8 Yarn Tensions and Balloon
Geometry In Ring Spinning
and Winding

8.1 INTRODUCTION

The basic principles of ring spinning were described in Chapter 6, and 1t was
explained that, as the traveler circulates the ring, it pulls with 1t the yarn length
between the pigtail lappet guide and the traveler. This length circulates the axis
common to the spindle, ring, and lappet guide. In doing so, the yarn length balloons,
and the tension, air-drag, and the inertial, central, and Coriolis forces acting on the
yarn length govern the balloon geometry.

In winding, discussed in Chapter 7, over-end withdrawal 1s used to pull the yarn
oif the ring spinning bobbin in the direction of the bobbin axis, and the yarn passes
through a pigtail guide on the axis. At withdrawal speeds of up to, say 25 m/min,
the yarn tends to follow a direct path from the unwinding point on the package to
the guide. In this situation, the yarn tension is almost entirely the result of frictional
drag on the package surtace. Winding speeds are very much higher than 25 m/min.
At these higher speeds, the yarn balloons and, similar to ring spinning, the balloon
geometry 1s determined by the equilibrium of the above-mentioned forces.

Yarn ballooning 1s a physical phenomenon of practical interest. It sets the min-
imum distance of separation that must occur between spindle positions on a ring-
spinning machine so as to prevent adjacent balloons from colliding. Stable ballooning
1s essential for reduced machine stoppages. Balloon stability governs the balloon
height/ring diameter relationship and thereby the package size. These factors, 1n turn,
influence the production rate, energy cost, and (in certain cases) fabric quality.

In this chapter, we consider the main physical factors that determine yarn
tensions and balloon geometry in ring spinning and winding. The study of yarn
balloons was first reported in the literature in 1883 by Escher.! Since then, various
other studies have been published; some qualitative, others mathematical, several
involving fairly complex mathematics employing numerical methods and computer
software to obtain exact predictions. Several investigators, however, have made
simplifying assumptions to circumvent the mathematical ditficulties of the more
rigorous approach. Although analyses based on simplifying assumptions give less
exact solutions, they are nevertheless useful for gaining a general understanding of
the physics of yarn balloons. The justification for this 1s that such treatments are
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easier to understand, yet they readily explain the essential physical phenomena
involved and generally lead to results that are 1n good agreement with observations.
Importantly, the results obtained were found to be a useful practical guide for
predicting balloon performance. Although reference 1s made to the more complex
solutions, including a number of the latest reported models, the descriptions given
in this chapter will therefore follow the semiquantitative approach of some of the
reported work, based on simplified assumptions. In particular, it 1S assumed that the
forces acting on the yarn are sufficiently large for the effect of yarn stiffness to be
negligible. Also, we assume that the yarn tensions do not cause any appreciable yarn
extension. The yarn therefore can be viewed as an inextensible string.

8.1.1 CIrRcULARLY POLARIZED STANDING WAVES

Consider a rotating string as shown in Figure 8.1.!7 The sideways appearance would
be similar to that of the string vibrating in the vertical plane to form a standing wave
or stationary wave.? In the case of the rotating string, we can refer to the waveform
as a circularly polarized standing wave. Depending on the length, frequency of
rotation, and tension of the string, there may be one or more nodal points.

In spinning and winding, yarn balloons are essentially circularly polarized trans-
verse vibrations of a string. Thus, we can apply the basic equations for the velocity,
¢, of propagation of transverse waves along a string.

1
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Circularly Polarized Standing Wave on a Rotating String

FIGURE 8.1 Circularly polarized standing waves.
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(8.2)

~ |0

where 7, = tension 1n the string

m = mass per unit length
A = wavelength
f = wvibration frequency

The tension in the string 1s an important factor in balloon dynamics, and we will
therefore first consider how tension arises in the yarn during ring spinning, followed
by the balloon dynamics of this spinning system, and then extend the discussion to
the winding process.

8.2 YARN TENSIONS IN RING SPINNING

In ring spinning, tension develops in the yarn mainly because, to move the traveler
and the balloon length, L,, around the common axis, and to wind the yarn onto the
spinning bobbin, work must be done against the frictional force of the ring on the
traveler and of the traveler on the yarn, as well as against the air drag on the traveler
and on the balloon length. This work 1s additional to that needed to overcome the
friction of the spindle bearings and the air drag on the forming yarn package.

The tensions in the yarn during ring spinning may be considered with respect
to three zones: the winding zone, the balloon zone, and the yarn formation zone.
The winding zone 1s the area in which the yarn length from traveler to forming
package develops a winding tension, 7. In the balloon zone, tension occurs in the
yarn length between the traveler and lappet guide (often referred to as the balloon
tension). This tension, at a given point on the balloon length, varies with amplitude
(1.e., the radius of the point) measured from the common axis. At the ring and
traveler, the balloon tension 1s provided by 7 and 1s related to 7, by Equation 6.6,
given 1n Chapter 6.

In the yarn formation zone (i.e., the zone between the pigtail lappet guide and
the front rollers of the drafting system), the yarn tension 1s termed the spinning
tension, T, and 1s related to the balloon tension at the lappet guide, 7,,, by Equation
6.5 1n Chapter 6. To avoid confusion with symbols used later in this chapter,
Equations 6.5 and 6.6 may be rewritten as

ENPT 2 (8.3)
Tp=Tywe™™ (8.4)

To understand the physical causes of these tensions in the yarn, we need to consider
the forces acting on the yarn 1n the three zones.

8.2.1 YARN FORMATION ZONE

Although the yarn rotates around the inner circumierence of the lappet guide at
almost the same speed as the traveler, the radius of the lappet guide 1s sufficiently
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small for any central forces generated to be 1ignored. The motion of the yarn between
the lappet and front drafting rollers i1s theretore principally related to the velocity
along 1ts length (1.e., the thread line velocity). Consequently, the forces of interest
are the air drag along its length, the tension at the lappet guide, and the resistance
to bending around the guide. The air drag 1s proportional to the square of the thread
line velocity, but this velocity 1s usually small as compared with the rotational velocity
of the yarn. Thus, the force caused by the air drag along the yarn length 1s assumed
to be negligible. The bending resistance due to the flexural rigidity of the yarn i1s
many times smaller than 7, and can also be omitted from further consideration. 7,
1S therefore the only efftective force governing 7 and, as a result, analysis of the
forces present in ring spinning 1s usually concerned with the remaining two zones.

