INDEX

Abscicic acid, 1027	with phenols, 949, 951–952, 963	N-Acetyl-D-galactosamine, 995, 996
Absolute configuration, 267–271, 292	with salicylic acid, 952	N-Acetyl-D-glucosamine, 988
Absorption of electromagnetic radiation, 489	with sucrose, 1010	Acetylide ion, 336, 345–346, 348. See also
in infrared spectroscopy, 518	UV absorption, 818	Sodium acetylide
in nuclear magnetic resonance	Acetoacetic ester synthesis, 839–841, 850. See	O-Acetylsalicylic acid. See Aspirin
spectroscopy, 490–493	also Ethyl acetoacetate	Achiral molecules, 260, 290
in ultraviolet-visible spectroscopy, 524–525	Acetoacetyl acyl carrier protein, 1021	meso forms, 279–282
Absorptivity. See Molar absorptivity	Acetoacetyl coenzyme A, 1021, 1032	symmetry elements in, 264–265
Acetaldehyde, 655	Acetone	Acid anhydrides. See Carboxylic acid
bond angles, 657	bond angles, 657	anhydrides
enolization of, 706	enolization of, 704, 706	Acid-base properties of amino acids,
formation of, in biological oxidation of	electrostatic potential map, 701	1057–1061
ethanol, 600–602	reactions of	Acid-base reactions, 133–137, 344–346,
preparation of	aldol condensation, 720	551–553, 604, 708–711, 864–865
from ethylene, 248, 598	· · · · · · · · · · · · · · · · · · ·	
	bromination, 704–705	Acid catalysis
by hydration of acetylene, 356	cyanohydrin formation, 667	of acetal formation, 669–671, 672
reactions of	hydration, 663	of acetal hydrolysis, 672
aldol addition, 716	reductive amination of, 903	of amide hydrolysis, 805–807, 821
with hexylmagnesium bromide,	Wittig reaction, 690	of dehydration of alcohols, 182, 185–190,
555	as solvent, 305	200, 419, 591
hydration, 663	Acetonitrile	of epoxide ring opening, 632–633,
in Strecker synthesis of D,L-alanine,	electrostatic potential map, 777	635–637, 646
1061–1062	UV absorption, 818	of ester hydrolysis, 791–794, 820
Acetaldol, 716	Acetophenone, 407, 455, 656	of esterification, 593–594, 610,
Acetals, 668-672, 689	acidity of, 710	754–757, 767
glycosides as, 989	acylation of enolate, 837	of ether formation, 592-593, 610, 625-626
hydrolysis of, 670, 672	phenylhydrazone, 674	644
preparation of, 669-671, 672, 689	reactions of	of glycoside formation, 990
as protecting group, 671–672	aldol condensation, 720	of hydration of alkenes, 225–227, 249
Acetamide	bromination, 473	of hydration of alkynes, 355–356, 361
electrostatic potential map, 777	with butyllithium, 582	of nitrile hydrolysis, 815–816, 822
Acetanilide, 879	chlorination, 474	of nucleophilic acyl substitution,
preparation and nitration of, 887	with ethylmagnesium bromide, 559	786–787, 949
reduction of, 879	nitration, 473	of nucleophilic addition to aldehydes and
resonance in, 886	Acetyl chloride, 775	ketones, 665–667, 690–691
Acetic acid	electrostatic potential map, 774, 777	Acid dissociation constants, K_a and pK_a , 134,
acidity of, 740-742, 746, 747	reactions of	336, 343, 345–346, 552, 710,
conversion to mevalonic acid, 1028,	with arylamines, 886	745–749, 864–865, 944. See
1032–1033	with <i>tert</i> -butyl alcohol, 610	also Acidity
electrostatic potential maps	with phenol, 951	Acidity
acetate ion, 741, 742	UV absorption, 818	of acetylene and alkynes, 336, 343,
acid, 739, 742	Acetyl coenzyme A	344–346, 358, 552
esterification of, 594, 610	in fatty acid biosynthesis, 1019–1022	of alcohols, 135
industrial preparation and use of, 750, 783	formation from pyruvic acid, 1016	of aldehydes, 710
natural occurrence of, 4, 736, 750	reactions of, 1016	of alkanes, 344–345, 552
natural products derived from,	structure, 1016	of ammonia, 135, 345–346, 848
1015–1050	in terpene biosynthesis, 1032	of ammonium ions, 135, 864–865
Acetic anhydride, 775		of benzene, 552
electrostatic potential map, 777	Acetylene	of carbonic acid, 749
in Friedel-Crafts acylation, 455, 471, 473,	acidity of, 336, 344–346, 552	of carbonic acids, 749 of carboxylic acids, 740–749, 765–766
• • • • • • • • • • • • • • • • • • • •	alkylation of, 336, 346–348, 359	
478, 784	bonding in, 14, 40–42, 47, 54, 341–343	substituent effects on, 745–748
preparation of, 783	conversion to cyclooctatetraene, 422	of 1,3,5-cycloheptatriene, 429
reactions of	electrostatic potential map, 339, 342	of 1,3-cyclopentadiene, 428
with alcohols, 610, 785, 789	Grignard reagent of, 553	definition of
with arylamines, 785, 886	hydration of, 356	Arrhenius, 134
with α -D-glucopyranose, 1004	preparation of, 339–340	Brønsted-Lowry, 134–136
with glycine, 1063	structure of, 341–342	Lewis, 143

of dicarboxylic acids, 748	electrophilic	nuclear magnetic resonance spectra
of diethyl malonate, 842	to alkenes, 213–220, 223–243, 244–245,	carbon, 606
of diisopropylamine, 848	249–251, 284–286	proton, 509-510, 605-607
of β-diketones, 710	to alkenylbenzenes, 419–421, 435	physical properties, 130–133, 160
of esters, 848	to alkynes, 352–357, 361 table	preparation of
of ethane, 343, 552	to conjugated dienes, 379–382, 392	from epoxides, 587–588, 608, 632, 635
of ethanol, 135, 552, 740–741	free-radical, to alkenes, 220–223,	from Grignard reagents, 553-555, 557,
of ethyl acetoacetate, 839	245–246, 251	560–561, 572, 573, 582, 583,
of ethylene, 343, 552	hydrogenation	608, 790
of hydrocarbons, 343-346, 552 table	of alkenes, 208–213, 249, 285	by hydration of alkenes, 225–227,
of hydrogen fluoride, 135, 345	of alkenylbenzenes, 419–420	249, 581
of β-keto esters, 832–834, 839, 850	of alkynes, 350–351, 360	by hydroboration-oxidation, 227–233,
of ketones, 710	of dienes, 374–375	250, 581
of methane, 344–345, 552	and Markovnikov's rule	by hydrolysis of alkyl halides, 582
of phenols, 942–945, 962	alkenes, 214–219, 251	from organolithium reagents, 554–556,
quantitative relationships, 743	alkynes, 352–354, 356, 361	572, 573, 582, 608
of representative compounds, 135 table,	nucleophilic	by reduction of carbonyl compounds,
552 table	to aldehydes and ketones, 663–700	583, 608, 790
of substituted benzoic acids, 747–748	to α , β -unsaturated aldehydes and	via alkyl hydrogen sulfates, 224–225
of thiols, 604, 723	ketones, 722–724, 728	reactions of, 591 table, 610 table
of water, 135, 345, 552	syn addition, 212, 230, 239–240, 250,	with acyl chlorides, 594–595, 610, 781
Aconitic acid, 299, 772	285, 351	with aldehydes and ketones,
Acrolein, 384, 721, 723, 729	Ad _E 3 mechanism, 353	668–672, 689
Acrylic acid, 737, 747	Adenine, 431, 1091	with carboxylic acid anhydrides, 595,
Acrylonitrile, 14, 247, 815	Adenosine, 989, 1091	610, 785–787
Activated complex, 93. See also	Adenosine 3'-5'-cyclic monophosphate	conversion to ethers, 590–593, 610,
Transition state	(cyclic AMP), 1093	625–626, 644
Activation energy, 93. See also Energy	Adenosine diphosphate, 1093	dehydration, 182, 185–190, 200, 379,
of activation	Adenosine 5'-monophosphate, 1092	419, 591
Active ester, 1080	Adenosine triphosphate, 1093	esterification, 593–595, 610, 754–757,
Acylation. See Friedel-Crafts acylation;	reaction with methionine, 641	767, 789
Nucleophilic acyl substitution	S-Adenosylmethionine, 314, 641	with hydrogen halides, 137–146,
Acyl carrier protein, 1019–1022	Adipic acid	160–162, 329–330, 332, 591
Acyl cations, 454, 784	polyamides from, 840	with inorganic acids, 595–596, 610
Acyl chlorides	ADP. See Adenosine diphosphate	oxidation, 596–602, 611 table
carbon-chlorine bond distance, 778	Adrenaline, 272–273, 640. See also	with phosphorus tribromide, 147,
enolization, 760	Epinephrine	161, 591
Friedel-Crafts acylation with, 453–457,	Agent Orange, 955	with thioesters, 800
478, 780, 951	AIDS (acquired immune deficiency	with thionyl chloride, 147, 161, 591
infrared absorption frequency, 519, 817	syndrome), 1098	with <i>p</i> -toluenesulfonyl chloride, 326,
nomenclature of, 775	β-Alanine, 1052	332, 591
preparation of, 454, 754, 780	Alanine, 1054, 1059	solubility in water, 132–133
reactions of, 780–783, 819–820	biosynthesis of, 1063–1065	Aldahydas
with alcohols, 594, 595, 610, 781, 789 with ammonia and amines, 781, 802,	electrophoresis of, 1060–1061	Aldehydes
820, 882, 886	electrostatic potential map, 1053 ethyl ester, 1063	acidity of, 710 aldol condensation, 715–720, 728
with carboxylic acids, 781	synthesis, 1061	classification of carbons in, 702
with phenols, 949, 951–952	Alanyglycine, 1067–1068	enolization of, 705–707, 727
with water, 781, 782	electrostatic potential map, 1067	infrared spectra, 519, 684–685
resonance in, 778	Alcohols	mass spectra, 687
Acyl group, 654, 775	acidity of, 135, 740–741, 943	naturally occurring, 659
Acyl halides, 775. See also Acyl chlorides	biological oxidation of, 600–602	nomenclature of, 654–656, 688
Acyl transfer reactions. See Nucleophilic acyl	bonding, 129	nuclear magnetic resonance spectra, 496,
substitution	as Brønsted bases, 135–136	513, 684–686
Addition-elimination mechanism of	classification of, 128, 160	nucleophilic addition to, 663–682
nucleophilic aromatic substitution,	in Friedel-Crafts reactions, 950	physical properties, 658
923–927, 932–933	hydrogen bonding in, 130–131, 134,	preparation of
Addition polymers, 247	160, 322	hydroformylation of alkenes, 661, 732
Addition reactions. See also Aldehydes;	hydrogen-deuterium exchange in,	oxidation of primary alcohols, 596, 597,
Alkenes; Alkynes; Dienes; Ketones	166, 510	611, 659
1,2 addition <i>versus</i> 1,4 addition, 379–382,	infrared spectra, 519 table	ozonolysis of alkenes, 241–242, 660
392, 722–723	inorganic esters of, 595–596, 610	reactions of
anti addition, 212, 233–234, 236, 237, 250,	mass spectra, 607	acetal formation, 668–672, 689
284, 351–352, 356–357	naturally occurring, 580	with amines, 672–677, 689, 690, 882
Diels-Alder cycloaddition, 382, 392–393	nomenclature of, 127–128,	cyanohydrin formation, 667–668, 689
of benzyne, 931–932	159, 169	with derivatives of ammonia, 674

I-3 INDEX

Aldenydes—Cont.	electrophilic addition to, 213–220,	of ammonia, 8/2–8/5, 901
with Grignard reagents, 555, 572, 573,	223–243, 244–245, 249, 274,	of β-diketones, 726, 729
662, 722	284-285	of ester enolates, 848–849
halogenation, 703-705, 727	E-Z notation, 173–175, 199	Friedel-Crafts, 445, 450-453, 478, 479
hydration, 663–667, 689	free-radical addition to, 220–223,	of malonic ester, 842-845, 852
hydrogenation, 583–584, 662	245–246, 251	Alkyl azides
with organolithium reagents, 554–556,		
	in Friedel-Crafts reactions, 452, 453	preparation of, 304, 324, 723, 873
572, 573, 662	heats of combustion, 176–178	reduction of, 877, 902
oxidation, 682, 691	heats of hydrogenation, 209–212	Alkylbenzenes. See also Arenes
reduction, 662	infrared spectra, 519 table, 520–521	free-radical halogenation of, 414–416, 435
with Wittig reagents, 677–681, 690	isomers, 172–181, 199	infrared spectra, 520–521
in reductive amination, 879-881, 903	relative stabilities of, 176–181, 199	mass spectra, 531–532
in Strecker synthesis of amino acids,	naturally occurring, 167, 168	oxidation of, 416–417, 435
1061–1062	nomenclature of, 167–170, 198	preparation of, 445, 450–453, 455–456,
		1 1
structure and bonding, 657–658, 688	physical properties of, 174–176	478, 563
Alder, Kurt, 382	preparation of, 168, 181–198, 200 table	Alkyl cyanides. See Nitriles
Alditols, 998	from alkynes, 350–352, 360	Alkyl fluorides, 625
Aldohexose, 976–978	dehydration of alcohols, 182–190, 200,	Alkyl groups
Aldolase, 1003	419, 591	classification of, 65–66
Aldol condensation, 715–720, 728	dehydrogenation of alkanes, 168, 181, 419	nomenclature of, 65-66, 83, 127
intramolecular, 718, 724, 728	dehydrohalogenation of alkyl halides,	splitting patterns in proton magnetic
mixed, 719–720, 728	190–198, 200, 419	resonance spectra, 503–505
retro-, 1003	Hofmann elimination, 883–885, 904	stabilizing effect of
Aldonic acids, 999–1000	Wittig reaction, 677–681, 690	in aldehydes and ketones, 658, 664
Aldopentose, 976–978	reactions of, 208–258	in alkenes, 176–178, 199
Aldoses, 973, 1007	allylic halogenation, 370–372, 391	in alkynes, 350
Fischer projection formulas of, 977	with dibromocarbene, 566	in carbocations, 140-143, 162, 317
Aldotetrose, 974–976	Diels-Alder reaction, 382 392–393	in free radicals, 149–153
Alicyclic hydrocarbons, 68. See also	epoxidation, 238-240, 250, 274, 630,	steric hindrance to nucleophilic substitution
Cycloalkanes	645	by, 310–312
Aliphatic hydrocarbon, definition of, 53, 399	halogen addition, 233–236, 250, 420	3 '
1		Alkyl halides
Alizarin, 958	halohydrin formation, 236–238, 250,	bonding in, 129
Alkadienes, 372–390. See also Dienes	630–631	classification of, 128
preparation of, 378–379	hydration, 225–227, 249	in Friedel-Crafts alkylation reactions, 445,
relative stabilities, 374–375	hydroboration-oxidation, 227–233, 250	450–453, 478, 479
ultraviolet-visible spectra, 524–526	hydroformylation, 661	in Gabriel synthesis of amines, 875–876,
Alkaloids, 869	hydrogenation, 208-213, 249, 285, 419	902
Alkanes, 53–88	with hydrogen halides, 213–223, 251,	naturally occurring, 713
acidity of, 344–345, 552	249, 275, 420	nucleophilic substitution in, 302–325, 331
· · · · · · · · · · · · · · · · · · ·		*
chiral, 262	hydroxylation, 590, 637	table, 346–348, 359, 626–627, 644,
conformations of, 89–98, 117–118	with iodomethylzinc iodide,	725–726, 729, 839–845
infrared spectra, 519–521	563–564, 571	crown-ether catalysis of, 625
IUPAC names of unbranched, 62 table	ozonolysis, 240–242, 251, 660	phase-transfer catalysis of, 871–872
mass spectra, 529–530	polymerization, 244–247, 251–252, 289,	nomenclature of, 127, 159
nomenclature of, 61–68	421, 567–570, 573	physical properties, 130–133
physical properties, 71–74	with sulfuric acid, 223–225, 249	preparation of
preparation of	stereoisomerism in, 172–175, 199, 284	from alcohols, 137–147, 160–162,
hydrogenation of alkenes, 208–209, 243		329–330
	Alkenylbenzenes, 419–421, 435	
hydrogenation of alkynes, 350	Alkenyl cations, 353	from alkanes, 148, 153–159, 161–163
using organocopper reagents, 561–563,	Alkenyl groups, 169–170	from alkenes, 213–216, 220–226
573	Alkenyl halides, 303	reactions of
reactions of	Alkenyl radical, 352	with alkynide ions, 346–348, 359
combustion, 74–77	Alkoxide ions	with amines, 883, 904
dehydrogenation, 168, 181	as bases in elimination, 190-191, 565	with ammonia, 872-875, 901
halogenation, 54, 126, 148, 153–159,	as nucleophiles, 303, 304, 312–313,	dehydrohalogenation, 190–198, 200, 419
161, 162–163	626–627, 644	with β-diketones, 725–726, 729
relative stability of isomers, 75–76	substitution <i>versus</i> elimination in reactions	with lithium, 549–550, 571
Alkatetraene, 374	with alkyl halides, 323–325, 332,	with lithium dialkylcuprates, 561–563,
Alkatriene, 374	626–627	573
Alkenes, 167–258	Alkylamines. See Amines	with magnesium, 550-551, 571
acidity of, 345	Alkylation	with sodium azide, 303, 304, 322, 324,
bonding in, 38–40, 42, 170–172, 198	of acetoacetic ester, 839–841, 850	873
cycloalkenes, 170, 180–181, 199	of acetylene and alkynes, 336, 346–348,	with thiourea, 604, 609
as dienophiles, 382, 384		
as dichophiles, 302, 304	359	with triphenylphosphine, 680

with typical nucleophiles, 304 table	Amide ion. See also Sodium amide	stereochemistry, 1052, 1056–1057, 1103
in Williamson ether synthesis, 626–627,	as base, 346–349, 359, 556, 848	zwitterionic structure, 1057, 1103
644, 954, 1004	in nucleophilic aromatic substitution	p-Aminobenzoic acid, 888, 897
solubility in water, 132	reactions, 927–931	4-Aminobutanoic acid. <i>See</i>
Alkyl hydrogen sulfates, 223–224, 249	Amides. See also Imides; Lactams; Peptides	γ-Aminobutyric acid
Alkyl hydroperoxides, 397, 627–628	infrared spectra, 519 table, 817	3-Amino-2-butanol, 279, 873
Alkyl iodides	as intermediates in hydrolysis of nitriles,	γ-Aminobutyric acid, 1052
nucleophilic substitution in, 305–306, 331	815–816	1-Aminocyclopropanecarboxylic acid
preparation of, 305	mass spectrometry of, 818	in ethylene biosynthesis, 168, 1052
Alkyloxonium ions. See Oxonium ions	nomenclature of, 776, 879	3-Aminopropanoic acid. See β-Alanine
Alkynes, 339–364	preparation of, 781, 785, 791, 799–803,	Amino sugars, 988
acidity of, 343, 344–346, 358, 552, 556	820, 821, 874, 886	Ammonia
bonding in, 341–343, 358 cyclic, 341, 344	reactions of dehydration, 814	acidity of, 135, 345, 552, 848
as dienophiles, 385	Hofmann rearrangement, 807–813,	basicity of, 135 boiling point, 131
infrared spectra, 519 table	822, 874	bond angles, 29
naturally occurring, 340	hydrolysis, 804–807, 808, 887	nucleophilicity, 313
nomenclature of, 340	protonation, 805	reaction of
physical properties, 341	reduction, 879, 903	with alkyl halides, 872-875, 901
preparation of, 346-349, 359 table	resonance in, 779, 886	with epoxides, 634, 873
alkylation of acetylene and terminal	rotational energy barrier, 779	with esters, 799–800
alkynes, 346–348, 359	structure, 779–780	with α -halo carboxylic acids, 760, 874,
from geminal and vicinal dihalides,	Amines, 858–916. See also Aniline;	1061
348–349, 359	Diazonium salts	with methyllithium, 553
reactions of, 349–357, 360 table, 361 table	basicity, 864–870, 901	with α,β -unsaturated carbonyl
alkylation of, 346–348, 359, 672	classification, 859	compounds, 728
as Brønsted acid, 343, 344–346,	infrared spectra, 519 table, 897–898 mass spectra, 900	in reductive amination, 879–881, 903
358, 556 halogen addition to, 356–357, 361	naturally occurring, 869–870	as solvent, 346, 351–352 Ammonium salts
hydration of, 355–356, 361, 660	nomenclature of, 859–861, 900	acetate, 742
hydrogenation of, 350–351, 360	nuclear magnetic resonance spectra	carbamate, 802–803
hydrogen halide addition to,	carbon, 899	cyanate, 2
352–354, 361	proton, 898–899	formal charge of nitrogen in, 18
metal-ammonia reduction of,	physical properties, 863–864	nomenclature of, 860
351–352, 360	preparation of, 872-881, 901-903	AMP. See Adenosine 5'-monophosphate
ozonolysis of, 357	alkylation of ammonia,	Amphoteric, 1057
structure, 341–343	872–875, 901	Amylopectin, 993–994
Allene(s), 373, 377–378	Gabriel synthesis, 875–876, 902	Amylose, 994
chiral, 378	Hofmann rearrangement, 807–813, 822	Anabolic steroids, 1041
heat of hydrogenation, 374–375 structure and bonding, 377–378	reduction of nitrogen-containing	Analysis
Allinger, N. L., 97	compounds, 877–881, 902–903 reductive amination, 879–881, 903	amino acid, 1070–1071 amino acid racemization, 1057
D-Alloisoleucine, 1057	pyramidal inversion in, 290	GC/MS, 530–531
Allonolactone, 1009	reactions, 881–897, 904–907	retrosynthetic, 557–560, 564, 570–571,
D-Allose, 977	with acyl chlorides, 781, 820, 882, 886	679, 680, 840, 843
Allyl, 365, 390	with aldehydes and ketones, 672–677,	structure determination by instrumental
alcohol, 366	689–690, 882	methods, 487–545
bromide, 366, 841, 954	with alkyl halides, 883, 904	Anandamide, 1019
cation, 366	with carboxylic acid anhydrides, 785,	Androgens, 1040, 1041
chloride, 366, 371	820, 886, 887	Androstenedione, 1041
group, 169–170, 365	electrophilic aromatic substitution in	Angle strain, 98, 117
Allylic, 366	arylamines, 886–888, 904	in [10]-annulene, 425
carbocations, 365, 366–369, 379–382, 390 free radicals, 365, 370–372, 390–391	with esters, 799–800, 801	in cycloalkanes, 98–99
halogenation, 370–372, 391	Hofmann elimination, 883–885, 904 nitrosation, 888–892, 904–905	in cycloalkynes, 341, 344 in cyclobutane, 98, 107–108
rearrangement, 369, 390	structure and bonding, 861–863, 900–901	in cyclobatane, 98, 107–108
Allyl phenyl ether	Amino acid analyzer, 1071	in cyclopropane, 98, 107, 118
Claisen rearrangement of, 957–958	Amino acid racemization, 1057	in cyclopropene, 180
preparation of, 954	Amino acids	in epoxides, 621
Altronolactone, 1009	acid base properties, 1057–1060	Angstrom unit, 22
D-Altrose, 977	analysis, 1060-1061, 1070-1071	Aniline, 407, 859. See also Arylamines;
Aluminum chloride	classification, 1052	Diazonium salts
catalyst for Friedel-Crafts reaction, 445,	constituents of proteins, 1054–1055 table	basicity of, 866–868
450–456, 478, 660	preparation of, 1061–1063	electrostatic potential map, 862
catalyst for Fries rearrangement, 952	reactions of, 675, 1063–1066	isolation, 859

