Contents

1	What is organic chemistry?	1
	Organic chemistry and you	1
	Organic compounds	1
	Organic chemistry and industry	6
	Organic chemistry and the periodic table	11
	Organic chemistry and this book	13
	Connections	14
	Boxes and margin notes	15
	End-of-chapter problems	15
	Colour	16
2	Organic structures	19
	Hydrocarbon frameworks and functional groups	20
	Drawing molecules	21
	Hydrocarbon frameworks	26
	Functional groups	31
	Carbon atoms carrying functional groups can be classified by oxidation level	35
	Naming compounds	37
	Systematic nomenclature	37
	What do chemists really call compounds?	40
	How should you name compounds?	43
	Problems	45

3 Determining organic structures	47
Introduction	47
Mass spectrometry	50
Nuclear magnetic resonance	56
Infrared spectra	65
Mass spectra, NMR, and IR combined make quick identification possible	72

	Looking forward to Chapters 11	
	and 14	78
	Problems	78
4	Structure of molecules	81
	Introduction	81
	Atomic structure	83
	Summary of the importance of the quantum numbers	86
	Atomic orbitals	87
	Molecular orbitals—homonuclear diatomics	95
	Heteronuclear diatomics	100
	Hybridization of atomic orbitals	105
	Conclusion	110
	Problems	110
5	Organic reactions	113
	Chemical reactions	113
	Organic chemists use curly arrows to represent reaction mechanisms	123
	Drawing your own mechanisms with curly arrows	127
	Problems	133
6	Nucleophilic addition to the carbonyl group	135
	Molecular orbitals explain the reactivity of the carbonyl group	135
	Cyanohydrins from the attack of cyanide on aldehydes and ketones	137
	The angle of nucleophilic attack on aldehydes and ketones	139
	Nucleophilic attack by 'hydride' on aldehydes and ketones	139

Addition of organometallic reagents to aldehydes and ketones	142
Addition of water to aldehydes and ketones	143
Hemiacetals from reaction of alcohols with aldehydes and ketones	145
Acid and base catalysis of hemiacetal and hydrate formation	146
Bisulfite addition compounds	148
Problems	150

7 Delocalization and conjugation

moundation

Introduction	151
The structure of ethene (ethylene, CH ₂ =CH ₂)	151
Molecules with more than one C–C double bond	153
Conjugation	156
The allyl system	158
Other allyl-like systems	163
The conjugation of two π bonds	166
UV and visible spectra	169
Aromaticity	171
Problems	179

8 Acidity, basicity, and pK_a

Introduction	181
Acidity	182
The definition of pK_a	185
Basicity	197
Neutral nitrogen bases	199
Neutral oxygen bases	203
p <i>K</i> _a in action—the development of the drug cimetidine	204
Problems	207

9	Using organometallic reagents to make C–C bonds
	Introduction
	Organometallic compounds contain a carbon–metal bond
	Making organometallics
	Using organometallics to make organic molecules
	A closer look at some mechanisms
	Problems

Conjugate addition

	Conjugation changes the reactivity of carbonyl groups
	Alkenes conjugated with carbonyl groups are polarized
	Polarization is detectable spectroscopically
	Molecular orbitals control conjugate additions
	Ammonia and amines undergo conjugate addition
	Conjugate addition of alcohols can be catalysed by acid or base
	Conjugate addition or direct addition to the carbonyl group?
	Copper(I) salts have a remarkable effect on organometallic reagents
	Conclusion
	Problems
11	Proton nuclear magnetic resonance
	The differences between carbon and proton NMR
	Integration tells us the number of hydrogen atoms in each peak
	Regions of the proton NMR spectrum
	Protons on saturated carbon atoms

The alkene region and the benzene region	251
The aldehyde region: unsaturated carbon bonded to oxygen	255
Coupling in the proton NMR spectrum	258
To conclude	274
Problems	275

12 Nucleophilic substitution at the carbonyl (C=O) group

carbonyl group is not always a stable compound	279
Carboxylic acid derivatives	280
Not all carboxylic acid derivatives are equally reactive	286
Making other compounds by substitution reactions of acid derivatives	297
Making ketones from esters: the problem	297
Making ketones from esters: the solution	299
To summarize	301
And to conclude	301
Problems	302

