CHAPTER

Electrical Design of Overhead
Lines

9.1
9.2
9.3
9.4
9.5

9.6

9.7

9.8
9.9
9.10

9.11

Constantsof a Transmission Line
Resistance of a Transmission Line
Skin Effect

Flux Linkages

Inductance of a Single Phase Two-
WireLine

Inductance of a 3-Phase Over head
Line

Concept of Self-GMD and Mutual -
GMD

Inductance Formulasin Termsof GMD
Electric Potential

Capacitance of a Single Phase Two-
WirelLine

Capacitance of a 3-Phase Overhead
Line

Introduction

t has aready been discussed that transmis
I sion of electric power isdone by 3-phase, 3-
wireoverhead lines. Ana.c. transmissionline
has resistance, inductance and capacitance uni-
formly distributed along its length. These are
known as constants or parametersof theline. The
performance of atransmission line dependsto a
considerabl e extent upon these constants. For in-
stance, these constants determine whether the
efficiency and voltage regulation of the linewill
be good or poor. Therefore, a sound concept of
these constantsis necessary in order to makethe
electrical design of atransmissionlinea techni-
cal success. In this chapter, we shall focus our
attention on the methods of calculating these
constants for a given transmission line. Out of
these three parameters of atransmission line, we
shall pay greatest attention to inductance and ca-
pacitance. Resistanceiscertainly of equal impor-
tance but requires less explanation sinceit is not
afunction of conductor arrangement.
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Electrical Design of Overhead Lines 203

9.1 Constants of a Transmission Line

A transmission line hasresistance, inductance and capacitance uniformly distributed along thewhole
length of theline. Before we pass on to the methods of finding these constantsfor atransmissionline,
it is profitable to understand them thoroughly.
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(i) Resistance. Itisthe opposition of line conductorsto current flow. Theresistanceisdistrib-
uted uniformly along the whole length of the line as shown in Fig. 9.1 (i). However, the
performance of atransmission line can be analysed conveniently if distributed resistanceis
considered as lumped as shown in Fig. 9.1(ii).

(if) Inductance. When an alternating current flows through a conductor, a changing flux is set
up which links the conductor. Due to these flux linkages, the conductor possesses induc-
tance. Mathematically, inductance is defined as the flux linkages per amperei.e.,

A
—

Inductance, L = %henry

where W = flux linkagesin weber-turns
I current in amperes
Theinductanceisalso uniformly distributed along the length of the * line as show in Fig. 9.1(i).
Again for the convenience of analysis, it can be taken to be lumped as shown in Fig. 9.1(ii).

(iif) Capacitance. Weknow that any two conductors separated by aninsulating material consti-
tute acapacitor. Asany two conductors of an overhead transmission line are separated by air
which acts as an insulation, therefore, capacitance exists between any two overhead line
conductors. The capacitance between the conductorsis the charge per unit potential differ-

encei.e,
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*  Thetwo paralel conductors of atransmission line form arectangular loop of one turn. The changing flux
in the line links the loop and hence the line has inductance.
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204 Principles of Power System

where g = chargeonthelinein coulomb
v = p.d. between the conductorsin volts

The capacitanceis uniformly distributed along the whole length of the line and may be regarded
asauniform series of capacitors connected between the conductors as shown in Fig. 9.2(i). When an
aternating voltage is impressed on a transmission line, the charge on the conductors at any point
increases and decreases with the increase and decrease of the instantaneous value of the voltage
between conductors at that point. The result is that a current (known as charging current) flows
between the conductors [See Fig. 9.2(ii)]. This charging current flows in the line even when it is
open-circuited i.e., supplying no load. It affects the voltage drop aong the line as well as the effi-
ciency and power factor of theline.

9.2 Resistance of a Transmission Line

The resistance of transmission line conductors is the most important cause of power lossin atrans-
mission line. The resistance R of a line conductor having resistivity p, length | and area of cross-
sectionaisgivenby ;

_o
R=0p a
Thevariation of resistance of metallic conductors with temperatureis practically linear over the

normal range of operation. Suppose R; and R, are the resistances of a conductor at t,°C and t,°C
(t,>t,) respectively. If o, isthe temperature coefficient at t,°C, then,

Ry = Ry [1+ oy (t,—ty)]
o
l+a,ty

0, = temperature coefficient at 0° C
(i) Inasinglephaseor 2-wired.cline, thetotal resistance (known asloop resistance) isequal to
double the resistance of either conductor.
(if) Incase of a3-phasetransmission line, resistance per phase is the resistance of one conduc-
tor.

9.3 Skin Effect

When a conductor is carrying steady direct current (d.c.), this current is uniformly distributed over
thewhole X -section of the conductor. However, an alternating current flowing through the conductor
doesnot distribute uniformly, rather it hasthe tendency to concentrate near the surface of the conduc-
tor asshown in Fig. 9.3. Thisisknown as skin effect.

The tendency of alternating current to concentrate near the surface of a conductor is known as
skin effect.

Dueto skin effect, the effective area of cross-section of the con-
ductor through which current flows is reduced. Consequently, the re-
sistance of the conductor is slightly increased when carrying an alter-
nating current. The cause of skin effect can be easily explained. A solid
conductor may be thought to be consisting of alarge number of strands, ~ Current No current
each carrying asmall part of the current. The * inductance of each strand {'r?;"’ssu‘r’;’aecre ey
will vary according to itsposition. Thus, the strands near the centre are
surrounded by a greater magnetic flux and hence have larger induc- Fig. 9.3
tance than that near the surface. The high reactance of inner strands

where a, =

* For a direct current, inductance is zero and hence the current distributes uniformly over the entire X-
section of the conductor.
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causesthealternating current to flow near the surface of conductor. Thiscrowding of current near the
conductor surface isthe skin effect. The skin effect depends upon the following factors:
(i) Nature of materia
(if) Diameter of wire — increases with the diameter of wire.
(i)  Frequency - increases with theincrease in frequency.
(iv) Shapeof wire  —lessfor stranded conductor than the solid conductor.

It may be noted that skin effect is negligible when the supply frequency islow (< 50 Hz) and
conductor diameter issmall (< 1cm).

9.4 Flux Linkages

Asstated earlier, theinductance of acircuit isdefined asthe flux linkages per unit current. Therefore,
in order to find the inductance of a circuit, the determination of flux linkages is of primary impor-
tance. We shall discuss two important cases of flux linkages.

1. Fluxlinkagesduetoasinglecurrent carrying conductor. Consider along straight cylin-
drical conductor of radirusr metresand carrying acurrent | amperes (r.m.s.) asshownin Fig. 9.4 (i).
This current will set up magnetic field. The magnetic lines of force will exist inside the conductor as
well as outside the conductor. Both these fluxes will contribute to the inductance of the conductor.

