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In the previous chapter, attention was confined
to the analysis of symmetrical faults e.g. all three
lines short-circuited (L — L — L) or all three

lines short-circuited with an earth connection at the
fault (L —L — L — G).  When such a fault occurs,
it gives rise to symmetrical fault currents i.e. fault
currents in the three lines are equal in magnitude
and displaced 120º electrical from one another.
Although symmetrical faults are the most severe
and impose heavy duty on the circuit breakers, yet
the analysis of such faults can be made with a fair
degree of ease.  It is because the balanced nature of
fault permits to consider only one phase in calcula-
tions ; the conditions in the other two phases being
similar.

The great majority of faults on the power sys-
tem are of unsymmetrical nature; the most com-
mon type being a short-circuit from one line to
ground.  When such a fault occurs, it gives rise to
unsymmetrical currents i.e. the magnitude of fault
currents in the three lines are different having un-
equal phase displacement.  The calculation proce-
dure known as method of symmetrical components
is used to determine the currents and voltages on
the occurrence of an unsymmetrical fault.  In this
chapter, we shall focus our attention on the analy-
sis of unsymmetrical faults.
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18.118.118.118.118.1  Unsymmetrical  Faults  on 3-Phase  System Unsymmetrical  Faults  on 3-Phase  System Unsymmetrical  Faults  on 3-Phase  System Unsymmetrical  Faults  on 3-Phase  System Unsymmetrical  Faults  on 3-Phase  System
Those faults on the power system which give rise to unsymmetrical fault currents (i.e. unequal fault
currents in the lines with unequal phase displacement) are known as unsymmetrical faults.

On the occurrence of an unsymmetrical fault, the currents in the three lines become unequal and
so is the phase displacement among them.  It may be noted that the term ‘unsymmetry’ applies only to
the fault itself and the resulting line currents.  However, the system impedances and the source volt-
ages are always symmetrical* through its main elements viz. generators, transmission lines,
synchoronous reactors etc.  There are three ways in which unsymmetrical faults may occur in a power
system (see Fig. 18.1).

(i) Single line-to-ground fault (L — G)
(ii) Line-to-line fault (L — L)

(iii) Doube line-to-ground fault (L — L — G)

The solution of unsymmetrical fault problems can be obtained by either (a) Kirchhoff’s laws or
(b) Symmetrical components method.  The latter method is preferred because of the following
reasons :
(i)  It is a simple method and gives more generality to be given to fault performance studies.
(ii) It provides a useful tool for the protection engineers, particularly in connection with tracing

out of fault currents.

18.218.218.218.218.2  Symmetrical Components Method Symmetrical Components Method Symmetrical Components Method Symmetrical Components Method Symmetrical Components Method
In 1918, Dr. C.L. Fortescue, an American scientist, showed that any unbalanced system of 3-phase
currents (or voltages) may be regarded as being composed** of three separate sets of balanced vectors
viz.

* In other words, no piece of equipment ever has a red phase impedance which differs from a yellow phase impedance.
** This has come to be known as symmetrical component theory.  This is a general theory and is applicable to

any three vector system whose resultant is zero.

Electronic  earth  fault  indicator
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(i) a balanced *system of 3-phase currents having positive† (or normal) phase sequence.  These
are called positive phase sequence components.

(ii) a balanced system of 3-phase currents having the opposite or negative phase sequence.
These are called negative phase sequence components.

(iii) a system of three currents equal in magnitude and having zero phase displacement.  These
are called zero phase sequence components.

The positive, negative and zero phase sequence components are called the symmetrical compo-
nents of the original unbalanced system. The term ‘symmetrical’ is appropriate because the unbal-
anced 3-phase system has been resolved into three sets of balanced (or symmetrical) components.
The subscripts 1, 2 and 0 are generally used to indicate positive, negative and zero phase sequence

components respectively.  For instance, IR0  indicates the zero phase sequence component of the

current in the red phase.  Similarly, IY1  implies the positive phase
sequence component of current in the yellow phase.

Illustration.  Let us now apply the symmetrical components
theory to an unbalanced 3-phase system.  Suppose an unsym-
metrical fault  occurs on a 3-phase system having phase sequence
RYB.  According to symmetrical components theory, the result-

ing unbalanced currentes IR , IY  and IB  (see Fig. 18.2) can be

resolved into :

(i) a balanced system of 3-phase currents, IR1 , IY1  and IB1
having positive phase sequence (i.e. RYB) as shown in Fig. 18.3 (i).  These are the positive
phase sequence components.

(ii) a balanced system of 3-phase currents IR2 , IY 2  and IB2  having negative phase sequence
(i.e. RBY) as shown in Fig. 18.3 (ii).  These are the negative phase sequence components.

(iii) a system of three currents IR0 , IY 0  and IB0  equal in magnitude with zero phase displacement
from each other as shown in Fig. 18.3 (iii).  These are the zero phase sequence components.

* A balanced system of 3-phase currents implies that three currents are equal in magnitude having 120º
displacement from each other.

† Positive phase sequence means that phase sequence is the same as that of the original 3-phase system.
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The current in any phase is equal to the vector sum of positive, negative and zero phase sequence
currents in that *phase as shown in Fig. 18.4.

IR = I I IR R R1 2 0+ +

IY = I I IY Y Y1 2 0+ +

IB
= I I IB B B1 2 0+ +

The following points may be noted :

(i) The positive phase sequence currents ( IR1 , IY1  and IB1 ), negative phase sequence currents

( IR2 , IY 2 and IB2 ) and zero phase sequence currents ( IR0 , IY 0 and IB0 ) separately form
balanced system of currents.  Hence, they are called symmetrical components of the
unbalanced system.

(ii) The symmetrical component theory applies equally to 3-phase currents and voltages both
phase and line values.

(iii) The symmetrical components do not have separate existence.  They are only mathematical
components of unbalanced currents (or voltages) which actually flow in the system.

(iv) In a balanced 3-phase system, negative and zero phase sequence currents are zero.  This is
demonstrated in example 18.7.

18.318.318.318.318.3  Operator   ‘a’ Operator   ‘a’ Operator   ‘a’ Operator   ‘a’ Operator   ‘a’

As the symmetrical component theory involves the concept of 120º displacement in the positive
sequence set and negative sequence set, therefore, it is desirable to evolve some operator which
should cause 120º rotation.  For this purpose, operator ‘a’ (symbols h or λ are sometimes used instead
of ‘a’) is used.  It is defined as under :

The **operator ‘a’ is one, which when multiplied to a vector rotates the vector through 120º in
the anticlockwise direction.

Consider a vector I represented by OA as shown in Fig. 18.5.  If this vector is multiplied by
operator ‘a’, the vector is rotated through 120º in the anticlockwise direction and assumes the posi-
tion OB.

∴ a I = I ∠ 120º

= I (cos 120º + j sin 120º)

* Star connected system being considered in Fig. 18.4.

** Just as the operator j rotates a vector through 90º in the anticlockwise direction.
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= I (− 0·5 + j 0·866)

∴         a = − 0·5 + j 0·866 ... (i)
If the vector assuming position OB is multiplied by operator

‘a’, the vector is further rotated through 120º in the anticlockwise
direction and assumes the position OC.

∴ a2I = I ∠ 240º

= I (cos 240º + j sin 240º)
= I (− 0·5 − j 0·866)

∴ a2 = − 0·5 − j 0·866 ... (ii)

Thus the operator ‘a2’ will turn the vector through 240º in the
anticlockwise direction.  This is the same as turning the vector
through 120º in clockwise direction.

∴ a2 I = I ∠− 120º
Similarly,  a3I = I ∠ 360º

= I (cos 360º + j sin 360º)
∴ a3 = 1 ... (iii)

Properties of Operator ‘a’
(i) Adding exps. (i) and (ii), we get,

a + a2 = (− 0·5 + j 0·866) + (− 0·5 − j 0·866) = −1
∴ 1 + a + a2 = 0

(ii) Subtracting exp. (ii) from exp. (i), we get,
a − a2 = (− 0·5 + j 0·866) − (− 0·5 − j 0·866)  = j 1·732

∴ a − a2 = j 3

18.418.418.418.418.4  Symmetr Symmetr Symmetr Symmetr Symmetrical  Components  in  ical  Components  in  ical  Components  in  ical  Components  in  ical  Components  in  TTTTTerererererms  of  Phase  Currms  of  Phase  Currms  of  Phase  Currms  of  Phase  Currms  of  Phase  Currentsentsentsentsents

The unbalanced phase currents in a 3-phase system can be expressed in terms of symmetrical com-
ponents as under :

IR = I I IR R R1 2 0+ +

IY
= I I IY Y Y1 2 0+ +

IB
= I I IB B B1 2 0+ +
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Fig. 18.6 shows the vector representation of symmetrical components.  It is usually profitable in

calculations to express the symmetrical components in terms of unbalanced phase currents.  Let us

express the symmetrical components of R-phase in terms of phase currents IR , IY  and IB .  For this
purpose, express all symmetrical components of Y and B phases in terms of the symmetrical compo-
nents of R-phase by means of operator ‘a’ as shown in Fig. 18.6.

Note that the positive sequence set shown in Fig. 18.6 (i) can be expressed in terms of IR1
 by

means of operator a.  Thus positive sequence current IB1
 in phase B leads IR1

 by 120º and, therefore,

I a IB R1 1= .  Similarly, positive sequence current in phase Y is 240º ahead of IR1  so that I a IY R1
2

1= .

In an exactly similar manner, the negative sequence set can be expressed in terms of IR2 by means of
operator ‘a’ as shown in Fig. 18.6(ii).  It is clear from Fig. 18.6 that :

IR = I I IR R R1 2 0+ + ...(i)

IY = I I IY Y Y1 2 0+ +

= a I a I IR R R
2

1 2 0+ + ...(ii)

IB = I I IB B B1 2 0+ +

= a I a I IR R R1
2

2 0+ + ...(iii)
(i) Zero sequence current.  By adding exps. (i), (ii) and (iii), we get,

I I IR Y B+ + = I a a I a a IR R R1
2

2
2

01 1 3( ) ( )+ + + + + +

= I I I IR R R R1 2 0 00 0 3 3( ) ( )+ + = (� 1 + a + a2 = 0)

∴ IR0 =
1

3
I I IR Y B+ +e j

As the red phase is always taken as the reference phase, therefore, subscript R is usually omitted.

