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Mechanics

1.1 INTRODUCTION

An enormous number of physical events and phenomena are taking place around us all the
time: the movement of all types of transport (bicycles, cars, trains, airplanes, etc.), build-
ing activity, athletes in competition, rain falling, wind blowing, water flowing, earthquakes
and a wide range of other phenomena. All of these are performed at speeds much smaller
than the velocity of light (¢ = 3 X 108 m/sec) and at scales much greater than atomic scales
(~10719m). All are described by classical mechanics, based mainly on Newton’s laws.

This does not, of course, exclude the existence of other phenomena described by other
physical branches. Quantum mechanics deals with the world of atoms and molecules, their
transformations and accompanying changes in property. The overwhelming majority of them
are invisible to the naked eye, but experience shows the following to be true: all materials,
though differing in their characteristics, consist of a limited number of various particles—
atoms and molecules. This is the world of so-called quantum mechanics. We can indirectly
observe these phenomena manifest themselves, but for their investigation and understanding,
a special knowledge is needed.

To continue this analysis, we can mention one more branch of phenomena that manifest
themselves at velocities close to the velocity of light; this is the more exotic area of classi-
cal and quantum relativistic physics.

1.2 KINEMATICS

Kinematics is the branch of mechanics that explores the motion of material bodies from
the standpoint of their space—time relationships, disregarding their masses and the forces
acting on them.

1.2.1 Kinematics of a material point

For a description of a point’s motion in space and time, a reference system should be
chosen. The reference system is a collection of instruments: the time-measuring device
(e.g., a watch) and the bodies conditionally considered as being fixed in space with respect
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to which the motion is considered. Time, a continuously changing scalar value, is meas-
ured by a watch, and cannot be negative. In problems of kinematics time is usually taken
as an independent variable (or argument), the rest of the parameters being considered as
functions of time.

For different problems the reference system can be chosen either in the form of
Cartesian coordinates, or as a cylindrical or spherical coordinates system. A moving point
describes a certain continuous line in space that is referred to as a trajectory. In a number
of problems the path itself will define the motion (for instance, its rails will dictate the
motion of a railway carriage). At a certain instant, corresponding to a certain body motion,
tangent unit vectors—principle normal and binormal vectors—are taken as natural axes. In
the following we will consider only plane motion, so there is no need for a binormal vec-
tor. The principle normal is perpendicular to the tangent and is directed to the center of cur-
vature. The direction of the tangent and normal unit vectors will be denoted as 7 and n.

Let us recall some information about the line curvature (trajectory). The tangent lines
assigned by vectors 7, and t, at two adjoining points A and B of the plane form an angle
(Figure 1.1) to be drawn, which is referred to as the angle of contingence. If we then
make the distance AB shorter, an arc AB = Al aspires to zero. At the limit Ap/AL, it
gives the trajectory curvature K in a given point:

lim—=——=K at AB-0.

The reciprocal value p = 1/K is the curvature radius in point A. In fact, a circle’s cur-
vature is equal to its radius; the curvature radius of a straight line is infinity.

The simplest object in mechanics is called a material point (MP); this implies a body
whose size in the framework of a given problem can be considered to be negligibly small.
Another definition of an MP is that it is a point that possesses a mass. Different objects in
different problems can be considered differently: the molecules acting on a vessel’s wall
can be imagined as an MP, the earth moving around the sun may, in some instances, also
be treated as an MP. However, the same objects in different problems cannot be considered
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Figure 1.1. The trajectory curvature.
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as MPs: e.g., molecules in molecular spectroscopy rotating around their center of mass
(CM), the earth rotating around its geographical axis, etc.

An important task in kinematics is to assign an equation of motion, i.e., to construct the
necessary mathematical equations that are sufficient to determine the MP’s position in
space at any instant of time. In the Cartesian coordinate system such an equation is the
time dependence of the radius vector r(f); three scalar equations x(#), y(f) and z(¢) corre-
spond to one vector equation.

If a point in a time interval Ar moves from point A to B along an arc [ (Figure 1.2), the
vector Ar = r, — r, is referred to as the displacement, whereas the length of the arc AcB
is the distance travelled. If one takes one’s car in the morning, travels some distance dur-
ing the day and then returns the car to the garage, the overall day displacement is equal to
zero, whereas the distance travelled is the non-zero speedometer indication. The distance
travelled and the displacement can coincide in two cases: when the movement occurs
along a straight line or at At — 0.

The equation

)y=-—. (1.2.1)

allows us to calculate the average speed at a time interval Az. The instant velocity is given
by the equation

L= 1im£=£=i’(t)
A AL dr . (1.2.2)

(0}

Figure 1.2. A displacement vector Ar and distance travelled AcB.
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The velocity at a given point is a physical value, numerically equal to the time deriva-
tive from the radius vector of the MP in the reference system under consideration.
Remember that for brevity of writing, the time derivative function is denoted by a point
above the letter, expressing a given function.

Where the direction of the vector v is concerned, in the limit of the movement of point B
to point A the secant will coincide with the tangent to the trajectory in point A.
Consequently, an instant velocity vector is directed along the tangent to the trajectory, and
the modulus is the time derivative from the function, expressing the law of point movement.

As usual, the point radius vector r(f) can be decomposed upon the orts

r(t) = x(0)i+ y(®)j+ z(t)k, (1.2.3)
and therefore,
o(t) = F(t) = e (¢) + jy(t) + kz(¢). (1.2.4)
The velocity vector is
v=iv, +jv, +ko, (1.2.5)

where v,, v, and v, are its projections onto the coordinate axes:

v, =i(t), v, =30, v, =21) (1.2.6)

The modulus of the velocity vector is the square root sum of their projections’ squares:

b= vl +02 +0? (12.7)

Acceleration is the change of the velocity vector in time. If, in the time interval Az, an
MP displaced along the trajectory and a change in velocity and its direction had taken
place then Av = v, — v,. The mean acceleration in the Az interval is then

:Av

@=—- (1.2.8)

The acceleration at a given time instant (instantaneous acceleration) is the limit of the
ratio (Av/Ar) at At — 0.

azlimﬁzﬁzom 1.2.9
At dr ' (1.2.9)
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or

a=i, +jo, +kv, (1.2.10)
(because orts are in this case independent of time). In another form

a=ia, +ia, +ka, (1.2.11)

where a,, a, and a, are projections of the a vector onto the coordinate axes. Comparison of
eqgs. (1.2.6) and (1.2.11) gives

a, =v,(t) = X(); a,=v,t)=J(1); a,=0,()=Z{) (1.2.12)

and correspondingly

a=,lai+a§+a§. (1.2.13)

At curvilinear movement the velocity vector is the product v = vt, where 7 is a tangent
ort. Because of the fact that the point is moving along a curvilinear trajectory and “draws”
the unit vector 7 behind, its position is also dependent on time. In this case:

dv dv dt
=~ =""r+p—

“a a ar (1.2.14)

Expression (1.2.15) shows that acceleration is the sum of the two vectors: the first is
directed along the tangent and is equal to the first derivative of velocity and the second
term depends on the change of 7 in time. To determine the magnitude and direction of the
second term, we need to find the meaning of the derivative dt/dr. Let the direction of
the velocity vector at two adjacent positions separated by time interval Ar be specified by
orts 7, and 7, (Figure 1.3). Then the change of the vector 7 in the time interval Af can be
expressed by vector At = 1, — 7,. We shall consider the derivative dv/dt as a limit of a
ratio At/At for At — 0. We find the value of vector magnitude At from the triangle
(At2)  Ag At Ag . .

=sin > then= 5 =sin > at At — 0 numerically At — Ag, since
the unit-vector magnitude is unity and sin(A@/2) = Ap/2 at Ap < 1. Then

ACD:

dr:l. At %

E A}HO At At—0 At (1215)
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Multiplying both the numerator and denominator of the function Ag@/At by the arc
length Al we obtain

i A2 A i A% i AL
dt A0 At A€ A0 A€ A0 At

Let us consider both these limits. Since an angle A is the angle of contiguity, the
lim(Ap/Al) = K is equal to the curvature of a curve at a given point, i.e., to curvature
radius p. The second limit is the velocity magnitude

AL de
lim —=—=
Ar=o At dt
Thus,
dt _ k="
dr p' (1.2.16)

To determine the direction of the vector (d1/df) we shall draw a straight line from point
A parallel to At and examine the value of an angle ZCAE at the limit Az — 0. As can be
seen from Figure 1.3, an angle ZCAE =/ZCAF +A@/2 = (n/2) + Ap/2). At At — 0 the
contiguity angle A¢p — 0 whereas ZCAE — (w/2). Therefore, the vector (dt/dt) =
lim(At/Af) will be directed along the normal to the center of curvature at point A; it can
be presented as

—=-n (1.2.17)

T

Agl2

Figure 1.3. Calculation of the %derivative.
t
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Returning to expression (1.2.14), we can write

2
a=% 40 (1.2.18)

dt 0

Therefore, the total acceleration a in curvilinear movement can be separated into two parts:
the first is the tangent acceleration

a = @ (1.2.19)
) -
and the second is
02
a, =—. (1.2.20)
0

The tangent part influences the absolute velocity magnitude whereas the normal part
changes the direction of the velocity vector. The square of the total acceleration can be
written as

dvY (v ’
a2=a$+a§=(—j +[—] . (1.2.21)
dt 0

The expressions derived are valid for the general movement of the MP along the curve
with an arbitrary regime of velocity change. Let us consider some particular cases:

Rectilinear movement: p = %, g, = 0,a = at

Uniform movement along a circle: p = const., a, = 0, a = n(v*/R)

Nonuniform movement along a circle: p = const., a, # 0, a, # 0.

In the case of uniformly alternating movement a, = const. # 0, a, = 0; it is possible to
derive the general expressions. Integration of an expression (dv/df) = a, over time gives

o(t) = j a(t)dt+C = at +v,, (1.2.22)

where v, is the initial speed (at t = 0). The distance travelled can be derived from (1.2.22)
by repeated integration as

at’
x(1) = x, +vot+7, (1.2.23)

where x, is the initial coordinate (at r = 0).



1. Mechanics

EXAMPLE E1.1

A car moving uniformly covers a distance of 100 km at a speed 60 km/h, although
on the way back it travels at a speed of 40 km/h. Determine the average speed of
the car.

Solution: At first glance the answer is simple: 50 km/h. However, this is
incorrect. The average speed is the total distance travelled (200 km) divided by the
total time spent (100/60)+(100/40)=4.16 h. Therefore, the average speed is
(200/4.16) = 44 km/h.

EXAMPLE E1.2

The movement of a MP along an x-axis is described by the equation x = A + Bt +
CT? where A = 4 m, B = 2 m/sec, C = -0.5 m/sec’. For the instance of time #, =
2 sec determine: (1) the MP coordinate x,, (2) an instant velocity v;, and (3) an
instant acceleration a;.

Solution: (1) To find the point coordinate one should substitute time ¢ for the
instant time #,x, = A + Br, + Ct,*. Inserting the given values we obtain: x;, = 4 +
2.2 = 0.5 X 23 = 4 m. (2) To find an instant speed at any time we should differen-
tiate a coordinate on time: v = (dx/df) = B + 3Ct,. Introducing B, C and f, we
obtain: v, = — 4 m/sec. The sign shows that at that very moment the point moves in
a negative direction on the x-axis. (3) To find acceleration as a function of time we
should take the second time derivative from coordinate: a = (d*x/df*) = (dx/dt) =
6Ct. To find the instant acceleration at 7, we should introduce the given data and
obtain the result. ¢, = —6.0 X 5.2 = -6 m/sec?; the sign shows that the movement
is decelerative.

EXAMPLE E1.3

The movement of an MP along an x-axis is described by equation x = A + Bt + Ct?,
where A = 5 m, B = 4m/sec, C = —1.0 m/sec’. Draw a graph of x(¢) and the distance
travelled S(¢).

Solution: For the drawing of the graph of the point coordinate time dependence
x(1), we find characteristic values of movement: initial and maximum coordinates
The initial coordinate corresponds to the moment ¢ = 0, its value equals x(0) = A
= 5 m. The point reaches maximum height corresponding to the moment when the
point starts to move back (speed changes sign). We can find this moment having
equated to zero the time first derivative from coordinate: v = (dx/df) = B + 2Ct = 0,
wherefrom ¢t = —(B/2C) =2 sec. The maximum coordinate x,,, = x(2) = 9 m. The
time instant # when x = 0 can be found from equation x = A+Bt+Cr> = 0. Solving
the quadratic equation we obtain t = (2 = 3) sec. The negative value does not sat-
isfy the problem. Therefore + = 5 sec. Using the data obtained we can draw the
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graph of coordinates’ dependence on time. The distance travelled and the coordi-
nate coincide until the point stops; from this time the point goes in opposite direc-
tion and its coordinate diminishes; however the distance travelled continues to grow
(Figure E1.3).
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EXAMPLE E1.4

A mortar is installed on a hill at a height of H = 60.0 m above ground level. It fires
a missile at an initial angle of « = 60° to the horizon. The missile’s initial velocity
is v, = 80 m/sec. Derive: (1) the kinematical equations of the missile’s flight x(#) and
¥(#); (2) the equation of trajectory y(x); (3) the expression for projections v (f) and
v,(7) on the coordinate axes x and y and the time velocity dependence v(7); (4) the
velocity dependence on time v(7) on absolute value and direction; (5) the absolute
values of tangential |a,| and normal |a,| acceleration dependence on time (derive a
corresponding formula and execute calculations): (6) the maximum height y . of
flight; (7) the time of the missile’s flight z; (8) the range L of missile; (9) the mis-
sile’s velocity v (on modulus and direction) at the moment of falling on the ground;
(10) the curvature radii trajectory p, and p, at the moment of falling and at the high-
est point of flight, respectively.

Solution: To solve this problem we have to begin with the choice of reference
frame. The motion of the missile is subject to a constant acceleration g directed down-
ward. Therefore, the flight trajectory is a plane (two-dimensional). Choose a
Cartesian system xQOy in such a way that the x-axis is horizontal and the y-axis is
vertical; the flight will occur in this plane. The origin is superposed with the earth
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surface, axis x directed horizontally and y vertically upward. Accept the missile as an
MP. The movement in this case can be separated into two independent components:
along axes Ox and Oy. A movement along axis Ox is uniform with a speed v, =
vycos o; however along axis Oy it uniformly accelerates with initial coordinate y, = H
and initial speed v,, = v, sin « and acceleration a, = g (see inset in Figure E1.4).

Thus,
(1) Kinematical equations for mine movement projected on axes x and y can be written:

2
t
x(t)=vytcosa and y(t) = H +v,(sino)t — g?

(2) An equation of the trajectory can be obtained by excluding time from the kinemati-
cal equation for the missile’s movement:

. X v, Sin o
since t = ————, then y(x) = H + 2>——x
v, COS 0L v, COS 0L
8 2 8 2
———— X =H+(tano)x ——————x".
2v; cos”o 2v; cos”o

(3) The velocity v(#) projection on coordinate axis can be found by time differentiation
of x(#) and y(r) as

dx d .
0, (1) =25 = v, =y cosa=const., ()= =u,sina— gt.
x dt Ox 0 'y dr 0
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(4) The dependence of velocity v(f) on time, in vector form, can be obtained in the form
o(f) = iv(r) + jo,(7). Then the velocity modulus is

lo(r) = \/vi +u§ = \/ug —2gtv, sina+g°t>.

The velocity o(7) direction can be determined by an angle f§ between this vector and the
axis Ox. It can be seen from a Figure E1.4 that

v,(t) v, sina—gt
tan f(1) = 2>— = 2 &
v, (1) Uy COS 0L

v, Sina — gt
, therefore f(r) = arctan (uJ

Uy COS 0L

(5) Since the total acceleration is constant (i.e., g) the moduli of tangential |a | and
normal |a,| components (as can be seen from Figure E1.3) will be equal to: a, = g sin f8
and a, = g cos f§, where

sin = (v,/v,) and cos f=(v, /v, ) or
a, = t(g(v,, — gty / (V7 —2gtv,, + g*)"?) and
a, = n(gv, /(v; —2gtv,, + g*1).

(6) The highest point of the flight y,,,, can be found from the kinematical equations v,(7)
and y(7). From the first dependence one can find the time of ascent ¢, from the second—the

asc?
maximal ascent y,., = Y(f,,,)- In the upper trajectory point v, = 0, therefore v, — g, = 0,
then 7,,. = (vo,/8)- Therefore:

asc

) 2 2 2
t v, D) D)

Vinax = f +8lue = H+v, sina—~ -8 02y =H+-2=245m
2 g 2g 2g

(7) The missile’s total flight time 7 can be found from the fact that in the moment of its drop
y(®) = y(t) = 0, i.e., H + v, T sin @ — (gr%2) = 0 and 1> — t(2v,sin a/g) — (2/g) — H = 0.
Solving the quadratic equation regarding 7 we can arrive at

1 2vpsina vy sin*a  2gH
Py g ¢

T= é(vo sino+ /v sin2a+2gH)

(Since the time cannot be negative we should accept sign “+”"). Executing calculations
we obtain 7 = 14.9 sec.

(8) The missile’s range L can be found by inserting Tinto the x(¢): L = x(t) = vy, 7 = 596m.

(9) The modulus of velocity at the moment it hits the ground can be found using the equa-

Tip =

tion given in point (4) substituting a running time on 7 as

v=1(1) =Vtvd 2Vt sin o + g2t> = 87 m/sec
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or, converting this expression to a form v= Vzﬁ + 2gH, one can obtain the same result. Since
tan § = (v,/v,), then () = arctan = —62.5°; a minus sign shows that the velocity vector
makes with the x-axis an angle f, counts off in a negative direction, i.e., clockwise
(Figure E 1.4, insertion).

(10) To find curvature radius p one can use expressions o, = (v%p) wherefrom p = (v ¥a,),
and a, = gcosf5, and v is the speed at the moment of hitting the ground: v=1u(7).
Therefore,

vg —200g1+g2‘52 _ vé +2gH
gcosf gcosfi

Py = =1.67m,

however, at the highest point p, = v /g = 163 m. Note that the curvature at the maximum
height is approximately 100 times less than at point of hitting the ground.
By solving a problem in this way, we can then use all these particular equations in future.

1.2.2 Kinematics of translational movement of a rigid body

A body in which the distance between two arbitrary points remains at constant tempera-
ture, unchanged by any motions or interactions, is referred to as an ideally rigid body
(IRB). During the translational motion of the IRB, any segment inside of it remains parallel
to itself at any time. With such motion the displacement, velocity and acceleration of any
point of the IRB are the same at any time. Therefore, many characteristics of the IRB’s
translational movement can be described by the motion of a single body’s point with a
mass equal to the mass of the whole body moving with velocity (acceleration) in any point
of the body. The best point to choose is the centre of mass (CM) (see below).

1.2.3 Kinematics of the rotational motion

Rotational movement is widespread in nature, no less (but can be even more) than transla-
tion motion. Indeed, the motion of electrons around the nucleus (within the Bohr atomic
model) and the earth around the sun, the rotation of a gyroscope, the rotation of numerous
details and assemblies in technology and industry, the rotation of a wheel (this genius
invention of mankind)—all of these are examples of rotational motion.

The rotational motion of the IRB around a motionless axis Oz in which all points of the
body are moving in parallel planes, making circles with their centers lying on a
single straight line coinciding with the z-axis, is referred to as the rotational motion of the IRB.

When rotating, all points of the IRB have linear velocities differing in size and direc-
tion, depending on the point distance from the axis of rotation. So, for a description of rota-
tional motion we should introduce angular kinematic features unique to the whole body:
angular displacement, angular velocity and angular acceleration.

Let us restrict ourselves to the case of IRB rotation around an axis whose space position
does not change in time.
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Angular displacement

Consider a body revolving around axis Oz. Select in the body a point, not lying on the axis
of rotation (point A in Figure 1.4; the body itself is not shown in the figure). In accordance
with the definition of rotational motion, this point while moving describes a circle with a
radius R, the center of which (O) is lying on an axis Oz. While rotating, vertical planes
drawn through the axis of rotation and any body point turn on the same angle. Let the plane
(and the body) turn on an angle d¢. This angle is referred to as the angular displacement.
The angular displacement is a vector, coinciding with the axis of rotation, whose direction
is defined by the right-handed system. Remember that this rule concludes that if the right
screw reconciles with the axis of rotation and turns it in a direction complying with the
rotating body, the translational direction of the screw movement along the axis of rotation
complies with the direction of the vector do.

Vectors whose directions are aligned with the rotation direction are called axial vectors.
Angular displacement d@ is an axial vector, the modulus of which is equal to the ratio of
arc dS and radius R and the direction of which coincides with the rotation axis in accor-
dance with the right screw rule.

do ="Kk, (1.2.24)

k being the ort of rotation axis Oz.
The value to which the lim,, _, , tends is called the angular velocity w:

do
dt

w=""2=¢@). (1.2.25)

Figure 1.4. Elementary angular displacement vector d¢.
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Aw >0 Aw <0

o =

Y
(@ (b)

Figure 1.5. Relationship between angular velocity and angular acceleration.