3.2.2 WINDING ZONE

In steady running conditions, the traveler presses against the bottom of the internal
flange of the ring, as illustrated in Figure 8.2.!” The forces acting on the traveler at
the point of contact with the ring are also depicted.

Strictly, Ty, 1S not the true winding tension. This 1s because centripetal, Coriolis,
and air-drag forces act on the mass of the yarn length from the traveler to the ring
bobbin. It can be reasoned that the latter two etfects negate each other and therefore
can be neglected. The effect of the centripetal force 1s to change the path of the yarn
from that of a tangent from the package to the traveler, to one of a curve. The change,
however, 1s small and, for the sake of simplicity, this centripetal force 1s also
neglected.

Yarn

— \
Traveler \—/

Ring

FIGURE 8.2 Forces acting on traveler during steady running conditions.
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The simplified approach to relating the tensions of Equations 8.3 and 8.4 to the
physical parameters of spinning is to first consider the forces acting on the yarn in
the absence of air drag and then to introduce the etfects of the drag component.

8.2.2.1 Yarn Tensions in the Absence of Air Drag

Let us first consider tensions 7, and T3, and the other forces acting on the traveler
during steady running conditions (1.e., dynamic equilibrium). Resolving the forces
shown 1n Figure 8.2 into their vertical and horizontal components gives

C=Ty,cosp+ Pcos0,—Ty cos0, (8.5)
Ty, sin® = WP + T, cos 6, (8.6)
T, cosO,=PsinO, + Mg (8.7)

where 0O, ... 0, and ¢ = angles indicated

C = centripetal force {MR®w?} needed to keep the traveler cir-
culating around the ring
P = reaction force of the ring and traveler
R = ring radius
Mg = weight of the traveler
L = friction coetficient between ring and traveler

From Equations 8.4, 8.5, and 8.6,
T, =W C/{sin¢ cosO,+ ucosod — y [U cosO, + cos 6, cos 6,]} (3.3)

and
X — €—1}(}1
Equations 8.4, 8.6, and 8.7 give

- _ XU[TgcosO; - Mg]
SN, = T o[ sind — 7y cos0,] (8.9)

To simply the above equations and obtain an estimate for 75, we can assume that
the weight of the traveler, Mg, 1s negligible in comparison to 7, so that Mg can be
removed from the equations. From practical observation, it 1s also reasonable to
assume that 0, 1s such that cos 0, = 1. In the absence of air-drag, 6, — 90°, so cos9,
— 0 (with — 1ndicating ““approximates to”). Hence, cos9, — 0, and ¥ L cos 0, can
be removed the equations. Based on these assumptions, Equations 8.8 and 8.9 become

T, =W C/{sin® cosO,+ L cos O} (8.10)
: _ XM
sin@, = G (8.11)
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From 8.11, cos 0, = [sin*p — (yw)?]V4/sin ¢. Equation 8.10 then becomes

Ty = 4258 (8.12)

1/2

[[sin“¢— (xu)’] "~ +ucoso}

From deriving T3, we can now determine the winding tension from Equations 8.4
and 8.12.

T, = uc (8.13)

{[sin*0 — (xu)’1"" + pcoso}

From the above equation, we can deduce certain important general information
about the ring spinning system. Equations 8.6, 8.12, and 8.13 show that the yarn
tensions 7y and 7'y, and the frictional drag of the ring on the traveler (UWP) are directly
proportional to the mass of the traveler, the ring diameter, and the traveler speed or
spindle speed.

It can be seen from Equations 8.12 and 8.13 that, when W 1s small, such that
sin@, — 0, and cos9, — 1, then 7, — yuC/sin ¢ and 7, — UC/sin ¢. We can see,
too, that frictional drag of the ring on the traveler 1s dependent on ¢; WP = T}, Sin Q.
In general, then, as the package builds up, the winding tension will decrease with
the lead angle ¢ determined by the frictional drag of the ring on the traveler, and
also of the traveler on the yarn, as the latter passes through the former to the package.
During a typical bobbin build, sin ¢ can vary from between 0.45 and 0.5 (empty) to
between 0.9 and 0.95 (full), so T, can almost halve in size during the package build.
The variation of 7, during the package build will therefore give a nonuniform
package hardness, decreasing in hardness from the inside to outer layers. With a
ogiven ring diameter, this governs the amount of yarn that can be wound onto a bobbin.

For a fixed spindle speed and ring diameter, altering the traveler friction and
mass will provide a particular winding tension, say, for a package of required
hardness. For example, 1f 1 1s small, a heavier traveler will be needed than when 1
1s large. If 18 fixed, the tension becomes governed by the traveler mass. Thus, the
selection of the traveler will depend on the maximum tension that the yarn will
withstand when winding on an empty bobbin.

Figure 8.3 shows two possible running positions for the traveler. The normal
running position 1s of the traveler contacting the inside of the ring. However, it too
light a traveler 1s used, 7', cos 6, becomes greater than the centripetal force, C, and
the traveler runs on the outside of the ring; this 1s termed outside tracking.

Consider now Equation 8.10. With regular running, 6, < 90° and cos 6, 1s
positive. With outside tracking, 6, > 90° and cos 0, 1s negative. However, T, and T},
would still be positive, and spinning would still occur if (L cos ¢ > sin ¢ cos 0,. This
means that, at low winding angles, a minimum [ 1S necessary: W > tan ¢ cos 0, or,
substituting for cos 0,, WL > sin ¢/[(¥* + cos” 0]"*. The mean winding tension, 7, 1S
oreater for outside tracking than for regular running, and abnormally high tension
fluctuations occur, making the situation unstable.
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FIGURE 8.3 Normal running and outside tracking of traveler.