∴ I0 =
1

3
I I IR Y B+ +e j

(ii) Positive sequence current.  Multiply exp.(ii) by ‘a’ and exp. (iii) by ‘a2’ and then adding
these exps. to exp. (i), we get,

I a I a IR Y B+ + 2 = I a a I a a I a aR R R1
3 3

2
2 4

0
21 1 1( ) ( ) ( )+ + + + + + + +

= 1 23 (0R RI I+
���� ����

*) 0 1(0) 3R RI I+ =
���� ����

∴ IR1
= 1

3
2I a I a IR Y B+ +e j

Omitting the subscript R, we have,

I1
= 1

3
2I a I a IR Y B+ +e j

(iii) Negative sequence current.  Multiply exp. (ii) by ‘a2’ and exp. (iii) by ‘a’ and then adding
these exps. to (i), we get,

I a I a IR Y B+ +2 = I a a I a a I a aR R R1
4 2

2
3 3

0
21 1 1( ) ( ) ( )+ + + + + + + +

= I I I IR R R R1 2 0 20 3 0 3( ) ( ) ( )+ + =

∴ IR 2
=

1
3

2I a I a IR Y B+ +e j
or I2

= 1
3

2I a I a IR Y B+ +e j
* a4 = a3 × a = 1 × a = a

∴ 1 + a2 + a4 = 1 + a2 + a = 0
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The following points may be noted carefully :

(i) The currents I1 , I2  and I0  are the symmetrical components of R-phase.  Because of the
symmetry of each set, the symmetrical components of yellow and blue phases can be easily
known.

(ii) Although the treatment has been made considering currents, the method applies equally to
voltages.  Thus the symmetrical voltage components of R-phase in terms of phase voltages
shall be :

E0 =
1
3

E E ER Y B+ +e j

E1
=

1
3

2E a E a ER Y B+ +e j

E2
=

1
3

2E a E a ER Y B+ +e j
18.518.518.518.518.5  Some  F Some  F Some  F Some  F Some  Facts  aacts  aacts  aacts  aacts  about  Sequence  Currbout  Sequence  Currbout  Sequence  Currbout  Sequence  Currbout  Sequence  Currentsentsentsentsents

It is now desirable to get the readers acquainted with the following facts about positive, negative
and zero phase sequence currents :

(i) A balanced 3-phase system consists of positive sequence components only; the negative and
zero sequence components being zero.

(ii) The presence of negative or zero sequence currents in a 3-phase system introduces unsymmetry
and is indicative of an abnormal condition of the circuit in which these components are
found.

(iii) The vector sum of the positive and negative sequence currents of an unbalanced 3-phase
system is zero. The resultant solely consists of three zero sequence currents i.e.

Vector sum of all sequence currents in 3-phase unbalanced system

= I I IR Y B0 0 0+ +
(iv) In a 3-phase, 4 wire unbalanced system, the magnitude of zero sequence components is one-

third of the current in the neutral wire i.e.

Zero sequence current =
1
3

 [Current in neutral wire]

In the absence of path through the neutral of a 3-phase system, the neutral current is zero and the
line currents contain no zero -sequence components.  A delta-connected load provides no path to the
neutral and the line currents flowing to delta-connected load can contain no zero-sequence compo-
nents.

(v) In a 3-phase unbalanced system, the magnitude of negative sequence components cannot
exceed that of the positive sequence components.  If the negative sequence components
were the greater, the phase sequence of the resultant system would be reversed.

(vi) The current of a single phase load drawn from a 3-phase system comprises equal positive,
negative and zero sequence components.

Example 18.1.  Prove that :

(i) 1 a

a a

2

2
−
−

 = − a (ii)
1 a

1 a2
−
+

 = 1 − a2

Solution.

(i) 1 2

2
−
−

a

a a
 = 

( ) ( )
( )

1 1
1

1+ −
−

= +a a
a a

a
a

   = − a
a

2
 = − a (∵ 1 + a + a2 = 0)
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(ii) 1

1 2
−
+

a

a
  = 1 1 2

2

2 3

3
−
−

= − −
− −

= − +a
a

a a

a a

a a

a

( ) ( )

( ) ( )
 = 1− a2

Example 18.2.  In a 3-phase, 4-wire system, the currents in R, Y and B lines under abnormal
conditions of loading are as under :

IR  = 100 ∠ 30º A   ;   IY  = 50  ∠ 300º A   ;   IB  = 30 ∠ 180º A

Calculate the positive, negative and zero sequence currents in the R-line and return current in
the neutral wire.

Solution.  Let I I0 1,  and I2  be the zero, positive and negative sequence currents respectively of
the line current in red line.

∴ I0 = 1
3 I I IR Y B+ +

= 1
3 [100 ∠ 30º + 50 ∠ 300º + 30 ∠ 180º]

= 1
3  *[(86·60  + j 50) + (25 − j 43·3) + (−30 + j0)]

= 1
3  [ 81·6 + j 6·7]

= (27·2 + j 2·23) = 27·29 ∠∠∠∠∠ 4·68º A

I1
= 1

3
2I a I a IR Y B+ +

= 1
3  [ 100 ∠ 30º + 1 ∠ 120º × 50 ∠ 300º + 1 ∠− 120º × 30 ∠ 180º]

= 1
3  [100 ∠ 30º + 50 ∠ 60º + 30 ∠ 60º]

= 1
3 [(86·6 + j 50) + (25 + j 43·3) + (15 + j 25·98)]

= 1
3  [126·6 + j 119·28]

= (42·2 + j 39·76) = 57·98 ∠∠∠∠∠ 43·3º A

I2
= 1

3
2[ ]I a I a IR Y B+ +

= 1
3 [100 ∠ 30º + 1 ∠− 120º × 50 ∠ 300º + 1 ∠ 120º × 30 ∠ 180º]

= 1
3 [100 ∠ 30º + 50 ∠ 180º + 30 ∠ 300º]

= 1
3 [(86·6 + j 50) + (−50 + j 0) + (15 − j 25·98)]

= 1
3 [51·6 + j 24·02]

= (17·2 + j 8) = 18·96 ∠∠∠∠∠ 24·9º A

Current in the neutral wire = I I IR Y B+ +  = (81·6 + j 6·7) = 81·87 ∠∠∠∠∠ 4·7º A

Example 18.3.  The currents in a 3-phase unbalanced system are :

IR
 = (12 + j 6) A   ;   IY

 = (12 − j 12) A   ;   IB
 = (−15 + j 10) A

The phase sequence in RYB.  Calculate the zero, positive and negative sequence components of
the currents.

Solution.
Red phase
Zero phase sequence component,

IR0 = 1
3

I I IR Y B+ +

* With the help of scientific calculator, polar form can be directly changed to rectangular form and vice-
versa.
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= 1
3

 [(12 +  j 6) + (12 − j 12) + (−15 + j 10)]

= 1
3

 [9 + j 4] = (3 + j 1·33) A

Positive phase sequence component is

IR1
= 1

3
2I a I a IR Y B+ +

= 1
3

 [ (12 + j 6) + (− 0·5 + j 0·866) (12 − j 12) + *(− 0·5 − j 0·866) (−15 + j 10)]

= 1
3

 [ 32·55 + j 30·39] = (10·85 + j 10·13) A

Negative phase sequence component is

IR2
= 1

3
2I a I a IR Y B+ +

= 1
3

 [(12 + j 6) + (− 0·5 − j 0·866) (12 − j 12) + (− 0·5 + j 0·866) (−15 + j 10)]

= 1
3

 [ −5·55 −  j 16·41] = (−−−−−1·85 −−−−− j 5·47) A

Yellow phase
Zero phase sequence component is

I IY R0 0= = (3 + j 1·33) A
Positive phase sequence component is

I a IY R1
2

1= = (− 0·5 − j 0·866) (10·85 + j 10·13)
= (3·35 −−−−− j 14·4) A

Negative phase sequence component is

I a IY R2 2= = (− 0·5 + j 0·866) (−1·85 − j 5·47) = (5·7 + j 1·13) A
Blue phase
Zero phase sequence component is

I I IB Y R0 0 0= = = (3 + j 1·33) A
Positive phase sequence component is

I a IB R1
2

1= = (− 0·5 + j 0·866) (10·85 + j 10·13) = (−−−−−14·2 + j 4·31) A

Negative phase sequence component is

I a IB R2
2

2= = (− 0·5 − j 0·866) (−1·85 − j 5·47) = (−−−−−3·82 + j 4·34) A

Example 18.4.  The sequence voltages in the red phase are as under :

ER0  = 100 V ; ER1  = (200 − j 100) V ; ER2  = − 100 V

Find the phase voltages E E ER Y B, and .

Solution.  In the polar form, we have,

ER0  = 100 ∠ 0º V; ER1  = 223·6 ∠− 26·56º V; ER2  = 100 ∠ 180º V

ER = E E ER R R0 1 2+ +

= 100 + (200 − j 100) + (−100)

= 200 − j 100 = 223·6 ∠−∠−∠−∠−∠− 26·56º volts

* a = − 0·5 + j 0·866 and a2 = − 0·5 − j 0·866
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EY
= E a E a ER R R0 1 2+ +2

= 100∠ 0º + 1∠ 240º × 223·6 ∠− 26·56º + 1 ∠ 120º × 100∠ 180º
= 100 ∠ 0º + 223·6 ∠ 213·44º + 100 ∠ 300º
= (100 + j 0) + (−186·58 − j 123·2) + (50 − j 86·6)

= −36·58 − j 209·8 = 213 ∠−∠−∠−∠−∠− 99·89º volts

EB
= E a E a ER R R0 1

2
2+ +

= 100∠ 0º + 1∠ 120º × 223·6 ∠− 26·56º + 1 ∠ 240º × 100 ∠ 180º
= 100 ∠ 0º + 223·6 ∠ 93·44º + 100 ∠ 420º
= (100 + j 0) + (−13·4 + j 223·2) + (50 + j 86·6)

= 136·6 + j 309·8 = 338·57 ∠∠∠∠∠ 66·2º volts

Example 18.5.  The zero and positive sequence components of red phase are as under :

ER0  = (0·5 − j 0·866) V ; ER1  = 2 ∠ 0º V

If the phase voltage ER = ∠3 0º V, find the negative sequence component of red phase and the

phase voltages EY  and EB .

