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A color space formula is a set of mathematical equations describing a color
space model in terms of cone sensitivities or tristimulus values and spectral
power distributions. A color difference formula is a mathematical expression
resulting in numbers proportional to perceived difference between points in
the space. Historically development of color space and color difference for-
mulas has taken a standard association between a color stimulus (as repre-
sented by a family of metamers) and a color perception as a given. Recognition
of the need for exact specification of the conditions of viewing the stimuli is
a relatively recent phenomenon. Most of the formulas discussed below betray
no such recognition. As such they need to be understood as lacking funda-
mentality and being limited to implicit or explicit assumptions/representations
of viewing conditions.

6.1 LINE ELEMENTS

The line element is the so-called first fundamental form of a regular surface.1

For small color differences it is given explicitly by the Riemannian metric
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which determines the arc length of a curve on a surface. Connected with the
line element is the geodesic: the curve that locally minimizes the length of a
curve. It depends on the geometry of the space to which it applies: in plane
geometry the geodesic is a straight line, on a sphere a segment of a great circle
(e.g., the equator). In connection with color Wyszecki and Stiles (1982) defined
the line element as “a measure of distance in a postulated space in which per-
ceived colors are represented by points or vectors.” Historically the spaces
related to given line elements have been based on color fundamentals R, G,
and B or cone sensitivities.The differences between colors in these spaces have
been defined with increments, originally based on the Weber-Fechner law and
later on more complex relationships.

Helmholtz and Schrödinger

Interest in a stimulus intensity based model of uniform color space, a model
of outer psychophysics in Fechner’s sense, grew since the end of the nineteenth
century. In 1886 König wrote that it should be easy to construct a color mixture
diagram in a manner that equal distances in all directions would be propor-
tional to equal numbers of discrimination steps. What he had in mind is a
model that would partition the diagram in agreement with the Weber-Fechner
law. The first quantitative version was introduced by Helmholtz in 1896 based
on ideas discussed in 1891. He assumed three fundamental color vision
processes R, G, and B and the uniform applicability of the Weber-Fechner law:

(6-1)

where dR is the increment/decrement in magnitude of the stimulus described
by the fundamental process R, and comparable for the other two stimuli.
Assuming in addition a euclidean space, we can calculate the threshold dif-
ferences as

(6-2)

where ds is the distance between two neighboring points in the R, G, B space
representing a threshold difference. Helmholtz attempted to make his model
fit experimental data of König and Dieterici by appropriately shaping his three
visual processes with linear transformations from color-matching functions.All
of the resulting functions had two maxima, and none was in agreement with
the experimental luminous efficiency function. Helmholtz was unaware of and
did not consider contributing factors important for an accurate line element.

A more complex line element was proposed in 1920 by Schrödinger in 
an attempt to correct perceived shortcomings of the Helmholtz model.
Schrödinger recognized that Helmholtz’s form of the line element results in a
luminance function that is much different from experimental functions. His
proposal has the following form:
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(6-3)

where lR , lG, and lB are constants corresponding approximately to brightnesses
of the three fundamental processes derived from the luminous efficiency func-
tion, R, G, B are the fundamental processes as experimentally determined by
König and Dieterici. The line element obeys the Weber-Fechner law while
being additive. Schrödinger’s proposal did not receive much practical atten-
tion, perhaps because of the difficulties of executing such calculations on a
routine basis.

Stiles

In 1946 Stiles offered a version of a line element based on extensive investi-
gation of two-color thresholds. Importantly Stiles found that different Weber
fractions apply to the three visual processes rather than the common fraction
assumed by Helmholtz and Schrödinger. Stiles’s line element has the follow-
ing form:

(6-4)

where z(R) = 9/(9+9R) and comparably for G and B; r, g, b are proportional
to the Weber fractions, with values of 1.28 for r, 1.65 for g, and 7.25 for b, indi-
cating that the “blue” process is much less sensitive than the “red” and “green”
processes. The three processes were defined by linear transformation from the
1931 CIE color-matching functions. Stiles’s line element was tested extensively
in succeeding years and was found to provide good approximations to several
sets of visual data, including the luminous efficiency function, wavelength 
discrimination, and chromatic thresholds.

Luneburg’s Line Element for Visual Space

Mention should be made here of a line element for the human visual space
developed in 1947 by the mathematician R. K. Luneburg. Visual space refers
to the space segment covered by our eyes when looking ahead. Visual space
and color space are two different aspects of our visual sense, and there is no
immediate reason for color space to be in agreement with visual space. The
fact that a similar geometry appears to apply to both situations may be coin-
cidental. Based on comparisons between physical measurements and related
judgments of distance, Luneburg determined visual space to be Riemannian
(i.e., elliptical) with constant curvature. He proposed the following line
element:
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(6-5)

where a, b, g are orthogonal sensory coordinates and K denotes Gaussian total
curvature. If K = 0, the space is euclidean; if negative, the space is hyperbolic,
and if positive, it is elliptic.

Walraven, Bouman, Vos

In 1966 P. L. Walraven and M. A. Bouman offered a new proposal for a line
element of color employing photon noise methodology (De Vries-Rose 
behavior; De Vries, 1948) in place of the empirical Weber-Fechner law. With
the exception of the photon noise methodology replacing the Weber-Fechner
law the proposal was identical to that of Schrödinger. Testing against new
wavelength discrimination and other data did not provide fully satisfactory
results.

Walraven continued work with a new co-worker, H. Vos, and they devel-
oped the Vos-Walraven line element (Vos and Walraven, 1972, 1991). The
model underwent several modifications. In its original form it was based on a
model of retinal color processing which included a Helmholtz type cone
absorption step taking input of the R, G, B cones at a ratio of 32 :16 :1, with
cone response compression. In a summation zone the compressed R and G
signals form the yellow signal, and all three together the luminance signal.
Separately, R and G signals are balanced to form an antagonistic Hering type
red-green signal. Similarly the yellow signal is balanced against the B signal,
forming the yellow-blue output signal. Finally the luminance signal is balanced
against a surround luminance signal, resulting in a brightness contrast signal.
Vos and Walraven concluded that opponent processing does not play a role at
the threshold level and their line element is essentially of the Helmholtz type.
It is defined as follows (Vos, 1979):

(6-6)

where R, G, B are the cone signals at the ratio of 32 :16 :1, subscript 0 indi-
cates the number of quanta for which saturation occurs, and subscript 1 the
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number of quanta for which supersaturation occurs. The model thus can
account for various levels of saturation of the cone system and in this manner
can predict, in addition to color discrimination at the threshold level, the
Bezold-Brücke and the Stiles-Crawford effects. While the model is a modified
version of the Helmholtz line element, it considers the ratio of cones that gives
rise to different Weber fractions for the three cone types as well as saturation
and supersaturation effects, making it not just applicable to a middle range of
luminance but to the complete range.

The Helmholtz, Schrödinger, Stiles, and Vos-Walraven line elements were
believed to be more or less uniform in terms of thresholds. However, as will
be shown in Chapter 8, they are regular color spaces. In his paper Schrödinger
suggested that geodesics, the lines indicating the paths of smallest numbers of
threshold differences, are lines of constant hue. MacAdam originally deter-
mined geodesics based on his color-matching error data mechanically, by
stretching threads across a model representing his ellipses (MacAdam, 1981).
Geodesics can be calculated, for example, by using linear programming (Jain,
1972). For an example of constant hue and saturation geodesic lines in the CIE
chromaticity diagram calculated from MacAdam’s 1965 geodesic chromatic-
ity diagram (MacAdam, 1981), see Fig. 6-1.With known hue, chroma, and light-
ness geodesics, it is possible to develop formulas transforming nonuniform
cone sensitivity or tristimulus spaces into a space uniform in terms of the
assumptions of the model involved.

6.2 PROJECTIVE TRANSFORMATIONS

Another approach to a uniform color space was based on the idea that the
CIE 1931 x, y chromaticity diagram could be linearly transformed to result in
a modified diagram in which distances were proportional to visual distances.
In 1932 D. B. Judd offered an early version representing his own threshold and
other published data (Fig. 6-2) and based on color-matching functions recom-
mended by the Optical Society of America in 1922. The diagram contains
radial lines of constant dominant wavelength and ovoids of constant colori-
metric purity. In 1935 Judd published a modified version of a uniform chro-
maticity diagram in the form of a Maxwell triangle (Fig. 6-3). In a different
reference frame the diagram became in 1960 the basis for the CIE u, v
diagram. In 1935 Judd also introduced the symbol DE to denote a color dif-
ference. In the following year Judd published a graph of the CIE 1931 chro-
maticity diagram with ellipses that represent circles of equal size in his 1935
diagram (Fig. 6-4). These ellipses are intended to represent uniform threshold
color differences, enlarged 100 times. They illustrated for the first time explic-
itly the perceptual nonuniformity of the CIE chromaticity diagram.

In 1937 MacAdam modified Judd’s 1935 diagram with simplified coeffi-
cients resulting in a rectangular coordinate diagram. In 1939 F. C.
Breckenridge and W. R. Schaub developed the rectangular uniform chro-
maticity scale diagram (RUCS), a transformed version of Judd’s 1935 diagram.
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In the same year Judd, Scofield, and Hunter proposed the a, b diagram and 
a color space related to it. In 1942 this linear transformation of the CIE 
chromaticity diagram became the basis of the National Bureau of Standards
(NBS) formula, with the difference units designated as NBS units or judds
(after D. B. Judd).2 The formula is as follows:

(6-7)

where fg is a factor adjusting for glossiness and is defined as fg = Y/(Y + K),
with K usually taken as 2.5; k, having normally a value of 10, adjusts the light-
ness difference to the chromatic difference

(6-8)
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Fig. 6-1 Geodesic lines of constant hue and chroma in the CIE chromaticity diagram, calcu-
lated from MacAdam’s 1965 geodesic chromaticity diagram (Fig. 6-9). Solid lines: constant hue;
dashed lines: constant saturation. From MacAdam (1981).
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Fig. 6-2 Judd’s projective transformation of the CIE chromaticity diagram of 1932 meant to
result in proportionality of distances with visual distances. The numbers on the spectral trace
represent wavelength in nanometers.



In 1944 D. Farnsworth proposed a simplified transformation. It provides for
minimum deviation from circularity of Munsell hues at chroma 10 and value
5, centered on illuminant C. In 1959 Y. Sugiyama and T. Fukuda optimized a
transformation such that both the Munsell system and the MacAdam ellipses
were reasonably well represented. In 1963 Wyszecki proposed a transforma-
tion formula that became the basis of the CIE 1964 (U*V*W*) system:

(6-9)
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Fig. 6-3 Judd’s 1935 uniform chromaticity diagram embedded in the Maxwell triangle. On the
dashed curve are colors of a black body at the indicated absolute temperatures in Kelvin.
Compare with Fig. 2-29.



where u = 4 X/ (X + 15Y + 3Z), v = 6 Y/(X + 15Y + 3Z), X, Y, Z are CIE tris-
timulus values, u0, v0 are the values of the variables u and v for the achromatic
color at the origin of the U*, V* diagram. The total color difference was cal-
culated as the square root of the sum of the squares of the differences in the
three dimensions. This formula has been superseded by the CIELUV formula.
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Fig. 6-4 CIE chromaticity diagram with ellipses that represent circles of equal size in Judd’s
1935 diagram. From Judd (1936).



