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CHAPTER6
ESTIMATION

CHAPTER OVERVIEW

This chapter covers estimation, one of the two types of statistical inference. As
discussed in earlier chapters, statistics, such as means and variances, can be
calculated from samples drawn from populations. These statistics serve as
estimates of the corresponding population parameters. We expect these
estimates to differ by some amount from the parameters they estimate.
This chapter introduces estimation procedures that take these differences
into account, thereby providing a foundation for statistical inference proce-
dures discussed in the remaining chapters of the book.
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LEARNING OUTCOMES

After studying this chapter, the student will

1. understand the importance and basic principles of estimation.

2. be able to calculate interval estimates for a variety of parameters.

3. be able to interpret a confidence interval from both a practical and a probabilistic
viewpoint.

4. understand the basic properties and uses of the t distribution, chi-square distri-
bution, and F distribution.

6.1 INTRODUCTION

We come now to a consideration of estimation, the first of the two general areas of statistical
inference. The second general area, hypothesis testing, is examined in the next chapter.

We learned in Chapter 1 that inferential statistics is defined as follows.

DEFINITION

Statistical inference is the procedure by which we reach a conclusion
about a population on the basis of the information contained in a sample
drawn from that population.

The process of estimation entails calculating, from the data of a sample, some
statistic that is offered as an approximation of the corresponding parameter of the
population from which the sample was drawn.

The rationale behind estimation in the health sciences field rests on the assumption
that workers in this field have an interest in the parameters, such as means and proportions,
of various populations. If this is the case, there is a good reason why one must rely on
estimating procedures to obtain information regarding these parameters. Many populations
of interest, although finite, are so large that a 100 percent examination would be prohibitive
from the standpoint of cost.

Suppose the administrator of a large hospital is interested in the mean age of patients
admitted to his hospital during a given year. He may consider it too expensive to go through
the records of all patients admitted during that particular year and, consequently, elect to
examine a sample of the records from which he can compute an estimate of the mean age of
patients admitted that year.

A physician in general practice may be interested in knowing what proportion of a
certain type of individual, treated with a particular drug, suffers undesirable side effects.
No doubt, her concept of the population consists of all those persons who ever have been or
ever will be treated with this drug. Deferring a conclusion until the entire population has
been observed could have an adverse effect on her practice.

These two examples have implied an interest in estimating, respectively, a population
mean and a population proportion. Other parameters, the estimation of which we will cover
in this chapter, are the difference between two means, the difference between two
proportions, the population variance, and the ratio of two variances.
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We will find that for each of the parameters we discuss, we can compute two types of
estimate: a point estimate and an interval estimate.

DEFINITION

A point estimate is a single numerical value used to estimate the
corresponding population parameter.

DEFINITION

An interval estimate consists of two numerical values defining a range
of values that, with a specified degree of confidence, most likely
includes the parameter being estimated.

These concepts will be elaborated on in the succeeding sections.

Choosing anAppropriate Estimator Note that a single computed value has
been referred to as an estimate. The rule that tells us how to compute this value, or estimate, is
referred to as an estimator. Estimators are usually presented as formulas. For example,

�x ¼
P

xi
n

is an estimator of the population mean, m. The single numerical value that results from
evaluating this formula is called an estimate of the parameter m.

In many cases, a parameter may be estimated by more than one estimator. For
example, we could use the sample median to estimate the population mean. How then do
we decide which estimator to use for estimating a given parameter? The decision is based
on an objective measure or set of criteria that reflect some desired property of a particular
estimator. When measured against these criteria, some estimators are better than others.
One of these criteria is the property of unbiasedness.

DEFINITION

An estimator, say, T, of the parameter u is said to be an unbiased estimator
of u if E(T) = u.

E(T) is read, “the expected value of T.” For a finite population, E(T) is obtained by
taking the average value of T computed from all possible samples of a given size that may
be drawn from the population. That is, E Tð Þ ¼ mT . For an infinite population, E(T) is
defined in terms of calculus.

In the previous chapter we have seen that the sample mean, the sample proportion,
the difference between two sample means, and the difference between two sample
proportions are each unbiased estimates of their corresponding parameters. This property
was implied when the parameters were said to be the means of the respective sampling
distributions. For example, since the mean of the sampling distribution of �x is equal to m,
we know that �x is an unbiased estimator of m. The other criteria of good estimators will not
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be discussed in this book. The interested reader will find them covered in detail in most
mathematical statistics texts.

Sampled Populations and Target Populations The health researcher
who uses statistical inference procedures must be aware of the difference between two
kinds of population—the sampled population and the target population.

DEFINITION

The sampled population is the population from which one actually draws
a sample.

DEFINITION

The target population is the population about which one wishes to make
an inference.

These two populations may or may not be the same. Statistical inference procedures
allow one to make inferences about sampled populations (provided proper sampling
methods have been employed). Only when the target population and the sampled
population are the same is it possible for one to use statistical inference procedures to
reach conclusions about the target population. If the sampled population and the target
population are different, the researcher can reach conclusions about the target population
only on the basis of nonstatistical considerations.

Suppose, for example, that a researcher wishes to assess the effectiveness of some
method for treating rheumatoid arthritis. The target population consists of all patients suffering
from the disease. It is not practical to draw a sample from this population. The researcher may,
however, select a sample from all rheumatoid arthritis patients seen in some specific clinic.
These patients constitute the sampled population, and, if proper sampling methods are used,
inferences about this sampled population may be drawn on the basis of the information in the
sample. If the researcher wishes to make inferences about all rheumatoid arthritis sufferers, he
or she must rely on nonstatistical means to do so. Perhaps the researcher knows that the sampled
population is similar, with respect to all important characteristics, to the target population. That
is, the researcher may know that the age, sex, severity of illness, duration of illness, and so on are
similar in both populations. And on the strength of this knowledge, the researcher may be
willing to extrapolate his or her findings to the target population.

In many situations the sampled population and the target population are identical; when
this is the case, inferences about the target population are straightforward. The researcher,
however, should be aware that this is not always the case and not fall into the trap of drawing
unwarranted inferences about a population that is different from the one that is sampled.

Random and Nonrandom Samples In the examples and exercises of this
book, we assume that the data available for analysis have come from random samples. The
strict validity of the statistical procedures discussed depends on this assumption. In many
instances in real-world applications it is impossible or impractical to use truly random
samples. In animal experiments, for example, researchers usually use whatever animals are
available from suppliers or their own breeding stock. If the researchers had to depend on
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randomly selected material, very little research of this type would be conducted. Again,
nonstatistical considerations must play a part in the generalization process. Researchers
may contend that the samples actually used are equivalent to simple random samples, since
there is no reason to believe that the material actually used is not representative of the
population about which inferences are desired.

In many health research projects, samples of convenience, rather than random
samples, are employed. Researchers may have to rely on volunteer subjects or on readily
available subjects such as students in their classes. Samples obtained from such sources are
examples of convenience samples. Again, generalizations must be made on the basis of
nonstatistical considerations. The consequences of such generalizations, however, may be
useful or they may range from misleading to disastrous.

In some situations it is possible to introduce randomization into an experiment even
though available subjects are not randomly selected from some well-defined population. In
comparing two treatments, for example, each subject may be randomly assigned to one or
the other of the treatments. Inferences in such cases apply to the treatments and not the
subjects, and hence the inferences are valid.

6.2 CONFIDENCE INTERVAL
FOR A POPULATIONMEAN

Suppose researchers wish to estimate the mean of some normally distributed population.
They draw a random sample of size n from the population and compute �x, which they use as
a point estimate of m. Although this estimator of m possesses all the qualities of a good
estimator, we know that because random sampling inherently involves chance, �x cannot be
expected to be equal to m.

It would be much more meaningful, therefore, to estimate m by an interval that
somehow communicates information regarding the probable magnitude of m.

Sampling Distributions and Estimation To obtain an interval estimate,
we must draw on our knowledge of sampling distributions. In the present case, because we
are concerned with the sample mean as an estimator of a population mean, we must recall
what we know about the sampling distribution of the sample mean.

In the previous chapter we learned that if sampling is from a normally distributed
population, the sampling distribution of the sample mean will be normally distributed with
a mean m�x equal to the population mean m, and a variance s2

�x equal to s2=n. We could plot
the sampling distribution if we only knew where to locate it on the �x-axis. From our
knowledge of normal distributions, in general, we know even more about the distribution of
�x in this case. We know, for example, that regardless of where the distribution of �x is
located, approximately 95 percent of the possible values of �x constituting the distribution
are within two standard deviations of the mean. The two points that are two standard
deviations from the mean are m� 2s�x and mþ 2s�x, so that the interval m� 2s�x will
contain approximately 95 percent of the possible values of �x. We know that m and, hence
m�x, are unknown, but we may arbitrarily place the sampling distribution of �x on the �x-axis.

Since we do not know the value of m, not a great deal is accomplished by the
expression m� 2s�x. We do, however, have a point estimate of m, which is �x. Would it be
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useful to construct an interval about this point estimate of m? The answer is yes. Suppose
we constructed intervals about every possible value of �x computed from all possible
samples of size n from the population of interest. We would have a large number of
intervals of the form �x� 2s�x with widths all equal to the width of the interval about the
unknown m. Approximately 95 percent of these intervals would have centers falling within
the �2s�x interval about m. Each of the intervals whose centers fall within 2s�x of m would
contain m. These concepts are illustrated in Figure 6.2.1, in which we see that �x;�x3, and �x4

all fall within the interval about m, and, consequently, the 2s�x intervals about these sample
means include the value of m. The sample means �x2 and �x5 do not fall within the 2s�x
interval about m, and the 2s�x intervals about them do not include m.

EXAMPLE 6.2.1

Suppose a researcher, interested in obtaining an estimate of the average level of some
enzyme in a certain human population, takes a sample of 10 individuals, determines the
level of the enzyme in each, and computes a sample mean of �x ¼ 22. Suppose further it is
known that the variable of interest is approximately normally distributed with a variance of
45. We wish to estimate m.

Solution: An approximate 95 percent confidence interval for m is given by

�x� 2s�x

22 � 2

ffiffiffiffiffi
45

10

r

22 � 2ð2:1213Þ
17:76; 26:24 &
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FIGURE 6.2.1 The 95 percent confidence interval for m.
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Interval Estimate Components Let us examine the composition of the
interval estimate constructed in Example 6.2.1. It contains in its center the point estimate
of m. The 2 we recognize as a value from the standard normal distribution that tells us
within how many standard errors lie approximately 95 percent of the possible values of �x.
This value of z is referred to as the reliability coefficient. The last component, s�x, is the
standard error, or standard deviation of the sampling distribution of �x. In general, then, an
interval estimate may be expressed as follows:

estimator � reliability coefficientð Þ � standard errorð Þ (6.2.1)

In particular, when sampling is from a normal distribution with known variance, an
interval estimate for m may be expressed as

�x� z 1�a=2ð Þs�x (6.2.2)

where z 1�a=2ð Þ is the value of z to the left of which lies 1 � a=2 and to the right of which lies
a=2 of the area under its curve.

Interpreting Confidence Intervals How do we interpret the interval given
by Expression 6.2.2? In the present example, where the reliability coefficient is equal to 2,
we say that in repeated sampling approximately 95 percent of the intervals constructed by
Expression 6.2.2 will include the population mean. This interpretation is based on the
probability of occurrence of different values of �x. We may generalize this interpretation if
we designate the total area under the curve of �x that is outside the interval m� 2s�x as a and
the area within the interval as 1 � a and give the following probabilistic interpretation of
Expression 6.2.2.

Probabilistic Interpretation

In repeated sampling, from a normally distributed population with a known standard
deviation, 100 1 � að Þ percent of all intervals of the form �x� z 1�a=2ð Þs�x will in the long
run include the population mean m.

The quantity 1 � a, in this case .95, is called the confidence coefficient (or confidence
level), and the interval �x� z 1�a=2ð Þs�x is called a confidence interval for m. When
1 � að Þ ¼ :95, the interval is called the 95 percent confidence interval for m. In the

present example we say that we are 95 percent confident that the population mean is
between 17.76 and 26.24. This is called the practical interpretation of Expression 6.2.2. In
general, it may be expressed as follows.

Practical Interpretation

When sampling is from a normally distributed population with known standard
deviation, we are 100 1 � að Þ percent confident that the single computed interval,
�x� z 1�a=2ð Þs�x, contains the population mean m.

In the example given here we might prefer, rather than 2, the more exact value of z,
1.96, corresponding to a confidence coefficient of .95. Researchers may use any confidence
coefficient they wish; the most frequently used values are .90, .95, and .99, which have
associated reliability factors, respectively, of 1.645, 1.96, and 2.58.
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Precision The quantity obtained by multiplying the reliability factor by the standard
error of the mean is called the precision of the estimate. This quantity is also called the
margin of error.

EXAMPLE 6.2.2

A physical therapist wished to estimate, with 99 percent confidence, the mean maximal
strength of a particular muscle in a certain group of individuals. He is willing to assume that
strength scores are approximately normally distributed with a variance of 144. A sample of
15 subjects who participated in the experiment yielded a mean of 84.3.

Solution: The zvalue corresponding to a confidence coefficient of .99 is found in Appendix
Table D to be 2.58. This is our reliability coefficient. The standard error is
s�x ¼ 12=

ffiffiffiffiffi
15

p ¼ 3:0984. Our 99 percent confidence interval for m, then, is

84:3 � 2:58ð3:0984Þ
84:3 � 8:0

76:3; 92:3

We say we are 99 percent confident that the population mean is between
76.3 and 92.3 since, in repeated sampling, 99 percent of all intervals
that could be constructed in the manner just described would include the
population mean. &

Situations in which the variable of interest is approximately normally distributed with a
known variance are quite rare. The purpose of the preceding examples, which assumed that
these ideal conditions existed, was to establish the theoretical background for constructing
confidence intervals for population means. In most practical situations either the variables
are not approximately normally distributed or the population variances are not known or
both. Example 6.2.3 and Section 6.3 explain the procedures that are available for use in the
less than ideal, but more common, situations.

Sampling from Nonnormal Populations As noted, it will not always be
possible or prudent to assume that the population of interest is normally distributed. Thanks
to the central limit theorem, this will not deter us if we are able to select a large enough
sample. We have learned that for large samples, the sampling distribution of �x is
approximately normally distributed regardless of how the parent population is distributed.

EXAMPLE 6.2.3

Punctuality of patients in keeping appointments is of interest to a research team. In a study
of patient flow through the offices of general practitioners, it was found that a sample of 35
patients was 17.2 minutes late for appointments, on the average. Previous research had
shown the standard deviation to be about 8 minutes. The population distribution was felt to
be nonnormal. What is the 90 percent confidence interval for m, the true mean amount of
time late for appointments?
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Solution: Since the sample size is fairly large (greater than 30), and since the population
standard deviation is known, we draw on the central limit theorem and
assume the sampling distribution of �x to be approximately normally distrib-
uted. From Appendix Table D we find the reliability coefficient correspond-
ing to a confidence coefficient of .90 to be about 1.645, if we interpolate. The
standard error is s�x ¼ 8=

ffiffiffiffiffi
35

p ¼ 1:3522, so that our 90 percent confidence
interval for m is

17:2 � 1:645 1:3522ð Þ
17:2 � 2:2

15:0; 19:4 &

Frequently, when the sample is large enough for the application of the central limit
theorem, the population variance is unknown. In that case we use the sample variance as a
replacement for the unknown population variance in the formula for constructing a
confidence interval for the population mean.

Computer Analysis When confidence intervals are desired, a great deal of time
can be saved if one uses a computer, which can be programmed to construct intervals from
raw data.

EXAMPLE 6.2.4

The following are the activity values (micromoles per minute per gram of tissue) of a
certain enzyme measured in normal gastric tissue of 35 patients with gastric carcinoma.

.360 1.189 .614 .788 .273 2.464 .571
1.827 .537 .374 .449 .262 .448 .971

.372 .898 .411 .348 1.925 .550 .622

.610 .319 .406 .413 .767 .385 .674

.521 .603 .533 .662 1.177 .307 1.499

We wish to use the MINITAB computer software package to construct a 95 percent confi-
dence interval for the population mean. Suppose we know that the population variance is .36.
It is not necessary to assume that the sampled population of values is normally distributed
since the sample size is sufficiently large for application of the central limit theorem.

Solution: We enter the data into Column 1 and proceed as shown in Figure 6.2.2 . These
instructions tell the computer that the reliability factor is z, that a 95 percent
confidence interval is desired, that the population standard deviation is .6, and
that the data are in Column 1. The output tells us that the sample mean is .718,
the sample standard deviation is .511, and the standard error of the mean,
s=

ffiffiffi
n

p
is :6=

ffiffiffiffiffi
35

p ¼ :101. &

We are 95 percent confident that the population mean is somewhere between .519
and .917. Confidence intervals may be obtained through the use of many other software
packages. Users of SAS®, for example, may wish to use the output from PROC MEANS or
PROC UNIVARIATE to construct confidence intervals.
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Alternative Estimates of Central Tendency As noted previously, the
mean is sensitive to extreme values—those values that deviate appreciably from most of the
measurements in a data set. They are sometimes referred to as outliers. We also noted earlier
that the median, because it is not so sensitive to extreme measurements, is sometimes
preferred over the mean as a measure of central tendency when outliers are present. For the
same reason, we may prefer to use the sample median as an estimator of the population
median when we wish to make an inference about the central tendency of a population. Not
only may we use the sample median as a point estimate of the population median, we also may
construct a confidence interval for the population median. The formula is not given here but
may be found in the book by Rice (1).

Trimmed Mean Estimators that are insensitive to outliers are called robust
estimators. Another robust measure and estimator of central tendency is the trimmed
mean. For a set of sample data containing n measurements we calculate the 100a percent
trimmed mean as follows:

1. Order the measurements.

2. Discard the smallest 100a percent and the largest 100a percent of the measurements.
The recommended value of a is something between .1 and .2.

3. Compute the arithmetic mean of the remaining measurements.

Note that the median may be regarded as a 50 percent trimmed mean.

EXERCISES

For each of the following exercises construct 90, 95, and 99 percent confidence intervals for the
population mean, and state the practical and probabilistic interpretations of each. Indicate which
interpretation you think would be more appropriate to use when discussing confidence intervals with

Session command:Dialog box:

Stat Basic Statistics 1-Sample z MTB > ZINTERVAL 95 .6 C1

Type C1 in Samples in Columns.
Type .6 in Standard deviation. Click OK.

Output:

One-Sample Z: C1

The assumed standard deviation 0.600

Variable N Mean StDev SE Mean 95.0 % C.I.
MicMoles 35 0.718 0.511 0.101 ( 0.519, 0.917)

FIGURE 6.2.2 MINITAB procedure for constructing 95 percent confidence interval for a

population mean, Example 6.2.4.
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someone who has not had a course in statistics, and state the reason for your choice. Explain why the
three intervals that you construct are not of equal width. Indicate which of the three intervals you
would prefer to use as an estimate of the population mean, and state the reason for your choice.

6.2.1. We wish to estimate the average number of heartbeats per minute for a certain population. The
average number of heartbeats per minute for a sample of 49 subjects was found to be 90. Assume that
these 49 patients constitute a random sample, and that the population is normally distributed with a
standard deviation of 10.

6.2.2. We wish to estimate the mean serum indirect bilirubin level of 4-day-old infants. The mean for a
sample of 16 infants was found to be 5.98 mg/100 cc. Assume that bilirubin levels in 4-day-old infants
are approximately normally distributed with a standard deviation of 3.5 mg/100 cc.

6.2.3. In a length of hospitalization study conducted by several cooperating hospitals, a random sample of
64 peptic ulcer patients was drawn from a list of all peptic ulcer patients ever admitted to the
participating hospitals and the length of hospitalization per admission was determined for each. The
mean length of hospitalization was found to be 8.25 days. The population standard deviation is known
to be 3 days.

6.2.4. A sample of 100 apparently normal adult males, 25 years old, had a mean systolic blood pressure of
125. It is believed that the population standard deviation is 15.

6.2.5. Some studies of Alzheimer’s disease (AD) have shown an increase in 14CO2 production in patients
with the disease. In one such study the following 14CO2 values were obtained from 16 neocortical
biopsy samples from AD patients.

1009 1280 1180 1255 1547 2352 1956 1080
1776 1767 1680 2050 1452 2857 3100 1621

Assume that the population of such values is normally distributed with a standard deviation of 350.

6.3 THE tDISTRIBUTION

In Section 6.2, a procedure was outlined for constructing a confidence interval for a
population mean. The procedure requires knowledge of the variance of the population from
which the sample is drawn. It may seem somewhat strange that one can have knowledge of
the population variance and not know the value of the population mean. Indeed, it is the
usual case, in situations such as have been presented, that the population variance, as well
as the population mean, is unknown. This condition presents a problem with respect to
constructing confidence intervals. Although, for example, the statistic

z ¼ �x� m

s=
ffiffiffi
n

p

is normally distributed when the population is normally distributed and is at least
approximately normally distributed when n is large, regardless of the functional form
of the population, we cannot make use of this fact because s is unknown. However, all is
not lost, and the most logical solution to the problem is the one followed. We use the sample
standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

xi � �xð Þ2= n� 1ð Þ
q
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to replace s. When the sample size is large, say, greater than 30, our faith in s as an
approximation of s is usually substantial, and we may be appropriately justified in using
normal distribution theory to construct a confidence interval for the population mean. In
that event, we proceed as instructed in Section 6.2.

It is when we have small samples that it becomes mandatory for us to find an
alternative procedure for constructing confidence intervals.

As a result of the work of Gosset (2), writing under the pseudonym of “Student,” an
alternative, known as Student’s t distribution, usually shortened to t distribution, is
available to us.

The quantity

t ¼ �x� m

s=
ffiffiffi
n

p (6.3.1)

follows this distribution.

Properties of the t Distribution The t distribution has the following
properties.

1. It has a mean of 0.

2. It is symmetrical about the mean.

3. In general, it has a variance greater than 1, but the variance approaches 1 as the
sample size becomes large. For df > 2, the variance of the t distribution is
df= df � 2ð Þ, where df is the degrees of freedom. Alternatively, since here df ¼
n� 1 for n > 3, we may write the variance of the t distribution as n� 1ð Þ= n� 3ð Þ.

4. The variable t ranges from �1 to þ1.

5. The t distribution is really a family of distributions, since there is a different
distribution for each sample value of n� 1, the divisor used in computing s2. We
recall that n� 1 is referred to as degrees of freedom. Figure 6.3.1 shows t
distributions corresponding to several degrees-of-freedom values.

Degrees of  freedom = 30

Degrees of  freedom = 5

Degrees of  freedom = 2

t

FIGURE 6.3.1 The t distribution for different degrees-of-freedom values.
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6. Compared to the normal distribution, the t distribution is less peaked in the center and
has thicker tails. Figure 6.3.2 compares the t distribution with the normal.

7. The t distribution approaches the normal distribution as n� 1 approaches infinity.

The t distribution, like the standard normal, has been extensively tabulated. One such
table is given as Table E in the Appendix. As we will see, we must take both the confidence
coefficient and degrees of freedom into account when using the table of the t distribution.

You may use MINITAB to graph the t distribution (for specified degrees-of-freedom
values) and other distributions. After designating the horizontal axis by following direc-
tions in the Set Patterned Data box, choose menu path Calc and then Probability
Distributions. Finally, click on the distribution desired and follow the instructions. Use
the Plot dialog box to plot the graph.

Confidence Intervals Using t The general procedure for constructing confi-
dence intervals is not affected by our having to use the t distribution rather than the standard
normal distribution. We still make use of the relationship expressed by

estimator � reliability coefficientð Þ � standard error of the estimatorð Þ
What is different is the source of the reliability coefficient. It is now obtained from the table of
the t distribution rather than from the table of the standard normal distribution. To be more
specific, when sampling is from a normal distribution whose standard deviation, s, is
unknown, the 100 1 � að Þ percent confidence interval for the population mean,m, is given by

�x� t 1�a=2ð Þ
sffiffiffi
n

p (6.3.2)

We emphasize that a requirement for the strictly valid use of the t distribution is that the
sample must be drawn from a normal distribution. Experience has shown, however, that
moderate departures from this requirement can be tolerated. As a consequence, the t
distribution is used even when it is known that the parent population deviates somewhat
from normality. Most researchers require that an assumption of, at least, a mound-shaped
population distribution be tenable.

EXAMPLE 6.3.1

Maffulli et al. (A-1) studied the effectiveness of early weightbearing and ankle mobiliza-
tion therapies following acute repair of a ruptured Achilles tendon. One of the variables

x

Normal distribution
t distribution

FIGURE 6.3.2 Comparison of normal distribution and t distribution.
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they measured following treatment was the isometric gastrocsoleus muscle strength. In
19 subjects, the mean isometric strength for the operated limb (in newtons) was 250.8 with
a standard deviation of 130.9. We assume that these 19 patients constitute a random sample
from a population of similar subjects. We wish to use these sample data to estimate for the
population the mean isometric strength after surgery.

Solution: We may use the sample mean, 250.8, as a point estimate of the population
mean but, because the population standard deviation is unknown, we must
assume the population of values to be at least approximately normally
distributed before constructing a confidence interval for m. Let us assume
that such an assumption is reasonable and that a 95 percent confidence
interval is desired. We have our estimator, �x, and our standard error is
s=

ffiffiffi
n

p ¼ 130:9=
ffiffiffiffiffi
19

p ¼ 30:0305. We need now to find the reliability
coefficient, the value of t associated with a confidence coefficient of .95
and n� 1 ¼ 18 degrees of freedom. Since a 95 percent confidence interval
leaves .05 of the area under the curve of t to be equally divided between the
two tails, we need the value of t to the right of which lies .025 of the area. We
locate in Appendix Table E the column headed t:975. This is the value of t to
the left of which lies .975 of the area under the curve. The area to the right of
this value is equal to the desired .025. We now locate the number 18 in the
degrees-of-freedom column. The value at the intersection of the row labeled
18 and the column labeled t:975 is the t we seek. This value of t, which is our
reliability coefficient, is found to be 2.1009. We now construct our 95 percent
confidence interval as follows:

250:8 � 2:1009 30:0305ð Þ
250:8 � 63:1

187:7; 313:9
&

This interval may be interpreted from both the probabilistic and practical points of view.
We are 95 percent confident that the true population mean, m, is somewhere between 187.7
and 313.9 because, in repeated sampling, 95 percent of intervals constructed in like manner
will include m.

Deciding Between z and t When we construct a confidence interval for a
population mean, we must decide whether to use a value of z or a value of t as the reliability
factor. To make an appropriate choice we must consider sample size, whether the sampled
population is normally distributed, and whether the population variance is known. Figure
6.3.3 provides a flowchart that one can use to decide quickly whether the reliability factor
should be z or t.

Computer Analysis If you wish to have MINITAB construct a confidence
interval for a population mean when the t statistic is the appropriate reliability factor,
the command is TINTERVAL. In Windows choose 1-Sample t from the Basic Statistics
menu.
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EXERCISES

6.3.1. Use the t distribution to find the reliability factor for a confidence interval based on the following
confidence coefficients and sample sizes:

a b c d

Confidence coefficient .95 .99 .90 .95
Sample size 15 24 8 30

6.3.2. In a study of the effects of early Alzheimer’s disease on nondeclarative memory, Reber et al. (A-2)
used the Category Fluency Test to establish baseline persistence and semantic memory and language
abilities. The eight subjects in the sample had Category Fluency Test scores of 11, 10, 6, 3, 11, 10, 9,
11. Assume that the eight subjects constitute a simple random sample from a normally distributed
population of similar subjects with early Alzheimer’s disease.

(a) What is the point estimate of the population mean?

(b) What is the standard deviation of the sample?

(c) What is the estimated standard error of the sample mean?

(d) Construct a 95 percent confidence interval for the population mean category fluency test score.

(e) What is the precision of the estimate?

(f) State the probabilistic interpretation of the confidence interval you constructed.

(g) State the practical interpretation of the confidence interval you constructed.

6.3.3. Pedroletti et al. (A-3) reported the maximal nitric oxide diffusion rate in a sample of 15 asthmatic
schoolchildren and 15 controls as mean � standard error of the mean. For asthmatic children, they

Population
normally
distributed

Population
variance
known?

Population
variance
known?

Population
variance
known?

Population
normally

distributed?

Yes

Yes

No Yes No

No Yes No

or

Yes

Yes

No

*

Yes No

No

Sample
size

large?

Sample
size

large?

Population
variance
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z

z

t z ztz

Central limit theorem applies

*

FIGURE 6.3.3 Flowchart for use in deciding between z and t when making inferences about

population means. (�Use a nonparametric procedure. See Chapter 13.)
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reported 3:5 � 0:4 nL=s (nanoliters per second) and for control subjects they reported 0:7 � :1 nL=s.
For each group, determine the following:

(a) What was the sample standard deviation?

(b) What is the 95 percent confidence interval for the mean maximal nitric oxide diffusion rate of the
population?

(c) What assumptions are necessary for the validity of the confidence interval you constructed?

(d) What are the practical and probabilistic interpretations of the interval you constructed?

(e) Which interpretation would be more appropriate to use when discussing confidence intervals
with someone who has not had a course in statistics? State the reasons for your choice.

(f) If you were to construct a 90 percent confidence interval for the population mean from the
information given here, would the interval be wider or narrower than the 95 percent confidence
interval? Explain your answer without actually constructing the interval.

(g) If you were to construct a 99 percent confidence interval for the population mean from the
information given here, would the interval be wider or narrower than the 95 percent confidence
interval? Explain your answer without actually constructing the interval.

6.3.4. The concern of a study by Beynnon et al. (A-4) were nine subjects with chronic anterior
cruciate ligament (ACL) tears. One of the variables of interest was the laxity of the anteroposterior,
where higher values indicate more knee instability. The researchers found that among subjects
with ACL-deficient knees, the mean laxity value was 17.4 mm with a standard deviation of
4.3 mm.

(a) What is the estimated standard error of the mean?

(b) Construct the 99 percent confidence interval for the mean of the population from which the nine
subjects may be presumed to be a random sample.

(c) What is the precision of the estimate?

(d) What assumptions are necessary for the validity of the confidence interval you constructed?

6.3.5. A sample of 16 ten-year-old girls had a mean weight of 71.5 and a standard deviation of 12 pounds,
respectively. Assuming normality, find the 90, 95, and 99 percent confidence intervals for m.

6.3.6. The subjects of a study by Dugoff et al. (A-5) were 10 obstetrics and gynecology interns at the
University of Colorado Health Sciences Center. The researchers wanted to assess competence in
performing clinical breast examinations. One of the baseline measurements was the number of such
examinations performed. The following data give the number of breast examinations performed for
this sample of 10 interns.

Intern Number No. of Breast Exams Performed

1 30
2 40
3 8
4 20
5 26
6 35
7 35
8 20
9 25

10 20

Source: Lorraine Dugoff, Mauritha R.
Everett, Louis Vontver, and Gwyn E.
Barley, “Evaluation of Pelvic and Breast
Examination Skills of Interns in
Obstetrics and Gynecology and Internal
Medicine,” American Journal of
Obstetrics and Gynecology, 189 (2003),
655–658.
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Construct a 95 percent confidence interval for the mean of the population from which the study
subjects may be presumed to have been drawn.

6.4 CONFIDENCE INTERVAL FOR
THE DIFFERENCE BETWEEN TWO
POPULATIONMEANS

Sometimes there arise cases in which we are interested in estimating the difference
between two population means. From each of the populations an independent random
sample is drawn and, from the data of each, the sample means �x1 and �x2, respectively, are
computed. We learned in the previous chapter that the estimator �x1 � �x2 yields an unbiased
estimate of m1 � m2, the difference between the population means. The variance of the
estimator is s2

1=n1

� �þ s2
2=n2

� �
. We also know from Chapter 5 that, depending on the

conditions, the sampling distribution of �x1 � �x2 may be, at least, approximately normally
distributed, so that in many cases we make use of the theory relevant to normal distributions
to compute a confidence interval for m1 � m2. When the population variances are known,
the 100 1 � að Þ percent confidence interval for m1 � m2 is given by

�x1 � �x2ð Þ � z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s
(6.4.1)

An examination of a confidence interval for the difference between population means
provides information that is helpful in deciding whether or not it is likely that the two
population means are equal. When the constructed interval does not include zero, we say
that the interval provides evidence that the two population means are not equal. When the
interval includes zero, we say that the population means may be equal.

Let us illustrate a case where sampling is from the normal distributions.

EXAMPLE 6.4.1

A research team is interested in the difference between serum uric acid levels in patients
with and without Down’s syndrome. In a large hospital for the treatment of the mentally
challenged, a sample of 12 individuals with Down’s syndrome yielded a mean of
�x1 ¼ 4:5 mg=100 ml. In a general hospital a sample of 15 normal individuals of the
same age and sex were found to have a mean value of �x2 ¼ 3:4. If it is reasonable to assume
that the two populations of values are normally distributed with variances equal to 1 and
1.5, find the 95 percent confidence interval for m1 � m2.

Solution: For a point estimate of m1 � m2, we use �x1 � �x2 ¼ 4:5 � 3:4 ¼ 1:1. The
reliability coefficient corresponding to .95 is found in Appendix Table D to be
1.96. The standard error is

s�x1��x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12
þ 1:5

15

r
¼ :4282
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The 95 percent confidence interval, then, is

1:1 � 1:96 :4282ð Þ
1:1 � :84
ð:26; 1:94Þ

We say that we are 95 percent confident that the true difference,
m1 � m2, is somewhere between .26 and 1.94 because, in repeated sampling,
95 percent of the intervals constructed in this manner would include the
difference between the true means.

Since the interval does not include zero, we conclude that the two
population means are not equal. &

Sampling from Non-normal Populations The construction of a confi-
dence interval for the difference between two population means when sampling is from
non-normal populations proceeds in the same manner as in Example 6.4.1 if the sample
sizes n1 and n2 are large. Again, this is a result of the central limit theorem. If the population
variances are unknown, we use the sample variances to estimate them.

EXAMPLE 6.4.2

Despite common knowledge of the adverse effects of doing so, many women continue to
smoke while pregnant. Mayhew et al. (A-6) examined the effectiveness of a smoking
cessation program for pregnant women. The mean number of cigarettes smoked daily at the
close of the program by the 328 women who completed the program was 4.3 with a
standard deviation of 5.22. Among 64 women who did not complete the program, the mean
number of cigarettes smoked per day at the close of the program was 13 with a standard
deviation of 8.97. We wish to construct a 99 percent confidence interval for the difference
between the means of the populations from which the samples may be presumed to have
been selected.

Solution: No information is given regarding the shape of the distribution of cigarettes
smoked per day. Since our sample sizes are large, however, the central limit
theorem assures us that the sampling distribution of the difference between
sample means will be approximately normally distributed even if the
distribution of the variable in the populations is not normally distributed.
We may use this fact as justification for using the z statistic as the reliability
factor in the construction of our confidence interval. Also, since the popula-
tion standard deviations are not given, we will use the sample standard
deviations to estimate them. The point estimate for the difference between
population means is the difference between sample means, 4:3 � 13:0 ¼
�8:7. In Appendix Table D we find the reliability factor to be 2.58. The
estimated standard error is

s�x1��x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:222

328
þ 8:972

64

s
¼ 1:1577
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By Equation 6.4.1, our 99 percent confidence interval for the difference
between population means is

�8:7 � 2:58 1:1577ð Þ
ð�11:7;�5:7Þ

We are 99 percent confident that the mean number of cigarettes smoked per
day for women who complete the program is between 5.7 and 11.7 lower than
the mean for women who do not complete the program. &

The t Distribution and the Difference Between Means When
population variances are unknown, and we wish to estimate the difference between two
population means with a confidence interval, we can use the t distribution as a source of the
reliability factor if certain assumptions are met. We must know, or be willing to assume,
that the two sampled populations are normally distributed. With regard to the population
variances, we distinguish between two situations: (1) the situation in which the population
variances are equal, and (2) the situation in which they are not equal. Let us consider each
situation separately.

Population Variances Equal If the assumption of equal population variances
is justified, the two sample variances that we compute from our two independent samples
may be considered as estimates of the same quantity, the common variance. It seems
logical, then, that we should somehow capitalize on this in our analysis. We do just that and
obtain a pooled estimate of the common variance. This pooled estimate is obtained by
computing the weighted average of the two sample variances. Each sample variance is
weighted by its degrees of freedom. If the sample sizes are equal, this weighted average is
the arithmetic mean of the two sample variances. If the two sample sizes are unequal, the
weighted average takes advantage of the additional information provided by the larger
sample. The pooled estimate is given by the formula

s2
p ¼

n1 � 1ð Þs2
1 þ n2 � 1ð Þs2

2

n1 þ n2 � 2
(6.4.2)

The standard error of the estimate, then, is given by

s�x1��x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p

n1
þ s2

p

n2

s
(6.4.3)

and the 100 1 � að Þ percent confidence interval for m1 � m2 is given by

�x1 � �x2ð Þ � t 1�a=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p

n1
þ s2

p

n2

s
(6.4.4)

The number of degrees of freedom used in determining the value of t to use in constructing
the interval is n1 þ n2 � 2, the denominator of Equation 6.4.2. We interpret this interval
in the usual manner.

Methods that may be used in reaching a decision about the equality of population
variances are discussed in Sections 6.10 and 7.8.
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EXAMPLE 6.4.3

The purpose of a study by Granholm et al. (A-7) was to determine the effectiveness of an
integrated outpatient dual-diagnosis treatment program for mentally ill subjects. The
authors were addressing the problem of substance abuse issues among people with severe
mental disorders. A retrospective chart review was performed on 50 consecutive patient
referrals to the Substance Abuse/Mental Illness program at the VA San Diego Healthcare
System. One of the outcome variables examined was the number of inpatient treatment
days for psychiatric disorder during the year following the end of the program. Among 18
subjects with schizophrenia, the mean number of treatment days was 4.7 with a standard
deviation of 9.3. For 10 subjects with bipolar disorder, the mean number of psychiatric
disorder treatment days was 8.8 with a standard deviation of 11.5. We wish to construct a 95
percent confidence interval for the difference between the means of the populations
represented by these two samples.

Solution: First we use Equation 6.4.2 to compute the pooled estimate of the common
population variance.

s2
p ¼

18 � 1ð Þ 9:32
� �þ 10 � 1ð Þ 11:5ð Þ2

18 þ 10 � 2
¼ 102:33

When we enter Appendix Table E with 18 þ 10 � 2 ¼ 26 degrees of freedom
and a desired confidence level of .95, we find that the reliability factor is
2.0555. By Expression 6.4.4 we compute the 95 percent confidence interval
for the difference between population means as follows:

4:7 � 8:8ð Þ � 2:0555

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102:33

18
þ 102:33

10

r

�4:1 � 8:20

ð�12.3, 4.1Þ

We are 95 percent confident that the difference between population means is
somewhere between �12:3 and 4.10. We can say this because we know that if
we were to repeat the study many, many times, and compute confidence
intervals in the same way, about 95 percent of the intervals would include the
difference between the population means.

Since the interval includes zero, we conclude that the population means
may be equal. &

Population Variances Not Equal When one is unable to conclude that the
variances of two populations of interest are equal, even though the two populations may be
assumed to be normally distributed, it is not proper to use the t distribution as just outlined
in constructing confidence intervals.

As a practical rule in applied problems, one may wish to assume the inequality of
variances if the ratio of the larger to the smaller variance exceeds 2; however, a more formal
test is described in Section 6.10.
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A solution to the problem of unequal variances was proposed by Behrens (3) and
later was verified and generalized by Fisher (4,5). Solutions have also been proposed by
Neyman (6), Scheff�e (7,8), and Welch (9,10). The problem is discussed in detail by
Cochran (11).

The problem revolves around the fact that the quantity

�x1 � �x2ð Þ � m1 � m2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p

n1
þ s2

p

n2

s

does not follow a t distribution with n1 þ n2 � 2 degrees of freedom when the population
variances are not equal. Consequently, the t distribution cannot be used in the usual way to
obtain the reliability factor for the confidence interval for the difference between the means
of two populations that have unequal variances. The solution proposed by Cochran consists
of computing the reliability factor, t 01�a=2, by the following formula:

t01�a=2 ¼ w1t1 þ w2t2
w1 þ w2

(6.4.5)

where w1 ¼ s2
1=n1;w2 ¼ s2

2=n2; t1 ¼ t1�a=2 for n1 � 1 degrees of freedom, and t2 ¼ t1�a=2

for n2 � 1 degrees of freedom. An approximate 100 1 � að Þ percent confidence interval for
m1 � m2 is given by

�x1 � �x2ð Þ � t01�a=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s
(6.4.6)

Adjustments to the reliability coefficient may also be made by reducing the number of
degrees of freedom instead of modifying t in the manner just demonstrated. Many
computer programs calculate an adjusted reliability coefficient in this way.

EXAMPLE 6.4.4

Let us reexamine the data presented in Example 6.4.3 from the study by Granholm et al.
(A-7). Recall that among the 18 subjects with schizophrenia, the mean number of treatment
days was 4.7 with a standard deviation of 9.3. In the bipolar disorder treatment group of 10
subjects, the mean number of psychiatric disorder treatment days was 8.8 with a standard
deviation of 11.5. We assume that the two populations of number of psychiatric disorder
days are approximately normally distributed. Now let us assume, however, that the two
population variances are not equal. We wish to construct a 95 percent confidence interval
for the difference between the means of the two populations represented by the samples.

Solution: We will use t0 as found in Equation 6.4.5 for the reliability factor. Reference
to Appendix Table E shows that with 17 degrees of freedom and
1 � :05=2 ¼ :975; t1 ¼ 2:1098. Similarly, with 9 degrees of freedom and
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1 � :05=2 ¼ :975; t2 ¼ 2:2622. We now compute

t0 ¼ 9:32=18
� �

2:1098ð Þ þ 11:52=10
� �

2:2622ð Þ
9:32=18
� �þ 11:52=10

� � ¼ 2:2216

By Expression 6.4.6 we now construct the 95 percent confidence interval for
the difference between the two population means.

4:7 � 8:8ð Þ � 2:2216

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:32

18
þ 11:52

10

r

4:7 � 8:8ð Þ � 2:2216 4:246175ð Þ
�13:5; 5:3

Since the interval does include zero, we conclude that the two population
means may be equal.

An example of this type of calculation using program R, which uses
Welch’s approximation to the problem of unequal variances, is provided in
Figure 6.4.2. Notice that there is a slight difference in the endpoints of the
interval. &

When constructing a confidence interval for the difference between two population
means one may use Figure 6.4.1 to decide quickly whether the reliability factor should be
z, t, or t0.

Population
normally

distributed?

Yes

Yes

Yes = ?

Yes

Sample
sizes

large?

Population
variances
known?
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Population
variances
known?

No Yes No
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z z

t t' z z t t'
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Yes = ?
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* * * *

FIGURE 6.4.1 Flowchart for use in deciding whether the reliability factor should be z, t, or t 0

when making inferences about the difference between two population means. (�Use a

nonparametric procedure. See Chapter 13.)

182 CHAPTER 6 ESTIMATION



3GC06 11/26/2012 14:0:7 Page 183

EXERCISES

For each of the following exercises construct 90, 95, and 99 percent confidence intervals for the
difference between population means. Where appropriate, state the assumptions that make your
method valid. State the practical and probabilistic interpretations of each interval that you construct.
Consider the variables under consideration in each exercise, and state what use you think researchers
might make of your results.

6.4.1. Iannelo et al. (A-8) performed a study that examined free fatty acid concentrations in 18 lean subjects
and 11 obese subjects. The lean subjects had a mean level of 299 mEq/L with a standard error of the
mean of 30, while the obese subjects had a mean of 744 mEq/L with a standard error of the mean of 62.

6.4.2. Chan et al. (A-9) developed a questionnaire to assess knowledge of prostate cancer. There was a total of
36 questions to which respondents could answer “agree,” “disagree,” or “don’t know.” Scores could
range from 0 to 36. The mean scores for Caucasian study participants was 20.6 with a standard deviation
of 5.8, while the mean scores for African-American men was 17.4 with a standard deviation of 5.8. The
number of Caucasian study participants was 185, and the number of African-Americans was 86.

6.4.3. The objectives of a study by van Vollenhoven et al. (A-10) were to examine the effectiveness of
etanercept alone and etanercept in combination with methotrexate in the treatment of rheumatoid
arthritis. The researchers conducted a retrospective study using data from the STURE database,
which collects efficacy and safety data for all patients starting biological treatments at the major
hospitals in Stockholm, Sweden. The researchers identified 40 subjects who were prescribed
etanercept only and 57 subjects who were given etanercept with methotrexate. Using a 100-mm
visual analogue scale (the higher the value, the greater the pain), researchers found that after 3 months
of treatment, the mean pain score was 36.4 with a standard error of the mean of 5.5 for subjects taking
etanercept only. In the sample receiving etanercept plus methotrexate, the mean score was 30.5 with a
standard error of the mean of 4.6.

6.4.4. The purpose of a study by Nozawa et al. (A-11) was to determine the effectiveness of segmental wire
fixation in athletes with spondylolysis. Between 1993 and 2000, 20 athletes (6 women and 14 men)

R Code:
> tsum.test(mean.x¼ 4.7, s.x¼ 9.3, n.x¼ 18, mean.y¼ 8.8, s.y¼ 11.5, n.y¼ 10, alternative ¼
“two.sided”, mu¼ 0, var.equal¼ FALSE, conf.level¼ 0.95)

ROutput:

Welch Modified Two-Sample t-Test

data: Summarized x and y

t¼�0.9656, df¼ 15.635, p-value¼ 0.349

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
�13.118585 4.918585

sample estimates:
mean of x mean of y

4.7 8.8

FIGURE 6.4.2 Program R example calculation for the confidence interval between two means

assuming unequal variances using the data in Example 6.4.4.

EXERCISES 183



3GC06 11/26/2012 14:0:7 Page 184

with lumbar spondylolysis were treated surgically with the technique. The following table gives the
Japanese Orthopaedic Association (JOA) evaluation score for lower back pain syndrome for men and
women prior to the surgery. The lower score indicates less pain.

Gender JOA scores

Female 14, 13, 24, 21, 20, 21
Male 21, 26, 24, 24, 22, 23, 18, 24, 13, 22, 25, 23, 21, 25

Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and Mizuo
Tanaka, “Repair of Pars Interarticularis Defect by Segmental Wire
Fixation in Young Athletes with Spondylolysis,” American Journal of
Sports Medicine, 31 (2003), 359–364.

6.4.5. Krantz et al. (A-12) investigated dose-related effects of methadone in subjects with torsade
de pointes, a polymorphic ventricular tachycardia. In the study of 17 subjects, nine were being
treated with methadone for opiate dependency and eight for chronic pain. The mean daily
dose of methadone in the opiate dependency group was 541 mg/day with a standard deviation of
156, while the chronic pain group received a mean dose of 269 mg/day with a standard deviation
of 316.

6.4.6. Transverse diameter measurements on the hearts of adult males and females gave the following
results:

Group Sample Size �x (cm) s (cm)

Males 12 13.21 1.05
Females 9 11.00 1.01

Assume normally distributed populations with equal variances.

6.4.7. Twenty-four experimental animals with vitamin D deficiency were divided equally into two groups.
Group 1 received treatment consisting of a diet that provided vitamin D. The second group was not
treated. At the end of the experimental period, serum calcium determinations were made with the
following results:

Treated group : �x ¼ 11:1 mg=100 ml; s ¼ 1:5
Untreated group : �x ¼ 7:8 mg=100 ml; s ¼ 2:0

Assume normally distributed populations with equal variances.

6.4.8. Two groups of children were given visual acuity tests. Group 1 was composed of 11 children who
receive their health care from private physicians. The mean score for this group was 26 with a
standard deviation of 5. Group 2 was composed of 14 children who receive their health care from the
health department, and had an average score of 21 with a standard deviation of 6. Assume normally
distributed populations with equal variances.

6.4.9. The average length of stay of a sample of 20 patients discharged from a general hospital was 7 days
with a standard deviation of 2 days. A sample of 24 patients discharged from a chronic disease
hospital had an average length of stay of 36 days with a standard deviation of 10 days. Assume
normally distributed populations with unequal variances.

6.4.10. In a study of factors thought to be responsible for the adverse effects of smoking on human
reproduction, cadmium level determinations (nanograms per gram) were made on placenta tissue of a
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sample of 14 mothers who were smokers and an independent random sample of 18 nonsmoking
mothers. The results were as follows:

Nonsmokers: 10.0, 8.4, 12.8, 25.0, 11.8, 9.8, 12.5, 15.4, 23.5,
9.4, 25.1, 19.5, 25.5, 9.8, 7.5, 11.8, 12.2, 15.0

Smokers: 30.0, 30.1, 15.0, 24.1, 30.5, 17.8, 16.8, 14.8,
13.4, 28.5, 17.5, 14.4, 12.5, 20.4

Does it appear likely that the mean cadmium level is higher among smokers than nonsmokers? Why
do you reach this conclusion?

6.5 CONFIDENCE INTERVAL FOR
A POPULATION PROPORTION

Many questions of interest to the health worker relate to population proportions. What
proportion of patients who receive a particular type of treatment recover? What proportion
of some population has a certain disease? What proportion of a population is immune to a
certain disease?

To estimate a population proportion we proceed in the same manner as when
estimating a population mean. A sample is drawn from the population of interest, and the
sample proportion, p̂, is computed. This sample proportion is used as the point estimator of
the population proportion. A confidence interval is obtained by the general formula

estimator � reliability coefficientð Þ � standard error of the estimatorð Þ

In the previous chapter we saw that when both np and n 1 � pð Þ are greater than 5, we
may consider the sampling distribution of p̂ to be quite close to the normal distribution.
When this condition is met, our reliability coefficient is some value of z from the standard

normal distribution. The standard error, we have seen, is equal to sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1 � pð Þ=np

.
Since p, the parameter we are trying to estimate, is unknown, we must use p̂ as an estimate.

Thus, we estimate sp̂ by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 � p̂ð Þ=np

, and our 100 1 � að Þ percent confidence interval
for p is given by

p̂� z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 � p̂ð Þ=n

p
(6.5.1)

We give this interval both the probabilistic and practical interpretations.

EXAMPLE 6.5.1

The Pew Internet and American Life Project (A-13) reported in 2003 that 18 percent of
Internet users have used it to search for information regarding experimental treatments or
medicines. The sample consisted of 1220 adult Internet users, and information was
collected from telephone interviews. We wish to construct a 95 percent confidence interval
for the proportion of Internet users in the sampled population who have searched for
information on experimental treatments or medicines.
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Solution: We shall assume that the 1220 subjects were sampled in random
fashion. The best point estimate of the population proportion is p̂ ¼ :18.
The size of the sample and our estimate of p are of sufficient magnitude
to justify use of the standard normal distribution in constructing a
confidence interval. The reliability coefficient corresponding to a confi-
dence level of .95 is 1.96, and our estimate of the standard error sp̂ isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ 1 � p̂ð Þ=np ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:18ð Þ :82ð Þ=1220

p ¼ :0110. The 95 percent confidence
interval for p, based on these data, is

:18 � 1:96 :0110ð Þ
:18 � :022

:158; :202

We are 95 percent confident that the population proportion p is between .158
and .202 because, in repeated sampling, about 95 percent of the intervals
constructed in the manner of the present single interval would include the true
p. On the basis of these results we would expect, with 95 percent confidence, to
find somewhere between 15.8 percent and 20.2 percent of adult Internet users to
have used it for information on medicine or experimental treatments. &

EXERCISES

For each of the following exercises state the practical and probabilistic interpretations of the interval
that you construct. Identify each component of the interval: point estimate, reliability coefficient, and
standard error. Explain why the reliability coefficients are not the same for all exercises.

6.5.1. Luna et al. (A-14) studied patients who were mechanically ventilated in the intensive care unit of six
hospitals in Buenos Aires, Argentina. The researchers found that of 472 mechanically ventilated
patients, 63 had clinical evidence of ventilator-associated pneumonia (VAP). Construct a 95 percent
confidence interval for the proportion of all mechanically ventilated patients at these hospitals who
may be expected to develop VAP.

6.5.2. Q waves on the electrocardiogram, according to Schinkel et al. (A-15), are often considered to be
reflective of irreversibly scarred myocardium. These researchers assert, however, that there are some
indications that residual viable tissue may be present in Q-wave-infarcted regions. Their study of 150
patients with chronic electrocardiographic Q-wave infarction found 202 dysfunctional Q-wave regions.
With dobutamine stress echocardiography (DSE), they noted that 118 of these 202 regions were viable
with information from the DSE testing. Construct a 90 percent confidence interval for the proportion of
viable regions that one might expect to find a population of dysfunctional Q-wave regions.

6.5.3. In a study by von zur Muhlen et al. (A-16), 136 subjects with syncope or near syncope were studied.
Syncope is the temporary loss of consciousness due to a sudden decline in blood flow to the brain. Of
these subjects, 75 also reported having cardiovascular disease. Construct a 99 percent confidence
interval for the population proportion of subjects with syncope or near syncope who also have
cardiovascular disease.

6.5.4. In a simple random sample of 125 unemployed male high-school dropouts between the ages of 16
and 21, inclusive, 88 stated that they were regular consumers of alcoholic beverages. Construct a
95 percent confidence interval for the population proportion.
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6.6 CONFIDENCE INTERVAL FOR
THE DIFFERENCE BETWEEN TWO
POPULATION PROPORTIONS

The magnitude of the difference between two population proportions is often of interest. We
may want to compare, for example, men and women, two age groups, two socioeconomic
groups, or two diagnostic groups with respect to the proportion possessing some characteris-
tic of interest. An unbiased point estimator of the difference between two population
proportions is provided by the difference between sample proportions, p̂1 � p̂2. As we
have seen, when n1 and n2 are large and the population proportions are not too close to 0 or 1,
the central limit theorem applies and normal distribution theory may be employed to obtain
confidence intervals. The standard error of the estimate usually must be estimated by

ŝp̂1�p̂2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1 1 � p̂1ð Þ

n1
þ p̂2 1 � p̂2ð Þ

n2

s

because, as a rule, the population proportions are unknown. A 100 1 � að Þ percent
confidence interval for p1 � p2 is given by

p̂1 � p̂2ð Þ � z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1 1 � p̂1ð Þ

n1
þ p̂2 1 � p̂2ð Þ

n2

s
(6.6.1)

We may interpret this interval from both the probabilistic and practical points of view.

EXAMPLE 6.6.1

Connor et al. (A-17) investigated gender differences in proactive and reactive aggression in
a sample of 323 children and adolescents (68 females and 255 males). The subjects were
from unsolicited consecutive referrals to a residential treatment center and a pediatric
psychopharmacology clinic serving a tertiary hospital and medical school. In the sample,
31 of the females and 53 of the males reported sexual abuse. We wish to construct a 99
percent confidence interval for the difference between the proportions of sexual abuse in
the two sampled populations.

Solution: The sample proportions for the females and males are, respectively, p̂F ¼
31=68 ¼ :4559 and p̂M ¼ 53=255 ¼ :2078. The difference between sample
proportions is p̂F � p̂M ¼ :4559 � :2078 ¼ :2481. The estimated standard
error of the difference between sample proportions is

ŝp̂F�p̂M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:4559ð Þ :5441ð Þ

68
þ :2078ð Þ :7922ð Þ

255

r

¼ :0655

The reliability factor from Appendix Table D is 2.58, so that our confidence
interval, by Expression 6.6.1, is

:2481 � 2:58 :0655ð Þ
:0791; :4171
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We are 99 percent confident that for the sampled populations, the proportion
of cases of reported sexual abuse among females exceeds the proportion of
cases of reported sexual abuse among males by somewhere between .0791
and .4171.

Since the interval does not include zero, we conclude that the two
population proportions are not equal. &

EXERCISES

For each of the following exercises state the practical and probabilistic interpretations of the interval

that you construct. Identify each component of the interval: point estimate, reliability coefficient, and

standard error. Explain why the reliability coefficients are not the same for all exercises.

6.6.1. Horwitz et al. (A-18) studied 637 persons who were identified by court records from 1967 to 1971 as
having experienced abuse or neglect. For a control group, they located 510 subjects who as children
attended the same elementary school and lived within a five-block radius of those in the
abused/neglected group. In the abused/neglected group, and control group, 114 and 57 subjects,
respectively, had developed antisocial personality disorders over their lifetimes. Construct a 95
percent confidence interval for the difference between the proportions of subjects developing
antisocial personality disorders one might expect to find in the populations of subjects from which
the subjects of this study may be presumed to have been drawn.

6.6.2. The objective of a randomized controlled trial by Adab et al. (A-19) was to determine whether providing
women with additional information on the pros and cons of screening for cervical cancer would increase
the willingness to be screened. A treatment group of 138 women received a leaflet on screening that
contained more information (average individual risk for cervical cancer, likelihood of positive finding,
the possibility of false positive/negative results, etc.) than the standard leaflet developed by the British
National Health Service that 136 women in a control group received. In the treatment group, 109 women
indicated they wanted to have the screening test for cervical cancer while in the control group, 120
indicated they wanted the screening test. Construct a 95 percent confidence interval for the difference in
proportions for the two populations represented by these samples.

6.6.3. Spertus et al. (A-20) performed a randomized single blind study for subjects with stable coronary
artery disease. They randomized subjects into two treatment groups. The first group had current
angina medications optimized, and the second group was tapered off existing medications and then
started on long-acting diltiazem at 180 mg/day. The researchers performed several tests to determine
if there were significant differences in the two treatment groups at baseline. One of the characteristics
of interest was the difference in the percentages of subjects who had reported a history of congestive
heart failure. In the group where current medications were optimized, 16 of 49 subjects reported a
history of congestive heart failure. In the subjects placed on the diltiazem, 12 of the 51 subjects
reported a history of congestive heart failure. State the assumptions that you think are necessary and
construct a 95 percent confidence interval for the difference between the proportions of those
reporting congestive heart failure within the two populations from which we presume these treatment
groups to have been selected.

6.6.4. To study the difference in drug therapy adherence among subjects with depression who received usual
care and those who received care in a collaborative care model was the goal of a study conducted by
Finley et al. (A-21). The collaborative care model emphasized the role of clinical pharmacists in
providing drug therapy management and treatment follow-up. Of the 50 subjects receiving usual care,
24 adhered to the prescribed drug regimen, while 50 out of 75 subjects in the collaborative care model
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adhered to the drug regimen. Construct a 90 percent confidence interval for the difference in
adherence proportions for the populations of subjects represented by these two samples.

6.7 DETERMINATION OF SAMPLE SIZE
FOR ESTIMATINGMEANS

The question of how large a sample to take arises early in the planning of any survey or
experiment. This is an important question that should not be treated lightly. To take a larger
sample than is needed to achieve the desired results is wasteful of resources, whereas very
small samples often lead to results that are of no practical use. Let us consider, then, how
one may go about determining the sample size that is needed in a given situation. In this
section, we present a method for determining the sample size required for estimating a
population mean, and in the next section we apply this method to the case of sample size
determination when the parameter to be estimated is a population proportion. By
straightforward extensions of these methods, sample sizes required for more complicated
situations can be determined.

Objectives The objectives in interval estimation are to obtain narrow intervals with
high reliability. If we look at the components of a confidence interval, we see that the width
of the interval is determined by the magnitude of the quantity

reliability coefficientð Þ � standard error of the estimatorð Þ
since the total width of the interval is twice this amount. We have learned that this quantity
is usually called the precision of the estimate or the margin of error. For a given standard
error, increasing reliability means a larger reliability coefficient. But a larger reliability
coefficient for a fixed standard error makes for a wider interval.

On the other hand, if we fix the reliability coefficient, the only way to reduce the
width of the interval is to reduce the standard error. Since the standard error is equal to
s=

ffiffiffi
n

p
; and since s is a constant, the only way to obtain a small standard error is to take a

large sample. How large a sample? That depends on the size of s, the population standard
deviation, the desired degree of reliability, and the desired interval width.

Let us suppose we want an interval that extends d units on either side of the estimator.
We can write

d ¼ reliability coefficientð Þ � standard error of the estimatorð Þ (6.7.1)

If sampling is to be with replacement, from an infinite population, or from a
population that is sufficiently large to warrant our ignoring the finite population correction,
Equation 6.7.1 becomes

d ¼ z
sffiffiffi
n

p (6.7.2)

which, when solved for n, gives

n ¼ z2s2

d2 (6.7.3)
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When sampling is without replacement from a small finite population, the finite population
correction is required and Equation 6.7.1 becomes

d ¼ z
sffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
(6.7.4)

which, when solved for n, gives

n ¼ Nz2s2

d2 N � 1ð Þ þ z2s2
(6.7.5)

If the finite population correction can be ignored, Equation 6.7.5 reduces to
Equation 6.7.3.

Estimating s2 The formulas for sample size require knowledge of s2 but, as has
been pointed out, the population variance is, as a rule, unknown. As a result, s2 has to be
estimated. The most frequently used sources of estimates for s2 are the following:

1. A pilot or preliminary sample may be drawn from the population, and the variance
computed from this sample may be used as an estimate of s2. Observations used in
the pilot sample may be counted as part of the final sample, so that n (the computed
sample size) �n1 (the pilot sample size) ¼ n2 (the number of observations needed to
satisfy the total sample size requirement).

2. Estimates of s2 may be available from previous or similar studies.

3. If it is thought that the population from which the sample is to be drawn is
approximately normally distributed, one may use the fact that the range is approxi-
mately equal to six standard deviations and compute s � R=6. This method requires
some knowledge of the smallest and largest value of the variable in the population.

EXAMPLE 6.7.1

A health department nutritionist, wishing to conduct a survey among a population of
teenage girls to determine their average daily protein intake (measured in grams), is
seeking the advice of a biostatistician relative to the sample size that should be taken.

What procedure does the biostatistician follow in providing assistance to the
nutritionist? Before the statistician can be of help to the nutritionist, the latter must
provide three items of information: (1) the desired width of the confidence interval, (2) the
level of confidence desired, and (3) the magnitude of the population variance.

Solution: Let us assume that the nutritionist would like an interval about 10 grams
wide; that is, the estimate should be within about 5 grams of the population
mean in either direction. In other words, a margin of error of 5 grams is
desired. Let us also assume that a confidence coefficient of .95 is decided
on and that, from past experience, the nutritionist feels that the population
standard deviation is probably about 20 grams. The statistician now has
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the necessary information to compute the sample size: z ¼ 1:96; s ¼ 20
and d ¼ 5. Let us assume that the population of interest is large so that
the statistician may ignore the finite population correction and use
Equation 6.7.3. On making proper substitutions, the value of n is found
to be

n ¼ 1:96ð Þ2 20ð Þ2

ð5Þ2

¼ 61:47

The nutritionist is advised to take a sample of size 62. When calculating
a sample size by Equation 6.7.3 or Equation 6.7.5, we round up to the next-
largest whole number if the calculations yield a number that is not itself an
integer. &

EXERCISES

6.7.1. A hospital administrator wishes to estimate the mean weight of babies born in her hospital. How large
a sample of birth records should be taken if she wants a 99 percent confidence interval that is 1 pound
wide? Assume that a reasonable estimate of s is 1 pound. What sample size is required if the
confidence coefficient is lowered to .95?

6.7.2. The director of the rabies control section in a city health department wishes to draw a sample from the
department’s records of dog bites reported during the past year in order to estimate the mean age of
persons bitten. He wants a 95 percent confidence interval, he will be satisfied to let d ¼ 2:5, and from
previous studies he estimates the population standard deviation to be about 15 years. How large a
sample should be drawn?

6.7.3. A physician would like to know the mean fasting blood glucose value (milligrams per 100 ml) of
patients seen in a diabetes clinic over the past 10 years. Determine the number of records the
physician should examine in order to obtain a 90 percent confidence interval for m if the desired width
of the interval is 6 units and a pilot sample yields a variance of 60.

6.7.4. For multiple sclerosis patients we wish to estimate the mean age at which the disease was first
diagnosed. We want a 95 percent confidence interval that is 10 years wide. If the population variance
is 90, how large should our sample be?

6.8 DETERMINATION OF SAMPLE SIZE
FOR ESTIMATING PROPORTIONS

The method of sample size determination when a population proportion is to be estimated
is essentially the same as that described for estimating a population mean. We make use of
the fact that one-half the desired interval, d, may be set equal to the product of the reliability
coefficient and the standard error.

Assuming that random sampling and conditions warranting approximate normality
of the distribution of p̂ leads to the following formula for n when sampling is with
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replacement, when sampling is from an infinite population, or when the sampled popula-
tion is large enough to make use of the finite population correction unnecessary,

n ¼ z2pq

d2 (6.8.1)

where q ¼ 1 � p:
If the finite population correction cannot be disregarded, the proper formula for n is

n ¼ Nz2pq

d2 N � 1ð Þ þ z2pq
(6.8.2)

When N is large in comparison to n (that is, n=N � :05 the finite population
correction may be ignored, and Equation 6.8.2 reduces to Equation 6.8.1.

Estimating p As we see, both formulas require knowledge of p, the proportion in
the population possessing the characteristic of interest. Since this is the parameter we are
trying to estimate, it, obviously, will be unknown. One solution to this problem is to take
a pilot sample and compute an estimate to be used in place of p in the formula for n.
Sometimes an investigator will have some notion of an upper bound for p that can be
used in the formula. For example, if it is desired to estimate the proportion of
some population who have a certain disability, we may feel that the true proportion
cannot be greater than, say, .30. We then substitute .30 for p in the formula for n. If it is
impossible to come up with a better estimate, one may set p equal to .5 and solve for n.
Since p ¼ :5 in the formula yields the maximum value of n, this procedure will give a
large enough sample for the desired reliability and interval width. It may, however, be
larger than needed and result in a more expensive sample than if a better estimate of p
had been available. This procedure should be used only if one is unable to arrive at a
better estimate of p.

EXAMPLE 6.8.1

A survey is being planned to determine what proportion of families in a certain area are
medically indigent. It is believed that the proportion cannot be greater than .35. A 95
percent confidence interval is desired with d ¼ :05. What size sample of families should be
selected?

Solution: If the finite population correction can be ignored, we have

n ¼ 1:96ð Þ2 :35ð Þ :65ð Þ
:05ð Þ2 ¼ 349:59

The necessary sample size, then, is 350. &
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EXERCISES

6.8.1. An epidemiologist wishes to know what proportion of adults living in a large metropolitan area
have subtype ayr hepatitis B virus. Determine the sample size that would be required to estimate
the true proportion to within .03 with 95 percent confidence. In a similar metropolitan area the
proportion of adults with the characteristic is reported to be .20. If data from another metropolitan
area were not available and a pilot sample could not be drawn, what sample size would be
required?

6.8.2. A survey is planned to determine what proportion of the high-school students in a metropolitan
school system have regularly smoked marijuana. If no estimate of p is available from previous
studies, a pilot sample cannot be drawn, a confidence coefficient of .95 is desired, and d ¼ :04 is to
be used, determine the appropriate sample size. What sample size would be required if 99 percent
confidence were desired?

6.8.3. A hospital administrator wishes to know what proportion of discharged patients is unhappy with
the care received during hospitalization. How large a sample should be drawn if we let d ¼ :05, the
confidence coefficient is .95, and no other information is available? How large should the sample
be if p is approximated by .25?

6.8.4. A health planning agency wishes to know, for a certain geographic region, what proportion of
patients admitted to hospitals for the treatment of trauma die in the hospital. A 95 percent
confidence interval is desired, the width of the interval must be .06, and the population proportion,
from other evidence, is estimated to be .20. How large a sample is needed?

6.9 CONFIDENCE INTERVAL FOR
THE VARIANCE OF A NORMALLY
DISTRIBUTED POPULATION

Point Estimation of the Population Variance In previous sections it
has been suggested that when a population variance is unknown, the sample variance
may be used as an estimator. You may have wondered about the quality of this estimator.
We have discussed only one criterion of quality—unbiasedness—so let us see if the
sample variance is an unbiased estimator of the population variance. To be unbiased,
the average value of the sample variance over all possible samples must be equal to
the population variance. That is, the expression E s2ð Þ ¼ s2 must hold. To see if this
condition holds for a particular situation, let us refer to the example of constructing
a sampling distribution given in Section 5.3. In Table 5.3.1 we have all possible
samples of size 2 from the population consisting of the values 6, 8, 10, 12, and 14.
It will be recalled that two measures of dispersion for this population were computed
as follows:

s2 ¼
P

xi � mð Þ2

N
¼ 8 and S2 ¼

P
xi � mð Þ2

N � 1
¼ 10

If we compute the sample variance s2 ¼ P
xi � �xð Þ2= n� 1ð Þ for each of the possible

samples shown in Table 5.3.1, we obtain the sample variances shown in Table 6.9.1.
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Sampling with Replacement If sampling is with replacement, the expected
value of s2 is obtained by taking the mean of all sample variances in Table 6.9.1. When we
do this, we have

E s2
� � ¼

P
s2
i

Nn ¼ 0 þ 2 þ � � � þ 2 þ 0

25
¼ 200

25
¼ 8

and we see, for example, that when sampling is with replacement E s2ð Þ ¼ s2, where s2 ¼P
xi � �xð Þ2= n� 1ð Þ and s2 ¼ P

xi � mð Þ2=N.

SamplingWithout Replacement If we consider the case where sampling is
without replacement, the expected value of s2 is obtained by taking the mean of all
variances above (or below) the principal diagonal. That is,

E s2
� � ¼

P
s2
i

NCn
¼ 2 þ 8 þ � � � þ 2

10
¼ 100

10
¼ 10

which, we see, is not equal to s2, but is equal to S2 ¼ P
xi � mð Þ2= N � 1ð Þ.

These results are examples of general principles, as it can be shown that, in general,

E s2ð Þ ¼ s2 when sampling is with replacement
E s2ð Þ ¼ S2 when sampling is without replacement

When N is large, N � 1 and N will be approximately equal and, consequently, s2

and S2 will be approximately equal.
These results justify our use of s2 ¼ P

xi � �xð Þ2= n� 1ð Þ when computing the
sample variance. In passing, let us note that although s2 is an unbiased estimator of
s2; s is not an unbiased estimator of s. The bias, however, diminishes rapidly as n
increases.

Interval Estimation of a Population Variance With a point estimate
available, it is logical to inquire about the construction of a confidence interval for a
population variance. Whether we are successful in constructing a confidence interval for s2

will depend on our ability to find an appropriate sampling distribution.

TABLE 6.9.1 Variances Computed from Samples

Shown in Table 5.3.1

Second Draw

6 8 10 12 14

6 0 2 8 18 32

8 2 0 2 8 18

First Draw 10 8 2 0 2 8

12 18 8 2 0 2

14 32 18 8 2 0
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TheChi-SquareDistribution Confidence intervals for s2 are usually based on
the sampling distribution of n� 1ð Þs2=s2. If samples of size n are drawn from a normally
distributed population, this quantity has a distribution known as the chi-square x2ð Þ
distribution with n� 1 degrees of freedom. As we will say more about this distribution in
chapter 12, we only say here that it is the distribution that the quantity n� 1ð Þs2=s2 follows
and that it is useful in finding confidence intervals for s2 when the assumption that the
population is normally distributed holds true.

Figure 6.9.1 shows chi-square distributions for several values of degrees of freedom.
Percentiles of the chi-square distribution are given in Appendix Table F. The column
headings give the values of x2 to the left of which lies a proportion of the total area under
the curve equal to the subscript of x2. The row labels are the degrees of freedom.

To obtain a 100 1 � að Þ percent confidence interval for s2, we first obtain the
100 1 � að Þ percent confidence interval for n� 1ð Þs2=s2. To do this, we select the values of
x2 from Appendix Table F in such a way that a=2 is to the left of the smaller value and a=2
is to the right of the larger value. In other words, the two values of x2 are selected in such a
way that a is divided equally between the two tails of the distribution. We may designate
these two values of x2 as x2

a=2 and x2
1� a=2ð Þ, respectively. The 100 1 � að Þ percent

confidence interval for n� 1ð Þs2=s2, then, is given by

x2
a=2 <

n� 1ð Þ s2

s2
< x2

1� a=2ð Þ

0.4

d.f. = 1

d.f. = 2

d.f. = 4

d.f. = 10

0.3

0.2

0.1

0.0

0 2 4 6 8 10 12 14

FIGURE 6.9.1 Chi-square distributions.
(Source: Gerald van Belle, Lloyd D. Fisher, Patrick J. Heagerty, and Thomas Lumley, Biostatistics: A
Methodology for the Health Sciences, 2nd Ed., # 2004 John Wiley & Sons, Inc. This material is reproduced
with permission of John Wiley & Sons, Inc.)
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We now manipulate this expression in such a way that we obtain an expression with
s2 alone as the middle term. First, let us divide each term by n� 1ð Þ s2 to get

x2
a=2

n� 1ð Þs2
<

1

s2
<

x2
1� a=2ð Þ

n� 1ð Þs2

If we take the reciprocal of this expression, we have

n� 1ð Þs2

x2
a=2

> s2 >
n� 1ð Þs2

x2
1� a=2ð Þ

Note that the direction of the inequalities changed when we took the reciprocals. If we
reverse the order of the terms, we have

n� 1ð Þs2

x2
1� a=2ð Þ

< s2 <
n� 1ð Þs2

x2
a=2

(6.9.1)

which is the 100 1 � að Þ percent confidence interval for s2. If we take the square root of
each term in Expression 6.9.1, we have the following 100 1 � að Þ percent confidence
interval for s, the population standard deviation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þs2

x2
1� a=2ð Þ

s
< s <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þs2

x2
a=2

s
(6.9.2)

EXAMPLE 6.9.1

In a study of the effectiveness of a gluten-free diet in first-degree relatives of patients
with type I diabetics, Hummel et al. (A-22) placed seven subjects on a gluten-free diet
for 12 months. Prior to the diet, they took baseline measurements of several antibodies
and autoantibodies, one of which was the diabetes related insulin autoantibody (IAA).
The IAA levels were measured by radiobinding assay. The seven subjects had IAA
units of

9:7; 12:3; 11:2; 5:1; 24:8; 14:8; 17:7

We wish to estimate from the data in this sample the variance of the IAA units in the
population from which the sample was drawn and construct a 95 percent confidence
interval for this estimate.

Solution: The sample yielded a value of s2 ¼ 39:763. The degrees of freedom are

n� 1 ¼ 6: The appropriate values of x2 from Appendix Table F are
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x2
1� a=2ð Þ ¼ 14:449 and x2

a=2 ¼ 1:237. Our 95 percent confidence interval for

s2 is

6 39:763ð Þ
14:449

< s2 <
6 39:763ð Þ

1:237

16:512 < s2 < 192:868

The 95 percent confidence interval for s is

4:063 < s < 13:888

We are 95 percent confident that the parameters being estimated are within
the specified limits, because we know that in the long run, in repeated
sampling, 95 percent of intervals constructed as illustrated would include the
respective parameters. &

SomePrecautions Although this method of constructing confidence intervals for
s2 is widely used, it is not without its drawbacks. First, the assumption of the normality of
the population from which the sample is drawn is crucial, and results may be misleading if
the assumption is ignored.

Another difficulty with these intervals results from the fact that the estimator is not in
the center of the confidence interval, as is the case with the confidence interval for m. This
is because the chi-square distribution, unlike the normal, is not symmetric. The practical
implication of this is that the method for the construction of confidence intervals for s2,
which has just been described, does not yield the shortest possible confidence intervals.
Tate and Klett (12) give tables that may be used to overcome this difficulty.

EXERCISES

6.9.1. A study by Aizenberg et al. (A-23) examined the efficacy of sildenafil, a potent phosphodiesterase
inhibitor, in the treatment of elderly men with erectile dysfunction induced by antidepressant
treatment for major depressive disorder. The ages of the 10 enrollees in the study were

74; 81; 70; 70; 74; 77; 76; 70; 71; 72

Assume that the subjects in this sample constitute a simple random sample drawn from a population
of similar subjects. Construct a 95 percent confidence interval for the variance of the ages of subjects
in the population.

6.9.2. Borden et al. (A-24) performed experiments on cadaveric knees to test the effectiveness of several
meniscal repair techniques. Specimens were loaded into a servohydraulic device and tension-loaded
to failure. The biomechanical testing was performed by using a slow loading rate to simulate the
stresses that the medial meniscus might be subjected to during early rehabilitation exercises and
activities of daily living. One of the measures is the amount of displacement that occurs. Of the 12
specimens receiving the vertical mattress suture and the FasT-FIX method, the displacement values
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measured in millimeters are 16.9, 20.2, 20.1, 15.7, 13.9, 14.9, 18.0, 18.5, 9.2, 18.8, 22.8, 17.5.
Construct a 90 percent confidence interval for the variance of the displacement in millimeters for a
population of subjects receiving these repair techniques.

6.9.3. Forced vital capacity determinations were made on 20 healthy adult males. The sample variance was
1,000,000. Construct 90 percent confidence intervals for s2 and s.

6.9.4. In a study of myocardial transit times, appearance transit times were obtained on a sample of
30 patients with coronary artery disease. The sample variance was found to be 1.03. Construct
99 percent confidence intervals for s2 and s.

6.9.5. A sample of 25 physically and mentally healthy males participated in a sleep experiment in which the
percentage of each participant’s total sleeping time spent in a certain stage of sleep was recorded. The
variance computed from the sample data was 2.25. Construct 95 percent confidence intervals for s2

and s.

6.9.6. Hemoglobin determinations were made on 16 animals exposed to a harmful chemical. The following
observations were recorded: 15.6, 14.8, 14.4, 16.6, 13.8, 14.0, 17.3, 17.4, 18.6, 16.2, 14.7, 15.7, 16.4,
13.9, 14.8, 17.5. Construct 95 percent confidence intervals for s2 and s.

6.9.7. Twenty air samples taken at the same site over a period of 6 months showed the following amounts of
suspended particulate matter (micrograms per cubic meter of air):

68 22 36 32
42 24 28 38
30 44 28 27
28 43 45 50
79 74 57 21

Consider these measurements to be a random sample from a population of normally distributed
measurements, and construct a 95 percent confidence interval for the population variance.

6.10 CONFIDENCE INTERVAL
FOR THE RATIO OF THE VARIANCES
OF TWONORMALLY DISTRIBUTED
POPULATIONS

It is frequently of interest to compare two variances, and one way to do this is to form their
ratio, s2

1=s
2
2. If two variances are equal, their ratio will be equal to 1. We usually will not

know the variances of populations of interest, and, consequently, any comparisons we make
will be based on sample variances. In other words, we may wish to estimate the ratio of two
population variances. We learned in Section 6.4 that the valid use of the t distribution to
construct a confidence interval for the difference between two population means requires
that the population variances be equal. The use of the ratio of two population variances for
determining equality of variances has been formalized into a statistical test. The distribu-
tion of this test provides test values for determining if the ratio exceeds the value 1 to a large
enough extent that we may conclude that the variances are not equal. The test is referred to
as the F-max Test by Hartley (13) or the Variance Ratio Test by Zar (14). Many computer
programs provide some formalized test of the equality of variances so that the assumption
of equality of variances associated with many of the tests in the following chapters can be
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examined. If the confidence interval for the ratio of two population variances includes 1, we
conclude that the two population variances may, in fact, be equal. Again, since this is a form
of inference, we must rely on some sampling distribution, and this time the distribution of
s2

1=s
2
1

� �
= s2

2=s
2
2

� �
is utilized provided certain assumptions are met. The assumptions are

that s2
1 and s2

2 are computed from independent samples of size n1 and n2 respectively, drawn
from two normally distributed populations. We use s2

1 to designate the larger of the two
sample variances.

The F Distribution If the assumptions are met, s2
1=s

2
1

� �
= s2

2=s
2
2

� �
follows a

distribution known as the F distribution. We defer a more complete discussion of this
distribution until chapter 8, but note that this distribution depends on two-degrees-of-
freedom values, one corresponding to the value of n1 � 1 used in computing s2

1 and the
other corresponding to the value of n2 � 1 used in computing s2

2. These are usually referred
to as the numerator degrees of freedom and the denominator degrees of freedom.
Figure 6.10.1 shows some F distributions for several numerator and denominator
degrees-of-freedom combinations. Appendix Table G contains, for specified combinations
of degrees of freedom and values of a;F values to the right of which lies a=2 of the area
under the curve of F.

A Confidence Interval for s2
1=s

2
2 To find the 100 1 � að Þ percent confidence

interval for s2
1=s

2
2, we begin with the expression

Fa=2 <
s2

1=s
2
1

s2
2=s

2
2

< F1� a=2ð Þ

where Fa=2 and F1� a=2ð Þ are the values from the F table to the left and right of which,
respectively, lies a=2 of the area under the curve. The middle term of this expression may
be rewritten so that the entire expression is

Fa=2 <
s2

1

s2
2

� s
2
2

s2
1

< F1� a=2ð Þ

(10; ∞)

(10; 50)

(10; 10)

(10; 4)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

F

f (
x)

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 6.10.1 The F distribution for various degrees of freedom.
(From Documenta Geigy, Scientific Tables, Seventh Edition, 1970. Courtesy of Ciba-Geigy Limited, Basel,
Switzerland.)
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If we divide through by s2
1=s

2
2, we have

Fa=2

s2
1=s

2
2

<
s2

2

s2
1

<
F1� a=2ð Þ
s2

1=s
2
2

Taking the reciprocals of the three terms gives

s2
1=s

2
2

Fa=2
>

s2
1

s2
2

>
s2

1=s
2
2

F1� a=2ð Þ

and if we reverse the order, we have the following 100 1 � að Þ percent confidence interval
for s2

1=s
2
2:

s2
1=s

2
2

F1� a=2ð Þ
<

s2
1

s2
2

<
s2

1=s
2
2

Fa=2
(6.10.1)

EXAMPLE 6.10.1

Allen and Gross (A-25) examine toe flexors strength in subjects with plantar fasciitis (pain
from heel spurs, or general heel pain), a common condition in patients with musculo-
skeletal problems. Inflammation of the plantar fascia is often costly to treat and frustrating
for both the patient and the clinician. One of the baseline measurements was the body mass
index (BMI). For the 16 women in the study, the standard deviation for BMI was 8.1 and for
four men in the study, the standard deviation was 5.9. We wish to construct a 95 percent
confidence interval for the ratio of the variances of the two populations from which we
presume these samples were drawn.

Solution: We have the following information:

n1 ¼ 16 n2 ¼ 4

s2
1 ¼ 8:1ð Þ2 ¼ 65:61 s2

2 ¼ 5:9ð Þ2 ¼ 34:81

df 1 ¼ numerator degrees of freedom ¼ n1 � 1 ¼ 15

df 2 ¼ denominator degrees of freedom ¼ n2 � 1 ¼ 3

a ¼ :05

F:025 ¼ :24096 F:975 ¼ 14:25

We are now ready to obtain our 95 percent confidence interval for
s2

1=s
2
2 by substituting appropriate values into Expression 6.10.1:

65:61=34:81

14:25
<

s2
1

s2
2

<
65:61=34:81

:24096

:1323 <
s2

1

s2
2

< 7:8221
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We give this interval the appropriate probabilistic and practical
interpretations.

Since the interval .1323 to 7.8221 includes 1, we are able to conclude
that the two population variances may be equal. &

Finding F 1� a=2ð Þ and F a=2 At this point we must make a cumbersome, but
unavoidable, digression and explain how the values F:975 ¼ 14:25 and F:025 ¼ :24096 were
obtained. The value of F:975 at the intersection of the column headed df 1 ¼ 15 and the row
labeled df 2 ¼ 3 is 14.25. If we had a more extensive table of the F distribution, finding
F:025 would be no trouble; we would simply find F:025 as we found F:975. We would take the
value at the intersection of the column headed 15 and the row headed 3. To include every
possible percentile of F would make for a very lengthy table. Fortunately, however, there
exists a relationship that enables us to compute the lower percentile values from our limited
table. The relationship is as follows:

Fa;df 1;df 2
¼ 1

F1�a;df 2;df 1

(6.10.2)

We proceed as follows.
Interchange the numerator and denominator degrees of freedom and locate the

appropriate value of F. For the problem at hand we locate 4.15, which is at the intersection
of the column headed 3 and the row labeled 15. We now take the reciprocal of this value,
1=4:15 ¼ :24096. In summary, the lower confidence limit (LCL) and upper confidence
limit (UCL) s2

1=s
2
2 are as follows:

LCL ¼ s2
1

s2
2

1

F 1�a=2ð Þ;df 1;df 2

UCL ¼ s2
1

s2
2

F1� a=2ð Þ;df 2;df 1

Alternative procedures for making inferences about the equality of two variances
when the sampled populations are not normally distributed may be found in the book by
Daniel (15).

Some Precautions Similar to the discussion in the previous section of construct-
ing confidence intervals for s2, the assumption of normality of the populations from which
the samples are drawn is crucial to obtaining correct intervals for the ratio of variances
discussed in this section. Fortunately, most statistical computer programs provide alter-
natives to the F-ratio, such as Levene’s test, when the underlying distributions cannot be
assumed to be normally distributed. Computationally, Levene’s test uses a measure of
distance from a sample median instead of a sample mean, hence removing the assumption
of normality.
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EXERCISES

6.10.1. The purpose of a study by Moneim et al. (A-26) was to examine thumb amputations from team roping
at rodeos. The researchers reviewed 16 cases of thumb amputations. Of these, 11 were complete
amputations while five were incomplete. The ischemia time is the length of time that insufficient
oxygen is supplied to the amputated thumb. The ischemia times (hours) for 11 subjects experiencing
complete amputations were

4:67; 10:5; 2:0; 3:18; 4:00; 3:5; 3:33; 5:32; 2:0; 4:25; 6:0

For five victims of incomplete thumb amputation, the ischemia times were

3:0; 10:25; 1:5; 5:22; 5:0

Treat the two reported sets of data as sample data from the two populations as described.
Construct a 95 percent confidence interval for the ratio of the two unknown population
variances.

6.10.2. The objective of a study by Horesh et al. (A-27) was to explore the hypothesis that some forms of
suicidal behavior among adolescents are related to anger and impulsivity. The sample consisted of
65 adolescents admitted to a university-affiliated adolescent psychiatric unit. The researchers used
the Impulsiveness-Control Scale (ICS, A-28) where higher numbers indicate higher degrees of
impulsiveness and scores can range from 0 to 45. The 33 subjects classified as suicidal had an ICS
score standard deviation of 8.4 while the 32 nonsuicidal subjects had a standard deviation of 6.0.
Assume that these two groups constitute independent simple random samples from two populations
of similar subjects. Assume also that the ICS scores in these two populations are normally distributed.
Find the 99 percent confidence interval for the ratio of the two population variances of scores on
the ICS.

6.10.3. Stroke index values were statistically analyzed for two samples of patients suffering from
myocardial infarction. The sample variances were 12 and 10. There were 21 patients in each
sample. Construct the 95 percent confidence interval for the ratio of the two population
variances.

6.10.4. Thirty-two adult asphasics seeking speech therapy were divided equally into two groups. Group 1
received treatment 1, and group 2 received treatment 2. Statistical analysis of the treatment
effectiveness scores yielded the following variances: s2

1 ¼ 8; s2
2 ¼ 15. Construct the 90 percent

confidence interval for s2
2=s

2
1.

6.10.5. Sample variances were computed for the tidal volumes (milliliters) of two groups of patients suffering
from atrial septal defect. The results and sample sizes were as follows:

n1 ¼ 31; s2
1 ¼ 35; 000

n2 ¼ 41; s2
2 ¼ 20; 000

Construct the 95 percent confidence interval for the ratio of the two population variances.

6.10.6. Glucose responses to oral glucose were recorded for 11 patients with Huntington’s disease (group 1)
and 13 control subjects (group 2). Statistical analysis of the results yielded the following sample
variances: s2

1 ¼ 105; s2
2 ¼ 148. Construct the 95 percent confidence interval for the ratio of the two

population variances.
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6.10.7. Measurements of gastric secretion of hydrochloric acid (milliequivalents per hour) in 16 normal
subjects and 10 subjects with duodenal ulcer yielded the following results:

Normal subjects: 6.3, 2.0, 2.3, 0.5, 1.9, 3.2, 4.1, 4.0, 6.2, 6.1, 3.5, 1.3, 1.7, 4.5, 6.3, 6.2
Ulcer subjects: 13.7, 20.6, 15.9, 28.4, 29.4, 18.4, 21.1, 3.0, 26.2, 13.0

Construct a 95 percent confidence interval for the ratio of the two population variances. What
assumptions must be met for this procedure to be valid?

6.11 SUMMARY

This chapter is concerned with one of the major areas of statistical inference—estimation.
Both point estimation and interval estimation are covered. The concepts and methods
involved in the construction of confidence intervals are illustrated for the following
parameters: means, the difference between two means, proportions, the difference between
two proportions, variances, and the ratio of two variances. In addition, we learned in this
chapter how to determine the sample size needed to estimate a population mean and a
population proportion at specified levels of precision.

We learned, also, in this chapter that interval estimates of population parameters are
more desirable than point estimates because statements of confidence can be attached to
interval estimates.