(i) Fluxlinkagesduetointernal flux. RefertoFig. 9.4 (ii) wherethe X-section of the conduc-
tor is shown magnified for clarity. The magnetic field intensity at a point x metres from the centreis
givenby;

|

* - X
X 2T X
Assuming auniform current density,
L= T X
L R &
X2 1 X
O H = S5 xlIx—= I AT/m
X r? 2nx  2mr?

Flux

X
@ y

U] (i1
Fig. 9.4

*  According to Ampere'slaw, m.m.f. (ampere-turns) around any closed path equals the current enclosed by
the path. The current enclosed by the pathisl, and mm.f. = H, x 2ritx. O H, x 2mix=1,.
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If 1 (= MoK, ) isthe permeability of the conductor, then flux density at the considered point is
given by;

B, = HoH, Hy wh/m®

_ HolX | = Ho X
2mr? 21
Now, flux d¢ through acylindrical shell of radia thickness dx and axial length 1 misgiven by;
Ho X

27mr?

— wh/m?[-. *H, = 1 for non-magnetic material]

dp = B x1xdx= dxweber

2
)2( ] only. Therefore, flux linkages per metre length of the

Thisflux linkswith current 1, (=
conductor is

3
X HolX

dp = —5dp= 22
v T

Total flux linkages from centre upto the conductor surfaceis

dx weber-turns

r 3
_ [Hglx
Vine = 2T[ ré o
= uBOn weber-turns per metre length
(if) Fluxlinkagesdueto external flux. Now let uscal-
culate the flux linkages of the conductor due to external flux.
Theexternal flux extendsfrom the surface of the conductor to
infinity. Referring to Fig. 9.5, thefield intensity at adistance /” 1/
x metres (from centre) outside the conductor is given by ; - X
I

= ——AT
H, > TIx /'m

/’/
-
-
-

Y _——-

~
~
~— S ———
~——r S
Q
X

SS
SN

Mo |
Fluxdensity, B, = pH, = me/m Fig. 9.5

Now, flux d¢ through acylindrical shell of thickness dx and axial length 1 metreis
Mg |
dp =B, dx=-— dX webers

Theflux dglinks all the current in the conductor once and only once.

Mo |
0 Fluxlinkages, dp = do=-— dX weber-turns
Total flux linkages of the conductor from surface toinfinity,

We = % dx weber-turns
.

Hol ¢ pgl
0 Overdl fluxlinkages, W :UJmﬁ%fSLnﬁ;f[de

_ Mol [dx
O v = o {4 J x] wh-turns/m length

r
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2. Flux linkages in parallel current- ds
carrying conductors. We shall now determine
the flux linkages in a group of parallel current
carrying conductors. Fig. 9.6 shows the con-
ductors A,B, C etc. carrying currents |, Ig, I
etc. Let usconsider the flux linkages with one
conductor, say conductor A. There will be flux
linkages with conductor A due to itsown cur-  d,
rent as discussed previously. Alsotherewill be l

e
i
NP

flux linkageswith this conductor dueto the mu-
tual inductance effectsof I, I, | 5 etc. Weshall

[— o —>
MDD

\JSIUJ
i
NP

now determinethetotal flux linkageswith con- © F
ductor A.
Flux linkages with conductor A due to its Fie. 9.6
own current 18
I (o)
= Foall, [ (i)
2 | 4 X
r
Flux linkages with conductor A dueto current I 5
«Hole 7 dx
= o a[; (i)
Flux linkages with conductor A dueto current lc
= “0 c dX (i)
O Tota flux linkages with conductor A
= (i) + (i) + (iii) + ......
_ HolAD:L ]: Uolsj—dx Uolc J—_
- D4 xD 21 4 X

1

Similarly, flux linkages with other conductors can be determined. The above rel atl on provides
the basis for evaluating inductance of any circuit.

9.5 Inductance of aSingle Phase Two-wire Line

A single phase line consists of two parallel conductors which form a rectangular loop of one turn.
When an aternating current flows through such a loop, a changing magnetic flux is set up. The
changing flux links the loop and hence the loop (or single phase line) possesses inductance. It may
appear that inductance of asingle phaselineisnegligible becauseit consists of aloop of oneturnand
theflux path isthrough air of high reluctance. But asthe X -sectional areaof theloopisvery **large,
even for a small flux density, the total flux linking the loop is quite large and hence the line has
appreciable inductance.

*  Theconductor B carrying current | is at adistance d, from conductor A. Only the external flux dueto I
linkswith conductor A. Thisexternal flux dueto I ; linkswith conductor Afromd, to e and hence theterm

Hol BJ'dX

**  The conductors are spaced several metres and the Iength of thelineis severa kilometres. Therefore, the
loop has alarge X-sectional area.
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Consider a single phase overhead line consisting A B
of two paralel conductors A and B spaced d metres e
apart as shown in Fig. 9.7. Conductors A and B carry

the same amount of current (i.e. 1, = Ig), butintheop- | |
posite direction because one formsthe return circuit of | ¢ q >
the other.

O I,+1g =0 Fig. 9.7

In order to find the inductance of conductor A (or conductor B), we shall have to consider the
flux linkages with it. There will be flux linkages with conductor A due to its own current | , and also
due to the mutual inductance effect of current I ;in the conductor B.

Flux linkages with conductor A dueto its own current

- M [_ + _[ dX] (i) [SeeArt. 9.4]
Flux linkages with conductor A dueto current I
= “o B JdX (i)

Total flux linkages with conductor Ais
Wa = exp. (i) + exp (i)

et
—[ SEX de]
(

+|Oge o _Ioge r) IA+(IOge °°—|Oge d)IB:l

- -l>||—\

B
_2_;)[( +log, o (1, IB)—IAIoger—IBIogedﬂ

0 g
= ;—]OTEEA—IAIoger—IBIogedE (o 1p +1g =0)
Now, Ipa+lg =0 or —lg=1I,
O —lg log,d = I,log,d

2| 4
= Holla d
21'[[4 +IAIOger}

- M%ITA [% +log, %} wb-turns/m

Ya
|

_ Hof1 d 4mx 1077 [ ]
_Zn[4+|096r]H/m o +log, = [H/m

0 P, = HO{IAH log, d |A|oger}wb-turns/m

Inductance of conductor A,L,

>
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d

0 L °

10_7[%+2Ioge ]H/m ()

Loopinductance = 2L,H/m = 10_7[1+4|Oge%}H/m

O Loop inductance 10'7[1 +4log, %} H/m ...(ii)

Notethat eqg. (ii) istheinductance of the two-wireline and is sometimes called |oop inductance.
However, inductance given by eqg. (i) is the inductance per conductor and is equal to half the loop
inductance.