The coeftficient of friction, U, 1s speed dependent, decreasing with increasing
speed. Outside tracking can therefore occur at low spindle speeds. Figure 8.4
illustrates the condition for outside tracking for a traveler mass of 40.3 mg.® The
figure shows how winding tension, 7y,, varies with L and v. The dotted parts of the
curves indicate the conditions for outside tracking. The curve v = 0.5 shows that
there 1s also a limiting value of i below which spinning cannot occur. This situation
can be reasoned from Equation 8.11. Since sin 0, cannot be greater than unity, there
must be a minimum value ot ¢, tor a given U and y, below which the traveler will
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FIGURE 8.4 Relation between balloon tension, Iy and friction coefficients, P and .
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not operate. This 18 given by sin ¢ = (. The situation 1s readily seen it attempts
are made to spin on empty bobbins of too small a diameter in relation to the ring
diameter. This gives too small a ¢ value for the traveler to run. As wide as possible
a winding angle 1s always beneficial and, as a general rule of thumb, the practice
is for the empty bobbin to be at least half the ring diameter.

3.2.3 BALLOON ZONE

Let Figure 8.5 represent the balloon length in three-dimensional space as described
in Chapter 6. Point o 1s the first nodal point of the balloon, and the origin of the
axes z, X, y, which rotates with the spindle; z 1s essentially the spindle axis, and x
= R 1s the ring radius.

To gain an understanding of the causes of tension in the balloon zone, we have
to consider the forces acting on each elemental length, where r denotes the distance
of an element of length from the z-axis. The forces present are as follows:

FIGURE 8.5 Three-dimensional representation of balloon length.
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e Centripetal and Coriolis forces associated with the yarn motion

e Air drag forces opposing the yarn motion

 The weight of the element acting vertically downward

e The resistance to bending resulting from the flexural rigidity of the element

Let us look at these forces 1n a little more detail.

There are two components of centripetal force to consider. As an element, d/,
of yarn moves from the lappet to the ring and traveler, a component of centripetal
force acts on 1t to make 1t move through the curved path of the tread line. The size
of this component of centripetal force mainly depends on the thread line velocity
and 1s therefore considered to be negligible. The second component of centripetal
force acting on the element keeps 1t rotating around the z-axis. As the angular velocity
1s high, this component i1s highly significant.

There are also two components of Coriolis force to consider. As the element of
yarn rotates, it actually spirals from one radius to another due to the velocity of the
yarn along its length, which gives the production speed. This velocity has three
components: a radial velocity, a velocity tangential to the circumference of rotation,
and a vertical velocity in the direction toward the ring and traveler. When moving
from a smaller to a larger radius, the element’s kinetic energy of rotation increases
(KE = 1/2 mdlr*®m?) and decreases if the converse. The force acting on the element
to cause the increase in KE 1s the component of Coriolis force associated with the
radial velocity.

When KE increases, this component of force 1s in the direction of rotation but
acts 1n the opposing direction for decreases in energy. Thus, as the element moves
from the lappet guide toward the maximum balloon radius, assuming that this 1s
oreater than the ring radius, R, this component of force 1s 1in the same direction of
rotation as the element. It 1s in the opposite direction when the element moves from
the maximum radius to R. A second component of Coriolis force acts radially inward
and 1s associated with the tangential velocity moving in the direction of rotation.
These torces are of magnitudes 2myv, ® and 2mv,® where v, and v, are the radial and
tangential components of the thread line velocity. In ring spinning, because the thread
line velocity 1s usually small by comparison with the rotational velocities, the two
components of Coriolis force are neglected.

Similar to the above, there are two components of the air drag force present:
the drag along the yarn length, which can be discounted for the reason given earlier,
and the resistance of the air to the rotation of the element. The latter drag force
component 18 regarded as being proportional to the square of the rotational velocity
of the element relative to the air (V> = [rm]?), which makes it important. This
relation 1s probably not exact, since the power appears to be 1.7 as reported by
WIRA.? However, the square law assumption i1s generally taken as a reasonable
approximation. The velocity concerned 1s the component normal to the yarn surface.
Hence, the air-drag force per unit length can be written as

Ay =112 p,Ed V,? (8.14)

where p, = density of air
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¢ = drag coefficient
d = yarn diameter
V= normal velocity component of the element d/ as 1t passes through the air

Drag coefficient & is a function of the relative velocity, yarn diameter, and the
kinematic viscosity of the air. However, in many calculated approximations for A,
¢ is assumed to be constant. Yarn diameter d is the diameter of a smooth cylinder
with equivalent air drag. This may be termed the effective diameter. Mack and Smart*
found that, because of yarn hairiness, d varied with balloon speed. However, for the
widest range of speeds, d did not greatly differ from the microscopic measured value.

The remaining two forces, weight of element and resistance to bending, may be
assumed negligible in comparison with the other forces present.

8.2.3.1 Balloon Tension in the Absence of Air Drag

Since the balloon tension changes from one given point in the balloon length to
another, to obtain an equation for the balloon tension at a point, we consider the
forces acting on any element of the yarn balloon 1n the absence of air drag (see
Figure 8.6!7). The figure shows that, in this situation, the curve of the balloon length
1s 1n the x—z plane. Since the yarn axis lies within this plane, we can call 1t the axial
plane.

Let dl be the element of length under consideration. If m 1s the mass per unit
length of the yarn, then forces acting will be the centripetal force, C = mdlxw?; the
tension at both ends of dl, T, and T + AT; the weight of the element acting vertically
downward, w = mdlg; and the Coriolis force.

T+ AT

Z

FIGURE 8.6 Yarn balloon in the absence of air drag.
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In ring spinning, the rotational velocities are much higher than the velocity of
the yarn along the thread line, so the Coriolis force can be neglected. It can also be
assumed that the weight of the element 1s negligible as compared with the other
forces present. For steady balloon shape, we can equate the resolved components
of the remaining forces.