SUMMARY OF FORMULAS FOR CHAPTER 6

Formula
Number Name Formula

6.2.1 Expression of an interval
estimate

estimator � reliability coefficientð Þ �
standard error of the estimatorð Þ

6.2.2 Interval estimate for m
when s is known

�x� z 1�a=2ð Þs�x

6.3.1 t-transformation
t ¼ �x� m

s=
ffiffiffi
n

p

6.3.2 Interval estimate for m
when s is unknown

�x� t 1�a=2ð Þ ¼ sffiffiffi
n

p

6.4.1 Interval estimate for the
difference between two
population means when
s1 and s2 are known

�x1 � �x2ð Þ � z 1�a=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s

6.4.2 Pooled variance estimate
s2
p ¼

n1 � 1ð Þs2
1 þ n2 � 1ð Þs2

2

n1 þ n2 � 2

6.4.3 Standard error of estimate
s �x1��x2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p

n1
þ s2

p

n2

s

(Continued )
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6.4.4 Interval estimate for the
difference between two
population means when
s1 is unknown

�x1 � �x2ð Þ � t 1�a=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p

n1
þ s2

p

n2

s

6.4.5 Cochran’s correction for
reliability coefficient
when variances are not
equal

t01�a=2ð Þ ¼
w1t1 þ w2t2
w1 þ w2

6.4.6 Interval estimate using
Cochran’s correction for t �x1 � �x2ð Þ � t01�a=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s

6.5.1 Interval estimate for a
population proportion

p̂� z 1�a=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 � p̂ð Þ=n

p

6.6.1 Interval estimate for the
difference between two
population proportions

p̂1 � p̂2ð Þ � z 1�a=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1 1 � p̂1ð Þ

n1
þ p̂2 1 � p̂2ð Þ

n2

s

6.7.1–6.7.3 Sample size determination
when sampling with
replacement

d ¼ reliability coefficientð Þ � standard errorð Þ
d ¼ z

sffiffiffi
n

p

;

n ¼ z2s2

d2

6.7.4–6.7.5 Sample size determination
when sampling without
replacement

d ¼ z
sffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r

;

n ¼ Nz2s2

d2 N � 1ð Þ þ z2s2

6.8.1 Sample size determination
for proportions when
sampling with
replacement

n ¼ z2pq

d2

6.8.2 Sample size determination
for proportions when
sampling without
replacement

n ¼ Nz2s2

d2 N � 1ð Þ þ z2s2

6.9.1 Interval estimate for s2 n� 1ð Þs2

x2
1� a=2ð Þ

< s2 <
n� 1ð Þs2

x2
a=2ð Þ

6.9.2 Interval estimate for s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þs2

x2
1� a=2ð Þ

s
< s <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þs2

x2
a=2ð Þ

s

6.10.1 Interval estimate for the
ratio of two variances

s2
1=s

2
2

F1� a=2ð Þ
<

s2
1

s2
2

<
s2

1=s
2
2

Fa=2
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6.10.2 Relationship among F
ratios

Fa;df 1 ;df 2
¼ 1

F1�a;df 2;df 1

Symbol
Key

	 a ¼ Type 1 error rate
	 x2 ¼ Chi-square distribution
	 d ¼ error component of interval estimate
	 df ¼ degrees of freedom
	 F ¼ F-distribution
	 m ¼ mean of population
	 n ¼ sample size
	 p ¼ proportion for population
	 q ¼ 1 � pð Þ
	 p̂ ¼ estimated proportion for sample
	 s2 ¼ population variance
	 s ¼ population standard deviation
	 s�x ¼ standard error
	 s ¼ standard deviation of sample
	 sp ¼ pooled standard deviation
	 t ¼ Student’s t-transformation
	 t0 ¼Cochran’s correction to t
	 �x ¼ mean of sample
	 z ¼ standard normal distribution

REVIEW QUESTIONS AND EXERCISES

1. What is statistical inference?

2. Why is estimation an important type of inference?

3. What is a point estimate?

4. Explain the meaning of unbiasedness.

5. Define the following:

(a) Reliability coefficient (b) Confidence coefficient (c) Precision
(d) Standard error (e) Estimator (f) Margin of error

6. Give the general formula for a confidence interval.

7. State the probabilistic and practical interpretations of a confidence interval.

8. Of what use is the central limit theorem in estimation?

9. Describe the t distribution.

10. What are the assumptions underlying the use of the t distribution in estimating a single population
mean?

11. What is the finite population correction? When can it be ignored?

12. What are the assumptions underlying the use of the t distribution in estimating the difference between
two population means?
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13. Arterial blood gas analyses performed on a sample of 15 physically active adult males yielded the
following resting PaO2 values:

75; 80; 80; 74; 84; 78; 89; 72; 83; 76; 75; 87; 78; 79; 88

Compute the 95 percent confidence interval for the mean of the population.

14. What proportion of asthma patients are allergic to house dust? In a sample of 140, 35 percent had
positive skin reactions. Construct the 95 percent confidence interval for the population proportion.

15. An industrial hygiene survey was conducted in a large metropolitan area. Of 70 manufacturing plants
of a certain type visited, 21 received a “poor” rating with respect to absence of safety hazards.
Construct a 95 percent confidence interval for the population proportion deserving a “poor” rating.

16. Refer to the previous problem. How large a sample would be required to estimate the population
proportion to within .05 with 95 percent confidence (.30 is the best available estimate of p):

(a) If the finite population correction can be ignored?

(b) If the finite population correction is not ignored and N ¼ 1500?

17. In a dental survey conducted by a county dental health team, 500 adults were asked to give the reason
for their last visit to a dentist. Of the 220 who had less than a high-school education, 44 said they went
for preventative reasons. Of the remaining 280, who had a high-school education or better, 150 stated
that they went for preventative reasons. Construct a 95 percent confidence interval for the difference
between the two population proportions.

18. A breast cancer research team collected the following data on tumor size:

Type of Tumor n �x s

A 21 3.85 cm 1.95 cm
B 16 2.80 cm 1.70 cm

Construct a 95 percent confidence interval for the difference between population means.

19. A certain drug was found to be effective in the treatment of pulmonary disease in 180 of 200 cases
treated. Construct the 90 percent confidence interval for the population proportion.

20. Seventy patients with stasis ulcers of the leg were randomly divided into two equal groups. Each
group received a different treatment for edema. At the end of the experiment, treatment effectiveness
was measured in terms of reduction in leg volume as determined by water displacement. The means
and standard deviations for the two groups were as follows:

Group (Treatment) �x s

A 95 cc 25
B 125 cc 30

Construct a 95 percent confidence interval for the difference in population means.

21. What is the average serum bilirubin level of patients admitted to a hospital for treatment of hepatitis?
A sample of 10 patients yielded the following results:

20:5; 14:8; 21:3; 12:7; 15:2; 26:6; 23:4; 22:9; 15:7; 19:2

Construct a 95 percent confidence interval for the population mean.
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22. Determinations of saliva pH levels were made in two independent random samples of seventh-grade
schoolchildren. Sample A children were caries-free while sample B children had a high incidence of
caries. The results were as follows:

A: 7.14, 7.11, 7.61, 7.98, 7.21, 7.16, 7.89
7.24, 7.86, 7.47, 7.82, 7.37, 7.66, 7.62, 7.65

B: 7.36, 7.04, 7.19, 7.41, 7.10, 7.15, 7.36,
7.57, 7.64, 7.00, 7.25, 7.19

Construct a 90 percent confidence interval for the difference between the population means. Assume
that the population variances are equal.

23. Drug Awas prescribed for a random sample of 12 patients complaining of insomnia. An independent
random sample of 16 patients with the same complaint received drug B. The number of hours of sleep
experienced during the second night after treatment began were as follows:

A: 3.5, 5.7, 3.4, 6.9, 17.8, 3.8, 3.0, 6.4, 6.8, 3.6, 6.9, 5.7
B: 4.5, 11.7, 10.8, 4.5, 6.3, 3.8, 6.2, 6.6, 7.1, 6.4, 4.5, 5.1,

3.2, 4.7, 4.5, 3.0

Construct a 95 percent confidence interval for the difference between the population means. Assume
that the population variances are equal.

24. The objective of a study by Crane et al. (A-29) was to examine the efficacy, safety, and maternal
satisfaction of (a) oral misoprostol and (b) intravenous oxytocin for labor induction in women with
premature rupture of membranes at term. Researchers randomly assigned women to the two
treatments. For the 52 women who received oral misoprostol, the mean time in minutes to active
labor was 358 minutes with a standard deviation of 308 minutes. For the 53 women taking oxytocin,
the mean time was 483 minutes with a standard deviation of 144 minutes. Construct a 99 percent
confidence interval for the difference in mean time to active labor for these two different medications.
What assumptions must be made about the reported data? Describe the population about which an
inference can be made.

25. Over a 2-year period, 34 European women with previous gestational diabetes were retrospectively
recruited from West London antenatal databases for a study conducted by Kousta et al. (A-30). One of
the measurements for these women was the fasting nonesterified fatty acids concentration (NEFA)
measured in mmol=L. In the sample of 34 women, the mean NEFA level was 435 with a sample
standard deviation of 215.0. Construct a 95 percent confidence interval for the mean fasting NEFA
level for a population of women with gestational diabetes. State all necessary assumptions about the
reported data and subjects.

26. Scheid et al. (A-31) questioned 387 women receiving free bone mineral density screening. The
questions focused on past smoking history. Subjects undergoing hormone replacement therapy
(HRT), and subjects not undergoing HRT, were asked if they had ever been a regular smoker. In the
HRT group, 29.3 percent of 220 women stated that they were at some point in their life a regular
smoker. In the non–HRT group, 17.3 percent of 106 women responded positively to being at some
point in their life a regular smoker. (Sixty-one women chose not to answer the question.) Construct a
95 percent confidence interval for the difference in smoking percentages for the two populations of
women represented by the subjects in the study. What assumptions about the data are necessary?

27. The purpose of a study by Elliott et al. (A-32) was to assess the prevalence of vitamin D deficiency in
women living in nursing homes. The sample consisted of 39 women in a 120-bed skilled nursing
facility. Women older than 65 years of age who were long-term residents were invited to participate if
they had no diagnosis of terminal cancer or metastatic disease. In the sample, 23 women had 25-
hydroxyvitamin D levels of 20 ng/ml or less. Construct a 95 percent confidence interval for the
percent of women with vitamin D deficiency in the population presumed to be represented by this
sample.
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28. In a study of the role of dietary fats in the etiology of ischemic heart disease the subjects were
60 males between 40 and 60 years of age who had recently had a myocardial infarction and
50 apparently healthy males from the same age group and social class. One variable of interest in the
study was the proportion of linoleic acid (L.A.) in the subjects’ plasma triglyceride fatty acids. The
data on this variable were as follows:

Subjects with Myocardial Infarction

Subject L.A. Subject L.A. Subject L.A. Subject L.A.

1 18.0 2 17.6 3 9.6 4 5.5
5 16.8 6 12.9 7 14.0 8 8.0
9 8.9 10 15.0 11 9.3 12 5.8

13 8.3 14 4.8 15 6.9 16 18.3
17 24.0 18 16.8 19 12.1 20 12.9
21 16.9 22 15.1 23 6.1 24 16.6
25 8.7 26 15.6 27 12.3 28 14.9
29 16.9 30 5.7 31 14.3 32 14.1
33 14.1 34 15.1 35 10.6 36 13.6
37 16.4 38 10.7 39 18.1 40 14.3
41 6.9 42 6.5 43 17.7 44 13.4
45 15.6 46 10.9 47 13.0 48 10.6
49 7.9 50 2.8 51 15.2 52 22.3
53 9.7 54 15.2 55 10.1 56 11.5
57 15.4 58 17.8 59 12.6 60 7.2

Healthy Subjects

Subject L.A. Subject L.A. Subject L.A. Subject L.A.

1 17.1 2 22.9 3 10.4 4 30.9
5 32.7 6 9.1 7 20.1 8 19.2
9 18.9 10 20.3 11 35.6 12 17.2

13 5.8 14 15.2 15 22.2 16 21.2
17 19.3 18 25.6 19 42.4 20 5.9
21 29.6 22 18.2 23 21.7 24 29.7
25 12.4 26 15.4 27 21.7 28 19.3
29 16.4 30 23.1 31 19.0 32 12.9
33 18.5 34 27.6 35 25.0 36 20.0
37 51.7 38 20.5 39 25.9 40 24.6
41 22.4 42 27.1 43 11.1 44 32.7
45 13.2 46 22.1 47 13.5 48 5.3
49 29.0 50 20.2

Construct the 95 percent confidence interval for the difference between population means. What do
these data suggest about the levels of linoleic acid in the two sampled populations?

29. The purpose of a study by Tahmassebi and Curzon (A-33) was to compare the mean salivary flow rate
among subjects with cerebral palsy and among subjects in a control group. Each group had
10 subjects. The following table gives the mean flow rate in ml/minute as well as the standard error.
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Group Sample Size Mean ml/minute Standard Error

Cerebral palsy 10 0.220 0.0582
Control 10 0.334 0.1641

Source: J. F. Tahmassebi and M. E. J. Curzon, “The Cause of Drooling in Children with
Cerebral Palsy—Hypersalivation or Swallowing Defect?” International Journal of Paediatric
Dentistry, 13 (2003), 106–111.

Construct the 90 percent confidence interval for the difference in mean salivary flow rate for the two
populations of subjects represented by the sample data. State the assumptions necessary for this to be
a valid confidence interval.

30. Culligan et al. (A-34) compared the long-term results of two treatments: (a) a modified Burch
procedure, and (b) a sling procedure for stress incontinence with a low-pressure urethra. Thirty-six
women took part in the study with 19 in the Burch treatment group and 17 in the sling procedure
treatment group. One of the outcome measures at three months post-surgery was maximum urethral
closure pressure (cm H2O). In the Burch group the mean and standard deviation were 16.4 and 8.2 cm,
respectively. In the sling group, the mean and standard deviation were 39.8 and 23.0, respectively.
Construct the 99 percent confidence interval for the difference in mean maximum urethral closure
pressure for the two populations represented by these subjects. State all necessary assumptions.

31. In general, narrow confidence intervals are preferred over wide ones. We can make an interval narrow
by using a small confidence coefficient. For a given set of other conditions, what happens to the level
of confidence when we use a small confidence coefficient? What would happen to the interval width
and the level of confidence if we were to use a confidence coefficient of zero?

32. In general, a high level of confidence is preferred over a low level of confidence. For a given set of
other conditions, suppose we set our level of confidence at 100 percent. What would be the effect of
such a choice on the width of the interval?

33. The subjects of a study by Borland et al. (A-35) were children in acute pain. Thirty-two children who
presented at an emergency room were enrolled in the study. Each child used the visual analogue scale
to rate pain on a scale from 0 to 100 mm. The mean pain score was 61.3 mm with a 95 percent
confidence interval of 53.2 mm–69.4 mm. Which would be the appropriate reliability factor for the
interval, z or t? Justify your choice. What is the precision of the estimate? The margin of error?

34. Does delirium increase hospital stay? That was the research question investigated by McCusker et al.
(A-36). The researchers sampled 204 patients with prevalent delirium and 118 without delirium. The
conclusion of the study was that patients with prevalent delirium did not have a higher mean length of
stay compared to those without delirium. What was the target population? The sampled population?

35. Assessing driving self-restriction in relation to vision performance was the objective of a study by West
et al. (A-37). The researchers studied 629 current drivers ages 55 and older for 2 years. The variables of
interest were driving behavior, health, physical function, and vision function. The subjects were part of a
larger vision study at the Smith-Kettlewell Eye Research Institute. A conclusion of the study was that
older adults with early changes in spatial vision function and depth perception appear to recognize their
limitations and restrict their driving. What was the target population? The sampled population?

36. In a pilot study conducted by Ayouba et al. (A-38), researchers studied 123 children born of HIV-1-
infected mothers in Yaound�e, Cameroon. Counseled and consenting pregnant women were given a
single dose of nevirapine at the onset of labor. Babies were given a syrup containing nevirapine within
the first 72 hours of life. The researchers found that 87 percent of the children were considered not
infected at 6–8 weeks of age. What is the target population? What is the sampled population?
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37. Refer to Exercise 2.3.11. Construct a 95 percent confidence interval for the population mean S/R
ratio. Should you use t or z as the reliability coefficient? Why? Describe the population about which
inferences based on this study may be made.

38. Refer to Exercise 2.3.12. Construct a 90 percent confidence interval for the population mean height.
Should you use t or z as the reliability coefficient? Why? Describe the population about which
inferences based on this study may be made.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com /college/ daniel

1. Refer to North Carolina Birth Registry Data NCBIRTH800 with 800 observations (see Large
Data Exercise 1 in Chapter 2). Calculate 95 percent confidence intervals for the following:

(a) the percentage of male children
(b) the mean age of a mother giving birth
(c) the mean weight gained during pregnancy
(d) the percentage of mothers admitting to smoking during pregnancy
(e) the difference in the average weight gained between smoking and nonsmoking mothers
(f) the difference in the average birth weight in grams between married and nonmarried mothers
(g) the difference in the percentage of low birth weight babies between married and nonmarried

mothers

2. Refer to the serum cholesterol levels for 1000 subjects (CHOLEST). Select a simple random
sample of size 15 from this population and construct a 95 percent confidence interval for the
population mean. Compare your results with those of your classmates. What assumptions are
necessary for your estimation procedure to be valid?

3. Refer to the serum cholesterol levels for 1000 subjects (CHOLEST). Select a simple random
sample of size 50 from the population and construct a 95 percent confidence interval for the
proportion of subjects in the population who have readings greater than 225. Compare your
results with those of your classmates.

4. Refer to the weights of 1200 babies born in a community hospital (BABY WGTS). Draw a simple
random sample of size 20 from this population and construct a 95 percent confidence interval for
the population mean. Compare your results with those of your classmates. What assumptions are
necessary for your estimation procedure to be valid?

5. Refer to the weights of 1200 babies born in a community hospital (BABY WGTS). Draw a simple
random sample of size 35 from the population and construct a 95 percent confidence interval for
the population mean. Compare this interval with the one constructed in Exercise 4.

6. Refer to the heights of 1000 twelve-year-old boys (BOY HGTS). Select a simple random sample
of size 15 from this population and construct a 99 percent confidence interval for the population
mean. What assumptions are necessary for this procedure to be valid?

7. Refer to the heights of 1000 twelve-year-old boys (BOY HGTS). Select a simple random sample
of size 35 from the population and construct a 99 percent confidence interval for the population
mean. Compare this interval with the one constructed in Exercise 5.
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CHAPTER7
HYPOTHESIS TESTING

CHAPTER OVERVIEW

This chapter covers hypothesis testing, the second of two general areas of
statistical inference.Hypothesis testing isa topicwithwhich youasa studentare
likely to have some familiarity. Interval estimation, discussed in the preceding
chapter, and hypothesis testing are based on similar concepts. In fact, confi-
dence intervals may be used to arrive at the same conclusions that are reached
through the use of hypothesis tests. This chapter provides a format, followed
throughout the remainder of this book, for conducting a hypothesis test.

TOPICS

7.1 INTRODUCTION

7.2 HYPOTHESIS TESTING: A SINGLE POPULATION MEAN

7.3 HYPOTHESIS TESTING: THE DIFFERENCE BETWEEN TWO POPULATION
MEANS

7.4 PAIRED COMPARISONS

7.5 HYPOTHESIS TESTING: A SINGLE POPULATION PROPORTION

7.6 HYPOTHESIS TESTING: THE DIFFERENCE BETWEEN TWO POPULATION
PROPORTIONS

7.7 HYPOTHESIS TESTING: A SINGLE POPULATION VARIANCE

7.8 HYPOTHESIS TESTING: THE RATIO OF TWO POPULATION VARIANCES

7.9 THE TYPE II ERROR AND THE POWER OF A TEST

7.10 DETERMINING SAMPLE SIZE TO CONTROL TYPE II ERRORS

7.11 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand how to correctly state a null and alternative hypothesis and carry out a
structured hypothesis test.

2. understand the concepts of type I error, type II error, and the power of a test.

3. be able to calculate and interpret z, t, F, and chi-square test statistics for making
statistical inferences.

4. understand how to calculate and interpret p values.
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7.1 INTRODUCTION

One type of statistical inference, estimation, is discussed in the preceding chapter. The
other type, hypothesis testing, is the subject of this chapter. As is true with estimation,
the purpose of hypothesis testing is to aid the clinician, researcher, or administrator in
reaching a conclusion concerning a population by examining a sample from that
population. Estimation and hypothesis testing are not as different as they are made to
appear by the fact that most textbooks devote a separate chapter to each. As we will explain
later, one may use confidence intervals to arrive at the same conclusions that are reached by
using the hypothesis testing procedures discussed in this chapter.

Basic Concepts In this section some of the basic concepts essential to an under-
standing of hypothesis testing are presented. The specific details of particular tests will be
given in succeeding sections.

DEFINITION

A hypothesismay be defined simply as a statement about one or more
populations.

The hypothesis is frequently concerned with the parameters of the populations
about which the statement is made. A hospital administrator may hypothesize that the
average length of stay of patients admitted to the hospital is 5 days; a public health nurse
may hypothesize that a particular educational program will result in improved com-
munication between nurse and patient; a physician may hypothesize that a certain drug
will be effective in 90 percent of the cases for which it is used. By means of hypothesis
testing one determines whether or not such statements are compatible with the available
data.

Types of Hypotheses Researchers are concerned with two types of hypotheses—
research hypotheses and statistical hypotheses.

DEFINITION

The research hypothesis is the conjecture or supposition that motivates
the research.

It may be the result of years of observation on the part of the researcher. A public
health nurse, for example, may have noted that certain clients responded more readily to a
particular type of health education program. A physician may recall numerous instances in
which certain combinations of therapeutic measures were more effective than any one of
them alone. Research projects often result from the desire of such health practitioners to
determine whether or not their theories or suspicions can be supported when subjected to
the rigors of scientific investigation.
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Research hypotheses lead directly to statistical hypotheses.

DEFINITION

Statistical hypotheses are hypotheses that are stated in such a way that
they may be evaluated by appropriate statistical techniques.

In this book the hypotheses that we will focus on are statistical hypotheses. We will
assume that the research hypotheses for the examples and exercises have already been
considered.

Hypothesis Testing Steps For convenience, hypothesis testing will be pre-
sented as a ten-step procedure. There is nothing magical or sacred about this particular
format. It merely breaks the process down into a logical sequence of actions and decisions.

1. Data. The nature of the data that form the basis of the testing procedures must be
understood, since this determines the particular test to be employed. Whether the
data consist of counts or measurements, for example, must be determined.

2. Assumptions. As we learned in the chapter on estimation, different assumptions
lead to modifications of confidence intervals. The same is true in hypothesis
testing: A general procedure is modified depending on the assumptions. In fact,
the same assumptions that are of importance in estimation are important in
hypothesis testing. We have seen that these include assumptions about the
normality of the population distribution, equality of variances, and independence
of samples.

3. Hypotheses. There are two statistical hypotheses involved in hypothesis testing, and
these should be stated explicitly. The null hypothesis is the hypothesis to be tested. It
is designated by the symbol H0. The null hypothesis is sometimes referred to as a
hypothesis of no difference, since it is a statement of agreement with (or no difference
from) conditions presumed to be true in the population of interest. In general, the null
hypothesis is set up for the express purpose of being discredited. Consequently, the
complement of the conclusion that the researcher is seeking to reach becomes the
statement of the null hypothesis. In the testing process the null hypothesis either is
rejected or is not rejected. If the null hypothesis is not rejected, we will say that the
data on which the test is based do not provide sufficient evidence to cause rejection. If
the testing procedure leads to rejection, we will say that the data at hand are not
compatible with the null hypothesis, but are supportive of some other hypothesis. The
alternative hypothesis is a statement of what we will believe is true if our sample data
cause us to reject the null hypothesis. Usually the alternative hypothesis and the
research hypothesis are the same, and in fact the two terms are used interchangeably.
We shall designate the alternative hypothesis by the symbol HA.

Rules for Stating Statistical Hypotheses When hypotheses are of the
type considered in this chapter an indication of equality ðeither ¼;�; or �Þ must
appear in the null hypothesis. Suppose, for example, that we want to answer the
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question: Can we conclude that a certain population mean is not 50? The null
hypothesis is

H0: m ¼ 50

and the alternative is

HA: m 6¼ 50

Suppose we want to know if we can conclude that the population mean is greater than
50. Our hypotheses are

H0: m � 50 HA: m > 50

If we want to know if we can conclude that the population mean is less than 50, the
hypotheses are

H0: m � 50 HA: m < 50

In summary, we may state the following rules of thumb for deciding what
statement goes in the null hypothesis and what statement goes in the alternative
hypothesis:

(a) What you hope or expect to be able to conclude as a result of the test usually should
be placed in the alternative hypothesis.

(b) The null hypothesis should contain a statement of equality, either ¼;�; or �.

(c) The null hypothesis is the hypothesis that is tested.

(d) The null and alternative hypotheses are complementary. That is, the two together
exhaust all possibilities regarding the value that the hypothesized parameter can
assume.

A Precaution It should be pointed out that neither hypothesis testing nor statistical
inference, in general, leads to the proof of a hypothesis; it merely indicates whether the
hypothesis is supported or is not supported by the available data. When we fail to reject a
null hypothesis, therefore, we do not say that it is true, but that it may be true. When we
speak of accepting a null hypothesis, we have this limitation in mind and do not wish to
convey the idea that accepting implies proof.

4. Test statistic. The test statistic is some statistic that may be computed from the data
of the sample. As a rule, there are many possible values that the test statistic may
assume, the particular value observed depending on the particular sample drawn. As
we will see, the test statistic serves as a decision maker, since the decision to reject or
not to reject the null hypothesis depends on the magnitude of the test statistic.
An example of a test statistic is the quantity

z ¼ �x� m0

s=
ffiffiffi
n

p (7.1.1)
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where m0 is a hypothesized value of a population mean. This test statistic is related to
the statistic

z ¼ �x� m

s=
ffiffiffi
n

p (7.1.2)

with which we are already familiar.

General Formula for Test Statistic The following is a general formula for
a test statistic that will be applicable in many of the hypothesis tests discussed in this
book:

test statistic ¼ relevant statistic � hypothesized parameter

standard error of the relevant statistic

In Equation 7.1.1, �x is the relevant statistic, m0 is the hypothesized parameter, and s=
ffiffiffi
n

p
is

the standard error of �x, the relevant statistic.

5. Distribution of test statistic. It has been pointed out that the key to statistical
inference is the sampling distribution. We are reminded of this again when it becomes
necessary to specify the probability distribution of the test statistic. The distribution
of the test statistic

z ¼ �x� m0

s=
ffiffiffi
n

p

for example, follows the standard normal distribution if the null hypothesis is true
and the assumptions are met.

6. Decision rule. All possible values that the test statistic can assume are points on the
horizontal axis of the graph of the distribution of the test statistic and are divided into
two groups; one group constitutes what is known as the rejection region and the other
group makes up the nonrejection region. The values of the test statistic forming the
rejection region are those values that are less likely to occur if the null hypothesis is
true, while the values making up the acceptance region are more likely to occur if
the null hypothesis is true. The decision rule tells us to reject the null hypothesis if the
value of the test statistic that we compute from our sample is one of the values in the
rejection region and to not reject the null hypothesis if the computed value of the test
statistic is one of the values in the nonrejection region.

Significance Level The decision as to which values go into the rejection region
and which ones go into the nonrejection region is made on the basis of the desired level of
significance, designated by a. The term level of significance reflects the fact that hypothesis
tests are sometimes called significance tests, and a computed value of the test statistic that
falls in the rejection region is said to be significant. The level of significance, a, specifies
the area under the curve of the distribution of the test statistic that is above the values on the
horizontal axis constituting the rejection region.
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DEFINITION

The level of significance a is a probability and, in fact, is the probability
of rejecting a true null hypothesis.

Since to reject a true null hypothesis would constitute an error, it seems only
reasonable that we should make the probability of rejecting a true null hypothesis small
and, in fact, that is what is done. We select a small value of a in order to make the
probability of rejecting a true null hypothesis small. The more frequently encountered
values of a are .01, .05, and .10.

Types of Errors The error committed when a true null hypothesis is rejected is
called the type I error. The type II error is the error committed when a false null hypothesis
is not rejected. The probability of committing a type II error is designated by b.

Whenever we reject a null hypothesis there is always the concomitant risk of
committing a type I error, rejecting a true null hypothesis. Whenever we fail to reject a null
hypothesis the risk of failing to reject a false null hypothesis is always present. We make a
small, but we generally exercise no control over b, although we know that in most practical
situations it is larger than a.

We never know whether we have committed one of these errors when we reject or fail
to reject a null hypothesis, since the true state of affairs is unknown. If the testing procedure
leads to rejection of the null hypothesis, we can take comfort from the fact that we made a
small and, therefore, the probability of committing a type I error was small. If we fail to
reject the null hypothesis, we do not know the concurrent risk of committing a type II error,
since b is usually unknown but, as has been pointed out, we do know that, in most practical
situations, it is larger than a.

Figure 7.1.1 shows for various conditions of a hypothesis test the possible actions
that an investigator may take and the conditions under which each of the two types of error
will be made. The table shown in this figure is an example of what is generally referred to as
a confusion matrix.

7. Calculation of test statistic. From the data contained in the sample we compute a
value of the test statistic and compare it with the rejection and nonrejection regions
that have already been specified.

8. Statistical decision. The statistical decision consists of rejecting or of not rejecting
the null hypothesis. It is rejected if the computed value of the test statistic falls in the

Condition of Null Hypothesis

FalseTrue

Type II errorCorrect actionFail to

Possible reject H0

Action Reject H0 Correct actionType I error

FIGURE 7.1.1 Conditions under which type I and type II errors may be committed.
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rejection region, and it is not rejected if the computed value of the test statistic falls in
the nonrejection region.

9. Conclusion. If H0 is rejected, we conclude that HA is true. If H0 is not rejected, we
conclude that H0 may be true.

10. p values. The p value is a number that tells us how unusual our sample results are,
given that the null hypothesis is true. A p value indicating that the sample results are
not likely to have occurred, if the null hypothesis is true, provides justification for
doubting the truth of the null hypothesis.

DEFINITION

A p value is the probability that the computed value of a test statistic is
at least as extreme as a specified value of the test statistic when the null
hypothesis is true. Thus, the p value is the smallest value of a for which we
can reject a null hypothesis.

We emphasize that when the null hypothesis is not rejected one should not say that
the null hypothesis is accepted. We should say that the null hypothesis is “not rejected.” We
avoid using the word “accept” in this case because we may have committed a type II error.
Since, frequently, the probability of committing a type II error can be quite high, we do not
wish to commit ourselves to accepting the null hypothesis.

Figure 7.1.2 is a flowchart of the steps that we follow when we perform a hypothesis
test.

Purpose of Hypothesis Testing The purpose of hypothesis testing is to assist
administrators and clinicians in making decisions. The administrative or clinical decision
usually depends on the statistical decision. If the null hypothesis is rejected, the adminis-
trative or clinical decision usually reflects this, in that the decision is compatible with the
alternative hypothesis. The reverse is usually true if the null hypothesis is not rejected. The
administrative or clinical decision, however, may take other forms, such as a decision to
gather more data.

We also emphasize that the hypothesis testing procedures highlighted in the
remainder of this chapter generally examine the case of normally distributed data or
cases where the procedures are appropriate because the central limit theorem applies. In
practice, it is not uncommon for samples to be small relative to the size of the population,
or to have samples that are highly skewed, and hence the assumption of normality is
violated. Methods to handle this situation, that is distribution-free or nonparametric
methods, are examined in detail in Chapter 13. Most computer packages include an
analytical procedure (for example, the Shapiro-Wilk or Anderson-Darling test) for
testing normality. It is important that such tests are carried out prior to analysis of
data. Further, when testing two samples, there is an implicit assumption that the
variances are equal. Tests for this assumption are provided in Section 7.8. Finally, it
should be noted that hypothesis tests, just like confidence intervals, are relatively
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sensitive to the size of the samples being tested, and caution should be taken when
interpreting results involving very small sample sizes.

We must emphasize at this point, however, that the outcome of the statistical test is
only one piece of evidence that influences the administrative or clinical decision. The
statistical decision should not be interpreted as definitive but should be considered along
with all the other relevant information available to the experimenter.

With these general comments as background, we now discuss specific hypothesis
tests.

Do not
reject H0

Make
statistical
decision

Evaluate
data

Review
assumptions

State
hypotheses

Select
test

statistics

State 
decision

rule

Calculate
test

statistics

Determine
distribution

of test
statistics

Reject H0

Conclude H0
may be true

Conclude HA
is true

FIGURE 7.1.2 Steps in the hypothesis testing procedure.
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7.2 HYPOTHESIS TESTING:
A SINGLE POPULATIONMEAN

In this section we consider the testing of a hypothesis about a population mean under
three different conditions: (1) when sampling is from a normally distributed population
of values with known variance; (2) when sampling is from a normally distributed
population with unknown variance, and (3) when sampling is from a population that is
not normally distributed. Although the theory for conditions 1 and 2 depends on
normally distributed populations, it is common practice to make use of the theory
when relevant populations are only approximately normally distributed. This is satis-
factory as long as the departure from normality is not drastic. When sampling is from a
normally distributed population and the population variance is known, the test statistic
for testing H0: m ¼ m0 is

z ¼ �x� m

s=
ffiffiffi
n

p (7.2.1)

which, when H0 is true, is distributed as the standard normal. Examples 7.2.1 and 7.2.2
illustrate hypothesis testing under these conditions.

Sampling from Normally Distributed Populations: Population
Variances Known As we did in Chapter 6, we again emphasize that situations in
which the variable of interest is normally distributed with a known variance are rare. The
following example, however, will serve to illustrate the procedure.

EXAMPLE 7.2.1

Researchers are interested in the mean age of a certain population. Let us say that they are
asking the following question: Can we conclude that the mean age of this population is
different from 30 years?

Solution: Based on our knowledge of hypothesis testing, we reply that they can
conclude that the mean age is different from 30 if they can reject the null
hypothesis that the mean is equal to 30. Let us use the ten-step hypothesis
testing procedure given in the previous section to help the researchers reach a
conclusion.

1. Data. The data available to the researchers are the ages of a simple
random sample of 10 individuals drawn from the population of interest.
From this sample a mean of �x ¼ 27 has been computed.

2. Assumptions. It is assumed that the sample comes from a population
whose ages are approximately normally distributed. Let us also assume
that the population has a known variance of s2 ¼ 20.

3. Hypotheses. The hypothesis to be tested, or null hypothesis, is that the
mean age of the population is equal to 30. The alternative hypothesis is
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that the mean age of the population is not equal to 30. Note that we are
identifying with the alternative hypothesis the conclusion the researchers
wish to reach, so that if the data permit rejection of the null hypothesis, the
researchers’ conclusion will carry more weight, since the accompanying
probability of rejecting a true null hypothesis will be small. We will make
sure of this by assigning a small value to a, the probability of committing
a type I error. We may present the relevant hypotheses in compact form as
follows:

H0: m ¼ 30
HA: m 6¼ 30

4. Test statistic. Since we are testing a hypothesis about a population
mean, since we assume that the population is normally distributed, and
since the population variance is known, our test statistic is given by
Equation 7.2.1.

5. Distribution of test statistic. Based on our knowledge of sampling
distributions and the normal distribution, we know that the test statistic
is normally distributed with a mean of 0 and a variance of 1, if H0 is
true. There are many possible values of the test statistic that the
present situation can generate; one for every possible sample of size 10
that can be drawn from the population. Since we draw only one
sample, we have only one of these possible values on which to base a
decision.

6. Decision rule. The decision rule tells us to reject H0 if the computed
value of the test statistic falls in the rejection region and to fail to reject H0

if it falls in the nonrejection region. We must now specify the rejection and
nonrejection regions. We can begin by asking ourselves what magnitude
of values of the test statistic will cause rejection of H0. If the null
hypothesis is false, it may be so either because the population mean is
less than 30 or because the population mean is greater than 30. Therefore,
either sufficiently small values or sufficiently large values of the test
statistic will cause rejection of the null hypothesis. We want these extreme
values to constitute the rejection region. How extreme must a possible
value of the test statistic be to qualify for the rejection region? The answer
depends on the significance level we choose, that is, the size of the
probability of committing a type I error. Let us say that we want the
probability of rejecting a true null hypothesis to be a ¼ :05. Since our
rejection region is to consist of two parts, sufficiently small values and
sufficiently large values of the test statistic, part of a will have to be
associated with the large values and part with the small values. It seems
reasonable that we should divide a equally and let a=2 ¼ :025 be
associated with small values and a=2 ¼ :025 be associated with large
values.
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Critical Value of Test Statistic

What value of the test statistic is so large that, when the null hypothesis is true, the
probability of obtaining a value this large or larger is .025? In other words, what is the value
of z to the right of which lies .025 of the area under the standard normal distribution? The
value of z to the right of which lies .025 of the area is the same value that has .975 of the area
between it and �1. We look in the body of Appendix Table D until we find .975 or its
closest value and read the corresponding marginal entries to obtain our z value. In the
present example thevalue of z is 1.96. Similar reasoning will lead us to find�1:96 as thevalue
of the test statistic so small that when the null hypothesis is true, the probability of obtaining
a value this small or smaller is .025. Our rejection region, then, consists of all values of
the test statistic equal to or greater than 1.96 and less than or equal to �1:96. The
nonrejection region consists of all values in between. We may state the decision rule for
this test as follows: reject H0 if the computed value of the test statistic is either � 1:96 or
� �1:96. Otherwise, do not reject H0. The rejection and nonrejection regions are shown
in Figure 7.2.1. The values of the test statistic that separate the rejection and nonrejection
regions are called critical values of the test statistic, and the rejection region is
sometimes referred to as the critical region.

The decision rule tells us to compute a value of the test statistic from the data of
our sample and to reject H0 if we get a value that is either equal to or greater than 1.96
or equal to or less than �1:96 and to fail to reject H0 if we get any other value. The
value of a and, hence, the decision rule should be decided on before gathering the data.
This prevents our being accused of allowing the sample results to influence our choice
of a. This condition of objectivity is highly desirable and should be preserved in
all tests.

7. Calculation of test statistic. From our sample we compute

z ¼ 27 � 30ffiffiffiffiffiffiffiffiffiffiffiffiffi
20=10

p ¼ �3

1:4142
¼ �2:12

8. Statistical decision. Abiding by the decision rule, we are able to
reject the null hypothesis since �2:12 is in the rejection region. We

s = 1

0_ 69.169.1

a/2 = .025a/2= .025

.95

z

Nonrejection
region

Rejection regionRejection region

FIGURE 7.2.1 Rejection and nonrejection regions for Example 7.2.1.
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can say that the computed value of the test statistic is significant at
the .05 level.

9. Conclusion. We conclude that m is not equal to 30 and let our
administrative or clinical actions be in accordance with this conclu-
sion.

10. p values. Instead of saying that an observed value of the test statistic
is significant or is not significant, most writers in the research
literature prefer to report the exact probability of getting a value as
extreme as or more extreme than that observed if the null hypothesis is
true. In the present instance these writers would give the computed
value of the test statistic along with the statement p ¼ :0340. The
statement p ¼ :0340 means that the probability of getting a value as
extreme as 2.12 in either direction, when the null hypothesis is true, is
.0340. The value .0340 is obtained from Appendix Table D and is the
probability of observing a z � 2:12 or a z � �2:12 when the null
hypothesis is true. That is, when H0 is true, the probability of
obtaining a value of z as large as or larger than 2.12 is .0170, and
the probability of observing a value of z as small as or smaller than
�2:12 is .0170. The probability of one or the other of these events
occurring, when H0 is true, is equal to the sum of the two individual
probabilities, and hence, in the present example, we say that
p ¼ :0170 þ :0170 ¼ :0340.

Recall that the p value for a test may be defined also as the
smallest value of a for which the null hypothesis can be rejected. Since,
in Example 7.2.1, our p value is .0340, we know that we could have
chosen an a value as small as .0340 and still have rejected the null
hypothesis. If we had chosen an a smaller than .0340, we would not have
been able to reject the null hypothesis. A general rule worth
remembering, then, is this: if the p value is less than or equal to a,
we reject the null hypothesis; if the p value is greater than a, we do not
reject the null hypothesis.

The reporting of p values as part of the results of an investigation is
more informative to the reader than such statements as “the null hypothesis is
rejected at the .05 level of significance” or “the results were not significant at
the .05 level.” Reporting the p value associated with a test lets the reader
know just how common or how rare is the computed value of the test statistic
given that H0 is true. &

Testing H0 by Means of a Confidence Interval Earlier, we stated that
one can use confidence intervals to test hypotheses. In Example 7.2.1 we used a
hypothesis testing procedure to test H0: m ¼ 30 against the alternative, HA: m 6¼ 30.
We were able to reject H0 because the computed value of the test statistic fell in the
rejection region.
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Let us see how we might have arrived at this same conclusion by using a 100 1 � að Þ
percent confidence interval. The 95 percent confidence interval for m is

27 � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffi
20=10

p
27 � 1:96 1:414ð Þ
27 � 2:7714

ð24:2286;  29:7714Þ

Since this interval does not include 30, we say 30 is not a candidate for the mean we are
estimating and, therefore, m is not equal to 30 and H0 is rejected. This is the same
conclusion reached by means of the hypothesis testing procedure.

If the hypothesized parameter, 30, had been within the 95 percent confidence
interval, we would have said that H0 is not rejected at the .05 level of significance. In
general, when testing a null hypothesis by means of a two-sided confidence interval, we
reject H0 at the a level of significance if the hypothesized parameter is not contained within
the 100 1 � að Þ percent confidence interval. If the hypothesized parameter is contained
within the interval, H0 cannot be rejected at the a level of significance.

One-Sided Hypothesis Tests The hypothesis test illustrated by Example
7.2.1 is an example of a two-sided test, so called because the rejection region is split
between the two sides or tails of the distribution of the test statistic. A hypothesis test may
be one-sided, in which case all the rejection region is in one or the other tail of the
distribution. Whether a one-sided or a two-sided test is used depends on the nature of the
question being asked by the researcher.

If both large and small values will cause rejection of the null hypothesis, a two-sided
test is indicated. When either sufficiently “small” values only or sufficiently “large” values
only will cause rejection of the null hypothesis, a one-sided test is indicated.

EXAMPLE 7.2.2

Refer to Example 7.2.1. Suppose, instead of asking if they could conclude that m 6¼ 30, the
researchers had asked: Can we conclude that m < 30? To this question we would reply that
they can so conclude if they can reject the null hypothesis that m � 30.

Solution: Let us go through the ten-step procedure to reach a decision based on a
one-sided test.

1. Data. See the previous example.

2. Assumptions. See the previous example.

3. Hypotheses.

H0: m � 30
HA: m < 30

The inequality in the null hypothesis implies that the null hypothesis
consists of an infinite number of hypotheses. The test will be made only
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at the point of equality, since it can be shown that if H0 is rejected when
the test is made at the point of equality it would be rejected if the test
were done for any other value of m indicated in the null hypothesis.

4. Test statistic.

z ¼ �x� m0

s=
ffiffiffi
n

p

5. Distribution of test statistic. See the previous example.

6. Decision rule. Let us again use a ¼ :05. To determine where to place the
rejection region, let us ask ourselves what magnitude of values would
cause rejection of the null hypothesis. If we look at the hypotheses, we
see that sufficiently small values would cause rejection and that large
values would tend to reinforce the null hypothesis. We will want our
rejection region to be where the small values are—at the lower tail of the
distribution. This time, since we have a one-sided test, all of a will go in
the one tail of the distribution. By consulting Appendix Table D, we find
that the value of z to the left of which lies .05 of the area under the
standard normal curve is �1:645 after interpolating. Our rejection and
nonrejection regions are now specified and are shown in Figure 7.2.2.

Our decision rule tells us to reject H0 if the computed value of the
test statistic is less than or equal to �1:645.

7. Calculation of test statistic. From our data we compute

z ¼ 27 � 30ffiffiffiffiffiffiffiffiffiffiffiffiffi
20=10

p ¼ �2:12

8. Statistical decision. We are able to reject the null hypothesis since
�2:12 < �1:645.

9. Conclusion. We conclude that the population mean is smaller than 30
and act accordingly.

10. p value. The p value for this test is .0170, since Pðz � �2:12Þ, when H0

is true, is .0170 as given by Appendix Table D when we determine the

s = 1

0_1.645

.05

.95

z

Rejection region Nonrejection region

FIGURE 7.2.2 Rejection and nonrejection regions for Example 7.2.2.
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magnitude of the area to the left of �2:12 under the standard normal
curve. One can test a one-sided null hypothesis by means of a one-sided
confidence interval. However, we will not cover the construction and
interpretation of this type of confidence interval in this book.

If the researcher’s question had been, “Can we conclude that the mean is
greater than 30?”, following the above ten-step procedure would have led to a
one-sided test with all the rejection region at the upper tail of the distribution
of the test statistic and a critical value of þ1:645. &

Sampling from a Normally Distributed Population: Population
VarianceUnknown As we have already noted, the population variance is usually
unknown in actual situations involving statistical inference about a population mean. When
sampling is from an approximately normal population with an unknown variance, the test
statistic for testing H0: m ¼ m0 is

t ¼ �x� m0

s=
ffiffiffi
n

p (7.2.2)

which, when H0 is true, is distributed as Student’s t with n� 1 degrees of freedom. The
following example illustrates the hypothesis testing procedure when the population is
assumed to be normally distributed and its variance is unknown. This is the usual situation
encountered in practice.

EXAMPLE 7.2.3

Nakamura et al. (A-1) studied subjects with medial collateral ligament (MCL) and anterior
cruciate ligament (ACL) tears. Between February 1995 and December 1997, 17 consecu-
tive patients with combined acute ACL and grade III MCL injuries were treated by the
same physician at the research center. One of the variables of interest was the length of time
in days between the occurrence of the injury and the first magnetic resonance imaging
(MRI). The data are shown in Table 7.2.1. We wish to know if we can conclude that the
mean number of days between injury and initial MRI is not 15 days in a population
presumed to be represented by these sample data.

TABLE 7.2.1 Number of Days Until MRI for Subjects with MCL and ACL Tears

Subject Days Subject Days Subject Days Subject Days

1 14 6 0 11 28 16 14

2 9 7 10 12 24 17 9

3 18 8 4 13 24

4 26 9 8 14 2

5 12 10 21 15 3

Source: Norimasa Nakamura, Shuji Horibe, Yukyoshi Toritsuka, Tomoki Mitsuoka, Hideki Yoshikawa, and
Konsei Shino, “Acute Grade III Medial Collateral Ligament Injury of the Knee Associated with Anterior Cruciate
Ligament Tear,” American Journal of Sports Medicine, 31 (2003), 261–267.
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Solution: We will be able to conclude that the mean number of days for the population
is not 15 if we can reject the null hypothesis that the population mean is
equal to 15.

1. Data. The data consist of number of days until MRI on 17 subjects as
previously described.

2. Assumptions. The 17 subjects constitute a simple random sample from
a population of similar subjects. We assume that the number of days
until MRI in this population is approximately normally distributed.

3. Hypotheses.

H0: m ¼ 15
HA: m 6¼ 15

4. Test statistic. Since the population variance is unknown, our test
statistic is given by Equation 7.2.2.

5. Distribution of test statistic. Our test statistic is distributed as
Student’s t with n� 1 ¼ 17 � 1 ¼ 16 degrees of freedom if H0 is true.

6. Decision rule. Let a ¼ :05. Since we have a two-sided test, we put
a=2 ¼ :025 in each tail of the distribution of our test statistic. The t
values to the right and left of which .025 of the area lies are 2.1199 and
�2:1199. These values are obtained from Appendix Table E. The
rejection and nonrejection regions are shown in Figure 7.2.3.

The decision rule tells us to compute a value of the test statistic and
reject H0 if the computed t is either greater than or equal to 2.1199 or less
than or equal to �2:1199.

7. Calculation of test statistic. From our sample data we compute a
sample mean of 13.2941 and a sample standard deviation of 8.88654.
Substituting these statistics into Equation 7.2.2 gives

t ¼ 13:2941 � 15

8:88654=
ffiffiffiffiffi
17

p ¼ �1:7059

2:1553
¼ �:791

0 2.1199–2.1199

.025.025

.95

t

Nonrejection
region

Rejection regionRejection region

FIGURE 7.2.3 Rejection and nonrejection regions for Example 7.2.3.
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8. Statistical decision. Do not reject H0, since �.791 falls in the non-
rejection region.

9. Conclusion. Our conclusion, based on these data, is that the mean of the
population from which the sample came may be 15.

10. p value. The exact p value for this test cannot be obtained from
Appendix Table E since it gives t values only for selected percentiles.
The p value can be stated as an interval, however. We find that �:791 is
less than �1:337, the value of t to the left of which lies .10 of the area
under the t with 16 degrees of freedom. Consequently, when H0 is true,
the probability of obtaining a value of t as small as or smaller than �:791
is greater than .10. That is P t � �:791ð Þ > :10. Since the test was two-
sided, we must allow for the possibility of a computed value of the test
statistic as large in the opposite direction as that observed. Appendix
Table E reveals that P t � :791ð Þ > :10 also. The p value, then, is
p > :20. In fact, Excel calculates the p value to be .4403. Figure
7.2.4 shows the p value for this example.

If in the previous example the hypotheses had been

H0: m � 15
HA: m < 15

the testing procedure would have led to a one-sided test with all the rejection
region at the lower tail of the distribution, and if the hypotheses had been

H0: m � 15
HA: m > 15

we would have had a one-sided test with all the rejection region at the upper
tail of the distribution. &

Sampling from a Population That Is Not Normally Distributed
If, as is frequently the case, the sample on which we base our hypothesis test about a
population mean comes from a population that is not normally distributed, we may, if our
sample is large (greater than or equal to 30), take advantage of the central limit theorem and
use z ¼ �x� m0ð Þ= s=

ffiffiffi
n

pð Þ as the test statistic. If the population standard deviation is not

.791 1.337
p > .20

–1.337 –.791

p/2 > .10p/2 > .10

0

.10.10

t

FIGURE 7.2.4 Determination of p value for Example 7.2.3.
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known, the usual practice is to use the sample standard deviation as an estimate. The test
statistic for testing H0: m ¼ m0, then, is

z ¼ �x� m0

s=
ffiffiffi
n

p (7.2.3)

which, when H0 is true, is distributed approximately as the standard normal distribution if n
is large. The rationale for using s to replace s is that the large sample, necessary for the
central limit theorem to apply, will yield a sample standard deviation that closely
approximates s.

EXAMPLE 7.2.4

The goal of a study by Klingler et al. (A-2) was to determine how symptom recognition and
perception influence clinical presentation as a function of race. They characterized
symptoms and care-seeking behavior in African-American patients with chest pain
seen in the emergency department. One of the presenting vital signs was systolic blood
pressure. Among 157 African-American men, the mean systolic blood pressure was
146 mm Hg with a standard deviation of 27. We wish to know if, on the basis of these
data, we may conclude that the mean systolic blood pressure for a population of African-
American men is greater than 140.

Solution: We will say that the data do provide sufficient evidence to conclude that the
population mean is greater than 140 if we can reject the null hypothesis that
the mean is less than or equal to 140. The following test may be carried out:

1. Data. The data consist of systolic blood pressure scores for 157 African-
American men with �x ¼ 146 and s ¼ 27.

2. Assumptions. The data constitute a simple random sample from a
population of African-American men who report to an emergency
department with symptoms similar to those in the sample. We are
unwilling to assume that systolic blood pressure values are normally
distributed in such a population.

3. Hypotheses.

H0: m � 140
HA: m > 140

4. Test statistic. The test statistic is given by Equation 7.2.3, since s is
unknown.

5. Distribution of test statistic. Because of the central limit theorem, the
test statistic is at worst approximately normally distributed with m ¼ 0 if
H0 is true.

6. Decision rule. Let a ¼ :05. The critical value of the test statistic is
1.645. The rejection and nonrejection regions are shown in Figure 7.2.5.
Reject H0 if computed z � 1:645.
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7. Calculation of test statistic.

z ¼ 146 � 140

27=
ffiffiffiffiffiffiffiffi
157

p ¼ 6

2:1548
¼ 2:78

8. Statistical decision. Reject H0 since 2:78 > 1:645.

9. Conclusion. Conclude that the mean systolic blood pressure for the
sampled population is greater than 140.

10. p value. The p value for this test is 1 � :9973 ¼ :0027, since as shown in
Appendix Table D, the area (.0027) to the right of 2.78 is less than .05,
the area to the right of 1.645. &

Procedures for Other Conditions If the population variance had been
known, the procedure would have been identical to the above except that the known
value of s, instead of the sample value s, would have been used in the denominator of the
computed test statistic.

Depending on what the investigators wished to conclude, either a two-sided test or a
one-sided test, with the rejection region at the lower tail of the distribution, could have been
made using the above data.

When testing a hypothesis about a single population mean, we may use Figure 6.3.3
to decide quickly whether the test statistic is z or t.

Computer Analysis To illustrate the use of computers in testing hypotheses, we
consider the following example.

EXAMPLE 7.2.5

The following are the head circumferences (centimeters) at birth of 15 infants:

33.38 32.15 33.99 34.10 33.97
34.34 33.95 33.85 34.23 32.73
33.46 34.13 34.45 34.19 34.05

We wish to test H0: m ¼ 34:5 against HA: m 6¼ 34:5.

1.6450 z

Rejection regionNonrejection region

.05

FIGURE 7.2.5 Rejection and nonrejection regions for Example 7.2.4.
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Solution: We assume that the assumptions for use of the t statistic are met. We enter the
data into Column 1 and proceed as shown in Figure 7.2.6.

To indicate that a test is one-sided when in Windows, click on the
Options button and then choose “less than” or “greater than” as appropriate
in the Alternative box. If z is the appropriate test statistic, we choose
1-Sample z from the Basic Statistics menu. The remainder of the commands
are the same as for the t test.

We learn from the printout that the computed value of the test statistic is
�4:31 and the p value for the test is .0007. SAS® users may use the output
from PROC MEANS or PROC UNIVARIATE to perform hypothesis tests.

When both the z statistic and the t statistic are inappropriate test
statistics for use with the available data, one may wish to use a non-
parametric technique to test a hypothesis about a single population measure
of central tendency. One such procedure, the sign test, is discussed in
Chapter 13. &

EXERCISES

For each of the following exercises carry out the ten-step hypothesis testing procedure for the given
significance level. For each exercise, as appropriate, explain why you chose a one-sided test or a two-
sided test. Discuss how you think researchers and/or clinicians might use the results of your
hypothesis test. What clinical and/or research decisions and/or actions do you think would be
appropriate in light of the results of your test?

7.2.1 Escobar et al. (A-3) performed a study to validate a translated version of the Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC) questionnaire used with Spanish-speaking
patients with hip or knee osteoarthritis. For the 76 women classified with severe hip pain, the

:dnammoc noisseS:xob golaiD

Stat Basic Statistics 1-Sample t MTB > TTEST 34.5 C1

Type C1 in Samples in columns. Type 34.5
in the Test mean box. Click OK .

Output:

One-Sample T: C1

TEST OF MU 34.5 VS NOT 34.5
VARIABLE N MEAN STDEV SE MEAN 95% CI T P
C1 15 33.7980 0.6303 0.1627 (33.4490, 34.1470) 4.31 0.001

FIGURE 7.2.6 MINITAB procedure and output for Example 7.2.5.
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WOMAC mean function score (on a scale from 0 to 100 with a higher number indicating less
function) was 70.7 with a standard deviation of 14.6. We wish to know if we may conclude that the
mean function score for a population of similar women subjects with severe hip pain is less than 75.
Let a ¼ :01.

7.2.2 A study by Thienprasiddhi et al. (A-4) examined a sample of 16 subjects with open-angle glaucoma
and unilateral hemifield defects. The ages (years) of the subjects were:

62 62 68 48 51 60 51 57
57 41 62 50 53 34 62 61
Source: Phamornsak Thienprasiddhi, Vivienne C. Greenstein,
Candice S. Chen, Jeffrey M. Liebmann, Robert Ritch, and
Donald C. Hood, “Multifocal Visual Evoked Potential
Responses in Glaucoma Patients with Unilateral Hemifield
Defects,” American Journal of Ophthalmology, 136 (2003),
34–40.

Can we conclude that the mean age of the population from which the sample may be presumed to
have been drawn is less than 60 years? Let a ¼ :05.

7.2.3 The purpose of a study by Lugli�e et al. (A-5) was to investigate the oral status of a group of patients
diagnosed with thalassemia major (TM). One of the outcome measures was the decayed, missing, and
filled teeth index (DMFT). In a sample of 18 patients the mean DMFT index value was 10.3 with a
standard deviation of 7.3. Is this sufficient evidence to allow us to conclude that the mean DMFT
index is greater than 9.0 in a population of similar subjects? Let a ¼ :10.

7.2.4 A study was made of a sample of 25 records of patients seen at a chronic disease hospital on an
outpatient basis. The mean number of outpatient visits per patient was 4.8, and the sample standard
deviation was 2. Can it be concluded from these data that the population mean is greater than four
visits per patient? Let the probability of committing a type I error be .05. What assumptions are
necessary?

7.2.5 In a sample of 49 adolescents who served as the subjects in an immunologic study, one variable of
interest was the diameter of skin test reaction to an antigen. The sample mean and standard deviation
were 21 and 11 mm erythema, respectively. Can it be concluded from these data that the population
mean is less than 30? Let a ¼ :05.

7.2.6 Nine laboratory animals were infected with a certain bacterium and then immunosuppressed. The
mean number of organisms later recovered from tissue specimens was 6.5 (coded data) with a
standard deviation of .6. Can one conclude from these data that the population mean is greater than 6?
Let a ¼ :05. What assumptions are necessary?

7.2.7 A sample of 25 freshman nursing students made a mean score of 77 on a test designed to measure
attitude toward the dying patient. The sample standard deviation was 10. Do these data provide
sufficient evidence to indicate, at the .05 level of significance, that the population mean is less than
80? What assumptions are necessary?

7.2.8 We wish to know if we can conclude that the mean daily caloric intake in the adult rural population of
a developing country is less than 2000. A sample of 500 had a mean of 1985 and a standard deviation
of 210. Let a ¼ :05.

7.2.9 A survey of 100 similar-sized hospitals revealed a mean daily census in the pediatrics service of 27
with a standard deviation of 6.5. Do these data provide sufficient evidence to indicate that the
population mean is greater than 25? Let a ¼ :05.

234 CHAPTER 7 HYPOTHESIS TESTING



3GC07 11/24/2012 14:19:30 Page 235

7.2.10 Following a week-long hospital supervisory training program, 16 assistant hospital administrators
made a mean score of 74 on a test administered as part of the evaluation of the training program. The
sample standard deviation was 12. Can it be concluded from these data that the population mean is
greater than 70? Let a ¼ :05. What assumptions are necessary?

7.2.11 A random sample of 16 emergency reports was selected from the files of an ambulance service.
The mean time (computed from the sample data) required for ambulances to reach their
destinations was 13 minutes. Assume that the population of times is normally distributed with
a variance of 9. Can we conclude at the .05 level of significance that the population mean is greater
than 10 minutes?

7.2.12 The following data are the oxygen uptakes (milliliters) during incubation of a random sample of
15 cell suspensions:

14.0, 14.1, 14.5, 13.2, 11.2, 14.0, 14.1, 12.2,
11.1, 13.7, 13.2, 16.0, 12.8, 14.4, 12.9

Do these data provide sufficient evidence at the .05 level of significance that the population mean is
not 12 ml? What assumptions are necessary?

7.2.13 Can we conclude that the mean maximum voluntary ventilation value for apparently healthy college
seniors is not 110 liters per minute? A sample of 20 yielded the following values:

132, 33, 91, 108, 67, 169, 54, 203, 190, 133,
96, 30, 187, 21, 63, 166, 84, 110, 157, 138

Let a ¼ :01. What assumptions are necessary?

7.2.14 The following are the systolic blood pressures (mm Hg) of 12 patients undergoing drug therapy for
hypertension:

183, 152, 178, 157, 194, 163, 144, 114, 178, 152, 118, 158

Can we conclude on the basis of these data that the population mean is less than 165? Let a ¼ :05.
What assumptions are necessary?

7.2.15 Can we conclude that the mean age at death of patients with homozygous sickle-cell disease is less
than 30 years? A sample of 50 patients yielded the following ages in years:

15.5 2.0 45.1 1.7 .8 1.1 18.2 9.7 28.1 18.2
27.6 45.0 1.0 66.4 2.0 67.4 2.5 61.7 16.2 31.7

6.9 13.5 1.9 31.2 9.0 2.6 29.7 13.5 2.6 14.4
20.7 30.9 36.6 1.1 23.6 .9 7.6 23.5 6.3 40.2
23.7 4.8 33.2 27.1 36.7 3.2 38.0 3.5 21.8 2.4

Let a ¼ :05. What assumptions are necessary?

7.2.16 The following are intraocular pressure (mm Hg) values recorded for a sample of 21 elderly
subjects:

14.5 12.9 14.0 16.1 12.0 17.5 14.1 12.9 17.9 12.0
16.4 24.2 12.2 14.4 17.0 10.0 18.5 20.8 16.2 14.9
19.6

Can we conclude from these data that the mean of the population from which the sample was drawn is
greater than 14? Let a ¼ :05. What assumptions are necessary?
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7.2.17 Suppose it is known that the IQ scores of a certain population of adults are approximately
normally distributed with a standard deviation of 15. A simple random sample of 25 adults drawn
from this population had a mean IQ score of 105. On the basis of these data can we conclude that
the mean IQ score for the population is not 100? Let the probability of committing a type I error
be .05.

7.2.18 A research team is willing to assume that systolic blood pressures in a certain population of males are
approximately normally distributed with a standard deviation of 16. A simple random sample of 64
males from the population had a mean systolic blood pressure reading of 133. At the .05 level of
significance, do these data provide sufficient evidence for us to conclude that the population mean is
greater than 130?

7.2.19 A simple random sample of 16 adults drawn from a certain population of adults yielded a mean
weight of 63 kg. Assume that weights in the population are approximately normally distributed with a
variance of 49. Do the sample data provide sufficient evidence for us to conclude that the mean
weight for the population is less than 70 kg? Let the probability of committing a type I error be .01.

7.3 HYPOTHESIS TESTING:
THE DIFFERENCE BETWEEN TWO
POPULATIONMEANS

Hypothesis testing involving the difference between two population means is most
frequently employed to determine whether or not it is reasonable to conclude that the
two population means are unequal. In such cases, one or the other of the following
hypotheses may be formulated:

1. H0: m1 � m2 ¼ 0; HA: m1 � m2 6¼ 0

2. H0: m1 � m2 � 0; HA: m1 � m2 < 0

3. H0: m1 � m2 � 0; HA: m1 � m2 > 0

It is possible, however, to test the hypothesis that the difference is equal to, greater
than or equal to, or less than or equal to some value other than zero.

As was done in the previous section, hypothesis testing involving the difference
between two population means will be discussed in three different contexts: (1) when
sampling is from normally distributed populations with known population variances, (2)
when sampling is from normally distributed populations with unknown population
variances, and (3) when sampling is from populations that are not normally distributed.

Sampling from Normally Distributed Populations: Population
Variances Known When each of two independent simple random samples has
been drawn from a normally distributed population with a known variance, the test statistic
for testing the null hypothesis of equal population means is

z ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s (7.3.1)
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where the subscript 0 indicates that the difference is a hypothesized parameter. When H0

is true the test statistic of Equation 7.3.1 is distributed as the standard normal.

EXAMPLE 7.3.1

Researchers wish to know if the data they have collected provide sufficient evidence to
indicate a difference in mean serum uric acid levels between normal individuals and
individuals with Down’s syndrome. The data consist of serum uric acid readings
on 12 individuals with Down’s syndrome and 15 normal individuals. The means are �x1 ¼
4:5 mg/100 ml and �x2 ¼ 3:4 mg/100 ml.

Solution: We will say that the sample data do provide evidence that the population
means are not equal if we can reject the null hypothesis that the population
means are equal. Let us reach a conclusion by means of the ten-step
hypothesis testing procedure.

1. Data. See problem statement.

2. Assumptions. The data constitute two independent simple random
samples each drawn from a normally distributed population with a
variance equal to 1 for the Down’s syndrome population and 1.5 for the
normal population.

3. Hypotheses.
H0: m1 � m2 ¼ 0
HA: m1 � m2 6¼ 0

An alternative way of stating the hypotheses is as follows:

H0: m1 ¼ m2

HA: m1 6¼ m2

4. Test statistic. The test statistic is given by Equation 7.3.1.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic follows the standard normal distribution.

6. Decision rule. Let a ¼ :05. The critical values of z are �1:96. RejectH0

unless �1:96 < zcomputed < 1:96. The rejection and nonrejection regions
are shown in Figure 7.3.1.

7. Calculation of test statistic.

z ¼ 4:5 � 3:4ð Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=12 þ 1:5=15

p ¼ 1:1

:4282
¼ 2:57

8. Statistical decision. Reject H0, since 2:57 > 1:96.

9. Conclusion. Conclude that, on the basis of these data, there is an
indication that the two population means are not equal.

10. p value. For this test, p ¼ :0102.
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&

A 95 Percent Confidence Interval for m1 � m2 In the previous chapter
the 95 percent confidence interval for m1 � m2, computed from the same data, was
found to be .26 to 1.94. Since this interval does not include 0, we say that 0 is not a
candidate for the difference between population means, and we conclude that the
difference is not zero. Thus we arrive at the same conclusion by means of a confidence
interval.

Sampling from Normally Distributed Populations: Population
Variances Unknown As we have learned, when the population variances are
unknown, two possibilities exist. The two population variances may be equal or they may
be unequal. We consider first the case where it is known, or it is reasonable to assume, that
they are equal. A test of the hypothesis that two population variances are equal is described
in Section 7.8.

Population Variances Equal When the population variances are unknown,
but assumed to be equal, we recall from Chapter 6 that it is appropriate to pool the sample
variances by means of the following formula:

s2
p ¼

n1 � 1ð Þs2
1 þ n2 � 1ð Þs2

2

n1 þ n2 � 2

When each of two independent simple random samples has been drawn from a normally
distributed population and the two populations have equal but unknown variances, the test
statistic for testing H0: m1 ¼ m2 is given by

t ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p

n1
þ s2

p

n2

s (7.3.2)

which, when H0 is true, is distributed as Student’s t with n1 þ n2 � 2 degrees of freedom.

0_ 1.961.96 z

Rejection regionNonrejection regionRejection region

s = 1

FIGURE 7.3.1 Rejection and nonrejection regions for Example 7.3.1
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EXAMPLE 7.3.2

The purpose of a study by Tam et al. (A-6) was to investigate wheelchair maneuvering in
individuals with lower-level spinal cord injury (SCI) and healthy controls (C). Subjects
used a modified wheelchair to incorporate a rigid seat surface to facilitate the specified
experimental measurements. Interface pressure measurement was recorded by using a
high-resolution pressure-sensitive mat with a spatial resolution of four sensors per square
centimeter taped on the rigid seat support. During static sitting conditions, average
pressures were recorded under the ischial tuberosities (the bottom part of the pelvic
bones). The data for measurements of the left ischial tuberosity (in mm Hg) for the SCI and
control groups are shown in Table 7.3.1. We wish to know if we may conclude, on the basis
of these data, that, in general, healthy subjects exhibit lower pressure than SCI subjects.

Solution:

1. Data. See statement of problem.

2. Assumptions. The data constitute two independent simple random
samples of pressure measurements, one sample from a population of
control subjects and the other sample from a population with lower-level
spinal cord injury. We shall assume that the pressure measurements in
both populations are approximately normally distributed. The popula-
tion variances are unknown but are assumed to be equal.

3. Hypotheses. H0: mC � mSCI;HA: mC < mSCI.

4. Test statistic. The test statistic is given by Equation 7.3.2.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic follows Student’s t distribution with n1 þ n2 � 2 degrees of
freedom.

6. Decision rule. Let a ¼ :05. The critical value of t is �1:7341. Reject H0

unless tcomputed > �1:7341.

7. Calculation of test statistic. From the sample data we compute

�xC ¼ 126:1; sC ¼ 21:8; �xSCI ¼ 133:1; sSCI ¼ 32:2

Next, we pool the sample variances to obtain

s2
p ¼

9 21:8ð Þ2 þ 9 32:2ð Þ2

9 þ 9
¼ 756:04

TABLE 7.3.1 Pressures (mm Hg) Under the Pelvis during Static Conditions for

Example 7.3.2

Control 131 115 124 131 122 117 88 114 150 169

SCI 60 150 130 180 163 130 121 119 130 148

Source: Eric W. Tam, Arthur F. Mak, Wai Nga Lam, John H. Evans, and York Y. Chow, “Pelvic Movement and
Interface Pressure Distribution During Manual Wheelchair Propulsion,” Archives of Physical Medicine and
Rehabilitation, 84 (2003), 1466–1472.
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We now compute

t ¼ 126:1 � 133:1ð Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
756:04

10
þ 756:04

10

r ¼ �:569

8. Statistical decision. We fail to reject H0, since �1:7341 < �:569; that
is, �:569 falls in the nonrejection region.

9. Conclusion. On the basis of these data, we cannot conclude that the
population mean pressure is less for healthy subjects than for SCI
subjects.

10. p value. For this test, p > :10 using Table E, or .5764 using a computer
since �1:330 < �:569. &

Population Variances Unequal When two independent simple random
samples have been drawn from normally distributed populations with unknown and
unequal variances, the test statistic for testing H0: m1 ¼ m2 is

t0 ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s (7.3.3)

The critical value of t0 for an a level of significance and a two-sided test is approximately

t01� a=2ð Þ ¼ w1t1 þ w2t2
w1 þ w2

(7.3.4)

where w1 ¼ s2
1=n1;w2 ¼ s2

2=n2; t1 ¼ t1� a=2ð Þ for n1 � 1 degrees of freedom, and t2 ¼
t1� a=2ð Þ for n2 � 1 degrees of freedom. The critical value of t0 for a one-sided test is
found by computing t01�a by Equation 7.3.4, using t1 ¼ t1�a for n1 � 1 degrees of freedom
and t2 ¼ t1�a for n2 � 1 degrees of freedom.

For a two-sided test, reject H0 if the computed value of t0 is either greater than or
equal to the critical value given by Equation 7.3.4 or less than or equal to the negative of
that value.

For a one-sided test with the rejection region in the right tail of the sampling distribution,
rejectH0 if the computed t0 is equal to or greater than the critical t0. For a one-sided test with a
left-tail rejection region, reject H0 if the computed value of t0 is equal to or smaller than the
negative of the critical t0 computed by the indicated adaptation of Equation 7.3.4.

EXAMPLE 7.3.3

Dernellis and Panaretou (A-7) examined subjects with hypertension and healthy control
subjects. One of the variables of interest was the aortic stiffness index. Measures of this
variable were calculated from the aortic diameter evaluated by M-mode echocardiography
and blood pressure measured by a sphygmomanometer. Generally, physicians wish to
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reduce aortic stiffness. In the 15 patients with hypertension (group 1), the mean aortic
stiffness index was 19.16 with a standard deviation of 5.29. In the 30 control subjects
(group 2), the mean aortic stiffness index was 9.53 with a standard deviation of 2.69. We
wish to determine if the two populations represented by these samples differ with respect to
mean aortic stiffness index.

Solution:

1. Data. The sample sizes, means, and sample standard deviations are:

n1 ¼ 15; �x1 ¼ 19:16; s1 ¼ 5:29
n2 ¼ 30; �x2 ¼ 9:53; s2 ¼ 2:69

2. Assumptions. The data constitute two independent random samples,
one from a population of subjects with hypertension and the other from a
control population. We assume that aortic stiffness values are approxi-
mately normally distributed in both populations. The population vari-
ances are unknown and unequal.

3. Hypotheses.

H0: m1 � m2 ¼ 0
HA: m1 � m2 6¼ 0

4. Test statistic. The test statistic is given by Equation 7.3.3.

5. Distribution of test statistic. The statistic given by Equation 7.3.3 does
not follow Student’s t distribution. We, therefore, obtain its critical
values by Equation 7.3.4.

6. Decision rule. Let a ¼ :05. Before computing t0 we calculate w1 ¼
5:29ð Þ2=15 ¼ 1:8656 and w2 ¼ 2:69ð Þ2=30 ¼ :2412. In Appendix Table

E we find that t1 ¼ 2:1448 and t2 ¼ 2:0452. By Equation 7.3.4 we
compute

t0 ¼ 1:8656 2:1448ð Þ þ :2412 2:0452ð Þ
1:8656 þ :2412

¼ 2:133

Our decision rule, then, is reject H0 if the computed t is either � 2:133
or � �2:133.

7. Calculation of test statistic. By Equation 7.3.3 we compute

t0 ¼ 19:16 � 9:53ð Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:29ð Þ2

15
þ 2:69ð Þ2

30

s ¼ 9:63

1:4515
¼ 6:63
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8. Statistical decision. Since 6:63 > 2:133, we reject H0.

9. Conclusion. On the basis of these results we conclude that the two
population means are different.

10. p value. For this test p < :05; program R calculates this value to be
< .00001. &

Sampling from Populations That Are Not Normally Distributed
When sampling is from populations that are not normally distributed, the results of the
central limit theorem may be employed if sample sizes are large (say, �30). This will
allow the use of normal theory since the distribution of the difference between sample
means will be approximately normal. When each of two large independent simple
random samples has been drawn from a population that is not normally distributed,
the test statistic for testing H0: m1 ¼ m2 is

z ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s (7.3.5)

which, when H0 is true, follows the standard normal distribution. If the population
variances are known, they are used; but if they are unknown, as is the usual case, the
sample variances, which are necessarily based on large samples, are used as estimates.
Sample variances are not pooled, since equality of population variances is not a necessary
assumption when the z statistic is used.

EXAMPLE 7.3.4

The objective of a study by Sairam et al. (A-8) was to identify the role of various disease
states and additional risk factors in the development of thrombosis. One focus of the
study was to determine if there were differing levels of the anticardiolipin antibody IgG
in subjects with and without thrombosis. Table 7.3.2 summarizes the researchers’
findings:

TABLE 7.3.2 IgG Levels for Subjects With and Without Thrombosis
for Example 7.3.4

Group
Mean IgG Level

(ml/unit) Sample Size Standard Deviation

Thrombosis 59.01 53 44.89

No thrombosis 46.61 54 34.85

Source: S. Sairam, B. A. Baethge and T. McNearney, “Analysis of Risk Factors and Comorbid
Diseases in the Development of Thrombosis in Patients with Anticardiolipin Antibodies,”

Clinical Rheumatology, 22 (2003), 24–29.
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We wish to know if we may conclude, on the basis of these results, that, in general,
persons with thrombosis have, on the average, higher IgG levels than persons without
thrombosis.

Solution:

1. Data. See statement of example.

2. Assumptions. The statistics were computed from two independent
samples that behave as simple random samples from a population of
persons with thrombosis and a population of persons who do not have
thrombosis. Since the population variances are unknown, we will use the
sample variances in the calculation of the test statistic.

3. Hypotheses.

H0: mT � mNT � 0
HA: mT � mNT > 0

or, alternatively,

H0: mT � mNT

HA: mT > mNT

4. Test statistic. Since we have large samples, the central limit theorem
allows us to use Equation 7.3.5 as the test statistic.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic is distributed approximately as the standard normal.

6. Decision rule. Let a ¼ :01. This is a one-sided test with a critical value
of z equal to 2.33. Reject H0 if zcomputed � 2:33.

7. Calculation of test statistic.

z ¼ 59:01 � 46:61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
44:892

53
þ 34:852

54

r ¼ 1:59

8. Statistical decision. Fail to reject H0, since z ¼ 1:59 is in the non-
rejection region.

9. Conclusion. These data indicate that on the average, persons with
thrombosis and persons without thrombosis may not have differing IgG
levels.

10. p value. For this test, p ¼ :0559. When testing a hypothesis about the
difference between two populations means, we may use Figure 6.4.1 to
decide quickly whether the test statistic should be z or t. &

We may use MINITAB to perform two-sample t tests. To illustrate, let us refer
to the data in Table 7.3.1. We put the data for control subjects and spinal cord
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injury subjects in Column 1 and Column 2, respectively, and proceed as shown in
Figure 7.3.2.

The SAS® statistical package performs the t test for equality of population means
under both assumptions regarding population variances: that they are equal and that they
are not equal. Note that SAS® designates the p value as Pr > jtj. The default output is a
p value for a two-sided test. The researcher using SAS® must divide this quantity in half
when the hypothesis test is one-sided. The SAS® package also tests for equality of
population variances as described in Section 7.8. Figure 7.3.3 shows the SAS® output
for Example 7.3.2.

Alternatives to z and t Sometimes neither the z statistic nor the t statistic is
an appropriate test statistic for use with the available data. When such is the case, one
may wish to use a nonparametric technique for testing a hypothesis about the difference
between two population measures of central tendency. The Mann-Whitney test statistic
and the median test, discussed in Chapter 13, are frequently used alternatives to the z and
t statistics.

Session command:Dialog box:

Stat Basic Statistics 2-Sample t C2C1 95.0 TwoSample > MTB
Alternative SUBC> 1,

Choose Samples in different columns. Type C1 Pooled.SUBC> 
in First and C2 in Second. Click the Options box
and select “less than” in the Alternatives box. 
Check Assume equal variances. Click OK.

Output:

SCIC, CI: and T-Test Two-Sample 

SCIvs C for T Two-sample 
MeanSE StDevMeanN
6.921.8126.110C
1032.2133.110SCI

Difference C mu SCImu 
difference: for Estimate 7.0

14.3difference: for bound upper 95% 
differenceof T-Test T-Value<): (vs 0 P-Value0.57 0.288

DF 18
StDevPooled use Both 27.5

FIGURE 7.3.2 MINITAB procedure and output for two-sample t test, Example 7.3.2

(data in Table 7.3.1).
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EXERCISES

In each of the following exercises, complete the ten-step hypothesis testing procedure. State the
assumptions that are necessary for your procedure to be valid. For each exercise, as
appropriate, explain why you chose a one-sided test or a two-sided test. Discuss how you
think researchers or clinicians might use the results of your hypothesis test. What clinical or
research decisions or actions do you think would be appropriate in light of the results of your
test?

7.3.1 Subjects in a study by Dabonneville et al. (A-9) included a sample of 40 men who claimed to engage
in a variety of sports activities (multisport). The mean body mass index (BMI) for these men
was 22.41 with a standard deviation of 1.27. A sample of 24 male rugby players had a mean BMI of
27.75 with a standard deviation of 2.64. Is there sufficient evidence for one to claim that, in general,
rugby players have a higher BMI than the multisport men? Let a ¼ :01.

7.3.2 The purpose of a study by Ingle and Eastell (A-10) was to examine the bone mineral density
(BMD) and ultrasound properties of women with ankle fractures. The investigators recruited 31
postmenopausal women with ankle fractures and 31 healthy postmenopausal women to serve as
controls. One of the baseline measurements was the stiffness index of the lunar Achilles. The mean
stiffness index for the ankle fracture group was 76.9 with a standard deviation of 12.6. In the
control group, the mean was 90.9 with a standard deviation of 12.5. Do these data provide
sufficient evidence to allow you to conclude that, in general, the mean stiffness index is higher in

SystemSAS The 
ProcedureTTEST The 

Statistics CLUpper CLLower 
StdStdStdStdCLUpper CLLower 
ErrDevDevDevMeanMeanMeanNgroupVariable

--------------------------------------------------------------------------- 
6.939.83421.8215.008141.71126.1110.4910Cpressure

10.17658.74532.17822.133156.12133.1110.0810SCIpressure
(1–2)Diff pressure 32.83 12.29440.65527.49120.77318.837

T-Tests
---------------------------------------------------------------------------

|t|> Pr Valuet DFVariancesMethodVariable

18EqualPooledpressure 0.57610.57
15.8UnequalSatterthwaitepressure 0.57710.57

Variancesof Equality 
--------------------------------------------------------------------------- 

F> Pr ValueF DFDen DFNum MethodVariable
0.26262.1799FFolded pressure

FIGURE 7.3.3 SAS® output for Example 7.3.2 (data in Table 7.3.1).
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healthy postmenopausal women than in postmenopausal women with ankle fractures? Let
a ¼ :05.

7.3.3 Hoekema et al. (A-11) studied the craniofacial morphology of 26 male patients with obstructive sleep
apnea syndrome (OSAS) and 37 healthy male subjects (non–OSAS). One of the variables of interest
was the length from the most superoanterior point of the body of the hyoid bone to the Frankfort
horizontal (measured in millimeters).

Length (mm) Non–OSAS Length (mm) OSAS

96.80 97.00 101.00 88.95 105.95 114.90 113.70
100.70 97.70 88.25 101.05 114.90 114.35 116.30

94.55 97.00 92.60 92.60 110.35 112.25 108.75
99.65 94.55 98.25 97.00 123.10 106.15 113.30

109.15 106.45 90.85 91.95 119.30 102.60 106.00
102.75 94.55 95.25 88.95 110.00 102.40 101.75

97.70 94.05 88.80 95.75 98.95 105.05
92.10 89.45 101.40 114.20 112.65
91.90 89.85 90.55 108.95 128.95
89.50 98.20 109.80 105.05 117.70

Source: Data provided courtesy of A. Hoekema, D.D.S.

Do these data provide sufficient evidence to allow us to conclude that the two sampled
populations differ with respect to length from the hyoid bone to the Frankfort horizontal? Let
a ¼ :01.

7.3.4 Can we conclude that patients with primary hypertension (PH), on the average, have higher total
cholesterol levels than normotensive (NT) patients? This was one of the inquiries of interest for Rossi
et al. (A-12). In the following table are total cholesterol measurements (mg/dl) for 133 PH patients
and 41 NT patients. Can we conclude that PH patients have, on average, higher total cholesterol
levels than NT patients? Let a ¼ :05.

Total Cholesterol (mg/dl)

Primary Hypertensive Patients Normotensive Patients

207 221 212 220 190 286 189
172 223 260 214 245 226 196
191 181 210 215 171 187 142
221 217 265 206 261 204 179
203 208 206 247 182 203 212
241 202 198 221 162 206 163
208 218 210 199 182 196 196
199 216 211 196 225 168 189
185 168 274 239 203 229 142
235 168 223 199 195 184 168
214 214 175 244 178 186 121
134 203 203 214 240 281
226 280 168 236 222 203

(Continued)
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222 203 178 249 117 177 135
213 225 217 212 252 179 161
272 227 200 259 203 194
185 239 226 189 245 206
181 265 207 235 218 219
238 228 232 239 152 173
141 226 182 239 231 189
203 236 215 210 237 194
222 195 239 203 196
221 284 210 188 212
180 183 207 237 168
276 266 224 231 188
226 258 251 222 232
224 214 212 174 242
206 260 201 219 200

Source: Data provided courtesy of Gian Paolo Rossi, M.D., F.A.C.C., F.A.H.A.

7.3.5 GarSc~ao and Cabrita (A-13) wanted to evaluate the community pharmacist’s capacity to
positively influence the results of antihypertensive drug therapy through a pharmaceutical
care program in Portugal. Eighty-two subjects with essential hypertension were randomly
assigned to an intervention or a control group. The intervention group received monthly
monitoring by a research pharmacist to monitor blood pressure, assess adherence to
treatment, prevent, detect, and resolve drug-related problems, and encourage nonpharmaco-
logic measures for blood pressure control. The changes after 6 months in diastolic blood
pressure (pre � post, mm Hg) are given in the following table for patients in each of the
two groups.

Intervention Group Control Group

20 4 12 16 0 4 12 0
2 24 6 10 12 2 2 8

36 6 24 16 18 2 0 10
26 �2 42 10 0 8 0 14
2 8 20 6 8 10 �4 8

20 8 14 6 10 0 12 0
2 16 �2 2 8 6 4 2

14 14 10 8 14 10 28 �8
30 8 2 16 4 �2 �18 16
18 20 18 �12 �2 2 12 12

6 �6

Source: Data provided courtesy of Jos�e GarSc~ao, M.S., Pharm.D.

On the basis of these data, what should the researcher conclude? Let a ¼ :05.

7.3.6 A test designed to measure mothers’ attitudes toward their labor and delivery experiences was given
to two groups of new mothers. Sample 1 (attenders) had attended prenatal classes held at the local

Total Cholesterol (mg/dl)

Primary Hypertensive Patients Normotensive Patients
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health department. Sample 2 (nonattenders) did not attend the classes. The sample sizes and means
and standard deviations of the test scores were as follows:

Sample n �x s

1 15 4.75 1.0
2 22 3.00 1.5

Do these data provide sufficient evidence to indicate that attenders, on the average, score higher than
nonattenders? Let a ¼ :05.

7.3.7 Cortisol level determinations were made on two samples of women at childbirth. Group 1 subjects
underwent emergency cesarean section following induced labor. Group 2 subjects delivered by either
cesarean section or the vaginal route following spontaneous labor. The sample sizes, mean cortisol
levels, and standard deviations were as follows:

Sample n �x s

1 10 435 65
2 12 645 80

Do these data provide sufficient evidence to indicate a difference in the mean cortisol levels in the
populations represented? Let a ¼ :05.

7.3.8 Protoporphyrin levels were measured in two samples of subjects. Sample 1 consisted of 50 adult male
alcoholics with ring sideroblasts in the bone marrow. Sample 2 consisted of 40 apparently healthy
adult nonalcoholic males. The mean protoporphyrin levels and standard deviations for the two
samples were as follows:

Sample �x s

1 340 250
2 45 25

Can one conclude on the basis of these data that protoporphyrin levels are higher in the represented
alcoholic population than in the nonalcoholic population? Let a ¼ :01.

7.3.9 A researcher was interested in knowing if preterm infants with late metabolic acidosis and
preterm infants without the condition differ with respect to urine levels of a certain chemical.
The mean levels, standard deviations, and sample sizes for the two samples studied were as
follows:

Sample n �x s

With condition 35 8.5 5.5
Without condition 40 4.8 3.6

What should the researcher conclude on the basis of these results? Let a ¼ :05.
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7.3.10 Researchers wished to know if they could conclude that two populations of infants differ with respect
to mean age at which they walked alone. The following data (ages in months) were collected:

Sample from population A: 9.5, 10.5, 9.0, 9.75, 10.0, 13.0,
10.0, 13.5, 10.0, 9.5, 10.0, 9.75

Sample from population B: 12.5, 9.5, 13.5, 13.75, 12.0, 13.75,
12.5, 9.5, 12.0, 13.5, 12.0, 12.0

What should the researchers conclude? Let a ¼ :05.

7.3.11 Does sensory deprivation have an effect on a person’s alpha-wave frequency? Twenty volunteer
subjects were randomly divided into two groups. Subjects in group A were subjected to a 10-day
period of sensory deprivation, while subjects in group B served as controls. At the end of the
experimental period, the alpha-wave frequency component of subjects’ electroencephalograms was
measured. The results were as follows:

Group A: 10.2, 9.5, 10.1, 10.0, 9.8, 10.9, 11.4, 10.8, 9.7, 10.4
Group B: 11.0, 11.2, 10.1, 11.4, 11.7, 11.2, 10.8, 11.6, 10.9, 10.9

Let a ¼ :05.

7.3.12 Can we conclude that, on the average, lymphocytes and tumor cells differ in size? The following are
the cell diameters mmð Þ of 40 lymphocytes and 50 tumor cells obtained from biopsies of tissue from
patients with melanoma:

Lymphocytes

9.0 9.4 4.7 4.8 8.9 4.9 8.4 5.9
6.3 5.7 5.0 3.5 7.8 10.4 8.0 8.0
8.6 7.0 6.8 7.1 5.7 7.6 6.2 7.1
7.4 8.7 4.9 7.4 6.4 7.1 6.3 8.8
8.8 5.2 7.1 5.3 4.7 8.4 6.4 8.3

Tumor Cells

12.6 14.6 16.2 23.9 23.3 17.1 20.0 21.0 19.1 19.4
16.7 15.9 15.8 16.0 17.9 13.4 19.1 16.6 18.9 18.7
20.0 17.8 13.9 22.1 13.9 18.3 22.8 13.0 17.9 15.2
17.7 15.1 16.9 16.4 22.8 19.4 19.6 18.4 18.2 20.7
16.3 17.7 18.1 24.3 11.2 19.5 18.6 16.4 16.1 21.5

Let a ¼ :05.

7.4 PAIRED COMPARISONS

In our previous discussion involving the difference between two population means, it was
assumed that the samples were independent. A method frequently employed for assessing
the effectiveness of a treatment or experimental procedure is one that makes use of related
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observations resulting from nonindependent samples. A hypothesis test based on this type
of data is known as a paired comparisons test.

Reasons for Pairing It frequently happens that true differences do not exist
between two populations with respect to the variable of interest, but the presence of
extraneous sources of variation may cause rejection of the null hypothesis of no difference.
On the other hand, true differences also may be masked by the presence of extraneous factors.

Suppose, for example, that we wish to compare two sunscreens. There are at least two
ways in which the experiment may be carried out. One method would be to select a simple
random sample of subjects to receive sunscreen A and an independent simple random
sample of subjects to receive sunscreen B. We send the subjects out into the sunshine for a
specified length of time, after which we will measure the amount of damage from the rays
of the sun. Suppose we employ this method, but inadvertently, most of the subjects
receiving sunscreen A have darker complexions that are naturally less sensitive to sunlight.
Let us say that after the experiment has been completed we find that subjects receiving
sunscreen A had less sun damage. We would not know if they had less sun damage because
sunscreen A was more protective than sunscreen B or because the subjects were naturally
less sensitive to the sun.

A better way to design the experiment would be to select just one simple random
sample of subjects and let each member of the sample receive both sunscreens. We could,
for example, randomly assign the sunscreens to the left or the right side of each subject’s
back with each subject receiving both sunscreens. After a specified length of exposure to
the sun, we would measure the amount of sun damage to each half of the back. If the half of
the back receiving sunscreen A tended to be less damaged, we could more confidently
attribute the result to the sunscreen, since in each instance both sunscreens were applied to
equally pigmented skin.

The objective in paired comparisons tests is to eliminate a maximum number of
sources of extraneous variation by making the pairs similar with respect to as many
variables as possible.

Related or paired observations may be obtained in a number of ways. The same
subjects may be measured before and after receiving some treatment. Litter mates of the same
sex may be assigned randomly to receive either a treatment or a placebo. Pairs of twins or
siblings may be assigned randomly to two treatments in such a way that members of a single
pair receive different treatments. In comparing two methods of analysis, the material to be
analyzed may be divided equally so that one-half is analyzed by one method and one-half is
analyzed by the other. Or pairs may be formed by matching individuals on some characteris-
tic, for example, digital dexterity, which is closely related to the measurement of interest, say,
posttreatment scores on some test requiring digital manipulation.

Instead of performing the analysis with individual observations, we use di, the
difference between pairs of observations, as the variable of interest.

When the n sample differences computed from the n pairs of measurements
constitute a simple random sample from a normally distributed population of differences,
the test statistic for testing hypotheses about the population mean difference md is

t ¼
�d � md0

s�d
(7.4.1)
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where �d is the sample mean difference, md0
is the hypothesized population mean

difference, s�d ¼ sd=
ffiffiffi
n

p
, n is the number of sample differences, and sd is the standard

deviation of the sample differences. When H0 is true, the test statistic is distributed as
Student’s t with n� 1 degrees of freedom.

Although to begin with we have two samples—say, before levels and after levels—
we do not have to worry about equality of variances, as with independent samples, since our
variable is the difference between readings in the same individual, or matched individuals,
and, hence, only one variable is involved. The arithmetic involved in performing a paired
comparisons test, therefore, is the same as for performing a test involving a single sample
as described in Section 7.2.

