range from 15 to 90, with higher scores indicating more favorable attitudes
toward asthma.
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KNOW = Knowledge. Scores range from 0 to 24, with higher scores indicating higher general
knowledge about asthma.

CHILD =Number of children with asthma the teacher has had in his or her class during his or her
entire teaching career.

SE = Self-efficacy. Scores range from 12 to 60, with higher scores indicating higher self-efficacy
for managing children with asthma in the school setting.

YRS =Years of teaching experience.

With the data TEACHERS, use stepwise regression analysis to select the most useful variables to
include in a model for predicting INTENT.

Refer to the weight loss data on 588 cancer patients and 600 healthy controls (WGTLOSS). Weight
loss among cancer patients is a well-known phenomenon. Of interest to clinicians is the role played in
the process by metabolic abnormalities. One investigation into the relationships among these
variables yielded data on whole-body protein turnover (Y) and percentage of ideal body weight
for height (X). Subjects were lung cancer patients and healthy controls of the same age. Select a
simple random sample of size 15 from each group and do the following:

(a) Draw a scatter diagram of the sample data using different symbols for each of the two groups.
(b) Use dummy variable coding to analyze these data.
(c) Plot the two regression lines on the scatter diagram. May one conclude that the two sampled

populations differ with respect to mean protein turnover when percentage of ideal weight is taken
into account?

May one conclude that there is interaction between health status and percentage of ideal body weight?
Prepare a verbal interpretation of the results of your analysis and compare your results with those of
your classmates.
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THE CHI-SQUARE
DISTRIBUTION AND THE ANALYSIS
OF FREQUENCIES

CHAPTER OVERVIEW

This chapter explores techniques that are commonly used in the analysis of
count or frequency data. Uses of the chi-square distribution, which was
mentioned briefly in Chapter 6, are discussed and illustrated in greater detail.
Additionally, statistical techniques often used in epidemiological studies are
introduced and demonstrated by means of examples.

TOPICS

12.1 INTRODUCTION

12.2 THE MATHEMATICAL PROPERTIES OF THE CHI-SQUARE DISTRIBUTION
12.3 TESTS OF GOODNESS-OF-FIT

12.4 TESTS OF INDEPENDENCE

125 TESTS OF HOMOGENEITY

12.6 THE FISHER EXACT TEST

12.7 RELATIVE RISK, ODDS RATIO, AND THE MANTEL-HAENSZEL STATISTIC
12.8 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1.
2.
3.

600

understand the mathematical properties of the chi-square distribution.
be able to use the chi-square distribution for goodness-of-fit tests.

be able to construct and use contingency tables to test independence
and homogeneity.

be able to apply Fisher’'s exact test for 2 x 2 tables.

understand how to calculate and interpret the epidemiological concepts of relative
risk, odds ratios, and the Mantel-Haenszel statistic.
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12.1 INTRODUCTION

In the chapters on estimation and hypothesis testing, brief mention is made of the chi-
square distribution in the construction of confidence intervals for, and the testing of,
hypotheses concerning a population variance. This distribution, which is one of the most
widely used distributions in statistical applications, has many other uses. Some of the more
common ones are presented in this chapter along with a more complete description of the
distribution itself, which follows in the next section.

The chi-square distribution is the most frequently employed statistical technique for
the analysis of count or frequency data. For example, we may know for a sample of
hospitalized patients how many are male and how many are female. For the same sample
we may also know how many have private insurance coverage, how many have Medicare
insurance, and how many are on Medicaid assistance. We may wish to know, for the
population from which the sample was drawn, if the type of insurance coverage differs
according to gender. For another sample of patients, we may have frequencies for each
diagnostic category represented and for each geographic area represented. We might want
to know if, in the population from which the same was drawn, there is a relationship
between area of residence and diagnosis. We will learn how to use chi-square analysis to
answer these types of questions.

There are other statistical techniques that may be used to analyze frequency data in
an effort to answer other types of questions. In this chapter we will also learn about these
techniques.

12.2 THE MATHEMATICAL PROPERTIES
OF THE CHI-SQUARE DISTRIBUTION

The chi-square distribution may be derived from normal distributions. Suppose that from a
normally distributed random variable Y with mean p and variance o we randomly and
independently select samples of size n = 1. Each value selected may be transformed to the
standard normal variable z by the familiar formula

(12.2.1)

Each value of z may be squared to obtain z>. When we investigate the sampling distri-
bution of z%, we find that it follows a chi-square distribution with 1 degree of freedom.
That is,

Y — 12
ah = (") =7

Now suppose that we randomly and independently select samples of size n = 2 from the
normally distributed population of Y values. Within each sample we may transform each
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value of y to the standard normal variable z and square as before. If the resulting values of z>
for each sample are added, we may designate this sum by

2 _ yl—-u>2 (Y2—'M)2:: 2 2
X (0 Ty qd+2

since it follows the chi-square distribution with 2 degrees of freedom, the number of
independent squared terms that are added together.

The procedure may be repeated for any sample size n. The sum of the resulting z>
values in each case will be distributed as chi-square with n degrees of freedom. In general,
then,

Xy=a+5+ - +72 (12.2.2)

follows the chi-square distribution with n degrees of freedom. The mathematical form of
the chi-square distribution is as follows:

1 1
- = k)= ,—(u/2)
fu) k_l 'zk/zu e , u>0 (12.2.3)
5 !
where e is the irrational number 2.71828 . . . and k is the number of degrees of freedom.

The variate u is usually designated by the Greek letter chi () and, hence, the distribution is
called the chi-square distribution. As we pointed out in Chapter 6, the chi-square
distribution has been tabulated in Appendix Table F. Further use of the table is demon-
strated as the need arises in succeeding sections.

The mean and variance of the chi-square distribution are k and 2k, respectively. The
modal value of the distribution is k — 2 for values of k greater than or equal to 2 and is zero
fork =1.

The shapes of the chi-square distributions for several values of k are shown in Figure
6.9.1. We observe in this figure that the shapes for k = 1 and k = 2 are quite different from
the general shape of the distribution for k > 2. We also see from this figure that chi-square
assumes values between 0 and infinity. It cannot take on negative values, since it is the sum
of values that have been squared. A final characteristic of the chi-square distribution worth
noting is that the sum of two or more independent chi-square variables also follows a
chi-square distribution.

Types of Chi-Square Tests As already noted, we make use of the chi-square
distribution in this chapter in testing hypotheses where the data available for analysis are
in the form of frequencies. These hypothesis testing procedures are discussed under the
topics of tests of goodness-of-fit, tests of independence, and tests of homogeneity. We will
discover that, in a sense, all of the chi-square tests that we employ may be thought of as
goodness-of-fit tests, in that they test the goodness-of-fit of observed frequencies to
frequencies that one would expect if the data were generated under some particular theory
or hypothesis. We, however, reserve the phrase “goodness-of-fit” for use in a more
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restricted sense. We use it to refer to a comparison of a sample distribution to some theoretical
distribution that it is assumed describes the population from which the sample came. The
justification of our use of the distribution in these situations is due to Karl Pearson (1), who
showed that the chi-square distribution may be used as a test of the agreement between
observation and hypothesis whenever the data are in the form of frequencies. An extensive
treatment of the chi-square distribution is to be found in the book by Lancaster (2). Nikulin
and Greenwood (3) offer practical advice for conducting chi-square tests.

Observed Versus Expected Frequencies The chi-square statistic is most
appropriate for use with categorical variables, such as marital status, whose values are
the categories married, single, widowed, and divorced. The quantitative data used in
the computation of the test statistic are the frequencies associated with each category of the
one or more variables under study. There are two sets of frequencies with which we are
concerned, observed frequencies and expected frequencies. The observed frequencies
are the number of subjects or objects in our sample that fall into the various categories of
the variable of interest. For example, if we have a sample of 100 hospital patients, we may
observe that 50 are married, 30 are single, 15 are widowed, and 5 are divorced. Expected
frequencies are the number of subjects or objects in our sample that we would expect to
observe if some null hypothesis about the variable is true. For example, our null hypothesis
might be that the four categories of marital status are equally represented in the population
from which we drew our sample. In that case we would expect our sample to contain 25
married, 25 single, 25 widowed, and 25 divorced patients.

The Chi-Square Test Statistic The test statistic for the chi-square tests we
discuss in this chapter is

(0: — E;)’
E;

X =3

(12.2.4)

When the null hypothesis is true, X is distributed approximately as x> with k — r
degrees of freedom. In determining the degrees of freedom, & is equal to the number of
groups for which observed and expected frequencies are available, and r is the number of
restrictions or constraints imposed on the given comparison. A restriction is imposed when
we force the sum of the expected frequencies to equal the sum of the observed frequencies,
and an additional restriction is imposed for each parameter that is estimated from the
sample.

In Equation 12.2.4, O; is the observed frequency for the ith category of the variable of
interest, and E; is the expected frequency (given that H,, is true) for the ith category.

The quantity X is a measure of the extent to which, in a given situation, pairs of
observed and expected frequencies agree. As we will see, the nature of X is such that when
there is close agreement between observed and expected frequencies it is small, and when
the agreement is poor it is large. Consequently, only a sufficiently large value of X> will
cause rejection of the null hypothesis.

If there is perfect agreement between the observed frequencies and the frequencies
that one would expect, given that Hj is true, the term O; — E; in Equation 12.2.4 will be
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equal to zero for each pair of observed and expected frequencies. Such a result would yield
a value of X* equal to zero, and we would be unable to reject Hy.

When there is disagreement between observed frequencies and the frequencies one
would expect given that H, is true, at least one of the O; — E; terms in Equation 12.2.4 will
be a nonzero number. In general, the poorer the agreement between the O; and the E;, the
greater or the more frequent will be these nonzero values. As noted previously, if the
agreement between the O; and the E; is sufficiently poor (resulting in a sufficiently large X*
value,) we will be able to reject H.

When there is disagreement between a pair of observed and expected frequencies, the
difference may be either positive or negative, depending on which of the two frequencies is
the larger. Since the measure of agreement, X7, is a sum of component quantities whose
magnitudes depend on the difference O; — E;, positive and negative differences must be
given equal weight. This is achieved by squaring each O; — E; difference. Dividing the
squared differences by the appropriate expected frequency converts the quantity to a term
that is measured in original units. Adding these individual (O; — E;)*/E; terms yields X2 a
summary statistic that reflects the extent of the overall agreement between observed and
expected frequencies.

The Decision Rule The quantity $[(0; — E;)*/E,] will be small if the observed
and expected frequencies are close together and will be large if the differences are large.

The computed value of X is compared with the tabulated value of x> with k — r
degrees of freedom. The decision rule, then, is: Reject H, if X* is greater than or equal to the
tabulated x> for the chosen value of .

Small Expected Frequencies Frequently in applications of the chi-square test
the expected frequency for one or more categories will be small, perhaps much less than 1.
In the literature the point is frequently made that the approximation of X* to x* is not
strictly valid when some of the expected frequencies are small. There is disagreement
among writers, however, over what size expected frequencies are allowable before making
some adjustment or abandoning x> in favor of some alternative test. Some writers,
especially the earlier ones, suggest lower limits of 10, whereas others suggest that all
expected frequencies should be no less than 5. Cochran (4,5), suggests that for goodness-
of-fit tests of unimodal distributions (such as the normal), the minimum expected
frequency can be as low as 1. If, in practice, one encounters one or more expected
frequencies less than 1, adjacent categories may be combined to achieve the suggested
minimum. Combining reduces the number of categories and, therefore, the number of
degrees of freedom. Cochran’s suggestions appear to have been followed extensively by
practitioners in recent years.

12.3 TESTS OF GOODNESS-OF-FIT

As we have pointed out, a goodness-of-fit test is appropriate when one wishes to decide if
an observed distribution of frequencies is incompatible with some preconceived or
hypothesized distribution.
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We may, for example, wish to determine whether or not a sample of observed values
of some random variable is compatible with the hypothesis that it was drawn from a
population of values that is normally distributed. The procedure for reaching a decision
consists of placing the values into mutually exclusive categories or class intervals and
noting the frequency of occurrence of values in each category. We then make use of our
knowledge of normal distributions to determine the frequencies for each category that one
could expect if the sample had come from a normal distribution. If the discrepancy is of
such magnitude that it could have come about due to chance, we conclude that the sample
may have come from a normal distribution. In a similar manner, tests of goodness-of-fit
may be carried out in cases where the hypothesized distribution is the binomial, the
Poisson, or any other distribution. Let us illustrate in more detail with some examples of
tests of hypotheses of goodness-of-fit.

EXAMPLE 12.3.1 The Normal Distribution

Cranor and Christensen (A-1) conducted a study to assess short-term clinical, economic,
and humanistic outcomes of pharmaceutical care services for patients with diabetes in
community pharmacies. For 47 of the subjects in the study, cholesterol levels are
summarized in Table 12.3.1.

We wish to know whether these data provide sufficient evidence to indicate that the
sample did not come from a normally distributed population. Let o = .05

Solution:

1. Data. See Table 12.3.1.

2. Assumptions. We assume that the sample available for analysis is a
simple random sample.

TABLE 12.3.1 Cholesterol Levels as
Described in Example 12.3.1

Cholesterol
Level (mg/dl) Number of Subjects

100.0-124.9
125.0-149.9
150.0-174.9
175.0-199.9
200.0-224.9
225.0-249.9
250.0-274.9
275.0-299.9 3

-
A B O 00 O W =

Source: Data provided courtesy of Carole W. Cranor, and
Dale B. Christensen, “The Asheville Project: Short-Term
Outcomes of a Community Pharmacy Diabetes Care
Program,” Journal of the American Pharmaceutical
Association, 43 (2003), 149-159.
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3. Hypotheses.
Hy: In the population from which the sample was drawn, cholesterol
levels are normally distributed.
Ha: The sampled population is not normally distributed.

4. Test statistic. The test statistic is

k
=Y
i=1

(0; — E))’

E;

5. Distribution of test statistic. If H, is true, the test statistic is distributed
approximately as chi-square with k — r degrees of freedom. The values
of k and r will be determined later.

6. Decision rule. We will reject H,, if the computed value of X is equal to
or greater than the critical value of chi-square.

7. Calculation of test statistic. Since the mean and variance of the
hypothesized distribution are not specified, the sample data must be
used to estimate them. These parameters, or their estimates, will be
needed to compute the frequency that would be expected in each class
interval when the null hypothesis is true. The mean and standard
deviation computed from the grouped data of Table 12.3.1 are

x =198.67
s =41.31

As the next step in the analysis, we must obtain for each class
interval the frequency of occurrence of values that we would expect when
the null hypothesis is true, that is, if the sample were, in fact, drawn from
anormally distributed population of values. To do this, we first determine
the expected relative frequency of occurrence of values for each class
interval and then multiply these expected relative frequencies by the total
number of values to obtain the expected number of values for each
interval.

The Expected Relative Frequencies

It will be recalled from our study of the normal distribution that the relative frequency of
occurrence of values equal to or less than some specified value, say, x,, of the normally
distributed random variable X is equivalent to the area under the curve and to the left of x,
as represented by the shaded area in Figure 12.3.1. We obtain the numerical value of this
area by converting x, to a standard normal deviation by the formula zo = (xp — 1)/o and
finding the appropriate value in Appendix Table D. We use this procedure to obtain the
expected relative frequencies corresponding to each of the class intervals in Table 12.3.1.
We estimate 1 and o with x and s as computed from the grouped sample data. The first step
consists of obtaining z values corresponding to the lower limit of each class interval. The
area between two successive z values will give the expected relative frequency of
occurrence of values for the corresponding class interval.
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X0 X
FIGURE 12.3.1 A normal distribution showing the relative frequency of occurrence of values
less than or equal to xp. The shaded area represents the relative frequency of occurrence of values
equal to or less than xq.

For example, to obtain the expected relative frequency of occurrence of values in the
interval 100.0 to 124.9 we proceed as follows:

100.0 — 198.67
The z value corresponding toX = 100.0isz = — 3 - —-2.39
125.0 — 198.67
The z value corresponding to X = 125.0isz = — a3 —1.78

In Appendix Table D we find that the area to the left of —2.39 is .0084, and the area to
the left of —1.78 is .0375. The area between —1.78 and —2.39 is equal to
.0375 — .0084 = .0291, which is equal to the expected relative frequency of occurrence
of cholesterol levels within the interval 100.0 to 124.9. This tells us that if the null
hypothesis is true, that is, if the cholesterol levels are normally distributed, we should
expect 2.91 percent of the values in our sample to be between 100.0 and 124.9. When we
multiply our total sample size, 47, by .0291 we find the expected frequency for the interval
to be 1.4. Similar calculations will give the expected frequencies for the other intervals as
shown in Table 12.3.2.

TABLE 12.3.2 Class Intervals and Expected Frequencies for
Example 12.3.1

z(x; —X)/s
At Lower Limit Expected Relative Expected
Class Interval of Interval Frequency Frequency
< 100 .0084 4 }1.8
100.0-124.9 —-2.39 .0291 1.4
125.0-149.9 -1.78 .0815 3.8
150.0-174.9 -1.18 .1653 7.8
175.0-199.9 —.57 .2277 10.7
200.0-224.9 .03 .2269 10.7
225.0-249.9 .64 .1536 7.2
250.0-274.9 1.24 .0753 35
275.0-299.9 1.85 .0251 1.2 }1.5
300.0 and greater 2.45 .0071 .3
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Comparing Observed and Expected Frequencies

We are now interested in examining the magnitudes of the discrepancies between the
observed frequencies and the expected frequencies, since we note that the two sets of
frequencies do not agree. We know that even if our sample were drawn from a normal
distribution of values, sampling variability alone would make it highly unlikely that the
observed and expected frequencies would agree perfectly. We wonder, then, if the
discrepancies between the observed and expected frequencies are small enough that we
feel it reasonable that they could have occurred by chance alone, when the null hypothesis
is true. If they are of this magnitude, we will be unwilling to reject the null hypothesis that
the sample came from a normally distributed population.

If the discrepancies are so large that it does not seem reasonable that they could have
occurred by chance alone when the null hypothesis is true, we will want to reject the null
hypothesis. The criterion against which we judge whether the discrepancies are “large” or
“small” is provided by the chi-square distribution.

The observed and expected frequencies along with each value of (O; — E,-)2 /E; are
shown in Table 12.3.3. The first entry in the last column, for example, is computed from
(1 —1.8)*/1.8 = .356. The other values of (O; — E;)*/E; are computed in a similar
manner.

From Table 12.3.3 we see that X*> = S°[(0; — E;)*/E;] = 10.566. The appropriate
degrees of freedom are 8 (the number of groups or class intervals) —3 (for the three
restrictions: making Y E; = Y O;, and estimating p and o from the sample data) = 5.

8. Statistical decision. When we compare X> = 10.566 with values of x* in
Appendix Table F, we see that it is less than X_295 = 11.070, so that, at the
.05 level of significance, we cannot reject the null hypothesis that the
sample came from a normally distributed population.

TABLE 12.3.3 Observed and Expected Frequencies and
(0; — E;)?/E; for Example 12.3.1

Observed Expected
Frequency Frequency
Class Interval (0 (E}) (0; — E;)?/E;
< 100 0 4
1.8 .356
100.0-124.9 1 1.4
125.0-149.9 3 3.8 .168
150.0-174.9 8 7.8 .005
175.0-199.9 18 10.7 4.980
200.0-224.9 6 10.7 2.064
225.0-249.9 4 7.2 1.422
250.0-274.9 4 3.5 .071
275.0-299.9 3 1.2
1.5 1.500
300.0 and 0 3
greater

Total 47 47 10.566




12.3 TESTS OF GOODNESS-OF-FIT 609

9. Conclusion. We conclude that in the sampled population, cholesterol
levels may follow a normal distribution.

10. p value. Since 11.070 > 10.566 > 9.236, .05 < p < .10. In other words,
the probability of obtaining a value of X as large as 10.566, when the null
hypothesis is true, is between .05 and .10. Thus we conclude that such an
event is not sufficiently rare to reject the null hypothesis that the data come
from a normal distribution. [ |

Sometimes the parameters are specified in the null hypothesis. It should be noted
that had the mean and variance of the population been specified as part of the null
hypothesis in Example 12.3.1, we would not have had to estimate them from the sample
and our degrees of freedom would have been 8 — 1 = 7.

Alternatives Although one frequently encounters in the literature the use of chi-
square to test for normality, it is not the most appropriate test to use when the hypothesized
distribution is continuous. The Kolmogorov—Smirnov test, described in Chapter 13, was
especially designed for goodness-of-fit tests involving continuous distributions.

EXAMPLE 12.3.2 The Binomial Distribution

In a study designed to determine patient acceptance of a new pain reliever, 100 physicians
each selected a sample of 25 patients to participate in the study. Each patient, after trying
the new pain reliever for a specified period of time, was asked whether it was preferable to
the pain reliever used regularly in the past.

The results of the study are shown in Table 12.3.4.

TABLE 12.3.4 Results of Study Described in Example 12.3.2

Number of
Number of Patients Doctors Total Number of Patients
Out of 25 Preferring Reporting this Preferring New Pain
New Pain Reliever Number Reliever by Doctor
0 5 0
1 6 6
2 8 16
3 10 30
4 10 40
5 15 75
6 17 102
7 10 70
8 10 80
9 9 81
10 or more 0 0

Total 100 500
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Solution:

We are interested in determining whether or not these data are compatible with the
hypothesis that they were drawn from a population that follows a binomial distribution.
Again, we employ a chi-square goodness-of-fit test.

Since the binomial parameter, p, is not specified, it must be estimated from
the sample data. A total of 500 patients out of the 2500 patients participating
in the study said they preferred the new pain reliever, so that our point
estimate of p is p = 500/2500 = .20. The expected relative frequencies can
be obtained by evaluating the binomial function

flx) = zscx(-z)x(s)zs_x

forx =0,1,...,25. For example, to find the probability that out of a sample
of 25 patients none would prefer the new pain reliever, when in the total
population the true proportion preferring the new pain reliever is .2, we would
evaluate

£(0) = 55Co(2)°(:8)77°

This can be done most easily by consulting Appendix Table B, where we see
that P(X = 0) = .0038. The relative frequency of occurrence of samples of
size 25 in which no patients prefer the new pain reliever is .0038. To obtain
the corresponding expected frequency, we multiply .0038 by 100 to get .38.
Similar calculations yield the remaining expected frequencies, which, along
with the observed frequencies, are shown in Table 12.3.5. We see in this table

TABLE 12.3.5 Calculations for Example 12.3.2

Number of
Number of Doctors Reporting
Patients Out of 25 This Number Expected
Preferring New Pain (Observed Relative Expected
Reliever Frequency, O Frequency Frequency E;
0 5 }11 .0038 .38 }2.74
1 6 .0236 2.36
2 8 .0708 7.08
3 10 .1358 13.58
4 10 .1867 18.67
5 15 .1960 19.60
6 17 .1633 16.33
7 10 .1109 11.09
8 10 .0623 6.23
9 9 .0295 2.95
10 or more 0 .0173 1.73
Total 100 1.0000 100.00
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that the first expected frequency is less than 1, so that we follow Cochran’s
suggestion and combine this group with the second group. When we do this,
all the expected frequencies are greater than 1.

From the data, we compute

(11 —2.74)* (8 —7.08)* (0—1.73)*

X? =
274 708 T

=47.624

The appropriate degrees of freedom are 10 (the number of groups left
after combining the first two) less 2, or 8. One degree of freedom is lost
because we force the total of the expected frequencies to equal the total
observed frequencies, and one degree of freedom is sacrificed because we
estimated p from the sample data.

We compare our computed X> with the tabulated x> with 8 degrees of
freedom and find that it is significant at the .005 level of significance; that is,
p < .005. We reject the null hypothesis that the data came from a binomial
distribution. ]

EXAMPLE 12.3.3 The Poisson Distribution

A hospital administrator wishes to test the null hypothesis that emergency admissions
follow a Poisson distribution with A = 3. Suppose that over a period of 90 days the numbers
of emergency admissions were as shown in Table 12.3.6.

TABLE 12.3.6 Number of Emergency Admissions to a Hospital During a
90-Day Period

Emergency Emergency Emergency Emergency

Day Admissions Day Admissions Day Admissions Day Admissions
1 2 24 5 47 4 70 3
2 3 25 3 48 2 71 5
3 4 26 2 49 2 72 4
4 5 27 4 50 3 73 1
5 3 28 4 51 4 74 1
6 2 29 3 52 2 75 6
7 3 30 5 53 3 76 3
8 0 31 1 54 1 77 3
9 1 32 3 55 2 78 5
10 0 33 2 56 3 79 2
1 1 34 4 57 2 80 1
12 0 35 2 58 5 81 7
13 6 36 5 59 2 82 7
14 4 37 0 60 7 83 1
15 4 38 6 61 8 84 5
16 4 39 4 62 3 85 1

(Continued)
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Emergency Emergency Emergency Emergency

Day Admissions Day Admissions Day Admissions Day Admissions
17 3 40 4 63 1 86 4

18 4 41 5 64 3 87 4

19 3 42 1 65 1 88 9

20 3 43 3 66 0 89 2

21 3 44 1 67 3 90 3

22 4 45 2 68 2

23 3 46 3 69 1

The data of Table 12.3.6 are summarized in Table 12.3.7.
Solution: To obtain the expected frequencies we first obtain the expected relative

frequencies by evaluating the Poisson function given by Equation 4.4.1 for
each entry in the left-hand column of Table 12.3.7. For example, the first
expected relative frequency is obtained by evaluating

6_330
0!

f(0) =

We may use Appendix Table C to find this and all the other expected rel-
ative frequencies that we need. Each of the expected relative frequencies

TABLE 12.3.7 Summary of Data Presented
in Table 12.3.6

Number of

Number of Days This Number
Emergency Admissions of Emergency
in a Day Admissions Occurred

0 5

1 14

2 15

3 23

4 16

5 9

6 3

7 3

8 1

9 1
10 or more 0
Total 90
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TABLE 12.3.8 Observed and Expected Frequencies and Components
of X2 for Example 12.3.3

Number of

Number of Days this Expected

Emergency Number Relative Expected (0; — E;)?

Admissions Occurred, O; Frequency Frequency E;
0 5 .050 4.50 .056
1 14 149 13.41 .026
2 15 224 20.16 1.321
3 23 .224 20.16 .400
4 16 .168 15.12 .051
5 9 .101 9.09 .001
6 3 .050 4.50 .500
7 3 .022 1.98 525
8 1 .008 72
9 1,72 .003 .27 ;1.08 .784

10 or more 0 .001 .09

Total 90 1.000 90.00 3.664

is multiplied by 90 to obtain the corresponding expected frequencies.
These values along with the observed and expected frequencies and the
components of X>, (O; — E;)* /E;, are displayed in Table 12.3.8, in which we
see that

(0i - E))’
E;

_ (5-4.50)° (2-1.08)"
= as0 T Tros 04

=Y

We also note that the last three expected frequencies are less than 1, so that
they must be combined to avoid having any expected frequencies less than 1.
This means that we have only nine effective categories for computing degrees
of freedom. Since the parameter, A, was specified in the null hypothesis, we
do not lose a degree of freedom for reasons of estimation, so that the
appropriate degrees of freedom are 9 —1 = 8. By consulting Appendix
Table F, we find that the critical value of X2 for 8 degrees of freedom and
a = .051s 15.507, so that we cannot reject the null hypothesis at the .05 level,
or for that matter any reasonable level, of significance (p > .10). We
conclude, therefore, that emergency admissions at this hospital may follow
a Poisson distribution with A = 3. At least the observed data do not cast any
doubt on that hypothesis.

If the parameter X has to be estimated from sample data, the estimate is
obtained by multiplying each value x by its frequency, summing these
products, and dividing the total by the sum of the frequencies. |
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EXAMPLE 12.3.4 The Uniform Distribution

The flu season in southern Nevada for 2005-2006 ran from December to April, the
coldest months of the year. The Southern Nevada Health District reported the numbers
of vaccine-preventable influenza cases shown in Table 12.3.9. We are interested in
knowing whether the numbers of flu cases in the district are equally distributed among
the five flu season months. That is, we wish to know if flu cases follow a uniform
distribution.

Solution:

1. Data. See Table 12.3.9.

2. Assumptions. We assume that the reported cases of flu constitute a
simple random sample of cases of flu that occurred in the district.

3. Hypotheses.
Hy: Flu cases in southern Nevada are uniformly distributed over the five
flu season months.
H A: Flu cases in southern Nevada are not uniformly distributed over the
five flu season months.
Let o = .01.

4. Test statistic. The test statistic is

5. Distribution of test statistic. If H, is true, X is distributed approxi-
mately as x> with (5 — 1) = 4 degrees of freedom.

6. Decision rule. Reject H, if the computed value of X* is equal to or
greater than 13.277.

TABLE 12.3.9 Reported Vaccine-Preventable
Influenza Cases from Southern Nevada,
December 2005-April 2006

Number of
Reported Cases

Month of Influenza
December 2005 62
January 2006 84
February 2006 17
March 2006 16
April 2006 21
Total 200

Source: http://www.southernnevadahealthdistrict.org/
epidemiology/disease_statistics.htm.



http://www.southernnevadahealthdistrict.org/epidemiology/disease_statistics.htm
http://www.southernnevadahealthdistrict.org/epidemiology/disease_statistics.htm
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Chart of Observed and Expected Values
90 O Expected
80 4 m Observed
70
60 |
50 |

40 -
30
20 -
10
0_
1 2 3 4 5

Category

Value

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: C1

Test Contribution
Category Observed Proportion Expected to Chi-Sq
1 62 0.2 40 12.100
2 84 0.2 40 48.400
3 17 0.2 40 13.225
4 16 0.2 40 14.400
5 21 0.2 40 9.025

N DF Chi-Sq P-Value
200 4 97.15 0.000

FIGURE 12.3.2 MINITAB output for Example 12.3.4.

7. Calculation of test statistic. If the null hypothesis is true, we would
expect to observe 200/5 = 40 cases per month. Figure 12.3.2 shows the
computer printout obtained from MINITAB. The bar graph shows the
observed and expected frequencies per month. The chi-square table
provides the observed frequencies, the expected frequencies based on a
uniform distribution, and the individual chi-square contribution for each
test value.

8. Statistical decision. Since 97.15, the computed value of X2, is greater
than 13.277, we reject, based on these data, the null hypothesis of a
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Solution:

9.

10.

10.

uniform distribution of flu cases during the flu season in southern
Nevada.

Conclusion. We conclude that the occurrence of flu cases does not
follow a uniform distribution.

p value. From the MINITAB output we see that p = .000 (i.e., < .001).
|

EXAMPLE 12.3.5

A certain human trait is thought to be inherited according to the ratio 1:2:1 for homozygous
dominant, heterozygous, and homozygous recessive. An examination of a simple random
sample of 200 individuals yielded the following distribution of the trait: dominant, 43;
heterozygous, 125; and recessive, 32. We wish to know if these data provide sufficient
evidence to cast doubt on the belief about the distribution of the trait.

Data. See statement of the example.

Assumptions. We assume that the data meet the requirements for the
application of the chi-square goodness-of-fit test.

Hypotheses.

Hj: The trait is distributed according to the ratio 1:2:1 for homozygous
dominant, heterozygous, and homozygous recessive.
H,: The trait is not distributed according to the ratio 1:2:1.

Test statistic. The test statistic is

X =Y

Distribution of test statistic. If Hy is true, X is distributed as chi-square
with 2 degrees of freedom.

(0-E)
E

Decision rule. Suppose we let the probability of committing a type I
error be .05. Reject Hy if the computed value of X is equal to or greater
than 5.991.

Calculation of test statistic. If H is true, the expected frequencies for
the three manifestations of the trait are 50, 100, and 50 for dominant,
heterozygous, and recessive, respectively. Consequently,

X? = (43 —50)%/50 + (125 — 100)2/100 + (32 — 50)*/50 = 13.71

Statistical decision. Since 13.71 > 5.991, we reject H,.

Conclusion. We conclude that the trait is not distributed according to the
ratio 1:2:1.

p value. Since 13.71 > 10.597, the p value for the test is p < .005. g
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EXERCISES

12.3.1

12.3.2

12.3.3

The following table shows the distribution of uric acid determinations taken on 250 patients. Test the
goodness-of-fit of these data to a normal distribution with u = 5.74 and o = 2.01. Let « = .01.

Uric Acid Observed Uric Acid Observed
Determination Frequency Determination Frequency
<1 1 610 6.99 45
1to 1.99 5 7t0 7.99 30
2102.99 15 810 8.99 22
3t03.99 24 9109.99 10
4t04.99 43 10 or higher 5
51t05.99 50

Total 250

The following data were collected on 300 eight-year-old girls. Test, at the .05 level of significance,
the null hypothesis that the data are drawn from a normally distributed population. The sample
mean and standard deviation computed from grouped data are 127.02 and 5.08.

Height in Observed Height in Observed
Centimeters Frequency Centimeters Frequency
114to 115.9 5 128 to 129.9 43
116 to 117.9 10 130 to 131.9 42
118 to 119.9 14 132 to 133.9 30
120 to 121.9 21 134 to 135.9 11
122 to 123.9 30 136 to 137.9

124 to 125.9 40 138 to 139.9 4
126 to 127.9 45

Total 300

The face sheet of patients’ records maintained in a local health department contains 10 entries.
A sample of 100 records revealed the following distribution of erroneous entries:

Number of Erroneous

Entries Out of 10 Number of Records
0 8

1 25

2 32

3 24

4 10

5 or more 1

Total 100
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12.3.4

12.3.5

Test the goodness-of-fit of these data to the binomial distribution with p = .20. Find the p value for
this test.

In a study conducted by Byers et al. (A-2), researchers tested a Poisson model for the distribution
of activities of daily living (ADL) scores after a 7-month prehabilitation program designed to
prevent functional decline among physically frail, community-living older persons. ADL meas-
ured the ability of individuals to perform essential tasks, including walking inside the house,
bathing, upper and lower body dressing, transferring from a chair, toileting, feeding, and
grooming. The scoring method used in this study assigned a value of O for no (personal) help
and no difficulty, 1 for difficulty but no help, and 2 for help regardless of difficulty. Scores were
summed to produce an overall score ranging from O to 16 (for eight tasks). There were 181 subjects
who completed the study. Suppose we use the authors’ scoring method to assess the status of
another group of 181 subjects relative to their activities of daily living. Let us assume that the
following results were obtained.

Observed Expected Observed Expected

X Frequency X  Frequency X Frequency X  Frequency
0 74 11.01 7 4 2.95

1 27 30.82 8 3 1.03

2 14 43.15 9 2 0.32

3 14 40.27 10 3 0.09

4 11 28.19 11 4 0.02

5 7 15.79 12 or more 13 0.01

6 5 7.37

Source: Hypothetical data based on procedure reported by Amy L. Byers, Heather Allore,
Thomas M. Gill, and Peter N. Peduzzi, “Application of Negative Binomial Modeling for
Discrete Outcomes: A Case Study in Aging Research,” Journal of Clinical Epidemiology, 56
(2003), 559-564.

Test the null hypothesis that these data were drawn from a Poisson distribution with A = 2.8. Let
o =.01.

The following are the numbers of a particular organism found in 100 samples of water from
a pond:

Number of Organisms Number of Organisms

per Sample Frequency per Sample Frequency
0 15 4 5

1 30 5 4

2 25 6 1

3 20 7 0
Total 100

Test the null hypothesis that these data were drawn from a Poisson distribution. Determine the p value
for this test.



12.4 TESTS OF INDEPENDENCE 619

12.3.6 A research team conducted a survey in which the subjects were adult smokers. Each subject in a
sample of 200 was asked to indicate the extent to which he or she agreed with the statement: “I would
like to quit smoking.” The results were as follows:

Response: Strongly agree Agree Disagree Strongly Disagree
Number
Responding: 102 30 60 8

Can one conclude on the basis of these data that, in the sampled population, opinions are not equally
distributed over the four levels of agreement? Let the probability of committing a type I error be .05
and find the p value.

12.4 TESTS OF INDEPENDENCE

Another, and perhaps the most frequent, use of the chi-square distribution is to test the null
hypothesis that two criteria of classification, when applied to the same set of entities, are
independent. We say that two criteria of classification are independent if the distribution of
one criterion is the same no matter what the distribution of the other criterion. For example,
if socioeconomic status and area of residence of the inhabitants of a certain city are
independent, we would expect to find the same proportion of families in the low, medium,
and high socioeconomic groups in all areas of the city.

The Contingency Table The classification, according to two criteria, of a set of
entities, say, people, can be shown by a table in which the r rows represent the various
levels of one criterion of classification and the ¢ columns represent the various levels of the
second criterion. Such a table is generally called a contingency table, with dimension r X c.
The classification according to two criteria of a finite population of entities is shown in
Table 12.4.1.

We will be interested in testing the null hypothesis that in the population the two
criteria of classification are independent. If the hypothesis is rejected, we will conclude that

TABLE 12.4.1 Two-Way Classification of a Finite
Population of Entities

Second

Criterion of First Criterion of Classification Level

Classification

Level 1 2 3 - c Total
Ny Niz Niz ... Ny N4,

2 Na2; Nz Naz ... Nac N,
N3; Nz Nzz ... Ns Ns,

r Nr1 Nr2 Nr3 e Nrc Nr.

Total N1 N2 N3 . N.c N
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TABLE 12.4.2 Two-Way Classification of a Sample

of Entities

Second

Criterion of First Criterion of Classification Level

Classification

Level 1 2 3 . c Total
n ni2 nmas ce Nic nq,

2 Ny Ny ny3 e nye na,

3 N3 E?S na3 e n3c ns,

r Nr Nra ngs Ce Ny n,.

Total n. n. ns - N.c n

the two criteria of classification are not independent. A sample of size n will be drawn from
the population of entities, and the frequency of occurrence of entities in the sample
corresponding to the cells formed by the intersections of the rows and columns of Table
12.4.1 along with the marginal totals will be displayed in a table such as Table 12.4.2.

Calculating the Expected Frequencies The expected frequency, under
the null hypothesis that the two criteria of classification are independent, is calculated for
each cell.

We learned in Chapter 3 (see Equation 3.4.4) that if two events are independent, the
probability of their joint occurrence is equal to the product of their individual probabilities.
Under the assumption of independence, for example, we compute the probability that one
of the n subjects represented in Table 12.4.2 will be counted in Row 1 and Column 1 of the
table (that is, in Cell 11) by multiplying the probability that the subject will be counted in
Row 1 by the probability that the subject will be counted in Column 1. In the notation of the
table, the desired calculation is

nyp\ m.
GG

To obtain the expected frequency for Cell 11, we multiply this probability by the total
number of subjects, n. That is, the expected frequency for Cell 11 is given by

) )

Since the 7 in one of the denominators cancels into numerator 7, this expression reduces to
(n1.)(n.1)
n

In general, then, we see that to obtain the expected frequency for a given cell, we multiply
the total of the row in which the cell is located by the total of the column in which the cell is
located and divide the product by the grand total.
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Observed Versus Expected Frequencies The expected frequencies and
observed frequencies are compared. If the discrepancy is sufficiently small, the null
hypothesis is tenable. If the discrepancy is sufficiently large, the null hypothesis is rejected,
and we conclude that the two criteria of classification are not independent. The decision as
to whether the discrepancy between observed and expected frequencies is sufficiently large
to cause rejection of Hy will be made on the basis of the size of the quantity computed when
we use Equation 12.2.4, where O; and E; refer, respectively, to the observed and expected
frequencies in the cells of Table 12.4.2. It would be more logical to designate the observed
and expected frequencies in these cells by O;; and Ej;, but to keep the notation simple and to
avoid the introduction of another formula, we have elected to use the simpler notation. It
will be helpful to think of the cells as being numbered from 1 to k, where 1 refers to Cell 11
and k refers to Cell rc. It can be shown that X* as defined in this manner is distributed
approximately as x* with (r — 1)(c — 1) degrees of freedom when the null hypothesis is
true. If the computed value of X is equal to or larger than the tabulated value of x> for some
«, the null hypothesis is rejected at the o level of significance. The hypothesis testing
procedure is illustrated with the following example.

EXAMPLE 12.4.1

In 1992, the U.S. Public Health Service and the Centers for Disease Control and Prevention
recommended that all women of childbearing age consume 400 p.g of folic acid daily to
reduce the risk of having a pregnancy that is affected by a neural tube defect such as spina
bifida or anencephaly. In a study by Stepanuk et al. (A-3), 693 pregnant women called a
teratology information service about their use of folic acid supplementation. The research-
ers wished to determine if preconceptional use of folic acid and race are independent. The
data appear in Table 12.4.3.