Expression in alternate form. The expression for the inductance of a conductor can be put in
aconcise form.

d

L, = 10_7[%+2Ioge?]H/m

_ 7[1 d
= 2x10 [4+Ioger}

= 2x 10_7[Ioge e’* +log, %]

- d
O L, = 2x10 ' log, —2—
A 09 I
If we put re’ = v, then,
L, = 2x10 " log, L H/m (iii)
A\

e rl
Theradiusr' isthat of afictitious conductor assumed to have no internal flux but with the same
inductance as the actual conductor of radiusr. The quantity e ¥4=0.7788 so that
rr=reY=07788r
Thetermr' (=r e'm) is called geometric mean radius (GMR) of the wire. Note that eg. (iii)
gives the same value of inductance L, as eq. (i). The difference is that eg. (iii) omits the term to

account for internal flux but compensatesfor it by using an adjusted val ue of the radius of the conduc-
tor.

Loopinductance=2L,=2x2x 10" log, %H/m

Notethat r' = 0-7788 r is applicable to only solid round conductor.

9.6 Inductance of a 3-Phase Overhead Line

Fig. 9-8 shows the three conductors A, B and C of a 3-phase line carrying currents |, 13 and |-
respectively. Let d;, d, and d; be the spacings between the conductors as shown. Let us further
assume that the loads are balanced i.e. 1, + Ig+ 1. =0. Consider the flux linkages with conductor
A. Therewill be flux linkages with conductor A dueto itsown

current and also due to the mutual inductance effects of |5 and @\
lc.
Flux linkages with conductor A dueto its own current d d,
Hola| 1 + T dx i
21 [4 X (1) B & c
T Fig. 9.8

Flux linkages with conductor A dueto current I 5
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- “o B IdX (ii)
Flux linkages with conductor A dueto current lc
= “00 jdX .(iii)
Total flux Imkageswﬂh conductor A is
= (i) + (i) + (iii)

(1 ]e) e e
g_n[%Jd_Jll dad_xxﬂ d{d_

B

As  I+lg+le =0,
U Yo = ;1?[[( —log, ) —lglog, d; — I log, dz}

(i) Symmetrical spacing. If the three conductors A, B and C are placed symmetrically at the
corners of an equilateral triangle of side d, then, d, = d, = d; = d. Under such conditions, the flux
linkages with conductor A become:

LIJA = Z_OI: Ioge IBIOged_ICIOge d:l
- ﬁ y A= (1g +1c)log, d
= o Oge B t1c)100e
= Ho [ Ioge +|Aloged} (v g+ le=—1,)
_ “o A[_ Q} ]
= = 4+Ioge ; werber-turng/m
Inductance of conductor A, L, = %H/m = g—%[ +log, d] H/m
A
_ 4mx10° d
= T om [ +log, ]H/m
0 L, = 10‘7[0[5+2|ogeﬂ H/m

Derived in asimilar way, the expressions for inductance are the same for conductors B and C.

(if) Unsymmetrical spacing. When 3-phase line conductors are not equidistant from each
other, the conductor spacing is said to be unsymmetrical. Under such conditions, the flux linkages
and inductance of each phase are not the same. A different inductance in each phase results in
unequal voltage dropsin the three phases even if the currentsin the conductors are balanced. There-
fore, the voltage at the receiving end will not be the same for al phases. In order that voltage drops
areegual in all conductors, we generally interchange the positions of the conductors at regular inter-
valsalong theline so that each conductor occupiestheoriginal position of every other conductor over
an equal distance. Such an exchange of positions is known as transposition. Fig. 9.9 shows the
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transposed line. The phase conductors are designated as A, B and C and the positions occupied are
numbered 1, 2 and 3. The effect of transposition isthat each conductor has the same average induc-
tance.

Position 1

Fig. 9.9

Fig. 9.9 shows a 3-phase transposed line having unsymmetrical spacing. Let us assume that
each of thethree sectionsis1 minlength. Let usfurther assume balanced conditionsi.e., [, + I+
Ic =0. Lettheline currentsbe :

[, = 1(1+j0)
| (-0-5-j 0-866)
lc = 1(-05+j0-866)
Asproved above, the total flux linkages per metre length of conductor Ais

(1
P, = ;_1?[ (Z—Ioger)lA—lBloged3 —Iclogedz}
Putting the values of |, Iz and | , we get,

p, = Mo (%—Ioger)l —I(—O[S—j0[866)loged3—l(—0+j066)|oged2}

= Lo/ Li-110g, r +0151 log, d; + 0BESIog, dy +0 51log, d, ~j O B66| Iogedz}

= 2o/ 21~ 110g, r +0B1 (109, d; +I0g, dy) +/0 B66  (log, dy _|oged2)}
Mo 1L X . 4.0
- E‘)T%I—Ilogerﬂ Ioge\/@+]0[866lloged—zg

Jd, d
- uo{llﬂloge 2 3+j0[866||oge%}
2

2mn| 4 r

21 | 4
O Inductance of conductor Ais

Ja,d
= Mol {lﬂoge 2] 0[866|09e%}
2

ba =TT

[d, da O
dds | j 01866 log, L5
r dZE

1
1
AL
+
8

* 051 (log,d,+log,d,) =051log,d,d, =1 log, (d,d)° =1Ilog, ,/d,ds
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4mx107 |1 Vo dy ds
=== “2 | H
o 4+Ioge ; +j 00866 log, 4, /m
I d, d
=107 |14 210g. Y275 4 j173210g % Him
2 o °d,

Similarly inductance of conductors B and C will be:

Sl Jdsd
Ly = 107 |14 210g, Y2 +j1D’32Ioge%} H/m
3

E‘ -~
Q.

711 . d
Le = 107 | +2log, *— 2 +]1D’32Iogeaz} H/m

Inducance of each line conductor

1
3 (Latlg+Llo)

* 3

d; d, d, 0
ﬂﬁxm‘7 H/m
r

%+ 2loge

3/d, d, d
{0[5+2Ioge #}xm” H/m

If we compare the formulaof inductance of an unsymmetrically spaced transposed line with that
of symmetrically spaced line, we find that inductance of each line conductor in the two caseswill be
equal if d= 3/d, d, d; . Thedistanced isknown as equivalent equilateral spacing for unsymmetrically
transposed line.

9.7 Concept of Self-GMD and Mutual-GMD

The use of self geometrical mean distance (abbreviated as self-GM D) and mutual geometrical mean
distance (mutual-GM D) simplifiesthe inductance cal culations, particularly relating to multiconduc-
tor arrangements. The symbols used for these are respectively D, and D, We shall briefly discuss
theseterms.