Solution.

ER = E E ER R R0 1 2+ +

or 3 = (0·5 − j 0·866) + 2 + ER2

∴ Negative sequence component in R-phase is

ER2
= 0·5 + j 0·866 = 1 ∠∠∠∠∠ 60º volts

In polar form, ER0 = 0·5 − j 0·866 = 1 ∠− 60º

Now EY
= E a E a ER R R0

2
1 2+ +

= [1 ∠− 60º] + [1∠ 240º × 2∠ 0º] + [1 ∠ 120º × 1 ∠ 60º]
= 1 ∠− 60º + 2 ∠ 240º + 1 ∠ 180º
= (0·5 − j 0·866) + (−1 − j 1·732) + (−1 + j 0)

= −1·5 − j 2·598
= 3 ∠−∠−∠−∠−∠− 120º volts

EB
= E a E a ER R R0 1

2
2+ +

= [1 ∠− 60º] + [1 ∠ 120º × 2 ∠ 0º] + [1 ∠ 240º × 1 ∠ 60º]

= 1 ∠− 60º + 2 ∠ 120º + 1 ∠ 300º
= (0·5 − j 0·866) + (−1 + j 1·732) + (0·5 − j 0·866)
= 0 volt

Example 18.6.  The current from neutral to ground connection is 12 A.  Calculate the zero phase
sequence components in phases.

Solution.  We know that zero sequence components in all phases have the same value and that
each component is equal to one-third the current in the neutral wire.

∴ Zero sequence current in each phase

=
1
3

12×  = 4 A
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Example 18.7.  A balanced star connected load takes 90 A from a balanced 3-phase, 4-wire
supply.  If the fuses in the Y and B phases are removed, find the symmetrical components of the line
currents

(i) before the fuses are removed (ii) after the fuses are removed

Solution.  Fig. 18.7. shows the star-connected system with fuses in phases B and Y.

(i) Before removal of fuses.  Before fuses are removed from Y and B lines, the system is
balanced and current in each line is 90 A.

∴ IR
 = 90 ∠ 0ºA ; IY

 = 90 ∠ 240º A ; IB
 = 90 ∠ 120ºA

Since the system is balanced, it will have only positive sequence currents i.e., negative sequence
and zero sequence components will be zero in the three lines.  This can be readily established.

IR0 = I IY B0 0=

=
1
3

I I IR Y B+ +  = 
1
3

 [90∠ 0º + 90∠ 240º + 90∠ 120º]

=
1
3

 [90∠ 0º + 90∠− 120º + 90 ∠ 120º] = 0 A

Hence zero sequence components in three lines are zero.

IR2
=

1
3

2I a I a IR Y B+ +

=
1
3

 [ 90∠ 0º + 1 ∠− 120º × 90∠ 240º + 1 ∠ 120º × 90∠ 120º]

=
1
3

 [90∠ 0º + 90∠ 120º + 90∠ 240º]

=
1
3

 [ 90∠ 0º + 90∠ 120º + 90∠− 120º] = 0 A

Also IY2 = a IR2  = 1 ∠ 120º × 0 = 0 A

and IB2 = a IR
2

2  = 1 ∠ 240º × 0 = 0 A

Hence negative sequence components in the three lines are also zero.  It can be easily shown that
three positive sequence components will have the following values :

I IR R1 =  = 90∠ 0º A ; I IY Y1 =  = 90∠ 240º A; I IB B1 =  = 90 ∠ 120º A
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(ii) After removal of fuses.  When the fuses are removed in Y and B phases, the system be-

comes unbalanced with line currents as under :

IR  = 90∠ 0ºA   ;   I IY B=  = 0 A

The sequence currents in the three lines can be found out as under :

IR0 = I IY B0 0=

= 1
3

I I IR Y B+ +

= 1
3

 [90∠ 0º + 0 + 0] = 30 ∠∠∠∠∠ 0º A

i.e. zero sequence current in each line is 30 ∠ 0º A.

IR1 = 1
3

2I a I a IR Y B+ +

= 1
3

 [90∠ 0º + 0 + 0] = 30 ∠∠∠∠∠ 0ºA

IY1 = a IR
2

1  = 1 ∠ 240º × 30 ∠ 0º = 30 ∠∠∠∠∠ 240ºA

IB1 = a IR1  = 1 ∠ 120º × 30 ∠ 0º = 30 ∠∠∠∠∠ 120ºA

IR2 = 1
3

2I a I a IR Y B+ +

= 1
3

 [90 ∠ 0º + 0 + 0] = 30 ∠∠∠∠∠ 0ºA

IY2 = a IR2   = 1 ∠ 120º × 30∠ 0º = 30 ∠∠∠∠∠ 120º A

IB2 = a IR
2

2  = 1 ∠ 240º × 30∠ 0º = 30 ∠∠∠∠∠ 240º A
The reader may wonder how sequence currents can flow in the yellow and blue lines when fuses

are removed in them.  The answer is that these components do not have separate existence.  They are
only the mathematical components of the current which does exist.  Thus the current in the yellow line
is zero and this can be readily established from its sequence components :

IY = I I IY Y Y0 1 2+ +
= 30 ∠ 0º + 30 ∠ 240º + 30 ∠ 120º
= 30 ∠ 0º + 30 ∠− 120º + 30 ∠ 120º = 0 A

Similary, it can be proved that sum of sequence currents in the blue line is zero and that is what
the circuit reveals.

Example 18.8.  A 3-φ, 4-wire-system supplies loads which are unequally distributed in the three
phases.  An analysis of the current flowing in R, Y and B lines shows that in R line, positive phase
sequence component is 200 ∠ 0º A and the negative phase sequence component is 100 ∠ 60ºA.  The
total observed current flowing back to the supply in the neutral conductor is 300 ∠ 300º A.  Calculate
the currents in the three lines.

Solution.
Zero phase sequence current in R-line is

IR0 =
1
3

 × Current in neutral wire

=
1
3

 × 300 ∠ 300º = 100 ∠ 300ºA

Positive phase sequence current in R-line is

IR1
= 200 ∠ 0ºA
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Negative phase sequence current in R-line is

IR2
= 100 ∠ 60ºA

∴ Current in the R-line, IR = I I IR R R0 1 2+ +  = 100 ∠ 300º + 200 ∠ 0º + 100 ∠6 0º

= (50 − j 86·6) + (200 + j 0) + (50 + j 86·6) = 300 ∠∠∠∠∠ 0º A

Current in the Y-line, IY
= I a I a IR R R0

2
1 2+ +

= 100 ∠ 300º + 1 ∠ 240º × 200 ∠ 0º + 1∠ 120º × 100∠ 60º
= 100 ∠ 300º + 200 ∠ 240º + 100 ∠ 180º

= (50 − j 86·6) + (−100 − j 173·2) + (−100 + j 0)
= − 150 − j 259·8 = 300 ∠−∠−∠−∠−∠− 120º A

Current in B line, BI
���

= I a I a IR R R0 1
2

2+ +
= 100 ∠ 300º + 1 ∠ 120º × 200 ∠ 0º + 1 ∠ 240º × 100 ∠ 60º
= 100 ∠ 300º + 200 ∠ 120º + 100 ∠ 300º

= (50 − j 86·6) + (−100 + j 173·2) + (50 − j 86·6) = 0 A

Example 18.9.  One conductor of a 3-phase line is open.  The current flowing to the ∆-con-
nected load through the line R is 10 A.  With the current in line R [See Fig. 18.8] as reference and
assuming that line B is open, find the symmetrical components of the line currents.

Solution.  The line currents are :

IR  = 10∠ 0º A ; IY  = 10∠ 180º A ; IB  = 0 A

R-line

IR0 =
1
3

I I IR Y B+ +  = 
1
3

 [ 10∠ 0º + 10∠ 180º + 0] = 0 A

IR1
=

1
3

2I a I a IR Y B+ +  = 
1
3

 [ 10∠ 0º + 1∠ 120º × 10∠ 180º +0]

= 5 − j 2·89 = 5·78 ∠−∠−∠−∠−∠− 30ºA

IR2
=

1
3

2I a I a IR Y B+ +  = 
1
3

 [ 10∠ 0º + 1∠ 240º × 10∠ 180º + 0]

= 5 + j 2·89 = 5·78 ∠∠∠∠∠ 30ºA
Y-line

IY0 = IR0  = 0 A

IY1 = a IR
2

1  = 1 ∠ 240º × 5·78 ∠− 30º = 5·78 ∠−∠−∠−∠−∠− 150º A
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IY2 = a IR2  = 1 ∠ 120º × 5·78 ∠ 30º = 5·78 ∠∠∠∠∠ 150ºA
B-line

IB0 = IR0  = 0 A

IB1 = a IR1  = 1 ∠ 120º × 5·78 ∠− 30º = 5·78 ∠∠∠∠∠ 90º A

IB2
= a IR

2
2

 = 1 ∠ 240º × 5·78 ∠ 30º = 5·78 ∠−∠−∠−∠−∠− 90ºA

Note that components IB1 and IB2 have finite values although the line B is open and can carry no
net current.  As expected, the sum of IB1 and IB2 is zero.  However, the sum of components in line R is
10∠ 0ºA and the sum of components in line Y is 10∠ 180ºA.

Example 18.10.  Three resistors of 5Ω, 10Ω and 20Ω are connected in delta across the three
phases of a balanced 100 volts supply.  What are the sequence components in the resistors and in
supply lines ?

Solution.  Let the voltages across 5Ω, 10Ω and 20Ω be E ER Y,  and EB
respectively and the

corresponding currents in the resistors be I IR Y,  and IB
.  These voltages can be represented by the

vector diagram shown in Fig. 18.8 (ii).

