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Oscillations and Waves

2.1 DEFINITIONS

Along with translational and rotational motions, oscillations play an important role in the
macro- and micro-world. We can distinguish both chaotic and periodic oscillations.
Periodic oscillations are characterized by the time of repetitions: through certain periods
of time a system passes one and the same position, running in one and the same direction.
An example is given in Figure 2.1, which shows the man’s cardiogram in the form of a
graph of electrical signals of the heart’s oscillations. It is possible to select the period of
time of one complete oscillation T, thus presenting a periodical process.

However, periodicity is not a unique feature of oscillations: a rotational movement can
also be characterized by periodicity. The presence of an equilibrium position is a second
particularity of oscillatory motion (rotation is characterized only by the so-called indiffer-
ent balance: a well-balanced raised car wheel, being rotated, stops in any position with
equal probability). Thirdly, any deflection force tends to return an oscillatory system to its
initial equilibrium position; i.e., the restoring force is always directed to the position of
equilibrium. The presence of all these three signs distinguishes oscillations from other
types of motion.

Consider several specific examples of oscillatory motion. Clamp one end of a steel
straightedge in a vice and let the other end move freely. The returning force will try to draw
the free end of the straightedge toward the equilibrium position. Passing by this position,
the straightedge will have a certain velocity and a certain stock of kinetic energy. The iner-
tia forces will not permit the straightedge to stop in the position of equilibrium and will
work against the internal elastic force to decrease the kinetic energy. This will bring about
an increase in potential energy. When the kinetic energy is completely exhausted, the
potential energy will reach a maximum. The forces of elasticity will also reach a maximum
and will be directed to the position of equilibrium. All these features were described in
detail in Sections 1.3.5 (eq. (1.3.20)), 1.4.1 (eq. (1.4.9)) and 1.5.4 (Figure 1.33) in the lan-
guage of potential curves. Oscillation will repeat until the total mechanical system energy
disappears into the surrounding space.

Another well-known example is that of pendulum oscillation. We have seen this exam-
ple in Chapter 1 (refer to Figure 1.33) and will often come across  it in different aspects.
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Oscillation can be not just mechanical. So, for instance, one can consider the oscillations of
an electric current in an oscillatory circuit or a magnetic field strength in a dynamo, etc. These
can be described by an equation similar to the one that defines mechanical displacements from
a position of equilibrium. In spite of this fact, we will mostly analyze mechanical oscillations,
keeping in mind their applicability to other types of oscillation.

The time in which a system accomplishes one complete oscillation is called the oscilla-
tion period T. A value inverse to the period expressing a number of full oscillations in the
time unit is referred to as the oscillation frequency � (i.e., completely identical to rotation)

(2.1.1)

Let us begin the analysis of oscillatory processes with the simplest case of a one-dimen-
sional oscillation, i.e., of a system with one degree of freedom. The degree of freedom
described a number of independent variables required for the complete description of the posi-
tions of all parts of a given system. If, for instance, pendulum oscillations are limited by one
plane and the thread of the pendulum is not stretched, it is sufficient to assign either an angle
of deflection of the thread from a vertical line or any other value of displacements from the
position of equilibrium. Each of them is enough to define the position of the pendulum in full.
In this case the system considered possesses one degree of freedom. The same pendulum, if it
can occupy any position on a section of a spherical surface, possesses two degrees of freedom.

2.2 KINEMATICS OF HARMONIC OSCILLATIONS

From the entire variety of periodic oscillations we will select first of all the so-called har-
monic oscillations. Interest in harmonic oscillations is due to the following reasons: firstly,
it is relatively simple to describe harmonic oscillations mathematically, and, secondly, any
periodic oscillations can be presented as a superposition of harmonic oscillations. This lat-
ter circumstance is very important, and we will return to it in Section 2.3.2.

Harmonic oscillations are an abstraction, since they have to continue for an infinitely
long period (���t���), according to certain laws, without any changes, which is not

�� �
1

T
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Figure 2.1 An example of a periodic oscillation process: the cardiogram of a human being.
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the case in the real macroscopic world. We consider harmonic oscillations to be one of the
common physical models.

Oscillations are referred to as harmonic if the changes in time of some physical values
occur under the sine or cosine law

(2.2.1)

where �(t) is the time dependence of a displacement. By the term “displacement” we
understand the magnitude of the displacement of any physical value at a given time
instance t. In particular, when considering the simplest mechanical oscillations under dis-
placement we shall understand a deflection of varying point from the position of equilib-
rium. The maximum value of the displacement is called the oscillation amplitude A; it is
always taken as a positive value. The expression in parentheses is the phase of oscillations,
� is the initial phase of oscillations (i.e., the phase of oscillation at moment t � 0) and �
is the angular (or circular) oscillation frequency.

The choice of sine or cosine for describing the harmonic oscillations as well as the ini-
tial phase is rather arbitrary and is chosen for convenience. A cosine form is preferable in
most cases as will be seen later. The transition from one form to another is easily realized
by a corresponding change of the initial phase. So, for instance, if harmonic oscillation is
described by an expression �(t) � A sin(�t � �1), it is also possible to present it in the
form �(t) � A cos(�t��1 � �/2) � A cos(�t��2), where �2 � �1 � �/2.

Let us make an interconnection between the angular frequency �, the frequency v and
the period T. Sine and cosine are periodical functions with period 2�. This means that after
the time interval T a system returns to its initial state and the phase is changed to 2�, i.e.,
[�(t � T )�]�[�t � �] � 2�. Thereby, the angular frequency is connected with period T
and frequency v by the expressions

(2.2.2)

or

(2.2.3)

Let us examine the change in the speed and acceleration of an oscillating point. If the
displacement of an oscillating MP is expressed by eq. (2.2.1), its velocity and acceleration
can be found by the first and second time derivative of displacement as

(2.2.4)

(2.2.5)a t
d t

dt
t A t( )

( )
( ) cos( ).

2

2
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Comparing these expressions, we arrive at

(2.2.6)

This means that the acceleration of harmonic oscillations is always proportional to the dis-
placement and is in the opposite direction. A graphical diagram of displacement (a), veloc-
ity (b) and acceleration (c) depending on the phase �t is presented in Figure 2.2. It can be
seen from these curves that the phase of velocity differs from that of displacement by �/2;
however, the phase of acceleration shifted by � in comparison to the displacement phase.
This can be summarized as follows: the velocity phase leaves behind the displacement
phase by �/2; however the acceleration is in antiphase to the displacement. In other words,
when the displacement is maximum (� � A) the velocity is equal to zero; however accel-
eration reaches its maximum value (amax � �0

2A). On the other hand, while the MP passes
the equilibrium position the velocity is maximum (�max � �0 A), and acceleration at this
moment is zero.

It is instructive to consider the relationship between a simple harmonic motion along a
line and uniform circular motion. In this respect, the harmonic oscillation can be presented
by uniform rotation of the radius vector (or amplitude vector). Let us imagine a segment
with a length numerically equal to the amplitude value A uniformly rotated around one of
its ends (Figure 2.3) with an angular frequency �. We denote � as an angle with an
abscissa axis �. At the instant of time t this angle is �t � �. Projection of a point B onto
the �-axis will increase in time and be described mathematically in just the same manner
as the harmonic oscillation �(t) � A cos(�t � �). Therefore, the radius vector accom-
plishes a rotational motion, whereas its projection on the �-axis oscillates according the
harmonic law.

a t t( ) ( ).2��� �
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(0), respectively, are shown.
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The angular velocity of rotation can be found by time derivation [d(�t � �)/dt] � �.
So, the harmonic oscillation can be formally presented by the rotating radius vector A
with angular velocity �, the phase being found by an angle of the radius vector OB with
the �-axis. Here, the initial phase is an angle the radius vector forms with the �-axis in the
instant of time t � 0.

By describing harmonic oscillation in this way, we can accept that the phase is a more
exhausting characteristic of harmonic oscillations than displacement. This can be better
seen in Figure 2.4. The advantage of phase to displacement is that the former uniquely
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Figure 2.3 A vector diagram of harmonic oscillations.
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Figure 2.4 Ambiguity of oscillations with displacement: two phases �1 and �2 correspond to one and
the same displacement �, whereas velocities �1 and �2 have opposite directions.
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describes the oscillation, whereas in the latter case one should choose the real phase of two
(two phases �1 and �2 lead to the same displacement; in the successive moments the oscil-
lating points will scatter in different directions with velocities �1 and �2).

Besides comparing two harmonic oscillations with the same frequency but with dif-
ferent and unknown amplitudes, values of displacements cannot give a valuable result;
whereas a knowledge of phases can provide a clear picture. For instance, if phases coin-
cide, both harmonic oscillations reach maximum displacement simultaneously (oscilla-
tions are in-phase) and vice versa. When changing a phase by 2�n harmonic oscillation
returns to its initial state (n � 0, 1, 2, ...). If phases differ by �, 3�, 5�, etc. (in the gen-
eral case (2n � 1)�), such oscillations are accepted to be in opposite phases or in
antiphase.

Figure 2.5 shows a vector diagram with displacement, velocity and acceleration. It can
be seen that velocity is ahead of displacement by an angle �/2 and acceleration is antiphase
to displacement.

Here, the vector diagram of the harmonic oscillation enables us to use representations
of complex numbers. In some cases it allows us to avoid bulky trigonometric transforma-
tions and essentially simplifies mathematical calculations and physical view.

Let us consider a complex number plane. On the abscissa we shall put the real part of a
complex number and on the ordinates its imaginary part (Figure 2.6). Then any complex
number can be written as

(2.2.7)

Its modulus is equal to

(2.2.8)A Z� � �� �2 2

Z � �� �i .
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Figure 2.5 A vector diagram of displacements, velocities and acceleration. The frequency is chosen
as unity.
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Real (�) and imaginary (�) parts of complex number � � i� can be expressed through the
modulus A and argument � by formulas

(2.2.9)

Therefore, any complex number can also be expressed as

(2.2.10)

At uniform rotation of a radius vector A as an argument we can take � � �t � �. Then
the real part (Re) of a complex number Z will change under the harmonic law:

(2.2.11)

where the modulus of the complex number is equal to the amplitude of the harmonic oscil-
lations represented by this complex number.

The Euler formula plays an important role in interpretation of oscillations. Accordingly,
the real part of the complex number (written in exponential form)

(2.2.12)

changes in time under the harmonic law:

Re[ exp i( )] cos( ).A t A t� � � �� � �

Z A t� �exp[i( )]� �

Re( ) [cos( )],Z A t� �� �

Z A� �(cos i sin ).� �

� � � �� �A Acos , sin .
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Figure 2.6 Graph of a complex number Z = � � i�.

Else_PE-OZEROV_CH002.qxd  2/9/2007  6:01 PM  Page 111



In all these cases, displacement � of harmonic oscillations can be presented as

(2.2.13)

Henceforth, we shall designate complex number Z by the same letter as displacement
(�), meaning every time that harmonic oscillation is described by the real part of this com-
plex number. Hence, the time dependence of displacement at harmonic oscillations can be
written as follows:

(2.2.14)

This expression can be rewritten as

(2.2.15)

A exp(i�) defines the length and direction of the radius vector (A) at the initial instant of
time and is referred to as complex amplitude (which we shall designate a)

(2.2.16)

Then harmonious oscillations can be written even easier:

(2.2.17)

The sign in an exponent shows the direction of the radius vector A rotation. In physics,
factor e�i� sometimes stands for an operator of rotation. In fact, multiplication by this fac-
tor is equivalent to turning the vector A counterclockwise at an angle �.

