Appendix 1

System of Units Used in the Book

Units of physical properties measurements, based on the International System of units (SI) are described below. According to this system the basic units in mechanics are: meter (m), second (sec), kilogram (kg); an additional unit is the radian-a unit of measurement of a flat angle (rad) and that of a solid angle steradian (sr). All other units of the SI system are derived and can be obtained with the help of corresponding transformations:

Area unit-square meter (area of a square with a 1 m side)

$$
[S]=1 \mathrm{~m}^{2} .
$$

-Volume unit-cubic meter (volume of a cube with a 1 m side)

$$
[V]=1 \mathrm{~m}^{3} .
$$

-Velocity unit-meter per second (velocity of uniform straight line motion; 1 m per 1 sec)

$$
[v]=1 \mathrm{~m} / \mathrm{sec} .
$$

-Acceleration unit-meter per square second (acceleration when the uniform straight line motion velocity change is $1 \mathrm{~m} / \mathrm{sec}$)

$$
[a]=1 \mathrm{~m} / \mathrm{sec}^{2}
$$

-Frequency unit-second to the power of minus one (at revolution) and hertz (Hz) (unit of oscillation frequency; the frequency when a single periodic process is accomplished in 1 sec)

$$
[v]=1 \mathrm{sec}^{-1} .
$$

-Angular velocity unit-1 radian per second (angular velocity when a uniform rotating body turns by 1 rad in 1 sec)

$$
[\omega]=1 \mathrm{rad} / \mathrm{sec} .
$$

-Angular acceleration unit-1 radian per 1 sec in the second power (angular acceleration when angular velocity changes by $1 \mathrm{rad} / \mathrm{sec}$ in 1 sec)

$$
[\varepsilon]=1 \mathrm{rad} / \mathrm{sec}^{2} .
$$

-Force unit-newton (N) (the amount of force required to give a 1 kg mass body an acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$)

$$
[F]=1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}^{2}
$$

-Density unit-kilogram per cubic meter (the density of a uniform substance whose mass per $1 \mathrm{~m}^{3}$ is equal to 1 kg)

$$
[\rho]=1 \mathrm{~kg} / \mathrm{m}^{3}
$$

-Pressure unit—pascal (Pa) (pressure produced by a force of 1 N acting on an area of $1 \mathrm{~m}^{2}$)

$$
[P]=1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}
$$

-Momentum unit— $\mathrm{kg} \mathrm{m} / \mathrm{sec}$ (a body of mass 1 kg moving translational with a velocity of $1 \mathrm{~m} / \mathrm{sec}$)

$$
[p]=1 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}
$$

-Force impulse—newton \times second (a force impulse produced by a force of 1 N for 1 sec)

$$
[F \cdot t]=1 \mathrm{Nsec}
$$

-Work (energy) unit-joule (J) (the amount of work done when an applied force of 1 N moves in the direction of the force through a distance of 1 m)

$$
[A]=1 \mathrm{~J}=1 \mathrm{Nm} .
$$

-Power unit-watt (W) (a watt is used to measure power or the rate of doing work; 1 W is a power of 1 J per second).

$$
[W]=1 \mathrm{~W}(\mathrm{~J} / \mathrm{sec})
$$

-Torque unit—newton \times meter (moment of force produced by a force of 1 N relative to a point which is at distance of 1 m away from the force action line)

$$
[M]=1 \mathrm{Nm} .
$$

-Moment of inertia unit-kilogram \times square meter (moment of inertia of a material point 1 kg in mass relative to a rotation axis 1 m away)

$$
[I]=1 \mathrm{~kg} \mathrm{~m}^{2} .
$$

-Angular momentum unit-kilogram \times square meter per second (angular momentum of a body with a moment of inertia in $1 \mathrm{~kg} \mathrm{~m}^{2}$ rotated with angular velocity $1 \mathrm{rad} / \mathrm{sec}$)

$$
[L]=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec} .
$$

In addition to the units presented above in molecular physics following units are also used. Unit of heat energy or heat-calorie; $1 \mathrm{cal}=4.1868 \mathrm{~J}$

$$
[Q]=1 \mathrm{cal} .
$$

Heat capacity unit-calorie per kelvin (amount of heat to warm a body by 1 K)

$$
[C]=1 \mathrm{cal} / \mathrm{K} .
$$

-Specific heat capacity unit-calorie per kilogram \times kelvin (amount of heat to warm 1 kg of a substance by 1 K)

$$
\left[C_{\mathrm{sp}}\right]=1 \mathrm{cal} / \mathrm{kg} \mathrm{~K} .
$$

Mole heat capacity unit-calorie per mole \times kelvin (amount of heat to warm one mole of substance by 1 K)

$$
\left[C_{\text {mole }}\right]=1 \mathrm{cal} / \mathrm{mole} \mathrm{~K} .
$$

In addition to the mechanical units of measurements, in the sections describing electricity and magnetism, one basic unit-the ampere (A) and a number of derivative units are used. In the SI system 1 A is defined as the force of that current which produces a specific force between two parallel infinitely long conductors which are 1 m apart, in $2 \times 10^{-7} \mathrm{H} / \mathrm{m}$.

Charge unit-coulomb (C) (the charge that runs through a cross-section of a conductor when a current of 1 ampere is flowing)

$$
[q]=1 \mathrm{~A} \times 1 \sec (\text { Asec })
$$

(then an electric current I in 1 A corresponds to 1 coulomb transfer in 1 sec)

$$
[I]=\frac{1 \mathrm{C}}{1 \mathrm{sec}}
$$

-Current density unit-ampere per square meter (electric current of 1 A per $1 \mathrm{~m}^{2}$ of crosssection of a conductor)

$$
[j]=\frac{1 \mathrm{~A}}{1 \mathrm{~m}^{2}} \quad\left(\mathrm{~A} / \mathrm{m}^{2}\right)
$$

-Electric field strength unit—volt/meter (electric field strength, acting on a point charge 1 C with a force 1 N)

$$
[E]=\frac{1 \mathrm{~N}}{1 \mathrm{C}}=\frac{1 \mathrm{~V}}{1 \mathrm{~m}} \quad\left(\mathrm{~kg} \mathrm{~m} / \mathrm{Asec}^{3}\right)
$$

-Electric displacement (induction) unit-coulomb/meter ${ }^{2}$ (electric field strength multiplied by $\varepsilon \varepsilon_{0}$)

$$
[D]=\varepsilon \varepsilon_{0} E\left(\mathrm{~A} \mathrm{sec} / \mathrm{m}^{2}\right)
$$

-Electric field potential unit-volt (V) (electric field potential in which the charge of 1 C possesses potential energy 1 J)

$$
[\varphi]=1 \mathrm{~J} / 1 \mathrm{C}\left(\mathrm{~kg} \mathrm{~m}^{2} / \mathrm{Asec}^{3}\right) .
$$

-Electric dipole moment unit-coulomb \times meter (dipole electric moment of a pair of opposite charges equal in value and being 1 m apart)

$$
[p]=1 \mathrm{C} \times 1 \mathrm{~m}(\mathrm{~A} \mathrm{sec} \mathrm{~m}) .
$$

-Electric quadrupole moment-coulomb \times meter 2 (quadrupole electric moment of a system of two pairs of opposite charge equal in value of 1 C displaced alternately in square corners at side length 1 m)

$$
[Q]=1 \mathrm{C} \times 1 \mathrm{~m}^{2}\left(\mathrm{~A} \mathrm{sec} \mathrm{~m}^{2}\right) .
$$

Eelectric linear density unit-coulomb/meter (charge of 1 C uniformly distributed along a line of 1 m)

$$
[\tau]=1 \mathrm{C} / 1 \mathrm{~m}(\mathrm{~A} \mathrm{sec} / \mathrm{m}) .
$$

Electric surface charge density unit-coulomb/meter ${ }^{2}$ (charge of 1 C , uniformly distributed over an area of $1 \mathrm{~m}^{2}$)

$$
[\sigma]=\frac{1 \mathrm{C}}{1 \mathrm{~m}^{2}} \quad\left(\mathrm{~A} \mathrm{sec} / \mathrm{m}^{2}\right) .
$$

Electric volume charge density unit-coulomb/meter ${ }^{3}$ (charge, uniformly distributed in a volume of $1 \mathrm{~m}^{3}$)

$$
[\rho]=\frac{1 \mathrm{C}}{1 \mathrm{~m}^{3}} \quad\left(\mathrm{~A} \mathrm{sec} / \mathrm{m}^{3}\right)
$$

-Dielectric polarization unit-coulomb/meter ${ }^{2}$ (a dielectric's volumetric dipole moment)

$$
[\mathfrak{R}]=\frac{1 \mathrm{C}}{1 \mathrm{~m}^{2}} \quad\left(\mathrm{~A} \mathrm{sec} / \mathrm{m}^{2}\right)
$$

Dielectric susceptibility unit-dimensionless (polarization of isotropic dielectric in a unit field strength divided by ε_{0})

$$
[\chi] .
$$

Dielectric permeability unit-dimensionless (a value indicating by how much an averaged macroscopic field in a dielectric is less than an external field)

$$
[\varepsilon]=\frac{E_{0}}{E} .
$$

Polarization of a molecule unit-meter ${ }^{3}$ (a molecular dipole moment in a field of a unit strength divided by ε_{0})

$$
[\alpha]=\frac{p}{\varepsilon_{0} \times E} \quad\left(\mathrm{~m}^{3}\right) .
$$