13 Equilibria, rates, and mechanisms: summary of mechanistic principles 305 How far and how fast? 305 How the equilibrium constant varies with the difference in energy between reactants and products 307 How to make the equilibrium favour the product you want 310 Entropy is important in determining equilibrium constants 312 Equilibrium constants vary with temperature 314 Making reactions go faster: the real reason reactions are heated 315 Kinetics 319

Catalysis in carbonyl substitution reaction	IS 323
The hydrolysis of amides can have termolecular kinetics	325
The cis-trans isomerization of alkenes	326
Kinetic versus thermodynamic products	328
Low temperatures prevent unwanted reactions from occurring	331
Solvents	332
Summary of mechanisms from Chapters 6–12	334
Problems	336

14 Nucleophilic substitution at C=O with loss of carbonyl

oxygen	339
Introduction	339
Aldehydes can react with alcohols to form hemiacetals	340
Acetals are formed from aldehydes or ketones plus alcohols in the presence of acid	240
	342
Amines react with carbonyl compounds	348
Amines from imines: reductive amination	354
Substitution of C=O for C=C: a brieflook	
at the Wittig reaction	357
Summary	358
Problems	358

15 Review of spectroscopic methods

meenouo	OOT
There are three reasons for this chapter	361
Does spectroscopy help with the chemistry of the carbonyl group?	361
Acid derivatives are best distinguished by infrared	364
Small rings introduce strain inside the ring and higher s character outside it	365
Simple calculations of C=O stretching frequencies in IR spectra	367

Interactions between different nuclei can	
give enormous coupling constants	368
Identifying products spectroscopically	371
Tables	374
Problems	379

Stereochemistry

Some compounds can exist as a pair of mirror-image forms	381
The rotation of plane-polarized light is known as optical activity	388
Diastereoisomers are stereoisomers that are not enantiomers	390
Investigating the stereochemistry of a compound	397
Separating enantiomers is called resolution	399
Problems	404

Nucleophilic substitution at saturated carbon

saturated carbon	407
Nucleophilic substititution	407
Structure and stability of carbocations	407
The S _N 1 and S _N 2 mechanisms for nucleophilic substitution	411
How can we decide which mechanism	
$(S_N 1 \text{ or } S_N 2)$ will apply to a given organic	
compound?	414
The S _N 2 reaction	420
The leaving group	429
Nucleophiles	436
Nucleophiles in the S _N 2 reaction	437
Nucleophiles and leaving groups	
compared	441
Looking forward: elimination and	
rearrangement reactions	443
Problems	444

18	Conformational analysis	447
	Bond rotation allows chains of atoms to adopt a number of conformations	447
	Conformation and configuration	448
	Barriers to rotation	449
	Conformations of ethane	450
	Conformations of propane	450
	Conformations of butane	450
	Ringstrain	452
	A closer look at cyclohexane	455
	Substituted cyclohexanes	460
	Locking groups— <i>t</i> -butyl groups, decalins, and steroids	463
	Axially and equatorially substituted rings react differently	464
	Rings containing sp ² hybridized carbon atoms: cyclohexanone and cyclohexene	471
	Multiple rings	473
	To conclude	473
	Problems	474
19	Elimination reactions	477
	Substitution and elimination	477
	Elimination happens when the nucleophile attacks hydrogen instead of carbon	470
	How the nucleophile affects elimination versus substitution	478 479
	El and E2 mechanisms	
		480
	Substrate structure may allow E1	482
	The role of the leaving group E1 reactions can be stereoselective	484 487
	E1 reactions can be regioselective	489
	E2 eliminations have anti-periplanar transition states	490
	E2 eliminations can be stereospecific	491
	E2 eliminations from cyclohexanes	492

E2 elimination from vinyl halides: how	
to make alkynes	493
The regioselectivity of E2 eliminations	494
Anion-stabilizing groups allow another	
mechanism—E1cB	495
To conclude	500
Problems	501

20 Electrophilic addition to alkenes Alkenes react with bromine Oxidation of alkenes to form epoxides Electrophilic addition to unsymmetrical alkenes is regioselective Electrophilic addition to dienes

Unsymmetrical bromonium ions open regioselectively	512
Electrophilic additions to alkenes can be stereoselective	514
Electrophilic addition to alkenes can produce stereoisomers	515
Bromonium ions as intermediates in stereoselective synthesis	516
Iodolactonization and bromolactonization make new rings	517
How to add water across a double bond	518
To conclude	520
Problems	520