Solution:

1. Data. See Table 12.4.3.

2. Assumptions. We assume that the sample available for analysis is equiv-
alent to a simple random sample drawn from the population of interest.

TABLE 12.4.3 Race of Pregnant Caller and Use of

Folic Acid
Preconceptional Use of Folic Acid
Yes No Total
White 260 299 559
Black 15 a1 56
Other 7 14 21
Total 282 354 636

Source: Kathleen M. Stepanuk, Jorge E. Tolosa, Dawneete Lewis, Victoria
Meyers, Cynthia Royds, Juan Carlos Saogal, and Ron Librizzi, “Folic Acid
Supplementation Use Among Women Who Contact a Teratology Information
Service,” American Journal of Obstetrics and Gynecology, 187 (2002), 964-967.
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3.

Hypotheses.

Hy: Race and preconceptional use of folic acid are independent.
H,: The two variables are not independent.
Let o = .05.

Test statistic. The test statistic is

k
X2 = Z
i=1

Distribution of test statistic. When H, is true, X? is distributed
approximately as x> with (r — 1)(c — 1) = (3 = 1)(2 — 1) = (2)(1) =
2 degrees of freedom.

(0i — E))’

E;

Decision rule. Reject H, if the computed value of X? is equal to or
greater than 5.991.

Calculation of test statistic. The expected frequency for the first cell is
(559 x 282)/636 = 247.86. The other expected frequencies are calcu-
lated in a similar manner. Observed and expected frequencies are
displayed in Table 12.4.4. From the observed and expected frequencies
we may compute

0; — E;)?

X2 — ( 1 1

Z Ei
(260 —247.86) | (299 — 311.14)° (14 — 11.69)*
B 247.86 311.14 11.69

59461 + 47368 + ... + .45647 = 9.08960

Statistical decision. We reject Hj since 9.08960 > 5.991.

Conclusion. We conclude that H, is false, and that there is a relationship
between race and preconceptional use of folic acid.

10. p value. Since 7.378 < 9.08960 < 9.210, .01 < p < .025.

TABLE 12.4.4 Observed and Expected Frequencies
for Example 12.4.1

Preconceptional Use of Folic Acid

Yes No Total
White 260 (247.86) 299 (311.14) 559
Black 15 (24.83) 41 (31.17) 56
Other 7(9.31) 14 (11.69) 21
Total 282 354 636
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Computer Analysis The computer may be used to advantage in calculating X for
tests of independence and tests of homogeneity. Figure 12.4.1 shows the procedure and
printout for Example 12.4.1 when the MINITAB program for computing X* from
contingency tables is used. The data were entered into MINITAB Columns 1 and 2,

corresponding to the columns of Table 12.4.3.

We may use SAS® to obtain an analysis and printout of contingency table data by
using the PROC FREQ statement. Figure 12.4.2 shows a partial SAS® printout reflecting

the analysis of the data of Example 12.4.1.

Data:

Cl: 260 15 7
C2: 299 41 14

Dialog Box: Session command:

Stat » Tables » Chi-square Test MTB > CHISQUARE C1-C3
Type C1-C2 in Columns containing the table.

Click OK.

Output:

Chi-Square Test: C1, C2

Expected counts are printed below observed counts

C1 c2 Total
1 260 299 559
247 .86 311.14
2 15 41 56
24.83 31.17
3 7 14 21
9.31 11.69
Total 282 354 636
Chi-Sq = 0.595 + 0.474 +
3.892 + 3.100 +
0.574 + 0.457 = 9.091

DF = 2, P-Value 0.011

FIGURE 12.4.1 MINITAB procedure and output for chi-square analysis of data in Table 12.4.3.
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The SAS System
The FREQ Procedure

Table of race by folic

race folic
Frequency
Percent
Row Pct
Col Pct No Yes Total
Black 41 15 56
6.45 2.36 8.81
73.21 26.79
11.58 5.32
Other 14 7 21
2.20 1.10 3.30
66.67 33.33
3.95 2.48
White 299 260 559
47.01 40.88 87.89
53.49 46.51
84 .46 92.20

Total 354 282 636
55.66 44 .34 100.00

Statistic DF Value Prob
Chi-Square 2 9.0913 0.0106
Likelihood Ratio Chi-Square 2 9.4808 0.0087
Mantel-Haenszel Chi-Square 1 8.9923 0.0027
Phi Coefficient 0.1196
Contingency Coefficient 0.1187
Cramer’s V 0.1196

Sample Size = 636

FIGURE 12.4.2 Partial SAS® printout for the chi-square analysis of the data from
Example 12.4.1.
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Note that the SAS® printout shows, in each cell, the percentage that cell frequency is
of its row total, its column total, and the grand total. Also shown, for each row and column
total, is the percentage that the total is of the grand total. In addition to the X* statistic,
SAS® gives the value of several other statistics that may be computed from contingency
table data. One of these, the Mantel-Haenszel chi-square statistic, will be discussed in a
later section of this chapter.

Small Expected Frequencies The problem of small expected frequencies
discussed in the previous section may be encountered when analyzing the data of
contingency tables. Although there is a lack of consensus on how to handle this problem,
many authors currently follow the rule given by Cochran (5). He suggests that for
contingency tables with more than 1 degree of freedom a minimum expectation of 1 is
allowable if no more than 20 percent of the cells have expected frequencies of less than 5.
To meet this rule, adjacent rows and/or adjacent columns may be combined when to
do so is logical in light of other considerations. If X* is based on less than 30 degrees of
freedom, expected frequencies as small as 2 can be tolerated. We did not experience the
problem of small expected frequencies in Example 12.4.1, since they were all greater
than 5.

The 2 x 2 Contingency Table Sometimes each of two criteria of classifica-
tion may be broken down into only two categories, or levels. When data are cross-
classified in this manner, the result is a contingency table consisting of two rows and two
columns. Such a table is commonly referred to as a 2 x 2 table. The value of X* may be
computed by first calculating the expected cell frequencies in the manner discussed
above. In the case of a 2 x 2 contingency table, however, X2 may be calculated by the
following shortcut formula:

_ n(ad — be)*
= (a+c)b+d)(a+b)(c+d) (12.4.1)

where a, b, c, and d are the observed cell frequencies as shown in Table 12.4.5. When we
apply the (r — 1)(c¢ — 1) rule for finding degrees of freedom to a 2 x 2 table, the result is
1 degree of freedom. Let us illustrate this with an example.

TABLE 12.4.5 A 2 x 2 Contingency Table

First Criterion of Classification
Second Criterion

of Classification 1 2 Total
1 a b a+b
2 c d c+d

Total a+c b+d n
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Solution:

EXAMPLE 12.4.2

According to Silver and Aiello (A-4), falls are of major concern among polio survivors.
Researchers wanted to determine the impact of a fall on lifestyle changes. Table 12.4.6
shows the results of a study of 233 polio survivors on whether fear of falling resulted in
lifestyle changes.

. Data. From the information given we may construct the 2 x 2 contin-

gency table displayed as Table 12.5.6.

. Assumptions. We assume that the sample is equivalent to a simple

random sample.

. Hypotheses.

Hy: Fall status and lifestyle change because of fear of falling are

independent.
H,: The two variables are not independent.
Let o = .05.

. Test statistic. The test statistic is

. Distribution of test statisticc. When H; is true, X? is distributed

approximately as x> with (r — 1)(c — 1) = (2 = 1)(2 — 1) = (1)(1) =
1 degree of freedom.

. Decision rule. Reject H, if the computed value of X* is equal to or

greater than 3.841.

. Calculation of test statistic. By Equation 12.4.1 we compute

2 _ 233[(131)(36) — (52)(14))°

(145)(88)(183)(50) = 31.7391

8. Statistical decision. We reject H since 31.7391 > 3.841.

TABLE 12.4.6 Contingency Table for the Data of Example 12.4.2

Made Lifestyle Changes Because of Fear of Falling

Yes No Total
Fallers 131 52 183
Nonfallers 14 36 50
Total 145 88 233

Source: J. K. Silver and D. D. Aiello, “Polio Survivors: Falls and Subsequent Injuries,”
American Journal of Physical Medicine and Rehabilitation, 81 (2002), 567-570.
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9. Conclusion. We conclude that H,is false, and that there is a relationship
between experiencing a fall and changing one’s lifestyle because of fear
of falling.

10. p value. Since 31.7391 > 7.879, p < .005. -

Small Expected Frequencies The problems of how to handle small expected
frequencies and small total sample sizes may arise in the analysis of 2 x 2 contingency
tables. Cochran (5) suggests that the x* test should not be used if n < 20 orif 20 < n < 40
and any expected frequency is less than 5. When n = 40, an expected cell frequency as
small as 1 can be tolerated.

Yates’s Correction The observed frequencies in a contingency table are discrete
and thereby give rise to a discrete statistic, X>, which is approximated by the x*
distribution, which is continuous. Yates (6) in 1934 proposed a procedure for correcting
for this in the case of 2 x 2 tables. The correction, as shown in Equation 12.4.2, consists of
subtracting half the total number of observations from the absolute value of the quantity
ad — bc before squaring. That is,

) B n(|ad — be| — .5n)?
Xcorrected - (a+c)(b+d)(a+b)(c+d) (1242)

It is generally agreed that no correction is necessary for larger contingency tables.
Although Yates’s correction for 2 x 2 tables has been used extensively in the past,
more recent investigators have questioned its use. As a result, some practitioners recom-
mend against its use.

We may, as a matter of interest, apply the correction to our current example. Using
Equation 12.4.2 and the data from Table 12.4.6, we may compute

%? — 233[|(131)(36) — (52)(14)| — .5(233)}2

(145)(88)(183)(50) =29.9118

As might be expected, with a sample this large, the difference in the two results is not
dramatic.

Tests of Independence: Characteristics The characteristics of a chi-
square test of independence that distinguish it from other chi-square tests are as follows:

1. A single sample is selected from a population of interest, and the subjects or objects
are cross-classified on the basis of the two variables of interest.

2. The rationale for calculating expected cell frequencies is based on the probability
law, which states that if two events (here the two criteria of classification) are
independent, the probability of their joint occurrence is equal to the product of their
individual probabilities.

3. The hypotheses and conclusions are stated in terms of the independence (or lack of
independence) of two variables.
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EXERCISES

12.4.1

12.4.2

12.4.3

In the exercises that follow perform the test at the indicated level of significance and determine the p
value.

In the study by Silver and Aiello (A-4) cited in Example 12.4.2, a secondary objective was to
determine if the frequency of falls was independent of wheelchair use. The following table gives the
data for falls and wheelchair use among the subjects of the study.

Wheelchair Use
Yes No
Fallers 62 121
Nonfallers 18 32

Source: J. K. Silver and D. D. Aiello, “Polio Survivors: Falls and
Subsequent Injuries,” American Journal of Physical Medicine and
Rehabilitation, 81 (2002), 567-570.

Do these data provide sufficient evidence to warrant the conclusion that wheelchair use and falling are
related? Let o = .05.

Sternal surgical site infection (SSI) after coronary artery bypass graft surgery is a complication that
increases patient morbidity and costs for patients, payers, and the health care system. Segal and
Anderson (A-5) performed a study that examined two types of preoperative skin preparation before
performing open heart surgery. These two preparations used aqueous iodine and insoluble iodine with
the following results.

Comparison of Aqueous
and Insoluble Preps

Prep Group Infected Not Infected
Aqueous iodine 14 94
Insoluble iodine 4 97

Source: Cynthia G. Segal and Jacqueline J. Anderson, “Preoperative Skin
Preparation of Cardiac Patients,” AORN Journal, 76 (2002), 821-827.

Do these data provide sufficient evidence at the o = .05 level to justify the conclusion that the type of
skin preparation and infection are related?

The side effects of nonsteroidal antiinflammatory drugs (NSAIDs) include problems involving peptic
ulceration, renal function, and liver disease. In 1996, the American College of Rheumatology issued
and disseminated guidelines recommending baseline tests (CBC, hepatic panel, and renal tests) when
prescribing NSAIDs. A study was conducted by Rothenberg and Holcomb (A-6) to determine if
physicians taking part in a national database of computerized medical records performed the
recommended baseline tests when prescribing NSAIDs. The researchers classified physicians in
the study into four categories—those practicing in internal medicine, family practice, academic
family practice, and multispeciality groups. The data appear in the following table.
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Performed Baseline Tests

Practice Type Yes No

Internal medicine 294 921
Family practice 98 2862
Academic family practice 50 3064
Multispecialty groups 203 2652

Source: Ralph Tothenberg and John P. Holcomb, “Guidelines for Monitoring of NSAIDs: Who
Listened?,” Journal of Clinical Rheumatology, 6 (2000), 258-265.

Do the data above provide sufficient evidence for us to conclude that type of practice and
performance of baseline tests are related? Use o = .01.

Boles and Johnson (A-7) examined the beliefs held by adolescents regarding smoking and weight.
Respondents characterized their weight into three categories: underweight, overweight, or appropri-
ate. Smoking status was categorized according to the answer to the question, “Do you currently
smoke, meaning one or more cigarettes per day?” The following table shows the results of a telephone
study of adolescents in the age group 12-17.

Smoking
Yes No
Underweight 17 97
Overweight 25 142
Appropriate 96 816

Source: Sharon M. Boles and Patrick B. Johnson, “Gender, Weight Concerns, and Adolescent
Smoking,” Journal of Addictive Diseases, 20 (2001), 5-14.

Do the data provide sufficient evidence to suggest that weight perception and smoking status are
related in adolescents? o = .05.

A sample of 500 college students participated in a study designed to evaluate the level of college
students’ knowledge of a certain group of common diseases. The following table shows the students
classified by major field of study and level of knowledge of the group of diseases:

Knowledge of Diseases

Major Good Poor Total
Premedical 31 91 122
Other 19 359 378
Total 50 450 500

Do these data suggest that there is a relationship between knowledge of the group of diseases
and major field of study of the college students from which the present sample was drawn?
Let o = .05.

The following table shows the results of a survey in which the subjects were a sample of 300 adults
residing in a certain metropolitan area. Each subject was asked to indicate which of three policies they
favored with respect to smoking in public places.
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Policy Favored

No Smoking Allowed No
Highest Education Restrictions in Designated Smoking No
Level on Smoking Areas Only at All Opinion Total
College graduate 5 44 23 3 75
High-school graduate 15 100 30 5 150
Grade-school graduate 15 40 10 10 75
Total 35 184 63 18 300

Can one conclude from these data that, in the sampled population, there is a relationship between
level of education and attitude toward smoking in public places? Let o = .05.

12.5 TESTS OF HOMOGENEITY

A characteristic of the examples and exercises presented in the last section is that, in each
case, the total sample was assumed to have been drawn before the entities were classified
according to the two criteria of classification. That is, the observed number of entities falling
into each cell was determined after the sample was drawn. As a result, the row and column
totals are chance quantities not under the control of the investigator. We think of the sample
drawn under these conditions as a single sample drawn from a single population. On
occasion, however, either row or column totals may be under the control of the investigator;
that is, the investigator may specify that independent samples be drawn from each of several
populations. In this case, one set of marginal totals is said to be fixed, while the other set,
corresponding to the criterion of classification applied to the samples, is random. The former
procedure, as we have seen, leads to a chi-square test of independence. The latter situation
leads to a chi-square test of homogeneity. The two situations not only involve different
sampling procedures; they lead to different questions and null hypotheses. The test of
independence is concerned with the question: Are the two criteria of classification indepen-
dent? The homogeneity test is concerned with the question: Are the samples drawn from
populations that are homogeneous with respect to some criterion of classification? In the
latter case the null hypothesis states that the samples are drawn from the same population.
Despite these differences in concept and sampling procedure, the two tests are mathemati-
cally identical, as we see when we consider the following example.

Calculating Expected Frequencies Either the row categories or the col-
umn categories may represent the different populations from which the samples are drawn.
If, for example, three populations are sampled, they may be designated as populations 1, 2,
and 3, in which case these labels may serve as either row or column headings. If the variable
of interest has three categories, say, A, B, and C, these labels may serve as headings for rows
or columns, whichever is not used for the populations. If we use notation similar to that
adopted for Table 12.4.2, the contingency table for this situation, with columns used to
represent the populations, is shown as Table 12.5.1. Before computing our test statistic we
need expected frequencies for each of the cells in Table 12.5.1. If the populations are indeed
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TABLE 12.5.1 A Contingency Table for Data for a
Chi-Square Test of Homogeneity

Population
Variable Category 1 2 3 Total
A na Na2 Nna3 na,
B ngy ngy ng3 ng.
C nea ne; nes ne.
Total n. n.a ngs n

homogeneous, or, equivalently, if the samples are all drawn from the same population, with
respect to the categories A, B, and C, our best estimate of the proportion in the combined
population who belong to category A is ns /n. By the same token, if the three populations
are homogeneous, we interpret this probability as applying to each of the populations
individually. For example, under the null hypothesis, n4. is our best estimate of the
probability that a subject picked at random from the combined population will belong to
category A. We would expect, then, to find . (n4. /n) of those in the sample from population
1 to belong to category A, n(ns./n) of those in the sample from population 2 to belong to
category A, and n_3(n4./n) of those in the sample from population 3 to belong to category A.
These calculations yield the expected frequencies for the first row of Table 12.5.1. Similar
reasoning and calculations yield the expected frequencies for the other two rows.

We see again that the shortcut procedure of multiplying appropriate marginal totals
and dividing by the grand total yields the expected frequencies for the cells.

From the data in Table 12.5.1 we compute the following test statistic:

k

=Y

i=1

(0i — E))’
E;

EXAMPLE 12.5.1

Narcolepsy is a disease involving disturbances of the sleep—wake cycle. Members of the
German Migraine and Headache Society (A-8) studied the relationship between migraine
headaches in 96 subjects diagnosed with narcolepsy and 96 healthy controls. The results
are shown in Table 12.5.2. We wish to know if we may conclude, on the basis of these data,

TABLE 12.5.2 Frequency of Migraine Headaches by Narcolepsy Status

Reported Migraine Headaches

Yes No Total
Narcoleptic subjects 21 75 96
Healthy controls 19 77 96
Total 40 152 192

Source: The DMG Study Group, “Migraine and ldiopathic Narcolepsy—A Case-Control Study,”
Cephalagia, 23 (2003), 786-789.



632 CHAPTER12 THE CHI-SQUARE DISTRIBUTION AND THE ANALYSIS OF FREQUENCIES

that the narcolepsy population and healthy populations represented by the samples are not
homogeneous with respect to migraine frequency.

Solution:

1. Data. See Table 12.5.2.

2. Assumptions. We assume that we have a simple random sample from
each of the two populations of interest.

3. Hypotheses.

Hy: The two populations are homogeneous with respect to migraine
frequency.

H A: The two populations are not homogeneous with respect to migraine
frequency.

Let o = .05.

4. Test statistic. The test statistic is

X2 =" (0 - EY/E]
5. Distribution of test statistic. If H, is true, X* is distributed approxi-
mately as x* with (2 — 1)(2 — 1) = (1)(1) = 1 degree of freedom.
6. Decision rule. Reject H, if the computed value of X* is equal to or
greater than 3.841.

7. Calculation of test statistic. The MINITAB output is shown in Figure
12.5.1.

Chi-Square Test
Expected counts are printed below observed counts

Rows: Narcolepsy Columns: Migraine

No Yes All

No 77 19 96
76.00 20.00 96.00

Yes 75 21 96
76.00 20.00 96.00

All 152 40 192
152.00 40.00 192.00

Chi-Square = 0.126, DF = 1, P-Value = 0.722

FIGURE 12.5.1 MINITAB output for Example 12.5.1.
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8. Statistical decision. Since .126 is less than the critical value of 3.841,
we are unable to reject the null hypothesis.

9. Conclusion. We conclude that the two populations may be homoge-
neous with respect to migraine frequency.

10. p value. From the MINITAB output we see that p = .722. -

Small Expected Frequencies The rules for small expected frequencies given
in the previous section are applicable when carrying out a test of homogeneity.
In summary, the chi-square test of homogeneity has the following characteristics:

1. Two or more populations are identified in advance, and an independent sample is
drawn from each.

2. Sample subjects or objects are placed in appropriate categories of the variable of
interest.

3. The calculation of expected cell frequencies is based on the rationale that if the
populations are homogeneous as stated in the null hypothesis, the best estimate of the
probability that a subject or object will fall into a particular category of the variable of
interest can be obtained by pooling the sample data.

4. The hypotheses and conclusions are stated in terms of homogeneity (with respect to
the variable of interest) of populations.

Test of Homogeneity and Hgo:p; = p> The chi-square test of homogeneity
for the two-sample case provides an alternative method for testing the null hypothesis that
two population proportions are equal. In Section 7.6, it will be recalled, we learned to test
Hy:p, = p, against Ha :p; # p, by means of the statistic

7= (i)l —ﬁz) - (f)l _[32)0
\/ﬁ(l—ﬁ)+ﬁ(1—ﬁ)

ni np

where p is obtained by pooling the data of the two independent samples available for
analysis.

Suppose, for example, that in a test of Hy:p, = p, against H :p; # p,, the sample
data were as follows: n; = 100, p; = .60, n, = 120, p, = .40. When we pool the sample
data we have

.60(100) + .40(120) 108

D pr— = — = .4
P 100 + 120 220~ 409
and
60 — 40
.= — 2.95469
\/(.4909)(.5091)  (4909)(5091)
100 120

which is significant at the .05 level since it is greater than the critical value of 1.96.
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If we wish to test the same hypothesis using the chi-square approach, our contin-
gency table will be

Characteristic Present

Sample Yes No Total
1 60 40 100
2 48 72 120
Total 108 112 220

By Equation 12.4.1 we compute

,  220[(60)(72) — (40)(48)]
= = 8.7302
(108)(112)(100)(120)
which is significant at the .05 level because it is greater than the critical value of 3.841. We
see, therefore, that we reach the same conclusion by both methods. This is not surprising
because, as explained in Section 12.2, x{,) = z>. We note that 8.7302 = (2.95469)* and
that 3.841 = (1.96)%.

EXERCISES

12.5.1

In the exercises that follow perform the test at the indicated level of significance and determine the p
value.

Refer to the study by Carter et al. [A-9], who investigated the effect of age at onset of bipolar disorder
on the course of the illness. One of the variables studied was subjects’ family history. Table 3.4.1
shows the frequency of a family history of mood disorders in the two groups of interest: early age at
onset (18 years or younger) and later age at onset (later than 18 years).

Family History of Mood

Disorders Early < 18(E) Later > 18(L) Total
Negative (A) 28 35 63
Bipolar disorder (B) 19 38 57
Unipolar (C) 41 44 85
Unipolar and bipolar (D) 53 60 113
Total 141 177 318

Source: Tasha D. Carter, Emanuela Mundo, Sagar V. Parkh, and James L. Kennedy,
“Early Age at Onset as a Risk Factor for Poor Outcome of Bipolar Disorder,” Journal of
Psychiatric Research, 37 (2003), 297-303.

Can we conclude on the basis of these data that subjects 18 or younger differ from subjects older than
18 with respect to family histories of mood disorders? Let o = .05.
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Coughlin et al. (A-10) examined breast and cervical screening practices of Hispanic and non-
Hispanic women in counties that approximate the U.S. southern border region. The study used data
from the Behavioral Risk Factor Surveillance System surveys of adults ages 18 years or older
conducted in 1999 and 2000. The following table shows the number of observations of Hispanic
and non-Hispanic women who had received a mammogram in the past 2 years cross-classified by
marital status.

Marital Status Hispanic Non-Hispanic Total
Currently married 319 738 1057
Divorced or separated 130 329 459
Widowed 88 402 490
Never married or living as 41 95 136

an unmarried couple

Total 578 1564 2142

Source: Steven S. Coughlin, Robert J. Uhler, Thomas Richards, and Katherine
M. Wilson, “Breast and Cervical Cancer Screening Practices Among Hispanic
and Non-Hispanic Women Residing Near the United States—Mexico Border,
1999-2000,” Family and Community Health, 26, (2003), 130-139.

We wish to know if we may conclude on the basis of these data that marital status and ethnicity
(Hispanic and non-Hispanic) in border counties of the southern United States are not homogeneous.
Let o = .05.

Swor et al. (A-11) examined the effectiveness of cardiopulmonary resuscitation (CPR) training in
people over 55 years of age. They compared the skill retention rates of subjects in this age group who
completed a course in traditional CPR instruction with those who received chest-compression—only
cardiopulmonary resuscitation (CC-CPR). Independent groups were tested 3 months after training.
Among the 27 subjects receiving traditional CPR, 12 were rated as competent. In the CC-CPR group,
15 out of 29 were rated competent. Do these data provide sufficient evidence for us to conclude that
the two populations are not homogeneous with respect to competency rating 3 months after training?
Let o = .05.

In an air pollution study, a random sample of 200 households was selected from each of two
communities. A respondent in each household was asked whether or not anyone in the household was
bothered by air pollution. The responses were as follows:

Any Member of Household

Bothered by Air Pollution?
Community Yes No Total
I 43 157 200
I 81 119 200
Total 124 276 400

Can the researchers conclude that the two communities differ with respect to the variable of interest?
Let o = .05.
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12.5.5

In a simple random sample of 250 industrial workers with cancer, researchers found that 102 had
worked at jobs classified as “high exposure” with respect to suspected cancer-causing agents. Of the
remainder, 84 had worked at “moderate exposure” jobs, and 64 had experienced no known exposure
because of their jobs. In an independent simple random sample of 250 industrial workers from
the same area who had no history of cancer, 31 worked in “high exposure” jobs, 60 worked in
“moderate exposure” jobs, and 159 worked in jobs involving no known exposure to suspected cancer-
causing agents. Does it appear from these data that persons working in jobs that expose them to
suspected cancer-causing agents have an increased risk of contracting cancer? Let o = .05.

12.6 THE FISHER EXACT TEST

Sometimes we have data that can be summarized in a 2 x 2 contingency table, but these
data are derived from very small samples. The chi-square test is not an appropriate method
of analysis if minimum expected frequency requirements are not met. If, for example, n is
less than 20 or if 7 is between 20 and 40 and one of the expected frequencies is less than 5,
the chi-square test should be avoided.

A test that may be used when the size requirements of the chi-square test are not met
was proposed in the mid-1930s almost simultaneously by Fisher (7,8), Irwin (9), and Yates
(10). The test has come to be known as the Fisher exact test. It is called exact because, if
desired, it permits us to calculate the exact probability of obtaining the observed results or
results that are more extreme.

Data Arrangement When we use the Fisher exact test, we arrange the data in the
form of a 2 x 2 contingency table like Table 12.6.1. We arrange the frequencies in such a
way that A > B and choose the characteristic of interest so that a/A > b/B.

Some theorists believe that Fisher’s exact test is appropriate only when both marginal
totals of Table 12.6.1 are fixed by the experiment. This specific model does not appear to
arise very frequently in practice. Many experimenters, therefore, use the test when both
marginal totals are not fixed.

Assumptions The following are the assumptions for the Fisher exact test.

1. The data consist of A sample observations from population 1 and B sample
observations from population 2.
2. The samples are random and independent.

3. Each observation can be categorized as one of two mutually exclusive types.

TABLE 12.6.1 A 2 x 2 Contingency Table for the Fisher Exact Test

With Without
Sample Characteristic Characteristic Total
a A—-a A
2 b B—b B
Total a+b A+B—-a-b A+ B
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Hypotheses The following are the null hypotheses that may be tested and their
alternatives.

1. (Two-sided)
Hy: The proportion with the characteristic of interest is the same in both populations;
that is, p; = p,.
Hx: The proportion with the characteristic of interest is not the same in both
populations; p; # p,.
2. (One-sided)
Hy: The proportion with the characteristic of interest in population 1 is less than or
the same as the proportion in population 2; p; < p,.
HA: The proportion with the characteristic of interest is greater in population 1 than
in population 2; p; > p,.

Test Statistic The test statistic is b, the number in sample 2 with the characteristic
of interest.

Decision Rule Finney (11) has prepared critical values of b for A < 15. Latscha
(12) has extended Finney’s tables to accommodate values of A up to 20. Appendix Table J
gives these critical values of b for A between 3 and 20, inclusive. Significance levels of .05,
.025, .01, and .005 are included. The specific decision rules are as follows:

1. Two-sided test. Enter Table J with A, B, and a. If the observed value of b is equal to
or less than the integer in a given column, reject H at a level of significance equal to
twice the significance level shown at the top of that column. For example, suppose
A =8, B=7, a="17, and the observed value of b is 1. We can reject the null
hypothesis at the 2(.05) = .10, the 2(.025) = .05, and the 2(.01) = .02 levels of
significance, but not at the 2(.005) = .01 level.

2. One-sided test. Enter Table J with A, B, and a. If the observed value of b is less than
or equal to the integer in a given column, reject Hy at the level of significance shown
at the top of that column. For example, suppose that A = 16, B = 8, a = 4, and the
observed value of b is 3. We can reject the null hypothesis at the .05 and .025 levels of
significance, but not at the .01 or .005 levels.

Large-Sample Approximation For sufficiently large samples we can test the
null hypothesis of the equality of two population proportions by using the normal
approximation. Compute

r=—_a/4) = (b/B) (12.6.1)

VP(1—p)(1/A+1/B)

where
p=(a+b)/(A+B) (12.6.2)

and compare it for significance with appropriate critical values of the standard normal
distribution. The use of the normal approximation is generally considered satisfactory if a,
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b, A — a, and B — b are all greater than or equal to 5. Alternatively, when sample sizes are
sufficiently large, we may test the null hypothesis by means of the chi-square test.

Further Reading The Fisher exact test has been the subject of some controversy
among statisticians. Some feel that the assumption of fixed marginal totals is unrealistic in
most practical applications. The controversy then centers around whether the test is
appropriate when both marginal totals are not fixed. For further discussion of this and other
points, see the articles by Barnard (13-15), Fisher (16), and Pearson (17).

Sweetland (18) compared the results of using the chi-square test with those obtained
using the Fisher exact test for samples of size A + B = 3 to A + B = 69. He found close
agreement when A and B were close in size and the test was one-sided.

Carr (19) presents an extension of the Fisher exact test to more than two samples of
equal size and gives an example to demonstrate the calculations. Neave (20) presents the
Fisher exact test in a new format; the test is treated as one of independence rather than of
homogeneity. He has prepared extensive tables for use with his approach.

The sensitivity of Fisher’s exact test to minor perturbations in 2 X 2 contingency
tables is discussed by Dupont (21).

EXAMPLE 12.6.1

The purpose of a study by Justesen et al. (A-12) was to evaluate the long-term efficacy of
taking indinavir/ritonavir twice a day in combination with two nucleoside reverse
transcriptase inhibitors among HIV-positive subjects who were divided into two groups.
Group 1 consisted of patients who had no history of taking protease inhibitors (PI Naive).
Group 2 consisted of patients who had a previous history taking a protease inhibitor (PI
Experienced). Table 12.6.2 shows whether these subjects remained on the regimen for the
120 weeks of follow-up. We wish to know if we may conclude that patients classified as
group 1 have a lower probability than subjects in group 2 of remaining on the regimen for
120 weeks.

TABLE 12.6.2 Regimen Status at 120 Weeks for
Pl Naive and Pl Experienced Subjects Taking
Indinavir/Ritonavir as Described in Example 12.6.1

Remained in
the Regimen

for 120 Weeks
Total Yes No
1 (Pl Naive) 9 2 7
2 (PA Experienced) 12 8
Total 21 10 11

Source: U.S. Justesen, A. M. Lervfing, A. Thomsen, J. A. Lindberg,
C. Pedersen, and P. Tauris, “Low-Dose Indinavir in Combination with
Low-Dose Ritonavir: Steady-State Pharmacokinetics and Long-Term
Clinical Outcome Follow-Up,” HIV Medicine, 4 (2003), 250-254.
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TABLE 12.6.3 Data of Table 12.6.2 Rearranged to Conform to the
Layout of Table 12.6.1

Remained in Regimen for 120 Weeks

Yes No Total
2 (Pl Experienced) 8=a 4=A-a 12=A
1 (PI Naive) 2=0>b 7=B-b 9=8
Total 10=a+b M=A+B-a-»b 21=A+8B
Solution:

10.

Data. The data as reported are shown in Table 12.6.2. Table 12.6.3
shows the data rearranged to conform to the layout of Table 12.6.1.
Remaining on the regimen is the characteristic of interest.

Assumptions. We presume that the assumptions for application of the

Fisher exact test are met.

Hypotheses.

Hy: The proportion of subjects remaining 120 weeks on the regimen in a
population of patients classified as group 2 is the same as or less
than the proportion of subjects remaining on the regimen 120 weeks
in a population classified as group 1.

Ha: Group 2 patients have a higher rate than group 1 patients of
remaining on the regimen for 120 weeks.

Test statistic. The test statistic is the observed value of b as shown in
Table 12.6.3.

Distribution of test statistic. We determine the significance of b by
consulting Appendix Table J.

Decision rule. Suppose we let « = .05. The decision rule, then, is to
reject Hy if the observed value of b is equal to or less than 1, the value of
bin Table J for A =12, B=9,a =38, and o = .05.

Calculation of test statistic. The observed value of b, as shown in
Table 12.6.3, is 2.

Statistical decision. Since 2 > 1, we fail to reject H,.

Conclusion. Since we fail to reject Hy, we conclude that the null
hypothesis may be true. That is, it may be true that the rate of remaining
on the regimen for 120 weeks is the same or less for the PI experienced
group compared to the PI naive group.

p value. We see in Table J that when A = 12, B = 9, a = 8, the value of
b = 2 has an exact probability of occurring by chance alone, when Hj is
true, greater than .05. ]
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Pl * Remained Cross-Tabulation

Count
Remained
Yes No Total
Pl Experienced 8 4 12
Naive 2 7 9
Total 10 1 21

Chi-Square Tests

Asymp. Sig. Exact Sig. Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 4.073°| 1 .044
Continuity Correction® | 2.486 1 .115
Likelihood Ratio 4.253 1 .039
Fisher’'s Exact Test .080 .056
Linear-by-Linear 3.879 1 .049
Association
N of Valid Cases 21

a. Computed only for a 2 X 2 table

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.29.

FIGURE 12.6.1 SPSS output for Example 12.6.1.

Various statistical software programs perform the calculations for the Fisher exact
test. Figure 12.6.1 shows the results of Example 12.6.1 as computed by SPSS. The exact p
value is provided for both a one-sided and a two-sided test. Based on these results, we fail to
reject Hy (p value >.05), just as we did using the statistical tables in the Appendix. Note
that in addition to the Fisher exact test several alternative tests are provided. The reader
should be aware that these alternative tests are not appropriate if the assumptions under-
lying them have been violated.

EXERCISES

12.6.1 The goal of a study by Tahmassebi and Curzon (A-13) was to determine if drooling in children
with cerebral palsy is due to hypersalivation. One of the procedures toward that end was to examine
the salivary buffering capacity of cerebral palsied children and controls. The following table gives

the results.
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Buffering Capacity
Group Medium High
Cerebral palsy 2 8
Control 3 7

Source: J. F. Tahmassebi and M. E. J. Curzon, “The Cause of Drooling in
Children with Cerebral Palsy—Hypersalivation or Swallowing Defect?”
International Journal of Paediatric Dentistry, 13 (2003), 106-111.

Test for a significant difference between cerebral palsied children and controls with respect to high or
low buffering capacity. Let @ = .05 and find the p value.

12.6.2 In a study by Xiao and Shi (A-14), researchers studied the effect of cranberry juice in the treatment
and prevention of Helicobacter pylori infection in mice. The eradication of Helicobacter pylori
results in the healing of peptic ulcers. Researchers compared treatment with cranberry juice to “triple
therapy (amoxicillin, bismuth subcitrate, and metronidazole) in mice infected with Helicobacter
pylori. After 4 weeks, they examined the mice to determine the frequency of eradication of the
bacterium in the two treatment groups. The following table shows the results.

No. of Mice with Helicobacter pylori Eradicated

Yes No
Triple therapy 8 2
Cranberry juice 2 8

Source: Shu Dong Xiao and Tong Shi, “Is Cranberry Juice Effective in the Treatment and
Prevention of Helicobacter Pylori Infection of Mice,” Chinese Journal of Digestive Diseases,
4 (2003), 136-139.

May we conclude, on the basis of these data, that triple therapy is more effective than cranberry juice
at eradication of the bacterium? Let o = .05 and find the p value.

12.6.3 In a study by Shaked et al. (A-15), researchers studied 26 children with blunt pancreatic injuries.
These injuries occurred from a direct blow to the abdomen, bicycle handlebars, fall from height, or
car accident. Nineteen of the patients were classified as having minor injuries, and seven were
classified as having major injuries. Pseudocyst formation was suspected when signs of clinical
deterioration developed, such as increased abdominal pain, epigastric fullness, fever, and increased
pancreatic enzyme levels. In the major injury group, six of the seven children developed pseudocysts
while in the minor injury group, three of the 19 children developed pseudocysts. Is this sufficient
evidence to allow us to conclude that the proportion of children developing pseudocysts is higher in
the major injury group than in the minor injury group? Let o = .01.

12.7 RELATIVE RISK, ODDS RATIO, AND
THE MANTEL-HAENSZEL STATISTIC

In Chapter 8 we learned to use analysis of variance techniques to analyze data that arise
from designed experiments, investigations in which at least one variable is manipulated
in some way. Designed experiments, of course, are not the only sources of data that are
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of interest to clinicians and other health sciences professionals. Another important class of
scientific investigation that is widely used is the observational study.

DEFINITION
An observational study is a scientific investigation in which neither the
subjects under study nor any of the variables of interest are manipulated
in any way.

An observational study, in other words, may be defined simply as an investigation
that is not an experiment. The simplest form of observational study is one in which there are
only two variables of interest. One of the variables is called the risk factor, or independent
variable, and the other variable is referred to as the outcome, or dependent variable.

DEFINITION
The term risk factor is used to designate a variable that is thought to be
related to some outcome variable. The risk factor may be a suspected
cause of some specific state of the outcome variable.

In a particular investigation, for example, the outcome variable might be subjects’
status relative to cancer and the risk factor might be their status with respect to cigarette
smoking. The model is further simplified if the variables are categorical with only two
categories per variable. For the outcome variable the categories might be cancer present
and cancer absent. With respect to the risk factor subjects might be categorized as smokers
and nonsmokers.

When the variables in observational studies are categorical, the data pertaining to
them may be displayed in a contingency table, and hence the inclusion of the topic in the
present chapter. We shall limit our discussion to the situation in which the outcome variable
and the risk factor are both dichotomous variables.

Types of Observational Studies There are two basic types of observational
studies, prospective studies and retrospective studies.

DEFINITION

A prospective study is an observational study in which two random
samples of subjects are selected. One sample consists of subjects who
possess the risk factor, and the other sample consists of subjects who do
not possess the risk factor. The subjects are followed into the future (that
is, they are followed prospectively), and a record is kept on the number of
subjects in each sample who, at some point in time, are classifiable into
each of the categories of the outcome variable.

The data resulting from a prospective study involving two dichotomous variables can
be displayed in a 2 X 2 contingency table that usually provides information regarding the
number of subjects with and without the risk factor and the number who did and did not
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TABLE 12.7.1 Classification of a Sample of Subjects with Respect
to Disease Status and Risk Factor

Disease Status

Risk Factor Present Absent Total at Risk
Present a b a+b
Absent c d c+d
Total a+c b+d n

succumb to the disease of interest as well as the frequencies for each combination of
categories of the two variables.

DEFINITION

A retrospective study is the reverse of a prospective study. The samples are
selected from those falling into the categories of the outcome variable.
The investigator then looks back (that is, takes a retrospective look) at the
subjects and determines which ones have (or had) and which ones do not
have (or did not have) the risk factor.

From the data of a retrospective study we may construct a contingency table with
frequencies similar to those that are possible for the data of a prospective study.

In general, the prospective study is more expensive to conduct than the retrospective
study. The prospective study, however, more closely resembles an experiment.

Relative Risk The data resulting from a prospective study in which the dependent
variable and the risk factor are both dichotomous may be displayed in a 2 x 2 contingency
table such as Table 12.7.1. The risk of the development of the disease among the subjects
with the risk factor is a/(a + ). The risk of the development of the disease among the
subjects without the risk factor is ¢/(c + d). We define relative risk as follows.