Electronic capacitance unit-farad (F) (capacitance of conductor, which is charged to potential 1 V receiving a charge of 1 C)

$$
[C]=\frac{1 \mathrm{C}}{1 \mathrm{~V}} \quad\left(\mathrm{~A}^{2} \sec ^{4} /\left(\mathrm{kg} \mathrm{~m}^{2}\right)\right)
$$

-Magnetic moment unit-ampere \times meter 2 (electric current of 1 A flowing around an area of $1 \mathrm{~m}^{2}$)

$$
[\mathcal{M}]=1 \mathrm{~A} \times 1 \mathrm{~m}^{2}\left(\mathrm{Am}^{2}\right) .
$$

-Off-system unit—Bohr magneton $\mu_{6}\left(1 \mu_{6}=0.927 \times 10^{-23} \mathrm{~A} \mathrm{~m}^{2}\right)$.
Magnetic field induction unit-tesla (T) (maximal magnetic force moment, acting on a unit magnetic moment)

$$
[B]=\frac{1 \mathrm{~N}}{1 \mathrm{Am}^{2}} \quad\left(\mathrm{~kg} /\left(\mathrm{Asec}^{2}\right)\right)
$$

Strength of magnetic field unit-ampere/meter (magnetic field induction, divided by $\mu_{0} \mu$)

$$
[H]=\frac{1 \mathrm{~A}}{\mathrm{~m}} \quad(\mathrm{~A} / \mathrm{m})
$$

Magnetization unit—amper/meter (moment of an unit volume moment)

$$
[\mathfrak{J}]=\frac{1 \mathrm{~A}}{1 \mathrm{~m}}=(\mathrm{A} / \mathrm{m})
$$

Magnetic susceptibility unit-dimensionless (magnetization of an unit volume of a magnetic in an unit strength field)

[χ].

-Specific magnetic susceptibility unit-meter ${ }^{3} /$ kilogram (magnetization of a unit mass of a magnetic in a field of unit strength)

$$
\left[\chi_{s p}\right]=\frac{\chi}{\rho} \quad\left(\mathrm{m}^{3} / \mathrm{kg}\right) .
$$

Mole magnetic susceptibility unit-meter ${ }^{3} /$ mole (magnetization of one mole of magnetics in a field of unit strength)

$$
\left[\chi_{\mathrm{M}}\right]=\frac{M \times \chi}{\rho} \quad\left(\mathrm{m}^{3} / \mathrm{mole}\right)
$$

Magnetic permeability unit-dimensionless (shows how many times greater is the magnetic field than an external magnetic field)

$$
[\mu]=\frac{B}{B_{0}} .
$$

Magnetic flux unit-weber (Wb) (a magnetic field induction flux in 1 T through the surface of unit area)

$$
[\Phi]=1 \mathrm{~T} \times 1 \mathrm{~m}^{2}=1 \mathrm{~Wb} ; \quad\left(\mathrm{kg} \mathrm{~m}^{2} /\left(\mathrm{A} \mathrm{sec}^{2}\right)\right) .
$$

Inductance unit-henry (H) (inductance of a conductor in which at a current of 1 A appears a total magnetic leakage of 1 Wb)

$$
[L]=1 \mathrm{~Wb} / 1 \mathrm{~A} ; \quad\left(\mathrm{kg} \mathrm{~m}^{2} /\left(\mathrm{A}^{2} \sec ^{2}\right)\right) .
$$

Some important physical constants:

Acceleration of free falling	$g=9.81 \mathrm{~m} / \mathrm{sec}^{2}$
Gravitational constant	$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} / \mathrm{sec}^{2}\right)$
Avogadro constant	$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Mole gas constant	$R=8.31 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$
Molar volume at normal conditions	$V_{\mathrm{m}}=22.4 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{mol}$
Boltzmann constant	$\kappa=1.38 \times 10^{23} \mathrm{~J} / \mathrm{K}$
Elementar charge	$\|e\|=1.60 \times 10^{19} \mathrm{C}$
Electron mass	$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
Specific electron charge	$(e / m)=1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$
Light velocity in vacuum	$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{sec}^{2}$
Stefan-Boltzmann constant	$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Win shift constant	$C=2.90 \times 10^{-3} \mathrm{~m} \mathrm{~K}$
Planck's constant	$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{sec} ; \mathrm{f}=h / 2 \pi=1.05 \times 10^{-34} \mathrm{~J}$ sec
Rydberg constant	$R=1.097 \times 10^{7} \mathrm{~m}^{-1}$
First Bohr orbit radius	$a=5.29 \times 10^{-11} \mathrm{~m}$
Compton wavelength	$\lambda_{\mathrm{C}}=2.43 \times 10^{-12} \mathrm{~m}$
Bohr magneton	$\mu_{\mathrm{B}}=9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}$
Ionization energy of hydrogen atom	$E_{\mathrm{i}}=2.16 \times 10^{-18} ; \mathrm{J}=13.56 \mathrm{eV}$
Atomic unit of mass	$1 \mathrm{a} . \mathrm{u} . \mathrm{m}=1.66 \times 10^{-27} \mathrm{~kg}$
Nuclear magneton	$\mu_{\mathrm{N}}=5.05 \times 10^{-27 \mathrm{~J} / \mathrm{T}}$
Electric constant	$\varepsilon_{0}=0.885 \times 10^{-11} \mathrm{~F} / \mathrm{m}$
Magnetic constant	$\mu_{0}=1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}$

This page intentionally left blank

Appendix 2

Gyroscope Precession in a Gravity Field

A symmetric body with a single motionless point and able to rotate at high angular velocity ω around an axis z^{\prime} passing through this motionless point is called a gyroscope. There are two types: balanced (the motionless point coincides with the center of inertia) and unbalanced (where this condition is not fulfilled). A child's spinning top is a primitive example of an unbalanced gyroscope.

Figure A2.1 shows an unbalanced gyroscope acquiring a rotation (precession) in a gravitational field. The pivot point O is a unique motionless point and the axis of rotation z^{\prime} passes through it. The gravity force is directed vertically downwards along axis z. The angle between axes z and z^{\prime} is denoted by θ and is assumed to be small. In the figure, for simplicity, the angular momentum vector \mathbf{L} terminates in the center of mass \mathbf{C}, the distance OC being l_{C}. According to the basic equation of rotational motion dynamics, we can write $d \mathbf{L}=M d t$ (refer to (1.3.57)). The force momentum (torque) of the gravitational force relative to point C is $M=m g l_{\mathrm{C}} \sin \theta$.

The rotation of the gyroscope's axis z^{\prime} relative to the vertical axis z is referred to as gyroscope precession. Under the action of the gravity force momentum the vector of the angular momentum \mathbf{L} of the unbalanced gyroscope obtains an increment $d \mathbf{L}$ directed along
the vector \mathbf{M} (see (1.3.57) and Figure 1.19). Since $d \mathbf{L}$ is perpendicular to \mathbf{L} the modulus of \mathbf{L} is constant and only precession takes place. The gyroscope precession angular velocity ω_{g}, as seen in Figure A 2.1, can be found as

$$
\begin{equation*}
\omega_{\mathrm{g}}=\frac{d \varphi}{d t}=\frac{m g \ell_{C} \sin \theta}{I \omega_{z^{\prime}} \sin \theta}=\frac{m g \ell_{\mathrm{C}}}{I \omega_{z^{\prime}}} . \tag{A2.1}
\end{equation*}
$$

Note that the angle θ is small and I and ω regarding both axes, z and z^{\prime}, are approximately same. It can be seen that the precession angular velocity ω_{g} is higher, the lower the gyroscope's moment of inertia I and angular velocity $\omega_{z^{\prime}} ; \omega_{\mathrm{g}}$ does not depend on the angle θ between axis z and z^{\prime}.

Anyone can conduct an experiment using a child's spinning top.

Appendix 3

An Electrostatic Field of an Arbitrary Distributed Charge

Among the real problems the chemist can come across in practice, a simple situation with a discrete set of point charges is rarely seen. Any molecule consists of positively charged nuclei encircled by negative electrons, each particle being vibrated around positions of equilibrium. Therefore, the overall charge distribution is described in this case by the distribution function $\rho(r)$:

$$
\begin{equation*}
d q=\rho(\mathbf{r}) d V \tag{A3.1}
\end{equation*}
$$

The charge density distribution $\rho(\mathbf{r})$ is of great importance because it permits the calculation of a wide number of molecular and crystal properties and enable us to follow the paths of chemical reactions.