I-5 INDEX

Aniline—Cont.	benzene, 399–406	Aspirin, 51, 164
physical properties, 864	heterocyclic, 430–433, 436–437	inhibition of prostaglandin biosynthesis
reactions of	Hückel's rule, 423–430, 432–433, 436	by, 1025
acylation, 886–887	ionic, 426–430, 436	preparation of, 952–954
bromination, 466	nomenclature of, 406-408, 434	Asymmetric center. See Stereogenic center
diazotization, 891	physical properties, 411, 434	Atactic polymers, 289, 567
in reductive amination, 880	polycyclic, 408–409, 434	Atomic number, 7
resonance in, 863	reactions of	and the sequence rule, 173
		ATP. See Adenosine triphosphate
structure and bonding, 861–863	Birch reduction, 412–414, 434	
Anion radical intermediates	electrophilic aromatic substitution,	Axial bonds in cyclohexane, 100–105, 119
in Birch reduction, 413	443–486	Azeotropic mixture, 593, 670
in metal-ammonia reduction of alkynes, 351–352	side-chain reactivity, 414–421, 435 table. (<i>see also</i> Arenes; Electrophilic	Azide ion, 28, 303, 304, 313, 322, 324, 723, 873
in reaction of alkyl halides with metals, 549–550, 551	aromatic substitution; <i>individual</i> compounds, for example: Aniline;	Azo coupling, 895–897, 951 Azo dyes, 896–897
Anisole, 407		AZT. See Zidovudine
	Benzene etc.)	AZ1. See Zidovudille
bromination of, 463	Arrhenius, Svante, 134	
Friedel-Crafts acylation of, 478, 660	Artificial sweeteners, 997–998	Baeyer strain theory, 98
preparation of, 954	Arylamines	Baeyer-Villiger oxidation, 683–684, 691, 789
Annelation. See Annulation	basicity of, 865, 866-868	•
Annulation, 724	nomenclature of, 859-861	Barbiturates, 845–846
Annulenes, 423–426, 436, 544	preparation of, 878	Barton, Sir Derek, 99
Anomeric carbon, 978	reactions of	Base pairs, 1094–1096
Anomeric effect, 985	acylation, 886–888	Base peak, 527
	· · · · · · · · · · · · · · · · · · ·	Bases, used in elimination reactions, 190–191
Anthracene, 408–409	electrophilic aromatic substitution, 466,	348–349, 359, 565
Anti addition. See Addition reactions	886–888, 904	Basicity
Antibiotics	nitrosation, 891–895	of amines, 864–870, 901
carbohydrate components of, 988	in reductive amination, 880	
enediyne, 344	structure and bonding, 861–863 (see also	constant K_b and p K_b , 864–865, 901
β-lactam, 803	Aniline; Diazonium salts)	definition
macrolide, 758–759	Aryl cyanides. See Nitriles	Arrhenius, 134
polyether, 624	Aryl esters	Brønsted-Lowry, 134–136
sulfa drugs, 896–897	Fries rearrangement of, 952	Lewis, 143
•		of Grignard reagents, 551-553, 556
Antibody, 995	in peptide bond formation, 1080	of heterocyclic amines, 868
Anticodon, 1100	preparation of, 949, 951–952, 963	of leaving groups, 306, 327 table, 890
Anti conformation, 92	Aryl ethers	and nucleophilicity, 323–325
alkanes, 94, 97, 118	cleavage by hydrogen halides, 956–957,	of organolithium compounds, 551–553
in elimination reactions, 194–196, 200	964	
ethers, 621	preparation of, 954–956, 964	Beeswax, 61, 70, 1024
meso-2,3-butanediol, 279-280	Aryl halides, 303, 917–938	Bender, Myron, 794, 797
peptides and proteins, 1067–1068	bond dissociation energies, 918	Bending vibrations in infrared spectroscopy,
Antigen, 995	naturally occurring, 920	518
Anti-Markovnikov addition, 220		Benedict's reagent, 998–999, 1009
	physical properties of, 918	Benzal chloride, 415
D-Apiose, 988, 1011	preparation of	Benzaldehyde, 407
Aprotic solvents, 322, 875	from aryl diazonium salts, 892–893,	diethyl acetal of, 669
D-Arabinitol, 1009	905–906, 919	•
D-Arabinose, 977, 1006, 1009	halogenation of arenes, 445, 448–450,	preparation of, 659
L-Arabinose, 976, 1001	478, 919	reactions of
Arachidic acid, 1018, 1025	reactions of	Claisen-Schmidt condensation, 720, 728
Arachidonic acid, 1018, 1025	electrophilic aromatic substitution,	with methylamine, 673, 873
Aramid polymers, 809	469–470, 921	nitration, 467, 873
		reductive amination, 881
Archaea, 58, 299	formation of Grignard reagent, 550, 921	with vinyllithium, 556
Arene oxides, 409, 948, 1064	with lithium, 549	Benzenamine, 859. See also Aniline
Arenes, 54, 398–442	nucleophilic aromatic substitution,	Benzene, 54, 399–406, 433–434
biological oxidation, 409, 417, 948, 1064	922–931, 932–933, 946, 956,	
infrared spectra, 519 table	1071-1072	acidity of, 552, 577
nuclear magnetic resonance spectra	structure and bonding, 917–918	Birch reduction of, 413–414
carbon, 513 table	Ascaridole, 1046	derivatives, nomenclature of, 406–408
proton, 495–496	Ascorbic acid (vitamin C), 164, 771, 980, 1001	electrophilic aromatic substitution in,
Arenium ion, 444	L-Asparagine, 1054, 1059	445 table
		bromination, 445, 448-450, 473
L-Arginine, 1055, 1059	electrostatic potential map, 1053	chlorination, 445, 450
electrostatic potential map, 1053	Aspartame, 997–998	Friedel-Crafts acylation, 445, 453–457,
Aromatic compounds and aromaticity, 54,	L-Aspartic acid, 1055, 1059	473, 474
398-442	electrophoresis of, 1060–1061	
annulenes, 423–426, 436	electrostatic potential map, 1053	Friedel-Crafts alkylation, 445, 450–453, 478

nitration, 445, 447-448, 473	electrostatic potential map, 930	dialkyl ethers, 621
sulfonation and disulfonation, 445,	generation of, 929, 931-932, 933	and electron-pair repulsions, 26, 28-29
448–449, 468	as intermediate in nucleophilic aromatic	enol of 2,4-pentanedione, 708
electrostatic potential map, 398	substitution, 927–931	ethane, 57, 343
heat of hydrogenation, 403–404	Berg, Paul, 1102	ethylene, 38–40, 171, 343
as industrial chemical, 399	Bergstrom, Sune, 1025	ethylene oxide, 621
isolation and discovery, 399	Berthelot, Pierre-Eugéne Marcellin, 339	formaldehyde, 657
mass spectrum, 527–528	Berzelius, Jöns Jacob, 1–2, 22	formic acid, 738
molecular orbitals, 405, 424	Bicarbonate, 749	methane, 28, 37, 57
nuclear shielding in, 495	Bicyclic ring systems, 114–115, 120	methanol, 129, 621, 940
stability of, 403–404, 433	as products in Diels-Alder reactions, 386,	methylamine, 861, 862
structure and bonding, 399–403	932	phenol, 940
Kekulé formulation, 399–402, 433	Big-bang theory, 6	water, 29, 621
orbital hybridization model, 405	Bile acids and bile salts, 1039, 1044	Bond dissociation energy, 13, 151–153, 155
resonance description, 402–403 (see also	Bimolecular	acetylene, 343
Arenes; Aromatic compounds and	elementary step, 136, 143	aryl halides, 918
aromaticity)	elimination, 192–196, 201 (see also E2	benzene, 918
Benzenecarbaldehyde. See Benzaldehyde	mechanism)	ethane, 151, 343, 918
Benzenecarboxylic acid. See Benzoic acid	nucleophilic substitution (see S _N 2	ethylene, 171, 343, 918
Benzenediazonium chloride, 891, 951	mechanism)	ethyl halides, 918
1,2-Benzenedicarboxylic acid, 737	Biological isoprene unit. See Isopentenyl	and halogenation of methane, 155
1,4-Benzenedicarboxylic acid, 750	pyrophosphate Biosynthesis	2-methylpropane, 151, 152, 414
condensation polymers of, 809	of amino acids, by transamination,	peroxides, 220
Benzenediols, 940. See also Hydroquinone;	1063–1065	propane, 151
Pyrocatechol; Resorcinol Benzenesulfonic acid	of cholesterol, 1036–1037	propene, 370, 414 table, 151
preparation of, 445, 448–449	of ethylene, 168	vinyl halides, 918
	of fatty acids, 1019–1022	Bond distances
reactions of, 468, 947 (Benzene)tricarbonylchromium, 567	of organohalogen compounds, 713	acetic acid, 742
Benzimidazole, 431	of phenols, 948	acetylene, 341–342, 343
Benzo[a]pyrene, 409	of prostaglandins, 1025	alkyl halides, 129
Benzofuran, 430	of terpenes, 1028–1034	allene, 377
Benzoic acid, 399, 407, 737	Biot, Jean-Baptiste, 265	ammonium acetate, 742
acidity of, 747	Biphenyl, 408, 466, 485	benzene, 402
esterification of, 593, 754–757	Birch, Arthur J., 412	1,3-butadiene, 375
by oxidation of toluene, 417	Birch reduction, 412–414, 434	carbon-chlorine,778
Benzonitrile, 776	Bisabolene, 1046	carbon-sulfur, 800
Benzophenone, 656	Bloch, Felix, 490	cyclobutadiene derivative, 423
Benzothiophene, 430	Bloch, Konrad, 1035	cyclooctatetraene, 423
Benzotrichloride, 415	Blood-group glycoproteins, 995, 996	dimethyl ether, 621
Benzoyl chloride, 468, 781, 782	Boat conformation of cyclohexane, 99–100,	enol of 2,4-pentanedione, 708
Benzoyl peroxide, 415	119	ethane, 37, 57, 343
Benzyl alcohol, 659	Boc. See tert-Butoxycarbonyl	ethyl chloride, 918
infrared spectrum, 523	Boiling points	ethylene, 38, 171, 343
¹ H NMR spectrum, 509	of alcohols, 130-131, 160, 790	ethylene oxide, 621
Benzylamine, preparation of, 875–876	of alkanes, 57, 71–74, 790	formic acid, 738
Benzyl bromide, 408	of alkyl halides, 130–132, 160, 306	methane, 57
Benzyl cation, 412, 418, 527	of amines, 863–864	methanol, 129
Benzyl chloride	of carboxylic acids, 739	methylamine, 861, 862
nucleophilic substitution in, 626, 729,	of esters, 790	phenol, 940
752, 783	and intermolecular attractive forces, 71–74,	propene, 171, 343
preparation of, 415	130–132, 658	propyne, 343
reaction of	and intramolecular hydrogen bonds, 942	vinyl halides, 918
with lithium dimethylcuprate, 573	of thiols, 604	Bonding
with magnesium, 571	Bond angles	in acetylene, 14, 40–42, 47, 341–343, 358
with <i>N</i> -potassiophthalimide, 875	acetaldehyde, 657	in alcohols, 129
Benzyl group, 408	acetone, 657	in aldehydes and ketones, 657–658, 688
Benzylic halides, nucleophilic substitution in,	acetylene, 341–342, 343	in alkenes, 38–40 170–172, 198
417–419	ammonia, 29	in alkyl halides, 129
Benzylic halogenation, 414–416, 435	aniline, 862 [10]-annulene, 425	in alkynes, 341–343, 358
Benzyloxycarbonyl protecting group in		in allene, 377–378
peptide synthesis, 1077–1079, 1104 Benzyl radical, 412, 414–415	benzene, 402 boron trifluoride, 29	in amines, 861–863 in aryl halides, 917–918
Benzyne Benzyne	carbon dioxide, 30	in benzene, 402–403, 405, 424
bonding in, 928, 930	carbon dioxide, 50 cyclohexane, 99	in benzene, 402–403, 403, 424 in benzyne, 928, 930
Diels-Alder reactions of, 931–932	cyclopropane, 98, 106–107	in carbocations, 140–143
Dielo fildei federiono 01, 731 732	5,510p10pune, 20, 100 107	• • • • • • • • • • • • • • • • • •

I-7 INDEX

Bonding—Cont.	anisole, 463	Butanal
in carboxylic acid derivatives, 777–779	benzene, 445, 448-450, 473	aldol condensation, 716-717, 718
in carboxylic acids, 738–739	3-benzyl-2,6-dimethylphenol, 949	dipole moment, 721
in conjugated dienes, 375	4-chloro-N-methylaniline, 471	heat of combustion, 658
in ethers and epoxides, 621	<i>m</i> -fluorophenol, 948	infrared spectrum, 685
in ethane, 37	nitrobenzene, 469, 919	reductive amination of, 880
in ethylene, 14, 38–40, 47, 170–171	<i>p</i> -nitrotoluene, 471	Butanamine. See Butylamine
in formaldehyde, 14, 657	phenol, 478, 950	Butane, 61. See also n-Butane
in free radicals, 149–150	of ketones, 703–705, 727	chlorination of, 156-158
in hydrogen, 12, 32–35	Bromine. See also Bromination	conformations of, 94-97, 118
in methane, 13, 35–37	oxidation of carbohydrates by,	n-Butane, 57. See also Butane
models, comparison of, 42-43	999–1000, 1009	2,3-Butanediol, stereoisomers, 279-280
in phenols, 940–941	reaction with amides, 807-813, 822	Butanoic acid
in α,β -unsaturated aldehydes and ketones,	Bromobenzene	biosynthesis of, 1020-1022
720–721	Friedel-Crafts acylation of, 921	bromination of, 760
Bond lengths. See Bond distances	preparation of, 445, 448	1-Butanol
Bond-line formulas, 21, 59, 171. See also	reactions of	acid-catalyzed ether formation from,
Carbon skeleton diagrams	with lithium, 549	592, 625
Bonds	with magnesium, 550, 921	conversion to 1-bromobutane, 138
axial and equatorial, 100–105, 119	1-Bromobutane, 138, 220. See also	dehydration, 189–190
bent, in cyclopropane, 106	Butyl bromide	Fischer esterification of, 789
carbon-metal, 546–548	alkylation of	2-Butanol. <i>See also sec</i> -Butyl alcohol
covalent, 12–14	acetylene, 346–348	enantiomers, 267–269
double, 14, 171, 198	ethyl acetoacetate, 840	reaction with hydrogen bromide,
hydrogen bonds, 130–133, 622	o-nitrophenol, 963	139, 330
ionic, 11–12	nucleophilic substitution in, 322	stereogenic center in, 262, 268
partial, 136	2-Bromobutane, 128, 215	2-Butanone
π	alkylation of diethyl malonate,	enolization of, 706
in acetylene, 42, 47, 341–342	843–844	heat of combustion, 658
in ethylene, 40, 47, 170–171, 198	preparation of, 138, 330	proton magnetic resonance spectrum, 686
in formaldehyde, 657	Bromochlorofluoromethane	1-Butene, 169, 172
polar covalent, 15–16	as a chiral molecule, 260	addition of hydrogen bromide to,
dipole moments of, 16 table	electrostatic potential map, 159	215, 220
•	Fischer projections, 271	addition of sulfuric acid to, 249
σ in acetylene, 40–42, 341–342	Bromoform, 494, 711–712, 727. See also	
•	Tribromomethane	boiling point, 658
in ethane, 37		dipole moment of, 176
in ethylene, 38–40, 170–171, 198	Bromohydrin. See Halohydrins	heat of combustion, 177
in methane, 35–37	2-Bromo-2-methylbutane	heat of hydrogenation, 209–211
three-center two-electron, 230	elimination reactions, 191, 197	cis- and trans-2-Butene, 172–173
triple, 14, 341–342	substitution <i>versus</i> elimination in, 325	dipole moments of, 176
Borane, 228	2-Bromo-3-methylbutane, rearrangement in	heats of combustion, 177
Borneol, 1032	hydrolysis of, 319–320	heats of hydrogenation, 209–211
Borodin, Aleksandr, 715	1-Bromo-2-methylpropane. See	Butlerov, Alexander, 3
Borohydride ion, 18. See also Sodium	Isobutyl bromide	tert-Butoxycarbonyl, protecting group in
borohydride	Bromonium ion. See Halonium ion	peptide synthesis, 1078–1079,
Boron trifluoride, 29, 31	(R)- and (S)-2-Bromooctane, stereochemistry	1083, 1104
Bradykinin, 1076	of hydrolysis of, 307–308, 319	sec-Butyl acetate, 594
Branched-chain carbohydrates, 988	N-Bromosuccinimide, reagent for	n-Butyl alcohol. See 1-Butanol
Brevicomin, 694	allylic bromination, 371, 391	sec-Butyl alcohol, 594. See also 2-Butanol
Broadband decoupling, 515	benzylic bromination, 415–416, 435	tert-Butyl alcohol. See also 2-Methyl-2-
Bromination	Brønsted, Johannes, 134	propanol
of aldehydes, 703–705	Brønsted acid. See Acidity	acidity of, 135
of alkanes, 158–159, 161	Brønsted base. See Basicity	dehydration of, 182, 186
of alkenes	Brown, Herbert C., 228	esterification of, 610, 781
electrophilic, 233–236, 250, 284–285,	Buckminsterfullerene, 410–411	reaction with hydrogen chloride, 138,
420	1,3-Butadiene	139–146
free-radical, 371–372, 391	addition of halogens to, 382, 392	Butylamine
of alkynes, 356–357	addition of hydrogen halides to,	acylation of, 882
of benzene, 445, 448–450	379–382, 392	infrared spectrum, 898
benzylic, of alkylbenzenes, 415-416, 435	conformations, 376–377	Butyl bromide. See also 1-Bromobutane
of carboxylic acids, 759-760, 767	Diels-Alder reactions of, 382, 387–388	preparation from 1-butanol, 138
of conjugated dienes, 382	electrostatic potential map, 365	reaction of
electrophilic aromatic substitution	industrial preparation of, 378	with lithium, 549
acetophenone, 473	π -molecular orbitals, 397–398	with sodium cyanide, 871
p-aminobenzoic acid, 888	polymers of, 382–383	tert-Butyl bromide, nucleophilic substitution
aniline, 466, 895	structure and bonding, 375–377	in, 315–317

tert-Butyl cation, 140, 141, 143-146	Calcium carbide, 340	branched-chain carbohydrates, 988
electrostatic potential map, 126	Calicene, 441	chain extension, 1001, 1009
intermediate in	Camphene, 115	classification, 972-973
acid-catalyzed hydration of	Cantharadin, 783	configurations of D-aldoses, 974–978
2-methylpropene, 226	€-Caprolactam, 803	mnemonic for, 978
dehydration of <i>tert</i> -butyl alcohol, 186	Carbamic acid, 812	cyclic hemiacetal formation in, 978–984
Friedel-Crafts alkylation of benzene, 451	esters, 813, 857	deoxy sugars, 987
nucleophilic substitution, 315–317 reaction of <i>tert</i> -butyl alcohol with	Carbanion, 345, 548 basicity of, 345, 552–553	determination of ring size, 1004–1006 disaccharides, 972–973, 991–993, 1008
hydrogen chloride, 140,143–146	basicity 61, 545, 552–555 bonding in, 345	Fischer determination of glucose structure,
stability of, 141	enolate ion, 709	996, 1014
<i>n</i> -Butyl chloride. <i>See</i> 1-Chlorobutane	as intermediate in nucleophilic aromatic	Fischer projection formulas, 973–974, 100
sec-Butyl chloride. See 2-Chlorobutane	substitution, 923–927	furanose forms, 978–981, 1007
tert-Butyl chloride. See also 2-Chloro-	Carbenes and carbenoids, 565-566, 571-572	glycolysis, 1002-1004, 1015
2-methylpropane	Carbenium ions, 140. See also Carbocations	glycoproteins, 995-996
by chlorination of 2-methylpropane, 158	Carbinolamine intermediates, 672-673, 674	glycosides, 988-991, 1008
in Friedel-Crafts reaction, 445, 450–451	Carbobenzoxy. See Benzyloxycarbonyl	Haworth formulas, 980
preparation from <i>tert</i> -butyl alcohol,	Carbocations	ketoses, 973, 986–987
138–139, 143–144	acyl cations, 453–455	mutarotation in, 985–986, 1008
reaction with lithium, 549	alkenyl cations, 353	photosynthesis, 976, 1015
solvolysis of, 321, 366	allylic, 365, 366–369, 379–382, 390	polysaccharides, 993–995, 1008
<i>tert</i> -Butylcyclohexane, conformations, 105 4- <i>tert</i> -Butylcyclohexyl bromide, rate of	arenium ions, 444 (<i>see also</i> Cyclohexadienyl cation)	pyranose forms, 981–984, 1007 reactions of
elimination of cis and trans isomers,	benzylic, 418, 421	acylation, 1004, 1010
194–196	<i>tert</i> -butyl cation, 140, 141, 143–146, 186,	cyanohydrin formation, 1001, 1009
Butyl group, 66. See also n-Butyl group	226, 315–317, 451	epimerization, 1002
<i>n</i> -Butyl group, 66. <i>See also</i> Butyl group	capture by nucleophiles, 142, 143–144,	ether formation, 1004, 1010
sec-Butyl group, 66. See also	226, 316	isomerization, 1002
1-Methylpropyl group	as intermediates in acetal formation,	oxidation, 998-1001, 1009
tert-Butyl group, 66. See also	669–670, 989	periodic acid cleavage, 1005-1006, 1010
1,1-Dimethylethyl group	as intermediates in biosynthesis	reduction, 996–998, 1009
large size of, 105, 107, 113–114, 179,	of cholesterol, 1036	retro-aldol cleavage, 1003–1004
310–311	of terpenes, 1028–1032	Carbolic acid, 943. See also Phenol
<i>tert</i> -Butyl hydroperoxide, 589–590, 608 Butyllithium	as intermediates in glycoside formation, 990 as intermediates in reactions of alcohols	Carbon ¹³ C isotope
preparation of, 549	dehydration, 185–189, 200–201	nuclear magnetic resonance, 510–517
reactions of, 551, 582	with hydrogen halides, 140–146,	¹⁴ C as isotopic label
tert-Butyllithium, 549	160–162, 329–330, 332	in Claisen rearrangement, 957
<i>n</i> -Butyl mercaptan, in skunk fluid, 85, 604	as intermediates in reactions of alkenes	nucleophilic aromatic substitution via
sec-Butyl methyl ether, 628	acid-catalyzed hydration, 225-226	benzyne, 928, 931
tert-Butyl methyl ether, 626	addition of hydrogen halides, 213-214,	terpene biosynthesis, 1033–1034
tert-Butyloxonium ion	216–220, 251	clusters, 410–411
intermediate in	addition of hydrogen halides to	formation in stars, 6
dehydration of tert-butyl alcohol, 186	conjugated dienes, 379–382, 392	Carbon dioxide, 14
hydration of 2-methylpropene, 226	addition of sulfuric acid, 224	bond angles in, 30
hydrolysis of <i>tert</i> -butyl bromide, 305–306	polymerization, 244–245	and carbonic acid, 749
reaction of <i>tert</i> -butyl alcohol with hydrogen chloride, 140, 142–145	as intermediates in reactions of alkyl diazonium salts, 890	in fatty acid and terpene biosynthesis, 1020–1021, 1033
sec-Butyl phenyl ketone, enolization of,	as intermediates in reactions of	in industrial preparation of urea, 802–803
714–715	alkyl halides	in Kolbe-Schmitt reaction, 952–954,
Butyl radical, 157	E1 elimination, 196–198, 201	963
sec-Butyl radical, 157	Friedel-Crafts alkylation, 451–453, 479	reaction with Grignard reagents, 750–752,
tert-Butyl radical, 152	S _N 1 nucleophilic substitution, 143–146,	766
1-Butyne, 340, 347	315–320, 331	Carbonic acid, acidity of, 749
2-Butyne, 340, 347	isopropyl cation, 141, 224	Carbonic anhydrase, 749
Butyraldehyde. See Butanal	methyl cation, 141	Carbonium ions, 140. See also Carbocations
Butyric acid, 750. See also Butanoic acid	tert-pentyl cation, 929	Carbon monoxide
	rearrangements, 187–189, 201, 219–220,	binding to hemoglobin and myoglobin,
c, speed of light, 488	319–320, 331, 452, 479	1089
Caffeine, 1091	structure, bonding, and stability, 140–143,	reactions of, 566, 580, 661
Cahn, R. S., 174	162 triphenylmethyl, 418–419	Carbon skeleton diagrams, 21. See also Bond- line formulas
Cahn-Ingold-Prelog (CIP) system of	Carbohydrates, 972–1014	Carbon tetrachloride, 30, 132. See also
stereochemical notation	aldoses, 973	Tetrachloromethane
chiral molecules, 268–271, 292	amino sugars, 988	Carbon tetrafluoride, 13