DEFINITION

Relative risk is the ratio of the risk of developing a disease among subjects
with the risk factor to the risk of developing the disease among subjects
without the risk factor.

We represent the relative risk from a prospective study symbolically as

— a/la+b)

where a, b, ¢, and d are as defined in Table 12.7.1, and RR indicates that the relative risk is
computed from a sample to be used as an estimate of the relative risk, RR, for the
population from which the sample was drawn.
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We may construct a confidence interval for RR

100(1 — &) %CI = RR'*(z/V¥) (12.7.2)

where z, is the two-sided z value corresponding to the chosen confidence coefficient and X*
is computed by Equation 12.4.1.

Interpretation of RR The value of RR may range anywhere between zero and
infinity. A value of 1 indicates that there is no association between the status of the risk
factor and the status of the dependent variable. In most cases the two possible states of
the dependent variable are disease present and disease absent. We interpret an RR of 1 to
mean that the risk of acquiring the disease is the same for those subjects with the risk
factor and those without the risk factor. A value of RR greater than 1 indicates that the
risk of acquiring the disease is greater among subjects with the risk factor than among
subjects without the risk factor. An RR value that is less than 1 indicates less risk of
acquiring the disease among subjects with the risk factor than among subjects without
the risk factor. For example, a risk factor of 2 is taken to mean that those subjects with the
risk factor are twice as likely to acquire the disease as compared to subjects without the
risk factor.
We illustrate the calculation of relative risk by means of the following example.

EXAMPLE 12.7.1

In a prospective study of pregnant women, Magann et al. (A-16) collected extensive
information on exercise level of low-risk pregnant working women. A group of 217 women
did no voluntary or mandatory exercise during the pregnancy, while a group of 238 women
exercised extensively. One outcome variable of interest was experiencing preterm labor.
The results are summarized in Table 12.7.2.

We wish to estimate the relative risk of preterm labor when pregnant women exercise
extensively.

Solution: By Equation 12.7.1 we compute

. 22/238 .0924
©18/217  .0829

TABLE 12.7.2 Subjects with and without the Risk Factor Who Became Cases
of Preterm Labor

Risk Factor Cases of Preterm Labor Noncases of Preterm Labor Total
Extreme exercising 22 216 238
Not exercising 18 199 217
Total 40 415 455

Source: Everett F. Magann, Sharon F. Evans, Beth Weitz, and John Newnham, “Antepartum, Intrapartum,
and Neonatal Significance of Exercise on Healthy Low-Risk Pregnant Working Women,” Obstetrics and
Gynecology, 99 (2002), 466-472.
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Odds Ratio and Relative Risk Section

Common Original Iterated Log Odds Relative

Odds Ratio Odds Ratio Odds Ratio Ratio Risk

Upper 95% C.L. 2.1350 2.2683 0.7585 2.1192
1.1260 1.1207 1.1207 0.1140 1.1144

Lower 95% C.L. 0.5883 0.5606 —0.5305 0.5896

FIGURE 12.7.1 NCSS output for the data in Example 12.7.1.

These data indicate that the risk of experiencing preterm labor when a woman
exercises heavily is 1.1 times as great as it is among women who do not
exercise at all.

We compute the 95 percent confidence interval for RR as follows. By
Equation 12.4.1, we compute from the data in Table 12.7.2:

455[(22)(199) — (216)(18)]*
= @o)@1s) )17y

By Equation 12.7.2, the lower and upper confidence limits are, respectively,

1.11-196/VI278 — 65 and 1.1'+196/V-1274 _ | 86 Since the interval includes
1, we conclude, at the .05 level of significance, that the population risk may
be 1. In other words, we conclude that, in the population, there may not be
an increased risk of experiencing preterm labor when a pregnant woman
exercises extensively.

The data were processed by NCSS. The results are shown in Figure
12.7.1. The relative risk calculation is shown in the column at the far right of
the output, along with the 95% confidence limits. Because of rounding errors,
these values differ slightly from those given in the example. [ ]

Odds Ratio When the data to be analyzed come from a retrospective study, relative
risk is not a meaningful measure for comparing two groups. As we have seen, a
retrospective study is based on a sample of subjects with the disease (cases) and a separate
sample of subjects without the disease (controls or noncases). We then retrospectively
determine the distribution of the risk factor among the cases and controls. Given the results
of a retrospective study involving two samples of subjects, cases, and controls, we may
display the data in a 2 x 2 table such as Table 12.7.3, in which subjects are dichotomized
with respect to the presence and absence of the risk factor. Note that the column headings in
Table 12.7.3 differ from those in Table 12.7.1 to emphasize the fact that the data are from a
retrospective study and that the subjects were selected because they were either cases or
controls. When the data from a retrospective study are displayed as in Table 12.7.3,
the ratio a/(a + b), for example, is not an estimate of the risk of disease for subjects with
the risk factor. The appropriate measure for comparing cases and controls in a retrospective
study is the odds ratio. As noted in Chapter 11, in order to understand the concept of




646 CHAPTER12 THE CHI-SQUARE DISTRIBUTION AND THE ANALYSIS OF FREQUENCIES

TABLE 12.7.3 Subjects of a Retrospective Study
Classified According to Status Relativeto a Risk Factor
and Whether They Are Cases or Controls

Sample
Risk Factor Cases Controls Total
Present a b a+b
Absent c d c+d
Total a+c b+d n

the odds ratio, we must understand the term odds, which is frequently used by those who
place bets on the outcomes of sporting events or participate in other types of gambling
activities.

DEFINITION

The odds for success are the ratio of the probability of success to the
probability of failure.

We use this definition of odds to define two odds that we can calculate from data
displayed as in Table 12.7.3:

1. The odds of being a case (having the disease) to being a control (not having the
disease) among subjects with the risk factor is [a/(a + b)]/[b/(a + b)] = a/b.

2. The odds of being a case (having the disease) to being a control (not having the
disease) among subjects without the risk factor is [c/(c + d)]/[d/(c + d)] = ¢/d.

We now define the odds ratio that we may compute from the data of a retrospective
study. We use the symbol OR to indicate that the measure is computed from sample data
and used as an estimate of the population odds ratio, OR.

DEFINITION
The estimate of the population odds ratio is

—~ a/b ad
OR =412 _

= /d ™ be (12.7.3)

where a, b, ¢, and d are as defined in Table 12.7.3.

We may construct a confidence interval for OR by the following method:

100(1 — @)% CI = OR'*(z/V¥) (12.7.4)

where z, is the two-sided z value corresponding to the chosen confidence coefficient and
X? is computed by Equation 12.4.1.
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Interpretation of the Odds Ratio In the case of a rare disease, the popula-
tion odds ratio provides a good approximation to the population relative risk. Conse-
quently, the sample odds ratio, being an estimate of the population odds ratio, provides an
indirect estimate of the population relative risk in the case of a rare disease.

The odds ratio can assume values between zero and oo. A value of 1 indicates no
association between the risk factor and disease status. A value less than 1 indicates reduced
odds of the disease among subjects with the risk factor. A value greater than 1 indicates
increased odds of having the disease among subjects in whom the risk factor is present.

EXAMPLE 12.7.2

Toschke et al. (A-17) collected data on obesity status of children ages 5—6 years and the
smoking status of the mother during the pregnancy. Table 12.7.4 shows 3970 subjects
classified as cases or noncases of obesity and also classified according to smoking status of
the mother during pregnancy (the risk factor). We wish to compare the odds of obesity at
ages 5-6 among those whose mother smoked throughout the pregnancy with the odds of
obesity at age 5-6 among those whose mother did not smoke during pregnancy.

Solution: The odds ratio is the appropriate measure for answering the question posed.
By Equation 12.7.3 we compute

_ (64)(3496)
OR = W =9.62

We see that obese children (cases) are 9.62 times as likely as nonobese
children (noncases) to have had a mother who smoked throughout the
pregnancy.

We compute the 95 percent confidence interval for OR as follows. By
Equation 12.4.1 we compute from the data in Table 12.7.4

,  3970[(64)(3496) — (342)(68)]
T (132)(3838)(406)(3564)

TABLE 12.7.4 Subjects Classified According to Obesity
Status and Mother’'s Smoking Status during Pregnancy

=217.6831

Obesity Status
Smoking Status Cases Noncases Total
During Pregnancy
Smoked throughout 64 342 406
Never smoked 68 3496 3564
Total 132 3838 3970

Source: A. M. Toschke, S. M. Montgomery, U. Pfeiffer, and R. von Kries, “Early
Intrauterine Exposure to Tobacco-Inhaled Products and Obesity,” American Jour-
nal of Epidemiology, 158 (2003), 1068-1074.
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Smoking_status * Obsesity_status Cross-Tabulation

Count
Obesity status
Cases Noncases Total
Smoking_status Smoked throughout 64 342 406
Never smoked 68 3496 3564
Total 132 3838 3970

Risk Estimate

95% Confidence
Interval

Value Lower Upper
Odds Ratio for
Smoking_status
(Smoked throughout 9.621 6.719 13.775
/Never smoked)
For cohort Obesity_ 8.262 5.966 11.441
status = Cases
For cohort Obesity_ .859 .823 .896
status = Noncases
N of Valid Cases 3970

FIGURE 12.7.2 SPSS output for Example 12.7.2.

The lower and upper confidence limits for the population OR, respectively, are
9.62!19O/V2ITEB — 7 12 and 9.62' 1 9/V2ITEHET — 13,00, We conclude

with 95 percent confidence that the population OR is somewhere between
7.12 and 13.00. Because the interval does not include 1, we conclude that, in the
population, obese children (cases) are more likely than nonobese children
(noncases) to have had a mother who smoked throughout the pregnancy.
The data from Example 12.7.2 were processed using SPSS. The
results are shown in Figure 12.7.2. The odds ratio calculation, along with
the 95% confidence limits, are shown in the top line of the Risk Estimate
box. These values differ slightly from those in the example because of
rounding error. [ ]

The Mantel-Haenszel Statistic Frequently when we are studying the rela-
tionship between the status of some disease and the status of some risk factor, we are
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aware of another variable that may be associated with the disease, with the risk factor,
or with both in such a way that the true relationship between the disease status and the
risk factor is masked. Such a variable is called a confounding variable. For example,
experience might indicate the possibility that the relationship between some disease
and a suspected risk factor differs among different ethnic groups. We would then treat
ethnic membership as a confounding variable. When they can be identified, it is
desirable to control for confounding variables so that an unambiguous measure of the
relationship between disease status and risk factor may be calculated. A technique for
accomplishing this objective is the Mantel-Haenszel (22) procedure, so called in
recognition of the two men who developed it. The procedure allows us to test the null
hypothesis that there is no association between status with respect to disease and risk
factor status. Initially used only with data from retrospective studies, the Mantel-
Haenszel procedure is also appropriate for use with data from prospective studies, as
discussed by Mantel (23).

In the application of the Mantel-Haenszel procedure, case and control subjects are
assigned to strata corresponding to different values of the confounding variable. The data
are then analyzed within individual strata as well as across all strata. The discussion that
follows assumes that the data under analysis are from a retrospective or a prospective study
with case and noncase subjects classified according to whether they have or do not have the
suspected risk factor. The confounding variable is categorical, with the different categories
defining the strata. If the confounding variable is continuous it must be categorized. For
example, if the suspected confounding variable is age, we might group subjects into
mutually exclusive age categories. The data before stratification may be displayed as
shown in Table 12.7.3.

Application of the Mantel-Haenszel procedure consists of the following steps.

1. Form k strata corresponding to the k categories of the confounding variable. Table
12.7.5 shows the data display for the ith stratum.

2. For each stratum compute the expected frequency e; of the upper left-hand cell of
Table 12.7.5 as follows:

oy — it billaite) (12.7.5)

n;

TABLE 12.7.5 Subjects in the ith Stratum of a Confounding
Variable Classified According to Status Relative to a Risk
Factor and Whether They Are Cases or Controls

Sample
Risk Factor Cases Controls Total
Present a; b; a; + b;
Absent Ci d; ci+d;

Total aj+cj b; + d; n;
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3. For each stratum compute

vi = (i 1 bi)(e +2d,-)(a,- i) (bit ) (12.7.6)
n#(n; — 1)

i

4. Compute the Mantel-Haenszel test statistic, X12\4H as follows:

By = k—:l (12.7.7)

5. Reject the null hypothesis of no association between disease status and suspected risk
factor status in the population if the computed value of 3y is equal to or greater than
the critical value of the test statistic, which is the tabulated chi-square value for 1
degree of freedom and the chosen level of significance.

Mantel-Haenszel Estimator of the Common Odds Ratio When we
have k strata of data, each of which may be displayed in a table like Table 12.7.5, we may
compute the Mantel-Haenszel estimator of the common odds ratio, ORyy as follows:

M»

(aid;i/n;)

Il
-

ORwi = (12.7.8)

M=

(bici/n;)

When we use the Mantel-Haenszel estimator given by Equation 12.7.4, we assume that, in
the population, the odds ratio is the same for each stratum.

We illustrate the use of the Mantel-Haenszel statistics with the following
examples.

EXAMPLE 12.7.3

In a study by LaMont et al. (A-18), researchers collected data on obstructive coronary
artery disease (OCAD), hypertension, and age among subjects identified by a treadmill
stress test as being at risk. In Table 12.7.6, counts on subjects in two age strata are presented
with hypertension as the risk factor and the presence of OCAD as the case/noncase
variable.

Solution:

1. Data. See Table 12.7.6.

2. Assumptions. We assume that the assumptions discussed earlier for the
valid use of the Mantel-Haenszel statistic are met.
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TABLE 12.7.6 Patients Stratified by Age and Classified by Status
Relative to Hypertension (the Risk Factor) and OCAD (Case/Noncase
Variable)

Stratum 1 (55 and under)

Risk Factor

(Hypertension) Cases (OCAD) Noncases Total
Present 21 11 32
Absent 16 6 22
Total 37 17 54

Stratum 2 (over 55)

Risk Factor

(Hypertension) Cases (OCAD) Noncases Total
Present 50 14 64
Absent 18 6 24
Total 68 20 88

Source: Data provided courtesy of Matthew J. Budoff, MD.

3. Hypotheses.
H,: There is no association between the presence of hypertension
and occurrence of OCAD in subjects 55 and under and subjects
over 55.
H: There is a relationship between the two variables.

4. Test statistic.

i=1 i=1

EED)

as given in Equation 12.7.7.
5. Distribution of test statistic. Chi-square with 1 degree of freedom.

6. Decision rule. Suppose we let « = .05. Reject Hy if the computed value
of the test statistic is greater than or equal to 3.841.

7. Calculation of test statistic. By Equation 12.7.5 we compute the
following expected frequencies:

er = (214 11)(21 + 16)/54 = (32)(37)/54 = 21.93
ey = (50 + 14)(50 + 18)/88 = (64)(68),/88 = 49.45
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By Equation 12.7.6 we compute

v = (32)(22)(37)(17)/(2916)(54 — 1) = 2.87
vy = (64)(24)(68)(20)/(7744)(88 — 1) = 3.10

Finally, by Equation 12.7.7 we compute

2
> [(21450) — (21.93 +49.45)]°
Xvu = 2.87 +3.10 -

8. Statistical decision. Since .0242 < 3.841, we fail to reject Hy,.

9. Conclusion. We conclude that there may not be an association between
hypertension and the occurrence of OCAD.

10. p value. Since .0242 < 2.706, the p value for this test is p > .10.

We now illustrate the calculation of the Mantel-Haenszel estimator of the
common odds ratio. [ ]

EXAMPLE 12.7.4
Let us refer to the data in Table 12.7.6 and compute the common odds ratio.

Solution: From the stratified data in Table 12.7.6 we compute the numerator of the ratio
as follows:

(@1di/m) + (ada /ny) = [(21)(6)/54] 4 [(50)(6)/88]
= 5.7424

The denominator of the ratio is

(brci/m) + (baca/ma) = [(11)(16)/54] + [(14)(18)/88]
= 6.1229

Now, by Equation 12.7.7, we compute the common odds ratio:

G 57424 _
MH = 61220 °

From these results we estimate that, regardless of age, patients who
have hypertension are less likely to have OCAD than patients who do not
have hypertension. [

Hand calculation of the Mantel-Haenszel test statistics can prove to be a cumber-
some task. Fortunately, the researcher can find relief in one of several statistical software
packages that are available. To illustrate, results from the use of SPSS to process the data of
Example 12.7.3 are shown in Figure 12.7.3. These results differ from those given in the
example because of rounding error.
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Smoking_status * Obsesity_status * Stratum Cross-Tabulation
Count
Obesity status
Stratum Cases |Noncases | Total
55 and under Smoking_status Smoked throughout 21 1 32
Never smoked 16 6 22
Total 37 17 54
Over 55 Smoking_status Smoked throughout 50 14 64
Never smoked 18 6 24
Total 68 20 88
Tests of Conditional Independence
Asymp. Sig.
Chi-Squared | df (2-sided)
Cochran's .025 1 .875
Mantel-Haenszel .002 1 .961
Mantel-Haenszel Common Odds Ratio Estimate
Estimate .938
In(Estimate) —.064
Std. Error of In(Estimate) 412
Asymp. Sig. (2-sided) .876
Asymp. 95% confidence Common Odds  Lower Bound .418
Interval Ratio Upper Bound 2.102
In(Common) Lower Bound -.871
Odds Ratio) Upper Bound 743
FIGURE 12.7.3 SPSS output for Example 12.7.3.
EXERCISES

12.7.1 Davy et al. (A-19) reported the results of a study involving survival from cervical cancer. The
researchers found that among subjects younger than age 50, 16 of 371 subjects had not survived for
1 year after diagnosis. In subjects age 50 or older, 219 of 376 had not survived for 1 year after
diagnosis. Compute the relative risk of death among subjects age 50 or older. Does it appear from
these data that older subjects diagnosed as having cervical cancer are prone to higher mortality
rates?
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12.7.2

12.7.3

12.7.4

12.7.5

The objective of a prospective study by Stenestrand et al. (A-20) was to compare the mortality rate
following an acute myocardial infarction (AMI) among subjects receiving early revascularization to
the mortality rate among subjects receiving conservative treatments. Among 2554 patients receiving
revascularization within 14 days of AMI, 84 died in the year following the AMI. In the conservative
treatment group (risk factor present), 1751 of 19,358 patients died within a year of AMI. Compute the
relative risk of mortality in the conservative treatment group as compared to the revascularization
group in patients experiencing AMI.

Refer to Example 12.7.2. Toschke et al. (A-17), who collected data on obesity status of children ages
5-6 years and the smoking status of the mother during the pregnancy, also reported on another
outcome variable: whether the child was born premature (37 weeks or fewer of gestation). The
following table summarizes the results of this aspect of the study. The same risk factor (smoking
during pregnancy) is considered, but a case is now defined as a mother who gave birth prematurely.

Premature Birth Status

Smoking Status

During Pregnancy Cases Noncases Total
Smoked throughout 36 370 406
Never smoked 168 3396 3564
Total 204 3766 3970

Source: A. M. Toschke, S. M. Montgomery, U. Pfeiffer, and R. von Kries, “Early Intrauterine
Exposure to Tobacco-Inhaled Products and Obesity,” American Journal of Epidemiology, 158
(2003), 1068-1074.

Compute the odds ratio to determine if smoking throughout pregnancy is related to premature birth.
Use the chi-square test of independence to determine if one may conclude that there is an association
between smoking throughout pregnancy and premature birth. Let o = .05.

Sugiyama et al. (A-21) examined risk factors for allergic diseases among 13- and 14-year-old
schoolchildren in Japan. One risk factor of interest was a family history of eating an unbalanced diet.
The following table shows the cases and noncases of children exhibiting symptoms of rhinitis in the
presence and absence of the risk factor.

Rhinitis
Family History Cases Noncases Total
Unbalanced diet 656 1451 2107
Balanced diet 677 1662 2339
Total 1333 3113 4446

Source: Takako Sugiyama, Kumiya Sugiyama, Masao Toda, Tastuo Yukawa, Sohei Makino,
and Takeshi Fukuda, “Risk Factors for Asthma and Allergic Diseases Among 13—14-Year-Old
Schoolchildren in Japan,” Allergology International, 51 (2002), 139-150.

What is the estimated odds ratio of having rhinitis among subjects with a family history of an
unbalanced diet compared to those eating a balanced diet? Compute the 95 percent confidence
interval for the odds ratio.

According to Holben et al. (A-22), “Food insecurity implies a limited access to or availability of food
or a limited/uncertain ability to acquire food in socially acceptable ways.” These researchers
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collected data on 297 families with a child in the Head Start nursery program in a rural area of Ohio
near Appalachia. The main outcome variable of the study was household status relative to food
security. Households that were not food secure are considered to be cases. The risk factor of interest
was the absence of a garden from which a household was able to supplement its food supply. In the
following table, the data are stratified by the head of household’s employment status outside the

home.
Stratum 1 (Employed Outside the Home)
Risk Factor Cases Noncases Total
No garden 40 37 77
Garden 13 38 51
Total 53 75 128
Stratum 2 (Not Employed Outside the Home)

Risk Factor Cases Noncases Total
No garden 75 38 113
Garden 15 33 48
Total 90 71 161

Source: Data provided courtesy of David H. Holben, Ph.D. and John P. Holcomb, Jr., Ph.D.

Compute the Mantel-Haenszel common odds ratio with stratification by employment status. Use the
Mantel-Haenszel chi-square test statistic to determine if we can conclude that there is an association
between the risk factor and food insecurity. Let o = .05.

12.8 SUMMARY

In this chapter some uses of the versatile chi-square distribution are discussed. Chi-square
goodness-of-fit tests applied to the normal, binomial, and Poisson distributions are
presented. We see that the procedure consists of computing a statistic
=3 (0; - E:)?
= 7

that measures the discrepancy between the observed (O;) and expected (E;) frequencies of
occurrence of values in certain discrete categories. When the appropriate null hypothesis is
true, this quantity is distributed approximately as x*. When X? is greater than or equal to the
tabulated value of x> for some «, the null hypothesis is rejected at the o level of
significance.

Tests of independence and tests of homogeneity are also discussed in this chapter.
The tests are mathematically equivalent but conceptually different. Again, these tests
essentially test the goodness-of-fit of observed data to expectation under hypotheses,
respectively, of independence of two criteria of classifying the data and the homogeneity of
proportions among two or more groups.
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In addition, we discussed and illustrated in this chapter four other techniques for
analyzing frequency data that can be presented in the form of a2 x 2 contingency table: the
Fisher exact test, the odds ratio, relative risk, and the Mantel-Haenszel procedure. Finally,
we discussed the basic concepts of survival analysis and illustrated the computational
procedures by means of two examples.

SUMMARY OF FORMULAS FOR CHAPTER 12

Formula
Number Name Formula
12.2.1 Standard normal random z= Yi — K
variable o
12.2.2 Chi-square distribution with X%n) = Z% + Z% R Zg
n degrees of freedom
12.2.3 Chi-square probability _ 1 b= )
density function fu) k ) ok/2 u e
2
12.2.4 Chi-square test statistic R (0, — E,-)2
X =2 2
1
12.4.1 Chi-square calculation ) n(ad — bc)2
formula fora2 x 2 X _(a+c)(b+d)(a+b)(c+d)
contingency table
12.4.2 Yates’s corrected chi-square 5 n(|ad — be| — '5,,)2
calculation fora 2 x 2 Xeorrected (a+c)(b+d)(a+b)(c+d)
contingency table
12.6.1-12.6.2 Large-sample approximation (a/A) — (b/B)
to the chi-square VP = p)(1/A+1/B)
where
p=(a+b)/(A+B)
12.7.1 Relative risk estimate iR — af(a+b)
" c/(c+d)
12.7.2 Confidence interval for the 100(1 — &)%CI = ﬁli(za/\/x—z)
relative risk estimate
12.7.3 Odds ratio estimate bR = a/b ad
" c¢/d b
12.74 Confidence interval for the 100(1 — &) %CI = OR'*(za/Va?)
odds ratio estimate

(Continued)
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12.7.5 Expected frequency in the (@i +bi)(a;i +ci)
Mantel-Haenszel statistic €= i
12.7.6 Stratum expected frequency _ (ai + bi)(ci + di)(ai + ci)(b; + d;)
in the Mantel-Haenszel Vi = n?(n; — 1)
statistic
12.7.7 Mantel-Haenszel test statistic k k
(5o -5)
> \i=l i=1
XMH = X
Vi
i=1
12.7.8 Mantel-Haenszel estimator k
of the common odds ratio - l:Zl (aidi/ni)
> (bici/n;)
i=1
Symbol Key ® a, b, ¢, d = cell frequencies in a2 x 2 contingency table

A, B = row totals in the 2 x 2 contingency table

B = regression coefficient

X2 (oer) = chi-square

e; = expected frequency in the Mantel-Haenszel statistic
E; = expected frequency

E(yx) = expected value of yatx

k = degrees of freedom in the chi-square distribution

4 = mean

O; = observed frequency

OR = odds ratio estimate

o = standard deviation

RR = relative risk estimate

v; = stratum expected frequency in the Mantel-Haenszel statistic
y; = data value at pointi

z = normal variate

REVIEW QUESTIONS AND EXERCISES

Explain how the chi-square distribution may be derived.

What are the mean and variance of the chi-square distribution?

Explain how the degrees of freedom are computed for the chi-square goodness-of-fit tests.
State Cochran’s rule for small expected frequencies in goodness-of-fit tests.

How does one adjust for small expected frequencies?

What is a contingency table?

NS, R W D=

How are the degrees of freedom computed when an X* value is computed from a contingency
table?
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10.

11.
12.

13.
14.

15.

16.

Explain the rationale behind the method of computing the expected frequencies in a test of
independence.

Explain the difference between a test of independence and a test of homogeneity.

Explain the rationale behind the method of computing the expected frequencies in a test of
homogeneity.

When do researchers use the Fisher exact test rather than the chi-square test?

Define the following:

(a) Observational study (b) Risk factor

(¢) Outcome (d) Retrospective study
(e) Prospective study (f) Relative risk

(g) Odds (h) Odds ratio

(i) Confounding variable

Under what conditions is the Mantel-Haenszel test appropriate?

Explain how researchers interpret the following measures:
(a) Relative risk
(b) Odds ratio

(¢) Mantel-Haenszel common odds ratio

In a study of violent victimization of women and men, Porcerelli et al. (A-23) collected infor-
mation from 679 women and 345 men ages 18 to 64 years at several family practice centers
in the metropolitan Detroit area. Patients filled out a health history questionnaire that included
a question about victimization. The following table shows the sample subjects cross-classified
by gender and the type of violent victimization reported. The victimization categories are
defined as no victimization, partner victimization (and not by others), victimization by a person
other than a partner (friend, family member, or stranger), and those who reported multiple
victimization.

Gender  No Victimization  Partner  Nonpartner = Multiple  Total

Women 611 34 16 18 679
Men 308 10 17 10 345
Total 919 44 33 28 1024

Source: John H. Porcerelli, Rosemary Cogan, Patricia P. West, Edward A. Rose, Dawn
Lambrecht, Karen E. Wilson, Richard K. Severson, and Dunia Karana, “Violent Victimization
of Women and Men: Physical and Psychiatric Symptoms,” Journal of the American Board of
Family Practice, 16 (2003), 32-39.

Can we conclude on the basis of these data that victimization status and gender are not independent?
Let o = .05.

Refer to Exercise 15. The following table shows data reported by Porcerelli et al. for 644 African-
American and Caucasian women. May we conclude on the basis of these data that for women, race
and victimization status are not independent? Let o = .05.



17.

18.

19.
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No Victimization Partner Nonpartner Multiple Total
Caucasian 356 20 3 9 388
African-American 226 11 10 9 256
Total 582 31 13 18 644

Source: John H. Porcerelli, Rosemary Cogan, Patricia P. West, Edward A. Rose, Dawn Lambrecht,
Karen E. Wilson, Richard K. Severson, and Dunia Karana, “Violent Victimization of Women and
Men: Physical and Psychiatric Symptoms,” Journal of the American Board of Family Practice, 16
(2003), 32-39.
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A sample of 150 chronic carriers of a certain antigen and a sample of 500 noncarriers revealed the

following blood group distributions:

Blood Group Carriers Noncarriers Total
0 72 230 302
A 54 192 246
B 16 63 79
AB 8 15 23
Total 150 500 650

Can one conclude from these data that the two populations from which the samples were drawn differ

with respect to blood group distribution? Let o = .05. What is the p value for the test?

The following table shows 200 males classified according to social class and headache status:

Social Class

Headache Group A B C Total
No headache (in previous year) 6 30 22 58
Simple headache 11 35 17 63
Unilateral headache (nonmigraine) 4 19 14 37
Migraine 5 25 12 42
Total 26 109 65 200

Do these data provide sufficient evidence to indicate that headache status and social class are related?

Let o = .05. What is the p value for this test?

The following is the frequency distribution of scores made on an aptitude test by 175 applicants to a

physical therapy training facility (x = 39.71, s = 12.92).

Score Number of Applicants Score Number of Applicants
10-14 3 4044 28
15-19 8 4549 20
20-24 13 50-54 18
25-29 17 55-59 12

(Continued)
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20.

21.

22.

Score Number of Applicants Score Number of Applicants
30-34 19 60-64 8
35-39 25 65-69 4
Total 175

Do these data provide sufficient evidence to indicate that the population of scores is not normally
distributed? Let o = .05. What is the p value for this test?

A local health department sponsored a venereal disease (VD) information program that was open to
high-school juniors and seniors who ranged in age from 16 to 19 years. The program director believed
that each age level was equally interested in knowing more about VD. Since each age level was about
equally represented in the area served, she felt that equal interest in VD would be reflected by equal
age-level attendance at the program. The age breakdown of those attending was as follows:

Age Number Attending
16 26
17 50
18 44
19 40

Are these data incompatible with the program director’s belief that students in the four age levels are
equally interested in VD? Let o = .05. What is the p value for this test?

A survey of children under 15 years of age residing in the inner-city area of a large city were classified
according to ethnic group and hemoglobin level. The results were as follows:

Hemoglobin Level (g/100 ml)

Ethnic Group 10.0 or Greater 9.0-9.9 <9.0 Total
A 80 100 20 200
B 99 190 96 385
C 70 30 10 110
Total 249 320 126 695

Do these data provide sufficient evidence to indicate, at the .05 level of significance, that the two
variables are related? What is the p value for this test?

A sample of reported cases of mumps in preschool children showed the following distribution by age:

Age (Years) Number of Cases
Under 1 6
1 20
2 35
3 41
4 48

Total 150
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29.
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Test the hypothesis that cases occur with equal frequency in the five age categories. Let o = .05.
What is the p value for this test?

Each of a sample of 250 men drawn from a population of suspected joint disease victims was asked
which of three symptoms bother him most. The same question was asked of a sample of 300
suspected women joint disease victims. The results were as follows:

Most Bothersome Symptom Men Women
Morning stiffness 111 102
Nocturnal pain 59 73
Joint swelling 80 125
Total 250 300

Do these data provide sufficient evidence to indicate that the two populations are not homogeneous
with respect to major symptoms? Let o = .05. What is the p value for this test?

For each of the Exercises 24 through 34, indicate whether a null hypothesis of homogeneity or a null
hypothesis of independence is appropriate.

A researcher wishes to compare the status of three communities with respect to immunity against polio
in preschool children. A sample of preschool children was drawn from each of the three communities.

In a study of the relationship between smoking and respiratory illness, a random sample of adults
were classified according to consumption of tobacco and extent of respiratory symptoms.

A physician who wished to know more about the relationship between smoking and birth defects
studies the health records of a sample of mothers and their children, including stillbirths and
spontaneously aborted fetuses where possible.

A health research team believes that the incidence of depression is higher among people with
hypoglycemia than among people who do not suffer from this condition.

In a simple random sample of 200 patients undergoing therapy at a drug abuse treatment center,
60 percent belonged to ethnic group I. The remainder belonged to ethnic group II. In ethnic group I,
60 were being treated for alcohol abuse (A), 25 for marijuana abuse (B), and 20 for abuse of heroin,
illegal methadone, or some other opioid (C). The remainder had abused barbiturates, cocaine,
amphetamines, hallucinogens, or some other nonopioid besides marijuana (D). In ethnic group II the
abused drug category and the numbers involved were as follows:

A(28) B(32) C(13) D (the remainder)

Can one conclude from these data that there is a relationship between ethnic group and choice of drug
to abuse? Let o = .05 and find the p value.

Solar keratoses are skin lesions commonly found on the scalp, face, backs of hands, forearms, ears,
scalp, and neck. They are caused by long-term sun exposure, but they are not skin cancers. Chen et al.
(A-24) studied 39 subjects randomly assigned (with a 3 to 1 ratio) to imiquimod cream and a control
cream. The criterion for effectiveness was having 75 percent or more of the lesion area cleared after
14 weeks of treatment. There were 21 successes among 29 imiquimod-treated subjects and three
successes among 10 subjects using the control cream. The researchers used Fisher’s exact test and
obtained a p value of .027. What are the variables involved? Are the variables quantitative or
qualitative? What null and alternative hypotheses are appropriate? What are your conclusions?
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30.

31.

32.

33.

34.

Janardhan et al. (A-25) examined 125 patients who underwent surgical or endovascular treatment for
intracranial aneurysms. At 30 days postprocedure, 17 subjects experienced transient/persistent
neurological deficits. The researchers performed logistic regression and found that the 95 percent
confidence interval for the odds ratio for aneurysm size was .09-.96. Aneurysm size was dichoto-
mized as less than 13 mm and greater than or equal to 13 mm. The larger tumors indicated higher odds
of deficits. Describe the variables as to whether they are continuous, discrete, quantitative, or
qualitative. What conclusions may be drawn from the given information?

In a study of smoking cessation by Gold et al. (A-26), 189 subjects self-selected into three treatments:
nicotine patch only (NTP), Bupropion SR only (B), and nicotine patch with Bupropion SR
(NTP + B). Subjects were grouped by age into younger than 50 years old, between 50 and 64,
and 65 and older. There were 15 subjects younger than 50 years old who chose NTP, 26 who chose B,
and 16 who chose NTP + B. In the 50-64 years category, six chose NTP, 54 chose B, and 40 chose
NTP + B. In the oldest age category, six chose NTP, 21 chose B, and five chose NTP + B. What
statistical technique studied in this chapter would be appropriate for analyzing these data? Describe
the variables involved as to whether they are continuous, discrete, quantitative, or qualitative. What
null and alternative hypotheses are appropriate? If you think you have sufficient information, conduct
a complete hypothesis test. What are your conclusions?

Kozinszky and Bartai (A-27) examined contraceptive use by teenage girls requesting abortion in
Szeged, Hungary. Subjects were classified as younger than 20 years old or 20 years old or older. Of
the younger than 20-year-old women, 146 requested an abortion. Of the older group, 1054 requested
an abortion. A control group consisted of visitors to the family planning center who did not request an
abortion or persons accompanying women who requested an abortion. In the control group, there
were 147 women under 20 years of age and 1053 who were 20 years or older. One of the outcome
variables of interest was knowledge of emergency contraception. The researchers report that,
“Emergency contraception was significantly [(Mantel-Haenszel) p < .001] less well known among
the would-be aborter teenagers as compared to the older women requesting artificial abortion
(OR = .07) than the relevant knowledge of the teenage controls (OR = .10).” Explain the meaning
of the reported statistics. What are your conclusions based on the given information?

The goal of a study by Crosignani et al. (A-28) was to assess the effect of road traffic exhaust on the
risk of childhood leukemia. They studied 120 children in Northern Italy identified through a
population-based cancer registry (cases). Four controls per case, matched by age and gender, were
sampled from population files. The researchers used a diffusion model of benzene to estimate
exposure to traffic exhaust. Compared to children whose homes were not exposed to road traffic
emissions, the rate of childhood leukemia was significantly higher for heavily exposed children.
Characterize this study as to whether it is observational, prospective, or retrospective. Describe the
variables as to whether they are continuous, discrete, quantitative, qualitative, a risk factor, or a
confounding variable. Explain the meaning of the reported results. What are your conclusions based
on the given information?

Gallagher et al. (A-29) conducted a descriptive study to identify factors that influence women’s
attendance at cardiac rehabilitation programs following a cardiac event. One outcome variable of
interest was actual attendance at such a program. The researchers enrolled women discharged from
four metropolitan hospitals in Sydney, Australia. Of 183 women, only 57 women actually attended
programs. The authors reported odds ratios and confidence intervals on the following variables that
significantly affected outcome: age-squared (1.72; 1.10-2.70). Women over the age of 70 had the
lowest odds, while women ages 55-70 years had the highest odds.), perceived control (.92; .85-1.00),
employment (.20; .07-.58), diagnosis (6.82, 1.84-25.21, odds ratio was higher for women who
experienced coronary artery bypass grafting vs. myocardial infarction), and stressful event (.21, .06-.73).
Characterize this study as to whether it is observational, prospective, or retrospective. Describe the
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variables as to whether they are continuous, discrete, quantitative, qualitative, a risk factor, or a
confounding variable. Explain the meaning of the reported odds ratios.

For each of the Exercises 35 through 51, do as many of the following as you think appropriate:

(a) Apply one or more of the techniques discussed in this chapter.

(b) Apply one or more of the techniques discussed in previous chapters.

(¢) Construct graphs.

(d) Construct confidence intervals for population parameters.

(e) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(f) State the statistical decisions and clinical conclusions that the results of your hypothesis tests justify.
(g) Describe the population(s) to which you think your inferences are applicable.

(h) State the assumptions necessary for the validity of your analyses.

In a prospective, randomized, double-blind study, Stanley et al. (A-30) examined the relative efficacy
and side effects of morphine and pethidine, drugs commonly used for patient-controlled analgesia
(PCA). Subjects were 40 women, between the ages of 20 and 65 years, undergoing total abdominal
hysterectomy. Patients were allocated randomly to receive morphine or pethidine by PCA. At the end
of the study, subjects described their appreciation of nausea and vomiting, pain, and satisfaction by
means of a three-point verbal scale. The results were as follows:

Satisfaction
Unhappy/ Moderately Happy/
Drug Miserable Happy Delighted Total
Pethidine 5 9 6 20
Morphine 9 9 2 20
Total 14 18 8 40
Pain

Unbearable/ Slight/
Drug Severe Moderate None Total
Pethidine 2 10 8 20
Morphine 2 8 10 20
Total 4 18 18 40

Nausea

Unbearable/ Slight/
Drug Severe Moderate None Total
Pethidine 5 9 6 20
Morphine 7 8 5 20
Total 12 17 11 40

Source: Data provided courtesy of Dr. Balraj L. Appadu.
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37.

38.

39.

40.

41.

42,

43.

4.

Screening data from a statewide lead poisoning prevention program between April 1990 and March
1991 were examined by Sargent et al. (A-31) in an effort to learn more about community risk factors
for iron deficiency in young children. Study subjects ranged in age between 6 and 59 months.
Among 1860 children with Hispanic surnames, 338 had iron deficiency. Four-hundred-fifty-seven
of 1139 with Southeast Asian surnames and 1034 of 8814 children with other surnames had iron
deficiency.

To increase understanding of HIV-infection risk among patients with severe mental illness, Horwath
et al. (A-32) conducted a study to identify predictors of injection drug use among patients who did not
have a primary substance use disorder. Of 192 patients recruited from inpatient and outpatient public
psychiatric facilities, 123 were males. Twenty-nine of the males and nine of the females were found
to have a history of illicit-drug injection.

Skinner et al. (A-33) conducted a clinical trial to determine whether treatment with melphalan,
prednisone, and colchicine (MPC) is superior to colchicine (C) alone. Subjects consisted of 100
patients with primary amyloidosis. Fifty were treated with C and 50 with MPC. Eighteen months
after the last person was admitted and 6 years after the trial began, 44 of those receiving C and 36 of
those receiving MPC had died.

The purpose of a study by Miyajima et al. (A-34) was to evaluate the changes of tumor cell
contamination in bone marrow (BM) and peripheral blood (PB) during the clinical course of patients
with advanced neuroblastoma. Their procedure involved detecting tyrosine hydroxylase (TH) mRNA
to clarify the appropriate source and time for harvesting hematopoietic stem cells for transplantation.
The authors used Fisher’s exact test in the analysis of their data. If available, read their article and
decide if you agree that Fisher’s exact text was the appropriate technique to use. If you agree,
duplicate their procedure and see if you get the same results. If you disagree, explain why.

