BRIEF CONTENTS

Preface		xxv
Introduction		1
 2 ALKA 3 CONI 4 ALCC 5 STRU 6 REAC 7 STER 8 NUCI 9 ALKY 10 CON. 11 AREN 12 REAC 13 SPEC 14 ORG. 15 ALCC 16 ETHE 17 ALDE CARE 20 CARE 21 ESTE 22 AMIN 23 ARYI 24 PHEN 25 CARE 26 LIPID 27 AMIN 	FORMATIONS OF ALKANES AND CYCLOALKANES OHOLS AND ALKYL HALIDES CTURE AND PREPARATION OF ALKENES: ELIMINATION REACTIONS TIONS OF ALKENES: ADDITION REACTIONS EOCHEMISTRY LEOPHILIC SUBSTITUTION YNES IUGATION IN ALKADIENES AND ALLYLIC SYSTEMS IES AND AROMATICITY TIONS OF ARENES: ELECTROPHILIC AROMATIC SUBSTITUTION TROSCOPY ANOMETALLIC COMPOUNDS OHOLS, DIOLS, AND THIOLS RS, EPOXIDES, AND SULFIDES ENYDES AND KETONES: NUCLEOPHILIC ADDITION TO THE ARBONYL GROUP LS AND ENOLATES BOXYLIC ACID DERIVATIVES: NUCLEOPHILIC ACYL SUBSTITUTION R ENOLATES NOS SOLUTIONS ON ACIDS, PEPTIDES, AND PROTEINS. NUCLEIC ACIDS	7 53 89 126 167 208 259 302 339 365 398 443 487 546 579 619 654 701 736 774 831 858 917 939 972 1015 1051
APPENDIX APPENDIX APPENDIX	2 ANSWERS TO IN-TEXT PROBLEMS	A-1 A-9 A-64
GLOSSARY CREDITS INDEX		G-1 C-1 I-1

Preface xxv

INTRODUCTION 1

The Origins of Organic Chemistry 1 Berzelius, Wöhler, and Vitalism 1 The Structural Theory 3 Electronic Theories of Structure and Reactivity 3 The Influence of Organic Chemistry 4 Computers and Organic Chemistry 4 Challenges and Opportunities 5 Where Did the Carbon Come From? 6

CHAPTER 1

CHEMICAL BONDING

- 1.1 Atoms, Electrons, and Orbitals 7
- 1.2 Ionic Bonds 11
- 1.3 Covalent Bonds 12
- 1.4 Double Bonds and Triple Bonds 14
- 1.5 Polar Covalent Bonds and Electronegativity 15

7

- 1.6 Formal Charge 16
- 1.7 Structural Formulas of Organic Molecules 19
- 1.8 Constitutional Isomers 22
- 1.9 Resonance 23
- 1.10 The Shapes of Some Simple Molecules 26 Learning By Modeling 27

Learning by Wodening 27

- 1.11 Molecular Dipole Moments 30
- 1.12 Electron Waves and Chemical Bonds 31
- 1.13 Bonding in H_2 : The Valence Bond Model 32
- 1.14 Bonding in H₂: The Molecular Orbital Model 34
- 1.15 Bonding in Methane and Orbital Hybridization 35
- 1.16 *sp*³ Hybridization and Bonding in Ethane 37
- 1.17 sp² Hybridization and Bonding in Ethylene 38
- 1.18 *sp* Hybridization and Bonding in Acetylene 40
- 1.19 Which Theory of Chemical Bonding Is Best? 42
- 1.20 SUMMARY 43

PROBLEMS 47

CHAPTER 2

ALKANES 53

- 2.1 Classes of Hydrocarbons 53
- 2.2 Reactive Sites in Hydrocarbons 54
- 2.3 The Key Functional Groups 55
- 2.4 Introduction to Alkanes: Methane, Ethane, and Propane 56
- 2.5 Isomeric Alkanes: The Butanes 57

Methane and the Biosphere 58

- 2.6 Higher *n*-Alkanes 59
- 2.7 The C₅H₁₂ Isomers 59
- 2.8 IUPAC Nomenclature of Unbranched Alkanes 61
- 2.9 Applying the IUPAC Rules: The Names of the C₆H₁₄ Isomers 62

A Brief History of Systematic Organic Nomenclature 63

- 2.10 Alkyl Groups 65
- 2.11 IUPAC Names of Highly Branched Alkanes 66
- 2.12 Cycloalkane Nomenclature 68
- 2.13 Sources of Alkanes and Cycloalkanes 69
- 2.14 Physical Properties of Alkanes and Cycloalkanes 71
- 2.15 Chemical Properties. Combustion of Alkanes 74