Consider a field created by the electric charge system described by the function $\rho(\mathbf{r})$ (refer to Figure A3.1). Our task is to calculate the electrostatic field created by this system in a certain point A. Direct an axis z of the Cartesian coordinate system in such a way that

it crosses point A . The electrostatic potential in point A is the superposition of contributions from all elements $d q$.

$$
\begin{equation*}
\varphi(r)=\int_{V} \frac{\rho\left(r^{\prime}\right) d V^{\prime}}{R}=\int_{V} \frac{\rho\left(r^{\prime}\right) d V^{\prime}}{\left|r-r^{\prime}\right|} \tag{A3.2}
\end{equation*}
$$

where r is the z component of the radius-vector of point A, r^{\prime} is the argument of the function $\rho\left(r^{\prime}\right),|\mathbf{R}|=\left|\mathbf{r}-\mathbf{r}^{\prime}\right|$ is the distance from the element $d V$ to point A. The integration is over the coordinate \mathbf{r}^{\prime} over the whole charge containing space. Denoting the angle between vectors \mathbf{r} and \mathbf{r}^{\prime} as θ and using the cosine theorem; we obtain $R=\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta\right)^{1 / 2}$. Then the integral can be rewritten as $\varphi_{\mathrm{A}}=\int \rho\left(\mathrm{r}^{\prime}\right) d V^{\prime}\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta\right)^{-1 / 2}$. If we calculate the field far from the origin (i.e., $r^{\prime} \ll r$) the expression

$$
\frac{1}{R}=\frac{1}{\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta\right)^{1 / 2}}=\frac{1}{r}\left[1+\left(\frac{r^{\prime}}{r^{2}}-2 \frac{r^{\prime}}{r} \cos \theta\right)\right]^{-\frac{1}{2}}
$$

can be decomposed into a series and can be expanded over the r^{\prime} orders

$$
(1+\beta)^{-1 / 2}=1-\frac{1}{2} \beta+\frac{3}{8} \beta^{2}+\cdots
$$

where

$$
\beta=\left[\left(\frac{r^{\prime}}{r}\right)^{2}-2 \frac{r^{\prime}}{r} \cos \theta\right] .
$$

Summing up all the terms with the same order of r^{\prime} / r and neglecting the terms of higher orders than quadratic, we obtain the expression

$$
\frac{1}{R}=\frac{1}{r}\left[1+\frac{r^{\prime}}{r} \cos \theta+\left(\frac{r^{\prime}}{r}\right)^{2} \times \frac{1}{2}\left(3 \cos ^{2} \theta-1\right)\right]
$$

Introducing this expression into eq. (A3.2) and taking into account that integration is accomplished over r^{\prime}, we can obtain for φ_{A} the sum

$$
\begin{align*}
\varphi_{A}= & \frac{1}{r} \int \rho\left(r^{\prime}\right) d V^{\prime}+\frac{1}{r^{2}} \int r^{\prime} \cos \theta \rho\left(r^{\prime}\right) d V^{\prime} \\
& +\frac{1}{r^{3}} \int r^{\prime 2} \times \frac{1}{2}\left(3 \cos ^{2} \theta-1\right) d V^{\prime} . \tag{A3.3}
\end{align*}
$$

The magnitude of each of these integrals depends only on the properties of the electron density function $\rho\left(\mathbf{r}^{\prime}\right)$. Being calculated for the given system they can be expressed as numbers k_{0}, k_{1} and k_{2} correspondingly. The dependence of φ_{A} on $|\mathbf{r}|$ will be expressed by the sum

$$
\begin{equation*}
\varphi_{A}=\frac{k_{0}}{r}+\frac{k_{1}}{r^{2}}+\frac{k_{2}}{r^{3}} . \tag{A3.4}
\end{equation*}
$$

The k_{n} are referred to as the electric moments of the system.
Let us analyze each term of this sum. The k_{0} value is expressed by an integral

$$
\begin{equation*}
k_{0}=\int \rho\left(r^{\prime}\right) d V^{\prime} \tag{A3.5}
\end{equation*}
$$

and is the total charge of the system concentrated in origin. It is referred to as a monopole moment or simply a monopole. For a neutral system $k_{0}=0$.

The coefficients k_{1} and k_{2}, unlike k_{0}, depend on charge distribution. The coefficient k_{1} characterizes an electric dipole moment

$$
\begin{equation*}
k_{1}=\int r^{\prime} \cos \theta \rho\left(r^{\prime}\right) d V^{\prime} \tag{A3.6}
\end{equation*}
$$

Since the value $r^{\prime} \cos \theta$ is z-coordinate of element $d V^{\prime}$, this term characterizes the relative displacements of the positive and negative charges $\rho\left(r^{\prime}\right) d V^{\prime}$ along this axis. Indeed, if one imagines a system consisting of two dissimilar charges q in points $(0,0, z)$ and $(0,0,-z)$ with $z=1 /(2 l)$, then a value $r^{\prime} \cos \theta= \pm(112) \ell$ can be factorized from the integral. The resultant expression $\int \rho\left(\mathrm{r}^{\prime}\right) d V^{\prime}$ will be equal to q and the whole coefficient k_{1}, which is now equal to $l q=p$, composes the electric dipole moment oriented along the z-axis (see Section 4.1.5 and eq. (4.1.29)).

The coefficient k_{2}

$$
\begin{equation*}
k_{2}=\int r^{\prime 2} \rho\left(r^{\prime}\right) \frac{1}{2}\left(3 \cos ^{2} \theta-1\right) d V^{\prime} \tag{A3.7}
\end{equation*}
$$

is a so-called quadrupole moment. Try to understand what electron density distribution is described by such a factor. For spherically symmetric electron distribution $k_{2}=0$. It follows from a specific type of k_{2} factor: keeping in mind that $r^{\prime 2}=x^{2}+y^{2}+z^{2}$ for the specified symmetry all three coordinates are equivalent, therefore $x^{2}+y^{2}+z^{2}=3 z^{2}$ and, consequently, $3 z^{2}-r^{\prime 2}=0$. A flattened out electron density model is the charge q rotating around an z-axis at a level $z=0$ at a distance r_{0} from the axis. Then $\theta=\pi / 2$ and the expression in brackets becomes negative. Since $r=$ const., then k_{2} is equal to $-r_{0}^{2} q$ for a positive charge and $+r_{0}^{2} q$ for a negative charge. It is reasonable to assume that as for
every "flattened out" distribution the quadrupole moment has such signs. It is easy to show that for the "extended" model distribution the signs will be the opposite.

Expression (A3.4) shows that in the electrostatic field created by a particular system, the electric potential falls differently with distance (refer to Table 8.1) the higher the order of the moment, the sharper the potential falling down. Even neutral systems (atoms, molecules) create an electric field by means of which these systems interact with each other. Accordingly, the higher the order of the moment, the lower the energy of interaction; for example, dipole-dipole interaction is appreciably weaker than the interaction of monopoles (Coulomb interaction). All this information is useful in Chapter 8.

Appendix 4

Langevin Theorem

Consider a system consisting of identical molecules weakly interacting with each other, characterized by a magnetic dipole moment \mathfrak{N}. An external magnetic field \mathbf{B} acts on the system trying to orient all magnetic moments along z axis contrary to chaotic thermal motion. Allocate in this system a spherical volume V of a radius R. Suppose that there are a large enough number of molecules in this volume with all possible orientations of magnetic moments. Among all N molecules in the volume V we shall denote as $d N(\theta)$ such molecules whose magnetic moments form an angle from θ up to $\theta+d \theta$ with a direction of vector \mathbf{B} (Figure A4.1).

These $d N(\theta)$ molecules account for a physically infinitesimal elementary volume $d V(\theta)$. Then the concentration of such molecules is

$$
\begin{equation*}
n_{\theta}=\frac{d N}{d V} \tag{A4.1}
\end{equation*}
$$

An equilibrium distribution of noninteracting particles in an internal force field is described by the Boltzmann formula $n=C \exp (-U / \kappa T)$, where C is a normalizing coefficient. Since the potential energy of the dipoles in the external field is determined by a ratio (eq. (5.1.31)) ($U=-\mathcal{M} B \cos \theta$), the equilibrium distribution of dipoles upon potential energies (i.e., on various orientations of the magnetic moments) in field B can be written as:

$$
\begin{equation*}
n_{\theta}=C \exp \left(\frac{\mathcal{M} B}{\kappa T} \cos \theta\right) . \tag{A4.2}
\end{equation*}
$$

From the last two equations we can derive

$$
\begin{equation*}
d N(\theta)=C \exp \left(\frac{\mathcal{M} B}{\kappa T} \cos \theta\right) d V(\theta) \tag{A4.3}
\end{equation*}
$$

Express an elementary volume $d V(\theta)$, occupied by a molecule the magnetic moment of which is directed at an angle θ, through the angles θ and $d \theta$. Since $\mathrm{dV}(\theta)=(V / 4 \pi) d \Omega$, where $d \Omega$ is an elementary solid angle obtained by two coaxial cones with a common vertex at point 0 and openings of 2θ and $2 \theta+d \theta$, then from the solid angle definition (4.1.10) and Figure A4.1, it follows that

$$
d \Omega=\frac{d S}{R^{2}}=\frac{2 \pi(R \sin \theta)(R \mathrm{~d} \theta)}{R^{2}}=2 \pi \sin \theta \mathrm{~d} \theta
$$

Then $d V(\theta)=(1 / 2) V \sin \theta d \theta$ and (A4.3) could be rewritten as

$$
\begin{equation*}
d N=\frac{1}{2} C V \exp \left(\frac{\mathcal{M} B}{\kappa T} \cos \theta\right) \sin \theta d \theta \tag{A4.4}
\end{equation*}
$$

