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Dielectric Properties of Substances

Electric and magnetic interactions play an enormous role in chemistry and chemical tech-
nology; they govern the processes taking place in atoms and molecules, crystals, electroly-
sis, surfaces of solids electrolyzing of dielectric polymer materials and others. Because the
electric field in molecular systems has a very complex structure, for the convenience of the
reader, we will give the nomenclature of electric fields at the beginning of the chapter.

Let us start by briefly presenting the main information on electric charges and the char-
acteristics of the fields they create.

4.1 ELECTROSTATIC FIELD

4.1.1 General laws of electrostatics

The main electric charge carriers are charged particles—electrons and protons. They carry
a charge lel = 1.6 + 107! C, electrons being negative and protons positive. In neutral
atoms and molecules, negative electron charge is compensated for by a positive nuclear
charge. By removing one or more electrons from an atom, one can make a positive (mono-
or multicharged) ion and, conversely, by adding electrons, it is possible to create a nega-
tive ion from an originally neutral particle. In such a way, positive and negative carriers of
charge are created (in an electrolyte, for instance).

When an excess or lack of electrons is created in a body, the body becomes charged, car-
rying a charge Q. The value Q is always proportional to *lel. However, at large Q (in com-
parison with lel), this discontinuity is not exhibited, so it is possible to consider the charge
changing continuously.

The distribution of charge in a body can be described by the function p(r) such that
p(r)dV = dq, where dq is the charge, comprised in the volume dV. Function p(r) is called
the volume charge density. Charge distribution on a surface is described by surface charge
density a(r)dS = dg. Charge distribution along a line gives a linear charge density (/) so
that dg = t(/)dl. (In the first two cases, r is a radius vector of the elements dV and dS, and
[ is a coordinate of a point measured along the charged line.)

Electric charge is invariant with respect to Galileo transformations.

If an electric system is closed, its total algebraic charged is preserved.
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252 4. Dielectric Properties of Substances

The force of interaction of two point charges ¢ and Q in a vacuum is defined by the
Coulomb’s law:

F: 1 @E,
dme, 2 r

“4.1.1)

where r is the radius vector, drawn from one charge to another (Irl is the distance between
charges) and ¢ is the electric constant. Factor 1/4mne, is included in the Coulomb’s law in
order to correspond to the International System: then ¢ is measured in coulomb, r in meter
and F in newton; Maxwell equations (Chapter 5.4) also appear very rational in this case.

Coulomb’s law has much in common with Newton’s law of gravity: in both laws, the same
functional dependence on the distance (1/r2) is present. There is a profound physical mean-
ing in this fact which we will consider below. There exists however an essential difference:
attraction between dissimilar charges and repulsion between similar charges are automati-
cally taken into account in the Coulomb’s law (i.e., Q and g are taken with their signs); how-
ever, in Newton’s law, the negative sign of force always corresponds to the masses’ attraction.

Comparing these two laws, we notice that Coulomb interaction is billions of times
greater than Newton’s law. If we calculate, for instance, the gravitational attraction of elec-
trons and protons with their electric interaction, we would arrive at the enormous value of
an order 10 times. Therefore, in atomic systems gravitational interaction is not taken into
consideration.

Note that eq. (4.1.1) is applicable only to the interaction of point charges; an exception
is the interaction of two spherically symmetric balls uniformly charged over their volumes
and/or surfaces (see below).

Eq. (4.1.1) cannot be applied directly to the calculation of interaction of nonregularly
charged bodies. In this case the extensive charges have to be subdivided into elementary vol-
umes dV; knowing p(r), find dg, then find the Coulomb interaction dF between elementary
charges and then integrate these elementary forces over the volumes of both charges. The
exception is the case when charges are spread over symmetrical bodies; then it is useful to
apply mathematical methods to this problem, e.g., the Gauss theorem (refer to Section 4.1.3).

4.1.2 Strength of an electrostatic field

An electrostatic field is created by motionless (in the given system of coordinates) charges.
If a charge ¢ is located at any point near another charge Q, the Coulomb force (eq. (4.1.1))
is acting, and it can be accepted that charge Q creates an electrostatic field (see eq. (1.4.4)),
in which a charge ¢ is situated. If Q is a spherically symmetric body, the field also pos-
sesses spherical symmetry, i.e., is central (Figure 1.23).

It is convenient to describe a field by the force characteristic —strength of an electro-
static field E. At a point A, the vector magnitude E is numerically equal to force, acting on
the positive dimensionless (point) unit charge.

4.1.2)
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Figure 4.1 Force lines of a nonuniform electrostatic field and orientation of an electric field strength
vector at a point A.

The force F(r) can be substituted by the strength E(r):

F(r) = gE(r), (4.1.3)

with which the field acts on the point charge g.

The electrostatic field can be described by the so-called force lines (Figure 4.1): at a
given point A the force is directed along the tangent to a line and the vector magnitude
IF| being numerically equal to force, acting on the unit positive point charge placed in
this point of space.

If g is equal to unity, E is equal to F. This permits us to investigate a field configuration
by placing a probe point unit charge ¢ at different points of the field and, measuring vec-
tor force F, to find the distribution of E. Consequently, the electrostatic field can be
depicted by the force lines. Taking into account the general law, these lines are drawn in
such a way that the tangent to them at any point gives the direction of vector E at that point,
and the density of lines per cross-sectional area gives the magnitude of E. Looking at a pic-
ture of force lines, it is easy to judge the configuration of a particular field, the direction
and the magnitude of vector E at every point of space, gradient E, etc. In Figures 4.2a and
b, the central fields of positive and negative charges are depicted, and in Figure 4.2¢, a uni-
form field (the plain capacitor with plates of infinite extent) is represented.

Electrostatic fields obey the general physical principle of superposition (first given in
Section 2.9.1): if the electrostatic field is created by several charges, the field of every
charge is created irrespective of the presence of other charges. The mathematical expression
for this case is reduced to the total field E as the geometric sum of strength of fields created
by every point charge

E=XE. (4.1.4)

where N is the total number of charges.
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Figure 4.2 A central field of the point charges (a and b) and a uniform field of a plane condenser (c).

The field created by an extended body can be obtained by integration over the whole
volume of a body V:

E=[dE.

14

The integral from vector quantity can be calculated, having expanded the vector onto com-
ponents along the unit orts vectors

E=i[dE, +j[dE, +k|[dE.. 4.1.5)

It is very important that the vector E (as a polar vector) has its own axis of symmetry
directed along it (vector E can be rotated around itself at any angle, i.e., it possesses an
axis of symmetry of an “infinite” order). This means that, if the charged body creating an
electrostatic field has an axis of symmetry, the vector of the field strength E is directed
necessarily along this axis. Hence, when dealing with the problem of calculating the
strength of electrostatic field E it is strongly recommended first to discover the charged
body symmetry: if the charged body has a symmetry axis, the overall strength E must by
all means be directed along this axis! There is then no need to derive E, and E: they auto-
matically become equal to zero. From the formula (4.1.5), only one item of sum remains

E=ifdE,. 4.1.6)

There is no problem calculating the integral from the scalar function.

EXAMPLE E4.1

The electric field is created by two point charges Q, and Q,. The distance between
the charges is d. Determine the strength of electrostatic field E at a point which is
removed at a distance r, from the first charge and r, from the second. The numerical
values are O, = 30 nC, Q, = —10nC, r;, = 15 cm and r, = 10 cm.

Solution: According to the superposition principle of electric fields, each charge
creates a field, irrespective of the presence of other charges. Therefore, the intensity
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of a field at a specified point can be found as the vector sum of the fields, created by
two charges separately, E = E, + E,. The strength of the electrostatic field can be
determined by eq. (4.1.2). The vector relations can be seen in Figure E4.1. The

partial field strength created by each charge can be determined according to the

Coulomb’s law; they are

The sum can be found according to the cosine theorem

E = \E? + E} +2E,E, cosa,

whereas cosa can be found from triangle (see figure)

)
d —r —r
coso = ———2.=(.25.
nn

4 22
n 5) nn

2 2
E=—1_ \/Q—'+Q—j+2—|QIHQ2| cos o

4me,

Substituting all data and executing calculations, we arrive at E = 1.67 X 10* = 16.7

kV/m.