ER  = −100 ∠ 0º V   ;    EY  = 100 ∠ 60º V    ;     EB  = 100 ∠− 60ºV

Current in 5Ω, I ER R= 5 =
− ∠100 0

5
º

 =  −20 ∠ 0º A

Current in 10Ω, I EY Y= 10 =
100 60

10
∠ º

 = 10 ∠ 60ºA

Current in 20Ω, I EB B= 20 =
100 60

20
∠ − º

 = 5 ∠− 60ºA

Sequence currents in resistors

Zero sequence component of IR
 is

IR0 =
1
3

I I IR Y B+ +

=
1
3

 [−20 ∠ 0º + 10 ∠ 60º + 5 ∠− 60º]

=
1
3

 [(−20 + j 0) + (5 + j 8·66) + (2·5 − j 4·33)]
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=
1
3

 [−12·5 + j 4·33]

= − 4·17 + j 1·44 = 4·41 ∠∠∠∠∠ 160·9ºA

Positive sequence component of IR  is

IR1
= 1

3
2I a I a IR Y B+ +

= 1
3

 [−20 ∠ 0º + 1 ∠ 120º × 10 ∠ 60º + 1 ∠ 240º × 5 ∠− 60º]

=
1
3

 [−20 ∠ 0º + 10 ∠ 180º + 5 ∠ 180º]

= 1
3

 [(−20 + j  0) + (−10 + j 0) + (−5 + j 0)]

= 1
3

 [−35 + j 0]

= −11·66 + j 0 = 11·66 ∠∠∠∠∠ 180ºA

Negative sequence component of IR  is

IR2
=

1
3

2I a I a IR Y B+ +

=
1
3

 [−20∠ 0º + 1 ∠ 240º × 10 ∠ 60º + 1 ∠ 120º × 5 ∠− 60º]

= 1
3

 [−20 ∠ 0º + 10 ∠ 300º  + 5 ∠ 60º]

= 1
3

 [(−20 + j 0) + (5 − j 8·66) + (2·5 + j 4·33)]

= 1
3

 [− 12·5 − j 4·33] = − 4·17 − j 1·44 = 4·4 ∠−∠−∠−∠−∠− 160·9º A

The sequence components of IY  and IB  can be found as under :

I IY R0 0= = 4·41 ∠∠∠∠∠ 160·9º A

I a IY R1
2

1= = 1 ∠ 240º × 11·66 ∠ 180º = 11·66 ∠∠∠∠∠ 60º A

I a IY R2 2= = 1 ∠ 120º × 4·4 ∠− 160·9º = 4·4 ∠−∠−∠−∠−∠− 40·9º A

I IB R0 0= = 4·41 ∠∠∠∠∠ 160·9º A

I a IB R1 1= = 1 ∠ 120º × 11·66 ∠ 180º = 11·66 ∠∠∠∠∠ 300º A

I a IB R2
2

2= = 1 ∠ 240º × 4·4 ∠− 160·9º = 4·4 ∠∠∠∠∠ 79·1º A

Sequence currents in supply lines

Line current in R-line, Ir = I IB Y−  = 5 ∠− 60º − 10 ∠ 60º

= (2·5 − j 4·33) − (5 + j 8·66)
= − 2·5 − j 12·99 = 13·22 ∠− 100·9º A

Line current in Y-line, Iy = I IR B−  = − 20∠ 0º − 5 ∠− 60º

= (−20 + j 0) − (2·5 − j 4·33)
= −22·5 + j 4·33 = 22·91 ∠ 169º A

Line current in B-line, Ib = I IY R−  = 10∠ 60º − (−20∠ 0º)

= (5 + j 8·66) − (−20 + j 0)

= 25 + j 8·66 = 26·45 ∠ 19·1ºA
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Zero sequence component of Ir
 is

0rI
���

 * = 1
3

I I Ir y b+ +e j  = 1
3

0  = 0A**

Positive sequence component of Ir
 is

Ir1
= 1

3
2I a I a Ir y b+ +e j

= 1
3

2I I a I I a I IB Y R B Y R− + − + −e j e j e j
= 1

3
2 2a I a I a I a I a I a IR Y B R Y B+ + − + +2e j e j

[∵ a3 = 1 and a4 = a]

= 1
3

2 2a a I a I a IR Y B− + +e j e j
Now a − a2 = j 3  and I a I a I IR Y B R+ + =2

13

∴ Ir1
= 1

3
3 3 1j IRd i e j

= j I jR3 31 =  (−11·66 + j 0)

= − j 20·2 = 20·2 ∠− ∠− ∠− ∠− ∠− 90º A

Negative sequence component of Ir
 is

Ir2
= 1

3
2I a I a Ir y b+ +

= 1
3

2I I a I I a I IB Y R B Y R− + − + −e j e j e j
= 1

3
2 2a I a I a I a I a I a IR Y B R Y B+ + − + +2e j e j

= 1
3

2 2( )a a I a I a IR Y B− + +e j
Now a2 − a = − j 3  and I a I a I IR Y B R+ + =2

23

∴ Ir2 = 1
3

3 3 32 2− × = − ×j I j IR Re j
= − j 3  × (−4·17 − j 1·44)

= −2·5 + j 7·2 = 7·62  ∠∠∠∠∠ 109·1ºA
Note. Incidentally, we have the formulas for relation among sequence components in the phases and lines.

Ir1
= j IR3 1    ;    Ir2

 = − j IR3 2

Example 18.11.  A delta connected load is supplied from a 3-phase supply.  The fuse in the B
line is removed and current in the other two lines is 20 A. Find the symmetrical components of line
currents.

Solution.  Let R, Y and B be the supply lines.  When fuse in the line B is removed, the various line
currents are :

* Since vector sum of 0, 0
0

I I I I
r y b r

+ + = =
��� ��� ��� ����

** This shows that in delta formation, the zero sequence currents are present in phases but they disappear in
line currents.  As line current is the difference of two phase currents, therefore, the zero sequence compo-
nents cancel out.
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Ir = 20 ∠ 0º A ;  Iy  = 20 ∠ 180º A ;  Ib  = 0 A

R-line

Ir0 = 1
3

I I Ir y b+ +  = 1
3

 [20 ∠ 0º + 20 ∠ 180º + 0]

= 1
3

 [(20 + j0) + (−20 + j0) + 0] = 
1
3

 [0] = 0A

Ir1 = 1
3

2I a I a Ir y b+ +

= 1
3

 [20 ∠ 0º + 1 ∠ 120º × 20 ∠ 180º + 0]

= 1
3

 [20 ∠ 0º + 20 ∠ 300º] = 
1
3

 [(20 + j0) + (10 − j 17·32)]

= 1
3

 [30 − j 17·32] = 10 − j 5·77 = 11·54 ∠−∠−∠−∠−∠− 30ºA

Ir2 = 1
3

2I a I a Ir y b+ +

= 1
3

 [20 ∠ 0º + 1 ∠ 240º × 20 ∠ 180º + 0]

= 1
3

 [20 ∠ 0º + 20 ∠ 60º] = 
1
3

 [(20 + j0) + (10 + j 17·32)]

= 1
3

 [30 + j 17·32] = 10 + j 5·77 = 11·54 ∠∠∠∠∠ 30ºA

Y-line

Iy0 = Ir0  = 0A

Iy1 = a Ir
2

1  = 1 ∠ 240º × 11·54 ∠− 30º = 11·54 ∠∠∠∠∠ 210º A

Iy2 = a Ir2  = 1 ∠ 120º × 11·54 ∠ 30º = 11·54 ∠∠∠∠∠ 150º A

B-line

Ibo = Iro  = 0A

Ib1 = a Ir1  = 1 ∠ 120º × 11·54 ∠− 30º = 11·54 ∠∠∠∠∠ 90ºA

Ib2 = a Ir
2

2  = 1 ∠ 240º × 11·54 ∠ 30º = 11·54 ∠∠∠∠∠ 270º A

Example 18.12.  Three impedances of 5—j10, 6 + j 5 and 3 + j15 ohms are connected in star to
red, yellow and blue lines of a 3300 V, 3-phase, 3-wire supply.  The phase sequence is RYB.  Calcu-
late the line current IR.

Solution.  This is a case of unbalanced 3-phase star connected load supplied from a balanced 3-
phase supply.  Since the phase sequence is RY B,

∴ VRY = 3300 ∠ 0º V   ;   V a VYB RY= 2  = 3300 ∠ 240º V

Let V VR Y,  and VB  be the voltages across impedances in R, Y and B phases respectively and

I IR Y,  and IB  the resulting line currents.

∴ V V VR Y RY− = = 3300 + j 0

and V V VY B YB− = = 3300(−0·5 − j 0·866)

Since I I IR Y B+ + = 0A
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∴ I I IR Y B0 0 0= = = 0A

VR = (5 − j10) IR
 = (5 − j10) I I IR R R0 1 2+ +e j

= (5 − j10) I IR R1 2+e j ...(i)

VY = (6 + j5) IY
 = (6 + j5) I I IY Y Y0 1 2+ +e j

= (6 + j5) I IY Y1 2+e j
= (6 + j5) a I a IR R

2
1 2+e j ...(ii)

VB = (3 + j15) IB
 = ( 3 + j15) I I IB B B0 1 2+ +e j

= ( 3 + j15) I IB B1 2+e j
= ( 3 + j15) a I a IR R1

2
2+e j ...(iii)

Subtracting exp. (ii) from exp. (i), we get,

V VR Y− = I I j a I a I jR R R R1 2
2

1 25 10 6 5+ − − + +e j b g e j b g
or 3300 = (3·67 − j 2·3)IR1  + (12·33 − j 12·7) IR2 ...(iv)

Subtracting exp. (iii) from exp. (ii), we get,

V VY B− = a I a I j a I a I jR R R R
2

1 2 1
2

26 5 3 15+ + − + +e j b g e j b g
or 3300(−0·5 − j 0·866) = (15·8 − j 2·8)IR1  − (18·84 − j 12·8)IR2

or −1650 − j 2858 = (15·8 − j 2·8) IR1  − (18·84 − j 12·8) IR2 ...(v)

Solving exps. (iv) and (v), we get,

IR1
= 134 − j 65

and IR2
= 95 + j 141
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∴ IR
= I IR R1 2+  = (134 − j 65) + (95 + j 141)

= 229 + j 76 = 241 ∠−∠−∠−∠−∠− 18·4º A
Example 18.13.  A star connected load consists of three equal resistors of 1 Ω resistance.  The

load is assumed to be connected to an unsymmetrical 3-phase supply, the line voltages are 200 V,
346 V and 400 V.  Find the magnitude of current in any phase by the method of symmetrical compo-
nents.