EXAMPLE E2.1

A small weight is suspended on a long, nonextendable string. Prior to oscillating, it
was removed from the position of equilibrium to the utmost left-hand side and then
set off. Write down the equation of oscillation and find the initial phase.

Solution: First of all, we have to choose the form of the answer (sin or cos,
with their signs). Let it be cos. The sign depends on a positive direction of the
axis chosen; let it be from left to right. If the weight was released at its negative
utmost deviation the displacement at t � 0 should be � A. Therefore, the equa-
tion is �(0) � A cos(�t � �); � is just the initial phase. If we choose function
(sin) the initial phase would be 3�/2. It is expedient to draw the vector diagram
for this case.

� �� a texp(i ).

a A� exp(i ).�

� � �� A texp(i )exp(i ).

� � �� �A tcos( ).

�� Re( )Z
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EXAMPLE E2.2

An MP oscillates with simple harmonic motion according to the equation x(t) = 
A cos(�t � �), amplitude A being equal to 2 cm. Find the initial phase � if x(0) �
��3� cm and x.(0) � 0. Draw a vector diagram for the zero instance of time (t � 0).

Solution: Express a displacement at t � 0 via initial phase: x(0) � A cos �. The
initial phase is � � arcos [x(0) /A] and further � � arcos(��3� / 2). Two angles
correspond to these phases �1 � (5�/6) and �2 � (7�/6). To find for a certain
phase we have to use the condition x.(0)�0. Keeping in mind that x.(t) � � �A
sin(�t � �) we can substitute numerical values �1 and �2 and find x.1(0) � � A�/ 2
and x.2(0) � � A�/ 2. Since A � 0 and � � 0, only the first value satisfies the con-
dition x.(0)�0. Hence, the value sought is �1 � (5�/6). The results can be seen in
Figure E2.2.

2.3 SUMMATION OF OSCILLATIONS

2.3.1 Summation of codirectional oscillations

Let us begin with the simplest case: summation of two oscillations with the same fre-
quencies:

and

� � �2 2 2( ) cos( ).t A t� �

� � �1 1 1( ) cos( )t A t� �
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The resulting displacement �(t) can be found as an algebraic sum of oscillations 
�(t) � �1(t) � �2(t) � � cos(�t � �), where A and � are the amplitude and initial phase
sought of the final oscillation. Such a summation can be realized both graphically and ana-
lytically, although the graphical method is more visual. Each oscillation in the same time
instance (say, t � 0) can be presented as vectors A1 and A2 (Figure 2.7), plotted from the
abscissa under angles �1 and �2, correspondingly. Since the frequencies of both oscilla-
tions are the same, the mutual positions of both vectors A1 and A2 remain unchanged dur-
ing their rotation with the same angular velocity. Consequently, the total oscillation can be
represented by vector A, which is the vector sum of A1 and A2. This is the oscillation
accomplished with the same cyclic frequency � (the complex parallelogram is rotated with
this angular velocity). The amplitude A can be determined according to the cosine theorem
taking into account that instead of angle 180° � (�2 � �1), in the following expression,
we use angle �2 � �1 that influences the sign in radicand

(2.3.1)

Let us analyze the result. The phase difference of the summing oscillation remains con-
stant; at any time instance it is the difference of the initial phases, i.e.,

�� � � � � � �� � � � � �� �( ) ( ) .2 1 2 1t t

A A A A A� � � �1
2

2
2

1 2 2 12 cos( ).� �
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Figure 2.7 Summation of two codirectional oscillations with same frequency.
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As can be seen from expression (2.3.1), the resulting amplitude depends on the phase
difference of the summed oscillation. In particular, if the phase difference �� satisfies the
condition 

(2.3.2)

where n � 0, 1, 2,..., then cos �� � 1, and the resulting amplitude will have the maximum
value

or 

(2.3.3)

If the phase difference is 

(2.3.4)

then cos �� � � 1 and the resulting amplitude will have the minimum value

or

(2.3.5)

The modulus is used here because the amplitude must be positive.
It is clearly seen that oscillation will not take place at all in this case: having equal

amplitudes and oscillating in antiphase, they have cancelled each other out.
Determine now an initial phase �. From Figure 2.7, tg � � ( BD/OD) can be derived;

however, BD � A1 sin �1 � A2 sin �2 and OD � A1 cos �1 � A2 cos �2. Therefore

tg
sin sin

cos cos
,1 1 2 2

1 1 2 2

�
� �
� �

�
�

�

A A

A A

A A Amin 1 2 .� �
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2

2
2

1 22� � �

�� ��� �(2 1) ,n

A A Amax 1 2 .� �

A A A A Amax 1
2

2
2

1 22� � �

�� ���2 n,
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and the phase is 

(2.3.6)

Hence, summing up two harmonic oscillations, we also obtain the harmonic oscillation
with the same cyclic frequency and amplitudes given by expression (2.3.1) and the initial
phase given above (2.3.6).

EXAMPLE E2.3

Two oscillations take place along one and the same direction. They are expressed
by equations x1 � A1 cos�(t � 	1) and x2 � A2 cos �(t � 	2), where A1 � 1 cm,
A2 � 2 cm, 	1 � 1/6 sec, 	2 � 1/2 sec, � � � sec�1. Determine (1) initial phases
�1 and �2 of the component oscillation; and (2) the amplitude and initial phase of
the resulting oscillation. Write down the equation of the resulting oscillation and
draw the corresponding vector diagram.

�
� �
� �

�
�

�
arctan

sin sin

cos cos
1 1 2 2

1 1 2 2

A A
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Solution: (1) In general form the equation of oscillations is x � A cos(�t � �1).
Rewriting the given equation for both oscillations: x1 � A1 cos(�t � �	1) and x2 �
A2 cos(�t � �	2). From the conditions given above we can find �1 � w	1 � (�/6)
rad and �2 � �	2 � (�/2) rad. (2) Keeping in mind the vector diagram (Figures 2.4 

and 2.7), we can find A � �A�1
2� �� A�2

2� �� 2�A�1A�2�co�s�����.� We can find �� from the data
given above; �� � (�/3) rad, and further, tan� �(A1 sin �1� A2 sin �2) / (A1cos �1�
A2 cos �2). Executing the calculations we arrive at � � arctan (5/ �3�) � 70.9° �
0.394� rad.

2.3.2 Summing up two codirectional oscillations with slightly different

frequencies: beatings

For simplicity, consider that �1 	 �2, so �� �� (�1 � �2) and A1 � A2 � A. This sum-
mation can be made analytically without difficulty. However, we will use here the sum-
mation method of oscillations based on the vector diagram as we did earlier in this chapter
to define the qualitative nature of the result. Turn first to Figure 2.7. In this case vectors A1

and A2 rotate with slightly different angular velocities. This signifies that at some point in
time both vectors can be in antiphase and the resulting oscillation amplitude is zero.
Hereon, vector A2 runs after A1 and at another time instant “catches” it up, the phases of
both vectors coinciding. The resulting oscillation amplitude will become 2A, whereupon
vector A2 will overrun vector A1 and the total oscillation amplitude will gradually
decrease. At least vector A2 overruns A1 by �: once again the oscillations will disappear in
a moment. Then the whole process will be repeated again.

It is easy to see that oscillations like those depicted in Figure 2.8 are composed oscilla-
tions. These types of oscillations are called “beatings” and are easily observable. When two
sources of oscillations (for instance, two engines in an aircraft) rotate at close frequencies,
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a resulting sound can be heard: low-frequency fluctuations �� on a background of the high-
frequency roar � of the engines.

2.4 DYNAMICS OF THE HARMONIC OSCILLATION

2.4.1 Differential equations of harmonic oscillations

It was shown earlier (refer to eq. (2.2.6)) that there exists a simple correlation between dis-
placement and acceleration of an oscillating MP:

or

(2.4.1)

This equation is referred to as the differential equation of harmonic oscillations. By ana-
lyzing this equation, we can arrive at an important conclusion: when solving a problem and
arriving at an equation like that presented above, it means that the problem can be reduced
to harmonic oscillations and the coefficient before the displacement function is the square
of its cyclic frequency.

A general equation is a sum

(2.4.2)

or, in exponential form

This is proved by substitution of any of the proposed solutions into eq. (2.4.1).

2.4.2 Spring pendulum

A system consisting of a body with a mass m, which, moving without friction (!), can
oscillate under the action of elastic force (weightless springs) with the rigidity coeffi-
cient 
, is called a spring pendulum. One end of the spring is attached to the weight
and the other end is fastened to a rigid wall (Figure 1.22). (This system has already
been considered in Sections 1.4.1 (Figure 1.22) and 1.5.4 (Figure 1.31).) The starting

� �� A texp(i ).

� � �� �a t b tcos sin

��� � �( ) ( ) 0.2t t� �

��� � �( ) ( )2t t��
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position is that of a nondeformed spring. According to the second law of dynamics, we
can write

(2.4.3)

where � is the value of the shift from the origin. In this case, the elastic force is a single
force acting on the body (since the projection of the gravitational force to the abscissa x is
zero and friction is neglected). A negative sign is stipulated by the fact that the force act-
ing on the weight is always directed toward the origin. Transferring both terms of eq.
(2.4.3) to the left-hand side and subdividing them by m, we arrive at

(2.4.4)

Compare the expression obtained with the general type of differential equation of har-
monic oscillation (eq. (2.4.1)). From the fact that both equations have a similar form, it can
be stated that the weight makes a harmonic oscillation. Thereof, the other definition of a
harmonic oscillation is an oscillation that occurs under the action of an elastic force. By
equating the multipliers in the similar terms of the equation, we can derive an expression
for the cyclic frequency of the spring pendulum:

(2.4.5)

The same expression can be obtained for the cyclic frequency of free-oscillating bodies
appearing by the action of any quasi-elastic force, which is linearly proportional to dis-
placement � and directed opposite to it.

According to eq. (2.2.2), the period T of harmonic oscillations produced by the action
of elastic and quasi-elastic forces is given by the formula

(2.4.6)

2.4.3 The mathematical pendulum

Another example of harmonic oscillations is that of a mathematical pendulum. An MP sus-
pended on a weightless, nonstretched and ideally flexible thread, is referred to as a math-
ematical pendulum. Consider small displacements of a pendulum from the equilibrium
position, i.e., � �� l, where l is the length of the mathematical pendulum. At a certain
instant of time, let the pendulum occupy the position depicted in Figure 2.9. Using the sec-
ond Newtonian law, equation of motion can be written as

(2.4.7)m mg��� ��� sin

T � 2 .�


m

�



�
m

.

���



�� �
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At small pendulum’s angle deflection (�/l �� 1), sin��� and the returning force F �
�(mg/l)� can be considered as a quasi-elastic one. The coefficient characterizing the
“rigidity” of the quasi-elastic force for the mathematical pendulum is 
 � mg/l .
Introducing this expression for the rigidity of a quasi-elastic force into eqs. (2.4.5) and
(2.4.6), we can obtain an expression for the cyclic frequency and period of small oscilla-
tions of a mathematical pendulum:

(2.4.8)

and

(2.4.9)

These formulas are valid only for small displacements (� �� l), under which approximation
sin � � � is also valid. This approximate equality will be executed if angle � �� 1. So, for
instance, at � � 5° (� � 0.1 rad) replacing sin � by � brings about an inaccuracy of the
order 0.2%. On reducing angle � this inaccuracy quickly decreases: at � � 1°, it reaches an

T � 2 .�
�

g

��
g

�
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insignificantly small value 0.005%. By contrast, at greater amplitudes it is impossible to
consider oscillations to be harmonic and their period will depend on amplitude.