The development of projective transformation came to a conclusion with
the recommendation in 1976 by the CIE of the 1976 L*u*v* transformation
(CIELUV). This is a minor modification of MacAdam’s 1937 diagram (expan-
sion of v by a factor 1.5). A cross section of the Munsell space at value 6 as
represented by this formula is shown in Fig. 6-5.

Projective transformation employs the following basic formulas:

(6-10)

where x¢, y¢ are the transformed chromaticity coordinates and x, y are the CIE
chromaticity coordinates; axx are transformation coefficients. Several of the 
formulas are in a simplified form requiring only five coefficients. The coeffi-
cients of the above and other linear transformation formulas are given in Table
I (6.4) of Wyszecki and Stiles (1982). Linear transformations have the advan-
tage, and are thus of interest to optical and lighting engineers, that the system
remains additive and mixtures of two lights fall on a straight line connecting
their locations in the diagram. The CIELUV formula will be further discussed
below.

6.3 FITTING MODELS TO THE MUNSELL SYSTEM

Another avenue pursued involved attempts to develop a uniform color space
model from analysis of the structure of the Munsell system. This system had
been extensively investigated by the Subcommittee on Uniform Spacing of
Munsell Colors of the Optical Society of America. It published a final report
in 1943, containing colorimetric specifications of the smoothed Munsell Reno-
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Fig. 6-5 Munsell Renotation colors at value 5 as represented in the CIELUV projective trans-
formation formula. From Mahy et al. (1994).



tation colors. In this form the Munsell system was taken to represent a good
approximation of a visually uniform psychological color space.

In 1936 Nickerson proposed the first formula with the goal of predicting
perceptually equal color differences, the Nickerson Index of Fading (see equa-
tion 4-1). The formula has a purely psychological basis, since no physical mea-
surements are involved in its application. Its immediate purpose was to
provide a measure of fading by light of dyed textiles. Component differences
were combined by simple addition. The formula recognized the dependence
in a polar system of the hue difference on chroma and also indicated that in
the Munsell system unit differences in the three attributes are of different per-
ceptual magnitude. As a result such a system is not uniform, as it doesn’t rep-
resent distances in all directions proportionally to differences in its euclidean
space (see Chapter 7).

In 1942 Adams plotted Munsell colors at several values in what he called a
“chromance” diagram, representing a linear opponent color diagram norma-
lized to the equal energy point.The two dimensions were defined as X - Y and
Z - Y. By applying the Munsell-Sloan-Godlove lightness formula (a power 0.5
modulation; see Chapter 5) not only to the luminous reflectance value Y but
also to the other two tristimulus values, Adams converted the chromance
diagram to a chromatic value diagram. Adams interpreted the subtractions as
representations of his 1923 theory of color vision that took the color-matching
functions to be cone responses. In this theory Adams had assumed an inhibitory
effect of the output of the postulated Y cone on the outputs of the X, respec-
tively Z cones.He represented this inhibitory effect with subtractions.He called
the outputs VX,VY,and VZ.Adams calculated chromatic values of a high chroma
Munsell hue circle and found those related to Z to be larger than those related
to X and Y.To have scales of maximum value 10 in all three dimensions he pro-
posed to multiply the VX values by 1.90 and the Vz values by 0.72.The result of
these operations showed reasonably circular contours in the chromatic value
diagram for Munsell colors of the 1929 Book of Color and the preliminary
smoothed values of the committee (see Fig. 5-12). Adams did not propose a
color difference formula based on his VX ,VY, VZ space, but assuming that it is
a euclidean space, such a formula is obvious. Adams’s chromatic value system
proved to be influential in coming years.

Aside from the Munsell data, in flux until the release of the Renotations 
in 1943, there were few object color sample sets with statistically supported
visual data. In 1941 Balinkin reported on a set of five pale green tiles. One pair
of tiles was designated as the standard difference, and sixty observers estimated
the differences of all possible pairs against the reference pair. The data were
used in several studies of color difference formulas. In 1944 Nickerson and her
co-worker Stultz investigated the usefulness of color difference calculation for
color quality control work. The visual data consisted of category judgments
(five categories) by twelve observers of painted textile samples, primarily in
two color regions: yellowish brown and olive green. In this study they used,
among others, a formula based on Adams’s chromatic value space as follows:
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(6-11)

where VX ,VY, VZ are the Adams chromatic values of the samples, now inter-
preted in terms of the revised Munsell value function. This formula became
known as the Adams-Nickerson color difference formula and proved of endur-
ing value. In their evaluations Nickerson and Stultz found the formula only
marginally better than formulas derived by Judd but considerably easier to
calculate.The experiments also indicated considerable individual variability in
judgment.

In 1946 J. L. Saunderson and B. L. Milner proposed a modification of the
Adams chromatic value system to obtain closer agreement with the Munsell
system. Contours of constant chroma are somewhat eccentric in the Adams
chromatic diagram, and the Saunderson-Milner solution corrected for the
eccentricity using an empirical trigonometric method. The Saunderson-Milner
color space model was described as the “Zeta” space, based on their use of the
Greek letter. It is defined as

(6-12)

where Q is the angle calculated from tanQ = 0.4(VZ - VY)/(VZ - VY), and k is
a constant depending on the observation conditions. Color differences are 
calculated as the square root of the sum of the squares of the differences in
the three z values. A somewhat different procedure with a comparable effect
was proposed in 1952 by Godlove.

Assuming that two concentric circles of five equally spaced Munsell hues
are a good representation of psychologically uniform space, Burnham in 1949
investigated the performance of ten formulas (including the CIE x, y and x, z
diagrams) and found the Saunderson-Milner Zeta space to perform best.
However, all of the formulas resulted in deviations that were in visual terms
statistically significant.

6.4 JUDD’S MODEL OF MÜLLER’S THEORY OF COLOR VISION

In 1949 Judd began to develop a model of G. E. Müller’s theory of color vision
(to be discussed in more detail later in this chapter). Development continued
into the 1960s and the model was influential in Friele’s treatment of
MacAdam’s data resulting in the FMC I and FCM II formulas to be discussed
below. The Müller-Judd space is further discussed in Section 6.17.
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6.5 COLOR DIFFERENCE THRESHOLDS AND MATCHING ERROR

Threshold differences were first investigated along the spectrum because exact
setting of spectral differences was technically relatively easy. However, spec-
tral differences are complex in visual terms since every difference is composed
of hue, saturation, and brightness components. Wavelength discrimination
began to be investigated at the turn of the twentieth century. A classical inves-
tigation is that by W. D. Wright and F. H. G. Pitt (1934). Wright subsequently
also investigated threshold differences along straight lines in the CIE chro-
maticity diagram. The results of both investigations are illustrated in Fig. 6-6
(Wright, 1941). Wright’s important data were overshadowed by MacAdam’s
extensive color matching error data of a single observer, published a year later
(1942). As discussed in Chapter 3, in MacAdam’s work two hemi-fields were
displayed against a dark surround in a specially constructed colorimeter. In
one-half a standard color was displayed. The color of the second half could be
adjusted by the observer along straight lines passing through the standard
color in the CIE chromaticity diagram, in a constant luminance plane. Using
a single knob, the observer adjusted the color of the test field by the method
of adjustment until a visual match between the two hemi-fields was achieved.
The match was approached along a given line from both sides. Color matches
along several lines were repeatedly set for each of 25 standard colors. From
the visual data (some 20,000 observations) MacAdam calculated the standard
error of color matching for his single observer. The result, fitted with ellipses,
is illustrated in Fig. 6-7. MacAdam also determined that the threshold differ-
ences around his standard colors were approximately twice the standard 
deviation of the color-matching errors. Subsequently comparable but three-
dimensional contours involving also brightness differences were determined
for additional observers, and the results indicated that observers vary signifi-
cantly in this task (Brown and MacAdam, 1949; Brown, 1957). The MacAdam
ellipses rapidly became a key set of data used as test data for line elements
and color difference formulas. Color-matching error was explained in 1949 in
terms of cone activity by Y. LeGrand (see Chapter 8). The ellipses obtained
good confirmation in an experiment by R. M. Boynton and N. Kambe (1980).
Additional determinations of color-matching error were made by G. Wyszecki
and G. Fielder (1971). Determinations of achromatic and chromatic thresholds
using industrially relevant conditions were performed by K. Richter (1985)
and by Witt (1987, 1990). For a comparison of such data, see Chapter 8. As
mentioned in the previous chapter, thresholds and color-matching error data
of limited groups of colors and using various methodologies have been per-
formed in recent years by several researchers.

MacAdam’s Empirical Line Element

Using a method suitable for describing line elements independent of the form
of the implied space (i.e., applicable to euclidean and non-euclidean space),
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Fig. 6-6 Perceptually equal steps between spectral colors as well as colors in the interior of
the chromaticity diagram, as determined by Wright (1969).

MacAdam calculated gik values from the following equation that describes his
ellipses in geometrical terms:

(6-13)ds g dx g dxdy g dy( ) = ( ) + + ( ) =2
11

2
12 22

2
2 1,



where ds is the distance between the center of an ellipse and a point on its
contour and x, y are CIE chromaticity coordinates. MacAdam drew interpo-
lating lines connecting his data points. Results are shown in Fig. 6-8a–c.
Knowing the gik values for a particular location in the chromaticity diagram
by reading them from tables or graphs with interpolation between neighbor-
ing values makes possible the calculation of color differences using eq. 6-13
and applying the square root. Alternately, the chromaticity diagram could be
modified locally to convert the ellipses to circles of equal size. Sets of charts
that simplified the calculation of color differences by this method have been
available in the 1950s and 1960s. From the results of such calculation it was
apparent that linear transformation of the CIE chromaticity diagram does not
yield a uniform chromaticity diagram in which the MacAdam ellipses form
circles of equal size.

By 1950 the situation presented itself as follows: On the one hand, there were
line elements, either derived from theoretical considerations using best esti-
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Fig. 6-7 Color matching error ellipses of observer PGN for 25 colors at the center of the
ellipses, enlarged 10 times, in the CIE 2° chromaticity diagram. From MacAdam (1942).
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mates of cone sensitivity functions, or empirically as in the case of the
MacAdam ellipses. On the other hand, there were linear transforms of the CIE
chromaticity diagram as well as the Adams chromatic value diagram and mod-
ifications thereof in attempts to predict the Munsell data. In terms of psy-
chophysics there were thus color space models based on accumulation of
threshold differences (local psychophysics extended to global psychophysics)
and models based on global scaling data.

Color Difference Formulas Derived from the MacAdam Data

In 1961 L. F. C. Friele began devising a formula with which MacAdam’s ellipses
could be described with good accuracy (Friele, 1961, 1965). The formula was
slighly modified and simplified by MacAdam and later by K. D. Chickering
and became known as the Friele-MacAdam–Chickering or FMC I formula.
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Fig. 6-8a–c Contours of the g11, 2g12, and g22 ellipse parameter functions in the CIE chro-
maticity diagram for the ellipses of Fig. 6-7.