The constant C can be determined from the normalizing procedure: the integral from $d N(\theta)$ over all possible orientation of θ angles (from 0 to π) must equal the total number of molecules N in volume V, that is:

$$
\begin{equation*}
\int_{0}^{\pi} d N(\theta)=N \tag{A4.5}
\end{equation*}
$$

To simplify further calculations mark $(\mathcal{M} B / \kappa T)$ as a and $\cos \theta$ as x; then $\sin \theta d \theta=-d x$. This change brings about the change in limits in (A4.5): instead of the inferior limit there will be $1(\cos \theta=1)$, and the superior limit will be $-1(\cos \pi=-1)$. After such transformation and change of a sign before an integral one arrives at

$$
\frac{1}{2} C V \int_{-1}^{1} \mathrm{e}^{a x} d x=N
$$

After these transformations we obtain

$$
\frac{1}{2} C V \frac{\mathrm{e}^{a}-\mathrm{e}^{-a}}{a}=N
$$

hence

$$
C=\frac{2 a N}{\left(\mathrm{e}^{a}-\mathrm{e}^{-a}\right) V} \quad \text { or } \quad C=\frac{2 a}{\left(\mathrm{e}^{a}-\mathrm{e}^{-a}\right)} n,
$$

where $n=N / V$ is the total molecules concentration. Then $d N(\theta)$ can be rewritten as

$$
\begin{equation*}
d \mathrm{~N}(\theta)=\frac{a}{\mathrm{e}^{a}-\mathrm{e}^{-a}} n V \mathrm{e}^{a \cos \theta} \sin \theta d \theta \tag{A4.6}
\end{equation*}
$$

These $d N(\theta)$ dipoles make a contribution of $d \boldsymbol{J}(\theta)$ to the general magnetization \boldsymbol{J}.
Taking into account the magnetization definition (5.2.3) $d \boldsymbol{J}(\theta)$ we can obtain

$$
d \boldsymbol{J}(\theta)=\frac{\mu \cos \theta d N(\theta)}{V} .
$$

Changing in this expression $d N(\theta)$ according to (A4.4), we can obtain

$$
d \boldsymbol{J}(\theta)=\frac{a n \mathcal{M}}{\mathrm{e}^{a}-\mathrm{e}^{-\mathrm{a}}} \mathrm{e}^{a \cos \theta} \cos \theta \sin \theta d \theta
$$

The total magnetization can be found by integration

$$
\begin{equation*}
\mathfrak{J}=\frac{\operatorname{an\mathcal {M}}}{\mathrm{e}^{a}-\mathrm{e}^{-\mathrm{a}}} \int_{-1}^{1} x \mathrm{e}^{a x} d x \tag{A4.7}
\end{equation*}
$$

Integration by parts $\left(u=x, \mathrm{dv}=\mathrm{e}^{a x} d x\right)$ can give

$$
\int_{-1}^{+1} x \mathrm{e}^{a x} d x=\left.x \frac{\mathrm{e}^{a x}}{a}\right|_{-1} ^{+1}-\frac{1}{a} \int_{-1}^{+1} \mathrm{e}^{a x} d x
$$

After this integration and substituting the limits:

$$
\int_{-1}^{+1} x \mathrm{e}^{\mathrm{ax}} d x=\frac{\mathrm{e}^{a}+\mathrm{e}^{-a}}{a}-\frac{\mathrm{e}^{a}-\mathrm{e}^{-a}}{a^{2}}
$$

Magnetization \mathfrak{J} can now be presented as

$$
\mathfrak{J}=\frac{a n \mathcal{M}}{\mathrm{e}^{a}-\mathrm{e}^{-a}}\left(\frac{\mathrm{e}^{a}+\mathrm{e}^{-a}}{a}-\frac{\mathrm{e}^{a}-\mathrm{e}^{-a}}{a^{2}}\right) \quad \text { or } \quad \mathfrak{J}=n \mathcal{M}\left(\frac{\mathrm{e}^{a}+\mathrm{e}^{-a}}{\mathrm{e}^{a}-\mathrm{e}^{-a}}-\frac{1}{a}\right) .
$$

The expression in brackets is referred to as the Langevin function $L(a)$. Thus

$$
\begin{equation*}
L=\frac{\mathrm{e}^{a}+\mathrm{e}^{-a}}{\mathrm{e}^{a}-\mathrm{e}^{-a}}-\frac{1}{a} . \tag{A4.8}
\end{equation*}
$$

Using the function $L(a)$ we can finally write the magnetization \mathfrak{J} as

$$
\begin{equation*}
\mathfrak{J}=n \mathcal{M} L(a) \tag{A4.9}
\end{equation*}
$$

At limiting values of $a(\mathcal{M} B / \kappa T)$, the $\mathrm{L}(a)$ function can be decomposed into the MacLoren series. At small a values we can have

$$
L(a)=\frac{1}{3} a-\frac{1}{45} a^{3}+\frac{2}{945} a^{5}-.
$$

This series is alternating-signed and therefore it diminishes rather quickly. If we limit ourselves to the first term, then $L(a) \approx(1 / 3) a$. The expression already given can be obtained

$$
\mathfrak{J}=\frac{n \cdot \mathcal{M}^{2}}{3 \kappa T} B .
$$

The paramagnetic molar magnetic susceptibility at $(\mathcal{M} B / \kappa T) \ll 1$ is obtained

$$
\begin{equation*}
\chi_{\mathrm{M}}=\frac{\mu_{0} N_{\mathrm{A}} \mathcal{M}^{2}}{3 \kappa T} \tag{A4.10}
\end{equation*}
$$

This expression coincides with eq. (5.2.23) derived from the very simple suppositions. The volumetric and specific susceptibilities can be calculated according to the formulas given above (refer to Section 5.2.2).

Appendix 5

Maxwell Equations in Differential Form: Electromagnetic Wave Propagation in Vacuum

Vector algebra provides us with a good opportunity to write Maxwell equations in differential form, i.e., to characterize an electromagnetic field in a point. It allows us to see most clearly the physical sense of the equations and their importance for understanding the laws of electrodynamics.
Let us start with the equation of a Gauss law, which in the integral form looks like:

$$
\begin{equation*}
\oint_{S} \mathbf{D} d \mathbf{S}=\int_{V} \rho(r) d V . \tag{A5.1}
\end{equation*}
$$

Remember that in differential form, the divergence of a vector \mathbf{D} in a point \mathbf{r} is the limit to which the left-hand side of this equation tends under a contraction S (and V) to a point:

$$
\begin{equation*}
\lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \oint D d S=\operatorname{div} D(r) \tag{A5.2}
\end{equation*}
$$

The symbol div means the sum of first particular derivatives. Therefore,

$$
\operatorname{div} D(r)=\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) D(x y z)=\nabla D(r)
$$

Here an operator $\boldsymbol{\nabla}$ is introduced, well known in mathematics

$$
\nabla=\mathbf{i}\left(\frac{\partial}{\partial x}\right)+\mathbf{j}\left(\frac{\partial}{\partial y}\right)+\mathbf{k}\left(\frac{\partial}{\partial z}\right) .
$$

Correspondingly, $\operatorname{div} D(r)$ is the scalar product of an operator $\boldsymbol{\nabla}$ and a vector $\mathbf{D}(\mathbf{r})$. In fact, the divergence is the flow of \mathbf{D} vector "outflows" from a point \mathbf{r}. Integrating the divergence
over the whole volume V, we arrive at the total power of the source, i.e., the flow through the closed surface S comprising the volume V.

$$
\int_{V} \operatorname{div} D(r) d V=\oint_{S} D d S
$$

This equation is referred in mathematics as the Ostrogradski theorem, from which an important expression originates:

$$
\begin{equation*}
\operatorname{div} \mathbf{D}(r)=\rho(\mathbf{r}) \tag{A5.3}
\end{equation*}
$$

The divergence of a vector of an electric displacement in a point $\boldsymbol{r}(x, y, z)$ is equal to the density of an electric charge (that is the source power of the electrostatic field) in this point. This is the Causs theorem in differential form. It follows that the force lines of an electrostatic field proceed from a positive electric charge (a source), come to an end in a negative electric point charge (a drain) or go to infinity; at the drain divergency has a negative sign.

Previous consideration (see Chapter 5) shows that there are no magnetic charges in nature, therefore one can write

$$
\begin{equation*}
\operatorname{div} \mathbf{B}(\mathbf{r})=0 \tag{A.5.4}
\end{equation*}
$$

This expression is also a Maxwell equation. Hence, the magnetic field force lines are closed.