(i) Self-GMD (Dy). In order to have concept of self-GMD (also sometimes called Geometri-
cal meanradius; GMR), consider the expression for inductance per conductor per metre already derived
inArt. 9.5

I nductance/conductor/m 2x 10" (1 +log, d)

4 T
2 x 107 % +2x107 Ioge% ()

Inthis expression, theterm 2 x 10" x (1/4) isthe inductance due to flux within the solid conduc-
tor. For many purposes, it is desirable to eliminate this term by the introduction of a concept called
self-GMD or GMR. If wereplace the original solid conductor by an equivalent hollow cylinder with
extremely thin walls, the current is confined to the conductor surface and internal conductor flux
linkage would be almost zero. Consequently, inductance due to internal flux would be zero and the
term 2 x 107 x (1/4) shall be eliminated. The radius of this equivalent hollow cylinder must be
sufficiently smaller than the physical radius of the conductor to allow room for enough additional flux

*  Onsolving.
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to compensate for the absence of internal flux linkage. It can be proved mathematically that for a
solid round conductor of radiusr, the self-GMD or GMR = 0-7788 r. Using self-GMD, the eqg. (i)
becomes :
Inductance/conductor/m = 2 x 10'7Ioge d/D*
where D, = GMRor self-GMD =0-7788 r

S

It may be noted that self-GMD of a conductor depends upon the size and shape of the conductor
and isindependent of the spacing between the conductors.

(if) Mutual-GMD. The mutual-GMD isthe geometrical mean of the distances form one con-
ductor to the other and, therefore, must be between the largest and smallest such distance. In fact,
mutual-GMD simply represents the equivalent geometrical spacing.

(&) The mutual-GMD between two conductors (assuming that spacing between conductorsis
large compared to the diameter of each conductor) is equal to the distance between their centresi.e.

D,, = spacing between conductors = d

(b) For asinglecircuit 3-¢line, the mutual-GMD isequal to the equivalent equilateral spacing
ie,(d, d,d)"

D, = (d;d, ds)m
(c) Theprincipleof geometrical mean distances can be most profitably employed to 3-¢ double
circuit lines. Consider the conductor arrangement of the double circuit shown in Fig. 9-10. Suppose

the radius of each conductor isr.
Self-GMD of conductor = 0-7788 r ‘@‘ ‘@’
Self-GMD of combination aa” is
Dy = (**Dga X Da X Dyt X D)™
Self-GMD of combination bb” is ~®»
Dg= (Dyp, X Dygy X Dyyyy X D)™
Self-GMD of combination cc' is

D53: (Dcc x Dcc’ x Dc’c’ x Dc’t)]j4 4@
Equivalent self-GMD of one phase
D.= (Dy X Dy, x D)™ Fig. 9.10
The value of D isthe same for al the phases as each conductor has the same radius.
Mutual-GMD between phases Aand Bis

Dpg = (Dap * Doy X Dapy ¥ Dayy
Mutual-GMD between phasesBand Cis

Dgc = (Dyy X Dy X Dy X D)™
Mutual-GMD between phasesC and Ais

Dca = (Dgg X Dy X Doy X D)™
Equivalent mutual-GMD, D,, = (Dag X Dge X D)™
It is worthwhile to note that mutual GMD depends only upon the spacing and is substantially

independent of the exact size, shape and orientation of the conductor.

)]J4

9.8 Inductance Formulas in Terms of GMD

Theinductance formulas devel oped in the previous articles can be conveniently expressed in terms of
geometrical mean distances.

*  Basicaly, we have omitted the internal flux term while compensating for it by using an adjusted value for
the radius of the conductor. Sometimes GMR is denoted by r'.

** D, or D, means self-GMD of the conductor. D,,, means distance between aand &'.
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(i) Snglephaseline

_ D
Inductance/conductor/m =2 x 10™" log, 1"
S

where D, = 0-7788r and D= Spacing between conductors = d
(if) Singlecircuit 3-@line

Inductance/phase/m

D,
—7 m
2x10 " log, _Ds

where Dy

(iif) Double circuit 3-@line

0-7788r and D, = (d, d, dy)"*

D
Inductance/phase/m = 2 x 107" log, 5

S
where D, = (Dy Dy Dg)”*andD,,= (Dpg* DgeX Dea)™
Example9.1. A single phaseline hastwo parallel
conductors 2 metres apart. The diameter of each con-
ductor is 1-2 cm. Calculate the loop inductance per km

of theline.

Solution.
Spacing of conductors, d = 2m=200cm
Radius of conductor, r = 1.2/2=06cm

L oop inductance per metre length of theline

a8 Bo8
= 10" (1+4log, d/ir) H Buefat=
e

=107 (1 + 4 log,200/0-6) H
= 24.23x 10" H

. ; Inductance Measurement using bridge
L oop inductance per km of theline

=24.23x 107" x 1000 = 24-23 x 10" *H = 2.423 mH
Example 9.2. A single phase transmission line has two parallel conductors 3 m apart, thera-

dius of each conductor being 1 cm. Calculate the loop inductance per km length of the line if the
material of the conductor is (i) copper (ii) steel with relative permeability of 100.

Solution.

Spacing of conductors, d =300cm

Radius of conductor, r =1cm

Loop inductance =107 (y + 4log, d/r) H/m

(i) With copper conductors, p, =1

O Loopinductance/m =10 (1+4log, dir) H=10"" (1 + 4log, 300/1) H
= 238x10'H

Loop inductance/km 23:8x 107" x 1000 = 2-38 x 10 °H = 2:38 mH

(ii) with steel conductors, p, = 100

O Loopinductance/m 107" (100 + 4 10g, 300/1) H = 1228 x 10" H
Loop inductance/km 122:8 x 107" x 1000 = 12:28 x 10 > H = 12:28 mH

Example9.3. Find theinductance per km of a 3-phase transmission line using 1-24 cmdiameter
conductors when these are placed at the corners of an equilateral triangle of each side 2 m.
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Solution. Fig. 9-11 shows the three conductors of the three phase line placed at the corners of
an equilateral triangle of each side 2 m. Here conductor spacing d = 2 m and conductor radius
r =1.24/2 =062 cm.

Inductance/phase/m = 107 (0-5 + 2 log, d/r) H

= 107 (05 + 2 log, 200/0-62) H
= 12x10'H

Inductance/phase/km = 12 x 10”'x 1000
= 12x10°H=12mH

2
d d Dy, Dy
" Dg; °e
¢ y »
Fig. 9.11 Fig. 9.12

Example 9.4. The three conductors of a 3-phase line are arranged at the corners of a triangle
of sides 2 m, 2.5 mand 4-5 m. Calculate the inductance per km of the line when the conductors are
regularly transposed. The diameter of each conductor is 1-24 cm.