(a)
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The Roman numeral distinguished it from a later version, FMC II, with a dif-
ferent treatment of lightness. (For an informative discussion of the develop-
ment of these formulas see MacAdam 1981.) Friele based his approach on the
three-stage color vision theory by G. E. Müller (1930). The CIE tristimulus
values were converted to cone sensitivity functions P, Q, and S. Opponent
color differences and lightness differences were calculated from these in two
steps.
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Fig. 6-8a–c (Continued)
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(6-14)

The total color difference is calculated from the chromatic and the lightness
difference as

(6-15)

The two K functions have the purpose of adjusting the size of the implied
ellipse as a function of luminous reflectance and to adjust the lightness value
to be in reasonable agreement with Munsell lightness. They are shown above
in the simplified form proposed by MacAdam.

A uniform (in terms of color-matching error) color space model is 
implicit in this difference formula, but it has not been stated explicitly.
The formula is an elaborate fitting of the MacAdam ellipses in a cone-based
opponent color framework. It represents a compromise in regard to size of 
the ellipse as a function of luminous reflectance. MacAdam had found that 
the color-matching error ellipses were affected only to a small extent (less 
than 20%) by changes within reasonable levels in luminosity. The K1 function
made them change in size in line with cube root compression. In his work 
with Brown, MacAdam had determined that ellipsoids generated from 
threshold determinations including luminance differences had one of 
their three axes parallel to the luminance axis. In the Adams chromatic 
value space, on the other hand, corresponding ellipsoids are tilted toward 
the neutral point of the chromatic diagram. One of the advantages of the 
FMC formula is that it implicitly adjusts for the Helmholtz-Kohlrausch 
effect.

Nonlinear Transformation of the CIE Chromaticity Diagram

MacAdam continued efforts to represent his ellipses in a chromaticity diagram
in which they would appear as circles of equal size. He abandoned a cone sen-
sitivity based solution and concentrated on mathematical methods. Using 
at first a paper and scissor method and then stepwise linear regression he
developed a geodesic chromaticity diagram, illustrated in Fig. 6-9.

Using four linear transforms of the CIE chromaticity diagram, MacAdam,
1965 proposed the following chromaticity coordinates for this diagram:

(6-16)
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where

In evaluations (to be discussed below) against a growing number of sets of
visual color difference data involving object color samples, formulas based on
MacAdam’s ellipses performed relatively poorly, and the development of
color space and color difference model formulas generally proceeded along
different routes.

More recently a nonlinear transformation was proposed by C. Oleari
(2001). It uses an angular transformation of the CIE chromaticity diagram,
with dilatation, to form the d, u chromaticity diagram in which the 
MacAdam ellipses approach circles of equal size.When this diagram is applied
to the CIE 10° observer and the OSA-UCS colors are plotted in it, they 
are aligned along slanted lines which Oleari believes are due to the dif-
ference in the two and ten degree observers, which he corrected with an addi-
tional dilatation.
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Fig. 6-9 MacAdam’s geodesic uniform chromaticity diagram, 1965. Lines of constant value of
chromaticity coordinates x and y are drawn in the interior.
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6.6 FURTHER DEVELOPMENT OF FORMULAS BASED ON
OPPONENT COLOR SYSTEMS

Realizing the opportunities arising from instrumental quality control of
colored materials, R. S. Hunter began to build filter tristimulus colorimeters
in 1948. These were relatively inexpensive instruments that could determine
CIE tristimulus values directly and with good accuracy from four measure-
ments per sample. Hunter, in addition, provided for output from the instru-
ments directly in terms of color difference values. Hunter proposed the
following formulas for this purpose:

(6-17)

where X, Y, Z are the CIE tristimulus values for illuminant C taken as per-
centages. The total color difference was given as the square root of the sum of
the squares of the differences in L, aL, and bL. These instruments were quite
popular and continued to be used into the 1980s. Kuehni showed that unit
chromatic contours derived from the formula were not in good agreement with
ellipses fitted to small color difference data (1982).

The calculation of the Munsell value function from luminous reflectance
with the quintic formula was troublesome, and efforts were made to find a
simpler solution. It was found that properly scaled cube roots of luminous
reflectance resulted in good agreement with the quintic formula. In 1958 L. G.
Glasser, A. H. McKinney, C. D. Reilley, and P. D. Schnelle proposed a cube
root model of color space:

(6-18)

where R = 1.02X, G = Y, B = 0.847Z, Ka = 106.0, and Kb = 42.34. For closer
agreement with the Munsell data the Ka and Kb constants were adjusted by
quadrant. The total color difference was calculated as the square root of the
sum of the squares of the differences in L*, a*, and b*. With square and cube
root tables and/or then modern electronic calculators, color differences from
these formulas could be calculated comparatively rapidly.

In the 1960s, then, there were several competing formulas that were used
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in industry to assess quality of coloration. Among these were the FMC II, the
Adams-Nickerson or the cube root, Saunderson-Milner, CIE 1964, and the
Hunter L,a,b formulas.

6.7 NEW SMALL COLOR DIFFERENCE DATA

The unsatisfactory situation in regard to industrial color quality control using
formulas available by 1960 resulted in several new sets of visual data and con-
siderable activity in testing these data and developing formula modifications.
The following sets of data were developed from the 1950s until 1980:

1. Davidson and Friede (1953). Data consisted of 287 pairs of wool textile
samples around 19 standards, evaluated by 8 observers in terms of
acceptability as a production match to the standards. The results were
expressed as acceptability percentages.

2. Robinson (1969). Data consisted of a single blue paint standard with 31
samples around it evaluated by 132 observers with the results expressed
as acceptability percentages.

3. Thurner and Walther (1969). The data consisted of 500 textile samples
around 27 standards, assessed for acceptability by 16 textile colorists.

4. Kuehni (1971a). 113 samples around three standards, pigments on 
polyester/cotton fabric, were assessed for acceptability by 10 observers.

5. Kuehni/Metropolitan Section (1971b). Data consisted of 180 textile
samples around 10 standards, assessed for acceptability by 16 observers.

6. HATRA (Jaeckel 1975). 854 textile samples around 12 standards were
assessed for acceptability by 24 to 32 observers.

7. MMB (Morley, Munn and Billmeyer 1975). 555 pairs of painted samples
around 19 standards were assessed by 20 observers according to four cat-
egories from no difference to very large difference. Psychometric scales
were constructed from the visual data.

8. VVVR (Friele 1978). 20 glossy painted samples each around 10 stan-
dards were assessed by 14 observers using a pair-comparison method and
by 15 to 25 observers using the acceptability method. Psychometric scales
were constructed.

9. ISCC (Kuehni and Marcus 1979). 180 samples around six standards were
assessed, four consisting of matte paint on cardboard and two of dyed
textiles. They were assesses by 26 to 37 observers using two assessment
methods: (a) subjective estimates on a scale with a maximum value of
10; (b) acceptability as a commercial match. Psychometric scales were
constructed from the subjective estimates.

Most of these data sets were established by industrial specialists interested in
a color difference formula for quality control purposes with a reliability at
least equal to that of an average observer.
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In 1970 the Society of Dyers and Colourists in England recommended the
use of the Adams-Nickerson formula (called ANLAB) for application in the
textile industry based on extensive evaluations of formulas against various sets
of visual data. It had been shown to be equal or marginally better than a dozen
other formulas under consideration. (In 1973 Kuehni found that 13 different
formulas were in use in U.S. color-related industries.) Levels of correlation
between visual and calculated data for all of these, including ANLAB, were
unsatisfactory. Formulas performed poorer than the average observer. D.
Strocka showed in 1971 that a simple formula based on circles of equal size
in the CIE chromaticity diagram and a simple lightness formula resulted in
levels of correlation comparable to that obtained with the best formulas.

Looking for causes of the low level of correlation between visual data and
formula, K. MacLaren (1971) used multiple linear regression in the directions
of lightness, metric chroma, and hue angle. He was able to show that the 
magnitude of perceptually equal color differences, when calculated with 
formulas such as Adams-Nickerson, increased with increasing metric chroma
and lightness.

6.8 ELLIPSE AND ELLIPSOID FITTING

Strocka’s results with the circular formula were puzzling but indicated that the
actual unit difference contours in the CIE chromaticity diagram could not be
circles, since the correlation with the circular formula would have been greater.
The implication was that the ellipsoidal contours implicit in a formula such as
Adams-Nickerson did not match the ellipsoidal contours implicit in the visual
data well, perhaps in direction as well as in size. In 1971 Kuehni graphically
fitted unit ellipses in the CIE chromaticity diagram to various sets of visual
data (Fig. 6-10; Kuehni 1971a). The results indicated that the major axes of 
the resulting ellipses were usually tilted 20° to 30° clockwise compared to 
the MacAdam ellipses and that ellipses tended to increase in size as chroma
increased (as McLaren had found).

Kuehni asked MacAdam to fit the parameters of his xi-eta equation (see
above) to fitted ellipses. The resulting,then unpublished,equations are as follows:
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where

(6-19)



The lightness scale used together with the formulas above was the cube root
scale. The combined formulas resulted in a correlation with visual data sig-
nificantly higher than the cube root and ANLAB or the circle formula.

In 1972 Kuehni refined the ellipse fitting method by systematically vary-
ing ellipse parameters until highest correlation for the samples around a 
standard were obtained. In 1975 R. M. Rich, F. W. Billmeyer, and W. G. Howe
employed a computer algorithm using the maximum likelihood function to fit
ellipses to visual data with greater statistical validity. Mathematical ellipse or
ellipsoid fitting has since become a standard tool of investigation of color 
differences.

6.9 CONTROVERSIES OF DETAIL

A number of controversies abounded in the late 1960s to early 1970s.
One of these involved the question of change in ellipse size as a function 
of lightness. MacAdam’s findings using a visual spectrophotometer had, as 
mentioned earlier, indicated only small changes in the ellipse’s size with
changes in luminance. Formulas, such as Adams-Nickerson, on the other 
hand, implied significant changes in unit contours as a function of lightness.
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Fig. 6-10 Ellipses graphically fitted to small suprathreshold color difference data by Robinson
1962 (Rob), and by Davidson and Friede 1953 (A–T). From Kuehni (1971a).



As shown in Section 8.7 the final answer to this question has not been found
yet.

Similarly Brown and MacAdam had found that the third axis of color-
matching error ellipsoids was aligned parallel with the luminance axis. For-
mulas such as Adams-Nickerson have implied third axes that are tilted toward
the white point of the color space. Work based on small suprathreshold dif-
ferences reported by W. Schultze and L. Gall in 1971 indicated no tilt of the
ellipsoids. The comparative success of power modulation-based formulas indi-
cated that tilt is appropriate.

The dependence of the ellipse’s size in a constant luminous reflectance
plane on metric chroma has already been mentioned. In addition there was
the controversy of perceptibility judgments versus acceptability judgments.
While in perceptibility experiments presumably purely psychophysical judg-
ments are obtained (but see Chapter 3), acceptability experiments can, and
sometimes do, include additional cognitive overlays. Perceptibility experi-
ments are usually difference magnitude estimations against a reference pair.
Acceptability experiments also involve difference magnitude estimation,
however, against an internal standard of acceptability in a commercial situa-
tion. Biases in the latter case are possible based on specific situations; that is,
in a chromatic diagram the limit contour of acceptable color differences may
not be positioned symmetrically around the standard. E. Allen and B. Yuhas
(1984) and, more recently, Berns (1996) have shown how this situation can be
mathematically treated.Another issue is that acceptability tolerances for iden-
tically colored materials may vary significantly depending on the context.
However, experiments have shown that tolerance contours from acceptability
judgments and unit difference contours from perceptibility judgments of the
same sample pairs, when determined in the absence of a specific context, are
symmetrical; that is to say, acceptability judgment in that situation is guided
by perceptibility (Kuehni, 1975; McLaren, 1976; Mahy, Van Eycken, and 
Oosterlinck, 1994).