[T sin @ +d(T sin@)] — T sin@ = 0

or
d(T sin@) = 0 (8.15)
T cos @ — [T cos@ + d(T cos ©)] = mdlxe?
or
d(T cos @) = —mdIxw? (8.16)
Also,
dx
COS (P = T (8.17)
e dUV) _ AV dvd_de d -
Using i V i +U av and i~ dl do’ the equations become
sin(pj—g+ I'cosg = 0
1.e.,
do/tang = —-dT/T (8.18)
and
COS (pcf; T’ sin (pfi—? = —MX®
T sin® do — cos ¢ dT = mdlxw’ (8.19)

From Equation 8.18, substituting tor d¢ in 8.19,

—dT/cos @ = mdlxw?
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and from Equation 8.17,
—dT =m ®? X dx

Integrating, we get
=T, - =mx*o’ (8.20)

Integrating Equation 8.18,

log sin @ + constant = —log 7"+ constant, or

Lo

sin @/sin @, = - (8.21)

where @, = the angle of yarn element just below the lappet guide

Equations 8.20 and 8.21 describe the tension variation along the balloon length
in the absence of air drag. The tension 1S a maximum at the thread guide and a
minimum at the maximum balloon radius. It should be noted that the high tension
at the guide 1s a disadvantage, because it restricts the twist propagation to the front
rollers of the drafting system. The yarn length from the guide to the front rollers 1s
therefore susceptible to peak tension fluctuations, particularly if the mean value of
T,, and thereby 7, 1s high.

8.2.3.2 Spinning Tension in the Absence of Air Drag

We see from Figure 8.6 that, in basic ring spinning, the balloon shape 1s approxi-
mately half a cycle, i.e., H = 1/2 A. Referring to Equations 8.1 and 8.2, T, = T, (in
units of newtons), the tension in the yarn balloon at the lappet guide, m, 1S mass per
unit length (in units of kg/m), f = N, (in units of s7').

Thus, T, can be obtained from rearranging the equations to give

%7& = P (8.22)
where
1
P=I[T,/w'm] (8.23)
and
Hence,
H=1m P (8.25)
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Equation 8.23 can be rewritten 1n terms of yarn count, 7, 1n tex to give

1

N T,-

P =K

where K 1S an appropriate constant. Knowing 7',, the spinning tension, 7, can be
found from Equation 8.3.
Figure 8.6 and Equation 8.20 show that, when x = R,

T =T, — %mRzmz (8.26)
Hence, Equations 8.12 and 8.26 give
- 4118 ; %mRQ(DZ (8.27)
1 -

2

H(sin"g — (xu))] +pcosd

This equation shows how T, and thereby T, 1s also dependent on the winding angle,
the traveler mass and angular velocity, and the coefficients of friction of the ring
and traveler and the yarn and traveler.

Figure 8.7 depicts how, theoretically, the ratio 7,,/C = T,/C varies with ¢, U, and
y.!” It 1s evident that all the tensions decrease similarly with these parameters. The
dashed curve depicts the deviation of experimental values, which 1s attributed to the
effect of air drag neglected in the analysis.

8.2.4 THE Errect OF AIR DRAG ON YARN TENSIONS

In the absence of air drag, the balloon length lies in the x—z plane, 1.e., the vertical
or axial plane. With the presence of air drag, the yarn becomes inclined to the axial
plane 1n such a way that, moving from the lappet guide to the ring, each succeeding
element of length 1s more inclined. We therefore have to consider the balloon length
in three-dimensional space as shown in Figure 8.5, where r instead of x now denotes
the distance of each element of length from the z-axis.

A rigorous analysis of the effect of air drag on the yarn tensions involves
determining how the angles 0, through 0, in Figure 8.2 vary as ¢ changes during
winding. This involves complex mathematics, which may be circumvented by a very
simplified approach.?

We saw that, in the absence of air drag, there was effectively only a vertical
component of tension in the balloon length, which corresponded to the winding
tension needed to overcome the ring-traveler friction. Since air drag inclines the
balloon length, its effect 1s to introduce a horizontal component of tension, causing
a corresponding increase in the winding tension. Essentially, then, we can assume
that the presence of air drag introduces a tension component in the balloon length,
which 1s added to the frictional drag of ring on traveler to resist the traveler motion.
If D 1s this added resisting force, Equation 8.8 can be modified to give
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FIGURE 8.7 Yarn tension as a function of winding angle ¢ and friction coefficients.

Y (LC + DcosB,)

T, =
A {sinpcosO, + cosd—y[ucosO, + cos0,c0s0,]}

(8.28)

To derive D, we to consider the tension components 1n an element of balloon length
dl at distance r (see Figure 8.8). The air-drag force 1s given by Equation 8.14 and,
from Figure 8.8, V, = r® cos «.

The mechanical power to overcome the air drag on d! 1s

1/2 p,&d r*w’ dl cos?

For the full balloon length, we integrate from O to L,

Lb

1/2 pﬂédm3jrgcosza dl
0
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FIGURE 8.8 Relationship between air drag force and normal component of air velocity.

Now, if T, 1S the tension in the balloon length at the position of the ring, caused
by air drag, the above expression will be equal to 75, cos 6, R ®. Thus,

L,

2
paSde J [ cos ou]dl (8.29)
0

2R

T,,c080, =

All the parameters of the integral depend on the balloon shape and therefore on 75,.
For a simplified solution to the integral, we may assume that the balloon 1s sinuso-
idal,> so r = r,,,. sin(2mwz/A), and also that the air-drag force acts in the horizontal
plane, so o = 0.

Using dI? = dr? + dz?> and H = A/2, then, substituting for dl and r, Equation 8.29
can be now be rewritten as

Ly

Edw’ ¢ 4, " )
pAZR roosin (2mz/A)2HL 1 + l;m""cosz(an/k)} (dz/\)

0 L S _

T».:€080, =

and on 1ntegrating,

_- pAado‘)zHrimx

T»,C0S0O, iR

=D (8.30)

Assuming that 0, =90° and 0, = 90 — 0,, which closely approximates the practical
situation, Equation 8.28 becomes

Y (LC + DcosO,)
SINQG Ccos O, + LLCoS P

Tz = cosO, = = ) (8.31)
where D = as given by Equation 8.30
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The yarn tensions, 7y, T,, and T can be theretore calculated with Equations
8.3, 8.4, 8.26, and 8.28.

8.3 BALLOON PROFILES IN RING SPINNING

The importance of predicting the balloon shape from set parameters of the spinning
geometry was explained at the start of this chapter. With respect to balloon
dynamics, the important parameters of the spinning geometry are the balloon
height, H, the ring radius, R, the spindle rotational speed (more correctly, the
traveler speed), ®, and the spinning tension, which 1s largely governed by the
traveler mass.