EXAMPLE E4.2

Three identical positive charges Q, = Q, = Q; = 1 nCb are located at the vertex of
a flat equilateral triangle. What negative charge should be placed in the center of the
triangle that would counterbalance the forces of mutual repulsion of the positive

charges in the vertexes (Figure E4.2)?
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Solution: All three charges located in the vertexes of a triangle are in identical
states. Therefore, for the solution of the problem, it is enough to find out what charge
is necessary to place in the center of the triangle so that one of the charges, for exam-
ple, Q,, would be in equilibrium. According to the principle of superposition each
charge is exhibited irrespective of the presence of the others. Therefore, the charges
will be in equilibrium if the vector sum of forces acting on them is equal to zero,
F,+F,+F,=0=F +F, where F,, F; and F, being the forces with which
charges 0,, O and Q, act on charge Q; F is the resultant of forces F, and F,. Since
forces F and F, are codirectional they can be substituted by scalar sum ' — F, = 0
or I/, = F. The force F can be presented as a sum F, + F;, and as F, = F; we can
write F, = F,V2(1+cos «)". Applying Coulomb’s law and taking into account that

0, = 0, = Q,, one can find Q,0,/4ne,r? = QX4ne,r2\2(1+cos o) Wherefrom
3 4 1Q4/amegry ilamegr-V2( ),

2
QZ‘ \J2(1+cosa)”.

1
r

0, =

From geometrical considerations, we can obtain r;= r/(2 cos 30°) = r/ V3. Since
cos o = cos 60° = 0.5, the formula * takes the form Q, = Q,/ V3. Taking into
account that Q, is 1.0 nCb, the charge Q, is —0.58 nCb. Note that such electro-
static equilibrium is unstable.

EXAMPLE E4.3

The field is created by a uniformly charged thin rod of length / with a linear charge
density 7. Define the strength of an electrostatic field at a point A lying on the line
of the charged rod at a distance d from its end. Numerical values are: 7 = 1.2 uC/m,
l=10cmandd = 5 cm.

Solution: Let us draw an x-axis along the rod, and let the origin be placed at the
beginning of the rod (Figure E4.3). Because the problem has an element of symmetry
(an axis of infinite order collinear to the direction of the rod), the vector of the field
strength must certainly lie on this axis.
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Since the electrostatic field is created by a continuous body (rod), it is not possible
to apply Coulomb’s law directly to the solution. Therefore, we have to allocate an
elementary charged segment on the rod, to calculate intensity created by it and to
integrate this with the length of the whole rod. The element of the rod dx carries
charge t dx. The elementary field strength is calculated using eq. (4.1.2)

_ 1 Tdx
dmey (£+a—x)* '

Integration gives

p=_" J- dx _ T 1 |€ _ T ¢
dne (C+a—x)* 4ng, (€+a—x)|0 4ne, \ a(a+4) '
It is easy to prove that the dimension corresponds to the field strength dimension.
There are other ways to choose the origin, though all choices will give the same
result.

EXAMPLE E4.4

One-third of the circle’s circumference of radius R = 20 cm made of a dielectric
material is charged uniformly with linear charge density t=1X 107% C/m.
Determine the strength of electrostatic field E created by this piece of charged arc in
its center—point O (Figure E4.4).
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Solution: It is impossible to apply Coulomb’s law directly to the whole part of the
ring because it is extensive (not a point). We must divide an arc body into pieces and
apply the law mentioned to each elementary piece. Notice that the whole problem
has an axis of symmetry of the second order passing through the middle of the arc
and the arc center O. This means that the resulting electric strength vector is directed
along this axis (why?). Therefore, we direct an axis y along an axis of symmetry.
Axis x is of no significance; let it be perpendicular to the y-axis. We allocate an ele-
mentary piece dl, bearing charge dq, dq = t di. This charge creates an elementary
field strength dE at the point O. This vector should be projected onto the y-axis in
order to be able to make further integration over the whole charged arc. The projec-
tion dE on y-axis is .

dE, = tdt cos0/4ne,R* = td0 cos 0/4me,R

The component dE, can be ignored, because we definitely know that after integra-
tion the x-component should give zero (“why?” check up by integration). We have
to express two variables / and 6 through one, let it be 0: d0 = dI/R. Hence

n/3 /3
E= [ dE, =2 dE, =
—n/3 0

/3
I cos0dl =
0

T

4me, 2meyR

(pay attention to the integration limits, to coefficient 2 and to the way of measuring
the 0 value). To substitute the given and the physical constants, we arrive at the value
E = V31/27¢R; executing the calculations we obtain E = 2.18 kV/m.

EXAMPLE E4.5

Along a ring of radius R = 1 m, a charge Q = 1 uC is uniformly distributed. Find
an electric field strength E(/) in points lying on the axis that pass through the center
of the circle perpendicular to the plane of the ring.

Solution: As the field strength E is a polar vector, therefore in this problem it must
certainly coincide with the coordinate axis z. The linear charge density is t = Q/2nR.
Allocate an elementary vector d/ at the ring. This segment carries the charge dg =tdl =
QdI2TR; at point A it creates a field |dE| = dq/4n8072, where r is the distance from dl to
the point A. Vector dE is directed along the line joining the element d/ with the point A.
Since we a priori know the general direction of the electric field strength E (along the
axis z), we have to project the dE vector on the z-axis and integrate projections (since
an integral over perpendicular components must be equal to zero). It can be seen
from Figure E4.5 that dE = |dE| cos ¢, cos ¢ being equal to h/ \h?+ R?. Therefore

th

dE=———_d¢.
4me,(h* + R*)"?
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dE

dl

The integration dE over the whole ring gives:

-0 h
4ney (B> +R*)?

This general expression permits us to calculate the electric strength in any point of
x-axis. In particular, it is very useful to use this example to investigate the extreme
conditions. In fact, we know that the field in the center of the ring is zero. This cor-
responds to the limit # — 0: indeed at 4 = 0 the relation obtained gives E = 0. From
the other side, at h > R, or at R — 0, E ~ Q/h? which corresponds to Coulomb’s law.

EXAMPLE E4.6

A thin half-ring carries a charge uniformly distributed along the ring with a linear
charge density 7 =10 nC/m. Determine the electric potential ¢ in the center of ring O.
Solution: A ring element d! carries a charge 7 dl. This charge produces an electric
potential equal to do = dql/4ne,R = tdl/4ne R in the point O. After integration of the
scalar values over the whole half-ring (—7n/2 < ¢ < + n/2), we arrive at ¢ =1/4¢, =
282 V. Note that potential calculation is less troublesome than the field strength!

4.1.3 The Gauss law

A vector flux through an area and vector circulation along a closed contour is the basic
characteristic of a vector field in vector algebra. The application of these concepts to an
electrostatic field appears extremely fruitful.
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We apply this concept, which we first met in Section 2.8.3, to a flux and density of flux.
Accordingly, the elementary flux d® of the electrostatic field strength E through an ele-
mentary area dS is

d® =E-dS 4.1.7)

(see eq. (2.8.18)).
Having written down an expression of scalar product and then attributing cos o first to
E and then to dS, we obtain:

d® = |E[{dS|-cosoa = E, dS = EdS,, (4.1.8)

where E, is the projection of the vector E onto a normal n to the elementary area dS, and
dS, is the projection of dS on a plane, perpendicular to E (refer to Figure 2.24). It can be
seen that the flux d® is subject to change not only due to E magnitude, but also due to the
mutual position of vectors E and dS (due to the change of cos ) from E dS up to —E dS,
i.e., positive and negative.

If the field is produced by a point charge, the flux d® of the field strength is propor-
tional to a solid angle dQ. The part of space confined by a conical surface (Figure 4.3)
is referred to as a solid angle. A measure of a flat angle d¢ is the ratio of the length of
an arc dl of a circle, drawn by an arbitrary radius » about a point O, to the value of the
radius mentioned, i.e.,

dp=—; 1.
) p 4.1.9)

accordingly a measure of a solid angle d(Q is the ratio of an elementary area of a spherical
surface dS, drawn by any radius r around a point O, to the square of the radius r* men-
tioned (Figure 4.3):

_ds _ds,

2 2"
r r

dQ

(4.1.10)

Figure 4.3 A measure of a solid angle.
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(Replacement of dS by dS, is permissible because the area dS is always perpendicular
to the radius.) When dS, is numerically equal to 72, the solid angle is equal to 1sr
(steradian). -

Similar to the way in which the total flat angle is equal to | dl/r = 2znr/r = 27 rad, the
total solid angle is equal to 0

2
§D0 A @.1.11)
r r

Gauss law asserts that: the flux of an electrostatic field strength vector through any
closed surface S is equal to the algebraic sum of the charges confined by surface S divided
by ¢,. We shall call this virtual (imaginary) surface the Gauss surface. Note that we our-
selves choose the form and size of a Gauss surface!