Thermochemistry 77

- 2.16 Oxidation–Reduction in Organic Chemistry 78
- 2.17 SUMMARY 80

PROBLEMS 83

CHAPTER 3

CONFORMATIONS OF ALKANES AND CYCLOALKANES 89

- 3.1 Conformational Analysis of Ethane 90
- 3.2 Conformational Analysis of Butane 94

Molecular Mechanics Applied to Alkanes and Cycloalkanes 96

- 3.3 Conformations of Higher Alkanes 97
- 3.4 The Shapes of Cycloalkanes: Planar or Nonplanar? 98
- 3.5 Conformations of Cyclohexane 99
- 3.6 Axial and Equatorial Bonds in Cyclohexane 100
- 3.7 Conformational Inversion (Ring Flipping) in Cyclohexane 103
- 3.8 Conformational Analysis of Monosubstituted Cyclohexanes 104

Enthalpy, Free Energy, and Equilibrium Constant 106

- 3.9 Small Rings: Cyclopropane and Cyclobutane 106
- 3.10 Cyclopentane 108
- 3.11 Medium and Large Rings 108
- 3.12 Disubstituted Cycloalkanes: Stereoisomers 108
- 3.13 Conformational Analysis of Disubstituted Cyclohexanes 110
- 3.14 Polycyclic Ring Systems 114
- 3.15 Heterocyclic Compounds 116
- 3.16 SUMMARY 117

PROBLEMS 120

CHAPTER 4

ALCOHOLS AND ALKYL HALIDES 126

- 4.1 IUPAC Nomenclature of Alkyl Halides 127
- 4.2 IUPAC Nomenclature of Alcohols 127
- 4.3 Classes of Alcohols and Alkyl Halides 128
- 4.4 Bonding in Alcohols and Alkyl Halides 129
- 4.5 Physical Properties of Alcohols and Alkyl Halides: Intermolecular Forces 130
- 4.6 Acids and Bases: General Principles 133
- 4.7 Acid-Base Reactions: A Mechanism for Proton Transfer 136
- 4.8 Preparation of Alkyl Halides from Alcohols and Hydrogen Halides 137
- 4.9 Mechanism of the Reaction of Alcohols with Hydrogen Halides 139
- 4.10 Structure, Bonding, and Stability of Carbocations 140

- 4.11 Potential Energy Diagrams for Multistep Reactions: The S_N1 Mechanism 143
- 4.12 Effect of Alcohol Structure on Reaction Rate 145
- 4.13 Reaction of Primary Alcohols with Hydrogen Halides: The S_N2 Mechanism 146
- 4.14 Other Methods for Converting Alcohols to Alkyl Halides 147
- 4.15 Halogenation of Alkanes 148
- 4.16 Chlorination of Methane 148
- 4.17 Structure and Stability of Free Radicals 149
- 4.18 Mechanism of Methane Chlorination 153

From Bond Energies to Heats of Reaction 155

- 4.19 Halogenation of Higher Alkanes 156
- 4.20 SUMMARY 159

PROBLEMS 163

CHAPTER 5

STRUCTURE AND PREPARATION OF ALKENES: ELIMINATION REACTIONS 167

5.1 Alkene Nomenclature 167

Ethylene 168

- 5.2 Structure and Bonding in Alkenes 170
- 5.3 Isomerism in Alkenes 172
- 5.4 Naming Stereoisomeric Alkenes by the E–Z Notational System 173
- 5.5 Physical Properties of Alkenes 174
- 5.6 Relative Stabilities of Alkenes 176
- 5.7 Cycloalkenes 180
- 5.8 Preparation of Alkenes: Elimination Reactions 181
- 5.9 Dehydration of Alcohols 182
- 5.10 Regioselectivity in Alcohol Dehydration: The Zaitsev Rule 183
- 5.11 Stereoselectivity in Alcohol Dehydration 184
- 5.12 The Mechanism of Acid-Catalyzed Dehydration of Alcohols 185
- 5.13 Rearrangements in Alcohol Dehydration 187
- 5.14 Dehydrohalogenation of Alkyl Halides 190
- 5.15 Mechanism of the Dehydrohalogenation of Alkyl Halides: The E2 Mechanism 192
- 5.16 Anti Elimination in E2 Reactions: Stereoelectronic Effects 194
- 5.17 A Different Mechanism for Alkyl Halide Elimination: The E1 Mechanism 196
- 5.18 SUMMARY 198

PROBLEMS 202

CHAPTER 6

REACTIONS OF ALKENES: ADDITION REACTIONS 208

- 6.1 Hydrogenation of Alkenes 208
- 6.2 Heats of Hydrogenation 209
- 6.3 Stereochemistry of Alkene Hydrogenation 212
- 6.4 Electrophilic Addition of Hydrogen Halides to Alkenes 213
- 6.5 Regioselectivity of Hydrogen Halide Addition: Markovnikov's Rule 214
- 6.6 Mechanistic Basis for Markovnikov's Rule 216