2.4.4 A physical pendulum

Any body having the possibility to oscillate freely under a gravitational force around a hor-
izontal axis, not passing through the body’s CM, is referred to as a physical pendulum. In
this case, all points of a rigid body move along an arc of concentric circles. Consequently,
for the description of a physical pendulum’s oscillations, the rotational laws of dynamics
should be applied.

Let an axis of rotation z pass horizontally through point O (Figure 2.10) perpendicular
to the plane of drawing. Also, let the physical pendulum be deflected from the position of
equilibrium by angle �, which, as previously, is considered to be small. Then, the main law
of dynamics of rotational motion can be written as

(2.4.10)

where Iz is the moment of inertia of the physical pendulum regarding axis Oz, �.. is a time sec-
ond derivative of � and Mz is the moment of external force with respect to axis z returning
the pendulum to the position of equilibrium. In a given case this moment is stipulated by
gravitational force mg, attached to the CM of the physical pendulum. In Figure 2.10, the

I Mz z ,�����
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physical pendulum CM is marked by the letter C whose distance from the oscillation 
axis O is marked by the letter lc. From Figure 2.10 it can be seen that for small angular 
displacements 

(2.4.11) 

Sign “�” corresponds to the accepted sign rule for the returning force moment of the Oz
axis. Thereby, the differential equation for small physical pendulum oscillations according
to eqs. (2.4.10) and (2.4.11) can be written as

(2.4.12)

Comparing this expression with eq. (2.4.1) we can conclude that the physical pendulum
makes harmonic oscillations with cyclic frequency

(2.4.13)

and the period of small oscillations is

(2.4.14)

The length of such a mathematical pendulum, which is equal to the physical pendu-
lum’s oscillation period, is called the reduced length of a physical pendulum. An expres-
sion for the reduced length of a physical pendulum can be found by comparing eqs.
(2.4.9) and (2.4.14):

(2.4.15)

Point O1 on the line OC (Figure 2.10) at a distance L from the axis of rotation z is called
the center of swing of the physical pendulum. It is noteworthy that if a pendulum is turned
over and hung up on the horizontal axis passing through the point O1 the period of its oscil-
lation does not change, point O being the new center of oscillation. We will leave the proof
of this property as an exercise for the reader.

EXAMPLE E2.4

On the ends of a thin rod of weight m3 and length l, small-sized balls of weights m1 and
m2 are fixed. The rod makes small oscillations about a horizontal axis perpendicular to

OO .1
z

c

� �L
I

m�

T � 2 .z

c

�
I

mg�

��
mg

I

�c
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��� �� �
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I
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0.

M mg mgz c csin .�� �� �� ��
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the rod and passing through its middle point. Define the period T and frequency � of
the oscillation of the pendulum. Solve the problem for l �1 m, m1 � 200 g, m2 �300 g
and m3 � 400 g.

Solution: The frequency of the physical pendulum’s oscillation and the period of
its oscillations can be found according to eqs. (2.4.14) and (2.4.13). There are three
values to define: total weight m, the MI of the pendulum relative to the axis of oscil-
lation Iz and the distance from the axis of oscillations up to the center of weights lc.
Oscillation axis z passes through the center of the rod perpendicular to the plane of
drawing: let us direct an axis x vertically downward (parallel to the rod) and super-

pose its origin with an oscillation axis. The coordinates of all bodies included in the
system can be determined from Figure E2.4.

We can find the distance lc from eq. (1.3.32): 

Remember that the oscillation axis coincides with the position of the oscillation axis,
i.e., the coordinate of the CM numerically coincides with lc. The weight of a physi-
cal pendulum is equal to m � m1 � m2 � m3 (0.9 kg).

l

m x

m

m l m l

m

m m

m

i i

c
1

2

1 2 2 1( 2) ( 2) ( )

2
5.55 cm.� �

� 
 � 

�

�
�

∑ � �
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We shall find the MI of a physical pendulum relative to oscillation axis as the sum
of the moments of inertia of three bodies:

Substituting the data into the general eqs. (2.4.13) and (2.4.14) we arrive at T � 2.17
sec and � � 2.89 rad/sec.

EXAMPLE E2.5

A physical pendulum consists of a rod and a hoop of masses mrod � 3m1 and mhoop

� m1; the length of the rod is l � 1 m. The horizontal axis of oscillation Oz is per-
pendicular to the rod and passes it at its center O. Determine the oscillation period
of such a pendulum. The rest of the definitions are given in Figure E2.5.

Solution: The period of oscillation is expressed by eq. (2.4.14), T � 2��	.

To find the period, we must first choose a reference frame (axis x), mark a zero posi-
tion on it (see Figure E2.5) and find the MI of parts of the pendulum, Iz,1 is the MI

m1

l/4

a

l/2

C

lc

O

3m1

l

I
�
mglc

I I I I m m
m m m m

� � � � � � �
� �

1 2 3 1

2

2

2
3

2 2
1 2 3

2 2 12

(3 3 )
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⎞
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⎛
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of the rod and Iz,2 is the MI of the hoop and the total MI is I. It is also necessary to
find the distance lc between the oscillation axis (point O) and the CM. The MI of the
physical pendulum relative to the oscillation axis is the sum of I1 (the MI of a rod)
and I2 (the MI of the hoop both relative to the same axis I � I1 � I2).

The rod MI is I1 � m1l
2/4 (because the rod mass is 3m1 and the axis passes

through the center of the rod). The MI of the hoop is the sum of the MI of the hoop
itself (first item) and the addition from the parallel axis theorem (second item): 

The total MI of the pendulum is the sum I� � � .

The distance 

(In order to simplify calculation of lc it is useful to mark zero on axis x at the same
level as point O; in this case the CM coordinate is simultaneously lc). Obtaining
these preliminary results we can place all the values under the square root:

therefore, T � 2.17 sec.

EXAMPLE E2.6

A small weight of mass m � 5 g performs harmonic oscillations under the action 
of a gravitational force with frequency v � 0.5 Hz. Amplitude is A � 3 cm. Find 
(1) the velocity of the weight at a time instant when x � 1.5 cm; (2) the maximum
force F acting on the weight; and (3) the total energy of the oscillator.

Solution: (1) The oscillation equation is x(t) � A cos(�t � �), whereas the
expression for velocity can be obtained by time derivation of �(t):  (d�/dt) � � �
� A� sin(�t � �)*. In order to find the relation between the velocity � and �, we
should exclude the time from the last two equations. For this it is necessary to square
both equations, divide the first by A2, the second by A2�2 and sum the results: 
(x2 /A2)�( �2/A2�2) � 1.

Solving the equation relative to � we can arrive at � � 2�v �A�2��� x�2� (keeping in
mind that � � 2�v). Executing all calculations, we obtain � � � 8.2 cm/sec. 
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The sign “�” is valid when the velocity is directed along the positive direction 
of x-axis and vice versa. The same result can be obtained if the sin function is
used instead of cos. (2) The force value can be found according to the Newton’s
second law. The time first and second derivative can be seen in eqs. (2.2.4) and
(2.2.5): a � x

..
� (d� /dt) � � A�2cos(�t � �) or a � � 4�2v2Acos(�t � �). Using

acceleration amplitude in any of these equations can yield Fmax � �2mA or 1.49
mN. (3) The total energy is the sum of the kinetic and potential energies. Therefore,
the total energy can be calculated at any position; for instance, in the lower position
the kinetic energy is maximum at this point. Therefore using the equation marked as
* (see above) and taking sin(�t � �) � 1 we obtain E � Kmax � (m�2

max /2). Finally,
E � 2�2v2A2; executing the calculation  we arrive at 22.1 � 10�6 J or 22.1 J.

EXAMPLE E2.7

An areometer (densitometer) consisting of a long tube of diameter d � 1 cm weigh-
ing m � 50 g freely floats vertically in still water. It is submerged a little and then
released; it begins to oscillate up and down. Neglecting the water viscosity find the
period of its oscillations.

Solution. Choose an axis � vertically and denote an origin � � 0 at the areometer
tube prior to its oscillation (Figure E2.7,a). In this state its gravity and Archimedes
force are equalized. Oscillations will be accomplished by the periodically changing
Archimedes force because the gravity remains constant. The value of areometer’s
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immersion can be arranged as � (Figure E2.7,b) which will determine the Archimedes
buoyancy force (�d 2/4)g �; this is the restoring force in our case. According the
second Newtonian law, m�

..
� (�d2/4) g� and then �

..
� (�d2/4m)g� � 0. Firstly,

we obtained the confirmation that our system accomplishes harmonic oscillation
(compare this equation with eq. (2.4.1)), and secondly can easily extract the �2

value: � � (2�/T ) � (d/4�) �(���g� /� m�)� whence T � (4/d)�(��m�/�g�)�� 1.6 sec.

EXAMPLE E2.8

A neon atom (Ne) collides with an oxygen atom of a molecule (O2) along its bond
direction (Figure E2.8). The kinetic energy of the Ne atom is K1� 6.� 10�21 J. The
oxygen bond rigidity coefficient 
 is 1.18.� 103 N/m. Relative masses of the Ne
and O atoms equal Ar,Ne � 20; Ar,O � 16. Consider the collision to be elastic and the
oscillations of the O2 molecule after impact to be harmonic. Determine: (1) the
translational kinetic energy Kz,tr of the oxygen molecule after impact; (2) the oscil-
lation energy E2,osc of the oxygen molecule acquired by the impact (suppose that the
O2 molecule did not oscillate before the collision); (3) the average values of kinetic
�K2,osc�� and potential �U2,osc�� energies; (4) amplitude A of the harmonic oscil-
lation; and (5) the angular oscillation frequency �.

Solution: (1) Assume that impact is elastic and head-on impact takes place. Using
eq. (1.5.16) we can obtain 

where �1 is the velocity of the Ne atom prior to impact. After collision its kinetic
energy is

The CM velocity can be found using only the momentum conservation law
because part of the kinetic energy is taken for the inner (oscillation) energy of the
O2 molecule 
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Then the kinetic energy of the translational movement of the O2 molecule K2,trs� is 

Executing calculations we arrive at

(2) The energy of oscillation can be found using the energy conservation law:

Therefore

or

therefore, E2,osc � 2.96 � 10�21 J.

(3) The average values of oscillation kinetic and potential energies can be found
from eqs. (2.5.7) and (2.5.8). It follows that

(4) The amplitude of the harmonic oscillations can be calculated from the expression 

The rigidity coefficient 
 � ��2, therefore E2,osc � (1/2)
A2 and then
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Using the oscillation energy we can execute all operations

(5) The angular frequency can be found from equation 
 � ��2. Since � � (m2/2), 

And finally we arrive at

2.4.5 Diatomic molecule as a linear harmonic oscillator

The diatomic molecule is an example of a linear harmonic oscillator provided that the
interatomic force is an elastic one. Consider a molecule to be close to an isolated system.
This signifies that two atoms of a molecule make oscillations relative to their CM, so that
such oscillation can be reduced to an oscillation of a single body (with the mass equal to
the reduced mass system) regarding the motionless fixed point under the action of the same
interatomic force.