Angular velocity is a first time derivative from the vector of angular displacement. It
shows the speed of angular displacement changing with time. Angular velocity @ is also
an axial vector, which coincides in direction with the angular displacement vector do.

The value to which the limit (Aw/Ar) tends is called angular acceleration:

e=1lim —k=—%, (1.2.26)

Angular acceleration is also an axial vector.

The different mutual orientations of angular velocity and angular acceleration are pre-
sented in Figure 1.5: when the angular velocity is rising (d® > 0), then the direction of the
angular acceleration vector coincides with the former (both are directed along the axis of
rotation); if the angular velocity decreases (dw < 0), then the direction of the angular
acceleration vector is opposite to the angular velocity.

If the axis of a body rotation changes its orientation in the course of time, some inter-
esting effects appear which are unfortunately beyond the scope of our consideration here.

There exists a linear relationship between angular and translation features. It can be seen
in Figure 1.4 that dl = Rde, i.e. dp =(dl/p). Time derivation (do/dt) = w = (1/R)(dl/df) =
(1/R)v, i.e.,

v=wR. (1.2.27)

The relationship between angular acceleration ¢ and linear tangent acceleration a, can also
be obtained. The modulus of angular acceleration is ¢ = (dw/dt), where w = (v/R); then
¢ = (dv/Rdt). Since (dv/dt) is a point linear (tangential) acceleration a, then ¢ = (a/R) or

a, = ¢R. (1.2.28)

The last formula connect the linear and angular characteristics (Figure 1.6). They can be
given in vector form:

v=[or], (1.2.29)
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v

Figure 1.6. Relationship between vectors of angular @ and linear v velocity.

and
g=la,rl. (1.2.30)

Using eqgs. (1.2.27) and (1.2.28) we can obtain by integration the dependencies of w(7)
and ¢(¢) like (1.2.22) and (1.2.23) valid for uniformly accelerated rotation

w=w,t+et, (1.2.31)
and

2
t
(p=(p0+w0t+83. (1.2.32)

where w,, and ¢, are angular characteristics at the initial instant of time.

The structure of these expressions is equivalent to those obtained for linear motion
(egs. (1.2.22) and (1.2.23)).

However, rotational motion is distinct from linear because of the fact that it is periodi-
cal. In rotation, the values of ¢ are repeated in a certain time interval. If these intervals are
constant (uniform rotation, @ = const.), the period T, a duration of one full turn (on 360°),
and accordingly rotating frequencies, i.e., numbers of full repetition in the unit time
(v = n = 1/T), can be used. Bearing in mind that one turn corresponds to an angular
displacement equal to 27 radian, we can introduce an angular velocity w = 2nv = 27/ T.

The difference between angular vector features of revolution and the corresponding fea-
tures of linear motion lies in the fact that angular vectors are directed not along the linear
motion of each point of the IRB, but along the axis of rotation (perpendicular to their
planes of motion). Many remarkable characteristics of rotational motion are bound up with
this circumstance (refer to Section 1.3.9, Figure 1.17 and Appendix 2).
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In general, the arbitrary motion of the IRB can be presented as a combination of trans-
lation motion of an MP with a mass equal to the mass of the whole IRB and located in the
center of inertia (refer to Section 1.3.7, see below), and rotation of the body’s points
around the center of inertia.

EXAMPLE E1.5

A disc of a radius R = 10 cm starts to rotate with angular acceleration ¢ = 0.1
rad/sec? around a motionless axis, perpendicular to the disc’s plane passing its geo-
metrical center. Determine at the time instant 7 = 12 sec after the beginning of the
disc rotation: (1) an angle of the disk turns ¢ (an angular displacement); (2) the num-
ber of complete revolution N, ; (3) the net turn angle Ag; (4) the distance traveled
by any point A of the disk crown § along an arc; (5) the angular speed value @ and
(6) a frequency of rotation n at this moment.

Solution: (1) For a uniformly accelerated rotation a kinematical equation is (1.2.32),
where ¢(¢) is a turning angle for time instance #, ¢, and w, are the initial angle and
angular speed; in our case ¢, = 0 and w, = 0. Therefore ¢(1) = (&/2). Introducing
the numerical values and execute calculations for the time instant 7 we obtain ¢(t) =
(0.1X12%)/2 rad = 7.20 rad (413°). (2) We can find the number of revolutions N by
dividing the previous result by 2x, i.e. N = (¢/2n) = 7.20/(2 X 3.14) = 1.15 revolu-
tions. Since the number of revolutions is an integer then N, = 1. (3) The net turn
angle Ag can be found as a difference between the final turn angle minus the 27 X
integer value: Ag = (720 — 27 X 1) rad = 0.917 rad (52.6°). (4) The total distance S
traveled by point A along an arc can be found multiplying the turning angle by the radius
R:S= @R =720 X 0.1 m = 0.72 m. (5) To determine the disk angular speed at the
time instance 7 one first should take the time derivative of an angular displacement

d 2
w=—¢=i o =ét.
dt  dt| 2

For t = t we obtain w(t) = &t. Execute the calculations w = 0.1 X 12 = 1.20 rad/sec.
(6) The instant frequency of rotation n(t) can be obtained as n = (w/2n) = (1.20/2n) =
0.19 sec™ .

1.3 DYNAMICS

Dynamics deals with the study of a body’s motion with definite mass under the action of
applied forces.

1.3.1 Newton’s first law of motion: inertial reference systems

Generally speaking, the same physical events can be described differently in different ref-
erence systems. Undoubtedly, we would wish to find a reference system in which the laws
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of different physical phenomena have the simplest expression. On the other hand, it would
be interesting to find in the surrounding world a system that would be at absolute rest so
that any motion could be considered with respect to this system. Is it possible to find such
a system? To answer this question we shall analyze the simplest form of motion—the
motion of a free body. A body is called free if it is at such a distance from all other bodies
that their effect on it is negligible. (Such a body and such a motion is actually a physical
abstraction since it cannot be fully realized. Nevertheless this model has played a very
important role in the development of physics, from Aristotle to Galileo and Newton). So,
experiencing no external effect, the free body must move rectilinearly and uniformly. Such
a motion cannot be achieved in any reference system but only in the so-called inertial one.
A reference system is referred to as inertial if the free body moves in relation to it with
constant velocity—in magnitude and direction.

Besides, if one of the reference systems moves relative to another, additional effects can
appear. All these questions are the subjects of different theories of relativity, realizing the
relationships between physical laws in reference systems moving relative each other (refer
to Section 1.6).

The classical theory of relativity is based on Galileo’s and Newton’s hypotheses. Their
main feature is separation and independence the space and time and their independence.
The laws of the classical theory of relativity appear from mankind’s everyday experience
of isotropic and uniform space (all directions are equivalent and space metric is constant
everywhere) and independence of time intervals from the reference system (an interval in
Moscow is the same as in London). These laws prove to be perfectly justified in the case
of motion of a material body with velocities v << c.

Experiencing no external influences, a free body must, consequently, move rectilinearly
and uniformly. However, this cannot be achieved in all reference systems, but only in those
that are referred to as inertial systems. A reference system in which a free body of constant
mass proceeds with constant velocity is called an inertial reference system.

The existence of an inertial reference system is a sequence of definite characteristics of
space and time: the uniformity and isotropy of space and uniformity of time. The unifor-
mity of space and time means the equivalence of all positions of free bodies in space at all
instants of time, and space isotropy means the equivalence of different directions.
Therefore, it is possible to give another definition of an inertial reference system: as a sys-
tem relative to which space is homogeneous and isotropic and time is uniform.

The statement describing inertial reference systems as systems in which the motion of a free
body is rectilinear and uniform, forms the essential part of inertia law: a free body preserves
a state of the rest or the uniform rectilinear motion until another body makes it leave this state.
The idea of an inertial system was incorporated by Newton into his system of the main laws
of dynamics: it is referred as the first law of dynamics or Newton’s first law.

Having found a single, accidental inertial system it would be imagined that the unique
motionless system is found, relative to which any motion of bodies in the Universe should
be considered. However, this is not so, because there exist countless inertial reference sys-
tems. We can illustrate this quite simply. Let there be two reference systems moving
towards each other uniformly and rectilinearly; one of them is known to be inertial.
Confirm that the other system will also be inertial. In fact, a body that is in a state of uni-
form and rectilinear motion with regard to the first reference system (which we know is
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inertial), will move uniformly and rectilinearly towards the second reference system
(though, with different velocity); however this (second) reference system will then also be
inertial. Thereby, any reference system, moving rectilinearly and uniformly relative to any
system (which we know to be inertial), is also an inertial one. Hence, there are countless
sets of equivalent inertial systems.

Equivalence of all inertial systems is equivalent to the statement that laws of mechanics
are invariant with respect to the Galileo's transforms. The term “invariant” signifies that
laws of mechanics and their mathematical writings are similar in all inertial systems.

1.3.2 Galileo’s relativity principle: Galileo transformations

So, there are countless sets of equivalent inertial systems. Moreover, it has been proved to
be physically impossible to distinguish one inertial system from another—all inertial sys-
tems are equivalent. This last statement is Galileo’s mechanical relativity principle: there
are no mechanical experiments that can be carried out within a given closed inertial refer-
ence system that can distinguish whether this reference system moves rectilinearly and
uniformly or is at rest. Being, for instance, in the windowless sheep’s hold uniformly and
rectilinear moving without heaving (example have been taken from Galileo’s book) or in
the cabin of plane with closed windows, an explorer arranging any possible mechanical
experiments (balls collision, throwing any subjects in different directions, free fall of bod-
ies, etc), can not find, whether moves this system uniformly and rectilinear or is motion-
less. (We also refer the reader to Jules Verne’s novel “From the Cannon to the Moon”, in
which passengers discuss a missile flying to the moon.)

The mechanical principle of relativity, coupled with the suggestion of uniformity of time
flow in all inertial reference systems, is referred to as Galileo’s principle of relativity.

Let us find a correlation that would allow us to transmit from one inertial system to
another. Suppose that there are two inertial reference system K(x,y,z,t) and K'(x",y",z',t"),
a second system (K') being moved with regard to the first (K) with a constant velocity
V, so that axes x and x’ coincide (Figure 1.7). If, at the initial instant both coordinate
systems coincide, at moment #, the coordinates x and x’ will be bonded by the correlation
x = x" + V. For three-dimensional movement a similar correlation appears between all
coordinates so the correlation system will look like

x=x"+Vt,
y=y+Vt, (1.3.1)
z=7+V,t

In general form this system can be written as

r=r+V,. (13.2)

Expressions (1.3.1 and 1.3.2) together with the independency of the time flowing in both
systems (¢ = t') are called Galileo transitions. They permit one to go from one inertia sys-
tem to another.

The equivalence of all inertial reference systems is similar to the statement that the laws
of mechanics are invariant with respect to Galileo’s transforms. The phrase “are invariant”
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Figure 1.7. Galileo’s transforms.

signifies that the laws of mechanics and their mathematical writings are similar in all iner-
tial systems. However, each particular physical value can differ when turning from one
system to another.

Having differentiated both right- and left-hand sides of expression (1.3.2) in respect to
time, we can find a known law of velocities summation:

dr_dryy, 133

dat dt° (1.3.3)
or

V=V,+V, (1.3.4)

where V and V' are velocities of a MP in inertial systems K and K'. It can be seen that
velocity is noninvariant regarding Galileo’s transforms. The second derivative gives

d’r  d*v
or
a=d, (1.3.6)

i.e., acceleration is invariant regarding Galileo’s transforms. An important conclusion
can be derived from this consideration: all the velocity’s dependent physical values (for
instance, momentum, kKinetic energy, etc.) are noninvariant; however, all the accelera-
tion-dependent physical values (for instance, force, etc.) are invariant regarding
Galileo’s transforms. Other examples of invariants are mass, distance, temperature,
time, etc.
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Einstein has generalized Galileo’s principle of relativity. According to Einstein’s princi-
ple of relativity, it is impossible by either mechanical or by physical experiment (in par-
ticular, electrical, magnetic or optical) conducted in an inertial system, to distinguish if this
system is at rest or in rectilinear uniform motion. This statement is the basis of the special
relativistic theory (see Section 1.6).

Now we have to solve a problem: of the many real reference systems we usually deal
with, in practice, those that can be considered to be inertial. Many problems of mechan-
ics are considered in a laboratory reference system, strictly bound to the surface of the
earth. Is this reference system an inertial one? Strictly speaking, the answer is no, since
the earth rotates daily, the points on the terrestrial surface (excluding the poles) possess
different acceleration, perpendicular to the axis of the earth’s rotation. However, in com-
parison with free-falling acceleration, this acceleration is very small, and for practical
problems connected with the earth in a laboratory system, it is possible to consider it to
be inertial.

1.3.3 Newton’s second law of motion: Momentum

Any change in the movement of an MP or in its state is caused by the action of other bod-
ies or force fields. The quantitative measure of mechanical action of bodies on another
body is called a force. This action can be exhibited as a change in the velocity of a body,
or as its deformation. It can be measured in both cases, so the force can be quantitatively
evaluated experimentally.

Newton’s second law gives a relationship between the change in motion velocity and the
force F causing this change. Generalizing a large number of experimental facts, Newton
suggested that acceleration is proportional to force. The law can be given as follows: the
body’s velocity change is proportional to the applied force and results in the direction of
the line along which the force is acting.

With the action of the same force on different bodies, their accelerations can be differ-
ent, depending upon the body’s mass. In this instance, mass acts as a proportionality fac-
tor between the force, acting on the body and its acceleration. Such mass is identified as
the inert mass (unlike the gravitational, which will be discussed below). The mass is a
measure of the body’s inertial property relative to its translational motion.

Accordingly, the mathematical expression of Newton’s second law can be written in
vector form:

F =ma= m@ (1.3.7)
7 3.
or in coordinate form:
mi=F,my=F, mi=F. (1.3.8)

Equations (1.3.8) are called the differential equations of an MP’s movement.
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If the mass is constant, eq. (1.3.7) will have the form

d(mv) _dp _

L
o (1.3.9)

This equation is the most general mathematical expression for Newton’s second law
valid in many cases (for constant and varying masses, relativistic and quantum mechan-
ics). Vector p here equals the product of the body’s mass and its velocity and is referred to
as the momentum:

p=mo. (1.3.10)

Vectors of momentum and velocity coincide in direction.
In Cartesian reference frames the momentum vector can be expressed as:

p=mv=imv +jmv, +kmv, =ip +jp, +kp_, (1.3.11)

where p,, p, and p, are projections of p on the coordinate axis.

Using expression (1.3.9), one can find the relation between the force and the momen-
tum increment, which is produced by the force: the rate of change of the momentum of a
particle is proportional to the net force acting on the particle and is in the direction of that
force

dp = Fdt. (13.12)

It can be seen that the elementary body’s momentum change is a product of the force
acting on the body and the time of its action. The product Fdt is called the elementary
force impulse.

Figure 1.8. Second Newtonian law: relation between the direction of force and the direction of
momentum increment. A material point trajectory is shown.
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Hence, Newton’s second law can be reformulated: the change of the body’s momentum
is proportional to the force applied and coincides with the direction of the force action
(Figure 1.8).

Independence of force action principle

When discussing the force action we implied a single force only. In many cases, however,
a body exerts the action of several forces. In this case the principle of independence of
force action is taking place: if there are several forces acting on a body the acceleration
exerted by the body under the action of each force is independent of whether or not other
forces exist.

Let forces F, F,, F;, ... simultaneously act on a body. The i-th force imparts to a body
an acceleration a; = F,m. The simultaneous action of all forces will impart to the body an
acceleration equal to the sum of all accelerations:

Yo F

m (1.3.13)

a;, =

This is the generalization of the second Newtonian law to the case of simultaneous action
of N forces. The geometrical sum of forces is called the resultant force applied to a body.
In the general case, the resultant force imparts acceleration to a body, its direction coin-
ciding with the direction of the resultant force.

If N forces are applied, the body’s motion can be written in the coordinate form as

dv, &

m—==>» F_,
dl‘z ; Xt
d*v N

m 2y = ZF yi?
2 —— (1.3.14)
dv,

m =) F,.
w2

EXAMPLE E1.6

An acting force is a function of a body displacement (deformation) F(x) = —/fx

(such force is characteristic of elastic forces, e.g., stretching a string). Find the law
of a body’s motion.

Solution: Let the initial conditions be: at f = 0, v = v, and x, = 0. The differential
equation of the motion has the form: m¥ = — fix. Reduce the derivation order m(dv, /dt)
= —fx. The number of variables is three; therefore one should try to go over from



1.3 Dynamics

variable 7 to variable x. This can be done by multiplying and dividing the left-hand side
of the equation by dx: (dv, /dx) (dx/dt) = dv,/dx). Simple transformations give:

2 2
v X
v, dv, = —ﬁxdx; and then —= —ﬁ—%—c1
m 2 2m
o . Yo
The initial conditions allow us to find a constant ¢, : ¢, = 5 Then
2 2 2
v v
== —EX—+—0 or v, =,/ —Exz.
2 m 2 m
Since v, = (dx/dt), we obtain
dx _ i
(L)
m

Integration gives:

arcsin

J(B/m) X x _ \/EH-Q,
m

Yo

At t = 0 the coordinate is x, = 0, therefore ¢, = 0.

Then x = v, V(ml B)XsinV(f/m)X1; i.e., under an elastic force a system acquires peri-
odical movement according to sin (or cos) law (this case will be considered in more
detail in Section 2.4.2).

EXAMPLE E1.7

A body of mass m = 80 kg falls from a motionless airborne helicopter. Besides the
gravity force mg, the force of resistance of the air F, = —kv (k = 10 kg /sec) operates
on the body. Find the time dependence of speed v(7). Find also the body’s steady speed.

Solution: Direct an axis y vertically downwards. Two forces will act on a falling
body: gravity mg and force of air resistance F_ (Figure E1.7a). According to the sec-
ond Newtonian law the equation of movement in the vector form looks like ma =
mg + F.. Since a = dv/dt and F, = —kv, hence m(dv/dt ) = mg —kv. In projection
onto axis Oy an equation of movement in a scalar form is m(dv/dt ) = mg —kv. This is
a differential equation of the first order with separatable variables. Therefore, (dv/mg —
kv) = (dt/m). Integration gives:

0

23
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ie.,
1 vt
—In|\mg—kv| =—
L In[mg —tv ) =—
and then
_llnmg—kvzi
k mg m
or

Mk __k
mg m

Exponentiation gives

mg—kv _ o (kimyt
mg

From this the dependence v(#) can be derived:

o(r) = %(1 — g Uimry

The graph of v(7) is presented in Figure E1.7(b). One can see that the body’s speed

asymptotically reaches the speed of steady movement v, i.e.:

v, = 1im%(1 — ek,

At t — oo, v, — mglk. After introduction of the figures one arrives at:

_ 80.9X38l

) m/sec = 78.5m/sec.
o 10
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EXAMPLE E1.8.

A high-speed boat moving on calm water achieves a speed of v = 90 km/h. The total
mass (m) of the boat with a man on board is 400 kg. The force of water resistance to
the boat’s movement changes under law F, = —kvv. Draw a graph of the time
dependence of the speed v(f) and calculate by how much the speed of the boat
changes (Av) in time r = 1 min after the man has switched off the engine. The resist-
ance force constant k equals 0.8 kg/m.

Solution: Two vertical forces operate on the boat in the lake: the gravitational (mg)
and extruded Archimedes force F,; both of them equalize each other, therefore we do
not need to consider them. We shall connect the inertial system of reference with the
earth. We shall direct the coordinate axes horizontal. The equation of the Newtonian
second law in aprojection to an axis x will be written as

m@ = }Tc = —k[)z
dt
Separating the variables we obtain (dv/v?) = —(k/m)dt. In order to draw a graph it is

more convenient to take an indefinite integral

—j (do/v*) = (k/m)j di+C.

25
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After taking an integral we obtain —(1/v(¢)) = (k/m)t+C. We can find the constant
using the initial conditions: at t = 0, v(0) = v, and then C = —(1/v). Therefore,

1 & 1 kygt+m

vom my,
We should solve an equation relative v():

my
o(t) = 0
kvt +m

The graph is a hyperbola (Figure E1.8). To determine Av we should find a difference
v() — vy = Av = —v(1—(mlktv, + m)). To obtain the answer we should express all
values in brackets in terms of SI. The speed value before a bracket can be left in km/h
(then the answer will turn out to be in the same unit):

400
(400+400Xx0.8X25X60)

Av=90{1— }km/h=22.5km/h.

u(t)

Motion of a body with a variable mass

In some problems of mechanics a body’s mass, in the process of motion, does not stay con-
stant. Examples can be found in modern technology (e.g., refuelling airborne aircraft, etc.),
particularly in systems whose movement is based on the combustion of fuel accumulated
entirely in the moving system. Let us derive the main laws of such a motion using a space
rocket as an example (Figure 1.9). As a simple example, we can consider a rocket fired in
an open space where no gravitational force or air resistance exists. All of the fuel stored is
eventually burned and ejected from the nozzle of the rocket’s engine; the rocket mass is
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Figure 1.9. Principle of rocket propulsion.

time dependent in this case. It is impossible to apply Newton’s second law to the rocket
alone; however taking the rocket and its ejected combustion products together allows us to
consider such a combined system to be a closed one and to apply this law.