Rules, Laws, Theories, and the Scientific Method 217

- 6.7 Carbocation Rearrangements in Hydrogen Halide Addition to Alkenes 219
- 6.8 Free-Radical Addition of Hydrogen Bromide to Alkenes 220

- 6.9 Addition of Sulfuric Acid to Alkenes 223
- 6.10 Acid-Catalyzed Hydration of Alkenes 225
- 6.11 Hydroboration-Oxidation of Alkenes 227
- 6.12 Stereochemistry of Hydroboration–Oxidation 229
- 6.13 Mechanism of Hydroboration–Oxidation 230
- 6.14 Addition of Halogens to Alkenes 233
- 6.15 Stereochemistry of Halogen Addition 233
- 6.16 Mechanism of Halogen Addition to Alkenes: Halonium Ions 234
- 6.17 Conversion of Alkenes to Vicinal Halohydrins 236
- 6.18 Epoxidation of Alkenes 238
- 6.19 Ozonolysis of Alkenes 240
- 6.20 Introduction to Organic Chemical Synthesis 243
- 6.21 Reactions of Alkenes with Alkenes: Polymerization 244

Ethylene and Propene: The Most Important Industrial Organic Chemicals 248

6.22 SUMMARY 249

PROBLEMS 252

CHAPTER 7

STEREOCHEMISTRY 259

- 7.1 Molecular Chirality: Enantiomers 259
- 7.2 The Stereogenic Center 260
- 7.3 Symmetry in Achiral Structures 264
- 7.4 Properties of Chiral Molecules: Optical Activity 265
- 7.5 Absolute and Relative Configuration 267
- 7.6 The Cahn–Ingold–Prelog R–S Notational System 268
- 7.7 Fischer Projections 271
- 7.8 Physical Properties of Enantiomers 272

Chiral Drugs 273

- 7.9 Reactions That Create a Stereogenic Center 274
- 7.10 Chiral Molecules with Two Stereogenic Centers 276
- 7.11 Achiral Molecules with Two Stereogenic Centers 279

Chirality of Disubstituted Cyclohexanes 281

- 7.12 Molecules with Multiple Stereogenic Centers 282
- 7.13 Reactions That Produce Diastereomers 284
- 7.14 Resolution of Enantiomers 286
- 7.15 Stereoregular Polymers 288
- 7.16 Stereogenic Centers Other Than Carbon 290
- 7.17 SUMMARY 290

PROBLEMS 293

CHAPTER 8

NUCLEOPHILIC SUBSTITUTION 302

- 8.1 Functional Group Transformation by Nucleophilic Substitution 302
- 8.2 Relative Reactivity of Halide Leaving Groups 305
- 8.3 The S_N2 Mechanism of Nucleophilic Substitution 306
- 8.4 Stereochemistry of S_N2 Reactions 307
- 8.5 How S_N2 Reactions Occur 308
- 8.6 Steric Effects in S_N2 Reactions 310
- 8.7 Nucleophiles and Nucleophilicity 312

An Enzyme-Catalyzed Nucleophilic Substitution of an Alkyl Halide 314

- 8.8 The S_N1 Mechanism of Nucleophilic Substitution 315
- 8.9 Carbocation Stability and $S_N 1$ Reaction Rates 315
- 8.10 Stereochemistry of S_N1 Reactions 318
- 8.11 Carbocation Rearrangements in S_N 1 Reactions 319
- 8.12 Effect of Solvent on the Rate of Nucleophilic Substitution 320
- 8.13 Substitution and Elimination as Competing Reactions 323
- 8.14 Sulfonate Esters as Substrates in Nucleophilic Substitution 326
- 8.15 Looking Back: Reactions of Alcohols with Hydrogen Halides 329
- 8.16 SUMMARY 330

PROBLEMS 332

CHAPTER 9

ALKYNES 339

- 9.1 Sources of Alkynes 339
- 9.2 Nomenclature 340
- 9.3 Physical Properties of Alkynes 341
- 9.4 Structure and Bonding in Alkynes: sp Hybridization 341

Natural and "Designed" Enediyne Antibiotics 344

- 9.5 Acidity of Acetylene and Terminal Alkynes 344
- 9.6 Preparation of Alkynes by Alkylation of Acetylene and Terminal Alkynes 346
- 9.7 Preparation of Alkynes by Elimination Reactions 348
- 9.8 Reactions of Alkynes 350
- 9.9 Hydrogenation of Alkynes 350
- 9.10 Metal-Ammonia Reduction of Alkynes 351
- 9.11 Addition of Hydrogen Halides to Alkynes 352
- 9.12 Hydration of Alkynes 355
- 9.13 Addition of Halogens to Alkynes 356
- 9.14 Ozonolysis of Alkynes 357
- 9.15 SUMMARY 357