6.10 DEPENDENCE OF CALCULATED COLOR DIFFERENCE 
ON METRIC CHROMA

Multiple linear regression as well as fitting of ellipses and ellipsoids had clearly
indicated a dependence of the chromatic differences (in the equal luminance
plane) on metric chroma. In 1972 Kuehni proposed a modification to the
Glasser et al. (see above) cube root color difference formula that adjusted the
size of the calculated total color difference as a function of the radial differ-
ence of the standard from the illuminant point in the CIE chromaticity
diagram:

(6-20)D D DE C L= ( ) + ( )[ ]2 2 0 5.
,
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where

S is applicable for illuminant C. The need for such an adjustment was ascribed
to Takasaki’s chromatic crispening effect. For a combined set of data the
formula provided modest improvement over the FMC II or the unmodified
Glasser formula.

McLaren’s work with multiple linear regression had shown that it was
useful to consider separately three components of the total color difference,
assumed to be related in a euclidean manner: metric lightness, metric chroma,
and metric hue differences. Metric chroma was calculated as the square root
of the sum of the squares of the cartesian coordinates in the Adams-
Nickerson chromatic diagram and metric lightness and metric chroma were
subtracted in the euclidean manner from total color difference to result in
metric hue difference:

(6-21)

While the L, a, b view of the system is the cartesian coordinate view of the
euclidean space, that of L, C, H is the polar coordinate view.

Using new experimental data, and expanding on McLaren’s multiple linear
regression, R. McDonald in 1974 found that he could obtain significant
improvement in correlation between visual and calculated data by adjusting
the total color difference as a function of metric chroma as follows:

(6-22)

where DEa is the equivalent color difference at the achromatic point and C is
the chroma value.

6.11 THE CIE 1976 L*a*b* AND L*u*v* SPACES

Because of the mentioned large number of different formulas used in 
industry, the CIE organization in the early 1970s became increasingly aware 
of the need to promote uniformity of practice in industrial color control.
However, the emerging picture was less than clear, and superiority had been
claimed for various formulas and in respect to frequently changing sets of
visual data. After much discussion a compromise was found, and in 1976 two 
formulas were recommended for study and “in the interest of uniformity of
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usage”(CIE,1976).One formula is a simplified version of the Adams-Nickerson
formula, abbreviated CIELAB, the other the earlier mentioned modified
version of MacAdam’s 1937 linear transformation of the CIE chromaticity
diagram, abbreviated CIELUV.The two formulas are defined as follows:

CIELUV

(6-23)

where

and Xn, Yn, Zn are the tristimulus values of the nominally white object color
stimulus. The optimal object color solid and the spectral trace derived from
this formula are illustrated in Fig. 6-11.
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where Xn, Yn, Zn are the tristimulus values of the nominally white object color
stimulus. A slightly different calculation for L*, a*, and b* applies for low tris-
timulus value ratios. For X/Xn, Y/Yn, and Z/Zn > 0.01, instead of cube roots,
factors f are applied to the ratios, determined as follows: f(Y/Yn) = 7.787 (Y/Yn)
+ 16/116 and comparably for Y and Z. This adjustment is valid for the L*, a*,
and b* scales.

Differences can also be calculated in a polar coordinate version, where

Metric chroma C* = [(a*)2 + (b*)2]0.5

Hue angle hab = arctan (b*/a*)

From lightness and metric chroma differences, the total color difference DE is
calculated as follows:

(6-25)

where DH* = [(DE)2 - (DL*)2 - (DC*)2]0.5 and DC* = [(Da*)2 + (Db*)2]0.5. The
optimal object color solid and the spectral trace derived from this formula are
illustrated in Fig. 6-12.

As mentioned before, the former formula is primarily of interest to light-
ing engineers as it provides for additivity of light mixtures. The latter was rec-
ommended for use with object colors. CIELAB is a simplification of, but no
advancement over, the Adams-Nickerson formula, and it was apparent at the
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Fig. 6-11 Projective view of the L*, u*, v* object color space for the CIE 10° standard observer
and illuminant D65 (inner contour) and the spectrum locus. From Judd and Wyszecki (1975).



time of its recommendation that further modification was necessary to im-
prove the correlation of calculated with average visual color differences.

6.12 FRIELE’S FCM FORMULA

In 1978 Friele published a new formula optimized against various sets of visual
data. It was a modification of his earlier effort resulting in the FMC metric.
Friele had created psychometric scales for the various sets of acceptability data
that he used in addition to perceptibility data. The formula provided signifi-
cant improvements in correlation for these data, compared to CIELAB.

FCM

(6-26)
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Fig. 6-12 Projective view of the L*, a*, b* object color space for the CIE 10° standard observer
and illuminant D65 (inner contour) and the spectrum locus. From Judd and Wyszecki (1975).



For R < G,

(6-27)

(6-28)

Parameter f1 determines the weight of the lightness difference relative to the
chromatic difference. It ranges from 0.4 to 1.0 for different data sets.The model
represents an implementation of the Müller three-stage theory of color vision
mentioned earlier. R, G, and B represent the first, photopigment stage, and L,
T, and D the second stage opponent-response functions at the receptor level.
To get to the third, opponent stage at the “optic nerve” level, T and D are
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modified, resulting in the rectangular coordinate system L, a, b. In this system,
somewhat comparable to the CIELAB space, the unit difference contours are
ellipsoids, rather than spheres, and the contours have to be normalized for the
effect of chromatic crispening and the ellipse shape of the unit contour with
the parameters t and d. Friele also implemented the controversial findings by
Schultze and Gall (1971) that unit small color difference ellipsoids are not
tilted toward the achromatic axis of color space.

The FCM formula, despite the improved correlation with visual data, did
not receive any significant practical use, perhaps because of its complexity and
the fact that its results were soon equaled by further optimization of the
CIELAB formula.

6.13 RICHTER’S LABHNU2 FORMULA

In the late 1970s K. Richter proposed a series of formulas as good models for
the Munsell and the OSA-UCS systems (Richter, 1980). Of these only the non-
linear LABHNU2 formula will be mentioned:

(6-29)

where x, y, z are CIE chromaticity coordinates.The CIELAB lightness formula
is used for lightness difference calculation

6.14 WEIGHTING OF METRIC LIGHTNESS, CHROMA, 
AND HUE DIFFERENCES

JPC79 Formula

As mentioned above, in 1976 McLaren optimized weights for the three color
difference components based on the Adams-Nickerson formula. He found that
the optimum weights varied by set of visual data. McDonald continued to
pursue individual adjustment of the three color difference components and
developed new industrial visual data. In 1980 he proposed a formula employ-
ing continuous weight adjustment for all three metric components. It was
based on an extensive set of 640 samples around 55 standards distributed over
a significant portion of the object color solid. The samples consisted of dyed
spun polyester sewing thread and the visual evaluations (acceptability judg-
ments) were performed by eight industrial color matchers. An additional set
of some 8500 judgments against 600 color standards by a single observer in an
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industrial dyehouse was also included. McDonald’s color difference formula,
called the JPC79 formula, is based on the ANLAB formula as follows:

(6-30)

where DL, DC, and DH are, respectively, the lightness, chroma, and hue differ-
ences calculated from ANLAB,

The JPC79 formula represents the prototype of several further enhancements
fitting formulas with the help of various functions to ellipsoids optimized to
average visual data. It represents a practical, empirical approach to dealing
with the non-euclidean nature of a uniform color space.

CMC (l :c) Formula

This formula was slightly modified from JPC79 and based on CIELAB com-
ponent differences by the Color Measurement Committee of the Society of
Dyers and Colourists in England (Clark, 1984). It has been standardized in
England and in the United States, and is recommended by the International
Standards Organization (ISO). It is defined as follows:

(6-31)
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and l and c are additional weights adjusting the relative weight of lightness
and chroma differences. Analysis has shown that for flat surface materials
(paints, plastics) viewed in sharp juxtaposition values of 1 in both cases are
appropriate, while for textile materials, the value l = 2 was found to improve
correlation. CMC found wide international usage in industry and continues to
be used in many firms.

6.15 NEW SETS OF VISUAL DATA

In 1978 the CIE issued a set of guidelines for coordinated research on color
difference equations (Robertson, 1978). In these guidelines particular empha-
sis was placed on five color centers: gray, yellow, red, blue, and green. As a
result several experimenters provided data for these centers but new data for
many other centers were also established.

Luo and Rigg

As a prelude to their formula fitting (see below) R. Luo and B. Rigg assem-
bled 13 previously published sets of perceptibility and acceptability data (Luo
and Rigg, 1986). They fitted separate ellipsoids in x, y, Y space to each subset
and compared these. The main difference for ellipsoids in the same neighbor-
hood of global color space appeared to be a size factor (see Fig. 6-13 showing
chromatic ellipses). This is understandable as the implicit acceptability toler-
ances of different observer groups are likely to be different and different
scaling techniques had been used in the perceptibility judgments. The relative
sizes were adjusted by judging 400 pairs of samples representing 70 color
centers against a gray scale. Luo and Rigg also deleted certain subsets that
they found to be internally inconsistent and, as a result of additional experi-
ments, modified certain ellipses. No consideration was given to differences in
surround in various data sets. The result was 132 ellipses that were considered
to be reliable and formed a reasonably regular pattern in the CIE chromatic-
ity diagram. Luo and Rigg found little difference between perceptibility and
acceptability ellipses. The data are available on the University of Derby Web
site (Derby, 1999).

Cheung and Rigg

In support of the CIE effort M. Cheung and Rigg established in 1986
suprathreshold small color difference data for the suggested five centers.
The samples consisted of dyed wool fabric, with 59 to 82 pairs per center,
assessed by 20 observers against a standard difference pair under artificial day-
light and tungsten light against a neutral gray background of Y = 13. The
samples had CIELAB color differences from 1 to 9 units from the respective
standards.
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Badu and Rigg Large Difference Data

In connection with a Ph.D. thesis, A. Badu prepared in 1986 a set of data with
relatively large differences. Samples were prepared to form a grid of approx-
imately equilateral triangles on the a*, b* diagram. Some samples also
involved lightness differences. There were 408 sample pairs, 238 consisting of
nylon dyeings and 170 of glossy paint samples. They were visually evaluated
by a group of 20 observers using a gray scale as standard.

Witt (1987–1990)

In 1987 K. Witt reported on the results of a threshold experiment using 50 to
64 sample pairs in four of the five CIE color regions prepared with high gloss
acrylic paint. Some 24 observers determined at least four times (some
observers 10 times) under simulated daylight and against a surround of Y =
20 if they could perceive a difference between the pairs. Ellipses were calcu-
lated from the resulting thresholds for individual observers and for sets of 4
to 22 observers with from 22 to 118 repetitions. Considerable intra- and inter-
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Fig. 6-13 Ellipses fitted to unadjusted data of the Luo and Rigg data set, enlarged 1.5 times,
in a portion of the CIE chromaticity diagram. From Luo and Rigg (1986).



observer variability was noted. Average color differences of the thresholds
were approximately 0.4 CMC (2 :1) units.