The following example illustrates the procedures involved in a paired comparisons
test.

EXAMPLE 7.4.1

John M. Morton et al. (A-14) examined gallbladder function before and after fundopli-
cation—a surgery used to stop stomach contents from flowing back into the esophagus
(reflux)—in patients with gastroesophageal reflux disease. The authors measured
gallbladder functionality by calculating the gallbladder ejection fraction (GBEF) before
and after fundoplication. The goal of fundoplication is to increase GBEF, which is
measured as a percent. The data are shown in Table 7.4.1. We wish to know if these
data provide sufficient evidence to allow us to conclude that fundoplication increases
GBEF functioning.

Solution: We will say that sufficient evidence is provided for us to conclude that the
fundoplication is effective if we can reject the null hypothesis that the
population mean change md is different from zero in the appropriate direc-
tion. We may reach a conclusion by means of the ten-step hypothesis testing
procedure.

1. Data. The data consist of the GBEF for 12 individuals, before and after
fundoplication. We shall perform the statistical analysis on the differ-
ences in preop and postop GBEF. We may obtain the differences in one
of two ways: by subtracting the preop percents from the postop percents
or by subtracting the postop percents from the preop percents. Let us

TABLE 7.4.1 Gallbladder Function in Patients with Presentations of
Gastroesophageal Reflux Disease Before and After Treatment

Preop (%) 22 63.3 96 9.2 3.1 50 33 69 64 18.8 0 34

Postop (%) 63.5 91.5 59 37.8 10.1 19.6 41 87.8 86 55 88 40

Source: John M. Morton, Steven P. Bowers, Tananchai A. Lucktong, Samer Mattar, W. Alan Bradshaw, Kevin E.

Behrns, Mark J. Koruda, Charles A. Herbst, William McCartney, Raghuveer K. Halkar, C. Daniel Smith, and
Timothy M. Farrell, “Gallbladder Function Before and After Fundoplication,” Journal of Gastrointestinal
Surgery, 6 (2002), 806–811.
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obtain the differences by subtracting the preop percents from the postop
percents. The di ¼ postop � preop differences are:

41.5, 28.2, �37:0, 28.6, 7.0, �30:4, 8.0, 18.8, 22.0, 36.2, 88.0, 6.0

2. Assumptions. The observed differences constitute a simple random
sample from a normally distributed population of differences that could
be generated under the same circumstances.

3. Hypotheses. The way we state our null and alternative hypotheses
must be consistent with the way in which we subtract measurements to
obtain the differences. In the present example, we want to know if we
can conclude that the fundoplication is useful in increasing GBEF
percentage. If it is effective in improving GBEF, we would expect the
postop percents to tend to be higher than the preop percents. If,
therefore, we subtract the preop percents from the postop percents
ðpostop � preopÞ, we would expect the differences to tend to be
positive. Furthermore, we would expect the mean of a population
of such differences to be positive. So, under these conditions, asking if
we can conclude that the fundoplication is effective is the same as
asking if we can conclude that the population mean difference is
positive (greater than zero).

The null and alternative hypotheses are as follows:

H0: md � 0
HA: md > 0

If we had obtained the differences by subtracting the postop percents from
the preop weights ðpreop � postopÞ, our hypotheses would have been

H0: md � 0
HA: md < 0

If the question had been such that a two-sided test was indicated, the
hypotheses would have been

H0: md ¼ 0
HA: md 6¼ 0

regardless of the way we subtracted to obtain the differences.

4. Test statistic. The appropriate test statistic is given by Equation 7.4.1.

5. Distribution of test statistic. If the null hypothesis is true, the test
statistic is distributed as Student’s t with n� 1 degrees of freedom.

6. Decision rule. Let a ¼ :05. The critical value of t is 1.7959. Reject H0 if
computed t is greater than or equal to the critical value. The rejection and
nonrejection regions are shown in Figure 7.4.1.
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7. Calculation of test statistic. From the n ¼ 12 differences di, we
compute the following descriptive measures:

�d ¼
P

di
n

¼ 41:5ð Þ þ 28:2ð Þ þ �37:0ð Þ þ � � � þ 6:0ð Þ
12

¼ 216:9

12
¼ 18:075

s2
d ¼

P
di � �dð Þ2

n� 1
¼ n

P
d2
i �

P
dið Þ2

n n� 1ð Þ ¼ 12 15669:49ð Þ � 216:9ð Þ2

12ð Þ 11ð Þ ¼ 1068:0930

t ¼ 18:075 � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1068:0930=12

p ¼ 18:075

9:4344
¼ 1:9159

8. Statistical decision. Reject H0, since 1.9159 is in the rejection region.

1.79590 t

a = .05

Rejection regionNonrejection region

FIGURE 7.4.1 Rejection and nonrejection regions for

Example 7.4.1.

Paired T-Test and CI: C2, C1 

Paired T for C2 - C1

N    Mean    StDev  SE Mean
C2              12  56.6083  27.8001   8.0252
C1              12  38.5333  30.0587   8.6772
Difference      12  18.0750  32.6817   9.4344

95% lower bound for mean difference: 1.1319
T-Test of mean difference 0 (vs 0): T-Value 1.92 P-Value 
0.041

FIGURE 7.4.2 MINITAB procedure and output for paired comparisons test, Example 7.4.1

(data in Table 7.4.1).
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9. Conclusion. We may conclude that the fundoplication procedure incre-
ases GBEF functioning.

10. p value. For this test, :025 < p < :05, since 1:7959 < 1:9159 < 2:2010.
MINITAB provides the exact p value as .041 (Figure 7.4.2). &

AConfidence Interval for md A 95 percent confidence interval for md may be
obtained as follows:

�d � t1� a=2ð Þs�d
18:075 � 2:2010

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1068:0930=12

p
18:075 � 20:765

ð�2:690; 38:840Þ
The Use of z If, in the analysis of paired data, the population variance of the
differences is known, the appropriate test statistic is

z ¼
�d � md

sd=
ffiffiffi
n

p (7.4.2)

It is unlikely that sd will be known in practice.
If the assumption of normally distributed di’s cannot be made, the central limit

theorem may be employed if n is large. In such cases, the test statistic is Equation 7.4.2,
with sd used to estimate sd when, as is generally the case, the latter is unknown.

Disadvantages The use of the paired comparisons test is not without its problems.
If different subjects are used and randomly assigned to two treatments, considerable time
and expense may be involved in our trying to match individuals on one or more relevant
variables. A further price we pay for using paired comparisons is a loss of degrees of
freedom. If we do not use paired observations, we have 2n� 2 degrees of freedom
available as compared to n� 1 when we use the paired comparisons procedure.

In general, in deciding whether or not to use the paired comparisons procedure, one
should be guided by the economics involved as well as by a consideration of the gains to be
realized in terms of controlling extraneous variation.

Alternatives If neither z nor t is an appropriate test statistic for use with available
data, one may wish to consider using some nonparametric technique to test a hypothesis
about a median difference. The sign test, discussed in Chapter 13, is a candidate for use in
such cases.

EXERCISES

In the following exercises, carry out the ten-step hypothesis testing procedure at the specified
significance level. For each exercise, as appropriate, explain why you chose a one-sided test or a two-
sided test. Discuss how you think researchers or clinicians might use the results of your hypothesis
test. What clinical or research decisions or actions do you think would be appropriate in light of the
results of your test?
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7.4.1 Ellen Davis Jones (A-15) studied the effects of reminiscence therapy for older women with
depression. She studied 15 women 60 years or older residing for 3 months or longer in an assisted
living long-term care facility. For this study, depression was measured by the Geriatric Depression
Scale (GDS). Higher scores indicate more severe depression symptoms. The participants received
reminiscence therapy for long-term care, which uses family photographs, scrapbooks, and personal
memorabilia to stimulate memory and conversation among group members. Pre-treatment and post-
treatment depression scores are given in the following table. Can we conclude, based on these data,
that subjects who participate in reminiscence therapy experience, on average, a decline in GDS
depression scores? Let a ¼ :01.

Pre–GDS: 12 10 16 2 12 18 11 16 16 10 14 21 9 19 20
Post–GDS: 11 10 11 3 9 13 8 14 16 10 12 22 9 16 18
Source: Data provided courtesy of Ellen Davis Jones, N.D., R.N., FNP-C.

7.4.2 Beney et al. (A-16) evaluated the effect of telephone follow-up on the physical well-being dimension
of health-related quality of life in patients with cancer. One of the main outcome variables was
measured by the physical well-being subscale of the Functional Assessment of Cancer Therapy
Scale-General (FACT-G). A higher score indicates higher physical well-being. The following table
shows the baseline FACT-G score and the follow-up score to evaluate the physical well-being during
the 7 days after discharge from hospital to home for 66 patients who received a phone call 48–72
hours after discharge that gave patients the opportunity to discuss medications, problems, and advice.
Is there sufficient evidence to indicate that quality of physical well-being significantly decreases in
the first week of discharge among patients who receive a phone call? Let a ¼ :05.

Subject
Baseline
FACT-G

Follow-up
FACT-G Subject

Baseline
FACT-G

Follow-up
FACT-G

1 16 19 34 25 14
2 26 19 35 21 17
3 13 9 36 14 22
4 20 23 37 23 22
5 22 25 38 19 16
6 21 20 39 19 15
7 20 10 40 18 23
8 15 20 41 20 21
9 25 22 42 18 11

10 20 18 43 22 22
11 11 6 44 7 17
12 22 21 45 23 9
13 18 17 46 19 16
14 21 13 47 17 16
15 25 25 48 22 20
16 17 21 49 19 23
17 26 22 50 5 17
18 18 22 51 22 17
19 7 9 52 12 6
20 25 24 53 19 19
21 22 15 54 17 20
22 15 9 55 7 6

(Continued )
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Subject
Baseline
FACT-G

Follow-up
FACT-G Subject

Baseline
FACT-G

Follow-up
FACT-G

23 19 7 56 27 10
24 23 20 57 22 16
25 19 19 58 16 14
26 21 24 59 26 24
27 24 23 60 17 19
28 21 15 61 23 22
29 28 27 62 23 23
30 18 26 63 13 3
31 25 26 64 24 22
32 25 26 65 17 21
33 28 28 66 22 21

Source: Data provided courtesy of Johnny Beney, Ph.D. and E. Beth Devine, Pharm.D.,
M.B.A. et al.

7.4.3 The purpose of an investigation by Morley et al. (A-17) was to evaluate the analgesic effectiveness
of a daily dose of oral methadone in patients with chronic neuropathic pain syndromes. The
researchers used a visual analogue scale (0–100 mm, higher number indicates higher pain) ratings
for maximum pain intensity over the course of the day. Each subject took either 20 mg of
methadone or a placebo each day for 5 days. Subjects did not know which treatment they were
taking. The following table gives the mean maximum pain intensity scores for the 5 days on
methadone and the 5 days on placebo. Do these data provide sufficient evidence, at the .05 level of
significance, to indicate that in general the maximum pain intensity is lower on days when
methadone is taken?

Subject Methadone Placebo

1 29.8 57.2
2 73.0 69.8
3 98.6 98.2
4 58.8 62.4
5 60.6 67.2
6 57.2 70.6
7 57.2 67.8
8 89.2 95.6
9 97.0 98.4

10 49.8 63.2
11 37.0 63.6

Source: John S. Morley, John Bridson, Tim P. Nash, John B.
Miles, Sarah White, and Matthew K. Makin, “Low-Dose
Methadone Has an Analgesic Effect in Neuropathic Pain:
A Double-Blind Randomized Controlled Crossover Trial,”
Palliative Medicine, 17 (2003), 576–587.

7.4.4 Woo and McKenna (A-18) investigated the effect of broadband ultraviolet B (UVB) therapy and
topical calcipotriol cream used together on areas of psoriasis. One of the outcome variables is the
Psoriasis Area and Severity Index (PASI). The following table gives the PASI scores for 20
subjects measured at baseline and after eight treatments. Do these data provide sufficient
evidence, at the .01 level of significance, to indicate that the combination therapy reduces
PASI scores?
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Subject Baseline
After 8

Treatments

1 5.9 5.2
2 7.6 12.2
3 12.8 4.6
4 16.5 4.0
5 6.1 0.4
6 14.4 3.8
7 6.6 1.2
8 5.4 3.1
9 9.6 3.5

10 11.6 4.9
11 11.1 11.1
12 15.6 8.4
13 6.9 5.8
14 15.2 5.0
15 21.0 6.4
16 5.9 0.0
17 10.0 2.7
18 12.2 5.1
19 20.2 4.8
20 6.2 4.2

Source: Data provided courtesy of W. K. Woo, M.D.

7.4.5 One of the purposes of an investigation by Porcellini et al. (A-19) was to investigate the effect on CD4
T cell count of administration of intermittent interleukin (IL-2) in addition to highly active
antiretroviral therapy (HAART). The following table shows the CD4 T cell count at baseline and
then again after 12 months of HAART therapy with IL-2. Do the data show, at the .05 level, a
significant change in CD4 T cell count?

Subject 1 2 3 4 5 6 7

CD4 T cell count at entry ð� 106=LÞ 173 58 103 181 105 301 169
CD4 T cell count at end lof follow-up
ð� 106=LÞ

257 108 315 362 141 549 369

Source: Simona Procellini, Giuliana Vallanti, Silvia Nozza, Guido Poli, Adraino Lazzarin, Guiseppe Tabussi, and
Antonio Grassia, “Improved Thymopoietic Potential in Aviremic HIV-Infected Individuals with HAART by
Intermittent IL-2 Administration,” AIDS, 17 (2003), 1621–1630.

7.5 HYPOTHESIS TESTING: A SINGLE
POPULATION PROPORTION

Testing hypotheses about population proportions is carried out in much the same way as for
means when the conditions necessary for using the normal curve are met. One-sided or
two-sided tests may be made, depending on the question being asked. When a sample
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sufficiently large for application of the central limit theorem as discussed in Section 5.5 is
available for analysis, the test statistic is

z ¼ p̂� p0ffiffiffiffiffiffiffiffiffi
p0q0

n

r (7.5.1)

which, when H0 is true, is distributed approximately as the standard normal.

EXAMPLE 7.5.1

Wagenknecht et al. (A-20) collected data on a sample of 301 Hispanic women living in San
Antonio, Texas. One variable of interest was the percentage of subjects with impaired
fasting glucose (IFG). IFG refers to a metabolic stage intermediate between normal glucose
homeostasis and diabetes. In the study, 24 women were classified in the IFG stage. The
article cites population estimates for IFG among Hispanic women in Texas as 6.3 percent.
Is there sufficient evidence to indicate that the population of Hispanic women in San
Antonio has a prevalence of IFG higher than 6.3 percent?

Solution:

1. Data. The data are obtained from the responses of 301 individuals of
which 24 possessed the characteristic of interest; that is, p̂ ¼ 24=301
¼ :080.

2. Assumptions. The study subjects may be treated as a simple random
sample from a population of similar subjects, and the sampling distri-
bution of p̂ is approximately normally distributed in accordance with the
central limit theorem.

3. Hypotheses.

H0: p � :063

HA: p > :063

We conduct the test at the point of equality. The conclusion we reach
will be the same as we would reach if we conducted the test using any
other hypothesized value of p greater than .063. If H0 is true, p ¼ :063

and the standard error sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:063ð Þ :937ð Þ=301

p
. Note that we use the

hypothesized value of p in computing sp̂. We do this because the entire
test is based on the assumption that the null hypothesis is true. To
use the sample proportion, p̂, in computing sp̂ would not be consistent
with this concept.

4. Test statistic. The test statistic is given by Equation 7.5.1.

5. Distribution of test statistic. If the null hypothesis is true, the test
statistic is approximately normally distributed with a mean of zero.

6. Decision rule. Let a ¼ :05. The critical value of z is 1.645. Reject H0 if
the computed z is � 1:645.
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7. Calculation of test statistic.

z ¼ :080 � :063ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:063ð Þ :937ð Þ

301

r ¼ 1:21

8. Statistical decision. Do not reject H0 since 1:21 < 1:645.

9. Conclusion. We cannot conclude that in the sampled population the
proportion who are IFG is higher than 6.3 percent.

10. p value. p ¼ :1131. &

Tests involving a single proportion can be carried out using a variety of computer
programs. Outputs from MINITAB and NCSS, using the data from Example 7.5.1, are
shown in Figure 7.5.1. It should be noted that the results will vary slightly, because of
rounding errors, if calculations are done by hand. It should also be noted that some
programs, such as NCSS, use a continuity correction in calculating the z-value, and
therefore the test statistic values and corresponding p values differ slightly from the
MINITAB output.

MINITAB Output

Test and CI for One Proportion

Test of p 0.063 vs p 0.063

95% Lower
Sample      X  N    Sample p Bound     Z-Value     P-Value
1           24   301   0.079734   0.054053     1.19      0.116

Using the normal approximation.

NCSS Output

Normal Approximation using (P0)

Alternative Z-Value Prob Decision 
)%5(leveLsisehtopyH

P P0 1.0763 0.281780 Accept H0
P P0 1.0763 0.859110 Accept H0
P P0 1.0763 0.140890 Accept H0

FIGURE 7.5.1 MINITAB and partial NCSS output for the data in Example 7.5.1.
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EXERCISES

For each of the following exercises, carry out the ten-step hypothesis testing procedure at the
designated level of significance. For each exercise, as appropriate, explain why you chose a one-sided
test or a two-sided test. Discuss how you think researchers or clinicians might use the results of your
hypothesis test. What clinical or research decisions or actions do you think would be appropriate in
light of the results of your test?

7.5.1 Jacquemyn et al. (A-21) conducted a survey among gynecologists-obstetricians in the
Flanders region and obtained 295 responses. Of those responding, 90 indicated that they had
performed at least one cesarean section on demand every year. Does this study provide sufficient
evidence for us to conclude that less than 35 percent of the gynecologists-obstetricians in the Flanders
region perform at least one cesarean section on demand each year? Let a ¼ :05.

7.5.2 In an article in the journal Health and Place, Hui and Bell (A-22) found that among 2428 boys ages
7 to 12 years, 461 were overweight or obese. On the basis of this study, can we conclude that more
than 15 percent of the boys ages 7 to 12 in the sampled population are obese or overweight? Let
a ¼ :05.

7.5.3 Becker et al. (A-23) conducted a study using a sample of 50 ethnic Fijian women. The women
completed a self-report questionnaire on dieting and attitudes toward body shape and change.
The researchers found that five of the respondents reported at least weekly episodes of binge
eating during the previous 6 months. Is this sufficient evidence to conclude that less than 20
percent of the population of Fijian women engage in at least weekly episodes of binge eating?
Let a ¼ :05.

7.5.4 The following questionnaire was completed by a simple random sample of 250 gynecologists. The
number checking each response is shown in the appropriate box.

1. When you have a choice, which procedure do you prefer for obtaining samples of endometrium?

(a) Dilation and curettage 175
(b) Vobra aspiration 75

2. Have you seen one or more pregnant women during the past year whom you knew to have
elevated blood lead levels?

(a) Yes 25
(b) No 225

3. Do you routinely acquaint your pregnant patients who smoke with the suspected hazards of
smoking to the fetus?

(a) Yes 238
(b) No 12

Can we conclude from these data that in the sampled population more than 60 percent prefer dilation
and curettage for obtaining samples of endometrium? Let a ¼ :01.

7.5.5 Refer to Exercise 7.5.4. Can we conclude from these data that in the sampled population fewer than
15 percent have seen (during the past year) one or more pregnant women with elevated blood lead
levels? Let a ¼ :05.

7.5.6 Refer to Exercise 7.5.4. Can we conclude from these data that more than 90 percent acquaint
their pregnant patients who smoke with the suspected hazards of smoking to the fetus? Let
a ¼ :05.
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7.6 HYPOTHESIS TESTING:
THE DIFFERENCE BETWEEN TWO
POPULATION PROPORTIONS

The most frequent test employed relative to the difference between two population
proportions is that their difference is zero. It is possible, however, to test that the
difference is equal to some other value. Both one-sided and two-sided tests may be
made.

When the null hypothesis to be tested is p1 � p2 ¼ 0, we are hypothesizing that the
two population proportions are equal. We use this as justification for combining the results
of the two samples to come up with a pooled estimate of the hypothesized common
proportion. If this procedure is adopted, one computes

�p ¼ x1 þ x2

n1 þ n2
; and �q ¼ 1 � �p

where x1 and x2 are the numbers in the first and second samples, respectively, possessing
the characteristic of interest. This pooled estimate of p ¼ p1 ¼ p2 is used in computing
ŝp̂1�p̂2

, the estimated standard error of the estimator, as follows:

ŝp̂1�p̂2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p 1 � �pð Þ

n1
þ �p 1 � �pð Þ

n2

s
(7.6.1)

The test statistic becomes

z ¼ p̂1 � p̂2ð Þ � p1 � p2ð Þ0

ŝp̂1�p̂2

(7.6.2)

which is distributed approximately as the standard normal if the null hypothesis is
true.

EXAMPLE 7.6.1

Noonan syndrome is a genetic condition that can affect the heart, growth, blood clotting,
and mental and physical development. Noonan et al. (A-24) examined the stature of men
and women with Noonan syndrome. The study contained 29 male and 44 female adults.
One of the cut-off values used to assess stature was the third percentile of adult height.
Eleven of the males fell below the third percentile of adult male height, while 24 of the
females fell below the third percentile of female adult height. Does this study provide
sufficient evidence for us to conclude that among subjects with Noonan syndrome, females
are more likely than males to fall below the respective third percentile of adult height? Let
a ¼ :05.
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Solution:

1. Data. The data consist of information regarding the height status of
Noonan syndrome males and females as described in the statement of
the example.

2. Assumptions. We assume that the patients in the study constitute
independent simple random samples from populations of males and
females with Noonan syndrome.

3. Hypotheses.

H0: pF � pM or pF � pM � 0

HA: pF > pM or pF � pM > 0

where pF is the proportion of females below the third percentile of
female adult height and pM is the proportion of males below the third
percentile of male adult height.

4. Test statistic. The test statistic is given by Equation 7.6.2.

5. Distribution of test statistic. If the null hypothesis is true, the test
statistic is distributed approximately as the standard normal.

6. Decision rule. Let a ¼ :05. The critical value of z is 1.645. Reject H0 if
computed z is greater than 1.645.

7. Calculation of test statistic. From the sample data we compute
p̂F ¼ 24=44 ¼ :545; p̂M ¼ 11=29 ¼ :379, and �p ¼ 24 þ 11ð Þ= 44 þ 29ð Þ ¼
:479. The computed value of the test statistic, then, is

z ¼ :545 � :379ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:479Þð:521Þ

44
þ ð:479Þð:521Þ

29

r ¼ 1:39

8. Statistical decision. Fail to reject H0 since 1:39 < 1:645.

9. Conclusion. In the general population of adults with Noonan syndrome
there may be no difference in the proportion of males and females who
have heights below the third percentile of adult height.

10. p value. For this test p ¼ :0823. &

Tests involving two proportions, using the data from Example 7.6.1, can be carried
out with a variety of computer programs. Outputs from MINITAB and NCSS are shown in
Figure 7.6.1. Again, it should be noted that, because of rounding errors, the results will vary
slightly if calculations are done by hand.
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EXERCISES

In each of the following exercises use the ten-step hypothesis testing procedure. For each
exercise, as appropriate, explain why you chose a one-sided test or a two-sided test. Discuss
how you think researchers or clinicians might use the results of your hypothesis test. What clinical
or research decisions or actions do you think would be appropriate in light of the results of your
test?

7.6.1 Ho et al. (A-25) used telephone interviews of randomly selected respondents in Hong Kong to obtain
information regarding individuals’ perceptions of health and smoking history. Among 1222 current
male smokers, 72 reported that they had “poor” or “very poor” health, while 30 among 282 former
male smokers reported that they had “poor” or “very poor” health. Is this sufficient evidence to allow
one to conclude that among Hong Kong men there is a difference between current and former
smokers with respect to the proportion who perceive themselves as having “poor” and “very poor”
health? Let a ¼ :01.

7.6.2 Landolt et al. (A-26) examined rates of posttraumatic stress disorder (PTSD) in mothers and fathers.
Parents were interviewed 5 to 6 weeks after an accident or a new diagnosis of cancer or diabetes
mellitus type I for their child. Twenty-eight of the 175 fathers interviewed and 43 of the 180 mothers

MINITAB Output

Test and CI for Two Proportions

Sample   X    N  Sample p

1        24   44  0.545455

2        11   29  0.379310

Difference p (1) p (2)

Estimate for difference: 0.166144

95% lower bound for difference: 0.0267550

Test for difference 0 (vs > 0):  Z 1.39  P-Value 0.082

NCSS Output

Test Test Test Prob Conclude H1
Name Statistic’s Statistic Level at 5%

?ecnacfiingiSeulaVnoitubirtsiD
Z-Test Normal 1.390 0.0822 No

FIGURE 7.6.1 MINITAB and partial NCSS output for the data in Example 7.6.1.
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interviewed met the criteria for current PTSD. Is there sufficient evidence for us to conclude that
fathers are less likely to develop PTSD than mothers when a child is traumatized by an accident,
cancer diagnosis, or diabetes diagnosis? Let a ¼ :05.

7.6.3 In a Kidney International article, Avram et al. (A-27) reported on a study involving 529 hemodialysis
patients and 326 peritoneal dialysis patients. They found that at baseline 249 subjects in the
hemodialysis treatment group were diabetic, while at baseline 134 of the subjects in the peritoneal
dialysis group were diabetic. Is there a significant difference in diabetes prevalence at baseline
between the two groups of this study? Let a ¼ :05. What does your finding regarding sample
significance imply about the populations of subjects?

7.6.4 In a study of obesity the following results were obtained from samples of males and females between
the ages of 20 and 75:

n Number Overweight

Males 150 21
Females 200 48

Can we conclude from these data that in the sampled populations there is a difference in the
proportions who are overweight? Let a ¼ :05.

7.7 HYPOTHESIS TESTING: A SINGLE
POPULATION VARIANCE

In Section 6.9 we examined how it is possible to construct a confidence interval for the
variance of a normally distributed population. The general principles presented in that
section may be employed to test a hypothesis about a population variance. When the data
available for analysis consist of a simple random sample drawn from a normally
distributed population, the test statistic for testing hypotheses about a population
variance is

x2 ¼ n� 1ð Þs2=s2 (7.7.1)

which, when H0 is true, is distributed as x2 with n� 1 degrees of freedom.

EXAMPLE 7.7.1

The purpose of a study by Wilkins et al. (A-28) was to measure the effectiveness of
recombinant human growth hormone (rhGH) on children with total body surface area burns
> 40 percent. In this study, 16 subjects received daily injections at home of rhGH. At
baseline, the researchers wanted to know the current levels of insulin-like growth factor
(IGF-I) prior to administration of rhGH. The sample variance of IGF-I levels (in ng/ml) was
670.81. We wish to know if we may conclude from these data that the population variance
is not 600.
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Solution:

1. Data. See statement in the example.

2. Assumptions. The study sample constitutes a simple random sample
from a population of similar children. The IGF-I levels are normally
distributed.

3. Hypotheses.

H0: s
2 ¼ 600

HA: s
2 6¼ 600

4. Test statistic. The test statistic is given by Equation 7.7.1.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic is distributed as x2 with n� 1 degrees of freedom.

6. Decision rule. Let a ¼ :05. Critical values of x2 are 6.262 and 27.488.
Reject H0 unless the computed value of the test statistic is between
6.262 and 27.488. The rejection and nonrejection regions are shown in
Figure 7.7.1.

7. Calculation of test statistic.

x2 ¼ 15ð670:81Þ
600

¼ 16:77

8. Statistical decision. Do not reject H0 since 6:262 < 16:77 < 27:488.

9. Conclusion. Based on these data we are unable to conclude that the
population variance is not 600.

10. p value. The determination of the p value for this test is complicated by
the fact that we have a two-sided test and an asymmetric sampling
distribution. When we have a two-sided test and a symmetric sampling
distribution such as the standard normal or t, we may, as we have
seen, double the one-sided p value. Problems arise when we attempt to

27.4886.2620

Rejection regionNonrejection regionRejection region

.025
.025

x2
15

FIGURE 7.7.1 Rejection and nonrejection regions for Example 7.7.1.
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do this with an asymmetric sampling distribution such as the chi-square
distribution. In this situation the one-sided p value is reported along with
the direction of the observed departure from the null hypothesis. In fact,
this procedure may be followed in the case of symmetric sampling
distributions. Precedent, however, seems to favor doubling the one-sided
p value when the test is two-sided and involves a symmetric sampling
distribution.

For the present example, then, we may report the p value as follows:
p > :05 (two-sided test). A population variance greater than 600 is
suggested by the sample data, but this hypothesis is not strongly
supported by the test.

If the problem is stated in terms of the population standard deviation,
one may square the sample standard deviation and perform the test as
indicated above. &

One-Sided Tests Although this was an example of a two-sided test, one-sided tests
may also be made by logical modification of the procedure given here.

ForHA: s
2 > s2

0; rejectH0 if computedx2 � x2
1�a

ForHA: s
2 < s2

0; rejectH0 if computedx2 � x2
a

Tests involving a single population variance can be carried out using MINITAB
software. Most other statistical computer programs lack procedures for carrying out these
tests directly. The output from MINITAB, using the data from Example 7.7.1, is shown in
Figure 7.7.2.

Test and CI for One Variance 

Statistics

N  StDev  Variance
16   25.9       671

95% Confidence Intervals

CI for      CI for
Method        StDev       Variance
Standard  (19.1, 40.1)  (366, 1607)

Tests

Method    Chi-Square    DF    P-Value
Standard       16.77    15      0.666

FIGURE 7.7.2 MINITAB output for the data in Example 7.7.1.
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EXERCISES

In each of the following exercises, carry out the ten-step testing procedure. For each exercise, as
appropriate, explain why you chose a one-sided test or a two-sided test. Discuss how you think
researchers or clinicians might use the results of your hypothesis test. What clinical or research
decisions or actions do you think would be appropriate in light of the results of your test?

7.7.1 Recall Example 7.2.3, where Nakamura et al. (A-1) studied subjects with acute medial collateral
ligament injury (MCL) with anterior cruciate ligament tear (ACL). The ages of the 17 subjects were:

31; 26; 21; 15; 26; 16; 19; 21; 28; 27; 22; 20; 25; 31; 20; 25; 15

Use these data to determine if there is sufficient evidence for us to conclude that in a population of
similar subjects, the variance of the ages of the subjects is not 20 years. Let a ¼ :01.

7.7.2 Robinson et al. (A-29) studied nine subjects who underwent baffle procedure for transposition of the
great arteries (TGA). At baseline, the systemic vascular resistance (SVR) (measured in WU � m2)
values at rest yielded a standard deviation of 28. Can we conclude from these data that the SVR
variance of a population of similar subjects with TGA is not 700? Let a ¼ :10.

7.7.3 Vital capacity values were recorded for a sample of 10 patients with severe chronic airway
obstruction. The variance of the 10 observations was .75. Test the null hypothesis that the population
variance is 1.00. Let a ¼ :05.

7.7.4 Hemoglobin (g percent) values were recorded for a sample of 20 children who were part of a study of
acute leukemia. The variance of the observations was 5. Do these data provide sufficient evidence to
indicate that the population variance is greater than 4? Let a ¼ :05.

7.7.5 A sample of 25 administrators of large hospitals participated in a study to investigate the nature and
extent of frustration and emotional tension associated with the job. Each participant was given a test
designed to measure the extent of emotional tension he or she experienced as a result of the duties and
responsibilities associated with the job. The variance of the scores was 30. Can it be concluded from
these data that the population variance is greater than 25? Let a ¼ :05.

7.7.6 In a study in which the subjects were 15 patients suffering from pulmonary sarcoid disease, blood gas
determinations were made. The variance of the Pao2 (mm Hg) values was 450. Test the null
hypothesis that the population variance is greater than 250. Let a ¼ :05.

7.7.7 Analysis of the amniotic fluid from a simple random sample of 15 pregnant women yielded the
following measurements on total protein (grams per 100 ml) present:

:69; 1:04; :39; :37; :64; :73; :69; 1:04;
:83; 1:00; :19; :61; :42; :20; :79

Do these data provide sufficient evidence to indicate that the population variance is greater than .05?
Let a ¼ :05. What assumptions are necessary?

7.8 HYPOTHESIS TESTING: THE RATIO
OF TWO POPULATION VARIANCES

As we have seen, the use of the t distribution in constructing confidence intervals and in
testing hypotheses for the difference between two population means assumes that the
population variances are equal. As a rule, the only hints available about the magnitudes of
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the respective variances are the variances computed from samples taken from the
populations. We would like to know if the difference that, undoubtedly, will exist between
the sample variances is indicative of a real difference in population variances, or if the
difference is of such magnitude that it could have come about as a result of chance alone
when the population variances are equal.

Two methods of chemical analysis may give the same results on the average. It may
be, however, that the results produced by one method are more variable than the results of
the other. We would like some method of determining whether this is likely to be true.

Variance Ratio Test Decisions regarding the comparability of two population
variances are usually based on the variance ratio test, which is a test of the null hypothesis
that two population variances are equal. When we test the hypothesis that two population
variances are equal, we are, in effect, testing the hypothesis that their ratio is equal to 1.

We learned in the preceding chapter that, when certain assumptions are met, the
quantity s2

1=s
2
1

� �
= s2

2=s
2
2

� �
is distributed as F with n1 � 1 numerator degrees of freedom and

n2 � 1 denominator degrees of freedom. If we are hypothesizing that s2
1 ¼ s2

2, we assume
that the hypothesis is true, and the two variances cancel out in the above expression leaving
s2

1=s
2
2, which follows the same F distribution. The ratio s2

1=s
2
2 will be designated V.R. for

variance ratio.
For a two-sided test, we follow the convention of placing the larger sample variance

in the numerator and obtaining the critical value of F for a=2 and the appropriate degrees of
freedom. However, for a one-sided test, which of the two sample variances is to be placed in
the numerator is predetermined by the statement of the null hypothesis. For example, for
the null hypothesis that s2

1=s
2
2, the appropriate test statistic is V:R: ¼ s2

1=s
2
2. The critical

value of F is obtained for a (not a=2) and the appropriate degrees of freedom. In like
manner, if the null hypothesis is that s2

1 � s2
2, the appropriate test statistic is V:R: ¼ s2

2=s
2
1.

In all cases, the decision rule is to reject the null hypothesis if the computed V.R. is equal to
or greater than the critical value of F.

EXAMPLE 7.8.1

Borden et al. (A-30) compared meniscal repair techniques using cadaveric knee specimens.
One of the variables of interest was the load at failure (in newtons) for knees fixed with the
FasT-FIX technique (group 1) and the vertical suture method (group 2). Each technique
was applied to six specimens. The standard deviation for the FasT-FIX method was 30.62,
and the standard deviation for the vertical suture method was 11.37. Can we conclude that,
in general, the variance of load at failure is higher for the FasT-FIX technique than the
vertical suture method?

Solution:

1. Data. See the statement of the example.

2. Assumptions. Each sample constitutes a simple random sample of a
population of similar subjects. The samples are independent. We assume
the loads at failure in both populations are approximately normally
distributed.
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3. Hypotheses.

H0: s
2
1 � s2

2

HA: s
2
1 > s2

2

4. Test statistic.

V:R: ¼ s2
1

s2
2

(7.8.1)

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic is distributed as F with n1 � 1 numerator and n2 � 1 denomi-
nator degrees of freedom.

6. Decision rule. Let a ¼ :05. The critical value of F, from Appendix
Table G, is 5.05. Note that if Table G does not contain an entry for the
given numerator degrees of freedom, we use the column closest in value
to the given numerator degrees of freedom. Reject H0 if V:R: � 5:05.
The rejection and nonrejection regions are shown in Figure 7.8.1.

7. Calculation of test statistic.

V:R: ¼ 30:62ð Þ2

11:37ð Þ2 ¼ 7:25

8. Statistical decision. We reject H0, since 7:25 > 5:05; that is, the
computed ratio falls in the rejection region.

9. Conclusion. The failure load variability is higher when using the FasT-
FIX method than the vertical suture method.

10. p value. Because the computed V.R. of 7.25 is greater than 5.05, the p
value for this test is less than 0.05. Excel calculates this p value to be
.0243.

&

Several computer programs can be used to test the equality of two variances. Outputs
from these programs will differ depending on the test that is used. We saw in Figure 7.3.3,

5.050 F(5, 5)

Rejection regionNonrejection region

.05

FIGURE 7.8.1 Rejection and nonrejection regions,

Example 7.8.1.
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for example, that the SAS system uses a folded F-test procedure. MINITAB uses two
different tests. The first is an F-test under the assumption of normality, and the other is a
modified Levene’s test (1) that is used when normality cannot be assumed. SPSS uses an
unmodified Levene’s test (2). Regardless of the options, these tests are generally
considered superior to the variance ratio test that is presented in Example 7.8.1. Discussion
of the mathematics behind these tests is beyond the scope of this book, but an example is
given to illustrate these procedures, since results from these tests are often provided
automatically as outputs when a computer program is used to carry out a t-test.

EXAMPLE 7.8.2

Using the data from Example 7.3.2, we are interested in testing whether the assumption of
the equality of variances can be assumed prior to performing a t-test. For ease of discussion,
the data are reproduced below (Table 7.8.1):

Partial outputs for MINITAB, SAS, and SPSS are shown in Figure 7.8.2. Regardless of
the test or program that is used, we fail to reject the null hypothesis of equal variances
H0: s

2
1 ¼ s2

2

� �
because all p values > 0:05. We may now proceed with a t-test under the

assumption of equal variances. &

TABLE 7.8.1 Pressures (mm Hg) Under the Pelvis During Static Conditions for

Example 7.3.2

Control 131 115 124 131 122 117 88 114 150 169

SCI 60 150 130 180 163 130 121 119 130 148

MINITAB Output SPSS Output

SAS Output

Equality of Variances

Variable    Method      Num DF    Den DF    F Value    Pr F
pressure    Folded F         9         9       2.17    0.2626

F-Test

Test Statistic 0.46
P-Value 0.263

Levene’s Test

Test Statistic 0.49
P-Value 0.495

Levene’s Test for
Equality of Variances

F Sig.

.664 .482

FIGURE 7.8.2 Partial MINITAB, SPSS, and SAS outputs for testing the equality of two

population variances.
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EXERCISES

In the following exercises perform the ten-step test. For each exercise, as appropriate, explain why
you chose a one-sided test or a two-sided test. Discuss how you think researchers or clinicians might
use the results of your hypothesis test. What clinical or research decisions or actions do you think
would be appropriate in light of the results of your test?

7.8.1 Dora et al. (A-31) investigated spinal canal dimensions in 30 subjects symptomatic with disc
herniation selected for a discectomy and 45 asymptomatic individuals. The researchers wanted to
know if spinal canal dimensions are a significant risk factor for the development of sciatica. Toward
that end, they measured the spinal canal dimension between vertebrae L3 and L4 and obtained a
mean of 17.8 mm in the discectomy group with a standard deviation of 3.1. In the control group, the
mean was 18.5 mm with a standard deviation of 2.8 mm. Is there sufficient evidence to indicate that in
relevant populations the variance for subjects symptomatic with disc herniation is larger than the
variance for control subjects? Let a ¼ :05.

7.8.2 Nagy et al. (A-32) studied 50 stable patients who were admitted for a gunshot wound that traversed
the mediastinum. Of these, eight were deemed to have a mediastinal injury and 42 did not. The
standard deviation for the ages of the eight subjects with mediastinal injury was 4.7 years, and the
standard deviation of ages for the 42 without injury was 11.6 years. Can we conclude from these data
that the variance of age is larger for a population of similar subjects without injury compared to a
population with mediastinal injury? Let a ¼ :05.

7.8.3 A test designed to measure level of anxiety was administered to a sample of male and a sample of
female patients just prior to undergoing the same surgical procedure. The sample sizes and the
variances computed from the scores were as follows:

Males: n ¼ 16; s2 ¼ 150

Females: n ¼ 21; s2 ¼ 275

Do these data provide sufficient evidence to indicate that in the represented populations the scores
made by females are more variable than those made by males? Let a ¼ :05.

7.8.4 In an experiment to assess the effects on rats of exposure to cigarette smoke, 11 animals were
exposed and 11 control animals were not exposed to smoke from unfiltered cigarettes. At the end
of the experiment, measurements were made of the frequency of the ciliary beat (beats/min at
20�C) in each animal. The variance for the exposed group was 3400 and 1200 for the unexposed
group. Do these data indicate that in the populations represented the variances are different?
Let a ¼ :05.

7.8.5 Two pain-relieving drugs were compared for effectiveness on the basis of length of time elapsing
between administration of the drug and cessation of pain. Thirteen patients received drug 1, and 13
received drug 2. The sample variances were s2

1 ¼ 64 and s2
2 ¼ 16. Test the null hypothesis that the two

populations variances are equal. Let a ¼ :05.

7.8.6 Packed cell volume determinations were made on two groups of children with cyanotic congenital
heart disease. The sample sizes and variances were as follows:

Group n s2

1 10 40
2 16 84
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Do these data provide sufficient evidence to indicate that the variance of population 2 is larger than
the variance of population 1? Let a ¼ :05.

7.8.7 Independent simple random samples from two strains of mice used in an experiment yielded the
following measurements on plasma glucose levels following a traumatic experience:

Strain A: 54; 99; 105; 46; 70; 87; 55; 58; 139; 91

Strain B: 93; 91; 93; 150; 80; 104; 128; 83; 88; 95; 94; 97

Do these data provide sufficient evidence to indicate that the variance is larger in the population of
strain A mice than in the population of strain B mice? Let a ¼ :05. What assumptions are necessary?

7.9 THE TYPE II ERROR AND
THE POWER OF A TEST

In our discussion of hypothesis testing our focus has been on a, the probability of
committing a type I error (rejecting a true null hypothesis). We have paid scant attention
to b, the probability of committing a type II error (failing to reject a false null hypothesis).
There is a reason for this difference in emphasis. For a given test, a is a single number
assigned by the investigator in advance of performing the test. It is a measure of the
acceptable risk of rejecting a true null hypothesis. On the other hand, b may assume one of
many values. Suppose we wish to test the null hypothesis that some population parameter is
equal to some specified value. If H0 is false and we fail to reject it, we commit a type II
error. If the hypothesized value of the parameter is not the true value, the value of b (the
probability of committing a type II error) depends on several factors: (1) the true value of
the parameter of interest, (2) the hypothesized value of the parameter, (3) the value of a,
and (4) the sample size, n. For fixed a and n, then, we may, before performing a hypothesis
test, compute many values of b by postulating many values for the parameter of interest
given that the hypothesized value is false.

For a given hypothesis test it is of interest to know how well the test controls type II
errors. If H0 is in fact false, we would like to know the probability that we will reject it. The
power of a test, designated 1 � b, provides this desired information. The quantity 1 � b is
the probability that we will reject a false null hypothesis; it may be computed for any
alternative value of the parameter about which we are testing a hypothesis. Therefore,
1 � b is the probability that we will take the correct action when H0 is false because the true
parameter value is equal to the one for which we computed 1 � b. For a given test we may
specify any number of possible values of the parameter of interest and for each compute the
value of 1 � b. The result is called a power function. The graph of a power function, called
a power curve, is a helpful device for quickly assessing the nature of the power of a given
test. The following example illustrates the procedures we use to analyze the power of a test.

EXAMPLE 7.9.1

Suppose we have a variable whose values yield a population standard deviation of 3.6.
From the population we select a simple random sample of size n ¼ 100. We select a value
of a ¼ :05 for the following hypotheses:

H0: m ¼ 17:5; HA: m 6¼ 17:5
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Solution: When we study the power of a test, we locate the rejection and nonrejection
regions on the �x scale rather than the z scale. We find the critical values of �x
for a two-sided test using the following formulas:

�xU ¼ m0 þ z
sffiffiffi
n

p (7.9.1)

and

�xL ¼ m0 � z
sffiffiffi
n

p (7.9.2)

where �xU and �xL are the upper and lower critical values, respectively, of �x;
þz and �z are the critical values of z; and m0 is the hypothesized value of m.
For our example, we have

�xU ¼ 17:50 þ 1:96
ð3:6Þ
ð10Þ ¼ 17:50 þ 1:96ð:36Þ

¼ 17:50 þ :7056 ¼ 18:21

and

�xL ¼ 17:50 � 1:96ð:36Þ ¼ 17:50 � :7056 ¼ 16:79

Suppose that H0 is false, that is, that m is not equal to 17.5. In that case,
m is equal to some value other than 17.5. We do not know the actual value of
m. But if H0 is false, m is one of the many values that are greater than or
smaller than 17.5. Suppose that the true population mean is m1 ¼ 16:5. Then
the sampling distribution of �x1 is also approximately normal, with
m�x ¼ m ¼ 16:5. We call this sampling distribution f �x1ð Þ, and we call the
sampling distribution under the null hypothesis f �x0ð Þ.

b, the probability of the type II error of failing to reject a false null
hypothesis, is the area under the curve of f �x1ð Þ that overlaps the non-
rejection region specified under H0. To determine the value of b, we find the
area under f �x1ð Þ, above the �x axis, and between �x ¼ 16:79 and �x ¼ 18:21.
The value of b is equal to P 16:79 � �x � 18:21ð Þ when m ¼ 16:5. This is the
same as

P
16:79 � 16:5

:36
� z � 18:21 � 16:5

:36

� �
¼ P

:29

:36
� z � 1:71

:36

� �

¼ P :81 � z � 4:75ð Þ
	 1 � :7910 ¼ :2090

Thus, the probability of taking an appropriate action (that is, rejecting
H0) when the null hypothesis states that m ¼ 17:5, but in fact m ¼ 16:5, is
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1 � :2090 ¼ :7910. As we noted, m may be one of a large number of possible
values when H0 is false. Figure 7.9.1 shows a graph of several such
possibilities. Table 7.9.1 shows the corresponding values of b and 1 � b

(which are approximate), along with the values of b for some additional
alternatives.

Note that in Figure 7.9.1 and Table 7.9.1 those values of m under the
alternative hypothesis that are closer to the value of m specified by H0 have
larger associated b values. For example, when m ¼ 18 under the alternative
hypothesis, b ¼ :7190; and when m ¼ 19:0 under HA, b ¼ :0143. The power
of the test for these two alternatives, then, is 1 � :7190 ¼ :2810 and
1 � :0143 ¼ :9857, respectively. We show the power of the test graphically

FIGURE 7.9.1 Size of b for selected values for H1 for Example 7.9.1.
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in a power curve, as in Figure 7.9.2. Note that the higher the curve, the greater
the power. &

Although only one value of a is associated with a given hypothesis test, there are many
values of b, one for each possible value of m if m0 is not the true value of m as hypothesized.
Unless alternative values of m are much larger or smaller than m0, b is relatively large
compared with a. Typically, we use hypothesis-testing procedures more often in those
cases in which, when H0 is false, the true value of the parameter is fairly close to
the hypothesized value. In most cases, b, the computed probability of failing to reject a
false null hypothesis, is larger than a, the probability of rejecting a true null hypothesis.
These facts are compatible with our statement that a decision based on a rejected null
hypothesis is more conclusive than a decision based on a null hypothesis that is not
rejected. The probability of being wrong in the latter case is generally larger than the
probability of being wrong in the former case.

Figure 7.9.2 shows the V-shaped appearance of a power curve for a two-sided test. In
general, a two-sided test that discriminates well between the value of the parameter in H0

and values in H1 results in a narrow V-shaped power curve. A wide V-shaped curve

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0
16.0 17.0 18.0 19.0

Alternative values of m

1 – b

FIGURE 7.9.2 Power curve for Example 7.9.1.

TABLE 7.9.1 Values of b and 1� b for

Selected Alternative Values of m1,

Example 7.9.1

Possible Values of m Under
HA When H0 is False b 1� b

16.0 0.0143 0.9857

16.5 0.2090 0.7910

17.0 0.7190 0.2810

18.0 0.7190 0.2810

18.5 0.2090 0.7910

19.0 0.0143 0.9857
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indicates that the test discriminates poorly over a relatively wide interval of alternative
values of the parameter.

Power Curves for One-Sided Tests The shape of a power curve for a one-
sided test with the rejection region in the upper tail is an elongated S. If the rejection region
of a one-sided test is located in the lower tail of the distribution, the power curve takes the
form of a reverse elongated S. The following example shows the nature of the power curve
for a one-sided test.

EXAMPLE 7.9.2

The mean time laboratory employees now take to do a certain task on a machine is 65
seconds, with a standard deviation of 15 seconds. The times are approximately normally
distributed. The manufacturers of a new machine claim that their machine will reduce the
mean time required to perform the task. The quality-control supervisor designs a test to
determine whether or not she should believe the claim of the makers of the new machine.
She chooses a significance level of a ¼ 0:01 and randomly selects 20 employees to
perform the task on the new machine. The hypotheses are

H0: m � 65; HA: m < 65

The quality-control supervisor also wishes to construct a power curve for the test.

Solution: The quality-control supervisor computes, for example, the following
value of 1 � b for the alternative m ¼ 55. The critical value of 1 � b

for the test is

65 � 2:33
15ffiffiffiffiffi
20

p
� �

¼ 57

We find b as follows:

b ¼ P �x > 57 jm ¼ 55ð Þ ¼ P z >
57 � 55

15=
ffiffiffiffiffi
20

p
� �

¼ P z > :60ð Þ
¼ 1 � :7257 ¼ :2743

Consequently, 1 � b ¼ 1 � :2743 ¼ :7257. Figure 7.9.3 shows the calcu-
lation of b. Similar calculations for other alternative values of m

a = 0.01 b = 0.2743

55 57 65
x–

FIGURE 7.9.3 b calculated for m ¼ 55.
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also yield values of 1 � b. When plotted against the values of m, these give
the power curve shown in Figure 7.9.4. &

Operating Characteristic Curves Another way of evaluating a test is to
look at its operating characteristic (OC) curve. To construct an OC curve, we plot values of
b, rather than 1 � b, along the vertical axis. Thus, an OC curve is the complement of the
corresponding power curve.

EXERCISES

Construct and graph the power function for each of the following situations.

7.9.1 H0: m � 516; HA: m > 516; n ¼ 16; s ¼ 32; a ¼ 0:05:

7.9.2 H0: m ¼ 3; HA: m 6¼ 3; n ¼ 100; s ¼ 1; a ¼ 0:05:

7.9.3 H0: m � 4:25; HA: m > 4:25; n ¼ 81; s ¼ 1:8; a ¼ 0:01:

7.10 DETERMINING SAMPLE SIZE
TO CONTROL TYPE II ERRORS

You learned in Chapter 6 how to find the sample sizes needed to construct confidence
intervals for population means and proportions for specified levels of confidence. You
learned in Chapter 7 that confidence intervals may be used to test hypotheses. The method
of determining sample size presented in Chapter 6 takes into account the probability of a
type I error, but not a type II error since the level of confidence is determined by the
confidence coefficient, 1 � a.

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

1 – b

51 53 55 57 59 61 63 65
Alternative values of m

FIGURE 7.9.4 Power curve for Example 7.9.2.
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In many statistical inference procedures, the investigator wishes to consider the type
II error as well as the type I error when determining the sample size. To illustrate the
procedure, we refer again to Example 7.9.2.

EXAMPLE 7.10.1

In Example 7.9.2, the hypotheses are

H0: m � 65; HA: m < 65

The population standard deviation is 15, and the probability of a type I error is set at .01.
Suppose that we want the probability of failing to reject H0 bð Þ to be .05 if H0 is false
because the true mean is 55 rather than the hypothesized 65. How large a sample do we
need in order to realize, simultaneously, the desired levels of a and b?

Solution: For a ¼ :01 and n ¼ 20; b is equal to .2743. The critical value is 57. Under the
new conditions, the critical value is unknown. Let us call this new critical value
C. Let m0 be the hypothesized mean and m1 the mean under the alternative
hypothesis. We can transform each of the relevant sampling distributions of �x,
the one with a mean of m0 and the one with a mean of m1 to a z distribution.
Therefore, we can convert C to a z value on the horizontal scale of each of the
two standard normal distributions. When we transform the sampling distribu-
tion of �x that has a mean ofm0 to the standard normal distribution, we call the z
that results z0. When we transform the sampling distribution �x that has a
mean of m1 to the standard normal distribution, we call the z that results z1.
Figure 7.10.1 represents the situation described so far.

We can express the critical valueC as a function of z0 andm0 and also as
a function of z1 and m1. This gives the following equations:

C ¼ m0 � z0
sffiffiffi
n

p (7.10.1)

C ¼ m1 þ z1
sffiffiffi
n

p (7.10.2)

a b

m1 C m0

x–

z

z

0

z0

z1

0

FIGURE7.10.1 Graphic representation of relationships in determination

of sample size to control both type I and type II errors.
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We set the right-hand sides of these equations equal to each other and solve
for n, to obtain

n ¼ z0 þ z1ð Þs
m0 � m1ð Þ

� �2

(7.10.3)

To find n for our illustrative example, we substitute appropriate quanti-
ties into Equation 7.10.3. We have m0 ¼ 65, m1 ¼ 55, and s ¼ 15. From
Appendix Table D, the value of z that has .01 of the area to its left is�2:33. The
value of z that has .05 of the area to its right is 1.645. Both z0 and z1 are taken as
positive. We determine whetherC lies above or below eitherm0 orm1 when we
substitute into Equations 7.10.1 and 7.10.2. Thus, we compute

n ¼ 2:33 þ 1:645ð Þ 15ð Þ
65 � 55ð Þ

� �2

¼ 35:55

We would need a sample of size 36 to achieve the desired levels of a and b

when we choose m1 ¼ 55 as the alternative value of m.
We now computeC, the critical value for the test, and state an appropriate

decision rule. To find C, we may substitute known numerical values into either
Equation 7.10.1 or Equation 7.10.2. For illustrative purposes, we solve both
equations for C. First we have

C ¼ 65 � 2:33
15ffiffiffiffiffi
36

p
� �

¼ 59:175

From Equation 7.10.2, we have

C ¼ 55 � 1:645
15ffiffiffiffiffi
36

p
� �

¼ 59:1125

The difference between the two results is due to rounding error.
The decision rule, when we use the first value of C, is as follows:

Select a sample of size 36 and compute �x, if �x � 59:175, reject H0. If
�x > 59:175, do not reject H0.

We have limited our discussion of the type II error and the power of a
test to the case involving a population mean. The concepts extend to cases
involving other parameters. &

EXERCISES

7.10.1 Given H0: m ¼ 516; HA: m > 516; n ¼ 16; s ¼ 32; a ¼ :05: Let b ¼ :10 and m1 ¼ 520, and
find n and C. State the appropriate decision rule.

7.10.2 Given H0: m � 4:500; HA: m > 4:500; n ¼ 16; s ¼ :020; a ¼ :01: Let b ¼ :05 andm1 ¼ 4:52,
and find n and C. State the appropriate decision rule.

7.10.3 Given H0: m � 4:25; HA: m > 4:25; n ¼ 81; s ¼ 1:8; a ¼ :01: Let b ¼ :03 and m1 ¼ 5:00,
and find n and C. State the appropriate decision rule.
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7.11 SUMMARY

In this chapter the general concepts of hypothesis testing are discussed. A general
procedure for carrying out a hypothesis test consisting of the following ten steps is
suggested.

1. Description of data.

2. Statement of necessary assumptions.

3. Statement of null and alternative hypotheses.

4. Specification of the test statistic.

5. Specification of the distribution of the test statistic.

6. Statement of the decision rule.

7. Calculation of test statistic from sample data.

8. The statistical decision based on sample results.

9. Conclusion.

10. Determination of p value.

A number of specific hypothesis tests are described in detail and illustrated with
appropriate examples. These include tests concerning population means, the difference
between two population means, paired comparisons, population proportions, the difference
between two population proportions, a population variance, and the ratio of two population
variances. In addition we discuss the power of a test and the determination of sample size
for controlling both type I and type II errors.

SUMMARYOF FORMULAS FOR CHAPTER 7

Formula Number Name Formula

7.1.1, 7.1.2, 7.2.1 z-transformation
(using either m or m0)

z ¼ �x� m0

s=
ffiffiffi
n

p

7.2.2 t-transformation
t ¼ �x� m0

s=
ffiffiffi
n

p

7.2.3 Test statistic when
sampling from a
population that is not
normally distributed

z ¼ �x� m0

s=
ffiffiffi
n

p

7.3.1 Test statistic when
sampling from normally
distributed populations:
population variances
known

z ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s
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7.3.2 Test statistic when
sampling from normally
distributed populations:
population variances
unknown and equal

t ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p

n1
þ s2

p

n2

s , where

s2
p ¼

n1 � 1ð Þs2
1 þ n2 � 1ð Þs2

2

n1 þ n2 � 2

7.3.3, 7.3.4 Test statistic when
sampling from normally
distributed populations:
population variances
unknown and unequal

t0 ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s , where

t01� a=2ð Þ ¼ w1t1 þ w2t2
w1 þ w2

7.3.5 Sampling from
populations that are not
normally distributed

z ¼ �x1 � �x2ð Þ � m1 � m2ð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

s

7.4.1 Test statistic for paired
differences when the
population variance is
unknown

t ¼
�d � md0

s�d

7.4.2 Test statistic for paired
differences when the
population variance is
known

z ¼
�d � md

sd=
ffiffiffi
n

p

7.5.1 Test statistic for a single
population proportion

z ¼ p̂� p0ffiffiffiffiffiffiffiffiffi
p0q0

n

r

7.6.1, 7.6.2 Test statistic for the
difference between two
population proportions

z ¼ p̂1 � p̂2ð Þ � p1 � p2ð Þ0

ŝp̂1�p̂2

, where

�p ¼ x1 þ x2

n1 þ n2
, and

ŝp̂1�p̂2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p 1 � �pð Þ

n1
þ �p 1 � �pð Þ

n2

r

7.7.1 Test statistic for a single
population variance x2 ¼ n� 1ð Þs2

s2

7.8.1 Variance ratio
V:R: ¼ s2

1

s2
2

(Continued)
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7.9.1, 7.9.2 Upper and lower critical
values for �x

�xU ¼ m0 þ z
sffiffiffi
n

p

�xL ¼ m0 � z
sffiffiffi
n

p

7.10.1, 7.10.2 Critical value for
determining sample
size to control
type II errors

C ¼ m0 � z0
sffiffiffi
n

p ¼ m1 þ z1
sffiffiffi
n

p

7.10.3 Sample size to control
type II errors n ¼ z0 þ z1ð Þs

m0 � m1ð Þ
� �2

Symbol Key 
 a ¼ type 1 error rate

 C ¼ critical value

 x2 ¼ chi-square distribution

 �d ¼ average difference

 m ¼ mean of population

 m0 ¼ hypothesized mean

 n ¼ sample size

 p ¼ proportion for population

 �p ¼ average proportion

 q ¼ 1 � pð Þ

 p̂ ¼ estimated proportion for sample

 s2 ¼ population variance

 s ¼ population standard deviation

 s�d ¼ standard error of difference

 s�x ¼ standard error

 s ¼ standard deviation of sample

 s�d ¼ standard deviation of the difference

 sp ¼ pooled standard deviation

 t ¼ Student’s t-transformation

 t0 ¼ Cochran’s correction to t

 �x ¼ mean of sample

 �xL ¼ lower limit of critical value for�x

 �xU ¼ upper limit of critical value for�x

 z ¼ standard normal transformation

REVIEWQUESTIONS AND EXERCISES

1. What is the purpose of hypothesis testing?

2. What is a hypothesis?

3. List and explain each step in the ten-step hypothesis testing procedure.
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4. Define:

(a) Type I error (b) Type II error

(c) The power of a test (d) Power function

(e) Power curve (f) Operating characteristic curve

5. Explain the difference between the power curves for one-sided tests and two-sided tests.

6. Explain how one decides what statement goes into the null hypothesis and what statement goes into
the alternative hypothesis.

7. What are the assumptions underlying the use of the t statistic in testing hypotheses about a single
mean? The difference between two means?

8. When may the z statistic be used in testing hypotheses about

(a) a single population mean?

(b) the difference between two population means?

(c) a single population proportion?

(d) the difference between two population proportions?

9. In testing a hypothesis about the difference between two population means, what is the rationale
behind pooling the sample variances?

10. Explain the rationale behind the use of the paired comparisons test.

11. Give an example from your field of interest where a paired comparisons test would be appropriate.
Use real or realistic data and perform an appropriate hypothesis test.

12. Give an example from your field of interest where it would be appropriate to test a hypothesis about
the difference between two population means. Use real or realistic data and carry out the ten-step
hypothesis testing procedure.

13. Do Exercise 12 for a single population mean.

14. Do Exercise 12 for a single population proportion.

15. Do Exercise 12 for the difference between two population proportions.

16. Do Exercise 12 for a population variance.

17. Do Exercise 12 for the ratio of two population variances.

18. Ochsenk€uhn et al. (A-33) studied birth as a result of in vitro fertilization (IVF) and birth from
spontaneous conception. In the sample, there were 163 singleton births resulting from IVF with
a mean birth weight of 3071 g and sample standard deviation of 761 g. Among the 321
singleton births resulting from spontaneous conception, the mean birth weight was 3172 g with
a standard deviation of 702 g. Determine if these data provide sufficient evidence for us to
conclude that the mean birth weight in grams of singleton births resulting from IVF is lower, in
general, than the mean birth weight of singleton births resulting from spontaneous conception.
Let a ¼ :10.

19. William Tindall (A-34) performed a retrospective study of the records of patients receiving care for
hypercholesterolemia. The following table gives measurements of total cholesterol for patients
before and 6 weeks after taking a statin drug. Is there sufficient evidence at the a ¼ :01 level of
significance for us to conclude that the drug would result in reduction in total cholesterol in a
population of similar hypercholesterolemia patients?
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Id. No. Before After Id. No. Before After Id. No. Before After

1 195 125 37 221 191 73 205 151
2 208 164 38 245 164 74 298 163
3 254 152 39 250 162 75 305 171
4 226 144 40 266 180 76 262 129
5 290 212 41 240 161 77 320 191
6 239 171 42 218 168 78 271 167
7 216 164 43 278 200 79 195 158
8 286 200 44 185 139 80 345 192
9 243 190 45 280 207 81 223 117

10 217 130 46 278 200 82 220 114
11 245 170 47 223 134 83 279 181
12 257 182 48 205 133 84 252 167
13 199 153 49 285 161 85 246 158
14 277 204 50 314 203 86 304 190
15 249 174 51 235 152 87 292 177
16 197 160 52 248 198 88 276 148
17 279 205 53 291 193 89 250 169
18 226 159 54 231 158 90 236 185
19 262 170 55 208 148 91 256 172
20 231 180 56 263 203 92 269 188
21 234 161 57 205 156 93 235 172
22 170 139 58 230 161 94 184 151
23 242 159 59 250 150 95 253 156
24 186 114 60 209 181 96 352 219
25 223 134 61 269 186 97 266 186
26 220 166 62 261 164 98 321 206
27 277 170 63 255 164 99 233 173
28 235 136 64 275 195 100 224 109
29 216 134 65 239 169 101 274 109
30 197 138 66 298 177 102 222 136
31 253 181 67 265 217 103 194 131
32 209 147 68 220 191 104 293 228
33 245 164 69 196 129 105 262 211
34 217 159 70 177 142 106 306 192
35 187 139 71 211 138 107 239 174
36 265 171 72 244 166

Source: Data provided courtesy of William Tindall, Ph.D. and the Wright State University
Consulting Center.

20. The objective of a study by van Vollenhoven et al. (A-35) was to examine the effectiveness of
Etanercept alone and Etanercept in combination with methotrexate in the treatment of rheumatoid
arthritis. They performed a retrospective study using data from the STURE database, which
collects efficacy and safety data for all patients starting biological treatments at the major
hospitals in Stockholm, Sweden. The researchers identified 40 subjects who were prescribed
Etanercept only and 57 who were given Etanercept with methotrexate. One of the outcome
measures was the number of swollen joints. The following table gives the mean number of swollen
joints in the two groups as well as the standard error of the mean. Is there sufficient evidence at the
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a ¼ :05 level of significance for us to conclude that there is a difference in mean swollen joint
counts in the relevant populations?

Treatment Mean Standard Error of Mean

Etanercept 5.56 0.84
Etanercept plus methotrexate 4.40 0.57

21. Miyazaki et al. (A-36) examined the recurrence-free rates of stripping with varicectomy and stripping
with sclerotherapy for the treatment of primary varicose veins. The varicectomy group consisted of
122 limbs for which the procedure was done, and the sclerotherapy group consisted of 98 limbs for
which that procedure was done. After 3 years, 115 limbs of the varicectomy group and 87 limbs of the
sclerotherapy group were recurrence-free. Is this sufficient evidence for us to conclude there is no
difference, in general, in the recurrence-free rate between the two procedures for treating varicose
veins? Let a ¼ :05.

22. Recall the study, reported in Exercise 7.8.1, in which Dora et al. (A-37) investigated spinal
canal dimensions in 30 subjects symptomatic with disc herniation selected for a discectomy
and 45 asymptomatic individuals (control group). One of the areas of interest was determining
if there is a difference between the two groups in the spinal canal cross-sectional area (cm2)
between vertebrae L5/S1. The data in the following table are simulated to be consistent with
the results reported in the paper. Do these simulated data provide evidence for us to conclude
that a difference in the spinal canal cross-sectional area exists between a population of
subjects with disc herniations and a population of those who do not have disc herniations? Let
a ¼ :05.

Herniated Disc Group Control Group

2.62 2.57 1.98 3.21 3.59 3.72 4.30 2.87 3.87 2.73 5.28
1.60 1.80 3.91 2.56 1.53 1.33 2.36 3.67 1.64 3.54 3.63
2.39 2.67 3.53 2.26 2.82 4.26 3.08 3.32 4.00 2.76 3.58
2.05 1.19 3.01 2.39 3.61 3.11 3.94 4.39 3.73 2.22 2.73
2.09 3.79 2.45 2.55 2.10 5.02 3.62 3.02 3.15 3.57 2.37
2.28 2.33 2.81 3.70 2.61 5.42 3.35 2.62 3.72 4.37 5.28

4.97 2.58 2.25 3.12 3.43
3.95 2.98 4.11 3.08 2.22

Source: Simulated data.

23. Iannelo et al. (A-38) investigated differences between triglyceride levels in healthy obese (control)
subjects and obese subjects with chronic active B or C hepatitis. Triglyceride levels of 208 obese
controls had a mean value of 1.81 with a standard error of the mean of .07 mmol/L. The 19 obese
hepatitis subjects had a mean of .71 with a standard error of the mean of .05. Is this sufficient evidence
for us to conclude that, in general, a difference exists in average triglyceride levels between obese
healthy subjects and obese subjects with hepatitis B or C? Let a ¼ :01.

24. Kindergarten students were the participants in a study conducted by Susan Bazyk et al. (A-39). The
researchers studied the fine motor skills of 37 children receiving occupational therapy. They used an
index of fine motor skills that measured hand use, eye–hand coordination, and manual dexterity
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before and after 7 months of occupational therapy. Higher values indicate stronger fine motor skills.
The scores appear in the following table.

Subject Pre Post Subject Pre Post

1 91 94 20 76 112
2 61 94 21 79 91
3 85 103 22 97 100
4 88 112 23 109 112
5 94 91 24 70 70
6 112 112 25 58 76
7 109 112 26 97 97
8 79 97 27 112 112
9 109 100 28 97 112

10 115 106 29 112 106
11 46 46 30 85 112
12 45 41 31 112 112
13 106 112 32 103 106
14 112 112 33 100 100
15 91 94 34 88 88
16 115 112 35 109 112
17 59 94 36 85 112
18 85 109 37 88 97
19 112 112

Source: Data provided courtesy of Susan Bazyk, M.H.S.

Can one conclude on the basis of these data that after 7 months, the fine motor skills in a population of
similar subjects would be stronger? Let a ¼ :05. Determine the p value.

25. A survey of 90 recently delivered women on the rolls of a county welfare department revealed that
27 had a history of intrapartum or postpartum infection. Test the null hypothesis that the population
proportion with a history of intrapartum or postpartum infection is less than or equal to .25. Let
a ¼ :05. Determine the p value.

26. In a sample of 150 hospital emergency admissions with a certain diagnosis, 128 listed vomiting as a
presenting symptom. Do these data provide sufficient evidence to indicate, at the .01 level of
significance, that the population proportion is less than .92? Determine the p value.

27. A research team measured tidal volume in 15 experimental animals. The mean and standard deviation
were 45 and 5 cc, respectively. Do these data provide sufficient evidence to indicate that the
population mean is greater than 40 cc? Let a ¼ :05.

28. A sample of eight patients admitted to a hospital with a diagnosis of biliary cirrhosis had a mean IgM
level of 160.55 units per milliliter. The sample standard deviation was 50. Do these data provide
sufficient evidence to indicate that the population mean is greater than 150? Let a ¼ :05. Determine
the p value.

29. Some researchers have observed a greater airway resistance in smokers than in nonsmokers. Suppose
a study, conducted to compare the percent of tracheobronchial retention of particles in smoking-
discordant monozygotic twins, yielded the following results:
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Percent Retention Percent Retention

Smoking Twin Nonsmoking Twin Smoking Twin Nonsmoking Twin

60.6 47.5 57.2 54.3
12.0 13.3 62.7 13.9
56.0 33.0 28.7 8.9
75.2 55.2 66.0 46.1
12.5 21.9 25.2 29.8
29.7 27.9 40.1 36.2

Do these data support the hypothesis that tracheobronchial clearance is slower in smokers? Let
a ¼ :05. Determine the p value for this test.

30. Circulating levels of estrone were measured in a sample of 25 postmenopausal women following
estrogen treatment. The sample mean and standard deviation were 73 and 16, respectively. At the .05
significance level can one conclude on the basis of these data that the population mean is higher than
70?

31. Systemic vascular resistance determinations were made on a sample of 16 patients with chronic,
congestive heart failure while receiving a particular treatment. The sample mean and standard
deviation were 1600 and 700, respectively. At the .05 level of significance do these data provide
sufficient evidence to indicate that the population mean is less than 2000?

32. The mean length at birth of 14 male infants was 53 cm with a standard deviation of 9 cm. Can one
conclude on the basis of these data that the population mean is not 50 cm? Let the probability of
committing a type I error be .10.

For each of the studies described in Exercises 33 through 38, answer as many of the following
questions as possible: (a) What is the variable of interest? (b) Is the parameter of interest a mean, the
difference between two means (independent samples), a mean difference (paired data), a proportion,
or the difference between two proportions (independent samples)? (c) What is the sampled
population? (d) What is the target population? (e) What are the null and alternative hypotheses?
(f) Is the alternative one-sided (left tail), one-sided (right tail), or two-sided? (g) What type I and type II
errors are possible? (h) Do you think the null hypothesis was rejected? Explain why or why not.

33. During a one-year period, Hong et al. (A-40) studied all patients who presented to the surgical
service with possible appendicitis. One hundred eighty-two patients with possible appendicitis
were randomized to either clinical assessment (CA) alone or clinical evaluation and abdominal/
pelvic CT. A true-positive case resulted in a laparotomy that revealed a lesion requiring operation.
A true-negative case did not require an operation at one-week follow-up evaluation. At the close of
the study, they found no significant difference in the hospital length of stay for the two treatment
groups.

34. Recall the study reported in Exercise 7.8.2 in which Nagy et al. (A-32) studied 50 stable patients
admitted for a gunshot wound that traversed the mediastinum. They found that eight of the subjects
had a mediastinal injury, while 42 did not have such an injury. They performed a student’s t test to
determine if there was a difference in mean age (years) between the two groups. The reported p value
was .59.

35. Dykstra et al. (A-41) studied 15 female patients with urinary frequency with or without
incontinence. The women were treated with botulinum toxin type B (BTX-B). A t test of the
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pre/post-difference in frequency indicated that these 15 patients experienced an average of 5.27
fewer frequency episodes per day after treatment with BTX-B. The p value for the test was less
than 0.001.

36. Recall the study reported in Exercise 6.10.2 in which Horesh et al. (A-42) investigated suicidal
behavior among adolescents. In addition to impulsivity, the researchers studied hopelessness among
the 33 subjects in the suicidal group and the 32 subjects in the nonsuicidal group. The means for the
two groups on the Beck Hopelessness Scale were 11.6 and 5.2, respectively, and the t value for the test
was 5.13.

37. Mauksch et al. (A-43) surveyed 500 consecutive patients (ages 18 to 64 years) in a primary care clinic
serving only uninsured, low-income patients. They used self-report questions about why patients
were coming to the clinic, and other tools to classify subjects as either having or not having major
mental illness. Compared with patients without current major mental illness, patients with a current
major mental illness reported significantly p < :001ð Þ more concerns, chronic illnesses, stressors,
forms of maltreatment, and physical symptoms.

38. A study by Hosking et al. (A-44) was designed to compare the effects of alendronate and risedronate
on bone mineral density (BMD). One of the outcome measures was the percent increase in BMD at
12 months. Alendronate produced a significantly higher percent change (4.8 percent) in BMD than
risedronate (2.8 percent) with a p value < :001.

39. For each of the following situations, identify the type I and type II errors and the correct actions.

(a) H0: A new treatment is not more effective than the traditional one.

(1) Adopt the new treatment when the new one is more effective.
(2) Continue with the traditional treatment when the new one is more effective.
(3) Continue with the traditional treatment when the new one is not more effective.
(4) Adopt the new treatment when the new one is not more effective.

(b) H0: A new physical therapy procedure is satisfactory.

(1) Employ a new procedure when it is unsatisfactory.
(2) Do not employ a new procedure when it is unsatisfactory.
(3) Do not employ a new procedure when it is satisfactory.
(4) Employ a new procedure when it is satisfactory.

(c) H0: A production run of a drug is of satisfactory quality.

(1) Reject a run of satisfactory quality.
(2) Accept a run of satisfactory quality.
(3) Reject a run of unsatisfactory quality.
(4) Accept a run of unsatisfactory quality.

For each of the studies described in Exercises 40 through 55, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence interval
construction) that you think would yield useful information for the researchers.

(b) State all assumptions that are necessary to validate your analysis.

(c) Find p values for all computed test statistics.

(d) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

40. A study by Bell (A-45) investigated the hypothesis that alteration of the vitamin D–endocrine system
in blacks results from reduction in serum 25-hydroxyvitamin D and that the alteration is reversed by
oral treatment with 25-hydroxyvitamin D3. The eight subjects (three men and five women) were
studied while on no treatment (control) and after having been given 25-hydroxyvitamin D3 for 7 days
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(25-OHD3). The following are the urinary calcium (mg/d) determinations for the eight subjects under
the two conditions.

Subject Control 25-OHD3

A 66 98
B 115 142
C 54 78
D 88 101
E 82 134
F 115 158
G 176 219
H 46 60 Source: Data provided courtesy of

Dr. Norman H. Bell.

41. Montner et al. (A-46) conducted studies to test the effects of glycerol-enhanced hyperhydration
(GEH) on endurance in cycling performance. The 11 subjects, ages 22–40 years, regularly cycled at
least 75 miles per week. The following are the pre-exercise urine output volumes (ml) following
ingestion of glycerol and water:

Subject #
Experimental, ml

(Glycerol)
Control, ml
(Placebo)

1 1410 2375
2 610 1610
3 1170 1608
4 1140 1490
5 515 1475
6 580 1445
7 430 885
8 1140 1187
9 720 1445

10 275 890
11 875 1785 Source: Data provided courtesy

of Dr. Paul Montner.

42. D’Alessandro et al. (A-47) wished to know if preexisting airway hyperresponsiveness (HR)
predisposes subjects to a more severe outcome following exposure to chlorine. Subjects were
healthy volunteers between the ages of 18 and 50 years who were classified as with and without HR.
The following are the FEV1 and specific airway resistance (Sraw) measurements taken on the
subjects before and after exposure to appropriately diluted chlorine gas:

Hyperreactive Subjects

Pre-Exposure Post-Exposure
Subject FEV1 Sraw FEV1 Sraw

1 3.0 5.80 1.8 21.4
2 4.1 9.56 3.7 12.5
3 3.4 7.84 3.0 14.3
4 3.3 6.41 3.0 10.9
5 3.3 9.12 3.0 17.1
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Normal Subjects

Pre-Exposure Post-Exposure
Subject FEV1 Sraw FEV1 Sraw

1 4.3 5.52 4.2 8.70
2 3.9 6.43 3.7 6.94
3 3.6 5.67 3.3 10.00
4 3.6 3.77 3.5 4.54
5 5.1 5.53 4.9 7.37 Source: Data provided courtesy

of Dr. Paul Blanc.

43. Noting the paucity of information on the effect of estrogen on platelet membrane fatty acid composition,
Ranganath et al. (A-48) conducted a study to examine the possibility that changes may be present in
postmenopausal women and that these may be reversible with estrogen treatment. The 31 women
recruited for the study had not menstruated for at least 3 months or had symptoms of the menopause. No
woman was on any form of hormone replacement therapy (HRT) at the time she was recruited. The
following are the platelet membrane linoleic acid values before and after a period of HRT:

Subject Before After Subject Before After Subject Before After

1 6.06 5.34 12 7.65 5.55 23 5.04 4.74
2 6.68 6.11 13 4.57 4.25 24 7.89 7.48
3 5.22 5.79 14 5.97 5.66 25 7.98 6.24
4 5.79 5.97 15 6.07 5.66 26 6.35 5.66
5 6.26 5.93 16 6.32 5.97 27 4.85 4.26
6 6.41 6.73 17 6.12 6.52 28 6.94 5.15
7 4.23 4.39 18 6.05 5.70 29 6.54 5.30
8 4.61 4.20 19 6.31 3.58 30 4.83 5.58
9 6.79 5.97 20 4.44 4.52 31 4.71 4.10

10 6.16 6.00 21 5.51 4.93
11 6.41 5.35 22 8.48 8.80

Source: Data provided courtesy of Dr. L. Ranganath.

44. The purpose of a study by Goran et al. (A-49) was to examine the accuracy of some widely used body-
composition techniques for children through the use of the dual-energy X-ray absorptiometry (DXA)
technique. Subjects were children between the ages of 4 and 10 years. The following are fat mass
measurements taken on the children by three techniques—DXA, skinfold thickness (ST), and
bioelectrical resistance (BR):

DXA ST BR
Sex

(1 ¼ Male; 0 ¼ Female)

3.6483 4.5525 4.2636 1
2.9174 2.8234 6.0888 0
7.5302 3.8888 5.1175 0
6.2417 5.4915 8.0412 0

10.5891 10.4554 14.1576 0
9.5756 11.1779 12.4004 0

(Continued )
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DXA ST BR
Sex

(1 ¼ Male; 0 ¼ Female)

2.4424 3.5168 3.7389 1
3.5639 5.8266 4.3359 1
1.2270 2.2467 2.7144 1
2.2632 2.4499 2.4912 1
2.4607 3.1578 1.2400 1
4.0867 5.5272 6.8943 0
4.1850 4.0018 3.0936 1
2.7739 5.1745 � 1
4.4748 3.6897 4.2761 0
4.2329 4.6807 5.2242 0
2.9496 4.4187 4.9795 0
2.9027 3.8341 4.9630 0
5.4831 4.8781 5.4468 0
3.6152 4.1334 4.1018 1
5.3343 3.6211 4.3097 0
3.2341 2.0924 2.5711 1
5.4779 5.3890 5.8418 0
4.6087 4.1792 3.9818 0
2.8191 2.1216 1.5406 1
4.1659 4.5373 5.1724 1
3.7384 2.5182 4.6520 1
4.8984 4.8076 6.5432 1
3.9136 3.0082 3.2363 1

12.1196 13.9266 16.3243 1
15.4519 15.9078 18.0300 0
20.0434 19.5560 21.7365 0
9.5300 8.5864 4.7322 1
2.7244 2.8653 2.7251 1
3.8981 5.1352 5.2420 0
4.9271 8.0535 6.0338 0
3.5753 4.6209 5.6038 1
6.7783 6.5755 6.6942 1
3.2663 4.0034 3.2876 0
1.5457 2.4742 3.6931 0
2.1423 2.1845 2.4433 1
4.1894 3.0594 3.0203 1
1.9863 2.5045 3.2229 1
3.3916 3.1226 3.3839 1
2.3143 2.7677 3.7693 1
1.9062 3.1355 12.4938 1
3.7744 4.0693 5.9229 1
2.3502 2.7872 4.3192 0
4.6797 4.4804 6.2469 0
4.7260 5.4851 7.2809 0
4.2749 4.4954 6.6952 0
2.6462 3.2102 3.8791 0

(Continued )
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DXA ST BR
Sex

(1 ¼ Male; 0 ¼ Female)

2.7043 3.0178 5.6841 0
4.6148 4.0118 5.1399 0
3.0896 3.2852 4.4280 0
5.0533 5.6011 4.3556 0
6.8461 7.4328 8.6565 1

11.0554 13.0693 11.7701 1
4.4630 4.0056 7.0398 0
2.4846 3.5805 3.6149 0
7.4703 5.5016 9.5402 0
8.5020 6.3584 9.6492 0
6.6542 6.8948 9.3396 1
4.3528 4.1296 6.9323 0
3.6312 3.8990 4.2405 1
4.5863 5.1113 4.0359 1
2.2948 2.6349 3.8080 1
3.6204 3.7307 4.1255 1
2.3042 3.5027 3.4347 1
4.3425 3.7523 4.3001 1
4.0726 3.0877 5.2256 0
1.7928 2.8417 3.8734 1
4.1428 3.6814 2.9502 1
5.5146 5.2222 6.0072 0
3.2124 2.7632 3.4809 1
5.1687 5.0174 3.7219 1
3.9615 4.5117 2.7698 1
3.6698 4.9751 1.8274 1
4.3493 7.3525 4.8862 0
2.9417 3.6390 3.4951 1
5.0380 4.9351 5.6038 0
7.9095 9.5907 8.5024 0
1.7822 3.0487 3.0028 1
3.4623 3.3281 2.8628 1

11.4204 14.9164 10.7378 1
1.2216 2.2942 2.6263 1
2.9375 3.3124 3.3728 1
4.6931 5.4706 5.1432 0
8.1227 7.7552 7.7401 0

10.0142 8.9838 11.2360 0
2.5598 2.8520 4.5943 0
3.7669 3.7342 4.7384 0
4.2059 2.6356 4.0405 0
6.7340 6.6878 8.1053 0
3.5071 3.4947 4.4126 1
2.2483 2.8100 3.6705 0
7.1891 5.4414 6.6332 0
6.4390 3.9532 5.1693 0

Source: Data provided courtesy of
Dr. Michael I. Goran.

� Missing data.
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45. Hartard et al. (A-50) conducted a study to determine whether a certain training regimen can
counteract bone density loss in women with postmenopausal osteopenia. The following are strength
measurements for five muscle groups taken on 15 subjects before (B) and after (A) 6 months of
training:

Leg Press Hip Flexor Hip Extensor

Subject (B) (A) (B) (A) (B) (A)

1 100 180 8 15 10 20
2 l55 195 10 20 12 25
3 115 150 8 13 12 19
4 130 170 10 14 12 20
5 120 150 7 12 12 15
6 60 140 5 12 8 16
7 60 100 4 6 6 9
8 140 215 12 18 14 24
9 110 150 10 13 12 19

10 95 120 6 8 8 14
11 110 130 10 12 10 14
12 150 220 10 13 15 29
13 120 140 9 20 14 25
14 100 150 9 10 15 29
15 110 130 6 9 8 12

Arm Abductor Arm Adductor

Subject (B) (A) (B) (A)

1 10 12 12 19
2 7 20 10 20
3 8 14 8 14
4 8 15 6 16
5 8 13 9 13
6 5 13 6 13
7 4 8 4 8
8 12 15 14 19
9 10 14 8 14

10 6 9 6 10
11 8 11 8 12
12 8 14 13 15
13 8 19 11 18
14 4 7 10 22
15 4 8 8 12

Source: Data provided courtesy of Dr. Manfred Hartard.

46. Vitacca et al. (A-51) conducted a study to determine whether the supine position or sitting position
worsens static, forced expiratory flows and measurements of lung mechanics. Subjects were aged
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persons living in a nursing home who were clinically stable and without clinical evidence of
cardiorespiratory diseases. Among the data collected were the following FEV1 percent values for
subjects in sitting and supine postures:

Sitting Supine Sitting Supine

64 56 103 94
44 37 109 92
44 39 �99 �99
40 43 169 165
32 32 73 66
70 61 95 94
82 58 �99 �99
74 48 73 58
91 63

Source: Data provided courtesy of Dr. M. Vitacca.

47. The purpose of an investigation by Young et al. (A-52) was to examine the efficacy and safety of a
particular suburethral sling. Subjects were women experiencing stress incontinence who also met
other criteria. Among the data collected were the following pre- and postoperative cystometric
capacity (ml) values:

Pre Post Pre Post Pre Post Pre Post

350 321 340 320 595 557 475 344
700 483 310 336 315 221 427 277
356 336 361 333 363 291 405 514
362 447 339 280 305 310 312 402
361 214 527 492 200 220 385 282
304 285 245 330 270 315 274 317
675 480 313 310 300 230 340 323
367 330 241 230 792 575 524 383
387 325 313 298 275 140 301 279
535 325 323 349 307 192 411 383
328 250 438 345 312 217 250 285
557 410 497 300 375 462 600 618
569 603 302 335 440 414 393 355
260 178 471 630 300 250 232 252
320 362 540 400 379 335 332 331
405 235 275 278 682 339 451 400
351 310 557 381

Source: Data provided courtesy of Dr. Stephen B. Young.

48. Diamond et al. (A-53) wished to know if cognitive screening should be used to help select appropriate
candidates for comprehensive inpatient rehabilitation. They studied a sample of geriatric rehabilita-
tion patients using standardized measurement strategies. Among the data collected were the
following admission and discharge scores made by the subjects on the Mini Mental State
Examination (MMSE):
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Admission Discharge Admission Discharge

9 10 24 26
11 11 24 30
14 19 24 28
15 15 25 26
16 17 25 22
16 15 26 26
16 17 26 28
16 17 26 26
17 14 27 28
17 18 27 28
17 21 27 27
18 21 27 27
18 21 27 27
19 21 28 28
19 25 28 29
19 21 28 29
19 22 28 29
19 19 29 28
20 22 29 28
21 23 29 30
22 22 29 30
22 19 29 30
22 26 29 30
23 21 29 30
24 21 30 30
24 20

Source: Data provided courtesy of Dr. Stephen N. Macciocchi.

49. In a study to explore the possibility of hormonal alteration in asthma, Weinstein et al. (A-54)
collected data on 22 postmenopausal women with asthma and 22 age-matched, postmenopausal,
women without asthma. The following are the dehydroepiandrosterone sulfate (DHEAS) values
collected by the investigators:

Without Asthma With Asthma Without Asthma With Asthma

20.59 87.50 15.90 166.02
37.81 111.52 49.77 129.01
76.95 143.75 25.86 31.02
77.54 25.16 55.27 47.66
19.30 68.16 33.83 171.88
35.00 136.13 56.45 241.88

146.09 89.26 19.91 235.16
166.02 96.88 24.92 25.16

96.58 144.34 76.37 78.71
24.57 97.46 6.64 111.52
53.52 82.81 115.04 54.69

Source: Data provided courtesy of Dr. Robert E. Weinstein.
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50. The motivation for a study by Gruber et al. (A-55) was a desire to find a potentially useful serum
marker in rheumatoid arthritis (RA) that reflects underlying pathogenic mechanisms. They meas-
ured, among other variables, the circulating levels of gelatinase B in the serum and synovial fluid
(SF) of patients with RA and of control subjects. The results were as follows:

Serum Synovial Fluid Serum Synovial Fluid

RA Control RA Control RA Control RA Control

26.8 23.4 71.8 3.0 36.7
19.1 30.5 29.4 4.0 57.2

249.6 10.3 185.0 3.9 71.3
53.6 8.0 114.0 6.9 25.2
66.1 7.3 69.6 9.6 46.7
52.6 10.1 52.3 22.1 30.9
14.5 17.3 113.1 13.4 27.5
22.7 24.4 104.7 13.3 17.2
43.5 19.7 60.7 10.3
25.4 8.4 116.8 7.5
29.8 20.4 84.9 31.6
27.6 16.3 215.4 30.0

106.1 16.5 33.6 42.0
76.5 22.2 158.3 20.3

Source: Data provided courtesy of Dr. Darius Sorbi.

51. Benini et al. (A-56) conducted a study to evaluate the severity of esophageal acidification in achalasia
following successful dilatation of the cardias and to determine which factors are associated with
pathological esophageal acidification in such patients. Twenty-two subjects, of whom seven were
males; ranged in ages from 28 to 78 years. On the basis of established criteria they were classified
as refluxers or nonrefluxers. The followingare theacid clearancevalues (min/reflux) for the22 subjects:

Refluxers Nonrefluxers

8.9 2.3
30.0 0.2
23.0 0.9

6.2 8.3
11.5 0.0

0.9
0.4
2.0
0.7
3.6
0.5
1.4
0.2
0.7

17.9
2.1
0.0

Source: Data provided courtesy
of Dr. Luigi Benini.
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52. The objective of a study by Baker et al. (A-57) was to determine whether medical deformation alters
in vitro effects of plasma from patients with preeclampsia on endothelial cell function to produce a
paradigm similar to the in vivo disease state. Subjects were 24 nulliparous pregnant women before
delivery, of whom 12 had preeclampsia and 12 were normal pregnant patients. Among the data
collected were the following gestational ages (weeks) at delivery:

Preeclampsia Normal Pregnant

38 40
32 41
42 38
30 40
38 40
35 39
32 39
38 41
39 41
29 40
29 40
32 40

Source: Data provided courtesy
of Dr. James M. Roberts.

53. Zisselman et al. (A-58) conducted a study to assess benzodiazepine use and the treatment of
depression before admission to an inpatient geriatric psychiatry unit in a sample of elderly patients.
Among the data collected were the following behavior disorder scores on 27 patients treated with
benzodiazepines (W) and 28 who were not (WO).