Solution. Fig. 9-12 showsthree conductors of a 3-phase line placed at the corners of atriangle
of sidesD,,=2m, D,;=2-5mand Dy, = 4-5m. The conductor radiusr = 1.24/2 = 0-62 cm.

Equivalent equilateral spacing, D, = 3Dy, X Dyg ¥ D3y = 32 x2[5 x4 5 =2 B2m =282cm

Inductance/phase/m = 107(0:5 + 210g, Dg/r) H = 107(0'5 + 2 log, 282/0-62) H
= 12.74x10'H
Inductance/phase/km = 12.74 % 10 'x 1000 = 1.274 x 10 °H = 1.274 mH

Example 9.5. Calculate the inductance of each conductor in a 3-phase, 3-wire systemwhen the
conductors are arranged in a horizontal plane with spacing suchthat D5, = 4m; D, = D,; = 2m.
The conductors are transposed and have a diameter of 2-5 cm.

Solution. Fig. 9.13. shows the arrangement of the conductors of the 3phase line. The conductor
radiusr = 2:5/2 = 1.25 cm.

Equivalent equilateral spacing,D,, = YDip X Dys X D3y = 32 x2 x4 =2 B2m =252 cm

Inductance/phase/m = 107 (05 + 2log, D./r) H le D, ol
= 107 (05 + 2log, 252125) H 10, - 30
= 111x 10 'H |—D,,—}¢—D0,,—]

Inductance/phase/km = 11-1 x 107" x 1000

Fig. 9.13
111x10°H =111 mH

Example 9.6. Two conductors of a single phase line, each of 1 cm diameter, arearrangedin a
vertical plane with one conductor mounted 1 m above the other. A second identical lineis mounted
at the same height as the first and spaced horizontally 0-25 m apart fromit. The two upper and the
two lower conductors are connected in parallel. Determine the inductance per km of the resulting
double circuit line.
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Solution. Fig. 9.14. shows the arrangement of double circuit single phase line. Conductors a, &'
form one connection and conductors b, b’ form the return connnection. The conductor radius,

r=12=05cm.
|<—25 cm—>|
G.M.R. of conductor = 0-7788r =0-7788 x 0-5= 0-389 cm - b
Self G.M.D. of aa’ combination is
D, = 4/Daa *Day X Dyy XDy
= 4/(0r889x100)° =623 cm
100 cm

Mutual G.M.D. betweenaand bis
D = 4Da X Day % Dyp, X Dy
Q/(ZS x103x103 ><25) =50-74 cm

[ Doy =D,p= /252 +100° =103cm] & 4
Fig. 9.14

Inductance per conductor per metre

= 2% 107" log,D, /D= 2 x 10"' log,50-74/6-23 H

= 042x10°H
O Loopinductance per km of theline

= 2x0-42x 10 °x 1000 H = 0-84 mH
Example9.7. Fig. 9.15 shows the spacings of a double circuit 3-phase overhead line. The phase

sequence is ABC and the line is completely transposed. The conductor radiusin 1-3 cm. Find the
inductance per phase per kilometre.

Solution.
G.M.R. of conductor 1-3x0-7788 =101 cm

Digtanceatob’ = /6> + 3 =67m
Distanceatoa = ./6% + 62 =848 m

Equivalent self G.M.D. of one phaseis

D, = 3DPa*Dy xDg

where Dy, D, and D represent the self-G.M.D. in positions 1, 2 and 3 respectively. Also D, isthe
samefor al the phases.

Now Dy l\l/Daa * Dag % Dyy ¥Dyq

= 4(101x107?) x (8[28) x (L [01 x1072) x(8 48)
= 0292m=Dg

Dy, = ‘\‘/Dbb X Dy ¥ Dy * Dy,

= 4(L01x102) x (6) (1101 x102 ) x(6) =0:246 m

D, = 3/0[292 x 0[246 x0[292 =0-275m

S
%/DAB % Dgc % Dea

Equivalent mutual G.M.D., D,
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& %
&
@ Fig. 9.15

where D g, Dy and D, represent the mutual G.M.D. between phasesA and B, Band C and Cand A
respectively.

Now Dpg = 4Dap x Dy XD,y Dy, =43 x6 7 x6 7 x3
= 448 m=Dg.
Dea = Q‘/Dcacharchacha =4/6 x6 x6 x6 =6m
0 Dy = 3/4[@8x4[48%6 =4[94m

00 Inductance per phase per metre length

107" x2log, D, /D = 107" x 2 log, 4-94/0-275

57x10"H

Inductance/phase/km 5.7 x 10" x 1000 = 057 x 10 °H =057 mH

Example 9.8. Find the inductance per phase per km of double circuit 3-phase line shown in

Fig. 9:16. The conductors are transposed and are of radius 0-75 cm each. The phase sequence is
ABC.

Solution.
G.M.R. of conductor = 0-75 x 0-7788 = 0-584 cm

Distanceatob = J3+(0m75?% =31m
Distanceato b’ = /3% +(475?% =562m
Distanceato a' = J6°+4% =721m

Equivalent self G.M.D. of one phaseis

D, = 3/Dy x Dy, x Dg

where Dy = 4/Dsa X Dy X Dy XDy
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o % &
S

= 4J(0m84 x 107%) x (7121) (0 584 x10°2) x(7 2)

= 0205 m=Dg

Dy = %/(Dbb X Dy ¥ Dy X Dbb)

= z\t/(o (584 x10°%) x (55) x(0 B84 x107%) x5 =0 I8m

O D, = 3/0205x 018 x0[205 =0-195m
Equivalent mutual G.M.D. is

Dm = %/DAB X Dgc % Dca

Where D,y = 4Dy XDy, XDy XD, =43A 582 x5 B2 x3 T
= 417m =Dg.
Dea = %/Dcacha' X Dya XDey

=46x4%x4x6 =49m
O D, = 3407x407 x40 =44m
O Inductance/phase/m = 107" x 2log, D,,/D,= 10" x 2 log, 4-4/0-195 H
=623x 10 ' H=0623x 10> mH
Inductance/phase’lkm = 0-623 x 10> x 1000 = 0-623 mH

Example 9.9. Calculate the inductance per phase per metre for a three-phase double-circuit
line whose phase conductors have a radius of 5-3 cmwith the horizontal conductor arrangement as
shown in Fig. 9.17.
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A B C A B’ c’
1 2 3 1’ 2 3
LSm J*Bm —bLBm J*Bm 4LBm4J

Fig. 9.17

Solution.
G.M.R. of conductor = 0.7788r = 0:7788 x 5:3 x 107> = 0-0413 m
Equivalent self-G.M.D. of one phaseis
D, = (Dg X Dy x DY"®
where Dy = (Dpa X Dpp X Dap XDp)* = (0:0413 x 24 x 0-0413 x 24)¥* = 0.995 m
Dy = (Dgg X Dgg X Dy X Dgg)™” = (0:0413 x 24 x 00413 x 24)"* = 0.995 m