During the flight time the mass of the rocket and its velocity become time-dependent,
m(f) and v(f). For a time accretion df the rocket mass and velocity increments are dm and
dv, the value of dm being negative. The momentum of the rocket will become (m + dm) X
(v + dv), and the momentum of gas exhausted will be dm,u,, where dm, is the mass of the
combustion gas and u, is the exhausted gas speed. The momentum increment for the time
dt can be obtained by subtracting from the written momentum its initial value. According
to eq. (1.3.12), this difference is a forward impulse Fdt. In projections on an axis along
which the motion proceeds it is

(m+dm)(+dv)+dm,, —mv = Fdt (1.3.15)

Opening brackets and taking into account that dm= —dm, and v,y = v, — v (v is the
velocity of the gas exhausted speed relative to the rocket), neglecting the term of the lower
infinitesimal order (dmdv) one can arrive at the expression: mdv = v, dm + Fdt or

m@ = Urel d_m+F
dt dt

Since we consider the movement in open space without the influence of any gravitation or
resistance, we assume F = 0. Therefore,

dv dm
m—=v

" dr

The right-hand term v, (dm/dt) is equidimensional to a force; it presents the reactive
propulsive force or thrust of the rocket R

—=R (1.3.16)

According to its form, eq. (1.3.16) corresponds to the second Newtonian law eq. (1.3.7).
However, here the mass is not constant: it is decreasing with time because of the fuel
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combustion; the faster the combustion rate and exhausted gas speed, the larger the rocket
engine thrust. This equation was derived for the first time by L.V. Mescherski, and is
referred to as the first rocket equation. In the absence of external force, F' = 0 (the motion
in outer space), only the propulsive force is acting on the rocket. Finally, if no external
force F acts on the rocket, with an initial condition m(0) = m, and under constant com-
bustion rate ((dm/dt) = const.), the velocity v(¢) can be found:

—y —p In—To_
u(t) =y, vrlnm(t) (1.3.17)

This equation is referred to as the second rocket equation. Actually, from the expression
m(dv/dt) = (dml/dt)v,,, it follows that dv = (dm/m)v,,,. By integration, the expression pre-
sented above can be derived.

The relation of the rocket velocity and its mass change can be derived from expression
(1.3.17) (at initial velocity v, = 0):

rel*

m(t) = my exp [— @j

rel

This expression is referred to as K.E. Tsiolkovsky’s law (derived in the 1920s).

EXAMPLE E1.9.

A spacecraft of mass m = 10 T is at a great distance from the earth and the other
planets of the solar system. To change its speed to Av = 0.8 km/h a jet engine is
turned on for a time 7. Determine this time if the fuel combustion rate u is 100
kg/sec. The exhaust speed u is 2 km/sec.

Solution: Accept that the spacecraft moves with some speed v in an inertial refer-
ence system relative to the Sun (heliocentric reference system). Its great distance from
all planets allows us to neglect the gravitational forces acting on it. Therefore, on turn-
ing on the jet engine the single force acting on the spacecraft is the jet thrust R = —pu.
Using the first rocket equation for ¢ < 0, we shall obtain m(f) dv/dt = —uu. The mass
of the spacecraft is continuously decreasing (owing to the fuel burning and the exhaust
from the engine nozzle) according to the equation m(t) = (m — pt), where it is the fuel
mass burned up in time 7. Let the coordinate axis Ox be codirected with vector v. We
shall write down the equation of movement in coordinate form as (m — ut) dv/dt = uu.

After variable separation the equation looks like

dv _ dt
pe m,—pt
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Time integration in the limits from O to 7 and, consequently, from v to Av gives

v+Av
€ J dv=—lln|m—,ut‘0.
wu H

Deleting on i and introducing the limits we obtain

_ﬁzlnuzln@_&)
u m m

After exponentiation, this equation reduces to 1 — (ut/m) = =4,
The time sought can be extracted from this equation:

el

Calculations give the time 7 = (10%10%)(1—e~%%?2) = 33 sec.

1.3.4 The third Newtonian law

Till now we have discussed the question of how other bodies act on a given body.
Quantitatively, this action is defined by force. Experience shows that such an action cannot
be unilateral, any action has the nature of interaction. “Actions” and “‘counteraction” are
equal and indistinguishable. They simultaneously appear and simultaneously disappear, but
are attributed to different bodies. All these facts form the essence of the third dynamics law
or Newton’s third law: the forces with which bodies act on each other are always equal in
magnitude and oppositely directed. This signifies that at the interaction of two bodies a
force F,,, with which the first body acts on the second, is of the absolute value and oppo-
sitely directed to the force F,,, with which the second body acts on the first. That is,

F,=-F,. (1.3.18)

1.3.5 Forces classification in physics

All the known forces of interaction existing in nature can be reduced to a small number of
main types. Belonging to the first type are the gravitational and electromagnetic forces;
belonging to the last type are the forces of interatomic and intermolecular interaction per-
taining to which macroscopic manifestation are elasticity forces. (Outside the scope of this
book are the short-range nuclear forces, bonded nucleons in nuclei, and weak interactions,
revealed in the decay of elementary particles.)
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The forces of gravitation are weaker than all the others. At the same time their action
is realized through a gravitational field onto great distances. The expression for gravita-
tional interaction between two point masses M and m is defined by the law of Newtonian
attraction

F=-G—--, (1.3.19)

where G is the gravitational constant, r is the radius vector drawn from one MP to another
being equal in absolute value to the distance between them. These forces govern the inter-
action between the heavenly bodies.

A body on the Earth’s surface (r = R, i.e., R is the distance between the center of
the earth and the body) experiences the attraction ' = mg, or in another form
(according to eq. (1.3.19)), IFI=I1G(mM/R?)l; it then follows that mg = G(mM/R?), or
g = G(M/R?). (This relationship can be used in order to simplify the solution to some
problems.)

We meet here for the second time the notion of “mass.” In this respect the mass is called
gravitational. Generally speaking, this coefficient can be different from that appearing in
the second Newtonian law. However, practice shows that, fortunately, inertial mass is just
the same as gravitational mass; i.e., the mass is the objective characteristic of a body
exhibiting equally both inertial and gravitational laws.

It is worth mentioning here the difference between the terms “weight” and “mass.”
Mass is an inherent property of a body, whereas weight is a measure of an action of the
body on a support or suspension. A reaction from the support to the gravitational force
exists. When a body lies on a motionless bench, two forces—gravitational and support
reaction—compensate each other (according to the third Newtonian law); however, the
first is applied to the body and the second to the supports. If the “bench” falls with an
acceleration g no reaction appears at all, the weight diminishes to zero and a state of
weightlessness occurs. Therefore, the mass is a property of the body, but the weight
depends on its motion (on acceleration).

EXAMPLE E1.10A

A body of mass m = 10 kg is resting on spring scales in an elevator. The elevator
moves with an acceleration of a = 2 m/sec?. Determine the readings of the spring
scales in two cases: when the elevator’s acceleration is directed vertically upwards
and then vertically downwards (Figure E1.10).

Solution: To determine scale readings means to find the weight of the body mg
(a), i.e., the force with which the body acts on a spring. This force, under the third
Newtonian law in the inertial system connected to the earth, is equal on the modulo
and is opposite in direction to the force of elasticity (force of a support reaction)
from which the spring cup of the scales operates on a body N, P being the scale read-
ing, that is mg = —N or in scalar form P = N.
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me mg mg

a;

(a) (b) (©

Hence, the problem of the scale readings is reduced to finding the reaction of the
support N. There are two forces acting on a body: the gravity force mg and the
support reaction N. Let first the acceleration a be directed upwards. (We can descend
the index z because both forces are collinear; the direction will be marked by signs.)
The second Newton’s law equation can be written as N — mg = ma, whereas
N = mg + ma = m(g + a). Since N = m(g + a). The sign of acceleration should
be accounted: at a > 0 N = 10(9.81 + 2) kgm/sec?> = 118 N (b) whereas at a < 0
N = 10(9.81 — 2) kgm/sec* = 78 N (c).

Electromagnetic forces retain electrons in atoms, keep atoms in molecules and crystals,
and define the interaction of molecules between themselves, etc. Electromagnetic forces
are long term (i.e., similarly to gravitational forces they decrease with distance as ~(1/r2)).

In practice, one usually deals with gravity forces, elasticity and friction (resistances). These
forces reduce to those already mentioned: gravity forces are a result of gravitational interac-
tions, elasticity forces and friction are manifestations of electromagnetic interactions of atoms
and molecules both inside the bodies and between them. Examples of macroscopic elastic
forces are forces acting on the suspension to which a body is attached. Under gravitational
attraction the mass m will act with the force mg to the support, and, as a reaction, elastic forces
appear in the support. The body’s weight is the force with which this body acts on the support
or stretches a suspension, all of them being unmovable relative to the earth. The elasticity
force appearing in suspension is called tension. The force acting on a body from the side of
the support is also an elastic force. In this case elastic forces appear as a result of the support’s
deformation. Such forces are called a reaction. Under small deformations, the elastic strength
linearly depends on the deformation value, i.e., it follows a linear Hooke’s law: the value of
deformation is proportional to the deforming force and is opposite in sign:

Fpq == P, (1.3.20)
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where f is the coefficient of proportionality (coefficient of elasticity or rigidity), x is a

value of deformation. The term “quasi-elastic force” is often used in physics though the

forces are not of mechanical tension; it implies that a force is proportional to deformation.
Under large deformations the elastic force can depend on deformation nonlinearly:

F=—Bx+yx® +7'x +- (13.21)

The coefficients y are called unharmonicity coefficients.

Friction forces of sliding appear under the direct contact of surfaces at the relative
motion of one body upon the other. They are stipulated by the phenomena occurring in the
shallow layers of the surfaces of the contacting bodies. Such friction, which acts between
surfaces of different bodies, is called external friction. The friction force P in this case is
proportional to the normal pressure force N

P= N, (1.3.22)

where f is the friction factor. This factor depends on the material, conditions of the sur-
faces, the presence of lubrication and others. Friction force is always directed against the
direction of motion and lies in planes of contiguity.

Friction can appear as a result of the interaction of different parts of one and the same
material, for instance, between the different layers of a moving liquid or gas. Such friction
is referred to as internal and the phenomena itself as viscosity. When a solid body moves
in liquids or gas, internal friction can appear. This is a result of the molecules sticking to
the solid body surface and moving together with it. The phenomena are referred to as inter-
nal (viscous) friction; under small velocities such friction force can have a linear depend-
ence on velocity:

F = kv, (1.3.23)

where k is a coefficient dependent on the medium property and the dimension and form of
a body. The nonlinearity can appear as the velocity increase.

In some velocity interval the force of friction can appear to be proportional to the sec-
ond power of velocity

)]
F, = —kv’ - (1.3.24)

The k, coefficient is also dependent on both the medium nature and the body size and form.

The information presented on the nature of forces in physics does not, however, give
any hope of receiving an answer to the simple question: what keeps atoms in molecules.
Moreover, it is proved that forces of only electrostatic nature are unable to ensure the
molecules’ stability. We should accept that within the framework of classical physics the
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answer to this question is absent in general. Quantum laws, namely the identity of elec-
trons, bring about the so-called exchange interactions, creating additional forces and sta-
bilizing molecules. The nature of these forces however still remains electrostatic. We can
say that the exchange forces are the result of using usual classical presentations in the field
of, and according to, quantum physics.

1.3.6 Noninertial reference systems. An inertia force: D’Alembert principle

So far we have considered the motion of a body in inertial reference systems. However,
there exist many problems where it is necessary to use noninertial reference systems such
as, for example, the motion of molecules in a centrifuge along a circular path or acceler-
ating motion in the rocket. In noninertial reference systems expressions (1.3.14) are not
fulfilled. Reference systems in which the motion of a free body is not rectilinear and uni-
form are referred to as noninertial systems. Consequently, any reference system moving
with acceleration relative to any inertial reference system is a noninertial one. The accel-
eration can be both translational (a, # 0) or rotational (a, # 0). In the general case, the
acceleration of different points of a moving body can be different. This means that the
space connected with the noninertial reference systems is neither uniform, nor isotropic.

The equation of a MP motion regarding the noninertial system looks different from an
inertial one. Consider the specific example of a noninertial reference system K' (x', y’, z")
moving with an acceleration a, comparative to a certain inertial system K(x, y, z). Suppose
then that a MP in this inertial system moves with an acceleration @, and this acceleration
is caused by the action of forces F|, F,, ..., F,. According to eq. (1.3.13) we can write

ma= ) F,. (1.3.25)

N
i—

1

In the system K’ the same MP will have an acceleration a’ (relative acceleration), which
is the sum of @ and the acceleration of the noninertial reference system a,, i.e.,a’ = a — a,,.
‘We can multiply the right- and left-hand sides of this expression by the mass of an MP (m):

N
ma' =Y F,—ma, (1.3.26)
i=1

The expression obtained differs from the equation of motion in the inertial reference
system (1.3.7) by the term —ma,. The noncompliance with the second Newton law is
caused by the appearance of that additional term. Moreover, if the geometric sum of act-
ing forces is equal to zero, then @’ = a,, whereas according to the second Newton law it
also has to be zero. The product of the body’s mass and the acceleration of the noninertial
reference system taken with the opposite sign is called the force of inertia.

F, = —ma,. (13.27)
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Inertia forces are the uncommon forces that disobey the laws of classical Newton
mechanics. Indeed, in a noninertia reference system we are unable to indicate a body whose
action can explain the appearance of inertia forces. This signifies that Newtonian laws are
not executed in noninertial reference systems. Figuratively speaking, there exists a force of
“actions” (the force of inertia), but no force of “counteraction.” In noninertial reference
systems, these particularities of inertia forces do not allow the selection of a closed system
of bodies (refer to 1.3.7), since for any body in a noninertial system the inertia forces are
the internal ones. Thus, in the noninertial reference system the conservation laws of energy
and momentum, which will be considered below (see Section 1.5), are not valid.

The importance of introducing the forces of inertia consists of the fact that with the
provision of these forces it is possible to use Newtonians laws, as they would occur in an
inertial system. With provision for eq. (1.3.26) Newton’s second law (1.3.7) takes the form:

N
ma=Y F+F,.. (1.3.28)

k=1

If a body is resting in the noninertial system (a = 0), eq. (1.3.28) simplifies to:

N
;E+Em:0 (1.3.29)

and the problem of dynamics (in a noninertial reference system) is reduced to the equal-
ity to zero as the result of all acting on the body forces and the force of inertia, i.e., to
the problem of the static in the inertial reference system. The statement that problems of
dynamics can be reduced to problems of static by the addition of the usual forces acting
on the body, the force of inertia, is called the D’ Alembert principle. It must be remem-
bered that the tasks of static can be solved more easily than the problems of dynamics.

EXAMPLE E1.10B

This task can be solved in a noninertial system. In this case a reference system can be
connected to the elevator. It means that to all forces the D’ Alambert force (F; = —ma,)
should be added (g, is the acceleration of the elevator movement relative to the earth).
Three forces are acting on a body in this case: gravitational force mg, elasticity force
N and the inertia force F,. In the reference system connected with the elevator the body
is at rest. Therefore, the sum of the forces is zero: mg + N + F, = 0. After projection
on the z-axis the equation is transformed to N — g — ma = 0, whereas the support
reaction is N = mg + ma = m(g + a); we arrive at the same equation as in the Part A
of this example.

Of particular interest is a specific case of the manifestation of inertia forces. This case
concerns the uniform motion of an MP along the circle trajectory. An MP participating in
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such a motion possesses normal (centripetal) acceleration a,. Then, obviously, the refer-
ence system connected with this point (!) will be a noninertial one. In this noninertial ref-
erence system to the MP of mass m, aside from the others, an inertia force F;, = —ma, is
applied; it is called the centrifugal inertia force. This force is attached not to the MP but to
the bonds retaining this MP on the circle trajectory; it is directed from the center along the
radius. It is important not to confuse them!

1.3.7 A system of material points: internal and external forces

Any set of MPs (or bodies) is called a material points system. Each system’s points can
interact both with bodies of the same system and with bodies not belonging to it. Forces
acting between the system’s MP (bodies) are referred to as internal forces. Forces acting
on the system’s points from outside are referred to as external forces. A system is called
closed (or isolated) if it comprises all interacting bodies. Thus, in the closed system
only internal forces are acting. They compensate each other according to the third
Newtonian law.

Strictly speaking, there are no closed systems in nature. However, it is almost always
possible to define a task neglecting external forces in the limit of accuracy. The choice of
the border surface is a person’s own prerogative and can be chosen by the researcher on
the basis of an analysis of internal and external forces. One and the same system can be
considered as closed or open in different situation, depending on the statement of the prob-
lem and pre-given accuracy. All processes are described more easily and decided more
clearly in the closed system. This is what in physics is called the physical model.

The these two notion are of the some importance and should be given accordingly of
a system plays an enormous role not only in art (architecture, painting, ornaments, com-
posing, etc.), but to no less a degree in science. Let us first provide some definitions. Any
operation superposing an object with itself is referred to as an operation of symmetry.
Atoms and molecules, plants, animals and people, building materials, etc. are symmetri-
cal. In crystallography, chemistry and quantum chemistry translations (f), mirror planes
(m) and axes of symmetry (L) are mainly used. Endless checked paper (e.g., graph paper)
allows one to illustrate an infinite translation: under certain translations (refer to Section
9.1), this sheet being shifted on a certain vector will coincide with itself. A plane per-
pendicular to the benzene ring going through two opposite atoms of carbon is a mirror
symmetry plane. An axis going through the oxygen atom in the water molecule along the
bisector of the valence angle is an axis of symmetry of the second order L,. (The numeral
2 appears because of the fact that the symmetry rotation here is (360°/2 = 180°)). The
combination of an L, axis and a perpendicular mirror plane generates the center of sym-
metry. There are also other combinations: 360°/n. At n = 3 (L, is a designation of an axis
of symmetry of the third order, for instance, a molecule of ozone O;), at n = 4 (axis of
symmetry is of the fourth order, square molecules), at n = 6 (axis of symmetry is of the
sixth order, for instance, the benzene ring with the axis L,, passing perpendicularly
through the center of the carbon ring). A very important element is the center of symme-
try, the “reflection in the point” (the benzene ring has a symmetry center, but the molecule
of water does not).
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In many cases, analysis of a problem’s symmetry simplifies its solution. We use this in
many sections of this book.

Center of mass

Let us introduce a very important notion, a centre of mass (CM) (or the center of inertia).
The CM of a system is the point at which the system’s mass can be assumed to be con-
centrated. It can be described with a radius vector

R, = <=0 (1.3.30)
‘ K 3.
m.

i=1 !

The total mass of the system 1is further denoted by m.
If one places the origin into the CM (point C) then R, = 0 and

;mﬁ:ﬁ (1.3.31)

Another definition can be drawn from this equation: the CM of a mechanical system is
the point for which the sum of products of the masses of all MPs comprising the system,
on their radius vectors, drawn from this point, are zero. In Figure 1.10 all these positions
are illustrated using the example of a system consisting of two MPs.

In the Cartesian reference system, the radius vector R_ has coordinates X, Y, Z:

N N
- m.x. . my . mZ
X, ==l 77 Y, ==l 7 Z. = i=l T (1.3.32)
m m m
X, |
P N—
ny C
R, "2 my
r
O

Figure 1.10. The center of a two-mass system.
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So far we have considered the set of discrete MPs. The question is now: how to find the
CM in a continuous body? It is quite natural to move from the sum to integrals:

1
R, =;erm (1.3.33)
14

and in coordinate form

jv xdm jv ydm -[v zdm
Xc = 3 Yo A : (1.3.34)
m m m

It is easy to guess that for bodies having a plane of symmetry, the CM is located on this
plane. If a body possesses a symmetry axis, the CM certainly must lie on this axis. If a
body possesses a center of symmetry, it is not necessary to determine the CM position:
they have to coincide with each other.

In order to show the importance of the CM point, let us determine how it moves. Let us
write the expressions (1.3.32) in the form

N N N
Zmi'xi =mX,, Zmiyi =mY,, zmiyi =mZ,.
i=1 i=1

i=1

The time second derivation of them gives:

N N N
Zml-)'éi =mX,, Zmij}i =mY,, Zmlii =mZ,
i=1 i=1 i=1

Comparing these equalities with eq. (1.3.8) one can find that
mXc =Y Fy, m¥o=Y F,, mZ.=YF,.
or

mR. =Y F,. (1.3.35)

These equations, called the differential equations of the CM movement, coincide in their
structure with the differential equations of MP movement. Therefore, one can conclude:
the CM of the mechanical system moves as MP, the mass of which is equal to the total
system’s mass and to which all the acting forces are applied.
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If the system is free from the external forces (i.e., closed) (F;, = 0 or ZF; = 0), then
R =V, = const., (1.3.36)

and, hence, the velocity of the CM is constant (i.e., is preserved). The internal forces do
not influence its movement. If at some time in some reference system the CM’s point of a
closed system is at rest it means that it will rest further.