Cohen et al. (A-35) investigated the relationship between HIV seropositivity and bacterial vaginosis
in a population at high risk for sexual acquisition of HIV. Subjects were 144 female commercial sex
workers in Thailand of whom 62 were HIV-positive and 109 had a history of sexually transmitted
diseases (STD). In the HIV-negative group, 51 had a history of STD.

The purpose of a study by Lipschitz et al. (A-36) was to examine, using a questionnaire, the rates and
characteristics of childhood abuse and adult assaults in a large general outpatient population.
Subjects consisted of 120 psychiatric outpatients (86 females, 34 males) in treatment at a large
hospital-based clinic in an inner-city area. Forty-seven females and six males reported incidents of
childhood sexual abuse.

Subjects of a study by O’Brien et al. (A-37) consisted of 100 low-risk patients having well-dated
pregnancies. The investigators wished to evaluate the efficacy of a more gradual method for
promoting cervical change and delivery. Half of the patients were randomly assigned to receive
a placebo, and the remainder received 2 mg of intravaginal prostaglandin E, (PGE,) for 5 consecutive
days. One of the infants born to mothers in the experimental group and four born to those in the
control group had macrosomia.

The purposes of a study by Adra et al. (A-38) were to assess the influence of route of delivery on
neonatal outcome in fetuses with gastroschisis and to correlate ultrasonographic appearance of the
fetal bowel with immediate postnatal outcome. Among 27 cases of prenatally diagnosed gastro-
schisis the ultrasonograph appearance of the fetal bowel was normal in 15. Postoperative complica-
tions were observed in two of the 15 and in seven of the cases in which the ultrasonographic
appearance was not normal.

Liu et al. (A-39) conducted household surveys in areas of Alabama under tornado warnings. In one of
the surveys (survey 2) the mean age of the 193 interviewees was 54 years. Of these 56.0 percent were
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women, 88.6 percent were white, and 83.4 percent had a high-school education or higher. Among
the information collected were data on shelter-seeking activity and understanding of the term
“tornado warning.” One-hundred-twenty-eight respondents indicated that they usually seek
shelter when made aware of a tornado warning. Of these, 118 understood the meaning of tornado
warning. Forty-six of those who said they didn’t usually seek shelter understood the meaning
of the term.

The purposes of a study by Patel et al. (A-40) were to investigate the incidence of acute angle-closure
glaucoma secondary to pupillary dilation and to identify screening methods for detecting angles at
risk of occlusion. Of 5308 subjects studied, 1287 were 70 years of age or older. Seventeen of the older
subjects and 21 of the younger subjects (40 through 69 years of age) were identified as having
potentially occludable angles.

Voskuyl et al. (A-41) investigated those characteristics (including male gender) of patients with
rheumatoid arthritis (RA) that are associated with the development of rheumatoid vasculitis (RV).
Subjects consisted of 69 patients who had been diagnosed as having RV and 138 patients with RA
who were not suspected to have vasculitis. There were 32 males in the RV group and 38 among the
RA patients.

Harris et al. (A-42) conducted a study to compare the efficacy of anterior colporrhaphy and
retropubic urethropexy performed for genuine stress urinary incontinence. The subjects were 76
women who had undergone one or the other surgery. Subjects in each group were comparable in age,
social status, race, parity, and weight. In 22 of the 41 cases reported as cured the surgery had been
performed by attending staff. In 10 of the failures, surgery had been performed by attending staff. All
other surgeries had been performed by resident surgeons.

Kohashi et al. (A-43) conducted a study in which the subjects were patients with scoliosis. As part of
the study, 21 patients treated with braces were divided into two groups, group A(ny = 12) and group
B(ng = 9), on the basis of certain scoliosis progression factors. Two patients in group A and eight in
group B exhibited evidence of progressive deformity, while the others did not.

In a study of patients with cervical intraepithelial neoplasia, Burger et al. (A-44) compared those who
were human papillomavirus (HPV)-positive and those who were HPV-negative with respect to risk
factors for HPV infection. Among their findings were 60 out of 91 nonsmokers with HPV infection
and 44 HPV-positive patients out of 50 who smoked 21 or more cigarettes per day.

Thomas et al. (A-45) conducted a study to determine the correlates of compliance with follow-up
appointments and prescription filling after an emergency department visit. Among 235 respondents,
158 kept their appointments. Of these, 98 were females. Of those who missed their appointments, 31
were males.

The subjects of a study conducted by O’Keefe and Lavan (A-46) were 60 patients with cognitive
impairment who required parenteral fluids for at least 48 hours. The patients were randomly assigned
to receive either intravenous (IV) or subcutaneous (SC) fluids. The mean age of the 30 patients in the
SC group was 81 years with a standard deviation of 6. Fifty-seven percent were females. The mean
age of the IV group was 84 years with a standard deviation of 7. Agitation related to the cannula or
drip was observed in 11 of the SC patients and 24 of the IV patients.

Exercises for Use with the Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

Refer to the data on smoking, alcohol consumption, blood pressure, and respiratory disease among
1200 adults (SMOKING). The variables are as follows:


http://www.wiley.com/college/daniel
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= male, 0 = female
nonsmoker, 1 = smoker
nondrinker

light to moderate drinker
heavy drinker

present, 0 = absent

= present, 0 = absent

Sex (A) :
Smoking status (B) :
Drinking level (C) :

Symptoms of respiratory disease (D) :
High blood pressure status (E) :

—_—N = OO =
Il

Select a simple random sample of size 100 from this population and carry out an analysis to see if you
can conclude that there is a relationship between smoking status and symptoms of respiratory disease.
Let « = .05 and determine the p value for your test. Compare your results with those of your
classmates.

Refer to Exercise 1. Select a simple random sample of size 100 from the population and carry out a
test to see if you can conclude that there is a relationship between drinking status and high blood
pressure status in the population. Let @ = .05 and determine the p value. Compare your results with
those of your classmates.

Refer to Exercise 1. Select a simple random sample of size 100 from the population and carry out a
test to see if you can conclude that there is a relationship between gender and smoking status in the
population. Let « = .05 and determine the p value. Compare your results with those of your
classmates.

Refer to Exercise 1. Select a simple random sample of size 100 from the population and carry out a
test to see if you can conclude that there is a relationship between gender and drinking level in the
population. Let o = .05 and find the p value. Compare your results with those of your classmates.
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NONPARAMETRIC AND
DISTRIBUTION-FREE
STATISTICS

CHAPTER OVERVIEW

This chapter explores a wide variety of techniques that are useful when the
underlying assumptions of traditional hypothesis tests are violated or one
wishes to perform a test without making assumptions about the sampled
population.

TOPICS

13.1 INTRODUCTION
13.2 MEASUREMENT SCALES
13.3 THE SIGN TEST
13.4 THE WILCOXON SIGNED-RANK TEST FOR LOCATION
13.5 THE MEDIAN TEST
13.6 THE MANN-WHITNEY TEST
13.7 THE KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
13.8 THE KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BY RANKS
13.9 THE FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY RANKS
13.10 THE SPEARMAN RANK CORRELATION COEFFICIENT
13.11 NONPARAMETRIC REGRESSION ANALYSIS
13.12 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand the rank transformation and how nonparametric procedures can be
used for weak measurement scales.
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2. be ableto calculate and interpret a wide variety of nonparametric tests commonly
used in practice.

3. understand which nonparametric tests may be used in place of traditional para-
metric statistical tests when various test assumptions are violated.

13.1 INTRODUCTION

Most of the statistical inference procedures we have discussed up to this point are classified
as parametric statistics. One exception is our use of chi-square—as a test of goodness-of-fit
and as a test of independence. These uses of chi-square come under the heading of
nonparametric statistics.

The obvious question now is, “What is the difference?” In answer, let us recall the
nature of the inferential procedures that we have categorized as parametric. In each case, our
interest was focused on estimating or testing a hypothesis about one or more population
parameters. Furthermore, central to these procedures was a knowledge of the functional form
of the population from which were drawn the samples providing the basis for the inference.

An example of a parametric statistical test is the widely used ¢ test. The most common
uses of this test are for testing a hypothesis about a single population mean or the difference
between two population means. One of the assumptions underlying the valid use of this test
is that the sampled population or populations are at least approximately normally
distributed.

As we will learn, the procedures that we discuss in this chapter either are not
concerned with population parameters or do not depend on knowledge of the sampled
population. Strictly speaking, only those procedures that test hypotheses that are not
statements about population parameters are classified as nonparametric, while those that
make no assumption about the sampled population are called distribution-free procedures.
Despite this distinction, it is customary to use the terms nonparametric and distribution-
free interchangeably and to discuss the various procedures of both types under the heading
nonparametric statistics. We will follow this convention.

The above discussion implies the following four advantages of nonparametric
statistics.

1. They allow for the testing of hypotheses that are not statements about population
parameter values. Some of the chi-square tests of goodness-of-fit and the tests of
independence are examples of tests possessing this advantage.

2. Nonparametric tests may be used when the form of the sampled population is
unknown.

3. Nonparametric procedures tend to be computationally easier and consequently more
quickly applied than parametric procedures. This can be a desirable feature in certain
cases, but when time is not at a premium, it merits a low priority as a criterion for
choosing a nonparametric test. Indeed, most statistical software packages now
include a wide variety of nonparametric analysis options, making considerations
about computation speed unnecessary.

4. Nonparametric procedures may be applied when the data being analyzed consist
merely of rankings or classifications. That is, the data may not be based on a
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measurement scale strong enough to allow the arithmetic operations necessary for
carrying out parametric procedures. The subject of measurement scales is discussed
in more detail in the next section.

Although nonparametric statistics enjoy a number of advantages, their disadvantages
must also be recognized.

1. The use of nonparametric procedures with data that can be handled with a parametric
procedure results in a waste of data.

2. The application of some of the nonparametric tests may be laborious for large
samples.

13.2 MEASUREMENT SCALES

As was pointed out in the previous section, one of the advantages of nonparametric sta-
tistical procedures is that they can be used with data that are based on a weak measurement
scale. To understand fully the meaning of this statement, it is necessary to know and
understand the meaning of measurement and the various measurement scales most
frequently used. At this point the reader may wish to refer to the discussion of measurement
scales in Chapter 1.

Many authorities are of the opinion that different statistical tests require different
measurement scales. Although this idea appears to be followed in practice, there are
alternative points of view.

Data based on ranks, as will be discussed in this chapter, are commonly encountered
in statistics. We may, for example, simply note the order in which a sample of subjects
complete an event instead of the actual time taken to complete it. More often, however, we
use a rank transformation on the data by replacing, prior to analysis, the original data by
their ranks. Although we usually lose some information by employing this procedure (for
example, the ability to calculate the mean and variance), the transformed measurement
scale allows the computation of most nonparametric statistical procedures. In fact, most of
the commonly used nonparametric procedures, including most of those presented in this
chapter, can be obtained by first applying the rank transformation and then using the
standard parametric procedure on the transformed data instead of on the original data. For
example, if we wish to determine whether two independent samples differ, we may employ
the independent samples ¢ test if the data are approximately normally distributed. If we
cannot make the assumption of normal distributions, we may, as we shall see in the sections
that follow, employ an appropriate nonparametric test. In lieu of these procedures, we could
first apply the rank transformation on the data and then use the independent samples 7 test
on the ranks. This will provide an equivalent test to the nonparametric test, and is a useful
tool to employ if a desired nonparametric test is not available in your available statistical
software package.

Readers should also keep in mind that other transformations (e.g., taking the
logarithm of the original data) may sufficiently normalize the data such that standard
parametric procedures can be used on the transformed data in lieu of using nonparametric
methods.
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13.3 THE SIGN TEST

The familiar ¢ test is not strictly valid for testing (1) the null hypothesis that a population
mean is equal to some particular value, or (2) the null hypothesis that the mean of a
population of differences between pairs of measurements is equal to zero unless the relevant
populations are at least approximately normally distributed. Case 2 will be recognized as a
situation that was analyzed by the paired comparisons test in Chapter 7. When the normality
assumptions cannot be made or when the data at hand are ranks rather than measurements
on an interval or ratio scale, the investigator may wish for an optional procedure. Although
the ¢ test is known to be rather insensitive to violations of the normality assumption, there
are times when an alternative test is desirable.

A frequently used nonparametric test that does not depend on the assumptions of the ¢
test is the sign fest. This test focuses on the median rather than the mean as a measure of
central tendency or location. The median and mean will be equal in symmetric distribu-
tions. The only assumption underlying the test is that the distribution of the variable of
interest is continuous. This assumption rules out the use of nominal data.

The sign test gets its name from the fact that pluses and minuses, rather than
numerical values, provide the raw data used in the calculations. We illustrate the use of the
sign test, first in the case of a single sample, and then by an example involving paired
samples.

EXAMPLE 13.3.1

Researchers wished to know if instruction in personal care and grooming would improve the
appearance of mentally retarded girls. In a school for the mentally retarded, 10 girls selected
at random received special instruction in personal care and grooming. Two weeks after
completion of the course of instruction the girls were interviewed by a nurse and a social
worker who assigned each girl a score based on her general appearance. The investigators
believed that the scores achieved the level of an ordinal scale. They felt that although a score
of, say, 8 represented a better appearance than a score of 6, they were unwilling to say that the
difference between scores of 6 and 8 was equal to the difference between, say, scores of 8 and
10; or that the difference between scores of 6 and 8 represented twice as much improvement
as the difference between scores of 5 and 6. The scores are shown in Table 13.3.1. We wish to
know if we can conclude that the median score of the population from which we assume this
sample to have been drawn is different from 5.

TABLE 13.3.1 General Appearance
Scores of 10 Mentally Retarded Girls

Girl Score Girl Score

g b~ WN -
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Solution:

. Data. See problem statement.

. Assumptions. We assume that the measurements are taken on a

continuous variable.

. Hypotheses.

Hj : The population median is 5.
H, : The population median is not5.

Let o = .05.

. Test statistic. The test statistic for the sign test is either the observed

number of plus signs or the observed number of minus signs. The nature
of the alternative hypothesis determines which of these test statistics
is appropriate. In a given test, any one of the following alternative
hypotheses is possible:

Hp:P(+)>(—) one-sided alternative
Hp :P(+) < (—) one-sided alternative
Hp : P(+) # 1(—) two-sided alternative

If the alternative hypothesis is
HA : P(+) > P(—)

a sufficiently small number of minus signs causes rejection of H,,. The
test statistic is the number of minus signs. Similarly, if the alternative
hypothesis is

HA:P(+) < P(—)

a sufficiently small number of plus signs causes rejection of Hy. The test
statistic is the number of plus signs. If the alternative hypothesis is

Hat P(+) # P(-)
either a sufficiently small number of plus signs or a sufficiently small

number of minus signs causes rejection of the null hypothesis. We may
take as the test statistic the less frequently occurring sign.

. Distribution of test statistic. As a first step in determining the nature of

the test statistic, let us examine the data in Table 13.3.1 to determine
which scores lie above and which ones lie below the hypothesized
median of 5. If we assign a plus sign to those scores that lie above the
hypothesized median and a minus to those that fall below, we have the
results shown in Table 13.3.2.

If the null hypothesis were true, that is, if the median were, in fact,
5, we would expect the numbers of scores falling above and below 5 to be
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TABLE 13.3.2 Scores Above (+) and Below (—) the Hypothesized Median Based
on Data of Example 13.3.1

Girl 1 2 3 4 5 6 7 8 9 10
Score relative to - 0 + + + + + + + +
hypothesized
median

approximately equal. This line of reasoning suggests an alternative way in
which we could have stated the null hypothesis, namely, that the prob-
ability of a plus is equal to the probability of a minus, and these
probabilities are equal to .5. Stated symbolically, the hypothesis would be

Ho:P(+)=P(~) =5

In other words, we would expect about the same number of plus signs as
minus signs in Table 13.3.2 when Hj is true. A look at Table 13.3.2 reveals
a preponderance of pluses; specifically, we observe eight pluses, one
minus, and one zero, which was assigned to the score that fell exactly on
the median. The usual procedure for handling zeros is to eliminate them
from the analysis and reduce n, the sample size, accordingly. If we follow
this procedure, our problem reduces to one consisting of nine observa-
tions of which eight are plus and one is minus.

Since the number of pluses and minuses is not the same, we
wonder if the distribution of signs is sufficiently disproportionate to cast
doubt on our hypothesis. Stated another way, we wonder if this small a
number of minuses could have come about by chance alone when the
null hypothesis is true, or if the number is so small that something other
than chance (that is, a false null hypothesis) is responsible for the
results.

Based on what we learned in Chapter 4, it seems reasonable to
conclude that the observations in Table 13.3.2 constitute a set of n
independent random variables from the Bernoulli population with param-
eter p. If we let k = the test statistic, the sampling distribution of & is the
binomial probability distribution with parameter p = .5 if the null
hypothesis is true.

6. Decision rule. The decision rule depends on the alternative hypothesis.

For Hp : P(+) > P(—), reject Hy if, when H, is true, the probability of
observing k or fewer minus signs is less than or equal to «.

For Hp : P(+) < P(—), reject H, if the probability of observing, when
H, is true, k or fewer plus signs is equal to or less than «.

For Hpa : P(+) # P(—), reject Hy if (given that Hy is true) the
probability of obtaining a value of k as extreme as or more extreme
than was actually computed is equal to or less than «/2.

For this example the decision rule is: Reject H if the p value for the
computed test statistic is less than or equal to .05.
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7. Calculation of test statistic. We may determine the probability of
observing x or fewer minus signs when given a sample of size n and
parameter p by evaluating the following expression:

X

Pk <x|n,p) = Zanpkq”_k (13.3.1)
k=0

For our example we would compute

6C0(:5)°(.5)7 " +5C1(.5)'(.5)° " = .00195 + .01758 = .0195

8. Statistical decision. In Appendix Table B we find
P(k < 1]9,.5) = .0195

With a two-sided test either a sufficiently small number of minuses
or a sufficiently small number of pluses would cause rejection of the null
hypothesis. Since, in our example, there are fewer minuses, we focus our
attention on minuses rather than pluses. By setting « equal to .05, we are
saying that if the number of minuses is so small that the probability of
observing this few or fewer is less than .025 (half of ), we will reject the
null hypothesis. The probability we have computed, .0195, is less than
.025. We, therefore, reject the null hypothesis.

9. Conclusion. We conclude that the median score is not 5.
10. p value. The p value for this test is 2(.0195) = .0390. -

Sign Test: Paired Data When the data to be analyzed consist of observations in
matched pairs and the assumptions underlying the ¢ test are not met, or the measurement
scale is weak, the sign test may be employed to test the null hypothesis that the median
difference is 0. An alternative way of stating the null hypothesis is

P(Xl > Y,) = P(X, < Y,) =.5

One of the matched scores, say, Y, is subtracted from the other score, X;. If Y; is less
than X;, the sign of the difference is +, and if ¥; is greater than X;, the sign of the difference
is —. If the median difference is 0, we would expect a pair picked at random to be just as
likely to yield a 4+ as a — when the subtraction is performed. We may state the null
hypothesis, then, as

Hy:P(+)=P(-) =5

In a random sample of matched pairs, we would expect the number of +’s and —’s to be
about equal. If there are more +’s or more —’s than can be accounted for by chance alone
when the null hypothesis is true, we will entertain some doubt about the truth of our null
hypothesis. By means of the sign test, we can decide how many of one sign constitutes
more than can be accounted for by chance alone.
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EXAMPLE 13.3.2

A dental research team wished to know if teaching people how to brush their teeth would
be beneficial. Twelve pairs of patients seen in a dental clinic were obtained by carefully
matching on such factors as age, sex, intelligence, and initial oral hygiene scores. One
member of each pair received instruction on how to brush his or her teeth and on other
oral hygiene matters. Six months later all 24 subjects were examined and assigned an
oral hygiene score by a dental hygienist unaware of which subjects had received the
instruction. A low score indicates a high level of oral hygiene. The results are shown in
Table 13.3.3.

Solution:

1. Data. See problem statement.

2. Assumptions. We assume that the population of differences between
pairs of scores is a continuous variable.

3. Hypotheses. If the instruction produces a beneficial effect, this fact
would be reflected in the scores assigned to the members of each pair. If
we take the differences X; — Y;, we would expect to observe more —’s
than +’s if instruction had been beneficial, since a low score indicates a
higher level of oral hygiene. If, in fact, instruction is beneficial, the
median of the hypothetical population of all such differences would be
less than 0, that is, negative. If, on the other hand, instruction has no
effect, the median of this population would be zero. The null and
alternate hypotheses, then, are:

TABLE 13.3.3 Oral Hygiene Scores of 12
Subjects Receiving Oral Hygiene Instruction (X;)
and 12 Subjects Not Receiving Instruction (Y}

Score
Pair Number Instructed (X)) Not Instructed (Y)
1 1.5 2.0
2 2.0 2.0
3 3.5 4.0
4 3.0 25
5 3.5 4.0
6 2.5 3.0
7 2.0 35
8 1.5 3.0
9 1.5 25
10 2.0 25
11 3.0 2.5
12 2.0 25
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TABLE 13.3.4 Signs of Differences (X;— Y;) in Oral Hygiene Scores of 12
Subjects Instructed (X;) and 12 Matched Subjects Not Instructed (Y))

2 3 4 5 6 7 8 9 10 1" 12

e

Pair

Sign of score
differences

5.

6.

7.

8.

9.

10.

Hy: The median of the differences is zero [P(4) = P(—)].
H,: The median of the differences is negative [P(+) < P(—)].

Let o be .05.

4. Test statistic. The test statistic is the number of plus signs.

Distribution of test statistic. The sampling distribution of k is the
binomial distribution with parameters n and .5 if Hy is true.

Decision rule. Reject Hy if P(k < 2|11,.5) < .05.

Calculation of test statistic. As will be seen, the procedure here is
identical to the single sample procedure once the score differences have
been obtained for each pair. Performing the subtractions and observing
signs yields the results shown in Table 13.3.4.

The nature of the hypothesis indicates a one-sided test so that all of
a = .05 isassociated with the rejection region, which consists of all values
of k (where k is equal to the number of + signs) for which the probability of
obtaining that many or fewer pluses due to chance alone when Hy is true is
equal to or less than .05. We see in Table 13.3.4 that the experiment yielded
one zero, two pluses, and nine minuses. When we eliminate the zero, the
effective sample size isn = 11 with two pluses and nine minuses. In other
words, since a “small” number of plus signs will cause rejection of the null
hypothesis, the value of our test statistic is k = 2.
Statistical decision. We want to know the probability of obtaining no
more than two pluses out of 11 tries when the null hypothesis is true. As
we have seen, the answer is obtained by evaluating the appropriate
binomial expression. In this example we find

2

Pk <2[11,.5) =Y ,,C(:5)"(:5)" "
k=0

By consulting Appendix Table B, we find this probability to be .0327.
Since .0327 is less than .05, we must reject H.

Conclusion. We conclude that the median difference is negative. That
is, we conclude that the instruction was beneficial.

p value. For this test, p = .0327. -

Sign Test with “Greater Than” Tables As has been demonstrated, the
sign test may be used with a single sample or with two samples in which each member of
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one sample is matched with a member of the other sample to form a sample of matched
pairs. We have also seen that the alternative hypothesis may lead to either a one-sided or a
two-sided test. In either case we concentrate on the less frequently occurring sign and
calculate the probability of obtaining that few or fewer of that sign.

We use the least frequently occurring sign as our test statistic because the binomial
probabilities in Appendix Table B are “less than or equal to” probabilities. By using the least
frequently occurring sign, we can obtain the probability we need directly from Table B
without having to do any subtracting. If the probabilities in Table B were “greater than or
equal to” probabilities, which are often found in tables of the binomial distribution, we would
use the more frequently occurring sign as our test statistic in order to take advantage of the
convenience of obtaining the desired probability directly from the table without having to do
any subtracting. In fact, we could, in our present examples, use the more frequently occurring
sign as our test statistic, but because Table B contains “less than or equal to” probabilities we
would have to perform a subtraction operation to obtain the desired probability. As an
illustration, consider the last example. If we use as our test statistic the most frequently
occurring sign, itis 9, the number of minuses. The desired probability, then, is the probability
of nine or more minuses, when n = 11 and p = .5. That is, we want

P(k=9|11, .5)

However, since Table B contains “less than or equal to” probabilities, we must obtain this
probability by subtraction. That is,

P(k>9|11,.5) = 1—P(k < 8|11, .5)
1—.9673
= 0327

which is the result obtained previously.

Sample Size We saw in Chapter 5 that when the sample size is large and when p is
close to .5, the binomial distribution may be approximated by the normal distribution. The
rule of thumb used was that the normal approximation is appropriate when both np and ng
are greater than 5. When p = .5, as was hypothesized in our two examples, a sample of size
12 would satisfy the rule of thumb. Following this guideline, one could use the normal
approximation when the sign test is used to test the null hypothesis that the median or
median difference is 0 and # is equal to or greater than 12. Since the procedure involves
approximating a continuous distribution by a discrete distribution, the continuity correc-
tion of .5 is generally used. The test statistic then is

= (k+£.5)— .5n (13.3.2)

NG

which is compared with the value of z from the standard normal distribution corresponding
to the chosen level of significance. In Equation 13.3.2, k 4+ .5 is used when k < n/2 and
k — .5 is used when k > n/2.
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Data:

Cl: 458 8 96 10 7 6 6

Dialog box: Session command:

Stat » Nonparametrics » 1-Sample Sign MIB > STest 5 Ci;
SUBC> Alternative O.

Type C1 in Variables. Choose Test median and type 5 in

the text box. Click OK.

Output:

Sign Test for Median: C1

Sign test of nedian = 5.00 versus N E. 5.000

N BELOW EQUAL ABOVE P-VALUE MEDI AN
c1 10 1 1 8 0.0391 6.500

FIGURE 13.3.1 MINITAB procedure and output for Example 13.3.1.

Computer Analysis Many statistics software packages will perform the sign test.
For example, if we use MINITAB to perform the test for Example 13.3.1 in which the data
are stored in Column 1, the procedure and output would be as shown in Figure 13.3.1.

EXERCISES

13.3.1 A random sample of 15 student nurses was given a test to measure their level of authoritarianism with
the following results:

Student Authoritarianism Student Authoritarianism
Number Score Number Score

1 75 9 82

2 90 10 104

3 85 11 88

4 110 12 124

5 115 13 110

6 95 14 76

7 132 15 98

8 74

Test at the .05 level of significance, the null hypothesis that the median score for the sampled
population is 100. Determine the p value.
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13.3.2 Determining the effects of grapefruit juice on pharmacokinetics of oral digoxin (a drug often
prescribed for heart ailments) was the goal of a study by Parker et al. (A-1). Seven healthy
nonsmoking volunteers participated in the study. Subjects took digoxin with water for 2 weeks,
no digoxin for 2 weeks, and digoxin with grapefruit juice for 2 weeks. The average peak plasma
digoxin concentration (Cmax) when subjects took digoxin with water is given in the first column of
the following table. The second column gives the Cmax concentration when subjects took digoxin
with grapefruit juice. May we conclude on the basis of these data that the Cmax concentration is
higher when digoxin is taken with grapefruit juice? Let o = .5.

Cmax

Subject H,O0 GFJ

1 2.34 3.03

2 2.46 3.46

3 1.87 1.97

4 3.09 3.81

5 5.59 3.07

6 4.05 2.62 _

7 6.21 344 Source: Data provided courtesy of

Robert B. Parker, Pharm.D.

13.3.3 A sample of 15 patients suffering from asthma participated in an experiment to study the effect of a
new treatment on pulmonary function. Among the various measurements recorded were those of
forced expiratory volume (liters) in 1 second (FEV) before and after application of the treatment.
The results were as follows:

Subject Before After Subject Before After
1 1.69 1.69 9 2.58 2.44
2 2.77 2.22 10 1.84 4.17
3 1.00 3.07 11 1.89 2.42
4 1.66 3.35 12 1.91 2.94
5 3.00 3.00 13 1.75 3.04
6 .85 2.74 14 2.46 4.62
7 1.42 3.61 15 2.35 4.42
8 2.82 5.14

On the basis of these data, can one conclude that the treatment is effective in increasing the FEV,
level? Let o = .05 and find the p value.

13.4 THE WILCOXON SIGNED-RANK
TEST FOR LOCATION

Sometimes we wish to test a null hypothesis about a population mean, but for some reason
neither z nor # is an appropriate test statistic. If we have a small sample (n < 30) from a
population that is known to be grossly nonnormally distributed, and the central limit
theorem is not applicable, the z statistic is ruled out. The ¢ statistic is not appropriate
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because the sampled population does not sufficiently approximate a normal distribution.
When confronted with such a situation we usually look for an appropriate nonparametric
statistical procedure. As we have seen, the sign test may be used when our data consist of a
single sample or when we have paired data. If, however, the data for analysis are measured
on at least an interval scale, the sign test may be undesirable because it would not make full
use of the information contained in the data. A more appropriate procedure might be the
Wilcoxon (1) signed-rank test, which makes use of the magnitudes of the differences
between measurements and a hypothesized location parameter rather than just the signs of
the differences.

Assumptions The Wilcoxon test for location is based on the following assumptions
about the data.

1. The sample is random.

g

The variable is continuous.
3. The population is symmetrically distributed about its mean .

4. The measurement scale is at least interval.

Hypotheses The following are the null hypotheses (along with their alternatives)
that may be tested about some unknown population mean /.

(@ Ho:p=pup (b) Ho:p > g () Ho:p < po
Ha i # Hp < Ha s>

When we use the Wilcoxon procedure, we perform the following calculations.

1. Subtract the hypothesized mean p, from each observation x;, to obtain
di = x;i — [k

If any x; is equal to the mean, so that d; = 0, eliminate that d; from the calculations
and reduce n accordingly.

2. Rank the usable d; from the smallest to the largest without regard to the sign of d;.
That is, consider only the absolute value of the d;, designated |d;|, when ranking
them. If two or more of the |d;| are equal, assign each tied value the mean of the
rank positions the tied values occupy. If, for example, the three smallest |d;| are all
equal, place them in rank positions 1, 2, and 3, but assign each a rank of
(1+2+3)/3=2.

3. Assign each rank the sign of the d; that yields that rank.

4. Find T, the sum of the ranks with positive signs, and 7'_, the sum of the ranks with
negative signs.

The Test Statistic The Wilcoxon test statistic is either 7, or 7_, depending on
the nature of the alternative hypothesis. If the null hypothesis is true, that is, if the true
population mean is equal to the hypothesized mean, and if the assumptions are met, the
probability of observing a positive difference d; = x; — 1 of a given magnitude is equal to
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the probability of observing a negative difference of the same magnitude. Then, in repeated
sampling, when the null hypothesis is true and the assumptions are met, the expected value
of T, is equal to the expected value of T_. We do not expect T, and 7T_ computed from a
given sample to be equal. However, when Hj, is true, we do not expect a large difference in
their values. Consequently, a sufficiently small value of T, or a sufficiently small value
of T_ will cause rejection of H,,.

When the alternative hypothesis is two-sided (u # (o), either a sufficiently small
value of T or a sufficiently small value of 7_ will cause us to reject Hy : &t = . The test
statistic, then, is 7', or T_, whichever is smaller. To simplify notation, we call the smaller of
the two T.

When Hy : p > p is true, we expect our sample to yield a large value of 7.
Therefore, when the one-sided alternative hypothesis states that the true population mean is
less than the hypothesized mean (u < ), a sufficiently small value of T will cause
rejection of Hy, and T is the test statistic.

When Hy : u < ug is true, we expect our sample to yield a large value of 7_.
Therefore, for the one-sided alternative Hu : 1 > g, a sufficiently small value of 7_ will
cause rejection of Hy and T is the test statistic.

Critical Values Critical values of the Wilcoxon test statistic are given in
Appendix Table K. Exact probability levels (P) are given to four decimal places for
all possible rank totals (7) that yield a different probability level at the fourth decimal
place from .0001 up through .5000. The rank totals (7)) are tabulated for all sample sizes
from n = 5 through n = 30. The following are the decision rules for the three possible
alternative hypotheses:

(@) Ha : 1 # 1. Reject Hy at the o level of significance if the calculated T is smaller
than or equal to the tabulated 7T for n and preselected /2. Alternatively, we may enter
Table K with n and our calculated value of T to see whether the tabulated P associated
with the calculated T is less than or equal to our stated level of significance. If so, we
may reject H.

(b) Ha : < g Reject Hy at the « level of significance if 7 is less than or equal to the
tabulated T for n and preselected «.

(¢) Ha: > ug. Reject Hy at the « level of significance if 7_ is less than or equal to the
tabulated T for n and preselected «.

EXAMPLE 13.4.1

Cardiac output (liters/minute) was measured by thermodilution in a simple random
sample of 15 postcardiac surgical patients in the left lateral position. The results were as
follows:

491 410 6.74 727 742 750 656 4.64
598 314 323 580 6.17 539 577

We wish to know if we can conclude on the basis of these data that the population mean is
different from 5.05.
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Solution:

9.
10

Data. See statement of example.

Assumptions. We assume that the requirements for the application of
the Wilcoxon signed-ranks test are met.

Hypotheses.
Hy:pn=5.05
Hp :p#5.05

Let o = 0.05.

Test statistic. The test statistic will be 7. or T_, whichever is smaller.
We will call the test statistic 7.

Distribution of test statistic. Critical values of the test statistic are
given in Table K of the Appendix.

Decision rule. We will reject Hy if the computed value of T'is less than
or equal to 25, the critical value for n = 15, and /2 = .0240, the closest
value to .0250 in Table K.

Calculation of test statistic. The calculation of the test statistic is
shown in Table 13.4.1.

Statistical decision. Since 34 is greater than 25, we are unable to
reject Hy.

Conclusion. We conclude that the population mean may be 5.05.

. p value. From Table K we see that p = 2(.0757) = .1514.

TABLE 13.4.1 Calculation of the Test Statistic for Example 13.4.1

Cardiac

Output di=x;—5.05 Rank of |d;| Signed Rank of |d;|
4.91 -.14 1 -1
4.10 —.95 7 -7
6.74 +1.69 10 +10
7.27 +2.22 13 +13
7.42 +2.37 14 +14
7.50 +2.45 15 +15
6.56 +1.51 9 +9
4.64 —.41 3 -3
5.98 +.93 6 +6
3.14 -1.91 12 —12
3.23 —-1.82 1 -1
5.80 +.75 5 +5
6.17 +1.12 8 +8
5.39 +.34 2 +2
5.77 +.72 4 +4

T,=86,T =34 T=34
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Dialog box: Session command:

Stat » Nonparametrics » 1-Sample Wilcoxon MIB > WITEST 5.05 Ci;

Type C1 in Variables. Choose Test median. Type 5.05 in
the text box. Click OK .

Output:

Wilcoxon Signed Rank Test: C1

TEST OF MEDIAN = 5.050 VERSUS MEDIAN N E. 5.050

c1

SUBC> Alternative 0.

N FOR W LCOXON ESTI MATED
N  TEST STATISTIC P-VALUE MEDI AN
15 15 86.0 0. 148 5.747

FIGURE 13.4.1 MINITAB procedure and output for Example 13.4.1.

Wilcoxon Matched-Pairs Signed-Ranks Test The Wilcoxon test may
be used with paired data under circumstances in which it is not appropriate to use
the paired-comparisons ¢ test described in Chapter 7. In such cases obtain each of the
n d; values, the difference between each of the n pairs of measurements. If we let
up = the mean of a population of such differences, we may follow the procedure
described above to test any one of the following null hypotheses: Hy: up =0,
Ho:up>0,and Hy : up < 0.

Computer Analysis Many statistics software packages will perform the Wil-
coxon signed-rank test. If, for example, the data of Example 13.4.1 are stored in Column 1,
we could use MINITAB to perform the test as shown in Figure 13.4.1.

EXERCISES

134.1

13.4.2

Sixteen laboratory animals were fed a special diet from birth through age 12 weeks. Their weight
gains (in grams) were as follows:

63 68 79 65 64 63 65 64 76 74 66 66 67 T3 69 76

Can we conclude from these data that the diet results in a mean weight gain of less than 70 grams? Let
o = .05, and find the p value.

Amateur and professional singers were the subjects of a study by Grape et al. (A-2). The researchers
investigated the possible beneficial effects of singing on well-being during a single singing lesson.
One of the variables of interest was the change in cortisol as a result of the signing lesson. Use the data
in the following table to determine if, in general, cortisol (nmol/L) increases after a singing lesson.
Let o = .05. Find the p value.
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Subject 1 2 3 4 5 6 7 8
Before 214 362 202 158 403 219 307 331
After 232 276 224 412 562 203 340 313

Source: Data provided courtesy of Christina Grape, M.P.H., Licensed Nurse.

13.4.3 In a study by Zuckerman and Heneghan (A-3), hemodynamic stresses were measured on subjects
undergoing laparoscopic cholecystectomy. An outcome variable of interest was the ventricular end
diastolic volume (LVEDV) measured in milliliters. A portion of the data appear in the following table.
Baseline refers to a measurement taken 5 minutes after induction of anesthesia, and the term “5
minutes” refers to a measurement taken 5 minutes after baseline.

LVEDV (ml)

Subject Baseline 5 Minutes

1 51.7 49.3

2 79.0 72.0

3 78.7 87.3

4 80.3 83.3

5 72.0 103.3

6 85.0 94.0

7 69.7 94.7

8 71.3 46.3

9 337 7 Source: Data provided courtesy
10 56.3 72.3 )

of R. S. Zuckerman, MD.

May we conclude, on the basis of these data, that among subjects undergoing laparoscopic
cholecystectomy, the average LVEDV levels change? Let o = .01.

13.5 THE MEDIAN TEST

A nonparametric procedure that may be used to test the null hypothesis that two
independent samples have been drawn from populations with equal medians is the median
test. The test, attributed mainly to Mood (2) and Westenberg (3), is also discussed by Brown
and Mood (4).

We illustrate the procedure by means of an example.

EXAMPLE 13.5.1

Do urban and rural male junior high school students differ with respect to their level of
mental health?

Solution:

1. Data. Members of a random sample of 12 male students from a rural
junior high school and an independent random sample of 16 male
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Level of Mental Health Scores of

Junior High Boys

School

Urban Rural Urban Rural
35 29 25 50
26 50 27 37
27 43 45 34
21 22 46 31
27 42 33

38 47 26

23 42 46

25 32 41

2.

students from an urban junior high school were given a test to measure
their level of mental health. The results are shown in Table 13.5.1.
To determine if we can conclude that there is a difference, we
perform a hypothesis test that makes use of the median test. Suppose we
choose a .05 level of significance.

Assumptions. The assumptions underlying the test are (a) the samples
are selected independently and at random from their respective popula-
tions; (b) the populations are of the same form, differing only in
location; and (c) the variable of interest is continuous. The level of
measurement must be, at least, ordinal. The two samples do not have to
be of equal size.

Hypotheses.

My, is the median score of the sampled population of urban students,
and My, is the median score of the sampled population of rural students.
Let o = .05.

Test statistic. As will be shown in the discussion that follows, the test
statistic is X* as computed, for example, by Equation 12.4.1 for a 2 x 2
contingency table.

Distribution of test statistic. When H, is true and the assumptions
are met, X is distributed approximately as x2 with 1 degree of freedom.
Decision rule. Reject H, if the computed value of X is > 3.841 (since
a =.05).

Calculation of test statistic. The first step in calculating the test statistic

is to compute the common median of the two samples combined. This is
done by arranging the observations in ascending order
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TABLE 13.5.2 Level of Mental Health Scores of
Junior High School Boys

Urban Rural Total

Number of scores above median 6 8 14
Number of scores below median 10 4 14
Total 16 12 28

and, because the total number of observations is even, obtaining the
mean of the two middle numbers. For our example the median is
(33 +34)/2 =33.5.

We now determine for each group the number of observations
falling above and below the common median. The resulting frequencies
are arranged in a 2 x 2 table. For the present example we construct
Table 13.5.2.

If the two samples are, in fact, from populations with the same
median, we would expect about one-half the scores in each sample to be
above the combined median and about one-half to be below. If the
conditions relative to sample size and expected frequencies for a 2 x
2 contingency table as discussed in Chapter 12 are met, the chi-square test
with 1 degree of freedom may be used to test the null hypothesis of equal
population medians. For our examples we have, by Formula 12.4.1,

28[(6)(4) — (8)(10)”

X' = (16)(12)(14)(14) =23

8. Statistical decision. Since 2.33 < 3.841, the critical value of x*> with
o = .05 and 1 degree of freedom, we are unable to reject the null
hypothesis on the basis of these data.