Let us prove the theorem taking a single point charge Q as an example. We place it in a
point O and cover this charge by a closed spherical Gauss surface S with the center in the
charge Q position (Figure 4.3). Let us find the value of the elementary flux d® of the vec-
tor E through the elementary surface dS: d® = E dS,. The magnitude E is defined by
expression (4.1.2) and therefore

do=—_1 %ds -1 Q0 (4.1.12)

Arey r* " Ame, r?

(we used here the expression (4.1.10)). After integrating over the total solid angle, we
arrive at

O=¢E dS=¢ 1 QdQ = Q 9SdQ:iQ,
S s 4me, 4me, s £
or, keeping in mind expressions (4.1.7) and (4.1.8),
1
$EdS =—0Q. (4.1.13)
s N

Let us comment on the expression derived. In this expression the point charge Q is com-
prised of a Gauss surface S. It was taken in spherical form, but it can also be a irregular
shaped surface. On the right-hand side the charge O can be seen which we encompassed
by the Gauss surface (Figure 4.4).

If the charge is outside, the flux through the Gauss surface is equal to zero (Figure 4.5)
since part of the flux is negative and the other part is positive (because of various orienta-
tions of a normal n to the surface relative to vector E). This is the case for all those charges
which lie outside the Gauss surface; they can be excluded from consideration.
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Figure 4.4 The Gauss theorem: Q is a charge, S is a closed Gauss surface, dS is an elementary area
and n is a unit vector to dS.

Figure 4.5 The zero total flux of the electric field strength for a particular case when an electric
charge is outside the Gauss surface.

Values Q can be determined if distribution of the charge in a given problem is known.
If the field is produced by a sum of N individual charges, then according to the superposi-
tion principle

N
§EdS=i2Qi. (4.1.14)

€0 i=1

If the field is set up by a volume charged body, the expression can be modified as follows:
1
gSEdSzg—jp(r)dv, (4.1.15)
s 0y

where p(r) is a charge density distribution function. If the field is set up by a charged sur-
face with the surface charge density a(r), the Gauss law looks like:

1
ngdsz—ja(r)ds. (4.1.16)

0 g
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If the source of field is a charged line, the Gauss law can be given as
1
95EdS=8—_[r(l)dl, (4.1.17)
s 0L

where t(/) is the linear charge density distribution function and [ is the point coordinate
along the charged line. The body volume V, charged surface S’ and the length L of the
charged line correspond to those parts of the charged physical bodies that are encompassed
by the Gauss surface. Repeat once more that in Gauss law the total charge laying inside
of the Gauss surface is present on the right side which is equal being divided by ¢, to the
electrostatic field strength flux on the left side.

The Gauss law is valid for all forms of charged bodies and any Gauss surface. However,
its most fruitful application is in calculating the field when the problem possesses some
symmetry. In this case the skilful choice of the Gauss surface form permits one to achieve
essential simplification: to provide that E = E, = const., to take E out of an integral and
to integrate only upon a surface, or, in general, to arrange the field strength being E, = 0
onto a part of a surface. Examples of application of the Gauss law given below will show
calculations of fields of the charged physical body possessing some symmetry. These prob-
lems could be solved using only the principle of electric fields’ superposition. However,
this way is troublesome; it demands integration upon a volume. Application of the Gauss
law allows many problems to be solved “in a single line”.

EXAMPLE E4.7

An electrostatic field is created by two parallel, infinitely large, charged plates with
surface charge density o, and ¢,. Define the electrostatic field strength created by
these two plates between and behind them. Numerical values are o, = 0.4 uC/m?
and g, = 0.1 uC/m?.

Solution: According to the principle of superposition of electric fields, each
charge creates a field irrespective of the presence of other charges. In this case
it concerns the charged planes. Therefore, the intensity of a field in specified
areas E can be found as the vector sum of the fields, created by two planes
separately: E = E; + E,. The absolute values are in this case: E, = ¢,/2¢, and
E, = 0,/2¢,, E, being higher than E,. The sign of each term depends on two pecu-
liarities: the sign of the plate charge (objective characteristic) and the choice of the
axis direction (subjective characteristic). Let us divide the problem into three parts
(I, II and III) and choose an x-axis direction, we recommend that it is usually
accepted from left to right (Figure E4.7). The superposition principle offers us the
choice of the direction and absolute values of particular fields. Therefore, we
recommend beginning the solution of the problem with the determination of E(I)
and E(III)

1 o(I)+a(IID)

E(I)= E(II) =
2 &
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g1 02

Between the plates the field is directed oppositely from both plates and therefore

1le,—0,1
E(H)zg%.
0

The situation presented in this example can rarely be met in practice. Much more
popular is the plane condenser, which differs from that given here by the fact that
0, = —0,; the electric field inside the condenser is E = a/¢, there is no field outside
the condenser to say nothing on the edge effects (see Figure 4.11).

EXAMPLE E4.8

Two concentric spheres of radius R, = 6 cm and R, = 10 cm, respectively, carry
charges O, = 1 nC and Q, = —0.5 nC. Find the electric field strength at points
r; =5cm, r, =9 cm and r; =15 cm (Figure E4.8). Draw a graph of E(r).

£ \El=E
\(
n
0, R, E, V/cm I

2500
11 1I

900

450
(a) (b)y 0 R, R, r

Solution: The three points mentioned are correspondingly disposed just inside the
inner sphere (domain I, r; < R,), between the two spheres (domain II, R, < r, < R,)
and outside the spheres (domain IIT). The two spheres really exist carrying a definite
charge. Apply the Gauss theorem to solve the problem. First, we have to solve the
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situation inside the smallest (internal) sphere. One should choose an imaginary sphere
with r, < R, and write down the Gauss theorem for this domain: §£,dS = 0. Because
E, on the sphere is constant, £, = |E| = E, then E§ dS = E4nr? = 0; since 2 is not zero
it means that £, = 0%,

In domain I, R, < r, < R,, the Gauss surface should be chosen having R, < R <R,.
In this case the whole first real sphere occurred inside the Gauss surface.
Therefore, §E,dS = Q, /¢, Ednr’ = Q\/¢, and E = (Q,/4mey)(1/r?)**. (Sometimes
the sphere charge is given through surface charge density ¢ and the whole charge of
the sphere is 47R?¢. Note that R is a number, but r is a variable.) In order to find the
E(r) function in the domain III, the Gauss surface radius should be larger than R,; it
incorporates both spheres. Therefore, E§dS = (Q,+0))/Arer3 *#% The values of E’s
presented in the graph can be obtained from the marked functions E, and E;. Three
marked equations permit us to draw the graph. Try to find yourself the values pre-
sented in Figures E4.8a and b.

EXAMPLE E4.9

An electron with zero initial speed has passed an electrical potential difference
between a cathode and an anode U, = 10 kV and entered a space between horizon-
tal plates of the flat condenser on line AB parallel to plates (Figure E4.9); the con-
denser is charged up to potential difference U, = 100 V. A distance d between plates
is equal 2 cm. The length L, of the condenser plates in direction AB is equal 20 cm.
Determine distance BC (BD + DC) between fluorescent screen spots at the distance
from the condenser’s end to a screen is L, = Im.

L L,
Cathode
gt == B

————— '@—T)———————————————— -T
T~ M Vo ¢11
+ 4+ + + + + + : : D i
______ A 2
Anod SsH- Y

node v CT

Screen

Solution: An electron movement inside the condenser consists of the two compo-
nents: (1) by inertia, along the line AB with the constant speed v, acquired earlier by
action of accelerating potential difference between anode and cathode U, which an

2
mu,® _

electron has passed up to the condenser ( eU0>‘ and (2) a uniform acceleration

movement inside the condenser in a vertical direction due to an action of constant
electric field. After leaving the condenser at point M, an electron moves uniformly
and rectilinearly.
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One can see from the figure that the sought distance consists of two values
BC = [, + [,, one of them /, being a distance on which the electron is displaced in
a vertical direction during movement thought the condenser, the other one /, between
a point on the screen DC (see figure).

Let’s estimate separately /, and /,. The value /; can be found using the formula of
travel distance in the uniform acceleration movement /, = at*/2 **, where a is the
acceleration acquired by the electron under the action of the condenser’s constant
electric field and ¢ is the time of its action.