The objective 1s to choose these parameters so that we can obtain an acceptable
spinning package size without incurring increased unit cost of production or reduced
yarn quality. It 1s therefore useful to have some means of determining if certain
combinations of the spinning geometry parameters will give a stable balloon (1.e.,
H = 1/2\). One approach would be to theoretically derive a relationship where the
radius, r, of any element of the ballooning yarn length is given as function of the
distance, z, along the common axis from the origin, which is the lappet guide. For
given spinning parameters, such an equation would enable graphs to be plotted of
spinning balloons.

Mack® developed the set of differential Equations 8.32 to 8.35, given 1n
Table 8.1, for the three-dimensional motion of an element, dl, of ballooning yarn
length /, based on the forces discussed above acting on the element during spinning.
The variables x, y, z refer to the Cartesian coordinates. Mack’s equations do not
account for movement along the thread line and so effectively assume the circulating
balloon length to be a constant length between the lappet and the traveler. This may
be called a tied-balloon model. A more recent model, proposed by Lisini et al.,°
uses partial differential equations to take account of the effect of ring rail motion
and variations 1n traveler speed. However, the simplifying assumptions that apply
to the tied-balloon model facilitate an easier and more practical understanding of
the spinning balloon.

These equations can only be solved directly by numerical integration, for exam-
ple, using the Runge—Kutta method.®® By carrying out the following multiplication
and addition: (8.32)(dx/dl) + (8.33)(dy/dl) + (8.34)(dz/dl), we get dT/dl + mo* (xdx/dl
+ ydy/dl) = 0, and this can be integrated to give T'= T, — 1/2 m?* [x* + y*]. Using
this and dividing x, y, and z by P from Equation 8.23, we get the nondimensional
forms X = x/P,Y = y/P and Z = /P, A = KP/m. Similarly, L = [/P and R = /P, where
[ refers to the balloon length and r the radius of any point on the balloon from the
axis z. Thus, Equations 8.32 to 8.35 can be converted to the simpler form of
Equations 8.36 to 8.38 using X = R coso and Y = R sin 0, where 0 is the angle of
deviation of the balloon element from x—z plane. These equations enable analytical
solutions to be made that can be used to make adequate predictions of balloon
stability. The approach that 1s used 1s to first establish predicted balloon shapes or

profiles 1n the absence of air drag and then to modity these for the presence of air
drag.
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TABLE 8.1
Differential Equations of Motion of a Ballooning Yarn Element®

L#2

d%(mx/dn & HEG + K@ 5+ ¥ 3 dyldl- ydxld3

+ i—};(xdy/dl) _vdatill| = B

(8.32)
d > 2. 2 2 5, 142
E(Tdy/dl) +my®w + Ko {x +y —(x dyldl—-y dx/dl])"}
x4+ —(xdy/dl— ydx/dl) — ()
: (8.33)
%(sz/dl) + 0+ Kol {2 + v — (x dyld] — y detdPy"
_gl(xdy/dl ydx/dl) - 0
(8.34)
(dx/d])* + (dy/dl)" + (dzld])” = 1 (8.35)
TABLE 8.2
Converted Equations of Motion of a Ballooning Yarn Element®
%{(1 _R¥2)ARIALY + R — (1 — R*/2)R(dS/dL)’
m"% —{1 _RA(dSldD)*Y " =
(8.36)
%{(RZ—R4/2)d8/dL}—kR3{(1 _RA(dS1dLY Y = 0 (8.37)
(dR/AL)? + R*(dS/dL)” + (dz/dL)* = 1 (8.38)

3.3.1 BALLOON PROFILES IN THE ABSENCE OF AIR DRrRAG

We saw that, when considering balloon tensions, for the situation of no air drag, the
balloon length may be assumed to be within the axial plane (see Figure 8.6). The
angle 0 = 0, A = 0, and Equation 8.36 becomes

d/dL {[1 — 1/2 R*] dR/dL} + R =0 (3.39)
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Using d(UV)/dx = UdVIdx + VdU/ldx, we get

_R(AR/LY + (1 — %RZ)dQR/dLZ +R=0 (8.40)
Multiply Equation 8.40 by (1 — %Rz) and, using the relationship
PRIALE = 1 d(dR/dL)’

2 dR

we can integrate Equation 8.40 with respect to R, and since dR/dL = sin\y when R
= 0 (where v 1s the angle of the tangent to the balloon at lappet guide), then

R? — R*4 + [1 — R221XdRIdL)? - sin® y = 0

Or

2 . 2 2 -
(j_i?) _ sin 1|1—R2 +}§ /4 (8.41)
[1-R/2]

When 0 = 0, Equation 8.38 gives

dZ)2 > cos Y
42\~ 1 - (dRIdL)? =
(dL [1-R2/2Y

If the coordinates R and Z are used in preference to X and Z, then
. 1.
R =2 sin §1|Jsmc

and

dZ dZ dL dR cosy

dC ~ dL dR d - .
5 5 cos(%w) l—tang(%w)sinzg

which, on integrating, in the usual notation for elliptic integrals, gives

Z COS (% V) =cosy F {tan(% V), C) (8.42)

For most situations, y < 65°, and an approximate solution to 8.42 for a plot of
R against Z 1s of a sinusoidal wave,
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R=2 sin(% W) sin{[Z cos (% w) £0u)]/cos W) (8.43)

2 1 1 . .
where f(y) = - F (tan(é W), Zn), for which values are given below.
Yo 0 5 10 15 20 25 30 35 40
f(w) 1.000  1.000  1.002  1.004 1.008 1.013  1.019 1.026  1.034
yo 45 50 55 60 65 70 75 80 85
f(y) 1.048  1.062  1.081  1.104  1.134  1.175 1234 1325 1.501

The above solution is attributed by Mack,> and Figure 8.9'7 shows a set of balloon
profiles obtained from this solution. Gregory and Smart'® have confirmed the validity
of the solution for the case of negligible air drag.

Various approximate solutions of the balloon equation have been reported, most
of which circumvent dealing with the elliptic integral. We shall now consider several
of these, as they help us to further understand the nature of spinning balloons.