amino sugars, 988

priority rules, 173-174, 175 table

I-9 INDEX

Carbonyl group. See also Acyl chlorides;	oxidation of alkylbenzenes,	optical activity in, 265-267, 293
Aldehydes; Amides; Carboxylic	416–417, 751	and R, S notation, 268–271, 292
acid anhydrides; Carboxylic acids;	oxidation of primary alcohols, 596,	Chiral recognition, 272–273
Esters; Ketones	611, 751	Chitin, 988
and functional groups, 56	protecting group for, 1079	Chloral, 664
infrared absorption frequencies, 519,	reactions of, 753–763	Chlorination
817	with acyl chlorides, 781, 820	electrophilic
stabilization by substituents, 658, 738-739,	decarboxylation, 760-763, 767-768	of acetophenone, 474
777–779	esterification, 593-594, 610, 754-757,	of aldehydes and ketones, 703–705, 711
structure and bonding, 657-658, 688	767, 789	713, 727
Carboxamides. See Amides	α-halogenation, 759–760, 767	of benzene, 445
Carboxylate salts	reduction, 587, 608, 659, 754	of benzoyl chloride, 468
electron delocalization in, 740–741,	with thionyl chloride, 454, 754, 780	of 2-methylacetanilide, 888
742	salts of, 742–745, 766	free-radical
micelle formation, 744–745	site of protonation in, 756–757	of alkanes, 148, 153-159, 161,
nomenclature of, 742	structure and bonding, 738–739, 765	162, 166
as nucleophiles, 303, 304, 313	Carboxypeptidase A, 1086–1088	of ethane, 54, 156
Carboxylation	Carboxypeptidases, 1071	of methane, 148–149, 153–155
of Grignard reagents, 750–752, 766	Carcinogen, 409	of propene, 371
of phenol, 952–954, 963	benzene, 417	of toluene, 415 (see also Chlorine)
Carboxylic acid anhydrides	polycyclic aromatic hydrocarbons, 409	Chlorine. See also Chlorination
Friedel-Crafts acylation with, 455, 471,	β-Carotene, 676, 1027, 1042	addition of
473–474, 478, 660, 784, 921	Carotenoids, 1042, 1044	to alkenes, 233–234
infrared absorption, 817	Carothers, Wallace H., 4, 809	
nomenclature of, 775		to conjugated dienes, 382
	Carvone, odors of (<i>R</i>) and (<i>S</i>) enantiomers, 272 Catalyst, 5. <i>See also</i> Acid catalysis; Enzymes;	to propyne, 356
preparation of, 781, 783–784		oxidation of alcohols by, 599
reactions of	Hydrogenation Cation radicals in mass spectrometry, 526	Chlorobenzene
with alcohols, 594–595, 610, 785–787,	1	carbon-chlorine bond energy, 918
789, 820	Cellulase 004	conversion to phenol, 920, 931, 947
with amino acids, 1063	Cellulose, 994	dipole moment of, 918
with ammonia and amines, 785, 820,	Cembrene, 1027	mass spectrum, 529
886–888	Center of symmetry, 264–265	nitration of, 469–470
with carbohydrates, 1004, 1010	in meso-2,3-butanediol, 280	nucleophilic aromatic substitution in,
hydrolysis, 785	Cephalexin, 803	920–921, 931
with phenols, 949–952, 963	Cephalosporins, 803	1-Chlorobutane, 156–157
resonance in, 778	Cerebrosides, 1047	2-Chlorobutane, 156–157
Carboxylic acid chlorides. See Acyl chlorides	Chair conformation	Chlorocyclobutane, 156
Carboxylic acid derivatives, 774–830. See	of cyclohexane and derivatives, 99–107,	Chlorocyclohexane. See also Cyclohexyl
also Acyl chlorides; Amides;	110–114, 119, 510	chloride
Carboxylic acid anhydrides; Esters;	of piperidine, 116	dipole moment, 918
Nitriles	of pyranose forms of carbohydrates,	1-Chloro-2,4-dinitrobenzene, nucleophilic
nomenclature of, 775–776	982–984	substitution in, 922
relative reactivity of, 780 table	of tetrahydropyran, 621	Chloroethane, 54, 156, 918. See also Ethyl
spectroscopic analysis, 817–818	Chargaff, Erwin, 1094	chloride
structure and bonding, 777–779	Chemical Abstracts, 63, 859	Chlorofluorocarbons (CFCs), 148
Carboxylic acids, 736–773. See also Carbonic	Chemical shift	Chloroform, 132. See also Trichloromethane
acid; Dicarboxylic acids	of carbon, 512–513, 535	biosynthesis of, 713
acidity of, 740–742, 745–748, 765–766	equivalence and replacement test for,	¹ H nuclear magnetic resonance spectrum
derivatives of, 774–830	498-500	of, 494
dicarboxylic acids, 748, 760–761	of protons, 493-500, 509, 510, 534, 535	Chloroform-d, solvent for NMR spectroscopy
dipole moments, 739	scale (δ), 493–494	494
hydrogen bonding in, 739	tables, 496 (¹ H), 513 (¹³ C)	Chlorohydrin. See Halohydrins
infrared spectra, 519 table, 763–764	Chiral, definition of, 260	Chloromethane, 148. See also Methyl chlorid
nomenclature of, 737–738	Chiral axis. See Stereogenic axis	biosynthesis of, 713
nuclear magnetic resonance spectra,	Chiral center. See Stereogenic center	boiling point of, 132
763–764	Chiral drugs, 273	dipole moment of, 129
physical properties, 739	Chiral molecules, 259–263, 290	electrostatic potential map, 129
preparation of	absolute configuration, 267, 292	1-Chloro-2-methylpropane, 158. See also
carboxylation of Grignard reagents,	Fischer projection formulas, 271–272, 278,	Isobutyl chloride
750–752, 766	280, 292–293	2-Chloro-2-methylpropane, 158. See also tert
hydrolysis of nitriles, 752–753, 766,	formation of in chemical reactions,	Butyl chloride
815–816	274–276, 284–285, 293	<i>p</i> -Chloronitrobenzene, nucleophilic
by malonic ester synthesis,	with multiple stereogenic centers,	substitution in, 922–925
842–845, 852	276–286, 293	electrostatic potential map, 917
oxidation of aldehydes, 682, 751	with one stereogenic center, 260-263, 291	Chloronium ion. See Halonium ion
	=	

1-Chloropentane, ¹ H and ¹³ C NMR	ether formation, 592-593, 610, 625-626,	Connectivity. See Constitution
spectra, 511	644	Constitution, 19
Chlortetracycline, 920	Fischer esterification, 593–594, 595, 610,	Constitutional isomers, 22, 45, 172, 291
2-Chloro-1,3,5-trinitrobenzene, 922	754–757, 767, 789	of alkanes, number of, 60 table
Cholesterol, 580, 1034–1038, 1044	Condensed structural formulas, 19, 59	Coordination polymerization, 246, 383,
biosynthesis of, 1036–1037	Configuration	567–570, 573
7-dehydro, 1038	absolute and relative, 267–268, 291–292	Copolymer, 383
Cholic acid, 116, 283, 1039	of aldoses, 977	Copper (I) salts
Choline, 1022	of alkenes	in preparation of lithium dialkylcuprates,
Chromatography, 530–531, 1070–1071	cis and trans, 172–173, 180–181, 199	561–562, 571
Chromic acid oxidation	E and Z, 173–175, 180–181, 199	reactions with aryl diazonium ions, 892, 893–894, 907, 919
of alcohols, 596–600, 611, 660, 751 of alkylbenzenes, 415, 435, 751	of disubstituted cycloalkanes, <i>cis</i> and <i>trans</i> , 108–114	Corey, Elias J., 557, 840
of phenols, 958	and Fischer projections, 271–272, 292–293	Corey, Robert B., 1084
Chromophore, 526	notational systems	Corticosteroids (cortisol and cortisone),
Chrysanthemic acid, 71	α and β , 980	1040, 1044
Chymotrypsin, 1071	cis and trans, 108–109	Couper, Archibald S., 3
Cicutoxin, 340	D-L, 973–978, 1007	Coupling constant (J), 503, 506, 507–508
Cimetidine, 431	erythro and threo, 278	dihedral angle dependence, 544
Cinnamaldehyde, 173	R-S, 268–271	Covalent bond, 12–14, 44
CIP. See Cahn-Ingold-Prelog	Conformation(s), 89	Cracking, in petroleum refining, 70
Cis and trans descriptors of stereochemistry,	of alkanes	Crafts, James M., 451
108–109, 172–173, 199	butane, 94–97, 118	m-Cresol, 939
s-Cis conformation, 376–377	ethane, 90–93, 117	acidity of, 944
Citral, 659, 1027	higher alkanes, 97–97, 118	¹³ C NMR spectrum, 513–514, 960–961
Citric acid, 299, 772	of 1,3-butadiene, 376–377, 391–392	o-Cresol, 950
Citronellal, 1033–1034	chiral, 281	p-Cresol
Citronellol, 580	s-cis and s-trans, 376–377, 391–392	acidity of, 944
Claisen, Ludwig, 832	of cycloalkanes, 98–116, 118–120	carboxylation, 954
Claisen condensation, 832–835, 851	cyclobutane, 107–108	infrared spectrum, 960
intramolecular (see Dieckmann reaction)	cyclobexane and derivatives, 99–107,	nitration of, 950
mixed, 836–837, 851	110–114, 118–119, 281, 510	¹ H NMR spectrum, 960–961
Claisen rearrangement, 957–958, 964	cyclopentane, 108	preparation of, 946
Claisen-Schmidt condensation, 720, 728	medium and large rings, 108	Crick, Francis H. C., 1094, 1100
Clathrate, 58	eclipsed, 90, 92, 117	Critical micelle concentration, 744
Clemmensen reduction, 456–457, 474, 662	of ethers, 621	Crown ethers, 622–624, 644
Cocaine, 869	of heterocyclic compounds, 116–117, 621	electrostatic potential map, 619, 623
Codon, 1096–1100	of hydrogen peroxide, 89	Cumene, 248, 969. See also
Coenzymes, 1088–1090. See also Vitamin	and nuclear magnetic resonance	Isopropylbenzene
acetyl coenzyme A, 1016–1017, 1032	spectroscopy, 510	Cumulated diene. See Allenes; Dienes
coenzyme B ₆ , 675	peptides and proteins, 1067–1068,	Cuprates. See Lithium diorganocuprates
coenzyme B_{12} , 568	1084–1086	Curl, Robert F., 410
coenzyme Q (see Ubiquinone)	pyranose forms of carbohydrates,	Curved arrows
heme, 1088	982–984	fishhook, 150
NAD, NAD ⁺ , NADH, NADPH (see	staggered, 90–92, 117–118	and resonance structures, 367, 371
Nicotinamide adenine dinucleotide)	Conformational analysis. See Conformation	to show electron movement, 133
Cofactors. See Coenzymes	Conformer, 90. See also Conformation	Cyanide ion
Coke, 339	Coniine, 869	basicity of, 324, 722
Columbus, Christopher, 383	Conjugate acids and bases, 134–136,	in formation of cyanohydrins, 667–668
Combinatorial synthesis, 1084	344–346, 552, 709, 742, 864–865	as nucleophile, 303, 304, 313, 323, 324,
Combustion of alkanes, 74–77, 83. See also	Conjugate addition. See also Michael reaction	327, 722–723
Heat of combustion	of bromine to 1,3-butadiene, 382	Cyanohydrins
Common names. See Nomenclature	of hydrogen bromide to 1,3-butadiene,	and carbohydrate chain extension,
Concerted reaction, 136	to α,β -unsaturated aldehydes and ketones,	1001, 1009
bimolecular elimination, 192-196,	722–725, 728–729, 846–847, 852	hydrolysis of, 753
200-201	Conjugation	naturally occurring, 668, 695
bimolecular nucleophilic substitution, 146,	in alkenylbenzenes, 419–420	preparation of, 667-668, 689, 814
306-315, 331	in allylic systems, 366–372, 379–382, 390	Cyclic AMP, 1093
Diels-Alder reaction, 382	in benzylic carbocations, 418	Cycloaddition, 382
and orbital symmetry, 388-390	in benzylic free radicals, 414	molecular orbital treatment of, 388-390
Condensation polymers, 809–810	in dienes, 372-377, 524-525 (see also	Cycloalkanes, 68-69, 98-116, 118-120
Condensation reaction, 592	Dienes, conjugated)	angle strain in, 98, 107-108
aldol, 715-720, 728	energy, 374–375	bicyclic, polycyclic, and spirocyclic,
Claisen, 832-835, 851	in α,β -unsaturated aldehydes and ketones,	114–116, 120
Claisen-Schmidt, 720, 728	720–721	conformations of, 98-116, 118-120

I-11 INDEX

Cycloalkanes—Cont.	reactions of	L-Cysteine, 1055, 1059
heats of combustion, 98 table	alkylation of benzene with, 452	electrostatic potential map, 1053
nomenclature of, 66-69	with N-bromosuccinimide, 371	disulfide formation in, 1069–1070,
sources of, 69–71	with dibromocarbene, 566	1073–1074, 1087
Cycloalkenes, 170, 180–181	epoxidation, 637	Cytidine, 1092
nomenclature of, 170	hydroxylation, 590, 637	Cytosine, 1089, 1095
stereoisomeric, 180-181, 192	with sulfuric acid, 224	
Cycloalkynes, 341, 344	trans stereoisomer, 180	
Cyclobutadiene, 422, 423, 424, 436	Cyclohexylamine, 859	Dacron, 809
Cyclobutane Cyclobutane	basicity of, 865	L-Daunosamine, 988
angle strain in, 98, 108	preparation of, 880	DCCI. See N,N'-Dicyclohexylcarbodiimide
chlorination of, 156	reductive amination by, 903	DDT (dichlorodiphenyltrichloroethane), 938
conformations of, 107–108	Cyclohexyl chloride. See also	Deamination reactions, 890, 894, 895, 907
		De Broglie, Louis, 7
heat of combustion of, 98	Chlorocyclohexane	Debye, Peter J. W., 16
Cyclobutyl chloride, 156	β-elimination of, 190	Debye unit, 16
Cyclodecane, 98, 161	Grignard reagent from, 550, 555	cis- and trans-Decalin, 115
(E)- and (Z)-Cyclodecene, 192	Cyclononyne, 341	Decane, 62
Cyclodecyl bromide, 192	1,3-Cyclooctadiene, UV-VIS spectrum, 524	mass spectrum of, 529–530
Cyclodecyl chloride, 161	Cyclooctane, 98	1-Decanol, 227–228, 660
Cycloheptatriene, 427	Cyclooctatetraene, 422–424, 436	Decarboxylation
Cycloheptatrienide anion, 429	dianion, 429	α-amino acids, 1065–1066
Cycloheptatrienyl cation, 427–428, 436	Cyclooctene	
trans-Cycloheptene, 180	addition of chlorine to, 234	β-keto acids, 762–763, 767–768, 838,
Cyclohexadienone-phenol rearrangement, 968	epoxidation of, 239	840–841, 850
Cyclohexadienyl anion	trans stereoisomer, 180	malonic acid derivatives, 760–762,
intermediate in nucleophilic aromatic	Cyclooctyne, 341	767–768, 842, 843–845, 852
substitution, 923–927, 933	Cyclopentadiene	1-Decene
Cyclohexadienyl cation	acidity of, 428	hydroboration-oxidation of, 227–228, 582
intermediate in electrophilic aromatic	Diels-Alder reactions of, 386	hydroxylation of, 590
substitution, 444-447, 449, 450,	reaction with hydrogen chloride, 379-380	Decoupling
451, 454, 458–462, 465–466, 470,	Cyclopentadienide anion, 428, 436	of alcohol protons in ¹ H NMR,
475, 477, 926	Cyclopentane, 70	509–510, 535
Cyclohexane, 68, 70, 118–119	conformations of, 108, 120	in ¹³ C NMR, 515
bond angles in, 99	heat of combustion, 98	Dehydration
conformational analysis of, 99–103, 118–119	Cyclopentanol	in aldol condensation, 717–719, 720
disubstituted derivatives, 110-114, 281	nitrate ester, 610	in preparation
monosubstituted derivatives, 104-107	preparation of, 584	of alkenes from alcohols, 182–190, 200
heat of combustion, 98	reaction with phosphorus tribromide, 147	379, 419, 591
¹ H NMR spectrum of, 510	Cyclopentanone	of cyclic anhydrides, 784
Cyclohexanol	Baeyer-Villiger oxidation of, 695	of dienes, 379, 392
infrared spectrum, 605, 606	enamine of, 674	of nitriles from amides, 813–815
preparation of, 224	enol content of, 727	Dehydrogenation
reactions of	hydrogenation of, 584	of alcohols, 661
dehydration, 182	hydrogen-deuterium exchange in,	biological
with hydrogen bromide, 138	713–714	of butane, 378
oxidation, 597	reaction with methylmagnesium	of ethane, 168, 181
Cyclohexanone	chloride, 555	of ethylbenzene, 419, 453
α chlorination of, 703	Cyclopentene	of ethylene, 340
and ethylene glycol, cyclic acetal from, 671	bromine addition to, 234	of propane, 168, 181
	halohydrins of, 236–238	of succinic acid, 182
preparation of, 597		Dehydrohalogenation. See also Elimination
reaction of	Cyclopentyl bromide, 147, 478	reactions
with ethylmagnesium bromide, 662	Cyclopentyl cyanide, 304	of alkyl halides, 190-198, 200, 419
with isobutylamine, 673	Cyclopentylmethanol 582, 591	of bromocyclodecane, 192
with methylenetriphenylphosphorane,	Cyclopropane(s), 68	of 2-bromo-2-methylbutane, 191, 197
677	angle strain and bonding in, 106–107	of 5-bromononane, 192
with morpholine, 690	cis- and trans-1,2-dimethyl-, 109–110	of <i>cis</i> - and <i>trans</i> -4- <i>tert</i> -butylcyclohexyl
with pyrrolidine, 882	1,1-dihalo, 566	bromide, 194–196
with sodium acetylide, 556	heat of combustion of, 98	of 1-chloro-1-methylcyclohexane, 200
reductive amination of, 880	preparation of, 563–565, 571	of 1-chlorooctadecane, 191
Cyclohexene	structure of, 107	
derivatives of, preparation by Diels-Alder	torsional strain in, 107	of cyclohexyl chloride, 190 of dihalides, 348–349, 359
reaction, 382, 392–393	Cyclopropanecarboxylic acid, 587	
preparation of	Cyclopropene, 180	of menthyl and neomenthyl chloride, 206
dehydration of cyclohexanol, 182	Cyclopropenyl cation, 429	in preparation
dehydrohalogenation, 190	Cyclopropyllithium, 572	of alkenes, 190–198, 200
		of alkenylbenzenes, 419

of alkynes, 348-349, 359	Diels, Otto, 382	2,3-Dihydroxybutanoic acid, stereoisomers of,
of dienes, 379	Diels-Alder reaction, 382, 392–393	276–278
Delocalization energy, 374. See also	of benzyne, 931–932	L-3,4-Dihydroxyphenylalanine, 1066
Resonance energy	orbital symmetry analysis of, 388–390	Diiodomethane, 564
Denaturation	Dienes. See also Alkadienes	Diisopropyl ether, 625
of ethanol, 581	conjugated, 365, 372–377, 390–393,	Diketones, intromolecular aldol condensation
of proteins, 1087	524–525	of, 718, 724, 728
Dendrolasin, 1046	1,2 and 1,4 addition to, 379–382, 392	1,3-Diketones
Deoxyribonucleic acid (DNA)	conformations of, 376–377, 391–392	acidity of, 710–711
and protein biosynthesis, 1096–1100	Diels-Alder reactions of, 382, 388–390,	alkylation of, 724–726, 729
purine and pyrimidine bases in, 1090-1093	392–393	enolization of, 707–708
replication of, 1095	electron delocalization in, 374-377	preparation of, 837
sequencing of, 1100–1103	electrophilic addition reactions of,	Dimer, 244
structure of, 1094–1097	379–382, 392	1,2-Dimethoxyethane, 620
2-Deoxy-D-ribose, 987, 1010, 1092	polymers, 383	Dimethylallyl pyrophosphate, 1029
Deoxy sugars, 987, 1008	preparation of, 378–379, 391	Dimethylamine, nitrosation of, 889
DEPT, 515–517, 537	resonance energy, 374	3,3-Dimethyl-2-butanol
Detergents, 745	cumulated, 373, 377–378	dehydration and rearrangement of, 187–189
Deuterium oxide, 166, 510, 713–714, 763	heats of hydrogenation, 374–375,	2,3-Dimethyl-1-butene, 186, 187–188
Dextrorotatory, 266	403–404	2,3-Dimethyl-2-butene, 186, 187–188
Diacetylene, 340	isolated, 372, 379	¹ H NMR chemical shifts, 496
Dianabol, 1041	stability of various classes, 374–377, 391	heat of hydrogenation, 211
Diastereomers, 277–288, 291	Dienophiles, 382–385, 932	3,3-Dimethyl-1-butene, 188
formation of, 284–285	Diethyl acetamidomalonate, 1062	cis- and trans-1,2-Dimethylcyclohexane,
Diastereotopic protons, 495, 507	Diethyl adipate. See Diethyl hexanedioate	110, 111–112
1,3-Diaxial repulsion, 104	Diethylamine	cis- and trans-1,3-Dimethylcyclohexane,
Diazonium salts, 890–897, 904–905	basicity, 866	110, 112
azo coupling of, 895–897, 936	infrared spectrum, 898	cis- and trans-1,4-Dimethylcyclohexane,
conversion to	Diethyl carbonate, acylation of ketones with,	110–111
arenes, 894–895, 907	836–837	cis- and trans-1,2-Dimethylcyclopropane,
aryl cyanides, 894, 907	Diethylene glycol dimethyl ether.	109–110
aryl halides, 892–894, 905–906, 919	See Diglyme	Dimethyl ether
phenols, 892, 905, 946, 947, 962	Diethyl ether, 619	bond distances and bond angles, 621
preparation of, 891	cleavage by hydrogen bromide, 629	<i>N,N</i> -Dimethylformamide, 322, 875
Diborane, 228. See also Hydroboration-	conformation of, 621	1,1-Dimethylethyl group, 66
oxidation	dipole moment of, 622	2,2-Dimethylpropane, 73
Dibromocarbene, 565–566	hydrogen bonding to water	2,2-Dimethylpropyl group, 66
1,2-Dibromocyclopropane, stereoisomers of,	electrostatic potential map, 622	Dimethyl sulfate, 596
282	peroxide formation in, 627–628	Dimethyl sulfavida as salvent
1,2-Dibromoethane, 234	physical properties of, 622 preparation of, 592	Dimethyl sulfoxide as solvent
Dibromoindigo, 920	as solvent for Grignard reagents, 550	in elimination reactions, 191, 349
Dibutyl ether, 592, 625 Dicarboxylic acids	Diethyl hexanedioate	in nucleophilic substitution reactions, 303, 322, 327, 752
acidity of, 748	Dieckmann cyclization of, 835	in Wittig reaction, 677, 680
cyclic anhydrides from, 784	Diethyl malonate	2,4-Dinitrophenylhydrazine, 674
decarboxylation, 760–762, 767–768, 842,	acidity of, 842	Diols
843–845, 852	barbiturates from, 845–846	cyclic acetals from, 670–672
nomenclature of, 738	enolate	cyclic ethers from, 593
in preparation of polyamides and	electrostatic potential map, 831	geminal, 663–667
polyesters, 809–810	enol content, 854	nomenclature of, 589
Dichlorocarbene, 565	in malonic ester synthesis, 842–845, 852	oxidative cleavage of, 602–603, 609
Dichlorocyclohexane isomers, 281	Michael addition to methyl vinyl ketone,	polyesters from, 809
Dichlorodiphenyltrichloroethane. See DDT	846–847	preparation of, 589–590
(<i>E</i>)-1,2-Dichloroethene, plane of symmetry in,	preparation of, 857	vicinal (see Vicinal diols)
264	Diethylstilbestrol (DES), 1050	Dioxane, 620
Dichloromethane, 29–30, 132, 148	Diglyme, 228, 620	Dioxin, 955
<i>N,N'</i> -Dicyclohexylcarbodiimide	Dihaloalkanes	Diphenylamine, basicity of, 867
in preparation of	alkynes from, 348-349, 359	Diphenylmethane, acidity of, 577
esters, 1080	geminal, 348–349, 359	Diphepanol, 575
peptides, 1079-1081, 1083, 1104	reaction with diethyl malonate,	Dipole-dipole attractions, 72, 130
Dieckmann reaction, 835–836, 851	844–845	in esters, 788
Dielectric constant	vicinal, 233, 348-349, 359	in ethyl fluoride, 130
and rate of nucleophilic substitution,	Dihedral angle. See Torsion angle	and hydrogen bonding, 130-133, 622
320–322, 331	1,3-Dihydroxyacetone, 1010	Dipole-induced dipole attractions, 72, 130
of various solvents, 321, 322 table	phosphate, 1003	Dipole moment, 15–16, 46