According to the Newtonian second law, acceleration is @ = F'/ m (the force F which
acts on the electron in condenser, m being its mass). In its turn, F = eE = eU,/d.

The time of the electron flight inside the condenser /, we shall find by the formula
of a uniform movement t = L,/ v,.

Consequently, substituting values from other expressions into the formula * we
can obtain /;, = U,L,% / (4dU,). We can find the length of a segment /, from corre-
sponding triangles MDC and then build on vectors v, v, and v assuming that the
deviation from AB-direction is small, [, = (v,L,/v))**, where v, is the electron
speed in a vertical direction at point M; and L, is a distance from the condenser end
up to the screen. We can find the speed v, using the formula v, = at which in view
of expressions for a, F, and ¢ will become

eU\L,
v =—.
dmy,
Having submitted the expression derived into the formula **, we obtain [, = eU,L,L, /
(d my?) or, having replaced v, from equation **, we found I, = U,L,L, /2 dU,. For the
required distance BC = [; + [,, we shall finally arrive at

UL} ULL, UL (L
BC_ 11+ =12 _ 11(71+L2j.

44U, 2dU, 24U,

Substituting all given values into the last expression and having made calcula-
tions, we arrive at BC = 5.5 cm.

Let us start with calculation of a field set up by a single charge Q. The field of the
point charge depends only on the distance from a charge to a point of observation
and does not depend on the direction, i.e., the field is spherically symmetric. Choose
an arbitrary point A (arbitrary means that it is typical and not distinguished from any
other). We shall carry out a spherical Gauss surface through this point at the radius
r with the center in charge Q (Figure 4.6). We shall write down for this sphere S the
Gauss law in the form LEn dS = Qlg,. In this expression, E, is the projection of
vector E on the normal vector n to the sphere surface. Any line passing through point
O is the axis of symmetry because any turn around it superposes a system with itself.
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Figure 4.6 The electric field of a point charge. Point A is a point of observation, the dashed line
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represent a Gauss surface.

Therefore, the vector E coincides with the symmetry axis. It means that |El = E,.
Besides, as a consequence of the symmetry of the problem, £ = const. at any point
of the Gauss sphere. Therefore, § EdS = E§dS = E4mnyr? . The right-hand side of
the equation is equal to Q/¢,. So, E4nr? = Qle,or E = Q/4neyr?. This coincides with
eq. (4.1.2). This coincidence is quite natural because while deriving the Gauss law,
we use for simplicity the point electric charge.

It is worth mentioning here that the Gauss law is valid for all fields whose strength
falls as 1/r2. Obviously, only in this case the r?> terms in the nominators and
denominators of the expression (4.1.12) are cancelled. We know two such fields:
electrostatic and gravitation; in these two cases the Gauss theorem is valid.

Let us now apply the Gauss law to consideration of a field set up by both uniformly
charged spherically symmetric bodies (sphere) and a ball uniformly charged upon the
surface, the radius of spheres being R in both cases. This means that there is no charge
inside the body. The charge surface density can be denoted as ¢ = Q/S, where S is the
surface area. In both cases we have to signify two domains: domain I is the region
inside the bodies (r, < R, where r, is the distance from the center of spheres to an arbi-
trary chosen point A) and domain II corresponds to outer space (Figure 4.7). As was
valid above, any line passing through the center of the spheres is the symmetry axis
and [El = E, = const. In the first domain 0 < r < R, the Gauss integral is LEndS =0.
As E, = |El, then E§dS = F4nr* = 0 and since r2 # 0, then E = 0.

In domain II, » > R, the arbitrary point A has to be chosen outside the spherical bod-
ies. The total charge Q will here be fully encompassed by the Gauss surface. Therefore

E[ dS=Edn? =2
S

o

and

E- 0 _( 1 J(a4n2R2j:aR;

= - =
4re,r 4me, r &t
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Er) R .

Figure 4.7 The electric field strength E(r) and potential ¢(r) of the surface-charged sphere.

The result is depicted in Figure 4.7. It is apparent that the strength values on the
internal and external sides of the surface are different, i.e., the field strength on the
charged surface experienced a break.

In a similar way it is possible to obtain the values of the field strength of several
spherical surfaces with the same center (e.g., for a spherical condenser).

If the sphere is charged homogeneously (p = Q/V = const.), the field inside is not
equal to zero. As before, the problem has a spherical symmetry; therefore, the Gauss
sphere should also be chosen in spherical form. With such a choice, |[El = E, =
const. at Gauss sphere. Accordingly, the arbitrary point A is chosen in two domains:
inside the sphere (r < R) and outside it (r > R).

To find the electrostatic field strength dependence at the distance r from the charged
sphere center inside it, we shall take advantage of eq. (4.1.15). We shall find the charge
density by dividing overall charge by the volume p = Q/(4/3)nR? = 3Q/4nR>. Then

4,

nr,

30
E dS=E¢dS=E4nr’ = =
Sf " f w 4ne R 3

wherefrom

__ 0
E(r)= T, R r. (4.1.18)

Pay attention that £ ~ r! This graph is given in Figure 4.8.
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Figure 4.8 Field of a uniformly charged ball.

Calculation of the field outside the sphere is easier: the Gauss surface encom-
passes the whole sphere. Then

$E, dS= E4nr* = Q

o
and

gl 0

= .
4ne,r

As previously seen E is proportional to 1/r2. If there is a material with definite ¢ (see
below), the dependence E(r) should contain term 1/¢ (Figure 4.8).

Let us generalize the result. In all three cases of spherical symmetry, a function
E(r) at r > R is described by dependence E ~ 1/r2. It means that an observer who
is outside the sphere at any point r, knowing the fragment of the measured depend-
ence E(r) cannot judge whether the field is created by the point charge, a sphere
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uniformly charged over its surface or the uniformly charged solid ball. In all three
cases dependence E(r) is identical! Moreover, in the case of spherical symmetry
nothing prevents “swiping” the sphere or ball to a point and to consider a field as if
it is created by point charge! Sometimes it essentially facilitates a problem.
Remember that we have already done this in Chapter 1: in studying the force and
potential energy of a gravitational field (a field of the earth), we dealt with formula
F(r) = GMm/r* and U(r) = —GMm/r, where r is the distance from the center of the
earth. We swiped the whole mass of earth to a point (see Section 1.4.5). The possi-
bility of the generality of the results is in identical dependence on Coulomb and
Newton forces from distance 7!

Calculate now a field created by a body with cylindrical symmetry, for example,
infinite and uniformly charged cylinder (for simplicity—over a surface) with linear
charge density T = dQ/dl = const. (Note that there are no such cylinders or infinite
planes in nature. This physical problem is equivalent to the condition where the
cylinder has finite length L, however, we consider a field near to the charged surface,
i.e., at r< L. Then it is possible to neglect the edge effects and solve the problem for
an infinite cylinder.)

Let us analyze a problem that has cylindrical symmetry, i.e., the axis of sym-
metry coincides with the axis of the cylinder; this means that in calculating the
field strength, we deal with E (not with E), it depends only on the distance from a
cylinder axis to a point of observation r (but not from r!). Furthermore, any
straight line perpendicular to the cylinder axis and crossing it is an axis of
symmetry of the second order (the turning of the infinite cylinder around the axis
on 7 superposes it with itself). This means that vector E should be directed along
such a straight line.

Choose accordingly a closed Gauss surface in the form of a coaxial cylinder
of length [ (cyl) and end surfaces (end) perpendicular to the cylinder axes
(Figure 4.9). Then the integral over the Gauss surface will be separated into three
parts:

$E,dS= [ E,dS+2[ E,ds.

cyl end

The last item is equal to zero because E, = 0 at end surfaces (E L n). Over all cylin-
drical surface, E Il n; therefore

|E, ds =] E,ds=2rr(E.
S

cyl

At r < R (not depicted in the scheme), E = 0 (according to the same consideration
why the field inside an empty sphere is absent). At r > R, E2nrl = Q/g, = tl/e,.
Thus, E(r) = t/2ne,r. A graph of this dependence is presented in Figure 4.9.
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Figure 4.9 Field and potential of a system with cylindrical symmetry.