In 1990 Witt reported a further experiment involving the five CIE color
centers. In addition to determining thresholds, observers were asked to assess
perceptible differences in terms of hue, chroma, and lightness. Another
purpose of the experiment was to determine the effects on the thresholds of
changing the surround lightness and of a gap between the samples. Interest-
ingly better agreement was found between the chromatic ellipse axis and the
hue judgment axis in the CIE chromaticity diagram than in the a*, b* diagram.
A small surround lightness effect and a larger gap effect were found.

RIT-DuPont Data

In an effort to develop a set of high-reliability small color difference percep-
tibility data D. Alman of DuPont and Berns of RIT (Rochester Institute of
Technology) collaborated in 1990 and published the RIT-DuPont data (Berns
et al., 1991). They are based on 156 acrylic lacquer spray-painted sample pairs
on primed aluminum panels representing 19 color centers. The sample pairs
did not have a common reference and were arranged so as to represent spe-
cific vector directions in CIELAB color space. The sample pairs, presented
edge-to-edge on unprimed aluminum panels, were evaluated by 50 observers
against a near gray standard pair presented identically. Probit analysis was
used to establish psychometric scales, and the colorimetric values were set so
that visual differences equal to that caused by a 1.0 DE CIELAB lightness dif-
ference resulted. Ellipsoids in CIELAB space have later been optimized to
the visual data. The ellipses in the a*, b* plane show fair agreement with those
of Luo and Rigg (see Fig. 5-29). Both show ellipses more or less pointed toward
the origin of the diagram, except for blue colors.The data have been published
and are also available on the University of Derby Web site.

Leeds Data

Two sets of data were established by D. H. Kim and J. H. Nobbs at Leeds Uni-
versity in 1997. They consist of matte painted samples. Sample set PC consists
of 152 pairs evaluated juxtaposed by 15 observers against a near neutral ref-
erence pair. Sample set GS consists of 204 sample pairs evaluated against a
gray scale by 12 observers. Color differences ranged from 0.4 to 3.7 CIELAB
units in the two sets. The data are available on the University of Derby Web
site.

Pointer and Attridge Large Difference Data

In 1997 Pointer and Attridge published the results of evaluation using a set of
samples with relatively large differences (from approximately 2 to 20 CIELAB
units). The samples were prepared by varying red, green, and blue exposures
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on photographic paper. Samples were mounted in gray, commercial 35mm
slide mounts, and displayed against an identically mounted near neutral stan-
dard pair. There are four subsets (value 5, saturated, light, and dark) each with
six to eight colors in the same categories (red, green blue, cyan, magenta,
yellow, skin, and neutral). The total set consists of 384 pairs. Comparison of
pairs of samples and standard were made by nine observers against a neutral
pair with a designated visual color difference of 10 units. Sixty percent of the
sample pairs have less than 6 units of CIE94 color differences; that is, the set
contains a large component of small color differences. The data are available
from the authors.

Witt (1999)

In 1999 Witt published a set of data involving the five CIE standard color
regions. For each region there are approximately 30 painted samples. These
have been evaluated by from 10 to 13 observers in approximately 85 different
combinations of two each, thus providing a detailed evaluation in each region
of color difference vectors in two and three dimensions. Comparisons were
made against a specially prepared gray scale (near logarithmic) found to be
visually uniform, with the result expressed in steps and third or quarter frac-
tion steps of the reference scale. Color differences ranged from approximately
0.3 to 8 CIELAB units. Means and standard deviations of the visual judgments
were calculated. The coefficient of variation of the visual results ranged from
15% to 60%. The data have been published in Witt’s paper and are available
on the University of Derby Web site.

Guan and Luo Large Difference Data

These authors published in 1999 results of evaluations of a set of relatively
large differences (6 to 21 CIELAB units). The samples form a grid of approx-
imate squares in the a*, b* diagram at three different levels of L* (40, 50, and
60). Samples were compared by ten observers not only in the a*, b* directions
but also on diagonals, involving changes in both a* and b*.The samples consist
of wool dyeings and they were evaluated in 292 pairs against an eight-step gray
scale, also consisting of wool dyeings.

6.16 NEW FORMULAS

BFD (l:c)

Using the above-described composite data set, Luo and Rigg (1987) optimized
a formula within the general CMC framework as follows:
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where

DC* and DH* are CIELAB chroma and hue differences.The overbar indicates
the mean value between standard and sample. Constants l and c are compa-
rable to the corresponding constants in the CMC equation.

While DC is a slight modification of SC in CMC DH is a complex function
that corrects for experimental variation in the relationship between hue angle
difference and visual hue difference around the hue circle. An additional term
is added to accommodate ellipses of bluish colors not directed toward the
origin.

SVF Formula

Also in 1986, a different approach was taken by T. Seim and A. Valberg.
They fitted a formula to the Munsell Renotation data based on cone sensi-
tivities. In the first step tristimulus values are converted to cone sensitivities
that are then centered on white (S1 comparable to L, S2 comparable to M and
S3 comparable to S). The lightness value V is obtained with a hyperbolic
formula that represents a close fit of the polynomial Munsell value formula:

(6-33)
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Following Adams, the same model is applied to the two chromatic dimensions.
Opponent color signals are calculated in two steps:

(6-34)

where

The final opponent-color functions are calculated as

Color differences are calculated as

Unlike in the Müller-Judd approach the p level does not involve the 
subtraction of cone responses but the subtraction of Y from the response of
L in one case and the response of S in the other. As a result the yellow-blue
axis is established in the final form (except for scaling) at the p level. The
green-red axis needs to be rotated; thus semicolon the subtractive form of F1.
A different hyperbolic function is applied to S > Y to account for the appar-
ent change in the modulation in the Munsell system of the S function of yel-
lowish and bluish colors, which we will encounter again later.

The formula provides a reasonably good fit to the Munsell system even
though the yellowish and bluish constant hue lines are significantly curved.
The formula was also applied to the OSA-UCS data where it is less success-
ful because the implicit modulations in this system are different from those
implicit in the Munsell system. Seim and Valberg applied the formula also to
small suprathreshold color difference data with reportedly good results.

CIE94

In the early 1990s CIE technical committee 1–29 investigated three data sets
considered reliable in regard to the relationship between DL* and L*, DC*, and
C*, and DH* and hue angle h (Berns, 1993). Considerable scatter was found in
all three cases.As a result the committee optimized simple weights for CIELAB
lightness, chroma, and hue differences and issued the formula known as CIE94:
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(6-35)

where

The k constants are additional weights on the lightness, chroma, and hue dif-
ferences. Under reference conditions they all equal 1. For textile applications
kL typically has a value of 2. No weighting of lightness differences was made
because the scatter in the combined experimental data (without consideration
of surround lightness) was too large for a statistically meaningful weight.

Kim and Nobbs Weights for CIELAB

In 1997 Kim and Nobbs proposed new lightness, chroma, and hue difference
weights for the CIELAB formula based on an analysis of five data sets includ-
ing the Luo and Rigg, RIT-DuPont, and Leeds data:

(6-36)
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Integrating Weights

Proposals to integrate the weights on chroma and hue differences in CIE94
directly into the calculation of modified a* and b* values were made by E.
Rohner and D. C. Rich in 1996, by H. G. Völz in 1998 and 1999, and by K.
Thomsen in 2000 (see also DIN99 below). In Thomsen’s version,

(6-37)

where

The two numerical factors have been optimized against CIE94 from 200,000
positions at constant L* in the a*, b* diagram. The maximum discrepancy
found by this method, compared to conventional calculation using CIE94, is
10.5%. Given the variability of the visual data behind the SX weights, this is
not problematical. The only direct advantage of such an approach is that
euclidean relations are maintained. However, the additional optimization
parameters added in CIEDE2000 (see below) would require new, more
complex integration efforts to maintain euclidean relationship with question-
able ultimate value, as all are based on the uncertain fundament of CIELAB.
In addition CIEDE2000 is only applicable from threshold to 6 to 8 units of
total difference.

Guan and Luo Large Difference Formula

In 1999 Guan and Luo fitted a formula to their large difference data men-
tioned above and to other large difference data sets. The formula, named
GLAB by the authors, follows the CIE94 format with the following weights:

where Csb = (C*StdC*Spl)0.5; that is, the chroma value used is the average of those
of the standard and the sample being compared. The factors KL, KC, KH were
taken as 1. From this proposal it is evident that different formulas and/or 
different modification functions are required for small and large differences.

Lübbe Adjustment for Surround Lightness

In 1999 Lübbe proposed a formula for adjusting the L* scale for the effects
of surround

where L*¢ is the adjusted lightness value, L* the original value, and L*u the
original L* value of the surround. f is an experimentally determined factor
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depending on the lightness of the test and the surround fields. It results in S-
shaped functions of the relationship between L* and L*¢.

DIN99 Formula

A new color space and difference formula was developed in 1999 in Germany
(DIN 6176 2000). Its purpose is to apply the integration method proposed by
Rohner and Rich (1996) to produce an euclidean space and difference formula
with good performance against various sets of small color difference data. The
formula went through several stages of development, and presently there are
four versions in existence. Only the latest (and best performing) formula
DIN99d is given here. It is based on the CIELAB formula and the X tristim-
ulus values of reference, and test colors have been adjusted by the procedure
proposed by Kuehni (1999).

(6-38)

The formula has been tested against the same data used in testing CIEDE2000
(see below) and performs somewhat better than CMC and CIE94 but 
slightly inferior to CIEDE2000. Its error against the combined test data set 
is 35% (compared to 38% for CIE94 and 33% for CIEDE2000) (Cui et al.,
2002).

Kuehni Optimization of the CIE94 Formula

In 2001 Kuehni published a report on his analysis of the RIT-DuPont, Witt,
Leeds GS and PC, as well as the Pointer-Attridge large color-difference data
(Kuehni, 2001b). As a result of the analysis, and limiting changes to those
applicable to all visual data sets individually, he recommended a modi-
fied CIE94 formula. The first step consists of an adjustment of the color-
matching function as follows:
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(6-39)

The factor 1.1 is applicable to the CIE 10° observer data. It has a value of 1.06
for the 2° observer data. This adjustment results in a rotation of the b* axis
that better aligns the unit ellipses of blue colors with lines of constant hue
angle.

The lightness scale is revised to make it dependent on surround lightness,
resulting in a true opponent color scale. An SC type adjustment for the light-
ness crispening effect is introduced:

(6-40)

where YS is the luminous reflectance of the surround and Y0 that of the 
illuminant,

These changes resulted in relative improvements in prediction from 5% to
20% depending on the data set. Other changes were found to result in
improved correlation with visual data for individual sets but not for all sets.
Surprisingly, when used as a last step in the optimization, hue angle dependent
functions to adjust the size of the hue difference component such as investi-
gated by Kim and Nobbs (1997) or the function used in CIEDE2000 (see
below), were found to have no meaningful positive effect on the correlation
for any of the data sets investigated.

Kuehni found that the introduction of nonsystematic size adjustment
factors for individual color groups, ranging from approximately 0.75 to 1.5,
improved correlation significantly in all cases.This indicates considerable vari-
ation among and within data sets in how observer groups judge the size of
color differences in specific locations in color space, compared to the predic-
tion by the formula. The source of this variation has not yet been systemati-
cally investigated.