Similarly Dg; = 0995 m
O D, = 3/0[®95x 0995 x0[995 = 0-995m
Equivalent mutual G.M.D. is
Dy = (Dag X Dgc X D)™™
where  Dpg = (Dpg X Dpg X Dpg X Dpg)™ = (8% 32 x 16 x 8)*
= 1345=Dg.
D = (Dap XDap XD~y XD M:]_xx X va
CA ( CA CA' CA C’A’) ( 6x8x40 16)
=16917m
O D,, = (1345 x 1345 x 16.917)"° =14.518 m
Inductance/phase/m = 107" x2log, D, /D, H/m

107" x 2log, 140518 H/m
00995

5-36 x 107" H/m
Example 9.10. In a single phase line (See. Fig.
9.18), conductors a and a” in parallel form one cir-

@ @ ® ®
cuit while conductors b and b’ in parallel form the
return path. Calculate the total inductance of the line L‘ A Cm_J‘ UeD e ey _J

per km assuming that current is equally shared by the Fig. 9.18
two parallel conductors. Conductor diameter in2:0cm.

Solution.

_ D,
L oop inductance/km, L = 4x10"log, o H/km
S
Mutual G.M.D., Dy, = 4Dy, X Dy, XD, XD,y
= 4/120x140 x100 x120 =119 cm

Self G.M.D., D, = 4Dy X D,y X Dyy XDy,
Here D,a = D,p=07788cm; D, = D,, =20cm

0 D, = 407788 x 07788 x 20 x 20 =3:94cm

0 L = 4x10 “log, 2= = 1.36 x 10> H/km = 1.36 mH/km

Ioge—3[94
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TUTORIAL PROBLEMS

A single phase line has two parallel conductors 1 metre apart. The radius of each conductor is 0-5 cm.
Calculate the loop inductance per km of theline. [2:22 mH]

Find the inductance per km per phase of a 3-phase overhead transmission line using 2 cm diameter
conductor when these are placed at the corners of an equilateral triangle of side 4 metres. [1-25 mH]
Find the loop inductance per km of a single phase overhead transmission line when conductors have
relative permeability of (i) 1(ii) 100. Each conductor has a diameter of 1 cm and they are spaced 5m
apart. [(i)1-02 mH (ii) 10-9 mH]
Hint. For aconductor of relative permeability p, (= 100 in the second case), loop inductance

= (K + 4 log, dir) x 107" H/m
A 20 km single phase line has two parallel conductors separated by 1.5 metres. The diameter of each
conductor is0-823 cm. If the conductor hasaresistance of 0-311 Q/km, find the |loop impedance of this
line at 50 Hz. [19-86 Q]
The three conductors of a 3-phase line are arranged at the corners of a triangle of sides 4, 5 and 6
metres. Calculate inductance per km of the each conductor when conductors are regularly transposed.
The diameter of each line conductor is2 cm. [1-285 mH]
The three conductors of 3-phase overhead line are arranged in ahorizontal plane with aspacing of 4 m
between adjacent conductors. The diameter of each conductor is 2 cm. Determine the inductance per
km per phase of the line assuming that the lines are transposed. [1-3mH]
Determine the inductance per km of a 3-phase transmission line using 20 mm diameter conductors
when conductors are at the corners of a triangle with spacing of 4,5 and 6 metres. Conductors are
regularly transposed. [1-29 mH/km/phase]
Determine the inductance of a 3-phase symmetrical line whose conductors are placed at the corners of
an equilateral triangle of sides 1 metre. The diameter of each conductor is 20 mm.

[0-971 mH/phase/km]

9.9

The electric potential at a point due to a charge is the work
done in bringing a unit positive charge from infinity to that
point. The concept of electric potential is extremely impor-
tant for the determination of capacitancein acircuit sincethe
|atter isdefined asthe charge per unit potential. We shall now
discussin detail the electric potential due to someimportant

Electric Potential

conductor arrangements. Fig. 9.19

(i) Potential at acharged singleconductor. Consider

along straight cylindrical conductor A of radiusr metres. Let the conductor operate at such a poten-
tial (V,) that charge Q, coulombs per metre exists on the conductor. It is desired to find the expres-
sionfor V,. Theelectricintensity E at adistancex from the centre of the conductor in air isgiven by:

E = QO volts/m
21X &
where Q, = charge per metre length
g, = permittivity of free space

As x approaches infinity, the value of E approaches zero. Therefore, the potential difference

between conductor A and infinity distant * neutral planeisgivenby :

*

A plane where E and hence potential is zero.
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00

- Qa _ Qa de
Wa = 2nxeodx_2n§)j7
r r

(if) Potential at a conductor in a group of
charged conductors. Consider a group of long

|

I
straight conductors A, B, C etc. operating at poten- A
tials such that chargesQ,, Qg, Q.. €tc.coulomb per
metre length exist on the respective conductors (see d |
Fig. 9.20). Letusfind thepotential at A(i.e. V,) in ! | dy
this arrangement. Potential at A due to its own _l_ @ 5

d2

charge (i.e. Q,)

00

_ Q - '
= r ﬁ dx (D) /{\
1/

Potential at conductor A due to charge Qg c

o u-o'
w
M m w)

_[ an & dx (i) Fig. 9.20
Potential at conductor A dueto charge Q.
[e4] QC
21X &
Overall potential difference between conductor A and infinite neutral planeis
Vo= () + (ii) + (i) +.......

_ Qs T
- 211st .[2 dX+J‘2T[xng+'”

1[0 -1001) -l )

211 &
+Q; (log, @ ~log, d,)+...]
1

1
= 2_,_[% EQ TTloge_-'-QB Ioge +choge

+Iogeoo(QA +QB +Qc) o ]
Assuming balanced condtionsi.e., QA+ Qg+ QC =0, we have,

VA: 2.,.[80 |:QA Oge QB IOge d1 +QCIOge d j|

T Note the expression. Work is done in bringing a unit positive charge against E from infinity to conductor
surface.