Formation and reactions of enols and enolates

Would you accept a mixture of compounds	
as a pure substance?	523
Tautomerism: formation of enols by proton transfer	524
Why don't simple aldehydes and ketones exist as enols?	525
Evidence for equilibration of carbonyl compounds with enols	525

Enolization is catalysed by acids and	
bases	526
The intermediate in the base-catalysed reaction is the enolate ion	527
Summary of types of enol and enolate	528
Stable enols	531
Consequences of enolization	534
Reaction with enols or enolates as intermediates	535
Stable enolate equivalents	540
Enol and enolate reactions at oxygen:	
preparation of enol ethers	541
Reactions of enol ethers	542
To conclude	544
Problems	544

22	Electrophilic aromatic	
	substitution	547
	Introduction: enols and phenols	547
	Benzene and its reaction with electrophiles	549
	Electrophilic substitution on phenols	555
	A nitrogen lone pair activates even more strongly	558
	Alkyl benzenes react at the <i>ortho</i> and <i>para</i> positions: σ donor substituents	561
	Electronegative substituents give <i>meta</i> products	564
	Halogens (F, Cl, Br, and I) both withdraw and donate electrons	566
	Why do some reactions stop cleanly at monosubstitution?	568
	Review of important reactions including selectivity	571
	Electrophilic substitution is the usual route to substituted aromatic	
	compounds	576
	Problems	577

23	Electrophilic alkenes	581
	Introduction—electrophilic alkenes	581
	Nucleophilic conjugate addition to alkenes	582
	Conjugate substitution reactions	585
	Nucleophilic epoxidation	588
	Nucleophilic aromatic substitution	589
	The addition-elimination mechanism	590
	Some medicinal chemistry—preparation of an antibiotic	595
·	The S _N 1 mechanism for nucleophilic aromatic substitution—diazonium compounds	597
	The benzyne mechanism	600
	Nucleophilic attack on allylic compounds	604
	To conclude	611
	Problems	612

24	Chemoselectivity: selective reactions and protection	64 F
	reactions and protection	615
	Selectivity	615
	Reducing agents	616
	Reduction of carbonyl groups	617
	Catalytic hydrogenation	623
	Getting rid of functional groups	627
	Dissolving metal reductions	628
	One functional group may be more reactive than another for <i>kinetic</i> or	
	for thermodynamic reasons	630
	Oxidizing agents	637
	To conclude	640
	Problems	640

25	Synthesis in action
	Introduction
	Benzocaine

Saccharin	644
Salbutamol	645
Thyroxine	646
Muscalure: the sex pheromone of the house-fly	648
Grandisol: the sex pheromone of the male cotton boll weevil	649
Peptide synthesis: carbonyl chemistry in action	651
The synthesis of dofetilide, a drug to combat erratic heartbeat	658
Looking forward	661
Problems	661

26	Alkylation of enolates	663
	Carbonyl groups show diverse reactivity	663
	Some important considerations that affect all alkylations	664
	Nitriles and nitroalkanes can be alkylated	664
	Choice of electrophile for alkylation	667
	Lithium enolates of carbonyl compounds	667
	Alkylations of lithium enolates	668
	Using specific enol equivalents to alkylate aldehydes and ketones	671
	Alkylation of β -dicarbonyl compounds	676
	Ketone alkylation poses a problem in regioselectivity	680
	Enones provide a solution to regioselectivity problems	683
	To conclude	687
	Problems	688

27 Reactions of enolates with aldehydes and ketones: the aldol reaction 689 Introduction: the aldol reaction 689 Cross-condensations 694

	Compounds that can enolize but that are not electrophilic	696
	Controlling aldol reactions with specific enol equivalents	697
	Specific enol equivalents for carboxylic acid derivatives	704
	Specific enol equivalents for aldehydes	707
	Specific enol equivalents for ketones	709
	The Mannich reaction	712
	Intramolecular aldol reactions	715
	To conclude: a summary of equilibrium and directed aldol methods	718
	Problems	721
28	Acylation at carbon	723
	Introduction: the Claisen ester condensation compared to the aldol reaction	723
	Problems with acylation at carbon	725
	Acylation of enolates by esters	726
	Crossed ester condensations	728
	Summary of preparation of keto-esters by the Claisen reaction	733
	Intramolecular crossed Claisen ester condensations	734
	Directed C-acylation of enols and enolates	736
	The acylation of enamines	739
	Acylation of enols under acidic conditions	740
	Acylation at nucleophilic carbon (other than enols and enolates)	742
	How Nature makes fatty acids	743
	· · · · · · · · · · · · · · · · · · ·	746
	Problems	746