CIEDE2000

In 2001 Luo, Cui, and Rigg, based on extensive analysis of several sets of per-
ceptual color difference data, proposed a modified BFD formula they initially
called M2b. It is based on CIELAB with the following analytically arrived
modifications:
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(6-41)

where *
ab is the arithmetic mean of the C*ab values for a pair of samples.

The subscripts b and s refer to the comparison sample and the standard
sample, respectively.

(6-42)
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¢, ¢
ab, and ¢

ab are the arithmetic means for a pair of samples of the respec-
tive individual values.

This formulation corrects for the slanted ellipses near the negative b* 
axis, contracts the a* axis near the neutral point so that ellipses located in 
that area can be treated as such, introduces a new lightness weighting func-
tion, and uses the hue difference weighting function T proposed by Berns 
at the Warsaw CIE meeting in 1999 (Berns, 2000). The new lightness dif-
ference weight is adjusted, without explicitly stating so, for a surround with 
L* = 50. For the combined set of all data the new formula has an error of 
prediction of 33% compared to 38% for CIE 94 and CMC. The formula per-
forms about equally well as CIE 94 for the RIT-DuPont data set and inferior
to BFD for the Luo-Rigg (now BFD) set. It is marginally better with the Witt
set and distinctly better with the Leeds and a new set of data, BIT, involving
CRT display colors. The formula was adopted as CIEDE2000. Unit difference
ellipses in the a*, b* diagram generated by this formula are illustrated in 
Fig. 6-14.

Sections 6.5 to 6.16 have focused on the development of industrially impor-
tant color difference formulas for use in color quality control. This develop-
ment has proceeded largely independent of development of models of color
vision and their implications for color spaces. Such efforts in a few cases go
much beyond those of industrial color difference formulas in that they attempt
to encompass all aspects of color vision while color difference formulas tend
to only reflect one set of test conditions: daylight illumination and a single,
achromatic surround. Visual data sets involving physical samples are expen-
sive to prepare, and visual evaluations of existing ones require different
formula optimizations, for reasons that are not clear. Less expensive color dif-
ference evaluation using monitor colors is in its infancy, and the monitor con-
ditions that produce identical results by the same observers to those obtained
with comparable physical samples in simplified conditions are not yet known.
In the area of formula fitting the CIE recommendation of the CIELAB
formula had a strong effect in that since then most formulas, for better or
worse, have been based on the foundation of CIELAB. As will be discussed
in Chapter 9, progress over what is available now with CIEDE2000 depends
on new systematic visual data and on a color space model more in agreement
with facts than CIELAB.

hCL

DQ = -
¢ - ∞( )È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

=
¢

¢ +

Ê

Ë
Á

ˆ

¯
˜

30
275

25

2
25

2

7

7
7

0 5

exp ,

.

.

h

R
C

C

ab

C
ab

ab

NEW FORMULAS 247



6.17 COLOR SPACE FORMULAS AND COMPREHENSIVE MODELS
OF COLOR VISION

Since the 1950s several comprehensive models of color vision have been pro-
posed, some of which have had an impact on mathematical formulations of
color space and color differences. A detailed discussion of this subject is
outside the scope of this text and only a brief overview will be presented.

Müller-Judd

G. E. Müller (1850–1934) was a German psychophysicist much interested in
color vision. He adopted Hering’s theory of three reversible photochemical
substances and attempted to bring an opponent color model in line with 
psychological facts. Müller developed the concept of cortical gray as repre-
senting the neutral state of color vision. In a series of articles published in
1896–97 titled Zur Psychophysik der Gesichtsempfindungen (On the psy-
chophysics of the visual sense) he described a three-stage process of color
vision and later expanded on the subject in a book-length treatise Über die
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Fig. 6-14 Unit ellipses in the CIELAB a*, b* diagram as calculated from the CIEDE2000
formula. From Luo, Cui, and Rigg (2001).



Farbenempfindungen (On color sensations, 1930). The first stage represents
cone absorptions, followed by an intermediate differential second stage of
coding and final neural coding in the third stage, resulting in chromatic and
achromatic opponent color signals.The first two stages of the process are today
loosely supported by neurophysiology, while the third stage continues to
remain a hypothesis.

Beginning in 1949 and continuing until the end of his life, Judd worked on
a model of the Müller theory, attempting to express it in terms of CIE tris-
timulus values. Three cone responses are derived from tristimulus values as
follows:

(6-43)

In the second stage the cone signals are converted to intermediate opponent
color signals as follows:

(6-44)

In the third stage these signals are converted to the final chromatic opponent
color signals as follows:

(6-45)

The achromatic final signal is equal to the CIE tristimulus value Y. The chro-
matic signal calculation can be reduced to expressions of tristimulus values
with the following result:

(6-46)

At the third stage this model bears similarity to the Adams zone theory model
and the Jameson-Hurvich model to be presented below. Judd used his imple-
mentation of the Müller theory to predict results of color vision impairment
and good agreement with wavelength discrimination data of protanopes, tri-
tanopes and normal dichromats was obtained (Judd and Yonemura, 1970).The
efforts by Friele to use the Müller framework to develop color difference for-
mulas were discussed above. The Müller framework has also been used by 
S. L. Guth (see section below).
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Adams

As mentioned earlier,Adams offered a zone theory of color vision in 1923 and
a chromatic value diagram based on it in 1942. He equated cone sensitivity
with tristimulus values and applied the Munsell value function, representing
the modulation of the output of the “cones,” to all three tristimulus values.The
chromatic signals were calculated as follows:

(6-47)

where VX, VY, and VZ are square root Munsell value type functions of the CIE
tristimulus values X, Y, and Z that Adams equated with cone responses. The
constants were arrived at by comparing the ranges of chromatic value result-
ing from the color-matching functions and by bringing them into agreement
with the Munsell value scale.The ratio is 2.64, larger than the theoretical value
for a balanced linear system and larger than the value of 2.5 of the CIELAB
space. As seen earlier, this model was used in modified form as a basis for the
Adams-Nickerson color space and difference formula and the various formu-
las derived from it.

Hurvich and Jameson

In the early 1950s, as mentioned, Hurvich and Jameson developed an interest
in the Hering theory by then widely disregarded by color science (except in
Germany). They experimentally determined chromatic response functions by
evaluating the amounts of certain chromatic stimuli required to cancel the hue
of other stimuli. A typical result is shown in Fig. 6-15 and can be seen as in
agreement with the Hering theory. The two spectral functions can be inter-
preted to represent a greenness-redness system (filled circles) and a yellow-
ness-blueness system (open circles). Hurvich and Jameson took these
functions to be linearly related to CIE color-matching functions, and their
functions for white adaptation for the 1931 standard observer were shown in
the previous chapter (Fig. 5-13). The general validity of such functions rests
on the assumption that they are additive. Tests by Larimer and co-workers
(1974–5) indicated the greenness-redness system to be additive and the yel-
lowness-blueness system approximately so. The chromatic functions of Fig.
5-13 are approximated by the equations

(6-48)

where , , , are the CIE 1931 color-matching functions. These functions can
be expressed in relative terms as hue coefficients (Fig. 6-16), and the latter
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were found to be in good agreement with the results of spectral hue naming
experiments. Except for the weights, they are identical to the final Müller-Judd
functions and in basic agreement with the Adams functions. Jameson also
expressed the chromatic functions in terms of König type cone fundamentals
(1972).The Hurvich-Jameson functions provide good support, derived through
the paradigm of hue cancellation, for the basic ideas of Hering, Müller-Judd,
and Adams.

Hurvich and Jameson proposed a polar chromatic diagram they termed a
psychological diagram. It is derived by multiplying a spectral power distribu-
tion with their two chromatic functions a and b, based on their own experi-
mental data.The two functions form the axes of a polar diagram (see Fig. 6-17)
where saturation is calculated as the euclidean sum of the two chromatic
responses. Conceptually unique hues fall on the axes of this diagram. However,
their chromatic functions resemble the functions of equation (6-48), and
average experimental unique red and green have significant positive b values.
The diagram is essentially identical to a linear opponent diagram in polar coor-
dinate form based on CIE color-matching functions. For a description of the
work of Jameson and Hurvich related to the Hering system, see Hurvich
(1981).

COLOR SPACE FORMULAS AND COMPREHENSIVE MODELS OF COLOR VISION 251

Fig. 6-15 Spectral opponent color (and lightness) functions determined from hue cancellation
experiments, of a single observer. From Hurvich (1981).
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Fig. 6-16 Spectral hue coefficient functions for an average observer (Hurvich, 1981). Compare
with Figs. 4-8 and 4-9.

Fig. 6-17 The polar hue/saturation diagram of Hurvich and Jameson (Hurvich, 1981). Spec-
tral colors fall on the heavy line in the interior.



Guth ATD Color Vision Model

A comprehensive color vision model has been developed by Guth and co-
workers since the early 1970s (Guth, 1972, 1991). It is described as a modern-
ized form of the Müller model. It was revised several times since the original
proposal, and the most recent version is known as ATD 01 (Guth, 2001). Since
different sets of visual data require different parameters and parameter func-
tions for best fit, there is no single version applicable to all aspects of color
vision. Guth does not consider ATD to be a model but “a quantitative theory
of color vision.”

CIE tristimulus values of the test and the surround are converted to mod-
ulated cone responses according to

(6-49)

Output from the three cone types is subjected to gain control by multiplying
them with their attenuation factors:

(6-50)

where s = 200 and k = 5.5, and subscript a denotes the surround (adapting
field). The equations apply only if the cone response of the surround is larger
than that of the test field; otherwise, the difference between the test and sur-
round cone responses in the calculation of the attenuation factors is taken 
as zero. The resulting cone responses after gain control (subscript g) are used
to calculate uncompressed responses for stage 1 and stage 2 mechanisms as
follows:

(6-51)
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where subscripts 1 and 2 refer to the mechanism stages and subscript i to the
initial uncompressed response. The uncompressed stage 2 opponent color
responses are illustrated in Fig. 6-18 for comparison to the Jameson-Hurvich
functions and other functions below.

In the next step the final compression for the second-stage ATD values are
calculated as follows (the compressed values for the stage 1 ATD values are
calculated in the same manner):

(6-52)

At stage 1 the brightness signal is equal to the vector sum of the compressed
achromatic and two chromatic components. Lightness is calculated as the
brightness compared to the brightness of the reference white (scale 100).
Colorfulness, chroma, and saturation are all calculated according to

Hue H is expressed as hue angle and calculated as H = arctan (D2/T2).
Color differences are calculated differently, according to their magnitude.
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Fig. 6-18 Spectral functions of Guth’s A, T, D color space.



are calculated as the square root of the sum of the squares of the three com-
ponent vector differences at the compressed stage 1 level, while large color
differences are calculated in the same manner at the compressed stage 2 level.

Many kinds of data have been predicted, with varying success, with differ-
ent versions of the model. It has not found industrial use as a uniform color
space formula. As a color appearance model the ATD95 version has received
faint praise by Fairchild (1998).