Solution.  This is a case of a balanced star-connected load sup-
plied from an unbalanced 3-phase supply.  Fig. 18.11 (i) shows the
balanced star-connected load receiving unbalanced supply.   Fig. 18.11
(ii) shows the vector diagram.  Since the vector sum of three voltages is
zero, these can be represented by the three sides of a triangle as shown
in Fig. 18.12.  Referring to Fig. 18.12, it is clear that :

(2)2 = (1 + 1·75 cos θ)2 + (1·75 sin θ)2

or 4 = 1 + (1·75)2 (cos2 θ + sin2 θ) + 2 × 1·75 cos θ
or 4 = 1 + 3 × 1 + 3·5 cos θ
∴ cos θ = (4 − 4)/3·5 = 0

∴ θ = 90º

and cos α = 1 1 75
2

1 0
2

+ ⋅ = +cosθ  = 0·5

∴ α = 60º

As the phase sequence is RYB, therefore, various line voltages are :

VRY
= 200 ∠ 180º = (−200 + j0) V

VYB
= 346 ∠ 180º − 90º = 346 ∠ 90º = (0 + j 346) V

VBR
= 400 ∠− 60º = (200 − j 346) V

The current in any phase (or line) is equal to phase voltage divided by resistance in that phase.

∴ Line current, IR = 200 180
1 3

∠
×

º  = 115·47 ∠ 180º A

Line current, IY = 346 90
1 3

∠
×

º  = 199·77 ∠ 90º A
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Line current, IB = 400 60
1 3

∠ −
×

º  = 230·94 ∠− 60ºA

Sequence components in red phase are :

IR0 =
1
3

I I IR Y B+ +

=
1
3

 [115·47 ∠ 180º + 199·77 ∠ 90º + 230·94 ∠− 60º]

=
1
3

 [(−115·47 + j 0) + (0 + j 199·77) + (115·47 − j 199·99)]

=
1
3

 [0] = 0A

IR1
= 1

3
2I a I a IR Y B+ +

=
1
3

 [115·47 ∠ 180º + 1 ∠ 120º × 199·99 ∠ 90º + 1 ∠ 240º × 230·94 ∠− 60º]

=
1
3

 [115·47 ∠ 180º + 199·99 ∠ 210º + 230·94 ∠ 180º]

=
1
3

 [(−115·47 + j0) + (−173 − j 99·99) + (−230·94 + j0)]

=
1
3

 [−519·4 − j 99·99] = −173·13 − j 33·3 = 176·3 ∠−∠−∠−∠−∠− 169ºA

IR2 = 1
3

2I a I a IR Y B+ +

= 1
3

 [115·47 ∠ 180º + 1 ∠ 240º × 199·99 ∠ 90º + 1 ∠ 120º × 230·94 ∠− 60º]

= 1
3

 [115·47 ∠ 180º + 199·99 ∠ 330º + 230·94 ∠ 60º]

= 1
3

 [(−115·47 + j0) + (173 − j 99·99) + (115·47 + j 199·99)]

= 1
3

 [173 + j 100] = 57·66 + j 33·3 = 66·58 ∠∠∠∠∠ 30º A

TUTORIAL  PROBLEMSTUTORIAL  PROBLEMSTUTORIAL  PROBLEMSTUTORIAL  PROBLEMSTUTORIAL  PROBLEMS

1. In a 3-phase, 4-wire system, currents in R, Y and B lines under abnormal conditions of loading are:

IR = 150 ∠ 45º A ; IY = 250 ∠ 150º A ; IB = 100 ∠ 300º A

Calculate the zero, positive and negative phase sequence currents in the R-line and return current in the
neutral connection.

[IR0 = 52·2 ∠∠∠∠∠ 112·7º A ;  IR1 = 48·02 ∠−∠−∠−∠−∠− 87·6º A; IR2 = 163·21 ∠∠∠∠∠ 40·45º A; IN = 156·6 ∠∠∠∠∠ 112·7º A]
2. In a 3-phase system, the phase voltages are as under :

ER = 1 ∠ 0º V ; EB = 1 ∠− 120º V ; EY = 0 V

Find the zero, positive and negative phase sequence components in the R-phase.

[ER0 = −−−−−0·33 ∠∠∠∠∠ 120ºV;  ER2 = −−−−− 0·33 ∠∠∠∠∠ 240ºV; ER1 = 0·66 ∠∠∠∠∠ 0º V]

3. The currents in a 3-phase unbalanced system are :

IR = (80 + j 0) A  ; IY = (−10 − j 60) A  ; IB = (70 + j 60) A

The phase sequence is RYB.  Calculate the zero, positive and negative sequence components of the red
line current and determine the current in the neutral wire.

[IR0 = 0A;   IR1 = 76·58 ∠∠∠∠∠ 13ºA ;  IR2 = 18·12 ∠−∠−∠−∠−∠− 72·6ºA;  IN = 0A]

4. A 3-phase, 4-wire system supplies loads which are unequally distributed in the three phases.  An analysis
of the circuit shows that positive and negative phase sequence components of the current in the red line
are as under :
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IR1 = (7·89 + j 0·732) A ; IR2 = (2·11 − j 2·732) A

The total observed current flowing back to supply in the neutral conductor is zero.  Calculate the current
in the three lines. [IR = (10 −−−−− j 2)A; IY = (−−−−−2 −−−−− j 4) A; IB = (−−−−−8 + j 6) A]

18.618.618.618.618.6  Sequence  Impedances Sequence  Impedances Sequence  Impedances Sequence  Impedances Sequence  Impedances

Each element of power system will offer impedance to different phase sequence components of cur-
rent which may not be the same.  For example, the impedance which any piece of equipment offers to
positive sequence current will not necessarily be the same as offered to negative sequence current or
zero sequence current. Therefore, in unsymmetrical fault calculations, each piece of equipment will
have three values of impedance—one corresponding to each sequence current viz.

(i) Positive sequence impedance (Z1)
(ii) Negative sequence impedance (Z2)

(iii) Zero sequence impedance (Z0)
The impedance offered by an equipment or circuit to positive sequence current is called positive

sequence impedance and is represented by Z1.  Similarly, impedances offered by any circuit or equip-
ment to negative and zero sequence currents are respectively called negative sequence impedance
(Z2) and zero sequence impedance (Z0).

The following points may be noted :

(a) In a 3-phase balanced system, each piece of equipment or circuit offers only one impedance–
the one offered to positive or normal sequence current.  This is expected because of the
absence of negative and zero sequence currents in the 3-phase balanced system.

(b) In a 3-phase unbalanced system, each piece of equipment or circuit will have three values of
impedance viz. positive sequence impedance, negative sequence impedance and zero sequence
impedance.

(c) The positive and negative sequence impedances of linear, symmetrical and static circuits
(e.g. transmission lines, cables, transformers and static loads) are equal and are the same as
those used in the analysis of balanced conditions.  This is due to the fact that impedance of
such circuits is independent of the phase order, provided the applied voltages are balanced.
It may be noted that positive and negative sequence impedances of rotating machines (e.g.
synchronous and induction motors) are normally different.

(d) The zero sequence impedance depends upon the path taken by the zero sequence current.
As this path is generally different from the path taken by the positive and negative sequence
currents, therefore, zero sequence impedance is usually different from positive or negative
sequence impedance.

18.718.718.718.718.7  Sequence  Impedances of  Power  System  Elements Sequence  Impedances of  Power  System  Elements Sequence  Impedances of  Power  System  Elements Sequence  Impedances of  Power  System  Elements Sequence  Impedances of  Power  System  Elements

The concept of impedances of various elements of power system (e.g. generators, transformers,
transmission lines etc.) to positive, negative and zero sequence currents is of considerable importance
in determining the fault currents in a 3-phase unbalanced system.  A complete consideration of this
topic does not fall within the scope of this book, but a short preliminary explanation may be of
interest here.  The following three main pieces of equipment will be considered :

(i) Synchronous generators
(ii) Transformers

(iii) Transmission lines

(i) Synchronous generators.  The positive, negative and zero sequence impedances of rotating
machines are generally different.  The positive sequence impedance of a synchronous generator is
equal to the synchronous impedance of the machine.  The negative sequence impedance is much less
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than the positive sequence impedance.  The zero sequence impedance is a variable item and if its
value is not given, it may be assumed to be equal to the positive sequence impedance.  In short :

Negative sequence impedance < Positive sequence impedance
Zero sequence impedance = Variable item

= may be taken equal to +ve sequence impedance if its value is
not given

It may be worthwhile to mention here that any impedance Ze in the earth connection of a star-
connected system has the effect to introduce an impedance of 3 Ze per phase.  It is because the three
equal zero-sequence currents, being in phase, do not sum to zero at the star point, but they flow back
along the neutral earth connection.

(ii) Transformers.  Since transformers have the same impedance with reversed phase rotation,
their positive and negative sequence impedances are equal; this value being equal to the impedance
of the transformer.  However, the zero sequence impedance depends upon earth connection.  If there
is a through circuit for earth current, zero sequence impedance will be equal to positive sequence
impedance otherwise it will be infinite.  In short,

Positive sequence impedance = Negative sequence impedance

= Impedance of Transformer
Zero sequence impedance = Positive sequence impedance, if there is circuit for earth current

= Infinite, if there is no through circuit for earth current.

(iii) Transmission lines.  The positive sequence and negative sequence impedance of a line are
the same; this value being equal to the normal impedance of the line.  This is expected because the
phase rotation of the currents does not make any difference in the constants of the line.  However, the
zero sequence impedance is usually much greater than the positive or negative sequence impedance.
In short :

Positive sequence impedance = Negative sequence impedance
= Impedance of the line

Zero sequence impedance = Variable item
= may be taken as three times the +ve sequence impedance if its

value is not given

18.818.818.818.818.8  Analysis  of  Unsymmetrical  Faults Analysis  of  Unsymmetrical  Faults Analysis  of  Unsymmetrical  Faults Analysis  of  Unsymmetrical  Faults Analysis  of  Unsymmetrical  Faults

In the analysis of unsymmetrical faults, the following assumptions will be made :
(i) The generated e.m.f. system is of positive sequence only.