The next Maxwellian equation is the law of electromagnetic induction. This equation describes the nature of producing the electric field \mathbf{E} by variation of the magnetic field induction \mathbf{B}

$$
\begin{equation*}
\int_{L} \mathbf{E} d \boldsymbol{l}=-\int_{S}\left(\frac{\partial \mathbf{B}}{\partial t}\right)_{n} d \mathbf{S} . \tag{A5.5}
\end{equation*}
$$

Note that a rotor of vector \mathbf{E} in a point \mathbf{r} is the limit of the ratio of the electric field circulation E over the closed contour L, comprises an area ΔS, to the area ΔS while aspiring tightening contour L (and area ΔS) to zero (see Figure 5.11), that is

$$
\begin{equation*}
\lim _{\Delta S \rightarrow 0} \frac{1}{\Delta S} \oint_{L} \mathbf{E} d \boldsymbol{l}=\operatorname{div} \mathbf{E}(\mathbf{r}) . \tag{A5.6}
\end{equation*}
$$

Integrating rot \mathbf{E} upon surface ΔS, we obtain circulation of vector \mathbf{E} along a contour that comprises this area

$$
\oint_{L}^{\oint} E d \ell=\int_{S} \operatorname{rot} E d S .
$$

In mathematics this equation is referred to as Stokes' theorem. Comparing this expression with (A5.5),

$$
\begin{equation*}
\operatorname{rot} E(r)=-\frac{\partial B(r)}{\partial t}=\dot{B}(r), \tag{A5.7}
\end{equation*}
$$

that is, the rotor of the electric field strength in point \mathbf{r} is equal to the time derivative from the magnetic induction in the same point. This implies that the induction electric field is a curling (vortical) field in contrast to the electrostatic potential field. Using the previous notions, we can write instead of $\operatorname{rot} \mathbf{E}$ the vector product $\boldsymbol{\nabla}$ and \mathbf{E}, that is $[\nabla \mathbf{E}]=-\dot{\mathbf{B}}(\mathbf{r})$.

In the same way the next Maxwellian equation can be derived which connects the circulation of magnetic field strength and currents. It has the form rot $\mathbf{H}(\mathbf{r})=-\dot{\mathrm{D}}(\mathbf{r})+$ $\mathbf{j}_{\text {cond }}(\mathbf{r})$. There are no electric currents in vacuum ($\mathbf{j}_{\text {cond }}=0$), therefore, the equation simplifies to

$$
\begin{equation*}
\operatorname{rot} \mathbf{H}(\mathbf{r})=-\dot{D}(\mathbf{r}) \tag{A5.8}
\end{equation*}
$$

This means that the source of the magnetic field in the point \mathbf{r} is the time changeable electric field (in the same point \mathbf{r}).

It is expedient to put all equations analyzed above together.

$$
\begin{array}{ll}
\operatorname{div} \mathbf{D}(\mathbf{r})=\rho(\mathbf{r}), & \operatorname{rot} \mathbf{E}(\mathbf{r})=-\dot{B}(\mathbf{r}) \\
\operatorname{div} \mathbf{B}(\mathbf{r})=0 & \operatorname{rot} \mathbf{H}(\mathbf{r})=-\dot{D}(\mathbf{r}) \tag{A5.9}
\end{array}
$$

To these equations it is expedient to add two, which connect the strength of both fields in vacuum and fields in an isotropic medium

$$
\begin{equation*}
\mathbf{B}=\mu_{0} \mu \mathbf{H}, \quad \mathbf{D}=\varepsilon_{0} \varepsilon \mathbf{E} . \tag{A5.10}
\end{equation*}
$$

The last equations are equitable only for isotropic media. In anisotropic media they have a tensor character.

The last equation in the Maxwellian system is the relation between the strength of an electric field in a point \mathbf{r} with the current density in the same point (Ohm's law in differential form)

$$
\begin{equation*}
\mathbf{j}=\sigma \mathbf{E} \tag{A5.11}
\end{equation*}
$$

In these equations all electrodynamics is described!
Try to estimate an electromagnetic wave's propagation speed based on the Maxwellian treatment of electrodynamics. As usual, let us make the task simpler, i.e., we shall analyze a
certain physical model and look to see how far it corresponds with accepted representations. In this case our problem is the definition of the speed of propagation of an electromagnetic wave in vacuum. The Maxwell equation can be written in the form:

$$
\begin{gather*}
\oint_{L} E_{\ell} d \ell=-\left(\frac{\partial \Phi_{B}}{\partial t}\right), \tag{A5.12}\\
\oint_{L} B_{\ell} d \ell=-\left(\frac{\partial \Phi_{E}}{\partial t}\right)=\mu_{0} \iint_{S}\left(\frac{\partial D}{\partial t}\right) d S=\mu_{0} \varepsilon_{0} \int_{s}\left(\frac{\partial E}{\partial t}\right)_{n} d S . \tag{A5.13}
\end{gather*}
$$

Let us imaging an electromagnetic wave as successive steps of "constant" electric and magnetic fields (with vectors \mathbf{E} and \mathbf{B} fixed in their magnitudes, perpendicular to each other), running along an x-axis with planes of vectors oscillation \mathbf{E} in $x 0 y$ and \mathbf{B} in $x 0 z$ (see Figure A5.1(a)) with a "wave" front motion speed, which we should define. Consider that in some instances, the front of the "wave" reaches line $1-2$. Allocate to planes $x 0 y$ an imaginary rectangular contour defg and estimate the vector \mathbf{B} flux through an area limited by the contour (Section 5.1.6, eq. (5.1.38)). In time $d t$ the line 1-2 displaces to positions 4-3. The area ΔA limited by the specified contour is $\Delta A=c \cdot \Delta t \times h$, where h is the length of segment $1-2$ and $c \Delta t$ is the distance run by the front of the "wave" in time Δt. As the vector \mathbf{B} everywhere is perpendicular to the plane $x 0 y$,

$$
\begin{equation*}
\frac{d \Phi_{B}}{d t}=B\left(\frac{d A}{d t}\right)=\frac{B h c d t}{d t}=B h c \tag{A5.14}
\end{equation*}
$$

In contrast, the circulation of the \mathbf{E} vector along the contour 1-2-4-3, i.e., the left-hand side of eqs. (5.1.38, 5.4.6, 5.4.7 and A5.12), is equal to Eh. Therefore

$$
\begin{equation*}
\oint_{L} E_{\ell} d \ell=-E h, \tag{A5.15}
\end{equation*}
$$

since $E=0$ on the segments $2-4,4-3$ and 3-1 (the wavefront has not yet reached them). From a comparison of eqs. (A5.14), (A5.15) and (A5.12), we can derive the ratio between E and B :

$$
\begin{equation*}
E=c B . \tag{A5.16}
\end{equation*}
$$

Continuing to consider the same model, look what occurs in the plane $x 0 z$ (Figure A5.1(b)). Again we shall allocate a rectangular contour (into planes $x 0 z$) and we shall make the same calculations as in the previous case. Using eq. (5.1.2), circulation of the vector \mathbf{B} (A5.13) gives $B w$ (w is the length of segment 2-4); the vector \mathbf{E} flux through area ΔA (that is $\Delta \Phi_{E}$) gives $\mu_{0} \varepsilon_{0} w c \Delta t$. Time derivation and successive cancellation on w gives

$$
\begin{equation*}
B=\mu_{0} \varepsilon_{0} E c \tag{A5.17}
\end{equation*}
$$

If we substitute in this equation the E value from (A5.17) and canceling by B we obtain $\mu_{0} \varepsilon_{0} c^{2}=1$. Whence

$$
\begin{equation*}
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \tag{A5.18}
\end{equation*}
$$

Three basic constants of electrodynamics appear connected with each other. Substituting values μ_{0} and ε_{0}, we obtain for light speed in vacuum $c=2.998 \times 10^{8} \mathrm{~km} / \mathrm{sec}$. The agreement of this value with that obtained experimentally was a triumph of Maxwell' theory.

A similar result can be obtained with a more exact model. It is also not so difficult to show that propagation of electromagnetic waves in a medium with dielectric susceptibility ε and magnetic susceptibility μ occurs with the speed

$$
\begin{equation*}
v=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0} \mu \varepsilon}}=\frac{c}{\sqrt{\mu \varepsilon}} \tag{A5.19}
\end{equation*}
$$

Since the refraction index is the ratio of the light propagation in a medium to that in a vacuum

$$
\begin{equation*}
n=\frac{1}{\sqrt{\mu \varepsilon}} \tag{A5.20}
\end{equation*}
$$

This page intentionally left blank

Glossary of Symbols and Abbreviations

This glossary is intended to free the main text from multiple repetition of the explanation of the notation used. As a rule, an explanation is given on its first occurrence in the text and occasionally elsewhere. Since the vocabulary of physics is very broad, as well as the whole range of Greek letters, the same roman letters have been used several times, partly in different fonts. Vector values are given in bold.