I-13 INDEX

6 1 1 1 120	1F' 1 ' ' 270 200	F1
of alcohols, 129 of aldehydes and ketones, 657, 721	and Fischer projections, 278, 280	Electrostatic potential, 27
•	Ectocarpene, 297–298	Electrostatic potential map
of alkanes, 72 of alkyl halides, 129	Edman, Pehr, 1074	acetamide, 777 acetate ion, 741, 742
of carbon tetrachloride, 30	Edman degradation, 1074–1076 Edman sequenator, 1076	acetic acid, 739, 742
of carbon tetrachioride, 30 of carboxylic acids, 739	Eicosanoic acid. See Icosanoic acid	acetic anhydride, 777
of chlorobenzene, 918	Eigen, Manfred, 137	acetone enol, 701
of chlorocyclohexane, 918	Elaidic acid, 351	acetonic choi, 701 acetonitrile, 777
of chloroethene, 176	Elastomer, 383	acetyl chloride, 774, 777
of chloromethane, 129	Electromagnetic radiation, 488–489	acetylene, 339, 342
of trans-1-chloropropene, 176	Electron affinity, 11	amino acids, 1053
of 1,2-dichloroethane, 125	Electron configuration	aniline, 862
of dichloromethane, 30	and orbital hybridization, 35, 38, 41	benzene, 398
of diethyl ether, 622	of selected atoms, 10	benzyne, 930
of esters, 788	Electron delocalization	bromochlorofluoromethane, 159
of ethanol, 130	in allylic carbocations, 366–369, 379–382	1,3-butadiene, 365
of ethylene, 176	in allylic radicals, 370	tert-butyl cation, 126
of ethylene oxide, 622	in benzylic carbocations, 418	calicene, 441
of fluoroethane, 130	in benzylic radicals, 414	chloromethane, 129
of four-carbon alkenes, 176	in carbocations, 142	1-chloro-4-nitrobenzene, 917
of methanol, 129	in carboxylate ions, 740-741, 779	18-crown-6, 619
and molecular geometry, 30-31	in carboxylic acid derivatives, 777–780	and K ⁺ complex, 623
of propanal, 657	in conjugated dienes, 374–377	diethyl ether-water hydrogen bonding, 622
of propane, 130	in enolates, 708-711, 832, 839, 842, 850	diethyl malonate enolate, 831
of propene, 176	and resonance, 23–26, 45	dodecanoic acid, 1015
of tetrahydrofuran, 622	in α , β -unsaturated aldehydes and ketones,	ethane, 53
of water, 129	720–721	ethoxide ion, 741
Dipropyl ether	Electron-dot structures. See Lewis structural	ethyl acetate, 777
¹ H NMR spectrum, 642	formulas.	ethylene, 167, 214, 342, 658
infrared spectrum, 642	Electronegativity, 15	ethylenebromonium ion, 208
preparation of, 644	and chemical shift, 494–495	ethylene glycol, 579
Directing effects of substituents. See Elec-	and polar covalent bonds, 15–16	ethyl thioacetate, 777
trophilic aromatic substitution	relation to s character at carbon, 343	ferrocene, 546
Disaccharide, 973, 991–993, 1008. See also	of selected elements, 15 table, 547 table	formaldehyde, 654
Cellobiose; Lactose; Maltose;	Electronic effects, 178	formic acid, 736
Sucrose	18-Electron rule, 566	glucose, 972
Disparlure, 239	Electrons	hydrogen bonding
Distortionless enhancement of polarization	excitation of, 524–526	in ethanol, 131
transfer. See DEPT	$n \to \pi^*, 526$	in phenol, 942
Disulfides	$\pi \to \pi^*, 524-525$	between phenol and water, 942
carboxypeptidase A, 1087	nuclear shielding by, 493, 495	hydrogen chloride, 214
α-keratin, 1085	quantum numbers, 8	methane, 27
lipoic acid, 117, 605	valence, 10	methanol, 129
oxytocin, 1069–1070	wave properties of, 7	methylamine, 858
preparation of, 605	Electrophile, 142–143. See also Addition	methyl cation, 143
Diterpenes, 1026 DMF. See N,N-Dimethylformamide	reactions; Electrophilic aromatic substitution	methyl flyorida, 548
DNA. See Deoxyribonucleic acid	Electrophilic addition. See Addition reactions	methyl fluoride, 548
DNA sequenator, 1102	Electrophilic addition. See Addition reactions Electrophilic aromatic substitution, 443–486	methyllithium, 548
Dodecane, 62	of arylamines, 886–888	nitronium ion, 443 phenol, 939, 942
photochemical chlorination of, 166	azo coupling, 895–897, 951	propanoyl cation, 454
1-Dodecene, epoxidation of, 239	of benzene, 444–457	$S_{N}2$ transition state, 302
L-Dopa. <i>See</i> L-3,4-Dihydroxylphenylalanine	mechanism, 444–447	tetramethylsilane, 487
Dopamine, 1066	of Friedel-Crafts acylation, 453–454	urea, 1
Double bond, 14, 38–40, 170–172	of Friedel-Crafts alkylation, 451	water, 942
Double helix, 1094–1096. See also	of halogenation, 448–451	Elements of unsaturation, 533. See Index of
Deoxyribonucleic acid	of nitration, 447–448	hydrogen deficiency
Drugs. See also AIDS; Antibiotics	of sulfonation, 448–449	Elimination-addition mechanism, 927–931,
chiral, 273	in phenols, 463, 948–950	933
generic names of, 63	substituent effects in, 457–474, 477, 479–480	Elimination reactions, 167–206
Dyes, 896–897	table, 464	α, 566
	summary tables, 446, 478, 950	β, 181–198
E(4 1 2 1 0) 150 155 100	Electrophoresis	anti, 194-196, 200
E (stereochemical prefix), 173–175, 199	of amino acids, 1060–1061	competition with substitution, 323-325,
E1 mechanism, 196–198	and nucleic acid sequencing, 1101	332
E2 mechanism, 190–196, 201, 323–325	Electropositive, 15	dehydration of alcohols, 181-193, 200,
Eclipsed conformations, 90–93, 97, 117		

419	acylation of, 832-838, 851	632, 635
dehydrohalogenation of alkyl halides,	alkylation of, 724, 725–726, 729, 839–845,	with lithium aluminum hydride, 635
190–198, 200, 419	850, 852	with nucleophilic reagents, 632–637,
dehydrohalogenation of geminal and vicinal	of esters, 831–857	645-646
dihalides, 348–349, 359	in Claisen condensation, 832-835, 851	1,2-Epoxycyclohexane
dehydrogenation of alkanes, 168, 181,	in Dieckmann reaction, 835, 851	hydrolysis of, 637
419	and hydrogen-deuterium exchange, 713–715	preparation of, 631
E1 mechanism, 196-198	intermediate	reactions of
E2 mechanism, 192-196, 201, 323-325	in aldol condensation, 715-720, 728	with hydrogen bromide, 637
Hofmann elimination, 883-885, 904	in conjugate addition to α,β -unsaturated	with sodium azide, 877
in preparation	carbonyl compounds, 722, 728–729	1,2-Epoxycyclopentane reaction with sodium
of alkenes, 168, 181-198, 200	in haloform reaction, 711-712, 727	ethoxide, 633
of alkenylbenzenes, 419	Enolization, 705-708, 727. See also Enol	1,2-Epoxypropane
of alkynes, 348–349, 359	mechanism of	preparation of, 632
of dienes, 378–379, 391	acid catalyzed, 706	reaction with phenylmagnesium bromide,
Zaitsev rule, 184, 191, 199, 200	base catalyzed, 708	635
Emulsin, 992–993	Entgegen (E), 173–175, 199	stereogenic center in, 263, 274
Enamines, preparation of, 674–675, 677, 690	Enthalpy, 74, 106–107, 155	Equatorial bonds in cyclohexane, 100–103,
Enantiomeric excess, 266	Entropy, 106	119
Enantiomers, 259–260, 291	and ionization of carboxylic acids, 747	Equilibrium constants
of bromochlorofluoromethane, 260, 271	Envelope conformation, 108, 120	for enolization, 706, 727
of 2-butanol, 267–269	Environmentally benign synthesis, 598–599	for hydration of aldehydes and ketones, 663
configurational notation	Enzymes	table
D-L, 973–974	aconitase, 772	relation to ΔG° , 106
R-S, 267–271	alcohol dehydrogenase, 600	Ergosterol, 1039
conformational, 281	aldolase, 1003	Ernst, Richard R., 492
and Fischer projections, 271–272,	carbonic anhydrase, 749	Erythro, stereochemical prefix, 278
292, 974	carboxypeptidases, 1071, 1086–1088	Erythromycin, 758
formation of, 274–276	chymotrypsin, 1071	D-Erythrose, 975
optical rotations, 266–267	emulsin, 992–993	furanose forms, 978–981
physical properties of, 272–274 Energies lective synthesis, 276, 1063	fatty acid synthetase, 1019	L-Erythrose, 975 Essential
Enantioselective synthesis, 276, 1063 Enantiotopic protons, 500	fumarase, 276	
End group analysis, 1071–1076	haloalkane dehalogenase, 314 lactase, 993	amino acids, 1054–1055 fatty acids, 1024
Endorphins, 1068–1069	lactic acid dehydrogenase, 602, 681	oils, 1025
Endothermic reaction, 11	maltase, 992–993	Esterification. See also Esters
and relation to bond energies, 155	monooxygenases, 638, 684	of amino acids, 1063, 1079
Enediols, as intermediates in reactions of	pepsin, 1071	Fischer, 593–594, 610, 754–757, 767, 789
carbohydrates, 999, 1002, 1010	phosphoglucose isomerase, 1002	of glycerol, 1022–1023
Enediyne antibiotics, 344	restriction enzymes, 1101	of phenols, 949–952, 963
Energy, units of, 11	reverse transcriptase, 1098	Esters
Energy of activation, 93	RNA polymerase, 1096	enolates of, 831-857
and carbocation stability, 143–146, 317	succinate dehydrogenase, 182	infrared spectra, 519 table, 817
and free-radical stability, 157-158	triose phosphate isomerase, 1004	of inorganic acids, 595–596, 610
for pyramidal inversion, 290	trypsin, 1071	lactones, 758–759, 788
in reaction of alcohols with hydrogen	Epichlorohydrin, 85	naturally occurring, 787-788
halides, 143	Epimers, 1002	nomenclature of, 775–776
for rotation about double bond, 172–173	Epinephrine, 640, 869, 1066. See also	nuclear magnetic resonance spectra, 817
and single-bond rotation, 93, 376-377	Adrenaline	physical properties, 788, 790
and temperature, 93–94	Epoxidation	preparation by Baeyer-Villiger oxidation,
Enkephalins, 1068–1069	of alkenes, 238–240, 250, 630, 645	683–684, 691, 789
Enol	biological	preparation from alcohols
of acetyl coenzyme A, 1016	of arenes, 948, 1064	with acyl chlorides, 594, 595, 610, 781,
content	of squalene, 638, 1036	789, 820
of aldehydes and ketones, 705–708, 727	of (E) - and (Z) -2-butene, 285	with carboxylic acid anhydrides, 595,
of 1,3-diketones, 707–708	propene, 274	610, 785–787, 789, 820
as intermediate	Epoxides	by Fischer esterification, 593–594, 595,
in conjugate addition to α,β-unsaturated	biosynthesis of, 637–638, 1064	610, 754–757, 767, 789
aldehydes and ketones, 722	nomenclature of, 238–239, 620	reactions, 790–800
α halogenation of aldehydes and ketones,	preparation of, 238–240, 250, 274,	with ammonia and amines, 791, 799–800
703–707, 727 in hydration of alkynes, 355–356, 361	630–632, 645 reactions of, 632–637	Claisen condensation, 832–835,
in racemization of (R)-sec-butyl phenyl	with ammonia, 634	836–837, 851 Dieckmann reaction, 835–836, 851
ketone, 715	in biological processes, 637–638	Esters—Cont.
Enolate ions, 708–711, 727	with Grignard reagents, 587–588, 608,	with Grignard reagents, 560–561, 572,
		0.1.5

I-15 INDEX

583, 790	electrostatic potential map, 777	dipole moment, 622
hydrolysis of, acid catalyzed, 791–794,	enolate of, 833–834, 849	industrial preparation of, 248, 598
820	¹ H NMR spectrum, 817	reactions with nucleophiles, 587–588, 608,
hydrolysis of, base promoted, 791,	reaction with pentylmagnesium bromide,	632–633, 635–636
794–799, 820	583	
		structure of, 620, 621
reduction of, 587, 790	saponification, 796	Ethyl fluoroacetate
resonance in, 778	Ethyl acetoacetate	reaction
thioesters, 800	in acetoacetic ester synthesis, 839–841,	with ammonia, 791
waxes, 1024	847, 850	with cyclohexylamine, 799
Estradiol, 1040	enolate addition to α,β -unsaturated ketones,	Ethyl group, 65
Estrogens, 1040	847	spin-spin splitting in, 503–504
Ethane, 56–57	preparation of, 832–835	Ethyl hydrogen sulfate, 223
acidity of, 343, 345, 552	Ethyl alcohol. See Ethanol	Ethylmagnesium bromide, reaction of
bond angles and bond distances in, 57, 343	Ethylamine, basicity of, 866	with acetophenone, 559
bond dissociation energies in, 343	Ethylbenzene	with alkynes, 556
bonding in, 37, 46	benzylic bromination of, 416	with cyclohexanone, 662
chlorination of, 54, 156	dehydrogenation of, 419, 453	Ethyl 3-oxobutanoate. <i>See</i> Ethyl acetoacetate
	• •	
conformations of, 90–93, 117–118	Ethyl benzoate	Ethyloxonium ion as intermediate
dehydrogenation of, 168	acylation of ketone enolates by, 837–838	in dehydration of ethyl alcohol, 187
electrostatic potential map, 53	hydrolysis of, 794, 799	in formation of diethyl ether, 592
¹ H chemical shift, 495	reaction with phenylmagnesium bromide,	Ethyl pentanoate, Claisen condensation of, 838
in natural gas, 56	572	Ethyl propanoate
1,2-Ethanediol. See Ethylene glycol	reduction of, 587, 790	Claisen condensation of, 835
Ethanoic acid. See Acetic acid	saponification of, 799	saponification, 796
Ethanol, 128, 130, 580-581	Ethyl bromide, ¹ H NMR spectrum, 503–504	Ethyl thioacetate
acidity of, 135, 740-741	Ethyl butanoate, Claisen condensation of, 851	electrostatic potential map, 777
and benzaldehyde, acetal from, 669	Ethyl chloride, 48, 156. <i>See also</i> Chloroethane	Ethyl <i>p</i> -toluenesulfonate, 326
biological oxidation of, 600–602	Ethyl cinnamate, 788	Ethyne. See Acetylene
¹³ C chemical shifts, 606	•	Ethynyl group, 340
	Ethyl cyanoacetate, 857	
conversion to diethyl ether, 592	Ethylene, 168. See also Ethene	European bark beetle, 615
dehydration of, 182	acidity of, 343, 345, 552	Exothermic reaction, 11, 74
dipole moment of, 130, 863	biosynthesis of, 168	and relation to bond energies, 155
by fermentation, 580–581	bond dissociation energies in, 343	
hydrogen bonding in, 130–131	bonding in, 14, 38–40, 47, 54, 170–171,	E
industrial preparation of, 223, 581	198	Faraday, Michael, 383, 399
physical properties of, 130, 132–133, 580	discovery, 168	Farnesene, 167
reduction of aryl diazonium salts by, 894,	electrostatic potential map, 167, 214, 342,	Farnesol, 1026, 1027
907	658	pyrophosphate, 1029–1030
Ethene, 38, 167. See also Ethylene	¹ H chemical shift, 495	Fats, 788, 1017–1019
Ethers, 619–653, 954–958. <i>See also</i> Epoxides	heat of hydrogenation, 209, 211	Fatty acids, 788, 795, 1017–1019
as anesthetics, 647, 649	as industrial chemical, 168, 248, 453, 598	biosynthesis of, 1060–1063
		essential, 1025
crown ethers, 622–624, 644	π molecular orbitals of, 386–387	esters of, 788, 1022-1024
¹ H chemical shifts, 641, 647	natural occurrence, 168	fats as sources of, 788, 795, 1017
infrared spectra, 641	preparation of	Fehling's solution, 999
mass spectra, 643	dehydration of ethyl alcohol, 182	Fermentation, 580–581
nomenclature of, 619–620	dehydrogenation of ethane, 168, 181	Ferrocene, 567
physical properties of, 622	reactions of	
polyethers, 622–624	alkylation of benzene, 453	electrostatic potential map, 546
preparation of	with bromine, 234	Fibroin, 1085
from alcohols, 590–593, 610, 625–626,	dehydrogenation, 340	Fibrous proteins, 1086
644	hydration of, 226	Field effect, 747
from carbohydrates, 1004, 1010	hydrogenation of, 208	Fieser, Louis F., 978
Williamson ether synthesis, 626–627,	oxidation of, 598	Fieser, Mary, 978
644, 954, 964	polymerization of, 245–246, 247,	Fingerprint region of infrared spectrum, 519
		First point of difference rule, IUPAC
reactions of	567–570, 573	nomenclature, 68, 408, 859
Claisen rearrangement of allyl aryl	with sulfuric acid, 224	Fischer, Emil, 271
ethers, 957–958, 964	structure of, 35, 171, 343	determination of glucose structure by,
cleavage by hydrogen halides, 628–630,	Ethylenebromonium ion, 235–236	
645, 956–957, 964	electrostatic potential map of, 208	996, 1014
oxidation of, 627	Ethylene dibromide. See 1,2-Dibromoethane	Fischer esterification. See Esterification; Esters
structure and bonding in, 621	Ethylene glycol, 248, 589, 635–636	Fischer projection formulas, 271–272, 278,
Ethoxide ion	electrostatic potential map, 579	280, 292, 595
electrostatic potential map, 741	polyesters, 809	α-amino acids, 1056, 1103
Ethyl acetate	Ethylene oxide, 116, 238, 248, 620. <i>See also</i>	carbohydrates, 973–974, 1007
Claisen condensation of, 832–835	Oxirane	of meso stereoisomer, 280
		1 1 200

tartaric acids, 286

Flagpole hydrogens, 99–100	of furan, 476	Gilbert, Walter, 1102
Fluorinated hydrocarbons,	mechanism of, 454	Globular proteins, 1086
boiling points, 130, 132	of naphthalene, 474–475	α-D-Glucopyranose, 982, 985. See also D-Glucose
Fluorine electron-dot structure of F ₂ , 13	of phenol, 951 scope and limitations, 479 table	pentaacetate, 1004
electronegativity, 15	of <i>p</i> -xylene, 471	β-D-Glucopyranose, 982, 985, 1007. See also
magnetic resonance spectroscopy of ¹⁹ F,	Friedel-Crafts alkylation	D-Glucose
544	with alcohols, 950	D-Glucose, 580, 973, 976. See also
reaction with alkanes, 148, 155	with alkenes, 453	α-D-Glucopyranose; β-D-
Fluorobenzene	with alkyl halides, 446, 450-451, 478	Glucopyranose
physical properties, 941	of benzene, 450–453, 478	conversion to D-fructose, 1002
preparation of, 919	of o-cresol, 950	electrostatic potential map, 972
Fluorocyclohexane, 105, 107	scope and limitations, 479 table	epimerization of, 1002
1-Fluoro-2,4-dinitrobenzene, 923, 1071–1072	Fries rearrangement, 952	Fischer determination of structure, 996,
Fluoroethane, attractive forces in, 130	Frontier orbitals, 386	1014
Fluoromethane. See Methyl fluoride	D-Fructose, 973, 986, 1002	hydrogenation of, 612
<i>p</i> -Fluoronitrobenzene, nucleophilic aromatic	6-phosphate, 1003	metabolism, 1015
substitution in, 923–925, 956	Fukui, Kenichi, 390	methyl glycosides, 990–991
m-Fluorophenol, bromination, 948	Fullerenes, 410–411 Fumarase, 276	mutarotation of, 985–986 natural occurrence, 976
<i>p</i> -Fluorophenol, <i>O</i> -acylation, 949 Formal charge, 15–19, 41	Fumaric acid, 182, 276	oxidation of, 1000
Formaldehyde, 241, 654	Functional class nomenclature	6-phosphate, 1003
electrostatic potential map, 654, 658	of alcohols, 128	pyranose form, 981–983
hydration of, 663–667	of alkyl halides, 127	L-Glucose, 1001
industrial preparation of, 580, 661	Functional groups, 55–56, 80, 126	D-Glucuronic acid, 1000
in mixed aldol addition, 719	and infrared spectroscopy, 487, 518, 536	L-Glutamic acid, 1055, 1059, 1063-1065
reaction with Grignard reagents, 555, 557,	tables of, inside front cover, 55, 56	electrostatic potential map, 1053
572	transformation of, by nucleophilic	L-Glutamine, 1055, 1059
structure and bonding, 14, 28–29, 657	substitution, 303–305	electrostatic potential map, 1053
Formic acid, 164, 737	Furan, 430	Glycals, 991
natural occurrence, 750	bonding in, 432	D-Glyceraldehyde
structure and bonding, 738–739	electrophilic aromatic substitution in, 476	Fischer projection formula, 974
Fourier-transform spectroscopy	Furanose forms of carbohydrates, 978–981	3-phosphate, 1003
infrared (FT-IR), 519	Furfural, 430, 682, 751	L-Glyceraldehyde, 974 Glycerol. See also Phosphoglycerides
nuclear magnetic resonance (FT-NMR), 492, 515		esters, 788, 795, 1017–1018, 1022–1023,
Fragmentation in mass spectrometry, 529–530	G (symbol for free energy), 106	1043
Fragment condensation in peptide synthesis,	GABA. See γ-Aminobutyric acid	Glycine, 1054, 1056, 1059
1080	Gabriel, Siegmund, 875	acetylation, 1063
Free energy, relation to equilibrium constant,	Gabriel synthesis, 875–876, 902	acid-base properties, 1057–1061
106–107, 740	D-Galactal, 991	electrostatic potential map, 1053
Free radical, 149–159, 162–163	D-Galactitol, 998, 999	ethyl ester, 1079, 1080
allylic, 365, 370–372, 390–391	D-Galactose, 977 natural occurrence, 976	Glycogen, 995
benzylic, 414	pyranose form, 983–984	Glycolysis, 1002–1004, 1093
bonding in, 149, 162	reduction of, 998	Glycoproteins, 995
chain reactions of, 153–159, 162–163	Gas chromatography (GC), 530–531	Glycosides, 988–991, 1008. See also
as intermediates in	Gasoline, 70	Disaccharide; Polysaccharide
addition of hydrogen bromide to alkenes, 220–223, 251	Gauche conformation, 92, 117	Goodyear, Charles, 383 Gossypol, 947
allylic halogenation, 370–372, 391	of butane, 94, 118	Grain alcohol, 128. <i>See also</i> Ethanol
benzylic halogenation, 415	Gel electrophoresis. See Electrophoresis	Graphite, 410
halogenation of alkanes, 148–159,	Geminal coupling, 507	Grignard, Victor, 550
162–163	Geminal dihalides	Grignard reagents
polymerization of alkenes, 245-246	by hydrogen halide addition to alkynes,	acetylenic, 553, 556-557
stabilization by alkyl groups, 149-150, 162	354, 361	basicity of, 551-553, 570
Freons, 48	in preparation of alkynes, 348–349, 359 Geminal diols. <i>See</i> Diols	preparation of, 550–551, 571
Friedel, Charles, 451	Generic names of drugs, 63	reactions of
Friedel-Crafts acylation	Genetic code, 1100	with aldehydes, 555, 572, 661, 662
with acyl chlorides, 446, 453–454, 780, 951	Geneva rules, 63	carboxylation, 750–752, 766
of anisole, 478, 660	Genome, 1100	with epoxides, 587–588, 608, 632, 635
of benzene, 453–457, 473–474	Geometric isomers, 109, 202. See	with esters, 560–561, 572, 583, 790 with formaldehyde, 555, 557, 572, 582
of bromobenzene, 473, 921 with carboxylic acid anhydrides, 455, 784,	also Stereoisomers	Grignard reagents— <i>Cont.</i>
921	Geraniol, 205, 1030	with ketones, 555, 559, 572, 662
of 2-ethylacetanilide, 888	pyrophosphate, 1029–1030	with nitriles, 816–817, 822
,, 000	Geranylgeraniol, 1030	,,,,