Let us now calculate a field created by an infinite plane (i.e., with linear sizes
much larger than the distance from the plane to an observation point), the plane
being uniformly charged (¢ = dQ/dS = const.). Any straight line perpendicular to the
infinite plane is the axis of symmetry (because any turn around it will impose a plane
on itself). Therefore, E in any point should be directed along this axis, i.e., perpen-
dicular to the plane. In this case, it is expedient to choose the Gauss surface to be a
cylinder with the generatrix perpendicular to the plane, as is shown in Figure 4.10.
Therefore, the electric strength flux through a side of the cylinder surface is zero,
whereas the flux through two ends is

$E,dS=2 [ E,dS=2ES,,.

Shol

According to the Gauss theorem, this expression is equal to the charge inside
the Gauss surface, i.e., 65,4 So 2ES,, = 0S,,4/¢, i.e., E = a/2¢, = const (see
Figure 4.10)

g
E=—. 4.1.19
2 (4.1.19)

It can be seen that the field strength near to plane does not depend on distance (!).
Negative value of E to the left of the plane means that vector E is directed opposite
to the axis x.
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Figure 4.10 Field of a uniformly charged plate.

Figure 4.11 A Uniform condenser field.

The system of two similar planes carrying an equal charge with an equal charge
density represents a plane condenser, provided they carry charges of opposite signs.
According to the superposition principle, the field in the condenser is an algebraic
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i dm=vtpdS
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Figure 4.12 A Gauss theorem and a liquid’s flow.

S

sum of the fields created by each plane separately (Figure 4.11). So, the field inside
the plane condenser is

E, =2E=—; (4.1.20)

however, the field outside it is zero. The plane condenser is a source of a uniform
electric field.

In summary, we make two more remarks on the Gauss theorem. The first con-
cerns the physical nature of the equation. Because in eq. (4.1.13) an electric charge
is presented on the right-hand side, the theorem asserts that the source of an elec-
trostatic field is electric charge.

Another concerns the general meaning of the theorem, wider than only electro-
statics. Imagine, for instance, a flow of a liquid in a pipe (Figure 4.12). Each parti-
cle of the liquid moves with speed u. The mass of the liquid will cross a surface dS
in time #, making dm = utp dS. The mass of the liquid m = [ vtp dS = tp|,vdS will
pass through surface S in time 7, and if S and dS are directed parallel to each other,
m = tpj"vdS. On one hand, these equations allow us to calculate the mass of the lig-
uid at its flow in pipes (at known distribution of speed, at turbulent or laminar cur-
rent), and, on the other hand, to formulate a criterion for liquid incompressibility,
$.0dS= constant. If there is a source of liquid inside the Gauss surface, p$.vdS = j,
where j = m/t is a source power.

4.1.4 Work of an electrostatic field force and potential of an electrostatic
field

Coulomb forces are central and, consequently, conservative; the field of these forces is poten-
tial (refer to Section 1.4.4, Figure 1.29 and eq. (1.4.24)). Indeed, by definition, an elementary
work dA of a force F on a displacement d/ is determined as: dA = F dl = qE dl = gE dl
cosa, where E = Q/4neyr? and dlcosa = dr. Then dA=qQdrlAme” and A,=(qQl4me,)

j;zl dr/r?. Therefore,
_qQ (1 1
Ao =g [7 )
0 1 2
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i.e., the work in fact does not depend on the distance traveled but on r, and r,, the radius
vectors of the initial and final points. If a charge starting from the initial point returns to it,
the work of electrostatic forces is equal to zero: A=¢|,E,dl = 0, where E; = E cos o is a
projection of vector E on the displacement vector dl. Then ¢, E,dl = 0: circulation of the
electrostatic field strength along the closed trajectory is equal to zero. This is the defini-
tion of the potential character of a force field.

From equation ¢, F,dl = 0 it follows that the force lines of an electrostatic field cannot
be closed (otherwise with a positive detour the integral would be essentially positive).
They start from the positive charges and end at negative charges (or pass into infinity).

The work of electrostatic field forces can be presented as a potential energy decrease,
A=U, — U,=—AU. From a comparison of this equation with that given above, the
potential energy of a charge ¢ in a field of another charge Q can be written as
U=(qQ/4neyr)+C. If one accepts that at » = oo the potential energy U(e) is equal to zero,
then C = 0 and the potential energy is finally

y=_49

pE— 4.1.21)

The electrostatic potential ¢ is a value numerically equal to the potential energy of a unit
positive point charge placed into the given field point. Then

U
¢=7 (4.1.22)
The point charge potential is therefore
_ 9
@ by (4.1.23)
Inasmuch U = g, then
A, =U,-U,=q(p—p,)=—qAo. (4.1.24)

If one assumes () = 0, then A, = q¢,; therefore, ¢, = A,_/q. This means that the
potential is numerically equal to the force work done on the displacement of the unit pos-
itive point charge from the given point to infinity.

The field potential is the scalar power characteristic of an electrostatic field. The poten-
tial of a field having been created by a system of motionless charges obeys the superposi-
tion principle, i.e., each charge creates a field irrespective of the presence of other charges
in the space. As the potential is a scalar value, the potential in any point of the field, created
by the system of charges, is equal to the algebraic sum of potentials of fields created by each
charge individually:

N
o(r) = o), (4.1.25)
i=1

where N is the total number of charges.
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From the point of view of the potential distribution, the electrostatic field can be
graphically characterized by surfaces of equal potential, i.e., by equipotential surfaces with
¢ = constant (Figure 4.13). The force lines are always normal to them.

Because electric field strength E(r) and potential ¢(r) are functions of a point radius
vector r, there should be an interrelation between them. Let us find it. The elementary work
of a field force can be determined as either dA = F dl = qE dl or dA = —dU = —q d¢.
Comparing them, we can arrive at E, = —dq/dl.

If the field is created by a spherically symmetric charge, E and ¢ are both r-dependent;
therefore

d
E.(r)=- Z(rr)- (4.1.26)

In the case of linear dependence

E,(x)=-4929)

e (4.1.27)
In the general case, r(x, y, z), E(r) and ¢(r) are interconnected by
do. do . dop
Er)=—|%2i+%2j+ %%k |= —orad
(r) [ et dy It grad o(r), (4.1.28)

i.e., the electrostatic field strength is equal to the electric field potential gradient taken with
opposite sign. One can see that the field strengths’ vector is always normal to equipotential
surfaces (Figure 4.13).

It follows from eqs. (4.1.26)—(4.1.28) that the function ¢(r) cannot be a discontinuous
function. In fact, if a function undergoes a break (for instance, in the point x,), then,
according to eq. (4.1.27),

E(x,)= lim 29 o
AX—0 Ax

since in this point Ax — 0, but Ag tends to a finite difference; this means that E(x,) is equal
to infinity. This cannot be the case.

@ = const

Figure 4.13 Force lines and equipotential surfaces.
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The relation established between the electrostatic field strength and potential allows us
to find dependence ¢(r) knowing the function E(r) for all examples considered above. In
fact, it follows from eqs. (4.1.26) and (4.1.27) that

o(r)=—[ E(r)dr+C

and
o(x)= —j E(x)dx+C.

Substituting here the already known functions E(r) and E(x), we can calculate functions
@(r) and ¢@(x). The constant C reflects the fact that the function ¢, as well as potential
energy, is known to be within a constant; it can be found from boundary conditions. The
choice of C can provide a continuity of function ¢. Thus, the potential for the problems
considered can be obtained. Corresponding graphs are depicted in Figures 4.6, 4.7,
4.9-4.11.

In order to calculate the potential difference A¢, integration should be carried out in cer-
tain limits. So, for instance, the potential difference in a plane condenser is

Ap = —‘T.E(x)dx = —E]{dx =—Ed,
0

0

where d is the distance between the plates.

The reverse problem (knowing ¢, calculate E) can be obtained as well. This method will
be used, for example, when we calculate an electric dipole field (because potential calcu-
lation is easier than calculating the field strength since the former is a scalar value, whereas
the latter is of vector quality).

4.1.5 Electrical field of an electric dipole

A system consisting of two charges, equal in absolute value and opposite in sign, is
referred to as an electric dipole. The vector drawn from a negative charge to a positive one
1 is called a dipole arm. The vector p equal to a product of the charge and arm is referred
to as electric dipole moment (Figure 4.14):

p=ql (4.1.29)

It can be seen that the unit of dipole moment measurement is C m. This is a very large
value and therefore a significantly smaller one is used in chemistry, namely 1 Debye (D):
1 D is equal to 3.33 X 1073° C m.