9. Conclusion. We conclude that the two samples may have been drawn
from populations with equal medians.

10. p value. Since 2.33 < 2.706, we have p > .10. -

Handling Values Equal to the Median Sometimes one or more observed
values will be exactly equal to the common median and, hence, will fall neither above nor
below it. We note that if n; + n; is odd, at least one value will always be exactly equal to the
median. This raises the question of what to do with observations of this kind. One solution
is to drop them from the analysis if n; + n, is large and there are only a few values that fall
at the combined median. Or we may dichotomize the scores into those that exceed the
median and those that do not, in which case the observations that equal the median will be
counted in the second category.

Median Test Extension The median test extends logically to the case where it is
desired to test the null hypothesis that k > 3 samples are from populations with equal
medians. For this test a 2 X k contingency table may be constructed by using the
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Dialog box: Session command:
Stat » Nonparametrics » Mood’s Median Test MIB > Mbod Cl1 C2.

Type C1 in Response and C2 in Factor. Click OK.
Output:

Mood Median Test: C1 versus C2

Mood nedian test of Cl

Chisquare = 2.33 df = 1 p = 0.127

I ndi vidual 95.0% Cls

Overall median = 33.5

A 95.0% C.I. for nmedian (1) - nmedian(2): (—-17.1,3.1)

C2 N<= N> Median B-QA -------- R I Foeeeio--
1 10 &6 27.0 15.0 (R e )
2 4 8 39.5 14. 8 (------------- SRR T )
-------- R S T
30.0 36.0 42.0

FIGURE 13.5.1 MINITAB procedure and output for Example 13.5.1.

frequencies that fall above and below the median computed from combined samples. If
conditions as to sample size and expected frequencies are met, X> may be computed and
compared with the critical x> with k — 1 degrees of freedom.

Computer Analysis The median test calculations may be carried out using
MINITAB. To illustrate using the data of Example 13.5.1 we first store the measurements
in MINITAB Column 1. In MINITAB Column 2 we store codes that identify the
observations as to whether they are for an urban (1) or rural (2) subject. The MINITAB
procedure and output are shown in Figure 13.5.1.

EXERCISES

13.5.1 Fifteen patient records from each of two hospitals were reviewed and assigned a score designed to
measure level of care. The scores were as follows:

Hospital A: 99, 85, 73, 98, 83, 88, 99, 80, 74, 91, 80, 94, 94, 98, 80
Hospital B: 78,74, 69,79,57,78,79, 68, 59, 91, 89, 55, 60, 55, 79
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13.5.2

Would you conclude, at the .05 level of significance, that the two population medians are different?
Determine the p value.

The following serum albumin values were obtained from 17 normal and 13 hospitalized subjects:

Serum Albumin (g/100 ml) Serum Albumin (g/100 ml)

Normal Subjects Hospitalized Subjects Normal Subjects Hospitalized Subjects

24 3.0 1.5 3.1 34 40 38 15
35 32 20 13 45 35 35

3.1 35 34 1.5 50 36

40 38 1.7 1.8 29

42 39 20 20

Would you conclude at the .05 level of significance that the medians of the two populations sampled
are different? Determine the p value.

13.6 THE MANN-WHITNEY TEST

The median test discussed in the preceding section does not make full use of all the
information present in the two samples when the variable of interest is measured on at least an
ordinal scale. Reducing an observation’s information content to merely that of whether or not
it falls above or below the common median is a waste of information. If, for testing the desired
hypothesis, there is available a procedure that makes use of more of the information inherent
in the data, that procedure should be used if possible. Such a nonparametric procedure that
can often be used instead of the median test is the Mann—Whitney test (5), sometimes called
the Mann—Whitney—Wilcoxon test. Since this test is based on the ranks of the observations, it
utilizes more information than does the median test.

Assumptions The assumptions underlying the Mann—Whitney test are as follows:

1. The two samples, of size n and m, respectively, available for analysis have been
independently and randomly drawn from their respective populations.

2. The measurement scale is at least ordinal.
3. The variable of interest is continuous.

4. If the populations differ at all, they differ only with respect to their medians.

Hypotheses When these assumptions are met we may test the null hypothesis that
the two populations have equal medians against either of the three possible alternatives: (1)
the populations do not have equal medians (two-sided test), (2) the median of population 1
is larger than the median of population 2 (one-sided test), or (3) the median of population 1
is smaller than the median of population 2 (one-sided test). If the two populations are
symmetric, so that within each population the mean and median are the same, the
conclusions we reach regarding the two population medians will also apply to the two
population means. The following example illustrates the use of the Mann—Whitney test.
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EXAMPLE 13.6.1

A researcher designed an experiment to assess the effects of prolonged inhalation of
cadmium oxide. Fifteen laboratory animals served as experimental subjects, while 10
similar animals served as controls. The variable of interest was hemoglobin level following
the experiment. The results are shown in Table 13.6.1. We wish to know if we can conclude
that prolonged inhalation of cadmium oxide reduces hemoglobin level.

Solution:

1. Data. See Table 13.6.1.

2. Assumptions. We assume that the assumptions of the Mann—Whitney
test are met.

3. Hypotheses. The null and alternative hypotheses are as follows:

H()ZMXzMY
Hy: My <My

where My is the median of a population of animals exposed to cadmium
oxide and Myis the median of a population of animals not exposed to the
substance. Suppose we let o = .05.

4. Test statistic. To compute the test statistic we combine the two samples
and rank all observations from smallest to largest while keeping track of
the sample to which each observation belongs. Tied observations are
assigned a rank equal to the mean of the rank positions for which they
are tied. The results of this step are shown in Table 13.6.2.

TABLE 13.6.1 Hemoglobin Determinations
(grams) for 25 Laboratory Animals

Exposed Animals (X) Unexposed Animals (Y)
14.4 17.4
14.2 16.2
13.8 17.1
16.5 17.5
14.1 15.0
16.6 16.0
15.9 16.9
15.6 15.0
14.1 16.3
15.3 16.8
15.7

16.7

13.7

15.3

14.0
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(13.6.1)

TABLE 13.6.2 Original Data and Ranks,
Example 13.6.1
X Rank Y Rank
13.7 1
13.8 2
14.0 3
14.1 4.5
14.1 4.5
14.2 6
14.4 7
15.0 8.5
15.0 8.5
15.3 10.5
15.3 10.5
15.6 12
15.7 13
15.9 14
16.0 15
16.2 16
16.3 17
16.5 18
16.6 19
16.7 20
16.8 21
16.9 22
17.1 23
17.4 24
17.5 25
Total 145
The test statistic is
o5 n(n+1)
2
where n is the number of sample X observations and S is the sum of the
ranks assigned to the sample observations from the population of X
values. The choice of which sample’s values we label X is arbitrary.
S. Distribution of test statistic. Critical values from the distribution of the
test statistic are given in Appendix Table L for various levels of «.
6. Decision rule. If the median of the X population is, in fact, smaller than
the median of the Y population, as specified in the alternative hypothesis,

we would expect (for equal sample sizes) the sum of the ranks assigned
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to the observations from the X population to be smaller than the sum of
the ranks assigned to the observations from the Y population. The test
statistic is based on this rationale in such a way that a sufficiently small
value of T will cause rejection of Hy : Mx > My. In general, for one-
sided tests of the type illustrated here the decision rule is:

Reject Hy : Mx = My if the computed T is less than wy, where wy is
the critical value of T obtained by entering Appendix Table L with n, the
number of X observations; m, the number of Y observations; and «, the
chosen level of significance.

If we use the Mann—Whitney procedure to test
Ho: My < My

against
HA IMX > My

sufficiently large values of 7 will cause rejection so that the decision
rule is:

Reject Hy : Mx < My if computed T is greater than wi_,, where
Wi_q = M — Wy.

For the two-sided test situation with

H()IMX:MY
HAZMx#MY

computed values of T that are either sufficiently large or sufficiently
small will cause rejection of H. The decision rule for this case, then, is:

Reject Hy : Mx = My if the computed value of Tis either less than wg
or greater than w _y 2) where wq, is the critical value of T for n, m, and
a/2 given in Appendix Table L, and Wi_(a/2) = MM — We /5.

For this example the decision rule is:

Reject Hy if the computed value of Tis smaller than 45, the critical value
of the test statistic for n = 15, m = 10, and o = .05 found in Table L.

The rejection regions for each set of hypotheses are shown in
Figure 13.6.1.

. Calculation of test statistic. For our present example we have, as
shown in Table 13.6.2, S = 145, so that

15(15 4 1)

T =145 —
2

=25
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Hg: My > M)y
Hy: My < My

Hy: My =M,
Hy: My # My

W2 W01 — (a/2)
FIGURE 13.6.1 Mann-Whitney test rejection regions for three sets of hypotheses.

8. Statistical decision. When we enter Table L with n = 15, m = 10, and
o = .05, we find the critical value of w, to be 45. Since 25 < 45, we
reject Hy,.

9. Conclusion. We conclude that My is smaller than My. This leads to the
conclusion that prolonged inhalation of cadmium oxide does reduce the
hemoglobin level.

10. p value. Since 22 < 25 < 30, we have for this test .005 > p > .001.
|

Large-Sample Approximation When either n or m is greater than 20 we
cannot use Appendix Table L to obtain critical values for the Mann—Whitney test. When
this is the case we may compute

T —mn/2

= 13.6.2
Vnm(n+m+1])/12 ( )

Z

and compare the result, for significance, with critical values of the standard normal
distribution.

Mann-Whitney Statistic and the Wilcoxon Statistic As was noted
at the beginning of this section, the Mann—Whitney test is sometimes referred to as the
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Dialog box: Session command:
Stat » Nonparametrics » Mann-Whitney MIB > Mann- Wi tney 95.0
ClL C2;

SUBC > Alternative -—1.
Type C1 in First Sample and C2 in Second Sample.
At Alternative choose less than.
Click OK.

Output:
Mann-Whitney Test and CI: C1, C2

Cl N = 15 Medi an = 15. 300

c2 N = 10 Medi an = 16. 550

Point estimte for ETAL — ETA2 is -1.300

95.1 Percent C.I. for ETAL — ETA2 is (—2.300, —0.600)

W = 145.0

Test of ETAL = ETA2 vs. ETAL < ETA2 is significant at 0.0030
The test is significant at 0.0030 (adjusted for ties)

FIGURE 13.6.2 MINITAB procedure and output for Example 13.6.1.

Ranks
y N Mean Rank Sum of Rank
X 1.000000 15 9.67 146.00
2.000000 10 18.00 180.00
Total 25

Test Statistic®

X
Mann-Whitney U 25.000
Wilcoxon W 145.000
Z —-2.775
Asymp. Sig. (2-tailed) .006
Exact Sig. [2*(1-tailed Sig.)] .004°

a. Not corrected for ties
b. Grouping Variable: y

FIGURE 13.6.3 SPSS output for Example 13.6.1.
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Mann—Whitney-Wilcoxon test. Indeed, many computer packages give the test value of
both the Mann—Whitney test (U) and the Wilcoxon test (W). These two tests are
algebraically equivalent tests, and are related by the following equality when there are
no ties in the data:

m(m+2n+1)

U+W=
* 2

(13.6.3)

Computer Analysis Many statistics software packages will perform the Mann—
Whitney test. With the data of two samples stored in Columns 1 and 2, for example,
MINITAB will perform a one-sided or two-sided test. The MINITAB procedure and output
for Example 13.6.1 are shown in Figure 13.6.2.

The SPSS output for Example 13.6.1 is shown in Figure 13.6.3. As we see
this output provides the Mann—Whitney test, the Wilcoxon test, and large-sample z
approximation.

EXERCISES

13.6.1

13.6.2

Cranor and Christensen (A-4) studied diabetics insured by two employers. Group 1 subjects were
employed by the City of Asheville, North Carolina, and group 2 subjects were employed by Mission—
St. Joseph’s Health System. At the start of the study, the researchers performed the Mann—Whitney
test to determine if a significant difference in weight existed between the two study groups. The data
are displayed in the following table.

Weight (Pounds)
Group 1 Group 2

252 215 240 185 195 220
240 190 302 310 210 295
205 270 312 212 190 202
200 159 126 238 172 268
170 204 268 184 190 220
170 215 215 136 140 311
320 254 183 200 280 164
148 164 287 270 264 206
214 288 210 200 270 170
270 138 225 212 210 190
265 240 258 182 192

203 217 221 225 126

Source: Data provided courtesy of Carole W. Carnor, Ph.D.

May we conclude, on the basis of these data, that patients in the two groups differ significantly with
respect to weight? Let o = .05.

One of the purposes of a study by Liu et al. (A-5) was to determine the effects of MRZ 2/579
(a receptor antagonist shown to provide neuroprotective activity in vivo and in vitro) on neurological



13.6.3

EXERCISES 697

deficit in Sprague—Dawley rats. In the study, 10 rats were to receive MRZ 2/579 and nine rats were to
receive regular saline. Prior to treatment, researchers studied the blood gas levels in the two groups of
rats. The following table shows the pO, levels for the two groups.

Saline (mmHg) MRZ 2/579 (mmHg)
112.5 133.3
106.3 106.4
99.5 113.1
98.3 117.2
103.4 126.4
109.4 98.1
108.9 113.4
107.4 116.8
116.5

Source: Data provided courtesy of Ludmila Belayev, M.D.

May we conclude, on the basis of these data, that, in general, subjects on saline have, on average,
lower pO, levels at baseline? Let o = .01.

The purpose of a study by researchers at the Cleveland (Ohio) Clinic (A-6) was to determine if the use
of Flomax® reduced the urinary side effects commonly experienced by patients following brachy-
therapy (permanent radioactive seed implant) treatment for prostate cancer. The following table
shows the American Urological Association (AUA) symptom index scores for two groups of subjects
after 8 weeks of treatment. The higher the AUA index, the more severe the urinary obstruction and
irritation.

AUA Index (Flomax®) AUA Index (Placebo)
1 5 11 1 6 12
1 5 11 1 6 12
2 6 11 2 6 13
2 6 11 2 6 14
2 7 12 2 6 17
2 7 12 3 7 18
3 7 13 3 8 19
3 7 14 3 8 20
3 8 16 3 9 23
4 8 16 4 9 23
4 8 18 4 10
4 8 21 4 10
4 9 31 5 11
4 9 5 11
4 10 5 12

Source: Data provided courtesy of Chandana Reddy, M.S.

May we conclude, on the basis of these data, that the median AUA index in the Flomax® group differs
significantly from the median AUA index of the placebo group? Let o = .05.
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13.7 THE KOLMOGOROV-SMIRNOV
GOODNESS-OF-FIT TEST

When one wishes to know how well the distribution of sample data conforms to some
theoretical distribution, a test known as the Kolmogorov—Smirnov goodness-of-fit test
provides an alternative to the chi-square goodness-of-fit test discussed in Chapter 12. The
test gets its name from A. Kolmogorov and N. V. Smirnov, two Russian mathematicians
who introduced two closely related tests in the 1930s.

Kolmogorov’s work (6) is concerned with the one-sample case as discussed here.
Smirnov’s work (7) deals with the case involving two samples in which interest centers on
testing the hypothesis that the distributions of the two-parent populations are identical. The
test for the first situation is frequently referred to as the Kolmogorov—Smirnov one-sample
test. The test for the two-sample case, commonly referred to as the Kolmogorov—Smirnov
two-sample test, will not be discussed here.

The Test Statistic In using the Kolmogorov—Smirnov goodness-of-fit test, a
comparison is made between some theoretical cumulative distribution function, F7(x), and
a sample cumulative distribution function, Fg(x). The sample is a random sample from a
population with unknown cumulative distribution function F(x). It will be recalled (Section
4.2) that a cumulative distribution function gives the probability that X is equal to or less
than a particular value, x. That is, by means of the sample cumulative distribution function,
Fs(x), we may estimate P(X < x). If there is close agreement between the theoretical and
sample cumulative distributions, the hypothesis that the sample was drawn from the
population with the specified cumulative distribution function, Fx(x), is supported. If,
however, there is a discrepancy between the theoretical and observed cumulative distribu-
tion functions too great to be attributed to chance alone, when Hj is true, the hypothesis
is rejected.

The difference between the theoretical cumulative distribution function, F7{(x), and
the sample cumulative distribution function, Fs(x), is measured by the statistic D, which is
the greatest vertical distance between Fg(x) and F7(x). When a two-sided test is appropri-
ate, that is, when the hypotheses are

Hy: F(x) =Fr(x) forallx from —oo to 400

Ha : F(x) # Fr(x) for at least one x

the test statistic is

D = sup |Fs(x) — Fr(x)| (13.7.1)

which is read, “D equals the supremum (greatest), over all x, of the absolute value of the
difference Fg(X) minus Fr(X).”

The null hypothesis is rejected at the « level of significance if the computed value
of D exceeds the value shown in Appendix Table M for 1 — « (two-sided) and the sample
size n.
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Assumptions The assumptions underlying the Kolmogorov—Smirnov test include
the following:
1. The sample is a random sample.
2. The hypothesized distribution Fr(x) is continuous.
When values of D are based on a discrete theoretical distribution, the test is
conservative. When the test is used with discrete data, then, the investigator should
bear in mind that the true probability of committing a type I error is at most equal to «, the

stated level of significance. The test is also conservative if one or more parameters have to
be estimated from sample data.

EXAMPLE 13.7.1

Fasting blood glucose determinations made on 36 nonobese, apparently healthy, adult
males are shown in Table 13.7.1. We wish to know if we may conclude that these data are
not from a normally distributed population with a mean of 80 and a standard deviation of 6.

Solution:

1. Data. See Table 13.7.1.

2. Assumptions. The sample available is a simple random sample from a
continuous population distribution.

3. Hypotheses. The appropriate hypotheses are
Hy: F(x) = Fr(x) for allx from —oo to +00
Hp : F(x) # Fr(x) for at least one x

Let a = .05.
4. Test statistic. See Equation 13.7.1.

5. Distribution of test statistic. Critical values of the test statistic for
selected values of « are given in Appendix Table M.

6. Decision rule. Reject Hy if the computed value of D exceeds .221, the
critical value of D for n = 36 and o = .05.

7. Calculation of test statistic. Our first step is to compute values of Fs(x)
as shown in Table 13.7.2.

TABLE 13.7.1 Fasting Blood Glucose Values
(mg/100 ml) for 36 Nonobese, Apparently
Healthy, Adult Males

75 92 80 80 84 72
84 77 81 77 75 81
80 92 72 77 78 76
77 86 77 92 80 78
68 78 92 68 80 81

87 76 80 87 77 86
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TABLE 13.7.2 Values of Fs(x) for
Example 13.7.1

Cumulative
x Frequency Frequency Fs(x)
68 2 2 .0556
72 2 4 111
75 2 6 .1667
76 2 8 2222
77 6 14 .3889
78 3 17 4722
80 6 23 .6389
81 3 26 7222
84 2 28 7778
86 2 30 .8333
87 2 32 .8889
92 4 36 1.0000
36

Each value of Fg(x) is obtained by dividing the corresponding
cumulative frequency by the sample size. For example, the first value of
Fs(x) =2/36 = .0556.

We obtain values of Fr(x) by first converting each observed value
of x to a value of the standard normal variable, z. From Appendix
Table D we then find the area between —oo and z. From these areas we
are able to compute values of Fr(x). The procedure, which is similar to
that used to obtain expected relative frequencies in the chi-square
goodness-of-fit test, is summarized in Table 13.7.3.

TABLE 13.7.3 Steps in Calculation
of Fr(x) for Example 13.7.1

x z=(x—80)/6 Fr(x)
68 —2.00 .0228
72 -1.33 .0918
75 —-.83 .2033
76 —.67 .2514
77 —.50 .3085
78 -.33 .3707
80 .00 .5000
81 A7 .5675
84 .67 .7486
86 1.00 .8413
87 1.17 .8790

92 2.00 .9772
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FIGURE 13.7.1

9.

Fs(x) and Fr(x) for Example 13.7.1.

The test statistic D may be computed algebraically, or it may be
determined graphically by actually measuring the largest vertical dis-
tance between the curves of Fg(x) and Fr(x) on a graph. The graphs of
the two distributions are shown in Figure 13.7.1.

Examination of the graphs of Fg(x) and Fr(x) reveals that
D =~ .16 = (.72 — .56). Now let us compute the value of D algebrai-
cally. The possible values of |Fs(x) — Fr(x)| are shown in Table 13.7.4.
This table shows that the exact value of D is .1547.

Statistical decision. Reference to Table M reveals that a computed D of
.1547 is not significant at any reasonable level. Therefore, we are not
willing to reject Hy.

Conclusion. The sample may have come from the specified distribution.

10. p value. Since we have a two-sided test, and since .1547 < .174, we

have p > .20.

TABLE 13.7.4 Calculation of |Fs(x) — Fr(x)|
for Example 13.7.1

x Fs(x) Fr(x) |Fs(x) = Fr(x)|
68 .0556 0228 .0328
72 111 0918 .0193
75 1667 2033 .0366
76 2222 2514 .0292
77 3889 3085 .0804
78 4722 3707 1015
80 6389 .5000 1389
81 7222 5675 1547
84 7778 7486 .0292
86 .8333 8413 .0080
87 8889 8790 .0099
92 1.0000 9772 .0228
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Kolmogorov-Smirnov One-Sample Test

kolmogoroy {response = glucose, method = asymp, di = no { mean = 80, stddev = 6 3, time_limit = none );

Data File:
Column Yariable: Glucose
Sample Size: 36

Summary of the Test Statistic:

Type Mean Std. Dev

Hypothesized distribution F{X) rorrnal a0 [

Let S{X) be the empirical distribution.
Inference:
Statistic
Item Sup{|S{x) - F(X) 1} | Sup{S(X}-F{X)} | Sup{F(X)-S(X)}

DObserved Statistic 0,156 0.156 0.09122

Stand. Statistic 0,9362 0.9362 0.5473

Asymptotic p-value 0.3447 0.173z2 0.5493

FIGURE 13.7.2 StatXact output for Example 13.7.1

StatXact is often used for nonparametric statistical analysis. This particular software
program has a nonparametric module that contains nearly all of the commonly used
nonparametric tests, and many less common, but useful, procedures as well. Computer
analysis using StatXact for the data in Example 13.7.1 is shown in Figure 13.7.2.
Note that it provides the test statistic of D = 0.156 and the exact two-sided p value
of .3447.

A Precaution The reader should be aware that in determining the value of D, it is
not always sufficient to compute and choose from the possible values of |Fs(x) — Fr(x)|.
The largest vertical distance between Fs(x) and Fr(x) may not occur at an observed value,
X, but at some other value of X. Such a situation is illustrated in Figure 13.7.3. We see that if
only values of |Fg(x) — Fr(x)| at the left endpoints of the horizontal bars are considered,
we would incorrectly compute D as |.2 — .4| = .2. One can see by examining the graph,
however, that the largest vertical distance between Fs(x) and Fr(x) occurs at the right
endpoint of the horizontal bar originating at the point corresponding to x = .4, and the
correct value of D is |.5 — 2| = 3.

One can determine the correct value of D algebraically by computing, in addition to
the differences |Fg(x) — Fr(x)|, the differences |Fs(x;—1) — Fr(x;)| for all values of
i=1,2,...,r+ 1, where r = the number of different values of x and Fg(xp) = 0.
The correct value of the test statistic will then be

D= maxi;?um {maximum[|Fs(x;) — Fr(x;)|,|Fs(xi—1) — Fr(x;)|]} (13.7.2)

i<
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FIGURE 13.7.3 Graph of fictitious data showing correct calculation of D.
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Advantages and Disadvantages The following are some important points
of comparison between the Kolmogorov—Smirnov and the chi-square goodness-of-fit tests.

1. The Kolmogorov—Smirnov test does not require that the observations be grouped as
is the case with the chi-square test. The consequence of this difference is that the
Kolmogorov—Smirnov test makes use of all the information present in a set of data.

EXERCISES

The Kolmogorov—Smirnov test can be used with any size sample. It will be recalled
that certain minimum sample sizes are required for the use of the chi-square test.

. As has been noted, the Kolmogorov—Smirnov test is not applicable when parameters

have to be estimated from the sample. The chi-square test may be used in these
situations by reducing the degrees of freedom by 1 for each parameter estimated.

The problem of the assumption of a continuous theoretical distribution has already
been mentioned.

13.7.1 The weights at autopsy of the brains of 25 adults suffering from a certain disease were as follows:

Weight of Brain (grams)
859 1073 1041 1166 1117
962 1051 1064 1141 1202
973 1001 1016 1168 1255
904 1012 1002 1146 1233
920 1039 1086 1140 1348
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Can one conclude from these data that the sampled population is not normally distributed with a mean
of 1050 and a standard deviation of 50? Determine the p value for this test.

13.7.2 1Qs of a sample of 30 adolescents arrested for drug abuse in a certain metropolitan jurisdiction were

as follows:
1Q
95 100 91 106 109 110
98 104 97 100 107 119
92 106 103 106 105 112
101 91 105 102 101 110
101 95 102 104 107 118

Do these data provide sufficient evidence that the sampled population of 1Q scores is not normally
distributed with a mean of 105 and a standard deviation of 10? Determine the p value.

13.7.3 For a sample of apparently normal subjects who served as controls in an experiment, the following
systolic blood pressure readings were recorded at the beginning of the experiment:

162 177 151 167
130 154 179 146
147 157 141 157
153 157 134 143
141 137 151 161

Can one conclude on the basis of these data that the population of blood pressures from
which the sample was drawn is not normally distributed with i = 150 and o = 12? Determine
the p value.

13.8 THE KRUSKAL-WALLIS ONE-WAY
ANALYSIS OF VARIANCE BY RANKS

In Chapter 8 we discuss how one-way analysis of variance may be used to test the null
hypothesis that several population means are equal. When the assumptions underlying this
technique are not met, that is, when the populations from which the samples are drawn are
not normally distributed with equal variances, or when the data for analysis consist only of
ranks, a nonparametric alternative to the one-way analysis of variance may be used to test
the hypothesis of equal location parameters. As was pointed out in Section 13.5, the median
test may be extended to accommodate the situation involving more than two samples. A
deficiency of this test, however, is the fact that it uses only a small amount of the
information available. The test uses only information as to whether or not the observations
are above or below a single number, the median of the combined samples. The test does not
directly use measurements of known quantity. Several nonparametric analogs to analysis of
variance are available that use more information by taking into account the magnitude of
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each observation relative to the magnitude of every other observation. Perhaps the best
known of these procedures is the Kruskal-Wallis one-way analysis of variance by
ranks (8).

The Kruskal-Wallis Procedure The application of the test involves the
following steps.

1. The ny, n,,. .., n; observations from the k samples are combined into a single
series of size n and arranged in order of magnitude from smallest to largest.
The observations are then replaced by ranks from 1, which is assigned to the
smallest observation, to n, which is assigned to the largest observation. When two
or more observations have the same value, each observation is given the mean of
the ranks for which it is tied.

2. The ranks assigned to observations in each of the k groups are added separately to
give k rank sums.

3. The test statistic

12 R?
H=—— <L _3 1 13.8.1
n(n—&—l).Z ; (n+1) ( )

=

is computed. In Equation 13.8.1,

k = the number of samples

n; = the number of observations in the jth sample

n = the number of observations in all samples combined
R; = the sum of the ranks in the jth sample

4. When there are three samples and five or fewer observations in each sample, the
significance of the computed H is determined by consulting Appendix Table N.
When there are more than five observations in one or more of the samples, H is
compared with tabulated values of x> with k — 1 degrees of freedom.

EXAMPLE 13.8.1

In a study of pulmonary effects on guinea pigs, Lacroix et al. (A-7) exposed
ovalbumin (OA)-sensitized guinea pigs to regular air, benzaldehyde, or acetaldehyde.
At the end of exposure, the guinea pigs were anesthetized and allergic responses were
assessed in bronchoalveolar lavage (BAL). One of the outcome variables examined
was the count of eosinophil cells, a type of white blood cell that can increase with
allergies. Table 13.8.1 gives the eosinophil cell count (><106) for the three treatment
groups.

Can we conclude that the three populations represented by the three samples differ
with respect to eosinophil cell count? We can so conclude if we can reject the null
hypothesis that the three populations do not differ in eosinophil cell count.
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TABLE 13.8.1

Eosinophil Count for
Ovalbumin-Sensitized Guinea Pigs

Eosinophil Cell Count (x10°)

Air Benzaldehyde Acetaldehyde
12.22 3.68 54.36
28.44 4.05 27.87
28.13 6.47 66.81
38.69 21.12 46.27
54.91 3.33 30.19

Solution:

Source: Data provided courtesy of G. Lacroix.

. Data. See Table 13.8.1.

. Assumptions. The samples are independent random samples from their

respective populations. The measurement scale employed is at least
ordinal. The distributions of the values in the sampled populations are
identical except for the possibility that one or more of the populations
are composed of values that tend to be larger than those of the other
populations.

. Hypotheses.

H,: The population centers are all equal.

H: At least one of the populations tends to exhibit larger values
than at least one of the other populations.

Let o = .01.
Test statistic. See Equation 13.8.1.

. Distribution of test statistic. Critical values of H for various sample

sizes and « levels are given in Appendix Table N.

. Decision rule. The null hypothesis will be rejected if the computed

value of H is so large that the probability of obtaining a value that large
or larger when Hy is true is equal to or less than the chosen significance
level, .

Calculation of test statistic. When the three samples are combined into
a single series and ranked, the table of ranks shown in Table 13.8.2 may
be constructed.

The null hypothesis implies that the observations in the three
samples constitute a single sample of size 15 from a single population.
If this is true, we would expect the ranks to be well distributed among
the three groups. Consequently, we would expect the total sum of
ranks to be divided among the three groups in proportion to group size.
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TABLE 13.8.2 The Data of Table 13.8.1
Replaced by Ranks

Air Benzaldehyde Acetaldehyde
5 2 13
9 3 7
8 4 15

11 6 12

14 1 10

R, =47 R, =16 R3 =57

Departures from these conditions are reflected in the magnitude of the
test statistics H.
From the data in Table 13.8.2 and Equation 13.8.1, we obtain

o 12 [(47)2 (16)>  (57)

= —3(15+1)=9.14
15(16) 5+5+51 (15+1)

8. Statistical decision. Table N shows that when the n; are 5, 5, and 5, the
probability of obtaining a value of H = 9.14 is less than .009. The null
hypothesis can be rejected at the .01 level of significance.

9. Conclusion. We conclude that there is a difference in the average
eosinophil cell count among the three populations.

10. p value. For this test, p < .009. n

Ties When ties occur among the observations, we may adjust the value of H by
dividing it by

T (13.8.2)

n—n

where T = 1 — t. The letter ¢ is used to designate the number of tied observations in a
group of tied values. In our example there are no groups of tied values but, in general, there
may be several groups of tied values resulting in several values of T.

The effect of the adjustment for ties is usually negligible. Note also that the effect of
the adjustment is to increase H, so that if the unadjusted H is significant at the chosen level,
there is no need to apply the adjustment.

More than Three Samples/Large Samples Now let us illustrate the
procedure when there are more than three samples and at least one of the n; is greater
than 5.
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TABLE 13.8.3 Net Book Value of Equipment per Bed by Hospital Type

Type Hospital
A B C D E
$1735(11) $5260(35) $2790(20) $3475(26) $6090(40)
1520(2) 4455(28) 2400(12) 3115(22) 6000(38)
1476(1) 4480(29) 2655(16) 3050(21) 5894(37)
1688(7) 4325(27) 2500(13) 3125(23) 5705(36)
1702(10) 5075(32) 2755(19) 3275(24) 6050(39)
2667(17) 5225(34) 2592(14) 3300(25) 6150(41)
1575(4) 4613(30) 2601(15) 2730(18) 5110(33)
1602(5) 4887(31) 1648(6)
1530(3) 1700(9)
1698(8)
R, =68 R, = 246 R; =124 R, =159 Rs = 264

EXAMPLE 13.8.2

Table 13.8.3 shows the net book value of equipment capital per bed for a sample of
hospitals from each of five types of hospitals. We wish to determine, by means of the
Kruskal-Wallis test, if we can conclude that the average net book value of equipment
capital per bed differs among the five types of hospitals. The ranks of the 41 values, along
with the sum of ranks for each sample, are shown in the table.

Solution: From the sums of the ranks we compute
12 (68) (246) (124)* (159)* (264)°

H:
@i+ 10 s o Tty
= 36.39

—3(41+1)

Reference to Appendix Table F with kK — 1 = 4 degrees of freedom indi-
cates that the probability of obtaining a value of H as large as or larger than
36.39, due to chance alone, when there is no difference among the
populations, is less than .005. We conclude, then, that there is a difference
among the five populations with respect to the average value of the variable
of interest. ]

Computer Analysis The MINITAB software package computes the Kruskal—
Wallis test statistic and provides additional information. After we enter the eosinophil
counts in Table 13.8.1 into Column 1 and the group codes into Column 2, the MINITAB
procedure and output are as shown in Figure 13.8.1.
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Data:

Dialog box:

Output:

c2 N Medi an
1 5 28. 440
2 5 4,050
3 5 46. 270
Overal | 15

H=1914 DF =2 P =

Kruskal -Wal lis Test on Cl1

Stat » Nonparametrics » Kruskal-Wallis
Type C1 in Response and C2 in Factor. Click OK.

Kruskal-Wallis Test: C1 versus C2

Cl: 12.22 28.44 28.13 38.69 54.91 3.68 4.05 6.47 21.12 3.33 54.36 27.87 66.81 46.27 30.19
c:111112222233333

Session command:

Ave Rank Z
9.4 0. 86
3.2 -2.94
11. 4 2.08
8.0
0. 010

MIB > Kruskal -Vl lis Cl1 C2.

FIGURE 13.8.1 MINITAB procedure and output, Kruskal-Wallis test of eosinophil count data in

Table 13.8.1.

EXERCISES

For the following exercises, perform the test at the indicated level of significance and determine the

p value.

13.8.1 In a study of healthy subjects grouped by age (Younger: 19-50 years, Seniors: 65-75 years, and
Longeval: 85-102 years), Herrmann et al. (A-8) measured their vitamin B-12 levels (ng/L). All
elderly subjects were living at home and able to carry out normal day-to-day activities. The following
table shows vitamin B-12 levels for 50 subjects in the young group, 92 seniors, and 90 subjects in the

longeval group.

Senior (65-75 Years)

Longeval (85-102 Years)

Young (19-50 Years)
230 241
477 442
561 491
347 279
566 334
260 247

319
190
461
163
3717
190

371 566 170
460 290 542
440 271 282
520 308 194
256 440 445
335 238 921

148 149 631 198
1941 409 305 321
128 229 393 2772
145 183 282 428
174 193 273 259
495 161 157 111

(Continued)
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13.8.2

13.8.3

Young (19-50 Years)

Senior (65-75 Years)

Longeval (85-102 Years)

300
230
215
260
349
315
257
536
582
293
569
325
275
172
2000
240
235
284
883

314
254
419
335
455
297
456
668
240
320
562
360
357
609
740
430
645
395
302

375
229
193
294
740
194
780
245
258
419
372
413
685
136
441
423
617
985
170

137
452
437
236
432
411
268
703
282
290
286
143
310
352
262
404
380
322
340

525
298
153
323
205
248
371
668
197
260
198
336
421
712
461
631
1247
1033
285

1192
748
187
350

1365
232
509
357
201
177
872

460
548
198
165
226
557
166
218
186
346
239
240
136
359
715
252
414
372
236

400
348
175
540
293
196
632
438
368
262
190
241
195
220
164
279
297
474
375

1270
252
262
381
162
340
370
483
222
277
226
203
369
162

95
178
530
334
521

262
161
1113
409
378
203
221
917
244

Source: Data provided courtesy of W. Herrmann and H. Schorr.

May we conclude, on the basis of these data, that the populations represented by these samples differ

with respect to vitamin B-12 levels? Let « = .01.

The following are outpatient charges (—$100) made to patients for a certain surgical procedure by
samples of hospitals located in three different areas of the country:

Area
| II 111
$80.75 $58.63 $84.21
78.15 72.70 101.76
85.40 64.20 107.74
71.94 62.50 115.30
82.05 63.24 126.15

Can we conclude at the .05 level of significance that the three areas differ with respect to the charges?

A study of young children by Flexer et al. (A-9) published in the Hearing Journal examines the
effectiveness of an FM sound field when teaching phonics to children. In the study, children in a
classroom with no phonological or phonemic awareness training (control) were compared to a class
with phonological and phonemic awareness (PPA) and to a class that utilized phonological and
phonemic awareness training and the FM sound field (PPA/FM). A total of 53 students from three
separate preschool classrooms participated in this study. Students were given a measure of phonemic
awareness in preschool and then at the end of the first semester of kindergarten. The improvement
scores are listed in the following table as measured by the Yopp-Singer Test of Phonemic
Segmentation.
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Improvement (Control) Improvement PPA Improvement PPA/FM
0 1 2 1 19
-1 1 3 3 20
0 2 15 7 21
1 2 18 9 21
4 3 19 11 22
5 6 20 17 22
9 7 5 17 15
9 8 17 17
13 9 18 17
18 18 18 19
0 20 19 22
0 19

Source: Data provided courtesy of John P. Holcomb, Jr., Ph.D.

Test for a significant difference among the three groups. Let o = .05.

Refer to Example 13.8.1. Another variable of interest to Lacroix et al. (A-7) was the number of
alveolar cells in three groups of subjects exposed to air, benzaldehyde, or acetaldehyde. The
following table gives the information for six guinea pigs in each of the three treatment groups.

Number of Alveolar Cells (x10°)

Air Benzaldehyde Acetaldehyde

0.55 0.81 0.65

0.48 0.56 13.69

7.8 1.11 17.11

8.72 0.74 7.43

0.65 0.77 5.48

1.51 0.83 0.99 Source: Data provided courtesy
0.55 0.81 0.65 of G. Lacroix.

May we conclude, on the basis of these data, that the number of alveolar cells in ovalbumin-sensitized
guinea pigs differs with type of exposure? Let oo = .05.

The following table shows the pesticide residue levels (ppb) in blood samples from four populations
of human subjects. Use the Kruskal-Wallis test to test at the .05 level of significance the null
hypothesis that there is no difference among the populations with respect to average level of pesticide
residue.

Population Population
A B C D A B C D
10 4 15 7 44 11 9 4
37 35 5 11 12 7 11 5
12 32 10 10 15 32 2

(Continued)
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Population Population
A B C D A B C D
31 19 12 8 42 17 14 6
11 33 6 2 23 8 15 3
9 18 6 5

13.8.6 Hepatic y-glutamyl transpeptidase (GGTP) activity was measured in 22 patients undergoing
percutaneous liver biopsy. The results were as follows:

Subject Diagnosis Hepatic GGTP Level
1 Normal liver 27.7
2 Primary biliary cirrhosis 459
3 Alcoholic liver disease 85.3
4 Primary biliary cirrhosis 39.0
5 Normal liver 25.8
6 Persistent hepatitis 39.6
7 Chronic active hepatitis 41.8
8 Alcoholic liver disease 64.1
9 Persistent hepatitis 41.1

10 Persistent hepatitis 353

11 Alcoholic liver disease 71.5

12 Primary biliary cirrhosis 40.9

13 Normal liver 38.1

14 Primary biliary cirrhosis 40.4

15 Primary biliary cirrhosis 34.0

16 Alcoholic liver disease 74.4

17 Alcoholic liver disease 78.2

18 Persistent hepatitis 32.6

19 Chronic active hepatitis 46.3

20 Normal liver 39.6

21 Chronic active hepatitis 52.7

22 Chronic active hepatitis 57.2

Can we conclude from these sample data that the average population GGTP level differs among the
five diagnostic groups? Let o = .05 and find the p value.

13.9 THE FRIEDMAN TWO-WAY ANALYSIS
OF VARIANCE BY RANKS

Just as we may on occasion have need of a nonparametric analog to the parametric one-way
analysis of variance, we may also find it necessary to analyze the data in a two-way
classification by nonparametric methods analogous to the two-way analysis of variance.
Such a need may arise because the assumptions necessary for parametric analysis of
variance are not met, because the measurement scale employed is weak, or because results
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are needed in a hurry. A test frequently employed under these circumstances is the
Friedman two-way analysis of variance by ranks (9,10). This test is appropriate whenever
the data are measured on, at least, an ordinal scale and can be meaningfully arranged in a
two-way classification as is given for the randomized block experiment discussed in
Chapter 8. The following example illustrates this procedure.