PROBLEMS 358

CHAPTER 10

CONJUGATION IN ALKADIENES AND ALLYLIC SYSTEMS 365

- 10.1 The Allyl Group 365
- 10.2 Allylic Carbocations 366
- 10.3 Allylic Free Radicals 370
- 10.4 Allylic Halogenation 370
- 10.5 Classes of Dienes 372
- 10.6 Relative Stabilities of Dienes 374
- 10.7 Bonding in Conjugated Dienes 375
- 10.8 Bonding in Allenes 377
- 10.9 Preparation of Dienes 378
- 10.10 Addition of Hydrogen Halides to Conjugated Dienes 379
- 10.11 Halogen Addition to Dienes 382
- 10.12 The Diels–Alder Reaction 382

Diene Polymers 383

- 10.13 The π Molecular Orbitals of Ethylene and 1,3-Butadiene 386
- 10.14 A π Molecular Orbital Analysis of the Diels–Alder Reaction 388
- 10.15 SUMMARY 390

PROBLEMS 393

CHAPTER 11

ARENES AND AROMATICITY 398

- 11.1 Benzene 399
- 11.2 Kekulé and the Structure of Benzene 399

Benzene, Dreams, and Creative Thinking 401

- 11.3 A Resonance Picture of Bonding in Benzene 402
- 11.4 The Stability of Benzene 403
- 11.5 An Orbital Hybridization View of Bonding in Benzene 405
- 11.6 The π Molecular Orbitals of Benzene 405
- 11.7 Substituted Derivatives of Benzene and Their Nomenclature 406
- 11.8 Polycyclic Aromatic Hydrocarbons 408

Carbon Clusters, Fullerenes, and Nanotubes 410

- 11.9 Physical Properties of Arenes 411
- 11.10 Reactions of Arenes: A Preview 411
- 11.11 The Birch Reduction 412
- 11.12 Free-Radical Halogenation of Alkylbenzenes 414
- 11.13 Oxidation of Alkylbenzenes 416
- 11.14 Nucleophilic Substitution in Benzylic Halides 417
- 11.15 Preparation of Alkenylbenzenes 419
- 11.16 Addition Reactions of Alkenylbenzenes 419
- 11.17 Polymerization of Styrene 421
- 11.18 Cyclobutadiene and Cyclooctatetraene 422
- 11.19 Hückel's Rule: Annulenes 423
- 11.20 Aromatic lons 426
- 11.21 Heterocyclic Aromatic Compounds 430
- 11.22 Heterocyclic Aromatic Compounds and Hückel's Rule 432
- 11.23 SUMMARY 433

PROBLEMS 437

CHAPTER 12

REACTIONS OF ARENES: ELECTROPHILIC AROMATIC SUBSTITUTION 443

- 12.1 Representative Electrophilic Aromatic Substitution Reactions of Benzene 444
- 12.2 Mechanistic Principles of Electrophilic Aromatic Substitution 444
- 12.3 Nitration of Benzene 447
- 12.4 Sulfonation of Benzene 448
- 12.5 Halogenation of Benzene 448
- 12.6 Friedel-Crafts Alkylation of Benzene 450
- 12.7 Friedel–Crafts Acylation of Benzene 453
- 12.8 Synthesis of Alkylbenzenes by Acylation-Reduction 455
- 12.9 Rate and Regioselectivity in Electrophilic Aromatic Substitution 457
- 12.10 Rate and Regioselectivity in the Nitration of Toluene 458
- 12.11 Rate and Regioselectivity in the Nitration of (Trifluoromethyl)benzene 461
- 12.12 Substituent Effects in Electrophilic Aromatic Substitution: Activating Substituents 463
- 12.13 Substituent Effects in Electrophilic Aromatic Substitution: Strongly Deactivating Substituents 466
- 12.14 Substituent Effects in Electrophilic Aromatic Substitution: Halogens 469
- 12.15 Multiple Substituent Effects 470
- 12.16 Regioselective Synthesis of Disubstituted Aromatic Compounds 472

- 12.17 Substitution in Naphthalene 474
- 12.18 Substitution in Heterocyclic Aromatic Compounds 475
- 12.19 SUMMARY 477