*  Conductor B is d; metres away from conductor A. Therefore, the work done in bringing a unit positive
charge (due to charge Qg) from infinity to conductor A is

= T Qs
21X &

tt -log,r =log, (r)™" = log, 1
r
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9.10 Capacitance of a Single Phase Two-wire Line
Consider asingle phaseoverhead transmissionlinecon-  +Q -Q

sisting of two parallel conductors A and B spaced d % o %
metres apart in air. Suppose that radius of each con-
ductor isr metres. Let their respective charge be + Q

1
1
and — Q coulombs per metre length. !

d >
Thetotal p.d. between conductor A and neutral “in-
finite” planeis Fig. 9.21
_ Q -Q
Va = JZT[XEO dX+J2nx § d
.
_Q Q d

= o ) [oge -log, d]volts— o log, T volts
Similarly, p.d. between conductor B and neutral “infinite” planeis

J% dx+J‘% dx

_ —Q -Q d
= ZmEo[oge Oged] Zn%loge volts

Both these potentialsarew.r.t. the same neutral plane. Sincethe unlike charges attract each other,
the potential difference between the conductorsis

Ve

VAB = ZVAzﬂlog d

P e e?volts
O Capacitance, Cag = Vg = % F/m
2m g, loge - r
0 Cp = Eod F/m 0
Ioge?

Capacitanceto neutral. Equation (i) gives the capacitance between the conductors of a two-
wireline[SeeFig. 9.22]. Oftenitisdesired to know the capacitance between one of the conductors
and a neutral point between them. Since potential of the mid-point between the conductorsis zero,
the potential difference between each conductor and the ground or neutral ishalf the potential differ-
ence between the conductors. Thus the capacitance to ground or capacitance to neutral for the two-
wire lineistwice the line-to-line capacitance (capacitance between conductors as shownin Fig 9.23).

A B A B

N
| | | |
Cas Can=2Cpg Cen=2Cpg

Fig. 9.22 Fig. 9.23

O Capacitanceto neutral, Cy = C,=Cgy=2C,5
2T g,
log, %

Thereader may compareeg. (ii) to the onefor inductance. One difference between the equations
for capacitance and inductance should be noted carefully. Theradiusin the equation for capacitance

O Cy = F/m ..(ii)
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isthe actual outside radius of the conductor and not the GMR of the conductor as in the inductance
formula. Note that eq. (ii) applies only to asolid round conductor.

9.11 Capacitance of a 3-Phase Overhead Line

In a 3-phase transmission line, the capacitance of each conductor
is considered instead of capacitance from conductor to conductor. A
Here, again two cases arise viz., symmetrical spacing and unsym-
metrical spacing.

(i) Symmetrical Spacing. Fig. 9.24 shows the three con-
ductors A, B and C of the 3-phase overhead transmission line hav-
ing charges Q,, Qg and Q. per metre length respectively. Let the
conductors be equidistant (d metres) from each other. \We shall
find the capacitance from line conductor to neutral in this sym-
metrically spaced line. Referring to Fig. 9.24, overal potential
difference between conductor A and infinite neutral planeisgiven

Fig. 9.24
by (Refer to Art. 9.9); 8

V, =

2T|><s0 JZ +J2Q;§dx

Zmo [QA 09e +Qg log, 5 q T Qcloge d}

[Qutog, 2 +(Qs + Q) 105, 2]

21180
Assuming balanced supply, we have, Q, + Qg + Q- =0
O QB+ QC = _QA
1 Q d
O V, = 21180 [QA oge - Q, log, d:| = 2T[/;0 log, - volts
O Capacitance of conductor Aw.r.t neutral,
C :%:#F/m: ZT[EO F/m
A VA QA |Og g |Og g
2me, e er
21
0 CA = E(()j F/m
log, —

Note that this equation is identical to capacitance to neutral for two-wire line. Derived in a
similar manner, the expressions for capacitance are the same for conductors B and C.

(if) Unsymmetrical spacing. Fig.9.25 showsa3-phasetransposed line having unsymmetrical
spacing. Let us assume balanced conditionsi.e. Q, + Qg + Q- = 0.

Fig. 9.25
Considering al the three sections of the transposed line for phase A,
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Potential of 1st position, V,

1 1 1 1
ﬁ (QA |Oge F + QB |Oge d_3 +QC IOge d—zj

1

Potential of 2nd position, V, = oeg

1
(QA log, Fl + Qg log, di +Qc log, E)
1

Potential of 3rd position, 'V, % [QA loge % + Qg log, di +Qc log, ij
2

Average voltage on condutor Ais

1
Va = 2044V, 4V
1 =0 1 1 O
= log, — + + I
= Sxomg [Q10% 5+ Qs r Q)10 g1

AsQ,+ Qg + Q. =0, therefore, Qg + Q= — Q,

1 1 _ 1
émig, [QA '09e 13~ Qu 100 dldzdj
Qa I d,d,dy
6rig, ° 3
1y Qa I d,d,d,
3 2mg, e 3

0 IR ®
— A 253 L
- 2mg, Ioge( r )

0 V, =

0g

v3 | - -
- log (dd,dy) 24 9088 000

21g, © r - ——
[ Capacitance from conductor to neutral is

%_—21150 F/m

Cy = A - log 3/d,d.d,
r

Capacitance Measurement using bridge

e

Example 9.11 A single-phase transmission line has two parallel conductors 3 metres apart,
radius of each conductor being 1 cm. Calculate the capacitance of the line per km. Given that g,
=8.854 x10 "2 F/m.

Solution.
Conductor radius, r =1cm
Spacing of conductors, d = 3m=300cm
, : g, Tt x8 [854 x10™
f thel = F/m =
Capacitance of theline log, dr / log, 3001 F/m

= 04875 x 10 ' F/m = 0-4875 x 10 ® F/km
= 04875 x 107 pF/km

*  Onsolving
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Example 9.12. A 3-phase overhead transmission line has its conductors arranged at the cor-
nersof an equilateral triangle of 2 mside. Calculate the capacitance of each line conductor per km.
Given that diameter of each conductor is 1-25 cm.

Solution.

Conductor radius, r = 1.25/2 =0-625cm

Spacing of conductors, d = 2m=200cm

Capacitance of each line conductor

2 g, 2 T x 8[854 x10 2
= F = F
log, dr '™ = log, 200000625 ™"
0-0096 x 10~° F/m = 0-0096 x 10™ ® F/km = 0-0096 pF/km
Example 9.13. A 3-phase, 50 Hz, 66 kV overhead line conductors are placed in a horizontal
plane as shown in Fig. 9.26. The conductor diameter is 1-25 cm. If the line length is 100 km,
calculate (i) capacitance per phase, (ii) charging current per phase,
assuming complete transposition of the line. [e—2m —>|<—2.5m—>|
Solution. Fig 9.26 showsthe arrangement of conductors of the .
3-phaseline. The equivalent equilateral spacingis
d =3[dd,d, =32x2B x4 5 =2:82m I‘iF.“-Zmﬁ
ig. 9.