Roman letters:

A	force work
\boldsymbol{a}, a	acceleration
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$	lattice periods
\mathbf{B}	vector of magnetic field induction
C	heat capacity of a body, system
$C_{\text {sp }}$	specific heat capacity
C_{M}	molar heat capacity
\mathbf{D}	vector of electric field displacement (induction)
D	diffusion coefficient
$d_{, ~}, d_{h k l}$	crystallographic interplanar spacing
$d_{\ni \Phi}$	molecule's effective diameter
\mathbf{E}	vector of electric field strength
$e,\|e\|$	absolute value of the electron charge (elementary charge)
e	logarithmic natural base (exp)
e	thermal efficiency
E	energy, total mechanical energy
E_{F}	Fermi energy
\mathbf{F}	vector of force
$f(v)$	Maxwell molecular velocity distribution
$f(\varepsilon)$	molecule kinetic energy distribution
\mathbf{g}	free fall acceleration vector
g	gyromagnetic ratio, Lande factor
\mathbf{H}	vector of magnetic field strength
h	Planck's constant
h, k, l	Miller indexes
I	electric current, moment of inertia (MI), intensity
I_{z}	moment of inertia relative to z-axis
i	number of degrees of freedom
i	imaginary unit
$\mathrm{i}, \mathrm{j}, \mathrm{k}$	unit vectors (orts) of Cartesian coordinate

j	vector of energy density
k	wavevector ($\|\mathbf{k}\|=k=2 \pi / \lambda)$
К	kinetic energy, degrees of absolute thermodynamic temperature, performance factor
κ	Boltzmann constant
L	angular momentum's vector
$L_{\text {z }}$	angular momentum relative to axis z
l, ℓ	length, distance
M	molar mass
M	vector of force moment (torque)
M_{z}	force moment relative to axis z
dM	vector of the magnetic dipole moment, electron atomic orbit or spin moment, nuclear magnetic moment
m	mass of a body, atom, molecule, total system's mass
n	concentration
n	a unit vector of a normal
$N_{\text {A }}$	Avogadro's number
Π	a molar polarization
p	vector of the electric dipole moment
p	vector of momentum, pressure
P	power
Q	heat, activation energy
Q,q	electric charges
$R(\mathbf{r})$	a radial part of atomic wavefunction
R	molar refraction, heat emittance
$\mathbf{r}(x, y, z)$	Cartesian radius vector
$\mathbf{r}(r, \theta, \varphi)$	radius vector in a spherical coordinate system
S	area
S	entropy
s	wave polarization index
T	absolute thermodynamic temperature
t, τ	time
T	period
U	potential energy
U	internal energy of a molecular system
V	volume
$V_{\text {M }}$	molar volume
$\left\langle{ }^{\text {b }}\right.$ 〉	average speed of a particle
$v_{\text {rms }}=\sqrt{\left\langle v^{2}\right\rangle}$	root mean square of a particle's speed
$v_{\text {prob }}$	most probable value of a particle's speed
v	velocity vector
W	thermodynamic probability
$Y(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)$ angular part of the atomic wave function	
Z	statistical sum

Greek letters:

α	angle, molecular polarizability
β	angle, a force constant
$\beta=v / c$	the relative speed coefficient in special relativistic theory
γ	coefficient of anharmonicity; adiabatic index
δ	attenuation coefficient
ε	dielectric susceptibility, a micro-object energy
$\langle\varepsilon\rangle$	average kinetic molecular energy
ε	angular acceleration vector, thermal process efficiency
ε_{0}	electric constant
$\left\langle\varepsilon_{\text {osc }}\right\rangle$	average energy of atomic oscillations in molecules
$\left\langle\varepsilon_{\text {rot }}\right\rangle$	average energy of molecule rotation
η	coefficient of dynamical viscosity, coefficient of kinematic viscosity
κ	dielectric permeability, coefficient of molecular heat transfer
λ	wavelength, logarithmic attenuation decrement, mean free path length
μ	magnetic permeability, reduced molecular mass
μ_{o}	magnetic constant
μ_{B}	Bohr magneton
μ_{N}	nuclear magneton
ν	coefficient of kinematic viscosity, frequency $(v=n=$ speed of rotation)
ξ	displacement from equilibrium position
ρ	density of matter, electron density
σ	surface charge density
τ	unit vector of a tangent
τ	system's time of life, relaxation time, linear charge density
ω	angular velocity, $\omega=2 \pi v$
$\psi(x, y, z)$	angle, electric field potential
Ψ	magnetic susceptibility time-dependent wave function
Φ	solid angle
φ	flux
χ	anetic flux linkage/time-dependant wave fuction
Ω	

Others fonts:

\Im	magnetization
\Re	polarizability (polarization vector)
\wp	surface density of electrical current

Quantum numbers:

$n, \ell, m_{\ell}, s, m_{s} \quad$ quantum numbers of one-electron atom
$L, m_{L}, J, m_{J}, S, m_{s}$ quantum numbers of multielectron atom
$I, m_{I} \quad$ nuclear quantum numbers
$s, p, d \ldots \quad$ one-electron states
$S, P, D \ldots \quad$ many-electron atoms states

v	a molecule vibrational quantum number
j	a molecule rotational quantum number

Abbreviations:

MP	material point
CM	center of mass
MI	moment of inertia
IRB	ideal rigid body
IBB	ideal black body
SF	superfine

Index

A

A, see Ampere
Absolute zero
temperature 177
Absorption spectrum 492
Acceleration
angular 12, 14, 40
average 4
center of mass 12
centripetal 25, 183
constant 9
due to gravity $20,30,587$
in electric field
in simple harmonic motion 108
instant 4
radial (normal) 7
tangential 5, 7, 14
Activation energy 186, 194, 446
Adiabatic process
adiabatic index 199
with ideal gas 199
Alpha particle 325
Alternating current 305
Ampere (unit)
definition 583
Ampere's law 318
Ampere-Maxwell law 351
Amplitude 107, 112
Angle
of incidence 363
of polarization 390
of reflection 363
of refraction 363
Angular
acceleration 13, 14
displacement 12-14
force
moment 51
torque 51, 52
frequency 107,157
momentum 40, 41, 48-50
conservation of 71
orbital 332
spin 460, 498
vector form velocity 15
velocity $13,14,41$
Antinode 158, 159
Approximations 76, 439
Archimedes's buoyant force 127
Area, units of 581
Atmosphere (unit) 171
Atmosphere of earth 182, 406
Atom 332
Atomic mass unit 498
Atomic number 460
Avogadro constant 297, 339, 587

B

B, see Magnetic field induction
Barometric height distribution function 181-182
Beatings 117
Binding energy 512
Biot-Savart law 311
Birefringence 391
Bloch function 539
Bohr atom model 416-419
Bohr magneton 454, 586
Boltzmann constant 176, 219, 587
Boltzmann distribution
at different temperatures 179,181
Boltzmann factor 185-186, 551
Boson 542
Bragg's law 386
Brewster's law 388-389

C

C, see coulomb
Conservation law
of charge 251
Capacitor
displacement current in 254
parallel-plate 253, 254

Carnot
cycle 207-210
engine 211
microcycles 211
Celsius temperature 177
Center of mass
acceleration of 12
of two particles 36
rigid body 47
symmetry and 37
Centripetal acceleration 35, 183, 185
Centripetal force 184, 185
Charge
interaction force 75
unit 584
Chemical potential 542
Chemical shift 504-506
Chemical shift in ГRS 514
Chemical shift in NMR 520
Circuit, electrical 307, 308
Critical angle
total internal reflection 364
Clausius inequality
entropy change 215
in nonequilibrium processes 214-216
Coherence 170
Collision
center of mass 80
conservation of 79
conservation of energy in 81
elastic 80
head to head 80,81
inelastic 88
momentum in 81
one-dimensional 81
Complex variable 110, 111
Conductivity
electrical 280, 352
thermal 233, 236
Configurational space 541
Conservation energy law in
thermodynamics 196
Conservation laws
in collisions 79
of angular momentum 71
of energy 74
of linear momentum 69
of mechanical energy 67
Conservative force 60

Constant-pressure process 198
Constant-volume process 198
Convection 181, 237
Cooper's pairs 543
Coordinates, space-time 39
Coordination
number 567
sphere 567
Coulomb 584
Coulomb's law 252
and Gauss' law 259-263
Crystal class 533
Crystal lattice 531-536
periods 556
Crystal structure 531-536
Crystallographic direction 535
Crystallographic plane 533-535
interplanar spacing 535
Curie point 345, 575
Curie temperature 346, 347, 575
Current
alternating 305
charge carrier of 251, 280
displacement 350-354
Current density 306, 307
Current drift speed 306
Current loop
as magnetic dipole 319
as magnetic moment 348
Cycles
direct 205
reversed 205
Cyclic process
nonreversible 214-216
reversible, as Carnot cycles 206, 207

D

Damped harmonic motion
energy 131-133
Damped oscillations 133-138
Debye unit 276
Deceleration 85, 473
Degree of freedom 106
Density
electron density $285,287,288$
linear 251, 263
surface $251,262,270,283$
volume, 251

Deuteron 86, 527
Diamagnetics 331, 337
Dielectric hysteresis loop 575
Dielectrics 280-282
Diffraction
by grating 381-383
by single slit 379-381
Fraunhofer 379, 380
Huygens-Fresnel principle 378-379
of electrons 424-426
of neutrons 424-426
types of 379
X-ray 385-386
Diffraction grating 381-383
Diffusion
coefficient D 235
Fick's law 235
Dipole, electric, see Electric dipole
Dipole, magnetic, see Magnetic dipole
Dipole-dipole interaction 280
Dispersion
of grating 383, 384
of light 395-398
Dispersion curves 545-550
acoustic branch 546, 548
optic branch 546, 548
Displacement
of simple harmonic motion 108
Displacement current
in capacitor 351
Distribution function calculation
average value 172-174
Domains, ferroelectric 575
Domains, ferromagnetic 347-349
Doppler effect
acoustic 154-156
for light 154
Drift speed of currier 306

E

E, see Electric field
Earth
mass 62
Earth-moon system 99
Efficiency of engine 207, 209, 210
Elastic collision 80, 412
Electrets 576
Electric charge 251, 273, 305