PROBLEMS 480

CHAPTER 13

SPECTROSCOPY 487

- 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation 488
- 13.2 Principles of Molecular Spectroscopy: Quantized Energy States 489
- 13.3 Introduction to ¹H NMR Spectroscopy 490
- 13.4 Nuclear Shielding and ¹H Chemical Shifts 493
- 13.5 Effects of Molecular Structure on ¹H Chemical Shifts 494
- 13.6 Interpreting Proton NMR Spectra 497
- 13.7 Spin–Spin Splitting in NMR Spectroscopy 500
- 13.8 Splitting Patterns: The Ethyl Group 503
- 13.9 Splitting Patterns: The Isopropyl Group 505
- 13.10 Splitting Patterns: Pairs of Doublets 505
- 13.11 Complex Splitting Patterns 507
- 13.12 ¹H NMR Spectra of Alcohols 509
- 13.13 NMR and Conformations 510
- 13.14 ¹³C NMR Spectroscopy 510
- 13.15 ¹³C Chemical Shifts 512
- 13.16 ¹³C NMR and Peak Intensities 513
- 13.17 ¹³C—¹H Coupling 515
- 13.18 Using DEPT to Count the Hydrogens Attached to ¹³C 515

Magnetic Resonance Imaging 517

- 13.19 Infrared Spectroscopy 518
- 13.20 Ultraviolet-Visible (UV-VIS) Spectroscopy 522
- 13.21 Mass Spectrometry 526

Gas Chromatography, GC/MS, and MS/MS 530

- 13.22 Molecular Formula as a Clue to Structure 532
- 13.23 SUMMARY 533

PROBLEMS 536

CHAPTER 14

ORGANOMETALLIC COMPOUNDS 546

- 14.1 Organometallic Nomenclature 547
- 14.2 Carbon-Metal Bonds in Organometallic Compounds 547
- 14.3 Preparation of Organolithium Compounds 549
- 14.4 Preparation of Organomagnesium Compounds: Grignard Reagents 550
- 14.5 Organolithium and Organomagnesium Compounds as Brønsted Bases 551
- 14.6 Synthesis of Alcohols Using Grignard Reagents 553
- 14.7 Synthesis of Alcohols Using Organolithium Reagents 554
- 14.8 Synthesis of Acetylenic Alcohols 556
- 14.9 Retrosynthetic Analysis 557
- 14.10 Preparation of Tertiary Alcohols from Esters and Grignard Reagents 560
- 14.11 Alkane Synthesis Using Organocopper Reagents 561
- 14.12 An Organozinc Reagent for Cyclopropane Synthesis 563
- 14.13 Carbenes and Carbenoids 565
- 14.14 Transition-Metal Organometallic Compounds 566
- 14.15 Ziegler-Natta Catalysis of Alkene Polymerization 567

An Organometallic Compound That Occurs Naturally: Coenzyme B₁₂ 568

14.16 SUMMARY 570

PROBLEMS 573

CHAPTER 15

ALCOHOLS, DIOLS, AND THIOLS 579

- 15.1 Sources of Alcohols 579
- 15.2 Preparation of Alcohols by Reduction of Aldehydes and Ketones 583
- 15.3 Preparation of Alcohols by Reduction of Carboxylic Acids and Esters 587
- 15.4 Preparation of Alcohols from Epoxides 587
- 15.5 Preparation of Diols 589
- 15.6 Reactions of Alcohols: A Review and a Preview 590
- 15.7 Conversion of Alcohols to Ethers 590
- 15.8 Esterification 593
- 15.9 Esters of Inorganic Acids 595
- 15.10 Oxidation of Alcohols 596

Economic and Environmental Factors in Organic Synthesis 598

- 15.11 Biological Oxidation of Alcohols 600
- 15.12 Oxidative Cleavage of Vicinal Diols 602
- 15.13 Preparation of Thiols 603
- 15.14 Properties of Thiols 604
- 15.15 Spectroscopic Analysis of Alcohols 605
- 15.16 SUMMARY 607

PROBLEMS 611

CHAPTER 16

ETHERS, EPOXIDES, AND SULFIDES 619

- 16.1 Nomenclature of Ethers, Epoxides, and Sulfides 619
- 16.2 Structure and Bonding in Ethers and Epoxides 621
- 16.3 Physical Properties of Ethers 622
- 16.4 Crown Ethers 622

Polyether Antibiotics 624

- 16.5 Preparation of Ethers 625
- 16.6 The Williamson Ether Synthesis 626
- 16.7 Reactions of Ethers: A Review and a Preview 627
- 16.8 Acid-Catalyzed Cleavage of Ethers 628
- 16.9 Preparation of Epoxides: A Review and a Preview 630
- 16.10 Conversion of Vicinal Halohydrins to Epoxides 630
- 16.11 Reactions of Epoxides: A Review and a Preview 632
- 16.12 Nucleophilic Ring-Opening Reactions of Epoxides 633
- 16.13 Acid-Catalyzed Ring-Opening Reactions of Epoxides 635
- 16.14 Epoxides in Biological Processes 637
- 16.15 Preparation of Sulfides 638
- 16.16 Oxidation of Sulfides: Sulfoxides and Sulfones 639
- 16.17 Alkylation of Sulfides: Sulfonium Salts 640
- 16.18 Spectroscopic Analysis of Ethers 641
- 16.19 SUMMARY 643