Conductor radius, r = 1-25/2 = 0-625 cm
Conductor spacing , d =2-:82m =282 cm

(i) Lineto neutral capacitance= Iig]:—dst/)r F/m = 2?035522?0%2512 F/m
= 0:0091 x 10 F/m = 0-0091 x 10~® F/km = 0-0091 uF/km
O Lineto neutra capacitance for 100 kmlineis
C = 0-0091 x 100 = 0:91 uF

(if) Charging current per phaseis

Von _ 66,000
l. = — = —= x2nf C
C X V3
_ 66,000

x 211x50 x 091 x10°® =109 A
V3

Example 9.14. Calculate the capacitance of a 100 kmlong 3-phase, 50 Hz overhead transmis-
sion line consisting of 3 conductors, each of diameter 2 cm and spaced 2-5 m at the corners of an
equilateral triangle.

Solution.
Equilateral spacing, d = 25m=250cm
Radius of conductor, r = 2/2=1cm

Capacitance of each conductor to netural

2T g, 2% 8[85x10

= F =

log, dr /™ log, 2501 /"
10075 x 10" F/m = 10-075 x 10 F/km

(10-075 x 107 x 100 = 1.0075 x 10°° F = 1.0075 pF/phase

[0 Capacitance of 100 km line
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Example 9.15. A 3-phase, 50 Hz, 132 kV overhead line has conductors placed in a horizontal
plane 4 mapart. Conductor diameter is2 cm. If the line length is 100 km, calculate the charging
current per phase assuming complete transposition.

Solution. Fig 9.27 shows the conditions of the problem. The ® ©
diameter of each conductor is 2 cm so that conductor radiusr = |<—4m —>|<—4m—b|
2/2=1cm=1x1072m. Fig. 9.27

Now d, =AB=4m; d,=BC=4m; d;=AC=8m

O Deq = 3/d, xd, xd; = 3/4 x4 x8=504m

Capacitance of each conductor to neutral

o 2me oo 21ix 885x10™"

log, Dy /1 log, 504/1x 107
0-00885 x 10 ° F/km
Capacitance/phase for 100 km lineis
C. = 000885 x 10 ®x 100=0-885x 10" ° F
H 3
Phesevoltage,  V,, = L'”e\\;f“age _182x10° _ 76910y
3

0 Charging current/phase, I = wC, Vi, = (2 tx 50) x (0-885 x 10'6) x 76210 = 2118 A

F/m

n

TUTORIAL PROBLEMS

1. A single phase transmission line has two parallel conductors 1:5 metres apart, the diameter of each
conductor being 0-5 cm. Calculate line to neutral capacitance for aline 80 km long. [3-48 pF]
2. A 200 km, 3-phase transmission line hasits conductors placed at the corners of an equilateral triangle of

2:-5mside. Theradius of each conductor is1 cm. Calculate :

(i) lineto neutral capacitance of theline,

(if) charging current per phase if the line is maintained at 66 kV, 50 Hz. [(i) 2-02 pF (ii) 24-2 A]
3. Thethreeconductors A, B and C of a3-@linearearranged in ahorizontal planewith D,z =2 mand Dg
=2-5m. Find line-to-neutral capacitance per kmif diameter of each conductor is1-24 cm. The conduc-
tors are transposed at regular intervals. [0-0091 pF/km]
4. Thethree conductorsof a3-@linearearranged at the corners of aright angled isoscelestriangle. If each
equal side of this triangle is 2 m, find line-to-neutral capacitance per km. Take the diameter of each
conductor as 1-24 cm. The conductors are transposed at regular intervals. [0-0094 pF/km]
5. A 3-phase, 50 Hz, 132 kV overhead line has conductors placed in a horizontal plane 4-56 m apart.
Conductor diameter is 22-4 mm. If the linelength is 100 km, Calculate the charging current per phase,
assuming complete transposition. [21-345 A]
6. Three conductors of a 3-phase overhead line are arranged in ahorizontal plane 6 m apart. The diameter
of each conductor is1-24 cm. Find the capacitance of each conductor to neutral per 100 km of theline.
[0-785 pF]

SELF - TEST

1. Fill intheblankshy inserting appropriate words/figures.
(i) The power lossin an overhead transmission lineismainly dueto ............cc.c....... .
(i) If the length of atransmission line increases, itsinductance is .........cc.coeveeee. .
(i) Thed.c. resistance of aline conductor is...........cc.c.... than its a.c. resistance.

(iv) If capacitance between two conductors of a3-phaselineis4 pF, then capacitance of each conductor
to neutral is .......coceeeenne .




Electrical Design of Overhead Lines 227

(v) If thelength of the line is decreased, its capacitanceis ..........ccoe..... .
(vi) Transposition of a 3-phase transmission line helpsin ................ .

(vii) A neutral planeisonewhere.................. is zero.

(viii) Inasingle phase overhead ling, the neutral planeliesat .................... .

2. Pick up the correct words/figuresfrom bracketsand fill in the blanks
(i) If the supply frequency increases, then skin effect is ..........ccco.e.... [increases, decreased]
(if) An overhead transmission line has appreciable inductance because the loop it forms has...............
X-sectional area. [large, small]
(iii) If the spacing between the conductors is increased, the inductance of theline...........
[increases, decreases)
(iv) Theskin effect iS.....cccoveevreenne for stranded conductor than the solid conductor.  [less, more]
(v) If the conductor diameter decreases, inductance of thelineis.......... [increased, decreased]
ANSWERS TO SELF-TEST
1. (i) Line conductor resistance (ii) increased (iii) less (iv) 8 uF (v) decreased (Vi) equalising
inductance and capacitance of the three phases (vii) electric intensity  (viii) the centre of the distance
between the conductors
2. (i) increased (ii) large (iii) increases (iv)less (V) increased
CHAPTER REVIEW TOPICS
1. What do you understand by the constants of an overhead transmission line ?
2. What isskin effect ? Why isit absent in the d.c. system ?

3. Find an expression for the flux linkages

(i) duetoasingle current carrying conductor
(if) inparalel current carrying conductors
Derive an expression for the loop inductance of a single phase line.

. Derive an expression for the inductance per phase for a 3-phase overhead transmission line when

(i) conductorsare symmetrically placed
(if) conductors are unsymmetrically placed but the line is completely transposed

. What do you understand by electric potential ? Derive an expression for electric potential

(i) at acharged single conductor
(ii) at aconductor in agroup of charged conductors

. Derive an expression for the capacitance of a single phase overhead transmission line.
. Deduce an expression for line to neutral capacitance for a 3-phase overhead transmission line when the

conductors are
(i) symmetrically placed
(if) unsymmetrically placed but transposed

. What isthe effect of unsymmetrical spacing of conductorsin a 3-phase transmission line ?

. Why do we find line to neutral capacitance in a 3-phase system ?
. How does skin effect vary with conductor material ?
. What is proximity effect ?
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DISCUSSION QUESTIONS

Will capacitance of atransmission line depend upon the ground effect ?
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