Superpose the origin into point C, which is the CM of two points with masses m1 and m2

(Figure 2.11). Then their coordinates x1 and x2 determine the equilibrium positions of both.
For this case, we can write m1x1 � m2x2 (refer to Section 1.3.7). Considering the oscil-

lations to be symmetrical, for any instant of time it is fair to say that

m x m x1 1 1 2 2 2( ) ( ).� � �� �
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� �
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Simplifying,

Assume for the linear oscillator the interatomic force is an elastic one. This corresponds
to the problem in harmonic approximation. Then, a force acts on any atom that is out of
its equilibrium position:

Use Newton’s second law for each atom

Express in the first equation �2 through �1 and in the second equation �1 through �2:

Rewriting these expression as

and summing both expressions, we arrive at

Because �1 � �2 � �, where � is the displacement of one atom relative to the other, we can
write the expression for relative acceleration as �1

..
� �

..
2 � �

..
. Value m1m2/ (m1 � m2) is the

reduced mass of the molecule, which is denoted by � (Section 1.3.9). Then the above equa-
tion corresponds to the harmonic oscillation of a single material point � under the action
of an elastic force � 
�:

(2.4.16)
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The equation derived is similar to that describing the oscillations of a spring pendulum.
Here the interatomic force plays the role of a spring. This shows that the problem of the
atom vibrating in the molecule is reduced to the problem of harmonic material point oscil-
lations with the mass, equal to the reduced molecular mass.

A physical system, making oscillations, is referred to as an oscillator. If it complies with
eq. (2.4.6), it is referred to as a one-dimensional harmonic oscillator. In the first approxi-
mation any molecule can be considered as a classical one-dimensional harmonic oscillator;
this is the simplest physical model explaining some (but by no means all) particularities of
atom vibrations in the molecule. In Chapter 7 it will be shown that in quantum mechanics
a much better approximation is given by a model of a quantum linear harmonic oscillator.
However, the next best approximation is a nonharmonic (nonlinear) model (this model 
is more complicated; it describes atomic vibrations in more detail and introduces new 
phenomena).

2.5 ENERGY OF HARMONIC OSCILLATIONS

An oscillating body possesses both potential energy U and kinetic energy K. Its total
energy E is the sum: E � U � K.

First an expression for the potential energy of the oscillating body is found. When dis-
placing from its equilibrium position, an elastic force acts on the body. The potential
energy of the body in this case was determined in eq. (1.5.4):

(2.5.1)

The time dependence of displacement is expressed by formula (2.2.1). Then the potential
energy is equal to

(2.5.2)

The kinetic energy is equal to K � m� 2. Since � � ���A� sin(�t��),

(2.5.3)

Substituting m�2�
, 

(2.5.4)

Now the total mechanical energy combining both U (2.5.2) and K (2.5.3) is

E A t t� � � �1
2

2 2 2[cos ( ) sin ( )]
 � � � �

K A t� �1
2

2 2sin ( ).
 � �

K A m t� �1
2

2 2 2sin ( ).� � �

1
�
2

U A t� �1
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�
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or

(2.5.5)

It can now be seen that total mechanical energy is defined by the coefficient 
 character-
izing the rigidity of the system, and by the oscillation amplitude squared. Therefore, the
total mechanical energy is equal to

(2.5.6)

It is important to note that the total energy of harmonic oscillations is proportional to
the square of amplitude: E � A2. Obviously, the system considered is conservative and its
total energy is conserved, i.e., only the transfer of kinetic energy into potential energy and
back again is taking place (refer to eq. (1.5.4)). The potential energy reaches a maximum
at the largest (amplitude) displacement, whereas kinetic energy is at its highest possible
when the system crosses the origin.

Note that expressions (2.5.2) and (2.5.4) can be presented in the form

(2.5.7)

and

(2.5.8)

It can be seen that the oscillation of kinetic and potential energies accomplishes with the
doubled frequency 2� in comparison with the initial one. Graphs of functions �(t), K(t)
and U(t) are presented in the Figure 2.12.
The averaged values of kinetic and potential energies of harmonic oscillations for the
period are equal to half the total energy, i.e.,

(2.5.9)

This equation is the consequence of the fact that the average values of sin � and cos� func-
tions for the period are equal to
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2.6 DAMPED OSCILLATIONS

Hitherto, we have considered harmonic oscillations appearing under the action of a single
(restoring) force in a system. Such oscillations are called free or natural ones, their fre-
quencies being designated by �0. Strictly speaking, there are no such systems in sur-
rounding macroscopic nature. In real systems, there are forces other than elastic forces;
they are distinguished in nature from quasi-elastic forces and appear when an oscillation
system interacts with its surroundings. The final result of these interactions is the trans-
formation of the mechanical energy of the moving bodies into heat. In other words, a dis-
sipation of the mechanical energy occurs. The process of energy dissipation is not purely
mechanical and for its description another section of physics is required. Within the frame-
work of mechanics we can describe this process by introducing forces of friction or resist-
ance. As a result of mechanical energy dissipation, the oscillation amplitude decreases.
The damping oscillations are no longer harmonic ones, since oscillation amplitude
changes. Oscillations that, in consequence of energy dissipation, have a continuously
decreasing amplitude are referred to as damped oscillations.

Consider nearly free damped oscillation with a small resistance. At small oscillation
amplitudes, the velocity of the body will also be small; under small velocities the force of
resistance is often proportional to the velocity value (refer to eq. (1.3.5))

(2.6.1)

where � � �· is the velocity of a body’s motion and r is the proportionality factor, called
the resistance coefficient. The minus sign in the expression of resistance force is stipulated
by the fact that its direction is opposite to the velocity of the moving body.

F r r�� ��y ��,
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Taking the quasi-elastic ( �
�) and resistance forces (�r�· ) into account, we can write
an equation of motion of damping oscillations as

(2.6.2)

Substituting the coefficient 
 by m�0
2 in this expression and dividing both sides by m, we

have

(2.6.3)

Suppose that for damping oscillations the expression sought has the same form as previ-
ously discussed:

(2.6.4)

Here � is as yet an unknown value. The initial phase is taken as zero, i.e., we begin to meas-
ure time when the phase crosses the zero position. To find this quality we can substitute
the form (2.6.4) into  equation (2.6.3) together with their first and second derivatives:

Substitute these equations into (2.6.3):

After reducing on A0e
i�t and changing signs we obtain
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This quadratic equation relative � has two roots:

(2.6.5)

We can find the time dependence of displacement by introducing (2.6.5) into (2.6.4). For
the sake of convenience introduce two more values:

(2.6.6)

and

(2.6.7)

Since � � i� � ���0
2����2� � i� � � the displacement in damping oscillation can be pre-

sented in the form:

(2.6.8)

The choice of the sign corresponds to the phase shift on �. We shall write the solution with
a “�” sign. Then eq. (2.6.8) can be rewritten as

(2.6.9)

This is the expression sought for damped oscillation. In trigonometric form it can be given as

(2.6.10)

In all the sequent expressions � is the frequency of damped oscillations. It is always lower
than the frequency �0.

The time dependence of the amplitude can be given as

(2.6.11)

where A0 is the amplitude in the initial instant of time (at t � 0). The constant � (refer to
(2.6.6)), equal to the ratio of the resistance coefficient r to the doubled system mass, is usu-
ally called the coefficient of the damped oscillations.
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Find the time during which the amplitude of the damped oscillations reduces e times,
i.e., A(t)/A(t � 	) � e.Using eq. (2.6.11) we can obtain

or exp(�	) �e,wherefrom

(2.6.12)

Hence, the damping coefficient � is the value reciprocal to the time of amplitude reduction
into e times.

In order to characterize the process of attenuation, the so-called logarithmic decrement
of damping (attenuation) � is also used. It is accepted to be equal to the natural logarithm
of a ratio of two oscillation amplitudes, separated from each other by an oscillation period: 

(2.6.13)

Using expression (2.6.11), we obtain

(2.6.14)

Find a physical sense of logarithmic decrement of fading. Let the oscillation amplitude
decrease e times after N oscillations. The time 	, for which a system makes N oscillations,
can be expressed in periods: 	 � NT. Having substituted this value 	 in (2.6.12), we obtain
�NT � 1. As far as �T � �, we can get �N � 1 or

(2.6.15)

Consequently, the logarithmic decrement of fading is a value inverse to the number of
oscillations after which the amplitude decreases e times.

In a number of cases, it is suitable to express the dependency of oscillation amplitude
from time through the logarithmic decrement of fading. The degree �t in expression
(2.6.11) can be written according to (2.6.14) as follows:
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Then expression (2.6.11) takes the form

(2.6.16)

where 	/T is the magnitude, which shows the number of oscillation a system accomplishes
for time 	.

The approximate values (orders of magnitude) of the logarithmic damping decrements
of some oscillation systems are plotted in Table 2.1.

Let us now analyze the influence of resistance force on oscillation frequency. When dis-
placing a body from its position of equilibrium and allowing it to return to its initial posi-
tion, the resisting force will act all the time. This signifies that a body will cover the same
distance in a longer time. It means that the period of damped oscillation will be larger than
that of free oscillations. From expression (2.6.7) it can be seen that the difference in oscil-
lation frequency becomes larger the larger the damping factor 
. Under greater resistance
force, oscillations degenerate into the aperiodic process.

Figure 2.13 shows a graph of the time dependencies �(t) and A(t) (at the initial phase
� � 0). The dashed line expresses a change of oscillation amplitude (2.6.11) in the course of

A A� �0 exp ,�
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Table 2.1

Magnitudes of the logarithmic decrements of damping of some systems

System Decimal logarithm of the oscillating system

Acoustic waves in gases �1
Electric oscillating systems �2
Tuning fork �3
Quartz plate �5

Figure 2.13 Damping oscillations.
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time. If friction in the system increases sufficiently to be commensurate with the magni-
tude of the free oscillation frequency �0, the oscillations become less and less. Finally,
when � � �0, oscillations become completely impossible (this corresponds to an imagi-
nary magnitude of frequency, refer to (2.6.7)). Then the system becomes a damping one.

2.7 FORCED OSCILLATIONS

If a periodical force is acting on a system in addition to restoring and damping forces, the
so-called forced oscillations will take place. Consider the simplest case of forced oscilla-
tions when the driven force changes according to the periodical law

(2.7.1)

where � is the frequency of the driven force and F0 is its amplitude. In addition to the
driven force, a quasi-elastic (�
�) and a resistance force (�r�) are acting on the system
as discussed before. The equation of motion can be written in the following way:

(2.7.2)

Let us divide the above equation by mass m:

(2.7.3)

We will introduce the definitions used in the previous section: �0
2 � 
 / m and � � r / 2m; let

us denote F0 / m by f0. The equation will then take the form �
..

� � �0
2�� 2��

.
� f0 cos �t.

For convenience we present the driven force in the complex form F � F0e
i�t. The equation

will then be as follows:

The steady forced oscillations, i.e., oscillations occurring after a time long enough to
ensure their stability, will be accomplished with a frequency equal to the frequency of the
driven force �. Because of the system’s inertia, the displacement will be detained upon the
phase �. Hence, the solution of the above equation can be rewritten as

(2.7.4)

where A is the complex amplitude containing the phase multiplier ei�. Therefore, the solu-
tion of eq. (2.7.2) is now known with accuracy to the phase multiplier and to the magni-
tude of the oscillation amplitude. Our task is just to find these values.
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Introduce into eq. (2.7.2) the expressions �
.

� iA�ei�t and �
..