W WO

.00 1.00 .00 .00

.00 1.00 .00 10.00

.00 .00 .00 .00

.00 .00 .00 18.00

.00 10.00 .00 .00

.00 2.00 .00 2.00

.00 .00 5.00

.00 .00

.00 4.00

.00 1.00
4.00 2.00
3.00 .00
2.00 6.00

.00 .00
10.00 .00

2.00 1.00
.00 2.00

9.00 1.00
.00 22.00

1.00 .00
16.00 .00

Source: Data provided courtesy
of Dr. Yochi Shmuely.
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54. The objective of a study by Reinecke et al. (A-59) was to investigate the functional activity and
expression of the sarcolemmal Naþ=Ca2þ exchange in the failing human heart. The researchers
obtained left ventricular samples from failing human hearts of 11 male patients (mean age 51 years)
undergoing cardiac transplantation. Nonfailing control hearts were obtained from organ donors (four
females, two males, mean age 41 years) whose hearts could not be transplanted for noncardiac
reasons. The following are the Naþ=Ca2þ exchanger activity measurements for the patients with end-
stage heart failure (CHF) and nonfailing controls (NF).

NF CHF

0.075 0.221
0.073 0.231
0.167 0.145
0.085 0.112
0.110 0.170
0.083 0.207

0.112
0.291
0.164
0.195
0.185

Source: Data provided courtesy of Dr. Hans Reinecke.

55. Reichman et al. (A-60) conducted a study with the purpose of demonstrating that negative symptoms
are prominent in patients with Alzheimer’s disease and are distinct from depression. The following
are scores made on the Scale for the Assessment of Negative Symptoms in Alzheimer’s Disease by
patients with Alzheimer’s disease (PT) and normal elderly, cognitively intact, comparison
subjects (C).

PT C

19 6
5 5

36 10
22 1

1 1
18 0
24 5
17 5

7 4
19 6

5 6
2 7

14 5
9 3

34 5
13 12
(Continued )
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PT C

0 0
21 5
30 1
43 2
19 3
31 19
21 3
41 5

24
3 Source: Data provided courtesy

of Dr. Andrew C. Coyne.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wile y.com/co llege/dan iel

1. Refer to the creatine phosphokinase data on 1005 subjects (PCKDATA). Researchers would like to
know if psychologically stressful situations cause an increase in serum creatine phosphokinase
(CPK) levels among apparently healthy individuals. To help the researchers reach a decision, select a
simple random sample from this population, perform an appropriate analysis of the sample data, and
give a narrative report of your findings and conclusions. Compare your results with those of your
classmates.

2. Refer to the prothrombin time data on 1000 infants (PROTHROM). Select a simple random sample of
size 16 from each of these populations and conduct an appropriate hypothesis test to determine
whether one should conclude that the two populations differ with respect to mean prothrombin time.
Let a ¼ :05. Compare your results with those of your classmates. What assumptions are necessary for
the validity of the test?

3. Refer to the head circumference data of 1000 matched subjects (HEADCIRC). Select a simple
random sample of size 20 from the population and perform an appropriate hypothesis test to
determine if one can conclude that subjects with the sex chromosome abnormality tend to have
smaller heads than normal subjects. Let a ¼ :05. Construct a 95 percent confidence interval for the
population mean difference. What assumptions are necessary? Compare your results with those of
your classmates.

4. Refer to the hemoglobin data on 500 children with iron deficiency anemia and 500 apparently healthy
children (HEMOGLOB). Select a simple random sample of size 16 from population A and an
independent simple random sample of size 16 from population B. Does your sample data provide
sufficient evidence to indicate that the two populations differ with respect to mean Hb value? Let
a ¼ :05. What assumptions are necessary for your procedure to be valid? Compare your results with
those of your classmates.

5. Refer to the manual dexterity scores of 500 children with learning disabilities and 500 children with
no known learning disabilities (MANDEXT). Select a simple random sample of size 10 from
population A and an independent simple random sample of size 15 from population B. Do your
samples provide sufficient evidence for you to conclude that learning-disabled children, on the
average, have lower manual dexterity scores than children without a learning disability? Let a ¼ :05.
What assumptions are necessary in order for your procedure to be valid? Compare your results with
those of your classmates.
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CHAPTER8
ANALYSIS OF VARIANCE

CHAPTER OVERVIEW

This chapter introduces the first in a series of chapters devoted to linear
models. The topic of this chapter, analysis of variance, provides a metho-
dology for partitioning the total variance computed from a data set into
components, each of which represents the amount of the total variance
that can be attributed to a specific source of variation. The results of this
partitioning can then be used to estimate and test hypotheses about popula-
tion variances and means. In this chapter we focus our attention on hypothesis
testing of means. Specifically, we discuss the testing of differences among
means when there is interest in more than two populations or two or more
variables. The techniques discussed in this chapter are widely used in the
health sciences.

TOPICS

8.1 INTRODUCTION

8.2 THE COMPLETELY RANDOMIZED DESIGN

8.3 THE RANDOMIZED COMPLETE BLOCK DESIGN

8.4 THE REPEATED MEASURES DESIGN

8.5 THE FACTORIAL EXPERIMENT

8.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand the basic statistical concepts related to linear models.

2. understand how the total variation in a data set can be partitioned into different
components.

3. be able to compare the means of more than two samples simultaneously.

4. understand multiple comparison tests and when their use is appropriate.

5. understand commonly used experimental designs.
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8.1 INTRODUCTION

In the preceding chapters the basic concepts of statistics have been examined, and they
provide a foundation for this and the next several chapters. In this chapter and the three that
follow, we provide an overview of two of the most commonly employed analytical tools
used by applied statisticians, analysis of variance and linear regression. The conceptual
foundations of these analytical tools are statistical models that provide useful representa-
tions of the relationships among several variables simultaneously.

Linear Models A statistical model is a mathematical representation of the relation-
ships among variables. More specifically for the purposes of this book, a statistical model is
most often used to describe how random variables are related to one another in a context in
which the value of one outcome variable, often referred to with the letter “y,” can be
modeled as a function of one or more explanatory variables, often referred to with the letter
“x.” In this way, we are interested in determining how much variability in outcomes can be
explained by random variables that were measured or controlled as part of an experiment.
The linear model can be expanded easily to the more generalized form, in which we include
multiple outcome variables simultaneously. These models are referred to as General Linear
Models, and can be found in more advanced statistics books.

DEFINITION

An outcome variable is represented by the set of measured values that
result from an experiment or some other statistical process. An
explanatory variable, on the other hand, is a variable that is useful for
predicting the value of the outcome variable.

A linear model is any model that is linear in the parameters that define the model. We
can represent such models generically in the form:

Yj ¼ b0 þ b1X1j þ b2X2j þ . . .þ bkXkj þ ej (8.1.1)

In this equation, bj represents the coefficients in the model and ej represents random error.
Therefore, any model that can be represented in this form, where the coefficients are
constants and the algebraic order of the model is one, is considered a linear model. Though
at first glance this equation may seem daunting, it actually is generally easy to find values
for the parameters using basic algebra or calculus, as we shall see as the chapter progresses.

We will see many representations of linear models in this and other forms in the next
several chapters. In particular, we will focus on the use of linear models for analyzing data
using the analysis of variance for testing differences among means, regression for making
predictions, and correlation for understanding associations among variables. In the context
of analysis of variance, the predictor variables are classification variables used to define
factors of interest (e.g., differentiating between a control group and a treatment group), and
in the context of correlation and linear regression the predictor variables are most often
continuous variables, or at least variables at a higher level than nominal classes. Though the
underlying purposes of these tasks may seem quite different, studying these techniques and
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the structure of the models used to represent them will prove to be valuable for under-
standing some of the most commonly used inferential statistics.

Analysis of Variance This chapter is concerned with analysis of variance, which
may be defined as a technique whereby the total variation present in a set of data is
partitioned into two or more components. Associated with each of these components is a
specific source of variation, so that in the analysis it is possible to ascertain the magnitude
of the contributions of each of these sources to the total variation.

The development of analysis of variance (ANOVA) is due mainly to the work of
R. A. Fisher (1), whose contributions to statistics, spanning the years 1912 to 1962, have
had a tremendous influence on modern statistical thought (2,3).

Applications Analysis of variance finds its widest application in the analysis of
data derived from experiments. The principles of the design of experiments are well
covered in many books, including those by Hinkelmann and Kempthorne (4),
Montgomery (5), and Myers and Well (6). We do not study this topic in detail, since
to do it justice would require a minimum of an additional chapter. Some of the important
concepts in experimental design, however, will become apparent as we discuss analysis
of variance.

Analysis of variance is used for two different purposes: (1) to estimate and test
hypotheses about population variances, and (2) to estimate and test hypotheses about
population means. We are concerned here with the latter use. However, as we will see,
our conclusions regarding the means will depend on the magnitudes of the observed
variances.

The concepts and techniques that we cover under the heading of analysis of variance
are extensions of the concepts and techniques covered in Chapter 7. In Chapter 7 we
learned to test the null hypothesis that two means are equal. In this chapter we learn to test
the null hypothesis that three or more means are equal. Whereas, for example, what we
learned in Chapter 7 enables us to determine if we can conclude that two treatments differ
in effectiveness, what we learn in this chapter enables us to determine if we can conclude
that three or more treatments differ in effectiveness. The following example illustrates
some basic ideas involved in the application of analysis of variance. These will be extended
and elaborated on later in this chapter.

EXAMPLE 8.1.1

Suppose we wish to know if three drugs differ in their effectiveness in lowering serum
cholesterol in human subjects. Some subjects receive drug A, some drug B, and some drug
C. After a specified period of time, measurements are taken to determine the extent to
which serum cholesterol was reduced in each subject. We find that the amount by which
serum cholesterol was lowered is not the same in all subjects. In other words, there is
variability among the measurements. Why, we ask ourselves, are the measurements not all
the same? Presumably, one reason they are not the same is that the subjects received
different drugs. We now look at the measurements of those subjects who received drug A.
We find that the amount by which serum cholesterol was lowered is not the same among
these subjects. We find this to be the case when we look at the measurements for subjects
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who received drug B and those subjects who received drug C. We see that there is
variability among the measurements within the treatment groups. Why, we ask ourselves
again, are these measurements not the same? Among the reasons that come to mind are
differences in the genetic makeup of the subjects and differences in their diets. Through an
analysis of the variability that we have observed, we will be able to reach a conclusion
regarding the equivalence of the effectiveness of the three drugs. To do this we employ the
techniques and concepts of analysis of variance. &

Variables In our example we allude to three kinds of variables. We find these
variables to be present in all situations in which the use of analysis of variance is
appropriate. First, we have the treatment variable, which in our example was “drug.”
We had three “values” of this variable, drug A, drug B, and drug C. The second kind of
variable we refer to is the response variable. In the example it is change in serum
cholesterol. The response variable is the variable that we expect to exhibit different values
when different “values” of the treatment variable are employed. Finally, we have the other
variables that we mention—genetic composition and diet. These are called extraneous
variables. These variables may have an effect on the response variable, but they are not the
focus of our attention in the experiment. The treatment variable is the variable of primary
concern, and the question to be answered is: Do the different “values” of the treatment
variable result in differences, on the average, in the response variable?

Assumptions Underlying the valid use of analysis of variance as a tool of statistical
inference is a set of fundamental assumptions. Although an experimenter must not expect
to find all the assumptions met to perfection, it is important that the user of analysis of
variance techniques be aware of the underlying assumptions and be able to recognize when
they are substantially unsatisfied. Because experiments in which all the assumptions are
perfectly met are rare, analysis of variance results should be considered as approximate
rather than exact. These assumptions are pointed out at appropriate points in the
following sections.

We discuss analysis of variance as it is used to analyze the results of two different
experimental designs, the completely randomized and the randomized complete block
designs. In addition to these, the concept of a factorial experiment is given through its use in
a completely randomized design. These do not exhaust the possibilities. A discussion of
additional designs may be found in the references (4–6).

The ANOVA Procedure In our presentation of the analysis of variance for the
different designs, we follow the ten-step procedure presented in Chapter 7. The following is
a restatement of the steps of the procedure, including some new concepts necessary for its
adaptation to analysis of variance.

1. Description of data. In addition to describing the data in the usual way, we display
the sample data in tabular form.

2. Assumptions. Along with the assumptions underlying the analysis, we present the
model for each design we discuss. The model consists of a symbolic representation
of a typical value from the data being analyzed.

3. Hypotheses.
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4. Test statistic.

5. Distribution of test statistic.

6. Decision rule.

7. Calculation of test statistic. The results of the arithmetic calculations will be
summarized in a table called the analysis of variance (ANOVA) table. The entries in
the table make it easy to evaluate the results of the analysis.

8. Statistical decision.

9. Conclusion.

10. Determination of p value.

We discuss these steps in greater detail in Section 8.2.

The Use of Computers The calculations required by analysis of variance are
lengthier and more complicated than those we have encountered in preceding chapters.
For this reason the computer assumes an important role in analysis of variance. All the
exercises appearing in this chapter are suitable for computer analysis and may be solved
with the statistical packages mentioned in Chapter 1. The output of the statistical
packages may vary slightly from that presented in this chapter, but this should pose no
major problem to those who use a computer to analyze the data of the exercises. The
basic concepts of analysis of variance that we present here should provide the necessary
background for understanding the description of the programs and their output in any of
the statistical packages.

8.2 THE COMPLETELY RANDOMIZED DESIGN

We saw in Chapter 7 how it is possible to test the null hypothesis of no difference between
two population means. It is not unusual for the investigator to be interested in testing the
null hypothesis of no difference among several population means. The student first
encountering this problem might be inclined to suggest that all possible pairs of sample
means be tested separately by means of the Student t test. Suppose there are five
populations involved. The number of possible pairs of sample means is 5C2 ¼ 10. As
the amount of work involved in carrying out this many t tests is substantial, it would be
worthwhile if a more efficient alternative for analysis were available. A more important
consequence of performing all possible t tests, however, is that it is very likely to lead to a
false conclusion.

Suppose we draw five samples from populations having equal means. As we have
seen, there would be 10 tests if we were to do each of the possible tests separately. If we
select a significance level of a ¼ :05 for each test, the probability of failing to reject a
hypothesis of no difference in each case would be :95. By the multiplication rule of
probability, if the tests were independent of one another, the probability of failing to reject a
hypothesis of no difference in all 10 cases would be :95ð Þ10 ¼ :5987. The probability of
rejecting at least one hypothesis of no difference, then, would be 1 � :5987 ¼ :4013. Since
we know that the null hypothesis is true in every case in this illustrative example, rejecting
the null hypothesis constitutes the committing of a type I error. In the long run, then, in
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testing all possible pairs of means from five samples, we would commit a type I error
40 percent of the time. The problem becomes even more complicated in practice, since
three or more t tests based on the same data would not be independent of one another.

It becomes clear, then, that some other method for testing for a significant difference
among several means is needed. Analysis of variance provides such a method.

One-Way ANOVA The simplest type of analysis of variance is that known as
one-way analysis of variance, in which only one source of variation, or factor, is
investigated. It is an extension to three or more samples of the t test procedure (discussed
in Chapter 7) for use with two independent samples. Stated another way, we can say that
the t test for use with two independent samples is a special case of one-way analysis
of variance.

In a typical situation we want to use one-way analysis of variance to test the null
hypothesis that three or more treatments are equally effective. The necessary experiment
is designed in such a way that the treatments of interest are assigned completely at
random to the subjects or objects on which the measurements to determine treatment
effectiveness are to be made. For this reason the design is called the completely randomized
experimental design.

We may randomly allocate subjects to treatments as follows. Suppose we have 16
subjects available to participate in an experiment in which we wish to compare four drugs.
We number the subjects from 01 through 16. We then go to a table of random numbers and
select 16 consecutive, unduplicated numbers between 01 and 16. To illustrate, let us use
Appendix Table A and a random starting point that, say, is at the intersection of Row 4 and
Columns 11 and 12. The two-digit number at this intersection is 98. The succeeding
(moving downward) 16 consecutive two-digit numbers between 01 and 16 are 16, 09, 06,
15, 14, 11, 02, 04, 10, 07, 05, 13, 03, 12, 01, and 08. We allocate subjects 16, 09, 06, and 15
to drug A; subjects 14, 11, 02, and 04 to drug B; subjects 10, 07, 05, and 13 to drug C; and
subjects 03, 12, 01, and 08 to drug D. We emphasize that the number of subjects in
each treatment group does not have to be the same. Figure 8.2.1 illustrates the scheme of
random allocation.

Available
subjects 16151413121110090807060504030201

08011203130507100402111415060916

0609 021516 11 050414 07 011310 12 0803

Random
numbers

DCBATreatment

FIGURE 8.2.1 Allocation of subjects to treatments, completely randomized design.
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Hypothesis Testing Steps Once we decide that the completely randomized
design is the appropriate design, we may proceed with the hypothesis testing steps. We
discuss these in detail first, and follow with an example.

1. Description of data. The measurements (or observations) resulting from a
completely randomized experimental design, along with the means and totals that
can be computed from them, may be displayed for convenience as in Table 8.2.1. The
symbols used in Table 8.2.1 are defined as follows:

xij ¼ the ith observation resulting from the jth treatment
there are a total of k treatmentsð Þ

i ¼ 1; 2; . . . ; nj; j ¼ 1; 2; . . . ; k

T: j ¼
Xnj
i¼1

xij ¼ total of the jth treatment

�x:j ¼ T :j

nj
¼ mean of the jth treatment

T :: ¼
Xk
j¼1

T :j ¼
Xk
j¼1

Xnj
i¼1

xij ¼ total of all observations

�x�� ¼ T ::

N
; N ¼

Xk
j¼1

nj

2. Assumptions. Before stating the assumptions, let us specify the model for the
experiment described here.

TheModel As already noted, a model is a symbolic representation of a typical value of
a data set. To write down the model for the completely randomized experimental design, let
us begin by identifying a typical value from the set of data represented by the sample
displayed in Table 8.2.1. We use the symbol xij to represent this typical value.

TABLE 8.2.1 Table of Sample Values for the

Completely Randomized Design

Treatment

1 2 3 . . . k

x11 x12 x13 . . . x1k

x21 x22 x23 . . . x2k

x31 x32 x33 . . . x3k

..

. ..
. ..

. ..
. ..

.

xn11 xn22 xn33 . . . xnkk

Total T :1 T :2 T :3 . . . T �k T ::

Mean �x :1 �x :2 �x ::3 . . . �x �k �x ::
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The one-way analysis of variance model may be written as follows:

xij ¼ mþ tj þ eij; i ¼ 1; 2; . . . ; nj; j ¼ 1; 2; . . . ; k (8.2.1)

The terms in this model are defined as follows:

1. m represents the mean of all k population means and is called the grand mean.

2. tj represents the difference between the mean of the jth population and the grand
mean and is called the treatment effect.

3. eij represents the amount by which an individual measurement differs from the mean
of the population to which it belongs and is called the error term.

Components of the Model By looking at our model we can see that a typical
observation from the total set of data under study is composed of (1) the grand mean, (2) a
treatment effect, and (3) an error term representing the deviation of the observation from its
group mean.

In most situations we are interested only in the k treatments represented in our
experiment. Any inferences that we make apply only to these treatments. We do not wish to
extend our inference to any larger collection of treatments. When we place such a
restriction on our inference goals, we refer to our model as the fixed-effects model, or
model 1. The discussion in this book is limited to this model.

Assumptions of the Model The assumptions for the fixed-effects model are as
follows:

(a) The k sets of observed data constitute k independent random samples from the
respective populations.

(b) Each of the populations from which the samples come is normally distributed with
mean mj and variance s2

j .

(c) Each of the populations has the same variance. That is, s2
1 ¼ s2

2 ¼ . . . s2
k ¼ s2 the

common variance.

(d) The tj are unknown constants and
P

tj ¼ 0 since the sum of all deviations of the mj

from their mean, m, is zero.

(e) The eij have a mean of 0, since the mean of xij is mj.

(f) The eij have a variance equal to the variance of the xij, since the eij and xij differ only
by a constant; that is, the error variance is equal to s2, the common variance specified
in assumption c.

(g) The eij are normally (and independently) distributed.

3. Hypotheses. We test the null hypothesis that all population or treatment means
are equal against the alternative that the members of at least one pair are not equal.
We may state the hypotheses formally as follows:

H0 : m1 ¼ m2 ¼ � � � ¼ mk

HA : not allmj are equal
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If the population means are equal, each treatment effect is equal to zero, so that,
alternatively, the hypotheses may be stated as

H0 : tj ¼ 0; j ¼ 1; 2; . . . ; k
HA : not all tj ¼ 0

If H0 is true and the assumptions of equal variances and normally distributed
populations are met, a picture of the populations will look like Figure 8.2.2. When H0

is true the population means are all equal, and the populations are centered at the
same point (the common mean) on the horizontal axis. If the populations are all
normally distributed with equal variances the distributions will be identical, so that in
drawing their pictures each is superimposed on each of the others, and a single
picture sufficiently represents them all.

When H0 is false it may be false because one of the population means is different
from the others, which are all equal. Or, perhaps, all the population means are different.
These are only two of the possibilities when H0 is false. There are many other possible
combinations of equal and unequal means. Figure 8.2.3 shows a picture of the
populations when the assumptions are met, but H0 is false because no two population
means are equal.

4. Test statistic. The test statistic for one-way analysis of variance is a computed
variance ratio, which we designate by V.R. as we did in Chapter 7. The two

m1 = m2 = ... = mk

s 2
 
=

 1 2 s 2
ks 2

 
= ... =

FIGURE 8.2.2 Picture of the populations represented in

a completely randomized design when H0 is true and the

assumptions are met.

m1 m2 mk

FIGURE 8.2.3 Picture of the populations represented in a

completely randomized design when the assumptions of equal

variances and normally distributed populations are met, but H0 is

false because none of the population means are equal.
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variances from which V.R. is calculated are themselves computed from the sample
data. The methods by which they are calculated will be given in the discussion that
follows.

5. Distribution of test statistic. As discussed in Section 7.8, V.R. is distributed as the
F distribution when H0 is true and the assumptions are met.

6. Decision rule. In general, the decision rule is: reject the null hypothesis if the
computed value of V.R. is equal to or greater than the critical value of F for the
chosen a level.

7. Calculation of test statistic. We have defined analysis of variance as a process
whereby the total variation present in a set of data is partitioned into components that
are attributable to different sources. The term variation used in this context refers
to the sum of squared deviations of observations from their mean, or sum of squares
for short.

The initial computations performed in one-way ANOVA consist of the partitioning of
the total variation present in the observed data into its basic components, each of which is
attributable to an identifiable source.

Those who use a computer for calculations may wish to skip the following discussion
of the computations involved in obtaining the test statistic.

The Total Sum of Squares Before we can do any partitioning, we must first
obtain the total sum of squares. The total sum of squares is the sum of the squares of the
deviations of individual observations from the mean of all the observations taken together.
This total sum of squares is defined as

SST ¼
Xk
j¼1

Xnj
i¼1

xij � �x::
� �2

(8.2.2)

whereS
nj
i¼1 tells us to sum the squared deviations for each treatment group, and S

k
j¼1 tells us

to add the k group totals obtained by applying S
nj
i¼1. The reader will recognize Equation

8.2.2 as the numerator of the variance that may be computed from the complete set of
observations taken together.

The Within Groups Sum of Squares Now let us show how to compute the
first of the two components of the total sum of squares.

The first step in the computation calls for performing certain calculations within each
group. These calculations involve computing within each group the sum of the squared
deviations of the individual observations from their mean. When these calculations have
been performed within each group, we obtain the sum of the individual group results. This
component of variation is called the within groups sum of squares and may be designated
SSW. This quantity is sometimes referred to as the residual or error sum of squares. The
expression for these calculations is written as follows:

SSW ¼
Xk
j¼1

Xnj
i¼1

xij � �x:j
� �2

(8.2.3)
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The Among Groups Sum of Squares To obtain the second component of
the total sum of squares, we compute for each group the squared deviation of the group
mean from the grand mean and multiply the result by the size of the group. Finally, we add
these results over all groups. This quantity is a measure of the variation among groups and
is referred to as the sum of squares among groups or SSA. The formula for calculating this
quantity is as follows:

SSA ¼
Xk
j¼1

nj �x:j � �x::
� �2

(8.2.4)

In summary, then, we have found that the total sum of squares is equal to the sum of
the among and the within sum of squares. We express this relationship as follows:

SST ¼ SSAþ SSW

From the sums of squares that we have now learned to compute, it is possible to obtain two
estimates of the common population variance, s2. It can be shown that when the
assumptions are met and the population means are all equal, both the among sum of
squares and the within sum of squares, when divided by their respective degrees of
freedom, yield independent and unbiased estimates of s2.

The First Estimate of s2 Within any sample,

Xnj
i¼1

xij � �x:j
� �2

nj � 1

provides an unbiased estimate of the true variance of the population from which the sample
came. Under the assumption that the population variances are all equal, we may pool the k
estimates to obtain

MSW ¼

Xk
j¼1

Xnj
i¼1

xij � �x:j
� �2

Xk
j¼1

nj � 1
� � (8.2.5)

This is our first estimate of s2 and may be called the within groups variance, since it is
the within groups sum of squares of Equation 8.2.3 divided by the appropriate degrees of
freedom. The student will recognize this as an extension to k samples of the pooling of
variances procedure encountered in Chapters 6 and 7 when the variances from two
samples were pooled in order to use the t distribution. The quantity in Equation 8.2.5
is customarily referred to as the within groups mean square rather than the within
groups variance.
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The within groups mean square is a valid estimate of s2 only if the population
variances are equal. It is not necessary, however, for H0 to be true in order for the within
groups mean square to be a valid estimate of s2; that is, the within groups mean square
estimates s2 regardless of whether H0 is true or false, as long as the population variances
are equal.

The Second Estimate of s2 The second estimate of s2 may be obtained from
the familiar formula for the variance of sample means, s2

�x ¼ s2=n. If we solve this
equation for s2, the variance of the population from which the samples were drawn, we
have

s2 ¼ ns2
�x (8.2.6)

An unbiased estimate of s2
�x computed from sample data is provided by

Pk
j¼1

�x:j � �x::
� �2

k � 1

If we substitute this quantity into Equation 8.2.6, we obtain the desired estimate
of s2,

MSA ¼
n
Pk
j¼1

�x:j � �x::
� �2

k � 1
(8.2.7)

The reader will recognize the numerator of Equation 8.2.7 as the among groups
sum of squares for the special case when all sample sizes are equal. This sum of squares
when divided by the associated degrees of freedom k � 1 is referred to as the among groups
mean square.

When the sample sizes are not all equal, an estimate of s2 based on the variability
among sample means is provided by

MSA ¼

Pk
j¼1

nj �x:j � �x::
� �2

k � 1
(8.2.8)

If, indeed, the null hypothesis is true we would expect these two estimates of s2 to be
fairly close in magnitude. If the null hypothesis is false, that is, if all population means are
not equal, we would expect the among groups mean square, which is computed by using the
squared deviations of the sample means from the overall mean, to be larger than the within
groups mean square.

In order to understand analysis of variance we must realize that the among groups
mean square provides a valid estimate of s2 when the assumption of equal population
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variances is met and when H0 is true. Both conditions, a true null hypothesis and equal
population variances, must be met in order for the among groups mean square to be a valid
estimate of s2.

TheVariance Ratio What we need to do now is to compare these two estimates of
s2, and we do this by computing the following variance ratio, which is the desired
test statistic:

V:R: ¼ among groups mean square

within groups mean square
¼ MSA

MSW

If the two estimates are about equal, V.R. will be close to 1. A ratio close to 1 tends to
support the hypothesis of equal population means. If, on the other hand, the among groups
mean square is considerably larger than the within groups mean square, V.R. will be
considerably greater than 1. Avalue of V.R. sufficiently greater than 1 will cast doubt on the
hypothesis of equal population means.

We know that because of the vagaries of sampling, even when the null hypothesis is
true, it is unlikely that the among and within groups mean squares will be equal. We must
decide, then, how big the observed difference must be before we can conclude that the
difference is due to something other than sampling fluctuation. In other words, how large a
value of V.R. is required for us to be willing to conclude that the observed difference
between our two estimates of s2 is not the result of chance alone?

The F Test To answer the question just posed, we must consider the sampling
distribution of the ratio of two sample variances. In Chapter 6 we learned that the quantity
s2

1=s
2
1

� �
= s2

2=s
2
2

� �
follows a distribution known as the F distribution when the sample

variances are computed from random and independently drawn samples from normal
populations. The F distribution, introduced by R. A. Fisher in the early 1920s, has become
one of the most widely used distributions in modern statistics. We have already become
acquainted with its use in constructing confidence intervals for, and testing hypotheses
about, population variances. In this chapter, we will see that it is the distribution
fundamental to analysis of variance. For this reason the ratio that we designate V.R. is
frequently referred to as F, and the testing procedure is frequently called the F test. It is of
interest to note that the F distribution is the ratio of two Chi-square distributions.

In Chapter 7 we learned that when the population variances are the same, they cancel
in the expression s2

1=s
2
1

� �
= s2

2=s
2
2

� �
, leaving s2

1=s
2
2, which is itself distributed as F. The F

distribution is really a family of distributions, and the particular F distribution we use in a
given situation depends on the number of degrees of freedom associated with the sample
variance in the numerator (numerator degrees of freedom) and the number of degrees
of freedom associated with the sample variance in the denominator (denominator degrees
of freedom).

Once the appropriate F distribution has been determined, the size of the
observed V.R. that will cause rejection of the hypothesis of equal population variances
depends on the significance level chosen. The significance level chosen determines
the critical value of F, the value that separates the nonrejection region from the
rejection region.
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As we have seen, we compute V.R. in situations of this type by placing the among
groups mean square in the numerator and the within groups mean square in the denominator,
so that the numerator degrees of freedom is equal to k � 1ð Þ, the number of groups minus 1,
and the denominator degrees of freedom value is equal to

Xk
j¼1

nj � 1
� � ¼ Xk

j¼1

nj

 !
� k ¼ N � k

The ANOVA Table The calculations that we perform may be summarized and
displayed in a table such as Table 8.2.2 , which is called the ANOVA table.

8. Statistical decision. To reach a decision we must compare our computed V.R.
with the critical value of F, which we obtain by entering Appendix Table G
with k � 1 numerator degrees of freedom and N � k denominator degrees of
freedom.

If the computed V.R. is equal to or greater than the critical value of F, we reject the null
hypothesis. If the computed value of V.R. is smaller than the critical value of F, we do not
reject the null hypothesis.

Explaining a Rejected Null Hypothesis There are two possible explan-
ations for a rejected null hypothesis. If the null hypothesis is true, that is, if the two sample
variances are estimates of a common variance, we know that the probability of getting a
value of V.R. as large as or larger than the critical F is equal to our chosen level of
significance. When we reject H0 we may, if we wish, conclude that the null hypothesis is
true and assume that because of chance we got a set of data that gave rise to a rare event. On
the other hand, we may prefer to take the position that our large computed V.R. value does
not represent a rare event brought about by chance but, instead, reflects the fact that
something other than chance is operative. We then conclude that we have a false null
hypothesis.

It is this latter explanation that we usually give for computed values of V.R. that
exceed the critical value of F. In other words, if the computed value of V.R. is greater than
the critical value of F, we reject the null hypothesis.

TABLE 8.2.2 Analysis of Variance Table for the Completely Randomized Design

Source of
Variation Sum of Squares

Degrees of
Freedom Mean Square

Variance
Ratio

Among samples SSA ¼ Pk
j¼1

nj �x �j � �x ::

� �2
k � 1 MSA ¼ SSA= k � 1ð Þ V:R� ¼ MSA

MSW

Within samples SSW ¼ Pk
j¼1

Pnj

i¼1

xij � �x �j
� �2

N � k MSW ¼ SSW = N � kð Þ

Total SST ¼ Pk
j¼1

Pnj

i¼1

xij � �x ::

� �2
N � 1
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It will be recalled that the original hypothesis we set out to test was

H0 : m1 ¼ m2 ¼ � � � ¼ mk

Does rejection of the hypothesis about variances imply a rejection of the hypothesis of
equal population means? The answer is yes. A large value of V.R. resulted from the fact that
the among groups mean square was considerably larger than the within groups mean
square. Since the among groups mean square is based on the dispersion of the sample
means about their mean (called the grand mean), this quantity will be large when there is a
large discrepancy among the sizes of the sample means. Because of this, then, a significant
value of V.R. tells us to reject the null hypothesis that all population means are equal.

9. Conclusion. When we reject H0, we conclude that not all population means are
equal. When we fail to reject H0, we conclude that the population means are not
significantly different from each other.

10. Determination of p value.

EXAMPLE 8.2.1

Game meats, including those from white-tailed deer and eastern gray squirrels, are used as
food by families, hunters, and other individuals for health, cultural, or personal reasons. A
study by David Holben (A-1) assessed the selenium content of meat from free-roaming
white-tailed deer (venison) and gray squirrel (squirrel) obtained from a low selenium
region of the United States. These selenium content values were also compared to those of
beef produced within and outside the same region. We want to know if the selenium levels
are different among the four meat groups.

Solution:

1. Description of data. Selenium content of raw venison (VEN), squirrel
meat (SQU), region-raised beef (RRB), and nonregion-raised beef
(NRB), in mg=100 g of dry weight, are shown in Table 8.2.3. A graph
of the data in the form of a dotplot is shown in Figure 8.2.4. Such a graph
highlights the main features of the data and brings into clear focus
differences in selenium levels among the different meats.

TABLE 8.2.3 Selenium Content, in mg=100g, of Four Different Meat Types

Meat Type

VEN SQU RRB NRB

26.72 14.86 37.42 37.57 11.23 15.82 44. 33

28.58 16.47 56.46 25.71 29.63 27.74 76.86

29.71 25.19 51.91 23.97 20.42 22.35 4.45

26.95 37.45 62.73 13.82 10.12 34.78 55.01

10.97 45.08 4.55 42.21 39.91 35.09 58.21

21.97 25.22 39.17 35.88 32.66 32.60 74.72

(Continued)
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2. Assumptions. We assume that the four sets of data constitute indepen-
dent simple random samples from the four indicated populations. We
assume that the four populations of measurements are normally distrib-
uted with equal variances.

Meat Type

VEN SQU RRB NRB

14.35 22.11 38.44 10.54 38.38 37.03 11.84

32.21 33.01 40.92 27.97 36.21 27.00 139.09

19.19 31.20 58.93 41.89 16.39 44.20 69.01

30.92 26.50 61.88 23.94 27.44 13.09 94.61

10.42 32.77 49.54 49.81 17.29 33.03 48.35

35.49 8.70 64.35 30.71 56.20 9.69 37.65

36.84 25.90 82.49 50.00 28.94 32.45 66.36

25.03 29.80 38.54 87.50 20.11 37.38 72.48

33.59 37.63 39.53 68.99 25.35 34.91 87.09

33.74 21.69 21.77 27.99 26.34

18.02 21.49 31.62 22.36 71.24

22.27 18.11 32.63 22.68 90.38

26.10 31.50 30.31 26.52 50.86

20.89 27.36 46.16 46.01

29.44 21.33 56.61 38.04

24.47 30.88

29.39 30.04

40.71 25.91

18.52 18.54

27.80 25.51

19.49

Source: Data provided courtesy of David H. Holben, Ph.D.
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FIGURE 8.2.4 Selenium content of four meat types. VEN ¼ venison, SQU ¼ squirrel, RRB ¼
region-raised beef, and NRB ¼ nonregion-raised beef.
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3. Hypotheses.H0 : m1 ¼ m2 ¼ m3 ¼ m4 (On average the four meats have
the same selenium content.)

HA: Not all m’s are equal (At least one meat yields an average selenium
content different from the average selenium content of at least one
other meat.)

4. Test statistic. The test statistic is V:R: ¼ MSA=MSW .

5. Distribution of test statistic. If H0 is true and the assumptions are met,
the V.R. follows the F distribution with 4 � 1 ¼ 3 numerator degrees of
freedom and 144 � 4 ¼ 140 denominator degrees of freedom.

6. Decision rule. Suppose we let a ¼ :01. The critical value of F from
Appendix Table G is < 3:95. The decision rule, then, is reject H0 if the
computed V.R. statistic is equal to or greater than 3.95.

7. Calculation of test statistic. By Equation 8.2.2 we compute

SST ¼ 58009:05560

By Equation 8.2.4 we compute

SSA ¼ 21261:82886

SSW ¼ 58009:05560 � 21261:82886 ¼ 36747:22674

The results of our calculations are displayed in Table 8.2.4.

8. Statistical decision. Since our computed F of 27.00 is greater than 3.95
we reject H0.

9. Conclusion. Since we reject H0, we conclude that the alternative
hypothesis is true. That is, we conclude that the four meat types do
not all have the same average selenium content.

10. p value. Since 27:00 > 3:95; p < :01 for this test. &

A Word of Caution The completely randomized design is simple and, therefore,
widely used. It should be used, however, only when the units receiving the treatments are
homogeneous. If the experimental units are not homogeneous, the researcher should
consider an alternative design such as one of those to be discussed later in this chapter.

In our illustrative example the treatments are treatments in the usual sense of the
word. This is not always the case, however, as the term “treatment” as used in experimental
design is quite general. We might, for example, wish to study the response to the same

TABLE 8.2.4 ANOVA Table for Example 8.2.1

Source SS df MS F

Among samples 21261.82886 3 7087.27629 27.00

Within samples 36747.22674 140 262.48019

Total 58009.05560 143
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treatment (in the usual sense of the word) of several breeds of animals. We would, however,
refer to the breed of animal as the “treatment.”

We must also point out that, although the techniques of analysis of variance are more
often applied to data resulting from controlled experiments, the techniques also may be
used to analyze data collected by a survey, provided that the underlying assumptions are
reasonably well met.

Computer Analysis Figure 8.2.5 shows the computer procedure and output for
Example 8.2.1 provided by a one-way analysis of variance program found in the MINITAB
package. The data were entered into Columns 1 through 4. When you compare the ANOVA
table on this printout with the one given in Table 8.2.4, you see that the printout uses the
label “factor” instead of “among samples.” The different treatments are referred to on the
printout as levels. Thus level 1 ¼ treatment 1, level 2 ¼ treatment 2, and so on. The
printout gives the four sample means and standard deviations as well as the pooled

:dnammoc noisseS:xob golaiD

Stat ANOVA Oneway (Unstacked) MTB>AOVONEWAY C1-C4

Type C1-C4 in responses (in separate columns)
Click OK.

Output:

One-way ANOVA: NRB, RRB, SQU, VEN

Analysis of Variance for Selenium

Source DF SS MS F P
Meat Typ 3 21262 7087 27.00 0.000
Error 140 36747 262
Total 143 58009

Individual 95% CIs For Mean

Based on Pooled StDev
Level N Mean StDev -------+---------+--------+----------

)----*----(51.1350.2691BRN
RRB 53 29.08 10.38 (--*--)
SQU 30 43.25 19.51 (---*---)
VEN 42 25.88 8.03 (--*---)

-------+---------+--------+----------
Pooled StDeV = 16.20 30 45 60

FIGURE 8.2.5 MINITAB procedure and output for Example 8.2.1.
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standard deviation. This last quantity is equal to the square root of the error mean square
shown in the ANOVA table. Finally, the computer output gives graphic representations of
the 95% confidence intervals for the mean of each of the four populations represented by
the sample data.

Figure 8.2.6 contains a partial SAS® printout resulting from analysis of the data of
Example 8.2.1 through use of the SAS® statement PROC ANOVA. SAS® computes some
additional quantities as shown in the output. R-Square ¼ SSA=SST. This quantity tells us
what proportion of the total variability present in the observations is accounted for by
differences in response to the treatments. C:V: ¼ 100 (root MSE/selen mean). Root MSE is
the square root of MSW, and selen mean is the mean of all observations.

Note that the test statistic V.R. is labeled differently by different statistical
software programs. MINITAB, for example, uses F rather than V.R. SAS® uses the
label F Value.

A useful device for displaying important characteristics of a set of data analyzed by
one-way analysis of variance is a graph consisting of side-by-side boxplots. For each
sample a boxplot is constructed using the method described in Chapter 2. Figure 8.2.7
shows the side-by-side boxplots for Example 8.2.1. Note that in Figure 8.2.7 the variable of
interest is represented by the vertical axis rather than the horizontal axis.

Alternatives If the data available for analysis do not meet the assumptions for one-
way analysis of variance as discussed here, one may wish to consider the use of the
Kruskal-Wallis procedure, a nonparametric technique discussed in Chapter 13.

Testing for Significant Differences Between Individual Pairs of
Means When the analysis of variance leads to a rejection of the null hypothesis
of no difference among population means, the question naturally arises regarding just
which pairs of means are different. In fact, the desire, more often than not, is to carry
out a significance test on each and every pair of treatment means. For instance, in

The SAS System

Analysis of Variance Procedure

Dependent Variable: selen

Sum of 
Source DF Squares Mean Square F Value Pr > F
Model 3 21261.82886 7087.27629 27.00 <.0001
Error 140 36747.22674 262.48019
Corrected Total 143 58009.05560

R-Square Coeff Var Root MSE selen Mean
0.366526 45.70507 16.20124 35.44736

FIGURE 8.2.6 Partial SAS® printout for Example 8.2.1.
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Example 8.2.1, where there are four treatments, we may wish to know, after rejecting
H0 : m1 ¼ m2 ¼ m3 ¼ m4, which of the six possible individual hypotheses should be
rejected. The experimenter, however, must exercise caution in testing for significant
differences between individual means and must always make certain that the procedure
is valid. The critical issue in the procedure is the level of significance. Although the
probability, a, of rejecting a true null hypothesis for the test as a whole is made small,
the probability of rejecting at least one true hypothesis when several pairs of means are
tested is, as we have seen, greater than a. There are several multiple comparison
procedures commonly used in practice. Below we illustrate two popular procedures,
namely Tukey’s HSD test and Bonferroni’s method. The interested student is referred to
the books by Hsu (7) and Westfall et al. (8) for additional techniques.

Tukey’s HSD Test Over the years several procedures for making multiple compari-
sons have been suggested. A multiple comparison procedure developed by Tukey (9) is
frequently used for testing the null hypothesis that all possible pairs of treatment means are
equal when the samples are all of the same size. When this test is employed we select an
overall significance level of a. The probability is a, then, that one or more of the null
hypotheses is false.

Tukey’s test, which is usually referred to as the HSD (honestly significant difference)
test, makes use of a single value against which all differences are compared. This value,
called the HSD, is given by

HSD ¼ qa;k;N�k

ffiffiffiffiffiffiffiffiffiffi
MSE

n

r
(8.2.9)

where a is the chosen level of significance, k is the number of means in the experiment, N is
the total number of observations in the experiment, n is the number of observations in a
treatment, MSE is the error or within mean square from the ANOVA table, and q is obtained
by entering Appendix Table H with a, k, and N � k.

NRB

Meat type

S
el

en
iu

m
 (

mg
/1

00
 g

)

RRB SQU VEN

150

*

*

100

50

0

FIGURE 8.2.7 Side-by-side boxplots for Example 8.2.1.
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The statistic q, tabulated in Appendix Table H, is known as the studentized range
statistic. It is defined as the difference between the largest and smallest treatment means
from an ANOVA (that is, it is the range of the treatment means) divided by the error mean
square over n, the number of observations in a treatment. The studentized range is
discussed in detail by Winer (10).

All possible differences between pairs of means are computed, and any difference
that yields an absolute value that exceeds HSD is declared significant.

Tukey’s Test for Unequal Sample Sizes When the samples are not all the
same size, as is the case in Example 8.2.1, Tukey’s HSD test given by Equation 8.2.9 is
not applicable. Tukey himself (9) and Kramer (11), however, have extended the Tukey
procedure to the case where the sample sizes are different. Their procedure, which is
sometimes called the Tukey-Kramer method, consists of replacing MSE/n in Equation
8.2.9 with MSE=2ð Þ 1=ni þ 1=nj

� �
, where ni and nj are the sample sizes of the two groups

to be compared. If we designate the new quantity by HSD�, we have as the new
test criterion

HSD� ¼ qa;k;N�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

2

1

ni
þ 1

nj

� �s
(8.2.10)

Any absolute value of the difference between two sample means that exceeds HSD�

is declared significant.

Bonferroni’sMethod Another very commonly used multiple comparison test
is based on a method developed by C. E. Bonferroni. As with Tukey’s method, we
desire to maintain an overall significance level of a for the total of all pair-wise tests.
In the Bonferroni method, we simply divide the desired significance level by the
number of individual pairs that we are testing. That is, instead of testing at a
significance level of a, we test at a significance level of a=k, where k is the number
of paired comparisons. The sum of all a=k terms cannot, then, possibly exceed our
stated level of a. For example, if one has three samples, A, B, and C, then there are
k ¼ 3 pair-wise comparisons. These are mA ¼ mB;mA ¼ mC, and mB ¼ mC. If we
choose a significance level of a ¼ :05, then we would proceed with the comparisons
and use a Bonferroni-corrected significance level of a=3 ¼ :017. Therefore, our
p value must be no greater then :017 in order to reject the null hypothesis and
conclude that two means differ.

Most computer packages compute values using the Bonferroni method and
produce an output similar to the Tukey’s HSD or other multiple comparison
procedures. In general, these outputs report the actual corrected p value using the
Bonferroni method. Given the basic relationship that p ¼ a=k, then algebraically we
can multiply both sides of the equation by k to obtain a ¼ pk. In other words,
the total a is simply the sum of all of the pk values, and the actual corrected p value
is simply the calculated p value multiplied by the number of tests that were
performed.
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EXAMPLE 8.2.2

Let us illustrate the use of the HSD test with the data from Example 8.2.1.

Solution: The first step is to prepare a table of all possible (ordered) differences
between means. The results of this step for the present example are displayed
in Table 8.2.5.

Suppose we let a ¼ :05. Entering Table H with a ¼ :05, k ¼ 4, and N � k ¼ 140, we
find that q < 3:68. The actual value is q ¼ 3:667, which can be obtained from SAS®.
In Table 8.2.4 we have MSE ¼ 262:4802.

The hypotheses that can be tested, the value of HSD�, and the statistical decision for
each test are shown in Table 8.2.6.

SAS® uses Tukey’s procedure to test the hypothesis of no difference between
population means for all possible pair s of sample means. The output also contains

TABLE 8.2.5 Differences Between Sample

Means (Absolute Value) for Example 8.2.2

VEN RRB SQR NRB

VEN – 3.208 17.37 36.171

RRB – 14.163 32.963

SOU – 18.801

NRB –

TABLE 8.2.6 Multiple Comparison Tests Using Data of Example 8.2.1 and HSD�

Hypotheses HSO� Statistical Decision

H0: mVEN ¼ mRRB HSD� ¼ 3:677

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
262:4802

2

1

42
þ 1

53

� �s
¼ 8:68 Do not reject H0

since 3:208 < 8:68

H0: mVEN ¼ mSQU HSD� ¼ 3:677

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
262:4802

2

1

42
þ 1

30

� �s
¼ 10:04 Reject H0 since

17:37 > 10:04

H0: mVEN ¼ mNRB HSD� ¼ 3:677

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
262:4802

2

1

42
þ 1

19

� �s
¼ 11:61 Reject H0 since

36:171 > 11:61

H0: mRRB ¼ mSQU HSD� ¼ 3:677

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
262:4802

2

1

53
þ 1

30

� �s
¼ 9:60 Reject H0 since

14:163 > 9:60

H0: mRRB ¼ mNRB HSD� ¼ 3:677

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
262:4802

2

1

53
þ 1

19

� �s
¼ 11:23 Reject H0 since

32:963 > 11:23

H0: mSQU ¼ mNRB HSD� ¼ 3:677

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
262:4802

2

1

30
þ 1

19

� �s
¼ 12:32 Reject H0 since

18:801 > 12:32
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confidence intervals for the difference between all possible pairs of population means. This
SAS output for Example 8.2.1 is displayed in Figure 8.2.8.

One may also use SPSS to perform multiple comparisons by a variety of methods,
including Tukey’s. The SPSS outputs for Tukey’s HSD and Bonferroni’s method for the
data for Example 8.2.1 are shown in Figures 8.2.9 and 8.2.10, respectively. The outputs
contain an exhaustive comparison of sample means, along with the associated standard
errors, p values, and 95% confidence intervals. &

The SAS System

Analysis of Variance Procedure

Tukey’s Studentized Range (HSD) Test for selen

NOTE: This test controls the Type I experimentwise error rate.

50.0ahplA
041modeerF fo seergeD rorrE
2084.262erauqS naeM rorrE

Critical Value of Studentized Range 3.67719

Comparisons significant at the 0.05 level are indicated by ***.

Difference 
type Between Simultaneous 95% 

Comparison Means Confidence Limits

NRB - SQU 18.801 6.449 31.152 ***
NRB - RRB 32.963 21.699 44.228 ***
NRB - VEN 36.171 24.524 47.818 ***
SQU - NRB -18.801 -31.152 -6.449 ***
SQU - RRB 14.163 4.538 23.787 ***
SQU - VEN 17.370 7.300 27.440 ***
RRB - NRB -32.963 -44.228 -21.699 ***
RRB - SQU -14.163 -23.787 -4.538 ***
RRB - VEN 3.208 -5.495 11.910
VEN - NRB -36.171 -47.818 -24.524 ***
VEN - SQU -17.370 -27.440 -7.300 ***
VEN - RRB -3.208 -11.910 5.495

FIGURE 8.2.8 SAS® multiple comparisons for Example 8.2.1.
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Multiple Comparisons

Dependent Variable: Selenium
Tukey HSD

95% Confidence Interval Mean
Difference

Upper BoundLower BoundSig.Std. Error(I–J)(J) Meat_type(I) Meat_type

SQUVEN .0003.87283721017.370190* 7.30020793
RRB .7733.3469366283.2075427 5.49501609
NRB .0004.47931638236.170840*

27.44017302
11.91010145
47.81776286 24.52391634

27.440173027.30020793.0003.87283721017.370190*VENSQU
23.787370514.53792509.0013.70159372914.162648*RRB

NRB .0014.75016700718.800649* 31.15182638 6.44947187

.7733.3469366283.2075427VENRRB 11.910101455.49501609
SQU .0013.70159372914.162648* 23.78737051 4.53792509
NRB .0004.33211303332.963297* 44.22746845 21.69912540

47.8177628624.52391634.0004.47931638236.170840*VENNRB
31.151826386.44947187.0014.75016700718.800649*SQU
44.2274684521.69912540.0004.33211303332.963297*RRB

* The mean difference is significant at the .05 level.

FIGURE 8.2.9 SPSS output for Tukey’s HSD using data from Example 8.2.1.

Multiple Comparisons

Dependent Variable: Selenium
Bonferroni

95% Confidence IntervalMean
Difference

Upper BoundLower BoundSig.Std. Error(I–J)(J) Meat_type(I) Meat_type

RRBVEN 1.0003.346943.20754 5.749712.1648
SQU .0003.8728417.37019* 27.7349 7.0055
NRB .0004.4793236.17084* 48.1587 24.1830

1.0003.346943.20754VENRRB 12.16485.7497
SQU .0013.7015914.16265* 24.0691 4.2562
NRB .0004.3321132.96330* 44.5572 21.3694

27.73497.0055.0003.8728417.37019*VENSQU
24.06914.2562.0013.7015914.16265*RRB

NRB .0014.7501718.80065* 31.5134 6.0879

48.158724.1830.0004.4793236.17084*VENNRB
44.557221.3694.0004.3321132.96330*RRB
31.51346.0879.0014.7501718.80065*SQU

* The mean difference is significant at the .05 level.

FIGURE 8.2.10 SPSS output for Bonferroni’s method using data from Example 8.2.1.
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EXERCISES

In Exercise 8.2.1 to 8.2.7, go through the ten steps of analysis of variance hypothesis testing to see if
you can conclude that there is a difference among population means. Let a ¼ :05 for each test. Use
Tukey’s HSD procedure to test for significant differences among individual pairs of means
(if appropriate). Use the same a value for the F test. Construct a dot plot and side-by-side boxplots
of the data.

8.2.1. Researchers at Case Western Reserve University (A-2) wanted to develop and implement a
transducer, manageable in a clinical setting, for quantifying isometric moments produced at the
elbow joint by individuals with tetraplegia (paralysis or paresis of all four limbs). The apparatus,
called an elbow moment transducer (EMT), measures the force the elbow can exert when flexing. The
output variable is voltage. The machine was tested at four different elbow extension angles, 30, 60,
90, and 120 degrees, on a mock elbow consisting of two hinged aluminum beams. The data are shown
in the following table.

Elbow Angle (Degrees)

30 60 90 120

�0.003 1.094 0.000 –0.001 0.000 �0.007 0.558 0.003
0.050 1.061 0.053 0.010 0.006 0.012 0.529 0.062
0.272 1.040 0.269 0.028 0.026 �0.039 0.524 0.287
0.552 1.097 0.555 0.055 0.053 �0.080 0.555 0.555
1.116 1.080 1.103 0.105 0.108 �0.118 0.539 1.118
2.733 1.051 2.727 0.272 0.278 �0.291 0.536 2.763
0.000 1.094 �0.002 0.553 0.555 �0.602 0.557 0.006
0.056 1.075 0.052 0.840 0.834 �0.884 0.544 0.050
0.275 1.035 0.271 1.100 1.106 �1.176 0.539 0.277
0.556 1.096 0.550 1.647 1.650 �1.725 1.109 0.557
1.100 1.100 1.097 2.728 2.729 0.003 1.085 1.113
2.723 1.096 2.725 �0.001 0.005 0.003 1.070 2.759

�0.003 1.108 0.003 0.014 �0.023 �0.011 1.110 0.010
0.055 1.099 0.052 0.027 �0.037 �0.060 1.069 0.060
0.273 1.089 0.270 0.057 �0.046 �0.097 1.045 0.286
0.553 1.107 0.553 0.111 �0.134 �0.320 1.110 0.564
1.100 1.094 1.100 0.276 �0.297 �0.593 1.066 1.104
2.713 1.092 2.727 0.555 �0.589 �0.840 1.037 2.760
0.007 1.092 0.022 0.832 �0.876 �1.168 2.728 �0.003

�0.066 1.104 �0.075 1.099 �1.157 �1.760 2.694 �0.060
�0.258 1.121 �0.298 1.651 �1.755 0.004 2.663 �0.289
�0.581 1.106 �0.585 2.736 �2.862 0.566 2.724 �0.585
�1.162 1.135 �1.168 0.564 0.000 1.116 2.693 �1.180

0.008 1.143 0.017 0.556 0.245 2.762 2.670 0.000
�0.045 1.106 �0.052 0.555 0.497 0.563 2.720 �0.034
�0.274 1.135 �0.258 0.567 0.001 0.551 2.688 �0.295
�0.604 1.156 �0.548 0.559 0.248 0.551 2.660 �0.579
�1.143 1.112 �1.187 0.551 0.498 0.561 0.556 �1.165
�0.004 1.104 0.019 1.107 0.001 0.555 0.560 �0.019

(Continued)
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Elbow Angle (Degrees)

30 60 90 120

�0.050 1.107 �0.044 1.104 0.246 0.558 0.557 �0.056
�0.290 1.107 �0.292 1.102 0.491 0.551 0.551 �0.270
�0.607 1.104 �0.542 1.112 0.001 0.566 0.564 �0.579
�1.164 1.117 �1.189 1.103 0.262 0.560 0.555 �1.162

1.105 1.101 1.104 0.527 1.107 0.551
1.103 1.114 0.001 1.104 0.563

1.095 0.260 1.109 0.559
1.100 0.523 1.108 1.113
2.739 �0.005 1.106 1.114
2.721 0.261 1.102 1.101
2.687 0.523 1.111 1.113
2.732 2.696 1.102 1.113
2.702 2.664 1.107 1.097
2.660 2.722 2.735 1.116
2.743 2.686 2.733 1.112
2.687 2.661 2.659 1.098
2.656 0.548 2.727 2.732
2.733 2.739 0.542 2.722
2.731 2.742 0.556 2.734

2.728 2.747

Source: Data provided courtesy of S. A. Snyder, M.S.

8.2.2. Patients suffering from rheumatic diseases or osteoporosis often suffer critical losses in bone mineral
density (BMD). Alendronate is one medication prescribed to build or prevent further loss of BMD.
Holcomb and Rothenberg (A-3) looked at 96 women taking alendronate to determine if a difference
existed in the mean percent change in BMD among five different primary diagnosis classifications.
Group 1 patients were diagnosed with rheumatoid arthritis (RA). Group 2 patients were a mixed
collection of patients with diseases including lupus, Wegener’s granulomatosis and polyarteritis, and
other vasculitic diseases (LUPUS). Group 3 patients had polymyalgia rheumatica or temporal
arthritis (PMRTA). Group 4 patients had osteoarthritis (OA) and group 5 patients had osteoporosis
(O) with no other rheumatic diseases identified in the medical record. Changes in BMD are shown in
the following table.

Diagnosis

RA LUPUS PMRTA OA O

11.091 7.412 2.961 �3.669 11.146 2.937
24.414 5.559 0.293 �7.816 �0.838 15.968
10.025 4.761 8.394 4.563 4.082 5.349
�3.156 �3.527 2.832 �0.093 6.645 1.719

6.835 4.839 �1.369 �0.185 4.329 6.445
3.321 1.850 11.288 1.302 1.234 20.243
1.493 �3.933 3.997 5.299 �2.817 3.290

(Continued)
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Diagnosis

RA LUPUS PMRTA OA O

�1.864 9.669 7.260 10.734 3.544 8.992
5.386 4.659 5.546 1.399 4.160 6.120
3.868 1.137 0.497 1.160 25.655
6.209 7.521 0.592 �0.247

�5.640 0.073 3.950 5.372
3.514 �8.684 0.674 6.721

�2.308 �0.372 9.354 9.950
15.981 21.311 2.610 10.820
�9.646 10.831 5.682 7.280

5.188 3.351 6.605
�1.892 9.557 7.507
16.553 5.075

0.163
12.767

3.481
0.917

15.853

Source: Data provided courtesy of John P. Holcomb, Ph.D. and Ralph J. Rothenberg, M.D.

8.2.3. Ilich-Ernst et al. (A-4) investigated dietary intake of calcium among a cross section of 113 healthy
women ages 20–88. The researchers formed four age groupings as follows: Group A, 20.0–45.9
years; group B, 46.0–55.9 years; group C, 56.0–65.9 years; and group D, over 66 years. Calcium from
food intake was measured in mg/day. The data below are consistent with summary statistics given in
the paper.

Age Groups (Years) Age Groups (Years)

A B C D A B C D

1820 191 724 1652 1020 775
2588 1098 613 1309 805 1393
2670 644 918 1002 631 533
1022 136 949 966 641 734
1555 1605 877 788 760 485

222 1247 1368 472 449
1197 1529 1692 471 236
1249 1422 697 771 831
1520 445 849 869 698

489 990 1199 513 167
2575 489 429 731 824
1426 2408 798 1130 448
1846 1064 631 1034 991
1088 629 1016 1261 590

912 1025 42 994
1383 948 767 1781

(Continued)
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Age Groups (Years) Age Groups (Years)

A B C D A B C D

1483 1085 752 937
1723 775 804 1022

727 1307 1182 1073
1463 344 1243 948
1777 961 985 222
1129 239 1295 721

944 1676 375
1096 754 1187

8.2.4. Gold et al. (A-5) investigated the effectiveness on smoking cessation of a nicotine patch, bupropion
SR, or both, when co-administered with cognitive-behavioral therapy. Consecutive consenting
patients n ¼ 164ð Þ assigned themselves to one of three treatments according to personal preference:
nicotine patch NTP; n ¼ 13ð Þ, bupropion SR B; n ¼ 92ð Þ, and bupropion SR plus nicotine patch
BNTP; n ¼ 59ð Þ. At their first smoking cessation class, patients estimated the number of packs of

cigarettes they currently smoked per day and the numbers of years they smoked. The “pack years” is
the average number of packs the subject smoked per day multiplied by the number of years the subject
had smoked. The results are shown in the following table.

Pack Years

NTP B BNTP

15 8 60 90 8 80
17 10 60 90 15 80
18 15 60 90 25 82
20 20 60 95 25 86
20 22 60 96 25 87
20 24 60 98 26 90
30 25 60 98 30 90
37 26 66 99 34 90
43 27 66 100 35 90
48 29 67 100 36 90
60 30 68 100 40 95

100 30 68 100 45 99
100 35 70 100 45 100

35 70 100 45 102
39 70 105 45 105
40 75 110 48 105
40 75 110 48 105
40 75 120 49 111
40 75 120 52 113
40 76 123 60 120
40 80 125 60 120
45 80 125 60 125
45 80 126 64 125

(Continued)
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Pack Years

NTP B BNTP

45 80 130 64 129
50 80 130 70 130
51 80 132 70 133
52 80 132 70 135
55 84 142 75 140
58 84 157 75 154
60 84 180 76
60 90

Source: Data provided courtesy of Paul B. Gold, Ph.D.

8.2.5. In a study by Wang et al. (A-6), researchers examined bone strength. They collected 10 cadaveric
femurs from subjects in three age groups: young (19–49 years), middle-aged (50–69 years), and
elderly (70 years or older) [Note: one value was missing in the middle-aged group]. One of the
outcome measures (W) was the force in Newtons required to fracture the bone. The following table
shows the data for the three age groups.

Young (Y) Middle-aged (MA) Elderly (E)

193.6 125.4 59.0
137.5 126.5 87.2
122.0 115.9 84.4
145.4 98.8 78.1
117.0 94.3 51.9
105.4 99.9 57.1

99.9 83.3 54.7
74.0 72.8 78.6
74.4 83.5 53.7

112.8 96.0

Source: Data provided courtesy of Xiaodu Wang, Ph.D.

8.2.6. In a study of 90 patients on renal dialysis, Farhad Atassi (A-7) assessed oral home care practices. He
collected data from 30 subjects who were in (1) dialysis for less than 1 year, (2) dialysis for 1 to 3
years, and (3) dialysis for more than 3 years. The following table shows plaque index scores for these
subjects. A higher score indicates a greater amount of plaque.

Group 1 Group 2 Group 3

2.00 2.67 2.83 2.83 1.83 1.83
1.00 2.17 2.00 1.83 2.00 2.67
2.00 1.00 2.67 2.00 1.83 1.33
1.50 2.00 2.00 1.83 1.83 2.17
2.00 2.00 2.83 2.00 2.83 3.00
1.00 2.00 2.17 2.17 2.17 2.33

(Continued)
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Group 1 Group 2 Group 3

1.00 2.33 2.17 1.67 2.83 2.50
1.00 1.50 2.00 2.33 2.50 2.83
1.00 1.00 2.00 2.00 2.17 2.83
1.67 2.00 1.67 2.00 1.67 2.33
1.83 .83 2.33 2.17 2.17 2.33
2.17 .50 2.00 3.00 1.83 2.67
1.00 2.17 1.83 2.50 2.83 2.00
2.17 2.33 1.67 2.17 2.33 2.00
2.83 2.83 2.17 2.00 2.00 2.00

Source: Data provided courtesy of Farhad Atassi, DDS, MSC, FICOI.

8.2.7. Thrombocytopaenia is a condition of abnormally low platelets that often occurs during necrotizing
enterocolitis (NEC)—a serious illness in infants that can cause tissue damage to the intestines.
Ragazzi et al. (A-8) investigated differences in the log10 of platelet counts in 178 infants with NEC.
Patients were grouped into four categories of NEC status. Group 0 referred to infants with no
gangrene, group 1 referred to subjects in whom gangrene was limited to a single intestinal segment,
group 2 referred to patients with two or more intestinal segments of gangrene, and group 3 referred to
patients with the majority of small and large bowel involved. The following table gives the log10

platelet counts for these subjects.

Gangrene Grouping

0 1 2 3

1.97 2.33 2.48 1.38 2.45 1.87 2.37 1.77
0.85 2.60 2.23 1.86 2.60 1.90 1.75 1.68
1.79 1.88 2.51 2.26 1.83 2.43 2.57 1.46
2.30 2.33 2.38 1.99 2.47 1.32 1.51 1.53
1.71 2.48 2.31 1.32 1.92 2.06 1.08 1.36
2.66 2.15 2.08 2.11 2.51 1.04 2.36 1.65
2.49 1.41 2.49 2.54 1.79 1.99 1.58 2.12
2.37 2.03 2.21 2.06 2.17 1.52 1.83 1.73
1.81 2.59 2.45 2.41 2.18 1.99 2.55 1.91
2.51 2.23 1.96 2.23 2.53 2.52 1.80 1.57
2.38 1.61 2.29 2.00 1.98 1.93 2.44 2.27
2.58 1.86 2.54 2.74 1.93 2.29 2.81 1.00
2.58 2.33 2.23 2.00 2.42 1.75 2.17 1.81
2.84 2.34 2.78 2.51 0.79 2.16 2.72 2.27
2.55 1.38 2.36 2.08 1.38 1.81 2.44 2.43
1.90 2.52 1.89 2.46 1.98 1.74
2.28 2.35 2.26 1.66 1.57 1.60
2.33 2.63 1.79 2.51 2.05 2.08
1.77 2.03 1.87 1.76 2.30 2.34
1.83 1.08 2.51 1.72 1.36 1.89
1.67 2.40 2.29 2.57 2.48 1.75
2.67 1.77 2.38 2.30 1.40 1.69

(Continued)
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Gangrene Grouping

0 1 2 3

1.80 0.70 1.75 2.49
2.16 2.67 1.75
2.17 2.37 1.86
2.12 1.46 1.26
2.27 1.91 2.36

Source: Data provided courtesy of Simon Eaton, M.D.

8.2.8. The objective of a study by Romita et al. (A-9) was to determine whether there is a different response
to different calcium channel blockers. Two hundred and fifty patients with mild-to-
moderate hypertension were randomly assigned to 4 weeks of treatment with once-daily doses
of (1) lercanidipine, (2) felodipine, or (3) nifedipine. Prior to treatment and at the end of 4 weeks, each
of the subjects had his or her systolic blood pressure measured. Researchers then calculated the
change in systolic blood pressure. What is the treatment variable in this study? The response variable?
What extraneous variables can you think of whose effects would be included in the error term? What
are the “values” of the treatment variable? Construct an analysis of variance table in which you
specify for this study the sources of variation and the degrees of freedom.

8.2.9. Kosmiski et al. (A-10) conducted a study to examine body fat distributions of men infected and not
infected with HIV, taking and not taking protease inhibitors (PI), and having been diagnosed and not
diagnosed with lipodystrophy. Lipodystrophy is a syndrome associated with HIV/PI treatment that
remains controversial. Generally, it refers to fat accumulation in the abdomen or viscera accompanied
by insulin resistance, glucose intolerance, and dyslipidemia. In the study, 14 subjects were taking
protease inhibitors and were diagnosed with lipodystrophy, 12 were taking protease inhibitors, but
were not diagnosed with lipodystrophy, five were HIV positive, not taking protease inhibitors, nor
had diagnosed lypodystrophy, and 43 subjects were HIV negative and not diagnosed with lipodys-
trophy. Each of the subjects underwent body composition and fat distribution analyses by dual-energy
X-ray absorptiometry and computed tomography. Researchers were able to then examine the percent
of body fat in the trunk. What is the treatment variable? The response variable? What are the “values”
of the treatment variable? Who are the subjects? What extraneous variables can you think of whose
effects would be included in the error term? What was the purpose of including HIV-negative men in
the study? Construct an ANOVA table in which you specify the sources of variation and the degrees of
freedom for each. The authors reported a computed V.R. of 11.79. What is the p value for the test?

8.3 THE RANDOMIZED COMPLETE
BLOCKDESIGN

The randomized complete block design was developed about 1925 by R. A. Fisher, who was
seeking methods of improving agricultural field experiments. The randomized complete
block design is a design in which the units (called experimental units) to which the
treatments are applied are subdivided into homogeneous groups called blocks, so that
the number of experimental units in a block is equal to the number (or some multiple of the
number) of treatments being studied. The treatments are then assigned at random to the
experimental units within each block. It should be emphasized that each treatment appears
in every block, and each block receives every treatment.
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Objective The objective in using the randomized complete block design is to isolate
and remove from the error term the variation attributable to the blocks, while assuring that
treatment means will be free of block effects. The effectiveness of the design depends on the
ability to achieve homogeneous blocks of experimental units. The ability to form homoge-
neous blocks depends on the researcher’s knowledge of the experimental material. When
blocking is used effectively, the error mean square in the ANOVA table will be reduced, the
V.R. will be increased, and the chance of rejecting the null hypothesis will be improved.

In animal experiments, the breed of animal may be used as a blocking factor. Litters
may also be used as blocks, in which case an animal from each litter receives a treatment. In
experiments involving human beings, if it is desired that differences resulting from age be
eliminated, then subjects may be grouped according to age so that one person of each age
receives each treatment. The randomized complete block design also may be employed
effectively when an experiment must be carried out in more than one laboratory (block) or
when several days (blocks) are required for completion.

The random allocation of treatments to subjects is restricted in the randomized
complete block design. That is, each treatment must be represented an equal number of
times (one or more times) within each blocking unit. In practice this is generally
accomplished by assigning a random permutation of the order of treatments to subjects
within each block. For example, if there are four treatments representing three drugs and a
placebo (drug A, drug B, drug C, and placebo [P]), then there are 4! ¼ 24 possible
permutations of the four treatments: (A, B, C, P) or (A, C, B, P) or (C, A, P, B), and so on.
One permutation is then randomly assigned to each block.

Advantages One of the advantages of the randomized complete block design is that
it is easily understood. Furthermore, certain complications that may arise in the course of
an experiment are easily handled when this design is employed.

It is instructive here to point out that the paired comparisons analysis presented in
Chapter 7 is a special case of the randomized complete block design. Example 7.4.1, for
example, may be treated as a randomized complete block design in which the two points in
time (Pre-op and Post-op) are the treatments and the individuals on whom the measure-
ments were taken are the blocks.

Data Display In general, the data from an experiment utilizing the randomized
complete block design may be displayed in a table such as Table 8.3.1. The following new
notation in this table should be observed:

total of the ith block ¼ Ti: ¼
Xk
j¼1

xij

mean of the ith block ¼ �xi: ¼

Xk
j¼1

xij

k
¼ Ti:

k

grand total ¼ T :: ¼
Xk
j¼1

T �j ¼
Xn
i¼1

Ti�
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indicating that the grand total may be obtained either by adding row totals or by adding
column totals.

Two-Way ANOVA The technique for analyzing the data from a randomized
complete block design is called two-way analysis of variance since an observation is
categorized on the basis of two criteria—the block to which it belongs as well as the
treatment group to which it belongs.

The steps for hypothesis testing when the randomized complete block design is used
are as follows:

1. Data. After identifying the treatments, the blocks, and the experimental units, the
data, for convenience, may be displayed as in Table 8.3.1.

2. Assumptions. The model for the randomized complete block design and its
underlying assumptions are as follows:

The Model

xij ¼ mþ bi þ tj þ eij

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; k
(8.3.1)

In this model

xij is a typical value from the overall population.

m is an unknown constant.

bi represents a block effect reflecting the fact that the experimental unit fell in the ith
block.

tj represents a treatment effect, reflecting the fact that the experimental unit received
the jth treatment.

eij is a residual component representing all sources of variation other than treatments
and blocks.

TABLE 8.3.1 Table of Sample Values for the Randomized

Complete Block Design

Treatments

Blocks 1 2 3 . . . k Total Mean

1 x11 x12 x13 . . . x1k T 1: �x1:

2 x21 x22 x23 . . . x2k T 2: �x2:

3 x31 x32 x33 . . . x3k T 3: �x3:

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

n xn1 xn2 xn3 . . . xnk Tn� �xn�

Total T :1 T :2 T :3 . . . T �k T ::

Mean �x :1 �x :2 �x :3 . . . �x �k �x ::
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Assumptions of the Model

(a) Each xij that is observed constitutes a random independent sample of size 1 from one
of the kn populations represented.

(b) Each of these kn populations is normally distributed with mean mij and the same
variance s2. This implies that the eij are independently and normally distributed with
mean 0 and variance s2.

(c) The block and treatment effects are additive. This assumption may be interpreted to
mean that there is no interaction between treatments and blocks. In other words, a
particular block-treatment combination does not produce an effect that is greater or
less than the sum of their individual effects. It can be shown that when this
assumption is met,

Xk
j¼1

tj ¼
Xn
i¼1

bi ¼ 0

The consequences of a violation of this assumption are misleading results. One need
not become concerned with the violation of the additivity assumption unless the
largest mean is more than 50 percent greater than the smallest.

When these assumptions hold true, the tj and bi are a set of fixed constants, and we have a
situation that fits the fixed-effects model.

3. Hypotheses. We may test

H0 : tj ¼ 0; j ¼ 1; 2; . . . ; k

against the alternative

HA : not all tj ¼ 0

A hypothesis test regarding block effects is not usually carried out under the
assumptions of the fixed-effects model for two reasons. First, the primary interest is in
treatment effects, the usual purpose of the blocks being to provide a means of eliminating
an extraneous source of variation. Second, although the experimental units are randomly
assigned to the treatments, the blocks are obtained in a nonrandom manner.

4. Test statistic. The test statistic is V.R.

5. Distribution of test statistic. When H0 is true and the assumptions are met, V.R.
follows an F distribution.

6. Decision rule. Reject the null hypothesis if the computed value of the test statistic
V.R. is equal to or greater than the critical value of F.

7. Calculation of test statistic. It can be shown that the total sum of squares for the
randomized complete block design can be partitioned into three components, one
each attributable to blocks (SSBl), treatments (SSTr), and error (SSE). That is,

SST ¼ SSBlþ SSTr þ SSE (8.3.2)
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The formulas for the quantities in Equation 8.3.2 are as follows:

SST ¼
Xk
j¼1

Xn
i¼1

xij � �x::
� �2

(8.3.3)

SSBl ¼
Xk
j¼1

Xn
i¼1

�xi� � �x::ð Þ2 (8.3.4)

SSTr ¼
Xk
j¼1

Xn
i¼1

�x�j � �x::
� �2

(8.3.5)

SSE ¼ SST � SSBl� SSTr (8.3.6)

The appropriate degrees of freedom for each component of Equation 8.3.2 are

total blocks treatments residual errorð Þ
kn� 1 ¼ n� 1ð Þ þ k � 1ð Þ þ n� 1ð Þ k � 1ð Þ

The residual degrees of freedom, like the residual sum of squares, may be obtained
by subtraction as follows:

kn� 1ð Þ � n� 1ð Þ � k � 1ð Þ ¼ kn� 1 � nþ 1 � k þ 1
¼ n k � 1ð Þ � 1 k � 1ð Þ ¼ n� 1ð Þ k � 1ð Þ

The ANOVA Table The results of the calculations for the randomized complete
block design may be displayed in an ANOVA table such as Table 8.3.2.

8. Statistical decision. It can be shown that when the fixed-effects model applies and
the null hypothesis of no treatment effects all ti ¼ 0ð Þ is true, both the error, or
residual, mean square and the treatments mean square are estimates of the common
variance s2. When the null hypothesis is true, therefore, the quantity

MSTr=MSE

is distributed as F with k � 1 numerator degrees of freedom and n� 1ð Þ � k � 1ð Þ
denominator degrees of freedom. The computed variance ratio, therefore, is com-
pared with the critical value of F.

TABLE 8.3.2 ANOVA Table for the Randomized Complete Block Design

Source SS d.f. MS V.R.

Treatments SSTr k � 1ð Þ MSTr ¼ SSTr= k � 1ð Þ MSTr/MSE

Blocks SSBl n � 1ð Þ MSBl ¼ SSBl= n � 1ð Þ
Residual SSE n � 1ð Þ k � 1ð Þ MSE ¼ SSE= n � 1ð Þ k � 1ð Þ

Total SST kn � 1
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9. Conclusion. If we reject H0, we conclude that the alternative hypothesis is true. If
we fail to reject H0, we conclude that H0 may be true.

10. p value.

The following example illustrates the use of the randomized complete block
design.

EXAMPLE 8.3.1

A physical therapist wished to compare three methods for teaching patients to use a certain
prosthetic device. He felt that the rate of learning would be different for patients of different
ages and wished to design an experiment in which the influence of age could be taken into
account.

Solution: The randomized complete block design is the appropriate design for this
physical therapist.

1. Data. Three patients in each of five age groups were selected to
participate in the experiment, and one patient in each age group was
randomly assigned to each of the teaching methods. The methods of
instruction constitute our three treatments, and the five age groups are
the blocks. The data shown in Table 8.3.3 were obtained.

2. Assumptions. We assume that each of the 15 observations constitutes a
simple random sample of size 1 from one of the 15 populations defined
by a block-treatment combination. For example, we assume that the
number 7 in the table constitute s a randomly selected response from a
population of responses that would result if a population of subjects
under the age of 20 received teaching method A. We assume that the
responses in the 15 represented populations are normally distributed
with equal variances.

TABLE 8.3.3 Time (in Days) Required to Learn the Use

of a Certain Prosthetic Device

Teaching Method

Age Group A B C Total Mean

Under 20 7 9 10 26 8.67

20 to 29 8 9 10 27 9.00

30 to 39 9 9 12 30 10.00

40 to 49 10 9 12 31 10.33

50 and over 11 12 14 37 12.33

Total 45 48 58 151

Mean 9.0 9.6 11.6 10.07
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3. Hypotheses.

H0 : tj ¼ 0 j ¼ 1; 2; 3
HA : not all tj ¼ 0

4. Test statistic. The test statistic is V:R: ¼ MSTr=MSE.

5. Distribution of test statistic. When H0 is true and the assumptions are
met, V.R. follows an F distribution with 2 and 8 degrees of freedom.

6. Decision rule. Let a ¼ :05. Reject the null hypothesis if the computed
V.R. is equal to or greater than the critical F, which we find in Appendix
Table G to be 4.46.

7. Calculation of test statistic. We compute the following sums of
squares:

SST ¼ ð7 � 10:07Þ2 þ ð8 � 10:07Þ2 þ � � � þ ð14 � 10:07Þ2 ¼ 46:9335

SSBI ¼ 3½ð8:67 � 10:07Þ2 þ ð9:00 � 10:07Þ2 þ � � � þ ð12:33 � 10:07Þ2� ¼ 24:855

SSTr ¼ 5½ð9 � 10:07Þ2 þ ð9:6 � 10:07Þ2 þ ð11:6 � 10:07Þ2� ¼ 18:5335

SSE ¼ 46:9335 � 24:855 � 18:5335 ¼ 3:545

The degrees of freedom are total ¼ ð3Þð5Þ � 1 ¼ 14, blocks ¼
5 � 1 ¼ 4, treatments ¼ 3 � 1 ¼ 2, and residual ¼ ð5 � 1Þð3 � 1Þ ¼
8. The results of the calculations may be displayed in an ANOVA table
as in Table 8.3.4

8. Statistical decision. Since our computed variance ratio, 20.91, is
greater than 4.46, we reject the null hypothesis of no treatment effects
on the assumption that such a large V.R. reflects the fact that the two
sample mean squares are not estimating the same quantity. The only
other explanation for this large V.R. would be that the null hypothesis is
really true, and we have just observed an unusual set of results. We rule
out the second explanation in favor of the first.

TABLE 8.3.4 ANOVA Table for Example 8.3.1

Source SS d.f. MS V.R.

Treatments 18.5335 2 9.26675 20.91

Blocks 24.855 4 6.21375

Residual 3.545 8 .443125

Total 46.9335 14
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9. Conclusion. We conclude that not all treatment effects are equal to zero,
or equivalently, that not all treatment means are equal.

10. p value. For this test p < :005. &

Computer Analysis Most statistical software packages will analyze data from a
randomized complete block design. We illustrate the input and output for MINITAB. We
use the data from the experiment to set up a MINITAB worksheet consisting of three
columns. Column 1 contains the observations, Column 2 contains numbers that identify the
block to which each observation belongs, and Column 3 contains numbers that identify the
treatment to which each observation belongs. Figure 8.3.1 shows the MINITAB worksheet
for Example 8.3.1. Figure 8.3.2 contains the MINITAB dialog box that initiates the analysis
and the resulting ANOVA table.

The ANOVA table from the SAS® output for the analysis of Example 8.3.1 is
shown in Figure 8.3.3 . Note that in this output the model SS is equal to the sum of SSBl
and SSTr.

Alternatives When the data available for analysis do not meet the assumptions of
the randomized complete block design as discussed here, the Friedman procedure
discussed in Chapter 13 may prove to be a suitable nonparametric alternative.

ROW C1 C2 C3

1171

2192

3 10 1 3

1284

2295

6 10 2 3

1397

2398

9 12 3 3

10 10 4 1

24911

12 12 4 3

13 11 5 1

14 12 5 2

15 14 5 3

FIGURE 8.3.1 MINITAB worksheet for the data in Figure 8.3.2.
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EXERCISES

For Exercise 8.3.1 to 8.3.5 perform the ten-step hypothesis testing procedure for analysis of variance.

8.3.1. The objective of a study by Brooks et al. (A-11) was to evaluate the efficacy of using a virtual
kitchen for vocational training of people with learning disabilities. Twenty-four students participated

:dnammoc noisseS:xob golaiD

Stat ANOVA Twoway MTB > TWOWAY C1 C2 C3;
SUBC > MEANS C2 C3.

Type C1 in Response. Type C2 in Row factor and
check Display means. Type C3 in Column factor and
check Display means. Click OK.

Output:

Two-Way ANOVA: C1 versus C2, C3

Analysis of Variance for C1
Source DF SS MS F P
C2 4 24.933 6.233 14.38 0.001
C3 2 18.533 9.267 21.38 0.001
Error 8 3.467 0.433
Total 14 46.933

Individual 95% CI
C2 Mean ---+---------+----------+---------+--
1 8.67 (-----*-----)
2 9.00 (-----*-----)

-----(00.013 *-----)
-----(33.014 *-----)

-----(33.215 *-----)
---+---------+----------+---------+--
9.00 10.50 12.00 13.50

Individual 95% CI
C3 Mean ---+---------+----------+---------+--
1 9.00 (-----*-----)
2 9.60 (-----*-----)

----(06.113 *----)
---+---------+----------+---------+--
9.00 10.00 11.00 12.00

FIGURE8.3.2 MINITAB dialog box and output for two-way analysis of variance, Example 8.3.1.
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in the study. Each participant performed four food preparation tasks and they were scored on the
quality of the preparation. Then each participant received regular vocational training in food
preparation (real training), virtual training using a TV and computer screen of a typical kitchen,
workbook training with specialized reading materials, and no training (to serve as a control). After
each of these trainings, the subjects were tested on food preparation. Improvement scores for each of
the four training methods are shown in the following table.

Subject
No.

Real
Training

Virtual
Training

Workbook
Training

No
Training

1 2 10 2 �4
2 4 3 2 1
3 4 13 0 1
4 6 11 2 1
5 5 13 5 1
6 2 0 1 4
7 10 17 2 6
8 5 5 2 2
9 10 4 5 2

10 3 6 9 3
11 11 9 8 7
12 10 9 6 10
13 5 8 4 1

The SAS System

Analysis of Variance Procedure

Dependent Variable: DAYS

Source DF Sum of Squares Mean Square F Value Pr > F

4000.027.6144444442.776666664.346ledoM

33333334.076666664.38rorrE

Corrected Total 14 46.93333333

R-Square C.V. Root MSE DAYS Mean

0.926136 6.539211 0.65828059 10.06666667

Source DF Anova SS Mean Square F Value Pr > F

6000.083.1276666662.933333335.812PUORG
0100.083.4133333332.633333339.424EGA

FIGURE 8.3.3 Partial SAS® output for analysis of Example 8.3.1.

(Continued)
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Subject
No.

Real
Training

Virtual
Training

Workbook
Training

No
Training

14 8 11 1 1
15 4 8 5 2
16 11 8 10 2
17 6 11 1 3
18 2 5 1 2
19 3 1 0 �3
20 7 5 0 �6
21 7 10 4 4
22 8 7 �2 8
23 4 9 3 0
24 9 6 3 5

Source: Data provided courtesy of B. M. Brooks, Ph.D.

After eliminating subject effects, can we conclude that the improvement scores differ among methods
of training? Let a ¼ :05.

8.3.2. McConville et al. (A-12) report the effects of chewing one piece of nicotine gum (containing 2 mg
nicotine) on tic frequency in patients whose Tourette’s disorder was inadequately controlled by
haloperidol. The following are the tic frequencies under four conditions:

Number of Tics During 30-Minute Period

After End of Chewing

Patient Baseline
Gum

Chewing
0–30

Minutes
30–60

Minutes

1 249 108 93 59
2 1095 593 600 861
3 83 27 32 61
4 569 363 342 312
5 368 141 167 180
6 326 134 144 158
7 324 126 312 260
8 95 41 63 71
9 413 365 282 321

10 332 293 525 455

Source: Data provided courtesy of Brian J. McConville, M. Harold Fogelson,
Andrew B. Norman, William M. Klykylo, Pat Z. Manderscheid, Karen W.
Parker, and Paul R. Sanberg. “Nicotine Potentiation of Haloperidol in
Reducing Tic Frequency in Tourette’s Disorder,” American Journal of
Psychiatry, 148 (1991), 793–794. Copyright # 1991, American Psychiatric
Association.

After eliminating patient effects, can we conclude that the mean number of tics differs among the four
conditions? Let a ¼ :01.

8.3.3. A remotivation team in a psychiatric hospital conducted an experiment to compare five methods for
remotivating patients. Patients were grouped according to level of initial motivation. Patients in each
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group were randomly assigned to the five methods. At the end of the experimental period the patients
were evaluated by a team composed of a psychiatrist, a psychologist, a nurse, and a social worker,
none of whom was aware of the method to which patients had been assigned. The team assigned each
patient a composite score as a measure of his or her level of motivation. The results were as follows:

Level of Initial
Motivation

Remotivation Method

A B C D E

Nil 58 68 60 68 64
Very low 62 70 65 80 69
Low 67 78 68 81 70
Average 70 81 70 89 74

Do these data provide sufficient evidence to indicate a difference in mean scores among methods? Let
a ¼ :05.

8.3.4. The nursing supervisor in a local health department wished to study the influence of time of day on
length of home visits by the nursing staff. It was thought that individual differences among nurses
might be large, so the nurse was used as a blocking factor. The nursing supervisor collected the
following data:

Length of Home Visit by Time of Day

Nurse
Early

Morning
Late

Morning
Early

Afternoon
Late

Afternoon

A 27 28 30 23
B 31 30 27 20
C 35 38 34 30
D 20 18 20 14

Do these data provide sufficient evidence to indicate a difference in length of home visit among the
different times of day? Let a ¼ :05.

8.3.5. Four subjects participated in an experiment to compare three methods of relieving stress. Each
subject was placed in a stressful situation on three different occasions. Each time a different method
for reducing stress was used with the subject. The response variable is the amount of decrease in stress
level as measured before and after treatment application. The results were as follows:

Treatment

Subject A B C

1 16 26 22
2 16 20 23
3 17 21 22
4 28 29 36

Can we conclude from these data that the three methods differ in effectiveness? Let a ¼ :05.
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8.3.6. In a study by Valencia et al. (A-13), the effects of environmental temperature and humidity on
24-hour energy expenditure were measured using whole-body indirect calorimetry in eight normal-
weight young men who wore standardized light clothing and followed a controlled activity regimen.
Temperature effects were assessed by measurements at 20, 23, 26, and 30 degrees Celsius at ambient
humidity and at 20 and 30 degrees Celsius with high humidity. What is the blocking variable? The
treatment variable? How many blocks are there? How many treatments? Construct an ANOVA table
in which you specify the sources of variability and the degrees of freedom for each. What are the
experimental units? What extraneous variables can you think of whose effects would be included in
the error term?

8.3.7. Hodgson et al. (A-14) conducted a study in which they induced gastric dilatation in six
anesthetized dogs maintained with constant-dose isoflurane in oxygen. Cardiopulmonary mea-
surements prior to stomach distension (baseline) were compared with measurements taken
during .1, .5, 1.0, 1.5, 2.5, and 3.5 hours of stomach distension by analyzing the change from
baseline. After distending the stomach, cardiac index increased from 1.5 to 3.5 hours. Stroke
volume did not change. During inflation, increases were observed in systemic arterial, pulmonary
arterial, and right atrial pressure. Respiratory frequency was unchanged. PaO2 tended to decrease
during gastric dilatation. What are the experimental units? The blocks? Treatment variable?
Response variable(s)? Can you think of any extraneous variable whose effect would contribute to
the error term? Construct an ANOVA table for this study in which you identify the sources of
variability and specify the degrees of freedom.

8.4 THE REPEATEDMEASURES DESIGN

One of the most frequently used experimental designs in the health sciences field is the
repeated measures design.

DEFINITION

A repeated measures design is one in which measurements of the same
variable are made on each subject on two or more different occasions.

The different occasions during which measurements are taken may be either points in
time or different conditions such as different treatments.

When to Use Repeated Measures The usual motivation for using a
repeated measures design is a desire to control for variability among subjects. In
such a design each subject serves as its own control. When measurements are taken
on only two occasions, we have the paired comparisons design that we discussed in
Chapter 7. One of the most frequently encountered situations in which the repeated
measures design is used is the situation in which the investigator is concerned with
responses over time.

Advantages The major advantage of the repeated measures design is, as previously
mentioned, its ability to control for extraneous variation among subjects. An additional
advantage is the fact that fewer subjects are needed for the repeated measures design than
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for a design in which different subjects are used for each occasion on which measurements
are made. Suppose, for example, that we have four treatments (in the usual sense) or four
points in time on each of which we would like to have 10 measurements. If a different
sample of subjects is used for each of the four treatments or points in time, 40 subjects
would be required. If we are able to take measurements on the same subject for each
treatment or point in time—that is, if we can use a repeated measures design—only 10
subjects would be required. This can be a very attractive advantage if subjects are scarce or
expensive to recruit.

Disadvantages A major potential problem to be on the alert for is what is known as
the carry-over effect. When two or more treatments are being evaluated, the investigator
should make sure that a subject’s response to one treatment does not reflect a residual effect
from previous treatments. This problem can frequently be solved by allowing a sufficient
length of time between treatments.

Another possible problem is the position effect. A subject’s response to a treatment
experienced last in a sequence may be different from the response that would have occurred
if the treatment had been first in the sequence. In certain studies, such as those involving
physical participation on the part of the subjects, enthusiasm that is high at the beginning of
the study may give way to boredom toward the end. A way around this problem is to
randomize the sequence of treatments independently for each subject.