OSA-UCS Space Formula

In connection with the development of the OSA-UCS system (see Chapters
2 and 8) the committee also developed a formula to describe the system in
terms of the CIE 10° observer data and illuminant D65 (MacAdam, 1974).
Tristimulus values are converted to cone sensitivity values that are much 
different from those of Smith and Pokorny:

(6-54)

Two chromaticness and a lightness coordinate are calculated as follows:

where

Variable C adjusts chromaticness for the lightness crispening effect by a mod-
ified Semmelroth (1970) formula. Variable Y0 adjusts lightness and chromatic-
ness for the Helmholtz-Kohlrausch effect with a formula modified from that
of Sanders and Wyszecki (1958). (Both factors are discussed in Chapter 5.)
The committee explicitly stated that the formula is not to be used for color
difference calculation of small color differences. The spectral R, G, B and g, j
functions of the space are illustrated in Fig. 7-17a and b.

C
Y

Y

Y Y x y xy x y

=
+ -( )

-

= + - - - +( )

1 0 042 30

2 3

4 4934 4 3034 4 276 1 3744 2 5643 1 8103

0

0
1 3

0
2 2

1 3

.
,

. . . . . . .

g C R G B

j C R G B

L
Y

Y

= - + -( )

= + -( )

=
-

+ -( )

È

Î
Í
Í

˘

˚
˙
˙

13 7 17 7 4

1 7 8 9 7

5 9
2

3 0 042 30

1 3 1 3 1 3

1 3 1 3 1 3

0
1 3

0

1 3

. . ,

. . ,

.
.

,

R X Y Z

G X Y X

B X Y Z

10 10 10 10

10 10 10 10

10 10 10 10

0 799 0 4194 0 1648

0 4493 1 3265 0 0927

0 1149 0 3394 0 717

= + -

= - + +

= - + +

. . . ,

. . . ,

. . . .

COLOR SPACE FORMULAS AND COMPREHENSIVE MODELS OF COLOR VISION 255



Cohen’s Fundamental Color Space

Beginning in 1982 J. B. Cohen and W. E. Kappauf began to describe what
Cohen later termed fundamental color space (FCS; Cohen and Kappauf, 1982;
Cohen, 2001). They found that all metamers of a particular spectral power 
distribution (SPD) can be shown to consist of a common component (the 
fundamental) and a variable component (metameric black), as predicted by
Wyszecki in 1953. Mathematically the fundamentals can be extracted from an
SPD with the help of an orthogonal projector Cohen called matrix R. Matrix
R projects spectral power distributions into the FCS, the mathematical space
of all possible fundamentals. The axes of FCS can be arbitrarily selected, but
Cohen proposed two preferred reference frames, the canonical frame where
one of the orthonormal functions is the equal energy function and the frame
where the three axes are orthogonal spectral vectors (455, 513, and 584nm).
Since the CIE luminous reflectance function is different from the equal energy
and any of the orthogonal vector functions, neither configuration is com-
parable to the CIE X, Y, Z space.

There is no reason why FCS should be perceptually uniform, and it is not.
Burns and co-workers (1990) projected the spectral power distributions of the
color chips of the 1929 Munsell Book of Color as viewed under illuminant C
into two different versions of FCS. Only when using the luminosity function
as one of the three axes of FCS did the samples arrange themselves into layers
that correspond to Munsell value (Fig. 6-19). When the space is viewed from
the top (along the luminosity axis), they do not form concentric circles as one
might expect but a somewhat elliptical cloud. Data plotting confirms the ellip-
tical nature of the constant chroma contours.The spectral orthonormal F func-
tions for this situation are illustrated in Fig. 6-20. The two chromatic functions
are significantly different from opponent color functions such as shown in 
Fig. 6-15.

The Cardinal Planes Space of Derrington, Krauskopf, and Lennie

As mentioned in Chapter 5, in 1984 Derrington and co-workers reported on
their findings regarding chromatic mechnisms in the lateral geniculate nuclei
(LGN) of macaque monkeys. Given the close genetic relationship to humans
results from macaques are considered relevant to human color vision. Mea-
suring parvocellular activity in the LGN of their test objects the authors iden-
tified two types of cells with opponent chromatic activity: R - G and B - (R
+ G) (or the reverse). Taking cone cells of the macaques to be comparable to
those of humans, they analyzed the results in terms of Smith and Pokorny’s
fundamental cell responses and identified three cardinal planes in a space
taken to be euclidean. The constant luminance plane has a constant R + G
(cone response) axis and perpendicular to it a constant B axis. Perpendicular
to the resulting plane is the luminance axis (Fig. 6-21). Colors are defined by
their azimuth F and elevation Q in the space. Derrington et al. determined the
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Fig. 6-19 Colors of the 1929 Munsell Book of Color as viewed under CIE illuminant C in
Cohen’s RLV fundamental color space (Burns et al., 1990). The spectral trace is also shown
as are the vectors of the equal energy illuminant and illuminant C.

Fig. 6-20 Spectral functions representing the red, violet and luminosity axes of the RLV version
of Cohen’s fundamental color space (Burns et al., 1990).



location of the chromatic axes in the CIE chromaticity diagram (Fig. 6-22).
This space has direct neurophysiological support from measured cell activity
in the LGN. The axes are neither in agreement with average unique hues nor
with those of the CIE-based opponent color chromatic diagram.

Color vision models that imply a color space have also been developed in con-
nection with color appearance models. An inclusion of two of these (Hunt and
Nayatani) in the Mahy et al. (1994) evaluation of uniform color spaces indi-
cates that they represent the Munsell value 5 plane and the OSA-UCS systems
with significant deviations. Such systems, as mentioned earlier, are considered
outside the scope of this text.

De Valois and De Valois

In 1993 R. L. and K. K. De Valois presented a paper titled A multi-stage color
model. They had been involved in some of the earliest experiments identify-
ing opponent color type cells in the LGN of macaques in the 1960s. They were
cognizant of the discrepancy between the output of opponent cells in the LGN
and psychological scaling of color space touched on above. The multi-stage
model was developed to account for such discrepancies. The De Valois model
consists of four stages. In the first stage, three cone types provide responses to
light striking them, and the authors used the Smith-Pokorny functions to
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Fig. 6-21 Schematic view of the DKL color space based on cone sensitivity data. A color (black
dot) is represented by its azimuth, F, and its elevation, Q (Derrington et al., 1984.)



describe cone sensitivity. They assumed proportions in the retina of L, M, and
S cones in a ratio of 10 :5 :1. In the second stage, cone opponency signals are
generated. Two kinds of surround are considered here: an indiscriminate 
surround based on the output of horizontal cells in the retina and the other 
a cone type specific surround. The response functions of three cone opponent
cell types, illustrated in Fig. 6-23, are derived as follows:

(6-55)

These cells also have mirror image copies. The cells are considered to carry
both luminance and color information at different spatial frequencies.

In the third stage, in the parvocellular pathway, the authors’ proposal posits
combinations of signals in a way that separates luminance and color informa-
tion. Accordingly, for example, L0 - M0 sums color and cancels luminance,
while L0 + M0 sums luminance and cancels color.The response functions of the
third stage are illustrated in Fig. 6-24. They resemble somewhat the Hurvich-
Jameson opponent color functions but are not balanced. They are calculated,
in the indiscriminate version, according to
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Fig. 6-22 Axes of constant R&G and constant B of the DKL space in the CIE chromaticity
diagram. The squares represent the chromaticities of the phosphors used in the experiment.
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Fig. 6-23 Three cone opponency signals of the second stage of the De Valois and De Valois
color model (indiscriminate surround). From De Valois and De Valois (1996).

Fig. 6-24 Third-stage chromatic functions of the De Valois and De Valois color model 
(indiscriminate surround). From De Valois and De Valois (1993).

(6-56)

For the fourth stage, the De Valois proposal has complex color selective cells
resulting from the summing of the responses of simpler cells earlier in the
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pathway.The authors believe that simple opponency such as posited by Hering
and Hurvich and Jameson ends at the LGN level and that already in area V1
of the brain’s visual system there are cells that fire to stimulation from spe-
cific spectral regions and not to those of others. “The chromatic opponency at
this stage is between, not within, individual cells.” At this stage two cell types
each, such as “red” and “blue” or “red” and “yellow,” can fire at the same time
to the same stimulus, resulting in mixed hues. In the form presented here, the
De Valois model does not result in a close representation of the Munsell
system.

The De Valois model is of particular interest because it considers a wealth
of neurophysiological data accumulated over the last fifty years. It represents
informed assumptions in regard to how the visual system operates (up until
area V4) and is in this respect different from Guth’s early models that 
optimized the Müller structure to psychophysical data, as the authors point
out in a commentary in 1996.

In 1997 De Valois et al. reported on a hue-naming experiment whose results
they explained in terms of a modified version of their model where in the third
stage they subtracted modified amounts of second stage S0 from L0 and M0

(roughly comparable to the change from the a, b diagram to the a, b diagram;
see Section 5.7) They also found the red and the green systems to likely receive
non-symmetrical inputs from cones or LGN cells. The De Valois proposal is a
recent example of a color vision model that assumes a relatively simple rela-
tionship between proposed outputs of cells in the visual area of the cortex and
color perceptions.

The Opponent Color System: Asymmetrical?

In 1999 E. J. Chichilnisky and B. A. Wandell added data to the thesis that the
opponent color system might be asymmetrical.They conducted an experiment
in which square color stimuli of 2.5° visual angle on a CRT were briefly flashed
against various backgrounds. Observers were asked to identify if the stimuli
were greenish or reddish, yellowish or bluish. One type of their presentation
of the results is in cone contrast space as differences in L, M, and S as opposed
to the corresponding values of the surround. Significant differences were found
between the three observers in the experiment, but all showed classification
boundaries that were bent, usually in a shallow bowl shape.The bowl shape did
not in all cases pass through the origin; that is,“opponent classifications are not
based exclusively on the difference between test stimulus and background
light.”An example of the results of the redness-greenness classification bound-
ary against a greenish appearing surround is illustrated in Fig. 6-25. The shape
of the bowl usually has various bulges, indicating not just global but also local
nonlinearities of the boundaries between unique hues. The results were fitted
with what the authors call an increment-decrement opponency model, indi-
cating that increments and decrements in cone absorptions from those of the
surround were treated differently. (Nonsymmetrical effects of increments and
decrements are known from other experiments, as mentioned in Chapter 5.) A
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schematic view of the model is found in Fig. 6-26. Linear cone signals L, M, S
are are treated separately as increments or decrements with respect to a neutral
point. These are scaled through gain control depending only on the surround.
The resulting intermediate cone signals L*, M*, and S* are combined linearly
and then separated into pairs of increment and decrement pre-opponent
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Fig. 6-25 Redness/greenness classification boundary against a greenish surround in the L,
M, S cone contrast space. From Chichilnisky and Wandell (1999).

Fig. 6-26 Schematic view of the color vision model of Chichilniski and Wandell to account 
for their hue classification results. Output from cones L, M, S is split into increment/decrement
portions that are separately modulated to form the intermediate cone signals L*, M*, S*. These
are linearly combined to form incremental and decremental pre-opponent signals. They, in turn,
are again linearly combined to form the opponent signals RG, BY, and WB. From Chichilnisky
and Wandell (1999).



signals. These are combined linearly to create the final opponent color signals,
whose signs determine the opponent color invoked. Concerning the neural
location of opponent color null surfaces the authors comment: “The non-
planarity of opponent color classification boundaries raise the possibility that
either individual parvocellular LGN neurons are not the neural substrate of
perceptual opponency, or that significant nonlinearities in neural responses
were overlooked.” Increments and decrements have also been found to be
treated differently in spatial patterns (Bäuml, 2002).