Many problems of mechanics can be solved in the easiest way in the coordinate system
connected with the mass center.

EXAMPLE E1.11

The ends of a half hoop are connected by a straight weightless wire. The radius of
the half hoop is R. Find the position of the CM of this figure.

Solution: The half hoop has a symmetry axis of a second order; it divides the
figure into two equal parts (see Figure E1.11). The center of inertia should definitely
lie on this axis, direct a z-axis along this axis; therefore we have to find only one coor-
dinate. Use the formula for the Z. coordinate (eq. (1.3.32)). In our case it is Z, =
(Jdmz) /M, where M is an unknown mass of a half hoop. Allocate a segment d/ = Rd¢
(see figure), write down the evident relations dlp = dm, (z/R) = cos ¢, M/TR = p.
Substituting these equations into the expression for Z- we arrive at

1 1 M
Z.=—\|d€pRcosep =—|dpR—Rcos
C M-[ P ® M'[ (7 7R @
+7/2
2R
=— I cospdp =—.
—7/2 n
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1.3.8 Specification of a material points system

To assign a system state means that one can describe a system’s configuration (i.e., to
know the position of all the elements) at the initial instance of time, being able to calcu-
late it at any other time.

The space position of an MP (Figure 1.11) can be assigned by radius vector r, which
in turn is assigned by three coordinates (for instance, Cartesian coordinates x, y, z).
How many numbers does one have to know to be able to find a system position at any
following points of time ¢ + dt? For the time dr a point displaces from position 1 to
position 2:

r(t+dt)=r(t)+dr =r(t)+ V(t)dt. (1.3.37)

This implies that for the determination r(¢ +dr) one needs to know r(¢) and v(?), i.e.,
six numbers in total. If a system consists of N particles, the number of parameters
is O6N.

For the assignment of a system state in modern physics, a so-called configuration space
is introduced. The dimensionality of this space is the number of parameters defining the
state of a system at a point of time, the change of this state being defined by the set of
points, i.e., the line. The element of the configuration space volume dz in analogy with a
three-dimensional case is written as

N
dr =[] dxdy,dzdp ;dp,dp,,. (1.3.38)

i=1

We will use this representation in Chapters 3 and 9.

z dr =Vdt

r(?)
r(t+dr)

X

Figure 1.11. A material point movement description.
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1.3.9 The dynamics of rotational motion

When considering the kinematics of the rotational movement of an IRB, we had to intro-
duce some new characteristics: elemental angular displacement, angular velocity and
angular acceleration. These values are identical to the whole rotating body, whereas the
linear characteristics for all the body’s MPs differ.

In rotational motion other dynamic characteristics are also required, such as a force
moment (torque) with regard to a motionless axis, a moment of inertia (MI) and an angu-
lar momentum, being in some respect analogous to the characteristics of linear motion
(mass, force, momentum).

These models do not exhaust the whole description of problems concerning rotational
motion, but cover a wide range of phenomena with which the chemist may be confronted.
Ignoring the logic of physics for the sake of simplification, we will start from the descrip-
tion of the rotation of an IRB relative to a motionless axis. We will then generalize the
results obtained and apply them to the motion of an MP around a pole.

The dynamics of rotation of an IRB around a motionless axis

Suppose that force F is arbitrarily applied to a body’s point (in Figure 1.12 the body itself
is again not shown). Divide the force vector into two components: one parallel to the axis
of rotation F| |, and the other lying in the plane perpendicular to the rotation axis F',. Only
one of them (F)) influences the rotation, whereas F|| exerts pressure on the bearings in
which an axis is fixed. The force momentum (torque) M in respect to an axis Oz is the
value

M=F Rsina=F, h, (1.3.39)

where o is an angle between the radius of circular point path (R) and the force arm (h). In
turn, Rsina = h, h being the shortest distance from the point O to the line along which the
force component F | is acting (the force arm). Note that the torque can be zero though the
force itself is not, if the force line action crosses the axis of rotation or is parallel to it.

Figure 1.12. A force moment; a work of this moment at a body rotation.
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Since all the body’s points are at different distances from the axis of rotation their lin-
ear velocities and, correspondingly, their momentums are different. In order to find a
body’s rotation characteristics let us draw at a moving point, a mass element dm = pdV,
where p is the body’s density. The value

dL, = Rdp =vRdm, (1.3.40)

is referred to as the angular momentum of a mass element dm relative to the axis Oz, R
being the distance of the dm element from the axis and v the linear velocity of this element.
Referring to eq. (1.2.27) we can arrive at

dL, = o,R*dm=w,dl,. (1.3.41)

A value

dl, = R*dm (1.3.42)

is referred to as a moment of inertia (MI) of the mass’s element dm relative to the axis Oz.
Integrating it over the body’s volume V, one obtains

L =o,[d,=o,[R%dn.
\4 \4

In this expression

_ 2
I, = [Rdm (1.3.43)
\%4

is referred to as the body’s momentum of inertia relative to an axis Oz. Then one can arrive at

L, =1,0,. (1.3.44)

That is, the angular momentum of a body relative to a motionless axis is the product of
the moment of inertia and the angular velocity of a body’s rotation relative to the same
axis. (This definition according to its “structure” is equivalent to the definition “momen-
tum of the translational movement is a product of its mass and their velocity.”)

Moments of inertia of some symmetric bodies

Consider moments of inertia of some symmetric figures relative to their central axes, i.e.,
axes passing through their CM (i.e., the symmetry axes).

Thin rod. Let us derive the MI of a thin rod (i.e., a rod of mass m whose transverse linear
dimensions are much less than its length /) with regard to the axis Oz passing perpendicularly
to the rod passing through its CM (Figure 1.13). Choose an elementary fragment dx, remote
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from the axis at distance x from the axis Oz. The mass of this fragment is dm = (m/l)dx.
According to the formula (1.3.43) we will arrive at

m +1/2
—— j =" (1.3.45)

=12

Hoop. Consider a hoop of mass m and radius R. The material cross-section is negligibly
small (Figure 1.14). The ring MI regarding the axis Oz drawn through its center perpendi-
cular to the ring plane is

2nR

m
I = { Rzﬁd1= mR> (1.3.46)

where dl is the length of an arc of dm = (m/2nR)dI.

dx

Figure 1.13. A moment of inertia of a thin rod.

dl

Figure 1.14. A moment of inertia of a thin hoop.
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N

h

Figure 1.15. A moment of inertia of a disc (cylinder).

Disc (cylinder). Let us select in the solid-bulk disc of mass m and radius R (Figure 1.15) an
elementary volume dV in the form of a coreless cylinder of radius r, height 4 and thickness of
walls dr. Its mass dm is dm = pdV. As p = m/V = m/nR°h then dm = (m/nR*h)2nrdrh =
(2m/R*)rdr, h and I, makes up I, = (2m/R?) f Pdr = 2mR* | R*4), or finally

0

mR?

IZ
2

(1.3.47)

In many cases it is necessary to calculate the MI with regard to an axis z' parallel to
the symmetry axis z but shifted from it to the distance d remaining parallel to the first
(Figure 1.16). The MI I, regarding the central axis z is taken as known. The I, value
should be calculated. In the shifted reference system the coordinate of mass element dm
is x” the last being equal to x” = d + x. The MI I, can be written as

+1/2 +1/2 +1/2 +1/2
I,= [ @+xPdn= | @dm+2d | xdm+ | xdm
“12 “12 -2 s
However,
1”2 12 12
J‘ ddm = d? j dm = d*m, ZdJ xdm =0
—1/2 —=1/2 —1/2

12
(according the definition of the CM (1.3.31)). The term d? fdm = d*m is I; therefore we
arrive at "

I, =1, +md". (1.3.48)
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- »H4—
l—2x

dx x,x'

Figure 1.16. A parallel axis theorem.

This expression is referred to the parallel axis theorem. Notice that the value md?
is always positive; it means that the MI relative to the symmetry axis /, has a minimum value.
There exists one more method of simplifying the MI calculations. We mean calculations
of the MIs of planar figures, i.e., figures that slightly differ from a two-dimensional form
(have low thickness). A method is derived and presented in Example E1.12. The main
essence of this method is the relationship between MI regarding three orthogonal axes

I, =1+I,. (1.3.49)
Sometimes this method is referred to as the theorem of orthogonal axis.

EXAMPLE E1.12

Calculate the MI of a hoop relative to its diameter (a y-axis, Figure E1.12); R is its
radius and m its mass (an axis y lies in the hoop’s plane passing its center).

y

do
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Solution: Let us solve this problem by the first method. On the hoop, allocate an
elementary segment d/ with mass dm = (m/27R)d{. Find the MI of a chosen element
considering it as MP: dI, = x2dm = x*(m/2nR)d{. Note that x (the shortest distance
to axis Oz) can be expressed through an angle o: x = Rcosa. In its turn, d€/R = do
and a MI of a selected element is dI,, = Rcos?a(m/2m)do. By integration in the lim-
its from O to 27 we arrive at:

2 2n 2

R R> 1% R’ R?
1 = Jcoszoch X—I(1+cosa)da=m—2n=m
20 4n

2

T

Now consider the second method. Consider the same plain figure: a hoop R in diameter
and mass M: the x- and y-axes coincide with the diameters; the z-axis is directed per-
pendicular to the plane. Allocate an elementary area (as MP) of a mass dm with coordi-
nates x and y (z = 0). Then the /; value relative to the y-axis is: dI, = xrdm; dl, = y*dm
and dI, = (x> + y?)dm = x*dm + y*dm; then integration over the whole figure gives

I,=1+I,

Note that we already know the 7, of a thin ring relative to an axis perpendicular to the
ring’s plane and passing through its center: I, = mR? (see eq. (1.3.46)). Symmetry
consideration gives Iy = [, then according to (1.3.49) we can write

1 R’
I=I,+1,=2I and I, =~1, ="
2 2

It can be seen that the second method in some cases is less troublesome than the direct
solution. This approach is referred to as the perpendicular (orthogonal) axis theorem.

EXAMPLE E1.13

Calculate the MI of a H,O molecule relative three mutually orthogonal axes x, y, z
passing through the molecule’s CM. Interatomic distances O-H are d = 95.7 pm,
valence angle o = 104.5° (see Figure E1.13). Relative nuclear masses of atoms:
A, = 1 and oxygen A, = 16.

A

C{/ 2| c ‘\3 y
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Solution: Let’s arrange a molecule as it is represented in Figure E1.13. A water
molecule consists of three MPs (nuclei of atoms) with a total mass m = 2m, + m,,
where m, and m, are masses of hydrogen and oxygen atoms, respectively. Calculate
first the MI I, of the water molecule relative to an axis z’ which passes through
oxygen atom perpendicular to a molecule plane. The origin (intersection of three
axes C) is superimposed with the molecule CM. We direct an axis z upwards per-
pendicular to a molecule planes. To find the molecule MI we shall take advantage
of the theorem on parallel axis (see (1.3.48)): I, = I, + ma?, where I, is the MI
of the molecule relative axis 7', passing through an oxygen atom and parallel to the
axis z. The required MI is I, . = I,, — ma*", where a is a distance between two par-
allel z axes. One can find the MI relative the axis z’ as a sum of two MI of MP being
at the distance d from the z’ axis I,, = 2m,d>. The distance a is just the coordinate
X of the oxygen atom laying on y’ axis; it can be found according eq. (1.3.34), i.e.,

. Zmixi _ 2myx; +myx;
a=x.= = .
m

m

Therefore, a = (2mx', + myx',)/m. Taking into account that x';, = d cos(«/2) and x’,
= 0, we can obtain a = 2 m,d cos(0/2)/m. Substitute /., m and a into the star* equa-
tion we obtain

2
I,.= 2m,d* 1—— cos? 2
' 2m; +m, 2

The I, can be obtained accordingly: I, = 2m,d, sin*(2/2).

Now we can use the advantage of the previous correlation of MI’s of the plain
figures (see E1.12) (1, = I, + 1) and found

I, =2md* (1 - %cosz & _sin? zj =2m,d” cos’ g(l - Lj

m 2 2 2 2m; +m,
Calculations can be simplified a bit taking into account that expression in bracket are
dimensionless. The mass m, and d should be translated into SI, keeping in mind that
I amu. = 1.66 X 107* kg and 1 pm = 1072 m, then m; = A, X 1.66 X 10~ kg
and d = 95.7 X 10~'°m. Substitute all these values into the final formula and exe-
cuting calculation gives

I, =2X1.66X107%(0.957x107"")*| 1—- 21 (1043 kgm®
’ 2.1+16 2

=2.91x10"* kgm?,
I,c =2X1.66X1072(0.957x10""")* =1.888 10 * kgm®,
I,c =2X1.66X10777(0.957x107"°)* =1.02x 10~ kgm®
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Such kinds of information can be found from the optical molecular spectroscopy and
from experiments on inelastic scattering of neutrons.

Diatomic molecule as a rigid rotator

A system rotating around a motionless axis is referred to as a rotator. If the intermolecular
distance is constant, the rotator is called a rigid one.

Consider a diatomic molecule, rotated around an axis passing through the CM
(Figure 1.17). The problem is to express the MI of this molecule and the corresponding
kinetic energy of rotation through its parameters, which are supposed to be known
(for instance, from the reference literature). In the figure, the masses of two atoms of the
molecule are marked by letters m, and m,, and the letter d denotes an interatomic distance
d=x, + x,).

The point C is a mass center. Bearing in mind the characteristic of the CM (1.3.31) we can
derive x,m, = x,m,. Therefore, x, = x,(m,/m,), x, = x,(m,/m,) further x, = d m,/(m, + m,)
and x, = d m,/(m, + m,). It is no trouble to calculate the MI:

I = mad +myad =" 2 — (13.50)
m; +m,

where mm, m, m,/(m,+m,) = uis referred to as the reduced mass of the molecule and
I, as the reduced molecular MI. It can be seen from the equation derived, that the rota-
tion of diatomic molecule relative to the axis passing through the CM can be reduced to
a single mass (1) rotation around the same axis at the distance from axis being d. Note
that eq. (1.3.50) contains only tabulated molecule characteristics which can easily be
found in the reference books.

The kinetic energy of a rotating body can be given by the equation

I I?
K=2t—=- 1.3.51
221, (1351
Z
X X
mlc\ fe f)mz
% ) g

Figure 1.17. A diatomic molecule as a rigid rotator.
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The equations derived are used in molecular spectroscopy.
Let us now analyze projections of the dynamic characteristics of a body rotating around
the motionless axis. The time derivation equation (1.3.44) gives

dL d dow
L=—Uw,)=1 L=J¢.
o dt( ,0,) =1, oL (1.3.52)

(with I, not changing in time). If one acts on the mass element dm by the force F along the
tangent to the circular trajectory, the mass element will receive acceleration a, (= &,R):
dF = a.dm = Re,dm. Multiplying the left- and right-hand sides of this equation by R, we
receive dM, = dl,&,, where dM, is a force momentum with regard to the axis Oz.
Integration over the whole body gives

M, =1Ie,. (1.3.53)

(This equation is equivalent to the second Newtonian law for translation motion.)
Comparing eqs. (1.3.52) and (1.3.53) we arrive at

dL
~=M,. 1.3.54
r ( )

Applying this equation for the case of N forces (with corresponding momentums),

dL, <
L=%(M,);. (1.3.55)
dt ;

This equation presents another form of Newton’s second law for body rotation relative to
the axis Oz: the change of the angular momentum projection onto the axis Oz is equal to
the sum of projections of all the force momentums applied to the body relative to the same
axis.

The planar motion of the material point relative to a pole

Let an MP of mass m move along the planar orbit around the pole O with a velocity v (and,
consequently, with momentum p = mv). The angular momentum of a MP relative to the
pole O is a vector product

L=[r-p], (1.3.56)
where r is a radius vector of the MP (Figure 1.18). According to the definition, the vector

L is perpendicular to the plane in which both vectors r and p are lying (i.e. to the orbit
plane) and is directed in such a manner that r, p and L produce the right-hand rule system.
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Figure 1.18. A force moment relative to a pole.

Calculating the time derivation of eq. (1.3.56) gives

dL [dr } [ dp}
=Zp|+r=1
dt dt dt
Hence dr/dt = v and p = mo, the first term is then zero since both vectors are collinear.

Taking into account that dp/dt = F, the second term can be written as [r'F]. This vector is
called the momentum of the force (torque) F with respect to pole O.

M=M,F)=[r F]. (1.3.57)
Therefore,
@ =M, (1.3.58)
dt

i.e., the time derivative of the angular momentum of an MP is equal to the applied force
momentum. This is the basic law of the dynamics of rotational motion or Newton’s
second law for planar MP revolution. The projection of the equation onto the axis Oz gives
dL./dt = M, and we arrive at the known eq. (1.3.54).
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It is very useful to apply eq. (1.3.58) to the explanation of the effect known as a gyroscopic
effect. Using this example, one can see how the rules of rotational motion are distinguished
from our usual beliefs about the mechanics of motion and what effects they can bring about.

In Figure 1.19 a sufficiently sophisticated situation is shown. Imagine a body (in
Figure 1.19 it is arbitrarily drawn in the form of a disc) which rotates around axis z. The
angular momentum of this body L is directed along the same axis. Apply to the axis of
the rotating body a force F' acting along the x axis. The torque of this force M is a vec-
tor, directed along axis y. According to eq. (1.3.58) the increment dL is directed not along
the line of the force action but along the torque mentioned, i.e., along axis y. (The indexes
x and y in the figure indicate the fact that force F is directed along axis x, but vector dL is
along axis y). Thereby, a force directed along axis x creates a rotation of vector L. perpen-
dicular to the force F..

LZ\dL

Figure 1.19. A gyroscopic effect.

Table 1.1

The relationships between the characteristics of translational and rotational motion

Rotational motion
(relative to z axis)

Translational motion
(along z axis)

M Body’s mass I, Moment of inertia
relative the rotation axis
F, Force projection M, Force moment relative
the rotation axis
p, = mu, Momentum projection L,=Lo Angular momentum
relative the rotation axis
dp, = F,dt Basic law of dynamics ~ dL, = M,dt Basic law of rotational
of the translational motion relative an
motion axis
dA = F.dx Elementary force work ~ dA = M,d¢o Elementary work of
force momentum
W = Fu, Power W =M,w, Power
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It is reasonable here to look at Figure 1.8 where an increment dp in the translation
motion, according to Newton’s second law, is directed along the acting force line but is by
no means perpendicular to it.

As an example, a precession of an unbalanced gyroscope (a top) in a uniform gravity
field is considered in Appendix 2. Many physical events, such as diamagnetism, preces-
sion of magnetic moments (atomic and nuclear) in the external magnetic field and others
are based on gyromagnetic effects (refer to Chapter 8 and Appendix 2).

In conclusion, it is useful to note that the structure of the formulas of the kinematics and
dynamics of rotational motion relative to a fixed axis have the same “structure” as formu-
las of translation motion. One has only to substitute all translational characteristics with
rotational ones. This analogy can be seen in Table 1.1.

1.4 WORK, ENERGY AND POWER

1.4.1 Elementary work of a force and a torque
Let an MP, under the action of a force F, undertake an elementary displacement d! (Figure

1.20). The elementary work dA of the force F is the scalar product of the force and the ele-
mentary displacement of a point of force application:

dA=(Fdl) (1.4.1)

or

dA=Fdlcosa=F,dl. (1.4.2)

Depending on the magnitude of the angle ¢, the elementary work can be positive or neg-
ative: at 0 < o< w2 the work is positive and at /2 < o < 7 it is negative. When o = /2
the work is zero. The work on the finite displacement L is equal to

Azj(Fdl). 143)
L

dl

Figure 1.20. Force work F over a displacement dZ



52 1. Mechanics

do

dl

Figure 1.21. Torque work on an angular displacement d .

In a particular case in which the force is constant and the application point is moving
along straight line /, eq. (1.4.3) simplifies to:

A=Flcosa=Fl (1.4.4)

where F| is the force projection on the direction of motion.
A force F being applied to a point A of a rotating body performs a work dA = Fdl
(Figure 1.21). Since Rd! is an angle displacement d¢ then

dA = M, (F,)de, (1.4.5)

where M,(F) is the torque of the force F regarding the Oz axis. The work done on a finite
angle @ is

A= IMZ(F)dw.

¢

(1.4.6)

If M,(F) = const. one has

A= M,(F)p. (1.4.7)

Let us consider some examples.

Elastic force work. Elastic force depends on deformation (displacement of the force appli-
cation point at a body) according to the linear law F(x) = —fx (refer to Section 1.3.5). The
simplest example of elastic force is the small deformation of a spring. Let us superpose the
origin with the point of the force application when the spring is in a nondeformed state and
an external force is not acting (Figure 1.22, point O). Suppose that a body can move without
friction (!) along the horizontal x-axis. After application of an external force, two forces will
act on the body: the external force F, and the elastic one F,. At any position they are in bal-
ance: F'; = —F,. When the body returns to the initial position both forces perform equal work
but of opposite sign. The elementary work of the elastic force on a displacement dx is

dA = F(x)dx = —x dx; (1.4.8)
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F(x)

F=—fx

Figure 1.22. A work of elastic force F),.