Single-Factor Repeated Measures Design The simplest repeated mea-
sures design is the one in which, in addition to the treatment variable, one additional
variable is considered. The reason for introducing this additional variable is to measure and
isolate its contribution to the total variability among the observations. We refer to this
additional variable as a factor.

DEFINITION

The repeated measures design in which one additional factor is introduced
into the experiment is called a single-factor repeated measures design.

We refer to the additional factor as subjects. In the single-factor repeated measures
design, each subject receives each of the treatments. The order in which the subjects are
exposed to the treatments, when possible, is random, and the randomization is carried out
independently for each subject.

Assumptions The following are the assumptions of the single-factor repeated
measures design that we consider in this text. A design in which these assumptions are met
is called a fixed-effects additive design.

1. The subjects under study constitute a simple random sample from a population of
similar subjects.

2. Each observation is an independent simple random sample of size 1 from each of kn
populations, where n is the number of subjects and k is the number of treatments to
which each subject is exposed.
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3. The kn populations have potentially different means, but they all have the same
variance.

4. The k treatments are fixed; that is, they are the only treatments about which we have
an interest in the current situation. We do not wish to make inferences to some larger
collection of treatments.

5. There is no interaction between treatments and subjects; that is, the treatment and
subject effects are additive.

Experimenters may find frequently that their data do not conform to the assumptions
of fixed treatments and/or additive treatment and subject effects. For such cases the
references at the end of this chapter may be consulted for guidance.

In addition to the assumptions just listed, it should be noted that in a repeated-
measures experiment there is a presumption that correlations should exist among the
repeated measures. That is, measurements at time 1 and 2 are likely correlated, as
are measurements at time 1 and 3, 2 and 3, and so on. This is expected because the
measurements are taken on the same individuals through time.

An underlying assumption of the repeated-measures ANOVA design is that all of
these correlations are the same, a condition referred to as compound symmetry. This
assumption, coupled with assumption 3 concerning equal variances, is referred to as
sphericity. Violations of the sphericity assumption can result in an inflated type I error.
Most computer programs provide a formal test for the sphericity assumption along with
alternative estimation methods if the sphericity assumption is violated.

The Model The model for the fixed-effects additive single-factor repeated measures
design is

xij ¼ mþ bi þ tj þ eij

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; k
(8.4.1)

The reader will recognize this model as the model for the randomized complete block
design discussed in Section 8.3. The subjects are the blocks. Consequently, the notation,
data display, and hypothesis testing procedure are the same as for the randomized complete
block design as presented earlier. The following is an example of a repeated measures
design.

EXAMPLE 8.4.1

Licciardone et al. (A-15) examined subjects with chronic, nonspecific low back pain. In
this study, 18 of the subjects completed a survey questionnaire assessing physical
functioning at baseline, and after 1, 3, and 6 months. Table 8.4.1 shows the data for
these subjects who received a sham treatment that appeared to be genuine osteopathic
manipulation. Higher values indicate better physical functioning. The goal of the experi-
ment was to determine if subjects would report improvement over time even though the
treatment they received would provide minimal improvement. We wish to know if there is a
difference in the mean survey values among the four points in time.
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Solution:

1. Data. See Table 8.4.1.

2. Assumptions. We assume that the assumptions for the fixed-effects,
additive single-factor repeated measures design are met.

3. Hypotheses.

H0: mB ¼ mM1 ¼ mM3 ¼ mM6

HA: not allm’s are equal

4. Test statistic. V:R: ¼ treatment MS=error MS.

5. Distribution of test statistic. F with 4 � 1 ¼ 3 numerator degrees of
freedom and 71 � 3 � 17 ¼ 51 denominator degrees of freedom.

6. Decision rule. Let a ¼ :05. The critical value of F is 2.80 (obtained
by interpolation). Reject H0 if computed V.R. is equal to or greater
than 2.80.

7. Calculation of test statistic. We use MINITAB to perform the
calculations. We first enter the measurements in Column 1, the row
(subject) codes in Column 2, the treatment (time period) codes in
Column 3, and proceed as shown in Figure 8.4.1.

TABLE 8.4.1 SF-36 Health Scores at Four Different

Points in Time

Subject Baseline Month 1 Month 3 Month 6

1 80 60 95 100

2 95 90 95 95

3 65 55 50 45

4 50 45 70 70

5 60 75 80 85

6 70 70 75 70

7 80 80 85 80

8 70 60 75 65

9 80 80 70 65

10 65 30 45 60

11 60 70 95 80

12 50 50 70 60

13 50 65 80 65

14 85 45 85 80

15 50 65 90 70

16 15 30 20 25

17 10 15 55 75

18 80 85 90 70

Source: Data provided courtesy of John C. Licciardone.
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8. Statistical decision. Since V:R: ¼ 5:50 is greater than 2.80, we are able
to reject the null hypothesis.

9. Conclusion. We conclude that there is a difference in the four
population means.

10. p value. Since 5.50 is greater than 4.98, the F value for a ¼ :005 and
df ¼ 40, the p value is less than .005.

Figure 8.4.2, shows the SAS® output for the analysis of Example 8.4.1 and Figure 8.4.3
shows the SPSS output for the same example. Note that SPSS provides four potential tests.
The first test is used under an assumption of sphericity and matches the outputs in Figures
8.4.1 and 8.4.2. The next three tests are modifications if the assumption of sphericity is
violated. Note that SPSS modifies the degrees of freedom for these three tests, which
changes the mean squares and the p values, but not the V. R. Note that the assumption of
sphericity was violated for these data, but that the decision rule did not change, since all of
the p values were less than a ¼ :05. &

Two-Factor Repeated Measures Design Repeated measures ANOVA is
not useful just for testing means among different observation times. The analyses are easily
expanded to include testing for differences among times for different treatment groups. As
an example, a clinic may wish to test a placebo treatment against a new medication
treatment. Researchers will randomly assign patients to one of the two treatment groups
and will obtain measurements through time for each subject. In the end they are interested

:dnammoc noisseS:xob golaiD

Stat ANOVA Twoway MTB > TWOWAY C1 C2 C3;
SUBC> MEANS C2 C3.

Type C1 in Response. Type C2 in Row factor and
Check Display means. Type C3 in Column factor and
Check Display means. Click OK.

Output:

Two-way ANOVA: C1 versus C2, C3

Analysis of Variance for C1
Source DF SS MS F P
C2 17 20238 1190 8.20 0.000
C3 3 2396 799 5.50 0.002
Error 51 7404 145
Total 71 30038

FIGURE 8.4.1 MINITAB procedure and output (ANOVA table) for Example 8.4.1.
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Tests of Within-Subjects Effects

Measure: MEASURE_1

Type III Sum Mean
.giSFerauqSfdserauqS foecruoS

factor 1 Sphericity Assumed 2395.833 3 798.611 5.501 .002
Greenhouse-Geisser 2395.833 2.216 1080.998 5.501 .006
Huynh-Feldt 2395.833 2.563 934.701 5.501 .004
Lower-bound 2395.833 1.000 2395.833 5.501 .031

Error (factor 1) Sphericity Assumed 7404.167 51 145.180
Greenhouse-Geisser 7404.167 37.677 196.515
Huynh-Feldt 7404.167 43.575 169.919
Lower-bound 7404.167 17.000 435.539

FIGURE 8.4.3 SPSS output for the analysis of Example 8.4.1.

The ANOVA Procedure

Dependent Variable: sf36

Source DF Sum of Squares Mean Square F Value Pr > F

1000.<97.776666.131133333.3362202ledoM

47971.54176661.404715rorrE

Corrected Total 71 30037.50000

R-Square Coeff Var Root MSE sf36 Mean

0.753503 18.18725 12.04906 66.25000

Source DF Anova SS Mean Square F Value Pr > F

1000.<02.881144.091100005.7320271 jbus

4200.005.511116.89733338.59323emit

FIGURE 8.4.2 SAS® output for analysis of Example 8.4.1.
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in knowing if there were differences between the two treatments on subjects that were
measured multiple times.

Assumptions The assumptions of the two-factor repeated measures design are the same
as the single-factor repeated measures design. However, it is not uncommon for there to be
interactions among the treatments in this design, a potential violation of Assumption 5,
above. Interaction effects can be interesting to examine, but are complex to calculate. For
this reason, and at the level of the intended audience using this text, we will assume that
interaction effects, when present, are mathematically handled using a statistical software
package that provides correct calculations for this issue.

The Model The model for the two-factor repeated measures design must represent the
fact that there are two factors, A and B, and they have a potential interaction. These
features, along with the block effect and error, must be accounted for in the model, which is
given by

xijk ¼ mþ rij þ ai þ bj þ ðabÞij þ eijk

i ¼ 1; 2; . . . ; a; j ¼ 1; 2; . . . ; b; k ¼ 1; 2; . . . ; n
(8.4.2)

In this model

xijk is a typical individual from the overall population

m an unknown constant

rij represents a block effect

aj represents the main effect of factor A

bk represents the main effect of factor B

ðabÞjk represents the interaction effect of factor A and factor B

eijk is a residual component representing all sources of variation other than treatments
and blocks.

This model is very similar to the two-factor ANOVA model presented in Section 8.5.

EXAMPLE 8.4.2

The Mid-Michigan Medical Center (A-16) examined 25 subjects with neck cancer and
measured as one of the outcome variables an oral health condition score. Patients were
randomly divided into two treatment groups. These were a placebo treatment (treatment 1)
and an aloe juice group (treatment 2). Cancer health was measured at baseline and at the
end of 2, 4, and 6 weeks of treatment. The goal was to discern if there was any change in
oral health condition over the course of the experiment and to see if there were any
differences between the two treatment conditions.

Solution:

1. Data. See Table 8.4.2.

2. Assumptions. We assume that the assumptions for the two-factor
repeated measures experiment are met.
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3. Hypotheses.

a. H0: ai ¼ 0 i ¼ 1; 2; . . . ; a

Ha: not allai ¼ 0

b. H0: bj ¼ 0 j ¼ 1; 2; . . . ; b

Ha: not all bj ¼ 0

c. H0: ðabÞij ¼ 0 i ¼ 1; 2; . . . ; a; j ¼ 1; 2; . . . ; b

Ha: not all ðabÞij ¼ 0

TABLE 8.4.2 Oral Health Condition Scores at Four Different Points in Time

Under Two Treatment Conditions

Treatment

Subject
1 ¼ placebo

TotalC1 TotalC2 TotalC3 TotalC42 ¼ aloe juice

1 1 6 6 6 7

2 1 9 6 10 9

3 1 7 9 17 19

4 1 6 7 9 3

5 1 6 7 16 13

6 1 6 6 6 11

7 1 6 11 11 10

8 1 6 11 15 15

9 1 6 9 6 8

10 1 6 4 8 7

11 1 7 8 11 11

12 1 6 6 9 6

13 1 8 8 9 10

14 1 7 16 9 10

15 2 6 10 11 9

16 2 4 6 8 7

17 2 6 11 11 14

18 2 6 7 6 6

19 2 12 11 12 9

20 2 5 7 13 12

21 2 6 7 7 7

22 2 8 11 16 16

23 2 5 7 7 7

24 2 6 8 16 16

25 2 7 8 10 8

Source: Mid-Michigan Medical Center, Midland, Michigan, 1999: A study of oral condition of cancer patients.
Availab le in the public domain at: http:// calcnet.mth.c mich.edu/org/ spss/Prj_can cer_data.h tm.
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4. Test statistic. The test statistic for each hypothesis set is V.R.

5. Distribution of test statistics. When H0 is true and the assumptions are
met, each of the test statistics is distributed as F. If all assumptions are
met for the within-subjects effects, we will have F with 4 � 1 ¼ 3
numerator degrees of freedom for the time factor, ð4 � 1Þð2 � 1Þ ¼ 3
numerator degrees of freedom for the interaction factor, and
ð4 � 1Þð25 � 2Þ ¼ 69 denominator degrees of freedom for both tests;
interpolation from Table G provides a critical F value of 2.74. Further, for
the between-subjects factor, we will have ð2 � 1Þ ¼ 1 numerator degrees
of freedom and 25 � 2 ¼ 23 denominator degrees of freedom; Table G
gives the critical F value to be 4.28. If we do not meet the assumptions,
specifically of sphericity, then the computer program will alter the degrees
of freedom and hence the critical value for comparisons.

6. Decision rule. Let a ¼ :05. Reject H0 if the computed p value is less
than a.

7. Calculation of test statistic. We use SPSS to perform the calculations.
We enter the data just as it is shown in Table 8.4.2, though we do not
need to enter the “Subject” number. The SPSS code and pertinent output
are shown in Figure 8.4.4.

8. Statistical decision. SPSS provides a formal test for sphericity called
“Mauchley’s Test of Sphericity”. Since we reject the null for this test
according to the output in Figure 8.4.2, we will use the “Greenhouse-
Geisser” test statistic. Since V.R. is greater than the critical value for
TotalC, we reject the null hypothesis for this variable. However, both the
critical values for the interaction effect and the between-subjects factor
are quite small and less than the necessary critical value, and we
therefore fail to reject these two null hypotheses.

9. Conclusion. We conclude that there is no statistical difference between
treatments, but that subjects did have a change in oral condition through
time regardless of the treatment they received.

10. p value. As seen in Figure 8.4.4, all p values are provided for each test.
To summarize: since p < :001, we reject the null hypothesis concerning
changes through time. Since p ¼ :931, we fail to reject the null
hypothesis concerning the interaction of time and treatment. Since
p ¼ :815, we fail to reject the null hypothesis concerning differences
between treatments.

Though the output provided in Figure 8.4.2 can be valuable for statistical interpretation, it
is often useful to examine plots to obtain a visual interpretation of the results. Figure 8.4.5
shows a plot of marginal means against time, with lines representing each of the treatments.
It is evident that changes in oral condition did occur through time, but that the two
treatments were very similar, as can be seen by the close proximity of the two curves.
Further, it is evident that interaction between time and treatment occurred, as evidenced by
the crossing of the plotted lines. &
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SPSS Code
GLM TOTALCIN T0TALCW2 TOTALCW4 T0TALCW6 BY TRT

/WSFACTOR¼TotatC 4 Polynomial

/METHOD¼SSTYPE(3)

/PLOT¼PROFILE(TRT�TotalCTot3lC�TRT)

/EMMEANS¼TABLES(TRT)

/EMMEANS¼TABLES(TotalC)

/EMMEANS¼TABLES(TRT�TotalC)

/PR!NT¼DESCRIPTIVE

/CRITERIA¼ALPHA(.O5)

/WSDESIGN¼TotalC

/DESIGN¼TRT.

Partial SPSS Outout

Mauchly’s Test of Sphericityb

Within Subjects Effect Mauchly’s W Approx. Chi-Square df Sig.

TotalC .487 15.620 5 .008

Tests of Within-Subjects Effects

Source
Type 111 Sum

of Squares df Mean Square F Sig.

TotalC Sphericity Assumed 233.391 3 77.797 13.926 .000

Greenhouse-Geisser 233.391 2.025 115.261 13.926 .000

Huynh-Feldt 233.391 2.318 100.682 13.926 .000

Lower-bound 233.391 1.000 233.391 13.926 .001

TotalC � TRT Sphericity Assumed 1.231 3 .410 .073 .974

Greenhouse-Geisser 1.231 2.025 .608 .073 .931

Huynh-Feldt 1.231 2.318 .531 .073 .949

Lower-bound 1.231 1.000 1.231 .073 .789

Error(TotalC) Sphericity Assumed 385.469 69 5.587

Greenhouse-Geisser 385.469 46.572 8.277

Huynh-Feldt 385.469 53.316 7.230

Lower-bound 385.469 23.000 16.760

Tests of Between-Subjects Effects

Source
Type III Sum

of Squares df Mean Square F Sig.

Intercept 7637.274 1 7637.274 382.508 .000

TRT 1.114 1 1.114 .056 .815

Error 459.226 23 19.966

FIGURE 8.4.4 SPSS code and partial output for Example 8.4.2.
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EXERCISES

For Exercises 8.4.1 to 8.4.3 perform the ten-step hypothesis testing procedure. Let a ¼ :05.

8.4.1. One of the purposes of a study by Liu et al. (A-17) was to determine the effects of MRZ 2/579 on
neurological deficit in Sprague-Dawley rats. In this study, 10 rats were measured at four time periods
following occlusion of the middle carotid artery and subsequent treatment with the uncompetitive N-
methly-D-aspartate antagonist MRZ 2/579, which previous studies had suggested provides neuro-
protective activity. The outcome variable was a neurological function variable measured on a scale of
0–12. A higher number indicates a higher degree of neurological impairment.

Rat 60 Minutes 24 Hours 48 Hours 72 Hours

1 11 9 8 4
2 11 7 5 3
3 11 10 8 6
4 11 4 3 2
5 11 10 9 9
6 11 6 5 5
7 11 6 6 6
8 11 7 6 5
9 11 7 5 5

10 11 9 7 7

Source: Data provided courtesy of Ludmila Belayev, M.D.

8.4.2. Starch et al. (A-18) wanted to show the effectiveness of a central four-quadrant sleeve and screw in
anterior cruciate ligament reconstruction. The researchers performed a series of reconstructions on
eight cadaveric knees. The following table shows the loads (in newtons) required to achieve different
graft laxities (mm) for seven specimens (data not available for one specimen) using five different load
weights. Graft laxity is the separation (in mm) of the femur and the tibia at the points of graft fixation.

11
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Time 2Time 1 Time 3 Time 4
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FIGURE 8.4.5 Excel plot of marginal means against total oral health score for the data of

Example 8.4.2.
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Is there sufficient evidence to conclude that different loads are required to produce different levels of
graft laxity? Let a ¼ :05.

Graft Laxity (mm)

Specimen 1 2 3 4 5

1 297.1 297.1 297.1 297.1 297.1
2 264.4 304.6 336.4 358.2 379.3
3 188.8 188.8 188.8 188.8 188.8
4 159.3 194.7 211.4 222.4 228.1
5 228.2 282.1 282.1 334.8 334.8
6 100.3 105.0 106.3 107.7 108.7
7 116.9 140.6 182.4 209.7 215.4

Source: David W. Starch, Jerry W. Alexander, Philip C. Noble, Suraj Reddy, and David M.
Lintner, “Multistranded Hamstring Tendon Graft Fixation with a Central Four-Quadrant
or a Standard Tibial Interference Screw for Anterior Cruciate Ligament Reconstruction,”
American Journal of Sports Medicine, 31 (2003), 338–344.

8.4.3. Holben et al. (A-19) designed a study to evaluate selenium intake in young women in the years of
puberty. The researchers studied a cohort of 16 women for three consecutive summers. One of the
outcome variables was the selenium intake per day. The researchers examined dietary journals of
the subjects over the course of 2 weeks and then computed the average daily selenium intake. The
following table shows the average daily selenium intake values inmg=dð Þ for the 16 women in years
1, 2, and 3 of the study.

Subject Year 1 Year 2 Year 3 Subject Year 1 Year 2 Year 3

1 112.51 121.28 94.99 9 95.05 93.89 73.26
2 106.20 121.14 145.69 10 112.65 100.47 145.69
3 102.00 121.14 130.37 11 103.74 121.14 123.97
4 103.74 90.21 135.91 12 103.74 121.14 135.91
5 103.17 121.14 145.69 13 112.67 104.66 136.87
6 112.65 98.11 145.69 14 106.20 121.14 126.42
7 106.20 121.14 136.43 15 103.74 121.14 136.43
8 83.57 102.87 144.35 16 106.20 100.47 135.91

Source: Data provided courtesy of David H. Holben, Ph.D. and John P. Holcomb, Ph.D.

8.4.4. Linke et al. (A-20) studied seven male mongrel dogs. They induced diabetes by injecting the animals
with alloxan monohydrate. The researchers measured the arterial glucose (mg/gl), arterial lactate
(mmol/L), arterial free fatty acid concentration, and arterial b-hydroxybutyric acid concentration
prior to the alloxan injection, and again in weeks 1, 2, 3, and 4 post-injection. What is the response
variable(s)? Comment on carryover effect and position effect as they may or may not be of concern in
this study. Construct an ANOVA table for this study in which you identify the sources of variability
and specify the degrees of freedom for each.

8.4.5. Werther et al. (A-21) examined the vascular endothelial growth factor (VEGF) concentration in blood
from colon cancer patients. Research suggests that inhibiting VEGF may disrupt tumor growth. The
researchers measured VEGF concentration (ng/L) for 10 subjects and found an upward trend in
VEGF concentrations during the clotting time measured at baseline, and hours 1 and 2. What is the
response variable? What is the treatment variable? Construct an ANOVA table for this study in which
you identify the sources of variability and specify the degrees of freedom for each.
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8.4.6. Yucha et al. (A-22) conducted a study to determine if nursing students who were assigned to a home
hospital (HH) experience differed from those traditionally placed (TP) in hospitals throughout their
nursing training. A small subset of data is provided in the table below. In this data set, hospital
placement is the between-subjects variable. Anxiety, as measured by Spielberger’s State Anxiety
Scale (where higher scores suggest higher levels of anxiety), is the within-subjects variable and is
provided at four points in time during nursing training. Is there evidence that anxiety level changed
through time for these nursing students? Is there a difference in anxiety between those in a home
hospital placement versus traditional placement? Is there significant interaction between placement
type and anxiety? Let a ¼ :05.

Subject Hospital Placement Anxiety 1 Anxiety 2 Anxiety 3 Anxiety 4

1 HH 51 33 12 31
2 HH 50 51 50 44
3 HH 65 58 45 37
4 HH 43 40 31 51
5 HH 67 56 50 42
6 HH 46 69 62 46
7 HH 29 28 28 43
8 HH 76 69 62 60
9 HH 66 39 47 38

10 HH 56 46 34 31
11 TP 44 48 51 59
12 TP 44 50 54 40
13 TP 54 49 35 46
14 TP 38 38 32 37
15 TP 25 27 25 24
16 TP 61 60 55 66
17 TP 42 51 42 34
18 TP 36 49 49 51
19 TP 52 63 50 64
20 TP 41 55 56 34

Source: Data provided Courtesy of Carolyn B. Yucha, RN, PhD, FAAN.

8.5 THE FACTORIAL EXPERIMENT

In the experimental designs that we have considered up to this point, we have been
interested in the effects of only one variable—the treatments. Frequently, however, we may
be interested in studying, simultaneously, the effects of two or more variables. We refer to
the variables in which we are interested as factors. The experiment in which two or more
factors are investigated simultaneously is called a factorial experiment.

The different designated categories of the factors are called levels. Suppose, for
example, that we are studying the effect on reaction time of three dosages of some drug.
The drug factor, then, is said to occur at three levels. Suppose the second factor of interest in
the study is age, and it is thought that two age groups, under 65 years and 65 years and
older, should be included. We then have two levels of the age factor. In general, we say that
factor A occurs at a levels and factor B occurs at b levels.
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In a factorial experiment we may study not only the effects of individual factors but
also, if the experiment is properly conducted, the interaction between factors. To illustrate
the concept of interaction let us consider the following example.

EXAMPLE 8.5.1

Suppose, in terms of effect on reaction time, that the true relationship between three dosage
levels of some drug and the age of human subjects taking the drug is known. Suppose
further that age occurs at two levels—“young” (under 65) and “old” (65 and older). If the
true relationship between the two factors is known, we will know, for the three dosage
levels, the mean effect on reaction time of subjects in the two age groups. Let us assume
that effect is measured in terms of reduction in reaction time to some stimulus. Suppose
these means are as shown in Table 8.5.1.

The following important features of the data in Table 8.5.1 should be noted.

1. For both levels of factor A the difference between the means for any two levels of
factor B is the same. That is, for both levels of factor A, the difference between means
for levels 1 and 2 is 5, for levels 2 and 3 the difference is 10, and for levels 1 and 3 the
difference is 15.

2. For all levels of factor B the difference between means for the two levels of factor A is
the same. In the present case the difference is 5 at all three levels of factor B.

3. A third characteristic is revealed when the data are plotted as in Figure 8.5.1. We note
that the curves corresponding to the different levels of a factor are all parallel.

When population data possess the three characteristics listed above, we say that there is no
interaction present.

TABLE 8.5.1 Mean Reduction in Reaction Time

(milliseconds) of Subjects in Two Age Groups at
Three Drug Dosage Levels

Factor B—Drug Dosage

Factor A—Age j ¼ 1 j ¼ 2 j ¼ 3

Young ði ¼ 1Þ m11 ¼ 5 m12 ¼ 10 m13 ¼ 20

Old ði ¼ 2Þ m21 ¼ 10 m22 ¼ 15 m23 ¼ 25
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FIGURE 8.5.1 Age and drug effects, no interaction present.
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The presence of interaction between two factors can affect the characteristics of the
data in a variety of ways depending on the nature of the interaction. We illustrate the effect
of one type of interaction by altering the data of Table 8.5.1 as shown in Table 8.5.2.

The important characteristics of the data in Table 8.5.2 are as follows.

1. The difference between means for any two levels of factor B is not the same for both
levels of factor A. We note in Table 8.5.2. for example, that the difference between
levels 1 and 2 of factor B is �5 for the young age group and þ5 for the old age group.

2. The difference between means for both levels of factor A is not the same at all levels
of factor B. The differences between factor A means are �10, 0, and 15 for levels 1, 2,
and 3, respectively, of factor B.

3. The factor level curves are not parallel, as shown in Figure 8.5.2.

When population data exhibit the characteristics illustrated in Table 8.5.2 and
Figure 8.5.2, we say that there is interaction between the two factors. We emphasize
that the kind of interaction illustrated by the present example is only one of many types of
interaction that may occur between two factors. &

In summary, then, we can say that there is interaction between two factors if a change
in one of the factors produces a change in response at one level of the other factor different
from that produced at other levels of this factor.

Advantages The advantages of the factorial experiment include the following.

1. The interaction of the factors may be studied.

2. There is a saving of time and effort.

TABLE 8.5.2 Data of Table 8.5.1 Altered to Show

the Effect of One Type of Interaction

Factor B—Drug Dosage

Factor A—Age j ¼ 1 j ¼ 2 j ¼ 3

Young ði ¼ 1Þ m11 ¼ 5 m12 ¼ 10 m13 ¼ 20

Old ði ¼ 2Þ m21 ¼ 15 m22 ¼ 10 m23 ¼ 5
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FIGURE 8.5.2 Age and drug effects, interaction present.
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In the factorial experiment all the observations may be used to study the effects of
each of the factors under investigation. The alternative, when two factors are being
investigated, would be to conduct two different experiments, one to study each of the two
factors. If this were done, some of the observations would yield information only on one of
the factors, and the remainder would yield information only on the other factor. To achieve
the level of accuracy of the factorial experiment, more experimental units would be needed
if the factors were studied through two experiments. It is seen, then, that 1 two-factor
experiment is more economical than 2 one-factor experiments.

3. Because the various factors are combined in one experiment, the results have a wider
range of application.

The Two-Factor Completely Randomized Design A factorial
arrangement may be studied with either of the designs that have been discussed. We
illustrate the analysis of a factorial experiment by means of a two-factor completely
randomized design.

1. Data. The results from a two-factor completely randomized design may be presented
in tabular form as shown in Table 8.5.3.

Here we have a levels of factor A, b levels of factor B, and n observations for
each combination of levels. Each of the ab combinations of levels of factor A with
levels of factor B is a treatment. In addition to the totals and means shown in Table
8.5.3, we note that the total and mean of the ijth cell are

Tij� ¼
Xn
k¼1

xijk and �xij� ¼ Tij�=n

TABLE 8.5.3 Table of Sample Data from a Two-Factor
Completely Randomized Experiment

Factor B

Factor A 1 2 . . . b Totals Means

1 x111 x121 . . . x1b1

..

. ..
. ..

. ..
.

T 1:: �x1::

x11n x12n . . . x1bn

2 x211 x221 . . . x2b1

..

. ..
. ..

. ..
.

T 2:: �x2::

x21n x22n . . . x2bn

..

. ..
. ..

. ..
. ..

. ..
. ..

.

a xa11 xa21 . . . xab1

..

. ..
. ..

. ..
.

Ta:: �xa::

xa1n xa2n . . . xabn

Totals T :1: T :2: . . . T :b: T ...

Means �x :1: �x :2: . . . �x :b: �x ...

8.5 THE FACTORIAL EXPERIMENT 361



3GC08 12/04/2012 14:43:29 Page 362

respectively. The subscript i runs from 1 to a and j runs from 1 to b. The total number
of observations is nab.

To show that Table 8.5.3 represents data from a completely randomized design,
we consider that each combination of factor levels is a treatment and that we have n
observations for each treatment. An alternative arrangement of the data would be
obtained by listing the observations of each treatment in a separate column. Table
8.5.3 may also be used to display data from a two-factor randomized block design if
we consider the first observation in each cell as belonging to block 1, the second
observation in each cell as belonging to block 2, and so on to the nth observation in
each cell, which may be considered as belonging to block n.

Note the similarity of the data display for the factorial experiment as shown in
Table 8.5.3 to the randomized complete block data display of Table 8.3.1. The
factorial experiment, in order that the experimenter may test for interaction, requires
at least two observations per cell, whereas the randomized complete block design
requires only one observation per cell. We use two-way analysis of variance to
analyze the data from a factorial experiment of the type presented here.

2. Assumptions. We assume a fixed-effects model and a two-factor completely
randomized design. For a discussion of other designs, consult the references at
the end of this chapter.

The Model The fixed-effects model for the two-factor completely randomized
design may be written as

xijk ¼ mþ ai þ bj þ abð Þij þ eijk

i ¼ 1; 2; . . . ; a; j ¼ 1; 2; . . . ; b; k ¼ 1; 2; . . . ; n
(8.5.1)

where xijk is a typical observation, m is a constant, ai represents an effect due to factor A, bj

represents an effect due to factor B, abð Þij represents an effect due to the interaction of
factors A and B, and eijk represents the experimental error.

Assumptions of the Model

a. The observations in each of the ab cells constitute a random independent sample of
size n drawn from the population defined by the particular combination of the levels
of the two factors.

b. Each of the ab populations is normally distributed.

c. The populations all have the same variance.

3. Hypotheses. The following hypotheses may be tested:

a. H0: ai ¼ 0 i ¼ 1; 2; . . . ; a
HA: notall ai ¼ 0

b. H0: bj ¼ 0 j ¼ 1; 2; . . . ; b
HA: not all bj ¼ 0

c. H0: abð Þij ¼ 0 i ¼ 1; 2; . . . ; a; j ¼ 1; 2; . . . ; b
HA: not all abð Þij ¼ 0
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Before collecting data, the researchers may decide to test only one of the possible
hypotheses. In this case they select the hypothesis they wish to test, choose a significance
level a, and proceed in the familiar, straightforward fashion. This procedure is free of the
complications that arise if the researchers wish to test all three hypotheses.

When all three hypotheses are tested, the situation is complicated by the fact that the
three tests are not independent in the probabilistic sense. If we let a be the significance level
associated with the test as a whole, and a0;a00; and a000 the significance levels associated
with hypotheses 1, 2, and 3, respectively, we find

a < 1 � 1 � a0ð Þ 1 � a00ð Þ 1 � a000ð Þ (8.5.2)

If a0 ¼ a00 ¼ a000¼ :05, then a < 1 � :95ð Þ3, or a < :143. This means that the
probability of rejecting one or more of the three hypotheses is less than .143 when a
significance level of .05 has been chosen for the hypotheses and all are true. To demonstrate
the hypothesis testing procedure for each case, we perform all three tests. The reader,
however, should be aware of the problem involved in interpreting the results.

4. Test statistic. The test statistic for each hypothesis set is V.R.

5. Distribution of test statistic. When H0 is true and the assumptions are met, each of
the test statistics is distributed as F.

6. Decision rule. Reject H0 if the computed value of the test statistic is equal to or
greater than the critical value of F.

7. Calculation of test statistic. By an adaptation of the procedure used in partitioning
the total sum of squares for the completely randomized design, it can be shown that
the total sum of squares under the present model can be partitioned into two parts as
follows:

Xa
i¼1

Xb
j¼1

Xn
k¼1

ðxijk � �x...Þ2 ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

�xij� � �x...
� �2 þ

Xa
i¼1

Xb
j¼1

Xn
k¼1

xijk � �xij�
� �2

(8.5.3)

or

SST ¼ SSTr þ SSE (8.5.4)

The sum of squares for treatments can be partitioned into three parts as follows:

Xa
i¼1

Xb
j¼1

Xn
k¼1

�xij � �x...
� �2 ¼

Xa
i¼1

Xb
j¼1

Xn
k¼1

�xi:: � �x...ð Þ2

þ
Xa
i¼1

Xb
j¼1

Xn
k¼1

�x:j: � �x...
� �2

þ
Xa
i¼1

Xb
j¼1

Xn
k¼1

�xij� � �xi:: � �x:j: þ �x...
� �2

(8.5.5)
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or

SSTr ¼ SSAþ SSBþ SSAB

TheANOVATable The results of the calculations for the fixed-effects model for a
two-factor completely randomized experiment may, in general, be displayed as shown in
Table 8.5.4.

8. Statistical decision. If the assumptions stated earlier hold true, and if each
hypothesis is true, it can be shown that each of the variance ratios shown in
Table 8.5.4 follows an F distribution with the indicated degrees of freedom. We
reject H0 if the computed V.R. values are equal to or greater than the
corresponding critical values as determined by the degrees of freedom and
the chosen significance levels.

9. Conclusion. If we reject H0, we conclude that HA is true. If we fail to reject H0, we
conclude that H0 may be true.

10. p value.

EXAMPLE 8.5.2

In a study of length of time spent on individual home visits by public health nurses, data
were reported on length of home visit, in minutes, by a sample of 80 nurses. A record was
made also of each nurse’s age and the type of illness of each patient visited. The researchers
wished to obtain from their investigation answers to the following questions:

1. Does the mean length of home visit differ among different age groups of nurses?

2. Does the type of patient affect the mean length of home visit?

3. Is there interaction between nurse’s age and type of patient?

Solution:

1. Data. The data on length of home visit that were obtained during the
study are shown in Table 8.5.5.

TABLE 8.5.4 Analysis of Variance Table for a Two-Factor Completely

Randomized Experiment (Fixed-Effects Model)

Source SS d.f. MS V.R.

A SSA a � 1 MSA ¼ SSA= a � 1ð Þ MSA=MSE

B SSB b � 1 MSB ¼ SSB= b � 1ð Þ MSB=MSE

AB SSAB a � 1ð Þ b � 1ð Þ MSAB ¼ SSAB= a � 1ð Þ b � 1ð Þ MSAB=MSE

Treatments SSTr ab � 1

Residual SSE ab n � 1ð Þ MSE ¼ SSE=ab n � 1ð Þ

Total SST abn � 1
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2. Assumptions. To analyze these data, we assume a fixed-effects model
and a two-factor completely randomized design.

3. Hypotheses. For our illustrative example we may test the following
hypotheses subject to the conditions mentioned above.

a. H0: a1 ¼ a2 ¼ a3 ¼ a4 ¼ 0 HA: not all ai ¼ 0
b. H0: b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0 HA: not all bj ¼ 0
c. H0: all ðabÞij ¼ 0 HA: not all ðabÞij ¼ 0

Let a ¼ :05

4. Test statistic. The test statistic for each hypothesis set is V.R.

5. Distribution of test statistic. When H0 is true and the assumptions are
met, each of the test statistics is distributed as F.

TABLE 8.5.5 Length of Home Visit in Minutes by Public Health Nurses by

Nurse’s Age Group and Type of Patient

Factor B (Nurse’s Age Group) Levels

Factor A
(Type of Patient)
Levels

1
(20 to 29)

2
(30 to 39)

3
(40 to 49)

4
(50 and Over)

1 (Cardiac) 20 25 24 28

25 30 28 31

22 29 24 26

27 28 25 29

21 30 30 32

2 (Cancer) 30 30 39 40

45 29 42 45

30 31 36 50

35 30 42 45

36 30 40 60

3 (C.V.A.) 31 32 41 42

30 35 45 50

40 30 40 40

35 40 40 55

30 30 35 45

4 (Tuberculosis) 20 23 24 29

21 25 25 30

20 28 30 28

20 30 26 27

19 31 23 30
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6. Decision rule. Reject H0 if the computed value of the test statistic is
equal to or greater than the critical value of F. The critical values of F for
testing the three hypotheses of our illustrative example are 2.76, 2.76,
and 2.04, respectively. Since denominator degrees of freedom equal to
64 are not shown in Appendix Table G, 60 was used as the denominator
degrees of freedom.

7. Calculation of test statistic. We use MINITAB to perform the
calculations. We put the measurements in Column 1, the row (factor
A) codes in Column 2, and the column (factor B) codes in Column 3. The
resulting column contents are shown in Table 8.5.6 . The MINITAB
output is shown in Figure 8.5.3.

TABLE 8.5.6 Column Contents for MINITAB Calculations,
Example 8.5.2

Row C1 C2 C3 Row C1 C2 C3

1 20 1 1 41 31 3 1

2 25 1 1 42 30 3 1

3 22 1 1 43 40 3 1

4 27 1 1 44 35 3 1

5 21 1 1 45 30 3 1

6 25 1 2 46 32 3 2

7 30 1 2 47 35 3 2

8 29 1 2 48 30 3 2

9 28 1 2 49 40 3 2

10 30 1 2 50 30 3 2

11 24 1 3 51 41 3 3

12 28 1 3 52 45 3 3

13 24 1 3 53 40 3 3

14 25 1 3 54 40 3 3

15 30 1 3 55 35 3 3

16 28 1 4 56 42 3 4

17 31 1 4 57 50 3 4

18 26 1 4 58 40 3 4

19 29 1 4 59 55 3 4

20 32 1 4 60 45 3 4

21 30 2 1 61 20 4 1

22 45 2 1 62 21 4 1

23 30 2 1 63 20 4 1

24 35 2 1 64 20 4 1

25 36 2 1 65 19 4 1

26 30 2 2 66 23 4 2

27 29 2 2 67 25 4 2

28 31 2 2 68 28 4 2

(Continued)

366 CHAPTER 8 ANALYSIS OF VARIANCE



3GC08 12/04/2012 14:43:34 Page 367

8. Statistical decision. The variance ratios are V:R: ðAÞ ¼ 997:5=
14:7 ¼ 67:86, V:R: ðBÞ ¼ 400:4=14:7 ¼ 27:24, and V:R: ðABÞ ¼
67:6= 14:7 ¼ 4:60. Since the three computed values of VR. are all
greater than the corresponding critical values, we reject all three null
hypotheses.

9. Conclusion. When H0: a1 ¼ a2 ¼ a3 ¼ a4 is rejected, we conclude
that there are differences among the levels of A, that is, differences in the
average amount of time spent in home visits with different types of
patients. Similarly, when H0: b1 ¼ b2 ¼ b3 ¼ b4 is rejected, we con-
clude that there are differences among the levels of B, or differences in
the average amount of time spent on home visits among the different
nurses when grouped by age. When H0: ðabÞij ¼ 0 is rejected, we
conclude that factors A and B interact; that is, different combinations
of levels of the two factors produce different effects.

10. p value. Since 67.86, 27.24, and 4.60 are all greater than the critical
values of F:995 for the appropriate degrees of freedom, the p value for
each of the tests is less than .005. When the hypothesis of no interaction
is rejected, interest in the levels of factors A and B usually become
subordinate to interest in the interaction effects. In other words, we are
more interested in learning what combinations of levels are significantly
different.

Figure 8.5.4 shows the SAS® output for the analysis of Example 8.5.2. &

We have treated only the case where the number of observations in each cell is the same.
When the number of observations per cell is not the same for every cell, the analysis
becomes more complex.

In such cases the design is said to be unbalanced. To analyze these designs with
MINITAB we use the general linear (GLM) procedure. Other software packages such as
SAS® also will accommodate unequal cell sizes.

Row C1 C2 C3 Row C1 C2 C3

29 30 2 2 69 30 4 2

30 30 2 2 70 31 4 2

31 39 2 3 71 24 4 3

32 42 2 3 72 25 4 3

33 36 2 3 73 30 4 3

34 42 2 3 74 26 4 3

35 40 2 3 75 23 4 3

36 40 2 4 76 29 4 4

37 45 2 4 77 30 4 4

38 50 2 4 78 28 4 4

39 45 2 4 79 27 4 4

40 60 2 4 80 30 4 4
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:dnammoc noisseS:xob golaiD

Stat ANOVA Twoway MTB > TWOWAY C1 C2 C3;
SUBC > MEANS C2 C3.

Type C1 in Response. Type C2 in Row factor and
check Display means. Type C3 in Column factor and
check Display means. Click OK.

Output:

Two-Way ANOVA: C1 versus C2, C3

Analysis of Variance for C1
Source DF SS MS F P
C2 3 2992.4 997.483 67.94 0.000
C3 3 1201.1 400.350 27.27 0.000
Interaction 9 608.5 67.606 4.60 0.000
Error 64 939.6 14.681
Total 79 5741.5

Individual 95% CI
C2 Mean -+---------+---------+---------+---------+
1 26.70 (----*---)

----(52.832 *---)
----(03.833 *---)

4 25.45 (----*---)
-+---------+---------+---------+---------+

24.00 28.00 32.00 36.00 40.00

Individual 95% CI
C3 Mean ------+---------+---------+---------+-----
1 27.85 (----*---)
2 29.80 (----*---)

----(59.233 *---)
----(01.834 *---)

------+---------+---------+---------+-----
28.00 31.50 35.00 38.50

FIGURE 8.5.3 MINITAB procedure and ANOVA table for Example 8.5.2.
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EXERCISES

For Exercises 8.5.1 to 8.5.4, perform the analysis of variance, test appropriate hypotheses at the
.05 level of significance, and determine the p value associated with each test.

8.5.1. Uryu et al. (A-23) studied the effect of three different doses of troglitazone mMð Þ on neuro cell death.
Cell death caused by stroke partially results from the accumulation of high concentrations of
glutamate. The researchers wanted to determine if different doses of troglitazone (1.3, 4.5, and
13:5mM) and different ion forms � and þð Þ of LY294002, a PI3-kinase inhibitor, would give
different levels of neuroprotection. Four rats were studied at each dose and ion level, and the mea-
sured variable is the percent of cell death as compared to glutamate. Therefore, a higher value implies
less neuroprotection. The results are displayed in the table below.

Percent Compared
to Glutamate �LY294002 vsþ LY294002

Troglitazone
Dose (mM)

73.61 Negative 1.3
130.69 Negative 1.3
118.01 Negative 1.3
140.20 Negative 1.3

The SAS System

Analysis of Variance Procedure

Dependent Variable: TIME

 rPeulaV FerauqS naeMserauqS fo muSFD ecruoS F

1000.018.1200000031.02300000059.108451 ledoM

00052186.4100000006.93946rorrE

Corrected Total 79 5741.55000000

R-Square C.V. Root MSE TIME Mean

0.836351 11.90866 3.83161193 32.17500000

 rPeulaV FerauqS naeMSS avonAFDecruoS F

1000.072.7200000053.00400000050.10213BROTCAF
1000.049.7633333384.79900000054.29923AROTCAF

FACTORB*FACTORA 9 608.450000000 67.60555556 4.60 0.0001

FIGURE 8.5.4 SAS® output for analysis of Example 8.5.2.

(Continued)
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Percent Compared
to Glutamate �LY294002 vsþ LY294002

Troglitazone
Dose mMð Þ

97.11 Positive 1.3
114.26 Positive 1.3
120.26 Positive 1.3

92.39 Positive 1.3
26.95 Negative 4.5
53.23 Negative 4.5
59.57 Negative 4.5
53.23 Negative 4.5
28.51 Positive 4.5
30.65 Positive 4.5
44.37 Positive 4.5
36.23 Positive 4.5
�8:83 Negative 13.5
25.14 Negative 13.5
20.16 Negative 13.5
34.65 Negative 13.5

�35:80 Positive 13.5
�7:93 Positive 13.5
�19:08 Positive 13.5

5.36 Positive 13.5

Source: Data provided courtesy of Shigeko Uryu.

8.5.2. Researchers at a trauma center wished to develop a program to help brain-damaged trauma victims
regain an acceptable level of independence. An experiment involving 72 subjects with the same
degree of brain damage was conducted. The objective was to compare different combinations of
psychiatric treatment and physical therapy. Each subject was assigned to one of 24 different
combinations of four types of psychiatric treatment and six physical therapy programs. There
were three subjects in each combination. The response variable is the number of months elapsing
between initiation of therapy and time at which the patient was able to function independently. The
results were as follows:

Psychiatric TreatmentPhysical
Therapy Program A B C D

11.0 9.4 12.5 13.2
I 9.6 9.6 11.5 13.2

10.8 9.6 10.5 13.5

10.5 10.8 10.5 15.0
II 11.5 10.5 11.8 14.6

12.0 10.5 11.5 14.0

12.0 11.5 11.8 12.8
III 11.5 11.5 11.8 13.7

11.8 12.3 12.3 13.1

(Continued)
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Psychiatric TreatmentPhysical
Therapy Program A B C D

11.5 9.4 13.7 14.0
IV 11.8 9.1 13.5 15.0

10.5 10.8 12.5 14.0

11.0 11.2 14.4 13.0
V 11.2 11.8 14.2 14.2

10.0 10.2 13.5 13.7

11.2 10.8 11.5 11.8
VI 10.8 11.5 10.2 12.8

11.8 10.2 11.5 12.0

Can one conclude on the basis of these data that the different psychiatric treatment programs have
different effects? Can one conclude that the physical therapy programs differ in effectiveness? Can
one conclude that there is interaction between psychiatric treatment programs and physical therapy
programs? Let a ¼ :05 for each test.

Exercises 8.5.3 and 8.5.4 are optional since they have unequal cell sizes. It is recommended that
the data for these be analyzed using SAS® or some other software package that will accept unequal
cell sizes.

8.5.3. Main et al. (A-24) state, “Primary headache is a very common condition and one that nurses
encounter in many different care settings. Yet, there is a lack of evidence as to whether advice
given to sufferers is effective and what improvements may be expected in the conditions.” The
researchers assessed frequency of headaches at the beginning and end of the study for 19
subjects in an intervention group (treatment 1) and 25 subjects in a control group (treatment 2).
Subjects in the intervention group received health education from a nurse, while the control
group did not receive education. In the 6 months between pre- and post-evaluation, the subjects
kept a headache diary. The following table gives as the response variable the difference (pre –
post) in frequency of headaches over the 6 months for two factors: (1) treatment with two levels
(intervention and control), and (2) migraine status with two levels (migraine sufferer and
nonmigraine sufferer).

Change in
Frequency of
Headaches

Migraine Sufferer
(1 = No, 2 = Yes) Treatment

Change in
Frequency of
Headaches

Migraine Sufferer
(1 = No, 2 = Yes) Treatment

�2 1 1 �3 2 2

2 2 1 �6 2 2

33 1 1 11 1 2

�6 2 1 64 1 2

6 2 1 65 1 2

98 1 1 14 1 2

2 2 1 8 1 2

6 2 1 6 2 2

(Continued)
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Can one conclude on the basis of these data that there is a difference in the reduction of
headache frequency between the control and treatment groups? Can one conclude that there is a
difference in the reduction of headache frequency between migraine and non-migraine sufferers?
Can one conclude that there is interaction between treatments and migraine status? Let a ¼ :05
for each test.

8.5.4. The purpose of a study by Porcellini et al. (A-25) was to study the difference in CD4 cell response in
patients taking highly active antiretroviral therapy (HAART, treatment 1) and patients taking
HAART plus intermittent interleukin (IL-2, treatment 2). Another factor of interest was the HIV-
RNA plasma count at baseline of study. Subjects were classified as having fewer than 50 copies/ml
(plasma 1) or having 50 or more copies/ml (plasma 2). The outcome variable is the percent change in
CD4 T cell count from baseline to 12 months of treatment. Can one conclude that there is a difference
in the percent change in CD4 T cell count between the two treatments? The results are shown in the
following table. Can one conclude that there is a difference in the percent change in CD4 T cell count
between those who have fewer than 50/ml plasma copies of HIV-RNA and those who do not? Can one
conclude that there is interaction between treatments and plasma levels? Let a ¼ :05 for each test.

Percent Change in CD4 T Cell Treatment Plasma

�12:60 1 1
�14:60 2 1

28.10 2 1
(Continued)

33 1 1 14 1 2

�7 2 1 �11 2 2

�1 2 1 53 1 2

�12 2 1 26 2 2

12 1 1 3 1 2

64 1 1 15 1 2

36 2 1 3 1 2

6 2 1 41 1 2

4 2 1 16 1 2

11 2 1 �4 2 2

0 2 1 �6 2 2

9 1 2

9 2 2

�3 2 2

9 2 2

3 1 2

4 2 2

Source: Data provided courtesy of A. Main, H. Abu-Saad, R. Salt, l. Vlachonikolis, and A. Dowson, “Management by Nurses of Primary
Headache: A Pilot Study,” Current Medical Research Opinion, 18 (2002), 471–478.

Change in
Frequency of
Headaches

Migraine Sufferer
(1 = No, 2 = Yes) Treatment

Change in
Frequency of
Headaches

Migraine Sufferer
(1 = No, 2 = Yes) Treatment
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Percent Change in CD4 T Cell Treatment Plasma

77.30 1 1
�0:44 1 1
50.20 1 1
48.60 2 2
86.20 2 2

205.80 1 2
100.00 1 2

34.30 1 2
82.40 1 2

118.30 1 2

Source: Data provided courtesy of Simona Porcellini, Guiliana Vallanti,
Silvia Nozza, Guido Poli, Adriano Lazzarin, Guiseppe Tabussi,
and Antonio Grassia, “Improved Thymopoietic Potential in Aviremic
HIV Infected Individuals with HAART by Intermittent IL-2
Administration,” AIDS, 17 (2003), 1621–1630.

8.5.5. A study by G�orecka et al. (A-26) assessed the manner in which among middle-aged smokers the
diagnosis of airflow limitation (AL) combined with advice to stop smoking influences the smoking
cessation rate. Their concerns were whether having AL, whether the subject successfully quit
smoking, and whether interaction between AL and smoking status were significant factors in regard
to baseline variables and lung capacity variables at the end of the study. Some of the variables of
interest were previous years of smoking (pack years), age at which subject first began smoking,
forced expiratory volume in one second ðFEV1Þ, and forced vital capacity (FVC). There were 368
subjects in the study. What are the factors in this study? At how many levels does each occur? Who
are the subjects? What is (are) the response variable(s)? Can you think of any extraneous variables
whose effects are included in the error term?

8.5.6. A study by Meltzer et al. (A-27) examined the response to 5 mg desloratadine, an H1-receptor
antagonist, in patients with seasonal allergies. During the fall allergy season, 172 subjects were
randomly assigned to receive treatments of desloratadine and 172 were randomly assigned to receive
a placebo. Subjects took the medication for 2 weeks after which changes in the nasal symptom score
were calculated. A significant reduction was noticed in the treatment group compared to the placebo
group, but gender was not a significant factor. What are the factors in the study? At how many levels
does each occur? What is the response variable?

8.6 SUMMARY

The purpose of this chapter is to introduce the student to the basic ideas and techniques of
analysis of variance. Two experimental designs, the completely randomized and the
randomized complete block, are discussed in considerable detail. In addition, the concept
of repeated measures designs and a factorial experiment as used with the completely
randomized design are introduced. Individuals who wish to pursue further any aspect of
analysis of variance will find the methodology references at the end of the chapter most
helpful.
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SUMMARYOF FORMULAS FOR CHAPTER 8

Formula
Number Name Formula

8.2.1 One-way ANOVA
model

xij ¼ mþ tj þ eij

8.2.2 Total sum-of-squares
SST ¼

Xk
j¼1

Xnj
i¼1

xij � �x::
� �2

8.2.3 Within-group
sum-of-squares SSW ¼

Xk
j¼1

Xnj
i¼1

xij � �x:j
� �2

8.2.4 Among-group
sum-of-squares SSA ¼

Xk
j¼1

nj �x�j � �x::
� �2

8.2.5 Within-group variance

MSW ¼

Xk
j¼1

Xnj
i¼1

xij � �x�j
� �2

Xk
j¼1

nj � 1
� �

8.2.6 Among-group
variance I

s2 ¼ ns2
�x

8.2.7 Among-group
variance II
(equal sample sizes) MSA ¼

n
Xk
j¼1

�x�j � �x::
� �2

k � 1

8.2.8 Among-group
variance III
(unequal sample sizes) MSA ¼

Xk
j¼1

nj �x�j � �x::
� �2

k � 1

8.2.9 Tukey’s HSD
(equal sample sizes) HSD ¼ qa;k;N�k

ffiffiffiffiffiffiffiffiffiffi
MSE

n

r

8.2.10 Tukey’s HSD
(unequal sample sizes) HSD� ¼ qa;k;N�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

2

1

ni
þ 1

nj

� �s

8.3.1 Two-way ANOVA
model

xij ¼ mþ bi þ tj þ eij

8.3.2 Sum-of-squares
representation

SST ¼ SSBlþ SSTr þ SSE

(Continued)
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8.3.3 Sum-of-squares total
SST ¼

Xk
j¼1

Xn
i¼1

xij � �x: :
� �2

8.3.4 Sum-of-squares block
SSBl ¼

Xk
j¼1

Xn
i¼1

�xi� � �x: :ð Þ2

8.3.5 Sum-of-squares
treatments SSTr ¼

Xk
j¼1

Xn
i¼1

�x�j � �x: :
� �2

8.3.6 Sum-of-squares error SSE ¼ SST � SSBl� SSTr

8.4.1 Fixed-effects, additive
single-factor, repeated-
measures ANOVA
model

xij ¼ mþ bi þ tj þ eij

8.4.2 Two-factor repeated
measures model

xijk ¼ mþ rij þ ai þ bj þ ðabÞij þ eijk

8.5.1 Two-factor completely
randomized fixed-
effects factorial model

xijk ¼ mþ ai þ bj þ abð Þij þ eijk

8.5.2 Probabilistic
representation of a

a < 1 � 1 � a0ð Þ 1 � a00ð Þ 1 � a000ð Þ

8.5.3 Sum-of-squares total I Xa
i¼1

Xb
j¼1

Xn
k¼1

xijk � �x: : :
� �2 ¼

Xa
i¼1

Xb
j¼1

Xn
k¼1

�xij� � �x: : :
� �2

þ
Xa
i¼1

Xb
j¼1

Xn
k¼1

xijk � �xij�
� �2

8.5.4 Sum-of-squares total II SST ¼ SSTr þ SSE

8.5.5 Sum-of-squares
treatment partition

Xa
i¼1

Xb
j¼1

Xn
k¼1

�xij� � �x:::
� �2 ¼

Xa
i¼1

Xb
j¼1

Xn
k¼1

�xi:: � �x:::ð Þ2

þ
Xa
i¼1

Xb
j¼1

Xn
k¼1

�x�j� � �x:::
� �2

þ
Xa
i¼1

Xb
j¼1

Xn
k¼1

�xij� � �xi:: � �x�j� þ �x:::
� �2

Symbol Key � a ¼ Probability of Type I error
� ai ¼ treatment A effect
� bj ¼ treatment B effect
� bi ¼ block effect
� abð Þij ¼ interaction effect
� eij ¼ error term
� HSD ¼ honestly significant difference
� k ¼ number of treatments
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� m ¼ mean of population or the grand meanð Þ
� n ¼ number or blocks
� nx ¼ sample size
� rij ¼ block effect for two-factor repeated measures around
� s2 ¼ variance
� SSX ¼ sum � of � squares where X : A ¼ among;ð

Bl ¼ block;T ¼ total; Tr ¼ treatment; W ¼ withinÞ
� ti ¼ treatment effect
� xxxx ¼ measurement

REVIEWQUESTIONS AND EXERCISES

1. Define analysis of variance.

2. Describe the completely randomized design.

3. Describe the randomized block design.

4. Describe the repeated measures design.

5. Describe the factorial experiment as used in the completely randomized design.

6. What is the purpose of Tukey’s HSD test?

7. What is an experimental unit?

8. What is the objective of the randomized complete block design?

9. What is interaction?

10. What is a mean square?

11. What is an ANOVA table?

12. For each of the following designs describe a situation in your particular field of interest where the
design would be an appropriate experimental design. Use real or realistic data and do the appropriate
analysis of variance for each one:

(a) Completely randomized design

(b) Randomized complete block design

(c) Completely randomized design with a factorial experiment

(d) Repeated measures designs

13. Werther et al. (A-28) examined the b-leucocyte count �109=L
� �

in 51 subjects with colorectal cancer
and 19 healthy controls. The cancer patients were also classified into Dukes’s classification (A, B, C)
for colorectal cancer that gives doctors a guide to the risk, following surgery, of the cancer coming
back or spreading to other parts of the body. An additional category (D) identified patients with
disease that had not been completely resected. The results are displayed in the following table.
Perform an analysis of these data in which you identify the sources of variability and specify the
degrees of freedom for each. Do these data provide sufficient evidence to indicate that, on the
average, leucocyte counts differ among the five categories? Let a ¼ :01 and find the p value. Use
Tukey’s procedure to test for significant differences between individual pairs of sample means.
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Healthy A B C D

6.0 7.7 10.4 8.0 9.5
6.3 7.8 5.6 6.7 7.8
5.1 6.1 7.0 9.3 5.7
6.2 9.6 8.2 6.6 8.0

10.4 5.5 9.0 9.3 9.6
4.4 5.8 8.4 7.2 13.7
7.4 4.0 8.1 5.2 6.3
7.0 5.4 8.0 9.8 7.3
5.6 6.5 6.2 6.2
5.3 9.1 10.1
2.6 11.0 9.3
6.3 10.9 9.4
6.1 10.6 6.5
5.3 5.2 5.4
5.4 7.9 7.6
5.2 7.6 9.2
4.3 5.8
4.9 7.0
7.3
4.9
6.9
4.3
5.6
5.1

Source: Data provided courtesy of Kim Werther, M.D., Ph.D.

14. In Example 8.4.1, we examined data from a study by Licciardone et al. (A-15) on osteopathic
manipulation as a treatment for chronic back pain. At the beginning of that study, there were actually
91 subjects randomly assigned to one of three treatments: osteopathic manipulative treatment
(OMT), sham manipulation (SHAM), or non-intervention (CONTROL). One important outcome
variable was the rating of back pain at the beginning of the study. The researchers wanted to know if
the treatment had essentially the same mean pain level at the start of the trial. The results are
displayed in the following table. The researchers used a visual analog scale from 0 to 10 cm where 10
indicated “worst pain possible.” Can we conclude, on the basis of these data, that, on the average,
pain levels differ in the three treatment groups? Let a ¼ :05 and find the p value. If warranted, use
Tukey’s procedure to test for differences between individual pairs of sample means.

CONTROL SHAM OMT

2.6 5.8 7.8 3.5
5.6 1.3 4.1 3.4
3.3 2.4 1.7 1.1
4.6 1.0 3.3 0.5
8.4 3.2 4.3 5.1
0.0 0.4 6.5 1.9
2.5 5.4 5.4 2.0

(Continued)
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CONTROL SHAM OMT

5.0 4.5 4.0 2.8
1.7 1.5 4.1 3.7
3.8 0.0 2.6 1.6
2.4 0.6 3.2 0.0
1.1 0.0 2.8 0.2
0.7 7.6 3.4 7.3
2.4 3.5 6.7 1.7
3.3 3.9 7.3 7.5
6.6 7.0 2.1 1.6
0.4 7.4 3.7 3.0
0.4 6.5 2.3 6.5
0.9 1.6 4.4 3.0
6.0 1.3 2.8 3.3

6.6 0.4 7.3
6.3 0.7 4.6
7.0 7.9 4.8

1.3 4.9

Source: Data provided courtesy of J. C. Licciardone, D.O.

15. The goal of a study conducted by Meshack and Norman (A-29) was to evaluate the effects of weights
on postural hand tremor related to self-feeding in subjects with Parkinson’s disease (PD). Each of the
16 subjects had the tremor amplitude measured (in mm) under three conditions: holding a built-up
spoon (108 grams), holding a weighted spoon (248 grams), and holding the built-up spoon while
wearing a weighted wrist cuff (470 grams). The data are displayed in the following table.

Tremor Amplitude (mm)

Subject Built-Up Spoon Weighted Spoon Built-Up Spoon þWrist Cuff

1 .77 1.63 1.02
2 .78 .88 1.11
3 .17 .14 .14
4 .30 .27 .26
5 .29 .27 .28
6 1.60 1.49 1.73
7 .38 .39 .37
8 .24 .24 .24
9 .17 .17 .16

10 .38 .29 .27
11 .93 1.21 .90
12 .63 .52 .66
13 .49 .73 .76
14 .42 .60 .29
15 .19 .21 .21
16 .19 .20 .16

Source: Rubia P. Meshack and Kathleen E. Norman, “A Randomized Controlled Trial of the Effects of
Weights on Amplitude and Frequency of Postural Hand Tremor in People with Parkinson’s Disease,”
Clinical Rehabilitation, 16 (2003), 481–492.
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Can one conclude on the basis of these data that the three experimental conditions, on the average,
have different effects on tremor amplitude? Let a ¼ :05. Determine the p value.

16. In a study of pulmonary effects on guinea pigs, Lacroix et al. (A-30) exposed 18 ovalbumin-
sensitized guinea pigs and 18 nonsensitized guinea pigs to regular air, benzaldehyde, and
acetaldehyde. At the end of exposure, the guinea pigs were anesthetized and allergic
responses were assessed in bronchoalveolar lavage (BAL). The following table shows the
alveolar cell count �106

� �
by treatment group for the ovalbumin-sensitized and nonsensitized

guinea pigs.

Ovalbumin-Sensitized Treatment Alveolar Count �106

no acetaldehyde 49.90
no acetaldehyde 50.60
no acetaldehyde 50.35
no acetaldehyde 44.10
no acetaldehyde 36.30
no acetaldehyde 39.15
no air 24.15
no air 24.60
no air 22.55
no air 25.10
no air 22.65
no air 26.85
no benzaldehyde 31.10
no benzaldehyde 18.30
no benzaldehyde 19.35
no benzaldehyde 15.40
no benzaldehyde 27.10
no benzaldehyde 21.90
yes acetaldehyde 90.30
yes acetaldehyde 72.95
yes acetaldehyde 138.60
yes acetaldehyde 80.05
yes acetaldehyde 69.25
yes acetaldehyde 31.70
yes air 40.20
yes air 63.20
yes air 59.10
yes air 79.60
yes air 102.45
yes air 64.60
yes benzaldehyde 22.15
yes benzaldehyde 22.75
yes benzaldehyde 22.15
yes benzaldehyde 37.85
yes benzaldehyde 19.35
yes benzaldehyde 66.70

Source: Data provided courtesy of G. Lacroix, Docteur en Toxicologie.
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Test for differences (a) between ovalbumin-sensitized and nonsensitized outcomes, (b) among the
three different exposures, and (c) interaction. Let a ¼ :05 for all tests.

17. Watanabe et al. (A-31) studied 52 healthy middle-aged male workers. The researchers used the
Masstricht Vital Exhaustion Questionnaire to assess vital exhaustion. Based on the resultant scores,
they assigned subjects into three groups: VE1, VE2, and VE3. VE1 indicates the fewest signs of
exhaustion, and VE3 indicates the most signs of exhaustion. The researchers also asked subjects
about their smoking habits. Smoking status was categorized as follows: SMOKE1 are nonsmokers,
SMOKE2 are light smokers (20 cigarettes or fewer per day), SMOKE3 are heavy smokers (more than
20 cigarettes per day). One of the outcome variables of interest was the amplitude of the high-
frequency spectral analysis of heart rate variability observed during an annual health checkup. This
variable, HF-amplitude, was used as an index of parasympathetic nervous function. The data are
summarized in the following table:

HF-Amplitude

Smoking Status

Vital Exhaustion
Group SMOKE1 SMOKE2 SMOKE3

VE1 23.33 13.37 16.14 16.83
31.82 9.76 20.80 29.40
10.61 22.24 15.44 6.50
42.59 8.77 13.73 10.18
23.15 20.28 13.86
17.29

VE2 20.69 11.67 44.92 27.91
16.21 30.17 36.89
28.49 29.20 16.80
25.67 8.73 17.08
15.29 9.08 18.77

7.51 22.53 18.33
22.03 17.19
10.27

VE3 9.44 17.59 5.57
19.16 18.90 13.51
14.46 17.37

10.63
13.83

Source: Data provided courtesy of Takemasa Watanabe, M.D., Ph.D.

Perform an analysis of variance on these data and test the three possible hypotheses. Let
a0 ¼ a00 ¼ a000 ¼ :05. Determine the p values.
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18. The effects of thermal pollution on Corbicula fluminea (Asiatic clams) at three different geographi-
cal locations were analyzed by John Brooker (A-32). Sample data on clam shell length, width, and
height are displayed in the following table. Determine if there is a significant difference in mean
length, height, or width (measured in mm) of the clam shell at the three different locations by
performing three analyses. What inferences can be made from your results? What are the
assumptions underlying your inferences? What are the target populations?

Location 1 Location 2 Location 3

Length Width Height Length Width Height Length Width Height

7.20 6.10 4.45 7.25 6.25 4.65 5.95 4.75 3.20
7.50 5.90 4.65 7.23 5.99 4.20 7.60 6.45 4.56
6.89 5.45 4.00 6.85 5.61 4.01 6.15 5.05 3.50
6.95 5.76 4.02 7.07 5.91 4.31 7.00 5.80 4.30
6.73 5.36 3.90 6.55 5.30 3.95 6.81 5.61 4.22
7.25 5.84 4.40 7.43 6.10 4.60 7.10 5.75 4.10
7.20 5.83 4.19 7.30 5.95 4.29 6.85 5.55 3.89
6.85 5.75 3.95 6.90 5.80 4.33 6.68 5.50 3.90
7.52 6.27 4.60 7.10 5.81 4.26 5.51 4.52 2.70
7.01 5.65 4.20 6.95 5.65 4.31 6.85 5.53 4.00
6.65 5.55 4.10 7.39 6.04 4.50 7.10 5.80 4.45
7.55 6.25 4.72 6.54 5.89 3.65 6.81 5.45 3.51
7.14 5.65 4.26 6.39 5.00 3.72 7.30 6.00 4.31
7.45 6.05 4.85 6.08 4.80 3.51 7.05 6.25 4.71
7.24 5.73 4.29 6.30 5.05 3.69 6.75 5.65 4.00
7.75 6.35 4.85 6.35 5.10 3.73 6.75 5.57 4.06
6.85 6.05 4.50 7.34 6.45 4.55 7.35 6.21 4.29
6.50 5.30 3.73 6.70 5.51 3.89 6.22 5.11 3.35
6.64 5.36 3.99 7.08 5.81 4.34 6.80 5.81 4.50
7.19 5.85 4.05 7.09 5.95 4.39 6.29 4.95 3.69
7.15 6.30 4.55 7.40 6.25 4.85 7.55 5.93 4.55
7.21 6.12 4.37 6.00 4.75 3.37 7.45 6.19 4.70
7.15 6.20 4.36 6.94 5.63 4.09 6.70 5.55 4.00
7.30 6.15 4.65 7.51 6.20 4.74
6.35 5.25 3.75 6.95 5.69 4.29

7.50 6.20 4.65

Source: Data provided courtesy of John Brooker, M.S. and the Wright State University Statistical
Consulting Center.

19. Eleftherios Kellis (A-33) conducted an experiment on 18 pubertal males. He recorded the
electromyographic (EMG) activity at nine different angular positions of the biceps femoris
muscle. The EMG values are expressed as a percent (0–100 percent) of the maximal effort exerted
with the muscle and represent an average in a range of flexion angles. The nine positions
correspond to testing knee flexion angles of 1–10�, 11–20�, 21–30�, 31–40�, 41–50�, 51–60�,
61–70�, 71–80�, and 81–90�. The results are displayed in the following table. For subject 1, for
example, the value of 30.96 percent represents the average maximal percent of effort in angular
positions from 1 to 10 degrees.
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Subject 1–10� 11–20� 21–30� 31–40� 41–50� 51–60� 61–70� 71–80� 81–90�

1 30.96 11.32 4.34 5.99 8.43 10.50 4.49 10.93 33.26
2 3.61 1.47 3.50 10.25 3.30 3.62 10.14 11.05 8.78
3 8.46 2.94 1.83 5.80 11.59 15.17 13.04 10.57 8.22
4 0.69 1.06 1.39 1.08 0.96 2.52 2.90 3.27 5.52
5 4.40 3.02 3.74 3.83 3.73 10.16 9.31 12.70 11.45
6 4.59 9.80 10.71 11.64 9.78 6.91 8.53 8.30 11.75
7 3.31 3.31 4.12 12.56 4.60 1.88 2.42 2.46 2.19
8 1.98 6.49 2.61 3.28 10.29 7.56 16.68 14.52 13.49
9 10.43 4.96 12.37 24.32 17.16 34.71 35.30 37.03 45.65

10 20.91 20.72 12.70 15.06 12.03 11.31 28.47 26.81 25.08
11 5.59 3.13 2.83 4.31 6.37 13.95 13.48 11.15 30.97
12 8.67 4.32 2.29 6.20 13.01 19.30 9.33 12.30 12.20
13 2.11 1.59 2.40 2.56 2.83 2.55 5.84 5.23 8.84
14 3.82 5.04 6.81 10.74 10.10 13.14 19.39 13.31 12.02
15 39.51 62.34 70.46 20.48 17.38 54.04 25.76 50.32 46.84
16 3.31 4.95 12.49 9.18 14.00 16.17 25.75 11.82 13.17
17 11.42 7.53 4.65 4.70 7.57 9.86 5.30 4.47 3.99
18 2.97 2.18 2.36 4.61 7.83 17.49 42.55 61.84 39.70

Source: Data provided courtesy of Eleftherios Kellis, Ph.D.

Can we conclude on the basis of these data that the average EMG values differ among the nine
angular locations? Let a ¼ :05.

20. In a study of Marfan syndrome, Pyeritz et al.(A-34) reported the following severity scores of patients
with no, mild, and marked dural ectasia. May we conclude, on the basis of these data, that mean severity
scores differ among the three populations represented in the study? Leta ¼ :05 and find thepvalue. Use
Tukey’s procedure to test for significant differences among individual pairs of sample means.

No dural ectasia: 18, 18, 20, 21, 23, 23, 24, 26, 26, 27, 28, 29, 29, 29, 30, 30, 30,
30, 32, 34, 34, 38

Mild dural ectasia: 10, 16, 22, 22, 23, 26, 28, 28, 28, 29, 29, 30, 31, 32, 32, 33, 33,
38, 39, 40, 47

Marked dural ectasia: 17, 24, 26, 27, 29, 30, 30, 33, 34, 35, 35, 36, 39

Source: Data provided courtesy of Reed E. Pyeritz, M.D., Ph.D.

21. The following table shows the arterial plasma epinephrine concentrations (nanograms per milliliter)
found in 10 laboratory animals during three types of anesthesia:

Animal

Anesthesia 1 2 3 4 5 6 7 8 9 10

A .28 .50 .68 .27 .31 .99 .26 .35 .38 .34
B .20 .38 .50 .29 .38 .62 .42 .87 .37 .43
C 1.23 1.34 .55 1.06 .48 .68 1.12 1.52 .27 .35

Can we conclude from these data that the three types of anesthesia, on the average, have different
effects? Let a ¼ :05.
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22. The aim of a study by Hartman-Maeir et al. (A-35) was to evaluate the awareness of deficit profiles
among stroke patients undergoing rehabilitation. She studied 35 patients with a stroke lesion in the
right hemisphere and 19 patients with a lesion on the left hemisphere. She also grouped lesion size as

2 ¼ “1-3 cm”; 3 ¼ “3-5 cm”; and 4 ¼ “5 cm or greater”

One of the outcome variables was a measure of each patient’s total unawareness of their own
limitations. Scores ranged from 8 to 24, with higher scores indicating more unawareness.

Unawareness Score

Lesion Size
Group

Left
Hemisphere

Right
Hemisphere

2 11 10 8
13 11 10
10 13 9
11 10 9

9 13 9
10 10

9 10
8 9

10 8

3 13 11 10
8 10 11

10 10 12
10 14 11
10 8

4 11 10 11
13 13 9
14 10 19
13 10 10
14 15 9

8 10
Source: Data provided courtesy of
Adina Hartman-Maeir, Ph.D., O.T.R.

Test for a difference in lesion size, hemisphere, and interaction. Let a ¼ :05 for all tests.

23. A random sample of the records of single births was selected from each of four populations. The
weights (grams) of the babies at birth were as follows:

Sample

A B C D

2946 3186 2300 2286
2913 2857 2903 2938
2280 3099 2572 2952
3685 2761 2584 2348

(Continued)
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Sample

A B C D

2310 3290 2675 2691
2582 2937 2571 2858
3002 3347 2414
2408 2008

2850
2762

Do these data provide sufficient evidence to indicate, at the .05 level of significance, that the four
populations differ with respect to mean birth weight? Test for a significant difference between all
possible pairs of means.

24. The following table shows the aggression scores of 30 laboratory animals reared under three different
conditions. One animal from each of 10 litters was randomly assigned to each of the three rearing
conditions.

Rearing Condition

Litter
Extremely
Crowded

Moderately
Crowded

Not
Crowded

1 30 20 10
2 30 10 20
3 30 20 10
4 25 15 10
5 35 25 20
6 30 20 10
7 20 20 10
8 30 30 10
9 25 25 10

10 30 20 20

Do these data provide sufficient evidence to indicate that level of crowding has an effect on
aggression? Let a ¼ :05.

25. The following table shows the vital capacity measurements of 60 adult males classified by occupation
and age group:

Occupation

Age Group A B C D

1 4.31 4.68 4.17 5.75
4.89 6.18 3.77 5.70
4.05 4.48 5.20 5.53
4.44 4.23 5.28 5.97
4.59 5.92 4.44 5.52

(Continued)
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Occupation

Age Group A B C D

2 4.13 3.41 3.89 4.58
4.61 3.64 3.64 5.21
3.91 3.32 4.18 5.50
4.52 3.51 4.48 5.18
4.43 3.75 4.27 4.15

3 3.79 4.63 5.81 6.89
4.17 4.59 5.20 6.18
4.47 4.90 5.34 6.21
4.35 5.31 5.94 7.56
3.59 4.81 5.56 6.73

Test for differences among occupations, for differences among age groups, and for interaction.
Let a ¼ :05 for all tests.

26. Complete the following ANOVA table and state which design was used.

Source SS d.f. MS V.R. p

Treatments 154.9199 4
Error

Total 200.4773 39

27. Complete the following ANOVA table and state which design was used.

Source SS d.f. MS V.R. p

Treatments 3
Blocks 183.5 3
Error 26.0

Total 709.0 15

28. Consider the following ANOVA table.

Source SS d.f. MS V.R. p

A 12.3152 2 6.15759 29.4021 <.005
B 19.7844 3 6.59481 31.4898 <.005
AB 8.94165 6 1.49027 7.11596 <.005
Treatments 41.0413 11
Error 10.0525 48 0.209427

Total 51.0938 59

REVIEW QUESTIONS AND EXERCISES 385



3GC08 12/04/2012 14:43:49 Page 386

(a) What sort of analysis was employed?

(b) What can one conclude from the analysis? Let a ¼ :05.

29. Consider the following ANOVA table.

Source SS d.f. MS V.R.

Treatments 5.05835 2 2.52917 1.0438
Error 65.42090 27 2.4230

(a) What design was employed?

(b) How many treatments were compared?

(c) How many observations were analyzed?

(d) At the .05 level of significance, can one conclude that there is a difference among treatments?
Why?

30. Consider the following ANOVA table.

Source SS d.f. MS V.R.

Treatments 231.5054 2 115.7527 2.824
Blocks 98.5000 7 14.0714
Error 573.7500 14 40.9821

(a) What design was employed?

(b) How many treatments were compared?

(c) How many observations were analyzed?

(d) At the .05 level of significance, can one conclude that the treatments have different effects? Why?

31. In a study of the relationship between smoking and serum concentrations of high-density lipoprotein
cholesterol (HDL-C), the following data (coded for ease of calculation) were collected from samples
of adult males who were nonsmokers, light smokers, moderate smokers, and heavy smokers. We wish
to know if these data provide sufficient evidence to indicate that the four populations differ with
respect to mean serum concentration of HDL-C. Let the probability of committing a type I error be
.05. If an overall significant difference is found, determine which pairs of individual sample means
are significantly different.

Smoking Status

Nonsmokers Light Moderate Heavy

12 9 5 3
10 8 4 2
11 5 7 1
13 9 9 5

9 9 5 4
9 10 7 6

12 8 6 2
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32. Polyzogopoulou et al. (A-36) report the effects of bariatric surgery on fasting glucose levels (mmol/L)
on 12 obese subjects with type 2 diabetes at four points in time: pre-operation, at 3 months, 6 months,
and 12 months. Can we conclude, after eliminating subject effects, that fasting glucose levels differ over
time after surgery? Let a ¼ :05.

Subject No. Pre-op 3 Months 6 Months 12 Months

1 108.0 200.0 94.3 92.0
2 96.7 119.0 84.0 93.0
3 77.0 130.0 76.0 74.0
4 92.0 181.0 82.5 80.5
5 97.0 134.0 81.0 76.0
6 94.0 163.0 96.0 71.0
7 76.0 125.0 74.0 75.5
8 100.0 189.0 97.0 88.5
9 82.0 282.0 91.0 93.0

10 103.5 226.0 86.0 80.5
11 85.5 145.0 83.5 83.0
12 74.5 156.0 71.0 87.0

Source: Data provided courtesy of Theodore K. Alexandrides, M.D.

33. Refer to Review Exercise 32. In addition to studying the 12 type 2 diabetes subjects (group 1),
Polyzogopoulou et al. (A-36) studied five subjects with impaired glucose tolerance (group 2), and
eight subjects with normal glucose tolerance (group 3). The following data are the 12-month post-
surgery fasting glucose levels for the three groups.

Group

1.0 92.0
1.0 93.0
1.0 74.0
1.0 80.5
1.0 76.0
1.0 71.0
1.0 75.5
1.0 88.5
1.0 93.0
1.0 80.5
1.0 83.0
1.0 87.0
2.0 79.0
2.0 78.0
2.0 100.0
2.0 76.5
2.0 68.0
3.0 81.5
3.0 75.0
3.0 76.5

(Continued)
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Group

3.0 70.5
3.0 69.0
3.0 73.8
3.0 74.0
3.0 80.0

Source: Data provided courtesy of
Theodore K. Alexandrides, M.D.

Can we conclude that there is a difference among the means of the three groups? If so, which pairs of
means differ? Let a ¼ :05 for all tests.

For exercises 34 to 38 do the following:

(a) Indicate which technique studied in this chapter (the completely randomized design, the
randomized block design, the repeated measures design, or the factorial experiment) is appropriate.

(b) Identify the response variable and treatment variables.

(c) As appropriate, identify the factors and the number of levels of each, the blocking variables, and
the subjects.

(d) List any extraneous variables whose effects you think might be included in the error term.

(e) As appropriate, comment on carry-over and position effects.

(f) Construct an ANOVA table in which you indicate the sources of variability and the number of
degrees of freedom for each.

34. Johnston and Bowling (A-37) studied the ascorbic acid content (vitamin C) in several orange juice
products. One of the products examined was ready-to-drink juice packaged in a re-sealable, screw-
top container. One analysis analyzed the juice for reduced and oxidized vitamin C content at time of
purchase and reanalyzed three times weekly for 4 to 5 weeks.

35. A study by Pittini et al. (A-38) assessed the effectiveness of a simulator-based curriculum on 30
trainees learning the basic practice of amniocentesis. Pre- and post-training performance were
evaluated with the same instrument. The outcome variable was the post-training score—pretraining
score. Trainees were grouped by years of postgraduate experience: PGY 0–2, PGY 3–5, Fellows, and
Faculty.

36. Anim-Nyame et al. (A-39) studied three sets of women in an effort to understand factors related to
pre-eclampsia. Enrolled in the study were 18 women with pre-eclampsia, 18 normal pregnant
women, and 18 nonpregnant female matched controls. Blood samples were obtained to measure
plasma levels of vascular endothelial growth factor, leptin, TNF-a plasma protein concentrations, and
full blood count.

37. In a study by lwamoto et al. (A-40) 26 women were randomly assigned to the medication alfacalcidol
for treatment of lumbar bone mineral density (BMD). BMD of the lumbar spine was measured at
baseline and every year for 5 years.

38. Inoue et al. (A-41) studied donor cell type and genotype on the efficiency of mouse somatic cell
cloning. They performed a factorial experiment with two donor cell types (Sertoli cells or cumulus)
and six genotypes. Outcome variables were the cleavage rate and the birth rate of pups in each
treatment combination.
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For the studies described in Exercises 39 through 66, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence interval
construction) that you think would yield useful information for the researchers.

(b) Determine p values for each computed test statistic.

(c) State all assumptions that are necessary to validate your analysis.

(d) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

39. Shirakami et al. (A-42) investigated the clinical significance of endothelin (ET), natriuretic peptides,
and the renin-angiotensin-aldosterone system in pediatric liver transplantation. Subjects were
children ages 6 months to 12 years undergoing living-related liver transplantation due to congenital
biliary atresia and severe liver cirrhosis. Among the data collected were the following serum total
bilirubin (mg/dl) levels after transplantation (h–hours, d–days):

Time After Reperfusion of Donor Liver

Preoperative Liver Transection Anhepatic Phase 1 h 2 h 4 h 8 h 1 d 2 d 3 d

6.2 1.2 0.9 0.8 1.1 1.5 2 1.4 1.6 1.3
17.6 11.9 9.3 3.5 3 6.1 9 6.3 6.4 6.2
13.2 10.2 7.9 5.3 4.9 3.3 3.6 2.8 1.9 1.9

3.9 3.3 3 2.9 2.3 1.4 1.2 0.8 0.8 0.9
20.8 19.4 � 9.4 8.4 6.8 7.1 3.7 3.8 3.2
1.8 1.8 1.6 1.4 1.4 1.1 1.9 0.7 0.8 0.7
8.6 6.5 4.8 3.1 2.1 1 1.3 1.5 1.6 3.2

13.4 12 10.1 5.8 5.6 4.5 4.1 3 3.1 3.6
16.8 13.9 8.3 3.7 3.7 2.2 2.1 1.9 3.1 4.1
20.4 17.8 17 10.8 9.3 8.9 7 2.8 3.8 4.8
25 21.5 13.8 7.6 7 5 11.5 12.3 10.1 11.4

9.2 6.3 6.8 5.3 4.8 0.2 4 4.2 3.7 3.5
8 6.5 6.4 4.1 3.8 3.8 3.5 3.1 2.9 2.8
2.9 3 4.1 3.4 3.4 3.7 4.2 3.3 2 1.9

21.3 17.3 13.6 9.2 7.9 7.9 9.8 8.6 4.7 5.5
25 25 24 20.1 19.3 18.6 23.6 25 14.4 20.6
23.3 23.7 15.7 13.2 11 9.6 9.3 7.2 6.3 6.3
17.5 16.2 14.4 12.6 12.7 11.5 10 7.8 5.5 4.9

� Missing observation.
Source: Data provided courtesy of Dr. Gotaro Shirakami.

Note that there is a missing observation in the data set. You may handle this problem in at least three
ways.

(a) Omit the subject whose datum is missing, and analyze the data of the remaining 17 subjects.

(b) Use a computer package that automatically deals with missing data.

(c) Analyze the data using a missing data procedure. For such a procedure, see Jerome L. Myers and
Arnold D. Well, Research Design and Statistical Analysis, Erlbaum Associates, Hillsdale, NJ, 1995,
pp. 256–258.
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40. The purpose of a study by Sakakibara and Hayano (A-43) was to examine the effect of voluntarily
slowed respiration on the cardiac parasympathetic response to a threat (the anticipation of an
electric shock). Subjects were 30 healthy college students whose mean age was 23 years with a
standard deviation of 1.5 years. An equal number of subjects were randomly assigned to slow (six
males, four females), fast (seven males, three females), and nonpaced (five males, five females)
breathing groups. Subjects in the slow- and fast-paced breathing groups regulated their breathing
rate to 8 and 30 cpm, respectively. The nonpaced group breathed spontaneously. The following are
the subjects’ scores on the State Anxiety Score of State-Trait Anxiety Inventory after baseline and
period of threat:

Slow paced Fast paced Nonpaced

Baseline Threat Baseline Threat Baseline Threat

39 59 37 49 36 51
44 47 40 42 34 71
48 51 39 48 50 37
50 61 47 57 49 53
34 48 45 49 38 52
54 69 43 44 39 56
34 43 32 45 66 67
38 52 27 54 39 49
44 48 44 44 45 65
39 65 41 61 42 57

Source: Data provided courtesy
of Dr. Masahito Sakakibara.

41. Takahashi et al. (A-44) investigated the correlation of magnetic resonance signal intensity with spinal
cord evoked potentials and spinal cord morphology after 5 hours of spinal cord compression in cats.
Twenty-four adult cats were divided into four groups on the basis of a measure of spinal cord function
plus a control group that did not undergo spinal compression. Among the data collected were the
following compression ratio [(sagittal diameter/transverse diameter) �100] values after 5 hours of
compression:

Control 80.542986
79.111111
70.535714
87.323944
80.000000
82.222222

Group I 83.928571
84.183673
48.181818
98.461538

Group II 30.263158
34.865900
43.775100
82.439024

Group III 36.923077
31.304348
53.333333
55.276382
40.725806

Group IV 66.666667
29.565217
12.096774
34.274194
24.000000

Source: Data provided
courtesy of Dr. Toshiaki
Takahashi.
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42. The objective of a study by Yamashita et al. (A-45) was to investigate whether pentoxifylline
administered in the flush solution or during reperfusion would reduce ischemia-reperfusion lung
injury in preserved canine lung allografts. Three groups of animals were studied. Pentoxifylline was
not administered to animals in group 1 (C), was administered only during the reperfusion period (P)
to animals in group 2, and was administered only in the flush solution to animals in group 3 (F). A
total of 14 left lung allotransplantations were performed. The following are the aortic pressure
readings for each animal during the 6-hour assessment period:

Group
0

min
60
min

120
min

180
min

240
min

300
min

360
min

C 85.0 100.0 120.0 80.0 72.0 75.0 �

C 85.0 82.0 80.0 80.0 85.0 80.0 80.0
C 100.0 75.0 85.0 98.0 85.0 80.0 82.0
C 57.0 57.0 57.0 30.0 � � �

C 57.0 75.0 52.0 56.0 65.0 95.0 75.0
P 112.0 67.0 73.0 90.0 71.0 70.0 66.0
P 92.0 70.0 90.0 80.0 75.0 80.0 2�
P 105.0 62.0 73.0 75.0 70.0 55.0 50.0
P 80.0 73.0 50.0 35.0 � � �

F 70.0 95.0 105.0 115.0 110.0 105.0 100.0
F 60.0 63.0 140.0 135.0 125.0 130.0 120.0
F 67.0 65.0 75.0 75.0 80.0 80.0 80.0
F 115.0 107.0 90.0 103.0 110.0 112.0 95.0
F 90.0 99.0 102.0 110.0 117.0 118.0 103.0

� Missing observation.
Source: Data provided courtesy of Dr. Motohiro Yamashita.

43. In a study investigating the relative bioavailability of beta-carotene (BC) and alpha-carotene
(AC) from different sources of carrots, Zhou et al. (A-46) used ferrets as experimental animals.
Among the data collected were the following concentrations of BC, AC, and AC/BC molar ratios
in the sera of 24 ferrets provided with different sources of carotenoids for 3 days in their drinking
water:

BC
(mmol/g)

AC
(mmol/g)

AC/BC
(mol/mol)

Unheated Juice

0.637 0.506 0.795
0.354 0.297 0.840
0.287 0.249 0.869
0.533 0.433 0.813
0.228 0.190 0.833
0.632 0.484 0.767

Heated Juice

0.303 0.266 0.878
0.194 0.180 0.927

(Continued)
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BC
(mmol/g)

AC
(mmol/g)

AC/BC
(mol/mol)

Heated Juice

0.293 0.253 0.864
0.276 0.238 0.859
0.226 0.207 0.915
0.395 0.333 0.843

Unheated Chromoplast

0.994 0.775 0.780
0.890 0.729 0.819
0.809 0.661 0.817
0.321 0.283 0.882
0.712 0.544 0.763
0.949 0.668 0.704

Heated Chromoplast

0.933 0.789 0.845
0.280 0.289 1.031
0.336 0.307 0.916
0.678 0.568 0.837
0.714 0.676 0.947
0.757 0.653 0.862 Source: Data provided

courtesy of Dr. Jin-R. Zhou.

44. Potteiger et al. (A-47) wished to determine if sodium citrate ingestion would improve cycling
performance and facilitate favorable metabolic conditions during the cycling ride. Subjects were
eight trained male competitive cyclists whose mean age was 25.4 years with a standard deviation of
6.5. Each participant completed a 30-km cycling time trial under two conditions, following ingestion
of sodium citrate and following ingestion of a placebo. Blood samples were collected prior to
treatment ingestion (PRE-ING); prior to exercising (PRE-EX); during the cycling ride at completion
of 10, 20, and 30 km; and 15 minutes after cessation of exercise (POST-EX). The following are the
values of partial pressures of oxygen (PO2) and carbon dioxide (PCO2) for each subject, under each
condition, at each measurement time:

(PO2) (mm Hg)

Measurement Times

Subject Treatmenta PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX

1 1 42.00 20.00 53.00 51.00 56.00 41.00
1 2 43.00 29.00 58.00 49.00 55.00 56.00
2 1 44.00 38.00 66.00 66.00 76.00 58.00
2 2 40.00 26.00 57.00 47.00 46.00 45.00
3 1 37.00 22.00 59.00 58.00 56.00 52.00

(Continued)
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(PO2) (mm Hg)

Measurement Times

Subject Treatmenta PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX

3 2 36.00 30.00 52.00 65.00 65.00 36.00
4 1 34.00 21.00 65.00 62.00 62.00 59.00
4 2 46.00 36.00 65.00 72.00 72.00 66.00
5 1 36.00 24.00 41.00 43.00 50.00 46.00
5 2 41.00 25.00 52.00 60.00 67.00 54.00
6 1 28.00 31.00 52.00 60.00 53.00 46.00
6 2 34.00 21.00 57.00 58.00 57.00 41.00
7 1 39.00 28.00 72.00 69.00 65.00 72.00
7 2 40.00 27.00 64.00 61.00 57.00 60.00
8 1 49.00 27.00 67.00 61.00 51.00 49.00
8 2 27.00 22.00 56.00 64.00 49.00 34.00

(PCO2) (mm Hg)

Measurement Times

Subject Treatmenta PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX

1 1 31.70 30.20 28.20 29.80 28.20 30.10
1 2 24.60 24.40 34.40 35.20 30.90 34.00
2 1 27.10 35.90 31.30 35.40 34.10 42.00
2 2 21.70 37.90 31.90 39.90 45.10 48.00
3 1 37.40 49.60 39.90 39.70 39.80 42.80
3 2 38.40 42.10 40.90 37.70 37.70 45.60
4 1 36.60 45.50 34.80 33.90 34.00 40.50
4 2 39.20 40.20 31.90 32.30 33.70 45.90
5 1 33.70 39.50 32.90 30.50 28.50 37.20
5 2 31.50 37.30 32.40 31.90 30.20 31.70
6 1 35.00 41.00 38.70 37.10 35.80 40.00
6 2 27.20 36.10 34.70 36.30 34.10 40.60
7 1 28.00 36.50 30.70 34.60 34.30 38.60
7 2 28.40 31.30 48.10 43.70 35.10 34.70
8 1 22.90 28.40 25.70 28.20 32.30 34.80
8 2 41.40 41.80 29.50 29.90 31.30 39.00

a 1 ¼ Sodium citrate; 2 ¼ placebo.
Source: Data provided courtesy of Dr. Jeffrey A. Potteiger.