Lindner!'! assumed spinning balloons, in the absence of air drag, to be long and
narrow so that d/ 1s not much greater than dz. Then, referring to Figure 8.6, T sin ¢
= constant = 7, the tension at maximum balloon radius. Also, d(T, cos ¢) = m®?
rdz, and cos ¢ = dr/dz. Thus, d r/dz" = -m’r/T, . This is a differential equation
of simple harmonic motion that has the solution

1]
[1L

FIGURE 8.9 Balloon profiles based on Mack’s solution.
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1
2\ 2
r = A sin (””"’ ) z (8.44)
I

This solution 1s also reported by Crank,~® Grishim,'? and Honneger and Fehr!® and
1s claimed to give agreement with measurements of photographic images of balloons.

Bracewell and Greenhalgh!* reported the case of long-lift, large-package spin-
ning. They assumed that the associated balloons can be modeled by the Cartesian
equation for a catenary. The result obtained was in good agreement with observations
of balloon profiles for long-lift, large-package, ring-spinning systems.

De Barr!'> assumes balloon profiles to be sinusoidal and then develops the concept
of the balloon profile being a standing wave system identical to circularly polarized,
transverse vibrations of a string. De Barr’s approach merits full consideration, as it
1s much less mathematical and gives comparable results to Mack’s® more rigorous
freatment.

First, the concept of circularly polarized, transverse vibrations should be further
explained. When a string fixed at both ends 1s vibrated 1n, for example, the x—z
plane, 1t will form a standing wave (a plane-polarized vibration) if its length equals
an integral number of half-wavelengths. This 1s a classical experiment demonstrated
by Melde 1n which one end of a string was attached to a vibrating tuning fork while
the other was fixed. If the string 1s made to vibrate simultaneously with the same
frequency in y—z plane, the string will move according to the resulting superposition
of the two component vibrations. Thus, the movement of each point on the string
will be the sum of two simple harmonic vibrations at right angles. If the amplitudes
of the vibrations are equal and out of phase by 90°, then the motion of each point
in the string will be circular about a central axis. We now have a circularly polarized
standing wave instead of a plane-polarized one. The radius of the circle at points
along the string, 1.e., from the z-axis, will vary sinusoidally.

Since the i1dea 1s to use circularly polarized standing waves to represent the
spinning balloon, Equations 8.1 and 8.2 can be used in relation to the balloon. An
approximation of a balloon shape can be obtained once the amplitude and wavelength
are known. For a given frequency, the speed of propagation, ¢, and thereby the
wavelength, A, of a vibrating string decrease with increased amplitude. De Barr
applied Rayleigh’s principle'® (that the mean kinetic and potential energies of a
vibrating system are equal) to obtain Figure 8.10,!” showing the decrease in wave-
length with increasing amplitude. Thus, for a range of arbitrary chosen A values,
various balloon profiles can be plotted from the following equation:

r = A sin(2mz/A)
or, nondimensionally,

r/P = A sin(2mtz/PA) (8.45)

where r = balloon radius
A = amplitude
z = distance along the common axis of spindle, ring, and spinning balloon
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FIGURE 8.10 Decrease in wavelength with increasing amplitude.

An alternative approach 1s to use Equations 8.20 and 8.21. Noting that, in the
absence of air drag, r = x, these equations can be combined to give

sin (T, — 1/2 mr*®? =T, sin @, (8.46)

Equation 8.46 gives the inclination of the balloon length at any radius and therefore
enables the balloon shapes to be determined. At the maximum radius, ¢ = 90° and
hence, from Equations 8.21 and 8.46,

T=T,sing, (8.47)

and

r2.. =2T, (1 —sin@,)/mw’ (8.48)

De Barr found that using Equations 8.46, 8. 47, and 8.48 gave balloon shapes
similar to Mack’s solutions. The balloon shapes calculated from these equations
differ slightly from the sinewave Equation 8.45, as illustrated in Figure 8.11.!
However, observations have shown that Equation 8.45 gives a better representation
of actual balloons shapes, and this 1s attributed to effects of air drag.!”

3.3.2 THE BALLOON PROFILE IN THE PRESENCE OF AIR DRAG

We must remember that the purpose of determining the balloon shape 1s to ascertain
the spinning conditions that would result in balloon collapse, 1.e., the tendency for
a half-wavelength balloon profile to change to a profile with a second nodal point.
It the balloon collapses onto the spindle, spinning cannot continue. Before describing

© 2003 by CRC Press LL.C



0.2 0.4 0.6
r
/p >

FIGURE 8.11 Decrease in wavelength with increasing amplitude.

how the optimal conditions to prevent balloon collapse can be ascertained from a
oraph of a series of balloon profiles, it 1s useful to address the effect of air drag on
balloon profiles.

When simplifying the differential equations of balloon motion, given in
Table 8.2, 0 was referred to as the angle of deviation of a balloon element, d!/, from
the x—z plane. In discussing the effect of air drag on balloon tension, it was explained
that the effect of the air was to introduce a tangential tension component in each
yarn element. It 1s this tension that causes the angle of deviation. The component
of tension 1s greater for yarn elements closer to the ring and traveler. Therefore, as
Fig 8.12!7 illustrates, the angle of deviation, o, of the balloon length increases toward
the ring and traveler.'®

Equation 8.14 shows that resistance of the air to the rotation of the balloon 1s
proportional to the square of the normal component of yarn velocity relative to the
air. However, if the tension in the yarn attributed to the ring and traveler 1s high, the
tangential component induced by the air drag will be low, and o0 will be small.

Dividing Equation 8.14 by P/m gives the nondimensional form for the air drag,

Y =mAp/P = 1/2 p,&d mV,?/P (8.49)

Figure 8.13 shows the projections onto the axial plane (i.e., z—x or z-r plane,
when x = r) of several balloon profiles for various values of v.!” Comparing the
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FIGURE 8.12 Shape of yarn balloon in absence of air-drag and the effect of air drag.
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FIGURE 8.13 Projections of balloon profiles on to axial plane.
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profiles for Y= 0 (no air drag) with the other values, it becomes evident that, while
the air drag 1s small, the balloon profiles are little affected by the air drag except
near the nodes. In particular, the maximum balloon radius seems unatiected by air
drag. De Barr!” found that, to a first approximation, the maximum balloon radius
depends only on the yarn count and the ring radius.