PROBLEMS 647

CHAPTER 17

ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION TO THE CARBONYL GROUP 654

- 17.1 Nomenclature 654
- 17.2 Structure and Bonding: The Carbonyl Group 657
- 17.3 Physical Properties 658
- 17.4 Sources of Aldehydes and Ketones 659
- 17.5 Reactions of Aldehydes and Ketones: A Review and a Preview 661
- 17.6 Principles of Nucleophilic Addition: Hydration of Aldehydes and Ketones 663
- 17.7 Cyanohydrin Formation 667
- 17.8 Acetal Formation 668
- 17.9 Acetals as Protecting Groups 671
- 17.10 Reaction with Primary Amines: Imines 672
- 17.11 Reaction with Secondary Amines: Enamines 674

Imines in Biological Chemistry 675

- 17.12 The Wittig Reaction 677
- 17.13 Planning an Alkene Synthesis via the Wittig Reaction 678
- 17.14 Stereoselective Addition to Carbonyl Groups 681
- 17.15 Oxidation of Aldehydes 682
- 17.16 Baeyer-Villiger Oxidation of Ketones 683
- 17.17 Spectroscopic Analysis of Aldehydes and Ketones 684
- 17.18 SUMMARY 688

PROBLEMS 691

CHAPTER 18

ENOLS AND ENOLATES 701

- 18.1 The α -Carbon Atom and Its Hydrogens 702
- 18.2 α Halogenation of Aldehydes and Ketones 703
- 18.3 Mechanism of α Halogenation of Aldehydes and Ketones 703
- 18.4 Enolization and Enol Content 705
- 18.5 Stabilized Enols 707
- 18.6 Base-Catalyzed Enolization: Enolate Anions 708
- 18.7 The Haloform Reaction 711

The Haloform Reaction and the Biosynthesis of Trihalomethanes 713

- 18.8 Some Chemical and Stereochemical Consequences of Enolization 713
- 18.9 The Aldol Condensation 715
- 18.10 Mixed Aldol Condensations 719
- 18.11 Effects of Conjugation in α , β -Unsaturated Aldehydes and Ketones 720
- 18.12 Conjugate Addition to α , β -Unsaturated Carbonyl Compounds 722
- 18.13 Additions of Carbanions to α,β -Unsaturated Ketones: The Michael Reaction 724
- 18.14 Conjugate Addition of Organocopper Reagents to α,β -Unsaturated Carbonyl Compounds 724
- 18.15 Alkylation of Enolate Anions 725
- 18.16 SUMMARY 726

PROBLEMS 726

CHAPTER 19

CARBOXYLIC ACIDS 736

- 19.1 Carboxylic Acid Nomenclature 737
- 19.2 Structure and Bonding 738
- 19.3 Physical Properties 739
- 19.4 Acidity of Carboxylic Acids 740
- 19.5 Salts of Carboxylic Acids 742

Quantitative Relationships Involving Carboxylic Acids 743

- 19.6 Substituents and Acid Strength 745
- 19.7 Ionization of Substituted Benzoic Acids 747
- 19.8 Dicarboxylic Acids 748
- 19.9 Carbonic Acid 749
- 19.10 Sources of Carboxylic Acids 750
- 19.11 Synthesis of Carboxylic Acids by the Carboxylation of Grignard Reagents 750
- 19.12 Synthesis of Carboxylic Acids by the Preparation and Hydrolysis of Nitriles 752
- 19.13 Reactions of Carboxylic Acids: A Review and a Preview 753
- 19.14 Mechanism of Acid-Catalyzed Esterification 754
- 19.15 Intramolecular Ester Formation: Lactones 758
- 19.16 α Halogenation of Carboxylic Acids: The Hell–Volhard–Zelinsky Reaction 759
- 19.17 Decarboxylation of Malonic Acid and Related Compounds 760
- 19.18 Spectroscopic Analysis of Carboxylic Acids 763
- 19.19 SUMMARY 765

PROBLEMS 768

CHAPTER 20

CARBOXYLIC ACID DERIVATIVES: NUCLEOPHILIC ACYL SUBSTITUTION 774

- 20.1 Nomenclature of Carboxylic Acid Derivatives 775
- 20.2 Structure of Carboxylic Acid Derivatives 777
- 20.3 Nucleophilic Substitution in Acyl Chlorides 780
- 20.4 Preparation of Carboxylic Acid Anhydrides 783
- 20.5 Reactions of Carboxylic Acid Anhydrides 784
- 20.6 Sources of Esters 787
- 20.7 Physical Properties of Esters 788
- 20.8 Reactions of Esters: A Review and a Preview 790
- 20.9 Acid-Catalyzed Ester Hydrolysis 791
- 20.10 Ester Hydrolysis in Base: Saponification 794
- 20.11 Reaction of Esters with Ammonia and Amines 799
- 20.12 Thioesters 800
- 20.13 Preparation of Amides 800
- 20.14 Lactams 803
- 20.15 Imides 804
- 20.16 Hydrolysis of Amides 804
- 20.17 The Hofmann Rearrangement 807