45. Teitge et al. (A-48) describe a radiographic method to demonstrate patellar instability. The 90
subjects ranged in age from 13 to 52 years and were divided into the following four groups on
the basis of clinical findings regarding the nature of instability of the knee: normal (no
symptoms or signs related to the knee), lateral, medial, and multidirectional instability. Among
the data collected were the following radiographic measurements of the congruence angle
(degrees):
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Normal Lateral Medial Multidirectional

�8 4 12 �16 10 15
�16 18 �8 �25 �5 �26
�22 5 �8 20 �10 �8
�26 �6 �20 �8 �12 �12
�8 32 �5 8 �14 �40
12 30 �10 �14 �20
�8 �10 �18 �16
12 28 �4 �34

�20 6 �20 �14
�20 9 �20 �6
�5 10 �20 �35
10 20 �22 �24
�4 �9 �15 �25
�2 �10 �10 10
�6 12 �5 �16
�7 0 �5 �30

0 35 �6 �30
�2 �1 �15
�15 5 �25
�5 22 �10

22 �20

Source: Data provided courtesy of Dr. Robert A. Teitge.

46. A study by Ikeda et al. (A-49) was designed to determine the dose of ipratropium bromide aerosol
that improves exercise performance using progressive cycle ergometry in patients with stable chronic
obstructive pulmonary disease. The mean age of the 20 male subjects was 69.2 years with a standard
deviation of 4.6 years. Among the data collected were the following maximum ventilation
VEmax;L=min
� �

values at maximum achieved exercise for different ipratropium bromide dosage
levels mgð Þ:

Placebo 40 80 160 240

26 24 23 25 28
38 39 43 43 37
49 46 54 57 52
37 39 39 38 38
34 33 37 37 41
42 38 44 44 42
23 26 28 27 22
38 41 44 37 40
37 37 36 38 39
33 35 34 38 36
40 37 40 46 40
52 58 48 58 63
45 48 47 51 38

(Continued)
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Placebo 40 80 160 240

24 30 23 27 30
41 37 39 46 42
56 54 51 58 58
35 51 49 51 46
28 41 37 33 38
28 34 34 35 35
38 40 43 39 45

Source: Data provided courtesy of Dr. Akihiko Ikeda.

47. Pertovaara et al. (A-50) compared the effect of skin temperature on the critical threshold temperature
eliciting heat pain with the effect of skin temperature on the response latency to the first heat pain
sensation. Subjects were healthy adults between the ages of 23 and 54 years. Among the data
collected were the following latencies (seconds) to the first pain response induced by radiant heat
stimulation at three different skin temperatures:

Subject 25�C 30�C 35�C

1 6.4 4.5 3.6
2 8.1 5.7 6.3
3 9.4 6.8 3.2
4 6.75 4.6 3.9
5 10 6.2 6.2
6 4.5 4.2 3.4

Source: Data provided courtesy of Dr. Antti Pertovaara.

48. A study for the development and validation of a sensitive and specific method for quantifying total
activin-A concentrations has been reported on by Knight et al. (A-51). As part of the study they
collected the following peripheral serum concentrations of activin-A in human subjects of
differing reproductive status: normal follicular phase (FP), normal luteal phase (LP), pregnant
(PREG), ovarian hyperstimulated for in vivo fertilization (HYP), postmenopausal (PM), and
normal adult males. Hint: Convert responses to logarithms before performing analysis.

FP LP PREG HYP PM Male

134.5 78.0 2674.0 253.1 793.1 196.7
159.2 130.4 945.6 294.3 385.1 190.6
133.2 128.3 5507.6 170.2 270.9 185.3
225.0 166.4 7796.5 219.8 640.3 335.4
146.4 115.2 5077.5 165.8 459.8 214.6
180.5 148.9 4541.9 159.0

Source: Data provided courtesy of Dr. Philip G. Knight.

49. The purpose of a study by Maheux et al. (A-52) was to evaluate the effect of labor on glucose
production and glucose utilization. Subjects were six normal pregnant women. Among the data
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collected were the following glucose concentrations during four stages of labor: latent (A1) and
active (A2) phases of cervical dilatation, fetal expulsion (B), and placental expulsion (C).

A1 A2 B C

3.60 4.40 5.30 6.20
3.53 3.70 4.10 3.80
4.02 4.80 5.40 5.27
4.90 5.33 6.30 6.20
4.06 4.65 6.10 6.90
3.97 5.20 4.90 4.60

Source: Data provided courtesy of Dr. Pierre C. Maheux.

50. Trachtman et al. (A-53) conducted studies (1) to assess the effect of recombinant human (rh) IGF-I on
chronic puromycin aminonucleoside (PAN) nephropathy and (2) to compare the results of rhIGF-I
versus rhGH treatment in a model of focal segmental glomerulosclerosis. As part of the studies, male
Sprague-Dawley rats were divided into four groups: PAN (IA), PAN þ rhIGF-I (IB), normal (IIA),
and normal þ rhIGF-I (IIB). The animals yielded the following data on creatinine levels before (pre)
and after 4, 8, and 12 weeks of treatment:

Group

IA IB IIA IIB

Pre

44 44 44 35
44 44 44 44
44 44 44 44
53 44 44 35
44 44
44 53

4 Weeks

97 44 53 44
88 35 44 53
62 44 44 53
53 35 53 44
62 62
53 53

8 Weeks

53 53 62 44
53 53 53 62
44 53 62 44
53 44 53 44
62 53
70 62

(Continued)
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Group

IA IB IIA IIB

12 Weeks

88 79 53 53
70 79 62 62
53 79 53 53
70 62 62 53
88 79
88 70

Source: Data provided courtesy of Dr. Howard Trachtman.

51. Twelve healthy men, ages 22 through 35 years, yielded the following serum T3ðnmol=LÞ levels at
0800 hours after 8 (day 1), 32 (day 2), and 56 (day 3) hours of fasting, respectively. Subjects were
participants in a study of fasting-induced alterations in pulsatile glycoprotein secretion conducted by
Samuels and Kramer (A-54).

Subject T3 Day Subject T3 Day Subject T3 Day Subject T3 Day

1 88 1 2 115 1 3 119 1 4 164 1
1 73 2 2 77 2 3 93 2 4 120 2
1 59 3 2 75 3 3 65 3 4 86 3

Subject T3 Day Subject T3 Day Subject T3 Day Subject T3 Day

5 93 1 6 119 1 7 152 1 8 121 1
5 91 2 6 57 2 7 70 2 8 107 2
5 113 3 6 44 3 7 74 3 8 133 3

Subject T3 Day Subject T3 Day Subject T3 Day Subject T3 Day

9 108 1 10 124 1 11 102 1 12 131 1
9 93 2 10 97 2 11 56 2 12 83 2
9 75 3 10 74 3 11 58 3 12 66 3

Source: Data provided courtesy of Dr. Mary H. Samuels.

52. To determine the nature and extent to which neurobehavioral changes occur in association with the
toxicity resulting from exposure to excess dietary iron (Fe), Sobotka et al. (A-55) used weanling male
Sprague-Dawley rats as experimental subjects. The researchers randomly assigned the animals,
according to ranked body weights, to one of five diet groups differentiated on the basis of amount
of Fe present: Control—35 (1), 350 (2), 3500 (3), 4 (iron deficient) (4), and 20,000 (5) ppm,
respectively. The following are the body weights of the animals (grams) at the end of 10 weeks.

Diet Weight Diet Weight Diet Weight

1 396 1 335 1 373
2 368 2 349 4 292
3 319 3 302 5 116

(Continued)
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Diet Weight Diet Weight Diet Weight

4 241 4 220 4 291
5 138 5 118 5 154
1 331 1 394 4 281
2 325 2 300 5 118
3 331 3 285 4 250
4 232 4 237 5 119
5 116 5 113 4 242
1 349 1 377 5 118
2 364 2 366 4 277
3 392 3 269 5 104
4 310 4 344 5 120
5 131 5 Dead 5 102
1 341 1 336
2 399 2 379
3 274 3 195
4 319 4 277
5 131 5 148
1 419 1 301
2 373 2 368
3 Dead 3 308
4 220 4 299
5 146 5 Dead

Source: Data provided courtesy of Dr. Thomas J. Sobotka.

53. Hansen (A-56) notes that brain bilirubin concentrations are increased by hyperosmolality and
hypercarbia, and that previous studies have not addressed the question of whether increased brain
bilirubin under different conditions is due to effects on the entry into or clearance of bilirubin from
brain. In a study, he hypothesized that the kinetics of increased brain bilirubin concentration would
differ in respiratory acidosis (hypercarbia) and hyperosmolality. Forty-four young adult male
Sprague-Dawley rats were sacrificed at various time periods following infusion with bilirubin.
The following are the blood bilirubin levels mmol=Lð Þ of 11 animals just prior to sacrifice 60 minutes
after the start of bilirubin infusion:

Controls Hypercarbia Hyperosmolality

30 48 102
94 20 118
78 58 74
52 74

Source: Data provided courtesy of Dr. Thor Willy Ruud Hansen.

54. Johansson et al. (A-57) compared the effects of short-term treatments with growth hormone (GH) and
insulin-like growth factor I (IGF-I) on biochemical markers of bone metabolism in men with
idiopathic osteoporosis. Subjects ranged in age from 32 to 57 years. Among the data collected were
the following serum concentrations of IGF binding protein-3 at 0 and 7 days after first injection and 1,
4, 8, and 12 weeks after last injection with GH and IGF-I.
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Patient No. Treatment 0 Day 7 Days 1 Week 4 Weeks 8 Weeks 12 Weeks

1 GH 4507 4072 3036 2484 3540 3480
1 IGF-I 3480 3515 4003 3667 4263 4797
2 GH 2055 4095 2315 1840 2483 2354
2 IGF-I 2354 3570 3630 3666 2700 2782
3 GH 3178 3574 3196 2365 4136 3088
3 IGF-I 3088 3405 3309 3444 2357 3831
4 GH 3464 5874 2929 3903 3367 2938
4 IGF-I 2905 2888 2797 3083 3376 3464
5 GH 4142 4465 3967 4213 4321 4990
5 IGF-I 4990 4590 2989 4081 4806 4435
6 GH 3622 6800 6185 4247 4450 4199
6 IGF-I 3504 3529 4093 4114 4445 3622
7 GH 5390 5188 4788 4602 4926 5793
7 IGF-I 5130 4784 4093 4852 4943 5390
8 GH 3161 4942 3222 2699 3514 2963
8 IGF-I 3074 2691 2614 3003 3145 3161
9 GH 3228 5995 3315 2919 3235 4379
9 IGF-I 4379 3548 3339 2379 2783 3000

10 GH 5628 6152 4415 5251 3334 3910
10 IGF-I 5838 5025 4137 5777 5659 5628
11 GH 2304 4721 3700 3228 2440 2698
11 IGF-I 2698 2621 3072 2383 3075 2822

Source: Data provided courtesy of Dr. Anna G. Johansson.

55. The objective of a study by Strijbos et al. (A-58) was to compare the results of a 12-week hospital-
based outpatient rehabilitation program (group 1) with those of a 12-week home-care rehabilitation
program (group 2) in chronic obstructive pulmonary disease with moderate to severe airflow
limitation. A control group (group 3) did not receive rehabilitation therapy. Among the data collected
were the following breathing frequency scores of subjects 18 months after rehabilitation:

Group Group

1 2 3 1 2 3

12 16 24 12 16 24
16 14 16 12 12 14
16 12 18 14 12 15
14 12 18 16 12 16
12 18 24 12 12 16
12 12 24 12 15 18
12 10 18 20 16

Source: Data provided courtesy of Dr. Jaap H. Strijbos.

56. Seven healthy males (mean age 27.4 years with a standard deviation of 4.4) participated in a study by
Lambert et al. (A-59), who measured intestinal absorption following oral ingestion and intestinal
perfusion of a fluid. As part of the study the researchers recorded the following percent changes in
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plasma volume at six points during 85 minutes of cycle exercise in the drinking and infusion
experiments:

Subject 1 2 3

Drinking

1 �8.4151514 �7.4902674 �8.02277330
2 �12.1966790 �5.1496679 �10.46486300
3 �9.7418719 �5.9062747 �7.06516950
4 �15.0291920 �14.4165470 �16.61268200
5 �5.8845683 �5.8845683 �3.57781750
6 �9.7100000 �7.5700000 �3.52995560
7 �6.9787024 �6.5752716 �5.07020210

Infusion

1 �13.5391010 �11.7186910 �10.77312900
2 �8.8259516 �8.9029745 �6.38160030
3 �4.2410016 �1.3448910 �2.49740390
4 �10.7192870 �9.7651132 �11.12140900
5 �6.9487760 �2.9830660 1.77828157
6 �7.1160660 �5.4111706 �7.07086340
7 �7.0497788 �5.7725485 �5.18045500

Subject 4 5 6

Drinking

1 �7.35202650 �7.89172340 �7.84726700
2 �8.40517240 �9.02789810 5.13333985
3 �4.19974130 �3.33795970 �5.65380700
4 �15.36239700 �17.63314100 �14.43982000
5 �5.50433470 �5.12242600 �6.26313790
6 �4.22938570 �7.86923080 �7.51168220
7 �5.94416340 �5.21535350 �6.34285620

Infusion

1 �11.64145400 �12.40814000 �8.26411320
2 �5.69396590 �6.38160030 �7.37350920
3 �1.01234570 �5.58572150 �2.81811090
4 �12.13053100 �15.98360700 �12.64667500
5 2.28844839 2.59034233 1.56622058
6 �8.35430040 �10.60663700 �9.45689580
7 �7.92841880 �8.38462720 �8.44542770

Source: Data provided courtesy of Dr. C. V. Gisolfi.

57. Roemer et al. (A-60) developed a self-report measure of generalized anxiety disorder
(GAD) for use with undergraduate populations. In reliability studies the undergraduate
subjects completed the GAD questionnaire (GAD-Q) as well as the Penn State Worry
Questionnaire (PSWQ). The following are the PSWQ scores made by four groups of
subjects determined by their GAD status: GAD by questionnaire, Study II (group 1); non-
GAD by questionnaire, Study II (group 2); GAD by questionnaire, Study I (group 3); and
clinical GAD (group 4).
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Group

1 2 3 4

59.0 50.0 46.0 65.0 65.0
51.0 28.0 77.0 62.0 66.0
58.0 43.0 80.0 76.0 69.0
61.0 36.0 60.0 66.0 73.0
64.0 36.0 59.0 78.0 67.0
68.0 30.0 56.0 76.0 78.0
64.0 24.0 44.0 74.0 76.0
67.0 39.0 71.0 73.0 66.0
56.0 29.0 54.0 61.0 55.0
78.0 48.0 64.0 63.0 59.0
48.0 36.0 66.0 75.0 44.0
62.0 38.0 59.0 63.0 68.0
77.0 42.0 68.0 55.0 64.0
72.0 26.0 59.0 67.5 41.0
59.0 35.0 61.0 70.0 54.0

32.0 78.0 70.0 72.0
43.0 70.0 55.0 74.0
55.0 74.0 73.0 59.0
42.0 73.0 80.0 63.0
37.0 79.0 51.0
36.0 79.0 72.0
41.0 61.0 63.0
36.0 61.0 58.0
34.0 72.0 71.0
42.0 67.0
35.0 74.0
51.0 65.0
37.0 68.0
50.0 72.0
39.0 75.0

56.0

Source: Data provided courtesy of Dr. T. D. Borkovec.

58. Noting that non-Hodgkin’s lymphomas (NHL) represent a heterogeneous group of diseases in which
prognosis is difficult to predict, Christiansen et al. (A-61) report on the prognostic aspects of soluble
intercellular adhesion molecule-1 (sICAM-1) in NHL. Among the data collected were the following
serum sICAM-1 (ng/ml) levels in four groups of subjects: healthy controls (C), high-grade NHL
(hNHL), low-grade NHL (1NHL), and patients with hairy cell leukemia (HCL).

C hNHL lNHL HCL

309 460 844 824 961 581 382
329 222 503 496 1097 601 975
314 663 764 656 1099 572 663

(Continued)
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C hNHL lNHL HCL

254 1235 1088 1038 625 439 429
304 500 470 1050 473 1135 1902
335 739 806 446 654 590 1842
381 1847 482 1218 508 404 314
456 477 734 511 454 382 430
294 818 616 317 889 692 645
450 585 836 334 805 484 637
422 1837 1187 1026 541 438 712
528 362 581 534 655 787 581
461 671 381 292 654 77 860
286 375 699 782 1859 478 448
309 543 1854 1136 619 602 735
226 352 769 476 1837 802
388 443 510 534 568
377 359 571 424 665
310 383 1248 571
261 587 784 420
350 648 514 408
405 782 678 391
319 472 1264 493
289 506 618 1162
310 663 1123 460
227 873 912 1113
206 987 520 572
226 859 1867 653
309 1193 485 1340
382 1836 287 656
325 691 455

522

Source: Data provided courtesy of Dr. Ilse Christiansen.

59. Cossette et al. (A-62) examined gender and kinship with regard to caregivers’ use of informal and
formal support and to two models of support. Among the data collected were the following ages of
three groups of caregivers of a demented relative living at home: husbands, wives, and adult
daughters.

Husband Wife Daughter

64 66 73 59 67 40 50
70 58 71 66 67 47 58
55 81 70 80 57 46 46
67 77 71 76 53 45 47
79 76 56 68 50 69 50
67 64 68 53 70 48 53
77 82 76 78 70 53 57
68 85 67 75 50 65
72 63 66 74 47 50

(Continued)
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Husband Wife Daughter

67 72 67 86 62 43
77 77 72 63 55 59
70 79 72 52 49 44
65 63 70 55 43 45
65 80 66 71 44 41
74 70 73 67 47 50
86 85 78 78 57 58
72 76 64 70 49 35
71 67 78 68 50
78 72 59 78 59
71 60 71 59 45
88 74 70 72 50
77 65 67 73 48
75 53 78 75 51
66 70 67 54 46
80 72 55 65 62
76 74 64 67 55
67 79 69 83 50
65 63 59 70 43
62 77 55 72 39
82 78 75 71 50
75 69 68 76 50
80 65 74 43
74 81 68 28
70 79 69

75 72

Source: Data provided courtesy of Sylvie Cossette, M.Sc., R.N.

60. Tasaka et al. (A-63) note that Corynebacterium parvum (CP) increases susceptibility to endotoxin,
which is associated with increased production of tumor necrosis factor (TNF). They investigated the
effect of CP-priming on the pathogenesis of acute lung injury caused by intratracheal Escherichia
coli endotoxin (lipopolysaccharide [LPS]). Experimental animals consisted of female guinea pigs
divided into four groups. Animals in two groups received a 4-mg/kg treatment of CP 7 days before the
study. Subsequently, nonpretreated animals received either saline alone (Control) or endotoxin (LPS-
alone). The pretreated groups received either saline (CP-alone) or LPS CP þ LPSð Þ. Among the
data collected were the following values of lung tissue-to-plasma ratio of radio-iodized serum
albumin assay:

Control CP-alone LPS-alone CPþ LPS

0.12503532 0.18191647 0.17669093 0.3651166
0.10862729 0.30887462 0.25344761 0.64062964
0.10552931 0.25011885 0.17372285 0.39208734
0.15587316 0.23858085 0.1786867 0.49942059
0.13672624 0.26558231 0.22209666 0.85718475
0.11290446 0.32298454 0.27064831 0.93030465

Source: Data provided courtesy of Dr. Sadatomo Tasaka.
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61. According to Takahashi et al. (A-64) research indicates that there is an association between
alterations in calcium metabolism and various bone diseases in patients with other disabilities.
Using subjects with severe mental retardation (mean age 16 years) who had been living in institutions
for most of their lives, Takahashi et al. examined the relationship between bone change and other
variables. Subjects were divided into groups on the basis of severity of bone change. Among the data
collected were the following serum alkaline phosphatase (IU/L) values:

Grade I: 109, 86, 79, 103, 47, 105, 188, 96, 249

Grade II: 86, 106, 164, 146, 111, 263, 162, 111

Grade III: 283, 201, 208, 301, 135, 192, 135, 83, 193, 175, 174, 193, 224,
192, 233

Source: Data provided courtesy of Dr. Mitsugi Takahashi.

62. Research indicates that dietary copper deficiency reduces growth rate in rats. In a related study, Allen
(A-65) assigned weanling male Sprague-Dawley rats to one of three food groups: copper-deficient
(CuD), copper-adequate (CuA), and pair-fed (PF). Rats in the PF group were initially weight-
matched to rats of the CuD group and then fed the same weight of the CuA diet as that consumed by
their CuD counterparts. After 20 weeks, the rats were anesthetized, blood samples were drawn, and
organs were harvested. As part of the study the following data were collected:

Rat Diet

Body
weight
(BW)(g)

Heart
weight
(HW)(g)

Liver
weight
(LW)(g)

Kidney
weight
(KW)(g)

Spleen
weight
(SW)(g)

1 253.66 0.89 2.82 1.49 0.41
2 400.93 1.41 3.98 2.15 0.76
3 CuD 355.89 1.24 5.15 2.27 0.69
4 404.70 2.18 4.77 2.99 0.76

6 397.28 0.99 2.34 1.84 0.50
7 421.88 1.20 3.26 2.32 0.79
8 PF 386.87 0.88 3.05 1.86 0.84
9 401.74 1.02 2.80 2.06 0.76

10 437.56 1.22 3.94 2.25 0.75

11 490.56 1.21 4.51 2.30 0.78
12 528.51 1.34 4.38 2.75 0.76
13 CuA 485.51 1.36 4.40 2.46 0.82
14 509.50 1.27 4.67 2.50 0.79
15 489.62 1.31 5.83 2.74 0.81

Rat Diet
HW/BW
(g/100 g)

LW/BW
(g/100 g)

KW/BW
(g/100 g)

SW/BW
(g/100 g)

Ceruloplasmin
(mg/dl)

1 0.00351 0.01112 0.00587 0.00162 nd
2 0.00352 0.00993 0.00536 0.00190 5.27
3 CuD 0.00348 0.01447 0.00638 0.00194 4.80
4 0.00539 0.01179 0.00739 0.00188 4.97

(Continued)
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Rat Diet
HW/BW
(g/100 g)

LW/BW
(g/100 g)

KW/BW
(g/100 g)

SW/BW
(g/100 g)

Ceruloplasmin
(mg/dl)

6 0.00249 0.00589 0.00463 0.00126 35.30
7 0.00284 0.00773 0.00550 0.00187 39.00
8 PF 0.00227 0.00788 0.00481 0.00217 28.00
9 0.00254 0.00697 0.00513 0.00189 34.20

10 0.00279 0.00900 0.00514 0.00171 45.20

11 0.00247 0.00919 0.00469 0.00159 34.60
12 0.00254 0.00829 0.00520 0.00144 39.00
13 CuA 0.00280 0.00906 0.00507 0.00169 37.10
14 0.00249 0.00917 0.00491 0.00155 33.40
15 0.00268 0.01191 0.00560 0.00165 37.30

nd, no data.
Source: Data provided courtesy of Corrie B. Allen.

63. Hughes et al. (A-66) point out that systemic complications in acute pancreatitis are largely responsible
for mortality associated with the disease. They note further that proinflammatory cytokines, particularly
TNFa, may play a central role in acute pancreatitis by mediating the systemic sequelae. In their research
they used a bile-infusion model of acute pancreatitis to show amelioration of disease severity as well as
an improvement in overall survival by TNFa inhibition. Experimental material consisted of adult male
Sprague-Dawley rats weighing between 250 and 300 grams divided into three groups: untreated (bile
solution infused without treatment); treated (bile solution infused preceded by treatment with
polyclonal anti � TNFa antibody); and sham (saline infused). Among the data collected were the
following hematocrit (%) values for animals surviving more than 48 hours:

Sham Untreated Treated

38 56 40
40 60 42
32 50 38
36 50 46
40 50 36
40 35
38 40
40 40
38 55
40 35

36
40
40
35
45

Source: Data provided courtesy of
Dr. A. Osama Gaber.

64. A study by Sm�arason et al. (A-67) was motivated by the observations of other researchers that sera
from pre-eclamptic women damaged cultured human endothelial cells. Subjects for the present study
were women with pre-eclampsia, matched control women with normal pregnancies, and nonpregnant
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women of childbearing age. Among the data collected were the following observations on a relevant
variable measured on subjects in the three groups.

Pre-Eclampsia Pregnant Controls Nonpregnant Controls

113.5 91.4 94.5
106.6 95.6 115.9

39.1 113.1 107.2
95.5 100.8 103.2
43.5 88.2 104.7
49.2 92.2 94.9
99.5 78.6 93.0

102.9 96.9 100.4
101.2 91.6 107.1
104.9 108.6 105.5

75.4 77.3 119.3
71.1 100.0 88.2
73.9 61.7 82.2
76.0 83.3 125.0
81.3 103.6 126.1
72.7 92.3 129.1
75.3 98.6 106.9
55.2 85.0 110.0
90.5 128.2 127.3
55.8 88.3 128.6

Source: Data provided courtesy of Dr. Alexander Sm�arason.

65. The objective of a study by LeRoith et al. (A-68) was to evaluate the effect of a 7-week administration
of recombinant human GH (rhGH) and recombinant human insulin-like growth factor (rhIGF-I)
separately and in combination on immune function in elderly female rhesus monkeys. The assay for
the in vivo function of the immune system relied on the response to an immunization with tetanus
toxoid. The following are the responses for the three treatment groups and a control group:

Saline rhIGF-I rhGH rhIGF-I þ rhGH

11.2 12.2 12.15 11.5
9.0 9.4 11.20 12.4

10.8 10.7 10.60 10.8
10.0 10.8 11.30 11.9

9.1 11.00 11.0
12.6

Source: Data provided courtesy of Dr. Jack A. Yanowski.

66. Hampl et al. (A-69) note that inhaled nitric oxide (NO) is a selective pulmonary vasodilator. They
hypothesized that a nebulized diethylenetriamine/NO (DETA/NO) would stay in the lower airways
and continuously supply sufficient NO to achieve sustained vasodilation in chronic pulmonary
hypertension. Experimental material consisted of adult, male, specific pathogen-free Sprague-
Dawley rats randomly divided into four groups: untreated, pulmonary normotensive controls;
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monocrotaline-injected (to induce hypertension) with no treatment (MCT); monocrotaline-injected
treated with either a 5 � mmol dose or a 50 � mmol dose of DETA/NO. Nineteen days after inducing
pulmonary hypertension in the two groups of rats, the researchers began the treatment procedure,
which lasted for 4 days. They collected, among other data, the following measurements on cardiac
output for the animals in the four groups:

MCT þ DETA/NO

Control MCT 5mmol 50mmol

71.8 42.8 72.5 47.1
66.1 53.2 62.9 86.6
67.6 56.1 58.9 56.0
66.4 56.5 69.3

Source: Data provided courtesy of Dr. Stephen L. Archer.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wile y.com/co llege/dan iel

1. In Kreiter et al. (A-70) medical school exams were delivered via computer format. Because there
were not enough computer stations to test the entire class simultaneously, the exams were
administered over 2 days. Both students and faculty wondered if students testing on day 2 might
have an advantage due to extra study time or a breach in test security. Thus, the researchers
examined a large medical class n ¼ 193ð Þ tested over 2 days with three 2-hour 80-item multiple-
choice exams. Students were assigned testing days via pseudorandom assignment. Of interest was
whether taking a particular exam on day 1 or day 2 had a significant impact on scores. Use the
data set MEDSCORES to determine if test, day, or interaction has significant impact on test
scores. Let a ¼ :05.

2. Refer to the serum lipid-bound sialic acid data on 1400 subjects (LSADATA). We wish to conduct
a study to determine if the measurement of serum lipid-bound sialic acid (LSA) might be of use in
the detection of breast cancer. The LSA measurements (mg/dl) are for four populations of
subjects: normal controls, A; patients with benign breast disease, B; patients with primary breast
cancer, C; and patients with recurrent metastatic breast cancer, D. Select a simple random sample
of size 10 from each population and perform an appropriate analysis to determine if we may
conclude that the four population means are different. Let a ¼ :05 and determine the p value. Test
all possible pairs of sample means for significance. What conclusions can one draw from the
analysis? Prepare a verbal report of the findings. Compare your results with those of your
classmates.

3. Refer to the serum angiotensin-converting enzyme data on 1600 subjects (SACEDATA).
Sarcoidosis, found throughout the world, is a systemic granulomatous disease of unknown
cause. The assay of serum angiotensin-converting enzyme (SACE) is helpful in the diagnosis of
active sarcoidosis. The activity of SACE is usually increased in patients with the disease, while
normal levels occur in subjects who have not had the disease, those who have recovered, and
patients with other granulomatous disorders. The data are the SACE values for four populations
of subjects classified according to status regarding sarcoidosis: never had, A; active, B; stable, C;
recovered, D. Select a simple random sample of 15 subjects from each population and perform an
analysis to determine if you can conclude that the population means are different. Let a ¼ :05.
Use Tukey’s test to test for significant differences among individual pairs of means. Prepare a
written report on your findings. Compare your results with those of your classmates.
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4. Refer to the urinary colony-stimulating factor data on 1500 subjects (CSFDATA). The data are the
urinary colony-stimulating factor (CSF) levels in five populations: normal subjects and subjects
with four different diseases. Each observation represents the mean colony count of four plates from a
single urine specimen from a given subject. Select a simple random sample of size 15 from each of
the five populations and perform an analysis of variance to determine if one may conclude that the
population means are different. Let a ¼ :05. Use Tukey’s HSD statistic to test for significant
differences among all possible pairs of sample means. Prepare a narrative report on the results of
your analysis. Compare your results with those of your classmates.

5. Refer to the red blood cell data on 1050 subjects (RBCDATA). Suppose that you are a
statistical consultant to a medical researcher who is interested in learning something about the
relationship between blood folate concentrations in adult females and the quality of their diet.
The researcher has available three populations of subjects: those whose diet quality is rated as
good, those whose diets are fair, and those with poor diets. For each subject there is also
available her red blood cell (RBC) folate value (in mg=liter of red cells). Draw a simple random
sample of size 10 from each population and determine whether the researcher can conclude
that the three populations differ with respect to mean RBC folate value. Use Tukey’s test to
make all possible comparisons. Let a ¼ :05 and find the p value for each test. Compare your
results with those of your classmates.

6. Refer to the serum cholesterol data on 350 subjects under three diet regimens (SERUMCHO).
A total of 347 adult males between the ages of 30 and 65 participated in a study to investigate
the relationship between the consumption of meat and serum cholesterol levels. Each subject
ate beef as his only meat for a period of 20 weeks, pork as his only meat for another period of
20 weeks, and chicken or fish as his only meat for another 20-week period. At the end of each
period serum cholesterol determinations mg=100mlð Þ were made on each subject. Select a
simple random sample of 10 subjects from the population of 350. Use two-way analysis of
variance to determine whether one should conclude that there is a difference in population
mean serum cholesterol levels among the three diets. Let a ¼ :05. Compare your results with
those of your classmates.
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CHAPTER9
SIMPLE LINEAR REGRESSION
AND CORRELATION

CHAPTER OVERVIEW

This chapter provides an introduction and overview of two common techniques
for exploring the strength of the relationship between two variables. The first
technique, linear regression, will help us find an objective way to predict or
estimate the value of one variable given a value of another variable. The second
technique, correlation, will help us find an objective measure of the strength of
the relationship between two variables.

TOPICS

9.1 INTRODUCTION

9.2 THE REGRESSION MODEL

9.3 THE SAMPLE REGRESSION EQUATION

9.4 EVALUATING THE REGRESSION EQUATION

9.5 USING THE REGRESSION EQUATION

9.6 THE CORRELATION MODEL

9.7 THE CORRELATION COEFFICIENT

9.8 SOME PRECAUTIONS

9.9 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. be able to obtain a simple linear regression model and use it to make predictions.

2. be able to calculate the coefficient of determination and to interpret tests of
regression coefficients.

3. be able to calculate correlations among variables.

4. understand how regression and correlation differ and when the use of each is
appropriate.
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9.1 INTRODUCTION

In analyzing data for the health sciences disciplines, we find that it is frequently desirable to
learn something about the relationship between two numeric variables. We may, for example,
be interested in studying the relationship between blood pressure and age, height and weight,
the concentration of an injected drug and heart rate, the consumption level of some nutrient
and weight gain, the intensity of a stimulus and reaction time, or total family income and
medical care expenditures. The nature and strength of the relationships between variables
such as these may be examined using linear models such as regression and correlation
analysis, two statistical techniques that, although related, serve different purposes.

Regression Regression analysis is helpful in assessing specific forms of the relation-
ship between variables, and the ultimate objective when this method of analysis is employed
usually is to predict or estimate the value of one variable corresponding to a given value of
another variable. The ideas of regression were first elucidated by the English scientist Sir
Francis Galton (1822–1911) in reports of his research on heredity—first in sweet peas and
later in human stature. He described a tendency of adult offspring, having either short or tall
parents, to revert back toward the average height of the general population. He first used the
word reversion, and later regression, to refer to this phenomenon.

Correlation Correlation analysis, on the other hand, is concerned with measuring
the strength of the relationship between variables. When we compute measures of
correlation from a set of data, we are interested in the degree of the correlation between
variables. Again, the concepts and terminology of correlation analysis originated with
Galton, who first used the word correlation in 1888.

In this chapter our discussion is limited to the exploration of the linear relationship
between two variables. The concepts and methods of regression are covered first,
beginning in the next section. In Section 9.6 the ideas and techniques of correlation
are introduced. In the next chapter we consider the case where there is an interest in the
relationships among three or more variables.

Regression and correlation analysis are areas in which the speed and accuracy of a
computer are most appreciated. The data for the exercises of this chapter, therefore, are
presented in a way that makes them suitable for computer processing. As is always the case,
the input requirements and output features of the particular programs and software
packages to be used should be studied carefully.

9.2 THE REGRESSIONMODEL

In the typical regression problem, as in most problems in applied statistics, researchers have
available for analysis a sample of observations from some real or hypothetical population.
Based on the results of their analysis of the sample data, they are interested in reaching
decisions about the population from which the sample is presumed to have been drawn. It is
important, therefore, that the researchers understand the nature of the population in which
they are interested. They should know enough about the population to be able either to
construct a mathematical model for its representation or to determine if it reasonably fits
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some established model. A researcher about to analyze a set of data by the methods of simple
linear regression, for example, should be secure in the knowledge that the simple linear
regression model is, at least, an approximate representation of the population. It is unlikely
that the model will be a perfect portrait of the real situation, since this characteristic is seldom
found in models of practical value. A model constructed so that it corresponds precisely with
the details of the situation is usually too complex to yield any information of value. On the
other hand, the results obtained from the analysis of data that have been forced into a model
that does not fit are also worthless. Fortunately, however, a perfectly fitting model is not a
requirement for obtaining useful results. Researchers, then, should be able to distinguish
between the occasion when their chosen models and the data are sufficiently compatible for
them to proceed and the case where their chosen model must be abandoned.

Assumptions Underlying Simple Linear Regression In the simple
linear regression model two variables, usually labeled X and Y, are of interest. The letter X is
usually used to designate a variable referred to as the independent variable, since
frequently it is controlled by the investigator; that is, values of X may be selected by
the investigator and, corresponding to each preselected value of X, one or more values of
another variable, labeled Y, are obtained. The variable, Y, accordingly, is called the
dependent variable, and we speak of the regression of Y on X. The following are the
assumptions underlying the simple linear regression model.

1. Values of the independent variable X are said to be “fixed.” This means that the
values of X are preselected by the investigator so that in the collection of the data they
are not allowed to vary from these preselected values. In this model, X is referred to
by some writers as a nonrandom variable and by others as a mathematical variable. It
should be pointed out at this time that the statement of this assumption classifies our
model as the classical regression model. Regression analysis also can be carried out
on data in which X is a random variable.

2. The variable X is measured without error. Since no measuring procedure is perfect,
this means that the magnitude of the measurement error in X is negligible.

3. For each value of X there is a subpopulation of Y values. For the usual inferential
procedures of estimation and hypothesis testing to be valid, these subpopulations
must be normally distributed. In order that these procedures may be presented it will
be assumed that the Y values are normally distributed in the examples and exercises
that follow.

4. The variances of the subpopulations of Y are all equal and denoted by s2.

5. The means of the subpopulations of Y all lie on the same straight line. This is known
as the assumption of linearity. This assumption may be expressed symbolically as

myjx ¼ b0 þ b1x (9.2.1)

where myjx is the mean of the subpopulation of Y values for a particular value of X,
and b0 and b1 are called the population regression coefficients. Geometrically, b0 and
b1 represent the y-intercept and slope, respectively, of the line on which all of the
means are assumed to lie.
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6. The Y values are statistically independent. In other words, in drawing the sample, it is
assumed that the values of Y chosen at one value of X in no way depend on the values
of Y chosen at another value of X.

These assumptions may be summarized by means of the following equation, which is
called the simple linear regression model:

y ¼ b0 þ b1xþ e (9.2.2)

where y is a typical value from one of the subpopulations of Y, b0 and b1 are as defined for
Equation 9.2.1, and e is called the error term. If we solve 9.2.2 for e, we have

e ¼ y� b0 þ b1xð Þ
¼ y� myjx

(9.2.3)

and we see that e shows the amount by which y deviates from the mean of the subpopulation
of Y values from which it is drawn. As a consequence of the assumption that the
subpopulations of Y values are normally distributed with equal variances, the e’s for
each subpopulation are normally distributed with a variance equal to the common variance
of the subpopulations of Y values.

The following acronym will help the reader remember most of the assumptions
necessary for inference in linear regression analysis:

LINE [Linear (assumption 5), Independent (assumption 6), Normal (assumption 3), Equal
variances (assumption 4)]

A graphical representation of the regression model is given in Figure 9.2.1.

μy|x = β
0

+β
1
x

μy |x1

μy |x2

μy |x3

μy |x4

f(X, Y)

x1

x2

x3

x4

X

Y

FIGURE 9.2.1 Representation of the simple linear regression model.
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9.3 THE SAMPLE REGRESSION EQUATION

In simple linear regression the object of the researcher’s interest is the population
regression equation—the equation that describes the true relationship between the
dependent variable Y and the independent variable X. The variable designated by Y is
sometimes called the response variable and X is sometimes called the predictor variable.

In an effort to reach a decision regarding the likely form of this relationship, the
researcher draws a sample from the population of interest and using the resulting data,
computes a sample regression equation that forms the basis for reaching conclusions
regarding the unknown population regression equation.

Steps in Regression Analysis In the absence of extensive information
regarding the nature of the variables of interest, a frequently employed strategy is to
assume initially that they are linearly related. Subsequent analysis, then, involves the
following steps.

1. Determine whether or not the assumptions underlying a linear relationship are met in
the data available for analysis.

2. Obtain the equation for the line that best fits the sample data.

3. Evaluate the equation to obtain some idea of the strength of the relationship and the
usefulness of the equation for predicting and estimating.

4. If the data appear to conform satisfactorily to the linear model, use the equation
obtained from the sample data to predict and to estimate.

When we use the regression equation to predict, we will be predicting the value Y is
likely to have when X has a given value. When we use the equation to estimate, we will be
estimating the mean of the subpopulation of Y values assumed to exist at a given value of X.
Note that the sample data used to obtain the regression equation consist of known values of
both X and Y. When the equation is used to predict and to estimate Y, only the corresponding
values of X will be known. We illustrate the steps involved in simple linear regression
analysis by means of the following example.

EXAMPLE 9.3.1

Despr�es et al. (A-1) point out that the topography of adipose tissue (AT) is associated with
metabolic complications considered as risk factors for cardiovascular disease. It is
important, they state, to measure the amount of intraabdominal AT as part of the evaluation
of the cardiovascular-disease risk of an individual. Computed tomography (CT), the only
available technique that precisely and reliably measures the amount of deep abdominal AT,
however, is costly and requires irradiation of the subject. In addition, the technique is not
available to many physicians. Despr�es and his colleagues conducted a study to develop
equations to predict the amount of deep abdominal AT from simple anthropometric
measurements. Their subjects were men between the ages of 18 and 42 years who
were free from metabolic disease that would require treatment. Among the measurements
taken on each subject were deep abdominal AT obtained by CT and waist circumference as
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shown in Table 9.3.1. A question of interest is how well one can predict and estimate deep
abdominal AT from knowledge of the waist circumference. This question is typical of those
that can be answered by means of regression analysis. Since deep abdominal AT is the
variable about which we wish to make predictions and estimations, it is the dependent
variable. The variable waist measurement, knowledge of which will be used to make the
predictions and estimations, is the independent variable.

TABLE 9.3.1 Waist Circumference (cm), X, and Deep Abdominal AT, Y, of 109 Men

Subject X Y Subject X Y Subject X Y

1 74.75 25.72 38 103.00 129.00 75 108.00 217.00

2 72.60 25.89 39 80.00 74.02 76 100.00 140.00

3 81.80 42.60 40 79.00 55.48 77 103.00 109.00

4 83.95 42.80 41 83.50 73.13 78 104.00 127.00

5 74.65 29.84 42 76.00 50.50 79 106.00 112.00

6 71.85 21.68 43 80.50 50.88 80 109.00 192.00

7 80.90 29.08 44 86.50 140.00 81 103.50 132.00

8 83.40 32.98 45 83.00 96.54 82 110.00 126.00

9 63.50 11.44 46 107.10 118.00 83 110.00 153.00

10 73.20 32.22 47 94.30 107.00 84 112.00 158.00

11 71.90 28.32 48 94.50 123.00 85 108.50 183.00

12 75.00 43.86 49 79.70 65.92 86 104.00 184.00

13 73.10 38.21 50 79.30 81.29 87 111.00 121.00

14 79.00 42.48 51 89.80 111.00 88 108.50 159.00

15 77.00 30.96 52 83.80 90.73 89 121.00 245.00

16 68.85 55.78 53 85.20 133.00 90 109.00 137.00

17 75.95 43.78 54 75.50 41.90 91 97.50 165.00

18 74.15 33.41 55 78.40 41.71 92 105.50 152.00

19 73.80 43.35 56 78.60 58.16 93 98.00 181.00

20 75.90 29.31 57 87.80 88.85 94 94.50 80.95

21 76.85 36.60 58 86.30 155.00 95 97.00 137.00

22 80.90 40.25 59 85.50 70.77 96 105.00 125.00

23 79.90 35.43 60 83.70 75.08 97 106.00 241.00

24 89.20 60.09 61 77.60 57.05 98 99.00 134.00

25 82.00 45.84 62 84.90 99.73 99 91.00 150.00

26 92.00 70.40 63 79.80 27.96 100 102.50 198.00

27 86.60 83.45 64 108.30 123.00 101 106.00 151.00

28 80.50 84.30 65 119.60 90.41 102 109.10 229.00

29 86.00 78.89 66 119.90 106.00 103 115.00 253.00

30 82.50 64.75 67 96.50 144.00 104 101.00 188.00

31 83.50 72.56 68 105.50 121.00 105 100.10 124.00

32 88.10 89.31 69 105.00 97.13 106 93.30 62.20

33 90.80 78.94 70 107.00 166.00 107 101.80 133.00

34 89.40 83.55 71 107.00 87.99 108 107.90 208.00

35 102.00 127.00 72 101.00 154.00 109 108.50 208.00

36 94.50 121.00 73 97.00 100.00

37 91.00 107.00 74 100.00 123.00

Source: Data provided courtesy of Jean-Pierre Despr�es, Ph.D.
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The Scatter Diagram

A first step that is usually useful in studying the relationship between two variables is to
prepare a scatter diagram of the data such as is shown in Figure 9.3.1. The points are
plotted by assigning values of the independent variable X to the horizontal axis and values
of the dependent variable Y to the vertical axis.

The pattern made by the points plotted on the scatter diagram usually suggests the
basic nature and strength of the relationship between two variables. As we look at
Figure 9.3.1, for example, the points seem to be scattered around an invisible straight
line. The scatter diagram also shows that, in general, subjects with large waist circumfer-
ences also have larger amounts of deep abdominal AT. These impressions suggest that the
relationship between the two variables may be described by a straight line crossing the Y-
axis below the origin and making approximately a 45-degree angle with the X-axis. It looks
as if it would be simple to draw, freehand, through the data points the line that describes the
relationship between X and Y. It is highly unlikely, however, that the lines drawn by any two
people would be exactly the same. In other words, for every person drawing such a line by
eye, or freehand, we would expect a slightly different line. The question then arises as to
which line best describes the relationship between the two variables. We cannot obtain an
answer to this question by inspecting the lines. In fact, it is not likely that any freehand line
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FIGURE 9.3.1 Scatter diagram of data shown in Table 9.3.1.
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drawn through the data will be the line that best describes the relationship between X and Y,
since freehand lines will reflect any defects of vision or judgment of the person drawing the
line. Similarly, when judging which of two lines best describes the relationship, subjective
evaluation is liable to the same deficiencies.

What is needed for obtaining the desired line is some method that is not fraught with
these difficulties.

The Least-Squares Line

The method commonly employed for obtaining the desired line is known as the method of
least squares, and the resulting line is called the least-squares line. The reason for calling
the method by this name will be explained in the discussion that follows.

We recall from algebra that the general equation for a straight line may be written as

y ¼ aþ bx (9.3.1)

where y is a value on the vertical axis, x is a value on the horizontal axis, a is the point where
the line crosses the vertical axis, and b shows the amount by which y changes for each unit
change in x. We refer to a as the y-intercept and b as the slope of the line. To draw a line
based on Equation 9.3.1, we need the numerical values of the constants a and b. Given these
constants, we may substitute various values of x into the equation to obtain corresponding
values of y. The resulting points may be plotted. Since any two such coordinates determine
a straight line, we may select any two, locate them on a graph, and connect them to obtain
the line corresponding to the equation.

Obtaining the Least-Square Line

The least-squares regression line equation may be obtained from sample data by simple
arithmetic calculations that may be carried out by hand using the following equations

b̂1 ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
Pn
i¼1

xi � �xð Þ2
(9.3.2)

b̂0 ¼ �y� b̂1�x (9.3.3)

where xi and yi are the corresponding values of each data point (X, Y), �x and �y are the
means of the X and Y sample data values, respectively, and b̂0 and b̂1 are the estimates of
the intercept b0 and slope b1, respectively, of the population regression line. Since the
necessary hand calculations are time consuming, tedious, and subject to error, the
regression line equation is best obtained through the use of a computer software package.
Although the typical researcher need not be concerned with the arithmetic involved, the
interested reader will find them discussed in references listed at the end of this chapter.

For the data in Table 9.3.1 we obtain the least-squares regression equation by means
of MINITAB. After entering the X values in Column 1 and the Y values in Column 2 we
proceed as shown in Figure 9.3.2.

For now, the only information from the output in Figure 9.3.2 that we are interested in
is the regression equation. Other information in the output will be discussed later.
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:dnammoc noisseS:xob golaiD

Stat Regression Regression MTB > Name C3 = ‘FITS1’ C4 = ‘RESI1’
Type y in Response and x in Predictors. MTB > Regress ‘y’ 1 ‘x’;
Click Storage. Check Residuals and Fits. SUBC> Fits ‘FITS1’;
Click OK. SUBC> Constant;

SUBC> Residuals ‘RESI1’.

Output:

Regression Analysis: y versus x
The regression equation is
y = -216 + 3.46 x

Predictor Coef Stdev t-ratio p
Constant -215.98 21.80 -9.91 0.000
x 3.4589 0.2347 14.74 0.000

s = 33.06  R-sq = 67.0%  R-sq(adj) = 66.7%

Analysis of Variance

SOURCE DF SS MS F p
Regression 1 237549 237549 217.28 0.000
Error 107 116982 1093
Total 108 354531

Unusual Observations
Obs. x y Fit Stdev.Fit Residual St.Resid
58 86 155.00 82.52 3.43 72.48 2.20R
65 120 90.41 197.70 7.23 -107.29 -3.33R
66 120 106.00 198.74 7.29 -92.74 -2.88R
71 107 87.99 154.12 4.75 -66.13 -2.02R
97 106 241.00 150.66 4.58 90.34 2.76R
102 109 229.00 161.38 5.13 67.62 2.07R
103 115 253.00 181.79 6.28 71.21 2.19R

R denotes an obs. with a large st. resid.

FIGURE 9.3.2 MINITAB procedure and output for obtaining the least-squares regression

equation from the data in Table 9.3.1.
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From Figure 9.3.2 we see that the linear equation for the least-squares line that
describes the relationship between waist circumference and deep abdominal AT may be
written, then, as

ŷ ¼ �216 þ 3:46x

This equation tells us that since b̂0 is negative, the line crosses the Y-axis below the
origin, and that since b̂1 the slope, is positive, the line extends from the lower left-hand
corner of the graph to the upper right-hand corner. We see further that for each unit increase
in x, y increases by an amount equal to 3.46. The symbol ŷ denotes a value of y computed
from the equation, rather than an observed value of Y.

By substituting two convenient values of X into Equation 9.3.2, we may obtain the
necessary coordinates for drawing the line. Suppose, first, we let X ¼ 70 and obtain

ŷ ¼ �216 þ 3:46 70ð Þ ¼ 26:2

If we let X ¼ 110 we obtain

ŷ ¼ �216 þ 3:46 110ð Þ ¼ 164

The line, along with the original data, is shown in Figure 9.3.3.
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FIGURE 9.3.3 Original data and least-squares line for Example 9.3.1.
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The Least-Squares Criterion Now that we have obtained what we call the
“best fit” line for describing the relationship between our two variables, we need to
determine by what criterion it is considered best. Before the criterion is stated, let us
examine Figure 9.3.3. We note that generally the least-squares line does not pass through
the observed points that are plotted on the scatter diagram. In other words, most of the
observed points deviate from the line by varying amounts.

The line that we have drawn through the points is best in this sense:

The sum of the squared vertical deviations of the observed data points (yi) from the least-
squares line is smaller than the sum of the squared vertical deviations of the data points
from any other line.

In other words, if we square the vertical distance from each observed point (yi) to
the least-squares line and add these squared values for all points, the resulting total will
be smaller than the similarly computed total for any other line that can be drawn
through the points. For this reason the line we have drawn is called the least-squares
line.

EXERCISES

9.3.1 Plot each of the following regression equations on graph paper and state whether X and Yare directly
or inversely related.

(a) ŷ ¼ �3 þ 2x

(b) ŷ ¼ 3 þ 0:5x

(c) ŷ ¼ 10 � 0:75x

9.3.2 The following scores represent a nurse’s assessment (X) and a physician’s assessment (Y) of the
condition of 10 patients at time of admission to a trauma center.

X: 18 13 18 15 10 12 8 4 7 3
Y: 23 20 18 16 14 11 10 7 6 4

(a) Construct a scatter diagram for these data.

(b) Plot the following regression equations on the scatter diagram and indicate which one you think
best fits the data. State the reason for your choice.

(1) ŷ ¼ 8 þ 0:5x
(2) ŷ ¼ �10 þ 2x
(3) y ¼ 1 þ 1x

For each of the following exercises (a) draw a scatter diagram and (b) obtain the regression equation
and plot it on the scatter diagram.

9.3.3 Methadone is often prescribed in the treatment of opioid addiction and chronic pain. Krantz et al.
(A-2) studied the relationship between dose of methadone and the corrected QT (QTc) interval for
17 subjects who developed torsade de pointes (ventricular tachycardia nearly always due to
medications). QTc is calculated from an electrocardiogram and is measured in mm/sec. A higher
QTc value indicates a higher risk of cardiovascular mortality. A question of interest is how well
one can predict and estimate the QTc value from a knowledge of methadone dose. This question is
typical of those that can be answered by means of regression analysis. Since QTc is the variable
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about which we wish to make predictions and estimations, it is the dependent variable. The
variable methadone dose, knowledge of which will be used to make the predictions and
estimations, is the independent variable.

Methadone Dose Methadone Dose
(mg/day) QTc (mm/sec) (mg/day) QTc (mm/sec)

1000 600 650 785
550 625 600 765

97 560 660 611
90 585 270 600
85 590 680 625

126 500 540 650
300 700 600 635
110 570 330 522

65 540

Source: Mori J. Krantz, Ilana B. Kutinsky, Alastair D. Roberston, and Philip S. Mehler,
“Dose-Related Effects of Methadone on QT Prolongation in a Series of Patients with
Torsade de Pointes,” Pharmacotherapy, 23 (2003), 802–805.

9.3.4 Reiss et al. (A-3) compared point-of-care and standard hospital laboratory assays for monitoring
patients receiving a single anticoagulant or a regimen consisting of a combination of anticoagulants.
It is quite common when comparing two measuring techniques, to use regression analysis in which
one variable is used to predict another. In the present study, the researchers obtained measures of
international normalized ratio (INR) by assay of capillary and venous blood samples collected from
90 subjects taking warfarin. INR, used especially when patients are receiving warfarin, measures the
clotting ability of the blood. Point-of-care testing for INR was conducted with the CoaguChek assay
product. Hospital testing was done with standard hospital laboratory assays. The authors used the
hospital assay INR level to predict the CoaguChek INR level. The measurements are given in the
following table.

CoaguChek Hospital CoaguChek Hospital CoaguChek Hospital
(Y) (X) (Y) (X) (Y) (X)

1.8 1.6 2.4 1.2 3.1 2.4
1.6 1.9 2.3 2.3 1.7 1.8
2.5 2.8 2.0 1.6 1.8 1.6
1.9 2.4 3.3 3.8 1.9 1.7
1.3 1.5 1.9 1.6 5.3 4.2
2.3 1.8 1.8 1.5 1.6 1.6
1.2 1.3 2.8 1.8 1.6 1.4
2.3 2.4 2.5 1.5 3.3 3.3
2.0 2.1 0.8 1.0 1.5 1.5
1.5 1.5 1.3 1.2 2.2 2.8
2.1 2.4 3.7 1.4 1.1 1.6
1.5 1.5 2.4 1.6 2.6 2.6

(Continued )
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1.5 1.7 4.1 3.2 6.4 5.0
1.8 2.1 2.4 1.2 1.5 1.4
1.0 1.2 2.3 2.3 3.0 2.8
2.1 1.9 3.1 1.6 2.6 2.3
1.6 1.6 1.5 1.4 1.2 1.2
1.7 1.6 3.6 2.1 2.1 1.9
2.0 1.9 2.5 1.7 1.1 1.1
1.8 1.6 2.1 1.7 1.0 1.0
1.3 4.1 1.8 1.2 1.4 1.5
1.5 1.9 1.5 1.3 1.7 1.3
3.6 2.1 2.5 1.1 1.2 1.1
2.4 2.2 1.5 1.2 2.5 2.4
2.2 2.3 1.5 1.1 1.2 1.3
2.7 2.2 1.6 1.2 2.5 2.9
2.9 3.1 1.4 1.4 1.9 1.7
2.0 2.2 4.0 2.3 1.8 1.7
1.0 1.2 2.0 1.2 1.2 1.1
2.4 2.6 2.5 1.5 1.3 1.1

Source: Data provided courtesy of Curtis E. Haas, Pharm.D.

9.3.5 Digoxin is a drug often prescribed to treat heart ailments. The purpose of a study by Parker et al. (A-4)
was to examine the interactions of digoxin with common grapefruit juice. In one experiment, subjects
took digoxin with water for 2 weeks, followed by a 2-week period during which digoxin was
withheld. During the next 2 weeks subjects took digoxin with grapefruit juice. For seven subjects, the
average peak plasma digoxin concentration (Cmax) when taking water is given in the first column of
the following table. The second column contains the percent change in Cmax concentration when
subjects were taking the digoxin with grapefruit juice [GFJ (%) change]. Use the Cmax level when
taking digoxin with water to predict the percent change in Cmax concentration when taking digoxin
with grapefruit juice.

Cmax (ngl/ml) with Water Change in Cmax with GFJ (%)

2.34 29.5
2.46 40.7
1.87 5.3
3.09 23.3
5.59 �45:1
4.05 �35:3
6.21 �44:6
2.34 29.5

Source: Data provided courtesy of Robert B. Parker, Pharm.D.

9.3.6 Evans et al. (A-5) examined the effect of velocity on ground reaction forces (GRF) in dogs with
lameness from a torn cranial cruciate ligament. The dogs were walked and trotted over a force

CoaguChek Hospital CoaguChek Hospital CoaguChek Hospital
(Y) (X) (Y) (X) (Y) (X)
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platform and the GRF recorded (in newtons) during the stance phase. The following table contains 22
measurements of force expressed as the mean of five force measurements per dog when walking and
the mean of five force measurements per dog when trotting. Use the GRF value when walking to
predict the GRF value when trotting.

GRF-Walk GRF-Trot GRF-Walk GRF-Trot

31.5 50.8 24.9 30.2
33.3 43.2 33.6 46.3
32.3 44.8 30.7 41.8
28.8 39.5 27.2 32.4
38.3 44.0 44.0 65.8
36.9 60.1 28.2 32.2
14.6 11.1 24.3 29.5
27.0 32.3 31.6 38.7
32.8 41.3 29.9 42.0
27.4 38.2 34.3 37.6
31.5 50.8 24.9 30.2

Source: Data provided courtesy of Richard Evans, Ph.D.

9.3.7 Glomerular filtration rate (GFR) is the most important parameter of renal function assessed in renal
transplant recipients. Although inulin clearance is regarded as the gold standard measure of GFR, its
use in clinical practice is limited. Krieser et al. (A-6) examined the relationship between the inverse of
Cystatin C (a cationic basic protein measured in mg/L) and inulin GFR as measured by technetium
radionuclide labeled diethylenetriamine penta-acetic acid) (DTPA GFR) clearance (ml/min/1.73 m2).
The results of 27 tests are shown in the following table. Use DTPA GFR as the predictor of inverse
Cystatin C.

DTPAGFR 1/Cystatin C DTPAGFR 1/Cystatin C

18 0.213 42 0.485
21 0.265 42 0.427
21 0.446 43 0.562
23 0.203 43 0.463
27 0.369 48 0.549
27 0.568 48 0.538
30 0.382 51 0.571
32 0.383 55 0.546
32 0.274 58 0.402
32 0.424 60 0.592
36 0.308 62 0.541
37 0.498 67 0.568
41 0.398 68 0.800

88 0.667

Source: Data provided courtesy of David Krieser, M.D.
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9.4 EVALUATINGTHEREGRESSIONEQUATION

Once the regression equation has been obtained it must be evaluated to determine whether
it adequately describes the relationship between the two variables and whether it can be
used effectively for prediction and estimation purposes.

When H0 : b1 ¼ 0 Is Not Rejected If in the population the relationship
between X and Y is linear, b1, the slope of the line that describes this relationship, will
be either positive, negative, or zero. If b1 is zero, sample data drawn from the
population will, in the long run, yield regression equations that are of little or no
value for prediction and estimation purposes. Furthermore, even though we assume that
the relationship between X and Y is linear, it may be that the relationship could be
described better by some nonlinear model. When this is the case, sample data when
fitted to a linear model will tend to yield results compatible with a population slope of
zero. Thus, following a test in which the null hypothesis that b1 equals zero is not
rejected, we may conclude (assuming that we have not made a type II error by
accepting a false null hypothesis) either (1) that although the relationship between X
and Y may be linear it is not strong enough for X to be of much value in predicting and
estimating Y, or (2) that the relationship between X and Y is not linear; that is, some
curvilinear model provides a better fit to the data. Figure 9.4.1 shows the kinds of
relationships between X and Y in a population that may prevent rejection of the null
hypothesis that b1 ¼ 0.

When H0 : b1 ¼ 0 Is Rejected Now let us consider the situations in a
population that may lead to rejection of the null hypothesis that b1 ¼ 0. Assuming
that we do not commit a type I error, rejection of the null hypothesis that b1 ¼ 0 may
be attributed to one of the following conditions in the population: (1) the relationship
is linear and of sufficient strength to justify the use of sample regression equations to
predict and estimate Y for given values of X; and (2) there is a good fit of the data to
a linear model, but some curvilinear model might provide an even better fit.
Figure 9.4.2 illustrates the two population conditions that may lead to rejection of
H0 : b1 ¼ 0.

Thus, we see that before using a sample regression equation to predict and
estimate, it is desirable to test H0 : b1 ¼ 0. We may do this either by using analysis
of variance and the F statistic or by using the t statistic. We will illustrate both methods.
Before we do this, however, let us see how we may investigate the strength of the
relationship between X and Y.

The Coefficient of Determination One way to evaluate the strength of the
regression equation is to compare the scatter of the points about the regression line with the
scatter about �y, the mean of the sample values of Y. If we take the scatter diagram for
Example 9.3.1 and draw through the points a line that intersects the Y-axis at �y and is
parallel to the X-axis, we may obtain a visual impression of the relative magnitudes of the
scatter of the points about this line and the regression line. This has been done in
Figure 9.4.3.
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It appears rather obvious from Figure 9.4.3 that the scatter of the points about the
regression line is much less than the scatter about the �y line. We would not wish,
however, to decide on this basis alone that the equation is a useful one. The situation may
not be always this clear-cut, so that an objective measure of some sort would be much
more desirable. Such an objective measure, called the coefficient of determination, is
available.

The Total Deviation Before defining the coefficient of determination, let us
justify its use by examining the logic behind its computation. We begin by considering the
point corresponding to any observed value, yi, and by measuring its vertical distance from
the �y line. We call this the total deviation and designate it yi � �yð Þ.

The Explained Deviation If we measure the vertical distance from the
regression line to the �y line, we obtain ŷi � �yð Þ, which is called the explained deviation,
since it shows by how much the total deviation is reduced when the regression line is
fitted to the points.

X

Y

Y

X

(a)

(b)

FIGURE 9.4.1 Conditions in a population that may prevent rejection of the null hypothesis

that b1 ¼ 0. (a) The relationship between X and Y is linear, but b1 is so close to zero that sample

data are not likely to yield equations that are useful for predicting Y when X is given. (b) The

relationship between X and Y is not linear; a curvilinear model provides a better fit to the data;

sample data are not likely to yield equations that are useful for predicting Y when X is given.
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Unexplained Deviation Finally, we measure the vertical distance of the
observed point from the regression line to obtain yi � ŷið Þ, which is called the
unexplained deviation, since it represents the portion of the total deviation not
“explained” or accounted for by the introduction of the regression line. These three
quantities are shown for a typical value of Y in Figure 9.4.4. The difference between the
observed value of Yand the predicted value of Y, yi � ŷið Þ, is also referred to as a residual.
The set of residuals can be used to test the underlying linearity and equal-variances
assumptions of the regression model described in Section 9.2. This procedure is
illustrated at the end of this section.

It is seen, then, that the total deviation for a particular yi is equal to the sum of the
explained and unexplained deviations. We may write this symbolically as

yi � �yð Þ
total

deviation

¼ ŷi � �yð Þ
explained
deviation

þ yi � ŷið Þ
unexplained

deviation

(9.4.1)

X

Y

Y

X

(a)

(b)

FIGURE 9.4.2 Population conditions relative to X and Y that may cause rejection of the

null hypothesis that b1 ¼ 0. (a) The relationship between X and Y is linear and of sufficient

strength to justify the use of a sample regression equation to predict and estimate Y for

given values of X. (b) A linear model provides a good fit to the data, but some curvilinear

model would provide an even better fit.
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If we measure these deviations for each value of yi and ŷi, square each deviation, and
add up the squared deviations, we haveX

yi � �yð Þ2

total
sum

of squares

¼
X

ŷi � �yð Þ2

explained
sum

of squares

þ
X

yi � ŷið Þ2

unexplained
sum

of squares

(9.4.2)

These quantities may be considered measures of dispersion or variability.

Total Sumof Squares The total sum of squares (SST), for example, is a measure
of the dispersion of the observed values of Y about their mean �y; that is, this term is a
measure of the total variation in the observed values of Y. The reader will recognize this
term as the numerator of the familiar formula for the sample variance.

Explained Sum of Squares The explained sum of squares measures the
amount of the total variability in the observed values of Y that is accounted for by the
linear relationship between the observed values of X and Y. This quantity is referred to also
as the sum of squares due to linear regression (SSR).
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ŷ = _216 + 3.46x

FIGURE 9.4.3 Scatter diagram, sample regression line, and �y line for Example 9.3.1.
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Unexplained Sum of Squares The unexplained sum of squares is a measure
of the dispersion of the observed Y values about the regression line and is sometimes called
the error sum of squares, or the residual sum of squares (SSE). It is this quantity that is
minimized when the least-squares line is obtained.

We may express the relationship among the three sums of squares values as

SST ¼ SSRþ SSE

The numerical values of these sums of squares for our illustrative example appear in the
analysis of variance table in Figure 9.3.2. Thus, we see that SST ¼ 354531, SSR ¼ 237549,
SSE ¼ 116982, and

354531 ¼ 237549 þ 116982
354531 ¼ 354531

Calculating r2 It is intuitively appealing to speculate that if a regression equation
does a good job of describing the relationship between two variables, the explained or
regression sum of squares should constitute a large proportion of the total sum of
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FIGURE 9.4.4 Scatter diagram showing the total, explained, and unexplained deviations

for a selected value of Y, Example 9.3.1.
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squares. It would be of interest, then, to determine the magnitude of this proportion by
computing the ratio of the explained sum of squares to the total sum of squares. This is
exactly what is done in evaluating a regression equation based on sample data, and the
result is called the sample coefficient of determination, r2. That is,

r2 ¼
P

ŷi � �yð Þ2

P
yi � �yð Þ2 ¼ SSR

SST

In our present example we have, using the sums of squares values from Figure 9.3.2,

r2 ¼ 237549

354531
¼ :67

The sample coefficient of determination measures the closeness of fit of the sample
regression equation to the observed values of Y. When the quantities yi � ŷið Þ, the vertical
distances of the observed values of Y from the equations, are small, the unexplained sum of
squares is small. This leads to a large explained sum of squares that leads, in turn, to a large
value of r2. This is illustrated in Figure 9.4.5.

In Figure 9.4.5(a) we see that the observations all lie close to the regression line, and
we would expect r2 to be large. In fact, the computed r2 for these data is .986, indicating that
about 99 percent of the total variation in the yi is explained by the regression.

In Figure 9.4.5(b) we illustrate a case in which the yi are widely scattered about
the regression line, and there we suspect that r2 is small. The computed r2 for the data
is .403; that is, less than 50 percent of the total variation in the yi is explained by the
regression.

The largest value that r2 can assume is 1, a result that occurs when all the variation in
the yi is explained by the regression. When r2 ¼ 1 all the observations fall on the regression
line. This situation is shown in Figure 9.4.5(c).

The lower limit of r2 is 0. This result is obtained when the regression line and
the line drawn through �y coincide. In this situation none of the variation in the yi is
explained by the regression. Figure 9.4.5(d) illustrates a situation in which r2 is close
to zero.

When r2 is large, then, the regression has accounted for a large proportion of the total
variability in the observed values of Y, and we look with favor on the regression equation.
On the other hand, a small r2 which indicates a failure of the regression to account for a
large proportion of the total variation in the observed values of Y, tends to cast doubt on the
usefulness of the regression equation for predicting and estimating purposes. We do not,
however, pass final judgment on the equation until it has been subjected to an objective
statistical test.

Testing H0 : b1 ¼ 0with the F Statistic The following example illustrates
one method for reaching a conclusion regarding the relationship between X and Y.

EXAMPLE 9.4.1

Refer to Example 9.3.1. We wish to know if we can conclude that, in the population from
which our sample was drawn, X and Y are linearly related.
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Solution: The steps in the hypothesis testing procedure are as follows:

1. Data. The data were described in the opening statement of Example
9.3.1.

2. Assumptions. We presume that the simple linear regression model and
its underlying assumptions as given in Section 9.2 are applicable.

3. Hypotheses.

H0 : b1 ¼ 0

HA : b1 6¼ 0

a ¼ :05

(a)

Close fit, large r2

(c)

r2
 = 1

(d)

r2
       0

(b)

Poor fit, small r2

← 

FIGURE 9.4.5 r2 as a measure of closeness-of-fit of the sample regression line to the sample

observations.
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4. Test statistic. The test statistic is V.R. as explained in the discussion that
follows.

From the three sums-of-squares terms and their associated degrees
of freedom the analysis of variance table of Table 9.4.1 may be constructed.

In general, the degrees of freedom associated with the sum of squares
due to regression is equal to the number of constants in the regression
equation minus 1. In the simple linear case we have two estimates, b0 and
b1; hence the degrees of freedom for regression are 2 � 1 ¼ 1.

5. Distribution of test statistic. It can be shown that when the hypothesis
of no linear relationship between X and Y is true, and when the
assumptions underlying regression are met, the ratio obtained by
dividing the regression mean square by the residual mean square is
distributed as F with 1 and n� 2 degrees of freedom.

6. Decision rule. Reject H0 if the computed value of V.R. is equal to or
greater than the critical value of F.

7. Calculation of test statistic. As shown in Figure 9.3.2, the computed
value of F is 217.28.

8. Statistical decision. Since 217.28 is greater than 3.94, the critical value
of F (obtained by interpolation) for 1 and 107 degrees of freedom, the
null hypothesis is rejected.

9. Conclusion. We conclude that the linear model provides a good fit to
the data.

10. p value. For this test, since 217:28 > 8:25, we have p < :005.
Examing Figure 9.3.2, we see that, in fact, p< .001.

&

Estimating the Population Coefficient of Determination The
sample coefficient of determination provides a point estimate of r2 the population
coefficient of determination. The population coefficient of determination, r2 has the
same function relative to the population as r2 has to the sample. It shows what proportion
of the total population variation in Y is explained by the regression of Y on X. When the
number of degrees of freedom is small, r2 is positively biased. That is, r2 tends to be large.
An unbiased estimator of r2 is provided by

~r2 ¼ 1 �
P

yi � ŷið Þ2= n� 2ð ÞP
yi � �yð Þ2= n� 1ð Þ (9.4.3)

TABLE 9.4.1 ANOVA Table for Simple Linear Regression

Source of Variation SS d.f. MS V.R.

Linear regression SSR 1 MSR ¼ SSR=1 MSR/MSE

Residual SSE n � 2 MSE ¼ SSE= n � 2ð Þ

Total SST n � 1
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Observe that the numerator of the fraction in Equation 9.4.3 is the unexplained mean
square and the denominator is the total mean square. These quantities appear in the
analysis of variance table. For our illustrative example we have, using the data from
Figure 9.3.2,

~r2 ¼ 1 � 116982=107

354531=108
¼ :66695

This quantity is labeled R-sq(adj) in Figure 9.3.2 and is reported as 66.7 percent. We see
that this value is less than

r2 ¼ 1 � 116982

354531
¼ :67004

We see that the difference in r2 and ~r2 is due to the factor n� 1ð Þ= n� 2ð Þ. When n is large,
this factor will approach 1 and the difference between r2 and ~r2 will approach zero.

Testing H0 : b1 ¼ 0 with the t Statistic When the assumptions stated in
Section 9.2 are met, b̂0 and b̂1 are unbiased point estimators of the corresponding
parameters b0 and b1. Since, under these assumptions, the subpopulations of Y values
are normally distributed, we may construct confidence intervals for and test hypotheses
about b0 and b1. When the assumptions of Section 9.2 hold true, the sampling distributions
of b̂0 and b̂1 are each normally distributed with means and variances as follows:

mb̂0
¼ b0 (9.4.4)

s2
b̂0

¼
s2
y=x

P
x2
i

n
P

xi � �xð Þ2 (9.4.5)

mb̂1
¼ b1 (9.4.6)

and

s2
b̂1

¼
s2
yjxP

xi � �xð Þ2 (9.4.7)

In Equations 9.4.5 and 9.4.7s2
y=x is the unexplained variance of the subpopulations of Y

values.
With knowledge of the sampling distributions of b̂0 and b̂1 we may construct

confidence intervals and test hypotheses relative to b0 and b1 in the usual manner.
Inferences regarding a are usually not of interest. On the other hand, as we have seen, a
great deal of interest centers on inferential procedures with respect to b̂1. The reason for
this is the fact that b1 tells us so much about the form of the relationship between X and Y.
When X and Yare linearly related a positive b̂1 indicates that, in general, Y increases as X
increases, and we say that there is a direct linear relationship between X and Y. A
negative b̂1 indicates that values of Y tend to decrease as values of X increase, and we say
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that there is an inverse linear relationship between X and Y. When there is no linear
relationship between X and Y, b̂1 is equal to zero. These three situations are illustrated in
Figure 9.4.6.

The Test Statistic For testing hypotheses about b1 the test statistic when s2
yjx is

known is

z ¼ b̂1 � b1ð Þ0

sb̂1

(9.4.8)

where b1ð Þ0 is the hypothesized value of b1. The hypothesized value of b1 does not have
to be zero, but in practice, more often than not, the null hypothesis of interest is that
b1 ¼ 0.

As a rule s2
yjx is unknown. When this is the case, the test statistic is

t ¼ b̂1 � b1ð Þ0

sb̂1

(9.4.9)

where sb̂1
is an estimate of sb̂1

and t is distributed as Student’s t with n� 2 degrees of
freedom.

If the probability of observing a value as extreme as the value of the test statistic
computed by Equation 9.4.9 when the null hypothesis is true is less than a=2 (since we have
a two-sided test), the null hypothesis is rejected.

EXAMPLE 9.4.2

Refer to Example 9.3.1. We wish to know if we can conclude that the slope of the
population regression line describing the relationship between X and Y is zero.

Solution:

1. Data. See Example 9.3.1.

2. Assumptions. We presume that the simple linear regression model and
its underlying assumptions are applicable.

X

Y

X

Y

X

Y

)c()b()a(

FIGURE 9.4.6 Scatter diagrams showing (a) direct linear relationship, (b) inverse linear

relationship, and (c) no linear relationship between X and Y.
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3. Hypotheses.

H0 : b1 ¼ 0

HA : b1 6¼ 0

a ¼ :05

4. Test statistic. The test statistic is given by Equation 9.4.9.

5. Distribution of test statistic. When the assumptions are met and H0 is
true, the test statistic is distributed as Student’s t with n� 2 degrees of
freedom.

6. Decision rule. Reject H0 if the computed value of t is either greater than
or equal to 1.9826 or less than or equal to �1:9826.

7. Calculation of statistic. The output in Figure 9.3.2 shows that
b̂1 ¼ 3:4589, sb̂1

¼ :2347, and

t ¼ 3:4589 � 0

:2347
¼ 14:74

8. Statistical decision. Reject H0 because 14:74 > 1:9826.

9. Conclusion. We conclude that the slope of the true regression line is not
zero.

10. p value. The p value for this test is less than .01, since, when H0 is true,
the probability of getting a value of t as large as or larger than 2.6230
(obtained by interpolation) is .005, and the probability of getting a value
of t as small as or smaller than �2:6230 is also .005. Since 14.74 is
greater than 2.6230, the probability of observing a value of t as large as
or larger than 14.74 (when the null hypothesis is true) is less than .005.
We double this value to obtain 2 :005ð Þ ¼ :01.

Either the F statistic or the t statistic may be used for testing
H0 : b1 ¼ 0. The value of the variance ratio is equal to the square of
the value of the t statistic (i.e., t2 ¼ F) and, therefore, both statistics
lead to the same conclusion. For the current example, we see that
14:74ð Þ2 ¼ 217:27, the value obtained by using the F statistic in

Example 9.4.1. Hence, the corresponding p value will be the same
for with the f statistic and the t statistic.

The practical implication of our results is that we can expect to get
better predictions and estimates of Y if we use the sample regression
equation than we would get if we ignore the relationship betweenX and Y.
The fact that b is positive leads us to believe that b1 is positive and that
the relationship between X and Y is a direct linear relationship. &

As has already been pointed out, Equation 9.4.9 may be used to test the null hypothesis that
b1 is equal to some value other than 0. The hypothesized value for b1, b1ð Þ0 is substituted
into Equation 9.4.9. All other quantities, as well as the computations, are the same as in the
illustrative example. The degrees of freedom and the method of determining significance
are also the same.
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AConfidence Interval for b1 Once we determine that it is unlikely, in light of
sample evidence, that b1 is zero, we may be interested in obtaining an interval estimate
of b1. The general formula for a confidence interval,

estimator � reliability factorð Þ standard error of the estimateð Þ
may be used. When obtaining a confidence interval for b1, the estimator is b̂1, the
reliability factor is some value of z or t (depending on whether or not s2

y xj is known), and
the standard error of the estimator is

sb̂1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yjxP

xi � �xð Þ2

s

When s2
yjx is unknown, sb is estimated by

sb̂1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yjxP

xi � �xð Þ2

s

where s2
yjx ¼ MSE

In most practical situations our 100 1 � að Þ percent confidence interval for b is

b̂1 � t 1�a=2ð Þsb̂1
(9.4.10)

For our illustrative example we construct the following 95 percent confidence
interval for b:

3:4589 � 1:9826 :2347ð Þ
ð2:99; 3:92Þ

We interpret this interval in the usual manner. From the probabilistic point of view we say
that in repeated sampling 95 percent of the intervals constructed in this way will include b1.
The practical interpretation is that we are 95 percent confident that the single interval
constructed includes b1.

Using the Confidence Interval to Test H0 : b1 ¼ 0 It is instructive to
note that the confidence interval we constructed does not include zero, so that zero is not a
candidate for the parameter being estimated. We feel, then, that it is unlikely that b1 ¼ 0.
This is compatible with the results of our hypothesis test in which we rejected the null
hypothesis that b1 ¼ 0. Actually, we can always test H0 : b1 ¼ 0 at the a significance level
by constructing the 100 1 � að Þ percent confidence interval for b1, and we can reject or fail
to reject the hypothesis on the basis of whether or not the interval includes zero. If the
interval contains zero, the null hypothesis is not rejected; and if zero is not contained in the
interval, we reject the null hypothesis.

Interpreting the Results It must be emphasized that failure to reject the null
hypothesis that b1 ¼ 0 does not mean that X and Y are not related. Not only is it possible
that a type II error may have been committed but it may be true that X and Y are related in
some nonlinear manner. On the other hand, when we reject the null hypothesis that b1 ¼ 0,
we cannot conclude that the true relationship between X and Y is linear. Again, it may be
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that although the data fit the linear regression model fairly well (as evidenced by the fact
that the null hypothesis that b1 ¼ 0 is rejected), some nonlinear model would provide an
even better fit. Consequently, when we reject H0 that b1 ¼ 0, the best we can say is that
more useful results (discussed below) may be obtained by taking into account the
regression of Y on X than in ignoring it.

Testing the Regression Assumptions The values of the set of residuals,
yi � ŷið Þ, for a data set are often used to test the linearity and equal-variances

assumptions (assumptions 4 and 5 of Section 9.2) underlying the regression model.
This is done by plotting the values of the residuals on the y-axis and the predicted values
of y on the x-axis. If these plots show a relatively random scatter of points above and
below a horizontal line at yi � ŷið Þ ¼ 0, these assumptions are assumed to have been met
for a given set of data. A non-random pattern of points can indicate violation of the
linearity assumption, and a funnel-shaped pattern of the points can indicate violation of
the equal-variances assumption. Examples of these patterns are shown in Figure 9.4.7.

FIGURE 9.4.7 Residual plots useful for testing the linearity and equal-variances assumptions

of the regression model. (a) A random pattern of points illustrating non-violation of the

assumptions. (b) A non-random pattern illustrating a likely violation of the linearity assumption.

(c) A funneling pattern illustrating a likely violation of the equal-variances assumption.
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Many computer packages will provide residual plots automatically. These plots often use
standardized values (i.e., ei=

ffiffiffiffiffiffiffiffiffiffi
MSE

p
) of the residuals and predicted values, but are

interpreted in the same way as are plots of unstandardized values.

EXAMPLE 9.4.3

Refer to Example 9.3.1. We wish to use residual plots to test the assumptions of linearity
and equal variances in the data.

Solution: A residual plot is shown in Figure 9.4.8.
Since there is a relatively equal and random scatter of points above and

below the residual yi � ŷið Þ ¼ 0 line, the linearity assumption is presumed to
be valid. However, the funneling tendency of the plot suggests that as the
predicted value of deep abdominal AT area increases, so does the amount of
error. This indicates that the assumption of equal variances may not be valid
for these data. &

EXERCISES

9.4.1 to 9.4.5 Refer to Exercises 9.3.3 to 9.3.7, and for each one do the following:

(a) Compute the coefficient of determination.

(b) Prepare an ANOVA table and use the F statistic to test the null hypothesis that b1 ¼ 0. Let
a ¼ :05.

(c) Use the t statistic to test the null hypothesis that b1 ¼ 0 at the .05 level of significance.

(d) Determine the p value for each hypothesis test.

(e) State your conclusions in terms of the problem.

(f) Construct the 95 percent confidence interval for b1.

FIGURE 9.4.8 Residual plot of data from Example 9.3.1.
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9.5 USING THE REGRESSION EQUATION

If the results of the evaluation of the sample regression equation indicate that there is a
relationship between the two variables of interest, we can put the regression equation to
practical use. There are two ways in which the equation can be used. It can be used to
predict what value Y is likely to assume given a particular value of X. When the normality
assumption of Section 9.2 is met, a prediction interval for this predicted value of Y may be
constructed.

We may also use the regression equation to estimate the mean of the sub-
population of Y values assumed to exist at any particular value of X. Again, if the
assumption of normally distributed populations holds, a confidence interval for this
parameter may be constructed. The predicted value of Y and the point estimate of the
mean of the subpopulation of Y will be numerically equivalent for any particular value
of X but, as we will see, the prediction interval will be wider than the confidence
interval.

Predicting Y for a Given X If it is known, or if we are willing to assume
that the assumptions of Section 9.2 are met, and when s2

yjx is unknown, then the 100 1 � að Þ
percent prediction interval for Y is given by

ŷ� t 1�a=2ð Þsyjx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 1

n
þ xp � �x

� �2

P
xi � �xð Þ2

vuut (9.5.1)

where xp is the particular value of x at which we wish to obtain a prediction interval for Y
and the degrees of freedom used in selecting t are n� 2.

Estimating the Mean of Y for a Given X The 100 1 � að Þ percent
confidence interval for myjx, when s2

yjx is unknown, is given by

ŷ� t 1�a=2ð Þsyjx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ xp � �x

� �2

P
xi � �xð Þ2

vuut (9.5.2)

We use MINITAB to illustrate, for a specified value of X, the calculation of a 95 percent
confidence interval for the mean of Yand a 95 percent prediction interval for an individual Y
measurement.

Suppose, for our present example, we wish to make predictions and estimates about
AT for a waist circumference of 100 cm. In the regression dialog box click on “Options.”
Enter 100 in the “Prediction interval for new observations” box. Click on “Confidence
limits,” and click on “Prediction limits.”

We obtain the following output:

Fit Stdev.Fit 95.0% C.I. 95.0% P.I.
129.90 3.69 (122.58, 137.23) (63.93, 195.87)
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We interpret the 95 percent confidence interval (C.I.) as follows.
If we repeatedly drew samples from our population of men, performed a regression

analysis, and estimated myjx¼100 with a similarly constructed confidence interval, about
95 percent of such intervals would include the mean amount of deep abdominal AT for
the population. For this reason we are 95 percent confident that the single interval
constructed contains the population mean and that it is somewhere between 122.58
and 137.23.

Our interpretation of a prediction interval (P.I.) is similar to the interpretation of a
confidence interval. If we repeatedly draw samples, do a regression analysis, and construct
prediction intervals for men who have a waist circumference of 100 cm, about 95 percent of
them will include the man’s deep abdominal AT value. This is the probabilistic interpre-
tation. The practical interpretation is that we are 95 percent confident that a man who has a
waist circumference of 100 cm will have a deep abdominal AT area of somewhere between
63.93 and 195.87 square centimeters.

Simultaneous confidence intervals and prediction intervals can be calculated for all
possible points along a fitted regression line. Plotting lines through these points will then
provide a graphical representation of these intervals. Since the mean data point �X; �Yð Þ is
always included in the regression equation, as illustrated by equations 9.3.2 and 9.3.3, plots
of the simultaneous intervals will always provide the best estimates at the middle of the line
and the error will increase toward the ends of the line. This illustrates the fact that
estimation within the bounds of the data set, called interpolation, is acceptable, but that
estimation outside of the bounds of the data set, called extrapolation, is not advisable since
the pridiction error can be quite large. See Figure 9.5.1.

Figure 9.5.2 contains a partial printout of the SAS® simple linear regression analysis
of the data of Example 9.3.1.

Resistant Line Frequently, data sets available for analysis by linear regression
techniques contain one or more “unusual” observations; that is, values of x or y, or both,
may be either considerably larger or considerably smaller than most of the other
measurements. In the output of Figure 9.3.2, we see that the computer detected seven

FIGURE 9.5.1 Simultaneous confidence intervals (a) and prediction intervals (b) for the data in

Example 9.3.1.
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unusual observations in the waist circumference and deep abdominal AT data shown in
Table 9.3.1.

The least-squares method of fitting a straight line to data is sensitive to unusual
observations, and the location of the fitted line can be affected substantially by them.
Because of this characteristic of the least-squares method, the resulting least-squares line is
said to lack resistance to the influence of unusual observations. Several methods have been
devised for dealing with this problem, including one developed by John W. Tukey. The
resulting line is variously referred to as Tukey’s line and the resistant line.

Based on medians, which, as we have seen, are descriptive measures that are
themselves resistant to extreme values, the resistant line methodology is an exploratory
data analysis tool that enables the researcher to quickly fit a straight line to a set of data
consisting of paired x, y measurements. The technique involves partitioning, on the basis of
the independent variable, the sample measurements into three groups of as near equal size
as possible: the smallest measurements, the largest measurements, and those in between.
The resistant line is the line fitted in such a way that there are an equal number of values

The SAS System

Model: MODEL1
Dependent Variable: Y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 237548.51620 237548.51620 217.279 0.0001
Error 107 116981.98602 1093.28959
C Total 108 354530.50222

Root MSE 33.06493 R-square 0.6700
Dep Mean 101.89404 Adj R-sq 0.6670
C.V. 32.45031

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter =0 Prob > |T|

INTERCEP 1 -215.981488 21.79627076 -9.909 0.0001
X 1 3.458859 0.23465205 14.740 0.0001

FIGURE 9.5.2 Partial printout of the computer analysis of the data given in Example 9.3.1,

using the SAS® software package.
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above and below it in both the smaller group and the larger group. The resulting slope and
y-intercept estimates are resistant to the effects of either extreme y values, extreme x values,
or both. To illustrate the fitting of a resistant line, we use the data of Table 9.3.1 and
MINITAB. The procedure and output are shown in Figure 9.5.3.

We see from the output in Figure 9.5.3 that the resistant line has a slope of 3.2869 and
a y-intercept of �203:7868. The half-slope ratio, shown in the output as equal to .690, is an
indicator of the degree of linearity between x and y. A slope, called a half-slope, is
computed for each half of the sample data. The ratio of the right half-slope, bR, and the left
half-slope, bL, is equal to bR=bL. If the relationship between x and y is straight, the half-
slopes will be equal, and their ratio will be 1. A half-slope ratio that is not close to 1
indicates a lack of linearity between x and y.

The resistant line methodology is discussed in more detail by Hartwig and Dearing
(1), Johnstone and Velleman (2), McNeil (3), and Velleman and Hoaglin (4).

EXERCISES

In each exercise refer to the appropriate previous exercise and, for the value of X indicated,
(a) construct the 95 percent confidence interval for myjx and (b) construct the 95 percent
prediction interval for Y.

9.5.1 Refer to Exercise 9.3.3 and let X ¼ 400.

9.5.2 Refer to Exercise 9.3.4 and let X ¼ 1:6.

9.5.3 Refer to Exercise 9.3.5 and let X ¼ 4:16.

9.5.4 Refer to Exercise 9.3.6 and let X ¼ 29:4.

9.5.5 Refer to Exercise 9.3.7 and let X ¼ 35.

:dnammoc noisseS:xob golaiD

Stat EDA Resistant Line MTB > Name C3 ’RESI1’ C4 ’FITS1’
MTB > RLine C2 C1 ’RESI1’ ’FITS1’;
SUBC> MaxIterations 10.

Type C2 in Response and C1 in Predictors.
Check Residuals and Fits. Click OK.

Output:

Resistant Line Fit: C2 versus C1

Slope = 3.2869 Level = -203.7868 Half-slope ratio = 0.690

FIGURE 9.5.3 MINITAB resistant line procedure and output for the data of Table 9.3.1.
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9.6 THE CORRELATIONMODEL

In the classic regression model, which has been the underlying model in our discussion up
to this point, only Y, which has been called the dependent variable, is required to be random.
The variable X is defined as a fixed (nonrandom or mathematical) variable and is referred to
as the independent variable. Recall, also, that under this model observations are frequently
obtained by preselecting values of X and determining corresponding values of Y.