When a dipole field is studied at a distance much larger than the dipole arm, it is called
the point dipole. In spite of the fact that a dipole seemed to be an electrically neutral par-
ticle, it produces an electric field; this field has different properties compared to a field of
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point charges. In order to describe a dipole field, we use the superposition principle:
=0, to_ie.,

0= (|q| /4meyr, ) — (|q| /4mer.) = |q| (- —r.)/Aneyr,r_,

We consider the point dipole (I<r) (Figure 4.14); therefore, r_r, = >, r_ — r, =1 cos 0
which means that

_ ldt _p
o(r,q) = S cost) = >-cos . (4.1.30)
ey 4meyr

In order to determine the strength of the dipole field at point A, the relationship
between strength and potential can be used. We use a polar coordinate » and 0 with a polar
axis coinciding with the dipole arm direction (Figure 4.15). Component E, (projection E
on the radius vector r) is

Figure 4.15 Dipole electric field calculation.
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The E, component perpendicular to r is equal to

_de _ p
rdo 47(80r3

o sinf),

where r d0 is the length of an arc with radius r. Then, the total electric field strength at
point A is

E= /Ef-l—Eg: P 3\/1+3c0329. (4.1.31)

4ne,r

The potential and strength of the dipole field are defined not by a value of charge ¢
but by the dipole electric moment p = Igll. With distance, the dipole potential and
strength decrease faster (¢ ~ 1/r2, E ~ 1/r%) than those of a field of a point charge (1/r
and 1/r%, respectively). A configuration of the dipole electric field is shown schemati-
cally in Figure 4.16.

In a uniform electric field a torque M, aspires to turn the dipole moment p to be ori-
ented along the field E. A force couple M. is equal to the product of force F = IglE and
the force arm / sin o (Figure 4.17), i.e., M = IglEl sin o = pE sin o or, in vector form,

M, =[pE]. (4.1.32)

The vector M is directed perpendicular to the plane of drawing from a spectator. The
resulting force in the uniform electric field is zero.

In order to calculate the potential energy of a dipole in the uniform electric field we
use the recipe given in Section 1.4.5. To calculate the potential energy we should first

()

Figure 4.16 A dipole electric field configuration.
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find the elementary work of the force couple (dA = dU, where dA = My du is the force
couple work and dU is the increment of the potential energy). Then

UZ'[MF do= [ pEsinodo,

after integration we can obtain U(x) = —pEcoso + C. If we accepts U(n/2) = 0, then
C=0and U = —pE cos o or in vector form

U=—(pE). (4.1.33)

A graph of dependence U(x) is given in Figure 4.18. When the vector p coincides with
vector E, the dipole potential energy acquires the lowest value (« = 0, U,;, = —pE): the
dipole is in a stable equilibrium; the force couple is also equal to zero. When the vector p
is oriented perpendicular to the vector E, the dipole energy is equal to zero (« = /2, U = 0).
When the vector p is directed opposite to the vector E, the dipole energy is maximum
(a0 = m, Uy, = pE), the dipole is in an unstable equilibrium: any deviation from this state
leads to turn-off of the dipole.

In a nonuniform electric field, forces acting on dipole charges are not equal in absolute
value and direction. In Figure 4.19, a graph of a nonuniform field (dE/dx < 0) with a dipole
p in this field is depicted. Both the force couple M, and resulting force F will act on the
dipole.

+pE

0 /2 n o

Figure 4.18 A dipole potential energy in a uniform electric field.
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Figure 4.19 An electric dipole in a nonuniform electric field.

To calculate a force projection on x-axis, we can use eq. (1.4.33) where the relation of
the force projection with the field nonuniformity is given (F, = —dU/dx); in our instance,
U = —pE cos o and then

F.= a—ECOSoc
X Pax . (4.1.34)

If a dipole in the electric field is in a stable state (cos o = 1), then the force will draw the
dipole into an area of stronger field (for Figure 4.19, F_ < 0).

The ratio (eq. (4.1.34)) shows that an interaction force can exist even between neu-
tral molecules, though having the dipole moments. In fact, if an electrically neutral
polar molecule creates the nonuniform field described by expression (4.1.31) and
another molecule with a dipole moment p is in this field, a dipole—dipole interaction
appears between them.

4.2 DIELECTRIC PROPERTIES OF SUBSTANCES

4.2.1 Conductors and dielectrics: a general view

From the point of view of electric properties, all substances can be divided into two main
classes—conducting and nonconducting an electric current. Metals, their alloys and a
small number of chemical compounds with metal character of interatomic interactions
relate to the class of conductors. The second class includes other substances and repre-
sents the overwhelming majority. Conductivity is defined by the presence of free charge
carriers in a substance; their absence determines dielectric properties. So, dielectrics are
substances in which there are no free charges capable of covering long distances in the
substance (in comparison with molecular sizes).

Depending on their molecular structure, all dielectrics can, in turn, be divided into two
large groups—polar and nonpolar. In polar dielectrics, molecules themselves represent
the electric dipoles with the electric moment p; it appears due to displacements of elec-
tric charges from positions of their equilibrium in free atoms as a result of chemical
bonding (e.g., H,O, HCI and NH;). The molecular dipoles of polar dielectrics participate
in thermal motion; this can be translational motion (in gases and liquids), oscillation
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about equilibrium positions (solids and liquids) and rotation around the center of mass.
As a result, the dipole electric moments p are chaotically distributed along directions
(Figure 4.20a). For the whole dielectric, the vector sum ) I:I: p; is equal to zero.
Therefore, in spite of the fact that each molecule possesses a dipole moment, the whole
sample does not.

Molecules of nonpolar dielectrics do not possess a dielectric moment. This means that
the positions of the positive and negative charge centers in the molecules coincide.
Examples of nonpolar molecules are H,, CCl,, C;H,, CH,, etc. In this case, the macro-
scopic dielectric sample does not possess a dipole macroscopic moment either.

However, when placed in an external electric field E,, all dielectrics regardless of their
molecular properties are polarized, i.e., Y p, becomes nonzero, the dielectric acquires a
macroscopic dipole moment (Figure 4.20b).

For the quantitative description of dielectrics, the notion of the polarization (degree)
or the polarization vector % is introduced; numerically, it is equal to the electric dipole
moment of a unit volume. Accordingly

1 N
R=— "
;:1 P “2.1)

In this expression AV is a so-called physically infinitesimal volume, i.e., a volume con-
taining enough dipoles that the vector sum in eq. (4.2.1) adequately reflects the macro-
scopic dielectric state of this volume, but, simultaneously, small enough that within the
limits of this volume the polarization degree can be considered as uniform. It is important
to notice once more that the sum in eq. (4.2.1) is of a vector character.

However, in the case when all N (identical) moments are directed along one and the
same axis (we shall choose an x-axis), expression (4.2.1) can be written as

Figure 4.20 Mutual orientation of a dielectric’s molecules in the absence (a) (random orientation)
and in a presence of an external electric field (b).
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There are two approaches to the description of dielectric properties: phenomenological
which includes the description of macroscopic dielectric characteristics (subject to direct
measurement) and microscopic which includes the analysis of dielectric behavior taking
place at an atomic and molecular level.

We shall begin by considering dielectric behavior in an external electric field from the
macroscopic point of view.

4.2.2 Macroscopic (phenomenological) properties of dielectrics

Consider now what occurs with a dielectric if it is placed in an external field E,
(Figure 4.21), created, for example, by a plane condenser. As was mentioned above, the
dielectric polarizes. All charges inside a volume remain mutually compensated; however,
there is no compensation near surfaces. Bound charges with density ¢" are created at the
edges of a body. These charges cannot be taken from the dielectric surfaces; therefore, they
are referred to as bounded charges (opposite to those free charges which are on capacitor
plates and form a field E,, (E, = o0,../¢,) (4.1.19)). The surface-bounded charges produce
another charged condenser-like “plate” which creates the electric field E, directed oppo-
site to the external field E, (Figure 4.21). This field is referred to as a depolarized field or
an electric field of bounded charges.

The electric field E inside dielectrics can be treated as a superposition of two fields: the
external field E, and the depolarized field E,, i.e., E = E;, + E,, or in scalar form

E=E,—E,. (4.2.3)

Thus, the resulting average field E in the dielectric body is always less than external field
E,. This field is referred to as an average macroscopic field E in the dielectric; the average
field represents the result of superposition of an external field and electric fields of
bounded charges. The value equal to a ratio of the strength E of an external electric field
to the strength E of an average field in the dielectric is referred to as dielectric permeabi-
lity of the dielectric medium.