Electric current 305-309
Electric charge
in dielectrics 281
Electric dipole
moment 276
potential energy 278-279
torque on 278
Electric displacement 284, 584
Electric field
equipotential surfaces 275
flux of 261
induced 353
induced magnetic field 353
lines of force 253, 254
of electric quadrupole 501
of electromagnetic wave 33
of finite rod 256-257
of infinite cylinder 270
of infinite line 256-257
of infinite plate 263-264
of point charge 253,254
of ring 258-259
of semi-infinite rod 300-301
of spherically symmetric charge 252 , 267, 275
potential 29
Electric field potential
capacitor 276
dipole 276-288
distribution of charge 251
of system of charges 274
point charge 274
ring 259
Electric potential
superposition principle 274
Electric quadrupole moment 501-502
Electric strength flux 261
Electromagnetic force 29, 31
Electromagnetic induction 328-331
Electromagnetic radiation 353
Electromagnetic spectrum 354
Electromagnetic waves
amplitudes of fields 353
energy density in 353
from dipole 353
Poynting vector 353
scale 354
sources of 351
speed of 353
wave equations 352-353
See also Light
Electromotive force 308
Electron
charge to mass ratio 325
magnetic dipole moment 332
orbital dipole moment 332
spin angular momentum 332
Electrons as quasi-particles 540
Electron paramagnetic resonance (EPR) 526-529
Electrons in crystals 537-545
Electrostatics 251-252
Electrostriction 572
Elevator, weight in 30
EMF, see Electromotive force
Energy
activation 186, 446, 447
binding 512
conservation 196
quantization of 457
quantized level 437-438
relationship with mass 97
rest 96
SI units of 582
simple harmonic motion 105
Energy density
of electromagnetic radiation 353
Engine
efficiency of 207
Entropy
changes in 213
irreversible process 214-216, 220
reversible process $211,212,216,220$
statistical definition 212
Equation of state, ideal gas 175
Equilibrium in thermodynamics $169,170,230$
Equipotential surface 275
Equipartitioning of energy
on degree of freedom 194-195
Extraneous force 308

F

F, see Farad
Fahrenheit temperature 177
Farad 585
Faraday 328-330, 587
Faraday's law, see Electromagnetic induction

Fermi level 541
Fermion 541
Ferroelectrics (segnetoelectrics) 574, 575
Ferromagnetism 344-347
Fiber light guides 364
Fine interaction 467-468
Fine structure constant 468
First law of thermodynamics 194-205
in various processes 196, 197
Flux of
electric field strength 261
magnetic field induction 328, 329
vector field 259, 328
Force
as vector 20,40
centripetal 185,321
conservative 60
derived from potential energy 61,63
dissipative 60
external 28,52, 53
internal 53
non-conservative 60
unit of 582
Force constant 545, 546
Force fields 58-61
Forced oscillations 138-145
Fraunhofer diffraction 379, 380
Free expansion 196
Free fall acceleration 18, 20, 587
Free path length 235
Frequency
and period 107
angular 107
of string vibration 160-161
resonant 140
simple harmonic motion 108
units of 581
Friction
non-conservative nature 32, 238
Fresnel diffraction 378-379
Fuel combustion 26-28, 206

G

Galilean transformation 18-20
Gamma-resonance (Mössbauer effect) 510-513
Gas, ideal 174
Gas constant R, universal 181, 587

Gauss' law
applied to charge distributions 259-263
Gauss surface 261, 262
General theory of relativity 90-91
Grating, diffraction
dispersion of 383
principal maxima of 382
resolving power 383,384
secondary maxima 382
transmission 385
Gravitational constant 30, 587
Gravitational field
gravitational mass 30
gravitational potential energy 61-62, 66
Gravity, acceleration of free fall 18 , 20, 587
Gravity of
earth $65,66,182$
moon 182
Ground state 362
Group speed 398

H

H, see Henry
Harmonic motion
damped 133-138
forced simple 138-145
See also Simple harmonic motion
Harmonic oscillator 76, 129-131
Heat
engine 206-207
pump 210-211
Heat capacity of crystals
Debye model 552
Debye frequency 553, 554
Debye function 553, 554
Debye temperature 55, 554
Dulong-Petit law 551
Einstein model 551
Heat capacity of ideal gas
in dissociation 202
versus experiment 204-205
Heat transport coefficient $\kappa 237$
Henry 587
Hertz 581
Hooke's law 31
and potential energy 31,62
elastic force work 52

Huygens' principle
diffraction 378-379
Hydrogen atom 416-419
Hysteresis loop
in ferroelectrics 575
in ferromagnetics 348, 349
Hz, see Hertz

I

Ideal gas
adiabatic process 199
and temperature 197
at constant pressure 213
at constant volume 213
average energy 176
general equation 175
heat capacities 197-204
in force field 178-180
internal energy 195
isotherms 200, 207, 208, 211
model 174
pressure 175
Impulse of force 21
Incidence, plane of 388
Index of refraction 297, 361, 363-365, 388,
392, 395, 396
total internal reflection 364, 393
Induced electric field, see Electromagnetic induction
Induced EMF 329, 330
Induced magnetic fields 309-313
Inductance
mutual 330
of solenoid 331
self 330
units 587
Induction, Faraday's law of, see
Electromagnetic induction
Inelastic collision 88-89
Inertia, law of 17
Inertia, rotational 40
Inertial mass 30
Initial conditions, in harmonic motion 107, 108
Intensity
in single-slit diffraction 380, 381
wave amplitude 406
Interference, from thin films 370-374

Internal energy 88, 89, 195, 198
of ideal gas $186,195,196$
of van der Waals's gas 226
Internal forces 35, 38, 53, 61, 63, 70
International System of Units, see SI
Invariance 68
Invariant quantities 18,19
Ionic polarization 571-572
Irreversible process
entropy change of 214-216, 220
Isotherm 200, 207, 208, 211, 222, 223
Isotope 183, 220, 244, 498
Isotropic material 147, 284, 286, 291, 295, 361, 392, 576

J

Joule-Lenz law 328
Joule-Thomson effect 227-229

K

Kinematics 1-16
Kinetic energy
center of mass 55
in simple harmonic motion 131
in transverse wave 152
of rotation 47, 55
relativistic 96
Kinetic theory
pressure, ideal gas 175
temperature, ideal gas 177
Kirchhoff's law 401
Knudsen flow 244

L

Lattice defects
clusters 563
dislocation 563-566
Burgers vector 564
edge 564, 565
linear 564
screw 564, 565
small angle boundaries 565
interstitials 561, 563
point 561-563
Frenkel 561, 562
Schotky 562
vacancies 561, 563

Laue diffraction 385
Length, relativity 91
Lenz's law 328
Light
energy quanta 408,409
momentum 412
polarization 386-395
polarized 386
quantization and emission of 387-388
sensitivity of eye to 361
speed of 392
unpolarized 362
visible 361
Linear density 251
Linear motion, with constant acceleration 7
Linear oscillator 129-131
Lines of force, electric field 275
Liquid crystals 576-577
Lorentz transformation 90

M

m , see meter
Magnetic dipole 327-328
Magnetic splitting 347
Magnetic dipole moment
of iron atom 347
of iron ions 347
Magnetic domain 347-349
Magnetic field
circulating charges 305
electric current 305-309
electromagnetic wave 353,354
flux 336
induction 309-313
induced electric fields 330
strength $307,308,310,311,320,334,342$, 347, 348
Magnetic flux 328, 330, 331
Magnetic force
between parallel wires 313
on moving charge 320-327
on wire with current 313
Magnetic monopole 310, 351
Magnetically ordered state 344-350
Magnetization 333, 336-344
Magneton
Bohr 346, 453, 586, 587
nuclear 499, 516, 587

Magnets 348
Magnetic field induction 309-318, 586
Mass
and energy 96, 97
and weight 30
atomic unit of 587
center of 36-38
equivalence principle 96,97
gravitational 30
inertial 30
in relativity 91
Mass number 323, 498
Mass spectrometry
mass spectrometer 322,323
Maxwell's equations 599-603
Maxwell energy distribution function 193-194
Maxwell velocity distribution function average 188, 189
most probable 188, 189
on molecular energy 189
root square mean 188, 189
Maxwell's law 186-190, 195, 599-603
Mean free path 242
Mechanical energy
kinetic 54
potential 61
potential energy curves 74-79
Miller indexes 534
Molar heat capacity
at constant pressure 198
at constant volume 198
of ideal gases 198, 213
Molecular speeds 187,188
Molecular mass 88, 131
Moment of inertia 40-43
Momentum
and Newton's second law 20-29
angular, see Angular momentum
conservation of 69, 71
kinetic energy 68
relativistic 91
velocity of center of mass 38
Moon 182
Mössbauer effect 510-513
Mössbauer spectroscopy 508-516
Mount Everest, potential energy 66
Mutual inductance
units of 87
Mutual induction 330