I-17 INDEX

with α,β -unsaturated aldehydes and	alkenes, 209–212	HOMO
ketones, 722	alkynes, 350–351	Histamine, 1066
Griseofulvin, 920	allene, 375	L-Histidine, 1055, 1059
Guaiacol, 956	benzene, 404	decarboxylation of, 1066 electrostatic potential map, 1053
Guanine, 1091, 1094–1100	butene isomers, 209–211 1,3-cyclohexadiene, 404	Hodgkin, Dorothy Crowfoot, 568
Guanosine, 1092	(Z)-1,3,5-hexatriene, 404	Hofmann, August W., 399, 807, 884
D-Gulose, 977 Gum benzoin, 399	Heat of reaction, 77, 155	Hofmann elimination, 883–885, 904
	α-Helix, 1084–1086	Hofmann rearrangement, 807–813, 822
Gutta percha, 383 Gutte, Bernd, 1083–1084	Hell-Volhard-Zelinsky reaction, 759–760, 767	Hofmann rule, 884
Gutte, Berlid, 1005 1004	Heme, 1088	HOMO (highest occupied molecular orbital),
	Hemiacetal, 669	386
h (symbol for Planck's constant), 488	cyclic, of carbohydrates, 978–984	Homologous series, 59, 75
H (symbol for enthalpy), 74	Hemiketal. See Hemiacetal	HOMO-LUMO interactions in pericyclic
ΔH°	Hemoglobin, 1089–1090	reactions
and bond dissociation energy, 155	Henderson-Hasselbalch equation, 743, 865	cycloaddition, 388–390
and heats of reaction, 74	Heptanal	HOMO-LUMO transitions in ultraviolet-
relation to free energy, 106–107 Half-chair conformation, 103	cyclic acetal of, 670	visible spectroscopy, 524–525
Halides. See Acyl chlorides; Alkenyl halides;	oxime, 674	Homolytic bond cleavage, 150
Alkyl halides; Aryl halides	preparation of, 597	Hückel, Erich, 423
α-Halo aldehydes, preparation of, 703	in reductive amination, 880	Hückel's rule, 423–429, 432–433, 436
α -Halo carboxylic acids	Heptane, 62 photochemical chlorination of, 166	Huffman, Donald, 410 Hughes, Edward D., 306, 315, 336
nucleophilic substitution in, 760	1-Heptanol	Hund's rule, 10
preparation of, 759–760, 767	oxidation of, 597	Hybrid orbitals. See Orbital hybridization
reaction with ammonia, 760, 874	reaction with hydrogen bromide, 138	Hydration
Halogen addition. See also Bromine; Chlorine	2-Heptanone, 363, 840	of aldehydes and ketones, equilibria in,
to alkenes, 233-236, 250, 284-285	3-Heptanone, ¹³ C NMR spectrum, 687	663–667, 689
to alkynes, 356–357, 361	Heroin, 869	of alkenes
to conjugated dienes, 382	Hertz, Heinrich R., 488	acid-catalyzed, 225-227, 249, 581
Halogenation. See also Bromination;	Heterocyclic compounds. See also Furan;	hydroboration-oxidation, 227-233, 250
Chlorination	Purine; Pyridine; Pyrimidine;	582
aldehydes and ketones, 703–705,	Pyrrole	of alkynes, 355–356, 361, 660
713, 727 carboxylic acids, 759–760, 767	aliphatic, 116–117, 620	enzyme-catalyzed, of fumaric acid, 276
electrophilic aromatic substitution, 446,	aromatic, 430–433, 436–437, 1090–1091	Hydrazine
448–450, 466, 468–469, 471–474,	electrophilic aromatic substitution in,	cleavage of peptides, 1107
478, 919	475–476 nucleophilic aromatic substitution in,	reaction with aldehydes and ketones, 674
free radical	927	with N-alkylphthalimides, 876
of alkanes, 54, 126, 148-159, 162-163	basicity of heterocyclic amines, 868	in Wolff-Kishner reduction, 456, 662
allylic, 370–372, 392	Heterogeneous reaction, 209	Hydrazones, 674
benzylic, 414–416	Heterolytic bond cleavage, 150, 302–303	Hydride shift
Halohydrins	Hexachlorophene, 51	alcohol dehydration, 189–190, 201
conversion to epoxides, 630-632, 645	Hexafluoroacetone, 664	cholesterol biosynthesis, 1036
from epoxides, 637	Hexafluorobenzene, 926, 966	electrophilic addition to alkenes, 219-220
preparation of, from alkenes, 236–238, 250	Hexafluoroethane, 132	Friedel-Crafts alkylation, 452, 479
α-Halo ketones, preparation of, 703, 727	Hexane, 62	in reaction of alcohols with hydrogen
Halonium ion, 235–238, 250	conformation of, 97	halides, 330
Halothane, 48	infrared spectrum, 519, 520	in S _N 1 reactions, 320
Hammond, George S., 145 Hammond's postulate, 145	n-Hexane, 59, 62. See also Hexane	Hydroboration-oxidation, 227–233, 250, 582
Hassel, Odd, 99	Z-1,3,5-Hexatriene	Hydroformylation, 661, 732
Haworth, Sir Norman, 980	heat of hydrogenation of, 404	Hydrogen. See also Hydrogenation; Nuclear
Haworth formulas, 980	1-Hexene	magnetic resonance spectroscopy
Heat of combustion, 74	addition of bromine, 250 heat of hydrogenation, 211	covalent bonding in, 12 formation of, 6
aldehydes and ketones, 658	infrared spectrum, 519, 521	molecular orbitals, 34–35
alkanes, 74–77	cis-3-Hexene, reaction of, with hydrogen	nuclear spin states, 490–491
alkenes, 176–178	bromide, 214	Hydrogenation. See also Heat of
cycloalkanes, 98 table	Hexylmagnesium bromide, reaction of	hydrogenation; Hydrogenolysis of
dimethylcyclohexanes, 110 table	with acetaldehyde, 555	benzyl
cis- and trans-1,2-dimethylcyclopropane,	with ethylene oxide, 588	of aldehydes and ketones, 583-584, 608
109	1-Hexyne, 556	of alkadienes, 374–375
Heat of formation, 77	1-Hexynylmagnesium bromide, 556–557	of alkenes, 208–213, 249
Heat of hydrogenation, 209	High-density lipoprotein, 1038	of alkenylbenzenes, 419–420, 435
alkadienes, 374–375	Highest occupied molecular orbital. See	of alkyl azides, 877

of alkynes, 350–351, 360	in carboxylic acids, 763	Hydroxylation of alkenes
of benzene, 403–404	in cyclopentanone, 714	anti, 637
of carbohydrates, 996, 1009	Hydrogen fluoride, 14, 15	syn, 590
of carbon monoxide, 580	acidity of, 135	Hyperconjugation, 142
catalysts for, 208-209, 350-351	addition to alkynes, 354	Hypophosphorous acid, 894, 907
of esters, 587	Hydrogen halides. See also Hydrogen	Hz (symbol for Hertz), unit of frequency, 488
of imines, 879–880	bromide; Hydrogen chloride;	
of ketones, 584, 608	Hydrogen fluoride; Hydrogen iodide	
mechanism, 210	acidity of, 135	Ibuprofen, 85, 273, 768
of nitriles, 877	addition of	Icosane, 62
of nitroarenes, 878	to alkenes, 213–223, 249	Icosanoic acid, 1018
	to alkenylbenzenes, 420–421, 435	D-Idose, 977
stereochemistry of, 212–213, 285	•	Iijima, Sumio, 411
Hydrogen bonding, 130	to alkynes, 352–354, 361	Imidazole, 431, 868
in alcohols, 130–133, 160	to conjugated dienes, 379–382, 392	Imides, 804
in amines, 863–864	reactions of	Imines
in carboxylic acids, 739	with alcohols, 137–140, 143–146,	in addition of Grignard reagents to
between ethers and water, 622	160–162, 329–330, 332, 591	nitriles, 816
intramolecular	with epoxides, 635, 637	in biological chemistry, 675–676, 1065
in enol of 2,4-pentanedione, 708	with ethers, 628–630, 645, 956–957, 964	as intermediates in reductive amination,
in o-nitrophenol, 942	Hydrogen iodide	879–880
in peroxyacetic acid, 240	acidity of, 135	
in salicylate ion, 953	cleavage of ethers, 628, 964	preparation of, 672–673, 689
in nucleic acid bases, 1094-1096	reaction with alcohols, 137	stereoisomers, 695
in peptides and proteins, 1084-1086	Hydrogenolysis, of benzyl esters, 1078–1079	Iminium ion, 880
in phenols, 941–942	Hydrogen peroxide	Imino acid, 815–816
and solvent effects on rate of nucleophilic	conformations of, 89	Indene, 420
substitution, 322	oxidation of dialkyl sulfides by, 639	Index of hydrogen deficiency, 532–533
Hydrogen bromide	oxidation of organoboranes by, 228,	Indigo, 4, 98, 859
acidity of, 135–137	230–232	Indole, 430–431
electrophilic addition	Hydrogen sulfide	Induced dipole-induced dipole forces,
to alkenes, 213–216	acidity of, 324	72–74, 76, 130. <i>See also</i> van der
to alkynes, 353, 361	anion of	Waals forces
to conjugated dienes, 379–382, 392	basicity of, 324	Inductive effect, 141
to styrene, 435	as a nucleophile, 303, 304, 313, 324	and acidity of carboxylic acids, 740, 745–748
free-radical addition	boiling point, 604	in acyl chlorides, 778
to alkenes, 220–223, 251, 421	Hydrolysis	of alkyl groups
to alkynes, 354	of acetals, 671, 672	in aldehydes and ketones, 658, 664
reaction of	of acyl chlorides, 781, 782	in alkenes, 176–178, 199
with alcohols, 137–138, 146, 161,	of alkyl halides, 312, 315, 582	in alkynes, 350
329–330, 591	of alkyl hydrogen sulfates, 224	in carbocations, 141–143, 162, 317
with epoxides, 635, 637	of amides, 804–807, 808, 887	of trifluoromethyl group, 461, 664
with ethers, 628–630, 645, 956	of α -bromo carboxylic acids, 760	Industrial preparation of
Hydrogen carbonate ion. See Bicarbonate	of 2-bromooctane, stereochemistry of,	of acetaldehyde, 598
Hydrogen chloride	307–308, 319	of acetic acid, 750
acidity of, 135	of <i>tert</i> -butyl bromide, 315–316	of acetic anhydride, 783
addition of	of carboxylic acid anhydrides, 785	of acetone, 661, 947, 969
to alkenes, 213, 216, 219–220, 249	of carboxylic acid derivatives, relative rate,	of acetylene, 340
to alkynes, 354	780 table	of aldehydes, 661
to conjugated dienes, 379–380, 392	of cyanohydrins, 753	of benzene, 399
electrostatic potential map of, 214	of epoxides, 635–637	of 1,3-butadiene, 378
reaction with alcohols, 137–140, 143–146,	of esters, 791–799, 820	of chloromethanes, 148
161, 330	of nitriles, 752–753, 766, 815–816	of 1,2-epoxypropane, 632
Hydrogen cyanide	of peptides and proteins, 1070–1071	of ethanol, 223
acid-dissociation constant, 134, 135, 324,	Hydronium ion, 134, 135. See also	of ethylene, 168, 181
722	Oxonium ion	of ethylene oxide, 248, 598
addition to	Hydrophilic, 744	of formaldehyde, 580, 661
aldehydes and ketones, 667–668, 689,	Hydrophobic effect, 74	of isopropyl alcohol, 224
	Hydroquinone, 940, 958	of methanol, 579–580
814	Hydroxide ion	of phenol, 920, 947, 969
α,β -unsaturated aldehydes and ketones,		of propene, 168, 181
722	as base, 135, 191, 345, 604, 709, 742 as nucleophile, 306–315, 665, 712,	of styrene, 419, 453
geometry of, 28		of terephthalic acid, 750
in Kiliani-Fischer synthesis, 1001, 1009	794–799, 808	of urea, 802–803
Lewis structure, 14	o-Hydroxybenzoic acid, 737. See also	Infrared spectra. See also Infrared
Hydrogen-deuterium exchange	Salicylic acid	spectroscopy
in alcohols, 166, 510	Hydroxylamine, 674	benzyl alcohol, 522, 523

I-19 INDEX

1t1 COF	I1	
butanal, 685	Isobutyl chloride, 158, 452	
butylamine, 898	Isobutylene, 167. See also 2-Methylpropene	J (symbol for coupling constant), 503
tert-butylbenzene, 520–521	Isobutyl group, 66. See also 2-Methylpropyl	Joule (SI unit of energy), 11
<i>p</i> -cresol, 960	group	
cyclohexanol, 605–606	Isobutyl radical, 158	<i>K</i> (symbol for equilibrium constant)
diethylamine, 898	Isocitric acid, 772	
dipropyl ether, 642	Isocyanates, as intermediates in Hofmann	relation to ΔG° , 106–107
hexane, 520	rearrangement, 812–813	Karplus, Martin, 544
2-hexanol, 520, 522	Isoelectric point, 1058–1059	Kazan, University of, 3
2-hexanone, 522–523	Isoelectronic, 47–48	Kekulé, August, 3, 399–402
1-hexene, 520–521	Isolated diene, 372, 391	Kendrew, John C., 1087
4-phenylbutanoic acid, 764	L-Isoleucine, 1054, 1059	α-Keratin, 1085
Infrared spectroscopy, 518–523, 536. See also	electrostatic potential map, 1053	Ketals. See Acetals
Infrared spectra	Isomers, 2	Ketene, 783
absorption frequencies table, 519	alkanes, 57–61	β-Keto acids, decarboxylation, 762–763, 768
alcohols, 519, 520, 605	alkenes, 172-174, 198-199	838, 840–841, 850
aldehydes and ketones, 519, 520, 522,	classification, 291 table	Keto-enol isomerism, 355, 705–707
684–685	constitutional, 22, 45, 57	Keto-enol tautomerism. See Keto-enol
amines, 897–898	keto-enol, 355, 705-707	isomerism
carboxylic acids and derivatives, 519,	number of, 60	β-Keto esters
763–764, 817	stereoisomers (see Stereoisomers)	acidity of, 831
ethers and epoxides, 641	Isopentane, 59–61. See also	alkylation of, 839-841, 850
nitriles, 519, 817	2-Methylbutane	Michael addition of, 846-847
phenols, 960	Isopentenyl pyrophophate, 1028–1030,	nomenclature of, 832
Ingold, Sir Christopher, 4	1033–1034, 1044	preparation of
and stereochemical notation, 174, 268–271	Isoprene, 383, 1026	by acylation of ketones, 837–838, 851
and studies of reaction mechanisms		by Claisen condensation, 832–835, 851
	Isoprene rule, 1028	by Dieckmann reaction, 835–836,
electrophilic aromatic substitution, 447	Isoprenoid compounds. See Terpenes	851
elimination, 192–194	Isopropenyl group, 169–170	by mixed Claisen condensation,
nucleophilic substitution, 144, 146, 306,	Isopropyl alcohol, 19, 128	836–837, 851
315	industrial preparation of, 224	α-Ketoglutaric acid, 1063–1065
Initiation step, 149, 153–154, 221, 246	properties of, 581	Ketones
Initiators of free-radical reactions, 220–221,	Isopropylbenzene. See also Cumene	acidity of, 710
245–246, 415–416	conversion to phenol, 947, 969	chemical shifts, ¹ H and ¹³ C, 684–687
Insulin, 1070, 1073–1074, 1080	nitration, 878	
Integration and NMR peak area measurement,	Isopropyl chloride, ¹ H NMR spectrum, 505	classification of carbons in, 702
497	Isopropylcyclohexane, 105	enolization of, 703–711, 727
International Union of Pure and Applied	Isopropyl group, 65. See also	infrared absorption frequencies, 519,
Chemistry. See IUPAC	1-Methylethyl group	523, 684
Inversion of configuration	size of, 105, 107, 310–311	naturally occurring, 659
complete, in S_N 2 reactions, 307–309, 331	spin-spin splitting in, 505	nomenclature of, 656, 688
partial, S _N 1 reactions, 318–319, 331	Isopropyl hydrogen sulfate, 223, 224	physical properties of, 658
Iodination	Isopropyl radical, 151–152	preparation of, 659–661
of alkanes, 148	Isoquinoline, 430	by acetoacetic ester synthesis, 839–841,
of alkenes, 233	Isotactic polymers, 288–289, 570	850
of arenes, 450	Isotopes. See also Carbon; Hydrogen-	by decarboxylation of β-keto acids, 838,
Iodobenzene, 563, 919	deuterium exchange	850
Iodomethane. See Methyl iodide	in biosynthetic studies, 1033–1034	by hydration of alkynes, 355–356, 361,
Iodomethylzinc iodide	H-D exchange in alcohols, 166, 510	660
preparation of, 564, 571	H-D exchange in carboxylic acids, 763	from nitriles, 816–817, 822
reactions with alkenes, 563–565, 572	H-D exchange in cyclopentanone, 714	by oxidation of secondary alcohols, 597,
Ion-exchange chromatography, 1070–1071	in study of reaction mechanisms	611, 659–661
Ionic bonds, 11–12, 44	bromine addition to alkenes, 234	by ozonolysis of alkenes, 660
Ionization constant. See Acid dissociation	Claisen rearrangement, 957	reactions of
constants	ester hydrolysis, 794, 796–797	acetal formation, 669-671, 672, 689
Ionization energy, 11	esterification, 754	acylation via enolate, 837-838, 851
	hydrolysis of chlorobenzene, 931	aldol condensation, 718, 720, 728
Ionization potential. See Ionization energy		Baeyer-Villiger oxidation, 683–684, 691
α- and β-Ionone, 1049	nucleophilic aliphatic substitution, 336	789
Ionophore, 624, 1023	nucleophilic aromatic substitution, 928,	Clemmensen reduction, 456–457, 474,
Iron, reduction of nitroarenes by, 878	931	662
Iron(III) salts as catalysts in halogenation of	Isotopic clusters in mass spectrometry,	cyanohydrin formation, 667–668, 689
arenes, 446, 448–450	528–529	
Isoamyl acetate, in bananas, 85, 788	IUPAC (International Union of Pure and	with derivatives of ammonia, 674
Isobutane, 57. See also 2-Methylpropane	Applied Chemistry), 63. See also	enamine formation, 674–675, 677, 690
Isobutene. See 2-Methylpropene	Nomenclature, IUPAC	with ester enolates, 849