The total work of the external force on the displacement x is

X 2
A=—jﬁxdx=—ﬁi, (1.4.9)
0
whereas the elastic (internal) force produces the positive work:
2
A= % (1.4.10)

The external force work is equal to the internal one in absolute value but is opposite to
it in sign.

1.4.2 Power

When work is produced during some time interval, the question arises of how fast the work
is made. This leads to the notion of power. For time At, let work AA be accomplished. Then
an averaged power P for a given interval Az is

=AA

(P) A7
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Under Ar — 0 one can obtain a power made by a force in a given time instant, i.e., the
instant power

P=lim Ad_dA
AT (1.4.11)
Keeping in mind eq. (1.4.1), one can write
Fdl
P=—=Fv
ar (1.4.12)

The power is the scalar product of the force and the velocity of point of its application.
When rotational work is produced by a force moment M,(F) applied to the body the
power is

M,d
P: Zq)

ot =M;Xo. (1.4.13)

1.4.3 Kinetic energy

The kinetic energy of an MP is a scalar measure of its mechanical motion, equal to half of
the MP’s mass and the square of its velocity

2
nmov

K=",
5 (1.4.14)

As can be seen, the kinetic energy is always positive.

Because of the motion, an MP possesses a certain stock of mechanical energy, referred
to as kinetic energy. Reduction of velocity means a loss of kinetic energy; velocity increase
leads to an accumulation of kinetic energy. Changing the energy goes to accomplishing a
work.

The kinetic energy is assigned in a certain inertial reference system. Turning to another
inertial system the kinetic energy value (in consequence of a velocity change) will be dif-
ferent; the kinetic energy (in the same way as the velocity) is noninvariant with respect to
Galileo’s transformations though the mathematic expressions are the same and the physi-
cal values differ only by a constant.

The total kinetic energy of a mechanical system consisting of a set of N material points
is the sum of the kinetic energy of all the system’s elements:

(1.4.15)

T
M=
o]

Consider a value of kinetic energy for some types of motion.
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Translational motion. Taking into account that under translational motion of an IRB the
velocities of all the body’s points are the same, we arrive at

Nomp; 0P & mv
K=Y, 5 =3§ :T’ (1.4.16)

i=1

where m is the body’s total mass and v is the velocity of any point of the body.

Rotational motion. For the rotational motion of a body around a fixed axis, the velocity
of an arbitrary point is v; = wR,; where o is the angular velocity of a body, R, is the dis-
tance of a corresponding point from the axis of rotation. Then

2

N N
K=Y m?= "=%2 : (1.4.17)
i=1 i=1

When the last sum is a moment of inertia /, of a given body relative to the axis of rota-
tion then

Lo 2
=%= - (1.4.18)

General case of a body’s (a system’s) energy. For an arbitrary system a theorem is equi-
table: the kinetic energy of a system of MPs is the sum of the kinetic energy of the sys-
tem’s mass as a whole, imaginary concentrated in the CM and moving together with it, and
the kinetic energy of all the system’s elements with respect to the CM.

Apply the theorem to an arbitrary body motion. In this case the motion can be divided into
the translational part (at the velocity of the CM) and the rotational part relative to the axis,
passing through the CM. According to the theorem, the total kinetic energy in this case is the
sum of the kinetic energy of a translational motion (with the velocity of its CM, V) and the
rotational motion relative to the axis, passing through the CM (with the angular velocity w):

mV?: I
K= 3 + 5 (1.4.19)

Theorem on the kinetic energy change. Let an MP of a mass m under the action of a force
F gain an increment dI. Projecting the vectors of equation ma = F onto the tangent to the tra-
jectory in the point of force application we obtain ma, = F,, where a, is the absolute value
of the point’s tangent acceleration of an MP, and F is the corresponding force projection.
Taking into account that a, = dv/dt = (dv/dl) (dl/dt) = vdvldl we obtain: modv = F,dl.
Considering the right-hand side of this equation as the force’s elementary work dA and the
left-hand side as a differential of the body’s kinetic energy we arrive at d(mv*2) = dA, or

dK = dA, (1.4.20)
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i.e., the elementary change of the kinetic energy is equal to the elementary force work. In
integral form, this equation can be presented as

K,—K,=A, (1.4.21)

i.e., the change of the MP’s kinetic energy is equal to the work of all forces applied to it.
No limitation has been applied to the nature of the force in eq. (1.4.21). Therefore it is
valid for any system and has to take into account all kinds of forces: internal and external,
potential and dissipative.
The theorem discussed is also valid for a system of MPs.

EXAMPLE E1.14

A uniform hoop and/or disc begins to roll, without either friction nor sliding, along
an inclined plate with an angle of slope o = 10° from the height # = 40 cm (Figure
E1.14). Determine: (1) linear velocities of CM V,, (hoop) and V, (cylinder) of both
bodies at the end of the plane; (2) time of their rolling 7, and 7,

Solution: (1) In consequence of the absence of the dissipative forces we can
take advantage of the law of the mechanical energy conservation E, = E,, where
E is the total mechanical energy at the top and bottom position. This energy can be
written as the sum of kinetic and potential energies K|, + U, = K, + U,. In the ini-
tial and final positions both bodies have identical potential energies. Their kinetic
energies at the initial position is zero, both bodies are at rest. In the final position,
according to the energy conservation theorem and taking into account the theorem
on total energy, the total energy will be equal to the sum of kinetic energies of the
translational motion of the body’s CM and rotational motions, K, = (mv%/2) +
(I,w*/2), where v is the CM’s speed of bodies, and MI is the MI concerning a
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horizontal axis z passing through the CM of bodies parallel to the inclined plane
and o is the angular speed of rotation of bodies concerning these axes.

The point of contact of rolled bodies and the inclined plane is the instant center of
speeds, in all time instants it is at rest; movement can be considered as instant rota-
tion of the bodies concerning this point. Therefore,

4t  Rdr Rdr R

In order not to solve the same problem twice we designate the MI of bodies I, = fmR?
(for the hoop f = 1, for the disc § = 1/2). Therefore

_mVg N BmR*(Vo/RY*  mV¢ g mv¢2

KZ
2 2 2 2

and finally, K, = (mV2/2)(1+f)

In this case the rolling kinetic energy can be written down for both the bodies and
for any other cylindrically symmetric body, one should substitute only a proper f§
value.

In order to find the velocities one should use the conservation law.
mgh = (mVZ/2)(1+ p).

Reducing expression of masses m we can arrive at

oo [
1+p

Carrying out calculations for speed of the CM we shall obtain (see below).

We can find the time of the bodies’ slope run by taking the formula of the kine-
matics of uniformly accelerating movements t = //<v>, where [ is the inclined plane
length and (v) is an average speed of uniformly accelerating motion (v) = V/2
(because the initial speed was equal to 0). We can then arrive at:

2h
for the hoop(f =1) V-, =+/gh =1.98m/sec and 1, = — = 2.33sec
Ve sina
. 2h
for the disk (8 =1/2)V, = /4% gh =2.29m/sec and 1, = ———— = 2.01 sec.

Ve sina

57
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1.4.4 A force field

A physical field is a particular form of matter that links together material particles and
transmits an influence from one body to another (with finite velocity). Each type of inter-
action has its own special corresponding force field. The force field is an area of space in
which a force acts on any material particle placed in this space point, depending on coor-
dinates and time. A force field is called a stationary one if the acting forces do not depend
on time. A force field at any point of which the acting force has one and the same value
(on modulus and direction) is referred to as a uniform one.

It is possible to characterize a force field by force lines. In this case, the tangent to force
lines defines the direction of a force and the line’s density is proportional to the force value.

The force field is referred to as a central one if every force line passes through one par-
ticular point, called the center of forces (Figure 1.23). The magnitude of force F, acting on
a MP in such a field, depends only on distance r from the center of forces, i.e.,

Fr)=F (r)g, (1.4.22)

(r/r is a unity vector in the direction of r). All the force lines pass through a single point
(pole) O; the force momentum in this case is identically equal to zero (My(F) = 0).
Gravitational and Coulomb forces are related to the central ones.

An example of a uniform force field is depicted in Figure 1.24: in every point the lines
of force action are the same both in direction and magnitude, i.e.,

F(r) = F = const.

Figure 1.23. Force lines of a central force field lines.
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In Figure 1.25 an example of a nonuniform force field is given. In this case

F(xyz) # const.

and

O0F(xyz) OF(xyz) OF(xyz)
ox day 0z

(i.e., all partial derivatives) deviate from zero.

>

Figure 1.24. A schematic representation of a uniform force field lines.

W

Figure 1.25. Force lines representation of a nonuniform force field.
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All the mechanical forces can be divided into two groups: conservative forces (acting in
potential fields) and nonconservative forces (or dissipative). The forces are referred to as
conservative (or potential) ones if their work depends neither on the trajectory form, nor
on the path length, and is defined only by the position of the point of the force application
in the initial and final positions. The field of conservative forces is called the potential
(conservative) one.

Let us see that the work of the conservative forces along a closed contour is zero (Figure
1.26). Arbitrarily divide the contour into two parts: 1a2 and 1b2. Since the force is con-
servative A,,, = A,,. On the other hand it is obvious that A, = —A,;,. Then A,,,;, = A,
+ Ay = An— A, = 0, which has to be proven.

The inverse statement is fair: if the work of a force on the closed contour is zero, the
forces are conservative and the field is potential. This condition can be written as a con-
tour integral (circulation of a vector along a closed contour):

SLBF dl=0. (1.4.23)

i.e., the circulation of vector F along the closed contour L is zero.

The work of the nonconservative (dissipative) forces in the general case depends both
on the form of the paths travelled and the lengths of the way. Examples of nonconserva-
tive forces can be given by friction and resistance forces. In both cases the mechanical
energy transforms into another type of energy.

The central forces are referred to as the conservative forces (Figure 1.27). In fact, if a
force F is a central one, the work of this force dA can be presented as dA = Fdl =
F(r)(r/r)dl and dA = F(r)cos o dl = F(r)dr (because dI cos o = dr).

Then the work is

Ay = [F@ydr = £(5) = f(r). (1.4.24)

1

where f{(r) are the antiderivative functions. It can be seen from this equation that the work
A,, of the central force depends only on the form of the f~function and on the positions of
the initial and final points (7, and r,) but not on the path length. This statement is just the
indication of a conservative field (conservative force).

1

Figure 1.26. Proof of the work of a conservative force to be equal to zero.
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0}

Figure 1.27. Proof of the conservative nature of a central force (a central field).

The proof given is common to any central force and, consequently, covers the above-
mentioned types of forces—gravitational and electrostatic ones.

1.45 Potential energy

In a potential system, the notion of potential energy can be introduced as a function of a
point coordinate.

In a system, first choose a state that we can arbitrarily admit as a point with zero poten-
tial energy (position U, = 0). Further, suppose that we need to find an MP potential energy
in another point of the system, which we assign as position 1 (i.e., find the value U,). The
potential energy of a system in position 1 is taken to be numerically equal to the work of
the field force on transferring the system from position 1 to that position where the poten-
tial energy is chosen as zero:

Ay, =U,~U,=U,. (1.4.25)

If the field is potential, the work A,, does not depend on the pathway 1-0. It charac-
terizes the system in point 1 with respect to point 0. If one needs to define the potential
energy in position 2, the work of the field force should be measured. Obviously, A,, = U,
and A, = U, —U,. Because A,;, = —A,,, the work of the force is

A, =U,~U,=—AU, (1.4.26)

i.e., the work of the internal force (force of the field) is equal to the decrease of the poten-
tial energy. On the other hand, the work of the external force, acting against the field force,
brings about the potential energy growth.

Ay =AU=U,—U,. (1.4.27)



62 1. Mechanics

Position 0 was chosen arbitrarily; any point of the system can be accepted as the zero
point. This signifies that the defined potential energy is accurate to a constant value C. This
“arbitrariness” is not essential, since in the calculations of the difference of energy (refer,
for instance, to eq. (1.4.25-27)) constants C are mutually canceled out. Also, the presence
of the constant in the equation does not affect the derivative of the potential energy func-
tion in respect to the coordinates.

The correlation obtained shows how one can determine the potential energy of a system
at a certain position. There is no universal formula for such a calculation (as for the kinetic
energy). Correlation (1.4.25) shows a way of determining the system’s potential energy by
calculating the force work which leads a system to the given zero point.

Below are some important examples.

EXAMPLE E1.15

Calculate the potential energy of a deformed spring using the potential energy defi-
nition.

Solution: In Figure 1.22 the scheme of the spring, originally in a nondeformed
state, is presented: the left end of the spring is rigidly fixed, the other end, under the
action of an external force, can move along an axis x. The spring is also stretched
under the action of external force F,. On the movable end of the spring in an arbi-
trary state two oppositely directed forces operate: external force F, and force of
elasticity F;: F, = —F,. For the zero position (with zero potential energy) we
choose the spring to be in a nondeformed state (x = 0). According to eq. (1.4.25)
dA = —fxdx, i.e.,

0 0 ﬁxz
Ux)=|dA= dx = —.
X i ﬁix X 5

The straight line in Figure 1.22 represents Hooke’s law whereas the potential energy
is shown by a hatched area.

EXAMPLE E1.16

Determine the potential energy U(r) of the body in the gravitational field of the earth.
The earth’s mass is M and the distance from the center (!) of the earth to the body of
mass m is r.

Solution: According to Newton’s gravitation law (1.3.19) we have F(r) =
—G(Mm/r?). Assume as a position with zero potential energy an infinite body’s
remoteness from the earth (U(ee) = 0). By definition, the potential energy of the
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body in the given (arbitrary) space point r is numerically equal to the work of the
gravitational force when carrying the body from a position r to r = e

Trdl Td Mm.,
U(r) ==GMm[~5- = —GMm [ < = 6=
r r r r r
Therefore, one arrives at U(r) = —G(Mm/r)

The potential of the gravitational field ¢ = (U/m) is numerically equal to the
potential energy of the MP of a unit mass placed into a given point r; therefore,
@(r) = —G(M/r). Note that r is the distance to the body from the center of the
earth; this formula is valid for any spherically symmetric force’s field. The rela-
tionship is also useful: U(r) = me(r). This is the most general expression.

Relationship between the force and potential (work-energy theorem). In order to estab-
lish a relationship between energy and work we shall consider a body in a stationary field.
Acquire an elementary body’s displacement dI. The internal forces of the field will pro-
duce the work dA equal to the potential energy change (dA= —dU). Therefore,

du
F=——.
I dl (1.4.28)
This is the relation sought. The dl quantity is a displacement.
In a one-dimensional problem, consider dl = dx. Therefore:
dU(x)
F(x)=— .
(x) e (1.4.29)
Considering further a motion in the central force field dI = dr
du(r)
F(ry=——.
(r) i (1.4.30)
In a three-dimensional case
F(r)=— a—Ui-Fa—Uj+a—Uk = —gradU(xyz), (1.4.31)
Ox Oy 0z

i.e., the force is equal to the gradient of the potential energy taken with an opposite sign.

That is, the potential energy is determined within an accuracy to a constant compo-
nent; this does not influence the result: calculating the differences or derivations using
these formulas (1.3.28-1.3.31) the arbitrary component makes no contribution to
the result.
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EXAMPLE E1.17

Calculate the potential energy U(x) of an elasticity force F(x) using the relation of
force and potential energy.

Solution: Since F(x) = —fx and F(x) = —(dU/dx), then fx = (dU(x)/dx); there-
fore dU(x) = Pxdx. Integration gives U(x) = (fx*2) + C. Assigning U(0) = 0 we
can obtain C = 0. Then U(x) = (fx*/2). The work to deform a spring from x, to x,
can be expressed by the equation:

Ay =+AU=U, U, =3ﬁ(x§—x12)

EXAMPLE E1.18

Derive an expression for the potential energy U(h) for a body raised on £, not high
above the Earth’s surface.

Solution: We should start with the precise relation (see example E1.16).
According to the definition, the potential energy is numerically equal to the gravita-
tion force work

A =U(r) = GMmj% or U(r)= —G@WL C.

We can determine an integration constant C in two ways: firstly, having accepted the
point where the potential energy of a body removed to an infinite distance has zero
potential energy, i.e., U(e2) = 0. Then C = 0. Hence, U(r) = —G(Mm/r)*.

Secondly, we can assign the potential energy to be equal to zero when the body is
resting on the surface of the earth, i.e. U(R) = 0; that is to measure the potential
energy from ground level. Then the equation * can be rewritten as

Mi M,
UR)= —GTm-FC =0. Therefore, C= GTm

In this case the potential energy of a body at height /4 above ground level will be:

M M 'Mmh
Uhy= - MM gMm _ GMmh
R+h R R(R+h)

At h<R we have U(h) = G(Mm/R?)h; since G(M/R?) = g and U(h) = mgh.
This is a well-known formula describing the potential energy of a body lifted above
the Earth’s surface to a moderate height (h<R) (a straight line U(h) in Figure 1.28).
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Generally, the gravitational field of the earth, as for any central field, is nonuni-
form (the force lines of the field are not parallel to each other). However, if we limit
the volume of the field by a definite dimension /4, we can always calculate an accu-
racy within which we can use either a precise eq. (1.3.19) or an approximate formula
(1.4.37). We shall note that eq. (1.4.37) is only a special case, though very important
in normal engineering practice. The precise formula is given in Example E1.16.

In Figure 1.28 the graph of the function U(r) is presented: hyperbolic dependence
U(r) ~(—=1/r) lies in the areas of negative values of potential energy. We can see that
U(r) = 0 at r — oo. If we take another border condition, U(R) = 0, then the origin
in the graph should be shifted by —G(Mm/R) down the U-axis and by R along the
r-axis. At (h<R) dependence U(h) is represented by a straight line. The place where
the curve U(r) and linear line U(h) at small & practically coincide can be seen in
Figure 1.28.

In general, the gravitational field of the earth, as with any other central field, is nonuni-
form (force lines of a field are not parallel to each other). However, if a volume of the field
is limited by a definite dimension, it is always possible to calculate to an accuracy within
which either a precise or an approximate formula can be used.

Figure 1.28 presents a graph of the function U(r): hyperbolic function U(r) ~(=1/r) lies
in the areas of negative values of potential energy. It can be seen that U(r) — 0 at r — oo. If
we accept that U(R) = 0 then the origin in the graph should be shifted on —G(Mm/R) down
along the U-axis and on R along the r-axis. At ~<R, dependence U(h) is represented by a
straight line. It can be seen in Figure 1.28 that the curve U(r) and linear dependence U(h)
at small & practically coincide. (All these aspects are analyzed in Examples E1.16 and E1.18
in detail.) Simple calculations show that to within 1% the equation U = mgh can be used
up to a height of 64 km (see Example E1.19). In fact, the gravitational field of the earth up
to a certain accuracy can be counted as homogeneous. The zero position of the potential
energy is not necessarily connecting with a level of the Earth’s surface; potential energy can
be counted from any level near the earth.

Uu)

Figure 1.28. Work of a gravitational force.
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EXAMPLE E1.19

Find in some respect a less-precise expression for the potential energy of a body in
the Earth’s gravitational field at large distances. Evaluate the approximations. The
concept of potential energy of the gravitational interaction permits some arbitrari-
ness: everything depends on the choice of from which level to count this energy.
There are different options, among which are exact and approximate ones. In the lat-
ter case it is always possible to estimate an error arising when using the given
approximations. Estimate this error using the formula (1.4.37): in what limits of a
body lifting will the error not exceed 1% in comparison to a general approach
(1.4.28).

Solution: The equation in Example E1.16 is definitely the most general. It has
already been noticed that the most important thing is not the absolute value of the
potential energy but the difference in their two states.

There is one more approach to the gravitational potential energy evaluation

UMh)=U(R+h)—U(R).

Then

U(h)= —G——(— _Mj ( Lj
R R R+h
mgh

R(R+h) R R+h’

In a very good approximation we can consider the gravitational force on the earth
level: mg = G(mM/R?). Then U(h) = mgh(R/(R+h)). This expression is precise
enough and can be used sometimes at any /. In order to obtain an answer to our main
question we should calculate the uncertainty ratio

AU METTEN R R+h h

Uh) R R’

hi
e e h

To find the uncertainty 1% error we equate the last prescribed accuracy with 0.01R: A =
0.01 R = 0.01 X 6.4 X 10> m = 64 km. Therefore, we can use the mgh formula in the limit
of 1% while climbing Everest, but not in planning the spacecraft flights.

Note that the potential energy of a body (e.g., a satellite) is negative; it is because of the
fact that we chose the value U = 0 at infinite interval from the earth. The potential energy
of a body lifted above the earth is always positive.
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Because in the framework of Galileo’s transforms the distance is invariant, the potential
energy is also invariant (remember that kinetic energy is noninvariant in relation to
Galileo’s transformations because of the dependence of a body’s velocity on the choice of
the coordinate system).

The work of the gravitational forces at a body displacement from some point 1 to a point
2 will generally be expressed as follows:

A,=—AU=U,—-U, =—GMm(l—lJ=m((pl—(p2),
h n

and in the case of a uniform gravitational field:

A, =mg(h, —h)).