Conjugate addition of enolates

Introduction: conjugate addition of

749

	enolates is a powerful synthetic transformation	749
	Conjugate addition of enolates is the result of thermodynamic control	749
	A variety of electrophilic alkenes will accept enol(ate) nucleophiles	757
	Conjugate addition followed by cyclization makes six-membered rings	760
	Nitroalkanes are superb at conjugate addition	766
	Problems	768
30	Retrosynthetic analysis	771
	Creative chemistry	771
	Retrosynthetic analysis: synthesis backwards	772
	Disconnections must correspond to known, reliable reactions	773
	Synthons are idealized reagents	773
	Choosing a disconnection	775
	Multiple step syntheses: avoid chemoselectivity problems	776
	Functional group interconversion	777
	Two-group disconnections are better than one	780
	C-C disconnections	784
	Donor and acceptor synthons	791
	Two-group C–C disconnections	791
	1,5 Related functional groups	798
	'Natural reactivity' and 'umpolung'	798
	Problems	801
31	Controlling the geometry of double bonds	002
		803
	The properties of alkenes depend on their geometry	803

geometry	803
Elimination reactions are often	
unselective	805
The Julia olefination is regiospecific and	

connective	810
Stereospecific eliminations can give pure single isomers of alkenes	812
The Peterson reaction is a stereospecific elimination	812
Perhaps the most important way of making alkenes—the Wittig reaction	814
E- and Z-alkenes can be made by stereoselective addition to alkynes	818
Problems	821

Million Contractor and the second

32	Determination of stereochemistry by	
	spectroscopic methods	823
	Introduction	823
	³ J values vary with H–C–C–H dihedral angle	824
	Stereochemistry of fused rings	828
	The dihedral angle is not the only angle worth measuring	830
	Vicinal (³ J) coupling constants in other ring sizes	831
	Geminal (² J) coupling	834
	Diastereotopic CH ₂ groups	835
	Geminal coupling in six-membered	
	rings	841
	A surprising reaction product	842
	The π contribution to geminal coupling	844
	The nuclear Overhauser effect	844
	To conclude	848
	Problems	848

33	Stereoselective reactions of cyclic compounds
	Introduction
	Reactions on small rings
	Stereochemical control in six-membered rings

35	Pericyclic reactions 1: cycloadditions	905
	Problems	903
	Aldol reactions can be stereoselective	898
	Stereoselective reactions of acyclic alkenes	895
	Chelation can reverse stereoselectivity	892
	Additions to carbonyl groups can be diastereoselective even without rings	887
	Prochirality	884
	Stereoselective reactions	884
	Making single diastereoisomers using stereospecific reactions of alkenes	882
	Looking back	881
34	Diastereoselectivity	881
	Problems	879
	To conclude	879
	Reactions with cyclic intermediates or cyclic transition states	871
	Spirocyclic compounds	870
	Fused bicyclic compounds	863
	Stereochemistry of bicyclic compounds	862
	Conformational control in the formation of six-membered rings	861

35	Pericyclic reactions 1: cycloadditions	905
	A new sort of reaction	9 05
	General description of the Diels–Alder reaction	907
	The frontier orbital description of cycloadditions	914
	The Diels–Alder reaction in more detail	916
	Regioselectivity in Diels–Alder reactions	919
	The Woodward–Hoffmann description of the Diels–Alder reaction	922
	Trapping reactive intermediates by Diels–Alder reactions	92 3
	Other thermal cycloadditions	924
	Photochemical [2+2] cycloadditions	927

Thermal [2 + 2] cycloadditions	929
Making five-membered rings— 1,3-dipolar cycloadditions	932
Two very important synthetic reaction cycloaddition of alkenes with osmium tetroxide and with ozone	
Summary of cycloaddition reactions	940
Problems	940