� � A�2ei�t. Therefore,
� A�2ei�t � 2�iA�ei�t � �0

2Aei�t � f0e
i�t, Divide the equation by a common multiplier

and find from it the amplitude as a function of the frequency of the driven force:

The complex quantity Z�(�0
2��2) � i2�� is presented in the denominator whose

modulus is Z� �(��2����2)�2��� 4���2��2�. This complex number can be presented in the form
Z�Zei
, where ��arctan(2��/�0

2��2). The expression for the amplitude receives 
the form

As can be seen from this expression, amplitude depends both upon � and �. We are not
interested in the dependence on �. Determine only the A(�) dependence. It takes the form 

(2.7.5)

Consider first the case of the absence of a resisting force (� � 0). Then eq. (2.7.5) simpli-
fies to

(2.7.6)

Let us analyze this expression. If � �� �0, then A � f0/�0 � F0/m�2 or A � f0/�2. The
damped oscillation amplitude in this case turns out to be practically equal to the dis-
placement, caused by constant force F0 in the system, characterized by the quasi-elastic
coefficient 
.

If the frequency is increased (0 � � � �0), the oscillation amplitude increases, as can
be seen from expression (2.7.6), and under � � �0 will go to infinity. With a further
increase in frequency (� � �0) the amplitude decreases and at � �� �0 will practically
not depend on the elastic characteristics since in this case it is possible to neglect the nat-
ural oscillation frequency �0 in comparison with �. Then A � f0/�2 and at � � � the
forced oscillation amplitude will go to zero.

Figure 2.14 presents the dependence of forced oscillation amplitude on the force fre-
quency. In the absence of damping at � � �0 the amplitude reaches infinity. This result is
practically unrealistic, since it means an infinitely great energy of oscillatory motion. In
fact, due to the resistance force, the oscillation amplitude remains finite. Its magnitude is
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determined by the formula (2.7.5). (This expression at � � 0 turns over to (2.7.6), consid-
ered above.) Thereby, the amplitude of the given oscillating system depends on damping
coefficient value � and correlations of natural and damped oscillation frequencies.

Consider now how the amplitude of forced oscillation will behave when damping takes
place. With a driven force frequency equal to zero (oscillation will not take place, but will
become steady-state displacement under the action of force F0):

This coincides with the case of the absence of resistance. The amplitude increases with the
force frequency increase because the denominator in eq. (2.7.5) decreases. When w
approaches �0, the amplitude of forced oscillation increases, reaches a maximum and then
decreases at � �� �0. The increase in amplitude of forced oscillation at the approach of the
frequency of the driven force to that of natural frequency is called resonance. In order to
determine the resonance frequency in the presence of resistance, we must use the well-known
principle for finding extrema �A/�� � 0. Since the denominator in expression (2.7.5) is con-
stant, it is easier to find the extremum of the radicand in the denominator. We obtain 

from which we can arrive at the resonance frequency �res

(2.7.7)� � �res 0
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Figure 2.14 Amplitude of forced oscillations versus a frequency of external driving force in the
absence of damping.
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Then the resonance amplitude of forced oscillations will be

(2.7.8)

At small damping (� �� �0)

(2.7.9)

The dependence of the forced oscillation amplitude A on the driving force frequency �
under different damping factors � is depicted in Figure 2.15. The following conclusion can
be made from consideration of this graph: the less the resistance force (i.e., � is small), the
sharper the resonance peak and the closer the resonance frequency �res to the natural fre-
quency �0. On the contrary, at significant resistance the resonance peak is smoothed and
shifted to the low frequency region.

At small resistance the resonance amplitude is given by eq. (2.7.7), whereas at static
shift it is Ast � f0/�0. Now the ratio of the amplitudes is

(2.7.10)
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Figure 2.15 Amplitude of forced oscillations versus a frequency of external driving force in
the presence of damping: the smaller the damping the higher the oscillation amplitude; �r are the
resonance cyclic frequencies.
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Obviously, at � �� �0 the ratio  will be very large. This explains the great significance of
resonance phenomena in physics and technology. It is widely used when a weak effect is to
be measured. The best example of this is radio broadcasting. On the other hand, if the reso-
nance phenomena can lead to some destruction it must be avoided. The resonance technique
is widely used nowadays in methods of chemical structure investigations (refer to Chapter 8).
Such a property of an instrument as a figure of merit is its critical property. It characterizes the
sharpness of the spectral lines in which the main information of the subject studied is included.
Let us begin with eq. (2.7.5). Dividing both nominator and denominator by �0 we arrive at

(2.7.11)

Value �0 /2� � G is called the figure of merit. The above equation can be rewritten using
this definition:

(2.7.12)

The time of merit characterizes the rate of the energy loss by an oscillating system (oscil-
lator). At small damping �E � E(t) � E(t � T ) (T is the period of damping oscillations,
which in this case is equal to the period of natural oscillations). Then E(t) � E0exp(�2t/	)
� E0e �(�0/G)t (because 2/	 � 2�(�0/G)). Therefore,

The relative energy loss for the period is

(2.7.13)

Regarding electrical oscillations, the value E/�E is called the figure of merit of a vibration
contour. The width of the spectral line at half of its height at � � �0 (its half-width) is
called the figure of merit. The values of resonance characteristics in some systems are pre-
sented in Table 2.2.
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EXAMPLE E2.9

A body of weight m � 10 g makes a damping oscillation in a viscous media. The
resistance coefficient is � � 2 4 � 10�4 kg/sec. Determine the ratio �E/E0 of energy
loss by the body in time 	 � 1 min.

Solution. Two forces operate on an oscillating body in the presence of damping.
One of them is a quasi-elastic force F � � 
�, where 
 is the coefficient of the
quasi-elastic force and � is deformation. The other force is the force of resistance
dependent on the speed of the moving body Fc � �r� � �r�

.
.

According to the second Newtonian law, the equation of movement in a projec-
tion on an x-axis can be written as m�

..
� � 
� � r�

..
. Dividing both sides of the

equality by mass m, making some replacements r / m � 2� and 
 / m � �0
2 and rear-

ranging the terms, we obtain �
..
� (r / m)�

.
� (
 / m)� � 0 or in compact form �

..
� 2��

.

� �0
2� � 0 (refer to Section 2.6).

Solving this differential equation we obtain the time dependence of the ampli-
tude of damping oscillations A(t) � A0 exp(��t)*, where A0 is the initial amplitude
of oscillations. The total mechanical energy is dependent on amplitude E(t) �
½
A2(t) (refer to eq. (2.5.5)) where A(t) is substituted by the equation *. We shall
obtain E(t) � ½
A0

2 exp( �2�t), where ½
A0
2 is the initial energy E0 . Therefore,

the energy of the damping oscillation’s time dependence can be expressed as 
E(t) � E0 exp( � 2�t).

The lost energy ratio at damping oscillation in time 	 can be found by dividing 
��E� �E0 � E(	) by the initial energy E0:
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E

E E

E
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Table 2.2

Values (up to the order of magnitude) of the figures of merits of some systems

System Decimal logarithm Decimal Decimal logarithm
of the natural logarithm of the of the ratio 
oscillation figures of merit
frequencies (Hz)

Oscillation counter 4 2 �2
Resonator in a quartz watch 5 4 �4
Optical spectral line 14�15 5�7 �5��7
CO2 laser 13 9 �9
�-Radiation of atomic 19 9�15 �9��15
nuclei in Mössbauer
effect (refer to Chapter 8).

�E
�
E
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or

Returning to the initial definitions, we substitute � into r/m and arrive at the final
expression 

After all calculations, we obtain

That is, the loss of energy is approximately 70% of the initial value.

EXAMPLE E2.10

A body of weight m � 0.2 kg is attached to one end of a spring with rigidity 

 � 2 N/cm � 200 N/m. The body can move along a horizontal pivot without fric-
tion. The other end of the spring is fixed (refer to Figure 1.22 and Section 2.7). The
oscillations occur in viscous media. An external harmonic variable force operates on
the body: F(t) � F0cos�t where F0 is the force amplitude value (F0 � 3 N) and �
is its angular frequency. For this system, define the resonant frequency �res and res-
onant amplitude Ares. Make calculations for two values of the resistance coefficients
r1 � 0.5 kg/sec and r2 � 5 kg/sec.

Solution: Let us consider the forces working on the body. There are several forces
acting in a vertical direction; however, they all mutually compensate each other
(according the third Newtonian law) and are therefore excluded from our consider-
ation. Operating along the horizontal direction are: (1) a periodically changing with
frequency � external force F(t) � F0 cos �t, (2) an elasticity force Fel � �
�, (3)
the velocity-dependent force of resistance Fr � � rv (see Section 2.6, eq. (2.6.1)).
Therefore, the equation of the body’s movement can be written as: m�

..
� �
��r�

.
�F0

cos �t. This equation was solved in Section 2.7 and the results are �res � ���0
2���2���2� *

and amplitude Ares� f0 / 2� ���0
2����2� **. There are two frequencies: � characterizes

the driven force and �0 is the natural frequency of the free system.
For visualization we first calculate separately the natural frequency �0� �
� /� m�.

� �2�0�0� /� 0�.2� � 31.62 sec�1. The fourth significant digit is useful here because it
ensures that we do not lose the accuracy at intermediate calculations. �1 � r1 / 2m
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� 0.5 / (2 � 0.2) � 1.25 sec�1. The same is valid for �2 � 12.5 sec�1. In the first
case 2�1

2 �� �0
2 (3.12 �� 1000), and hence �res � �0 � 31.62 sec�1. In fact, cal-

culations according to the precise formula* give 31.57 sec�1, so the coincidence is
up to the third significant digit.

In the second case 2�2
2 � 312 sec�2 and �0

2 � 1000 sec�2, and therefore
calculations should be executed mainly according the precise formula *:
�res� �1�0�0�0� ��3�1�2� s�1 � 26.2 sec�1.

Let us next calculate the resonance amplitude. In the first case of �1 we can use
the insignificance of �1

2 in comparison with �0
2 (1.56 �� 1000). An approximate

formula gives

In the second case (�2 � 12.5 sec�1) the approximate formula is invalid (�2
2 � 156

sec�2 is commensurable with �0
2 � 1000 sec�2) and calculations have to be made

according to precise formula **:

In conclusion we can present the static displacement under the action of the force
F0(�max � F0 /
) (Hooke’s law), i.e., �max � (3/200) m � 1.5 cm. One can see that in
the first case at small damping the resonance phenomena are more pronounced than
at high damping: Ares / �max � 29 / 1.5 � 12.7.

2.8 WAVES

2.8.1 Introductory remarks

Oscillations originating from any source propagate further in space. The propagating oscil-
lations are referred to as waves.

It was noted in the preceding sections that the mathematical descriptions of different
kinds of oscillations are similar, thus allowing a general mathematical description to be
made regardless of the type oscillation. Different waves exist (mechanical, electromag-
netic, acoustic, etc.), depending on what physical value is “propagated”; herewith their
mathematical description will once again be the same. Thus, we shall mostly consider
mechanical waves, bearing in mind the possibility of applying the results to other kinds of
waves, e.g., electromagnetic waves.

Mechanical waves can propagate only in an elastic media. If particle vibrations are agi-
tated in a region of an elastic medium (solid, liquid or gaseous), as a consequence of the
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interaction between particles, this disturbance will be transmitted to surrounding particles,
which in turn, will distribute excitation further. In this manner, the wave appears.

The process is not instantaneous; a wave propagates with a speed �, which depends on
the properties of the medium. However, it must be noted that no transportation of the
medium’s particles take place, particles oscillate around their permanent equilibrium
positions.

We can distinguish different kinds of waves by considering how the motion of the con-
stituent particles is related to the direction of propagation. Distinction is made between two
kinds of waves. A wave is called longitudinal if the direction of particle oscillations coin-
cides with the direction of wave propagation (Figure 2.16). Longitudinal waves can be agi-
tated in a medium that is elastic in terms of compression and stretching. All media—solid,
liquid and gaseous—possess these properties.