EXAMPLE 13.9.1

A physical therapist conducted a study to compare three models of low-volt electrical
stimulators. Nine other physical therapists were asked to rank the stimulators in order of
preference. A rank of 1 indicates first preference. The results are shown in Table 13.9.1. We
wish to know if we can conclude that the models are not preferred equally.

Solution:

1. Data. See Table 13.9.1.

2. Assumptions. The observations appearing in a given block are inde-
pendent of the observations appearing in each of the other blocks, and
within each block measurement on at least an ordinal scale is achieved.

3. Hypothesis. In general, the hypotheses are:

Hy: The treatments all have identical effects.
Ha: At least one treatment tends to yield larger observations than
at least one of the other treatments.
For our present example we state the hypotheses as follows:
Hy: The three models are equally preferred.
Hy: The three models are not equally preferred.

Let a = .05.

TABLE 13.9.1 Physical Therapists’ Rankings of
Three Models of Low-Volt Electrical Stimulators

Model

>

Therapist B

o
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4. Test statistic. By means of the Friedman test we will be able to
determine if it is reasonable to assume that the columns of ranks
have been drawn from the same population. If the null hypothesis is
true we would expect the observed distribution of ranks within any
column to be the result of chance factors and, hence, we would expect
the numbers 1, 2, and 3 to occur with approximately the same frequency
in each column. If, on the other hand, the null hypothesis is false (that is,
the models are not equally preferred), we would expect a preponderance
of relatively high (or low) ranks in at least one column. This condition
would be reflected in the sums of the ranks. The Friedman test will tell
us whether or not the observed sums of ranks are so discrepant that it is
not likely they are a result of chance when Hj, is true.

Since the data already consist of rankings within blocks (rows), our
first step is to sum the ranks within each column (treatment). These sums
are the R; shown in Table 13.9.1. A test statistic, denoted by Friedman as
Xf, is computed as follows:

2

o
B k(1) 4

k
(R)® = 3n(k+1) (13.9.1)

=1

where n = the number of rows (blocks) and k = the number of columns

(treatments).

5. Distribution of test statistic. Critical values for various values of n and
k are given in Appendix Table O.
6. Decision rule. Reject H if the probability of obtaining (when Hj is

true) a value of x? as large as or larger than actually computed is less
than or equal to «.

7. Calculation of test statistic. Using the data in Table 13.9.1 and
Equations 13.9.1, we compute

12

2 2 2 2

= ——————|(15)" + (25)" + (14)"| —3(9)(3+1) =8.222

X =555 |19+ @ + 048] -30)6+1)

8. Statistical decision. When we consult Appendix Table Oa, we find that
the probability of obtaining a value of x? as large as 8.222 due to chance
alone, when the null hypothesis is true, is .016. We are able, therefore, to
reject the null hypothesis.

9. Conclusion. We conclude that the three models of low-volt electrical
stimulator are not equally preferred.

10. p value. For this test, p = .016. -

Ties When the original data consist of measurements on an interval or a ratio scale
instead of ranks, the measurements are assigned ranks based on their relative magnitudes
within blocks. If ties occur, each value is assigned the mean of the ranks for which it
is tied.
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Large Samples When the values of k and/or n exceed those given in Table O, the
critical value of xf is obtained by consulting the x> table (Table F) with the chosen o and
k — 1 degrees of freedom.

EXAMPLE 13.9.2

Table 13.9.2 shows the responses, in percent decrease in salivary flow, of 16 experimental
animals following different dose levels of atropine. The ranks (in parentheses) and the sum
of the ranks are also given in the table. We wish to see if we may conclude that the different
dose levels produce different responses. That is, we wish to test the null hypothesis of no
difference in response among the four dose levels.

Solution: From the data, we compute
) 12

X =164+ 1)

Reference to Table F indicates that with k — 1 = 3 degrees of freedom

the probability of getting a value of x? as large as 30.32 due to chance alone

is, when Hy is true, less than .005. We reject the null hypothesis and conclude
that the different dose levels do produce different responses.

[(20)° + (36.5) + (44)” + (59.5)°] — 3(16)(4 + 1) = 30.32

TABLE 13.9.2 Percent Decrease in Salivary Flow of
Experimental Animals Following Different Dose
Levels of Atropine

Dose Level

Animal Number A B C D

1 29(1) 48(2) 75(3) 100(4)
2 72(2) 30(1) 100(3.5) 100(3.5)
3 70(1) 100(4) 86(2) 96(3)
4 54(2) 35(1) 90(3) 99(4)
5 5(1) 43(3) 32(2) 81(4)
6 17(1) 40(2) 76(3) 81(4)
7 74(1) 100(3) 100(3) 100(3)
8 6(1) 34(2) 60(3) 81(4)
9 16(1) 39(2) 73(3) 79(4)
10 52(2) 34(1) 88(3) 96(4)
11 8(1) 42(3) 31(2) 79(4)
12 29(1) 47(2) 72(3) 99(4)
13 71(1) 100(3.5) 97(2) 100(3.5)
14 7(1) 33(2) 58(3) 79(4)
15 68(1) 99(4) 84(2) 93(3)
16 70(2) 30(1) 99(3.5) 99(3.5)
R; 20 36.5 44 59.5
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Dialog box: Session command:
Stat » Nonparametrics » Friedman MIB > FRIEDMAN C3 C1 C2

Type C3 in Response, C1 in Treatment and C2 in
Blocks. Click OK.

Output:

Friedman Test: C3 versus C1 blocked by C2

S = 8.22 d.f. = 2 p = 0.017
Est. Sum of
Cc1 N Medi an RANKS
1 9 2. 0000 15.0
2 9 2.6667 25.0
3 9 1.3333 14.0

Grand nedian = 2.0000

FIGURE 13.9.1 MINITAB procedure and output for Example 13.9.1.

Computer Analysis Many statistics software packages, including MINITAB,
will perform the Friedman test. To use MINITAB we form three columns of data. We may,
for example, set up the columns so that Column 1 contains numbers that indicate the
treatment to which the observations belong, Column 2 contains numbers indicating the
blocks to which the observations belong, and Column 3 contains the observations. If we do
this for Example 13.9.1, the MINITAB procedure and output are as shown in Figure 13.9.1.

EXERCISES

For the following exercises perform the test at the indicated level of significance and determine the

p value.

13.9.1 The following table shows the scores made by nine randomly selected student nurses on final

examinations in three subject areas:

Subject Area
Student
Number Fundamentals Physiology Anatomy
1 98 95 77
2 95 71 79

(Continued)
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Subject Area

Student

Number Fundamentals Physiology Anatomy
3 76 80 91

4 95 81 84

5 83 77 80

6 99 70 93

7 82 80 87

8 75 72 81

9 88 81 83

Test the null hypothesis that student nurses constituting the population from which the above sample
was drawn perform equally well in all three subject areas against the alternative hypothesis that they
perform better in, at least, one area. Let o = .05.

Fifteen randomly selected physical therapy students were given the following instructions: “Assume
that you will marry a person with one of the following handicaps (the handicaps were listed and
designated by the letters A to J). Rank these handicaps from 1 to 10 according to your first, second,
third (and so on) choice of a handicap for your marriage partner.” The results are shown in the
following table.

Handicap
Student Number A B C D E F G H I J
1 1 3 5 9 8 2 4 6 7 10
2 1 4 5 7 8 2 3 6 9 10
3 2 3 7 8 9 1 4 6 5 10
4 1 4 7 8 9 2 3 6 5 10
5 1 4 7 8 10 2 3 6 5 9
6 2 3 7 9 8 1 4 5 6 10
7 2 4 6 9 8 1 3 7 5 10
8 1 5 7 9 10 2 3 4 6 8
9 1 4 5 7 8 2 3 6 9 10
10 2 3 6 8 9 1 4 7 5 10
11 2 4 5 8 9 1 3 7 6 10
12 2 3 6 8 10 1 4 5 7 9
13 3 2 6 9 8 1 4 7 5 10
14 2 5 7 8 9 1 3 4 6 10
15 2 3 6 7 8 1 5 4 9 10

Test the null hypothesis of no preference for handicaps against the alternative that some handicaps are
preferred over others. Let o = .05.

Ten subjects with exercise-induced asthma participated in an experiment to compare the
protective effect of a drug administered in four dose levels. Saline was used as a control. The
variable of interest was change in FEV, after administration of the drug or saline. The results
were as follows:
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Dose Level of Drug (mg/ml)

Subject Saline 2 10 20 40
1 —.68 -.32 —.14 —.21 -32
2 —1.55 —.56 —.31 —.21 —.16
3 —1.41 —.28 —.11 —.08 —.83
4 —.76 —.56 —.24 —.41 —.08
5 —.48 -.25 —-.17 —.04 —.18
6 -3.12 —-1.99 —-1.22 -.55 —.75
7 —1.16 —.88 —.87 —.54 —.84
8 —1.15 -.31 —.18 —.07 —.09
9 —.78 —.24 -.39 —.11 —.51
10 —2.12 -.35 —.28 +.11 —.41

Can one conclude on the basis of these data that different dose levels have different effects?
Let o = .05 and find the p value.

13.10 THE SPEARMAN RANK
CORRELATION COEFFICIENT

Several nonparametric measures of correlation are available to the researcher. Of these a
frequently used procedure that is attractive because of the simplicity of the calculations
involved is due to Spearman (11). The measure of correlation computed by this method is
called the Spearman rank correlation coefficient and is designated by r,. This procedure
makes use of the two sets of ranks that may be assigned to the sample values of X and Y, the
independent and continuous variables of a bivariate distribution.

Hypotheses The usually tested hypotheses and their alternatives are as follows:

(a) Hy: X and Y are mutually independent.
Ha: X and Y are not mutually independent.

(b) Hy: X and Y are mutually independent.
H,: There is a tendency for large values of X and large values of Y to be paired
together.

(¢) Hy: X and Y are mutually independent.
H,: There is a tendency for large values of X to be paired with small values of Y.

The hypotheses specified in (a) lead to a two-sided test and are used when it is desired
to detect any departure from independence. The one-sided tests indicated by (b) and (c) are
used, respectively, when investigators wish to know if they can conclude that the variables
are directly or inversely correlated.

The Procedure The hypothesis-testing procedure involves the following steps.

1. Rank the values of X from 1 to n (numbers of pairs of values of X and Yin the sample).
Rank the values of Y from 1 to n.
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2. Compute d; for each pair of observations by subtracting the rank of Y; from the
rank of X;.

3. Square each d; and compute Zdlz the sum of the squared values.
4. Compute

6> d?
=1 =i 13.10.1
r =) (13.10.1)

5. If nisbetween 4 and 30, compare the computed value of 7, with the critical values, 77,
of Appendix Table P. For the two-sided test, H, is rejected at the « significance level
if 7, is greater than 7} or less than —r}, where r} is at the intersection of the column
headed «/2 and the row corresponding to . For the one-sided test with H, specifying
direct correlation, Hy is rejected at the « significance level if r, is greater than r} for o
and n. The null hypothesis is rejected at the « significance level in the other one-sided
test if 7, is less than —r} for « and n.

6. If n is greater than 30, one may compute

z=rn—1 (13.10.2)

and use Appendix Table D to obtain critical values.

7. Tied observations present a problem. The use of Table P is strictly valid only when
the data do not contain any ties (unless some random procedure for breaking ties is
employed). In practice, however, the table is frequently used after some other method
for handling ties has been employed. If the number of ties is large, the following
correction for ties may be employed:

P —t
12

where ¢ = the number of observations that are tied for some particular rank. When
this correction factor is used, r, is computed from

2 2 d2
D DLk D D DL (13.10.4)
2323y
instead of from Equation 13.10.1.
In Equation 13.10.4,

T =

(13.10.3)

n3—n

Te =2
> n3—n
Yy =21

T, = the sum of the values of T for the various tied ranks in X
T, = the sum of the values of T for the various tied ranks in Y

Most authorities agree that unless the number of ties is excessive, the correction makes
very little difference in the value of r,. When the number of ties is small, we can follow the
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usual procedure of assigning the tied observations the mean of the ranks for which they are
tied and proceed with steps 2 to 6.

EXAMPLE 13.10.1

In a study of the relationship between age and the EEG, data were collected on 20 subjects
between ages 20 and 60 years. Table 13.10.1 shows the age and a particular EEG output
value for each of the 20 subjects. The investigator wishes to know if it can be concluded that
this particular EEG output is inversely correlated with age.

Solution:

1. Data. See Table 13.10.1.

2. Assumptions. We assume that the sample available for analysis is a
simple random sample and that both X and Yare measured on at least the
ordinal scale.

3. Hypotheses.

Hy: This EEG output and age are mutually independent.
H,: There is a tendency for this EEG output to decrease with age.

Suppose we let o = .05.

TABLE 13.10.1 Age and EEG Output
Value for 20 Subjects

Subject EEG Output
Number Age (X) Value (Y)
1 20 98
2 21 75
3 22 95
4 24 100
5 27 99
6 30 65
7 31 64
8 33 70
9 35 85
10 38 74
11 40 68
12 42 66
13 44 71
14 46 62
15 48 69
16 51 54
17 53 63
18 55 52
19 58 67

N
o

60 55
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4. Test statistic. See Equation 13.10.1.

9.
10.

Distribution of test statistic. Critical values of the test statistic are
given in Appendix Table P.

Decision rule. For the present test we will reject Hy if the computed
value of r, is less than —.3789.

Calculation of test statistic. When the X and Y values are ranked, we
have the results shown in Table 13.10.2. The d,, dl.z, and > dl.2 are shown
in the same table.

Substitution of the data from Table 13.10.2 into Equation 13.10.1
gives

6(2340)

20[(20)* — 1]

Statistical decision. Since our computed r; = —.76 is less than the
critical r;, we reject the null hypothesis.

¢ =

Conclusion. We conclude that the two variables are inversely related.
p value. Since —.76 < —0.6586, we have for this test p < .001.

TABLE 13.10.2 Ranks for Data of Example 13.10.1

Subject
Number Rank (X) Rank (Y) d; d?
1 1 18 -17 289
2 2 15 -13 169
3 3 17 -14 196
4 4 20 —-16 256
5 5 19 —-14 196
6 6 7 -1 1
7 7 6 1 1
8 8 12 -4 16
9 9 16 -7 49
10 10 14 —4 16
11 11 10 1 1
12 12 8 4 16
13 13 13 0 0
14 14 4 10 100
15 15 11 4 16
16 16 2 14 196
17 17 5 12 144
18 18 1 17 289
19 19 9 10 100
20 20 3 17 289
3 d? = 2340
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Let us now illustrate the procedure for a sample with n > 30 and some tied
observations.

EXAMPLE 13.10.2

In Table 13.10.3 are shown the ages and concentrations (ppm) of a certain mineral in the
tissue of 35 subjects on whom autopsies were performed as part of a large research
project.

The ranks, d;, diz, and ) di2 are shown in Table 13.10.4. Let us test, at the .05 level of
significance, the null hypothesis that X and Y are mutually independent against the two-
sided alternative that they are not mutually independent.

Solution: From the data in Table 13.10.4 we compute

,_q_ 607885
35((35)* — 1]

To test the significance of r; we compute

z=.75V35—-1=437
TABLE 13.10.3 Age and Mineral Concentration (ppm) in Tissue of 35 Subjects
Mineral Mineral

Subject Age Concentration Subject Age Concentration
Number (X) (V) Number (X) (V)

1 82 169.62 19 50 4.48
2 85 48.94 20 71 46.93
3 83 41.16 21 54 30.91
4 64 63.95 22 62 34.27
5 82 21.09 23 47 41.44
6 53 5.40 24 66 109.88
7 26 6.33 25 34 2.78
8 47 4.26 26 46 4.17
9 37 3.62 27 27 6.57
10 49 4.82 28 54 61.73
11 65 108.22 29 72 47.59
12 40 10.20 30 41 10.46
13 32 2.69 31 35 3.06
14 50 6.16 32 75 49.57
15 62 23.87 33 50 5.55
16 33 2.70 34 76 50.23
17 36 3.15 35 28 6.81
18 53 60.59
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TABLE 13.10.4 Ranks for Data of Example 13.10.2

Subject Rank Rank Subject Rank  Rank
Number (X 87 d; d? Number (X (N d; d?
1 325 35  -25 6.25 19 17 9 8 64.00
2 35 27 8 64.00 20 28 25 3 9.00
3 34 23 1 121.00 21 21.5 21 5 .25
4 25 32 -7 49.00 22 235 22 1.5 2.25
5 325 19 135 182.25 23 13.5 24 105 110.25
6 19.5 1 85  72.25 24 27 34 -7 49.00
7 1 14 —-13  169.00 25 6 3 3 9.00
8 13.5 8 55  30.25 26 12 7 5 25.00
9 9 6 3 9.00 27 2 15 —13  169.00
10 15 10 5 25.00 28 21.5 31 -95  90.25
1 26 33 -7 49.00 29 29 26 3 9.00
12 10 17 -7 49.00 30 n 18 -7 49.00
13 4 1 3 9.00 31 7 4 3 9.00
14 17 13 4 16.00 32 30 28 2 4.00
15 23.5 20 35 1225 33 17 12 5 25.00
16 5 2 3 9.00 34 31 29 2 4.00
17 8 5 3 9.00 35 3 16  —13  169.00
18 19.5 30 -105 110.25
S d? =17885

Since 4.37 is greater than z = 3.89, p < 2(.0001) = .0002, and we
reject Hy and conclude that the two variables under study are not mutually
independent.

For comparative purposes let us correct for ties using Equation 13.10.3
and then compute r, by Equation 13.10.4.

In the rankings of X we had six groups of ties that were broken by
assigning the values 13.5, 17, 19.5, 21.5, 23.5, and 32.5. In five of the groups
two observations tied, and in one group three observations tied. We,
therefore, compute five values of

2% -2
TX = = E = 5
12 12
and one value of
3 -3 24
Tx = = — = 2
12 12

From these computations, we have > T, = 5(.5) + 2 = 4.5, so that

352 - 35
sz == —45= 3565.5
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Output:

Dialog box:

Session command:

Stat » Basic Statistics » Correlation MIB > CORRELATION C3 4

Type C3-C4 in Variables. Click OK.

Correlations (Pearson)

Correlation of (X)Rank and (Y)Rank = -0.759

FIGURE 13.10.1 MINITAB procedure and output for computing Spearman rank correlation
coefficient, Example 13.10.1.

Since no ties occurred in the Y rankings, we have ) T, =0 and
35% — 35
2
=———0=3570.0
> V="

From Table 13.10.4 we have 3 d? = 1788.5. From these data we may now
compute by Equation 13.10.4

_ 3565.5+35700 17885
2,/(3565.5)(3570) '

Ts

We see that in this case the correction for ties does not make any difference in
the value of r,. ]

Computer Analysis We may use MINITAB, as well as many other statistical
software packages, to compute the Spearman correlation coefficient. To use MINITAB, we
must first have MINITAB rank the observations and store the ranks in separate columns,
one for the X ranks and one for the Y ranks. If we rank the X and Y values of Example
13.10.1 and store them in Columns 3 and 4, we may obtain the Spearman rank correlation
coefficient with the procedure shown in Figure 13.10.1. Other software packages such as
SAS® and SPSS, for example, automatically rank the measurements before computing the
coefficient, thereby eliminating an extra step in the procedure.

EXERCISES

13.10.1

For the following exercises perform the test at the indicated level of significance and determine the
p value.

The following table shows 15 randomly selected geographic areas ranked by population density and
age-adjusted death rate. Can we conclude at the .05 level of significance that population density and
age-adjusted death rate are not mutually independent?
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Rank by Rank by

Population Age-Adjusted Population Age-Adjusted
Area Density (X) Death Rate (Y) Area Density (X) Death Rate (Y)
1 8 10 9 6 8
2 2 14 10 14 5
3 12 4 11 7 6
4 4 15 12 1 2
5 9 11 13 13 9
6 3 1 14 15 3
7 10 12 15 11 13
8 5 7

The following table shows 10 communities ranked by decayed, missing, or filled (DMF) teeth per 100
children and fluoride concentration in ppm in the public water supply:

Rank by Rank by
DMF Teeth Fluoride DMF Teeth Fluoride
per 100 Concentration per 100 Concentration
Community  Children (X) Y) Community Children (X) Y)
1 8 1 6 4 7
2 9 3 7 1 10
3 7 4 8 5 6
4 3 9 9 6 5
5 2 8 10 10 2

Do these data provide sufficient evidence to indicate that the number of DMF teeth per 100 children
tends to decrease as fluoride concentration increases? Let o = .05.

The purpose of a study by Nozawa et al. (A-10) was to evaluate the outcome of surgical repair of pars
interarticularis defect by segmental wire fixation in young adults with lumbar spondylolysis. The
authors cite literature indicating that segmental wire fixation has been successful in the treatment of
nonathletes with spondylolysis and point out that no information existed on the results of this type of
surgery in athletes. In a retrospective study of subjects having surgery between 1993 and 2000, the
authors found 20 subjects who had undergone the surgery. The following table shows the age (years)
at surgery and duration (months) of follow-up care for these subjects.

Duration of Follow-Up Age Duration of Follow-Up Age
(Months) (Years) (Months) (Years)
103 37 38 27
68 27 36 31
62 12 34 24
60 18 30 23
60 18 19 14

(Continued)
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13.10.4

13.10.5

Duration of Follow-Up Age Duration of Follow-Up Age
(Months) (Years) (Months) (Years)
54 28 19 23
49 25 19 18
44 20 19 29
42 18 17 24
41 30 16 27

Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and Mizuo Tanaka, “Repair of Pars Interarticularis
Defect by Segmental Wire Fixation in Young Athletes with Spondylolysis,” American Journal of Sports Medicine,
31 (2003), pp. 359-364.

May we conclude, on the basis of these data, that in a population of similar subjects there is an
association between age and duration of follow-up? Let o = .05.

Refer to Exercise 13.10.3. Nozawa et al. (A-10) also calculated the Japanese Orthopaedic Association
score for measuring back pain (JOA). The results for the 20 subjects along with the duration of
follow-up are shown in the following table. The higher the number, the lesser the degree of pain.

Duration of Follow-Up Duration of Follow-Up
(Months) JOA (Months) JOA
103 21 38 13
68 14 36 24
62 26 34 21
60 24 30 22
60 13 19 25
54 24 19 23
49 22 19 20
44 23 19 21
42 18 17 25
41 24 16 21

Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and Mizuo Tanaka,
“Repair of Pars Interarticularis Defect by Segmental Wire Fixation in Young
Athletes with Spondylolysis,” American Journal of Sports Medicine, 31 (2003),
pp. 359-364.

Can we conclude from these data that in general there is a relationship between length of follow-up
and JOA score at the time of the operation? Let o = .05.

Butz et al. (A-11) studied the use of noninvasive positive-pressure ventilation by patients with
amyotrophic lateral sclerosis. They evaluated the benefit of the procedure on patients’ symptoms,
quality of life, and survival. Two variables of interest are PaCO,, partial pressure of arterial carbon
dioxide, and PaO,, partial pressure of arterial oxygen. The following table shows, for 30 subjects,
values of these variables (mm Hg) obtained from baseline arterial blood gas analyses.

PaC02 PaOz PaCOz PaOz PaCOz PaOz

40 101 54.5 80 345 86.5
47 69 54 72 40.1 74.7

(Continued)
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PaC02 PaOz PaC02 PaOz PaC02 PaOz
34 132 43 105 33 94
42 65 44.3 113 59.9 60.4
54 72 539 69.2 | 62.6 52.5
48 76 41.8 66.7 | 54.1 76.9
53.6 67.2 | 33 67 45.7 65.3
56.9 70.9 | 43.1 71.5 | 40.6 80.3
58 73 524 65.1 | 56.6 532
45 66 37.9 71 59 71.9

Source: M. Butz, K. H. Wollinsky, U. Widemuth-Catrinescu, A.
Sperfeld, S. Winter, H. H. Mehrkens, A. C. Ludolph, and H.
Schreiber, “Longitudinal Effects of Noninvasive Positive-Pressure
Ventilation in Patients with Amyotrophic Lateral Sclerosis,” Ameri-
can Journal of Medical Rehabilitation, 82 (2003) 597-604.

On the basis of these data may we conclude that there is an association between PaCO, and PaO,
values? Let o = .05.

13.10.6 Seventeen patients with a history of congestive heart failure participated in a study to assess the
effects of exercise on various bodily functions. During a period of exercise the following data were
collected on the percent change in plasma norepinephrine (Y) and the percent change in oxygen
consumption (X):

Subject X Y Subject X Y
1 500 525 10 50 60
2 475 130 11 175 105
3 390 325 12 130 148
4 325 190 13 76 75
5 325 90 14 200 250
6 205 295 15 174 102
7 200 180 16 201 151
8 75 74 17 125 130
9 230 420

On the basis of these data can one conclude that there is an association between the two variables? Let
o = .05.

13.11 NONPARAMETRIC
REGRESSION ANALYSIS

When the assumptions underlying simple linear regression analysis as discussed in Chapter
9 are not met, we may employ nonparametric procedures. In this section we present
estimators of the slope and intercept that are easy-to-calculate alternatives to the least-
squares estimators described in Chapter 9.
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Theil’s Slope Estimator Theil (12) proposes a method for obtaining a point
estimate of the slope coefficient §. We assume that the data conform to the classic
regression model

yi:ﬁ0+ﬂ1xl+8ia i:17"'7n

where the x; are known constants, 8, and 8, are unknown parameters, and Y; is an observed
value of the continuous random variable Y at x;. For each value of x;, we assume a
subpopulation of Y values, and the ¢; are mutually independent. The x; are all distinct (no
ties), and we take x; < xp < -+ < Xp.

The data consist of n pairs of sample observations, (x1,y;), (X2,¥2), - (Xn, ¥)s
where the ith pair represents measurements taken on the ith unit of association.

To obtain Theil’s estimator of B, we first form all possible sample slopes
S = (yj — yi)/(x — xi), where i < j. There will be N =, C; values of S;;. The estimator
of B; which we designate by B, is the median of S;; values. That is,

B, = median{S;} (13.11.1)

The following example illustrates the calculation of ,31.

EXAMPLE 13.11.1

In Table 13.11.1 are the plasma testosterone (ng/ml) levels (Y) and seminal citric acid
(mg/ml) levels in a sample of eight adult males. We wish to compute the estimate of the
population regression slope coefficient by Theil’s method.

Solution: The N = ;C, = 28 ordered values of S;; are shown in Table 13.11.2.
If weleti = 1 andj = 2, the indicators of the first and second values of
Yand X in Table 13.11.1, we may compute S;, as follows:

S12 = (175 — 230) /(278 — 421) = —.3846

When all the slopes are computed in a similar manner and ordered as
in Table 13.11.2, —.3846 winds up as the tenth value in the ordered
array.

The median of the S;; values is .4878. Consequently, our estimate of the
population slope coefficient g; = .4878.

TABLE 13.11.1 Plasma Testosterone and Seminal Citric Acid
Levels in Adult Males

Testosterone: 230 175 315 290 275 150 360 425
Citric acid: 421 278 618 4382 465 105 550 750
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TABLE 13.11.2 Ordered Values of S;;
for Example 13.11.1

—.6618 .5037
.1445 .5263
.1838 .5297
.2532 .5348
.2614 .5637
.3216 .56927
.3250 .6801
.3472 .8333
3714 .8824
.3846 .9836
4118 1.0000
4264 1.0078
4315 1.0227
4719 1.0294

An Estimator of the Intercept Coefficient Dietz (13) recommends two
intercept estimators. The first, designated (ﬁo) is the median of the n terms y; — B 1Xiin
which /31 is the Theil estimator. It is recommended when the researcher is not willing to
assume that the error terms are symmetric about 0. If the researcher is willing to assume a
symmetric distribution of error terms, Dietz recommends the estimator (,80) which is
the median of the n(n + 1)/2 pairwise averages of the y; — ,31x, terms. We 111ustrate the
calculation of each in the following example.

EXAMPLE 13.11.2

Refer to Example 13.11.1. Let us compute & and &5 3 from the data on testosterone and
citric acid levels.

Solution: The ordered y; — .4878x; terms are: 13.5396, 24.6362, 39.3916, 48.1730,
54.8804, 59.1500, 91.7100, and 98.7810. The median, 51.5267, is the
estimator (ﬁo)l

The 8(8 + 1)/2 = 36 ordered pairwise averages of the y, — .4878x; are

13.5396 49.2708 75.43
19.0879 51.5267 76.8307
24.6362 52.6248 78.9655
26.4656 53.6615 91.71
30.8563 54.8804 95.2455
32.0139 56.1603 98.781
34.21 57.0152

36.3448 58.1731

(Continued)
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36.4046 59.15
39.3916 61.7086
39.7583 65.5508
41.8931 69.0863
43.7823 69.9415
47.136 73.2952
48.173 73.477

The median of these averages, 53.1432, is the estimator & . The estimating
equation, then, is y; = 53.1432 + .4878x; if we are willing to assume that
the distribution of error terms is symmetric about 0. If we are not willing
to make the assumption of symmetry, the estimating equation is
y; = 51.5267 + .4878x;. [ ]

EXERCISES

13.11.1

13.11.2

The following are the heart rates (HR: beats/minute) and oxygen consumption values (VOj:
cal/kg/24 h) for nine infants with chronic congestive heart failure:

HR(X): 163 164 156 151 152 167 165 153 155
VO, (Y): 53.9 574 41.0 40.0 42.0 64.4 59.1 49.9 432

Compute By, (By), ,,» and (30)2,M

The following are the body weights (grams) and total surface area (cm?) of nine laboratory
animals:

Body weight (X): 660.2 706.0 924.0 936.0 992.1 888.9 999.4 890.3 841.2
Surface area (¥): 781.77 888.7 1038.1 1040.0 1120.0 1071.5 11345 965.3 925.0

Compute the slope estimator and two intercept estimators.

13.12 SUMMARY

This chapter is concerned with nonparametric statistical tests. These tests may be used
either when the assumptions underlying the parametric tests are not realized or when the
data to be analyzed are measured on a scale too weak for the arithmetic procedures
necessary for the parametric tests.

Nine nonparametric tests are described and illustrated. Except for the Kolmogorov—
Smirnov goodness-of-fit test, each test provides a nonparametric alternative to a well-
known parametric test. There are a number of other nonparametric tests available. The
interested reader is referred to the many books devoted to nonparametric methods,
including those by Gibbons (14) and Pett (15).
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SUMMARY OF FORMULAS FOR CHAPTER 13

Formula
Number Name Formula
13.3.1 Sign test statistic X B
P(k<x|np)=>_,Ccpq"™
k=0
1332 Large-sample (k+0.5)+05n n
N 7=——F——, if k<=
approximation of 0.5y/n 2
the sign test
_ (k—=0.5)—-0.5n g o>t
ST 05y =2
13.6.1 Mann—-Whitney test n(n+1)
.. r=8S———=
statistic 2
13.6.2 Large-sample 7 T —mn/2
approximation of the o nm(n+m+1)/12
Mann—Whitney test
13.6.3 Equivalence of the Mann— UtW— m(m+2n+ 1)
Whitney and Wilcoxon W= 2
two-sample statistics
13.7.1-13.7.2 Kolmogorov—Smirnov D = sup |F(x) — Fr(x)|
test statistic *
= max {max[|F;(x;) — Fr(x;)|, [Fs(xi-1)
1<i<r
—Fr(xi-1)[]}
13.8.1 Kruskal-Wallis test 12 k RJ?
.. H=—""_ —+ —3(n+1
statistic n(n + 1); n; ( )
13.8.2 Kruskal-Wallis test 1 T
statistic adjustment B —n
for ties
13.9.2 Friedman test statistic 12 )
R)” —3n(k+1
13.10.1 Spearman rank correlation 6> d,z

test statistic
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13.10.2 Large-sample z=rovn—1
approximation of the
Spearman rank correlation
13.10.3-13.10.4 Correction for tied P —t
observations in the T= 12
Spearman rank correlation
with
BD S D O il O
' 23X 3y
13.11.1 Theil’s B = median{si}
estimator of
Symbol Key e B = Theil’s estimator of B

¢ x*(orX?*) = chi-square

* D = Kolmogorov — Smirnov test statistic
* F;(x) = distribution function of i

e H = Friedman test ststictic
* k = sign test statistic and the number of columns in the Friedman test

e m = sample size of the smaller of two samples
e n = sample size of the larger of two samples

* p = probability of success

e g =1 — p = probability of failure

¢ R =rank

e ry = Spearman rank correlation coefficient

¢ S = sum of ranks

* §jj = slope between pointi and j

* sup = supremum (greatest)

e t = number of tied observations

e T = correction for tied observations

e xandy = data value for variables xandy
e U = Mann—Whitney test ststistic

e W = Wilcoxon test ststistic

e 7z = normal variate

REVIEW QUESTIONS AND EXERCISES

2w b=

Define nonparametric statistics.

What is meant by the term distribution-free statistical tests?

What are some of the advantages of using nonparametric statistical tests?

What are some of the disadvantages of the nonparametric tests?
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5. Describe a situation in your particular area of interest where each of the following tests could be used.
Use real or realistic data and test an appropriate hypothesis using each test.

(a) The sign test

(b) The median test

(¢) The Wilcoxon test

(d) The Mann—Whitney test

(e) The Kolmogorov—Smirnov goodness-of-fit test

(f) The Kruskal-Wallis one-way analysis of variance by ranks
(g) The Friedman two-way analysis of variance by ranks

(h) The Spearman rank correlation coefficient

(i) Nonparametric regression analysis

6. The following are the ranks of the ages (X) of 20 surgical patients and the dose (Y) of an analgesic
agent required to block one spinal segment.

Rank of Rank of Dose Rank of Rank of Dose
Agein Requirement Age in Requirement
Years (X) Y) Years (X) )

1 1 11 13

2 7 12 5

3 2 13 11

4 4 14 16

5 6 15 20

6 8 16 18

7 3 17 19

8 15 18 17

9 9 19 10
10 12 20 14

Compute r, and test (two-sided) for significance. Let & = .05. Determine the p value for this test.

7. Otani and Kishi (A-12) studied seven subjects with diabetic macular edema. They measured the
foveal thickness (um) in seven eyes pre- and post-unilateral vitrectomy surgery. The results are
shown in the following table:

Subject Pre-op Foveal Thickness (1m) Post-op Foveal Thickness (xm)
1 690 200
2 840 280
3 470 230
4 690 200
5 730 560
6 500 210
7 440 200

Source: Data provided courtesy of Tomohiro Otani, M.D.

Use the Wilcoxon signed-rank test to determine whether one should conclude that the surgery is
effective in reducing foveal thickness. Let o = .05. What is the p value?
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8. The subjects of a study by J. Jose and S. R. Ell (A-13) were 303 healthy volunteers who self-
assessed their own nasal flow status by indicating whether their nasal airway was (1) totally clear,
(2) not very clear, (3) very blocked, or (4) totally blocked. Following the self-assessment, an In-
Check meter was used to measure peak inspiratory nasal flow rate (PINFR, L/min). Data on 175
subjects in three of the self-assessment categories are displayed in the following table. The authors
performed a Kruskal-Wallis test to determine if these data provide sufficient evidence to indicate a
difference in population centers of PINFR among these three response groups. Let « = .01. What

is the test statistic value for this test?

Peak Inspiratory Nasal Flow Rate (L./min)

Totally Clear Not Very Clear Partially Blocked
180 105 150 120 160 190 130 100
150 150 110 95 200 95 110 100
200 240 130 140 70 130 110 100
130 120 100 135 75 240 130 105
200 90 170 100 150 180 125 95
120 135 80 130 80 140 100 85
150 110 125 180 130 150 230 50
150 155 115 155 160 130 110 105
160 105 140 130 180 90 270 200
150 140 140 140 90 115 180
110 200 95 120 180 130 130
190 170 110 290 140 210 125
150 150 160 170 230 190 90
120 120 90 280 220 135 210
180 170 135 150 130 130 140
140 200 110 185 180 210 125
130 160 130 150 140 90 210
230 180 170 150 140 125 120
200 170 130 170 120 140 115
140 160 115 210 140 160 100
150 150 145 140 150 230 130
170 100 130 140 190 100 130
180 100 170 160 210 120 110
160 180 160 120 130 120 150
200 130 90 230 190 150 110
90 200 110 100 220 110 90
130 120 130 190 160 150 120
140 145 130 90 105 130 115
200 130 120 100 120 150 140
220 100 130 125 140 130 130
200 130 180 180 130 145 160
120 160 140 200 115 160 110
310 125 175 160 115 120 165
160 100 185 170 100 220 120
115 140 190 85 150 145 150

(Continued)
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Peak Inspiratory Nasal Flow Rate (L/min)

Totally Clear Not Very Clear Partially Blocked
170 185 130 150 130 150 170
130 180 160 280 130 120 110
220 115 160 140 170 155 120
250 260 130 100 130 100 85
160 160 135 140 145 140
130 170 130 90
130 115 120 190
150 150 190 130
160 130 170

Source: Data provided courtesy of J. Jose, MS, FRCS.

Ten subjects with bronchial asthma participated in an experiment to evaluate the relative effective-
ness of three drugs. The following table shows the change in FEV, (forced expired volume in 1
second) values (expressed as liters) 2 hours after drug administration:

Drug Drug
Subject A B C Subject A B C

1 .00 .13 .26 6 .03 18 25
2 .04 17 .23 7 .05 21 32
3 .02 .20 21 8 .02 .23 .38
4 .02 27 .19 9 .00 24 .30
5 .04 a1 .36 10 12 .08 .30

Are these data sufficient to indicate a difference in drug effectiveness? Let o = .05. What is the p
value for this test?

One facet of the nursing curriculum at Wright State University requires that students use mathematics
to perform appropriate dosage calculations. In a study by Wendy Gantt (A-14), undergraduate
nursing students were given a standardized mathematics test to determine their mathematical
aptitude (scale: 0-100). The students were divided into two groups: traditional college age (18—
24 years, 26 observations) and nontraditional (25+, eight observations). Scores on the mathematics
test appear in the following table:

Traditional Students’ Scores Nontraditional Students’ Scores
70 6 88 77
57 79 68 72
85 14 88 54
55 82 92 87
87 45 85 85

(Continued)
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Traditional Students’ Scores Nontraditional Students’ Scores
84 57 56 62

56 91 31 77

68 76 80 86

94 60

Source: Data provided courtesy of Wendy Gantt and the Wright State University
Statistical Consulting Center.

Do these data provide sufficient evidence to indicate a difference in population medians? Let « = .05.
What is the p value for this test? Use both the median test and the Mann—Whitney test and compare
the results.

The following are the PaCO, (mm Hg) values in 16 patients with bronchopulmonary disease:

39, 40, 45, 48, 49, 56, 60, 75, 42, 48, 32, 37, 32, 33, 33, 36

Use the Kolmogorov—Smirnov test to test the null hypothesis that PaCO, values in the sampled
population are normally distributed with © = 44 and o = 12.

The following table shows the caloric intake (cal/day/kg) and oxygen consumption VO, (ml/min/kg)
in 10 infants:

Calorie Calorie
Intake (X) VO, (Y) Intake (X) VO,(Y)

50 7.0 100 10.8
70 8.0 150 12.0
90 10.5 110 10.0
120 11.0 75 9.5
40 9.0 160 11.9

Test the null hypothesis that the two variables are mutually independent against the alternative that
they are directly related. Let o = 0.5. What is the p value for this test?

Mary White (A-15) surveyed physicians to measure their opinions regarding the importance of ethics
in medical practice. The measurement tool utilized a scale from 1 to 5 in which a higher value
indicated higher opinion of the importance of ethics. The ages and scores of the study subjects are
shown in the following table. Can one conclude on the basis of these results that age and ethics score
are directly related? Let the probability of committing a type I error be .05. What is the p value?