EO
e=—>. 424
E (42.4)

=D DD DD

R T T
Q

Figure 4.21 Dielectric in an external electric field E: formation of surface-bounded charges with
surface density ¢’ is shown.
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Namely this value has to be introduced into the Coulomb’s law (4.1.1) in order to deter-
mine a force acting between two point charges in a medium with dielectric permeability &.

I Qqr
drege 12 or

F= (4.2.5)

There is a certain correlation between the polarization and the surface-bounded charges’
density. To establish this, we must imagine that we have cut in a flat dielectric plate an ele-
mentary volume (e.g., in the form of a cylindrical rod) along the field force lines perpen-
dicular to the dielectric’s surfaces (Figure 4.22). Assume the face area to be AS, the cylinder
length / and the bounded charges density ¢’. Therefore Ag=AS¢’ and the induced electric
dipole moment p = Agl = ¢’ ASI. Then the polarization ) of the allocated dielectric rod
shall be found relating the electric moment p of the rod to its volume AV, i.e., R = p/AV.
As an elementary volume is AV = ASI (see Figure 4.22) and p = ¢’ ASI, then by defini-
tion (see (4.2.1))

ad ASC
= =0
AS€
So, the surface density of the bounded charges is numerically equal to the dielectric polar-
ization.
a =N (4.2.6)
As experiments show, the isotropic dielectric polarization is proportional to the electric

field strength E and coincides with it directionally (#t ~ E). In the SI, the relation between
# and E is written as

R= g E, “4.2.7)

where x is dielectric susceptibility. Note that E in this expression is the strength of the
average electric field (4.2.3).

T
|
| E,
| —
T
—a' : +a'
N T
v
—Aq/l : +Aq
/7 |
T
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Figure 4.22 Relationship of the bounded charges’ field and a body polarization.
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Dielectric susceptibility x characterizes the dielectric from the point of view of its
ability to be polarized in the electric field. The dielectric susceptibility in the SI is
numerically equal to dielectric polarization divided by ¢, of the dielectric polarization
in the field of the unit electrostatic field strength.

Thus, the ability of a dielectric to be polarized is characterized by two values: dielectric
permeability ¢ and dielectric susceptibility x. There must be an interconnection between
them. Indeed, the average field in a dielectric, according to (4.2.3), is E = E;, — E,. From
the other side, E, = ¢E and E, = ¢'/¢,. Then E = ¢E — ¢'/¢,. Taking into account (4.2.6),
we can write E = ¢E — /e, = ¢E — K¢y El¢,, and therefore

e=1+k. 4.2.8)

The numerical values of dielectric permeability of various substances change over a
wide range and depend on the frequency of the external electric field. We shall discuss this
question in more detail below. For the majority of nonpolar liquids, dielectric permeabil-
ity is 2-2.5; for polar liquids, it is significantly higher at 10-80. For the majority of solids,
& = 1.5-2.5; however, for ferroelectrics (see Section 9.6), ¢ achieves a value of 10*. For
gases, ¢ differs a bit from unity.

In order to characterize an electric field inward the dielectric, it is convenient to use one more
value similar to electric field strength, namely a vector of an electric induction (or a vector of
electric displacement) D. In isotropic dielectrics, D = g¢E. If ¢ does not depend on E, values
D and E are proportional to each other. From the above-mentioned relationships, it follows:

D =¢ E+N.

If E depends on whether dielectrics are present in the field and what their dielectric per-
meability is, D does not depend on these circumstances and does not change its value at
the transition from vacuum to dielectrics (remember that this concerns isotropic
dielectrics). If ¢ depends on E, as it sometimes takes place (e.g., in ferroelectrics, see
Section 9.6), then D nonlinearly depends on E, remaining independent of the presence in
space of other dielectrics.

4.2.3 Microscopic properties of dielectrics

Among the microscopic properties of a dielectric, the basic place is occupied by the
molecular dipole moment p; this depends, in turn, on atomic structure and chemical bond-
ing. In Figure 4.23 examples of molecules are given and both directions and values of the
dipole moments (in D) are specified. Note that the concept of molecular dipole moments
is one of the most important in chemistry.

Some main principles connecting a molecule structure with its dipole moment can be
noted. Firstly, the polarity of multiatomic molecules depends on the polarity of a given
chemical bond and their mutual arrangement. On a simplified level, the electric dipole
moment of a multiatomic molecule can be considered as a result of geometrical summa-
tion of the individual moments of each bond. Such an approach is based on the additive
property of the total dipole moment: each chemical bond being considered as a dipole
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H,0 & /\ p=1.84D
[
HCI J p=1.03D
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NH, A/})\m p=1.48 D
RN

Figure 4.23 Molecular models and dielectric properties of some molecules.

moment, the total moment is obtained as a vector sum of the moments of a particular bond.
The transferability of chemical bonds polarity is used here as well: it is accepted that the
dipole moment is the specific property irrespective of in which particular molecule these
bonds participate. At the same time, if a molecule possesses the center of symmetry (e.g.,
C.H,, CO,, etc.), its dipole moment a priori is equal to zero. This statement follows from
the fact that the polar dipole moment vector is incompatible with the center of symmetry
because any vector itself does not possess that center.

Secondly, the molecular dipole moment strongly depends on the charge transfer from one
atom to another. So, the diatomic molecules consisting of identical atoms, due to the sym-
metry of the electron pair arrangement, do not possess polarity at all; their electric dipole
moment is equal to zero. The diatomic molecules consisting of different atoms are, in most
cases, polar. The polarity of the bond is determined by the electron affinity of the constituent
atoms. The greater the difference in the electron density, the more polar is the bond. The
polarity reaches the highest value at a purely ionic bond. Thus, the electric dipole moment
characterizes the degree of ionicity of a chemical bond. For example, the dipole moment of
halogen—hydrogen bonds increases from HI to HF according to increase of electronegativ-
ity of the halogen atoms (see Table 4.1).

Molecular dipole moments can be calculated by modern methods of quantum chemistry
from the first principles (for small molecules). Experimentally dipole moments can be derived
from X-ray diffraction experiments using a function of electron density distribution p(r).

Every dielectric at microlevel represents a discrete structure in which molecules or
atoms are distributed in ordered (in crystals) or chaotic (in gases and liquids) manner.
Therefore, the electric field strength at any point of the dielectric is the superposition of an
external field and the fields of all neighboring molecules. The structure of an electric field
in a dielectric is highly nonuniform; the value of an average field obtained above repre-
sents a highly averaged picture. It means that the electric field strength really acting on a
given molecule is not equal to the averaged field: we should consider some effective field,
referred to as a local field. The strength of the local field E,, is defined as the geometri-
cal sum of the strengths of an external field E; and the total field of all the dielectrics’
dipoles except for the dipole being considered.
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Table 4.1
Electric dipole moments of some of halogen—hydrogen
molecules
Molecule Dipole moments
103°Cm D
HF 6.37 1.91
HCl 4.33 1.03
HBr 2.63 0.79
HI 1.30 0.39

If an isotropic nonpolar dielectric is placed in an external electric field, the local field
will act on each molecule. Displacement of charges of different signs will take place and
a dipole will be created. Such a dipole is called an induced dipole. Its value is proportional
to the strength of the local field. In ST units, this dependence is

p=oag,E.. 4.2.9)

The o value characterizes the ability of a molecule to be polarized in an electric field,
and is referred to as polarizability.

Formula (4.2.9) permits us to rewrite the expression for dielectric polarization. Starting
from (4.2.2), we arrive at

R=np = nog By . (4.2.10)

‘We can compare the expression for polarization R with that derived earlier (see eq. (4.2.7))
on the basis of macropresentations. Analysis shows that they are identical when £ =~ E,_, i.e.,
when the depolarizing field E, is rather small. This corresponds in particular to a low mole-
cule concentration. Then

K = no. (4.2.11)

Of course, this is valid for low dielectric polarization. The connection between x and no at
significant polarization is given in Section 4.2.7.

4.2.4 Three types of polarization mechanisms

There are several mechanisms of dielectric polarization, each being directly dependent on
the molecules’ structure.

Let us distinguish a deformation and an orientation polarization. In the first case the
molecule deformation takes place when imposing it in the external field. Deformation can
touch both the single atom and the whole molecule. We shall consider each of these
mechanisms separately.
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Electronic polarization

Relates to the deformation type of polarization and appears as a result of the displacement
of an atomic electron shell relative to the nucleus which, accordingly, leads to an induced
dipole moment. Certainly, such a polarization mechanism takes place in all systems con-
taining atoms, i.e., in all dielectrics; however, in a pure state it can be seen in the case of
nonpolar homo-atomic molecules and atoms.