(ii) No current flows in the network other than due to fault i.e. load currents are neglected.
(iii) The impedance of the fault is zero.
(iv) Phase R shall be taken as the reference phase.

In each case of unsymmetrical fault, e.m.f.s’ per phase are denoted by ER, EY and EB and the
terminal p.d. per phase by VR, VY and VB.

18.918.918.918.918.9  Single  Line-to-Gr Single  Line-to-Gr Single  Line-to-Gr Single  Line-to-Gr Single  Line-to-Ground  Found  Found  Found  Found  Faultaultaultaultault

Consider a 3-phase system with an earthed neutral.  Let a single line-to-ground fault occur on the red
phase as shown in Fig. 18.13.  It is clear from this figure that :

*VR
 = 0 and  I IB Y=  = 0

* Note that VR is the terminal potential of phase R i.e. p.d. between N and R.  Under line-to-ground fault, it
will obviously be zero.
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The sequence currents in the red phase in terms of line currents shall be :

I0 = 1
3

1
3

I I I IR Y B R+ + =e j
I1 = 1

3
1
3

2I a I a I IR Y B R+ + =e j
I2 = 1

3
1
3

2I a I a I IR Y B R+ + =e j
∴ I0 = I I IR1 2

1
3

= =

Fault current.  First of all expression for fault current IR
 will be derived.  Let Z Z1 2,  and Z0  be

the positive, negative and zero sequence impedances of the generator respectively.  Consider the
closed loop NREN.  As the sequence currents produce voltage drops due only to their respective
sequence impedances, therefore, we have,

ER = I Z I Z I Z VR1 1 2 2 0 0+ + +

As VR  = 0 and I I I1 2 0= =

∴ ER = I Z Z Z0 1 2 0+ +e j

or I0 =
E

Z Z Z
R

1 2 0+ +

∴ Fault current, IR = 3 0I  = 
3

1 2 0

E

Z Z Z
R

+ +
   ...(i)

Examination of exp. (i) shows that the equivalent circuit from
which fault current may be calculated is as given in Fig. 18.14.  It is
clear that fault current is obtained by connecting the phase sequence
impedances in series across an imaginary generator of voltage 3 ER.
This is a wonderful part of the method of symmetrical components
and makes the analysis easy and interesting.  In fact, this method
permits to bring any unsymmetrical fault into a simple circuit of
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interconnection of sequence impedances appropriate to the fault condition prevailing.

The assumption made in arriving at exp. (i) is that the fault impedance is zero.  However, if the
fault impedance is Ze, then expression for fault current becomes :

IR =
3

31 2 0

E

Z Z Z Z
R

e+ + +
It may be added here that if the neutral is not grounded, then zero sequence impedance will be

infinite and the fault current is zero.  This is expected because now no path exists for the flow of fault
current.

Phase voltages at fault.  Now let us calculate the phase voltages at fault (i.e. voltage between
each line and fault).  Since the generated e.m.f. system is of positive sequence only, the sequence
components of e.m.f. in R-phase are :

E0 0=  ;  E2 0=  and E ER1 =
The sequence voltages at the fault for R-phase are :

V1
= E I Z E

E Z

Z Z Z
R R

R− = −
+ +1 1

1

1 2 0

∴ V1
=

Z Z

Z Z Z
ER

2 0

1 2 0

+
+ +

V2
= 0 2 2

2

1 2 0

− =
−

+ +
Z I

Z

Z Z Z
ER

V0 = 0 0 0
0

1 2 0

− =
−

+ +
I Z

Z

Z Z Z
ER

It can be readily seen that V V V1 2 0 0+ + = .  This is expected because R-phase is shorted to
ground.

∴ The phase voltages at fault are :

VR = V V V0 1 2 0+ + =

VY = V a V a V0
2

1 2+ +

VB = V a V a V0 1
2

2+ +
Summary of Results.  For line (R-phase)-to-ground fault :

(i) IR = Fault current = 
3

0 0
1 2 0

E

Z Z Z
I IR
Y B+ +

= =; ;

(ii) VR = 0

VY = V a V a V0
2

1 2+ +

VB = V a V a V0 1
2

2+ +

18.1018.1018.1018.1018.10    Line–to–Line  Fault   Line–to–Line  Fault   Line–to–Line  Fault   Line–to–Line  Fault   Line–to–Line  Fault

Consider a line-to-line fault between the blue (B) and yellow (Y) lines as shown in Fig. 18.15.  The
conditions created by this fault lead to :

V VY B=    ;    IR = 0    and I IY B+ = 0
Again taking R-phase as the reference, we have,
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I0 =
1
3

I I IR Y B+ +e j  = 0

Now VY
= VB

Expressing in terms of sequence components of red line, we have,

V a V a V0
2

1 2+ + = V a V a V0 1
2

2+ +

or V a a1
2( )− = V a a2

2( )−

∴ V1
= V2

...(i)

Also I IY B+ = 0

or I a I a I I a I a I0
2

1 2 0 1
2

2+ + + + +e j e j  = 0

or ( )a a I I I2
1 2 02+ + +e j = 0

or I I1 2+ = 0                                        [∵ I0 = 0] ...(ii)

Fault current.  Examination of exp. (i) and exp (ii) reveals
that sequence impedances should be connected as shown in Fig.
18.16.  It is clear from the figure that :

1I
��

= 2

1 2

RE
I

Z Z
− =

+

���
���

��� ���

Fault current, IY = I a I a I0
2

1 2+ +

= 0 2

1 2 1 2

+
+

F
HG

I
KJ

+
−
+

F
HG

I
KJ

a
E

Z Z
a

E

Z Z
R R

= ( )a a
E

Z Z
R2

1 2

−
+

=
−

+
= −

j E

Z Z
IR

B

3

1 2

Phase voltages.  Since the generated e.m.f. system is of positive phase sequence only, the sequence
components of e.m.f. in R-phase are :

E0 0=  ;   E2 0=     and E ER1 =
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The sequence voltages at the fault for R-phase are :

V1 = E I Z E
E

Z Z
ZR R

R− = −
+

F
HG

I
KJ1 1

1 2
1

∴ V1 =
Z

Z Z
ER

2

1 2+

V2 = 0 2 2
2

1 2

− =
+

I Z
Z

Z Z
ER

V0 = 0 00 0− =I Z

The phase voltages at fault are :

VR
= V V V0 1 2+ +

= 0 2

1 2

2

1 2

+
+

+
+

Z

Z Z
E

Z

Z Z
ER R

∴ VR
=

2 2

1 2

Z

Z Z
ER+

VY
= V a V a V0

2
1 2+ +

= 0 2 2

1 2

2

1 2

+
+

F
HG

I
KJ

+
+

F
HG

I
KJ

a
Z

Z Z
E a

Z

Z Z
ER R

= ( )a a
Z

Z Z
ER

2 2

1 2

+
+

F
HG

I
KJ

∴ VY
= −

+
Z

Z Z
ER

2

1 2

(∵ a2 + a = −1)

VB
= V a V a V0 1

2
2+ +

= 0 2

1 2

2 2

1 2

+
+

F
HG

I
KJ

+
+

F
HG

I
KJ

a
Z

Z Z
E a

Z

Z Z
ER R

= ( )a a
Z

Z Z
ER

2 2

1 2

+
+

F
HG

I
KJ

∴ VB
= −

+
Z

Z Z
ER

2

1 2

Summary of Results.  For line-to-line fault (Blue and Yellow lines) :

(i) I I I
j E

Z Z
R Y B

R= = − =
−

+
0

3

1 2

;

(ii) V V
Z

Z Z
EY B R= = −

+
2

1 2

    and   V
Z

Z Z
ER R=

+
2 2

1 2

18.1118.1118.1118.1118.11     Double  Line-to-Gr    Double  Line-to-Gr    Double  Line-to-Gr    Double  Line-to-Gr    Double  Line-to-Ground  Found  Found  Found  Found  Faultaultaultaultault

Consider the double line-to-ground fault involving Y–B lines and earth as shown in Fig. 18.17.  The
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conditions created by this fault lead to :

I V VR Y B= = =0 0;

Since VY = VB = 0 , it is implied that :

V1 = V V VR2 0
1
3

= = ...(i)

Also IR = I I I1 2 0+ +  =  0 (given) ...(ii)

Fault current.  Examination of exp. (i) and exp. (ii)
reveals that sequence impedances should be *connected as
shown in Fig. 18.18.  It is clear that :

I1 =
E

Z
Z Z

Z Z

R

1
2 0

2 0

+
+

I2 = −
+

I
Z

Z Z
1

0

2 0

I0 = −
+

I
Z

Z Z
1

2

2 0

Fault current, IF  = 03Y BI I I+ =
��� ��� ���

**
2

1
2 0

3
Z

I
Z Z

 
= − + 

���
��
��� ���

= −
+

×
+

+

3 2

2 0
1

2 0

2 0

Z

Z Z

E

Z
Z Z

Z Z

R

= −
+ +
3 2

0 1 0 2 1 2

Z E

Z Z Z Z Z Z
R

* Since V V V VR1 2 0
1
3

= = = , sequence impedances must be in parallel.

** I0   =  1
3

1
3

I I IR Y B+ + =e j  (0 + Fault Current)

∴ Fault current  =  3 0I
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Phase Voltages.  The sequence voltages for phase R are :

V E I ZR1 1 1= − ; V I Z2 2 20= − ; V I Z0 0 00= −

Now V1 = V V VR2 0
1
3

= =

∴ VR = V V V V1 2 0 23+ + =

VY = a V a V V a a V2
1 2 0

2
21+ + = + +( ) (� V V V1 2 0= = )

= 0 2× V   =  0 (� a2 + a + 1 = 0)

VB = a V a V V a a V1
2

2 0
2

21 0+ + = + + =( )

Example 18.14.  A 3-phase, 10 MVA, 11 kV generator with a solidly earthed neutral point
supplies a feeder.  The relevant impedances of the generator and feeder in ohms are as under :

Generator feeder

Positive sequence impedance  j 1·2 j 1·0
Negative sequence impedance  j 0·9 j 1·0

Zero sequence impedance  j 0·4 j 3·0

If a fault from one phase to earth occurs on the far end of the feeder, calculate

(i) the magnitude of fault current
(ii) line to neutral voltage at the generator terminal
Solution.  The circuit diagram is shown in Fig. 18.19.  The fault is assumed to occur on the red

phase.  Taking red phase as the reference,

Phase e.m.f. of R-phase, ER = ×11 10 33  = 6350 V

(i) The total impedance to any sequence current is the sum of generator and feeder impedances
to that sequence current.