It can be seen from Figure 8.13 that, instead of a nodal point, the air drag causes
the balloon profile to narrow to a minimum radius referred to as a neck. One way
of explaining the reason for this 1s that, at any element of the balloon length, work
is required per revolution to overcome the air drag on the yarn length from the lappet
ouide to the element. This work 1s equal to the product of the tangential component
and the circumference of the circular path described by that element. Hence, where
a nodal point would occur, there has to be a minimum radius. The neck 1s, however,
smaller than the ring bobbin radius, and contact between the two causes the balloon
to collapse.

It 1s evident from Figure 8.13 that, in causing a neck to be formed, the air drag
extends the wavelength, i.e., the value of z/P that equals 1/2 A. This would tend to
support De Barr’s proposition that the sinusoidal wavetform of Equation 8.45 gives
a better representation of spinning balloons or, more correctly, their projections onto
the axial plane.

3.3.3 DETERMINATION OF RING SPINNING BALLOON PROFILES
BASED ON SINUsOIDAL WAVEFORMS

Figure 8.14 shows a range of sinewaves obtained by De Barr’s simplified approach,
from which the profile of a stable balloon can be determined for known values of
balloon height, H, and ring radius, R.!” Using the nondimensional form, the balloon
shape 1s given by that curve on which the point H/P (= z/P), R/P (= r/P) lies. As
indicated, R and H define the angle B (tan} = R/H) between the common axis and
the line linking the apex (the lappet guide) and the point H/P, R/P. The importance
of B3 is that it indicates the possible range of balloon profiles for a particular spinning
geometry. Balloon profiles predicted by De Barr’s approach are shown in Figure
8.15 along with observed values of maximum radii, and there 1s sufficiently good
agreement to make this method of practical use.!”

From Equation 8.23, P 1s dependent on the spinning tension, the traveler speed,
and yarn count, and changes in these parameters will lead to a change of position
of the point H/P, R/P along the line tan 3. The actual balloon size will depend on
P; the smaller this value, the greater the maximum radius. For any combination of
H and R, there 1s a minimum P below which a neck 1s formed.

Since P will fluctuate as the parameters of Equation 8.23 fluctuate, 1t 1s important
that the point H/P, R/P be carefully chosen. It can be seen from Figure 8.14 that, in
the region just below the maximum radii, the profiles come close together. In this
region, quite small changes 1in P can result in significant changes in the balloon
profile and maximum diameter. To produce the largest possible package for a given
ring radius, yarn count, and tension, the point H/P, R/P would be chosen close to
the boundary for a necked balloon formation. However, allowance should be given
for fluctuation that would reduce P and thereby cause balloon collapse.
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FIGURE 8.14 Determination of balloon shapes in ring spinning.

3.3.4 Errect OF BALLOON CoNTROL RINGS

It can be seen from Figure &.14 that, with a given spindle speed, yarn count, and
R, for balloon collapse to be avoided with increased H, P must be increased to
maintain a constant H/P. This means increasing tension 7,,. For any yarn, there will
be a limit beyond which end breaks occur. In Chapter 6, it was explained that the
use of balloon control rings to divide the balloon length into two or more parts
enables H to be increased without excessively increasing 7. Thereby, larger ring-
spinning packages can be made. For optimal effectiveness, control rings are of
equal internal diameter to that of the ring, and they must be suitably positioned to
keep balloon collapse from still occurring. The simple example 1s of a single control
ring positioned such that two half-wavelengths of equal maximum radius are
obtained (see Figure 8.16!7).

The increased balloon length resulting from the use of control rings, and the
friction between the length and the rings, result in an increased winding tension.
This means that, to obtain a specific level of winding tension for a firm package, a
lighter traveler can be used, which reduces the frictional drag of ring on traveler
and, consequently, the spinning tension, 7'c. A further advantage of control rings 1s
that they damp tension fluctuations reaching the spinning zone, and such fluctuations
could cause end breaks.
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FIGURE 8.15 Observed and calculated balloon shapes.

8.4 TENSIONS AND BALLOON PROFILES IN THE
WINDING PROCESS

We have seen above that, in ring spinning, the tensions in balloons are largely
determined by the frictional drag of the ring on traveler, and these tensions determine
the balloon profiles. In winding off yarns from ring bobbins, balloon tensions are
essentially determined by the balloon shape.

3.4.1 YARN TENsIONS DURING UNWINDING FROM A RING-
SPINNING PACKAGE

In Chapter 7, the path of the yarn from the ring package to cylindrical or conical
bobbins was described, and the tension changes that occur during the process were
explained. It 1s appropriate here to reconsider these tension changes with regard to
the unwinding balloon profiles. The terms used have been already explained in the
earlier chapter.
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FIGURE 8.16 Effect of balloon control rings.

Figure 8.17 depicts the instantaneous profile of the balloon at the start of over-
end unwinding. The point of unwinding 1s the contact point of the balloon with the
package. In the early stages of unwinding from a cop-build ring package, the yarn
length between the point of unwinding and the thread guide will form either a single-
node or a multiple-necked balloon. The number of necks formed will depend on the
speed of unwinding, the height of the tread guide above the package (i.e., H), the
balloon height, the yarn count, and the package radius, R,. Whereas the amplitude
of the waveform 1s constant, the radius of the neck decreases toward the thread
ouide. As explained earlier for ring spinning, it 1s the tangential component of tension
induced 1n the yarn by air drag that 1s responsible for a neck forming rather than a
true node. This component of tension increases with distance from the thread guide
down to the package. Consequently, the radius of each neck becomes greater than
the preceding one when moving down the thread line toward the package. Mack>
has shown that the radius of the nth neck 1s n times the radius of the first. Figure 8.18
illustrates the situation for a typical three-neck profile.
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FIGURE 8.17 Balloon profile at the start of unwinding from ring-spun yarn package.

Neck Points
of Balloon

Single Neck Balloon Treble Neck Balloon

FIGURE 8.18 Treble-neck balloon profile.
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The mean unwinding point of the cop-build package moves down the package
length, from (a) to (1), etc., as the removal of the yarn proceeds, and this increases
H (see Figure 8.19). A point will be reached where the neck nearest the bobbin
package (1.e., the package core) coincides with the bobbin diameter, and a two-neck
profile results. With further yarn withdrawal, the unwinding point moves within the
base region of the bobbin, and a single-node balloon 1s formed.