1.5 CONSERVATION LAWS IN MECHANICS

Conservation laws are the most general, fundamental laws of nature. They have an enor-
mous scientific value. Their importance is defined by the fact that the solution to many
kinds of problem can be achieved with their help and without detailed analysis of specific
circumstances and details.

1.5.1 Conservation law of mechanical energy

Let 1 and 2 be the two positions of an MP in a potential-force field; U, and U, are their
potential energies at these points. According to the theorem of kinetic energy change (refer
to (1.4.3))

Ky—K=—2-""L=4,, (1.5.1)

where A, is the work of all forces, external and internal, conservative and dissipative
applied to the MP on displacement from point 1 to point 2. If we restrict ourselves to con-
servative (potential) systems and remove the external forces (according to a criterion of the
closed system), then according to (1.4.26)

A, =U,—U,.

Combining the two last equations, we obtain

K,+U, =K, +U,. (15.2)
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Because two arbitrary positions were chosen, the general equation for the total mechani-
cal energy can be written as:

K+U = E = const., (1.5.3)

which is valid for any body of the system and for the system as a whole. So, the total
mechanical energy of the closed potential system is conserved.

The given determination comprises certain conditions, the removal of any of which breaks
the law of conservation. In fact, if one takes into consideration the dissipate forces (for
instance, friction), part of the mechanical energy transforms into heat, and the law of conser-
vation of mechanical energy becomes invalid. On the other hand, if one takes into considera-
tion other forms of energy (heat, electric and others), the condition of system conservation
becomes an excessive condition: the total energy of any closed systems is preserved.

In differential form, the law of mechanical energy conservation can be denominated by
equation, dU+dK =0 or

dU = —dK. (1.5.4)

This means that in the resting system the kinetic energy can appear only as a consequence
of the reduction of potential energy. But if the potential energy in the given state has a min-
imal value, the motion simply cannot appear. Consequently, the system is in a state of equi-
librium when the potential energy has a minimum value.

As we know, the potential energy is a function of a body’s coordinate; the kinetic energy,
however, depends on its velocity (or momentum).

E(r,p)=U(r)+K(p) =U(xy2) +K(p,.p,.P.)

As was mentioned in Section 1.3.8, in order to specify a system state one has to know the
coordinates and momentums of all points, i.e., the same parameters that define the energy. In
this sense it can be said that the total mechanical energy is a function of a system’s state.
When changing a system’s state its energy changes as well. The work in this case is presented
as a measure of changing a system’s energy. This concerns the physical sense of work.

The law of total mechanical energy conservation is invariant with respect to Galileo’s
transforms. This does not mean, however, invariance of the total energy with respect to
Galileo’s transforms literally, since the kinetic energy with respect to different reference
systems has different values. So, the constant characterizing the total energy in each case
can be different, though the principle in general is the same.

EXAMPLE E1.20

In a gravitational field of the earth, a body with a weight m moves from a point 1 to a
point 2 (Figure E1.20). Define the speed of the body at point 2 if its speed at point 1 was
v, = VgR = 7.9 km/sec. Assume the acceleration of free fall at all points to be equal g.



1.5 Conservation Laws in Mechanics 69

Solution: An earth-body system is conservative and closed. Therefore, we can
use the energy conservation law. We connect the origin to the earth’s centre. We can
write: E—-E,ie. U, + K, = U, + K,, where U and K are the potential and kinetic
energies at points 1 and 2. Because the reference frame is connected with the earth,
the relative body energy does not depend on its movement. Then

2
R_1: m;l : Ul —

_GMm' K_mvg. _ Mm
3R’

Substituting these expressions in the energy conservation law we obtain:

mul2 @_mv%_GMm
2 3R 2 2R’

Substituting GM by gR? and executing elementary simplifications we obtain:

R R
v; =0} +8% and then v, = [} +58°
3 3

Because 12 = gR then v, = V4gR/3 = ul\f"4—/3.
Executing calculations we arrive at v, = 9.12 km/sec.

1.5.2 Momentum conservation law

Returning to expression (1.3.9), consider a case when there are no forces acting on an MP,
i.e., when the right-hand part of the equation is zero. Then d(mv) = 0 and, hence,

p = mv = const., (1.5.5)

i.e., in the absence of external forces the momentum of an MP remains constant.

We can apply the result obtained for a mechanical system. If the system is closed, exter-
nal forces are absent, hence v. = const. (According to Newton’s third law, the mutual
action of all bodies of a given system is counterbalanced and when calculating the total
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momentum of the system, the internal forces make no contribution to the momentum of
the system.) At constant system mass the total system momentum mv. = p, also remains
constant.

p. = const., (1.5.6)

That is, the total momentum of a closed system p, is conserved. Note that the law of
total momentum is conserved in any closed system regardless of whether it is conservative
and/or dissipative.

Several consequences arising from the law of momentum conservation can be mentioned:

1. A reference system associated with the CM of a closed mechanical system is inertial.
In fact, if p, = const. the constant speed of the CM v should be constant too.

2. The center of inertia of the closed system is preserved as a resting state or a state of rec-
tilinear uniform movement despite any mutual displacements (under the action of
internal forces) of any of the system’s elements. From this it is clear that it is impossi-
ble to change the position of the mass’ center of the closed system by only internal
forces.

Some special cases can be noted in this respect. A system is not closed, but the result of
forces is zero. In this case the total momentum of the system is preserved. A system is not
closed but one of the projections of external forces (e.g., Fy) is zero. Then Apy, = 0 and
p, = const. Hence, the law of conservation is valid only to the given motion direction. This
case corresponds, for example, to the motion without friction in a field of a gravity along
a horizontal axis with non-zero initial velocity (refer to Example E1.4).

EXAMPLE E1.21

A carriage L = 3 m in length and mass m; =120 kg rests on a smooth horizontal sur-
face. At one end of the carriage is a man whose weight is m, = 80 kg. Define the
displacement AL (modulo and direction) if the man walks from one end of the car-
riage to another. Neglect friction.

Solution: Choose an inertial reference system, having connected with the earth.
Since projections of the external forces acting on the system “man-carriage” from
the earth are perpendicular to the Earth’s surface this system can be counted as
closed (regarding a horizontal axis); a momentum conservation law (see Section
1.5.2) can be used. In the initial state the man and the carriage are motionless and,
hence, the system’s total momentum is zero. We shall assume that the man moves
along the carriage uniformly at a speed u, thus the carriage also begins to move uni-
formly at a speed v, relative to the earth. As the relative speed u = v, — v, (where v,
is the speed of the man relative the earth),

V= utv,
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Then the momentum conservation law for the case considered can be written as m,v, +
m,v, = 0 or m,(v, + v,) + mv, = 0, whence after disclosing brackets and regrouping
terms we obtain v,(m, + m,) + mu = 0 or

m,
V,=————u
m; +m,

Let us multiply this equality on both sides by the time t taken by the man to move
from one side of the carriage to the other; we obtain

where v,7 = AL is the carriage displacement relative to the Earth’s surface and ur is
the man’s displacement relative to the carriage (i.e., L). Therefore,
m

AL=————1L
m; +m,

Introducing the values given above, we obtain the carriage displacement.
AL =2m.

The negative sign indicates that the man and carriage displacements are in opposite
directions to each other.

EXAMPLE E1.22

A nucleus decays into two fractions m; = 1.6 X 1072 kg and m, = 2.4 = 1073
kg. Determine the kinetic energy K , of the second fragment if the kinetic energy
of the first is K ;= 18 nJ.

Solution: According to the momentum conservation law, the momentums of frag-
ments after decay are the same p;, = p,*. Express the momentums through their kinetic
energies p = mv, p*> = m>?, K= mv*2 and, 2m K = m*v?. From these expressions find

p: p = \2mK Substituting this equality into * we obtain \2m K, = V2m,K , whence
we can find K ,:K, = (m;/my) K, = 1.2X1078J = 12 nJ.

1.5.3 Angular momentum conservation law

We will start from the general law of the dynamics of a rotational motion (1.3.58). In a closed
system (at M(F) = 0) no change of angular momentum is observed, dL. = 0 and, hence,

L = const., (1.5.7)
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L=const

mo

Figure 1.29. The movement of a body in a central field.

That is, in an absence of torques of external forces the angular momentum of a system
remains constant. This statement concerns an MP, an MP system and an IRB. In other
words, the angular momentum of a closed system is conserved.

Apply this law to the analysis of the motion of an MP under the action of a central force
(Figure 1.29). Let an MP of mass m be under the action of an external force so that in all
its positions the line of force action passes through one point (through the center of a cir-
cle). Then Mg(F) = 0, accordingly (dL/dt) = 0 and L. = const. It can be seen that if move-
ment takes place under the action of the central force, vector L is fixed, therefore vectors
p and L are fixed as well (as [r-p] = L). It, in turn, fixes a plane, in which vectors r and
p lie. Hence, under the action of the central force the MP (a body) moves along a flat tra-
jectory (circular, elliptic or hyperbolic) so that [r-p] = const. (Again it is appropriate to
recollect the conversations of Jules Verne’s heroes in the projectile in which they tried to
reach the moon.) Examples of such movement are the motion of the planets around the Sun
(according Kepler’s laws) and the electron motion in atoms (within the framework of the
Bohr model, refer to Chapter 6, Section 6.7).

EXAMPLE E1.23

A person of mass m, = 75 kg stands at the edge of a platform which is in the form

of a homogeneous disc of a radius R and mass m; = 200 kg. The platform can rotate

freely around a vertical axis that passes through its center. Define the angle ¢ of turn

of the platform if the person, moving along its edge, returns to the initial point of the

platform.

Solution: (Before solving this problem it is useful to remember the example on the

law of momentum conservation, Example E1.21).

An inertial reference system is useful to relate to the earth. Only gravitational forces
and bearing reactions act on the system, all of them being parallel to the rotation axis;
their torques being zero. It is therefore possible to take advantage of the angular
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momentum conservation law. Since, at the initial moment, the “person—platform”
system is at rest, the total angular momentum is zero. We shall consider that the
person starts to move uniformly on the platform. Since the total angular momentum
should remain zero, the platform should move in the opposite direction with an angu-
lar speed axis ®,. We shall denote the angular velocity of the person concerning the
earth as o,. Then, according to the conservation law of angular momentum, in a pro-
jection to axis Oz: [y, + I ,w, = 0%, where [, is the MI of the person relative to the
Oz axis and [, is the MI of the platform relative to the same axis. Note that the angu-
lar velocity o, of the person relative to the platform is determined by the equality w,
= w,— w,. Wherefrom w, = o, + w,. Then the star equation becomes

L (0 +wy)+1,,0, =0

rel

Having removed the brackets and rearranged the terms we obtain (I, + I,,)®, =
-1, 0. Let us multiply both parts of the equality by the time 7 taken by the person
to return to the initial point:

(Iz,l + 12,2 )wZT = _Iz,lwrelf

Here w,t = ¢ is the turning angle of the platform relative to the earth and w,,t = 27
is the angle over which the person travels relative to the platform. If we consider the
person as an MP, then /,, = m R
The MI of a disc can be calculated according to eqn (1.3.47): 1,, = (1/2) m,R2.
Having substituted these values in the formula obtained and made simple trans-
formations, we arrive at ¢ = —4n [m, /(m, + 2m,)]
Substitution of numerical values gives the final result:

Q= 6771 =2.69rad = 154°

EXAMPLE E1.24

A disc-shaped wheel of mass m = 50 kg and radius » = 20 cm is twisted to prompt-
ness n; = 480 min~! and released to rotate freely. It then stops because of friction.
Find the torques for the following two cases: (1) the wheel stops in # = 50 sec; (2)
the wheel makes N = 200 revolutions before stopping.

Solution: (1) According to Newton’s second law (applied to rotation motion) we can
write

MAt=1w, —lo,,
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where I is the wheel’s MI and o is the angular speed. Since w, = 0 and At is 7 then
Mt = —Iw, and therefore M = —(w,/t)*. The disk’s MI is 1 = (mr?/2).
Substituting this equation into * we obtain

M= —mr2w1/2t.

Since w = 27nn we obtain M = —1 Nm.

(2) We can find the torques from its work A = (Jw?/2) = M (see Section 1.4.1). Then

2 2
mr-wj

4¢

M:

The total number of revolutions until disc shutdown (i.e., its total angular displace-
ment) can be found: ¢ = 2N = 1256 pad. Therefore, we arrive at the same torque
M = —1 Nm. The sign shows that the torque has damped the movement.

1.5.4 Potential curves

We will consider two problems in the framework of the conservation laws: the potential
curves principle and the theory of collisions in areas of science close to chemistry.

One of the main problems in chemistry is the investigation of interactions between par-
ticles. One of the most accepted methods for describing such interaction is the language of
potential curves. Potential curve U(r) is a graphic picture of the potential energy between
interacting particles as dependent on the interparticle distance. If the origin is kept in one
of the particles (for instance, in particle number 1), then r is the distance between particles
1 and 2. As was mentioned earlier, when describing the interaction due to the force field,
the potential energy is usually taken to be zero when particles are at infinite distance (i.e.,
at r = o0).

In spite of the fact that curve U(r) reflects only the potential energy change, with its
imaging we can also find the value of the kinetic energy in each interparticle point (at
given total energy E).

The potential energy of the gravitational interaction

Let two MPs having mass m, and m, be at a distance r from each other; then the potential
energy of their interaction, as was shown above, (U/(r) = —G(m,m,/r)), can have a hyper-
bolic form. In the case of attraction (Figure 1.30a) the potential energy increases as far as
the points move further from each other. At infinity, the potential energy of the interaction
reaches a maximum. On the accepted condition this maximum will correspond to zero
potential energy. If the maximum is zero, all the potential energy values, in the case of
attraction force on finite distances, will be negative.
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U(r) U(r)

U(r)>0

U(r)<0

(a) (b)

Figure 1.30. The potential curves for forces of (a) attraction and (b) repulsion.

Potential energy of electrostatic interaction

It describes the interaction between two resting charges depending on the intercharge
distance r; it is expressed by the formula

U(r) = 99> ’

4meyr

where ¢, and ¢, are values of point charges, &, is the electrical constant (refer to Section 4.1).
The sign of potential energy is taken into account “automatically” due to signs of interacting
charges. In the case of different charges, the potential energy of interaction (attractions) is
negative. The form of the graph is qualitatively just the same as in the gravitational interac-
tion provided the charges are of different sign. In the case of similar charge signs, the poten-
tial energy is positive going to zero in infinity (Figure 1.30b).

Potential energy of elastic interaction

In Section 1.4.5 the particularities of elastic interaction energy have been considered. Note
that elastic forces manifest themselves equally successfully both in the macro- and the
micro-world. When deforming a body or “stretching” an intermolecular bond, an external
force produces work. The magnitude of this work is equal to the change of the potential
energy of the elastic interaction. As mentioned in Section 1.4.5, the potential energy in this
case is U = (1/2)x?, where x (in this instance) is the deformation magnitude. The graph
of this function is described by a parabolic curve, symmetrical relative to the U-axis
(Figure 1.31). Since the elastic forces are conservative, the total energy E is constant
(according to the laws of conservation of mechanical energy). This is depicted in the graph
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Figure 1.31. Potential curve for a harmonic oscillator.

by the straight line E = const. In the arbitrary point x = a the potential and kinetic energy
values are expressed by lengths of segments U(a) and K (a). The elastic force is always
directed to the origin. Approaching the origin, the particle’s potential energy U decreases.
Conversely, at the origin (x = 0) kinetic energy reaches its maximum (K, = E, since
U(0) = 0). Continuing motion, a particle loses its kinetic energy until it vanishes to zero.
At this point, potential energy reaches its maximum and is equal to the total energy,

U

ma:

1,5
:E:—X,
X zﬁo

where x, is a maximum displacement. Thereby, the maximum point displacement x, =
+\2E/ f is defined by its total energy. The particle performs an oscillation relative to the
origin (Chapter 2).

More complex type of interaction is the interplay of molecules

Without looking deeply into the nature of these interactions, we can say that both attrac-
tion and repulsion forces act simultaneously between molecules. Because attraction forces
decrease with distance slower than repulsion forces, attraction forces dominate at longer
distances and at shorter distances repulsion forces dominate.

One of the popular approximations is a power dependency of potential energy upon dis-
tance r in the form

U(r)=——+—. (1.5.8)

6 12
r r
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U

Figure 1.32. “6-12” (Lennard—Jones) potential.

This is the so-called Lennard—Jones potential “6—12,” offered for the interaction descrip-
tion of nonpolar molecules. Values a and b for different molecules are different. The first
term expresses the potential energy of attraction whereas the second term expresses the
potential energy of repulsion. In Figure 1.32 both curves are represented by dotted lines
and the solid line is a resulting curve (eq. (1.5.8)).

The formula of the Lennard—Jones potential can be written in another form as

(2 -(7)
Ury=4e|l|—| —|—| |
r r

where ¢ and ¢ are again different for different molecules.

Let us look at the change of the force acting on particle 2 as it approaches the origin,
where particle 1 is resting. For this purpose it is effective to use the connection of the cen-
tral force and the potential energy in the form (1.4.30) and carry out a graphic derivation
(Figure 1.33). It can be seen that at great distances the derivative is small (the magnitude of
angle of the slope of the tangent line K K, to abscissa is small) and is positive (angle « is
sharp). It means that the force F acting on particle 2 is negative. This signifies that force F'
is directed to the negative direction of the r axis, i.e., to the origin. As particle 2 approaches
particle 1 the derivative increases and in the inflexion point a reaches to its maximum (angle
of the tangent slope has at this point its highest value). At this point the force F is minimum
(the maximum value of attraction force). Then the angle begins to decrease and at point r,
vanishes to zero (the tangent line to the curve U(r) is parallel to the abscissa). At this point
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Figure 1.33. Potential energy and force as a function of interparticle distance.

the attraction and repulsion forces are in balance. Distance r,, is referred to as the equilib-
rium distance. At distances r < r, an angle « is obtuse (for instance, at point b); in this area
the tangent changes its sign (dU/dr < 0). This signifies that the force F' changes its direc-
tion, becoming repulsive (F > 0) and then increasing rapidly as particle 2 approaches the
origin. A graph of the dependence F(r) is given in the lower part of Figure 1.33.

Considering curve U(r) (Figures 1.30, 1.32 and 1.33) one can be assured that only by
being at a point with the minimum potential energy, a particle does not feel any force
action at all. When the particle displaces to the right or to the left from the position of equi-
librium, in which the potential energy is minimal, the force appears, directed to the posi-
tion of balance. Therefore, it is seen that the particle will always tend to occupy a position
with minimum potential energy (however the force of inertia does not allow it, assuming
that the dissipation of energy is absent).

Let us now trace the change of kinetic and potential energy, provided the total energy is
known, when molecules approach each other. Let, at infinite distance, the molecules have
a total energy E > 0. As we have already agreed, the potential energy of infinitely sepa-
rated molecules is zero. Consequently, kinetic energy is equal to the total energy E (Figure
1.33). When molecules are approaching, their kinetic energy increases and at the point of
balance (r,, refer to Figure 1.34) reaches a maximum. While approaching further (r < r),
the kinetic energy of interaction decreases rapidly until it equals zero. According to the
conservation law of mechanical energy, a total energy at this point is admitted a maximum
potential energy E = U,,,. The closest approach o, to which under a given total energy
molecules can be reached, is referred to as an efficient molecule diameter. After an instant
stop, all events will run in the inverse sequence and the molecules will return to the initial
position (to infinity), possessing kinetic energy, which is the same as before the rap-
prochement. In this case, a moving particle is unlimited in space. Such spatially unre-
stricted motion is referred to as an infinite one.

Particles whose total energy turns out to be negative behave otherwise (U < 0, and
IUI>K, then E < 0). In this case, a particle turns out to be “locked” in the potential well
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e

Figure 1.34. A particle with energy over a potential well (E > 0).

(Figure 1.34). Particles are not able to approach more than to distance r,;,, and cannot
retreat more than distance r,,,,. Such spatially restricted motion is referred to as a finite
one. The particle will perform an oscillatory motion. The two-particle state is a bonded one
(i.e., particles are not able to separate) (Figure 1.35).

From this qualitative analysis one can draw an important conclusion. If the total energy
of the two-particle system is positive (E > 0), no bound state of particles occurs. If the total
energy of the particles is negative (E < 0), the bound state is possible. We will meet exam-

ples of this in the book.

1.5.5 Particle collisions

In this section we will apply the laws of mechanical energy and the momentum conserva-
tion principle to processes of particle collisions. By collision, we mean any short interac-
tion between particles.

Unlike the collision of macroscopic bodies, where the direct contact of bodies and their
deformation on impact can be observed (e.g., the action of a boot-kicking a ball can be
captured by a rapid photograph), interaction of atomic particles is realized by means of
force fields and cannot be directly observed. In this respect, the collision of electrical
charges, which interact through their electric fields or the collisions of neutrons (where the
interaction takes place via nuclear field), etc. can be mentioned.