Birch reduction, 413

with Grignard reagents, 555, 559, 572,	Lecithin. See Phosphatidylcholine	Lycopene, 525, 1042
662	Lenthionine, 117	Lynen, Feodor, 1035
halogenation, 703–705	L-Leucine, 1054, 1059	L-Lysine, 1055, 1059
hydration, 663–667, 689	electrostatic potential map, 1053	electrophoresis of, 1060–1061
imine formation, 672–673, 689	Leucine enkephalin, 1068–1069	electrostatic potential map, 1053
with organolithium reagents, 554-556,	Leukotrienes, 1025	D-Lyxose, 977
572, 582, 662	Levorotatory, 266	
reduction, 583-587, 608, 662	Levulinic acid, 772	
reductive amination, 879-881, 903	Lewis, Gilbert N., 3, 12	McGwire, Mark, 1041
Wittig reaction, 677–681, 690	Lewis acid, 143	Macrolide antibiotics, 758
Wolff-Kishner reduction, 456, 662	Lewis base, 143	Magnesium, reaction of with alkyl and aryl
spectroscopy, 684-687	as nucleophile, 143, 312-314	halides, 550–551, 571
structure and bonding, 657–658, 688	Lewis structural formulas, 12–14, 42–43, 44	Magnetic field
Ketoses, 973, 986–987, 1007	formal charges in, 16-19	induced, and nuclear shielding,
Kevlar, 809	multiple bonding in, 14	494–495
Kharasch, Morris S., 220	and resonance, 23–26	strength of, 491, 493
Kiliani-Fischer synthesis, 1001, 1009	writing of, 20 table	Magnetic resonance imaging (MRI), 517
Kinetic control, 380–381	Lexan, 809	Maleic anhydride, 783, 784
O-acylation of phenols, 952	Liége rules, 63	dienophile in Diels-Alder reaction, 384,
addition	Limonene, 71, 263, 1031	393
to conjugated dienes, 380–381, 392	Linalool, 262	(S)-Malic acid, 276
to α,β -unsaturated aldehydes and	Linear α-olefins, 569, 577, 661	as resolving agent, 287–288
ketones, 723	Linamarin, 989, 1012	Malonic acid, 737
Kinetic studies	Lindlar palladium, 350–351, 360	acidity of, 748
of elimination reactions of alkyl halides,	Linoleic acid, 1018, 1025	decarboxylation of, 760–762, 767–768
192–193	Linolenic acid, 1018	Malonic ester synthesis 842–845, 852
of ester hydrolysis, 796	Lipids, 1015-1050. See also Fats; Oils;	Malonyl coenzyme A, 1020–1021, 1033
of α-halogenation of aldehydes and	Phospholipids; Steroids; Terpenes;	Maltase, 992–993
ketones, 704	Waxes	Maltose, 991–992, 999
of nucleophilic aromatic substitution, 923	Lipoic acid, 117, 605	Mandelic acid, 737
of nucleophilic substitution, 306, 315-318,	Lipophilic, 744	D-Mannose, 977
331	Lister, Joseph, 943	conversion to D-fructose, 1002
Kolbe, Hermann, 952	Lithium	epimerization of, 1002
Kolbe-Schmitt reaction, 952–953, 963	electronegativity, 15, 547	L-Mannose, 1001
Kossel, Walter, 12	reaction with alkyl and aryl halides,	Markovnikov, Vladimir, 215
Krätschmer, Wolfgang, 410	549-550, 571	Markovnikov's rule, 215
Krebs cycle, 1064	reduction of alkynes, 351–352	in addition
Kroto, Harold W., 410	Lithium aluminum hydride, reducing agent for	to alkenes, 214–219
	aldehydes and ketones, 584–587, 608, 662	to alkynes, 352–354, 356, 361
Lactams, 803	alkyl azides, 877, 902	Mass spectrometer, 526–527
Lactase, 993	amides, 879, 903	Mass spectrometry, 526–532, 536 alcohols, 607
Lactase, 993 Lactic acid, 737, 1015	carboxylic acids, 587, 608, 659, 754	aldehydes and ketones, 687
biological oxidation of, 602	epoxides, 635	amines, 900
(S) enantiomer by enzymic reduction of	esters, 587, 608, 790	carboxylic acid derivatives, 818
pyruvic acid, 681–682, 1015	nitriles, 877, 902	ethers, 643
Lactones, 758–759, 788	table, 608	and gas chromatography, 530–531
formation of	Lithium dialkylcuprates. See Lithium	phenols, 961–962
in Baeyer-Villiger oxidation of cyclic	diorganocuprates	Mass-to-charge ratio (mlz), 527
ketones, 695	Lithium diisopropylamide (LDA), 848–849	Mauveine, 4
by oxidation of carbohydrates, 1000	Lithium dimethylcuprate. See Lithium	Mayo, Frank R., 220
Lactose, 993	diorganocuprates	Maytansine, 920
Laetrile, 1012	Lithium diorganocuprates	Maxam, Allan, 1102
Lanosterol, 1035–1037	conjugate addition to α,β-unsaturated	Mechanism, 3
Lapworth, Arthur, 703	ketones, 724–725, 729	acetal formation, 669–670, 989
Lauric acid, 1018	preparation of, 561–562, 571	$Ad_{E}3,683$
Lavoisier, Antoine-Laurent, 1	reactions with alkenyl, alkyl, and aryl	Baeyer-Villiger oxidation, 683
LDA. See Lithium diisopropylamide	halides, 562–563, 573	bimolecular nucleophilic substitution, 146
Leaving groups	Locant, numerical prefix in IUPAC	160, 306–312, 331 table
and their basicity, 306, 327 table	nomenclature of, 64, 169	biosynthesis
halides, 192–193, 302, 305–306, 331 table	London dispersion forces. See van der Waals	of amino acids by transamination, 1065
nitrogen of diazonium ions, 890	forces Lovastatin, 1038	of cholesterol, 1036–1037
in nucleophilic aromatic substitution, 923		Mechanism—Cont.
<i>p</i> -toluenesulfonates, 326–329	Lowry Thomas M. 133	of fatty acids, 1019-1022
Le Bel, Joseph Achille, 259	Lowry, Thomas M., 133 Luciferin, 431	terpenes, 1028-1034
T CIA: 11 1 1 227	Eucliciii, 731	P: 1 1 1 11 11 11 11 11 11 11 11 11 11 11

Lucite, 828

Le Châtelier's principle, 227

I-21 INDEX

chromic acid oxidation, 599–600	nitration of benzene, 447	Methine group, 57
Claisen condensation, 833–834	nucleophilic alkyl substitution	L-Methionine, 641, 1054, 1059
Claisen rearrangement, 957–958	S _N 1, 143–144, 162, 315–321, 331 table	electrostatic potential map, 1053
cyanohydrin formation, 668	S _N 2, 146, 162, 306–312, 331 table	Methionine enkephalin, 1068–1069
DCCI promoted peptide bond formation,	nucleophilic aromatic substitution	Methyl alcohol, 128. See also Methanol
1081	addition-elimination, 923–927, 932–933	Methyl acetate
		UV absorption, 818
decarboxylation of malonic acid, 761	elimination-addition, 927–931, 933	-
dehydration of alcohols, 185–187, 199–201	polymerization of ethylene	Methylamine
dehydrohalogenation of alkyl halides,	coordination polymerization, 569	basicity of, 865, 866
192–198, 201	free-radical polymerization, 245–246	¹³ C NMR, 899
Dieckmann reaction, 835	proton transfer, 136–137	electrostatic potential map, 858
Diels-Alder reaction, 384	reaction of alcohols with hydrogen halides,	reaction with benzaldehyde, 873
dimerization of 2-methylpropene, 244	137-146, 160-162, 329-330, 332	structure and bonding, 861–863
DNA replication, 1095	reduction of alkynes by sodium in	Methyl benzoate
Edman degradation, 1074–1076	ammonia, 352	in mixed Claisen condensation, 836
electrophilic addition to alkenes, 213–220,	unimolecular nucleophilic substitution,	preparation of, 593, 754–757
224	143–144, 162, 315–321, 331	Methyl bromide
	Wittig reaction, 679	nucleophilic substitution in, 306–307, 309
electrophilic aromatic substitution,	Meisenheimer, Jacob, 937	reaction with triphenylphosphine, 680
444–447, 477		
bromination, of benzene, 450	Meisenheimer complex, 937	2-Methylbutane, 73. <i>See also</i> Isopentane
Friedel-Crafts acylation, of benzene, 454	Menthol, 164, 298, 580, 1027	2-Methyl-2-butanol
Friedel-Crafts alkylation, of	Menthyl chloride, 206	dehydration of, 183
benzene, 451	Meparfynol, 575	preparation of, 225
nitration, of benzene, 447	Meprobamate, 857	3-Methyl-2-butanol
sulfonation, of benzene, 448	Mercaptans. See Thiols	preparation of, 229
elimination	Mercury (II) compounds, 356	reaction with hydrogen chloride, 330
E1, 196–198	Merrifield, R. Bruce, 1082–1084. See also	2-Methyl-2-butene
	Solid-phase peptide synthesis	acid catalyzed hydration, 225, 581
E2, 192–196, 201, 323–325		hydroboration-oxidation, 229
enamine formation, 674	Mesityl oxide, 721	•
enol conversion to ketone, 355	Meso stereoisomer, 279–282	hydrogenation of, 209
enolization, 706, 709	Messenger RNA. See Ribonucleic acid,	preparation of
epoxidation, 240	messenger	from 2-bromo-2-methylbutane, 191, 197
epoxide ring opening, 634, 636	Mestranol, 575	2-methyl-2-butanol, 183
esterification, 756–757	Meta (m)	reaction of
ether cleavage, 629	directing groups, 461–463, 464 table,	with hydrogen bromide, 223
ether formation, 592	466–469, 477, 480	with hydrogen chloride, 215–216
free-radical addition of hydrogen bromide	disubstituted aromatic compounds, 406	3-Methyl-2-butenyl pyrophosphate. See
to alkenes, 220–223, 251	Metal-ammonia reduction of	Dimethylallyl pyrophosphate;
glycosidation, 990	alkynes, 351–352, 360	Isopentenyl pyrophosphate
	•	Methyl cation, 141
halogenation	arenes (see Birch reduction)	•
addition to alkenes, 234–236, 284–285	Metal-ion complexes of ethers, 622	electrostatic potential map, 143
allylic, of alkenes, 371	Metallocenes, 567, 569	Methyl chloride, 132. See also Chloromethane
α , of aldehydes and ketones, 703–707	Methane, 56–57	Methylcyclohexane, conformations of,
bromination, of benzene, 450	acidity of, 344–345, 553	104–105
chlorination, of methane, 153-156	bonding in, 35–37, 46, 56	2-Methylcyclohexanol, dehydration of, 183
halohydrin formation, 236–238	chlorination, 148-149, 153-155	1-Methylcyclopentene
Hofmann rearrangement, 811–812	clathrates, 58	addition of hydrogen chloride, 215
hydration	conversion to acetylene, 340	hydroboration-oxidation, 230–233
of aldehydes and ketones, 665, 666	electrostatic potential map, 23, 27	Methylenecyclohexane, 677
	ciccuostatic potentiai map, 23, 27	
of allzanas 226	natural occurrence 56	
of alkenes, 226	natural occurrence, 56	Methylene
of alkynes, 355	physical properties, 57	Methylene group, 57
of alkynes, 355 hydride reduction of aldehydes and ketones,	physical properties, 57 structure, 13, 27, 28, 57	Methylene group, 57 prefix, 170
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680
of alkynes, 355 hydride reduction of aldehydes and ketones,	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. <i>See also</i> Isopropyl
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. <i>See also</i> Isopropyl group Methyl fluoride
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 ¹³ C NMR, 899	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. <i>See also</i> Isopropyl group Methyl fluoride electrostatic potential map, 548
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353 hydrolysis	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 ¹³ C NMR, 899 dehydrogenation of, 661	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. See also Isopropyl group Methyl fluoride electrostatic potential map, 548 ¹ H chemical shift, 495
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353 hydrolysis of acyl chlorides, 782	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 ¹³ C NMR, 899 dehydrogenation of, 661 dipole moment of, 129	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. See also Isopropyl group Methyl fluoride electrostatic potential map, 548 ¹ H chemical shift, 495 Methyl α-D-glucopyranoside, 990, 999
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353 hydrolysis of acyl chlorides, 782 of amides, 805–806, 808	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 ¹³ C NMR, 899 dehydrogenation of, 661 dipole moment of, 129 electrostatic potential map, 129	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. <i>See also</i> Isopropyl group Methyl fluoride electrostatic potential map, 548 ¹ H chemical shift, 495 Methyl α-D-glucopyranoside, 990, 999 tetra- <i>O</i> -methyl ether, 1004
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353 hydrolysis of acyl chlorides, 782 of amides, 805–806, 808 of carboxylic acid anhydrides, 786	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 ¹³ C NMR, 899 dehydrogenation of, 661 dipole moment of, 129 electrostatic potential map, 129 esterification of, 754–757	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. See also Isopropyl group Methyl fluoride electrostatic potential map, 548 ¹H chemical shift, 495 Methyl α-D-glucopyranoside, 990, 999 tetra-O-methyl ether, 1004 Methyl β-D-glucopyranoside, 990
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353 hydrolysis of acyl chlorides, 782 of amides, 805–806, 808 of carboxylic acid anhydrides, 786 of esters, 792–794	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. See Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 13 C NMR, 899 dehydrogenation of, 661 dipole moment of, 129 electrostatic potential map, 129 esterification of, 754–757 industrial preparation of, 579–580	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. See also Isopropyl group Methyl fluoride electrostatic potential map, 548 ¹ H chemical shift, 495 Methyl α-D-glucopyranoside, 990, 999 tetra-O-methyl ether, 1004 Methyl β-D-glucopyranoside, 990 Methyl group, 34
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353 hydrolysis of acyl chlorides, 782 of amides, 805–806, 808 of carboxylic acid anhydrides, 786 of esters, 792–794 of nitriles, 815–816	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. <i>See</i> Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 ¹³ C NMR, 899 dehydrogenation of, 661 dipole moment of, 129 electrostatic potential map, 129 esterification of, 754–757 industrial preparation of, 579–580 nitration of, 596	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. See also Isopropyl group Methyl fluoride electrostatic potential map, 548 ¹ H chemical shift, 495 Methyl α-D-glucopyranoside, 990, 999 tetra-O-methyl ether, 1004 Methyl β-D-glucopyranoside, 990 Methyl group, 34 Methyl iodide. See also Iodomethane
of alkynes, 355 hydride reduction of aldehydes and ketones, 585–587 hydroboration-oxidation, 230–233 hydrogenation of alkenes, 210 hydrogen halide addition to alkenes, 213–220, 275 to alkynes, 353 hydrolysis of acyl chlorides, 782 of amides, 805–806, 808 of carboxylic acid anhydrides, 786 of esters, 792–794	physical properties, 57 structure, 13, 27, 28, 57 Methanesulfonic acid, 326 Methanogens, 58 Methanoic acid. See Formic acid Methanol, 128, 579–580 bond distances and bond angles, 129 13 C NMR, 899 dehydrogenation of, 661 dipole moment of, 129 electrostatic potential map, 129 esterification of, 754–757 industrial preparation of, 579–580	Methylene group, 57 prefix, 170 Methylenetriphenylphosphorane, 677, 680 electrostatic potential map, 678 1-Methylethyl group, 65. See also Isopropyl group Methyl fluoride electrostatic potential map, 548 ¹ H chemical shift, 495 Methyl α-D-glucopyranoside, 990, 999 tetra-O-methyl ether, 1004 Methyl β-D-glucopyranoside, 990 Methyl group, 34

electrophilic aromatic substitution in, 469,

Methyllithium, 553	Unsaturated carbonyl compounds	Neopentane, 60. See also
electrostatic potential map, 548	Microscopic reversibility, 227	2,2-Dimethylpropane
Methylmagnesium halides	Microwaves, 488, 545	Neopentyl group, 66. See also
reaction of	Mitscherlich, Eilhardt, 399	2,2-Dimethylpropyl group
with butanal, 572	MM3, 97	Neopentyl halides, nucleophilic substitution
with cyclopentanone, 555	Models. See Molecular models and modeling	in, 312
with methyl 2-methylpropanoate, 561	Molar absorptivity, 524	Neoprene, 4, 383
with 1-phenyl-1-propanone, 559	Molecular biology, 1094, 1100	Neryl pyrophosphate, 1030–1031
Methyl methacrylate. See Methyl		
	Molecular dipole moments. See Dipole	Neurotransmitters, 869, 1066
2-methylpropenoate	moment	Newman, Melvin S., 90
Methyl 2-methylpropenoate	Molecular formula, 19, 51, 532–533	Newman projections, 90–92, 94, 99
hydrolysis, 795	Molecular ion, 526	Nickel, hydrogenation catalyst, 208, 209, 403,
reaction with ammonia, 799	Molecular models and modeling, 27–28,	583-584
Methyl migration	96–97	Nickel carbonyl, 566
in alcohol dehydration, 187–189	Molecular orbitals	Nicotinamide adenine dinucleotide
in cholesterol biosynthesis, 1036–1037	allyl cation, 397	coenzyme in
Methyl nitrate, 596	[10]-annulene, 425	epoxidation of alkenes, 638, 1036
Methyl nitrite, 22, 24	benzene, 407, 424	fatty acid biosynthesis, 1020
2-Methylpentane, 64	bonding and antibonding, 34–35	formation of acetyl coenzyme A, 1016
bromation of, 158	1,3-butadiene, 397–398	oxidation of alcohols, 600–602
3-Methylpentane, 64	cyclobutadiene, 424	
	•	reduction of pyruvic acid, 681–682
2-Methylpropanal	cycloheptatrienyl cation, 427–428	structure of, 600
acidity of, 710	cis, trans-1,3-cyclooctadiene, 524	Nicotine, 51, 272, 274, 869
¹ H NMR, 685	cyclooctatetraene, 424	Ninhydrin, 1063
reaction with tert-butylamine, 689	cyclopentadienide anion, 428	Nirenberg, Marshall, 1108
2-Methylpropane, 65. See also Isobutane	ethylene, 386–397	Nitration
acidity of, 552	frontier, 386	of acetanilide, 887
bond dissociation energies in, 151–152, 414	highest occupied (HOMO), 386, 524	of acetophenone, 473
chlorination, 158	hydrogen, 34–35	of benzaldehyde, 467, 873
Methyl propanoate	lowest unoccupied (LUMO), 386, 524	of benzene, 446, 447–448, 473
¹ H NMR spectrum, 817	π and π^* , 386–387, 524–525	of <i>p-tert</i> -butyltoluene, 471
in mixed Claisen condensation, 836	σ and σ^* , 34–35, 386	of chlorobenzene, 469–470
2-Methyl-2-propanol, 138. <i>See also</i>	Monensin, 624	of p-cresol, 950
tert-Butyl alcohol		*
	Monosaccharide, 972. See also Carbohydrates	of fluorobenzene, 478
acid-catalyzed dehydration, 182	Monoterpene, 1026	of <i>p</i> -isopropylacetanilide, 886
2-Methylpropene. See also Isobutene;	Morphine, 869	of p-methylbenzoic acid, 472
Isobutylene	Morpholine, 690	of phenol, 463, 950
addition of hydrogen bromide to, 215	MRI. See Magnetic resonance imaging	of toluene, 457, 458–460, 474
addition of methanol to, 626	Multifidene, 298	of (trifluoromethyl)benzene, 458, 461–462
bromohydrin formation, 237	Multiplets. See also Spin-spin splitting	of <i>m</i> -xylene, 472
dimerization, 244	in ¹³ C NMR spectra, 515, 535	Nitric acid
dipole moment, 176	in ¹ H NMR spectra, 500–509, 534–535	nitration of arenes by, 447–448
heat of combustion, 177	Muscarine, 297	oxidation
hydration mechanism, 226	Mutarotation, 985-986, 1007	of carbohydrates, 1000
preparation of, 182	Myoglobin, 1089	of p-xylene, 750
1-Methylpropyl group, 66. <i>See also</i>	Myosin, 1085	reaction with alcohols, 595–596, 610
sec-Butyl group	Myrcene, 1026	Nitriles. See also Cyanohydrins
2-Methylpropyl group, 66. <i>See also</i>	Myristic acid, 1018	· · · · · · · · · · · · · · · · · · ·
	Myristic acid, 1018	α -amino, as intermediates in Strecker
Isobutyl group		synthesis, 1061–1062
N- Methylpyrrolidone, 803	n (prefix), 57, 61	hydrolysis of, 752–753, 766, 815–816
Methyl radical	ν (symbol for frequency), 488	infrared absorption, 817
dimerization, 154	n+1 splitting rule, 500, 508	nomenclature of, 776
intermediate in chlorination of methane,		preparation of
153–154	NAD, NAD+, NADH, NADPH. See	from alkyl halides, 304, 324, 752, 814
structure and stability, 150	Nicotinamide adenine dinucleotide	from aryl diazonium salts, 894, 905
Methyl salicylate, 788, 942	Nanotubes, 411	by dehydration of amides, 814
Methyltrioctylammonium chloride, 871	Naphthalene, 398, 408–409	reaction with Grignard reagents, 816–817
Methyl vinyl ketone	electrophilic aromatic substitution in,	reduction, 877, 902
reaction with diethyl malonate, 846–847	474–475	<i>m</i> -Nitroaniline, diazotization of, 893, 904, 905
in Robinson annulation, 724, 728	1-Naphthol, azo coupling of, 897	o-Nitroaniline, diazotization of, 907
Mevalonic acid, 758, 1028, 1033, 1044	2-Naphthol, nitrosation of, 950	<i>p</i> -Nitroaniline
Mevalonolactone, 759, 772	Natta, Giulio, 246, 567–570, 573	basicity of, 867
	Natural gas, 57, 69	3
Micelle, 744–745, 795	Nembutal, 845	bromination of, 904
Michael, Arthur, 724	Neomenthol, 164	preparation of, 887
Michael reaction, 724, 846–847, 852. See also	reconclude, for	Nitrobenzene

Neomenthyl chloride, 206

Conjugate addition; α,β -

I-23 INDEX

919	of ethers, 619–620	nuclear shielding, 493–494
preparation of, 446, 447–448, 474	of β-keto esters, 832	phenols, 960–961
Nitro group	of ketones, 656, 688	spin-spin splitting, 500–509
electron-withdrawing effect of, 464, 469,	of lactones, 758–759	Nuclear spin states, 490–491
926, 944–945	of nitriles, 776	Nucleic acids, 1093–1103. See also
reduction, 878, 902	of organometallic compounds, 547, 570	Deoxyribonucleic acid;
Nitromethane, 20, 22, 24–25	of sulfides, 620	Ribonucleic acid
Nitronium cation, 447	of thiols, 604	Nucleophiles, 142–143, 162, 302–305
<i>m</i> -Nitrophenol	stereochemical notation	relative reactivity, 312–315
acidity of, 944, 945	cis and trans, 108–109	solvation and reactivity, 322–323
preparation of, 905, 946	D-L, 973–978, 1007	Nucleophilic acyl substitution, 774–830
o-Nitrophenol	erythro and threo, 278	of acyl chlorides, 780–783, 820
acidity of, 944	E-Z, 173–175, 199	of amides, 804–807, 808, 821
intramolecular hydrogen bonding, 942	R-S, 268–271	of carboxylic acid anhydrides, 783-787, 820
reaction with	substitutive, 127, 159	of esters, 790–800, 820
acetic anhydride, 951, 963	Nomex, 809	of thioesters, 800
butyl bromide, 964	Norepinephrine, 640, 1066	Nucleophilic addition
<i>p</i> -Nitrophenol	Norethindrone, 1042	to aldehydes and ketones, 663-682, 688-691
acidity of, 944	Nuclear magnetic resonance spectra	to α,β -unsaturated aldehydes and ketones,
esters of, in peptide bond formation, 1080	carbon	722–724, 725, 728, 846–847, 852
Nitrosamines, 889	1-chloropentane, 511	Nucleophilic alkyl substitution
Nitrosation	m-cresol, 514	alcohols, 139–146
amines, 888-891, 904-905	3-heptanone, 687	alkyl halides, 302–325, 680, 752, 814,
phenols, 950	methanol, 899	839-845
N-Nitrosodimethylamine, 889	methylamine, 899	alkyl p-toluenesulfonates, 326–328, 332
N-Nitrosonornicotine, 889	1-phenyl-1-pentanone, 516	allylic halides, 366–369, 390, 840
<i>N</i> -Nitrosopyrrolidine, 889	proton	benzylic halides, 417–419
Nitrous acid, 888-895. See also	benzyl alcohol, 509	crown ether catalysis of, 625
Nitrosation	2-butanone, 686	epoxides, 632–637
Nobel, Alfred, 596	chloroform, 494	enzyme-catalyzed, 314
Noble gas electron configuration, 11	1-chloropentane, 511	α-halo carboxylic acids, 760
Nodal properties	p-cresol, 961	phase-transfer catalysis of, 871–872
p orbitals, 9	1,1-dichloroethane, 501	Nucleophilic aryl substitution, 922–931,
of π orbitals and pericyclic reactions,	dipropyl ether, 642	932–933, 946, 956
386–390	ethyl acetate, 817	Nucleosides, 1091–1092
surfaces, 8	ethyl bromide, 503	Nucleotides, 1092–1093
Nomenclature	isopropyl chloride, 505	Nylon, 4, 809
common names	methoxyacetonitrile, 497	
of alcohols, 128	4-methylbenzyl alcohol, 899	Octadecanoic acid, 737
of alkanes, 61	4-methylbenzylamine, 898–899	Octane isomers, heats of combustion and
of alkenes, 167–170	2-methylpropanal, 685	relative stability, 75–76
of alkenyl groups, 170	methyl propanoate, 817	Octane number of gasoline, 71
of alkyl groups, 65–66, 83, 127	m-nitrostyrene, 508	2-Octanol, 555
of carboxylic acids, 767, 798	4-phenylbutanoic acid, 764	reaction with hydrogen bromide, 330
functional class, 127, 159	2-phenylethanol, 607	Octet rule, 13, 44
historical development of, 63 IUPAC	2,3,4-trichloroanisole, 507	Off-resonance decoupling, 515
of acyl halides, 775	Nuclear magnetic resonance spectroscopy	Oil of wintergreen. See Methyl
of alcohols, 127–128, 159	carbon, 510–517, 535 alcohols, 606	salicylate
of aldehydes, 654–655, 688	aldehydes and ketones, 686–687	Oils. See Fats
of alkadienes, 374	amines, 899	Olah, George A., 74
of alkanes, 61–69, 81–82 table	in biosynthetic studies, 1034	Olefin, 168. See also Alkenes
of alkenes, 167–170, 198	carboxylic acid derivatives, 818	α-Olefins. See Linear α-olefins
of alkyl groups, 65–66, 83 table	carboxylic acids, 763–764	Oleic acid, 173, 737, 1018
of alkyl halides, 127, 159	ethers, 643	Oligosaccharide, 973
of alkynes, 340	and magnetic field strength, 491–493	Opsin, 676
of amides, 776	proton, 490–510, 535	Optical activity, 265–267, 291
of amines, 859–861, 900	alcohols, 509–510, 535	and chemical reactions, 274–276, 284–285,
of benzene derivatives, 406–408	aldehydes and ketones, 684–687	292, 307–308, 318–319, 328, 330,
of bicyclic ring systems, 115	amines, 898–899	714–715
of carboxylic acid anhydrides, 775	carboxylic acid derivatives, 817–818	Optical purity, 266
of carboxylic acids, 737–738	carboxylic acids, 763–764	Optical resolution. See Resolution
of cycloalkanes, 68–69, 82 table	chemical shift, 493–497, 534	Orbital hybridization
of diols, 589	and conformations, 510, 535	model for bonding, 35–42, 46–47
of epoxides, 238, 620	ethers and epoxides, 641–642	sp
of esters, 775	interpretation, 497-500, 534	in acetylene and alkynes, 40–42, 47,