Condensation Polymers: Polyamides and Polyesters 809

- 20.18 Preparation of Nitriles 813
- 20.19 Hydrolysis of Nitriles 815
- 20.20 Addition of Grignard Reagents to Nitriles 816

- 20.21 Spectroscopic Analysis of Carboxylic Acid Derivatives 817
- 20.22 SUMMARY 819

PROBLEMS 822

CHAPTER 21

ESTER ENOLATES 831

- 21.1 The Claisen Condensation 832
- 21.2 Intramolecular Claisen Condensation: The Dieckmann Reaction 835
- 21.3 Mixed Claisen Condensations 836
- 21.4 Acylation of Ketones with Esters 837
- 21.5 Ketone Synthesis via β-Keto Esters 838
- 21.6 The Acetoacetic Ester Synthesis 839
- 21.7 The Malonic Ester Synthesis 842
- 21.8 Barbiturates 845
- 21.9 Michael Additions of Stabilized Anions 846
- 21.10 α Deprotonation of Carbonyl Compounds by Lithium Dialkylamides 847
- 21.11 SUMMARY 850

PROBLEMS 853

CHAPTER 22

AMINES 858

- 22.1 Amine Nomenclature 859
- 22.2 Structure and Bonding 861
- 22.3 Physical Properties 863
- 22.4 Measures of Amine Basicity 864
- 22.5 Basicity of Amines 865

Amines as Natural Products 869

- 22.6 Tetraalkylammonium Salts as Phase-Transfer Catalysts 871
- 22.7 Reactions That Lead to Amines: A Review and a Preview 872
- 22.8 Preparation of Amines by Alkylation of Ammonia 872
- 22.9 The Gabriel Synthesis of Primary Alkylamines 875
- 22.10 Preparation of Amines by Reduction 877
- 22.11 Reductive Amination 879
- 22.12 Reactions of Amines: A Review and a Preview 881
- 22.13 Reaction of Amines with Alkyl Halides 883
- 22.14 The Hofmann Elimination 883
- 22.15 Electrophilic Aromatic Substitution in Arylamines 886
- 22.16 Nitrosation of Alkylamines 888
- 22.17 Nitrosation of Arylamines 891
- 22.18 Synthetic Transformations of Aryl Diazonium Salts 892
- 22.19 Azo Coupling 895

From Dyes to Sulfa Drugs 896

- 22.20 Spectroscopic Analysis of Amines 897
- 22.21 SUMMARY 900

PROBLEMS 907

CHAPTER 23

ARYL HALIDES 917

- 23.1 Bonding in Aryl Halides 917
- 23.2 Sources of Aryl Halides 918

- 23.3 Physical Properties of Aryl Halides 918
- 23.4 Reactions of Aryl Halides: A Review and a Preview 919
- 23.5 Nucleophilic Substitution in Nitro-Substituted Aryl Halides 922
- 23.6 The Addition–Elimination Mechanism of Nucleophilic Aromatic Substitution 923
- 23.7 Related Nucleophilic Aromatic Substitution Reactions 926
- 23.8 The Elimination–Addition Mechanism of Nucleophilic Aromatic Substitution: Benzyne 927
- 23.9 Diels-Alder Reactions of Benzyne 931
- 23.10 SUMMARY 932

PROBLEMS 934

CHAPTER 24

PHENOLS 939

- 24.1 Nomenclature 939
- 24.2 Structure and Bonding 940
- 24.3 Physical Properties 941
- 24.4 Acidity of Phenols 942
- 24.5 Substituent Effects on the Acidity of Phenols 944
- 24.6 Sources of Phenols 946
- 24.7 Naturally Occurring Phenols 946
- 24.8 Reactions of Phenols: Electrophilic Aromatic Substitution 948
- 24.9 Acylation of Phenols 949
- 24.10 Carboxylation of Phenols: Aspirin and the Kolbe-Schmitt Reaction 952
- 24.11 Preparation of Aryl Ethers 954

Agent Orange and Dioxin 955

- 24.12 Cleavage of Aryl Ethers by Hydrogen Halides 956
- 24.13 Claisen Rearrangement of Allyl Aryl Ethers 957
- 24.14 Oxidation of Phenols: Quinones 958
- 24.15 Spectroscopic Analysis of Phenols 960
- 24.16 SUMMARY 962