36	Pericyclic reactions 2: sigmatropic and electrocyclic	
	reactions	943
	Sigmatropic rearrangements	943
	Orbital descriptions of [3,3]-sigmatropic rearrangements	946
	The direction of [3,3]-sigmatropic rearrangements	947
	[2,3]-Sigmatropic rearrangements	951
	[1,5]-Sigmatropic hydrogen shifts	953
	Electrocyclic reactions	956
	Problems	9 66
<u></u>		
37	Rearrangements	969
	Neighbouring groups can accelerate substitution reactions	9 69
	Rearrangements occur when a participating group ends up bonded to a different atom	9 75
	Ring expansion means rearrangement	982
	Carbocation rearrangements: blessing or curse?	983
	The pinacol rearrangement	984
	The dienone-phenol rearrangement	988
	The benzilic acid rearrangement	989
	The Favorskii rearrangement	990
	Migration to oxygen: the Baeyer–Villiger reaction	992
	The Beckmann rearrangement	997

Problems

38	Fragmentation	1003
	Polarization of C–C bonds helps fragmentation	1003
	Fragmentations are controlled by stereochemistry	1005
	A second synthesis of longifolene	1010
	The synthesis of nootkatone	1011
	A revision example: rearrangements and fragmentation	1014
	Problems	1017
39	Radical reactions	1021
	Radicals contain unpaired electrons	1022
	Most radicals are extremely reactive	1024
	How to analyse the structure of radicals: electron spin resonance	1024
	Radicals have singly occupied molecular orbitals	1025
	Radical stability	1026
	How do radicals react?	1029
	Titanium promotes the pinacol coupling then deoxygenates the products: the McMurry reaction	1031
	Radical chain reactions	1031
	Selectivity in radical chain reactions	1035
	Selective radical bromination: allylic substitution of H by Br	1039
	Controlling radical chains	1000
	The reactivity pattern of radicals is quite different from that of polar reagents	1047
	An alternative way of making alkyl radicals: the mercury method	1048
	Intramolecular radical reactions are more efficient that intermolecular ones	1049
	Problems	1051

Synthesis and reactions of carbenes

Diazomethane makes methyl esters from carboxylic acids	1053
Photolysis of diazomethane produces a	
carbene	1055
How are carbenes formed?	1056
Carbenes can be divided into two types	1060
How do carbenes react?	1063
Alkene (olefin) metathesis	1074
Summary	1076
Problems	1076

Determining reaction mechanisms

mechanisms	1079
There are mechanisms and there are mechanisms	1079
Determining reaction mechanisms— the Cannizzaro reaction	1081
Be sure of the structure of the product	1084
Systematic structural variation	1089
The Hammett relationship	1090
Other kinetic evidence	1100
Acid and base catalysis	1102
The detection of intermediates	1109
Stereochemistry and mechanism	1113
Summary of methods for the investigation	
ofmechanism	1117
Problems	1118

Saturated heterocycles and stereoelectronics

Reactions of heterocycles	1122
Conformation of saturated heterocycles:	
the anomeric effect	1128
Making heterocycles: ring-closing	
reactions	1134
Problems	1144

43	Aromatic heterocycles 1:	
	structures and reactions	1147
	Introduction	1147
	Aromaticity survives when parts of benzene' ring are replaced by nitrogen atoms	's 1148
	Pyridine is a very unreactive aromatic imine	1149
	Six-membered aromatic heterocycles can have oxygen in the ring	1156
	Five-membered heterocycles are good nucleophiles	1157
	Furan and thiophene are oxygen and sulfur analogues of pyrrole	1159
	More reactions of five-membered heterocycles	1162
	Five-membered rings with two or more nitrogen atoms	1165
	Benzo-fused heterocycles	1169
	Putting more nitrogen atoms in a six-membered ring	1172
	Fusing rings to pyridines : quinolines and isoquinolines	1174
	Heterocycles can have many nitrogens but only one sulfur or oxygen in any ring	1176
	There are thousands more heterocycles out there	1176
	Which heterocyclic structures should you learn?	1180
	Problems	1182