A wave is called transverse if the medium particles oscillate in a direction perpendicular to
the direction of propagation (Figure 2.17). It follows from this definition that the transverse
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Figure 2.17 Generation of a transverse wave.
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Figure 2.16 Generation of a longitudinal wave.
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wave can propagate in media that possess the property of elastic deformation of slip. Only
solid media possess this property; only in solid media can the transverse wave propagate.
Hence, only in solid media can both transverse and longitudinal waves be propagated. 

The space in which the wave propagation occurs is called the wavefield. The geometrical
locus of points that, at a given instant, the propagation process reaches, is called the wave-
front. For a periodic wave one can draw a surface through the points that oscillate in phase.
This surface is called a wave surface. The extreme wave surface is the wavefront. The direc-
tion of propagation in isotropic media is always perpendicular to the wavefront. A line per-
pendicular to the wavefront is called a ray. From the wave’s viewpoint a ray is an imaginary
line along the direction of travel of the wave. A bundle of parallel rays form a beam.

In isotropic elastic media all waves propagate at the same speed. Therefore, if the
source of waves is tightened down to a point the wavefront is spherical and the wave is
also spherical. If the wave front is a plane, a plane wave is produced. If the initiating
oscillation is harmonic, the wave produced in isotropic media is also harmonic.

2.8.2 An equation of a plane traveling wave

For the majority of problems it is important to know the dependence of oscillations of dif-
ferent points of media at a given instant. This dependence can be considered as determined
if the amplitudes and phases of oscillation are known. For transverse waves it is also nec-
essary to know the polarization. For a plane one-dimensional polarized wave it is sufficient
to have an expression defining the displacement of any wave point of �(x,t) with the coor-
dinate x in the instant of time t. Such an expression is called an equation of wave.

Consider a so-called traveling wave, i.e., a wave propagated in one direction. Direct the
x-axis along the wave propagation. In this case the wavefront is perpendicular to axis x. Let
particles of media, just verging on the source of plane waves, accomplish harmonic oscilla-
tions according to the harmonic law �(0,t) � A cos �t (Figure 2.18). In Figure 2.18a the 
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Figure 2.18 Schematic representation of a traveling wave: (a) oscillations at the oscillation source
origin �(0,t), (b) oscillations at the distance x from the origin (x � 	�, 	 being the delay relative to
the source oscillations), (c) deviation of the wave’s particles from their equilibrium positions �(x,t0)
at a time instant t0. The periods T and wavelength � are shown. 
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displacement of particles at x � 0 is presented. Zero time has been chosen to ensure the ini-
tial phase is also zero. Particles lying in this plane are all oscillating in the same phase.

Find the expression �(x,t) for the displacement of particles that are at distance x from
the wave’s source (origin). The wavefront covered this distance in time 	 � x/v. This
means that the vibrations at point (plane) x will be behind by the time 	 from that in ori-
gin. These points will also accomplish the harmonic oscillations but with propagation
delay 	. In the absence of damping the oscillation amplitude is constant. Therefore, 

(2.8.1)

This is the plane traveling wave equation. As already noted, the equation allows us to
define a displacement � of the media particles with coordinate x at the instant of time t.
The phase of oscillation � [t � (x / �)] depends on two variables: particle coordinate x
and time t. At a given fixed instant of time the phases of the different particles will, gen-
erally speaking, be different. However, it is possible to select particles oscillating in the
same phase (in-phase). The phase difference is 2�m (where m � 1, 2, 3). The shortest
distance between two particles of a traveling wave, oscillating in phase, is called the
wavelength �.

Find the relationship of wavelength � with other values, characterizing the wave propa-
gation in a definite media. In accordance with the definition of the wavelength we can write

or, after cancellations, �� / � � 2�. Since � � 2� / T, then 

(2.8.2)

This expression allows another definition of the wavelength: wavelength is the distance
a wave can propagate for a time equal to the period of oscillation.

The traveling wave equation develops thereby a double periodicity: on the coordinate x
and on time t. One can, for instance, fix a particle coordinate (x � const.) and consider its
displacement as a function of time. Alternatively, one can fix a moment of time (t � const.)
and consider particle displacement as a function of coordinates. So, standing on a pier one
can take a picture of the surface of the sea at time instant t, or having thrown an object into
the sea (i.e., having fixed a coordinate x), one can check its oscillation in time. Both these
cases are given as graphs in Figure 2.18.

Equation of wave (2.8.1) can be written in another way:
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The ratio � / � is usually defined by letter k, referred to as the wavenumber

(2.8.3)

Since � � (2�/T) and (2�/T�) � (2�/�), 

(2.8.4)

Hence, the wavenumber shows how many wavelengths can be placed in a length of 2�
units. One can now rewrite the equation for the traveling wave in the most popular form

(2.8.5)

Find the relation of the oscillation phase difference �� of two particles with a differ-
ence of their coordinates �x � x2 � x1. Using eq. (2.8.5) �� can be written as

Then �� � k�x or, according to (2.8.4),

(2.8.6)

The plane wave propagating in an arbitrary direction can be expressed as 

where r is a radius vector, drawn from the origin to a point where a particle occurs, k is
the wave vector equal modulo as eq. (2.8.4) and coinciding with the direction of propaga-
tion (or to the normal to the wave surface).

The exponential form is also appropriate for wave description. So, in the case of a plane
wave propagating along x-axis 

(2.8.7)

and in the general case of an arbitrary direction
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The traveling wave equation can be obtained as the solution of a differential wave equa-
tion referred to as the wave equation. Knowing the solution in the forms (2.8.5) and/or
(2.8.7) we can find the wave equation itself. Differentiation of the equation of a plane wave
�(x, t) twice upon the time and upon the coordinate gives

and equating the � value from both equations, we can reduce it to

Taking eq. (2.8.3) into account, we can write

(2.8.9)

This is the one-dimensional wave equation.
In the general case this equation looks as follows:

(2.8.10)

or

(2.8.11)

where � is the Laplace operator
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The speed of propagation of the constant phase point is referred to as the phase speed.
In other words, this is the propagation speed of the wave crest or hollow as well as any
other wave point preserving the constant phase. The wavefront is the surface of the con-
stant phase. Consequently, the speed of the wavefront is just the phase speed. Therefore,
the speed, determined by eq. (2.8.3), 

(2.8.12)

is also the wave phase speed.
The same results can be obtained by finding the speed of propagation of the wave points

with constant phase, �t � kx � const. Finding the dependence of coordinates upon the time
x � (�t � const.) we can derive the speed of points with a constant phase � � dx / dt �

�/k, that coincides with eq. (2.8.12).
The equation of the plane traveling wave in the opposite direction is written as �(x, t) �

A cos(�t � kx). The phase speed in this case is negative 

The phase velocity in a given media depends both on the properties of the medium and
the frequency of the source of oscillations. This relationship is called dispersion, whereas
the media relates to dispersive media. (One should not think that expression (2.8.12) is the
dependence discussed. The point is that in the absence of dispersion the wavenumber k is
directly proportional to the frequency �, therefore, (� / k)� const. Dispersion takes place
when �(k) is nonlinear (refer to (2.9.4).)

The plane traveling wave is monochromatic if the source of oscillations is harmonic.
Eqs. (2.8.5) and (2.8.7) describe monochromatic waves. In linear media this corresponds
to the fixed wavelength.

It must be emphasized that the amplitude A and frequency � of a monochromatic wave
is accepted as being independent of time. This means that a monochromatic wave must be
infinite in time and space, i.e., is an idealized model. Any real wave is not monochromatic
from a formal point of view (refer to Section 7.2). However, the longer the time such a
wave is maintained, the nearer the wave is to being monochromatic. In practice, a wave is
considered as monochromatic if it lasts sufficiently long.

2.8.3 Wave energy

As mentioned earlier, there is no macroscopic transfer of matter accompanying a wave.
This, however, does not mean that there is no energy transfer with wave propagation. On
the contrary, forcing every particle to oscillate, a wave carries that energy which is
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consumed in its creation. This energy can be easily calculated. To make this calculation,
the total kinetic energy of all particles participating in oscillation must be counted:

(2.8.13)

Here, W is the total energy of all particles in the volume �V, N and m are their number and
mass, respectively, and  is the media density. To estimate the �max value, we can proceed
from expression (2.2.4):

as the trigonometric term is equal to unity. Substituting this equation into eq. (2.8.4) we
can find the total energy contained in the volume �V of the oscillating media:

or 

(2.8.14)

where w � (W /�V) is the volumetric energy density.

Find the wave energy flux �, i.e., the energy carried by a wave through the area S per-
pendicular to wave propagation. So it is defined as a scalar flux averaged upon the area S.
It can, however, be different both at different points of the area and in different directions.
In order to characterize the energy flux locally the value of the flux density j is introduced:

(2.8.15)

which is equal to the energy flux through the unit area perpendicular to the propagation
direction. The energy flux density can depend on the direction. Therefore, it has to be
defined as a vector numerically equal to d�/dS⊥. Therefore,

(2.8.16)

where �� /� is the unit vector of the wave propagation direction.
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Now find connection of the energy flux density with the wave phase velocity. 
Choose the area �S⊥ perpendicular to the unit vector �/� and calculate the energy carried
through this area in the unit time interval �t (Figure 2.19). In the time interval �t through
the area defined above there will be energy �E will carried through; it contains in the cylin-
drical volume with a height ��t and a base area �S⊥. This energy can be expressed as 
the product of the volumetric energy density w (2.8.14) and volume �V. The energy carried
will be �E � w�S⊥��t and the energy flux �� ��E/�t � w�S⊥�. The scalar energy flux
density is j � ��/�S⊥� w�. Taking the vector characters j and � into account we obtain

(2.8.17)

The total energy flux d� (2.8.15) can be determined as

(2.8.18)

In order to obtain a more general significance of the last expression, attach to the elemen-
tary area dS the vector character by taking into account the different orientations of the
area dS regarding the vector field. Figure 2.20 shows the disposition of the area dS⊥ as part
of the more general area dS projected onto a plane perpendicular to the vector j.

Attribute to the scalar value dS a vector character by multiplying dS by the normal unit
vector:

(2.8.19)d S dS dS n� �d ,or cos ,S �

d d� � j S�.

j� w�.
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Figure 2.20 An elementary flow d� of a vector j through the area dS at their arbitrary orientation.
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where � is an angle between vectors n and j. At � � 0 the equation �dS� = dS takes place.
Now expression (2.8.18) can be given in another form:

(2.8.20)

i.e., elementary flux d� of the energy flux density j through the elementary area dS is the
scalar product of vectors j and dS. The total flux � through the surface S can be written
more generally as

(2.8.21)

and

(2.8.22)

Expression (2.8.21) is the particular case of the vector flux calculations through the sur-
face. It can also be used in evaluation of liquid mass consumption in pipes, electrostatic
and magnetic strength vectors, etc. (refer to Chapters 4 and 5).

2.8.4 Acoustic Doppler effect

Hitherto, we have considered the propagation of waves in a media in a coordinate system
in which both source and receiver are unmovable. Let us examine further how a wave fre-
quency will change when turning from one inertial coordinate system to another. In other
words, what frequency will a wave detector measure if it moves with respect to the source
in the same direction? The relationship between frequency of the relative motion of the
wave source and detector, which was originally established by P. Doppler, is well known
both in acoustics and optics; in spite of the fact that they are related to different principles,
the resulting mathematical expressions are mainly the same. Note, however, that we deal
with nonrelativistic cases.