N

N, see Newton
Nanoparticles 555-557
Natural frequency 140, 141, 396
Natural width of spectral line 510
Negative charge 253, 288
Neutral matter 251, 280, 342, 426, 497, 499
Neutron 425, 489, 497, 499
Newton 582
Newton rings 374
Newton's first law 16-18
Newton's law of gravity 30
Newton's second law
angular form 21
for particle 21
for system 22
in relativity 21,95
momentum form 21
simple harmonic motion 119
Newton's third law 29
Node 158, 159
Nonconservative forces 60
Nuclear forces 497, 499, 500
Nuclear magnetic resonance (NMR) 516-525
proton magnetic resonance (PMR) 518, 521
Nuclear magnetism 516-525
Nuclear physics
nucleon model of nucleus 497-499
Nuclear quadrupole resonance (NQR) 525
Nucleon
energy levels 499-500
form 500, 501
magnetic moment 499
mass 498
nuclear gyromagnetic ratio 498
nuclear magneton 499
quadrupole moment 501-502
size
charge distribution radius 500-501
mass distribution radius 500-501
symmetry 500
Nucleus 332, 497-499

0

Ohm's law 307, 352
Orbital magnetic dipole moment 333,
342, 453

Order
long range 568
short range 568
Oscillation, center of 122
Oscillations
damped 133-138
forced 138-148
simple harmonic 106-113

P

Pa, see Pascal
Parallel axis theorem 43-44
Paramagnetism 332, 340, 343
Pascal 582
Path independence and conservative forces 60
Pendulum
physical 121-122
simple, mathematical 119-121
spring 118-119
Performance, thermal coefficient of 210
Period
and frequency 107
of linear oscillator $119,120,122$
of simple harmonic motion 132
Permanent magnetism 348
Permeability constant 309-310
Permittivity constant 293
Perovskite type crystal 575, 576
Perpendicular axis theorem 45
Phase
of simple harmonic motion 107
Phase changes, on reflection 160, 368
Phase difference, in interference 370
Phase speed 151, 398, 546
Photo-effect external
Einstein photo-effect law 407, 408
Physical kinetics
collision cross-section 232
effective diameter at collisions 231
relaxation process, time of 230-231
Physical model 35
Physical pendulum 121-122
Physics, quantum 33, 479, 490, 510, 541
Piezoelectric effect 572-574
Piezoelectrics 572-574
Planck constant 404, 587
Planes, mirror 35
Plane motion 2
Plane of incidence 388

Plane polarization 390
Polar material 280, 284, 291, 297
Polarization
dielectric 286-292
reflection 388-389
Polarization of electromagnetic waves 362, 386-394
Polarized light
plane 387, 389
refection 388-389
Polarizer 387-388
Polarizing angle 390
Postulate
relativity 90
speed of light 90
Potential, electric, see Electric field potential
Potential energy
and work 61
electric 75
electric dipole 278
force 63
gravitational 62, 74
magnetic dipole 327
simple harmonic oscillator 131
Potential-energy curve 74-79, 186, 482
Potential difference 276
Power
average 53
instantaneous 54
units of 582
Poynting vector 353
Precession 51, 337, 338, 477, 589-590
Pressure, kinetic theory of 175,176
Prism 364, 365, 384, 391
Process
adiabatic 199
cyclic 205
constant volume 198
irreversible 206
isobaric 198
reversible 206
Projectile motion 9
Proton 497-499
Pyroelectric effect 572

Q

Quadrupole moment 501, 584, 593
Quadrupole resonance 525
Quadrupole splitting 506

Quantization
at emission of light 512
electron energy in atom 457-460
of angular momentum 455, 456
Quantum mechanics 423-496
Quartz crystal oscillator 137

R

R (universal gas constant) 181, 487
Radial distribution function 567
Radian 581
Radiation, blackbody 398-402
Ratio of specific heats for gases 199
Ray 147
Rayleigh's criterion 384
Real gas approximation
corresponding states law 225
critical point 223
internal energy of 226
Joule-Thomson effect 227-229
inversion curve 229
inversion point 229
phase diagram of state 223, 224
van der Waals gas 221-226
real isotherms of 223
van der Waals equation 221, 222
in reduced parameters 225
Recoil 511, 512
Reduced amount of heat: entropy change
in isobaric process 213
in isochoric process 213
Reference frames 21, 97
Reference system (frame) 1
Inertial 16
Noninertial 33
Reflection
law of 363
phase change 368
polarization 388-389
thin film 371,372
total internal 364
Refraction
Huygens' principle 378-379
index of $361,363,365$
law of 363
Refrigerator 210-211
Relativity
motion at high speed 90
speed summation law 90

Shortening of length 91
dilation of time 94
simultaneity 94
Resolving power
of grating 384
Resonance 140, 497-529
Resonance absorption 508-510
Rest mass 426
Reversible process, entropy change in 213
Rigid body
angular momentum and velocity 41
Rocket, propulsion 26, 27
Rolling motion, energy of 57
Root-mean-square molecular speed 188, 189
Rotation
angular momentum 41
analogy with translation motion 50, 51
with constant acceleration 15
Rotational motion
analogies to translational motion 50
kinematics 12
dynamics 16
Rotation of plane of 389-391
Rotator, rigid 47, 450

S

Saturation
ferromagnetic 349
paramagnetic 341
Second law of motion, see Newton's second law
Second law of thermodynamics 205-221
entropy 211-214
Selection rules 479, 480
Self-induction 331, see also Inductance
Semiconductors
acceptor type 544
donor type 544
intrinsic type 544
n-type 544, 545
p-type 544,545
SI 581
Simple harmonic motion
acceleration 108
amplitude 107
angular frequency 107
displacement 107
equation of motion for 107 T
kinetic energy of 131
period of 106
phase 107
Simple harmonic oscillator
period of 131
Single-slit diffraction 379-381
Snell's law 363
Solenoid, magnetic field of 319, 320
Solid-state dynamics
Born-Karman chain 545
Special relativistic theory 90-97
Specific heat capacity $197,198,583$
Speed
angular 57, 73
average $3,8,307,570$
molecular
average 188
distribution of 186-190
most probable 188
root-mean-square 188
radial acceleration 14
speed and acceleration 95
Speed of light 603
Spherical symmetry 252, 268, 269, 270, 500
Spin, quantum number 460, 469, 480, 498, 517,
518, 527, 541, 542
Spring scale 30
Spring, force law 52
Spring, potential energy 62
Standing waves 157-160
Statistical thermodynamics 219-220
Statistics
Bose-Einstein 542
classic 541
distribution function 541
Fermi-Dirac 541
quantum 540-543
Steradian 261, 581
String, waves on 160-161
Superconductivity 543
Superfine dipole-dipole interaction 523
Superfine interaction 515-516
Superposition
principle 156, 157, 274, 277
Surface charge 576
Surface current 335
Symmetry operation 531
Syngony 533
T, see Tesla
Tangent, unit vector of 2
Tangential acceleration 14
Temperature
in kinetic theory 177-178
Temperature scale
Celsius 177
Fahrenheit 177
Kelvin 177
Réaumer 177
Tesla 586
Thermal conductivity 233, 236
Thermal energy 197, 198, 206, 406
Thermal equilibrium 169, 407
Thermodynamics
first law of 194-205
second law of 205-221
zeroth law of 170
Thermodynamic process 170, 206
Third law of motion 29
Thrust, of rocket 27, 28
Time
of settled life 568
Time dilation 94
Torque
and angular acceleration 48
and angular momentum 49
on electric dipole 278
on magnetic dipole 327
Total internal reflection 364
Trajectory of projectile 72
Transformation
Galilean 18-20
Lorentz 90
space time 90
velocity 91
Translation 531, 532
Translational motion and rotational motion 50, 51
Transport phenomena in ideal gases 233-235
flow of G property 234
macroscopic representations 233-235

U

Unit cell
body-centered cell (BCC) 535
face-centered cell (FCC) 535
primitive unit cell 535
Unit vector 2

V

V, see Volt
Vacuum
heat transfer in vacuum 243-244
Velocity
angular 13, 14
average 3
in simple harmonic motion 107
linear 14, 41
transformation 18, 19
Velocity space 187
Viscosity (internal friction)
dynamical coefficient $\eta 239$
kinematical coefficient $\vee 240$
Volt 584
Voltage, see Electromotive force
Volume, units of 581

W

Water molecule 3, 45, 46, 170
Waves
electromagnetic, see Electromagnetic waves
interference 369-377
longitudinal 146
mechanical 145
sinusoidal 159
standing 157-160
string 160-163
transverse 146
transverse simple harmonic, energy of 151-154
transverse standing equation of 158
traveling, equation of 147-151

Wave equations 148,150
Wave number 149, 492
Wave speed 155
Wavelength 148
Wavelength of light 354
Wavetrain 362
Weber 587
Weight 30
Wire
magnetic field of 313
magnetic force on 316
Work-energy theorem 63
Work of gas
in adiabatic process 199
in elementary processes 226
in isobaric process 198
in isochoric process 198
in isoprocesses 197-201
in isothermic process 200,207

X

X-rays
bremschtralung 410
characteristic 410
X-ray diffraction 385-386

Z

Zeeman effect 477-480
anomalous 477, 478
normal 477, 478, 480
nuclear 478
Zeroth law of thermodynamics 170
Zone theory
conductivity band 539
energy bands 539
forbidden energy gap 539
hybrid band 539
valence energy band 539

This page intentionally left blank