∴ Total Z1 = j 1·2 + j 1·0  =  j 2·2 Ω

Total Z2 = j 0·9 + j 1·0  =  j 1·9 Ω

Total Z0 = j 0·4 + j 3·0  =  j 3·4 Ω
For a line-to-ground fault, we have,

I I I
E

Z Z Z j j j
R

1 2 0
1 2 0

6350
2 2 1 9 3 4

= = =
+ +

=
⋅ + ⋅ + ⋅
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=  6350
7 5j ⋅

= − j 846 A

∴ Fault current, IR = 3 0I  = 3 × (− j 846)  =  −−−−− j 2538 A

(ii) Line-to-neutral voltage of R-phase,

VR = E I Z I Z I ZR − − −1 1 2 2 0 0

where Z Z Z0 1 2, and  are the sequence impedances of generator.

= E I Z Z ZR − + +0 1 2 0e j
= 6350 − (− j 846) (j 1·2 + j 0·9 + j 0·4)
= 6350 + j 846 ( j 2·5)
= 6350 − 2115 = 4235 V

Example 18.15.  A 3-phase, 11 kV, 10 MVA alternator has sequence reactances of X0 = 0·05
p.u., X1 = 0·15 p.u. and X2 = 0·15 p.u.  If the generator is on no load, find the ratio of fault currents
for L-G fault to that when all the 3-phases are dead short-circuited.

Solution.  Taking red phase as the reference, let its phase e.m.f. be ER  = 1 p.u.
Line-to-ground fault.  Suppose the fault occurs on the red phase.  Then,

I1 = I I
E

X X X
R

2 0
1 2 0

= =
+ +

∴ I0 = 1
0 15 0 15 0 05

1
0 35j j j j⋅ + ⋅ + ⋅

=
⋅

  =  − j 2·85

∴ Fault current, IR = 3 0I  = 3 × (−j 2·85) = − j 8·55 A

Three phase fault.  When a dead short circuit occurs on all the three phases, it gives rise to
symmetrical fault currents.  Therefore, the fault current (say Ish) is limited by the positive sequence
reactance (i.e. X1) only.

∴ Fault current, Ish =
E

X j
jR

1

1
0 15

6 66=
⋅

= −  ⋅

Ratio of two fault currents =
I

I

j
j

R

sh

= − ⋅
− ⋅

8 55
6 66

  =  1·284

i.e. single line-to-ground fault current is 1·284 times that due to dead short circuit on the 3-
phases.

Example 18.16.  A 3-phase, 11 kV, 25 MVA generator with X0 = 0·05 p.u., X1 = 0·2 p.u. and X2
= 0·2 p.u. is grounded through a reactance of 0·3 Ω.  Calculate the fault current for a single line to
ground fault.

Solution.  Fig. 18.20 shows the circuit diagram.  The fault is assumed to occur on the red phase.

Taking red phase as the reference, let its phase e.m.f. be ER
 = 1 p.u.

First of all, convert the reactance Xn into p.u. value from the following relation :

*p.u. value of Xn = Xn in ohms × kVA rating

kV( )2 1000×

* % Xn = Xn in ohms × kVA rating

(kV) 102 ×
.  If this value is divided by 100, we get p.u. value.
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= 0·3 × 25 000
11 10002

,
( ) ×

 = 0·062 p.u.

For a line-to-ground fault, we have,

I I I1 2 0= = = E

X X X X
R

n1 2 0 3+ + +( )

= 1
0 2 0 2 0 05 3 0 062j j j⋅ + ⋅ + ⋅ + × ⋅( )

= 1
0 636j ⋅

  =  − j 1·572 p.u.

Fault current, IR = 3 0I  =  3× (− j 1·572)  =  − j 4·716 p.u.

∴ Fault current in amperes = Rated current × p.u. value

= 25 10

3 11 10
4 716

6

3
×

× ×
× ⋅  =  6188 A

Example 18.17.  A 3-phase, 3-wire system has a normal voltage of 10·4 kV between the lines.  It
is supplied by a generator having positive, negative and zero sequence reactances of 0·6, 0·5 and 0·2
Ω per phase respectively.  Calculate the fault current which flows when a line-to-line fault occurs at
the generator terminals.

Solution.  Suppose the short circuit fault occurs between yellow and blue phases.  Taking red
phase as the reference, its phase e.m.f. is :

Phase e.m.f. of R-phase, ER = 10·4 × 10 33  = 6000 V

Now X1  = j 0·6 Ω ;  X2  = j 0·5 Ω ;  X0  = j 0·2 Ω

For line-to-line fault, we have,

Fault current, IF =
3

1 2

E
X X

R

+
(in magnitude)

= 3 6000
0 6 0 5

×
⋅ + ⋅( )

 = 9447·5 A

Example 18.18.  The per unit values of positive, negative and zero sequence reactances of a
network at fault are 0·08, 0·07 and 0·05.  Determine the fault current if the fault is double line-to-
ground.
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Solution.  Suppose the fault involves yellow and blue phases and the ground.  Taking red phase

as the reference, let its phase e.m.f. be ER  = 1 p.u.

Now, X1  = j 0·08 p.u.   ;   X2  = j 0·07 p.u.   ;   X0  = j 0·05 p.u.

For a double line-to-ground fault, we have,

Fault current, IF = I I
X E

X X X X X X
Y B

R+ =
−

+ +
3 2

1 2 1 0 2 0

= − × ⋅ ×
⋅ × ⋅ + ⋅ × ⋅ + ⋅ × ⋅

3 0 07 1
0 08 0 07 0 08 0 05 0 07 0 05

j
j j j j j j

= − ⋅
− + + × −

j 0 21

56 40 35 10 4( )

= j 0 21 10
131

4⋅ ×   =  j 16 p.u.

Example 18.19.  A 20 MVA, 11 kV, 3-phase, 50 Hz generator has its neutral earthed through a
5% reactor.  It is in parallel with another identical generator having isolated neutral.  Each generator
has a positive sequence reactance of 20%, negative sequence reactance of 10% and zero sequence
reactance of 15%.  If a line to ground short circuit occurs in the common bus-bar, determine the fault
current.

Solution.  Fig. 18.21 shows the two generators in parallel.   The generator 1 has its neutral
earthed through a reactance (= 5%) whereas generator 2 has ungrounded neutral.  The earth fault is
assumed to occur on the red phase.  Taking red phase as the reference, its phase e.m.f. ER = 11 ×

10 33  = 6351 V.  For a line to ground fault, the *equivalent circuit will be as shown in Fig. 18.22 (i)

which further reduces to the circuit shown in Fig. 18.22 (ii).

* Note the equivalent circuit diagram.  The positive sequence reactances (20%) of two generators are in
parallel and so are their negative sequence reactances (10%).  The zero sequence reactance of generator 2
is zero because its neutral is ungrounded.  However, the zero sequence reactance of generator 1 = 15% + 3
× 5% = 30%.
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The percentage reactances in Fig. 18.22 (ii) can be converted into ohmic values as under :

X1 = % reactance × (Voltage in kV) 10
Base kVA

2 ×

= 10
11 10

10 20

2

3× ×
×

( )  = 0·605 Ω

X2 = 5
11 10

10 20

2

3× ×
×

( )  = 0·3025 Ω

X0 = 30
11 10

10 20

2

3× ×
×

( )  = 1·815 Ω

∴ Fault current, IR =
3 3 6351

0 605 0 3025 1 815
1 2 0

E

X X X j j j
R

+ +
= ×

⋅ + ⋅ + ⋅

= 19053
2 7225j ⋅

 = −−−−− j 6998 A

Example 18.20.  A 50 MVA, 11 kV three-phase alternator was subjected to different types of
faults.  The fault currents are as under :

3-phase fault = 2000 A  ; Line-to-Line fault = 2600 A  ;  Line-to-ground fault = 4200 A

The generator neutral is solidly grounded.  Find the values of the three sequence reactances of
the alternator.  Ignore resistances.

Solution.  Let X 1, X 2 and X 0 be the positive, negative and zero sequence reactances respectively
of the alternaor.

For 3-phase fault, Fault current =
E

X
ph

1

(magnitude)

or 2000 =
11000 3

1X
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∴ X1 =
11000
3 2000×

  = 3·175 ΩΩΩΩΩ

For line-to-line fault, we have,

Fault current =
3

1 2

E

X X
ph

+
(magnitude)

or 2600 =
3 11000 3

1 2

×
+X X

or X1 + X2 = 11000
2600

 = 4·231 Ω

∴ X2 = 4·231 − X 1 = 4·231 − 3·175 = 1·056 ΩΩΩΩΩ
For line-to-ground fault, we have,

Fault current =
3

1 2 0

E

X X X
ph

+ +
(magnitude)

or 4200 = 3 11000 3

1 2 0

×
+ +X X X

or X 1 + X 2 + X0 = 3 11000
3 4200
×

×
 = 4·536 Ω

∴ X0 = 4·536 − X 1 − X 2 = 4·536 − 3·175 − 1·056 = 0·305 ΩΩΩΩΩ

TUTORIAL  PROBLEMSTUTORIAL  PROBLEMSTUTORIAL  PROBLEMSTUTORIAL  PROBLEMSTUTORIAL  PROBLEMS

1. A 3-phase, 75 MVA, 0·8 p.f. (lagging), 11·8 kV star-connected alternator having its star point solidly
earthed supplies a feeder.  The relevant per-unit (p.u.) impedances, based on the rated phase voltage and
phase current of the alternator are as follows :

Generator Feeder

Positive sequence impedance (p.u.) j 1·7 j 0·1

Negative sequence impedance (p.u.) j 0·18 j 0·1

Zero sequence impedance (p.u.) j 0·12 j 0·3

Determine the fault current for a one line-to-earth fault occuring at the far end of the feeder.  The gener-
ated e.m.f. per phase is of positive sequence only and is equal to the rated voltage per phase. [4400 A]

2. A 3-phase, 75 MVA, 11·8 kV star-connected alternator with a solidly earthed neutral point has the fol-
lowing p.u. impedances based on rated phase voltage and rated phase current :

Positive phase sequence impedance = j 2 p.u.