341–343, 358	Oxidation-reduction in organic chemistry,	mass spectrum, 687
in alkenyl cations, 353	78–80, 83	Pentobarbital, 845
in allenes, 377–378	Oximes, 674	Pentothal sodium, 846
sp^2	Oxirane, 620. See also Ethylene oxide	Pentyl azide, 873
in alkadienes, 375–377	Oxolane, 620. See also Tetrahydrofuran	Pepsin, 1071
in aniline, 862–863	Oxonium ions, 134, 135–136, 226	Peptide bond, 1051, 1067
in benzene, 405	in dehydration of alcohols, 185–187, 190,	geometry of, 1068–1069
in carbocations, 141, 161–162	198	preparation of, 1079–1083
in ethylene and alkenes, 38–40, 47,	in epoxide ring opening, 635–636	Peptides, 1067–1088
· ·	in ether cleavage, 629	*
170–172, 198	•	amino acid analysis, 1070–1071
in formaldehyde, 657	in reaction of alcohols with hydrogen	classification of, 1051
in free radicals, 150, 162	halides, 140, 143–146, 160–161,	end-group analysis of, 1071–1076
sp^3	329	hydrolysis of, 1070–1071
in alkyl halides, 129	in solvolysis reactions, 312, 315–318	structure of, 1051, 1067–1070 (see
in ethane, 37, 46, 57	Oxo process. See Hydroformylation	also Proteins)
in methane, 35–37, 46, 57	Oxyacetylene torch, 350	synthesis of, 1076–1084
in methanol, 129	Oxygen	Pericyclic reactions, 382–383, 958
in methylamine, 861, 862	biological storage and transport of,	Periodic acid cleavage
Orbital symmetry, 397	1089–1090	of carbohydrates, 1005-1006, 1010
and Diels-Alder reaction,	isotopic labels, 754, 794, 796–797	of vicinal diols, 602–603, 609
388–390	Oxytocin, 1069–1070	anti Periplanar, 195
Orbitals	Ozone, bonding in, 23, 240	syn Periplanar, 195
atomic, 7–11	Ozonide, 240	Perkin, William Henry, 4
hybrid orbitals, 35-42, 46	Ozonolysis	Peroxide effect, 220
molecular (see Molecular orbitals)	of alkenes, 240–242, 251, 660	Peroxides
Organic chemistry, historical background of,	of alkynes, 357	initiators of free-radical reactions, 220-221,
1–6		415–416
Organoboranes, 228, 230–233		by oxidation of ethers, 627–628
Organocopper compounds. See Lithium	Palladium	Peroxyacetic acid, 741
diorganocuprates	hydrogenation catalyst, 208, 209, 583-584	epoxidation of alkenes, 239–240, 250,
Organolithium reagents	Lindlar, 350–351, 360	630, 645
basicity of, 551–553, 570	Palmitic acid, 1018	Peroxybenzoic acid, 683–684
•	Papain, 1071	
preparation of, 549–550, 571	Para (p), disubstituted organic compounds, 406	Perutz, Max F., 1087
reaction of	Paraffin hydrocarbon, 74. See also Alkanes	Petrochemicals, 5, 168
with aldehydes and ketones, 554–556,	Partial rate factors, 460, 462, 470, 485	Petroleum, 69
572, 573, 582	Pasteur, Louis, 286	refining, 69–70
with epoxides, 587–588	Pauli exclusion principle, 9	PGE_1 , PGE_2 , and $PGF_{1\alpha}$.
with nitriles, 817	Pauling, Linus, 3, 15	See Prostaglandins
Organomagnesium compounds. See Grignard	electronegativity scale, 15	Pharmacology, 897
reagents	· ·	Phase-transfer catalysis, 871–872, 901
Organometallic compounds, 546–578. See	and orbital hybridization model, 36	α-Phellandrene, 1027
also Grignard reagents; Lithium	and peptide structure, 1084–1086	Phenacetin, 967
diorganocuprates; Organolithium	PCBs. See Polychlorinated biphenyls	Phenanthrene, 408–409
reagents; Organozinc compounds	PCC. See Pyridinium chlorochromate	Phenobarbital, 846
Organozinc compounds, 563–565, 571, 572	PDC. See Pyridinium dichromate	Phenol(s), 939–971
Ortho (o), disubstituted organic compounds,	Pedersen, Charles J., 622	acidity of, 942-945, 962
406	Penicillin G, 803	electrostatic potential maps, 939, 942
Ortho-para directing groups, 457–461,	1,3- and 1,4-Pentadiene, relative stabilities,	formation of, in Claisen rearrangement,
463–466, 464 table, 469–470	374–375	957, 964
Osmium tetraoxide, 589–590, 608	2,3-Pentadiene, enantiomers, 378	hydrogen bonding, 941–942
Oxalic acid, 164, 748	Pentane, 62, 73, 512	naturally occurring, 946–948
Oxane, 593	conformation of, 97	nomenclature of, 407, 939–940
Oxane, 595 Oxaphosphetane, 679	<i>n</i> -Pentane, 59. See also Pentane	physical properties, 941–942
	2,4-Pentanedione	
Oxazole, 431	acidity of, 710–711	preparation from
Oxidation. See also Epoxidation;	α-alkylation of, 726	aryl diazonium salts, 892, 905, 946,
Hydroxylation of alkenes;	enol content of, 707–708	947, 962
Ozonolysis	Pentanenitrile	benzenesulfonic acid, 947
of alcohols, 596-600, 611, 659-661, 751	hydrogenation of, 877	chlorobenzene, 920, 947
of aldehydes, 682, 691, 751	preparation of, 871	cumene, 947
of alkylbenzenes, 416–417, 435, 750, 751	1-Pentanol	Phenol(s)— <i>Cont</i> .
biological, 409, 417, 600-602		reactions of
of carbohydrates, 998-1001, 1009	esterification, 610	O-alkylation, 954, 964
of ketones, 683–684, 691	reaction with thionyl chloride, 161	azo coupling, 951
of phenols, 958-959, 964	3-Pentanol, dehydration, 185	bromination, 948–950
of vicinal diols, 602–603, 609	3-Pentanone	carboxylation, 952-954, 963

cyanohydrin, 689

I-25 INDEX

electrophilic aromatic substitution, 463,	of honeybee, 203	Polyamides, 809–810
948–951	of male Oriental fruit moth, 788	Polyamines, 870
esterification, 949-952, 963	of Mediterranean fruit fly, 202	Polychlorinated biphenyls, 938
Friedel-Crafts acylation, 951	of Western pine beetle, 694	Polycyclic hydrocarbons
Friedel-Crafts alkylation, 950	Phosphatidic acid, 1022	aliphatic, 114–116
Kolbe-Schmitt reaction, 952–954, 963	Phosphatidylcholine, 1022–1023	aromatic, 408-409, 474-475
nitration, 463, 950	Phosphines	and cancer, 409
nitrosation, 950	as nucleophiles, 680	Polyesters, 809
oxidation, 958-959, 964	optically active, 290	Polyethers, 622–625
sulfonation, 950	Phosphoglucose isomerase, 1002	Polyethylene, 245–246, 247, 248, 567–570,
resonance in, 941	Phosphoglycerides, 1022	573
spectroscopic analysis, 960–961	Phospholipid bilayer, 1023	Polyisoprene, 247, 383
structure and bonding, 940–941	Phospholipids, 1022–1023	Polymer(s), 244–247
Phenylacetic acid	Phosphoric acid	of dienes, 383
α-halogenation, 760	catalyst for alcohol dehydration, 182, 183,	polyamides, 809–810
preparation of, 752	187	polyesters, 809
L-Phenylalanine, 1054, 1059	esters of, 596	stereoregular, 288–289, 293, 567–570, 573
N-benzyloxycarbonyl derivative,	Phosphorous acid, esters, 596	vinyl, 247
1077-1079	Phosphorus pentoxide, 814	Polymerization
electrostatic potential map, 1053	Phosphorus tribromide, reaction with alcohols,	cationic, 244
in PKU disease, 1065	147, 161	condensation polymers, 809-810
Phenylalanylglycine, synthesis of, 1077–1081	Phosphorus ylides. See Ylides	coordination, 246, 289, 383, 567-570, 573
Phenyl benzoate, Fries rearrangement of, 952	Photochemical initiation	free-radical, 245–246
2-Phenyl-2-butanol	of addition of hydrogen bromide to alkenes,	Polynucleotides. See Nucleic acids
<i>p</i> -nitrobenzoate, 595	222, 251	Polypeptide, 1051. See also Peptides; Proteins
preparation of, 559	of free-radical reactions, 156, 222, 251	Polypropylene, 246, 247, 248, 288–289, 570
Phenylbutazone, 856	Photon, 488	Polysaccharide, 973, 993–995, 1008
2-Phenylethanol	Photosynthesis, 976, 1015	Polystyrene, 247, 248, 421
¹ H NMR spectrum, 607	Phthalhydrazide, 876	Polyurethanes, 248
trifluoroacetate, 595	Phthalic acid. See 1,2-Benzenedicarboxylic	Poly(vinyl alcohol), 828
1-Phenylethylamine, resolution, 287–288	acid	Poly(vinyl chloride), 170, 247, 248
Phenyl group, 408	Phthalic anhydride, 783, 785, 804	Porphyrin, 1089
Phenylhydrazine, reaction of, with aldehydes	Phthalimide, 804	Potassiophthalimide. See Phthalimide
and ketones, 674	potassium salt of, in Gabriel synthesis,	Potassium tert-butoxide
Phenylisothiocyanate, 1074–1075	875-876, 902	base in elimination reactions, 191, 349,
Phenylketonuria (PKU disease), 1065	Physical properties. See entry under specific	565–566
Phenyllithium, 549	compound class	Potassium dichromate. See also Chromic acid
Phenylmagnesium bromide	Physostigmine, 908	oxidation
carboxylation of, 752	Phytane, 64	oxidation of alcohols, 596-597, 599
preparation of, 550, 921	α-Pinene, 167, 1032	oxidation of aldehydes, 682, 751
reaction of	hydroboration-oxidation of, 230	Potassium permanganate
with 2-butanone, 559	hydrogenation of, 213	oxidation of alcohols, 597, 751
with 1,2-epoxypropane, 635	β-Pinene, 1032	oxidation of aldehydes, 751
with ethyl benzoate, 572	Piperidine, 116, 781, 973	oxidation of alkylbenzenes, 416, 435, 751
with methanol, 551	basicity, 868	Potential energy, 75
2-Phenylpropene	in reductive amination, 880	diagrams, 136–137
hydroxylation of, 608	pK_a , 134. See also Acidity	addition of hydrogen bromide to
Phenylpyruvic acid, 1065	pK_b , 864. See also Basicity	1,3-butadiene, 381
Phenylthiohydantoin, 1074–1075	PKU disease. See Phenylketonuria	bimolecular elimination (E2), 194
Pheromone	Planck, Max, 488	bimolecular nucleophilic substitution
aggregating	Planck's constant, 488	$(S_N 2), 309$
of cockroach, 59, 62	Plane of symmetry, 264–265	branched versus unbranched alkanes, 75
of European elm bark beetle, 615	in meso-2,3-butanediol, 279	carbocation formation, 146
alarm pheromone	cis-1,2-dibromocyclopropane, 282	carbocation rearrangement, 189
of ant, 659	Plane-polarized light, 265–267	conformations of 1,3-butadiene,
of bees, 659	Platinum, hydrogenation catalyst, 208, 209,	376–377
sex attractant	249, 403, 583–584	conformations of butane, 95
of boll worm moth, 827	Pleated β-sheet, 1084, 1085	conformations of cyclohexane, 103
of codling moth, 202	Poison ivy, allergens in, 968	conformations of ethane, 93
of female gypsy moth, 239	Polar covalent bonds. See Bonds, polar	electrophilic aromatic substitution, 446,
of female house fly, 173, 363	covalent	459, 462
of female Japanese beetle, 788	Polarimeter, 265–267	hydration of aldehydes and ketones, 666
of female tiger moth, 86	Polarizability, 132	and Markovnikov's rule, 217
of female winter moth, 696	and nucleophilicity, 313–315	proton transfer, 137
of greater wax moth, 659	Polar solvents, 303, 320–323	reaction of tert-butyl alcohol with

hydrogen chloride, 143	Protic solvents, 322	resolution of, 286-288, 293
unimolecular nucleophilic substitution	Proton magnetic resonance spectra. See	Racemization
$(S_N 1), 143, 316$	Nuclear magnetic resonance spectra	and chair-chair interconversion, 281
and heat of combustion, 75–76, 109, 177	Proton magnetic resonance spectroscopy. See	via enol, 714–715
and heat of hydrogenation, 210	Nuclear magnetic resonance	in S_N 1 reactions, 318–319
Pott, Sir Percivall, 409 Prelog, Vladimir, 174	spectroscopy Proton-transfer reactions. See Acid-base	Radio waves, 488 Random coils, 1085
Priestley, Joseph, 383	reactions	Random cons, 1085 Rare gas. See Noble gas
Principal quantum number, 8	Pseudoionone, 1049	Rate constant, 145
Primary carbon, 65	Purcell, Edward, 490	Rate-determining step, 144, 162, 796
Pristane, 85	Purine(s), 431, 1090–1091	Rate of reaction. See also Substituent effects
Progesterone, 1042	hydrogen bonding in, 1095-1096	and carbocation stability, 139-146,
L-Proline, 1052, 1054, 1059, 1085	nucleosides of, 1091–1092	315–318
electrostatic potential map, 1053	nucleotides of, 1092–1093	effect of catalyst on, 209
Prontosil, 896	polynucleotides of, 1093–1103	effect of temperature on, 93–94, 145
1,3-Propadiene. See Allene	Putrescine, 870	Rearrangement
Propagation step, 153–154, 157, 163, 221–222, 415	Pyramidal inversion, 290 Pyranose forms of carbohydrates, 981–984,	in alcohol dehydration, 187–190, 201
Propanal, 657, 658	1007	allylic, 369, 381–382, 390 in Baeyer-Villiger oxidation, 683–684, 789
Propane	Pyrethrins, 1047	Claisen rearrangement, 957–958, 964
attractive forces in, 130	Pyridine, 430	in electrophilic addition to alkenes,
bond dissociation energies in, 151–152	acylation catalyst, 594, 781, 783	219–220
conformational analysis of, 95	basicity of, 868	in Friedel-Crafts alkylation, 452, 479
dehydrogenation of, 168, 181	bonding in, 432	Fries rearrangement, 952
dipole moment of, 130, 863	electrophilic aromatic substitution in,	Hofmann rearrangement, 807-813, 822
in natural gas, 56	475–476	in reactions of alcohols with hydrogen
2-Propanol, 128. See also Isopropyl alcohol	Pyridinium chlorochromate (PCC), 597, 611,	halides, 330, 332
Propene, 167–168	660	in S_N 1 reactions, 319–321
addition of sulfuric acid to, 224 allylic chlorination of, 371	Pyridinium dichromate (PDC), 597, 611, 660 Pyridoxal phosphate, 675	Reducing sugar, 999
bond dissociation energy of, 370, 414	Pyrimidine(s), 1090–1091	Reduction, 78–80. <i>See also</i> Hydrogenation; Hydrogenolysis
bond distances in, 171, 343, 375	hydrogen bonding in, 1095–1096	of aldehydes and ketones, 583–587, 589,
dipole moment of, 176	nucleosides of, 1091–1092	608, 662
epoxidation of, 274	nucleotides of, 1092-1093	of amides, 879, 903
heat of hydrogenation of, 211, 374–375	polynucleotides of, 1093-1103	of aryl diazonium salts, 894, 907
hydration rate of, 226	Pyrocatechol, 940, 956	of azides, 877, 902
as industrial chemical, 248	Pyrrole, 430	Birch reduction, 412–414, 434
polymerization of, 246, 288–289, 570	bonding in, 432	of carbohydrates, 996–998, 1009
structure, 171	electrophilic aromatic substitution in,	of carbonyl groups, agents for, 608 table
Propylene, 167. See also Propene	476–477	of carboxylic acids, 587, 608, 659, 754
Propylene glycol, 589 Propylene oxide, 248. <i>See also</i> 1,2-	Pyrrolidine, 116 acetylation of, 874	Clemmensen, 456–457, 474, 662
Epoxypropane	enamine of, 677, 882	of esters, 587, 608 of imines, 879–880
Propyl group, 65	Pyruvic acid	metal-ammonia reduction of alkynes,
Propyl radical, 151–152	acetyl coenzyme A from, 1016	351–352
Prostacyclins, 1045	biological reduction of, 681–682	of nitriles, 877, 902
Prostaglandins, 736, 1024-1025	biosynthesis of, 602, 1015	of nitro groups, 878, 902
Prosthetic groups. See Coenzymes	conversion to L-alanine, 1063–1065	Wolff-Kishner, 456, 662
Protease inhibitors, 1099		Reductive amination, 879–881, 903
Protecting groups	Quantized energy states, 489–490	Refining of petroleum, 69–70
acetals as, 671–672	Quantum, 488	Reforming, in petroleum refining, 70
for amino acids, 1077–1079	Quantum numbers, 7, 8	Regioselectivity
for arylamines, 886–888 Protein Data Bank, 1087	Quaternary ammonium salts, 861	addition of bromine to 1,3-butadiene, 382 addition of hydrogen halides to
Proteins	hydroxides, Hofmann elimination of,	1,3-butadiene, 379–382
amino acid analysis of, 1070–1071	883–885, 904	allylic halogenation, 370–372, 392
biosynthesis of, 1096–1100	as phase-transfer catalysts, 871–872, 901	dehydration of alcohols, 183–185,
glycoproteins, 995–996	preparation of, 874, 883	199–200, 379, 392, 419
hydrolysis of, 1070–1071	Quaternary carbon, 65	dehydrohalogenation of alkyl halides,
structure of	Quaternary structure of proteins, 1089	191–192, 197, 199–200, 379, 419
primary, 1067, 1070-1076, 1084	Quinine, 869 Quinoline, 430	Regioselectivity—Cont.
quaternary, 1089	Quinonie, 430 Quinones, 958–959, 964	electrophilic addition to alkenes, 216–219,
secondary, 1084–1086	Quinones, 750 757, 707	224, 225–230, 236–238, 251
tertiary, 1086–1089		electrophilic aromatic substitution, 457–477
synthesis of, 1076–1084	Racemic mixture, 266, 274, 291	elimination-addition mechanism of

I-27 INDEX

nucleophilic aromatic substitution,	L-Rhamnose, 1009	Secobarbital, 845
927–931	Rhodium, hydrogenation catalyst, 208, 209	Seconal, 845
epoxide ring opening, 632–637, 646	Rhodopsin, 676	Secondary carbon, 65
Hofmann elimination, 883–885, 904	9-β-D-Ribofuranosyladenine. <i>See</i> Adenosine	Secondary structure, 1084–1086
hydration of alkynes, 355–356, 361	1-β-D-Ribofuranosyluracil. See Uridine	Selectivity. See Regioselectivity;
hydroboration-oxidation, 228-233, 250	Ribonuclease, 1083–1084	Stereoselective reactions
and Markovnikov's rule, 216–219, 251	Ribonucleic acid (RNA), 1090–1094	α-Selinene, 1026, 1027
and regiospecificity, 285	messenger (mRNA), 1096–1100	Semicarbazide, 674
and Zaitsev's rule, 183–184, 199	polymerase, 1096	Semicarbazones, 674
Relative configuration, 267	purine and pyrimidine bases in, 1090–1091	Sequence rule
Resolution, 286–288, 293	ribosomal (rRNA), 1096	application to alkene stereochemistry,
Resonance, 3, 23–26, 45	transfer (tRNA), 1096	173–175, 199
aldehydes and ketones, 467, 658	D-Ribose, 976, 977	and R-S notation, 268–271, 291
allylic carbocations, 366–369	cyanohydrin, 1009	L-Serine, 1055, 1059
allyl radical, 370	2-deoxy, 1010, 1027	electrostatic potential map, 1053
amides, 779, 886	furanose and pyranose forms, 980–982,	Serotonin, 869
aniline, 863	984, 1007	Sesquiterpene, 1026
benzene, 402–403	D-Ribulose, 986	Sesterpene, 1026
benzylic carbocations, 418	Rickets, 1039	Sex attractant. See Pheromone,
benzylic radicals, 414	Ring flipping. See Ring inversion	sex attractant
carboxylic acid derivatives, 777–780	Ring inversion	Sex hormones, 1040–1042, 1044 Shared electron point and Sea Covalent hand
carboxylic acids, 739 cyclohexadienyl anions, 925	cyclohexane, 103, 119, 510 substituted cyclohexanes, 104–107,	Shared-electron pair bond. <i>See</i> Covalent bond Shielding of nuclei in NMR spectroscopy,
cyclohexadienyl cations, 444, 458–462,	110–114, 119	493–495. <i>See also</i> Chemical shift
465, 466, 467, 470, 475	RNA, mRNA, rRNA, and tRNA. See	Sickle-cell anemia, 1089–1090, 1100
enolate ions, 709–711	Ribonucleic acid	Sigma bond, 32
formic acid, 739	Roberts, John D., 928	Sigmatropic rearrangement, 958
β-keto ester anions, 832	Robinson, Sir Robert, 4, 402, 724	Silk, 1085
<i>p</i> -nitroaniline, 867	Robinson annulation, 724, 728	Siloac, Edward, 272
ozone, 23, 240	Rotamer, 90. See also Conformation	Silver oxide, 883, 958, 964
phenol, 941	Rotational energy barrier	Simmons, Howard E., 564
phenoxide anions, 943, 945, 953	alkenes, 172–173	Simmons-Smith reaction (reagent), 564
protonated benzoic acid, 756	amides, 779	Simvastatin, 1038
protonated ketone, 665	butane, 94–95	Sinigrin, 989
rules for, 24–25 table	conjugated dienes, 376–377	Sites of unsaturation. See Index of hydrogen
α , β -unsaturated carbonyl compounds, 721	ethane, 93–94	deficiency
Resonance energy	R-S-notational system, 268–271, 291	SI units, 11, 23
[18]-annulene, 426	Rubber, 383	Skew boat conformation of cyclohexane, 100
anthracene, 408–409	Rubbing alcohol, 18, 128. See also Isopropyl	Smalley, Richard, 410
benzene, 403–404, 433	alcohol	Smith, Ronald D., 564
conjugated dienes, 374–375	Ruzicka, Leopold, 1028	S _N 1 mechanism, 143–146, 162, 315–321,
cycloctatetraene, 422		331 table
1,3,5-hexatriene, 404	S (symbol for entropy), 106	S_N 2 mechanism, 146, 162, 306–312, 331 table
naphthalene, 408–409	Sabatier, Paul, 208, 209, 550	Soap
phenanthrene, 408–409	Sabinene, 1049	manufacture, 795
Resorcinol, 940 acetylation, 949	Saccharic acids. See Aldaric acids	mode of action, 744–745 Sodium, reaction with
Restriction enzymes, 1101	Saccharin, 997	alkynes, 351–352, 360
Retention of configuration, 233, 307–308	Salicylic acid, 737	arenes, 412–414, 434
in acylation of alcohols, 595	acetylation of, 952	Sodium acetylide, 336, 547
in Baeyer-Villiger oxidation, 683–684	acidity of, 953	preparation of, 346, 347
in ester hydrolysis, 797	synthesis of, 952–954	reaction with
in Hofmann rearrangement, 813	Samuelsson, Bengt, 1025	alkyl halides, 335–336, 347–348
Retinal, 676	Sandmeyer reactions, 892, 894, 906–907, 919	cyclohexanone, 556
Retinol, 580, 676	Sanger, Frederick, 1070–1074, 1101–1102	Sodium alkoxides
Retro-aldol cleavage, 1003	Sanger's reagent. See 1-Fluoro-2,4-	as bases in elimination reactions, 190–191,
Retrosynthetic analysis	dinitrobenzene	323–325
acetoacetic ester synthesis, 840	α-Santonin, 1046	preparation of, 190
Grignard synthesis of alcohols, 557–560,	Saponification, 794–799	in Williamson ether synthesis, 626–627,
570–571	Sawhorse diagrams, 90–91	644
malonic ester synthesis, 843	Saytzeff. See Zaitsev, Alexander M.	Sodium amide
Simmons-Smith reaction, 565	Schiemann reaction, 892, 893, 905	as base, 346–349, 359, 556
Wittig reaction, 679–680	Schiff's base, 673, 689. See also Imines	reaction with aryl halides, 927-931
Reverse transcriptase, 1098	Schrödinger, Erwin, 7 Schrödinger equation. <i>See</i> Wave equation	Sodium borohydride
L-Rhamnonolactone, 1009	Scientific method, 217	reduction
	Scientific filetion, 217	