We will restrict ourselves only to acoustic waves. In the resting reference system K, let
a plane wave be generated propagating in direction x. Denote the frequency by �.
Determine what frequency �� will the wave detector perceive in system K� moving with
velocity V0 along the same direction x relative to the system K (Figure 2.21).

Apply the wave equation to the system K, i.e., � (x,t) � aexp{�i�t � ikx}. Turning to
another coordinate system K� we should use the Galileo transforms (1.3.1). In the other
system, the equation takes the form
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Comparing these two equations, it can be seen that the detector in system K� will per-
ceive a wave number process with a frequency equal to �� � � � kV0 and the same
wave k� � k. Hence, k � �/�, where � is the propagation wave speed in system K; then

(2.8.23)

Note that there is no contradiction between the change of frequency and stability of
wavenumber: In fact, according to eq. (1.3.1) the velocity of wave propagation in system
K� is equal to ��� � � V0. Therefore, 

We use here the relation (2.8.23). This relation allows us to determine how much the fre-
quency measured by the detector �det differs from that emitted by the wave source �sor pro-
vided they both move relative to each other.

Suppose now that the wave source is resting and the detector moves away from it at a
speed V0 (Figure 2.21). Then in expression (2.8.23) � � �sor and �� � �det. Therefore,

(2.8.24)

Changing the motion direction, the relative sign of the velocity also changes. Hence, in this case 

(2.8.25)

An analogous result is obtained when the detector is unmovable but the source is moving. 
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Figure 2.21 An acoustic Doppler effect; V is the mutual speed of source and detector, �s and �d are
emitted and measured frequencies, d and s are detector and source.
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The Doppler effect is widely used, since it gives the possibility to change wave fre-
quency, changing, for instance, velocity of source motion. This is exactly the way to obtain
the resonance absorption of �-rays in MÖssbauer effect in �-resonance spectroscopy (refer
to Chapter 8).

2.9 SUMMATION OF WAVES

2.9.1 Superposition of waves

Now consider a situation in which, instead of one source, there are several sources of
waves (oscillators). In a certain area of space, these waves can interact with each other.
Here again we come across the very important physical phenomena – the principle of
superposition. It relates equally to waves and to many other types of excitations. Its
essence is exceedingly simple. Suppose that instead of a single source of excitation there
are a number of sources in space (it can be mechanical vibrations, oscillation of electrical
charges, electrical currents, etc.). What result will the measuring instrument register,
accepting simultaneously all excitements from all sources? If each component does not
influence the others, the total result will simply be the sum of the separate excitations. This
precisely implies the superposition principle. This principle is common for many phe-
nomena, but its mathematical expression can sometimes be different depending on the
nature of the events considered, e.g., vector or scalar.

The principle of wave superposition is not valid for all cases but only for the so-called
harmonic sources and linear media. A medium can be considered linear if its particles are
under the action of quasi-elastic forces. Otherwise, a medium is nonlinear. Very unusual
and important phenomena can appear in the latter case, e.g., the propagation of ultrasound
and/or laser rays in nonlinear media. Extremely interesting and technically important 
phenomena can appear. Scientific and technical investigations dealing with nonlinear 
phenomena are referred to as nonlinear acoustics and optics.

Although nonlinear effects are of great importance in certain modern devices, we will
only consider linear effects further. When applied to waves, the principle of superposition
affirms that each wave is propagated regardless of the presence in the given media of other
sources of waves. This can be mathematically expressed as

(2.9.1)

where N is the number of wave sources, �(x, t) is the total wave.
Consider superposition of two waves generated by two sources �1(x, t) � A1 cos(�t �

k1x) and �2(x, t) � A2 cos(�t � k2x). Fix an arbitrary point M and examine the result of the
superposition at this point. Fixing the point, we transform a wave into oscillations: �1,M(t) �
A1 cos(�t � k1xM) and �2,M(t) � A2 cos(�t � k2xM), since a product k1xM can be con-
sidered as a phase. In order to find the resulting oscillation process �(t) we should sum �1

and  �2 at the point M:� (t) � �1(t) � �2(t). Such a problem was solved in Section 2.3.1
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(refer to Figure 2.7 and eq. (2.3.1)). Correspondingly, we can write a total amplitude A
through partial amplitudes A1 and A2:

(2.9.2)

The value AM depends on the difference of oscillation phases �� � �2��1. In Section
2.3.1 the situation was analyzed in detail. In particular, the total amplitude AM can be
changed from zero to 2A provided A � A1 � A2 and the phase difference �� remains sta-
ble in time.

In order to observe interference, the phase difference should be constant. This can be
obtained if the wave’s sources are coherent and, vice versa, two sources are referred to as
coherent if the phase difference remains constant. If waves are coherent the sources are
coherent as well.

The methods of experimental interference phenomena will be considered in more detail
in Chapter 6, which is devoted to wave optics.

2.9.2 Standing waves

A wave that appears as the result of the superposition of two similar waves coming from
opposite directions is referred to as a standing wave. Find the equation of the standing
wave. Let us assume that a flat traveling wave with amplitude A and angular frequency �,
extending along the positive direction of an axis x, meets a counter wave of the same
amplitude and frequency. Equations of these primary waves can be written in trigonomet-
ric form as follows: �1 � A cos(�t � kx) and �2 � A cos(�t � kx), where �1 and �2 are the
displacement of the medium’s points caused by two running waves. According to the
superposition principle, in an arbitrary point with coordinate x in time instance t the dis-
placement � is the sum �1 � �2 or � � A cos(�t � kx) � A cos(�t � kx). Using a well-
known trigonometric equation 

we can obtain

(2.9.3)

There are two trigonometric terms in this expression. The first term, cos kx, is a function
of a point’s coordinates only and can be considered as a variable amplitude of the stand-
ing wave changing from point to point, i.e., 
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(Since the oscillation amplitude is essentially positive, the sign on the modulus is writ-
ten.) The second term, cos �t, depends only on time and describes harmonic oscillation
of the point with the fixed coordinate x. Thus, all wave points make harmonic oscillations
with different (dependent on x) amplitudes. It is clear from eq. (2.9.4) that the amplitude
of a standing wave depends on x and changes from zero up to 2A. Points in which the
amplitudes of oscillations are maximum are referred to as antinodes of the standing wave.
The points with permanently zero displacements are referred to as nodes of a standing
wave (Figure 2.22).

Find coordinates of the standing wave nodes. Write the obvious expression �2A cos kx� � 0
whence cos kx � 0. Therefore, kx �� ( 2n � 1)�/2, where n � 0, 1, 2,…. Having replaced
wavenumber k by its expression k � 2�/� we obtain (2� � �)x�� ( 2n � 1) (�/2). So we
find the nodes’ coordinates 

(2.9.5)

The antinodes’ coordinates can be found from eq. (2.9.4). Indeed, the point’s coordinate in
which oscillation acquires the maximum displacement satisfies equation kx � � n� with
n � 0, 1, 2, … So we can obtain the antinodes’ coordinates:

(2.9.6)x n nank 2
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Figure 2.22 Standing transverse waves. Open circles represent a position of oscillating particles,
whereas arrows show a direction and the magnitudes of their speed.
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The distance between adjacent nodes (or antinodes) is referred to as the standing wave
wavelength. It can be seen from eqs. (2.9.5) and (2.9.6) that this length is �/2, i.e.,

(2.9.7)

Nodes and antinodes are shifted relative to each other on a quarter of the original wave-
length. In Figure 2.22 an origin (x � 0) is imposed with the node point at n � 0 (2.9.6).
For t � 0 deviations of all the wave’s points pass through equilibrium positions and thus
the wave is degenerated into a straight line. This instant of time is taken as zero. However,
at this very instant each point (except for the nodes) possesses a certain speed specified in
the figure by arrows. Displacements achieve a maximum at t � T/4, the wave is repre-
sented by sine, but the speed of each point of the wave becomes equal to zero. The instant
t � T/2 again corresponds to the straight line but the speeds of all points are directed to
the opposite side, and so on.

Comparison of traveling and standing waves reveals the following difference. In a plane
traveling wave all media points oscillate with identical amplitude, but their phases are dif-
ferent and repeat in �t � T. In a standing wave all points (from node to node) make oscil-
lations in one phase, but the amplitudes of their oscillations are different. The points of the
wave shared by a node oscillate in antiphase. In fact, standing waves do not transfer energy.

An example of a standing wave is the oscillation of a flexible cord fixed rigidly at one
end, with the other end in the hands of the experimenter; the latter generates oscillations.
When an antinode reaches the fixed end (Figure 2.23a) the wave affects a fastening. Under
Newton’s third law the fastening produces a reciprocal influence on the cord, equal in mag-
nitude and oppositely directed. It generates a return wave; the displacement of the cord’s

�
�

st 2
.�
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node antinode

� st

�st =(a)

(b)

�

�
1
2 �

1
4

�
1
2

x

x

0

0

Figure 2.23 A model of a wave reflection in the case of a more dense (a) and less dense (b) medium;
the solid curves represent a cord vibrations and a dashed lines show the “less dense” media.
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point at a border is in the opposite direction to the displacement of the “incident” wave. As
a result, both waves are in an antiphase; therefore, the loss of half a wavelength occurs at
the border point. An example of the mobile (less dense) border is a thin weightless braid
connecting the cord end with the fastening (Figure 2.23b). The cord end generates free
oscillations running along the cord wave in the opposite direction.

Analysis of the wave reflections in these two cases shows that at reflection from the more
dense border (Figure 2.23a) loss of half the wavelength occurs, and there is a phase shift of
�. Reflection from the less dense border is not accompanied by a phase change; therefore, at
the junction point of the cord and the braid there will always be an antinode (Figure 2.23b).

2.9.3 String oscillations

The oscillations of a tightly stretched string can be considered as a special case of standing
waves: on both fixed ends of the string there is the reflection of a running wave resulting
in the formation of standing waves. This steady picture of standing waves will take place
at the string fastening in any of the nodes; they do not seem to participate in oscillations.
Hence, the integer of half wavelength m can be confined on the length of string between
the fastenings: 

The definite wavelength corresponds to these oscillations

(2.9.8)

We can transform these wavelengths into frequencies:

(2.9.9)

The vibrations of a string with the smallest frequency when only one antinode is confined
corresponds to the basic tone in a sounding string (Figure 2.24, above). Other vibrations
with multiple frequencies are overtones.

The rules presented operate not only in many musical instruments and the formation of
standing waves in them (in the resonator of a guitar, for instance) but are also used in mod-
els of an ideal black body, in quantum mechanics, in physics of solid-state properties, etc.
All of these are discussed in other sections of the book.

�
�m

m L
� �

� �

2
.m

�m

L

m
�

2
.

L m� �
�
2

, 1,2,3.m
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EXAMPLE E2.11

A transverse wave runs along an elastic cord at a speed � � 15 m/sec. The period
of oscillations of the cord points is T � 1.2 sec, amplitude A � 2 cm. Define (1)
wavelength, (2) phase of oscillation �, displacement �, velocity �

.
and acceleration

�
.. 

of the point at a distance x = 45 m from the source of waves at time instant t � 4
sec and (3) phase difference �� of the oscillation of two points lying on the cord at
a distance x1 � 20 cm and x2 � 30 cm from the source of waves.