Negative phase sequence impedance = j 0·16 p.u.

Zero phase sequence impedance = j 0·08 p.u.

Determine the steady-state fault current for the following : (i) 3-phase symmetrical short-circuit (ii) one
line-to-earth fault (iii) two line-to-earth fault. The generated e.m.f. per phase is equal to the rated voltage.

[(i)1840 A (ii) 4920 A (iii) 3580 A]
3. The per unit values of positive, negative and zero sequence reactances of a network at fault are 0·08, 0·07

and 0·05 respectively.  Determine the fault current if fault is line-to-line-to-ground. [j 16 p.u.]

18.1218.1218.1218.1218.12   Sequence  Networks  Sequence  Networks  Sequence  Networks  Sequence  Networks  Sequence  Networks
The analysis of an unsymmetrical fault by symmetrical components method can be conveniently done
by drawing sequence networks.  A sequence network of a particular sequence current in a given
power system is the path for the flow of that sequence current in the system.  It is composed of
impedances offered to that sequence current in the system.  Since there are three sequence currents
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(viz. positive sequence current, negative sequence current and zero sequence current), there will be
three sequence networks for a given power system, namely ;

1. Positive sequence network
2. Negative sequence network
3. Zero sequence network

1. Positive sequence network.  The positive sequence network for a given power system
shows all the paths for the flow of positive sequence currents in the system.  It is represented by one-
line diagram and is composed of impedances offered to the positive sequence currents.  While draw-
ing the positive sequence network of a given power system, the following points may be kept in view:

(i) Each generator in the system is represented by the generated voltage in series with appropriate
reactance and resistance.

(ii) Current limiting impedances between the generator’s neutral and ground pass no positive
sequence current and hence are not included in the positive sequence network.

(iii) All resistances and magnetising currents for each transformer are neglected as a matter of
simplicity.

(iv) For transmission lines, the shunt capacitances and resistances are generally neglected.
(v) Motor loads are included in the network as generated e.m.f. in series with appropriate

reactance.

2. Negative sequence network.  The negative sequence network for a given power system
shows all the paths for the flow of negative sequence currents in the system.  It is also represented by
one-line diagram and is composed of impedances offered to the negative sequence currents.  The
negative sequence network can be readily obtained from positive sequence network with the following
modifications :

(i) Omit the e.m.fs. of 3-phase generators and motors in the positive sequence network.  It is
because these devices have only positive sequence-generated voltages.

(ii) Change, if necessary, the impedances that represent rotating machinery in the positive
sequence network.  It is because negative sequence impedance of rotating machinery is
generally different from that of positive sequence impedance.

(iii) Current limiting impedances between generator’s neutral and ground pass no negative
sequence current and hence are not included in the negative sequence network.

(iv) For static devices such as transmission lines and transformers, the negative sequence
impedances have the same value as the corresponding positive sequence impedances.

3. Zero sequence network.  The zero sequence network for a given power system shows all
the paths for the flow of zero sequence currents.  The zero sequence network of a system depends
upon the nature of connections of the 3-phase windings of the components in the system.  The follow-
ing points may be noted about zero sequence network :

(i) The zero sequence currents will flow only if there is a return path i.e. path from neutral to
ground or to another neutral point in the circuit.

(ii) In the case of a system with no return path for zero sequence currents, these currents cannot
exist.

18.1318.1318.1318.1318.13    Refer   Refer   Refer   Refer   Reference  Bus  for  Sequence  Networksence  Bus  for  Sequence  Networksence  Bus  for  Sequence  Networksence  Bus  for  Sequence  Networksence  Bus  for  Sequence  Networks

While drawing the sequence networks, it is necessary to specify the reference potential w.r.t. which all
sequence voltage drops are to be taken.  For this purpose, the reader may keep in mind the following
points :

(i) For positive or negative sequence networks, the neutral of the generator is taken as the
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reference bus.  This is logical because positive or negative sequence components represent
balanced sets and hence all the neutral points must be at the same potential for either positive
or negative sequence currents.

(ii) For zero sequence network, the reference bus is the ground at the generator.
Example 18.21.  An unloaded generator is grounded through a reactance Zn as shown in Fig.

18.23.  If a single line-to-ground fault occurs, draw (i) the positive sequence network (ii) negative
sequence network and (iii) zero sequence network.

Solution.  Fig. 18.23 shows the unloaded generator with single line-to-ground fault.  We shall
now draw the sequence networks for this system.

(i) Positive sequence network.  The generated voltages are of positive sequence only becasue
the generator is designed to supply 3-phase balanced voltages.  Therefore, the positive sequence
network is composed of phase e.m.fs. in series with positive sequence impedance of the generator.
Fig. 18.24 (i) shows the positive sequence current paths whereas Fig. 18.24 (ii) shows the single-
phase positive sequence network.
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(ii) Negative sequence network.  A negative sequence network contains no e.m.f. but includes
the impedances of the generator to negative sequence currents.  Thus negative sequence network is
readily obtained by omitting e.m.fs. in the positive sequence network.  Fig. 18.25 (i) shows the nega-
tive sequence current paths whereas Fig. 18.25 (ii) shows the single-phase negative sequence net-
work.

(iii) Zero sequence network.  The zero sequence currents flow through phases as well as through
the reactance Zn as shown in Fig. 18.26 (i).  It is clear that current flowing in impedance Zn is 3IR0.  It
is because IR0 = IB0 = IY 0.

∴ Voltage drop of zero sequence current from R to ground
= − 3IR0 Zn − IR0 Z0

= − I0 (3 Zn + Z0)
Therefore, the per phase impedance to zero sequence current is 3 Zn + Z0.  Fig. 18.26 (ii) shows

the zero sequence network.

Example 18.22.  Draw the zero sequence network for (i) star-connected load with no earth
connection (ii) star-connected load with Zn from neutral to ground (iii) delta-connected load.

Solution.  (i) Fig. 18.27 (i) shows the star connected load with no earth connection.  In this case,
neutral current is zero and no zero sequence current can exist.   Fig. 18.27 (ii) shows the zero sequence
network.
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(ii) Fig. 18.28 (i) shows a star connected load with an impedance Zn between neutral and ground.
Fig. 18.28 (ii) shows the zero sequence network.  Note that if impedance Zn is placed between neutral
and ground, then an impedance of 3 Zn must be placed between the neutral and reference bus of zero
sequence network.

(iii) Since a delta connected load provides no return path, zero sequence currents cannot exist in
the phase windings.  In other words, a delta connected circuit provides infinite impedance to zero
sequence line currents.  The zero sequence network is open at the delta connected circuit.  Fig.
18.29(ii) shows the zero sequence network for a delta connected circuit.

SELF-TESTSELF-TESTSELF-TESTSELF-TESTSELF-TEST

1. Fill in the blanks by appropriate words/figures.
(i) The most common type of 3φ unsymmetrical fault is ...............

(ii) In a balanced 3–φ system, negative and zero phase sequence currents are ............. .
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(iii) In a 3-phase, 4-wire unbalanced system, the magnitude of zero sequence current is ............ of the

current in the neutral wire.

(iv) The positive sequence impedance of a transmission line is ............. to the negative sequence
impedance.

(v) The zero sequence impedance of different elements of power system is generally .......... .

2. Pick up the correct words/figures from the brackets and fill in the blanks.
(i) A symmetrical fault on a power system is .......... severe than an unsymmetrical fault. (more, less)

(ii) The operator ‘a’ rotates the vector through .......... in the anticlockwise direction. (90º, 120º, 180º)

(iii) a − a2 = ........... ( j j3 3 1, ,− )

(iv) On the occurrence of an unsymmetrical fault, the positive sequence component is always ...... than
that of negative sequence component. (more, less)

(v) The zero sequence impedance of an element in a power system is generally ........ the positive or
negative sequence impedance. (the same as, different from)

ANSWERS  TO  SELF-TESTANSWERS  TO  SELF-TESTANSWERS  TO  SELF-TESTANSWERS  TO  SELF-TESTANSWERS  TO  SELF-TEST

1. (i) Single line-to-ground   (ii) zero   (iii) one-third  (iv) equal   (v) different

2. (i) more (ii) 120º  (iii) j 3  (iv) more   (v) different from

CHAPTER  REVIEW  TOPICSCHAPTER  REVIEW  TOPICSCHAPTER  REVIEW  TOPICSCHAPTER  REVIEW  TOPICSCHAPTER  REVIEW  TOPICS

1. What is a 3-φ unsymmetrical fault ? Discuss the different types of unsymmetrical faults that can occur on
a 3-φ system.

2. Discuss the ‘symmetrical components method’ to analyse an unbalanced 3-φ system.

3. What is operator ‘a’ ?  Show that :

(i) a2 = − 0·5 − j 0·866 (ii) a3 = 1

(iii) 1 + a + a2 = 0 (iv) a − a2 = j 3

4. Express unbalanced phase currents in a 3-φ system in terms of symmetrical components.

5. What do you understand by positive, negative and zero sequence impedances ?  Discuss them with
reference to synchronous generators, transformers and transmission lines.

6. Derive an expression for fault current for single line-to-ground fault by symmetrical components method.

7. Derive an expression for fault current for line-to-line fault by symmetrical components method.

8. Derive an expression for fault current for doube line-to-ground fault by symmetrical components method.

9. What do you understand by sequence networks ? What is their importance in unsymmetrical fault
calculations ?

10. Write short notes on the following :

(i) Positive sequence network

(ii) Negative sequence network

(iii) Zero sequence network

DISCUSSION  QUESTIONSDISCUSSION  QUESTIONSDISCUSSION  QUESTIONSDISCUSSION  QUESTIONSDISCUSSION  QUESTIONS
1. Why is 3-φ symmetrical fault more severe than a 3-φ unsymmetrical fault ?

2. In a 3-φ system, it has been found that negative sequence components and zero sequence components are
absent.  What do you conclude from it ?

3. Do the sequence components physically exist in a 3-φ system ?

4. Why do we prefer to analyse unsymmetrical faults by symmetrical components method ?

5. The positive sequence network of a power system is similar to the negative sequence network.  What do
you infer from it ?
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