When both Y and X are random variables, we have what is called the correlation
model. Typically, under the correlation model, sample observations are obtained by
selecting a random sample of the units of association (which may be persons, places,
animals, points in time, or any other element on which the two measurements are taken)
and taking on each a measurement of X and a measurement of Y. In this procedure, values of
X are not preselected but occur at random, depending on the unit of association selected in
the sample.

Although correlation analysis cannot be carried out meaningfully under the classic
regression model, regression analysis can be carried out under the correlation model.
Correlation involving two variables implies a co-relationship between variables that puts
them on an equal footing and does not distinguish between them by referring to one as the
dependent and the other as the independent variable. In fact, in the basic computational
procedures, which are the same as for the regression model, we may fit a straight line to the
data either by minimizing

P
yi � ŷið Þ2 or by minimizing

P
xi � x̂ið Þ2. In other words, we

may do a regression of X on Y as well as a regression of Y on X. The fitted line in the two
cases in general will be different, and a logical question arises as to which line to fit.

If the objective is solely to obtain a measure of the strength of the relationship
between the two variables, it does not matter which line is fitted, since the measure usually
computed will be the same in either case. If, however, it is desired to use the equation
describing the relationship between the two variables for the purposes discussed in the
preceding sections, it does matter which line is fitted. The variable for which we wish to
estimate means or to make predictions should be treated as the dependent variable; that is,
this variable should be regressed on the other variable.

The Bivariate Normal Distribution Under the correlation model, X and Y
are assumed to vary together in what is called a joint distribution. If this joint distribution is
a normal distribution, it is referred to as a bivariate normal distribution. Inferences
regarding this population may be made based on the results of samples properly drawn
from it. If, on the other hand, the form of the joint distribution is known to be nonnormal, or
if the form is unknown and there is no justification for assuming normality, inferential
procedures are invalid, although descriptive measures may be computed.

Correlation Assumptions The following assumptions must hold for infer-
ences about the population to be valid when sampling is from a bivariate distribution.

1. For each value of X there is a normally distributed subpopulation of Y values.

2. For each value of Y there is a normally distributed subpopulation of X values.

3. The joint distribution of X and Y is a normal distribution called the bivariate normal
distribution.
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4. The subpopulations of Y values all have the same variance.

5. The subpopulations of X values all have the same variance.

The bivariate normal distribution is represented graphically in Figure 9.6.1. In this
illustration we see that if we slice the mound parallel to Y at some value of X, the cutaway
reveals the corresponding normal distribution of Y. Similarly, a slice through the mound
parallel to X at some value of Y reveals the corresponding normally distributed sub-
population of X.

9.7 THE CORRELATION COEFFICIENT

The bivariate normal distribution discussed in Section 9.6 has five parameters, sx, sy, mx,
my, and r. The first four are, respectively, the standard deviations and means associated
with the individual distributions. The other parameter, r, is called the population

)Y ,X(f)Y ,X(f

f(X, Y)

Y X

XY

Y X

)b()a(

(c)

FIGURE 9.6.1 A bivariate normal distribution. (a) A bivariate normal distribution. (b) A

cutaway showing normally distributed subpopulation of Y for given X. (c) A cutaway showing

normally distributed subpopulation of X for given Y.
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correlation coefficient and measures the strength of the linear relationship between X
and Y.

The population correlation coefficient is the positive or negative square root of r2,
the population coefficient of determination previously discussed, and since the coefficient
of determination takes on values between 0 and 1 inclusive, r may assume any value
between �1 and þ1. If r ¼ 1 there is a perfect direct linear correlation between the two
variables, while r ¼ �1 indicates perfect inverse linear correlation. If r ¼ 0 the two
variables are not linearly correlated. The sign of r will always be the same as the sign of b1,
the slope of the population regression line for X and Y.

The sample correlation coefficient, r, describes the linear relationship between the
sample observations on two variables in the same way that r describes the relationship in a
population. The sample correlation coefficient is the square root of the sample coefficient
of determination that was defined earlier.

Figures 9.4.5(d) and 9.4.5(c), respectively, show typical scatter diagrams where
r ! 0 r2 ! 0ð Þ and r ¼ þ1 r2 ¼ 1ð Þ. Figure 9.7.1 shows a typical scatter diagram where
r ¼ �1.

We are usually interested in knowing if we may conclude that r 6¼ 0, that is, that X
and Y are linearly correlated. Since r is usually unknown, we draw a random sample from
the population of interest, compute r, the estimate of r, and test H0 : r ¼ 0 against the
alternative r 6¼ 0. The procedure will be illustrated in the following example.

EXAMPLE 9.7.1

The purpose of a study by Kwast-Rabben et al. (A-7) was to analyze somatosensory evoked
potentials (SEPs) and their interrelations following stimulation of digits I, III, and V in the
hand. The researchers wanted to establish reference criteria in a control population. Thus,
healthy volunteers were recruited for the study. In the future this information could be quite
valuable as SEPs may provide a method to demonstrate functional disturbances in patients
with suspected cervical root lesion who have pain and sensory symptoms. In the study,
stimulation below-pain-level intensity was applied to the fingers. Recordings of spinal

Y

X

FIGURE 9.7.1 Scatter diagram for r ¼ �1.
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responses were made with electrodes fixed by adhesive electrode cream to the subject’s
skin. One of the relationships of interest was the correlation between a subject’s height
(cm) and the peak spinal latency (Cv) of the SEP. The data for 155 measurements are shown
in Table 9.7.1.

TABLE 9.7.1 Height and Spine SEP Measurements (Cv)

from Stimulation of Digit I for 155 Subjects Described
in Example 9.7.1

Height Cv Height Cv Height Cv

149 14.4 168 16.3 181 15.8

149 13.4 168 15.3 181 18.8

155 13.5 168 16.0 181 18.6

155 13.5 168 16.6 182 18.0

156 13.0 168 15.7 182 17.9

156 13.6 168 16.3 182 17.5

157 14.3 168 16.6 182 17.4

157 14.9 168 15.4 182 17.0

158 14.0 170 16.6 182 17.5

158 14.0 170 16.0 182 17.8

160 15.4 170 17.0 184 18.4

160 14.7 170 16.4 184 18.5

161 15.5 171 16.5 184 17.7

161 15.7 171 16.3 184 17.7

161 15.8 171 16.4 184 17.4

161 16.0 171 16.5 184 18.4

161 14.6 172 17.6 185 19.0

161 15.2 172 16.8 185 19.6

162 15.2 172 17.0 187 19.1

162 16.5 172 17.6 187 19.2

162 17.0 173 17.3 187 17.8

162 14.7 173 16.8 187 19.3

163 16.0 174 15.5 188 17.5

163 15.8 174 15.5 188 18.0

163 17.0 175 17.0 189 18.0

163 15.1 175 15.6 189 18.8

163 14.6 175 16.8 190 18.3

163 15.6 175 17.4 190 18.6

163 14.6 175 17.6 190 18.8

164 17.0 175 16.5 190 19.2

164 16.3 175 16.6 191 18.5

164 16.0 175 17.0 191 18.5

164 16.0 176 18.0 191 19.0

165 15.7 176 17.0 191 18.5

165 16.3 176 17.4 194 19.8

(Continued )
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Solution: The scatter diagram and least-squares regression line are shown in Figure 9.7.2.
Let us assume that the investigator wishes to obtain a regression

equation to use for estimating and predicting purposes. In that case the
sample correlation coefficient will be obtained by the methods discussed
under the regression model.

Height Cv Height Cv Height Cv
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FIGURE 9.7.2 Height and cervical (spine) potentials in digit I

stimulation for the data described in Example 9.7.1.

165 17.4 176 18.2 194 18.8

165 17.0 176 17.3 194 18.4

165 16.3 177 17.2 194 19.0

166 14.1 177 18.3 195 18.0

166 14.2 179 16.4 195 18.2

166 14.7 179 16.1 196 17.6

166 13.9 179 17.6 196 18.3

166 17.2 179 17.8 197 18.9

167 16.7 179 16.1 197 19.2

167 16.5 179 16.0 200 21.0

167 14.7 179 16.0 200 19.2

167 14.3 179 17.5 202 18.6

167 14.8 179 17.5 202 18.6

167 15.0 180 18.0 182 20.0

167 15.5 180 17.9 190 20.0

167 15.4 181 18.4 190 19.5

168 17.3 181 16.4

Source: Data provided courtesy of Olga Kwast-Rabben, Ph.D.
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The Regression Equation

Let us assume that we wish to predict Cv levels from knowledge of heights. In that case we
treat height as the independent variable and Cv level as the dependent variable and obtain
the regression equation and correlation coefficient with MINITAB as shown in Figure 9.7.3.
For this example r ¼ ffiffiffiffiffiffiffiffiffi

:719
p ¼ :848. We know that r is positive because the slope of the

regression line is positive. We may also use the MINITAB correlation procedure to obtain r
as shown in Figure 9.7.4.

The printout from the SAS® correlation procedure is shown in Figure 9.7.5. Note that
the SAS® procedure gives descriptive measures for each variable as well as the p value for
the correlation coefficient.

When a computer is not available for performing the calculations, r may be obtained
by means of the following formulas:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂

2

1

P
x2
i �

P
xið Þ2=n

h i
P

y2
i �

P
yið Þ2=n

vuut
(9.7.1)

The regression equation is
Cv = -3.20 + 0.115 Height

Predictor Coef SE Coef T P
Constant -3.198 1.016 -3.15 0.002
Height 0.114567 0.005792 19.78 0.000

S = 0.8573 R-Sq = 71.9% R-Sq(adj) = 71.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 287.56 287.56 391.30 0.000
Residual Error 153 112.44 0.73
Total 154 400.00

Unusual Observations
Obs Height Cv Fit SE Fit Residual St Resid
39 166 14.1000 15.8199 0.0865 -1.7199 -2.02R
42 166 13.9000 15.8199 0.0865 -1.9199 -2.25R
105 181 15.8000 17.5384 0.0770 -1.7384 -2.04R
151 202 18.6000 19.9443 0.1706 -1.3443 -1.60 X
152 202 18.6000 19.9443 0.1706 -1.3443 -1.60 X
153 182 20.0000 17.6529 0.0798 2.3471 2.75R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

FIGURE 9.7.3 MINITAB output for Example 9.7.1 using the simple regression procedure.
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The CORR Procedure
2 Variables: HEIGHT CV

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
HEIGHT 155 175.04516 11.92745 27132 149.00000 202.00000
CV 155 16.85613 1.61165 2613 13.00000 21.00000

Pearson Correlation Coefficients, N = 155
Prob > |r| under H0: Rho=0

HEIGHT CV
HEIGHT 1.00000 0.84788

<.0001
CV 0.84788 1.00000

<.0001

FIGURE 9.7.5 SAS® printout for Example 9.7.1.

Data:

C1: Height
C2: Cv

:dnammoc noisseS:xoB golaiD

Stat Basic Statistics Correlation MTB > Correlation C1 C2.

Type C1 C2 in Variables. Click OK.

OUTPUT:

Correlations: Height, Cv

Pearson correlation of Height and Cv = 0.848
P-Value = 0.000

FIGURE 9.7.4 MINITAB procedure for Example 9.7.1 using the correlation command.
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EXAMPLE 9.7.2

Refer to Example 9.7.1. We wish to see if the sample value of r ¼ :848 is of sufficient
magnitude to indicate that, in the population, height and Cv SEP levels are correlated.

Solution: We conduct a hypothesis test as follows.

1. Data. See the initial discussion of Example 9.7.1.

2. Assumptions. We presume that the assumptions given in Section 9.6
are applicable.

3. Hypotheses.

H0 : r ¼ 0

HA : r 6¼ 0

4. Test statistic. When r ¼ 0, it can be shown that the appropriate test
statistic is

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1 � r2

r
(9.7.3)

5. Distribution of test statistic. When H0 is true and the assumptions are
met, the test statistic is distributed as Student’s t distribution with n� 2
degrees of freedom.

6. Decision rule. If we let a ¼ :05, the critical values of t in the present
example are �1:9754 (by interpolation). If, from our data, we compute a
value of t that is either greater than or equal to þ1:9754 or less than or
equal to �1:9754, we will reject the null hypothesis.

7. Calculation of test statistic. Our calculated value of t is

t ¼ :848

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
153

1 � :719

r
¼ 19:787

8. Statistical decision. Since the computed value of the test statistic does
exceed the critical value of t, we reject the null hypothesis.

An alternative formula for computing r is given by

r ¼ n
P

xiyi �
P

xið Þ P
yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2
i �

P
xið Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

y2
i �

P
yið Þ2

q (9.7.2)

An advantage of this formula is that r may be computed without first computing b.
This is the desirable procedure when it is not anticipated that the regression equation will
be used.

Remember that the sample correlation coefficient, r, will always have the same sign
as the sample slope, b. &
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9. Conclusion. We conclude that, in the population, height and SEP levels
in the spine are linearly correlated.

10. p value. Since t ¼ 19:787 > 2:6085 (interpolated value of t for 153,
.995), we have for this test, p < :005. &

One may also notice that the test statistic for the correlation coefficient is equivalent
to the test statistic for the slope of the regression line. Hence, squaring the t statistic in
solution step 7 results in the F statistic provided in Figure 9.7.3. This may be useful when
using a computer package that does not routinely provide the t statistic for the correlation
coefficient (e.g., SPSS) and one does not wish to calculate the test statistic by hand.

ATest for UseWhen the Hypothesized r Is a Nonzero Value The
use of the t statistic computed in the above test is appropriate only for testing H0 : r ¼ 0. If
it is desired to test H0 : r ¼ r0, where r0 is some value other than zero, we must use
another approach. Fisher (5) suggests that r be transformed to zr as follows:

zr ¼ 1

2
ln

1 þ r

1 � r
(9.7.4)

where ln is a natural logarithm. It can be shown that zr is approximately normally distributed
with a mean of zr ¼ 1

2 ln 1 þ rð Þ= 1 � rð Þf g and estimated standard deviation of

szr ¼
1ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p (9.7.5)

To test the null hypothesis that r is equal to some value other than zero, the test
statistic is

Z ¼ zr � zr

1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p (9.7.6)

which follows approximately the standard normal distribution.
To determine zr for an observed r and zr for a hypothesized r, we consult Table I,

thereby avoiding the direct use of natural logarithms.
Suppose in our present example we wish to test

H0 : r ¼ :80

against the alternative
HA : r 6¼ :80

at the .05 level of significance. By consulting Table I (and interpolating), we find that for

r ¼ :848; zr ¼ 1:24726

and for

r ¼ :80; zr ¼ 1:09861

Our test statistic, then, is

Z ¼ 1:24726 � 1:09861

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
155 � 3

p ¼ 1:83
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Since 1.83 is less than the critical value of z ¼ 1:96, we are unable to reject H0. We
conclude that the population correlation coefficient may be .80.

For sample sizes less than 25, Fisher’s Z transformation should be used with caution,
if at all. An alternative procedure from Hotelling (6) may be used for sample sizes equal to
or greater than 10. In this procedure the following transformation of r is employed:

z� ¼ zr � 3zr þ r

4n
(9.7.7)

The standard deviation of z� is

sz� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p (9.7.8)

The test statistic is

Z� ¼ z� � z�

1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ¼ z� � z�ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
(9.7.9)

where

z� pronounced zetað Þ ¼ zr �
3zr þ r
� �

4n

Critical values for comparison purposes are obtained from the standard normal
distribution.

In our present example, to test H0 : r ¼ :80 against HA : r 6¼ :80 using the Hotel-
ling transformation and a ¼ :05, we have

z� ¼ 1:24726 � 3 1:24726ð Þ þ :848

4 155ð Þ ¼ 1:2339

z� ¼ 1:09861 � 3 1:09861ð Þ þ :8

4 155ð Þ ¼ 1:0920

Z� ¼ 1:2339 � 1:0920ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
155 � 1

p ¼ 1:7609

Since 1.7609 is less than 1.96, the null hypothesis is not rejected, and the same conclusion
is reached as when the Fisher transformation is used.

Alternatives In some situations the data available for analysis do not meet the
assumptions necessary for the valid use of the procedures discussed here for testing
hypotheses about a population correlation coefficient. In such cases it may be more
appropriate to use the Spearman rank correlation technique discussed in Chapter 13.

Confidence Interval for r Fisher’s transformation may be used to construct
100 1 � að Þ percent confidence intervals for r. The general formula for a confidence
interval

estimator � reliability factorð Þ standard errorð Þ
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is employed. We first convert our estimator, r, to zr, construct a confidence interval about zr,
and then reconvert the limits to obtain a 100 1 � að Þ percent confidence interval about r.
The general formula then becomes

zr � z 1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p� �
(9.7.10)

For our present example the 95 percent confidence interval for zr is given by

1:24726 � 1:96 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
155 � 3

p� �
ð1:08828; 1:40624Þ

Converting these limits (by interpolation in Appendix Table I), which are values of zr,
into values of r gives

zr r

1.08828 .7962
1.40624 .8866

We are 95 percent confident, then, that r is contained in the interval .7962 to .88866. Because
of the limited entries in the table, these limits must be considered as only approximate.

EXERCISES

In each of the following exercises:

(a) Prepare a scatter diagram.

(b) Compute the sample correlation coefficient.

(c) Test H0 : r ¼ 0 at the .05 level of significance and state your conclusions.

(d) Determine the p value for the test.

(e) Construct the 95 percent confidence interval for r.

9.7.1 The purpose of a study by Brown and Persley (A-8) was to characterize acute hepatitis A in patients
more than 40 years old. They performed a retrospective chart review of 20 subjects who were
diagnosed with acute hepatitis A, but were not hospitalized. Of interest was the use of age (years) to
predict bilirubin levels (mg/dl). The following data were collected.

Age (Years) Bilirubin (mg/dl) Age (Years) Bilirubin (mg/dl)

78 7.5 44 7.0
72 12.9 42 1.8
81 14.3 45 .8
59 8.0 78 3.8
64 14.1 47 3.5
48 10.9 50 5.1
46 12.3 57 16.5

(Continued )
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42 1.0 52 3.5
58 5.2 58 5.6
52 5.1 45 1.9

Source: Data provided courtesy of Geri R. Brown, M.D.

9.7.2 Another variable of interest in the study by Reiss et al. (A-3) (see Exercise 9.3.4) was partial
thromboplastin (aPTT), the standard test used to monitor heparin anticoagulation. Use the data in the
following table to examine the correlation between aPTT levels as measured by the CoaguCheck
point-of-care assay and standard laboratory hospital assay in 90 subjects receiving heparin alone,
heparin with warfarin, and warfarin and exoenoxaparin.

Heparin Warfarin
Warfarin and
Exoenoxaparin

CoaguCheck Hospital CoaguCheck Hospital CoaguCheck Hospital
aPTT aPTT aPTT aPTT aPTT aPTT

49.3 71.4 18.0 77.0 56.5 46.5
57.9 86.4 31.2 62.2 50.7 34.9
59.0 75.6 58.7 53.2 37.3 28.0
77.3 54.5 75.2 53.0 64.8 52.3
42.3 57.7 18.0 45.7 41.2 37.5
44.3 59.5 82.6 81.1 90.1 47.1
90.0 77.2 29.6 40.9 23.1 27.1
55.4 63.3 82.9 75.4 53.2 40.6
20.3 27.6 58.7 55.7 27.3 37.8
28.7 52.6 64.8 54.0 67.5 50.4
64.3 101.6 37.9 79.4 33.6 34.2
90.4 89.4 81.2 62.5 45.1 34.8
64.3 66.2 18.0 36.5 56.2 44.2
89.8 69.8 38.8 32.8 26.0 28.2
74.7 91.3 95.4 68.9 67.8 46.3

150.0 118.8 53.7 71.3 40.7 41.0
32.4 30.9 128.3 111.1 36.2 35.7
20.9 65.2 60.5 80.5 60.8 47.2
89.5 77.9 150.0 150.0 30.2 39.7
44.7 91.5 38.5 46.5 18.0 31.3
61.0 90.5 58.9 89.1 55.6 53.0
36.4 33.6 112.8 66.7 18.0 27.4
52.9 88.0 26.7 29.5 18.0 35.7
57.5 69.9 49.7 47.8 78.3 62.0
39.1 41.0 85.6 63.3 75.3 36.7
74.8 81.7 68.8 43.5 73.2 85.3
32.5 33.3 18.0 54.0 42.0 38.3

125.7 142.9 92.6 100.5 49.3 39.8
77.1 98.2 46.2 52.4 22.8 42.3

143.8 108.3 60.5 93.7 35.8 36.0

Source: Data provided courtesy of Curtis E. Haas, Pharm.D.

Age (Years) Bilirubin (mg/dl) Age (Years) Bilirubin (mg/dl)
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9.7.3 In the study by Parker et al. (A-4) (see Exercise 9.3.5), the authors also looked at the change in AUC
(area under the curve of plasma concentration of digoxin) when comparing digoxin levels taken with
and without grapefruit juice. The following table gives the AUC when digoxin was consumed with
water ng�hr=mlð Þ and the change in AUC compared to the change in AUC when digoxin is taken with
grapefruit juice (GFJ, %).

Water AUC Level
ng � hr=mlð Þ

Change in AUC
with GFJ (%)

6.96 17.4
5.59 24.5
5.31 8.5
8.22 20.8

11.91 �26.7
9.50 �29.3

11.28 �16.8

Source: Data provided courtesy of Robert B. Parker,
Pharm.D.

9.7.4 An article by Tuzson et al. (A-9) in Archives of Physical Medicine and Rehabilitation reported the
following data on peak knee velocity in walking (measured in degrees per second) at flexion and
extension for 18 subjects with cerebral palsy.

Flexion �=sð Þ Extension �=sð Þ
100 100
150 150
210 180
255 165
200 210
185 155
440 440
110 180
400 400
160 140
150 250
425 275
375 340
400 400
400 450
300 300
300 300
320 275

Source: Ann E. Tuzson, Kevin P. Granata,
and Mark F. Abel, “Spastic Velocity Threshold
Constrains Functional Performance in
Cerebral Palsy,” Archives of Physical Medicine
and Rehabilitation, 84 (2003), 1363–1368.
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9.7.5 Amyotrophic lateral sclerosis (ALS) is characterized by a progressive decline of motor function. The
degenerative process affects the respiratory system. Butz et al. (A-10) investigated the longitudinal
impact of nocturnal noninvasive positive-pressure ventilation on patients with ALS. Prior to
treatment, they measured partial pressure of arterial oxygen (Pao2) and partial pressure of arterial
carbon dioxide (Paco2) in patients with the disease. The results were as follows:

Paco2 Pao2

40.0 101.0
47.0 69.0
34.0 132.0
42.0 65.0
54.0 72.0
48.0 76.0
53.6 67.2
56.9 70.9
58.0 73.0
45.0 66.0
54.5 80.0
54.0 72.0
43.0 105.0
44.3 113.0
53.9 69.2
41.8 66.7
33.0 67.0
43.1 77.5
52.4 65.1
37.9 71.0
34.5 86.5
40.1 74.7
33.0 94.0
59.9 60.4
62.6 52.5
54.1 76.9
45.7 65.3
40.6 80.3
56.6 53.2
59.0 71.9

Source: M. Butz, K. H. Wollinsky, U. Widemuth-Catrinescu,
A. Sperfeld, S. Winter, H. H. Mehrkens, A. C. Ludolph, and
H. Schreiber, “Longitudinal Effects of Noninvasive Positive-
Pressure Ventilation in Patients with Amyotrophic Lateral
Sclerosis,” American Journal of Medical Rehabilitation, 82
(2003) 597–604.

9.7.6 A simple random sample of 15 apparently healthy children between the ages of 6 months and 15 years
yielded the following data on age, X, and liver volume per unit of body weight (ml/kg), Y:

X Y X Y

.5 41 10.0 26

.7 55 10.1 35
2.5 41 10.9 25
4.1 39 11.5 31

(Continued )
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5.9 50 12.1 31
6.1 32 14.1 29
7.0 41 15.0 23
8.2 42

9.8 SOME PRECAUTIONS

Regression and correlation analysis are powerful statistical tools when properly employed.
Their inappropriate use, however, can lead only to meaningless results. To aid in the proper
use of these techniques, we make the following suggestions:

1. The assumptions underlying regression and correlation analysis should be reviewed
carefully before the data are collected. Although it is rare to find that assumptions are
met to perfection, practitioners should have some idea about the magnitude of the gap
that exists between the data to be analyzed and the assumptions of the proposed
model, so that they may decide whether they should choose another model; proceed
with the analysis, but use caution in the interpretation of the results; or use the chosen
model with confidence.

2. In simple linear regression and correlation analysis, the two variables of interest are
measured on the same entity, called the unit of association. If we are interested in the
relationship between height and weight, for example, these two measurements are
taken on the same individual. It usually does not make sense to speak of the
correlation, say, between the heights of one group of individuals and the weights of
another group.

3. No matter how strong is the indication of a relationship between two variables, it
should not be interpreted as one of cause and effect. If, for example, a significant
sample correlation coefficient between two variables X and Y is observed, it can mean
one of several things:

(a) X causes Y.
(b) Y causes X.
(c) Some third factor, either directly or indirectly, causes both X and Y.
(d) An unlikely event has occurred and a large sample correlation coefficient has

been generated by chance from a population in which X and Y are, in fact, not
correlated.

(e) The correlation is purely nonsensical, a situation that may arise when measure-
ments of X and Y are not taken on a common unit of association.

4. The sample regression equation should not be used to predict or estimate outside the
range of values of the independent variable represented in the sample. As illustrated
in Section 9.5, this practice, called extrapolation, is risky. The true relationship
between two variables, although linear over an interval of the independent variable,
sometimes may be described at best as a curve outside this interval. If our sample by
chance is drawn only from the interval where the relationship is linear, we have only a

X Y X Y

9.8 SOME PRECAUTIONS 459



3GC09 12/04/2012 15:4:41 Page 460

limited representation of the population, and to project the sample results beyond the
interval represented by the sample may lead to false conclusions. Figure 9.8.1
illustrates the possible pitfalls of extrapolation.

9.9 SUMMARY

In this chapter, two important tools of statistical analysis, simple linear regression and
correlation, are examined. The following outline for the application of these techniques has
been suggested.

1. Identify the model. Practitioners must know whether the regression model or the
correlation model is the appropriate one for answering their questions.

2. Review assumptions. It has been pointed out several times that the validity of the
conclusions depends on how well the analyzed data fit the chosen model.

3. Obtain the regression equation. We have seen how the regression equation is
obtained by the method of least squares. Although the computations, when done by
hand, are rather lengthy, involved, and subject to error, this is not the problem today
that it has been in the past. Computers are now in such widespread use that the
researcher or statistician without access to one is the exception rather than the rule.
No apology for lengthy computations is necessary to the researcher who has a
computer available.

4. Evaluate the equation. We have seen that the usefulness of the regression equation
for estimating and predicting purposes is determined by means of the analysis of

Y

X

Sampled Interval

Extrapolation

Extrapolation

FIGURE 9.8.1 Example of extrapolation.
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variance, which tests the significance of the regression mean square. The strength of
the relationship between two variables under the correlation model is assessed by
testing the null hypothesis that there is no correlation in the population. If this
hypothesis can be rejected we may conclude, at the chosen level of significance, that
the two variables are correlated.

5. Use the equation. Once it has been determined that it is likely that the regression
equation provides a good description of the relationship between two variables, X and
Y, it may be used for one of two purposes:

(a) To predict what value Y is likely to assume, given a particular value of X, or
(b) To estimate the mean of the subpopulation of Y values for a particular value

of X.

This necessarily abridged treatment of simple linear regression and correlation may
have raised more questions than it has answered. It may have occurred to the reader, for
example, that a dependent variable can be more precisely predicted using two or more
independent variables rather than one. Or, perhaps, he or she may feel that knowledge of
the strength of the relationship among several variables might be of more interest than
knowledge of the relationship between only two variables. The exploration of these
possibilities is the subject of the next chapter, and the reader’s curiosity along these lines
should be at least partially relieved.

For those who would like to pursue further the topic of regression analysis a number
of excellent references are available, including those by Dielman (7), Hocking (8),
Mendenhall and Sincich (9), and Neter et al. (10).

SUMMARY OF FORMULAS FOR CHAPTER 9

Formula
Number Name Formula

9.2.1 Assumption of
linearity

myjx ¼ b0 þ b1x

9.2.2 Simple linear
regression model

y ¼ b0 þ b1xþ e

9.2.3 Error (residual) term e ¼ y� b0 þ b1xð Þ ¼ y� myjx

9.3.1 Algebraic
representation
of a straight line

y ¼ aþ bx

9.3.2 Least square
estimate of the
slope of a
regression line

b̂1 ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
Pn
i¼1

xi � �xð Þ2

(Continued )
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9.3.3 Least square estimate
of the intercept of a
regression line

b̂0 ¼ �y� b̂1�x

9.4.1 Deviation equation yi � �yð Þ ¼ ŷi � �yð Þ þ yi � ŷið Þ
9.4.2 Sum-of-squares

equation

P
yi � �yð Þ2 ¼ P

ŷi � �yð Þ2 þP
yi � ŷið Þ2

9.4.3 Estimated
population
coefficient of
determination

~r2 ¼ 1 �
P

yi � ŷið Þ2= n� 2ð ÞP
yi � �yð Þ2= n� 1ð Þ

9.4.4–9.4.7 Means and
variances of
point estimators
a and b

mb̂0 ¼ b0

s2
b̂0

¼
s2
yjx

P
x2
i

n
Xn
i¼1

xi � �xð Þ2

mb̂1
¼ b1

s2
b̂1

¼
s2
yjxXn

i¼1

xi � �xð Þ2

9.4.8 z statistic for testing
hypotheses
about b

z ¼ b̂1 � b1ð Þ0

sb̂0

9.4.9 t statistic for testing
hypotheses
about b

t ¼ b̂1 � b1ð Þ0

sb̂0

9.5.1

9.5.2

Prediction
interval for Y
for a given X

Confidence
interval for
the mean of Y
for a given X

ŷ� t 1�a=2ð Þsy=x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 1

n
þ xp � �x

� �2

P
xi � �xð Þ2

vuut

ŷ� t 1�a=2ð Þsyjx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ xp � �x

� �
P

xi � �xð Þ

s

9.7.1–9.7.2 Correlation coefficient

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂

2

1

P
x2
i �

P
xið Þ2=n

h i
P

y2
i �

P
yið Þ2=n

vuut

¼ n
P

xiyi �
P

xið Þ P
yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2
i �

P
xið Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

y2
i �

P
yið Þ2

q
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9.7.3 t statistic for
correlation coefficient t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1 � r2

r

9.7.4 z statistic for
correlation coefficient

zr ¼ 1

2
ln

1 þ r

1 � r

9.7.5 Estimated standard
deviation for z statistic

szp ¼
1ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p

9.7.6 Z statistic for
correlation coefficient

Z ¼ zr � zp

1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p

9.7.7 Z statistic for
correlation coefficient
when n < 25

z� ¼ zr � 3zr þ r

4n

9.7.8 Standard deviation for
z�

sz� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p

9.7.9 Z� statistic for
correlation coefficient

Z� ¼ z� � j�

1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ¼ z� � j�ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
, where

j� ¼ Zp �
3zp þ r
� �

4n

9.7.10 Confidence interval
for r

Zr ¼ Z 1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p� �

Symbol Key � b0 ¼ regression intercept term
� b̂0 ¼ estimated regression intercept
� a ¼ probability of type I error or regression intercept
� b̂1 ¼ estimated regression slope
� b1 ¼ regression slope
� e ¼ error term
� mx ¼ population mean of statistic=variable x
� n ¼ sample size
� s2

x ¼ population variance of statistic=variable x
� r ¼ population correlation coefficient
� r ¼ sample correlation coefficient
� r2 ¼ sample coefficient of determination
� t ¼ t statistic
� xi ¼ value of independent variable at i
� �x ¼ sample mean of independent variable
� yi ¼ value of dependent variable at i
� �y ¼ sample mean of dependent variable
� ŷ ¼ estimated y
� z ¼ z statistic
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REVIEWQUESTIONS AND EXERCISES

1. What are the assumptions underlying simple linear regression analysis when one of the objectives is
to make inferences about the population from which the sample data were drawn?

2. Why is the regression equation called the least-squares equation?

3. Explain the meaning of b̂0 in the sample regression equation.

4. Explain the meaning of b̂1 in the sample regression equation.

5. Explain the following terms:

(a) Total sum of squares

(b) Explained sum of squares

(c) Unexplained sum of squares

6. Explain the meaning of and the method of computing the coefficient of determination.

7. What is the function of the analysis of variance in regression analysis?

8. Describe three ways in which one may test the null hypothesis that b̂1 ¼ 0.

9. For what two purposes can a regression equation be used?

10. What are the assumptions underlying simple correlation analysis when inference is an objective?

11. What is meant by the unit of association in regression and correlation analysis?

12. What are the possible explanations for a significant sample correlation coefficient?

13. Explain why it is risky to use a sample regression equation to predict or to estimate outside the range
of values of the independent variable represented in the sample.

14. Describe a situation in your particular area of interest where simple regression analysis would be
useful. Use real or realistic data and do a complete regression analysis.

15. Describe a situation in your particular area of interest where simple correlation analysis would be
useful. Use real or realistic data and do a complete correlation analysis.

In each of the following exercises, carry out the required analysis and test hypotheses at the indicated
significance levels. Compute the p value for each test.

16. A study by Scrogin et al. (A-11) was designed to assess the effects of concurrent manipulations of
dietary NaCl and calcium on blood pressure as well as blood pressure and catecholamine responses to
stress. Subjects were salt-sensitive, spontaneously hypertensive male rats. Among the analyses
performed by the investigators was a correlation between baseline blood pressure and plasma
epinephrine concentration (E). The following data on these two variables were collected.
Let a ¼ :01.

BP PlasmaE BP PlasmaE

163.90 248.00 143.20 179.00
195.15 339.20 166.00 160.40
170.20 193.20 160.40 263.50
171.10 307.20 170.90 184.70

(Continued )
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148.60 80.80 150.90 227.50
195.70 550.00 159.60 92.35
151.00 70.00 141.60 139.35
166.20 66.00 160.10 173.80
177.80 120.00 166.40 224.80
165.10 281.60 162.00 183.60
174.70 296.70 214.20 441.60
164.30 217.30 179.70 612.80
152.50 88.00 178.10 401.60
202.30 268.00 198.30 132.00
171.70 265.50

Source: Data provided courtesy of Karie E. Scrogin.

17. Dean Parmalee (A-12) wished to know if the year-end grades assigned to Wright State University
Medical School students are predictive of their second-year board scores. The following table shows,
for 89 students, the year-end score (AVG, in percent of 100) and the score on the second-year medical
board examination (BOARD).

AVG BOARD AVG BOARD AVG BOARD

95.73 257 85.91 208 82.01 196
94.03 256 85.81 210 81.86 179
91.51 242 85.35 212 81.70 207
91.49 223 85.30 225 81.65 202
91.13 241 85.27 203 81.51 230
90.88 234 85.05 214 81.07 200
90.83 226 84.58 176 80.95 200
90.60 236 84.51 196 80.92 160
90.30 250 84.51 207 80.84 205
90.29 226 84.42 207 80.77 194
89.93 233 84.34 211 80.72 196
89.83 241 84.34 202 80.69 171
89.65 234 84.13 229 80.58 201
89.47 231 84.13 202 80.57 177
88.87 228 84.09 184 80.10 192
88.80 229 83.98 206 79.38 187
88.66 235 83.93 202 78.75 161
88.55 216 83.92 176 78.32 172
88.43 207 83.73 204 78.17 163
88.34 224 83.47 208 77.39 166
87.95 237 83.27 211 76.30 170
87.79 213 83.13 196 75.85 159
87.01 215 83.05 203 75.60 154
86.86 187 83.02 188 75.16 169
86.85 204 82.82 169 74.85 159
86.84 219 82.78 205 74.66 167

BP PlasmaE BP PlasmaE

(Continued )
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86.30 228 82.57 183 74.58 154
86.13 210 82.56 181 74.16 148
86.10 216 82.45 173 70.34 159
85.92 212 82.24 185

Source: Data provided courtesy of Dean Parmalee, M.D. and the Wright State University
Statistical Consulting Center.

Perform a complete regression analysis with AVG as the independent variable. Let a ¼ :05 for
all tests.

18. Maria Mathias (A-13) conducted a study of hyperactive children. She measured the children’s
attitude, hyperactivity, and social behavior before and after treatment. The following table shows for
31 subjects the age and improvement scores from pre-treatment to post-treatment for attitude (ATT),
social behavior (SOC), and hyperactivity (HYP). A negative score for HYP indicates an improve-
ment in hyperactivity; a positive score in ATTor SOC indicates improvement. Perform an analysis to
determine if there is evidence to indicate that age (years) is correlated with any of the three outcome
variables. Let a ¼ :05 for all tests.

Subject No. AGE ATT HYP SOC

1 9 �1:2 �1:2 0.0
2 9 0.0 0.0 1.0
3 13 �0:4 0.0 0.2
4 6 �0:4 �0:2 1.2
5 9 1.0 �0:8 0.2
6 8 0.8 0.2 0.4
7 8 �0:6 �0:2 0.6
8 9 �1:2 �0:8 �0:6
9 7 0.0 0.2 0.8

10 12 0.4 �0:8 0.4
11 9 �0:8 0.8 �0:2
12 10 1.0 �0:8 1.2
13 12 1.4 �1:6 0.6
14 9 1.0 �0:2 �0:2
15 12 0.8 �0:8 1.0
16 9 1.0 0.4 0.4
17 10 0.4 �0:2 0.6
18 7 0.0 �0:4 0.6
19 12 1.1 �0:6 0.8
20 9 0.2 �0:4 0.2
21 7 0.4 �0:2 0.6
22 6 0.0 �3:2 1.0
23 11 0.6 �0:4 0.0
24 11 0.4 �0:4 0.0
25 11 1.0 �0:7 �0:6
26 11 0.8 �0:8 0.0

AVG BOARD AVG BOARD AVG BOARD
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27 11 1.2 0.6 1.0
28 11 0.2 0.0 �0:2
29 11 0.8 �1:2 0.3
30 8 0.0 0.0 �0:4
31 9 0.4 �0:2 0.2

Source: Data provided courtesy
of Maria Mathias, M.D. and
the Wright State University
Statistical Consulting Center.

19. A study by Triller et al. (A-14) examined the length of time required for home health-care nurses to
repackage a patient’s medications into various medication organizers (i.e., pill boxes). For the 19
patients in the study, researchers recorded the time required for repackaging of medications. They
also recorded the number of problems encountered in the repackaging session.

Patient No. No. of Problems
Repackaging

Time (Minutes) Patient No. No. of Problems
Repackaging

Time (Minutes)

1 9 38 11 1 10
2 2 25 12 2 15
3 0 5 13 1 17
4 6 18 14 0 18
5 5 15 15 0 23
6 3 25 16 10 29
7 3 10 17 0 5
8 1 5 18 1 22
9 2 10 19 1 20

10 0 15

Source: Data provided courtesy of Darren M. Triller, Pharm.D.

Perform a complete regression analysis of these data using the number of problems to predict the time
it took to complete a repackaging session. Let a ¼ :05 for all tests. What conclusions can be drawn
from your analysis? How might your results be used by health-care providers?

20. The following are the pulmonary blood flow (PBF) and pulmonary blood volume (PBV) values
recorded for 16 infants and children with congenital heart disease:

Y X
PBV (ml/sqM) PBF (L/min/sqM)

168 4.31
280 3.40
391 6.20
420 17.30
303 12.30
429 13.99
605 8.73
522 8.90
224 5.87
291 5.00

Subject No. AGE ATT HYP SOC

(Continued )
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233 3.51
370 4.24
531 19.41
516 16.61
211 7.21
439 11.60

Find the regression equation describing the linear relationship between the two variables, compute r2,
and test H0 : b1 ¼ 0 by both the F test and the t test. Let a ¼ :05.

21. Fifteen specimens of human sera were tested comparatively for tuberculin antibody by two methods.
The logarithms of the titers obtained by the two methods were as follows:

Method

A (X) B (Y)

3.31 4.09
2.41 3.84
2.72 3.65
2.41 3.20
2.11 2.97
2.11 3.22
3.01 3.96
2.13 2.76
2.41 3.42
2.10 3.38
2.41 3.28
2.09 2.93
3.00 3.54
2.08 3.14
2.11 2.76

Find the regression equation describing the relationship between the two variables, compute r2, and
test H0 : b1 ¼ 0 by both the F test and the t test.

22. The following table shows the methyl mercury intake and whole blood mercury values in 12 subjects
exposed to methyl mercury through consumption of contaminated fish:

X Y
Methyl
Mercury Intake
mgHg=dayð Þ

Mercury in
whole blood
(ng/g)

180 90
200 120
230 125
410 290

Y
PBV (ml/sqM)

X
PBF (L/min/sqM)

(Continued )
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600 310
550 290
275 170
580 375
105 70
250 105
460 205
650 480

Find the regression equation describing the linear relationship between the two variables, compute r2,
and test H0 : b1 ¼ 0 by both the F and t tests.

23. The following are the weights (kg) and blood glucose levels (mg/100 ml) of 16 apparently healthy
adult males:

Weight (X) Glucose (Y)

64.0 108
75.3 109
73.0 104
82.1 102
76.2 105
95.7 121
59.4 79
93.4 107
82.1 101
78.9 85
76.7 99
82.1 100
83.9 108
73.0 104
64.4 102
77.6 87

Find the simple linear regression equation and testH0 : b1 ¼ 0 using both ANOVA and the t test. Test
H0 : r ¼ 0 and construct a 95 percent confidence interval for r. What is the predicted glucose level
for a man who weighs 95 kg? Construct the 95 percent prediction interval for his weight. Let a ¼ :05
for all tests.

24. The following are the ages (years) and systolic blood pressures of 20 apparently healthy adults:

Age (X) BP (Y) Age (X) BP (Y)

20 120 46 128
43 128 53 136
63 141 70 146

X
Methyl
Mercury Intake
mgHg=dayð Þ

Y
Mercury in
Whole Blood

(ng/g)

(Continued )
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26 126 20 124
53 134 63 143
31 128 43 130
58 136 26 124
46 132 19 121
58 140 31 126
70 144 23 123

Find the simple linear regression equation and test H0 : b1 ¼ 0 using both ANOVA and the t test.
Test H0 : r ¼ 0 and construct a 95 percent confidence interval for r. Find the 95 percent
prediction interval for the systolic blood pressure of a person who is 25 years old. Let a ¼ :05
for all tests.

25. The following data were collected during an experiment in which laboratory animals were
inoculated with a pathogen. The variables are time in hours after inoculation and temperature in
degrees Celsius.

Time Temperature Time Temperature

24 38.8 44 41.1
28 39.5 48 41.4
32 40.3 52 41.6
36 40.7 56 41.8
40 41.0 60 41.9

Find the simple linear regression equation and test H0 : b1 ¼ 0 using both ANOVA and the t test. Test
H0 : r ¼ 0 and construct a 95 percent confidence interval for r. Construct the 95 percent prediction
interval for the temperature at 50 hours after inoculation. Let a ¼ :05 for all tests.

For each of the studies described in Exercises 26 through 28, answer as many of the following
questions as possible.

(a) Which is more relevant, regression analysis or correlation analysis, or are both techniques
equally relevant?

(b) Which is the independent variable?

(c) Which is the dependent variable?

(d) What are the appropriate null and alternative hypotheses?

(e) Do you think the null hypothesis was rejected? Explain why or why not.

(f) Which is the more relevant objective, prediction or estimation, or are the two equally
relevant?

(g) What is the sampled population?

(h) What is the target population?

(i) Are the variables directly or inversely related?

26. Lamarre-Cliche et al. (A-15) state, “The QT interval corrected for heart rate (QTc) is believed to
reflect sympathovagal balance. It has also been established that b-blockers influence the autonomic
nervous system.” The researchers performed correlation analysis to measure the association between
QTc interval, heart rate, heart rate change, and therapeutic blood pressure response for 73

Age (X) BP (Y) Age (X) BP (Y)
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hypertensive subjects taking b-blockers. The researchers found that QTc interval length, pretreat-
ment heart rate, and heart rate change with therapy were not good predictors of blood pressure
response to b1-selective b-blockers in hypertensive subjects.

27. Skinner et al. (A-16) conducted a cross-sectional telephone survey to obtain 24-hour dietary recall of
infants’ and toddlers’ food intakes, as reported by mothers or other primary caregivers. One finding
of interest was that among 561 toddlers ages 15–24 months, the age in weeks of the child was
negatively related to vitamin C density b̂1 ¼ �:43, p ¼ :01. When predicting calcium density, age in
weeks of the child produced a slope coefficient of �1:47 with a p of .09.

28. Park et al. (A-17) studied 29 male subjects with clinically confirmed cirrhosis. Among other
variables, they measured whole blood manganese levels (MnB), plasma manganese (MnP), urinary
manganese (MnU), and pallidal index (PI), a measure of signal intensity in T1 weighted magnetic
resonance imaging (MRI). They found a correlation coefficient of .559, p < :01, between MnB and
PI. However, there were no significant correlations between MnP and Pi or MnU and Pi (r ¼ :353,
p > :05, r ¼ :252, p > :05, respectively).

For the studies described in Exercises 29 through 46, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence interval
construction) that you think would yield useful information for the researchers.

(b) Construct graphs that you think would be helpful in illustrating the relationships among
variables.

(c) Where you think appropriate, use techniques learned in other chapters, such as analysis of
variance and hypothesis testing and interval estimation regarding means and proportions.

(d) Determine p values for each computed test statistic.

(e) State all assumptions that are necessary to validate your analysis.

(f) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

(g) If available, consult the cited reference and compare your analyses and results with those of the
authors.

29. Moerloose et al. (A-18) conducted a study to evaluate the clinical usefulness of a new laboratory
technique (method A) for use in the diagnosis of pulmonary embolism (PE). The performance of
the new technique was compared with that of a standard technique (method B). Subjects
consisted of patients with clinically suspected PE who were admitted to the emergency ward of a
European university hospital. The following are the measurements obtained by the two
techniques for 85 patients. The researchers performed two analyses: (1) on all 85 pairs of
measurements and (2) on those pairs of measurements for which the value for method B was less
than 1000.

B A B A B A

9 119 703 599 2526 1830
84 115 725 610 2600 1880
86 108 727 3900 2770 2100

190 182 745 4050 3100 1780
208 294 752 785 3270 1870
218 226 884 914 3280 2480
251 311 920 1520 3410 1440

(Continued )
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252 250 966 972 3530 2190
256 312 985 913 3900 2340
264 403 994 556 4260 3490
282 296 1050 1330 4300 4960
294 296 1110 1410 4560 7180
296 303 1170 484 4610 1390
311 336 1190 867 4810 1600
344 333 1250 1350 5070 3770
371 257 1280 1560 5470 2780
407 424 1330 1290 5576 2730
418 265 1340 1540 6230 1260
422 347 1400 1710 6260 2870
459 412 1530 1333 6370 2210
468 389 1560 1250 6430 2210
481 414 1840 764 6500 2380
529 667 1870 1680 7120 5220
540 486 2070 1310 7430 2650
562 720 2120 1360 7800 4910
574 343 2170 1770 8890 4080
646 518 2270 2240 9930 3840
664 801 2490 1910
670 760 2520 2110

Source: Data provided courtesy of Dr. Philippe de Moerloose.

30. Research by Huhtaniemi et al. (A-19) focused on the quality of serum luteinizing hormone (LH) during
pubertal maturation in boys. Subjects, consisting of healthy boys entering puberty (ages 11 years
5 months to 12 years), were studied over a period of 18 months. The following are the concentrations
(IU/L) of bioactive LH (B-LH) and immunoreactive LH (I-LH) in serum samples taken from the
subjects. Only observations in which the subjects’ B/I ratio was greater than 3.5 are reported here.

I-LH B-LH I-LH B-LH

.104 .37 .97 3.63

.041 .28 .49 2.26

.124 .64 1 4.55

.808 2.32 1.17 5.06

.403 1.28 1.46 4.81

.27 .9 1.97 8.18

.49 2.45 .88 2.48

.66 2.8 1.24 4.8

.82 2.6 1.54 3.12
1.09 4.5 1.71 8.4
1.05 3.2 1.11 6
.83 3.65 1.35 7.2
.89 5.25 1.59 7.6
.75 2.9

Source: Data provided courtesy of Dr. Ilpo T. Huhtaniemi.

B A B A B A
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31. Tsau et al. (A-20) studied urinary epidermal growth factor (EGF) excretion in normal children and
those with acute renal failure (ARF). Random urine samples followed by 24-hour urine collection
were obtained from 25 children. Subjects ranged in age from 1 month to 15 years. Urinary EGF
excretion was expressed as a ratio of urinary EGF to urinary creatinine concentration (EGF/Cr). The
authors conclude from their research results that it is reasonable to use random urine tests for
monitoring EGF excretion. Following are the random (spot) and 24-hour urinary EGF/Cr concen-
trations (pmol/mmol) for the 25 subjects:

24-h Urine Spot Urine 24-h Urine Spot Urine
Subject EGF/Cr (x) EGF/Cr (y) Subject EGF/Cr (x) EGF/Cr (y)

1 772 720 14 254 333
2 223 271 15a 93 84
3 494 314 16 303 512
4 432 350 17 408 277
5a 79 79 18 711 443
6a 155 118 19 209 309
7 305 387 20 131 280
8 318 432 21 165 189
9a 174 97 22 151 101

10 1318 1309 23 165 221
11 482 406 24 125 228
12 436 426 25 232 157
13 527 595

a Subjects with ARF.
Source: Data provided courtesy of Dr. Yong-Kwei Tsau.

32. One of the reasons for a study by Usaj and Starc (A-21) was an interest in the behavior of pH kinetics
during conditions of long-term endurance and short-term endurance among healthy runners. The nine
subjects participating in the study were marathon runners aged 26 � 5 years. The authors report that
they obtained a good correlation between pH kinetics and both short-term and long-term endurance.
The following are the short- (VSE) and long-term (VLE) speeds and blood pH measurements for the
participating subjects.

VLE VSE pH Range

5.4 5.6 .083
4.75 5.1 .1
4.6 4.6 .021
4.6 5 .065
4.55 4.9 .056
4.4 4.6 .01
4.4 4.9 .058
4.2 4.4 .013
4.2 4.5 .03

Source: Data provided courtesy
of Anton Usaj, Ph.D.

33. Bean et al. (A-22) conducted a study to assess the performance of the isoelectric focusing/
immunoblotting/laser densitometry (IEF/IB/LD) procedure to evaluate carbohydrate-deficient trans-
ferrin (CDT) derived from dry blood spots. The investigators evaluated paired serum (S) and dry
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blood spot (DBS) specimens simultaneously for CDT. Assessment of CDT serves as a marker for
alcohol abuse. The use of dry blood spots as a source of CDT for analysis by IEF/IB/LD results in
simplified sampling, storage, and transportation of specimens. The following are the IEF/IB/LD
values in densitometry units (DU) of CDT from 25 serum and dry blood spot specimens:

Specimen No. S DBS Specimen No. S DBS

1 64 23 14 9 13
2 74 38 15 10 8
3 75 37 16 17 7
4 103 53 17 38 14
5 10 9 18 9 9
6 22 18 19 15 9
7 33 20 20 70 31
8 10 5 21 61 26
9 31 14 22 42 14

10 30 15 23 20 10
11 28 12 24 58 26
12 16 9 25 31 12
13 13 7

Source: Data provided courtesy
of Dr. Pamela Bean.

34. Kato et al. (A-23) measured the plasma concentration of adrenomedullin (AM) in patients with
chronic congestive heart failure due to various cardiac diseases. AM is a hypotensive peptide, which,
on the basis of other studies, the authors say, has an implied role as a circulating hormone in
regulation of the cardiovascular system. Other data collected from the subjects included plasma
concentrations of hormones known to affect the cardiovascular system. Following are the plasma AM
(fmol/ml) and plasma renin activity (PRA) ng=L � � � sð Þ values for 19 heart failure patients:

Patient Sex Age AM PRA
No. 1 ¼ M; 2 ¼ Fð Þ (Years) (fmol/ml) ng=L � � � sð Þ

1 1 70 12.11 .480594
2 1 44 7.306 .63894
3 1 72 6.906 1.219542
4 1 62 7.056 .450036
5 2 52 9.026 .19446
6 2 65 10.864 1.966824
7 2 64 7.324 .29169
8 1 71 9.316 1.775142
9 2 61 17.144 9.33408

10 1 68 6.954 .31947
11 1 63 7.488 1.594572
12 2 59 10.366 .963966
13 2 55 10.334 2.191842
14 2 57 13 3.97254
15 2 68 6.66 .52782
16 2 51 8.906 .350028
17 1 69 8.952 1.73625
18 1 71 8.034 .102786
19 1 46 13.41 1.13898

Source: Data provided
courtesy of Dr. Johji Kato.
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35. In a study reported on in Archives of Disease in Childhood, Golden et al. (A-24) tested the hypothesis
that plasma calprotectin (PCal) (a neutrophil cytosolic protein released during neutrophil activation
or death) concentration is an early and sensitive indicator of inflammation associated with bacterial
infection in cystic fibrosis (CF). Subjects were children with confirmed CF and a control group of
age- and sex-matched children without the disease. Among the data collected were the following
plasma calprotectin mg=Lð Þ and plasma copper (PCu) mmol=Lð Þ measurements. Plasma copper is an
index of acute phase response in cystic fibrosis. The authors reported a correlation coefficient of .48
between plasma calprotectin (log10) and plasma copper.

CF CF CF
Subject Subject Subject
No. PCal PCu No. PCal PCu No. PCal PCu

1 452 17.46 12 1548 15.31 22 674 18.11
2 590 14.84 13 708 17.00 23 3529 17.42
3 1958 27.42 14 8050 20.00 24 1467 17.42
4 2015 18.51 15 9942 25.00 25 1116 16.73
5 417 15.89 16 791 13.10 26 611 18.11
6 2884 17.99 17 6227 23.00 27 1083 21.56
7 1862 21.66 18 1473 16.70 28 1432 21.56
8 10471 19.03 19 8697 18.11 29 4422 22.60
9 25850 16.41 20 621 18.80 30 3198 18.91

10 5011 18.51 21 1832 17.08 31 544 14.37
11 5128 22.70

Control Control
Subject Subject
No. PCal PCu No. PCal PCu

1 674 16.73 17 368 16.73
2 368 16.73 18 674 16.73
3 321 16.39 19 815 19.82
4 1592 14.32 20 598 16.1
5 518 16.39 21 684 13.63
6 815 19.82 22 684 13.63
7 684 17.96 23 674 16.73
8 870 19.82 24 368 16.73
9 781 18.11 25 1148 24.15

10 727 18.11 26 1077 22.30
11 727 18.11 27 518 9.49
12 781 18.11 28 1657 16.10
13 674 16.73 29 815 19.82
14 1173 20.53 30 368 16.73
15 815 19.82 31 1077 22.30
16 727 18.11

Source: Data provided courtesy of Dr. Barbara E. Golden.
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36. Gelb et al. (A-25) conducted a study in which they explored the relationship between moderate to
severe expiratory airflow limitation and the presence and extent of morphologic and CT scored
emphysema in consecutively seen outpatients with chronic obstructive pulmonary disease. Among
the data collected were the following measures of lung CT and pathology (PATH) for emphysema
scoring:

CT Score PATH CT Score PATH

5 15 45 50
90 70 45 40
50 20 85 75
10 25 7 0
12 25 80 85
35 10 15 5
40 35 45 40
45 30 37 35

5 5 75 45
25 50 5 5
60 60 5 20
70 60

Source: Data provided courtesy of Dr. Arthur F. Gelb.

37. The objective of a study by Witteman et al. (A-26) was to investigate skin reactivity with purified
major allergens and to assess the relation with serum levels of immunoglobulin E (IgE) antibodies
and to determine which additional factors contribute to the skin test result. Subjects consisted of
patients with allergic rhinitis, allergic asthma, or both, who were seen in a European medical
center. As part of their study, the researchers collected, from 23 subjects, the following
measurements on specific IgE (IU/ml) and skin test (ng/ml) in the presence of Lol p 5, a purified
allergen from grass pollen. We wish to know the nature and strength of the relationship between
the two variables. (Note: The authors converted the measurements to natural logarithms before
investigating this relationship.)

IgE Skin Test

24.87 .055
12.90 .041034

9.87 .050909
8.74 .046
6.88 .039032
5.90 .050909
4.85 .042142
3.53 .055
2.25 4.333333
2.14 .55
1.94 .050909
1.29 .446153

.94 .4

.91 .475

(Continued )
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.55 4.461538

.30 4.103448

.14 7.428571

.11 4.461538

.10 6.625

.10 49.13043

.10 36.47058

.10 52.85714

.10 47.5

Source: Data provided courtesy
of Dr. Jaring S. van der Zee.

38. Garland et al. (A-27) conducted a series of experiments to delineate the complex maternal-fetal
pharmacokinetics and the effects of zidovudine (AZT) in the chronically instrumented maternal and
fetal baboon (Papio species) during both steady-state intravenous infusion and oral bolus dosage
regimens. Among the data collected were the following measurements on dosage (mg/kg/h) and
steady-state maternal plasma AZT concentration (ng/ml):

AZT AZT
Dosage Concentration Dosage Concentration

2.5 832 2.0 771
2.5 672 1.8 757
2.5 904 0.9 213
2.5 554 0.6 394
2.5 996 0.9 391
1.9 878 1.3 430
2.1 815 1.1 440
1.9 805 1.4 352
1.9 592 1.1 337
0.9 391 0.8 181
1.5 710 0.7 174
1.4 591 1.0 470
1.4 660 1.1 426
1.5 694 0.8 170
1.8 668 1.0 360
1.8 601 0.9 320

Source: Data provided courtesy of Dr. Marianne Garland.

39. The purpose of a study by Halligan et al. (A-28) was to evaluate diurnal variation in blood
pressure (BP) in women who were normotensive and those with pre-eclampsia. The subjects
were similar in age, weight, and mean duration of gestation (35 weeks). The researchers
collected the following BP readings. As part of their analysis they studied the relationship
between mean day and night measurements and day/night differences for both diastolic and
systolic BP in each group.

IgE Skin Test
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C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 75 56 127 101 1 94 78 137 119
0 68 57 113 104 1 90 86 139 138
0 72 58 115 105 1 85 69 138 117
0 71 51 111 94 1 80 75 133 126
0 81 61 130 110 1 81 60 127 112
0 68 56 111 101 1 89 79 137 126
0 78 60 113 102 1 107 110 161 161
0 71 55 120 99 1 98 88 152 141
0 65 51 106 96 1 78 74 134 132
0 78 61 120 109 1 80 80 121 121
0 74 60 121 104 1 96 83 143 129
0 75 52 121 102 1 85 76 137 131
0 68 50 109 91 1 79 74 135 120
0 63 49 108 99 1 91 95 139 135
0 77 47 132 115 1 87 67 137 115
0 73 51 112 90 1 83 64 143 119
0 73 52 118 97 1 94 85 127 123
0 64 62 122 114 1 85 70 142 124
0 64 54 108 94 1 78 61 119 110
0 66 54 106 88 1 80 59 129 114
0 72 49 116 101 1 98 102 156 163
0 83 60 127 103 1 100 100 149 149
0 69 50 121 104 1 89 84 141 135
0 72 52 108 95 1 98 91 148 139

C1 ¼ group 0 ¼ normotensive; 1 ¼ pre-eclampticð Þ; C2 ¼ day diastolic; C3 ¼ night diastolic;
C4 ¼ day systolic; C5 ¼ night systolic.
Source: Data provided courtesy of Dr. Aidan Halligan.

40. Marks et al. (A-29) conducted a study to determine the effects of rapid weight loss on contraction of
the gallbladder and to evaluate the effects of ursodiol and ibuprofen on saturation, nucleation and
growth, and contraction. Subjects were obese patients randomly assigned to receive ursodiol,
ibuprofen, or placebo. Among the data collected were the following cholesterol saturation index
values (CSI) and nucleation times (NT) in days of 13 (six male, seven female) placebo-treated
subjects at the end of 6 weeks:

CSI NT

1.20 4.00
1.42 6.00
1.18 14.00

.88 21.00
1.05 21.00
1.00 18.00
1.39 6.00
1.31 10.00
1.17 9.00

(Continued )
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1.36 14.00
1.06 21.00
1.30 8.00
1.71 2.00

Source: Data provided courtesy
of Dr. Jay W. Marks.

41. The objective of a study by Peacock et al. (A-30) was to investigate whether spinal osteoarthritis is
responsible for the fact that lumbar spine bone mineral density (BMD) is greater when measured in
the anteroposterior plane than when measured in the lateral plane. Lateral spine radiographs were
studied from women (age range 34 to 87 years) who attended a hospital outpatient department for
bone density measurement and underwent lumbar spine radiography. Among the data collected were
the following measurements on anteroposterior (A) and lateral (L) BMD (g/cm2):

ABMD LBMD ABMD LBMD ABMD LBMD

.879 .577 1.098 .534 1.091 .836

.824 .622 .882 .570 .746 .433

.974 .643 .816 .558 1.127 .732

.909 .664 1.017 .675 1.411 .766

.872 .559 .669 .590 .751 .397

.930 .663 .857 .666 .786 .515

.912 .710 .571 .474 1.031 .574

.758 .592 1.134 .711 .622 .506
1.072 .702 .705 .492 .848 .657

.847 .655 .775 .348 .778 .537
1.000 .518 .968 .579 .784 .419

.565 .354 .963 .665 .659 .429
1.036 .839 .933 .626 .948 .485

.811 .572 .704 .194 .634 .544

.901 .612 .624 .429 .946 .550
1.052 .663 1.119 .707 1.107 .458

.731 .376 .686 .508 1.583 .975

.637 .488 .741 .484 1.026 .550

.951 .747 1.028 .787

.822 .610 .649 .469

.951 .710 1.166 .796
1.026 .694 .954 .548
1.022 .580 .666 .545

1.047 .706
.737 .526

Source: Data provided courtesy of Dr. Cyrus Cooper.

42. Sloan et al. (A-31) note that cardiac sympathetic activation and parasympathetic withdrawal result in
heart rate increases during psychological stress. As indicators of cardiac adrenergic activity, plasma
epinephrine (E) and norepinephrine (NE) generally increase in response to psychological challenge.
Power spectral analysis of heart period variability also provides estimates of cardiac autonomic

CSI NT
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nervous system activity. The authors conducted a study to determine the relationship between
neurohumoral and two different spectral estimates of cardiac sympathetic nervous system activity
during a quiet resting baseline and in response to a psychologically challenging arithmetic task.
Subjects were healthy, medication-free male and female volunteers with a mean age of 37.8 years.
None had a history of cardiac, respiratory, or vascular disease. Among the data collected were the
following measurements on E, NE, low-frequency (LF) and very-low-frequency (VLF) power
spectral indices, and low-frequency/high frequency ratios (LH/HF). Measurements are given for
three periods: baseline (B), a mental arithmetic task (MA), and change from baseline to task
(DELTA).

Patient No. E NE LF/HF LF Period VLF

5 3.55535 6.28040 0.66706 7.71886 B 7.74600
5 0.05557 0.13960 �0.48115 �0.99826 DELTA �2.23823
5 3.61092 6.41999 0.18591 6.72059 MA 5.50777
6 3.55535 6.24611 2.48308 7.33729 B 6.64353
6 0.10821 �0.05374 �2.03738 �0.77109 DELTA �1.27196
6 3.66356 6.19236 0.44569 6.56620 MA 5.37157
7 3.29584 4.91998 �0.15473 7.86663 B 7.99450
7 0.59598 0.53106 0.14086 �0.81345 DELTA �2.86401
7 3.89182 5.45104 �0.01387 7.05319 MA 5.13049
8 4.00733 5.97635 1.58951 8.18005 B 5.97126
8 0.29673 0.11947 �0.11771 �1.16584 DELTA �0.39078
8 4.30407 6.09582 1.47180 7.01421 MA 5.58048
12 3.87120 5.35659 0.47942 6.56488 B 5.94960
12 � � 0.19379 0.03415 DELTA 0.50134
12 � � 0.67321 6.59903 MA 6.45094
13 3.97029 5.85507 0.13687 6.27444 B 5.58500
13 �0.20909 0.10851 1.05965 �0.49619 DELTA �1.68911
13 3.76120 5.96358 1.19652 5.77825 MA 3.89589
14 3.63759 5.62040 0.88389 6.08877 B 6.12490
14 0.31366 0.07333 1.06100 1.37098 DELTA �1.07633
14 3.95124 5.69373 1.94489 7.45975 MA 5.04857
18 4.44265 5.88053 0.99200 7.52268 B 7.19376
18 0.35314 0.62824 �0.10297 �0.57142 DELTA �2.06150
18 4.79579 6.50877 0.88903 6.95126 MA 5.13226
19 � 5.03044 0.62446 6.90677 B 7.39854
19 � 0.69966 0.09578 0.94413 DELTA �0.88309
19 2.94444 5.73010 0.72024 7.85090 MA 6.51545
20 3.91202 5.86363 1.11825 8.26341 B 6.89497
20 �0.02020 0.21401 �0.60117 �1.13100 DELTA �1.12073
20 3.89182 6.07764 0.51708 7.13241 MA 5.77424
21 3.55535 6.21860 0.78632 8.74397 B 8.26111
21 0.31585 �0.52487 �1.92114 �2.38726 DELTA �2.08151
21 3.87120 5.69373 �1.13483 6.35671 MA 6.17960
22 4.18965 5.76832 �0.02785 8.66907 B 7.51529
22 0.16705 �0.05459 0.93349 �0.89157 DELTA �1.00414
22 4.35671 5.71373 0.90563 7.77751 MA 6.51115
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Patient No. E NE LF/HF LF Period VLF

23 3.95124 5.52545 �0.24196 6.75330 B 6.93020
23 0.26826 0.16491 �0.00661 0.18354 DELTA �1.18912
23 4.21951 5.69036 �0.24856 6.93684 MA 5.74108
24 3.78419 5.59842 �0.67478 6.26453 B 6.45268
24 0.32668 �0.17347 1.44970 0.52169 DELTA 0.39277
24 4.11087 5.42495 0.77493 6.78622 MA 6.84545
1 3.36730 6.13123 0.19077 6.75395 B 6.13708
1 0.54473 0.08538 0.79284 0.34637 DELTA �0.56569
1 3.91202 6.21661 0.98361 7.10031 MA 5.57139
3 2.83321 5.92158 1.89472 7.92524 B 6.30664
3 1.15577 0.64930 �0.75686 �1.58481 DELTA �1.95636
3 3.98898 6.57088 1.13786 6.34042 MA 4.35028
4 4.29046 5.73657 1.81816 7.02734 B 7.02882
4 0.14036 0.47000 �0.26089 �1.08028 DELTA �1.43858
4 4.43082 6.20658 1.55727 5.94705 MA 5.59024
5 3.93183 5.62762 1.70262 6.76859 B 6.11102
5 0.80437 0.67865 �0.26531 �0.29394 DELTA �0.94910
5 4.73620 6.30628 1.43731 6.47465 MA 5.16192
6 3.29584 5.47227 0.18852 6.49054 B 6.84279
6 �0.16034 0.27073 �0.16485 �1.12558 DELTA �1.84288
6 3.13549 5.74300 0.02367 5.36496 MA 4.99991
8 3.25810 5.37064 �0.09631 7.23131 B 7.16371
8 0.40547 �0.13953 0.97906 �0.62894 DELTA �2.15108
8 3.66356 5.23111 0.88274 6.60237 MA 5.01263
9 3.78419 5.94542 0.77839 5.86126 B 6.22910
9 0.64663 0.05847 �0.42774 �0.53530 DELTA �2.18430
9 4.43082 6.00389 0.35066 5.32595 MA 4.04480
10 4.07754 5.87493 2.32137 6.71736 B 6.59769
10 0.23995 �0.00563 �0.25309 �0.00873 DELTA �0.75357
10 4.31749 5.86930 2.06827 6.70863 MA 5.84412
11 4.33073 5.84064 2.89058 7.22570 B 5.76079
11 �3.63759 �0.01464 �1.22533 �1.33514 DELTA �0.55240
11 0.69315 5.82600 1.66525 5.89056 MA 5.20839
12 3.55535 6.04501 1.92977 8.50684 B 7.15797
12 0.13353 0.12041 �0.15464 �0.84735 DELTA 0.13525
12 3.68888 6.16542 1.77513 7.65949 MA 7.29322
13 3.33220 4.63473 �0.11940 6.35464 B 6.76285
13 1.16761 1.05563 0.85621 0.63251 DELTA �0.52121
13 4.49981 5.69036 0.73681 6.98716 MA 6.24164
14 3.25810 5.96358 1.10456 7.01270 B 7.49426
14 � � 0.26353 �1.20066 DELTA �3.15046
14 � � 1.36809 5.81204 MA 4.34381
15 5.42935 6.34564 2.76361 9.48594 B 7.05730
15 � � �1.14662 �1.58468 DELTA �0.08901
15 � � 1.61699 7.90126 MA 6.96829
16 4.11087 6.59441 �0.23319 6.68269 B 6.76872
16 �0.06782 �0.54941 0.34755 �0.29398 DELTA �1.80868
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Patient No. E NE LF/HF LF Period VLF

16 4.04305 6.04501 0.11437 6.38871 MA 4.96004
17 � 6.28040 1.40992 6.09671 B 4.82671
17 � �0.12766 �0.17490 �0.05945 DELTA 0.69993
17 � 6.15273 1.23501 6.03726 MA 5.52665
18 2.39790 6.03548 0.23183 6.39707 B 6.60421
18 1.06784 0.11299 0.27977 �0.38297 DELTA �1.92672
18 3.46574 6.14847 0.51160 6.01410 MA 4.67749
19 4.21951 6.35784 1.08183 5.54214 B 5.69070
19 0.21131 �0.00347 0.12485 �0.54440 DELTA �1.49802
19 4.43082 6.35437 1.20669 4.99774 MA 4.19268
20 4.14313 5.73334 0.89483 7.35045 B 6.93974
20 �0.11778 0.00000 0.17129 �0.58013 DELTA �1.72916
20 4.02535 5.73334 1.06612 6.77032 MA 5.21058
21 3.66356 6.06843 �0.87315 5.09848 B 6.02972
21 0.20764 �0.10485 0.41178 �0.33378 DELTA �2.00974
21 3.87120 5.96358 �0.46137 4.76470 MA 4.01998
22 3.29584 5.95324 2.38399 7.62877 B 7.54359
22 0.36772 0.68139 �0.75014 �0.89992 DELTA �1.25555
22 3.66356 6.63463 1.63384 6.72884 MA 6.28804

� ¼ missing data.
Source: Data provided courtesy of Dr. Richard P. Sloan.

43. The purpose of a study by Chati et al. (A-32) was to ascertain the role of physical deconditioning in
skeletal muscle metabolic abnormalities in patients with chronic heart failure (CHF). Subjects
included ambulatory CHF patients (12 males, two females) ages 35 to 74 years. Among the data
collected were the following measurements, during exercise, of workload (WL) under controlled
conditions, peak oxygen consumption (Vo2), anaerobic ventilatory threshold (AT), both measured in
ml/kg/min, and exercise total time (ET) in seconds.

WL Vo2 AT ET WL Vo2 AT ET

7.557 32.800 13.280 933.000 3.930 22.500 18.500 720.000
3.973 8.170 6.770 255.000 3.195 17.020 8.520 375.000
5.311 16.530 11.200 480.000 2.418 15.040 12.250 480.000
5.355 15.500 10.000 420.000 0.864 7.800 4.200 240.000
6.909 24.470 11.550 960.000 2.703 12.170 8.900 513.000
1.382 7.390 5.240 346.000 1.727 15.110 6.300 540.000
8.636 19.000 10.400 600.000 7.773 21.100 12.500 1200.000

Source: Data provided courtesy of Dr. Zuka€ı Chati.

44. Czader et al. (A-33) investigated certain prognostic factors in patients with centroblastic-
centrocytic non-Hodgkin’s lymphomas (CB/CC NHL). Subjects consisted of men and women
between the ages of 20 and 84 years at time of diagnosis. Among the data collected were the
following measurements on two relevant factors, A and B. The authors reported a significant
correlation between the two.
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A B A B A B

20.00 .154 22.34 .147 48.66 .569
36.00 .221 18.00 .132 20.00 .227

6.97 .129 18.00 .085 17.66 .125
13.67 .064 22.66 .577 14.34 .089
36.34 .402 45.34 .134 16.33 .051
39.66 .256 20.33 .246 18.34 .100
14.66 .188 16.00 .175 26.49 .202
27.00 .138 15.66 .105 13.33 .077

2.66 .078 23.00 .145 6.00 .206
22.00 .142 27.33 .129 15.67 .153
11.00 .086 6.27 .062 32.33 .549
20.00 .170 24.34 .147
22.66 .198 22.33 .769

7.34 .092 11.33 .130
29.67 .227 6.67 .099
11.66 .159

8.05 .223
22.66 .065

Source: Data provided courtesy of Dr. Magdalena Czader and Dr. Anna Porwit-MacDonald.

45. Fleroxacin, a fluoroquinolone derivative with a broad antibacterial spectrum and potent activity in
vitro against gram-negative and many gram-positive bacteria, was the subject of a study by Reigner
and Welker (A-34). The objectives of their study were to estimate the typical values of clearance over
systemic availability (CL/F) and the volume of distribution over systemic availability (V/F) after the
administration of therapeutic doses of fleroxacin and to identify factors that influence the disposition
of fleroxacin and to quantify the degree to which they do so. Subjects were 172 healthy male and
female volunteers and uninfected patients representing a wide age range. Among the data analyzed
were the following measurements (ml/min) of CL/F and creatinine clearance (CLcr). According to
the authors, previous studies have shown that there is a correlation between the two variables.

CL/F CLer CL/F CLer CL/F CLer CL/F CLer

137.000 96.000 77.000 67.700 152.000 109.000 132.000 111.000
106.000 83.000 57.000 51.500 100.000 82.000 94.000 118.000
165.000 100.000 69.000 52.400 86.000 88.000 90.000 111.000
127.000 101.000 69.000 65.900 69.000 67.000 87.000 124.000
139.000 116.000 76.000 60.900 108.000 68.700 48.000 10.600
102.000 78.000 77.000 93.800 77.000 83.200 26.000 9.280

72.000 84.000 66.000 73.800 85.000 72.800 54.000 12.500
86.000 81.000 53.000 99.100 89.000 82.300 36.000 9.860
85.000 77.000 26.000 110.000 105.000 71.100 26.000 4.740

122.000 102.000 89.000 99.900 66.000 56.000 39.000 7.020
76.000 80.000 44.000 73.800 73.000 61.000 27.000 6.570
57.000 67.000 27.000 65.800 64.000 79.500 36.000 13.600
62.000 41.000 96.000 109.000 26.000 9.120 15.000 7.600
90.000 93.000 102.000 76.800 29.000 8.540 138.000 100.000

(Continued )
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165.000 88.000 159.000 125.000 39.100 93.700 127.000 108.000
132.000 64.000 115.000 112.000 75.500 65.600 203.000 121.000
159.000 92.000 82.000 91.600 86.000 102.000 198.000 143.000
148.000 114.000 96.000 83.100 106.000 105.000 151.000 126.000
116.000 59.000 121.000 88.800 77.500 67.300 113.000 111.000
124.000 67.000 99.000 94.000 87.800 96.200 139.000 109.000

76.000 56.000 120.000 91.500 25.700 6.830 135.000 102.000
40.000 61.000 101.000 83.800 89.700 74.800 116.000 110.000
23.000 35.000 118.000 97.800 108.000 84.000 148.000 94.000
27.000 38.000 116.000 100.000 58.600 79.000 221.000 110.000
64.000 79.000 116.000 67.500 91.700 68.500 115.000 101.000
44.000 64.000 87.000 97.500 48.900 20.600 150.000 110.000
59.000 94.000 59.000 45.000 53.500 10.300 135.000 143.000
47.000 96.000 96.000 53.500 41.400 11.800 201.000 115.000
17.000 25.000 163.000 84.800 24.400 7.940 164.000 103.000
67.000 122.000 39.000 73.700 42.300 3.960 130.000 103.000
25.000 43.000 73.000 87.300 34.100 12.700 162.000 169.000
24.000 22.000 45.000 74.800 28.300 7.170 107.000 140.000
65.000 55.000 94.000 100.000 47.000 6.180 78.000 87.100
69.000 42.500 74.000 73.700 30.500 9.470 87.500 134.000
55.000 71.000 70.000 64.800 38.700 13.700 108.000 108.000
39.000 34.800 129.000 119.000 60.900 17.000 126.000 118.000
58.000 50.300 34.000 30.000 51.300 6.810 131.000 109.000
37.000 38.000 42.000 65.900 46.100 24.800 94.400 60.000
32.000 32.000 48.000 34.900 25.000 7.200 87.700 82.900
66.000 53.500 58.000 55.900 29.000 7.900 94.000 99.600
49.000 60.700 30.000 40.100 25.000 6.600 157.000 123.000
40.000 66.500 47.000 48.200 40.000 8.600
34.000 22.600 35.000 14.800 28.000 5.500
87.000 61.800 20.000 14.400

Source: Data provided courtesy of Dr. Bruno Reigner.

46. Yasu et al. (A-35) used noninvasive magnetic resonance spectroscopy to determine the short- and
long-term effects of percutaneous transvenous mitral commissurotomy (PTMC) on exercise
capacity and metabolic responses of skeletal muscles during exercise. Data were collected on
11 patients (2 males, 9 females) with symptomatic mitral stenosis. Their mean age was 52 years
with a standard deviation of 11. Among the data collected were the following measurements on
changes in mitral valve area (d-MVA) and peak oxygen consumption (d-Vo2) 3, 30, and 90 days
post-PTMC:

Days d-Vo2
Subject Post-PTMC d-MVA (cm2) (ml/kg/min)

1 3 0.64 0.3
2 3 0.76 �0:9
3 3 0.3 1.9
4 3 0.6 �3:1

CL/F CLer CL/F CLer CL/F CLer CL/F CLer
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5 3 0.3 �0:5
6 3 0.4 �2:7
7 3 0.7 1.5
8 3 0.9 1.1
9 3 0.6 �7:4

10 3 0.4 �0:4
11 3 0.65 3.8

1 30 0.53 1.6
2 30 0.6 3.3
3 30 0.4 2.6
4 30 0.5 �
5 30 0.3 3.6
6 30 0.3 0.2
7 30 0.67 4.2
8 30 0.75 3
9 30 0.7 2

10 30 0.4 0.8
11 30 0.55 4.2

1 90 0.6 1.9
2 90 0.6 5.9
3 90 0.4 3.3
4 90 0.6 5
5 90 0.25 0.6
6 90 0.3 2.5
7 90 0.7 4.6
8 90 0.8 4
9 90 0.7 1

10 90 0.38 1.1
11 90 0.53 �
� ¼ Missing data.
Source: Data provided courtesy of Dr. Takanori Yasu.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wile y.com/co llege/dan iel

1. Refer to the data for 1050 subjects with cerebral edema (CEREBRAL). Cerebral edema with
consequent increased intracranial pressure frequently accompanies lesions resulting from head
injury and other conditions that adversely affect the integrity of the brain. Available treatments for
cerebral edema vary in effectiveness and undesirable side effects. One such treatment is glycerol,
administered either orally or intravenously. Of interest to clinicians is the relationship between
intracranial pressure and glycerol plasma concentration. Suppose you are a statistical consultant
with a research team investigating the relationship between these two variables. Select a simple
random sample from the population and perform the analysis that you think would be useful to the
researchers. Present your findings and conclusions in narrative form and illustrate with graphs
where appropriate. Compare your results with those of your classmates.

Days d-Vo2
Subject Post-PTMC d-MVA (cm2) (ml/kg/min)
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2. Refer to the data for 1050 subjects with essential hypertension (HYPERTEN). Suppose you are a
statistical consultant to a medical research team interested in essential hypertension. Select a
simple random sample from the population and perform the analyses that you think would be
useful to the researchers. Present your findings and conclusions in narrative form and illustrate
with graphs where appropriate. Compare your results with those of your classmates. Consult with
your instructor regarding the size of sample you should select.

3. Refer to the data for 1200 patients with rheumatoid arthritis (CALCIUM). One hundred patients
received the medicine at each dose level. Suppose you are a medical researchers wishing to gain
insight into the nature of the relationship between dose level of prednisolone and total body
calcium. Select a simple random sample of three patients from each dose level group and do the
following.

(a) Use the total number of pairs of observations to obtain the least-squares equation describing
the relationship between dose level (the independent variable) and total body calcium.

(b) Draw a scatter diagram of the data and plot the equation.
(c) Compute r and test for significance at the .05 level. Find the p value.
(d) Compare your results with those of your classmates.
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CHAPTER10
MULTIPLE REGRESSION
AND CORRELATION

CHAPTER OVERVIEW

This chapter provides extensions of the simple linear regression and bivariate
correlation models discussed in Chapter 9. The concepts and techniques
discussed here are useful when the researcher wishes to consider simulta-
neously the relationships among more than two variables. Although the
concepts, computations, and interpretations associated with analysis of
multiple-variable data may seem complex, they are natural extensions of
material explored in previous chapters.

TOPICS

10.1 INTRODUCTION

10.2 THE MULTIPLE LINEAR REGRESSION MODEL

10.3 OBTAINING THE MULTIPLE REGRESSION EQUATION

10.4 EVALUATING THE MULTIPLE REGRESSION EQUATION

10.5 USING THE MULTIPLE REGRESSION EQUATION

10.6 THE MULTIPLE CORRELATION MODEL

10.7 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand how to include more than one independent variable in a regression
equation.

2. be able to obtain a multiple regression model and use it to make predictions.

3. be able to evaluate the multiple regression coefficients and the suitability of the
regression model.

4. understand how to calculate and interpret multiple, bivariate, and partial
correlation coefficients.
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10.1 INTRODUCTION

In Chapter 9 we explored the concepts and techniques for analyzing and making use of the
linear relationship between two variables. We saw that this analysis may lead to a linear
equation that can be used to predict the value of some dependent variable given the value of
an associated independent variable.

Intuition tells us that, in general, we ought to be able to improve our predicting ability
by including more independent variables in such an equation. For example, a researcher
may find that intelligence scores of individuals may be predicted from physical factors such
as birth order, birth weight, and length of gestation along with certain hereditary and
external environmental factors. Length of stay in a chronic disease hospital may be related
to the patient’s age, marital status, sex, and income, not to mention the obvious factor of
diagnosis. The response of an experimental animal to some drug may depend on the size of
the dose and the age and weight of the animal. A nursing supervisor may be interested in
the strength of the relationship between a nurse’s performance on the job, score on the state
board examination, scholastic record, and score on some achievement or aptitude test. Or a
hospital administrator studying admissions from various communities served by the
hospital may be interested in determining what factors seem to be responsible for
differences in admission rates.

The concepts and techniques for analyzing the associations among several
variables are natural extensions of those explored in the previous chapters. The
computations, as one would expect, are more complex and tedious. However, as is
pointed out in Chapter 9, this presents no real problem when a computer is available. It is
not unusual to find researchers investigating the relationships among a dozen or more
variables. For those who have access to a computer, the decision as to how many
variables to include in an analysis is based not on the complexity and length of the
computations but on such considerations as their meaningfulness, the cost of their
inclusion, and the importance of their contribution.

In this chapter we follow closely the sequence of the previous chapter. The regression
model is considered first, followed by a discussion of the correlation model. In considering
the regression model, the following points are covered: a description of the model, methods
for obtaining the regression equation, evaluation of the equation, and the uses that may be
made of the equation. In both models the possible inferential procedures and their
underlying assumptions are discussed.

10.2 THEMULTIPLE LINEAR
REGRESSIONMODEL

In the multiple regression model we assume that a linear relationship exists between some
variable Y, which we call the dependent variable, and k independent variables,
X1;X2; . . . ;Xk. The independent variables are sometimes referred to as explanatory
variables, because of their use in explaining the variation in Y. They are also called
predictor variables, because of their use in predicting Y.
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Assumptions The assumptions underlying multiple regression analysis are as
follows.

1. The Xi are nonrandom (fixed) variables. This assumption distinguishes the multiple
regression model from the multiple correlation model, which will be presented in
Section 10.6. This condition indicates that any inferences that are drawn from sample
data apply only to the set ofX values observed and not to some larger collection ofX’s.
Under the regression model, correlation analysis is not meaningful. Under the correla-
tion model to be presented later, the regression techniques that follow may be applied.

2. For each set of Xi values there is a subpopulation of Y values. To construct certain
confidence intervals and test hypotheses, it must be known, or the researcher must be
willing to assume, that these subpopulations of Y values are normally distributed.
Since we will want to demonstrate these inferential procedures, the assumption of
normality will be made in the examples and exercises in this chapter.

3. The variances of the subpopulations of Y are all equal.

4. The Y values are independent. That is, the values of Y selected for one set of X values
do not depend on the values of Y selected at another set of X values.

The Model Equation The assumptions for multiple regression analysis may be
stated in more compact fashion as

yj ¼ b0 þ b1x1j þ b2x2j þ � � � þ bkxkj þ ej (10.2.1)

where yj is a typical value from one of the subpopulations of Y values; the bi are called the
regression coefficients; x1j; x2j; . . . ; xkj are, respectively, particular values of the indepen-
dent variables X1;X2; . . .Xk; and ej is a random variable with mean 0 and variance s2; the
common variance of the subpopulations of Y values. To construct confidence intervals for
and test hypotheses about the regression coefficients, we assume that the ej are normally
and independently distributed. The statements regarding ej are a consequence of the
assumptions regarding the distributions of Y values. We will refer to Equation 10.2.1 as the
multiple linear regression model.

When Equation 10.2.1 consists of one dependent variable and two independent
variables, that is, when the model is written

yj ¼ b0 þ b1x1j þ b2x2j þ ej (10.2.2)

a plane in three-dimensional space may be fitted to the data points as illustrated in Figure
10.2.1. When the model contains more than two independent variables, it is described
geometrically as a hyperplane.

In Figure 10.2.1 the observer should visualize some of the points as being located
above the plane and some as being located below the plane. The deviation of a point from
the plane is represented by

ej ¼ yj � b0 � b1x1j � b2x2j (10.2.3)

In Equation 10.2.2, b0 represents the point where the plane cuts the Y-axis; that is, it
represents the Y-intercept of the plane. b1 measures the average change in Y for a unit
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change in X1 when X2 remains unchanged, and b2 measures the average change in Y for a
unit change in X2 when X1 remains unchanged. For this reason b1 and b2 are referred to as
partial regression coefficients.

10.3 OBTAINING THEMULTIPLE
REGRESSION EQUATION

Unbiased estimates of the parameters b0; b1; . . . ;bk of the model specified in Equation
10.2.1 are obtained by the method of least squares. This means that the sum of the squared
deviations of the observed values of Y from the resulting regression surface is minimized.
In the three-variable case, as illustrated in Figure 10.2.1, the sum of the squared deviations
of the observations from the plane are a minimum when b0; b1; and b2 are estimated by the
method of least squares. In other words, by the method of least squares, sample estimates of
b0; b1; . . . ;bk are selected in such a way that the quantity

X
e2
j ¼

X
yj � b0 � b1x1j � b2x2j � � � � � bkxkj
� �2

is minimized. This quantity, referred to as the sum of squares of the residuals, may also be
written as X

e2
j ¼

X
yj � ŷj
� �2

(10.3.1)

indicating the fact that the sum of squares of deviations of the observed values of Y from the
values of Y calculated from the estimated equation is minimized.
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FIGURE 10.2.1 Multiple regression plane and scatter of points.
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Estimates of the multiple regression parameters may be obtained by means of
arithmetic calculations performed on a handheld calculator. This method of obtaining the
estimates is tedious, time-consuming, subject to errors, and a waste of time when a
computer is available. Those interested in examining or using the arithmetic approach may
consult earlier editions of this text or those by Snedecor and Cochran (1) and Steel and
Torrie (2), who give numerical examples for four variables, and Anderson and Bancroft (3),
who illustrate the calculations involved when there are five variables. In the following
example we use SPSS software to illustrate an interesting graphical summary of sample
data collected on three variables. We then use MINITAB and SAS to illustrate the
application of multiple regression analysis.

EXAMPLE 10.3.1

Researchers Jansen and Keller (A-1) used age and education level to predict the capacity to
direct attention (CDA) in elderly subjects. CDA refers to neural inhibitory mechanisms that
focus the mind on what is meaningful while blocking out distractions. The study collected
information on 71 community-dwelling older women with normal mental status. The CDA
measurement was calculated from results on standard visual and auditory measures requiring
the inhibition of competing and distracting stimuli. In this study, CDA scores ranged from
�7:65 to 9.61 with higher scores corresponding with better attentional functioning. The
measurements on CDA, age in years, and education level (years of schooling) for 71 subjects
are shown in Table 10.3.1. We wish to obtain the sample multiple regression equation.

TABLE 10.3.1 CDA Scores, Age, and Education Level

for 71 Subjects Described in Example 10.3.1

Age Ed-Level CDA Age Ed-Level CDA

72 20 4.57 79 12 3.17

68 12 �3.04 87 12 �1.19

65 13 1.39 71 14 0.99

85 14 �3.55 81 16 �2.94

84 13 �2.56 66 16 �2.21

90 15 �4.66 81 16 �0.75

79 12 �2.70 80 13 5.07

74 10 0.30 82 12 �5.86

69 12 �4.46 65 13 5.00

87 15 �6.29 73 16 0.63

84 12 �4.43 85 16 2.62

79 12 0.18 83 17 1.77

71 12 �1.37 83 8 �3.79

76 14 3.26 76 20 1.44

73 14 �1.12 77 12 �5.77

86 12 �0.77 83 12 �5.77

69 17 3.73 79 14 �4.62

66 11 �5.92 69 12 �2.03

(Continued )
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Prior to analyzing the data using multiple regression techniques, it is useful to
construct plots of the relationships among the variables. This is accomplished by making
separate plots of each pair of variables, (X1, X2), (X1, Y ), and (X2, Y ). A software package
such as SPSS displays each combination simultaneously in a matrix format as shown in
Figure 10.3.1. From this figure it is apparent that we should expect a negative relationship

Age Ed-Level CDA Age Ed-Level CDA

FIGURE 10.3.1 SPSS matrix scatter plot of the data in Table 10.3.1.