Solution: (1) According to definition, wavelength is � � �T. Substituting the
values we obtain � � 18 m. (2) The wave equation is � � A cos � (t � (x /�))*. The
phase of the point oscillations with coordinate x in the time instant t stays under cos
sign � � �(t �(x /�)) or � � (2�/T ) (t �(x /�)). Calculation gives � � 5.24 rad or
300°. We can find the displacement from the equation * substituting the A and �
values: � appears equal to � � 1 cm. The velocity of the point can be found by the
time derivation of �: substituting all the values derived we arrive at �

.
� 9 cm/sec.

The acceleration is the second time derivative on the displacement

Therefore,  �̈ � 27.4 cm/sec2. (3) The phase difference is related to the distance
between the points �x by equation �� � (2�/�)�x. This gives � � 3.49 rad or 200°.

��� � �
�

��� � �A t2
2

2
cos

4
cos .

x A

�
⎛
⎝⎜

⎞
⎠⎟ T
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Figure 2.24 String oscillations.
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EXAMPLE E2.12

A wall MN is located perpendicular to the wave at a distance l � 4 m from the
source of a plane wave with frequency � � 440 Hz. Define the distance from the
source of the wave to the points in which the first three nodes and first three antin-
odes of the wave arising as a result of the superposition of two waves, running to
and reflected from the wall, occur. Assume the wave’s velocity to be � � 440
m/sec (Figure E2.12).

Solution: Let us choose an axis x directed perpendicularly to the wall and the ori-
gin at a distance l from the reflected wave source. Then the equation of the wave will
be written as 

As in a point with coordinate x the reflected wave will come back covering twice the
distance (l � x) and the reflected wave will lose a phase �/2 at reflection; the
reflected wave equation can be written as

and further

.

Summing two equations * and ** we can find the standing wave:

� � � � �1 2 cos( ) cos( (2 )).� � � � � � �A t kx A t k l x

� ��� � �A k l xcos (2 )) .t ��

� � �� � � � �A xcos ( 2(2 ))t k x l

� �� �A t xcos( ) .k �
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According to trigonometry we can obtain

Since A sin k(l � x) does not depend on time it can be considered as the standing wave
amplitude (being taken as modulus �2A sin k(l � x)�). From this equation we can
obtain the nodes’ and antinodes’ coordinates. Nodes occur when �2A sin k(l � x)� � 0
and consequently k(l � xn) � n�; since , � ��/v, k � 2�v/�. Therefore, 2�v(l � xn)
� n��. The nodes’ coordinate can be obtained from the last equation: xn � l �(n�/2v).
The first three nodes’ coordinates are x0 � 4 m, x1 � 3.61 m, x2 � 3.23 m.
Correspondingly the antinodes appeared when k (l � x�n) � (2n � 1)(�/2); therefore,
4vxn� � 4vl � (2n � 1)� and the antinode’s coordinates are x�n � l�(((2n � 1) �)/4v).
The first three antinodes will appear at x0 � 3.81 m, x�1 � 3.42 m, x�2 � 3.04 m. The
results are depicted in Figure E2.12.

2.9.4 Group velocity of waves: wave package

By definition the monochromatic wave is boundless in space. The real wave is always lim-
ited in space and is emitted during a limited interval of time, which is why it cannot be
monochromatic in full measure. However, any real wave can be considered as a result of
the superposition of a large number of strictly monochromatic flat waves. As a result of
interference, in one part of space these waves strengthen each other, and in other parts
extinguish. Such waves have some features that can be discovered using a simple model of
superposition of two plane monochromatic waves.

Let two plane cross-sectional polarized monochromatic waves with equal amplitudes be
distributed along an axis x. Such waves are described by equations: �1 � A cos(�1t � k1x)
and �2 � A cos(�1t � k2x). Because of the superposition principle a combined wave can
be represented as � � �1 � �2 � A cos(�1t � k1x) � A cos(�1t � k2x), or 

Suppose now that the angular frequencies �1 and �2 and wave vectors k1 and k2 differ only
slightly, i.e., �2 � �1 � �� (�� �� ��1), k2 � k1 � �k (�k �� k1). Therefore, we can
write

(2.9.10)
� �

�1 2
1 12

and
2

.1 2� �
� �

k k
k

�
� � � �

�
�

�
� �

�
�

2 cos
2 2

cos
2 2

2 1 2 1 2 1 2 1A t
k

x
k kk

t x
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

� ��� � �2 sin ( )sin ( ).A k l x t kl
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Then

(2.9.11)

We can see that the superposition of two monochromatic waves with equal amplitudes
with slightly different frequencies and wavenumbers produces a new wave with variable
in space and time amplitude

(2.9.12)

Since �� and �k are small in comparison with �1 and k1 a change of amplitude will take
place comparatively slowly. Such a wave is called a wave with modulated amplitudes.

Let us determine the rate of crest displacement of such a composed wave. In order to
solve this problem we can repeat the method used in Section 2.8.2 when we evaluate the
phase velocity rate. The crest corresponds to the constant phase in eq. (2.9.11), i.e., 

� t � x�� const., since the model package velocity dx/dt � g � �x / �t appears to be

equal to ��/�k. If now we make the model more realistic and take not just two but a con-
tinuous set of waves with k lying in narrow interval �k, and dependence �(k), close to lin-
ear, eq. (2.9.11) becomes more complicated. The expression for the crest velocity
distribution of the wave package turns out to be obtained from eq. (2.8.13) at �k �� 0 (i.e.,
replacement of final increments by differentials). The corresponding group of waves (or a
wave package) is depicted schematically in Figure 2.25.

The group of waves transfers energy and momentum at a velocity that is generally differ-
ent from the phase velocity, and is characterized by group velocity g. The group velocity is

�k
�
2

��
�

2

2 cos
2 2

.A t
k

x
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�
⎛
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Figure 2.25 A wave packet.
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the speed of movement of a point corresponding to any fixed wave amplitude. Remember
that the phase velocity of a monochromatic wave is � � �/k, whereas the group velocity is
g � d� / dk. In the absence of dispersion (frequency is linearly dependent on wavenumber)
the group and phase velocities coincide. At the presence of dispersion, group and phase
velocities are different. An example of function �(k) is given in Figure 2.26. In region 1 the
frequency � linearly depends on k; here the phase and group velocities coincide. In region 2
the function � (k) is nonlinear; the group and phase velocities differ.

PROBLEMS/TASKS

2.1. A point accomplishes oscillations according to the formula x � A cos(�t � �),
where A � 4 cm. Determine the initial phase � if x(0) � 2 cm and x

.
(0)�0.

2.2. Determine the maximum values of speed x
.
max and acceleration x

..
max if a point accom-

plishes harmonic oscillation with amplitude A � 3 cm and angular velocity � � �/2
sec�1.

2.3. A physical pendulum consists of a rod of mass m and length l � 1 m and of two
small balls of masses m and 2m fixed to the rod at lengths l/2 and l, respectively. The
pendulum makes small oscillations relative to a horizontal axis passing perpendicu-
larly to the rod through the middle of the rod. Determine the frequency � of the har-
monic pendulum oscillations.

2.4. A hoop of mass m made of thin metal is suspended on a long nail hammered into a
wall. It makes harmonic oscillations in a plane parallel to the wall. The radius of the
hoop is R = 30 cm. Calculate the oscillation period T.

2.5. A point oscillates according the law: x � A cos(�t � �). In some instant of time
the displacement is 5.0 cm, its velocity is x

.
� 20 cm/sec and acceleration x

..
��80

cm/sec2. Find the amplitude A, angular velocity � and phase (�t � �) for this time
instant.

2.6. Two similar harmonic oscillations with the same periods T1 � T2 � 1.5 sec and
amplitudes A1 � A2 are summarized. The initial phases are �1 � �/2 and �2 � �/3.

Problems/Tasks 165

Figure 2.26 An example of a dispersion curve.
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Determine the amplitude A and initial phase � of the resulting oscillations. Draw a
vector diagram of the superposition in a scale chosen.

2.7. Two tuning forks sound simultaneously. Their frequencies are v1 � 440 Hz and v2

� 440.5 Hz. Determine the resulting beatings period T.
2.8. An MP oscillates according to equation x � A cos�t, where A � 8 cm, � � �/6

sec�1. At the instant of time when a force F reaches a value �5 mN for the first time,
the potential energy U of the MP becomes equal to 100 �J. Find this instant of time
t and its corresponding phase �t.

2.9. A small weight is suspended on a spring, which has been expanded by x � 9 cm.
Find the period T of the weight when it will oscillate freely.

2.10. A mathematical pendulum of l1 � 40 cm in length and a physical pendulum in the
form of a thin straight rod of length l2 � 60 cm oscillate around a common hori-
zontal axis. Find the distance a between the rod CM and the oscillation axis.

2.11. An oscillation period of a pendulum l � 1 m in length during the time interval 
t � 10 min was lowered two times. Determine the logarithmic decrement of damp-
ing �.

2.12. A body of mass m � 5 g accomplishes a damping oscillation. After t � 50 sec the
system loses 60% of its energy. Determine the friction coefficient.

2.13. Find the number N of total oscillations of a system during which the system energy
decreases by n � 2 times. The logarithmic decrement of damping � � 0.01.

2.14. Under the weight of an electromotor, a bar on which it is fixed deflects on h � 1
mm. At what frequency of the motor rotation n can the danger of resonance appear?

2.15. A carriage of m � 80 ton has 4 bow springs. The rigidity of each spring is k = 500
kN/m. At what speed � will the carriage begin to intensively swing on the rail’s con-
junction if the rail is L � 12.8 m in length?

2.16. The amplitudes of forced harmonic oscillations at the frequencies v1 � 400 Hz and
v2 � 600 Hz are equal to each other. Determine the resonance frequency vrez. Neglect
damping.

2.17. A swollen log whose section is constant along the whole length, has plunged verti-
cally into the water so that only a small part (in comparison with length) remains
above water. The period of oscillation of the log is equal to T � 5 sec. Determine the
whole length L of the log.

2.18. Mercury with a mass of 200 g is poured quickly into a U-shaped tube with a cross
section of S � 0.4 cm2, open at both ends. Determine the period of oscillation of the
mercury in the tube. Neglect the viscosity of the mercury. The density of the mer-
cury is  � 13.6 g/cm3.

ANSWERS

2.1. � � �/3 rad.
2.2. x

.
max � 4.71 cm/sec, x

..
max � 7.40 cm/sec2.

2.3. v � (1/�) �(3� /� 7�)(�g� /� l�)�� 0.652 Hz.

2.4. T � 2� �2�R�/g� � 1.55 sec.
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2.5. � � �x
..�/x� � 4 sec�1, � (2�/�) � 1.57 sec, A � �x

.�2��� ��2x�2� � 7.07 cm, (� t � �) �
arcos(x/A) � (�/4) rad.

2.6. A � 3.68 cm, � � 0.417� rad, x � A cos(�t � �), where � � (2�/T) � 4.19 sec�1.
2.7. T � 2 sec.
2.8. t � 2 sec, �t � �/3.
2.9. T � 0.6 sec.

2.10. a1,2 � �l1 � �l1�2��� (�1�/3�)l�2
2�� ; 10 and 30 cm.

2.11

2.12. r � 9.16 � 10�5 kg/sec.

2.13. N � 35.

2.14.

2.15.

2.16. vrez � 510 Hz.

2.17. L � 6.21 m.

2.18. T � �2
2

0.86 sec.�

m

Sg

y� � 

L k

m�
10.2 m sec.

n
g

h
� � �1

2
16 sec .1

�

�
�

� � � �2
ln 2.31 10 .1

2

3

�

�

g

A

A

1
�
2
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