In principle, within the framework of classical macroscopic mechanics one could con-
sider the detailed process of collision and draw a conclusion about a body’s deformation and
interaction forces (their changes during the process of collision), taking into account the
results of collisions, analyzing direction and velocities of collided particles during and after
the collision. However, such detailed consideration even for classical objects is very diffi-
cult, but for quantum objects it is absolutely impossible. So, for instance, it is impossible to
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Figure 1.35. A particle in a potential well (£ < 0).

describe in detail the process of the collision of neutrons because no one knows the exact
laws of the nuclear forces’ properties. Nothing can be said about the mechanism of the col-
lision of neutrons with phonons (refer to Chapter 9), y-quantum with an electron, etc.
Moreover, a detailed description of the process of collision of microparticles in general is
impossible because of the uncertainties principles (refer to Section 7.2).

Nevertheless much of our information about atomic and molecular particles is obtained
experimentally by observing the effects of collisions between them. For instance, it was
just such collision experiments that allowed Rutherford to suggest a planetary model of
atoms.

Fortunately, it appears that in many cases such detailed consideration of interactions is
not needed. For the determination of velocities of particles after the collision it is sufficient
to know an initial state and use the conservation laws.

Collisions are not limited to cases in which two bodies come into contact in the usual
sense. However, we will restrict ourselves to only pair collisions.

Collisions of particles can be of two types: elastic and inelastic.

Elastic particles collisions

A collision is called elastic if the total particle kinetic energy is preserved. Only the kinetic
energy repartition between collided particles takes place, whereas the inner-particle state
remains unchanged.

Consider in general form an elastic collision of two particles noninteracting at distance
(i.e., their potential energy before and after collision is zero, U = 0). The collision is called
a head-on impact (or frontal one), if vectors of their velocities (of the CMs of collided bod-
ies) before the impact are directed along one and the same direction (say, axis x). If this
condition is not valid, the collision is called a glancing one.
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Figure 1.36. A head-on collision.
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Consider a frontal collision of particles moving translationally (without rotation)
(Figure 1.36) along the x-axis. Momentums of particles are directed along this line, and
therefore we can change the vector writings to a scalar form (in projections on the axis x)
(the sign x for simplicity is deleted). The velocities of the particles after collision are
denoted by u.

Consider a system of two colliding particles being a closed and a conservative one; it is
possible to apply to collision both conservation laws: the energy and momentum conser-
vation laws in mechanics. The energy conservation law looks as follows:

2 2 2 2
moy | M, gy i,
+ = + , 1.5.9
2 2 2 2 ( )

and the momentum conservation law
m, +m,v, = mu;, +myu,. (1.5.10)

Expressions (1.5.9) and (1.5.10) can be considered as a system of two equations with two
unknowns u, and u,. To solve this system one can transform it to the form:

22y 2_ 2
my(v] —uy ) =my(v; —u;)

and

my (v, —u ) =m, (v, —u,),
and then divide the upper equation with the lower one. The result is:
v tup =0, Hu,.

The first equation divided by m, gives
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We arrive at the new system consisting of two linear equations with two unknowns.
In order to find u, one can sum up these two equations:

, =u2(1+ﬂj+uz[1—@],
my m

from which it follows:

Wy =—"""—" - (1.5.11)

The velocity of the first particle can be found analogously:

20,1, (l_mzj
_ m,

y=———"". 1.5.12
1 s ( )
m,

(This equation can be obtained from (1.5.11) by changing all indexes 1 <> 2 keeping the
mathematical symmetry in mind.)
With a little effort, one can obtain an analogous expression in the form:

m,v, +m,v
w=-—p +2—11 272
1 I m, +m, (1.5.13)
and
m,v, +m,v
u, =—v, +2—1—22 (1.5.14)
m; +m,

The fractions in (1.5.13) and (1.5.14) present the velocity of the two particles’ mass cen-
ter motion. Then

u, =—v, +2V,

and

u, =—v, +2V,,
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where

_ m, +m,0,

v,

m; +m,

underlining once more that v, and v, are the velocities of each particle and V, is the CM
velocity. (Knowing m,, m,, v,, v,, i.e., all the initial data, it is easy to find V_; refer to eq.
(1.3.32) and Figure 1.13). If one transfers now according to the Galileo principle to the
coordinate system connected to the mass center (i.e., V, = 0), the equations can be sim-
plified significantly:

Uy =—0, Uy ==, (1.5.15)

After collision in this coordinate system, the colliding particles change their direction of
motion in such a way that the absolute magnitudes remain unchanged.

Some particular cases are of general interests and importance.

1. If the second particle remains at rest in the laboratory system (v, = 0). Then

= =2, (1.5.16)

and

__2m
U, ;. (1.5.17)
m; +m,

It can be seen from eq. (1.5.17) that, after the collision, the initially resting particle 2
acquire the velocity u,, the direction of which always coincides with the initial velocity
of the first particle before collision. However, the velocity direction of the first particle
after collision depends upon the mass ratio of both particles. If m, < m, the first particle
changes the direction of flight to the opposite one (as can be seen from eq. (1.5.16)).
If m; > m,, the direction of motion of both particles after collision is the same.

If the masses of both particles are the same (m,/m; = 1), then

_2n-d-D _2u—d-bh

Uy, Uy, = Uy,
1+1 2 1+1 !

U

i.e., in the case of the central elastic collision of particles of equal mass, a simple exchange
of velocities and, consequently, kinetic energies occurs. The following takes place: the
moving particle stops (after the collision #;, = v, = 0); however, the resting particle begins
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to move with a velocity u, = v,, i.e., at the velocity of the first particle. In this case, the
moving particle will completely transfer all its kinetic energy to the resting particle.

2. Consider now the collision of particles that differ noticeably in their mass, say
m,/m, < 1. Let the second particle with the larger mass be at rest (v, = 0). One can
neglect the fraction m,/m, in eq. (1.5.16) in comparison with 1. One obtains

u = -

and

Thus, the particle with the smaller mass after collision changes its velocity to the oppo-
site without loss of kinetic energy.

This effect appears to be very important in chemical kinetics. For example, in exother-
mic reactions with the production of atomic hydrogen as an intermediate product (which
is very light in comparison with another reagents), its kinetic energy can significantly
exceed the quasi-equilibrium one. This phenomenon in kinetics is called the “effect of hot
atoms”. The slow energy transfer from the small particle to the large one is also determined
in the relaxation processes in lasers with compounds of halogens with hydrogen as a work-
ing medium.

\ 4

Figure 1.37. An impact of a particle onto a wall.
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The result obtained is fulfilled with even greater accuracy when a particle collides with
a wall (for instance, when a molecule collides with a vessel wall, Figure 1.37). In the lat-
ter case a molecule moving perpendicularly to the wall reflects from it and proceeds with

the previous velocity backwards u, = —uv, (Figure 1.37).
Determine the momentum change Ap in this case. According to the definition Ap =
pi—Dp,, where p; = mv, and p| = m,u,, then Ap = m,(u, — v,). Since u; = —v,, then

Ap = —2m,v, or
Ap=-2p,. (1.5.18)

The negative sign shows the direction of momentum changing, which complies with the
direction of “elastic force” acting on the particle from the wall during the collision.

If the particle falls to the wall under an angle o to a normal, the component of velocity
parallel to the surface of the wall remains unchanged, and only the component normal to
the wall (along the x axis) takes part in the momentum transfer to the wall (i.e., Ap =
—2p,cosa) (see Figure 1.37).

As it follows from the results obtained, the particle does not change its kinetic energy
on collision with the wall, but the wall receives from the particle a momentum equal to 2p,.
(Herewith the wall “velocity” is zero; however the value of transferred momentum is not
ZEero).

One can calculate (this we will leave to the reader), that on direct central collision with
aresting particle of mass m, the colliding particle of mass m, will transfer part of its kinetic
energy:

Then the relative loss of the particle kinetic energy will be:

|AK1 ‘ _ 4mm,
K, (m, +m2)2

(1.5.19)

It is easy to see that at the equality of mass (m, = m,) the first particle loses all its energy,
i.e., AK,/K, = 1, and stops. On collision with a wall m,/m, — 0 and then AK,/K,—0, its
kinetic energy remains unchanged.

The process of deceleration of neutrons in atomic reactors is based on the phenomena
of a “fast” particle transferring energy to a resting particle. This is because in the elemen-
tary act of chain nuclear reactions only fast neutrons are produced. For the realization of
the next act of a chain reaction—capture of a neutron by a nucleus of a uranium-235
atom—it is necessary to slow neutrons down until their energy becomes commensurate
with the energy of the thermal motion of the molecules. This occurs when neutrons collide
with the atomic nuclei of the moderator material. Judging by the formulas given, the best
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moderator is a hydrogen-containing material: during a single front collision with protons, the
neutrons immediately lose the whole of their kinetic energy (1, = 0). However, protons eas-
ily participate in the reaction with neutrons; protons capture a neutron (with a deuteron for-
mation) and remove neutrons from the chain reaction process. Therefore, the heavy water
D,0 is more often used (then AK,/K, = 0.9) or graphite (AK /K, = 0.28). Note also, that in
the use of tungsten nuclei this ratio is 0.02, the impact of the neutron to the tungsten nucleus
is closer to the case of the collision with a wall, with a negligible loss of kinetic energy.

EXAMPLE E1.25

How many times k will the neutron kinetic energy decrease after N consecutive col-
lisions with atomic nuclei which practically do not capture neutrons. Consider the
collisions to be elastic and central with atoms: deuterium 2H, carbon '*C and tung-
sten 3*W. Let N be 3.

Solution: The problem with the single collision of a moving and motionless par-
ticle is solved in the text where formulas for the speed of each of the particles after
collision (see formulas (1.5.16) and (1.5.17)) are given. Using these results it is pos-
sible to obtain expressions for neutron kinetic energy after collision K| in relation to
its initial energy K ;:

2 2
2
o=t T T s P T
1 1 1
2 2 \m+m, m, +m,

After the second collision the kinetic energy K| should be treated as initial. Then the
neutron kinetic energy K (? is

2 2 2X2
m, —m m,—m m,—m

R-(IZ): 1 2 1 2 Klz 1 2 Kl
m; +m, m; +m, m; +m,

It is easy to guess that after N collisions

KWN=—(m, +m,)/(m;, —m,)*" K,

Then the ratio after N collisions is k = K /K ™ = (m;+m,)/(m, —m,)*".

EXAMPLE E1.26

An argon atom collides with one N atom of a resting molecule N, perpendicular to the
N-N bond (Figure E1.26). The velocity of the argon atom velocity is v, = 400 m/sec.
The impact is elastic. Atoms can be represented as MP and the N, molecule consid-
ered as a rigid rotator. Relative masses are Ar,, = 40 and A = 14, the interatomic
distance N-N is 0.109 nm. For the nitrogen molecule after collision, determine: (1) the
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velocity V, of its mass center; (2) the angular momentum L, acquired by N, molecule
relative to the z-axis (perpendicular to the drawing plane and passing through its CM,
point C in the figure); (3) the angular velocity o of the molecule rotation relative to the
z-axis (Figure E1.26).

Solution: Assume that collision of Ar and N(1) atoms is head-on and elastic. Using
the formulas of Section 1.5.5 (eq. (1.5.16)) we obtain

m,—m
’41:#01-
m, +m,

To determine the CM’s velocity Vc we can use only the momentum conservation
law because part of the kinetic energy will go to the kinetic energy of the molecule
rotation. Therefore, this part of the interaction should be considered as inelastic and
the energy of rotation as internal. Then

m
my, =2m,Ve. +mu,, therefore V. = — (v, —u;)
2m,
Substituting the velocity u, in this expression we obtain

m my—m m
— _mmmy 1
Ve = v v | = v;.
2m m; +m, m, +m,

Executing calculations we obtain V. = (40/(40 + 14)) X 400 = 296 m/sec.

(2) Since there are no external force actions for angular momentum calculations
we can use the angular momentum conservation law relative to the z-axis and pass-
ing the CM:

Lz,l = Lz,l + Lz,C’

where L, = m,v,(d/2) is the angular momentum of the argon atom before the impact,
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L, = mu,(d/2) after the impact and L/ is the angular momentum of the nitrogen

molecule after the collision relative to the Oz axis, wherefrom

X

v,d
2 my+m,

' d m, —m d m,m
Lz,C:ml(Ul_ul)Ezml(Dl_ : 2 1]‘ —

m; +m,
Executing calculations we arrive at

. _40x14
“C40+14

X1.66 X107 X 400x1.09%107'" =7.51x10"* kgm?/sec

(3) We can find the angular velocity of the molecule rotation knowing the angu-
lar momentum value after impact; writing the angular momentum according to
eq. (1.3.44):

EZ,C = Izwz = ﬂdzwz’
where 1 is a reduced molecular mass (eq. (1.3.50)) (in our case m, = m, and u = m,/2). Then

2L 2 mym 2m )
w="=—"_x—12 pdoro=—"-x-
myd” m,d~ m;tm, m+m, d

Executing calculation we arrive at

2X40 400
= X

w= = = 5.44 X 10" rad/sec
40+14 1.09X10

Inelastic collision of particles

As indicated above, the collision of particles is called inelastic if the total kinetic energy
of the particles before the collision is not equal to the total kinetic energy after the colli-
sion. The kinetic energy partly or totally transforms to the internal energy (i.e., particles
change their energy state, for instance, temperature). A limiting case of inelastic collision
is absolute inelastic collision, under which a maximum loss of kinetic energy occurs. After
the collision, both particles do not move away, but move together as a single particle.
Under inelastic collision, the law of mechanical energy conservation is not executed, since
the system is a dissipative one (mechanical energy transforms into another type of energy).
The general law of total energy conservation is certainly executed, but we are unable to use
it, since we do not know a priori, what part of the kinetic energy transforms into internal
energy. It is therefore possible to use only the law of momentum conservation:

PP, =P (1.5.20)
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where p is the total momentum of particles after an absolute inelastic collision. Under
frontal inelastic collision all velocity vectors are directed along a single line, passing
through the center of the particle masses. In projections onto axis x, complying with the
direction of motion, the law of momentum conservation can be written as (sign x is
omitted)

myuy +myu, = (m; +m,)u,

where u is the velocity of particles after the collision. From this expression, we can find
the velocity of the particles after collision

+
m; +m,

Now it is possible to define that part of the total kinetic energy, which at collision trans-
forms into the internal energy of the particles. If we denote U as the internal energy of
particles, then U = K| + K, — K’, where K’ is the kinetic energy of both particles after
collision. In the comprehensive form the above formula can be rewritten as

2 2 2
_ " mo; (m; +m,)u

AU (1.5.22)
2 2 2
Formula (1.5.22) can be written in another form:
1 2
AU=Eu(ul —0,)7, (1.5.23)
where p is the reduced mass of the system of two particles:
m,nt,
U=— (1.5.24)
m, +m,

We can see that if particles of similar masses and similar velocities move to meet each
other, their velocity after absolutely inelastic collision is zero, and, consequently, the
whole kinetic energy transforms into internal energy.

Chemistry students should note that the above consideration of collision processes can-
not be directly extended to the case of atomic—molecular collisions even in classical
physics. This is, in particular, because in a real atomic—molecular system a process of
interaction significantly depends on the so-called adiabatic factor, i.e., on the correlation
of the collision time and the intrinsic molecular frequencies.
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1.6 EINSTEIN’S SPECIAL RELATIVISTIC THEORY (STR) (SHORT REVIEW)

Until now, our discussions have been based on the classical Galileo-Newton representa-
tions. Moving on to quantum-optical phenomena and others, these ideas appear to be
insufficient and it is necessary to consider some more general notions, in particular,
Einstein’s special theory of the relativity (STR, 1905).

There are a number of theories on the relationships between descriptions of the same
physical phenomena in various systems moving relative to each other. They are referred to
as theories of relativity (e.g., Galileo’s principle, refer to Section 1.3.2). Another more gen-
eral theory is Einstein’s STR. This theory is based on a reliably established experimental
fact: the speed of light propagation is independent of the speed of it source. This fact has
been proved in the well-known Mickelson—Morley experiments: they had coordinated the
parts of their large-scale devices on the earth that could determine the speed of light sent
along the trajectory of the earth’s movement around the sun and opposite to it with very
high accuracy. Experiment has shown that this speed does not change whether the move-
ments are directed in parallel or oppositely. The speed of light (i.e., electromagnetic waves)
appeared to be independent of the speed of a source. This greatly contradicted Galileo’s
principle of speed additions (eq. (1.3.4)). Moreover, this result appeared contradictory to
the theory of Maxwell electrodynamics.

In order to preserve the principles mentioned above, it was necessary to proceed further
than Galileo’s transformations (1.3.1) and (1.3.2). These transformations have been
replaced by the mathematical Lorentz equations already known in physics.

Lorentz transformations replace Galileo’s transforms. When a coordinate system K '(x’,
y', z', t") moves relative to the system K '(x, y, z, ) in x direction (this restriction is made
for simplicity) with a speed u (1, = u) they look as follows:

= X —ut = x'+ut
y:=y, y=y,',
=2 Z=Z,
,_g H@ (1.6.1)

t

’r_— c t= C
Ji-g 1-p

where ff = u/c; an expression is often used y = 1/ V1 —p.

These equations were derived by Lorenz in 1904 as mathematical expressions of coor-
dinates and time transformation as an attempt to preserve the system of Maxwell’s theory
in all inertial coordinate systems. The same transformations were obtained by Einstein in
1905; he proceeded from Newton’s postulate on the equality of all inertial coordinate sys-
tems and experimental fact on the independence of light speed upon the source speed.
Analysis of eq. (1.6.1) shows that time is incorporated in space and movement. Thus,
Einstein considered it necessary to change Newton’s representation about time and space
(refer to Section 1.3.1). Moreover, in order to make Newton’s transformations be invariant



1.6 Einstein’s Special Relativistic Theory 91

to Lorentz’s equations it was necessary to accept that the mass of a particle is speed-
dependent, being described by the expression

m=—, (1.6.2)

where my, is the particle mass at rest (at v = 0).

Some conclusions follow from the STR:

1. Relativistic speed’s summation law. If an MP m moves with a speed v” (v, 0, 0) in an
inertial system of coordinates K’ which, in turn, moves relative to another inertial coordi-
nate system K with a speed u (u,, 0, 0), then the speed v(v,, 0, 0) of that MP in a system
K (according to Lorentz’s transformation), can be presented as:

u+v'

e (1.6.3)
C2

D=

The formula (1.6.3) refers to relativistic law of speed’s summation. Obviously, the result-
ing speed v is less than the sum of the two speeds u and v’. From (1.6.2) and (1.6.3) it
follows that: firstly, the speed of light is the same in any inertial system as at v = ¢ for any
u = c, and, secondly, the body with non-zero m, cannot reach in any inertial system the
speed of light in vacuum or exceed it, as v < ¢ and u < c it follows that v = c.

In the theory of relativity the expressions ct and ut have the dimension of length; it
behaves as the fourth spatial coordinate. From (1.6.3) it follows that values ct and x can
mix depending on the speed of the observer.

2. Relativistic shortening of length. Let a rod of length L lie along the x axis and move
with a speed u in an inertial system K’; its length L” as measured from the resting system
K will be shorter than the length L: L < L’

L=\1-p*L". (1.6.4)

Various observers (being in different inertial systems) consider the same rod to have a dif-
ferent length. From a physical point of view this discrepancy can be explained by the con-
cepts of simultaneity, i.e., events for one observer are not simultaneous with those for
another.

EXAMPLE E1.27

Determine a relativistic electron’s momentum p and its kinetic energy K'if the electron
moves at a speed v = 0.9¢.
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Solution: The relativistic momentum is p = mc (f/\1—f?). Executing all calcu-
lations we arrive at p = 5.6 X 10722 kg m/sec. The kinetic energy in the relativistic
mechanics is the difference between total energy E = mc? and energy E, = mc? at
rest. Therefore,

K= —myc”,

or finally

Executing calculations we arrive at
K =1.06x107137J = 0.66 MeV

EXAMPLE E1.28

A spacecraft moves with a velocity v = 0.9¢ to the center of the earth. What distance
[ does it cover in the earth reference framework K in a time interval Az, = 1 sec,
measured by the spacecraft clock (system K”). Ignore diurnal rotation and the earth’s
movement around the Sun.

Solution: We can determine the distance / that the spacecraft can cover in the K’
system according to the formula [ = vAt, where At is the time interval measured in
the K system. This interval in the K system and that measured in the K’ system are
related by the formula

At,
1-p?

At =

We should substitute this value into the previous relation:

vAt,

I= )
1- 52

Executing all calculations we arrive at [ = 6.19 x 103 m.

A body such as a physical pendulum consists of a rod of / = 1 m in length and of
mass m, =1 kg. A disc of mass m, = 0.5m, is fixed on one side of the rod. Find the MI
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of such a body relative to an axis passed perpendicularly to the picture through a point
O (Figure E1.29).
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Solution: The MI of the combined body can be calculated according to the for-
mulas presented in Section 1.3. Choose an x-axis directed along the rod with its ori-
gin at point O. The overall MI of the whole body relative to the x-axis is the sum of
the composite details: I, = I, + I,,, where part 1 is the rod and 2 is the disc. In order
to find 7,, and I,, we should use the theorem on parallel axis (1.3.48). The rod’s MI
can be given by the expression

€2
1, = m]‘z +ma’  (wherea, = OC,).