65 16 5.74 66 14 �2.22

71 14 2.83 75 12 0.80

80 18 �2.40 77 16 �0.75

81 11 �0.29 78 12 �4.60

66 14 4.44 83 20 2.68

76 17 3.35 85 10 �3.69

70 12 �3.13 76 18 4.85

76 12 �2.14 75 14 �0.08

67 12 9.61 70 16 0.63

72 20 7.57 79 16 5.92

68 18 2.21 75 18 3.63

102 12 �2.30 94 8 �7.07

67 12 1.73 76 18 6.39

66 14 6.03 84 18 �0.08

75 18 �0.02 79 17 1.07

91 13 �7.65 78 16 5.31

74 15 4.17 79 12 0.30

90 15 �0.68

Source: Data provided courtesy of Debra A. Jansen, Ph.D., R.N.
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:dnammoc noisseS:xob golaiD

Stat Regression Regression MTB > Name C4 = `SRES1’
Type Y in Response and X1 X2 C5 = `FITS1’ C6 = `RESI1’
in Predictors. MTB > Regress `y’ 2 `x1’ `x2’;
Check Residuals. SUBC> SResiduals `SRES1’;
Check Standard resids. SUBC> Fits `FITS1’;
Check OK. SUBC> Constant;

SUBC> Residuals `RESI1’.
Output:

Regression Analysis: Y versus X1, X2

The regression equation is
Y = 5.49 - 0.184 X1 + 0.611 X2

Predictor Coef SE Coef T P
Constant 5.494 4.443 1.24 0.220
X1 -0.18412 0.04851 -3.80 0.000
X2 0.6108 0.1357 4.50 0.000

S = 3.134 R-Sq = 37.1% R-Sq (adj) = 35.2%

Analysis of Variance

Source DF SS MS F P
Regression 2 393.39 196.69 20.02 0.000
Residual Error 68 667.97 9.82
Total 70 1061.36

Source DF Seq SS
42.49111X
51.99112X

Unusual Observations
Obs X1 Y Fit SE Fit Residual St Resid
28 67 9.610 0.487 0.707 9.123 2.99R
31 102 -2.300 -5.957 1.268 3.657 1.28X
44 80 5.070 -1.296 0.425 6.366 2.05R
67 94 -7.070 -6.927 1.159 -0.143 -0.05X

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

FIGURE 10.3.2 MINITAB procedure and output for Example 10.3.1.
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between CDA and Age and a positive relationship between CDA and Ed-Level. We shall
see that this is indeed the case when we use MINITAB to analyze the data.

Solution: We enter the observations on age, education level, and CDA in c1 through c3
and name them X1, X2, and Y, respectively. The MINITAB dialog box and
session command, as well as the output, are shown in Figure 10.3.2. We see
from the output that the sample multiple regression equation, in the notation
of Section 10.2, is

ŷj ¼ 5:49 � :184x1j þ :611x2j

Other output entries will be discussed in the sections that follow.
The SAS output for Example 10.3.1 is shown in Figure 10.3.3. &

After the multiple regression equation has been obtained, the next step involves its
evaluation and interpretation. We cover this facet of the analysis in the next section.

The REG Procedure

Model: MODEL1
Dependent Variable: CDA

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 393.38832 196.69416 20.02 <.0001
Error 68 667.97084 9.82310
Corrected Total 70 1061.35915

Root MSE 3.13418 R-Square 0.3706
Dependent Mean 0.00676 Adj R-Sq 0.3521
Coeff Var 46360

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 5.49407 4.44297 1.24 0.2205
AGE 1 -0.18412 0.04851 -3.80 0.0003
EDUC 1 0.61078 0.13565 4.50 <.0001

FIGURE 10.3.3 SAS® output for Example 10.3.1.

496 CHAPTER 10 MULTIPLE REGRESSION AND CORRELATION



3GC10 12/04/2012 15:18:6 Page 497

EXERCISES

Obtain the regression equation for each of the following data sets.
10.3.1 Machiel Naeije (A-2) studied the relationship between maximum mouth opening and measurements

of the lower jaw (mandible). He measured the dependent variable, maximum mouth opening (MMO,
measured in mm), as well as predictor variables, mandibular length (ML, measured in mm) and angle
of rotation of the mandible (RA, measured in degrees) of 35 subjects.

MMO (Y) ML (X1) RA (X2) MMO (Y) ML (X1) RA (X2)

52.34 100.85 32.08 50.82 90.65 38.33
51.90 93.08 39.21 40.48 92.99 25.93
52.80 98.43 33.74 59.68 108.97 36.78
50.29 102.95 34.19 54.35 91.85 42.02
57.79 108.24 35.13 47.00 104.30 27.20
49.41 98.34 30.92 47.23 93.16 31.37
53.28 95.57 37.71 41.19 94.18 27.87
59.71 98.85 44.71 42.76 89.56 28.69
53.32 98.32 33.17 51.88 105.85 31.04
48.53 92.70 31.74 42.77 89.29 32.78
51.59 88.89 37.07 52.34 92.58 37.82
58.52 104.06 38.71 50.45 98.64 33.36
62.93 98.18 43.89 43.18 83.70 31.93
57.62 91.01 41.06 41.99 88.46 28.32
65.64 96.98 41.92 39.45 94.93 24.82
52.85 97.85 35.25 38.91 96.81 23.88
64.43 96.89 45.11 49.10 93.13 36.17
57.25 98.35 39.44

Source: Data provided courtesy of M. Naeije, D.D.S.

10.3.2 Family caregiving of older adults is more common in Korea than in the United States. Son et al. (A-3)
studied 100 caregivers of older adults with dementia in Seoul, South Korea. The dependent variable
was caregiver burden as measured by the Korean Burden Inventory (KBI). Scores ranged from 28 to
140, with higher scores indicating higher burden. Explanatory variables were indexes that measured
the following:

ADL: total activities of daily living (low scores indicate that the elderly perform activities
independently).

MEM: memory and behavioral problems (higher scores indicate more problems).

COG: cognitive impairment (lower scores indicate a greater degree of cognitive impairment).

The reported data are as follows:

KBI (Y ) ADL (X1) MEM (X2) COG (X3) KBI (Y ) ADL (X1) MEM (X2) COG (X3)

28 39 4 18 88 76 50 5
68 52 33 9 54 79 44 11
59 89 17 3 73 48 57 9
91 57 31 7 87 90 33 6

(Continued )
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70 28 35 19 47 55 11 20
38 34 3 25 60 83 24 11
46 42 16 17 65 50 21 25
57 52 6 26 57 44 31 18
89 88 41 13 85 79 30 20
48 90 24 3 28 24 5 22
74 38 22 13 40 40 20 17
78 83 41 11 87 35 15 27
43 30 9 24 80 55 9 21
76 45 33 14 49 45 28 17
72 47 36 18 57 46 19 17
61 90 17 0 32 37 4 21
63 63 14 16 52 47 29 3
77 34 35 22 42 28 23 21
85 76 33 23 49 61 8 7
31 26 13 18 63 35 31 26
79 68 34 26 89 68 65 6
92 85 28 10 67 80 29 10
76 22 12 16 43 43 8 13
91 82 57 3 47 53 14 18
78 80 51 3 70 60 30 16

103 80 20 18 99 63 22 18
99 81 20 1 53 28 9 27
73 30 7 17 78 35 18 14
88 27 27 27 112 37 33 17
64 72 9 0 52 82 25 13
52 46 15 22 68 88 16 0
71 63 52 13 63 52 15 0
41 45 26 18 49 30 16 18
85 77 57 0 42 69 49 12
52 42 10 19 56 52 17 20
68 60 34 11 46 59 38 17
57 33 14 14 72 53 22 21
84 49 30 15 95 65 56 2
91 89 64 0 57 90 12 0
83 72 31 3 88 88 42 6
73 45 24 19 81 66 12 23
57 73 13 3 104 60 21 7
69 58 16 15 88 48 14 13
81 33 17 21 115 82 41 13
71 34 13 18 66 88 24 14
91 90 42 6 92 63 49 5
48 48 7 23 97 79 34 3
94 47 17 18 69 71 38 17
57 32 13 15 112 66 48 13
49 63 32 15 88 81 66 1

Source: Data provided courtesy of Gwi-Ryung Son, R.N., Ph.D.

KBI (Y ) ADL (X1) MEM (X2) COG (X3) KBI (Y ) ADL (X1) MEM (X2) COG (X3)
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10.3.3 In a study of factors thought to be related to patterns of admission to a large general hospital, an
administrator obtained these data on 10 communities in the hospital’s catchment area:

Community

Persons per 1000
Population Admitted
During Study Period

(Y)

Index of
Availability of
Other Health

Services
(X1)

Index of
Indigency

(X2)

1 61.6 6.0 6.3
2 53.2 4.4 5.5
3 65.5 9.1 3.6
4 64.9 8.1 5.8
5 72.7 9.7 6.8
6 52.2 4.8 7.9
7 50.2 7.6 4.2
8 44.0 4.4 6.0
9 53.8 9.1 2.8

10 53.5 6.7 6.7

Total 571.6 69.9 55.6

10.3.4 The administrator of a general hospital obtained the following data on 20 surgery patients during
a study to determine what factors appear to be related to length of stay:

Postoperative
Length of
Stay in Days
(Y)

Number of Current
Medical Problems

(X1)

Preoperative
Length of

Stay in Days
(X2)

6 1 1
6 2 1

11 2 2
9 1 3

16 3 3
16 1 5

4 1 1
8 3 1

11 2 2
13 3 2
13 1 4

9 1 2
17 3 3
17 2 4
12 4 1

6 1 1
5 1 1

(Continued )
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12 3 2
8 1 2
9 2 2

Total 208 38 43

10.3.5 A random sample of 25 nurses selected from a state registry yielded the following information on
each nurse’s score on the state board examination and his or her final score in school. Both scores
relate to the nurse’s area of affiliation. Additional information on the score made by each nurse on an
aptitude test, taken at the time of entering nursing school, was made available to the researcher. The
complete data are as follows:

State Board Score
(Y)

Final Score
(X1)

Aptitude Test Score
(X2)

440 87 92
480 87 79
535 87 99
460 88 91
525 88 84
480 89 71
510 89 78
530 89 78
545 89 71
600 89 76
495 90 89
545 90 90
575 90 73
525 91 71
575 91 81
600 91 84
490 92 70
510 92 85
575 92 71
540 93 76
595 93 90
525 94 94
545 94 94
600 94 93
625 94 73

Total 13,425 2263 2053

Postoperative
Length of
Stay in Days
(Y)

Number of Current
Medical Problems

(X1)

Preoperative
Length of

Stay in Days
(X2)
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10.3.6 The following data were collected on a simple random sample of 20 patients with hypertension. The
variables are

Y ¼ mean arterial blood pressure mm Hgð Þ
X1 ¼ age yearsð Þ
X2 ¼ weight kgð Þ
X3 ¼ body surface area sq mð Þ
X4 ¼ duration of hypertension yearsð Þ
X5 ¼ basal pulse beatsthn=minð Þ
X6 ¼ measure of stress

Patient Y X1 X2 X3 X4 X5 X6

1 105 47 85.4 1.75 5.1 63 33
2 115 49 94.2 2.10 3.8 70 14
3 116 49 95.3 1.98 8.2 72 10
4 117 50 94.7 2.01 5.8 73 99
5 112 51 89.4 1.89 7.0 72 95
6 121 48 99.5 2.25 9.3 71 10
7 121 49 99.8 2.25 2.5 69 42
8 110 47 90.9 1.90 6.2 66 8
9 110 49 89.2 1.83 7.1 69 62

10 114 48 92.7 2.07 5.6 64 35
11 114 47 94.4 2.07 5.3 74 90
12 115 49 94.1 1.98 5.6 71 21
13 114 50 91.6 2.05 10.2 68 47
14 106 45 87.1 1.92 5.6 67 80
15 125 52 101.3 2.19 10.0 76 98
16 114 46 94.5 1.98 7.4 69 95
17 106 46 87.0 1.87 3.6 62 18
18 113 46 94.5 1.90 4.3 70 12
19 110 48 90.5 1.88 9.0 71 99
20 122 56 95.7 2.09 7.0 75 99

10.4 EVALUATING THEMULTIPLE
REGRESSION EQUATION

Before one uses a multiple regression equation to predict and estimate, it is desirable to
determine first whether it is, in fact, worth using. In our study of simple linear regression we
have learned that the usefulness of a regression equation may be evaluated by a
consideration of the sample coefficient of determination and estimated slope. In evaluating
a multiple regression equation we focus our attention on the coefficient of multiple
determination and the partial regression coefficients.

The Coefficient of Multiple Determination In Chapter 9 the coeffi-
cient of determination is discussed in considerable detail. The concept extends logically
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to the multiple regression case. The total variation present in the Y values may be
partitioned into two components—the explained variation, which measures the amount
of the total variation that is explained by the fitted regression surface, and the
unexplained variation, which is that part of the total variation not explained by fitting
the regression surface. The measure of variation in each case is a sum of squared
deviations. The total variation is the sum of squared deviations of each observation of Y
from the mean of the observations and is designated by

P
yj � �y
� �2

or SST. The
explained variation, designated

P
ŷj � �y
� �2

or SST, is the sum of squared deviations
of the calculated values from the mean of the observed Y values. This sum of squared
deviations is called the sum of squares due to regression (SSR). The unexplained
variation, written as

P
yj � ŷj
� �2

, is the sum of squared deviations of the original
observations from the calculated values. This quantity is referred to as the sum of squares
about regression or the error sum of squares (SSE). We may summarize the relationship
among the three sums of squares with the following equation:

P
yj � �y
� �2 ¼ P

ŷj � �y
� �2 þP

yj � ŷj
� �2

SST ¼ SSRþ SSE

total sum of squares ¼ explained regressionð Þsum of squares

þ unexplained errorð Þsum of squares

(10.4.1)

The coefficient of multiple determination, R2
y:12...k is obtained by dividing the

explained sum of squares by the total sum of squares. That is,

R2
y:12...k ¼

P
ŷj � �y
� �2

P
yj � �y
� �2 ¼ SSR

SST
(10.4.2)

The subscript y:12 . . . k indicates that in the analysis Y is treated as the dependent variable
and the X variables from X1 through Xk are treated as the independent variables. The value
of R2

y:12...k indicates what proportion of the total variation in the observed Y values is
explained by the regression of Yon X1;X2; . . . ;Xk. In other words, we may say that R2

y:12...k

is a measure of the goodness of fit of the regression surface. This quantity is analogous to
r2, which was computed in Chapter 9.

EXAMPLE 10.4.1

Refer to Example 10.3.1. Compute R2
y:12.

Solution: For our illustrative example we have in Figure 10.3.1

SST ¼ 1061:36

SSR ¼ 393:39

SSE ¼ 667:97

R2
y:12 ¼ 393:39

1061:36
¼ :3706 � :371
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We say that about 37.1 percent of the total variation in the Y values is
explained by the fitted regression plane, that is, by the linear relationship
with age and education level. &

Testing the Regression Hypothesis To determine whether the overall
regression is significant (that is, to determine whether R2

y:12 is significant), we may
perform a hypothesis test as follows.

1. Data. The research situation and the data generated by the research are examined to
determine if multiple regression is an appropriate technique for analysis.

2. Assumptions. We assume that the multiple regression model and its underlying
assumptions as presented in Section 10.2 are applicable.

3. Hypotheses. In general, the null hypothesis is H0: b1 ¼ b2 ¼ b3 ¼ � � � ¼ bk ¼ 0
and the alternative is HA: not all bi ¼ 0. In words, the null hypothesis states that
all the independent variables are of no value in explaining the variation in the
Y values.

4. Test statistic. The appropriate test statistic is V.R., which is computed as part of
an analysis of variance. The general ANOVA table is shown as Table 10.4.1. In
Table 10.4.1, MSR stands for mean square due to regression and MSE stands for
mean square about regression or, as it is sometimes called, the error mean
square.

5. Distribution of test statistic. When H0 is true and the assumptions are met, V.R. is
distributed as F with k and n� k � 1 degrees of freedom.

6. Decision rule. Reject H0 if the computed value of V.R. is equal to or greater than the
critical value of F.

7. Calculation of test statistic. See Table 10.4.1.

8. Statistical decision. Reject or fail to reject H0 in accordance with the decision rule.

9. Conclusion. If we reject H0 we conclude that, in the population from which the
sample was drawn, the dependent variable is linearly related to the independent
variables as a group. If we fail to reject H0, we conclude that, in the population from
which our sample was drawn, there may be no linear relationship between the
dependent variable and the independent variables as a group.

10. p value. We obtain the p value from the table of the F distribution.

We illustrate the hypothesis testing procedure by means of the following example.

TABLE 10.4.1 ANOVA Table for Multiple Regression

Source SS d.f. MS V.R.

Due to regression SSR k MSR ¼ SSR=k MSR=MSE

About regression SSE n � k � 1 MSE ¼ SSE= n � k � 1ð Þ

Total SST n � 1
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EXAMPLE 10.4.2

We wish to test the null hypothesis of no linear relationship among the three variables
discussed in Example 10.3.1: CDA score, age, and education level.

Solution:

1. Data. See the description of the data given in Example 10.3.1.

2. Assumptions. We assume that the assumptions discussed in Section
10.2 are met.

3. Hypotheses.
H0: ¼ b1 ¼ b2 ¼ 0
HA: ¼ not all bi ¼ 0

4. Test statistic. The test statistic is V.R.

5. Distribution of test statistic. If H0 is true and the assumptions are met,
the test statistic is distributed as F with 2 numerator and 68 denominator
degrees of freedom.

6. Decision rule. Let us use a significance level of a ¼ :01. The decision
rule, then, is reject H0 if the computed value of V.R. is equal to or greater
than 4.95 (obtained by interpolation).

7. Calculation of test statistic. The ANOVA for the example is shown in
Figure 10.3.1, where we see that the computed value of V.R. is 20.02.

8. Statistical decision. Since 20.02 is greater than 4.95, we reject H0.

9. Conclusion. We conclude that, in the population from which the sample
came, there is a linear relationship among the three variables.

10. p value. Since 20.02 is greater than 5.76, the p value for the test is less
than .005. &

Inferences Regarding Individual b0s Frequently, we wish to evaluate the
strength of the linear relationship between Y and the independent variables individually.
That is, we may want to test the null hypothesis that bi ¼ 0 against the alternative
bi 6¼ 0 i ¼ 1; 2; . . . ; kð Þ. The validity of this procedure rests on the assumptions stated
earlier: that for each combination of Xi values there is a normally distributed subpopulation
of Y values with variance s2.

Hypothesis Tests for the bi To test the null hypothesis that bi is equal to some
particular value, say, bi0, the following t statistic may be computed:

t ¼ b̂i � bi0

sb̂i
(10.4.3)

where the degrees of freedom are equal to n� k � 1, and sb̂i is the standard deviation of
the b̂i.

The standard deviations of the b̂i are given as part of the output from most computer
software packages that do regression analysis.
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EXAMPLE 10.4.3

Let us refer to Example 10.3.1 and test the null hypothesis that age (years) is irrelevant in
predicting the capacity to direct attention (CDA).

Solution:

1. Data. See Example 10.3.1.

2. Assumptions. See Section 10.2.

3. Hypotheses.

H0: b1 ¼ 0

HA: b1 6¼ 0

Let a ¼ :05

4. Test statistic. See Equation 10.4.3.

5. Distribution of test statistic. When H0 is true and the assumptions are
met, the test statistic is distributed as Student’s t with 68 degrees of
freedom.

6. Decision rule. Reject H0 if the computed t is either greater than or
equal to 1.9957 (obtained by interpolation) or less than or equal to
�1:9957.

7. Calculation of test statistic. By Equation 10.4.3 and data from Figure
10.3.2 we compute

t ¼ b̂1 � 0

sb̂1

¼ �:18412

:04851
¼ �3:80

8. Statistical decision. The null hypothesis is rejected since the computed
value of t, �3:80, is less than �1:9957.

9. Conclusion. We conclude, then, that there is a linear relationship
between age and CDA in the presence of education level.

10. p value. For this test, p < 2 :005ð Þ ¼ :01 because �3:80 < �2:6505
(obtained by interpolation). As shown in Figure 10.3.2, the p-value is
<.001 for this test.

&

Now, let us perform a similar test for the second partial regression coefficient, b2:

H0: b2 ¼ 0

HA: b2 6¼ 0

a ¼ :05

t ¼ b̂2 � 0

sb̂2

¼ :6108

:1357
¼ 4:50
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In this case also the null hypothesis is rejected, since 4.50 is greater than 1.9957. We
conclude that there is a linear relationship between education level and CDA in the
presence age, and that education level, used in this manner, is a useful variable for
predicting CDA. [For this test, p < 2 :005ð Þ ¼ :01.

Confidence Intervals for the bi When the researcher has been led to
conclude that a partial regression coefficient is not 0, he or she may be interested in
obtaining a confidence interval for this bi. Confidence intervals for the bi may be
constructed in the usual way by using a value from the t distribution for the reliability
factor and standard errors given above.

A 100 1 � að Þ percent confidence interval for bi is given by

b̂i � t1� a=2ð Þ; n�k�1sb̂i

For our illustrative example we may compute the following 95 percent confidence
intervals for b1 and b2.

The 95 percent confidence interval for b1 is

�:18412 � 1:9957 :04851ð Þ
�:18412 � :0968

ð�:28092;� :08732Þ

The 95 percent confidence interval for b2 is

:6108 � 1:9957ð Þ :1357ð Þ
:6108 � :2708

ð:3400; :8816Þ

We may give these intervals the usual probabilistic and practical interpretations. We are
95 percent confident, for example, that b2 is contained in the interval from .3400 to .8816
since, in repeated sampling, 95 percent of the intervals that may be constructed in this
manner will include the true parameter.

SomePrecautions One should be aware of the problems involved in carrying out
multiple hypothesis tests and constructing multiple confidence intervals from the same
sample data. The effect on a of performing multiple hypothesis tests from the same data is
discussed in Section 8.2. A similar problem arises when one wishes to construct confidence
intervals for two or more partial regression coefficients. The intervals will not be
independent, so that the tabulated confidence coefficient does not, in general, apply. In
other words, all such intervals would not be 100 1 � að Þ percent confidence intervals.

In order to maintain approximate 100 1 � að Þ confidence intervals for partial
regression coefficients, adjustments must be made to the calculation of errors in the
previous equations. These adjustments are sometimes called family-wise error rates, and
can be found in many computer software packages. The topic is discussed in detail by
Kutner, et al. (4).
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Another problem sometimes encountered in the application of multiple regression is
an apparent incompatibility in the results of the various tests of significance that one may
perform. In a given problem for a given level of significance, one or the other of the
following situations may be observed.

1. R2 and all b̂i significant

2. R2 and some but not all b̂i significant

3. R2 significant but none of the b̂i significant

4. All b̂i significant but not R2

5. Some b̂i significant, but not all nor R2

6. Neither R2 nor any b̂i significant

Notice that situation 1 exists in our illustrative example, where we have a significant
R2 and two significant regression coefficients. This situation does not occur in all cases. In
fact, situation 2 is very common, especially when a large number of independent variables
have been included in the regression equation.

EXERCISES

10.4.1 Refer to Exercise 10.3.1. (a) Calculate the coefficient of multiple determination; (b) perform an
analysis of variance; (c) test the significance of each b̂i i > 0ð Þ. Let a ¼ :05 for all tests of
significance and determine the p value for all tests; (d) construct a 95 percent confidence interval
for each significant sample slope.

10.4.2 Refer to Exercise 10.3.2. Do the analysis suggested in Exercise 10.4.1.

10.4.3 Refer to Exercise 10.3.3. Do the analysis suggested in Exercise 10.4.1.

10.4.4 Refer to Exercise 10.3.4. Do the analysis suggested in Exercise 10.4.1.

10.4.5 Refer to Exercise 10.3.5. Do the analysis suggested in Exercise 10.4.1.

10.4.6 Refer to Exercise 10.3.6. Do the analysis suggested in Exercise 10.4.1.

10.5 USING THEMULTIPLE
REGRESSION EQUATION

As we learned in the previous chapter, a regression equation may be used to obtain a
computed value of Y, ŷ, when a particular value of X is given. Similarly, we may use our
multiple regression equation to obtain a ŷ value when we are given particular values of the
two or more X variables present in the equation.

Just as was the case in simple linear regression, we may, in multiple regression,
interpret a ŷ value in one of two ways. First we may interpret ŷ as an estimate of the mean
of the subpopulation of Y values assumed to exist for particular combinations of Xi

values. Under this interpretation ŷ is called an estimate, and when it is used for this
purpose, the equation is thought of as an estimating equation. The second interpretation
of ŷ is that it is the value Y is most likely to assume for given values of the Xi. In this case ŷ
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is called the predicted value of Y, and the equation is called a prediction equation. In both
cases, intervals may be constructed about the ŷ value when the normality assumption of
Section 10.2 holds true. When ŷ is interpreted as an estimate of a population mean, the
interval is called a confidence interval, and when ŷ is interpreted as a predicted value of
Y, the interval is called a prediction interval. Now let us see how each of these intervals is
constructed.

The Confidence Interval for the Mean of a Subpopulation of
Y Values Given Particular Values of the Xi We have seen that a
100 1 � að Þ percent confidence interval for a parameter may be constructed by the general
procedure of adding to and subtracting from the estimator a quantity equal to the reliability
factor corresponding to 1 � a multiplied by the standard error of the estimator. We have
also seen that in multiple regression the estimator is

ŷj ¼ b̂0 þ b̂1x1j þ b̂2x2j þ � � � þ b̂kxkj (10.5.1)

If we designate the standard error of this estimator by sŷ, the 100 1 � að Þ percent confidence
interval for the mean of Y, given specified Xi is as follows:

ŷj � t 1�a=2ð Þ;n�k�1sŷj (10.5.2)

The Prediction Interval for a Particular Value of Y Given
Particular Values of the Xi When we interpret ŷ as the value Y is most likely
to assume when particular values of the Xi are observed, we may construct a prediction
interval in the same way in which the confidence interval was constructed. The only
difference in the two is the standard error. The standard error of the prediction is slightly
larger than the standard error of the estimate, which causes the prediction interval to be
wider than the confidence interval.

If we designate the standard error of the prediction by s0ŷ; the 100 1 � að Þ percent
prediction interval is

ŷj � t 1�a=2ð Þ;n�k�1s
0
ŷj (10.5.3)

The calculations of sŷj and s0ŷj in the multiple regression case are complicated and will not
be covered in this text. The reader who wishes to see how these statistics are calculated may
consult the book by Anderson and Bancroft (3), other references listed at the end of this
chapter and Chapter 9, and previous editions of this text. The following example illustrates
how MINITAB may be used to obtain confidence intervals for the mean of Yand prediction
intervals for a particular value of Y.

EXAMPLE 10.5.1

We refer to Example 10.3.1. First, we wish to construct a 95 percent confidence interval
for the mean CDA score (Y) in a population of 68-year-old subjects (X1) who completed
12 years of education (X2). Second, suppose we have a subject who is 68 years of age
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and has an education level of 12 years. What do we predict to be this subject’s CDA
score?

Solution: The point estimate of the mean CDA score is

ŷ ¼ 5:494 � :18412 68ð Þ þ :6108 12ð Þ ¼ :3034

The point prediction, which is the same as the point estimate obtained
previously, also is

ŷ ¼ 5:494 � :18412 68ð Þ þ :6108 12ð Þ ¼ :3034

To obtain the confidence interval and the prediction interval for the
parameters for which we have just computed a point estimate and a point
prediction, we use MINITAB as follows. After entering the information for a
regression analysis of our data as shown in Figure 10.3.2, we click on Options
in the dialog box. In the box labeled “Prediction intervals for new obser-
vations,” we type 68 and 12 and click OK twice. In addition to the regression
analysis, we obtain the following output:

New Obs Fit SE Fit 95.0% CI 95.0% PI

1 0.303 0.672 (�1.038, 1.644) (�6.093, 6.699)

We interpret these intervals in the usual ways. We look first at the
confidence interval. We are 95 percent confident that the interval from�1:038
to 1.644 includes the mean of the subpopulation of Y values for the specified
combination of Xi values, since this parameter would be included in about 95
percent of the intervals that can be constructed in the manner shown.

Now consider the subject who is 68 years old and has 12 years of
education. We are 95 percent confident that this subject would have a CDA
score somewhere between �6:093 and 6.699. The fact that the P.I. is wider
than the C.I. should not be surprising. After all, it is easier to estimate the
mean response than it is estimate an individual observation. &

EXERCISES

For each of the following exercises compute the y value and construct (a) 95 percent
confidence and (b) 95 percent prediction intervals for the specified values of Xi.

10.5.1 Refer to Exercise 10.3.1 and let x1j ¼ 95 and x2j ¼ 35:

10.5.2 Refer to Exercise 10.3.2 and let x1j ¼ 50; x2j ¼ 20, and x3j ¼ 22:

10.5.3 Refer to Exercise 10.3.3 and let x1j ¼ 5 and x2j ¼ 6:

10.5.4 Refer to Exercise 10.3.4 and let x1j ¼ 1 and x2j ¼ 2:
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10.5.5 Refer to Exercise 10.3.5 and let x1j ¼ 90 and x2j ¼ 80:

10.5.6 Refer to Exercise 10.3.6 and let x1j ¼ 50; x2j ¼ 95:0; x3j ¼ 2:00; x4j ¼ 6:00; x5j ¼ 75, and
x6j ¼ 70:

10.6 THEMULTIPLE CORRELATIONMODEL

We pointed out in the preceding chapter that while regression analysis is concerned with
the form of the relationship between variables, the objective of correlation analysis is to
gain insight into the strength of the relationship. This is also true in the multivariable case,
and in this section we investigate methods for measuring the strength of the relationship
among several variables. First, however, let us define the model and assumptions on which
our analysis rests.

The Model Equation We may write the correlation model as

yj ¼ b0 þ b1x1j þ b2x2j þ � � � þ bkxkj þ ej (10.6.1)

where yj is a typical value from the population of values of the variable Y, the b’s are the
regression coefficients defined in Section 10.2, and the xij are particular (known) values of
the random variables Xi. This model is similar to the multiple regression model, but there is
one important distinction. In the multiple regression model, given in Equation 10.2.1, the Xi

are nonrandom variables, but in the multiple correlation model the Xi are random variables.
In other words, in the correlation model there is a joint distribution of Y and the Xi that we
call a multivariate distribution. Under this model, the variables are no longer thought of as
being dependent or independent, since logically they are interchangeable and either of the
Xi may play the role of Y.

Typically, random samples of units of association are drawn from a population of
interest, and measurements of Y and the Xi are made.

A least-squares plane or hyperplane is fitted to the sample data by methods described
in Section 10.3, and the same uses may be made of the resulting equation. Inferences may
be made about the population from which the sample was drawn if it can be assumed that
the underlying distribution is normal, that is, if it can be assumed that the joint distribution
of Yand Xi is a multivariate normal distribution. In addition, sample measures of the degree
of the relationship among the variables may be computed and, under the assumption that
sampling is from a multivariate normal distribution, the corresponding parameters may be
estimated by means of confidence intervals, and hypothesis tests may be carried out.
Specifically, we may compute an estimate of the multiple correlation coefficient that
measures the dependence between Y and the Xi. This is a straightforward extension of the
concept of correlation between two variables that we discuss in Chapter 9. We may also
compute partial correlation coefficients that measure the intensity of the relationship
between any two variables when the influence of all other variables has been removed.

The Multiple Correlation Coefficient As a first step in analyzing the
relationships among the variables, we look at the multiple correlation coefficient.
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The multiple correlation coefficient is the square root of the coefficient of multiple
determination and, consequently, the sample value may be computed by taking the square
root of Equation 10.4.2. That is,

Ry:12...k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
y:12...k

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ŷj � �y
� �2

P
yj � �y
� �2

vuut ¼
ffiffiffiffiffiffiffiffi
SSR

SST

r
(10.6.2)

To illustrate the concepts and techniques of multiple correlation analysis, let us
consider an example.

EXAMPLE 10.6.1

Wang et al. (A-4), using cadaveric human femurs from subjects ages 16 to 19 years,
investigated toughness properties of the bone and measures of the collagen network within
the bone. Two variables measuring the collagen network are porosity (P, expressed as a
percent) and a measure of collagen network tensile strength (S). The measure of toughness
(W, Newtons), is the force required for bone fracture. The 29 cadaveric femurs used in the
study were free from bone-related pathologies. We wish to analyze the nature and strength
of the relationship among the three variables. The measurements are shown in the
following table.

TABLE 10.6.1 Bone Toughness and

Collagen Network Properties for

29 Femurs

W P S

193.6 6.24 30.1

137.5 8.03 22.2

145.4 11.62 25.7

117.0 7.68 28.9

105.4 10.72 27.3

99.9 9.28 33.4

74.0 6.23 26.4

74.4 8.67 17.2

112.8 6.91 15.9

125.4 7.51 12.2

126.5 10.01 30.0

115.9 8.70 24.0

98.8 5.87 22.6

94.3 7.96 18.2

99.9 12.27 11.5

83.3 7.33 23.9

72.8 11.17 11.2

83.5 6.03 15.6

59.0 7.90 10.6

(Continued )
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Solution: We use MINITAB to perform the analysis of our data. Readers interested in
the derivation of the underlying formulas and the arithmetic procedures
involved may consult the texts listed at the end of this chapter and Chapter 9,
as well as previous editions of this text. If a least-squares prediction equation
and multiple correlation coefficient are desired as part of the analysis, we
may obtain them by using the previously described MINITAB multiple
regression procedure. When we do this with the sample values of Y, X1, and
X2, stored in Columns 1 through 3, respectively, we obtain the output shown
in Figure 10.6.1.

The least-squares equation, then, is

ŷj ¼ 35:61 þ 1:451x1j þ 2:3960x2j

87.2 8.27 24.7

84.4 11.05 25.6

78.1 7.61 18.4

51.9 6.21 13.5

57.1 7.24 12.2

54.7 8.11 14.8

78.6 10.05 8.9

53.7 8.79 14.9

96.0 10.40 10.3

89.0 11.72 15.4
Source: Data provided courtesy
of Xiaodu Wang, Ph.D.

The regression equation is
Y = 35.6 + 1.45 X1 + 2.40 X2

Predictor Coef SE Coef T P
Constant 35.61 29.13 1.22 0.232
X1 1.451 2.763 0.53 0.604
X2 2.3960 0.7301 3.28 0.003

S = 27.42 R-Sq = 29.4% R-Sq(adj) = 24.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 8151.1 4075.6 5.42 0.011
Residual Error 26 19553.5 752.1
Total 28 27704.6

FIGURE 10.6.1 Output from MINITAB multiple regression procedure for the data in

Table 10.6.1.

W P S
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Partial Correlation The researcher may wish to have a measure of the strength
of the linear relationship between two variables when the effect of the remaining variables
has been removed. Such a measure is provided by the partial correlation coefficient.

This equation may be used for estimation and prediction purposes and may
be evaluated by the methods discussed in Section 10.4.

As we see in Figure 10.6.1, the multiple regression output also gives us
the coefficient of multiple determination, which, in our present example, is

R2
y:12 ¼ :294

The multiple correlation coefficient, therefore, is

Ry:12 ¼
ffiffiffiffiffiffiffiffiffi
:294

p
¼ :542

Interpretation of Ry:12

We interpret Ry:12 as a measure of the correlation among the variables force required to
fracture, porosity, and collagen network strength in the sample of 29 femur bones from
subjects ages 16 to 19. If our data constitute a random sample from the population of such
persons, we may use Ry:12 as an estimate of ry:12, the true population multiple correlation
coefficient. We may also interpret Ry:12 as the simple correlation coefficient between yj and
ŷ, the observed and calculated values, respectively, of the “dependent” variable. Perfect
correspondence between the observed and calculated values of Y will result in a correlation
coefficient of 1, while a complete lack of a linear relationship between observed and
calculated values yields a correlation coefficient of 0. The multiple correlation coefficient
is always given a positive sign.

We may test the null hypothesis that ry:12...k ¼ 0 by computing

F ¼ R2
y:12...k

1 � R2
y:12...k

� n� k � 1

k
(10.6.3)

The numerical value obtained from Equation 10.6.3 is compared with the tabulated value
of F with k and n� k � 1 degrees of freedom. The reader will recall that this is identical to
the test of H0: b1 ¼ b2 ¼ � � � ¼ bk ¼ 0 described in Section 10.4.

For our present example let us test the null hypothesis that ry:12 ¼ 0 against the
alternative that ry:12 6¼ 0. We compute

F ¼ :294

1 � :294
� 29 � 2 � 1

2
¼ 5:41

Since 5.41 is greater than 4.27, p < :025, so that we may reject the null hypothesis at the
.025 level of significance and conclude that the force required for fracture is correlated with
porosity and the measure of collagen network strength in the sampled population.

The computed value of F for testing H0 that the population multiple correlation
coefficient is equal to zero is given in the analysis of variance table in Figure 10.6.1 and is
5.42. The two computed values of F differ as a result of differences in rounding in the
intermediate calculations. &
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For example, the partial sample correlation coefficient ry:12 is a measure of the correlation
between Y and X1 after controlling for the effect of X2.

The partial correlation coefficients may be computed from the simple correlation
coefficients. The simple correlation coefficients measure the correlation between two
variables when no effort has been made to control other variables. In other words, they are
the coefficients for any pair of variables that would be obtained by the methods of simple
correlation discussed in Chapter 9.

Suppose we have three variables, Y, X1, and X2. The sample partial correlation
coefficient measuring the correlation between Y and X1 after controlling for X2, for
example, is written ry1:2. In the subscript, the symbol to the right of the decimal point
indicates the variable whose effect is being controlled, while the two symbols to the left of
the decimal point indicate which variables are being correlated. For the three-variable case,
there are two other sample partial correlation coefficients that we may compute. They are
ry2:1 and r12:y.

The Coefficient of Partial Determination The square of the partial
correlation coefficient is called the coefficient of partial determination. It provides useful
information about the interrelationships among variables. Consider ry1:2, for example. Its
square, r2

y1:2 tells us what proportion of the remaining variability in Y is explained by X1

after X2 has explained as much of the total variability in Y as it can.

Calculating the Partial Correlation Coefficients For three variables
the following simple correlation coefficients may be calculated:

ry1, the simple correlation between Y and X1

ry2, the simple correlation between Y and X2

r12, the simple correlation between X1 and X2

The MINITAB correlation procedure may be used to compute these simple correla-
tion coefficients as shown in Figure 10.6.2. As noted earlier, the sample observations are
stored in Columns 1 through 3. From the output in Figure 10.6.2 we see that
r12 ¼ �:08; ry1 ¼ :043, and ry2 ¼ :535.

The sample partial correlation coefficients that may be computed from the simple
correlation coefficients in the three-variable case are:

1. The partial correlation between Y and X1 after controlling for the effect of X2:

ry1:2 ¼ ry1 � ry2r12

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

y2ð Þ 1�r2
12ð Þ

q
(10.6.4)

2. The partial correlation between Y and X2 after controlling for the effect of X1:

ry2:1 ¼ ry2 � ry1r12

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

y1ð Þ 1�r2
12ð Þ

q
(10.6.5)

3. The partial correlation between X1 and X2 after controlling for the effect of Y:

r12:y ¼ r12 � ry1ry2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

y1ð Þ 1�r2
y2ð Þ

q
(10.6.6)
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EXAMPLE 10.6.2

To illustrate the calculation of sample partial correlation coefficients, let us refer to
Example 10.6.1, and calculate the partial correlation coefficients among the variables force
to fracture (Y ), porosity (X1), and collagen network strength (X2).

Solution: Instead of computing the partial correlation coefficients from the simple
correlation coefficients by Equations 10.6.4 through 10.6.6, we use MINITAB
to obtain them.

The MINITAB procedure for computing partial correlation coefficients
is based on the fact that a given partial correlation coefficient is itself the
simple correlation between two sets of residuals. A set of residuals is
obtained as follows. Suppose we have measurements on two variables, X
(independent) and Y (dependent). We obtain the least-squares prediction
equation, ŷ ¼ b̂0 þ b̂x. For each value of X we compute a residual, which is
equal to yi � ŷið Þ, the difference between the observed value of Y and the
predicted value of Y associated with the X.

Now, suppose we have three variables, X1;X2, and Y. We want to
compute the partial correlation coefficient between X1 and Y while holding
X2 constant. We regressX1 onX2 and compute the residuals, which we may call
residual set A. We regress Y on X2 and compute the residuals, which we may
call residual setB. The simple correlation coefficient measuring the strength of
the relationship between residual set A and residual set B is the partial
correlation coefficient between X1 and Y after controlling for the effect of X2.

:dnammoC noisseS:xob golaiD

Stat Basic Statistics Correlation MTB> CORRELATION C1-C3

Type C1-C3 in Variables. Click OK.

Output:

Y X1
X1 0.043

0.823

X2 0.535 -0.080
0.003 0.679

Cell Contents: Pearson correlation
P-Value

FIGURE 10.6.2 MINITAB procedure for calculating the simple correlation coefficients for the

data in Table 10.6.1.
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When using MINITAB we store each set of residuals in a different
column for future use in calculating the simple correlation coefficients
between them.

We use session commands rather than a dialog box to calculate the
partial correlation coefficients when we use MINITAB. With the observa-
tions on X1;X2, and Y stored in Columns 1 through 3, respectively, the
procedure for the data of Table 10.6.1 is shown in Figure 10.6.3. The output
shows that ry1:2 ¼ :102; r12:y ¼ �:122, and ry2:1 ¼ :541.

Partial correlations can be calculated directly using SPSS software as
seen in Figure 10.6.5. This software displays, in a succinct table, both the
partial correlation coefficient and the p value associated with each partial
correlation. &

Testing Hypotheses About Partial Correlation Coefficients We
may test the null hypothesis that any one of the population partial correlation coefficients is
0 by means of the t test. For example, to test H0: ry1:2...k ¼ 0, we compute

t ¼ ry1:2...k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� k � 1

1 � r2
y1:2...k

s
(10.6.7)

which is distributed as Student’s t with n� k � 1 degrees of freedom.
Let us illustrate the procedure for our current example by testing H0: ry1:2 ¼ 0

against the alternative, HA: ry1:2 6¼ 0. The computed t is

t ¼ :102

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29 � 2 � 1

1 � :102ð Þ2

s
¼ :523

Since the computed t of .523 is smaller than the tabulated t of 2.0555 for 26 degrees of
freedom and a ¼ :05 (two-sided test), we fail to reject H0 at the .05 level of significance
and conclude that there may be no correlation between force required for fracture and
porosity after controlling for the effect of collagen network strength. Significance tests for
the other two partial correlation coefficients will be left as an exercise for the reader. Note
that p values for these tests are calculated by MINITAB as shown in Figure 10.6.3.

The SPSS statistical software package for the PC provides a convenient procedure for
obtaining partial correlation coefficients. To use this feature choose “Analyze” from the
menu bar, then “Correlate,” and, finally, “Partial.” Following this sequence of choices the
Partial Correlations dialog box appears on the screen. In the box labeled “Variables:,” enter
the names of the variables for which partial correlations are desired. In the box labeled
“Controlling for:” enter the names of the variable(s) for which you wish to control. Select
either a two-tailed or one-tailed level of significance. Unless the option is deselected, actual
significance levels will be displayed. For Example 10.6.2, Figure 10.6.4 shows the SPSS
computed partial correlation coefficients between the other two variables when controlling,
successively, for X1 (porosity), X2 (collagen network strength), and Y (force required for
fracture).
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MTB > regress C1 1 C2;
SUBC> residuals C4.

MTB > regress C3 1 C2;
SUBC> residuals C5.

MTB > regress C1 1 C3;
SUBC> residuals C6.

MTB > regress C2 1 C3;
SUBC> residuals C7.

MTB > regress C2 1 C1;
SUBC> residuals C8.

MTB > regress C3 1 C1;
SUBC> residuals C9.

MTB > corr C4 C5

Correlations: C4, C5

Pearson correlation of C4 and C5 = 0.102
P-Value = 0.597

MTB > corr C6 C7

Correlations: C6, C7

Pearson correlation of C6 and C7 = -0.122
P-Value = 0.527

MTB > corr C8 C9

Correlations: C8, C9

Pearson correlation of C8 and C9 = 0.541
P-Value = 0.002

FIGURE 10.6.3 MINITAB procedure for computing partial correlation coefficients from the

data of Table 10.6.1.
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Controlling for: X1

X2 Y

X2 1.0000 .5412
( 0) ( 26)
P= . P= .003

Y .5412 1.0000
( 26) ( 0)
P= .003 P= .

Controlling for: X2

Y X1

Y 1.0000 .1024
( 0) ( 26)
P= . P= .604

X1 .1024 1.0000
( 26) ( 0)
P= .604 P= .

Controlling for: Y

X1 X2

X1 1.0000 -.1225
( 0) ( 26)
P= . P= .535

X2 -.1225 1.0000
( 26) ( 0)
P= .535 P= .

(Coefficient / (D.F.) / 2-tailed Significance)
“.” is printed if a coefficient cannot be computed

FIGURE 10.6.4 Partial coefficients obtained with SPSS for Windows, Example 10.6.2.
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Although our illustration of correlation analysis is limited to the three-variable
case, the concepts and techniques extend logically to the case of four or more variables.
The number and complexity of the calculations increase rapidly as the number of
variables increases.

(a)

Correlations

Porosity Tensile
)2X(htgnertS)1X(selbairaV lortnoC

Force to Fracture (Y) Porocity (X1) Correlation 1.000 .122
Significance (2-tailed) . .535

620fd

Tensile Strength (X2) Correlation .122 1.000
Significance (2-tailed) .535 .

062fd

(b)

Correlations

Tensile Force to
)Y( erutcarF)2X( htgnertSselbairaV lortnoC

Porosity (X1) Tensile Strength (X2) Correlation 1.000 .541
Significance (2-tailed) . .003

620fd

Force to Fracture (Y) Correlation .541 1.000
Significance (2-tailed) .003 .

062fd

(c)

Correlations

Force to
)1X( ytisoroP)Y( erutcarFselbairaV lortnoC

Tensile Strength (X2) Force to Fracture (Y) Correlation 1.000 .102
Significance (2-tailed) . .604

620fd

Porosity (X1) Correlation .102 1.000
Significance (2-tailed) .604 .

062fd

FIGURE 10.6.5 Partial correlation coefficients for the data in Example 10.6.1. (a) ry1.2, (b) r12.y,

and (c) ry2.1.
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EXERCISES

10.6.1 The objective of a study by Anton et al. (A-5) was to investigate the correlation structure of multiple
measures of HIV burden in blood and tissue samples. They measured HIV burden four ways. Two
measurements were derived from blood samples, and two measurements were made on rectal tissue.
The two blood measures were based on HIV DNA assays and a second co-culture assay that was a
modification of the first measure. The third and fourth measurements were quantitations of HIV-1
DNA and RNA from rectal biopsy tissue. The table below gives data on HIV levels from these
measurements for 34 subjects.

HIV DNA
Blood (Y)

HIV Co-Culture
Blood (X1)

HIV DNA Rectal
Tissue (X2)

HIV RNA Rectal
Tissue (X3)

115 .38 899 56
86 1.65 167 158
19 .16 73 152

6 .08 146 35
23 .02 82 60

147 1.98 2483 1993
27 .15 404 30

140 .25 2438 72
345 .55 780 12

92 .22 517 5
85 .09 346 5
24 .17 82 12

109 .41 1285 5
5 .02 380 5

95 .84 628 32
46 .02 451 5
25 .64 159 5

187 .20 1335 121
5 .04 30 5

47 .02 13 30
118 .24 5 5
112 .72 625 83

79 .45 719 70
52 .23 309 167
52 .06 27 29

7 .37 199 5
13 .13 510 42
80 .24 271 15
86 .96 273 45
26 .29 534 71
53 .25 473 264

185 .28 2932 108
30 .19 658 33

9 .03 103 5
76 .21 2339 5

(Continued )
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51 .09 31 36
73 .06 158 5
47 .08 773 5
48 .12 545 67
16 .03 5 5

Source: Data provided courtesy of Peter A. Anton, M.D.

(a) Compute the simple correlation coefficients between all possible pairs of variables.

(b) Compute the multiple correlation coefficient among the four variables. Test the overall
correlation for significance.

(c) Calculate the partial correlations between HIV DNA blood and each one of the other
variables while controlling for the other two. (These are called second-order partial correlation
coefficients.)

(d) Calculate the partial correlation between HIV co-culture blood and HIV DNA, controlling for the
other two variables.

(e) Calculate the partial correlation between HIV co-culture blood and HIV RNA, controlling for the
other two variables.

(f) Calculate the partial correlations between HIV DNA and HIV RNA, controlling for the other two
variables.

10.6.2 The following data were obtained on 12 males between the ages of 12 and 18 years (all measurements
are in centimeters):

Height
(Y)

Radius Length
(X1)

Femur Length
(X2)

149.0 21.00 42.50
152.0 21.79 43.70
155.7 22.40 44.75
159.0 23.00 46.00
163.3 23.70 47.00
166.0 24.30 47.90
169.0 24.92 48.95
172.0 25.50 49.90
174.5 25.80 50.30
176.1 26.01 50.90
176.5 26.15 50.85
179.0 26.30 51.10

Total 1992.1 290.87 573.85

(a) Find the sample multiple correlation coefficient and test the null hypothesis that ry:12 ¼ 0.

(b) Find each of the partial correlation coefficients and test each for significance. Let a ¼ :05 for all
tests.

(c) Determine the p value for each test.

(d) State your conclusions.

HIV DNA
Blood (Y)

HIV Co-Culture
Blood (X1)

HIV DNA Rectal
Tissue (X2)

HIV RNA Rectal
Tissue (X3)
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10.6.3 The following data were collected on 15 obese girls:

Weight in
Kilograms
(Y)

Lean Body
Weight
(X1)

Mean Daily
Caloric Intake

(X2)

79.2 54.3 2670
64.0 44.3 820
67.0 47.8 1210
78.4 53.9 2678
66.0 47.5 1205
63.0 43.0 815
65.9 47.1 1200
63.1 44.0 1180
73.2 44.1 1850
66.5 48.3 1260
61.9 43.5 1170
72.5 43.3 1852

101.1 66.4 1790
66.2 47.5 1250
99.9 66.1 1789

Total 1087.9 741.1 22739

(a) Find the multiple correlation coefficient and test it for significance.

(b) Find each of the partial correlation coefficients and test each for significance. Let a ¼ :05 for all
tests.

(c) Determine the p value for each test.

(d) State your conclusions.

10.6.4 A research project was conducted to study the relationships among intelligence, aphasia, and apraxia.
The subjects were patients with focal left hemisphere damage. Scores on the following variables were
obtained through the application of standard tests.

Y ¼ intelligence

X1 ¼ ideomotor apraxia

X2 ¼ constructive apraxia

X3 ¼ lesion volume pixelsð Þ
X4 ¼ severity of aphasia

The results are shown in the following table. Find the multiple correlation coefficient and test
for significance. Let a ¼ :05 and find the p value.

Subject Y X1 X2 X3 X4

1 66 7.6 7.4 2296.87 2
2 78 13.2 11.9 2975.82 8
3 79 13.0 12.4 2839.38 11
4 84 14.2 13.3 3136.58 15

(Continued )
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5 77 11.4 11.2 2470.50 5
6 82 14.4 13.1 3136.58 9
7 82 13.3 12.8 2799.55 8
8 75 12.4 11.9 2565.50 6
9 81 10.7 11.5 2429.49 11

10 71 7.6 7.8 2369.37 6
11 77 11.2 10.8 2644.62 7
12 74 9.7 9.7 2647.45 9
13 77 10.2 10.0 2672.92 7
14 74 10.1 9.7 2640.25 8
15 68 6.1 7.2 1926.60 5

10.7 SUMMARY

In this chapter we examine how the concepts and techniques of simple linear regression and
correlation analysis are extended to the multiple-variable case. The least-squares method of
obtaining the regression equation is presented and illustrated. This chapter also is
concerned with the calculation of descriptive measures, tests of significance, and the
uses to be made of the multiple regression equation. In addition, the methods and concepts
of correlation analysis, including partial correlation, are discussed.

When the assumptions underlying the methods of regression and correlation
presented in this and the previous chapter are not met, the researcher must resort to
alternative techniques such as those discussed in Chapter 13.

SUMMARY OF FORMULAS FOR CHAPTER 10

Formula
Number Name Formula

10.2.1 Representation of
the multiple
linear regression
equation

yj ¼ b0 þ b1x1j þ b2x2j þ � � � þ bkxkj þ ej

10.2.2 Representation
of the multiple
linear regression
equation with
two independent
variables

yj ¼ b0 þ b1x1j þ b2x2j þ ej

(Continued )

Subject Y X1 X2 X3 X4
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10.2.3 Random deviation
of a point from a
plane when there
are two
independent
variables

ej ¼ yj � b0 � b1x1j � b2x2j

10.3.1 Sum-of-squared
residuals

P
e2
j ¼

P
yj � ŷj
� �2

10.4.1 Sum-of-squares
equation

P
yj � �y
� �2 ¼ P

ŷj � �y
� �2 þP

yj � ŷj
� �2

SST ¼ SSRþ SSE

10.4.2 Coefficient of
multiple
determination

R2
y:12...k ¼

P
ŷj � �y
� �2

P
yj � �y
� �2 ¼ SSR

SST

10.4.3 t statistic for
testing hypotheses
about bi

t ¼ b̂i � bi0
sb̂i

10.5.1 Estimation
equation for
multiple linear
regression

ŷj ¼ b̂0 þ b̂1x1j þ b̂2x2j þ � � � þ b̂kxkj

10.5.2 Confidence interval
for the mean of Y
for a given X

ŷj � t 1�a=2ð Þ;n�k�1sŷj

10.5.3 Prediction interval
for Y for a given X

ŷj � t 1�a=2ð Þ;n�k�1s
0
ŷj

10.6.1 Multiple
correlation model

yj ¼ b0 þ b1x1j þ b2x2j þ � � � þ bkxkj þ ej

10.6.2 Multiple
correlation
coefficient

Ry:12...k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
y:12...k

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ŷj � �y
� �2

P
yj � �y
� �2

vuut ¼
ffiffiffiffiffiffi
SSR
SST

q

10.6.3 F statistic for
testing the multiple
correlation
coefficient

F ¼ R2
y:12...k

1 � R2
y:12...k

� n� k � 1

k

10.6.4–10.6.6 Partial correlation
between two
variables (1 and 2)
after controlling for
a third (3)

r12:3 ¼ r12 � r13r23ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

13

� �
1 � r2

23

� �q
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10.6.7 t statistic for testing
hypotheses about
partial correlation
coefficients

t ¼ ry1:2...k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� k � 1

1 � r2
y1:2...k

s

Symbol Key � b̂x ¼ estimated regression=correlation coefficient x
� bx ¼ regression=correlation coefficient
� e ¼ model error term
� k¼ number of independent variables
� n¼ sample size
� r12.3 ¼ sample partial correlation coefficient between 1 and 2

after controlling for 3
� R¼ sample correlation coefficient
� R2¼multiple coefficient of determination
� t ¼ t statistic
� xi¼value of independent variable at i
� �x ¼ sample mean of independent variable
� yi¼value of dependent variable at i
� �y ¼ sample mean of dependent variable
� ŷ ¼ estimated y
� z ¼ z statistic

REVIEW QUESTIONS AND EXERCISES

1. What are the assumptions underlying multiple regression analysis when one wishes to infer about the
population from which the sample data have been drawn?

2. What are the assumptions underlying the correlation model when inference is an objective?

3. Explain fully the following terms:

(a) Coefficient of multiple determination (b) Multiple correlation coefficient
(c) Simple correlation coefficient (d) Partial correlation coefficient

4. Describe a situation in your particular area of interest where multiple regression analysis would be
useful. Use real or realistic data and do a complete regression analysis.

5. Describe a situation in your particular area of interest where multiple correlation analysis would be
useful. Use real or realistic data and do a complete correlation analysis.

In Exercises 6 through 11 carry out the indicated analysis and test hypotheses at the indicated
significance levels. Compute the p value for each test.

6. We learned in Example 9.7.1 that the purpose of a study by Kwast-Rabben et al. (A-6) was to analyze
somatosensory evoked potentials (SEPs) and their interrelations following stimulation of digits I, III,
and V in the hand. Healthy volunteers were recruited for the study. Researchers applied stimulation
below-pain-level intensity to the fingers. Recordings of spinal responses were made with electrodes
fixed by adhesive electrode cream to the subject’s skin. Results are shown in the following table for
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114 subjects. Use multiple regression to see how well you can predict the peak spinal latency (Cv) of
the SEP for digit I when age (years) and arm length (cm) are the predictor variables. Evaluate the
usefulness of your prediction equation.

Age Arm Length Cv Dig.I Age Arm Length Cv Dig.I Age Arm Length Cv Dig.I

35.07 76.5 13.50 32.00 82.0 16.30 42.08 94.0 17.70
35.07 76.5 13.50 32.00 82.0 15.40 40.09 94.0 17.70
21.01 77.0 13.00 38.09 86.5 16.60 40.09 94.0 17.40
21.01 77.0 13.60 38.09 86.5 16.00 42.09 92.5 18.40
47.06 75.5 14.30 58.07 85.0 17.00 20.08 95.0 19.00
47.06 75.5 14.90 58.07 85.0 16.40 50.08 94.5 19.10
26.00 80.0 15.40 54.02 88.0 17.60 50.08 94.5 19.20
26.00 80.0 14.70 48.10 92.0 16.80 47.11 97.5 17.80
53.04 82.0 15.70 48.10 92.0 17.00 47.11 97.5 19.30
53.04 82.0 15.80 54.02 88.0 17.60 26.05 96.0 17.50
43.07 79.0 15.20 45.03 91.5 17.30 26.05 96.0 18.00
39.08 83.5 16.50 45.03 91.5 16.80 43.02 98.0 18.00
39.08 83.5 17.00 35.11 94.0 17.00 43.02 98.0 18.80
43.07 79.0 14.70 26.04 88.0 15.60 32.06 98.5 18.30
29.06 81.0 16.00 51.07 87.0 16.80 32.06 98.5 18.60
29.06 81.0 15.80 51.07 87.0 17.40 33.09 97.0 18.80
50.02 86.0 15.10 26.04 88.0 16.50 33.09 97.0 19.20
25.07 81.5 14.60 35.11 94.0 16.60 35.02 100.0 18.50
25.07 81.5 15.60 52.00 88.5 18.00 35.02 100.0 18.50
25.10 82.5 14.60 44.02 90.0 17.40 26.05 96.0 19.00
47.04 86.0 17.00 44.02 90.0 17.30 26.05 96.0 18.50
47.04 86.0 16.30 24.05 91.0 16.40 25.08 100.5 19.80
37.00 83.0 16.00 24.00 87.0 16.10 25.06 100.0 18.80
37.00 83.0 16.00 24.00 87.0 16.10 25.06 100.0 18.40
34.10 84.0 16.30 24.00 87.0 16.00 25.08 100.5 19.00
47.01 87.5 17.40 24.00 87.0 16.00 30.05 101.0 18.00
47.01 87.5 17.00 53.05 90.0 17.50 30.05 101.0 18.20
30.04 81.0 14.10 53.05 90.0 17.50 36.07 104.5 18.90
23.06 81.5 14.20 52.06 90.0 18.00 36.07 104.5 19.20
23.06 81.5 14.70 52.06 90.0 17.90 35.09 102.0 21.00
30.04 81.0 13.90 53.04 93.0 18.40 35.09 102.0 19.20
78.00 81.0 17.20 22.04 90.0 16.40 21.01 101.5 18.60
41.02 83.5 16.70 22.04 90.0 15.80 21.01 101.5 18.60
41.02 83.5 16.50 46.07 95.5 18.80 40.00 95.5 20.00
28.07 78.0 14.80 46.07 95.5 18.60 42.09 92.5 18.40
28.07 78.0 15.00 47.00 93.5 18.00 42.08 94.0 18.50
36.05 88.0 17.30 47.00 93.5 17.90 35.04 86.0 16.00
35.04 86.0 15.30 39.05 94.5 17.40 36.05 88.0 16.60

Source: Data provided courtesy of Olga Kwast-Rabben, Ph.D.

7. The following table shows the weight and total cholesterol and triglyceride levels in 15 patients with
primary type II hyperlipoproteinemia just prior to initiation of treatment:
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YWeight (kg)

X1

Total Cholesterol
(mg/100 ml)

X2

Triglyceride
(mg/100 ml)

76 302 139
97 336 101
83 220 57
52 300 56
70 382 113
67 379 42
75 331 84
78 332 186
70 426 164
99 399 205
75 279 230
78 332 186
70 410 160
77 389 153
76 302 139

Compute the multiple correlation coefficient and test for significance at the .05 level.

8. In a study of the relationship between creatinine excretion, height, and weight, the data shown in the
following table were collected on 20 infant males:

Infant

Creatinine
Excretion
(mg/day)

Y
Weight (kg)

X1

Height (cm)
X2

1 100 9 72
2 115 10 76
3 52 6 59
4 85 8 68
5 135 10 60
6 58 5 58
7 90 8 70
8 60 7 65
9 45 4 54

10 125 11 83
11 86 7 64
12 80 7 66
13 65 6 61
14 95 8 66
15 25 5 57
16 125 11 81
17 40 5 59

(Continued )
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18 95 9 71
19 70 6 62
20 120 10 75

(a) Find the multiple regression equation describing the relationship among these variables.

(b) Compute R2 and do an analysis of variance.

(c) Let X1 ¼ 10 and X2 ¼ 60 and find the predicted value of Y.

9. A study was conducted to examine those variables thought to be related to the job satisfaction of
nonprofessional hospital employees. A random sample of 15 employees gave the following
results:

Score on Job
Satisfaction
Test (Y)

Coded
Intelligence

Score
(X1)

Index of
Personal

Adjustment
(X2)

54 15 8
37 13 1
30 15 1
48 15 7
37 10 4
37 14 2
31 8 3
49 12 7
43 1 9
12 3 1
30 15 1
37 14 2
61 14 10
31 9 1
31 4 5

(a) Find the multiple regression equation describing the relationship among these variables.

(b) Compute the coefficient of multiple determination and do an analysis of variance.

(c) Let X1 ¼ 10 and X2 ¼ 5 and find the predicted value of Y.

10. A medical research team obtained the index of adiposity, basal insulin, and basal glucose values on 21
normal subjects. The results are shown in the following table. The researchers wished to investigate
the strength of the association among these variables.

Infant

Creatinine
Excretion
(mg/day)

Y
Weight (kg)

X1

Height (cm)
X2
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Index of
Adiposity
Y

Basal Insulin
(mU/ml)

X1

Basal Glucose
(mg/100 ml)

X2

90 12 98
112 10 103
127 14 101
137 11 102
103 10 90
140 38 108
105 9 100

92 6 101
92 8 92
96 6 91

114 9 95
108 9 95
160 41 117

91 7 101
115 9 86
167 40 106
108 9 84
156 43 117
167 17 99
165 40 104
168 22 85

Compute the multiple correlation coefficient and test for significance at the .05 level.

11. As part of a study to investigate the relationship between stress and certain other variables, the
following data were collected on a simple random sample of 15 corporate executives.

(a) Find the least-squares regression equation for these data.

(b) Construct the analysis of variance table and test the null hypothesis of no relationship among the
five variables.

(c) Test the null hypothesis that each slope in the regression model is equal to zero.

(d) Find the multiple coefficient of determination and the multiple correlation coefficient. Let
a ¼ :05 and find the p value for each test.

Measure of
Stress (Y)

Measure of
Firm Size

(X1)

Number of Years
in Present

Position (X2)

Annual
Salary
(�1000)
(X3) Age (X4)

101 812 15 $30 38
60 334 8 20 52
10 377 5 20 27
27 303 10 54 36

(Continued )
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89 505 13 52 34
60 401 4 27 45
16 177 6 26 50

184 598 9 52 60
34 412 16 34 44
17 127 2 28 39
78 601 8 42 41

141 297 11 84 58
11 205 4 31 51

104 603 5 38 63
76 484 8 41 30

For each of the studies described in Exercises 12 through 16, answer as many of the following
questions as possible:

(a) Which is more relevant, regression analysis or correlation analysis, or are both techniques
equally relevant?

(b) Which is the dependent variable?

(c) What are the independent variables?

(d) What are the appropriate null and alternative hypotheses?

(e) Which null hypotheses do you think were rejected? Why?

(f) Which is the more relevant objective, prediction or estimation, or are the two equally relevant?
Explain your answer.

(g) What is the sampled population?

(h) What is the target population?

(i) Which variables are related to which other variables? Are the relationships direct or
inverse?

(j) Write out the regression equation using appropriate numbers for parameter estimates.

(k) What is the numerical value of the coefficient of multiple determination?

(l) Give numerical values for any correlation coefficients that you can.

12. Hashimoto et al. (A-7) developed a multiple regression model to predict the number of visits to
emergency rooms at Jikei University hospitals in Tokyo for children having an asthma attack. The
researchers found that the number of visits per night increased significantly when climate conditions
showed a rapid decrease from higher barometric pressure, from higher air temperature, and from
higher humidity, as well as lower wind speed. The final model demonstrated that 22 percent of the
variation in the number of visits was explained by variation in the predictor variables mentioned
above with eight other significant climate variables.

13. Correlation was one of many procedures discussed in a study reported by Stenvinkel et al. (A-8). In a
cohort of 204 subjects with end-stage renal disease, they found no significant correlations between
log plasma adiponectin levels and age and no significant correlation between log plasma adiponectin
and glomerular filtration rate.

Measure of
Stress (Y)

Measure of
Firm Size

(X1)

Number of Years
in Present

Position (X2)

Annual
Salary
(�1000)
(X3) Age (X4)
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14. Van Schuylenbergh et al. (A-9) used physiological and anthropometric measurements as independent
variables to predict triathlon performance (expressed in minutes). Ten triathletes underwent
extensive physiological testing in swimming, cycling, and running. Within 2 weeks after the last
laboratory test, all subjects competed in the National University Triathlon Championship. The final
regression model was

TP ¼ 130 � 9:2MLSSR� 25:9MLSSSþ 1:4BLCR

in which TP¼ triathlon performance in minutes, MLSSR¼ the running speed at MLSS (m/s),
MLSSS¼ the swimming speed at MLSS, and BLCR¼ blood lactate concentration at running MLSS
(mmol/L). MLSS refers to maximal lactate steady state and is generally acknowledged to be a good
marker of functional aerobic power during prolonged exercise. It also differs for each physical
activity. For the above model R2 ¼ :98.

15. Maximal static inspiratory (PImax) mouth pressure is a simple measurement of respiratory muscle
strength. A study by Tomalak et al. (A-10) examined correlations among the variables with PImax

(measured sitting), forced expiratory volume (FEV), peak expiratory flow (PEF), and maximal
inspiratory flow (PIF) in 144 boys and 152 girls ages 7–14. The researchers found PImax was
correlated with FEV, PEF, and PIF in boys (p ¼ :001; p ¼ :0055, and p ¼ :002; respectively) and for
girls the correlations were also significant (p < :001; p < :001, and p < :001, respectively).

16. Di Monaco et al. (A-11) used multiple regression to predict bone mineral density of the femoral neck
(among other locations). Among 124 Caucasian, healthy postmenopausal women, they found that
weight p < :001ð Þ, age p < :01ð Þ, and total lymphocyte count p < :001ð Þ were each useful in
predicting bone mineral density. In addition, R2 ¼ :40.

For each of the data sets given in Exercises 17 through 19, do as many of the following as you think
appropriate:

(a) Obtain the least-squares multiple regression equation.

(b) Compute the sample coefficient of multiple determination.

(c) Compute the sample coefficient of multiple correlation.

(d) Compute simple coefficients of determination and correlation.

(e) Compute partial correlation coefficients.

(f) Construct graphs.

(g) Formulate relevant hypotheses, perform the appropriate tests, and find p values.

(h) State the statistical decisions and clinical conclusions that the results of your hypothesis tests
justify.

(i) Use your regression equations to make predictions and estimates about the dependent variable
for your selected values of the independent variables.

(j) Construct confidence intervals for relevant population parameters.

(k) Describe the population(s) to which you think your inferences are applicable.

17. Pellegrino et al. (A-12) hypothesized that maximal bronchoconstriction can be predicted from the
bronchomotor effect of deep inhalation and the degree of airway sensitivity to methacholine
(MCh). One group of participants consisted of 26 healthy or mildly asthmatic subjects (22 males,
4 females) who had limited bronchoconstriction to inhaled MCh. The mean age of the patients was
31 years with a standard deviation of 8. There was one smoker in the group. Among the data
collected on each subject were the following observations on various lung function measurement
variables:
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(X1)
FEV1

(X2)
FEV1,
% Pred

X3ð Þ
FEV1=

FVC;%
X4ð Þ
_Vm50

X5ð Þ
_Vp50

X6ð Þ
M=P
Ratio

(X7)
MP
Slope

(X8)
PD15FEV1

(In mg)

X9ð Þ
PD40

_Vm50

Inmgð Þ

X10ð Þ
PD40

_Vp50
Inmgð Þ

(X11) FEV1

Max decr
(%)

X12ð Þ
_Vm50 Max
decr %ð Þ

X13ð Þ
_Vp50 Max
decr %ð Þ

5.22 108.75 83.92 5.30 3.90 1.36 0.75 8.44 8.24 6.34 21.40 55.40 74.40
5.38 123.96 78.54 6.00 3.70 1.62 0.56 7.76 7.00 6.18 15.80 50.80 85.14
3.62 111.04 86.19 3.10 2.85 1.10 0.69 6.92 6.61 5.56 30.40 54.36 83.07
3.94 94.26 85.28 4.10 2.70 1.52 0.44 6.79 8.52 6.38 16.40 29.10 58.50
4.48 104.43 76.58 3.21 3.00 1.07 0.63 8.79 9.74 6.68 27.80 46.30 76.70
5.28 117.33 81.99 5.65 5.55 1.02 0.83 8.98 8.97 8.19 32.60 70.80 90.00
3.80 93.37 76.61 3.75 4.70 0.80 0.50 10.52 10.60 10.04 15.80 35.30 64.90
3.14 104.67 82.63 3.20 3.20 1.00 0.70 6.18 6.58 6.02 37.60 64.10 87.50
5.26 120.09 84.84 6.30 7.40 0.89 0.55 11.85 11.85 11.85 11.70 29.10 41.20
4.87 121.14 89.69 5.50 5.50 1.00 0.56 11.85 11.85 11.85 10.30 16.40 29.70
5.35 124.71 84.65 5.60 7.00 0.80 0.40 11.98 11.98 11.29 0.00 18.00 47.20
4.30 95.98 80.37 5.78 4.90 1.18 0.59 6.48 6.19 5.11 17.00 48.20 79.60
3.75 87.82 65.79 2.26 1.65 1.37 0.53 6.25 7.02 5.03 27.10 39.53 81.80
4.41 112.21 69.78 3.19 2.95 1.08 0.57 7.66 8.08 5.51 24.70 48.80 85.90
4.66 108.37 78.72 5.00 5.90 0.85 0.49 7.79 9.77 6.10 15.00 35.00 70.30
5.19 99.05 73.62 4.20 1.50 2.80 0.63 5.15 5.78 4.72 31.40 61.90 86.70
4.32 122.38 75.13 4.39 3.30 1.33 0.74 6.20 6.34 5.10 28.25 60.30 78.00
4.05 95.97 84.38 3.40 2.50 1.30 0.59 5.64 8.52 5.61 18.20 29.50 46.00
3.23 88.25 87.30 4.00 4.00 1.00 0.71 3.47 3.43 2.77 21.60 64.50 86.00
3.99 105.56 86.74 5.30 2.70 1.96 0.76 6.40 5.20 6.17 22.50 63.00 77.80
4.37 102.34 80.18 3.20 1.80 1.77 0.85 5.05 4.97 5.42 35.30 57.00 78.00
2.67 68.11 65.12 1.70 1.30 1.38 0.91 3.97 3.95 4.11 32.40 58.80 82.40
4.75 103.71 73.08 4.60 3.60 1.21 0.71 6.34 5.29 6.04 18.85 47.50 72.20
3.19 88.12 85.07 3.20 1.80 1.77 0.76 5.08 4.85 5.16 36.20 83.40 93.00
3.29 102.17 92.68 3.80 2.40 1.58 0.50 8.21 6.90 10.60 21.60 28.10 66.70
2.87 95.03 95.67 3.00 3.00 1.00 0.75 6.24 5.99 7.50 27.00 46.70 68.30

_Vm50 and _Vp50 ¼ maximal and partial forced expiratory flows at 50 percent of control FVC; M=P ratio ¼ ratio of _Vm50 to _Vp50 at
control; MP slope = slope of the regression of percent decrements of _Vm50 and _Vp50 recorded during the MCh inhalation challenge;
PD15FEV1 ¼ dose of MCh that decreased FEV1 by 15 percent of control; PD40 Vm50 and PD40

_Vp50 ¼ doses of MCh that decreased
_Vm50 and Vp50 by 40 percent of control respectively; % max decr = percent maximal decrement at plateau.Source: Data provided
courtesy of Dr. Riccardo Pellegrino.

18. The purpose of a study by O’Brien et al. (A-13) was to assess hypothalamic-pituitary-adrenal
(HPA) axis function (known to be altered in depression) in patients with Alzheimer’s disease (AD)
by means of the adrenocorticotrophic hormone (ACTH) test, which assesses adrenal function by
measuring cortisol production by the adrenal gland in response to an injection of ACTH. AD
subjects (mean age 69.9 years with standard deviation of 9.8) were recruited from referrals to a
hospital memory clinic. Normal control subjects consisted of spouses of patients and residents of a
retirement hostel (mean age 73.8 with standard deviation of 11.6). There were eight males and
eight females in the AD group and 10 males and eight females in the control group. Among the
data collected were the following observations on age (C1), age at onset for AD subjects (C2),
length of history of disease in months (C3), cognitive examination score (C4), peak cortisol level
(C5), and total hormone response (C6):
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Alzheimer’s Disease Subjects Controls

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

73 69 48 75 400.00 44610 70 � � 97 419.00 53175
87 83 48 39 565.00 63855 81 � � 93 470.00 54285
60 54 72 67 307.00 31110 82 � � 93 417.00 47160
62 57 60 64 335.00 36000 57 � � 101 215.00 27120
75 70 48 51 352.00 44760 87 � � 91 244.00 23895
63 60 24 79 426.00 47250 88 � � 88 355.00 33565
81 77 48 51 413.00 51825 87 � � 91 392.00 42810
66 64 24 61 402.00 41745 70 � � 100 354.00 45105
78 73 60 32 518.00 66030 63 � � 103 457.00 48765
72 64 72 61 505.00 49905 87 � � 81 323.00 39360
69 65 48 73 427.00 55350 73 � � 94 386.00 48150
76 73 36 63 409.00 51960 87 � � 91 244.00 25830
46 41 60 73 333.00 33030 58 � � 103 353.00 42060
77 75 18 63 591.00 73125 85 � � 93 335.00 37425
64 61 36 59 559.00 60750 58 � � 99 470.00 55140
72 69 30 47 511.00 54945 67 � � 100 346.00 50745

68 � � 100 262.00 28440
62 � � 93 271.00 23595

� ¼Not applicable.
Source: Data provided courtesy of Dr. John T. O’Brien.

19. Johnson et al. (A-14) note that the ability to identify the source of remembered information is a
fundamental cognitive function. They conducted an experiment to explore the relative contribution of
perceptual cues and cognitive operations information to age-related deficits in discriminating
memories from different external sources (external source monitoring). Subjects for the experiment
included 96 graduate and undergraduate students (41 males and 55 females) ranging in ages from 18
to 27 years. Among the data collected were the following performance recognition scores on source
monitoring conditions (C1, C2, C3) and scores on the Benton Facial Recognition Test (C4), the
Wechsler Adult Intelligence Scale—Revised (WAIS-R), WAIS-R Block Design subscale (C5),
WAIS-R Vocabulary subscale (C6), the Benton Verbal Fluency Test (C7), and the Wisconsin Card
Sorting Test (C8):

C1 C2 C3 C4 C5 C6 C7 C8

0.783 2.63 0.808 25 38 62 67 6
0.909 3.36 0.846 � � 50 � �

0.920 2.14 0.616 23 25 53 47 6
0.727 3.36 0.846 25 40 49 58 6
0.737 2.93 0.731 � � 59 � �

0.600 4.07 0.962 19 50 51 35 6
0.840 3.15 0.885 � � 57 � �

0.850 3.06 0.769 � � 55 � �

0.875 3.72 0.923 24 23 52 35 6

(Continued )
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0.792 3.15 0.884 � � 50 � �

0.680 4.07 0.962 � � 56 � �

0.731 4.64 1.000 23 30 59 47 3
0.826 1.84 0.616 � � 52 � �

0.609 2.98 0.846 � � 56 � �

0.923 4.64 1.000 � � 53 � �

0.773 3.36 0.846 � � 60 � �

0.714 1.62 0.577 23 43 53 42 6
0.667 3.72 0.923 20 32 59 28 6
0.769 1.40 0.423 � � 51 � �

0.565 3.55 0.885 � � 45 � �

0.824 1.78 0.577 � � 45 � �

0.458 1.90 0.615 21 46 50 47 6
0.840 4.07 0.962 � � 59 � �

0.720 4.07 0.962 � � 53 � �

0.917 3.72 0.923 24 31 43 37 6
0.560 4.07 0.926 � � 62 � �

0.840 4.07 0.962 26 22 50 40 6
0.720 4.07 0.962 � � 52 � �

0.783 1.74 0.577 � � 54 � �

0.696 1.62 0.539 � � 57 � �

0.625 3.72 0.923 22 37 55 40 6
0.737 1.12 0.423 � � 47 � �

0.900 1.92 0.654 22 40 46 42 6
0.565 3.55 0.885 22 43 56 64 6
0.680 4.07 0.962 � � 54 � �

0.760 4.07 0.962 � � 58 � �

0.958 1.90 0.615 24 36 46 43 6
0.652 2.98 0.846 � � 54 � �

0.560 4.07 0.962 � � 56 � �

0.500 1.92 0.654 24 42 45 46 6
0.826 2.63 0.808 � � 60 � �

0.783 2.58 0.808 � � 60 � �

0.783 2.63 0.808 � � 49 � �

0.750 2.14 0.692 22 37 62 58 6
0.913 2.11 0.693 � � 46 � �

0.952 1.49 0.539 26 32 48 36 6
0.800 4.07 0.962 � � 59 � �

0.870 3.55 0.885 � � 48 � �

0.652 1.97 0.654 � � 59 � �

0.640 4.07 0.962 25 36 56 54 6
0.692 4.64 1.000 23 23 58 25 6
0.917 3.72 0.923 � � 55 � �

0.760 4.07 0.962 22 35 52 33 6
0.739 3.55 0.885 24 43 58 43 6

(Continued )

C1 C2 C3 C4 C5 C6 C7 C8
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0.857 3.20 0.808 � � 59 � �

0.727 3.36 0.846 � � 61 � �

0.833 2.80 0.846 � � 56 � �

0.840 4.07 0.962 21 11 49 58 3
0.478 2.27 0.731 � � 60 � �

0.920 4.07 0.962 24 40 64 50 6
0.731 4.64 1.000 20 40 51 50 6
0.920 4.07 0.962 23 50 61 53 6
0.720 4.07 0.962 � � 57 � �

1.000 2.79 0.807 25 47 56 30 6
0.708 3.72 0.923 24 16 57 42 6
1.000 4.64 1.000 25 48 55 54 6
0.739 3.55 0.885 23 27 57 38 6
0.600 4.20 0.962 22 38 57 33 6
0.962 4.64 1.000 25 37 63 31 6
0.772 2.22 0.731 24 48 51 41 6
0.800 2.92 0.847 24 28 47 45 6
0.923 4.64 1.000 25 45 54 48 6
0.870 3.50 0.885 24 44 54 48 5
0.808 4.64 1.000 24 43 57 58 6
1.000 4.07 0.962 25 30 59 49 6
0.870 3.55 0.885 26 44 61 35 6
0.923 4.64 1.000 � � 52 � �

0.958 2.58 0.808 27 32 52 33 6
0.826 3.50 0.885 21 31 61 44 6
0.962 3.72 0.923 23 31 57 38 6
0.783 3.50 0.885 23 46 60 36 6
0.905 3.20 0.808 23 34 55 37 4
1.000 4.64 1.000 23 33 57 33 6
0.875 3.72 0.923 21 34 55 29 6
0.885 4.07 0.962 � � 52 � �

0.913 2.92 0.846 23 44 57 47 6
0.962 4.07 0.961 24 36 54 43 6
0.682 3.36 0.846 20 41 61 34 1
0.810 2.63 0.769 20 40 57 43 6
0.720 2.79 0.808 25 23 64 43 3
0.875 2.80 0.846 24 43 59 43 2
0.923 3.72 0.924 25 40 58 33 6
0.909 3.36 0.846 24 43 56 41 6
0.920 4.07 0.962 24 50 52 28 6
1.000 3.72 0.923 21 45 64 46 6
0.609 3.50 0.885 22 25 49 35 6

�¼Missing data.
Source: Data provided courtesy of Dr. Doreen M. De Leonardis.

C1 C2 C3 C4 C5 C6 C7 C8
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Exercises for Use with the Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

1. Winters et al. (A-15) conducted a study involving 248 high-school students enrolled in
introductory physical education courses. The researchers wanted to know if social cognitive
theory constructs were correlated with discretionary, “leisure-time” physical exercise. The main
outcome variable is STREN, which is the number of days in a week that a high-school student
engaged in strenuous physical activity (operationally defined as exercise that results in sweating,
labored breathing, and rapid heart rate). Students in the study filled out lengthy questionnaires
from which the following variables were derived:

SELFR100—measures personal regulation of goal-directed behavior (higher values indicate
more goal oriented).

SS100—measures social support, social encouragement, and social expectation that are
provided by friends and family for physical exercise (higher values indicate more support).

SSE100—measures perceived ability to overcome barriers to exercise (higher values indicate
higher ability).

OEVNORM—measures outcome expectations and their associated expectancies for physical
exercise (higher values indicate stronger perceived links to desired outcomes from exercise).

With these data (LTEXER),

(a) Calculate the bivariate correlation for each pair of variables and interpret the meaning of
each.
(b) Using STREN as the dependent variable, compute the multiple correlation coefficient.
(c) Using STREN as the dependent variable, calculate the partial correlation coefficient for
STREN and SELFR100 after controlling for SS100.
(d) Using STREN as the dependent variable, calculate the partial correlation coefficient for
STREN and SSE100 after controlling for OEVNORM.

Note that there many missing values in this data set.

2. With data obtained from a national database on childbirth, Matulavich et al. (A-16) examined the
number of courses of prescribed steroids a mother took during pregnancy (STEROIDS). The size
of the baby was measured by length (cm), weight (grams), and head circumference (cm).
Calculate the correlation of the number of courses of steroids with each of the three outcome
variables. What are the hypotheses for your tests? What are the p-values? What are your
conclusions? (The name of the data set is STERLENGTH.)

3. Refer to the data on cardiovascular risk factors (RISKFACT). The subjects are 1000 males
engaged in sedentary occupations. You wish to study the relationships among risk factors in this
population. The variables are

Y ¼ oxygen consumption
X1 ¼ systolic blood pressure mm Hgð Þ
X2 ¼ total cholesterol mg=dlð Þ
X3 ¼ HDL cholesterol mg=dlð Þ
X4 ¼ triglycerides mg=dlð Þ

Select a simple random sample from this population and carry out an appropriate statistical
analysis. Prepare a narrative report of your findings and compare them with those of your
classmates. Consult with your instructor regarding the size of the sample.
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4. Refer to the data on 500 patients who have sought treatment for the relief of respiratory disease
symptoms (RESPDIS). A medical research team is conducting a study to determine what factors
may be related to respiratory disease. The dependent variable Y is a measure of the severity of the
disease. A larger value indicates a more serious condition. The independent variables are as
follows:

X1¼ education (highest grade completed)

X2¼measure of crowding of living quarters

X3¼measure of air quality at place of residence (a larger number indicates poorer quality)

X4¼ nutritional status (a large number indicates a higher level of nutrition)

X5 ¼ smoking status 0 ¼ smoker; 1 ¼ nonsmokerð Þ
Select a simple random sample of subjects from this population and conduct a statistical analysis
that you think would be of value to the research team. Prepare a narrative report of your results
and conclusions. Use graphic illustrations where appropriate. Compare your results with those of
your classmates. Consult your instructor regarding the size of sample you should select.

REFERENCES

Methodology References

1. GEORGE W. SNEDECOR and WILLIAM G. COCHRAN, Statistical Methods, Sixth Edition, Iowa State University Press,
Ames, 1967.

2. ROBERT G. D. STEEL and JAMES H. TORRIE, Principles and Procedures of Statistics, McGraw-Hill, New York, 1960.
3. R. L. ANDERSON and T. A. BANCROFT, Statistical Theory in Research, McGraw-Hill, New York, 1952.
4. M. H. KUTNER, C. J. NACHTSHEIM, J. NETER, and W. LI, Applied Linear Statistical Models, Fifth Edition, McGraw-

Hill/Irwin, New York, 2005.

Applications References

A-1. DEBRA A. JANSEN and MARY L. KELLER, “Cognitive Function in Community-Dwelling Elderly Women,” Journal
of Gerontological Nursing, 29 (2003), 34–43.

A-2. M. NAEIJE, “Local Kinematic and Anthropometric Factors Related to the Maximum Mouth Opening in Healthy
Individuals,” Journal of Oral Rehabilitation, 29 (2002), 534–539.

A-3. GWI-RYUNG SON, MAY L. WYKLE, and JACLENE A. ZAUSZNIEWSKI, “Korean Adult Child Caregivers of Older Adults
with Dementia,” Journal of Gerontological Nursing, 29 (2003), 19–28.

A-4. X. WANG, X. SHEN, X. LI, and C. MAULI AGRAWAL, “Age-Related Changes in the Collagen Network and Toughness
of Bone,” Bone, 31 (2002), 1–7.

A-5. PETER A. ANTON, RONALD T. MITSUYASU, STEVEN G. DEEKS, DAVID T. SCADDEN, BRIDGET WAGNER, CHRISTINE HUANG,
CATHERINE MACKEN, DOUGLAS D. RICHMAN, CINDY CHRISTOPHERSON, FLAVIA BORELLINI, RICHARD LAZAR, and KRISTEN

M. HEGE, “Multiple Measures of HIV Burden in Blood and Tissue Are Correlated with Each Other but Not with
Clinical Parameter in Aviremic Subjects,” AIDS, 17 (2003), 53–63.

A-6. OLGA KWAST-RABBEN, ROLF LIBELIUS, and HANNU HEIKKIL€A, “Somatosensory Evoked Potentials Following
Stimulation of Digital Nerves,” Muscle and Nerve, 26 (2002), 533–538.

A-7. MITSUO HASHIMOTO, TAIKI FUKUDA, TETSUYA SHIMIZU, SHOU WATANABE, SATOSHI WATANUKI, YOSHIKATSU ETO, and
MITSUYOSHI URASHIMA, “Influence of Climate Factors on Emergency Visits for Childhood Asthma Attack,”
Pediatrics International, 46 (2004), 48–52.

A-8. PETER STENVINKEL, ALICIA MARCHELEWSKA, ROBERTO PECOITS-FILHO, OLOF HEIMB€URGER, ZHENGZHONG ZHANG,
CATHERINE HOFF, CLIFF HOLMES, JOANAS AXELSSON, SIVONNE ARVIDSSON, MARTIN SCHALLING, PETER BARANY, BENGT

LINKHOLM, and LOUISE NORDFORS, “Adiponectin in Renal Disease: Relationship to Phenotype and Genetic
Variation in the Genetic Encoding Adiponectin,” Kidney International, 65 (2004), 274–281.

REFERENCES 537



3GC10 12/04/2012 15:18:39 Page 538

A-9. R. VAN SCHUYLENBERGH, B. VANDEN EYNDE, and P. HESPEL, “Prediction of Sprint Triathlon Performance from
Laboratory Tests,” European Journal of Applied Physiology, 91 (2004), 94–99.

A-10. WALDEMAR TOMALAK, ANDRZEJ POGORZELSKI, and JAROSLAW PRUSAK, “Normal Values for Maximal Static
Inspiratory and Expiratory Pressures in Healthy Children,” Pediatric Pulmonology, 34 (2002), 42–46.

A-11. MARCO DI MONACO, FULVIA VALLERO, ROBERTO DI MONACO, FULVIO MAUTINO, and ALBERTO CAVANNA, “Total
Lymphocyte Count and Femoral Bone Mineral Density in Postmenopausal Women,” Journal of Bone Mineral
Metabolism, 22 (2004), 58–63.

A-12. RICCARDO PELLEGRINO, BENEDETTO VIOLANTE, and VITO BRUSASCO, “Maximal Bronchoconstriction in Humans:
Relationship to Deep Inhalation and Airway Sensitivity,” American Journal of Respiratory and Critical Care
Medicine, 153 (1996), 115–121.

A-13. J. T. O’BRIEN, D. AMES, I. SCHWEITZER, M. MASTWYK, and P. COLMAN, “Enhanced Adrenal Sensitivity to
Adrenocorticotrophic Hormone (ACTH) Is Evidence of HPA Axis Hyperactivity in Alzheimer’s Disease,”
Psychological Medicine, 26 (1996), 7–14.

A-14. MARCIA K. JOHNSON, DOREEN M. DE LEONARDIS, SHAHIN HARSHTROUDI, and SUSAN A. FERGUSON, “Aging and Single
Versus Multiple Cues in Source Monitoring,” Psychology and Aging, 10 (1995), 507–517.

A-15. ERIC R. WINTERS, RICK L. PETOSA, and THOMAS E. CHARLETON, “Using Social Cognitive Theory to Explain
Discretionary, ‘Leisure-Time’ Physical Exercise Among High School Students,” Journal of Adolescent Health,
32 (2003), 436–442.

A-16. ANGELA MATULAVICH, DONNA MILES-CURRY, BARBARA WARNER, BOBBE GRAY, and the National Institute of Child and
Health Development. Data analyzed at the Wright State University Statistical Consulting Center.

538 CHAPTER 10 MULTIPLE REGRESSION AND CORRELATION