Age Ethics | Age Ethics | Age Ethics

25 4.00 26 4.50 26 4.50

34 4.00 29 4.75 27 5.00
30 4.25 30 4.25 22 3.75
31 3.50 26 4.50 22 4.25
25 4.75 30 4.25 24 4.50

(Continued)
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Age Ethics | Age Ethics | Age  Ethics
25 3.75 25 3.75 22 4.25
25 4.75 24 4.75 24 3.75
29 4.50 24 4.00 38 4.50
29 4.50 25 4.50 22 4.50
26 3.75 25 4.00 22 4.50
25 3.25 26 4.75 25 4.00
29 4.50 34 3.25 23 3.75
27 3.75 23 4.50 22 4.25
29 4.25 26 3.25 23 4.00
25 3.75 23 5.00 22 4.25
25 4.50 24 4.25 25 3.50
25 4.00 45 3.25 26 4.25
26 4.25 23 3.75 25 4.25
26 4.00 25 3.75 27 4.75
24 4.00 25 3.75 23 3.75
25 4.00 23 3.75 22 4.00
22 3.75 23 4.75 26 4.75
26 4.50 26 4.00 22 4.25
23 4.00
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Source: Data provided courtesy of Mary White,
Ph.D. and Wright State University Statistical
Consulting Center.

Dominic Sprott (A-16) conducted an experiment with rabbits in which the outcome variable was the
fatty infiltration in the shoulder mass (PFI, measured as a percent). At baseline, 15 rabbits had a
randomly chosen shoulder muscle detached. The shoulder was then reattached. Six weeks later, five
randomly chosen rabbits were sacrificed and the differences in the PFI between the reattached
shoulder and the nondetached shoulder were recorded (group A). Six months later, the 10 remaining
rabbits were sacrificed and again the differences in the PFI between the reattached shoulder and the
nondetached shoulder were recorded (group B).

Percent Fatty Infiltration Difference

(Nondetached-Reattached)

Group A Group B
2.55 1.04 1.38
0.9 3.29 0.75
0.2 0.99 0.36
—0.29 1.79 0.74
1.11 —0.85

Source: Data provided courtesy of Dominic Sprott, M.D. and the

Wright State University Statistical Consulting Center.

Can we conclude, at the .05 level of significance, that the treatments have a differential effect on PFI
between the two shoulder muscles? What is the p value for the test?

In each of the Exercises 15 through 29, do one or more of the following that you think are
appropriate:

(a) Apply one or more of the techniques discussed in this chapter.

(b) Apply one or more of the techniques discussed in previous chapters.
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16.

(c) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(d) State the statistical decisions and clinical conclusions that the results of your hypothesis tests
justify.

(e) Describe the population(s) to which you think your inferences are applicable.

(f) State the assumptions necessary for the validity of your analyses.

The purpose of a study by Damm et al. (A-17) was to investigate insulin sensitivity and insulin
secretion in women with previous gestational diabetes (GDM). Subjects were 12 normal-weight
glucose-tolerant women (mean age, 36.6 years; standard deviation, 4.16) with previous gestational
diabetes and 11 controls (mean age, 35 years; standard deviation, 3.3). Among the data collected
were the following fasting plasma insulin values (mmol/L). Use the Mann—Whitney test to determine
if you can conclude on the basis of these data that the two populations represented differ with respect
to average fasting plasma insulin level.

Controls Previous GDM Controls Previous GDM
46.25 30.00 40.00 31.25
40.00 41.25 30.00 56.25
31.25 56.25 51.25 61.25
38.75 45.00 32.50 50.00
41.25 46.25 4375 53.75
38.75 46.25 62.50

Source: Data provided courtesy of Dr. Peter Damm.

Gutin et al. (A-18) compared three measures of body composition, including dual-energy x-ray
absorptiometry (DXA). Subjects were apparently healthy children (21 boys and 22 girls) between the
ages of 9 and 11 years. Among the data collected were the following measurements of body-
composition compartments by DXA. The investigators were interested in the correlation between all
possible pairs of these variables.

Bone Fat-Free
Fat-Free Mineral Soft

Percent Fat Fat Mass Mass Content Tissue
11.35 3.8314 29.9440 1.19745 28.7465
22.90 6.4398 21.6805 0.79250 20.8880
12.70 4.0072 27.6290 0.95620 26.6728
42.20 24.0329 32.9164 1.45740 31.4590
24.85 9.4303 28.5009 1.32505 27.1758
26.25 9.4292 26.4344 1.17412 25.2603
23.80 8.4171 26.9938 1.11230 25.8815
37.40 20.2313 33.8573 1.40790 32.4494
14.00 3.9892 24.4939 0.95505 23.5388
19.35 7.2981 30.3707 1.45545 28.9153
29.35 11.1863 26.8933 1.17775 25.7156

(Continued)
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Bone Fat-Free
Fat-Free Mineral Soft

Percent Fat Fat Mass Mass Content Tissue
18.05 5.8449 26.5341 1.13820 25.3959
13.95 4.6777 28.9144 1.23730 27.6771
32.85 13.2474 27.0849 1.17515 25.9097
11.40 3.7912 29.5245 1.42780 28.0967
9.60 3.2831 30.8228 1.14840 29.6744
20.90 7.2277 27.3302 1.24890 26.0813
44.70 25.7246 31.8461 1.51800 30.3281
17.10 5.1219 24.8233 0.84985 23.9734
16.50 5.0749 25.7040 1.09240 24.6116
14.35 5.0341 30.0228 1.40080 28.6220
15.45 4.8695 26.6403 1.07285 25.5674
28.15 10.6715 27.2746 1.24320 26.0314
18.35 5.3847 23.9875 0.94965 23.0379
15.10 5.6724 31.9637 1.32300 30.6407
37.75 25.8342 42.6004 1.88340 40.7170
39.05 19.6950 30.7579 1.50540 29.2525
22.25 7.2755 25.4560 0.88025 24.5757
15.50 4.4964 24.4888 0.96500 23.5238
14.10 4.3088 26.2401 1.17000 25.0701
26.65 11.3263 31.2088 1.48685 29.7219
20.25 8.0265 31.5657 1.50715 30.0586
23.55 10.1197 32.8385 1.34090 31.4976
46.65 24.7954 28.3651 1.22575 27.1394
30.55 10.0462 22.8647 1.01055 21.8541
26.80 9.5499 26.0645 1.05615 25.0083
28.10 9.4096 24.1042 0.97540 23.1288
24.55 14.5113 44.6181 2.17690 42.4412
17.85 6.6987 30.8043 1.23525 29.5690
20.90 6.5967 24.9693 0.97875 23.9905
33.00 12.3689 25.1049 0.96725 24.1377
44.00 26.1997 33.3471 1.42985 31.9172
19.00 5.0785 21.6926 0.78090 20.9117

Source: Data provided courtesy of Dr. Mark Litaker.

The concern of a study by Crim et al. (A-19) was the potential role of flow cytometric analysis
of bronchoalveolar lavage fluid (BALF) in diagnosing acute lung rejection. The investigators
note that previous studies suggested an association of acute lung rejection with increases in
CD8+ lymphocytes, and increased expression of human lymphocyte antigen (HLA)-DR
antigen and interleukin-2 receptor (IL-2R). Subjects consisted of lung transplant (LT) recipients
who had no histologic evidence of rejection or infection, normal human volunteers (NORM),
healthy heart transplant (HT) recipient volunteers, and lung transplant recipients who were
experiencing acute lung rejection (AR). Among the data collected were the following
percentages of BALF CD8+ lymphocytes that also express IL-2R observed in the four groups
of subjects.
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Norm HT LT AR
0 0 1 6 12
2 0 0 6 0
1 5 5 8 9
0 4 0 16 7
0 6 0 24 2
2 0 5 5 6
3 0 18 3 14
0 4 2 22 10
0 8 2 10 3
1 8 8 0 0
0 8 0
7 3 1
2 4 1
5 4 0
! ! (8) 2 Source: Data provided courtesy

of Dr. Courtney Crim.

Ichinose et al. (A-20) studied the involvement of endogenous tachykinins in exercise-induced
airway narrowing in patients with asthma by means of a selective neurokinin 1-receptor
antagonist, FK-888. Nine subjects (eight male, one female) ages 18 to 43 years with at least a
40 percent fall in the specific airway conductance participated in the study. The following are the
oxygen consumption (ml/min) data for the subjects at rest and during exercise while under
treatment with a placebo and FK-888:

Placebo FK-888

At Rest Exercise At Rest Exercise

303 2578 255 2406
288 2452 348 2214

285 2768 383 3134

280 2356 328 2536

205 2112 321 1942

270 2716 234 2652

274 2614 387 2824

185 1524 198 1448 o ree: Data provided courtesy
364 2538 312 2454 :

of Dr. Kunio Shirato.

Transforming growth factor o (TGF«), according to Tomiya and Fujiwara (A-21), is alleged to play a
role in malignant progression as well as normal cell growth in an autocrine manner, and its serum
levels have been reported to increase during this progression. The present investigators have
developed an enzyme-linked immunosorbent assay (ELISA) for measuring serum TGFo levels
in the diagnosis of hepatocellular carcinoma (HCC) complicating cirrhosis. In a study in which they
evaluated the significance of serum TGFw levels for diagnostic purposes, they collected the following
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measurements on the liver function tests, TGFa (pg/ml), and serum «-fetoprotein (AFP) (ng/ml)
from HCC patients:

TGFu« AFP TGFo AFP TGFo AFP TGFo AFP
32.0 12866 44.0 23077 100.0 479 15.0 921
65.9 9 75.0 371 12.0 47 34.0 118
25.0 124.3 36.0 291 32.0 177 100.0 6.2
30.0 9 65.0 700 98.0 9 26.0 19
220 610 44.0 40 20.0 1063 53.0 594
40.0 238 56.0 9538 20.0 21 140.0 10
52.0 153 34.0 19 9.0 206 24.0 292
28.0 23 300.0 11 58.0 32 20.0 11
11.0 28 39.0 42246 39.0 628 35.0 37
45.0 240 82.0 12571 52.0 35
29.0 66 85.0 20 50.0 742
45.0 83 24.0 29 95.0 10
21.0 4 40.0 310 18.0 291
38.0 214 9.0 19

Source: Data provided courtesy of Dr. Kenji Fujiwara.

The objective of a study by Sakhaee et al. (A-22) was to ascertain body content of aluminum (A1)
noninvasively using the increment in serum and urinary Al following the intravenous administration
of deferoxamine (DFO) in patients with kidney stones and osteoporotic women undergoing long-
term treatment with potassium citrate (K3Cit) or tricalcium dicitrate (Ca;Cit,), respectively. Subjects
consisted of 10 patients with calcium nephrolithiasis and five patients with osteoporosis who were
maintained on potassium citrate or calcium citrate for 2-8 years, respectively, plus 16 normal
volunteers without a history of regular aluminum-containing antacid use. Among the data collected
were the following 24-hour urinary aluminum excretion measurements (pg/day) before (PRE) and

after (POST) 2-hour infusion of DFO.

Group PRE POST Group PRE POST
Control 41.04 135.00 Control 9.39 12.32
Control 70.00 95.20 Control 10.72 13.42
Control 42.60 74.00 Control 16.48 17.40
Control 15.48 42.24 Control 10.20 14.20
Control 26.90 104.30 Control 11.40 20.32
Control 16.32 66.90 Control 8.16 12.80
Control 12.80 10.68 Control 14.80 62.00
Control 68.88 46.48 Patient 15.20 27.15
Control 25.50 73.80 Patient 8.70 38.72
Patient 0.00 14.16 Patient 5.52 7.84
Patient 2.00 20.72 Patient 13.28 31.70
Patient 4.89 15.72 Patient 3.26 17.04
Patient 25.90 52.40 Patient 29.92 151.36
Patient 19.35 35.70 Patient 15.00 61.38

(Continued)
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Group PRE POST Group PRE POST
Patient 4.88 70.20 Patient 36.80 142.45
Patient 4275 86.25

Source: Data provided courtesy of Dr. Khashayar Sakhaee.

The purpose of a study by Dubuis et al. (A-23) was to determine whether neuropsychological deficit
of children with the severe form of congenital hypothyroidism can be avoided by earlier onset of
therapy and higher doses of levothyroxine. Subjects consisted of 10 infants (ages 3 to 24 days) with
severe and 35 infants (ages 2 to 10 days) with moderate congenital hypothyroidism. Among the data
collected were the following measurements on plasma T, (nmol/L) levels at screening:

Severe Cases

Moderate Cases

T,
Sex (nmol/L)

16
57
40
50
57
38
51
38

60

e lies Mies Hies Bl i-qiies Mes Mico lieo Mies Mico Mieo e Mies|

T4 T4
Sex (nmol/L) | Sex (nmol/L)
20 F 62
34 M 50
188 F 40
69 F 116
162 F 80
148 F 97
108 F 51
54 F 84
96 F 51
76 F 94
122 M 158
43 F *
40 M 47
29 M 143
83 M 128
62 M 112
M 111
F 84 * = Missing data.
M 55 Source: Data provi'ded courtesy
of Dr. Guy Van Vliet.

Kuna et al. (A-24) conducted a study concerned with chemokines in seasonal allergic rhinitis.
Subjects included 18 atopic individuals with seasonal allergic rhinitis caused by ragweed pollen.
Among the data collected on these subjects were the following eosinophil cationic protein (ECP) and
histamine measurements:

ECP (ng/ml) Histamine (ng/ml) ECP (ng/ml) Histamine (ng/ml)
511.0 31.2 253 5.6
388.0 106.0 31.1 62.7
14.1 37.0 325.0 138.0
314.0 90.0 437.0 116.0

(Continued)
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ECP (ng/ml) Histamine (ng/ml) ECP (ng/ml) Histamine (ng/ml)
74.1 29.0 277.0 70.6
8.8 87.0 602.0 184.0
144.0 45.0 33.0 8.6
56.0 151.8 661.0 264.0
205.0 86.0 162.0 92.0

Source: Data provided courtesy of Dr. Allen P. Kaplan.
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The purpose of a study by Kim et al. (A-25) was to investigate the serial changes in Lp(a) lipoprotein
levels with the loss of female sex hormones by surgical menopause and with estrogen replacement
therapy in the same women. Subjects were 44 premenopausal women who underwent a trans-
abdominal hysterectomy (TAH). Thirty-one of the women had a TAH and unilateral salpingo-
oophorectomy (USO), and 13 had a TAH and bilateral salpingo-oophorectomy (BSO). The women
ranged in age from 30 to 53 years. Subjects in the BSO group received .625 mg of conjugated equine
estrogen daily 2 months after the operation. The following were the subjects’ total cholesterol levels
before (TCO), 2 months after (TC2), and 4 months after (TC4) the surgical procedure and hormone

replacement therapy.

USO USO
Subject TCO TC2 TC4 Subject TCO TC2 TC4
| 202 203 196 25 134 131 135
2 204 183 203 26 163 190 185
3 206 199 192 27 196 183 192
4 166 180 176 28 181 194 208
5 150 171 154 29 160 162 181
6 137 134 129 30 188 200 181
7 164 168 171 31 172 188 189
8 207 249 223

9 126 121 140 BSO

i? i;; igé }gg Subject TCO TC2 TC4
12 142 152 140 3 24 218 239
13 225 193 180 33 202 196 231
14 158 182 179 34 181 182 208
15 184 177 182 35 191 230 208
16 223 244 234 36 248 284 279
17 154 178 187 37 24 228 199
18 176 137 162 38 229 318 272
19 205 253 288 39 147 199 194
20 167 156 136 40 248 258 302
21 164 176 191 41 160 218 229
2 177 168 185 0 175 187 166
23 140 175 167 43 262 260 247
24 167 186 195 44 189 199 181

Source: Data provided courtesy of Dr. Chee Jeong Kim.
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Velthuis et al. (A-26) conducted a study to evaluate whether the combination of passively
immobilized heparin-coating and standard heparization can reduce complement activation in patients
undergoing cardiac surgical intervention. The investigators note that heparin-coated extracorporeal
circuits reduce complement activation during cardiac operations, but that little in vivo information is
available on the reduction in alternative and classic pathway activation. Complement activation
initiates a systemic inflammatory response during and after cardiac operations and is associated with
pathophysiologic events such as postoperative cardiac depression, pulmonary capillary leakage, and
hemolysis. Subjects were 20 patients undergoing elective cardiopulmonary bypass (CPB) grafting
randomly allocated to be treated with either heparin-coated extracorporeal circuits (H) or uncoated
circuits (U). Among the data collected were the following plasma terminal complement complex
(SC5b-9) concentrations at baseline, 10 minutes after start of CPB, at cessation of CPB, and after the
administration of protamine sulfate:

Patient Treatment Baseline 10 min CPB End CPB Protamine

1 U 0.37 0.81 1.88 2.12
2 U 0.48 0.73 3.28 3.31
3 U 0.48 0.42 2.94 1.46
4 H 0.37 0.44 1.28 3.82
5 H 0.38 0.31 0.50 0.68
6 U 0.38 0.43 1.39 5.04
7 H 0.46 0.57 1.03 1.29
8 H 0.32 0.35 0.75 1.10
9 U 0.41 0.94 1.57 2.53
10 8} 0.37 0.38 2.07 1.69
11 H 0.48 0.33 1.12 1.04
12 H 0.39 0.39 1.69 1.62
13 U 0.27 0.41 1.28 2.26
14 H 0.51 0.27 1.17 1.05
15 H 0.97 0.75 1.82 1.31
16 U 0.53 1.57 4.49 2.15
17 U 0.41 0.47 1.60 1.87
18 U 0.46 0.65 1.49 1.24
19 H 0.75 0.78 1.49 1.57
20 H 0.64 0.52 2.11 2.44

Source: Data provided courtesy of Dr. Henk te Velthuis.

Heijdra et al. (A-27) state that many patients with severe chronic obstructive pulmonary disease
(COPD) have low arterial oxygen saturation during the night. These investigators conducted a study
to determine whether there is a causal relationship between respiratory muscle dysfunction and
nocturnal saturation. Subjects were 20 (five females, 15 males) patients with COPD randomly
assigned to receive either target-flow inspiratory muscle training (TF-IMT) at 60 percent of their
maximal inspiratory mouth pressure (Pl,,,,) or sham TF-IMT at 10 percent of PI,,,,x. Among the data
collected were the following endurance times (Time, s) for each subject at the beginning of training
and 10 weeks later:
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Time (s) TF-IMT Time (s) TF-IMT
60% Pl,,,.x 10% PI,,,ax

Week 0 Week 10 Week 0 Week 10
330 544 430 476
400 590 400 320
720 624 900 650
249 330 420 330
144 369 679 486
440 789 522 369
440 459 116 110
289 529 450 474
819 1099 570 700
540 930 199 259

Source: Data provided courtesy of Dr. Yvonne F. Heijdra.

The three objectives of a study by Wolkin et al. (A-28) were to determine (a) the effects of chronic
haloperidol treatment on cerebral metabolism in schizophrenic patients, (b) the relation between
negative symptoms and haloperidol-induced regional changes in cerebral glucose utilization, and (c)
the relation between metabolic change and clinical antipsychotic effect. Subjects were 18 male
veterans’ hospital inpatients (10 black, five white, and three Hispanic) with either acute or chronic
decompensation of schizophrenia. Subjects ranged in age from 26 to 44 years, and their duration of
illness ranged from 7 to 27 years. Among the data collected were the following pretreatment scores
on the digit-symbol substitution subtest of the WAIS-R (DSY1RW) and haloperidol-induced change
in absolute left dorsolateral prefrontal cortex (DLLA3V1) and absolute right dorsolateral prefrontal
cortex (DLRA3V1) measured in units of umol glucose/100 g tissue/min:

DSYIRW DLLA3V1 DLRA3V1 | DSYIRW DLLA3V1l DLRA3V1
47 =7.97 —-17.17 18 —4.91 —9.58
16 —8.08 -9.59 0 —-1.71 40
31 —10.15 —11.58 29 —4.62 —4.57
34 —5.46 -2.16 17 9.48 11.31
22 —17.12 —12.95 38 —6.59 —6.47
70 —12.12 —13.01 64 —12.19 —13.61
59 -9.70 —12.61 52 —15.13 —11.81
41 -9.02 —7.48 50 —10.82 —9.45
0 4.67 7.26 62 —-4.92 —1.87

Source: Data provided courtesy of Dr. Adam Wolkin.

The purpose of a study by Maltais et al. (A-29) was to compare and correlate the increase in arterial
lactic acid (La) during exercise and the oxidative capacity of the skeletal muscle in patients with
chronic obstructive pulmonary disease (COPD) and control subjects (C). There were nine subjects in
each group. The mean age of the patients was 62 years with a standard deviation of 5. Control
subjects had a mean age of 54 years with a standard deviation of 3. Among the data collected were the
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28.

29.

following values for the activity of phosphofructokinase (PFK), hexokinase (HK), and lactate
dehydrogenase (LDH) for the two groups:

PFK HK LDH
C COPD C COPD C COPD

106.8 493 2.0 23 241.5 124.3
19.6 107.1 32 1.4 216.8 269.6
27.3 62.9 2.5 1.0 105.6 247.8
51.6 532 2.6 3.6 133.9 200.7
73.2 105.7 2.4 1.3 336.4 540.5
89.6 61.3 2.4 29 131.1 431.1
47.7 28.2 35 22 241.4 65.3

113.5 68.5 22 1.5 297.1 204.7
46.4 40.8 24 1.6 156.6 137.6

Source: Data provided courtesy of Dr. Frangois Maltais.

Torre et al. (A-30) conducted a study to determine serum levels of nitrite in pediatric patients with
human immunodeficiency virus type 1 (HIV-1) infection. Subjects included 10 healthy control
children (six boys and four girls) with a mean age of 9.7 years and a standard deviation of 3.3. The
remainder of the subjects were 21 children born to HIV-1-infected mothers. Of these, seven (three
boys and four girls) were affected by AIDS. They had a mean age of 6 years with a standard deviation
of 2.8. The remaining 14 children (seven boys and seven girls) became seronegative for HIV-1 during
the first year of life. Their mean age was 3.3 years with a standard deviation of 2.3 years. Among the
data collected were the following serum levels of nitrite (wmol/L):

Controls Seronegativized Children HIV-1-Positive Patients

n=10 n=14 n="17
0.301 0.335 0.503
0.167 0.986 0.268
0.201 0.846 0.335
0.234 1.006 0.946
0.268 2.234 0.846
0.268 1.006 0.268
0.201 0.803 0.268

0.234 0.301

0.268 0.936

0.301 0.268

0.134

0.335

0.167

0.234

Source: Data provided courtesy of Dr. Donato Torre.

Seghaye et al. (A-31) analyzed the influence of low-dose aprotinin on complement activation,
leukocyte stimulation, cytokine production, and the acute-phase response in children undergoing
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cardiac operations. Inclusion criterion for the study was a noncyanotic congenital cardiac defect
requiring a relatively simple primary surgical procedure associated with a low postoperative risk.
Among the data collected were the following measurements on interleukin-6 (IL-6) and C-reactive
protein (CRP) obtained 4 and 24 hours postoperatively, respectively:

IL-6 CRP IL-6 CRP IL-6 CRP
122 32 467 53 215 50
203 39 421 29 415 41
458 63 421 44 66 12

78 7 227 24 58 14
239 62 265 31 213 9
165 22 97 12

Source: Data provided courtesy of Dr. Marie-Christine Seghaye.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

1.

REFERENCES

California State Assembly Bill 2071 (AB 2071) mandated that patients at methadone clinics be
required to undergo a minimum of 50 minutes of counseling per month. Evan Kletter (A-32)
collected data on 168 subjects who were continuously active in treatment through the Bay Area
Addiction Research and Treatment (BAART) centers for 1 year prior to, and 2 years after AB
2071’s implementation. Prior to AB 2071, BAART center counselors spent two sessions of at
least 15 minutes per session per month with each client. The subjects in the study were also
identified as cocaine abusers. The observations in KLETTER are the percentages of failing a
cocaine drug test for each of the subjects pre- and post-AB 2071. For example, a pre-value of 60
implies that the patient failed a cocaine test 60 percent of the time prior to adoption of AB 2071.
Dr. Kletter performed a Wilcoxon rank sum test to determine if the percentage of failed tests
decreased significantly after the passage of AB 2071. Use the data to determine what conclusion
he was able to reach. Report the test statistic and p value.
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SURVIVAL ANALYSIS

CHAPTER OVERVIEW

This chapter provides an introduction to the analysis of data arising from
studies where the time to the occurrence of an event is the outcome of interest.
These types of studies have historically been used to monitor the survival time
of patients who face the possibility of dying during the study, hence the use of
the description of these techniques as “survival analysis.” However, in this
chapter we will learn techniques that can be used in the context of any outcome
where the time to occurrence of an event is of interest. We will be employing
techniques similarto those we have learned in previous chapters, including the
methods for analyzing frequency data, the methods for developing linear
models for making predictions, and topics in nonparametric statistics.

TOPICS

14.1 INTRODUCTION

14.2 TIME-TO-EVENT DATA AND CENSORING

14.3 THE KAPLAN-MEIER PROCEDURE

14.4 COMPARING SURVIVAL CURVES

145 COX REGRESSION: THE PROPORTIONAL HAZARDS MODEL
14.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand time-to-event data and how censored observations can be handled
statistically.

2. be able to develop and use survival curves to make conclusions.
be able to statistically compare survival curves.
4. understand how to develop models designed to handle time-to-event data.

w

14.1 INTRODUCTION

In many studies, the outcome of interest is related to the timing of the occurrence of an
event. In a clinical setting, one may be interested in measuring how long a chronically ill
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patient survives after receiving a certain treatment. In another scenario, one may be
interested in determining which of three drugs, compared to a placebo, provides symptom
relief most rapidly.

Imagine that a cardiac rehabilitation clinic is interested in determining if enrollment
in a traditional health education program or enrollment in a program that provides diet and
nutritional planning along with patient education is more effective at preventing the
occurrence of a second myocardial infarction following a first heart attack. The study could
begin when the first patient, following his or her first heart attack, is randomly assigned to a
treatment program, with additional patients enrolled through time. Conversely, the study
could begin with a cohort of subjects, each of whom has had their first heart attack, who are
randomly assigned to a treatment program. In either case, there are potentially three
outcomes that could occur with each patient, with the event of interest being a second heart
attack. These are (/) the patient has a second heart attack; (2) the patient drops out of the
study—thereby becoming a loss to follow-up—which could occur for any number of
reasons, including death, or relocating geographically, for example; or (3) the event of
interest does not occur to the patient during the period of study. These three mutually
exclusive events are the foundation for survival analysis studies.

Though the vast majority of published research using the methods of survival analysis
is clinical in nature, it should be mentioned that there are many nonclinical uses for survival
analysis as well. With the advent of computer-based statistical programs to help with complex
calculations, the use of survival analysis methodologies has increased demonstrably among
many disciplines. For example, engineers may wish to know the time it takes for a battery to
lose its charge, a quality-control scientist at a manufacturing plant may wish to understand at
what point machines need to be recalibrated, or an ecologist may want to estimate how long
the average carcass remains in a study area before it is scavenged.

14.2 TIME-TO-EVENT DATA AND CENSORING

Measurement data for survival analysis studies utilizes the time that it takes for a well-
defined event of interest to occur. For each subject enrolled in a study, the researcher
records the amount of time (this could be months, days, years, or any measure of time)
elapsing between the point at which each subject entered into the study until he or she
experiences one of the three possible events just presented—the event occurs, the event
does not occur, or the subject is lost to follow-up. The total amount of time between the
initial enrollment in the study and the occurrence of one of the three outcomes is known as
the research subject’s survival time, or time-to-event. Hence, the information gathered on
each subject is often referred to as survival data or time-to-event data. In addition to the
survival data, covariates, such as age, gender, medication type, and diet, for example can
also be gathered for the development of complex models.

DEFINITION

Survival data, or time-to-event data, are measurements of elapsed time
between the initial enrollment in a study and the final disposition of the
study subject. This elapsed time could be represented by the time of
initial diagnosis or it could be represented by the point in time when one
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FIGURE 14.2.1 Patients entering a study at different times with known (@) and censored (O)
survival times.

enters the study. Survival in this context simply means that an event has
not occurred, not, necessarily, that the endpoint of interest involved an
examination of “life”’ and “‘death.”

Suppose we consider patients who entered into the heart-attack study described in the
Introduction. For illustrative purposes, suppose we examine the fate of three patients who
were in the study (Figure 14.2.1).

Patient A entered the study on January 1, 2002 and had a myocardial infarction on
December 31, 2003. Patient A’s survival time is therefore 24 months. Patient B entered the
study on July 1, 2002 and moved out of state 6 months later on December 31, 2002. Patient
B’s survival time in the study is 6 months. Finally, Patient C entered the study on August 1,
2002 and remained in the study until it ended on December 31, 2004. Patient C’s survival
time is 29 months. We, therefore, have survivorship information on these three patients that
might be useful for analysis; however, we notice that the survival times for Patients B and C
are not known exactly. That is, Patient B provides an example of a patient lost to follow-up,
and patient C provides an example of a patient that completed the study without
experiencing the event of interest. Patients B and C have survival times that are called
censored survival times and hence these survival times are referred to as censored data.

DEFINITION

Censored data are represented by measurements for which we have some
information about survival time, but the exact survival time is not
known.

Censored data can occur in a number of ways. In singly censored data, a fixed number of
subjects enter into a study at the same time. Once in the study, some of the subjects will not
experience the event. Their survival time is known to be some length of time greater than the
length of the study. This is known as type I censoring. It could also be that for research or ethical
reasons the study is ended after a certain proportion of the subjects experience the condition of
interest, with the remaining proportion having not experienced the event when the study is
ended. This is called #ype II censoring. It should be noted that these concepts are not related to
the concepts of Type I error and Type Il error introduced in Chapter 7. Another type of censoring
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that may occur is known as progressively censored data in which the period of study is fixed, but
subjects may enter the experiment at different times. Patients may then either experience or not
experience the event of interest, with those not experiencing the event having unknown survival
times. This is called type III censoring. Data for which exact endpoints are not known, either
because the subject dropped out of the study, was withdrawn from the study, or survived beyond
the termination of the study are called right-censored data because the survival times extend
beyond the right tail of the distribution of survival times. Conversely, we could have data for
which exact beginning points are not known. This could arise, for example, if a subject with the
condition enters the study, but it is not known exactly when the condition developed in the
patient. These data are known as left-censored data because their survival times are truncated
on the left side of the distribution of the survival time distribution, causing the difference in time
between diagnosis and entering into the study to be unknown. Clearly, details surrounding
censored data are complex and require much more detailed analysis than is covered in this
introductory text. For those interested in further reading, we suggest the books by Kleinbaum
and Klein (1), Lee (2), and Hosmer and Lemeshow (3).

Generally, for purposes of analysis, a dichotomous, or indicator, variable is used to
distinguish survival times of those subjects who experience the event of interest and those
that do not because of one of the censoring mechanisms described above. Typically this
variable is called a status variable, with a zero indicating that an event did not occur and
hence the survival time is censored, and a 1 indicating that the event of interest did occur.

In studies where different treatments are being investigated, we are interested in three
items of information for each subject: (/) Which treatment was given to the patient? (2) For
what length of time was the patient observed? (3) Did the patient experience the event of
interest during the study or was the survival time censored for some reason? In studies that
are not concerned with comparing different treatment conditions, only the last two items of
data are relevant. Additionally, we may be interested in different covariates associated with
patients (e.g., age, gender, income level) in order to develop more complex models, and
therefore we may develop questions based on these covariates of interest.

With these three items of information in hand, along with any covariates of interest,
we are able, in studies such as the myocardial infarction example mentioned in Section
14.1, to estimate the median survival time of the group of patients who received one
treatment compared to another. Comparison of different treatment medians allows us to
answer the following question: Based on the information from our study, which treatment
do we conclude delays for a longer period of time, on the average, the occurrence of a
second heart attack? The data collected in follow-up studies such as we have described may
also be used to answer another question of considerable interest to the clinician: What is the
estimated probability that a patient will survive for a specified length of time? Or, Is there a
difference in survivorship of males and females who have experienced heart attacks? For
the myocardial infarction study, the clinician may ask: “What is the probability that a
patient who received treatment A will survive more than 2 years?” The methods employed
to answer these types of questions are known as survival analysis methods.

Statistical Distribution Functions Before presenting survival analysis
methods, it is important to consider data distributions commonly encountered in such
analyses. Time-to-event data are distributed temporally, such that events occur either at
some point, or within some interval, of time. These events are considered to represent a
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random variable having some probability of occurrence at each time period for each subject
in the study.

We have already encountered two useful representations of probability distributions
in Chapter 4. These were the cumulative distribution function and the probability
distribution function. If we let the event time be represented by 7, then the cumulative
distribution function of T is represented by F(¢), such that

F(t)=P(T <1) (14.2.1)

That is, the cumulative distribution function represents the probability that an event
time is less than or equal to some specified measurement time, . As you recall from
Chapter 4, F(z) is an increasing function that runs from a value of zero (it is assumed
theoretically that no events have occurred at the initiation of the study), to a value of 1 (it is
assumed theoretically that all events have occurred at the conclusion of the study). In the
context of survival analysis, a closely related function that is more commonly used than
F(t) is a function that runs from a value of 1 (it is assumed that all subjects at the initiation
of the study have “survived” to that point) to a value of zero (it is assumed theoretically that
none of the subjects have “survived” when the study ends, though some subjects may be
censored). Conveniently, this is known as the survival distribution, S(¢), and is mathemati-
cally related to the cumulative distribution function by

S()=1-F(1) (14.2.2)

Both of these distributions are illustrated in Figure 14.2.2. It is the survival curve we
generally are most interested in, and comparisons of various survival curves provide a
statistical means to compare such things as individual survival and differences in survival
among different treatments.
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FIGURE 14.2.2 |llustration of the cumulative distribution function, F(t), and the survival
distribution, S(t).
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The probability distribution function, just as defined in Chapter 4, is represented by
the set of probabilities that specify the possible values of a random variable. In the context
of survival analysis, this density function represents the probability of an event occurring
in a defined interval of time. We might ask, for example, what is the probability of
surviving 2 months? Although fully appreciating the intricacies of this probability
distribution requires knowledge of calculus, we can illustrate its meaning conceptually
by remembering a concept from our discussion of the normal distribution in Chapter 4.
When we calculated probabilities for the normal distribution, we were interested in
calculating the area under a curve that was bounded by two values. Similarly, in survival
analysis we are interested in calculating the probability of an event bounded by an interval
of time, say At, and then finding our probability as the interval becomes very small, that is
as Ar — 0. Hence, the probability distribution function, f(¢), is defined by

P(1<T<i+A
Floy == ;H D asAr—0 (14.2.3)

That is, the set of probabilities of events that occur in an infinitesimally small interval of
time defines the probability function. It is also possible to find this function by examining
what happens during a change in F(7), say AF(t), or a change in S(z), say AS(¢), in a given
interval of time. That is

t) = =——" 14.2.4
=32 == (1424)

Finally, a function that is often encountered in survival analysis is the hazard function,
h(t). This function is used to define the instantaneous probability of an event occurring given
that the subject has survived up to a given time, ¢. This function is defined as

PU<T AT >
n(e) = PUS <’A;r AT=1 -0 (14.2.5)

Note that this function is based on a conditional probability, wherein we are interested in
calculating the probability of an event occurring given that the subject has already survived
to a defined time. The condition of having already survived to a given time means that the
probability of surviving into the future is influenced by having already survived previous
time periods. This idea can be very important in some instances, where surviving the early
stages of a disease may dramatically decrease the potential of an event occurring in the near
future. As an example, consider cancer where nonrecurrence, or remission, for a period of
5 years generally increases survivorship. This function can also be expressed in terms of
two functions previously defined. This expression is

h(t) :J% (14.2.6)

Because the hazard function can exceed 1, it is not truly a probability, though it is based on
the conditional probability of an event occurring. The hazard function is often defined in
survival analysis by a known distribution such as the lognormal, exponential, or Weibull
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distribution. Excellent descriptions of the various models used to represent hazard functions
are provided by Allison (4) and Kleinbaum and Klein (1).

14.3 THE KAPLAN-MEIER PROCEDURE

Now let us show how we may use the data usually collected in follow-up studies of the type
we have been discussing to estimate the probability of surviving for a specified length of
time. The method we use was introduced by Kaplan and Meier (5) and for that reason is
called the Kaplan—Meier procedure. Since the procedure involves the successive multipli-
cation of individual estimated probabilities, it is sometimes referred to as the product-limit
method of estimating survival probabilities.

As we shall see, the calculations include the computations of proportions of subjects in a
sample who survive for various lengths of time. We use these sample proportions as estimates of
the probabilities of survival that we would expect to observe in the population represented by
our sample. In mathematical terms we refer to the process as the estimation of a survivorship
function. Frequency distributions and probability distributions may be constructed from
observed survival times, and these observed distributions may show evidence of following
some theoretical distribution of known functional form. When the form of the sampled
distribution is unknown, it is recommended that the estimation of a survivorship function be
accomplished by means of a nonparametric technique, of which the Kaplan—-Meier procedure
is one. Nonparametric techniques are defined and discussed in detail in Chapter 13.

Calculations for the Kaplan-Meier Procedure We let

n = the number of subjects whose survival times are available

p; = the proportion of subjects surviving at least the first time period
(day, month, year, etc.)

p, = the proportion of subjects surviving the second time period
after having survived the first time period

p3 = the proportion of subjects surviving the third time period
after having survived the second time period

P = the proportion of subjects surviving the kth time period
after having survived the (k — 1)th time period

We use these proportions, which we may relabel p,, Py, ps, - . . , Dy as estimates of the
probability that a subject from the population represented by the sample will survive time
periods 1, 2, 3, ..., k, respectively.

For any time period, f, where 1 < ¢ < k, we estimate the probability of surviving the
tth time period, p,, as follows:

. number of subjects surviving at least (+ — 1) time periods who also survive the rth period
P =

number of subjects alive at end of time period (r — 1)

(14.3.1)
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The probability of surviving to time #, S(¢), is estimated by
S(t) =Py X Py X -+ X P, (14.3.2)
We illustrate the use of the Kaplan—Meier procedure with the following example.

EXAMPLE 14.3.1

To assess results and identify predictors of survival, Martini et al. (A-1) reviewed their total
experience with primary malignant tumors of the sternum. They classified patients as
having either low-grade (25 patients) or high-grade (14 patients) tumors. The event
(status), time to event (months), and tumor grade for each patient are shown in Table 14.3.1.
We wish to compare the 5-year survival experience of these two groups by means of the
Kaplan—Meier procedure.

Solution: The data arrangement and necessary calculations are shown in Table 14.3.2.
The entries for the table are obtained as follows.

TABLE 14.3.1 Survival Data, Subjects with Malignant Tumors of the Sternum

Time Vital Tumor Time Vital Tumor
Subject  (Months) Status? Grade® Subject  (Months) Status? Grade®
1 29 dod L 21 155 ned L
2 129 ned L 22 102 dod L
3 79 dod L 23 34 ned L
4 138 ned L 24 109 ned L
5 21 dod L 25 15 dod L
6 95 ned L 26 122 ned H
7 137 ned L 27 27 dod H
8 6 ned L 28 6 dod H
9 212 dod L 29 7 dod H
10 11 dod L 30 2 dod H
11 15 dod L 31 9 dod H
12 337 ned L 32 17 dod H
13 82 ned L 33 16 dod H
14 33 dod L 34 23 dod H
15 75 ned L 35 9 dod H
16 109 ned L 36 12 dod H
17 26 ned L 37 4 dod H
18 117 ned L 38 0 dpo H
19 8 ned L 39 3 dod H
20 127 ned L

?dod =dead of disease; ned = no evidence of disease; dpo =dead postoperation.
b — Jow-grade; H = high-grade.
Source: Data provided courtesy of Dr. Nael Martini.
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TABLE 14.3.2 Data Arrangement and Calculations for Kaplan-Meier Procedure,
Example 14.3.1

1 2 3 4 5 6
Vital Status Patients Cumulative
Time 0 = Censored Patients Remaining Survival Survival
(Months) 1 =Dead at Risk Alive Proportion Proportion
Patients with Low-Grade Tumors
6 0
8 0
1 1 23 22 22/23 = 956522 .956522
15 1
15 1 22 20 20/22 = .909090 .869564
21 1 20 19 19/20 = .950000 .826086
26 0
29 1 18 17 17/18 = .944444 .780192
33 1 17 16 16/17 = 941176 734298
34 0
75 0
79 1 14 13 13/14 = .928571 .681847
82 0
95 0
102 1 1 10 10/11 = .909090 .619860
109 0
109 0
117 0
127 0
129 0
137 0
138 0
155 0
212 1 2 1 1/2 = 500000 .309930
337 0

(Continued)
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TABLE 14.3.2 (Continued)

1 2 3 4 5 6
Vital Status Patients Cumulative
Time 0 = Censored Patients Remaining Survival Survival
(Months) 1 =Dead at Risk Alive Proportion Proportion
Patients with High-Grade Tumors
0 1 14 13 13/14 = .928571 .928571
2 1 13 12 12/13 = .923077 .857142
3 1 12 11 11/12 = .916667 .785714
4 1 11 10 10/11 = .909090 714285
6 1 10 9 9/10 = .900000 .642856
7 1 9 8 8/9 = .888889 .571428
9 1
9 1 8 6 6/8 = .750000 428572
12 1 6 5 5/6 = .833333 .357143
16 1 5 4 4/5 = .800000 .285714
17 1 4 3 3/4 = .750000 .214286
23 1 3 2 2/3 = .666667 .142857
27 1 2 1 1/2 = .500000 .071428
122 0 1 0

. We begin by listing the observed times in order from smallest to largest in

Column 1.