Aromatic heterocycles 2: synthesis

1185
1186
1 1188
1191
zine
118 119

	and dicarbonyl compounds	1195
	Pyrimidines can be made from 1,3-dicarbonyl compounds and amidines	1198
	Unsymmetrical nucleophiles lead to selectivity questions	1199
	Isoxazoles are made from hydroxylamine or by 1,3-dipolar cycloadditions	1200
	Tetrazoles are also made by 1,3-dipolar cycloadditions	1202
	The Fischer indole synthesis	1204
	Quinolines and isoquinolines	1209
	More heteroatoms in fused rings mean more choice in synthesis	1212
	Summary: the three major approaches to the synthesis of aromațic heterocycles	12 14
	Problems	1217
45	Asymmetric synthesis	1219
	Nature is asymmetrical—Nature in the looking-glass	1219
	Resolution can be used to separate enantiomers	1221
	The chiral pool—Nature's 'ready-made' chiral centres	1222
	Asymmetric synthesis	1225
	Chiral reagents and chiral catalysts	1233
	Problems	1244
46	Organo-main-group chemistry 1: sulfur	1247
	Sulfur: an element of contradictions	1247
	Sulfur-stabilized anions	1251
	Sulfonium salts	1255
	Sulfonium ylids	1258
	Sulfur-stabilized cations	1261

Thiocarbonyl compounds

Other oxidations with sulfur and

Sulfoxides

	selenium	1270
	To conclude: the sulfur chemistry of onions and garlic	1272
	Problems	1273
47	Organo-main-group	~,yyu,,yy,u,yu,,u,
	chemistry 2: boron, silicon,	
	and tin	1977

andtin	1277
Organic chemists make extensive us the periodic table	e of 1277
Boron	1278
Silicon and carbon compared	1287
Organotin compounds	1304
Problems	1308

48	Organometallic chemistry	1311
	Transition metals extend the range of organic reactions	1311
	Transition metal complexes exhibit special bonding	1315
	Palladium (0) is most widely used in homogeneous catalysis	1319
	Alkenes are attacked by nucleophiles when coordinated to palladium (II)	1336
	Palladium catalysis in the total synthesis of a natural alkaloid	1338
	Other transition metals: cobalt	1339
	Problems	1341

49	The chemistry of life	1345
	Primary metabolism	1345
	Life begins with nucleic acids	1347
	Proteins are made of amino acids	1353
	Sugars—just energy sources?	1359
	Glycosides are everywhere in nature	1367
	Compounds derived from sugars	1368
	Most sugars are embedded in carbohydrates	1372

Lipids	1374
Bacteria and people have slightly different	
chemistry	1377
Problems	1379

Mechanisms in biological chemistry

chemistry	1381
Nature's NaBH ₄ is a nucleotide: NADH or NADPH	1381
Reductive amination in nature	1384
Nature's enols—lysine enamines and coenzyme A	1388
Nature's acyl anion equivalent (d ¹ reagent) is thiamine pyrophosphate	1392
Rearrangements in the biosynthesis of valine and isoleucine	1397
Carbon dioxide is carried by biotin	1399
The shikimic acid pathway	1400
Haemoglobin carries oxygen as an iron(II) complex	1406
Problems	1411

Natural products

—	
Introduction	1413
Natural products come from secondary metabolism	1414
Alkaloids are basic compounds from amino acid metabolism	1414
Fatty acids and other polyketides are made from acetyl CoA	1425
Aromatic polyketides come in great variety	1433
Terpenes are volatile constituents of plant resins and essential oils	1437

Steroids are metabolites of terpene origin	1441
Biomimetic synthesis: learning from	
Nature	1446
Problems	1447

Polymerization

Monomers, dimers, and oligomers	1451
Polymerization by carbonyl substitution reactions	1453
Polymerization by electrophilic aromatic substitution	145
Polymerization by the S _N 2 reaction	1456
Polymerization by nucleophilic attack on isocyanates	1458
Polymerization of alkenes	1459
Co-polymerization	1464
Cross-linked polymers	1466
Reactions of polymers	1468
Biodegradable polymers and plastics	1472
Chemical reagents can be bonded to polymers	1473
Problems	1478

Organic chemistry today 1481

Modern science is based on interaction	1
between disciplines	1481
The synthesis of Crixivan	1483
The future of organic chemistry	1487
1997 2019 2019 1998 2019 2019 2019 2019 2019 2019 2019 2019	accentectoniem namer meter meter

Index