We can see in Figure E1.29 that a; = /6. Therefore,

¢ e
L =" o, 6)a =" = 0.1 1m 2.
12 9

The disc’s ML is 1,, = (m,R*/2)+m,a3, where R = I/4 is the disc radius and m,a3 is the
addition of parallel axis transfer. A distance OC, = a, is equal to [(2/3+1/4) = I(11/12).
Therefore,

2
_ my{

J
z2 2

2 2
1 11
(Ej +my0? (E) = m,I*(0.0312+0.840) = 0.871m,[.
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Summing up the results for two parts, we arrive atJ, = 0.111m,I> + 0.871m,[?> =
(0.111m,+0.871m,)I?> = 0.547m,1> = 0.547 kgm?. (We used here the condition that
m, = 0.5m,).

EXAMPLE E1.29

How many times does the density of a rod in the laboratory reference system (system K)
change if its speed relative to this system equals 0.8¢ (¢ — speed of light in vacuum).
Solution: It is clear that

Therefore

Executing calculations we arrive at

1 1 1
e S=—— =278
py 1-p 1-08 036

3. Dilation of time. Let the inertial system of coordinates K’ move regarding another
inertial coordinate system K with a speed u(x,0,0). If in a moving system K’ at the origin
two events A’ and B’ with a time interval At” take place the observer in motionless system
K will find that the time interval between these events At is shorter than Az’

Ar= =7A (1.6.5)

That is, from the point of view of the motionless observer time in the moving system flows
slower. For example, for u = 0.5¢ the interval A7 = 1 sec will correspond to an interval
At = 1.15 sec.

As time dilation in moving systems is a property of time, not only the moving watch but
all physical processes (including the ratio of chemical reactions) is taking place as well.
This means that the ageing of organisms also slows down. However, the real speed of a
spacecraft is still much less than the speed of light and the effect of dilation on the ageing
of an astronaut is very small.

4. A relativity of simultaneity. If two events A and B occur in moving inertial system K’
at different points of space at the same instant of time #; = f, for example, in points with
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x" = 0.5a and x” = —0.5a, the same events are not simultaneous for the observer in a
motionless inertial system K:

(1.6.6)

The effect is very small: at @ = 1000 km calculation gives Ar = 0.023 sec. In SRT the
concept of simultaneity is meaningful for events in one and the same coordinate system
only.

5. Relativistic speed and acceleration. According to Newton’s physics, the constant
force F acting on some constant mass m accelerates it. If t = 0, v, = 0, m = m,, one can
find speed v(r) and acceleration a(f) of a mass m. The expression for F according to
Newton’s second law has in SRT the form:

dp d| my mya

dt dt \/1_[;2 :(l—ﬂZ)

372 (1.6.7)

It can be seen from eq. (1.6.7) that it is impossible to accelerate a body with a non-zero rest-
ing mass by a finite force F to a speed equal to the light speed in vacuum. In order to explain
this circumstance Einstein had to introduce the speed dependence of the particle mass (1.6.2).

From the expression (1.6.7) we can obtain:

_Ft
=
(1.6.8)

In the motion beginning for small time intervals the speed is still small and corresponds
to classic mechanics: v(f) = Ft/m, a(t) = F/m,. If the time increases (f — o), at constant
acting force the speed v asymptotically approaches the light speed value ¢ and the accel-
eration decreases to zero:

EXAMPLE E1.30

Determine the relativistic momentum of an electron and its relativistic kinetic energy
if the electron is moving at a speed of 0.9c¢.
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Solution: The relativistic momentum can be determined according to equation

—_—

p = myc (B/N1— ). Calculation gives p = 5.6 x 10722 kgm/sec. The kinetic energy
is determined as the difference between the total energy and the resting energy:
K= E—E,, where E = mc* and E, = m,c*. We then obtain

2

mgyc 1
K=—="——myc® and finally K= myc*| ———=—1|.
J1- 2 J1-5°
Substituting all values we arrive at ¥ = 1.06X10713J. Sometimes the particle

energy is expressed in terms of energy: the electron energy at rest is myc? = 0.51

MeV. Then K = 0.66 MeV.

6. Relativistic momentum. As with many other properties the relativistic momentum in
STR is

)
p=7ymy,p= o 5 ImOCLZ. (1.6.9)
1-p VI=p

Unlike the classical definition, the relativistic expression permits the momentum p to
approach infinitely large values as the particle speed v approaches the speed of light.
7. Relativistic energy. The relativistic expression of the total energy E is

E =mc* = myc* +K; (1.6.10)

E, = myc? is the total energy at rest. The Kinetic energy is

1
K=E, -1 (1.6.11)
1-p°
The total energy E is therefore expressed as follows:
E = ymc* = mc* +K (1.6.12)

8. Relation of energy and momentum. From the above relations it follows that

E* = (pc)’ +(mc’), (1.6.13)
and
pc? =K(K+2E,). (1.6.14)

Equation (1.6.10) allows a different treatment. There is a treatment that explains this equa-
tion as a measure of possible energy release confined in mass m. From the other point of view
there are no equivalence of “mass” and “energy” in such a simplified statement. We can
explain this expression as a kind of energy conservation law: at certain conditions a body can
release some amount of energy in the form of y-radiation which, being absorbed by other
atoms, increases its kinetic energy, i.e., heating it; the energy of y-quanta initiates the heat of
the environment. A simple calculation shows that the general law of energy conservation is
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valid in this case too; however part of the inert mass transforms into the y-ray’s mass, i.e.,
into the mass of particles which do not possess the resting mass.

Both explanations are nearly equivalent; however, the latter accepts the physical mean-
ing but not a scholastic statement on energy and mass equivalence.

From the equations presented it follows also that the photon energy ¢ = hv corresponds
to its mass m = huv/c>.

It should be noted that in 1911 Einstein had expanded his theoretical consideration of
noninertial systems and had suggested the general relativistic theory of gravitation. On the
basis of this theory Einstein postulated the principle of equivalence: the action of a gravi-
tational field is equivalent to the action of accelerated motion of a system. Corresponding
mathematical expressions can be interpreted that any mass perturbs the environmental
space; therefore all bodies will move on the trajectories curved in a vicinity of the dis-
turbing mass while approaching it.

Obviously, all relativistic expressions transform into classic ones at speeds that are small
in comparison with the speed of light in vacuum. Therefore the principles presented by
Einstein do not contradict the general statements of the Galileo relativity. Chemists only
meet the relativistic approach occasionally, e.g., energy of inner electrons of heavy atoms,
some details of physical methods of investigations and some others.

For physical objects and reference frames moving with speeds v<c or u<c, Einstein’s the-
ory led to the results of classical nonrelativistic theory: Lorentz transformations changed into
Galileo’s transforms and the Einstein relativity principle into Galileo’s relativity principle.

PROBLEMS/TASKS

1.1. Two direct roads cross at a corner o = 60°. From the crossroads two cars start simul-
taneously along these roads with speed v, = 60km/h and v, = 80 km/h. Determine
the rate at which the cars move away from each other. Consider two variants.

1.2. For the four cases presented in Figure T1.2 calculate: (1) kinematical equations of
movement x(¢) and y(¢); and (2) the trajectory equation y(x).
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1.3.

1.4.

L.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.15.

1.16.

1.18.

1. Mechanics

A body covers the first half of its journey at #, = 2 sec and the second partat#, = 8
sec. Determine the body’s average speed (v} if the distance travelled is s = 20 m.
From what height (H) has a body fallen if it moves the last meter of its drop (s = 1 m)
in time ¢ = 0.1 sec?

A car covers three quarters of its journey at v, = 60 km/h and the remainder at a
speed of v, = 80 km/h. What is the average speed (v) for the whole journey?

An MP moves along a circle with a radius R = 4 m. The initial point speed is v, =
3 m/sec, tangential acceleration a, =1 m/sec. For time interval r = 2 sec determine:
(1) the distance travelled by the MP; (2) the displacement modulus |Ar|; (3). the
average speed (V), (4) the modulo of an average velocity [()|.

Determine the relationship of the free fall acceleration g with a distance from the
Earth’s center r. Assume that the earth density p is a constant independent of the
earth point. Draw a graph g(r). Assume the earth’s radius R to be constant.

A thin stick with a length of / =25 cm staying vertically on a horizontal surface
begins to fall. Determine the angular velocity @ and linear speed v of (1) the middle
point of stick; and (2) the upper end of the stick. The friction is so great that the
stick’s lower end does not slip.

A stone is thrown upwards at an initial speed of v, = 20 m/sec. In 7 = 1 sec another
stone is thrown in the same direction at the same speed. At what height /2 do they meet?
The movement of an MP is set by equation r(f) = A(i coswr + j sinwt) where A =
0.5 m/sec, w = 5 rad/sec. Draw the MP’s trajectory. Determine the speed modulo
of |v| and |a,|.

. An aircraft flying at a height H = 2940 m at a speed of v = 360 km/h has to reset a

bomb. At what time (7) before passing above the target and at what distance (s) from
it should the plane reset the bomb to strike the target? Neglect any air resistance.

. A projectile is fired at an angle o = 30° to the horizon. It twice reached the same

height at #, = 10 sec and ¢, = 50 sec after the shot. Determine the initial speed v,
and height 4.

. A tank [ = 4 m in length filled with water moves with acceleration a = 0.5 m/sec>.

Find the difference of the water levels (/) in the front and the rear of the tank.

. A helicopter with a mass m = 3.5 T and propeller vane length d = 18 m hangs

motionless in the air. Determine the velocity v with which the propeller throws down
the air-blast. Assume that the air-blast diameter is equal to the rotor diameter.
Initially at rest, a disc with a radius r = 10 cm begins to revolve with constant angu-
lar acceleration ¢ = 0.5 rad/sec®. Find the tangent (a,), normal (a,) and total (a)
acceleration of the points on the wheel crown at the end of 2 sec of movement.

A spacecraft of mass m = 3500 kg begins to reorient in space. The exhausted gas
speed is v = 800 m/sec; fuel consumption is Q,, = 0.2 kg/sec. Find the reactive trust
(R) and acceleration of the craft.

. A rocket of mass M = 6 T is launched upwards. The thrust of the engine is F' = 500

kN. Determine the rocket’s acceleration (a) and the tension force of a free hanging
cable (7) in a section one quarter of the total cable length distant from the fixation
point.

A disc-shaped wheel of mass m,; = 48 kg and radius R = 40 cm can rotate freely
around a horizontal axis. One end of a thin nonstretched rope is fixed to the rim of
the wheel. A weight m, = 0.2 kg is fastened to the other end of the rope. The weight
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1.19.

1.20.

1.21.

1.22.

1.23.

1.24.

1.25.

1.26.

is lifted to 2 = 2 m and then let drop. The rope tightens and the wheel begins to
rotate. Calculate the angular velocity @ of the wheel.

Two skaters of mass m; = 80 kg and m, = 50 kg hold two ends of a stretched rope
and stay motionless on the ice. One of them begins to extend the rope at a speed
v = 1 m/sec. Find the speeds u, and u, at which the skaters move on the ice. Ignore
any friction force.

Find the distance (x) of the CM of the system earth-moon (M_ .= 6 X10** kg,

earth

Myoon = 7.33 X 102 kg, d = 3.84 x 10° m ) from the center of the earth.
A molecule decays into two atoms. The mass of one piece is N = 3 times bigger than
the other. Neglecting the initial molecule kinetic energy, determine their kinetic
energies K and K, if the total kinetic energy is K = 0.032 nJ.

A projectile with a mass m = 10 kg has at the upper point of its motion a velocity
of v =200 m/sec. It explodes at this point into two parts. The smallest part m, =3 kg
acquires a velocity u, = 400 m/sec in the previous direction. Find the velocity of the
second part after the explosion.

The movement of an MP along a curvilinear trajectory is given by equations x = A3
andy = A, t, where A, =1 m/sec® A, = 2 m/sec. Find the MP trajectory equation,
MP speed v and the total acceleration a at the moment ¢ = (.8 sec.

A bullet of mass m = 10 g moves horizontally at a speed v = 800 m/sec rotating
around a longitudinal axis with a frequency n = 3000 sec™'. Assuming the bullet to
be a cylinder with diameter d = 8 mm determine the bullet’s total kinetic energy K.
Two balls of masses m,; = 2 kg and m, =3 kg move at velocities v, = 8 m/sec and
v, =4 m/sec. Find the change of the inner energy AU after their inelastic collision
in the following two cases: (1) when the smallest ball overtakes the other; and (2)
when the balls move towards each other.

A uniform thin stick of mass m; = 0.2 kg and length / = 1 m can oscillate freely around
an axis passing a point O (Figure T1.26). A sticky ball with a mass m, = 10 g, moves
horizontally at a speed of v = 10 m/sec and get stuck at point A on the stick. Determine
both angular @ and linear velocity u of the lower point of the stick in the initial instant
of time. Carry out the calculation for the (1) a = I/2; (2) I/3; and (3) //4.

A

v
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1.27.

1.28.

1.29.

1.30.

1.31.

1.32.

1.33.

1.34.

1. Mechanics

A uniform disc of mass m, = 0.2 kg and radius R = 20 cm can rotate freely around
a horizontal axis Oz, which passes through point O. Onto a point A on the disc rim
a small sticky ball of mass m, =10 g moving horizontally at a velocity v =10 m/sec,
strikes the disc and cleaves to it. Find the disc’s angular velocity @ and linear
velocity u of point B at the instant of the blow provided the ball hits the rod at point
A on the disc rim. Carry out a calculation for (1) a = b = R; (2) a = R/2,b = R;
(3)a = 2R/3,b = R/2; and (4) a = R/3, b = 2R/3 (Figure T1.27).

A block is suspended to spring scales. A cord is crossed over the block. Masses
m; = 1.5 kg and m, = 3 kg are attached to the ends of the cord. Find the scale read-
ings at which the weights will move. Ignore block mass, the cord and the friction in
the block.

A hammer of mass m = 1000 kg falls from a height # = 2 m onto an anvil. Impact
duration is 7 = 0.01 sec. Determine the average value of the impact (F) force.

A ball of mass m = 300 g collides with a wall and rebounds from it. Find the
momentum p, obtained by the wall if, in the last moment before the impact, the ball
has a velocity of v, = 10 m/sec directed at an angle of o = 30° to the wall’s surface.
The impact is perfectly elastic.

A rocket of mass m, = 2 T leaves surface of the moon. After time 7 it reaches the
first space (moon) velocity v, = 1.68 km/sec. Determine the mass fuel consumption
L if the nozzle is 4 km/h. Ignore the gravitation of the moon.

The ratio of a rocket’s fuel mass to total starting rocket mass is %. Determine the
velocity of the rocket after total consumption of the fuel if the fuel consumption
from the nozzle u is 2 km/sec. Ignore the air resistance.

Determine the maximum part (w) of kinetic energy K, which a particle of mass m,
=2 X 10722 g can transmit to particle m, = 6 X 10722 g through an elastic collision.
The second particle is at rest before the collision.

A bullet of mass m = 10 g moving at a speed v = 600 m/sec hits a ballistic pendu-
lum of mass M = 5 kg and lodges in it. Determine the maximum height & of the
pendulum’s lift (Figure T1.34).
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1.35.

1.36.

1.37.

1.1.

1.2

A ball of mass m; = 2 kg collides with another ball m, = 8 kg. The momentum p,
of the first ball is 10 kg m/sec. The impact is direct and elastic. Determine just after
collision: (1) the momentum of the first p, and of the second p, ball; (2) the change
in momentum of the first ball Ap,; (3) the kinetic energies of the first K| and the
second K, ball; (4) the change in kinetic energy of the first ball AK |; and (5) the
portion w of the kinetic energy transferred from the first ball to the second.

A ball of mass m; = 6 kg collides with another, rested ball m, = 4 kg. The momen-
tum p, of the first ball is 5 kg m/sec. The impact is direct and inelastic. Determine
just after collision: (1) the momentum of the first p, and the second p, ball; (2) the
change of momentum of the first ball Ap,; (3) the kinetic energies of the first K| and
the second K, ball; (4) the change in kinetic energy of the first ball AK ,; (5) the
portion w, of the kinetic energy transferred from the first ball to the second, and the
portion w, of the residual kinetic energy of the first ball; (6) the change of the inner
energy AU of the balls; (7) the portion w of the kinetic energy of the first ball trans-
ferred into the inner energy of the balls.

The kinetic energy of a rotating wheel is K = 1 kJ. Under the action of a constant
retarding torque it begins to rotate, uniformly retarded. After making N = 80 revo-
lutions it stops. Find the retarding torque M.

ANSWERS
v =122 km/h; v = 72 km/h.

(a) x = yt, y = —h—(gr*/2); y = —h —gx¥/2v3.
2

. gx
(b) x = pyrcosa, y = —h + ot sinoL — (g12/2); y = —h +xtgo "~ 2u,c08%
, gx—s)’
©x=s+Yyt,y=h(gr2);y=h 20,
ge—s)*

(d) x = 5 + yycosa, y = h — yyrsina —(gr?/2); y = h —(x—s)iga _W
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1.3. {v) = s/(t, + 1) = 2 m/sec.

14. H= (25 + g/(8gf) = 5.61 m.

1.5. (v) = 64 km/h.

1.6. (1) s = 8 m; (2) |Ar| = 6.73 m; (3) (v) = 4 m/sec, (4) (v)] = 3.36 m/sec.

1.7. g(r) = (4/3)nGpr at r<R and g(r) = 47GR*p/(31%) at r>R (Figure T1.7).

8(r)

(4/3)nGRp

1.8. (1) @, = 14 rad/sec, u; = 1.05 m/sec; (2) w, =14 rad/sec, u, = 2.1 m/sec.
1.9. h =192 m.

1.10. |v| = 2.5 m/sec, |a,| = 12.5 m/sec?.

1.11. t = 24.5 sec, s = 2.45 km.

1.12. vy = ggslii:t;) = 588 m/sec; h = g 1;t, = 2.45 km.

1.13. h =204 cm.

1.14. v = (1/d)[(4mp)/mp]"*> = 10.2 m/sec (p is the air density).

1.15. a, = 5 cm/sec?, a, =10 cm/sec?, |a| =11 cm/sec?.

1.16. R=-Q,v=-160 N, a = - Q,vim = 4.57 cm/sec?.

1.17. a,= —g =735m/sec’;, T =

4 M+m F =625N.

M+ m
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_ 2m\2gn  _
1.18. w = T+ myR = 0.129 rad/sec.

1.19. u, = 0.385 m/sec; u, = —0.615 m/sec.

1.20. x = 4.69 x 10° m (radius of earth is R = 6.4 x 10° m).
1.21. K, = nK/(n + 1) = 24 pJ.

1.22. u, = 114 m/sec.

1.23. 3 —8x = 0; v = 2.77 m/sec, a = 4.8 m/sec.

1.24. K = (m/4)(2v* + w*n*d®?) = 3.21/KJ.

mym, (v, £ ,)?

1.25. AU = = 9.6Jand 86.4J.

2(m,+m,)
6m,v _ 3m,y _
1.26. (1) o, = Gm, + mpl 2.61 rad/sec. u, = 7(3’”2 ) 1.30 m/sec.
3m,v 2m,v B
2 w,= (m, + m)l 1.43 rad/sec. u, = m, + my) 0.952 m/sec.
4myy 3m,v

3) wy;= m = 0.839 rad/sec. u; = m = 0.629 m/sec.
1.27. (1) w, = 4.55 rad/sec, u; = 0.909 m/sec.

(2) w, = 2.27 rad/sec, u, = 0.454 m/sec.

(3) w4 = 3.03 rad/sec, u;= 0.303 m/sec.

(4) w, = 1.52 rad/sec, u, = 0.202 m/sec.

_ 4m,m,

1.28. F = m +m, g
1.29. (F) = (m/7) \2gh = 626 kN.
1.30. p, = 2myysina =3 N sec.

m, Uy
1.31. u = = 1—exp7 = 1.68 km/sec.

1.32. v=uln = 2.77 km/sec.

1
L=y



104 1. Mechanics

4m m,

1.33. w= W

= 0.75.

1.34. h = m*>v*/[2g(m + M)*] = 7.32 cm.

, m; —m, , 2m
1.35. (1) p;= W = —6 kg.m/sec, p; = m = 16 kgm/sec.
(2) Ap, = —p5 = —16 kg m/sec.
2 — 2m
,_ P Ty b2
®) K= 20 = 9% Ko =0 ey = 160
4) |AK|| =K, =161.
s _AKY Amm, 0.64
6 w= Ko~ (m +my 064
m m
136. (1) p| = ﬁpzmz = 3 kgmisec, py = - f‘mz = 2 kg m/sec.
(2) Apy =p;, = — 2 kgm/sec.
2 2
,__mpi o mapi
®) Ki= 2o my = O0TSLK = 55, =051,
m,(2m,+m,) p}
4) AK = ——F—5— = 1331
“ U 2(my + my)m,
K, m,m, B KD m? B
5 w = K.~ T tmp 0.24, w, = K- mtmyp 0.36.
6 AU= — TP _ ey,
2m,(m, + m,)
AU ", _
(7 W:_l = m, +m, =0.4.
_ _K _
1.37. M = AN 1.99 Nm.