of aldehydes and ketones, 583–587, 608, 662	AX to AM to AB, 506 doublet of doublets, 508	dehydrohalogenation of alkyl halides, 191–192
of aryl diazonium ions, 894	quartet, 502	enzyme-catalyzed hydration of fumaric
of carbohydrates, 996-998, 1009	triplet, 504	acid, 276
Sodium cyanoborohydride, 881	Squalene, 638, 1027, 1028, 1036, 1044	hydrogenation of alkenes, 212, 285
Sodium dichromate. See also Chromic acid;	Squalene 2,3-epoxide, 638	metal-ammonia reduction of alkynes,
Potassium dichromate	in cholesterol biosynthesis, 1036, 1037	351–352, 360 Starogenesific resptients, 284, 286
oxidation of alcohols, 597, 611 oxidation of alkylbenzenes, 416, 435, 474	Staggered conformation, 90–92, 117 Stanozolol, 1041	Stereospecific reactions, 284–286 Baeyer-Villiger oxidation, 683–684
Sodium 1-dodecyl sulfate (SDS), 745, 1061	Starch, 994	bimolecular (E2) elimination, 194–196
Sodium ethoxide	Stearic acid, 737	bimolecular nucleophilic substitution (S_N2),
as base	Stearolic acid, 351	307–309, 328, 331 table
in acetoacetic ester synthesis, 839-841	Sterculic acid, 180	Diels-Alder reaction, 385, 392–393
in Claisen and Dieckmann	Stereocenter. See Stereogenic center	epoxidation of alkenes, 238–240, 250, 285,
condensations, 832, 836	Stereochemistry, 259–301	630
in elimination reactions, 190, 323–325 in malonic ester synthesis, 842–844	and chemical reactions bimolecular nucleophilic substitution	epoxide formation from bromohydrins, 631 epoxide ring opening, 634, 637
reaction with epoxides, 633	$(S_N 2)$, 307–310, 328, 331	halogen addition to alkenes, 233–236, 250,
Sodium hydride, 837	ester hydrolysis, 797	284–286
Sodium hypochorite, 599	hydrogenation of alkenes, 212-213, 285	halogen addition to alkynes, 357
Sodium iodide, 305	that produce chiral molecules, 274–276	Hofmann elimination, 884
Sodium lauryl sulfate, 745. See also Sodium	that produce diastereomers, 284–285	Hofmann rearrangement, 813
1-dodecyl sulfate	unimolecular nucleophilic substitution	hydroboration of alkenes, 229–230, 250
Sodium metaperiodate, 639 Sodium methoxide	(S _N 1), 318–319, 331 (see also Stereoselective reactions;	hydrogenation of alkenes, 212, 285 hydrogenation of alkynes, 350–351, 360
reaction with aryl halides, 922–926	Stereospecific reactions)	hydroxylation of alkenes, 590, 637
Sodium stearate, 744	Fischer projection formulas	Simmons-Smith reaction, 564–565
Solid-phase peptide synthesis, 1082–1084	α-amino acids, 1056, 1103	Steric effects, 95
Solvation	carbohydrates, 973-974, 977, 1007	in bimolecular nucleophilic substitution
and nucleophilicity, 313–315	chiral molecules, 271–272, 292	(S_N2) , 310–312, 331
Solvent effects, and rate of nucleophilic	two stereogenic centers, 276–278, 280, 293	in cyclohexane derivatives, 104
substitution, 320–323, 331 Solvolysis	notational systems	in electrophilic aromatic substitution, 471–472
of alkyl halides, 312–313, 315–321	cis and trans, 108–109, 172–173, 199	in Hofmann elimination, 885
of allylic halides, 366–369, 390	D and L, 973–978, 1007, 1052,	in hydration of aldehydes and ketones,
of benzylic halides, 417–418	1056-1057	663–667
Somatostatin, 1107	E and Z, 173–175, 199	in hydroboration of alkenes, 230
Sondheimer, Franz, 426	erythro and threo, 278	in hydrogenation of α -pinene, 212–213
Sorbitol, 612 Space-filling models, 27. <i>See also</i> Molecular	R and S, 268–271, 292 (see also Stereoisomers)	in sodium borohydride reduction, 681 and stability of isomeric alkenes, 177–181,
models and modeling	Stereoelectronic effects	199, 211
and steric hindrance, 311	bimolecular elimination, 194–196, 201	and stereoselectivity, 285, 681
Specific rotation, 266	nucleophilic substitution, 308	Steric hindrance, 95, 213, 681
Spectrometer, 489	Stereogenic axis, 378	in bimolecular nucleophilic substitution
mass, 526–527	Stereogenic center, 260–263, 276–283, 290	$(S_N 2), 310-312, 331$
nuclear magnetic resonance, 491–493	absolute configuration, 268–271	Steric strain, 95, 96, 179
Spectroscopy, 487–545. See also Mass spectrometry	in 2-butanol, 262, 267–269 in chiral molecules, 260–263, 268, 271, 276	Steroids, 283, 1034–1042 Strain. <i>See</i> Angle strain; Torsional strain; van
general principles, 488–489, 533–534	and Fischer projections, 271–272, 278,	der Waals strain
¹³ C NMR, 510–517, 535	292–293, 973–974, 1007, 1052,	Strain energy minimization, 96
¹ H NMR, 490–510, 534–535	1056–1057	Strecker, Adolf, 1062
infrared, 518–522, 536	formation of in chemical reactions,	Strecker synthesis, 1062
ultraviolet-visible, 522–526, 536	274–276, 284–285	Streptimidone, 298
Speed of light, 488 Spermaceti, 1024	phosphorus, 290 sulfur, 290	Stretching vibrations and infrared spectroscopy, 518
Spermidine, 870	Stereoisomers, 22, 108–114, 120	Structural formulas
Spermine, 870	alkenes, 172–175, 199	Fischer projections, 271–272, 292–293,
Spin-spin coupling, 502	diastereomers, 276-288, 291	973–974, 977, 1007, 1056, 1103
Spin-spin splitting	enantiomers, 259–276, 291	Lewis dot structures, 12
in ¹³ C NMR, 535	endo and exo, 681	Newman projections, 90–92, 95
in ¹⁹ F NMR, 544	epimers, 1002	Structural formulas—Cont.
in ¹ H NMR, 500–509, 534–535 n + 1 rule, 500, 508	maximum number of, 282–283, 293 Stereoregular polymers, 288–289, 293, 570	of organic molecules, 19–21 sawhorse, 90–91
Spirocyclic hydrocarbons, 114, 120	Stereoselective reactions, 212, 285	wedge-and-dash, 26, 28, 91
Spiropentane, 114	addition to carbonyl groups, 681–682	Structural isomers. See Constitutional isomers
Splitting diagrams	alcohol dehydration, 185	Structural theory, 3

I-29 INDEX

Styrene, 407	nucleophilic substitution reactions of,	of carboxylic acid anhydrides, 786-787
addition of bromine, 420	326–328, 332	of esters, 792–794, 798, 820
addition of hydrogen bromide, 421, 435 industrial preparation of, 248, 399, 419, 453	preparation of, 326, 332, 591 Sulfonation	in reaction of esters with ammonia, 800
polymers, 247, 421, 1082	of benzene, 446, 448–449	Δ ⁹ -Tetrahydrocannabinol, 947, 1019 Tetrahydrofuran, 116, 620. <i>See also</i> Oxolane
copolymer with 1,3-butadiene, 383	of benzenesulfonic acid, 468	acid-catalyzed cleavage, 630
Substituent effects	of 2,6-dimethylphenol, 950	complex with borane, 228
on acidity	of 1,2,4,5-tetramethylbenzene, 478	dipole moment of, 622
of carboxylic acids, 745–748	Sulfones, 639, 647	as solvent, 550
of phenols, 944–945	Sulfonic acids, 326, 446, 605	Tetrahydropyran, 620, 621. See also
on basicity of amines, 865–868	Sulfonium salts, 640–641, 647	Oxane
on equilibrium, hydration of aldehydes and	Sulfoxides. See also Dimethyl sulfoxide as	Tetrahymanol, 1046
ketones, 663–667	solvent optically active, 290	Tetramethylsilane, 493, 512
on rate of acid-catalyzed hydration, 226	preparation of, 638, 647	electrostatic potential map, 487 Tetrapeptide, 1051
of bimolecular nucleophilic substitution	Sulfuric acid. See also Sulfonation	Tetraterpene, 1026
$(S_N 2)$, 310–312, 331	addition to alkenes, 223–225, 249	Thalidomide, 273
of bromine addition to alkenes, 236	as catalyst for	Theobromine, 1091
of epoxidation, 239-240	alcohol dehydration, 182	Thermochemistry, 77
of nucleophilic aromatic substitution,	dimerization of alkenes, 244–245	Thermodynamic control
922–926	Fischer esterification, 593	addition of hydrogen bromide to
of unimolecular elimination, 196–197	hydration of alkenes, 225–227, 249	1,3-butadiene, 381–382, 392
of unimolecular nucleophilic substitution	nitration of arenes, 448	addition to α, β -unsaturated aldehydes and
(S _N 1), 145–146, 315–318, 331, 366–367, 417–419	esters of, 596 Sulfur trioxide, 448	ketones, 722–724 Fries rearrangement, 952
on rate and regioselectivity in electrophilic	Syndiotactic polymer, 288–289, 293	glycoside formation, 991
aromatic substitution, 457–477, 926	Synthon, 840	Kolbe-Schmitt reaction, 952–954
on stability	Système International d'Unités. See SI unit	Thiazole, 431
of aldehydes and ketones, 658		Thiirane, 620
of alkenes, 176-180, 199	2.45 T. Sac 2.45 Triablaranhanayyaaatia	Thioesters
of carbocations, 140-142, 145-146, 162,	2,4,5-T. See 2,4,5-Trichlorophenoxyacetic acid	acetyl coenzyme A, 1016–1017
367, 417–419	Talaromycin A, 694	nucleophilic acyl substitution in, 800
of carbon-carbon triple bonds, 350	D-Talose, 977	Thiols
of free radicals, 149–153, 162, 414–415	Tariric acid, 340	acidity of, 604–605, 609, 638
(see also Field effect; Inductive effect; Steric effects)	Tartaric acids, 286	conjugate addition to α,β-unsaturated carbonyl compounds, 723
Substitution reactions, 126, 139–146, 302–338	Tautomerism. See Keto-enol tautomerism	oxidation of, 605, 611
allylic	Teflon, 13, 247	physical properties of, 604
free radical, 370–372, 390–391	Terephthalic acid. See 1,4-	preparation of, 603–604, 609
nucleophilic, 368-369, 390	Benzenedicarboyxylic acid	Thionyl chloride, 18
of aryl diazonium salts, 892–894, 905–907	Termination step, 154–156 Terpenes, 1025–1034, 1044	reactions of
benzylic	biosynthesis of, 1028–1034	with alcohols, 147, 161, 591
free radical, 414–416, 435	classification, 1026	carboxylic acids, 454, 754, 780
nucleophilic, 417–419, 435 electrophilic aromatic, 443–486	and isoprene rule, 1028	Thiopental sodium, 846
nucleophilic acyl, 774–830	α-Terpineol, 1031	Thiophene, 430 bonding in, 432
nucleophilic aliphatic, 143–146, 302–338	Tertiary carbon, 65	electrophilic aromatic substitution in, 477
nucleophilic aromatic, 922–933, 956	Tertiary structure, 1086–1089	Thiourea, 604, 846
Substitutive nomenclature, 127–128, 159	Tesla, Nikola, 491	Threo, stereochemical prefix, 278
Succinic acid, 182, 804	Tesla	L-Threonine, 1055, 1059
Succinic anhydride, 455, 804	unit of magnetic field strength, 491 Testosterone, 1040	electrostatic potential map, 1053
Succinimide, 371, 416, 804	Tetrachloromethane, 132, 148. See also	D-Threose, 975
Sucralose, 997–998	Carbon tetrachloride	L-Threose, 975
Sucrose, 973, 993, 999 octaacetate, 1010	Tetrafluoroethylene, 14	Thymidine, 1092 Thymine, 1090
Sulfa drugs, 896–897	Tetrafluoromethane, 13	Thymne, 1090 Thymol, 947
Sulfanilamide, 896	Tetrahedral geometry	Thyroxine, 273–274
Sulfenic acids, 605	and sp^3 hybridization, 35–37	Tin, reduction of nitro groups by, 878, 902
Sulfhydryl group, 603	and VSEPR, 26–29, 45	Toluene, 398, 399
Sulfides	Tetrahedral intermediate, 755	benzylic halogenation of, 415
alkylation of, 640-641, 647	Claisen condensation, 833 Dieckmann condensation, 835	bond dissociation energy, 414
oxidation of, 639–640, 646–647	Fischer esterification, 756–757, 767	nitration of, 457–460, 474
preparation of, 638, 646	in hydrolysis	oxidation of, 417
Sulfinic acids, 605 Sulfonate esters	of acyl chlorides, 782–783	physical properties of, 941
Suitonale esters	of amides, 806, 808	<i>p</i> -Toluenesulfonic acid

Walden inversion, 308

as acid catalyst, 670 acidity of, 326, 327 esters	Trigonal planar geometry and sp^2 hybridization, 38–40, 141, 171, 405, 657	Uridine, 1091 Uronic acids, 1000–1001
preparation of, 326, 332, 591	and VSEPR, 28–29	
as substrates in nucleophilic aliphatic	Trigonal pyramidal geometry, 28–29	Valence-bond theory, 32–34, 42, 46
substitution, 326–328, 332	Trimer, 244	Valence electrons, 10
nucleophilic aromatic substitution in, 946	Trimethylamine, 863	and Lewis structures, 20
<i>p</i> -Toluenesulfonyl chloride, reaction with	2,2,4-Trimethylpentane, 244	Valence-shell electron pair repulsion
alcohols, 326, 332, 591	photochemical chlorination of, 166	and molecular geometry, 26-29, 45
o-Toluidine, 894	Trimethyl phosphate, 596	L-Valine, 1054, 1059
Torsional strain	Trimethyl phosphite, 596	electrostatic potential map, 1053
boat conformation of cyclohexane, 99	Trimyristin, 795–796	L-Vancosamine, 988
cyclobutane, 107–108	Triose phosphate isomerase, 1004	van der Waals forces
cyclopentane, 108	Tripeptide, 1051	attractive, 72–74
cyclopropane, 107	Triphenylamine, 867	and stability of isomeric alkanes, 76
eclipsed conformation of butane, 95–96	Triphenylmethane, 577	repulsive, 74, 95, 99–100, 104
eclipsed conformation of ethane, 92	Triphenylmethyl perchlorate, 419	in stereoisomers, 110, 178-180, 199 (see
Torsion angle, 91–92	Triphenylphosphine, 680	also van der Waals strain)
Tosylates. See p-Toluenesulfonic acid, esters	Triple bond, 14, 40–42, 47, 339, 341–343. See	van der Waals radius, 74, 96, 99
Transamination, 1063–1065	also Bonds	van der Waals strain, 95. See also Steric effects;
s-Trans conformation, 376–377	in benzyne, 928, 930	Steric hindrance; Steric strain
Transcription, 1096	Tristearin, 788, 1017–1018	alkenes, 178-180, 199
Transfer RNA. See Ribonucleic acid, transfer	Triterpenes, 1026	[10]-annulene, 425
Transition metal organometallic compounds,		axial substituents in cyclohexane, 104–107
	biosynthesis of, 637–638, 1030, 1035–1037 Trityl. <i>See</i> Triphenylmethyl	boat conformation of cyclohexane, 99
566, 572–573 Transition state	Trivial names. See Common names	butane, 95, 96
and activation energy, 93	Tropylium cation. See Cycloheptatrienyl	S _N 2 reactions, 310–312
••	**	in stereoisomers, 110, 120, 178–180, 199
addition of bromine to alkenes, 236	cation Trypein 1071	Vane, John, 1025
bimolecular elimination (E2), 193–194	Trypsin, 1071 L-Tryptophan, 1054, 1059	Van't Hoff, Jacobus, 259, 265
bimolecular nucleophilic substitution (S_N2),		Vernolepin, 758
146, 307, 309, 318, 329, 331	electrostatic potential map, 1053	Veronal, 845
electrostatic potential map, 302	Twist boat. See Skew boat conformation of	Vibrations of methylene group, 518
bond rotation in ethane, 93	cyclohexane	Vicinal coupling, 500, 534
carbocation rearrangement, 188–189	Tyrian purple, 4, 46, 920	dihedral angle dependence, 544
conversion of primary alcohols to primary	L-Tyrosine, 1054, 1059, 1064	Vicinal dihalides. See Dihaloalkanes, vicinal
alkyl halides, 146, 162, 329	electrostatic potential map, 1053	Vicinal diols, 589
Diels-Alder reaction, 384		cyclic acetals from, 670–671, 672
double-bond rotation, 172–173	Ubiquinone, 959	preparation of, 589–590
epoxide ring opening, 634, 635	Ultraviolet-visible spectroscopy, 522–526, 536	reaction with periodic acid, 602–603, 609
free-radical halogenation, 157 hydrolysis of ethyl bromide, 318	alcohols, 607	Vicinal halohydrins. See Halohydrins
	aldehydes and ketones, 686–687	Vinyl chloride, 48, 170, 176, 247, 248, 550
nucleophilic capture of carbocation, 142,	amines, 899–900	Vinyl group, 169–170
143, 316	carboxylic acids and derivatives, 765, 818	Vinyl halides. See Alkenyl halides;
oxonium ion dissociation, 144–146 proton transfer, 136–137, 143	ethers and epoxides, 643	Vinyl chloride
unimolecular nucleophilic substitution	phenols, 961	Vinylic, 366
$(S_N 1)$, 143–146, 316	Unimolecular	Vinyllithium, 556
	elementary step, 144	Vinylmagnesium chloride, 550
Translation, 1096–1100	elimination, 196-198, 201 (see also E1	Visible light, 488
Tranylcypromine, 907 Triacylglycerols. <i>See</i> Glycerol, esters	mechanism)	Vision, chemistry of , 675–676
	nucleophilic substitution, 143–146,	Vitalism, 2
Tribromomethane. See also Bromoform	315–321 (see also S _N 1 mechanism)	Vitamin, 858
dibromocarbene from, 565–566	α,β-Unsaturated aldehydes and ketones	A, 676, 1027
Tricarboxylic acid cycle, 1064 Trichloroacetic acid, 746	conjugate addition to, 722–725, 728–729,	B ₆ , 675
Trichloromethane, 148. See also Chloroform	846–847, 852	B ₁₂ , 568
	preparation of, 717–720, 729	C (see Ascorbic acid)
boiling point of, 132	resonance in, 721	D ₃ , 1038–1039, 1044
2,4,5-Trichlorophenol, 955 2,4,5-Trichlorophenoxyacetic acid, 955	stabilization of, 720–721	K, 959
	Uracil, 1090	von Baeyer, Adolf, 97, 845
cis-9-Tricosene, 363 Triethylamine, 866	Urea	VSEPR. See Valence-shell electron pair
Trifluoroacetic acid, 766	from ammonium cyanate, 2	repulsion
p-(Trifluoromethyl)aniline, 867	electrostatic potential map, 1	Vulcanization, 383
(Trifluoromethyl)benzene, nitration of,	industrial synthesis of, 802	
457–458, 461–462	reaction of, with diethyl malonate, 845	W.11 P. 1 200
731 730, 401-402	Urethans 813 See also Carbamic acid esters	Walden, Paul, 308

Urethans, 813. See also Carbamic acid, esters

Urey, Harold C., 754

Triglycerides. See Glycerol, esters

I-31 INDEX

Wallach, Otto, 1028 Water acidity of, 134-135, 345, 552 bond angles, 28-29 dipole moment of, 129 solubility of alcohols in, 132 Watson, James D., 1094 Wave equation, 7 Wave function, 7 Wavelength, 488 Wave number, 518 Waxes, 1024 Wedge-and-dash structural formulas, 26, 28, 91 Whitmore, Frank C., 187 Williamson, Alexander, 626 Williamson ether synthesis, 626-627, 644, 954-956 intramolecular, 631 Willstätatter, Richard, 422 Wittig, Georg, 677 Wittig reaction, 677-681, 690 Wohler, Friederich, 2 Wolff-Kishner reduction, 456, 662 Wood alcohol, 128, 579 Woodward, Robert B., 390, 616 Woodward-Hoffmann rules, 390

Wool, 1085 Wotiz, John, 401 Wurtz, Charles-Adolphe, 3

X-ray crystallography and structure of carbohydrates, 982, 985, 996 nucleic acids, 1094 proteins, 1084 vitamin B₁₂, 568 X-rays, 488 m-Xylene, 406 nitration of, 472 o-Xylene, 406 Birch reduction of, 434 p-Xylene, 406 Friedel-Crafts acylation of, 471 oxidation of, 750 D-Xylonic acid, 1000 D-Xylose, 977 furanose forms, 981 oxidation, 1000 L-Xylulose, 986

Yields in chemical reactions, 138 Ylides, 677–681

Z (abbrevation for benzyloxycarbonyl group), 1078 Z (stereochemical prefix), 173-175, 199 Z (symbol for atomic number), 7 Zaitsev, Alexander M., 184 Zaitsev's rule, 184, 191, 199, 200 Zidovudine, 1098 Ziegler, Karl, 246, 569 Ziegler-Natta catalyst, 246, 383, 567-570 Zigzag conformations of alkanes, 97 in carboxypeptidase A, 1086-1088 in Clemmensen reduction, 456-457, 474 electronegativity of, 547 in hydrolysis of ozonides, 241 Zinc-copper couple, 564 Zusammen, (Z), 173-175, 199 Zwitterion, 1057, 1103