Figure 8.20 indicates the changes in the unwinding tension, 7, measured above
the thread guide. If T, 1s the tension at the thread guide during the yarn withdrawal,
Equation 8.3 applies, with T, replacing T,. The mean tension and the variation in
tension are of importance. The high-frequency or short-term variation at the start of
unwinding comes from fluctuations in H associated with the unwinding point tra-
versing the short length from nose to shoulder of the package. The change from a
three- to a two-neck profile corresponds a substantial increase in the balloon wave-
length and causes the step increase AT, in the mean tension. The subsequent change
to a single-node balloon causes the second step increase AT,,. It 1s clear that, between
the step changes, the mean tension increases continuously, but the rate of increase
after AT, 1s higher, and the size of the fluctuations 1s much greater. Following the
changes in the balloon profile, the contact point of the balloon length with the
package 1s no longer also the unwinding point. The yarn length being uncoiled 1s
now dragged over a section of the cleared bobbin surface prior to becoming part of
the balloon length. The mean unwinding tension increases because of the frictional
drag of the yarn on the bobbin surface.

The increased intension limits the maximum unwinding speed because of a high
frequency of end breaks. Figure 8.20 also illustrates the use of computer control
drive system, the Autospeed, which uses an optical sensor unit to determine the

-_—

(a) (b) (c) (d) (e) ()

FIGURE 8.19 Changes in balloon profile during unwinding.
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FIGURE 8.20 Changes in unwinding tension. (Courtesy of W. Schlathorst AG & Co.)

amount of yarn on individual yarn packages and then adjusts the speed profile to
prevent the step increase in tension toward the end of package unwinding. As shown,
significantly higher unwinding speeds can be achieved.

Figure 8.21 1llustrates the path taken by the yarn as it slides over the bobbin
surface.!” There 1s a gradual change in direction of the path on the bobbin to the
direction in which a yarn element becomes part of the balloon. At the point of contact
of balloon and bobbin, the angle of inclination, ¥, of the yarn path on the bobbin
surface to the tangent of the bobbin radius is therefore the same as that at the start
of unwinding. The friction between yarn and bobbin maintains this equilibrium.
Padfield!®'® showed that the tension in the balloon at this contact point is largely
due to this friction and i1s given by

T. =2 (T, — % mv?) sin? % 9 (8.50)

where v = the linear unwinding velocity of the yarn

In ring spinning, 7, 1s the tension in the yarn balloon at a similar position. In making
a comparison with ring spinning, tension 7 and the tension resulting from the balloon
profile have importance in how they relate to 7,, and thereby 7. It 1s theretore appro-
priate to consider now the tension due to the balloon profile and the associated forces.
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FIGURE 8.21 Yarn path on bobbin surface.

When an element of yarn 1s pulled from the yarn package through the thread
ouide, 1ts rotational and translational kinetic energies change along the path. These
changes are caused by forces that give rise to the yarn tension.

The early part of this chapter explained that, in moving from one radius to
another, the change 1n kinetic energy of rotation 1s caused by Coriolis forces. With
the high linear yarn velocities used 1in the winding process, the Coriolis forces are
much greater than in ring spinning and now are not negligible. The balloon profile
in winding depends, then, on the relative magnitudes of the air drag and Coriolis
forces. For any yarn element of the balloon, the component of Coriolis force asso-
ciated with the tangential component of velocity 1s greater than the air-drag force.
However, the air-drag forces are cumulative from one end of the balloon to the other,
whereas the Coriolis forces above and below the maximum radi are of opposite
signs. At the package, theretore, the tangential component of tension 1s effectively
the total air drag on the balloon. Near the thread guide, the Coriolis forces will be
oreater than the air-drag forces, and each yarn element of the balloon will lag behind
the element above it. The reverse occurs near the package, where air-drag forces
dominate (see Figure 8.21).

The kinetic energy of rotation of the yarn is zero on the package and, effectively,
also at the thread guide. Therefore, there 1S no change in this kinetic energy in the
process, so Coriolis forces do not contribute to 7,, even though they influence the
tension in any considered yarn element of the balloon.

The translational kinetic energy results from the force required to accelerate
each yarn element from its stationary position on the package to the linear velocity,
v, along 1ts length as it leaves the package. This force 1s provided by a component
of tension in the yarn of magnitude 1/2 mv- sec ¥, m being the mass of the element,
and 1s constant over the length of the yarn.
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With respect to the above points, we can say that the pulling of the yarn through
the thread guide causes work to be done to

* Accelerate the yarn to the unwinding velocity (1.e., the linear velocity v)
* Overcome the frictional drag of the package on the yarn
* Overcome air-drag on the balloon length

The rate at which the work 1s done 1s given by vT,,. The work rate against air drag 1s
fa 3 3
j 1/2p,&d e dl (8.51)
0

where L = total length of yarn in the balloon
r = radius of rotation of the element d/

Since v = R,, the air drag contributing to the yarn tension is

r, = & Pabd dl (8.52)

ZmRP 0

The tension at the thread guide 7, i1s the sum of the contributions of friction and
drag (Equation 8.50), air drag T, and the acceleration of the yarn, 1/2 mv? sec U .
Thus,

T ar
T = mvzsecﬁ{ PaS Jr3dl+2(TO—3/2mv2)sin21/2ﬁ+1/2} (8.53)

_2me;_ 0

3.4.2 UNWINDING BALLOON PROFILES

The description given earlier of the three-neck balloon profile was a specific example.
To determine the balloon profile of the unwinding yarn by performing a rigorous
analysis of the acting forces requires the inclusion of the parameters for Coriolis
forces 1n the differential equations of motion given in Table 8.1, and then with
boundary conditions specific to the case of over-end unwinding, solving the equa-
tions numerically. A less exact but much simplified alternative 1s to use De Barr’s
approach'® of the approximation of the sinusoidal projection on to the axial plane
(z—r plane). In this case, the balloon profile for unwinding will correspond to the
largest profile associated with given values of R,/P and H/P.
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