The relevance of these findings for a model of a global object color space
viewed under conditions much different from those of the described experi-
ment remains to be determined. There is the likelihood that all models using
simple subtractions of cone absorptions or tristimulus values are much sim-
plified approximations of the real mechanisms of color vision. The issue of the
strategy pursued by evolution in the development of the primate visual system
assumes key importance as well as if perception ultimately can be modeled
from implicit cone responses.

6.18 IS THE OPPONENT COLOR SYSTEM “SOFT-WIRED”?

It is an accepted supposition of color psychology that reddish-greenish colors
and yellowish-bluish colors are not possible. However, this has been ques-
tioned since 1983 when H. D. Crane and T. P. Piantanida published a paper
“On seeing reddish green and yellowish blue.” More recently Billock and co-
workers (2001) reported on experiments where observers viewed fields of
opposing colors at personal equiluminance for each observer under image 
stabilization (the image impacted the same retinal region at all times). Four
out of seven observers experienced under these conditions homogeneous 
mixtures of red and green or yellow and blue (some only after several trials).
The authors proposed a “winner take all” multi-stage model of vision in 
which opponency is not hardwired into certain types of cells but is the result
of the combined output of many cells. As a result one or the other of the
unique hues (the winner) takes over. This soft assignment of opponent hues
can be defeated in certain observation conditions resulting in mixed opponent
hue perceptions.

Models of human color vision must be able to explain vast amounts of 
different experimental data. All models are empirical because the translation
of chemical signals in area V4 to perceptual experiences is unknown. There 
is a likelihood that the strategies generally pursued so far will not succeed in
explaining all visual data because the visual system may pursue empirical
strategies that do not directly follow from the identified mechanisms in the
retina, the LGN and the early visual areas but are the statistical results of past
experiences, possibly elaborated beyond the classical visual areas.
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6.19 SPECTRAL SPACES

As briefly mentioned in Chapter 2, regular spaces of reflectance or spectral
power data can also be formed by content analysis and dimensionality reduc-
tion different from that implied in the color matching functions. When com-
paring the reflectance functions of Munsell chips of constant chroma and value,
regularly spaced around the hue circuit, they are found to change in a regular
fashion. In Fig. 6-27a through d the reflectance functions of twenty (every
second) Munsell chips at constant value and chroma representing a hue circle
are shown. Given the possibility of many metamers for each chip, this fairly
regular change is in part due to the limited number of pigments with their own
specific spectral function shape and in part is a reflection of the (relativized)
hue change between chips. Lenz and co-workers (1996) have calculated princi-
pal components of the reflectance functions of 1269 Munsell chips (including
those of Fig. 6-27) by forming a correlation matrix and determining its eigen-
vectors.The first three eigenvectors are illustrated in Fig. 6-28. It is evident that
the first vector, accounting for over 80% of the correlation between the func-
tions in the total set, has all positive values and represents in a general way the
average height of the reflectance function, roughly indicative of lightness. The
second and third eigenvectors have both positive and negative values and have
a crude resemblance to opponent color curves (compare to Fig. 5-13).The func-
tions are orthogonal to each other. When the twenty reflectances of Fig. 6-27
are plotted, they do not form a circle on a flat plane in the resulting space but
an irregular three-dimensional contour as shown in Fig. 6-29a and b. The drop
lines in Fig. 6-29a provide an indication of the variation in terms of the first
eigenvector. It is evident that this space orders Munsell colors in an ordinal
manner only in that it places the chips in a sequence that is in agreement with
the perceptual sequence. Colors varying in chroma or value (not shown) are
also placed relative to each other in proper ordinal order. However, the space
is far from uniform in terms of the Munsell system. Ordinal order can be also
obtained with many arbitrary continuous functions and does not in itself indi-
cate a useful color space. Other dimensionality reduction methods do not place
such color series always in ordinal order (Ramanat et al., 2003). Eigenvector
spaces depend on the color stimuli and the sample distribution. Eigenvectors
determined from different collections of color samples will be different. In 
addition metameric color samples do not plot in the same location in eigen-
vector spaces. For these reasons it is not appropriate to call such spaces color
spaces.

6.20 PERFORMANCE COMPARISON OF VARIOUS FORMULAS

Over the last hundred years color discrimination data have been established
at four different levels of difference:
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1. Subthreshold. These are color-matching error data, as determined by
MacAdam and others.

2. Threshold or just noticeable difference data. Examples are luminance
difference thresholds, wavelength discrimination data, purity threshold
data, and the Wright, Richter, and Witt threshold data.

3. Suprathreshold small differences. These include the RIT-DuPont, Witt
data, and others.

4. Large color difference data. Examples are the Munsell and OSA-UCS
data, and the Guan and Luo data.

Ideally all these data sets would be describable with high accuracy using a
single model/formula. It is obvious from past discussions that this is impos-
sible. When comparing various models of color spacing with typical data sets,
significant variation in results is obtained. In a few cases formulas have been
optimized against a particular data set, and not surprisingly, these formulas
tend to perform better than others against these data. Typical examples are
the FMC formulas optimized against the MacAdam data, the OSA-UCS
formula optimized against the corresponding large difference data, and the
BFD formula optimized mainly against the Luo and Rigg modified data set.
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Fig. 6-28 First three eigenvectors representative of the first three principal components, fitted
to a database of reflectance functions of 1269 Munsell chips. Solid line: eigenvector 1; dashed
line: eigenvector 2; dotted line: eigenvector 3. From Lenz et al. (1996).
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Fig. 6-29a and b Plots of the twenty Munsell colors of Fig. 6-27 in the space formed by the
three eigenvectors of Fig. 6-28 and in the diagram formed by the second and third eigenvec-
tors. Hue designations of four colors are shown for identification. It is apparent that the space
orders the Munsell colors regularly in an ordinal sense, but it is far from uniform.

(a)

(b)



In 1992 Melgosa and co-workers compared a number of data sets using the
CIELAB, CIELUV, CMC, and BFD formulas. From their extensive data 
only a few examples are shown in Table 4-1. Results, in form of coefficients of
variation for the difference between visual and calculated differences, are
bewildering. Some conclusions can be drawn from the table:

1. There are systematic differences between the MacAdam data, on the one
hand, and the Wyszecki-Fielder/observer GW data, on the other.

2. Witt threshold data are poorly predicted by any of the three formulas.
3. CMC and BFD are significant improvements over CIELAB for the 

Luo-Rigg data but not for the Cheung-Rigg data.
4. CIELAB is a good predictor of Munsell value but a poor predictor of

Munsell hue differences, while CMC and BFD are poorer in predicting
value differences but better (if still poor) in predicting hue differences.
CIELAB is a better predictor of Munsell chroma differences than the
other two formulas (in agreement with findings in Chapter 8 of absence
of chromatic crispening in color differences of the size of Munsell system
differences).

Another view of the progress of color difference formulas in predicting
average visually judged small color differences and of color space formulas in
modeling color solid data is offered in Table 6-2 and in Figs. 6-30 and 6-31.
Typical data sets have been used for this purpose. The small color difference
data set selected is the RIT-DuPont set with 156 difference pairs in 18 color
centers. When the data were established, considerable care was taken to
control significant aspects of the experiment. The nature of the experiment
resulted in all color differences in this data set having a visual difference of
one unit and therefore should have calculated differences of one unit. An
appropriate statistic of the performance of color difference formulas for this
data set is, again, the coefficient of variation. In Table 6-2 coefficients of 
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TABLE 6-1 Prediction accuracy of three color difference formulas for various sets of
color difference data

Data set Coefficient of Variation, %

CIELAB CMC BFD

MacAdam, 24 ellipses 34.5 32.2 27.7
Wyszecki-Fielder/GW, 28 ellipses 26.9 20.2 18.8
Witt threshold, 5 ellipses 39.3 39.1 42.6
Luo-Rigg, 131 ellipses 25.1 16.2 13.6
Cheung-Rigg, 5 ellipses 31.6 39.1 42.6
Munsell value, 232 differences 7.3 29.0 21.5
Munsell hue, 365 differences 64.6 50.7 38.4
Munsell chroma, 356 differences 20.5 35.5 41.8

Source: Adapted from Melgosa et al. (1992).
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TABLE 6-2 Comparison of performance of some color-
difference formulas against the RIT-DuPont data set

Formula Coefficient of Variation, %

CIELAB 35
CIELUV 39
SVF 38
BFD 28
CIE94 21
CIEDE2000 20
Kuehni optimization of CIE94 18

Fig. 6-30 Munsell Renotation colors at value 5 plotted in the chromatic diagram of Richter’s
LABHNU formula. From Mahy et al. (1994).

Fig. 6-31 Munsell Renotation colors at value 5 plotted in the chromatic diagram of Hunt’s 1991
color appearance model. From Mahy et al. (1994).



variation for color differences calculated by various formulas for the set are
listed.

The variation in calculated differences for the data set selected is now
approximately half of that for the 1976 CIE formulas. The largest improve-
ment was achieved, as indicated earlier, by applying variable weights to the
implicit lightness, chroma, and hue differences to deal with chromatic crispen-
ing and the non-euclidean nature of uniform color space (in the absence of
euclidization procedure).

The Munsell system was selected for the purpose of comparison of the 
performance of color space formulas. Constant value, respectively metric light-
ness, planes are illustrated. To be in perfect agreement with the perceptual
results, a color space formula should represent an equal value plane of the
Munsell system as a series of concentric circles with equal radial spacing and
radial lines that are equidistant from each other in terms of hue angle. In the
evaluation of Mahy et al. (1994) the formulas (then known) most accurate in
modeling the Munsell system were the LABHNU formula of Richter (a some-
what different version from the one documented above, but found in the same
reference), SVF, and the CIELAB formula (for OSA-UCS it is the OSA
formula and SVF). A significant further improvement will be shown in
Chapter 7 (compare Fig. 7-6). Formulas such as CIE94 cannot be used as color
space formulas because of the variable weights on the difference components,
unless the weights are integrated such as in the Rohner and Rich, Völz,
Thomsen, or DIN99 proposals (see above). It is evident, however, that they
would perform poorer than the formulas above against the Munsell and OSA-
UCS systems because most of the integrated weight of SC relates to chromatic
crispening, absent in the Munsell system and OSA-UCS.

We have seen a rich tapestry of efforts to develop psychophysical models
of color space and color differences applicable to differences of various size.
But as discussed in Chapter 4, we do not have extensive reliable, replicated
data of which we can be confident that they accurately describe color spacing
for a given situation of illumination, surround, size of differences, and the truly
average observer. Various data sets developed at different times vary consid-
erably for generally unknown reasons and are described optimally by differ-
ent formulas. It is important to develop data sets that can be reproduced in
different locations by observer groups of comparable and known relation to
a truly average standard observer (that may still need to be developed). If this
proves to be impossible, it may be due to irreproducible cognitive input into
the judgments. Truly reliable data sets and further knowledge of the human
color vision system may make it possible to develop a psychophysical basis
model, perhaps non-euclidean and certainly nonlinear, that can, with various
parameters, accurately describe the tiling of color space uniform under closely
defined observation conditions. There is a considerable way to get there and
it is evident that CIEDE2000 is a mere milestone on that path.
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