. Column 2 contains an indicator variable that shows vital status

(1 = died, 0 = alive or censored).

. In Column 3 we list the number of patients at risk for each time associated with

the death of a patient. We need only be concerned about the times at which
deaths occur because the survival rate does not change at censored times.

. Column 4 contains the number of patients remaining alive just after one or

more deaths.

. Column 5 contains the estimated conditional probability of surviving,

which is obtained by dividing Column 4 by Column 3. Note that although
there were two deaths at 15 months in the low-grade group and two deaths at
9 months in the high-grade group, we calculate only one survival proportion
at these points. The calculations take the two deaths into account.

. Column 6 contains the estimated cumulative probability of survival. We

obtain the entries in this column by successive multiplication. Each entry
after the first in Column 5 is multiplied by the cumulative product of all
previous entries.
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After the calculations are completed we examine Table 14.3.2 to deter-
mine what useful information it provides. From the table we note the following
facts, which allow us to compare the survival experience of the two groups of
subjects: those with low-grade tumors and those with high-grade tumors:

1. Median survival time. We can determine the median survival time by locating
the time, in months, at which the cumulative survival proportion is equal to .5.
None of the cumulative survival proportions are exactly .5, but we see that in the
low-grade tumor group, the probability changes from .619860 to .309930 at 212
months; therefore, the median survival for this group is 212 months. In the high-
grade tumor group, the cumulative proportion changes from .571428 to .428572
at 9 months, which is the median survival for this group.

2. Five-year survival rate. We can determine the 5-year or 60-month survival
rate for each group directly from the cumulative survival proportion at
60 months. For the low-grade tumor group, the 5-year survival rate is
734298 or 73 percent; for the high-grade tumor group, the 5-year survival
rate is .071428 or 7 percent.

3. Mean survival time. We may compute for each group the mean of the
survival times, which we will call T, and Ty for the low-grade and high-
grade groups, respectively. For the low-grade tumor group we compute
Tp =2201/25 = 88.04, and for the high-grade tumor group we compute
Ty = 257/14 = 18.35. Since so many of the times in the low-grade group
are censored, the true mean survival time for that group is, in reality, higher
(perhaps, considerably so) than 88.04. The true mean survival time for the
high-grade group is also likely higher than the computed 18.35, but with just
one censored time we do not expect as great a difference between the
calculated mean and the true mean. Thus, we see that we have still another
indication that the survival experience of the low-grade tumor group is more
favorable than the survival experience of the high-grade tumor group.

4. Average hazard rate. From the raw data of each group we may also calculate
another descriptive statistic that can be used to compare the two survival
experiences. This statistic is called the average hazard rate. It is a measure of
nonsurvival potential rather than survival. A group with a higher average
hazard rate will have a lower probability of surviving than a group with a
lower average hazard rate. We compute the average hazard rate, designated &
by dividing the number of subjects who do not survive by the sum of the
observed survival times. For the low-grade tumor group, we compute
hy = 9/2201 = .004089. For the high-grade tumor group we compute
hy = 13/257 = .05084, We see that the average hazard rate for the high-
grade group is higher than for the low-grade group, indicating a smaller
chance of surviving for the high-grade group.

The cumulative survival proportion column of Table 14.3.2 may be
portrayed visually in a survival curve graph in which the cumulative survival
proportions are represented by the vertical axis and the time in months by the
horizontal axis. We note that the graph resembles stairsteps with “steps”
occurring at the times when deaths occurred. The graph also allows us
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FIGURE 14.3.1 Kaplan—-Meier survival curve, Example 14.3.1, showing median survival times
and 5-year (60-month) survival rates.

to represent visually the median survival time and survival rates such as the
5-year survival rate. The graph for the cumulative survival data of
Table 14.3.2 is shown in Figure 14.3.1.

These observations strongly suggest that the survival experience of
patients with low-grade tumors is far more favorable than that of patients with
high-grade tumors. [

EXERCISES

14.3.1 Fifty-three patients with medullary thyroid cancer (MTC) were the subjects of a study by Dottorini
et al. (A-2), who evaluated the impact of different clinical and pathological factors and the type of
treatment on their survival. Thirty-two of the patients were females, and the mean age of all patients
was 46.11 years with a standard deviation of 14.04 (range 18-35 years). The following table shows
the status of each patient at various periods of time following surgery. Calculate the survival function
using the Kaplan—-meier procedure and plot the survival curve.

Subject Time® (Years) Status’ Subject Time” (Years) Status’

1 0 doc 28 6 alive
2 1 mtc 29 6 alive
3 1 mtc 30 6 alive
4 1 mtc 31 6 alive
5 1 mtc 32 7 mtc
6 1 mtc 33 8 alive
7 1 mtc 34 8 alive
8 1 mtc 35 8 alive
9 1 alive 36 8 alive
10 2 mtc 37 8 alive

(Continued)
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Subject Time® (Years) Status’ Subject Time® (Years)  Status’
11 2 mtc 38 9 alive
12 2 mtc 39 10 alive
13 2 alive 40 11 mtc
14 2 alive 41 11 doc
15 3 mtc 42 12 mtc
16 3 mtc 43 12 doc
17 3 alive 44 13 mtc
18 4 mtc 45 14 alive
19 4 alive 46 15 alive
20 4 alive 47 16 mtc
21 4 alive 48 16 alive
22 5 alive 49 16 alive
23 5 alive 50 16 alive
24 5 alive 51 17 doc
25 5 alive 52 18 mtc
26 6 alive 53 19 alive
27 6 alive

“Time is number of years after surgery.
b doc = dead of other causes; mtc = dead of medullary thyroid cancer.
source: Data provided courtesy of Dr. Massimo E. Dottorini.

14.3.2 Banerji et al. (A-3) followed non—insulin-dependent diabetes mellitus (NIDDM) patients from onset
of their original hyperglycemia and the inception of their near-normoglycemic remission following
treatment. Subjects were black men and women with a mean age of 45.4 years and a standard
deviation of 10.4. The following table shows the relapse/remission experience of 62 subjects.
Calculate the survival function using the Kaplan—-Meier procedure and plot the survival curve.

Total Total Total

Duration of Duration of Duration of

Remission Remission Remission Remission Remission Remission
(Months) Status® (Months) Status” (Months) Status®
3 1 8 2 26 1

3 2 9 2 27 1

3 1 10 1 28 2

3 1 10 1 29 1

3 1 11 2 31 2

4 1 13 1 31 1

4 1 16 1 33 2

4 1 16 2 39 2

5 1 17 2 41 1

5 1 18 2 44 1

5 1 20 1 46 1

5 1 22 1 46 2

5 1 22 2 48 1

5 1 22 2 48 2

(Continued)
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Total Total Total

Duration of Duration of Duration of

Remission Remission Remission Remission Remission Remission
(Months) Status” (Months) Status” (Months) Status”
5 1 23 1 48 1

6 1 24 2 49 1

6 1 25 2 50 1

6 1 25 2 53 1

7 1 26 1 70 2

8 2 26 1 94 1

8 1

8 2

“1 = yes (the patient is still in remission); 2 = no (the patient has relapsed).
Source: Data provided Courtesy of Dr. Mary Ann Banerji.

14.4 COMPARING SURVIVAL CURVES

Examination of a survival curve for a single group of individuals is valuable in that it allows
one to see characteristics that are not as easily seen by examining a set of tabulated values.
This includes visualizing the temporal trajectory to find time periods in which there were
dramatic changes in survival, finding time periods in which relatively little change
occurred, or in finding the approximate median of the data distribution. The construction
of survival curves, however, finds its greatest use when comparisons among survival
distributions are of interest. For example, one may wish to examine differences in treatment
in which subjects were randomly assigned, or may wish to know which medication delays
the onset of the event of interest for the longest period of time.

The results of comparing the survival experiences of different groups will not always
be as dramatic as those of our previous example. For an objective comparison of the
survival experiences of different groups, it is desirable that we have an objective technique
for determining whether they are statistically significantly different. We know also that the
observed results apply strictly to the samples on which the analyses are based. Of much
greater interest is a method for determining if we may conclude that there is a difference
between survival experiences in the populations from which the samples were drawn. In
other words, at this point, we desire a method for testing the null hypothesis that there is no
difference in survival experience between populations against the alternative that there is a
difference. Such a test is provided by the log-rank test. The log-rank test is an application of
the Mantel-Haenszel procedure discussed in Section 12.7. The extension of the procedure
to survival data was proposed by Mantel (6). Though we may wish to compare survival
curves of many populations, we will limit our discussion to the comparison of two groups:
To accomplish this task, we calculate the log-rank statistic and proceed as follows:

1. Order the survival times until death for both groups combined, omitting censored
times. Each time constitutes a stratum as defined in Section 12.7.

2. For each stratum or time, #;, we construct a 2 x 2 table in which the first row
contains the number of observed deaths, the second row contains the number of
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TABLE 14.4.1 Contingency Table for Stratum (Time) t; for Calculating the Log-

Rank Test
Group A Group B Total
Number of deaths observed a; b; aj+ b;
Number of patients alive ci d; ci+d;
Number of patients “at risk” a;i+ ¢ b;+ d; nj=aj+ b+ ci+d;

patients alive, the first column contains data for one group, say, group A, and the
second column contains data for the other group, say, group B. Table 14.4.1 shows
the table for time t;.

3. For each stratum compute the expected frequency for the upper left-hand cell of its
table by Equation 12.7.5.

4. For each stratum compute v; by Equation 12.7.6.

5. Finally, compute the Mantel-Haenszel statistic (now called the log-rank statistic) by
Equation 12.7.7.

We illustrate the calculation of the log-rank statistic with the following example.

EXAMPLE 14.4.1

Let us refer again to the data on primary malignant tumors of the sternum presented in
Example 14.3.1. Examination of the data reveals that there are 20 time periods (strata).
For each of these a 2 x 2 table following the pattern of Table 14.4.1 must be constructed.
The first of these tables is shown as Table 14.4.2. By Equations 12.7.5 and 12.7.6 we
compute ¢; and v; as follows:
(0+1)(0+25)
i =——>"——°>=.641
¢ 39
0+1)(254+13)(04+25)(1+13
b= OFDESHINO+29)0413)
39°(38)
The data for Table 14.4.2 and similar data for the other 19 time periods are shown in
Table 14.4.3. Using data from Table 14.4.3, we compute the log-rank statistic by Equation
12.7.7 as follows:

2
. (9-17.811)
S Y O
Amu 3.140

TABLE 14.4.2 Contingency Table for First Stratum (Time
Period) for Calculating the Log-Rank Test, Example 14.4.1

Low-Grade High-Grade Total
Deaths 0 1 1
Patients alive 25 13 38

Patients at risk 25 13 39
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TABLE 14.4.3 Intermediate Calculations for the Log-Rank Test, Example 14.4.1

Time, t; a; [ a; + ¢; b; d; b; + d; n; e; Yi
0 0 25 25 1 13 14 39 0.641 0.230
2 0 25 25 1 12 13 38 0.658 0.225
3 0 25 25 1 11 12 37 0.676 0.219
4 0 25 25 1 10 11 36 0.694 0.212
6 0 25 25 1 9 10 35 0.714 0.204
7 0 24 24 1 8 9 33 0.727 0.198
9 0 23 23 2 6 8 31 1.484 0.370
11 1 22 23 0 6 6 29 0.793 0.164
12 0 22 22 1 5 6 28 0.786 0.168
15 2 20 22 0 5 5 27 1.630 0.290
16 0 20 20 1 4 5 25 0.800 0.160
17 0 20 20 1 3 4 24 0.833 0.139
21 1 19 20 0 3 3 23 0.870 0.113
23 0 19 19 1 2 3 22 0.864 0.118
27 0 18 18 1 1 2 20 0.900 0.090
29 1 17 18 0 1 1 19 0.947 0.050
33 1 16 17 0 1 1 18 0.944 0.052
79 1 13 14 0 1 1 15 0.933 0.062
102 1 10 11 0 1 1 12 0.917 0.076
212 1 1 2 0 0 0 2 1.000 0.000
Totals 9 17.811 3.140

Reference to Appendix Table F reveals that since 24.724 > 7.879, the p value for this test
is < .005. We, therefore, reject the null hypothesis that the survival experience is the same
for patients with low-grade tumors and high-grade tumors and conclude that they are
different.

There are alternative procedures for testing the null hypothesis that two survival
curves are identical. They include the Breslow test (also called the generalized Wilcoxon
test) and the Tarone—Ware test. Both tests, as well as the log-rank test, are discussed in
Parmar and Machin (7) and Allison (4). Like the log-rank test, the Breslow test and the
Tarone—Ware test are based on the weighted differences between actual and expected
numbers of deaths at the observed time points. Whereas the log-rank test ranks all deaths
equally, the Breslow and Tarone—Ware tests give more weight to early deaths. For Example
12.8.1, SPSS computes a value of 24.93(p < .001) for the Breslow test and a value of
25.22(p < .001) for the Tarone—Ware test. Kleinbaum (27) discusses another test called
the Peto test. Formulas for this test are found in Parmar and Machin (7). The Peto test also
gives more weight to the early part of the survival curve, where we find the larger numbers
of subjects at risk. When choosing a test, then, researchers who want to give more weight to
the earlier part of the survival curve will select either the Breslow, the Tarone—Ware, or the
Peto test. Otherwise, the log-rank test is appropriate.



766 CHAPTER14 SURVIVAL ANALYSIS

We have covered only the basic concepts of survival analysis in this section. The
reader wishing to pursue the subject in more detail may consult one or more of several
books devoted to the topic, such as those by Kleinbaum (8), Lee (9), Marubini and
Valsecchi (10), and Parmar and Machin (7).

Computer analysis

Several of the available statistical software packages, such as SPSS, are capable of
performing survival analysis and constructing supporting graphs as described in this section.

A standard SPSS analysis of the data discussed in Examples 14.3.1 and 14.4.1 is
shown in Figure 14.4.1. ]

Survival Functions
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grade Estimate Error Bound Bound Estimate Error Bound Bound

H 18.357 8.251 2.186 34.528 9.000 1.852 5.371 12.629

L 88.040 15.258 58.134 117.946 82.000 16.653 49.359 114.641

Overall 63.026 11.490 40.505 85.546 27.000 7.492 12.317 41.683

@ Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

Chi-Square df Sig.

Log Rank (Mantel-Cox) 24.704 1 .000
Breslow (Generalized

Wilcoxon) 24.927 1 .000
Tarone-Ware 25.217 1 .000

Test of equality of survival distributions for the different levels of tumor_grade.

FIGURE 14.4.1 SPSS output for Examples 14.3.1 and 14.4.1.




EXERCISES 767

EXERCISES

144.1

14.4.2

14.4.3

If available in your library, read the article, “Impact of Obesity on Allogeneic Stem Cell Transplant
Patients: A Matched Case-Controlled Study,” by Donald R. Fleming et al. [American Journal of
Medicine, 102 (1997), 265-268] and answer the following questions:

(a) How was survival time determined?

(b) Why do you think the authors used the Wilcoxon test (Breslow test) for comparing the survival
curves?

(c) Explain the meaning of the p values reported for Figures 1 through 4.

(d) What specific statistical results allow the authors to arrive at their stated conclusion?

If available in your library, read the article, “Improved Survival in Patients with Locally Advanced
Prostate Cancer Treated with Radiotherapy and Goserelin,” by Michel Bolla et al. [New England
Journal of Medicine, 337 (1997), 295-300], and answer the following questions:

(a) How was survival time determined?

(b) Why do you think the authors used the log-rank test for comparing the survival curves?

(c) Explain the meaning of the p values reported for Figures 1 and 2.

(d) What specific statistical results allow the authors to arrive at their stated conclusion?

Fifty subjects who completed a weight-reduction program at a fitness center were divided into two
equal groups. Subjects in group 1 were immediately assigned to a support group that met weekly.
Subjects in group 2 did not participate in support group activities. All subjects were followed for a
period of 60 weeks. They reported weekly to the fitness center, where they were weighed and a
determination was made as to whether they were within goal. Subjects were considered to be within
goal if their weekly weight was within 5 pounds of their weight at time of completion of the weight-
reduction program. Survival was measured from the date of completion of the weight-reduction
program to the termination of follow-up or the point at which the subject exceeded goal. The
following results were observed:

Status Status
(G = Within Goal (G = Within Goal
Time G+ = Exceeded Goal Time G+ = Exceeded Goal
Subject (Weeks) L = Lost to Follow-Up) | Subject (Weeks) L = Lost to Follow-Up)
Group 1 Group 2

1 60 G 1 20 G+

2 32 L 2 26 G+

3 60 G 3 10 G+

4 22 L 4 2 G+

5 6 G+ 5 36 G+

6 60 G 6 10 G+

7 60 G 7 20 G+

8 20 G+ 8 18 L

9 32 G+ 9 15 G+
10 60 G 10 22 G+
11 60 G 11 4 G+
12 8 G+ 12 12 G+

(Continued)
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Status Status
(G = Within Goal (G = Within Goal
Time G+ = Exceeded Goal Time G+ = Exceeded Goal
Subject (Weeks) L = Lost to Follow-Up) | Subject (Weeks) L = Lost to Follow-Up)
Group 1 Group 2
13 60 G 13 24 G+
14 60 G 14 6 G+
15 60 G 15 18 G+
16 14 L 16 3 G+
17 16 G+ 17 27 G+
18 24 L 18 22 G+
19 34 L 19 8 G+
20 60 G 20 10 L
21 40 L 21 32 G+
22 26 L 22 7 G+
23 60 G 23 8 G+
24 60 G 24 28 G+
25 52 L 25 7 G+

Analyze these data using the methods discussed in this section.

14.5 COX REGRESSION: THE PROPORTIONAL
HAZARDS MODEL

In previous chapters, we saw that regression models can be used for continuous outcome
measures and for binary outcome measures (logistic regression). Additional regression
techniques are available when the dependent measures may consist of a mixture of either
time-to-event data or censored time observations. Returning to our example of a clinical
trial of the effectiveness of two different medications to prevent a second myocardial
infarction, we may wish to control for additional characteristics of the subjects enrolled in
the study. For example, we would expect subjects to be different in their baseline systolic
blood pressure measurements, family history of heart disease, weight, body mass, and
other characteristics. Because all of these factors may influence the length of the time
interval until a second myocardial infarction, we would like to account for these factors in
determining the effectiveness of the medications. The regression method known as Cox
regression (after D. R. Cox (11), who first proposed the method) or proportional hazard
regression can be used to account for the effects of continuous and discrete covariate
(independent variable) measurements when the dependent variable is possibly censored
time-to-event data.

We describe this technique by first reviewing the hazard function from Section 14.2,
which describes the conditional probability that an event will occur at a time just larger
than #; conditional on having survived event-free until time #;. This function is often written
as h(t;). The regression model requires that we assume the covariates have the effect of
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either increasing or decreasing the hazard for a particular individual compared to some
baseline value for the function. In our clinical trial example we might measure k covariates
on each of the subjects where there are i = 1,...,n subjects and () is the baseline
hazard function. We describe the regression model as

h(t;) = ho(t;) exp (Byzit + Bozio + -+ - + Bezit) (14.5.1)

The regression coefficients represent the change in the hazard that results
from the risk factor, z;, that we have measured. Rearranging the above equation
shows that the exponentiated coefficient represents the hazard ratio or the ratio of the
conditional probabilities of an event. This is the basis for naming this method
proportional hazards regression. You may recall that this is the same way we obtained
the estimate of the odds ratio from the estimated coefficient when we discussed logistic
regression in Chapter 11.

h(t:)
ho(li)

=exp (Bizi1 + Bozia + - - + Brzik) (14.5.2)

Estimating the covariate effects, B requires the use of a statistical software package because
there is no straightforward single equation that will provide the estimates for this regression
model. Computer output usually includes estimates of the regression coefficients, standard
error estimates, hazard ratio estimates, and confidence intervals. In addition, computer output
may also provide graphs of the hazard functions and survival functions for subjects with
different covariate values that are useful to compare the effects of covariates on survival.

EXAMPLE 14.5.1

To determine whether time to relapse among drug users is related to patient age and/or
the drug of choice, Cross (unpublished clinical data) reviewed a random sample of case
files for high-risk drug users in an outpatient treatment clinic. The data represent the self-
reported time that relapse occurred (or the time at which the patient was lost to follow-
up), patient status, drug of choice, and patient age. The data are summarized in
Table 14.5.1.

TABLE 14.5.1 Survival Data for Patients in an Outpatient Treatment Clinic

Status Drug Status Drug
Time 0=Censored 1=Opiate Time 0=Censored 1=Opiate
Subject (Weeks) 1=Relapse 2=0ther Age| Subject (Weeks) 1=Relapse 2=0ther Age

1 12 1 1 21 21 21 1 2 28
2 1 1 18 22 41 1 2 31
3 1 1 17 23 23 0 2 22
4 17 1 1 17 24 15 1 2 31
5 19 1 1 25 25 15 0 2 25
6 12 0 1 30 26 21 1 2 19

(Continued)
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TABLE 14.5.1 (Continued)

Status Drug Status Drug
Time 0=Censored 1=0Opiate Time 0=Censored 1=0Opiate

Subject (Weeks) 1=Relapse 2=0Other Age| Subject (Weeks) 1=Relapse 2=0ther Age
10 1 1 16 27 45 1 2 21
11 1 1 23 28 37 1 2 23
5 1 1 31 29 51 1 2 15

2 1 1 21 30 50 1 2 29
10 1 1 19 31 42 1 2 28
7 0 1 18 32 21 1 2 31
19 1 1 18 33 20 1 2 31
11 1 1 21 34 15 1 2 26
1 1 1 23 35 40 1 2 28
19 1 1 15 36 39 1 2 31
19 1 1 17 37 33 1 2 23
24 1 1 21 38 37 1 2 23
21 1 1 22 39 15 0 2 29
14 1 1 17 40 52 0 2 37

Source: Data provided courtesy of Dr. Chad L. Cross.

For this example, we will employ the Cox Regression method algorithms provided in
SPSS software. All references to tables and figures in the explanations below refer to
Figure 14.5.1, which shows selected SPSS output for this example.

1. Overall test. SPSS provides an overall test of significance much like that reported for

logistic regression discussed in Chapter 11. In this test, the likelihood is used to
compare a model with no parameters (the null model) and a model with the variables
of interest included. If there is a significant difference in the likelihood function
between the model with parameters and the null model, then the Cox regression
model is significant, and at least one of the variables of interest is significantly related
to the outcome variable. An examination of the output shows that the Omnibus Test
for Model Coefficients with age and drug entered in the model is significantly
different from the null model, with p < .001.

. Variables in the model. Next SPSS provides a table for each of the variables entered

into the model. Much like a standard regression model, the model parameter, its
standard error, and a significance test are provided to test the null, H,: 8=0. For
these data, type of drug was significantly predictive of time to relapse (p < .001), but
age was not (p =.792).

. Survival curves. Since drug of choice was found to be significantly related to the

time of relapse, it is instructive to examine the survival curves for these data. It is
clear from examining these curves that there is a difference in time to relapse, with
those reporting opiate use as their primary drug of choice relapsing at a much faster
rate than those reporting use of drugs other than opiates.

. Hazard ratios. The hazard ratios are provided for each variable in the model. As in

logistic regression where we calculated odds ratios, hazard ratios are found by
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Omnibus Tests of Model Coefficients

Overall (score)

-2 Log Chi-
Likelihood [ square df Sig.
167.407 25.558 2 .000
Variables in the Equation
95.0% Cl for Exp(B)
B SE Wald df Sig. Exp(B) Lower Upper
Drug 2.139 .531 16.239 1 .000 8.492 3.000 24.036
age -.009 .032 .070 1 792 991 .930 1.057
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FIGURE 14.5.1 Cox Regression survival analysis output from SPSS software for
Example 14.5.1.

calculating exp(B). Examining the variable drug, where opiates were used as the
indicator variable in SPSS, the hazard of relapse is nearly 8.5 times more likely for
opiates compared to other drugs, controlling for the covariate of age. Although we
can calculate the hazard ratio for age in much the same way as for drug, it is
often useful for quantitative covariates to consider calculating the function
100(exp(B) — 1), which provides an estimate of the percent change in the hazard
when the covariate increases by one unit. In the present example for age, this leads to
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100(.991 — 1) = —.9. Therefore, for each 1 year increase in age, the hazard for
relapse decreases by an average of about .9 percent.

5. Conclusion. Based on the results of this limited sample, we have learned that age of
the patient, though not statistically significant, suggest that in general age may be
somewhat protective in that risk of relapse decreases with age. We have also
learned that those experiencing addiction to opiates are prone to relapse much
earlier in their treatment. The results of this preliminary study may be used to
develop further studies to determine if different, and perhaps more intensive,
treatment programs are more successful for targeting those experience opiate
addiction compared to other drugs. [

Clearly Cox regression can become very complex as the number of variables
increases. As with standard regression models discussed in early chapters, one may opt
to use selection procedures (forward, backward, or stepwise) or examine interactions
among variables in the models. Additionally, one may have time-dependent covariates in
which the value of the covariate may change at each measurement time. Examples of this
may be marriage or diagnosis with a health condition. These covariates are in contrast to
time-constant covariates, which do not change (e.g., gender). In summary, Cox regression
is a very useful technique for modeling survival data. For those interested in further
reading, the texts by Kleinbaum and Klein (1), Lee (2), Hosmer and Lemeshow (3), and
Allison (4) are highly recommended.

EXERCISES

14.5.1

14.5.2

14.5.3

In a study examining time-to-onset of cancer after exposure to UV light in rats, age (months) was
used as a covariate in a Cox regression model. In the model, the parameter estimate for weight was .19
and had a p-value of .021. Provide an interpretation of this parameter estimate in terms of the hazard
ratio.

In the study described in Exercise 14.5.1, the researchers were also interested to know if there was a
difference between gender in the time it took to develop cancer. For gender, the parameter estimate
was .77 and had a p-value of 0.014. Provide an interpretation of this parameter estimate in terms of the
hazard ratio.

The intent of a study by Weaver et al. (A-4) was to assess whether occult lymph node metastases are
important indicators of disease recurrence or survival in breast cancer patients. The data below
provide some of the pertinent results of a Cox regression model for these data.

(a) Calculate the regression parameter coefficients for each variable.
(b) Provide an interpretation of these results using the concepts learned in this section.

Variable Hazard Ratio (HR) 95% CI for HR  p-value
Age (504 vs. <50) 1.69 (1.24,2.31) .001
Tumor size (>2cm vs. < 2cm) 1.32 (.98,1.76) .060
Chemotherapy vs. no chemotherapy .88 (.68,1.13) 31

Radiation vs. no radiation 0.54 (.40,.73) .001
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In this chapter an introduction to time-to-event data was provided. In particular, the
concept of data censoring, in which exact times are not known for subjects, was
introduced. Distributions useful in survival analysis, including the cumulative distribu-
tion function, the survival function, and the hazard function were discussed. Calculating
basic survival curves using the Kaplan—Meier procedure was discussed, as were methods
for comparing survival curves using nonparametric methods. Regression concepts using
Cox regression were provided, and detailed analysis of examples was given. The
relationship of several methods covered in this chapter was tied to concepts learned
earlier in the text, including linear regression, analysis of frequency data, and non-
parametric statistics.

SUMMARY OF FORMULAS FOR CHAPTER 14

Formula | Name Formula
Number
14.2.1 Cumulative F(t)=P(T <1)
distribution function
14.2.2 Survival function S()=1-F(t)
14.2.3 Probability Pt <T<t+A)
distribution function fle) = At , as Ar—0
14.2.4 Relationship of AF (1) AS(7)
probability f) = A = T TAr
distribution function f g
to the cumulative
distribution function
and the survival
function
14.2.5 Hazard function h(e) = P(t<T<t+ AT >1) Cas A0
At
14.2.7 Relationship of the A f()
hazard function to (r) S(1)
the probability
distribution function
and the survival
function
14.3.1 Survival probability number of subjects surviving at least(s — 1) time period
. who also survive the rth period
Pi = umber of subjects alive at end of time period (r — 1)
14.3.2 Estimated survival S‘(;) =Py X Py XX Py
function
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14.5.1 Hazard regression h(t;) = ho(t;) exp (Bizit + Brzio + - - - + Bizix)
model
14.5.2 Proportional hazard h(t;)
model ho(t) exp (Bizin + Bozio + -+ + Brzie)
Symbol * B =regression coefficient
Key e A =change

e F(f) = cumulative distribution function
e f(t) =probability density function

e h(f) =hazard function

¢ p = probability

¢ S(¢) = survival function

e T=time of interest

e f=time to event

e z=risk factor in Cox regression

REVIEW QUESTIONS AND EXERCISES
1. Describe in words the concept of data censoring.
2. Define the following:
(a) Hazard ratio
(b) Hazard function
(c) Probability distribution function
(d) Survival function
(e) Kaplan—Meier estimate

3. Explain the concepts underlying the Cox regression model.

4. What is the difference between right censoring and left censoring? Provide an example of each.

5. Discuss why it is often preferable to use a nonparametric test for comparisons of survival curves.

6. Why is Cox regression called a “proportional hazards” model?

7. If the probability distribution function at time 5 is equal to .25 and the survival function at time 5 is
equal to .15, what is the hazard function at time 5?

8. If we find that a measurement in the time interval between time 2 and 10 results in a probability
distribution function estimate of 0.03, what is the estimated change in the cumulative distribution
function?

9. Using the data from question 8, what is the estimated change in the survival function?

10. Explain why the cumulative distribution function and the survival function are mirror images of one
another.
11. The objective of a study by Lee et al. (A-5) was to improve understanding of the biologic behavior of

gastric epithelioid stromal tumors. They studied the clinical features, histologic findings, and DNA
ploidy of a series of the tumors to identify factors that might distinguish between benign and
malignant variants of these tumors and have relevance for prognosis. Fifty-five patients with tumors
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were classified on the basis of whether their tumors were high-grade malignant (grade 2), low-grade
malignant (grade 1), or benign (grade 0). Among the data collected were the following:

Outcome Number of Outcome Number of
(1 =Death  Days to Last (1 =Death  Days to Last
Tumor from Follow-Up or Tumor from Follow-Up or
Patient Grade Disease) Death Patient Grade Disease) Death
1 0 0 87 8 0 0 1616
2 0 0 775 9 0 0 1982
3 0 0 881 10 0 0 2035
4 0 0 914 11 0 0 2191
5 0 0 1155 12 0 0 2472
6 0 0 1162 13 0 0 2527
7 0 0 1271 14 0 0 2782
15 0 0 3108 36 0 0 7318
16 0 0 3158 37 0 0 7447
17 0 0 3609 38 0 0 9525
18 0 0 3772 39 0 0 9938
19 0 0 3799 40 0 0 10429
20 0 0 3819 41 1 1 450
21 0 0 4586 42 1 1 556
22 0 0 4680 43 1 1 2102
23 0 0 4989 44 1 0 2756
24 0 0 5675 45 1 0 3496
25 0 0 5936 46 1 1 3990
26 0 0 5985 47 1 0 5686
27 0 0 6175 48 1 0 6290
28 0 0 6177 49 1 0 8490
29 0 0 6214 50 2 1 106
30 0 0 6225 51 2 1 169
31 0 0 6449 52 2 1 306
32 0 0 6669 53 2 1 348
33 0 0 6685 54 2 1 549
34 0 0 6873 55 2 1 973
35 0 0 6951

Source: Data provided courtesy of Dr. Michael B. Farnell.

Girard et al. (A-6) conducted a study to identify prognostic factors of improved survival after
resection of isolated pulmonary metastases (PM) from colorectal cancer. Among the data collected
were the following regarding number of resected PM, survival, and outcome for 77 patients who
underwent a complete resection at the first thoracic operation:

Number of Survival Number of Survival

Patient Resected PM (Months) Status Patient Resected PM (Months) Status
1 1 24 Alive 8 1 15 Dead

2 1 67 Alive 9 1 10 Dead

3 1 42 Alive 10 1 41 Dead

4 > 1 28 Dead 11 > 1 41 Dead

5 1 37 Dead 12 1 27 Dead

6 1 133 Alive 13 1 93 Alive

7 1 33 Dead 14 > 1 0 Dead

15 1 60 Dead 47 1 54 Dead

(Continued)
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Number of Survival Number of Survival

Patient Resected PM (Months) Status Patient Resected PM (Months) Status
16 1 43 Dead 48 > 1 57 Alive
17 > 1 73 Alive 49 > 1 16 Dead
18 1 55 Alive 50 1 29 Dead
19 1 46 Dead 51 1 14 Dead
20 1 66 Alive 52 > 1 29 Dead
21 1 10 Dead 53 > 1 99 Dead
22 > 1 3 Dead 54 > 1 23 Dead
23 > 1 7 Dead 55 1 74 Alive
24 > 1 129 Alive 56 1 169 Alive
25 1 19 Alive 57 > 1 24 Dead
26 > 1 15 Dead 58 > 1 9 Dead
27 1 39 Alive 59 1 43 Dead
28 1 15 Dead 60 1 3 Alive
29 > 1 30 Dead 61 > 1 20 Dead
30 1 35 Alive 62 1 2 Dead
31 > 1 18 Dead 63 > 1 41 Dead
32 1 27 Dead 64 > 1 27 Dead
33 1 121 Alive 65 1 45 Alive
34 > 1 8 Dead 66 1 26 Dead
35 1 24 Alive 67 > 1 10 Dead
36 1 127 Alive 68 1 143 Alive
37 1 26 Dead 69 1 16 Dead
38 > 1 7 Dead 70 1 29 Alive
39 > 1 26 Dead 71 1 17 Dead
40 > 1 17 Dead 72 > 1 20 Dead
41 1 18 Dead 73 1 92 Alive
42 1 17 Dead 74 > 1 15 Dead
43 > 1 10 Dead 75 1 5 Dead
44 > 1 33 Dead 76 > 1 73 Alive
45 > 1 42 Alive 77 1 19 Dead
46 1 40 Alive

Source: Data provided courtesy of Dr. Philippe Girard.

13. In a study by Alicikus et al. (A-7), long-term control of prostate cancer receiving radiotherapy was
examined in patients after 10 years. The authors using Cox regression analysis to analyze these data,
which resulted in the data summarized in the table below. For these data:

(a) Calculate the parameter estimates for the Cox regression model.
(b) Provide an explanation of the hazard ratios (HR) and their meaning.

(c) For age, provide an alternative measure for the HR and provide its meaning in terms of the
percent change in years.

Variable Hazard Ratio (HR) 95% CIfor HR  p-value
Age 1.02 (.96, 1.08) 51
Hormone therapy (yes vs. no) .89 (.44,1.81) 5
Pre-PSA, >10ng/mL vs. <10 ng/mL 2.41 (1.19,4.88) .015
Tumor classification 1.42 (1.17,1.71) <.001

Source: ZUMRE A. ALICIKUS, YOSHIYA YAMADA, ZHIGANG ZHANG, XIN PEl, MARGIE HUNG, MARISA KOLLMEIER, BRETT
Cox, and MICHAEL J. ZELEFsKY, “Ten-year Outcomes of High-Dose, Intensity-Modulated Radiotherapy for
Localized Prostate Cancer,” Cancer, 117 (2010), 1429-1437.



REFERENCES 777

REFERENCES

11.

© 0 ®

Methodology References

Davip G. KLeinBauM and MitcHEL KLEIN, Survival Analysis: A Self-Learning Text, Second Edition, Springer, New
York, 2005.

Evuisa T. Lk, Statistical Methods for Survival Data Analysis, Third Edition, Wiley, New York, 2003.

Davip W. HosMER, JR. and STANLEY LEMESHOW, Applied Survival Analysis: Regression Modeling of Time to Event
data, Wiley, New York, 1999.

PauL D. ALLisoN, Survival Analysis using SAS®: A Practical Guide, Second Edition, SAS Publishing, Cary, NC,
2010.

E. L. KapLaN and P. MEIER, “Nonparametric Estimation from Incomplete Observations,” Journal of the American
Statistical Association, 53 (1958), 457-481.

NATHAN MANTEL, “Evaluation of Survival Data and Two New Rank Order Statistics Arising in Its Consideration,”
Cancer Chemotherapy Reports, 50 (March1966), 163-170.

MaHEESH K. B. PARMAR and Davip MAcHIN, Survival Analysis: A Practical Approach, Wiley, New York, 1995.
Davip G. KLEINBAUM, Survival Analysis: A Self-Learning Text, Springer, New York, 1996.

ELisaT. Leg, Statistical Methods for Survival Data Analysis, Lifetime Learning Publications, Belmont, CA, 1980.
EtTORE MARUBINI and MARriA GrAzIA VALSECCHI, Analysing Survival Data from Clinical Trials and Observational
Studies, Wiley, New York, 1995.

Davip R. Cox, “Regression Models and Life Tables” (with discussion), Journal of the Royal Statistical Society,
B34 (1972), 187-220.

Application References

NaEL MarTINI, ANDREW G. Huvos, MicHAEL E. BurT, RoBERT T. HEELAN, MANIIT S. Bains, PaTriciA M. McCORMACK,
VALERIE W. RuscH, MicHAEL WEBER, ROBERT J. DownNEY, and RoBERT J. GINSBERG, “Predictions of Survival in
Malignant Tumors of the Sternum,” Journal of Thoracic and Cardiovascular Surgery, 111 (1996), 96-106.
Massmvo E. DoTToRrINI, AGNESE AssI, MARIA SIRONI, GABRIELE SANGALLI, GIANLUIGI SPREAFICO, and Luicia CoLOMBO,
“Multivariate Analysis of Patients with Medullary Thyroid Carcinoma,” Cancer, 77 (1996), 1556—1565.
MARY ANN BANERJI, ROCHELLE L. CHAIKEN, and HaroLD E. LeBovitz, “Long-Term Normoglycemic Remission in
Black Newly Diagnosed NIDDM Subjects,” Diabetes, 45 (1996), 337-341.

DoNALD L. WEAVER, TAKAMARU ASHIKAGA, DAVID N. KrRAG, JOAN M. SKELLY, STEWART J. ANDERSON, SETH P. HARLOW,
TroMmas B. JuLiaN, ELEFTHERIOS P. MamouNas, and NorMAL WoOLMARK, “Effect of Occult Metastases on Survival in
Node-Negative Breast Cancer,” The New England Journal of Medicine, 364 (2011), 412-421.

Jovy S. Y. LEE, ANTONIO G. NASCIMENTO, MICHAEL B. FARNELL, J. AIDAN CARNEY, WILLIAM S. HARMSEN, and DUANE M.
ILstrup, “Epithelioid Gastric Stromal Tumors (Leiomyoblastomas): A Study of Fifty-five Cases,” Surgery, 118
(1995), 653-661.

PHILIPPE GIRARD, MICHEL DUCREUX, PIERRE BALDEYROU, PHILIPPE LASSER, BRICE GAYET, PIERRE RUFFIE, and DOMINIQUE
GRUNENWALD, “Surgery for Lung Metastases from Colorectal Cancer: Analysis of Prognostic Factors,” Journal of
Clinical Oncology, 14 (1996), 2047-2053.

ZUMRE A. ALICIKUS, YOSHIYA YAMADA, ZHIGANG ZHANG, XIN PEI, MARGIE HUNG, MARIsA KoLLMEIER, BRETT Cox, and
MicHAEL J. ZELEFsKY, “Ten-year Outcomes of High-Dose, Intensity-Modulated Radiotherapy for Localized
Prostate Cancer,” Cancer, 117 (2010), 1429-1437.