PROBLEMS 965

CHAPTER 25

CARBOHYDRATES 972

- 25.1 Classification of Carbohydrates 972
- 25.2 Fischer Projections and the D-L Notation 973
- 25.3 The Aldotetroses 974
- 25.4 Aldopentoses and Aldohexoses 976
- 25.5 A Mnemonic for Carbohydrate Configurations 978
- 25.6 Cyclic Forms of Carbohydrates: Furanose Forms 978
- 25.7 Cyclic Forms of Carbohydrates: Pyranose Forms 981
- 25.8 Mutarotation 985
- 25.9 Ketoses 986
- 25.10 Deoxy Sugars 987
- 25.11 Amino Sugars 988
- 25.12 Branched-Chain Carbohydrates 988
- 25.13 Glycosides 988
- 25.14 Disaccharides 991
- 25.15 Polysaccharides 993
- 25.16 Cell-Surface Glycoproteins 995
- 25.17 Carbohydrate Structure Determination 996
- 25.18 Reduction of Carbohydrates 996

How Sweet It Is! 997

- 25.19 Oxidation of Carbohydrates 998
- 25.20 Cyanohydrin Formation and Carbohydrate Chain Extension 1001
- 25.21 Epimerization, Isomerization, and Retro-Aldol Cleavage Reactions of Carbohydrates 1003
- 25.22 Acylation and Alkylation of Hydroxyl Groups in Carbohydrates 1004
- 25.23 Periodic Acid Oxidation of Carbohydrates 1005
- 25.24 SUMMARY 1006

PROBLEMS 1008

CHAPTER 26

LIPIDS 1015

- 26.1 Acetyl Coenzyme A 1016
- 26.2 Fats, Oils, and Fatty Acids 1017
- 26.3 Fatty Acid Biosynthesis 1019
- 26.4 Phospholipids 1022
- 26.5 Waxes 1024
- 26.6 Prostaglandins 1024
- 26.7 Terpenes: The Isoprene Rule 1025
- 26.8 Isopentenyl Pyrophosphate: The Biological Isoprene Unit 1028
- 26.9 Carbon–Carbon Bond Formation in Terpene Biosynthesis 1029
- 26.10 The Pathway from Acetate to Isopentenyl Pyrophosphate 1032
- 26.11 Steroids: Cholesterol 1034

Good Cholesterol? Bad Cholesterol? What's the Difference? 1038

- 26.12 Vitamin D 1038
- 26.13 Bile Acids 1039
- 26.14 Corticosteroids 1040
- 26.15 Sex Hormones 1040
 - Anabolic Steroids 1041
- 26.16 Carotenoids 1042
- 26.17 SUMMARY 1042

PROBLEMS 1045

CHAPTER 27

AMINO ACIDS, PEPTIDES, AND PROTEINS. NUCLEIC ACIDS

- 27.1 Classification of Amino Acids 1052
- 27.2 Stereochemistry of Amino Acids 1052
- 27.3 Acid–Base Behavior of Amino Acids 1057

Electrophoresis 1060

- 27.4 Synthesis of Amino Acids 1061
- 27.5 Reactions of Amino Acids 1063
- 27.6 Some Biochemical Reactions of Amino Acids 1063
- 27.7 Peptides 1067
- 27.8 Introduction to Peptide Structure Determination 1070
- 27.9 Amino Acid Analysis 1070
- 27.10 Partial Hydrolysis of Peptides 1071
- 27.11 End Group Analysis 1071
- 27.12 Insulin 1073
- 27.13 The Edman Degradation and Automated Sequencing of Peptides 1074
- 27.14 The Strategy of Peptide Synthesis 1076

1051

- 27.15 Amino Group Protection 1077
- 27.16 Carboxyl Group Protection 1079
- 27.17 Peptide Bond Formation 1079
- 27.18 Solid-Phase Peptide Synthesis: The Merrifield Method 1082
- 27.19 Secondary Structures of Peptides and Proteins 1084
- 27.20 Tertiary Structure of Peptides and Proteins 1086
- 27.21 Coenzymes 1088
- 27.22 Protein Quaternary Structure: Hemoglobin 1089
- 27.23 Pyrimidines and Purines 1090
- 27.24 Nucleosides 1091
- 27.25 Nucleotides 1092
- 27.26 Nucleic Acids 1093
- 27.27 Structure and Replication of DNA: The Double Helix 1094
- 27.28 DNA-Directed Protein Biosynthesis 1096
 - AIDS 1098
- 27.29 DNA Sequencing 1100
- 27.30 SUMMARY 1103

PROBLEMS 1106

APPENDIX 1 PHYSICAL PROPERTIES A-1

APPENDIX 2 ANSWERS TO IN-TEXT PROBLEMS A-9

APPENDIX 3 LEARNING CHEMISTRY WITH MOLECULAR MODELS: Using SpartanBuild and SpartanView A-64

GLOSSARY G-1 CREDITS C-1 INDEX I-1