Let us estimate the value of electronic polarization. As an example, take a simplified model
of an atom. Assume that the electron charge Ze is uniformly distributed around the nucleus in
a sphere of radius R, i.e., with constant electron density p=Q/((4/3)rR*)=Z|e|/((4/3)nR?). In
the absence of an external electric field, the nucleus is in the center of a spherically symmet-
ric electronic cloud, the centers of positive and negative charges coincide; the atom does not
possess a dipole moment. We can impose an origin with negative charge center.

Let us place an atom in an external electric field. Under the action of this field, the cen-
ters of charges of both signs will shift away from each other and an induced dipole moment
will appear (Figure 4.24)

p=Zlell, (4.2.12)

where Zlel is a nuclear charge and that of the electron cloud as well and [ is the displace-
ment value of charges; the direction of dipole moment p coincides with the direction of
external field E .. A nucleus displaced from its center will be under the action of two com-
petitive forces: the action of a local electric field,

F'=Zle|Ey.. (4.2.13)

and an internal atomic electric field,

Zlel

=
oy (4.2.14)

F"=Z|e|3Lr=Z|e|
€o

where [ is the dipole arm; the latter force F” tries to remove the nucleus in the initial
central position. Because the forces are balanced, F' = F" and E| Zlel = Zlel(Zlel/4me,R3),
wherefrom, after cancellation on Zlel, it follows that Z| e | 1 = 4 €y R°E,,.. The expression for

E

Figure 4.24 A model of the electron polarization.
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the dipole moment is written on the left-hand side. Therefore, p = 4ng RE, .. Comparing
this expression with eq. (4.2.9), we can conclude that the electron polarization coefficient is

o, =4nR’. (4.2.15)

It can be seen that the atomic electron’s ability to be polarized is proportional to its volume.
Although the result has been obtained at a certain level of simplification, it is qualitatively
correct in describing a real picture of electron polarization. It can be seen from Table 4.2
that a cube of atomic radius increase and an electronic polarizability change in parallel.

Let us estimate to an order of magnitude the value of electronic polarizability. We esti-
mate 3 X 107'° m for atomic radius, then o ~ 4nR> ~ 10 X 1073 m? ~ 102 m? which
coincides with the values of electronic polarizability of middle-sized atoms.

The electron polarization is determined by the atomic electron shell. Therefore, it does
not depend on temperature. Note that it consists of a shift of a light part of the atom regard-
ing heavy nuclei and therefore possesses low persistence.

Atomic (ionic) polarization

Is observed in heteroatomic molecules in which atoms, due to different electronegativity,
endure a redistribution of electron density. Therefore, each atom appears carrying an
excessive (positive and/or negative) charge (Table 4.3). This charge 0 is referred to as
effective atomic charge and is defined in terms of an electron charge, i.e., J = g/lel.
Certainly, the sum of all é over the whole molecule is equal to zero.

Depending on the effective charges and interatomic distance, the hetero-atomic mole-
cules exhibit a permanent dipole moment even in the absence of an external electric field

Table 4.2

Electron polarizability of some atoms

Atom Polarizability coefficient, Cube of atomic
o,; (10730 m?) radius, R? (1070 m?)

He 2.3 0.78

Ne 4.7 1.4

Ar 16 3.6

Kr 25 4.8

Xe 41 6.9

Table 4.3

The effective charges of atoms in selected molecules

Substance Atom o Substance Atom 0
Na,O (0] -0.81 NaF Na +0.58
MgO (0] -0.35 NaBr Na +0.83
AlLO, O -0.31 NaCl Na +0.92
P,0; (0] -0.13 MgO Mg +1.01
SO, (0] -0.06 MgBr, Mg +1.38
CLO, o) -0.01 MgCl, Mg 15
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Figure 4.25 Upper (without the external field) and lower (a molecule in the external field).

p = lgll. However, under the action of an electric field, there is additional displacement of
the atoms relative to each other. Therefore, the interatomic distance is enlarged and the
dipole moment increased. An additional (induced) electric dipole moment appears which
causes the additional polarization.

In order to estimate the atomic polarization, we can use a model: consider a molecule
consisting of two atoms with effective charges 6, and J_ (Figure 4.25) bounded by a
quasi-elastic force with rigidity coefficient f8. In the absence of the external electric field,
its dipole moment is p = dlell (Figure 4.25, upper). Under the external field action, the
interatomic distance / undergoes an enlargement Al (Figure 4.25, lower). Two acting
forces (IglE and § Al) are balanced in absolute value: f§ Al = lg JIE,,.. We can find the
interatomic distance enlargement Al = (IgJ/f)E. Due to the action of the local electric
field, the molecules acquire an additional dipole moment

2
Ap=lq|Al= q—;Ek,c- (4.2.16)

Denote the polarization coefficient by o,. Then the additional dipole moment can be
rewritten as Ap = o,,F, wherefrom o, = Ap/e E, .. Substituting Ap according to (4.2.16),
we arrive at

2 22
qet 5 e
o, =L —2°€ 42.17
' &b &b ( )

Evaluation of «,, for a HCI molecule, for instance, gives: at 6 = 0.2lel, f = 10 N/m, the
coefficient of atomic polarization is o, =((0.2 X 1.6)*> X 10738)/(107 1! X 10>)=10"% m?.
This is a bit lower than o, for the same molecule.

At moderately high temperatures when electronic density and, accordingly, interatomic
forces can be considered as constants, the atomic polarization does not depend on temper-
ature. The nuclear subsystem participates in atomic polarization and, therefore, atomic
polarization possesses greater persistence than the electronic one.

Orientation polarization

Consider a polar dielectric, each molecule of which possesses an inherent, permanent dipole
moment p. In the absence of an external field, dipoles are oriented chaotically due to the
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molecules’ thermal motion; this means that the dielectric’s polarization %t (4.2.1) is zero
(Figure 4.21). In an external field, due to the action of force pairs (refer to Section 4.1.5 and
formulas (4.1.32) and (4.1.33)), each dipole will acquire a tendency to be oriented by the
field, but the thermal motion will prevent it. The general problem of the behavior of an
ensemble of permanent dipoles (magnetic and electric) in an external permanent field was
solved by the French scientist P. Langevin. Here, we shall take advantage of his unsophis-
ticated dielectric model which arrived, nevertheless, at the correct result.

Consider a molecular system consisting of the permanent moments p with concentra-
tion n. Accept a model in which dipoles are focused with equal probability along three
coordinate axes, so )t = 0. In the absence of an external field in any direction (positive or
negative) of each coordinate axis, n/6 of all molecules will be directed. Assume now that
operating on each molecule is a field whose direction coincides with the positive direction
of the axis y (Figure 4.26). This means that each molecule will obtain a potential energy
U = —pE = —pE cos o, where « is the angle between vectors p and E. For molecules
whose dipole moments are directed along the field (¢« = 0, cos o = 1), U = —pE. For
molecules whose dipole moments are directed oppositely (« = w, cos o = —1), U = +pE.
Assume also that dipoles directed along axes x and z do not participate in polarization.

The competition between ordering tendency of an external field (in our case, this action
is described by the value of potential energy U) and disordering tendency caused by ther-
mal chaotic molecule movements (with energy x7) is described by the Boltzmann factor
(see Section 3.2.4). This competition results in the fact that the concentration of molecules
with dipoles oriented along the field (r,) and oppositely (n_) will be different and equal

_n pEloc _n pEloc
=—¢ s and _=—¢ — .
" 6 XP( kT ) " 6 xp( KT )

Since the concentration of molecules whose dipoles are oriented in a positive and neg-
ative y-axis direction will be different, the resulting dipole moment appears in a positive
direction. According to (4.2.2), it is equal, i, = (n, — n_)p.

We will restrict our consideration to weak fields for which pE, . <xT (the potential
energy of dipole interaction with an external field U is significantly less than the energy

n_p np Y

—
x Anp

Figure 4.26 To the model of a orientational polarization.
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of the molecules’ thermal motion 7). In this case, an exponent function can be decom-
posed in a series: we will limit ourselves to only the first two terms: n, =
(n/6)(1+(pE,,/kT)) and n_=~ (n/6)(1—(pE, /xT)). Then an excess of dipole concentra-
tion directed along the electric field will be An = n,—n_ = (n/3)(pE,,/xT)) and the
polarization will be

2

mzﬁpEloc p= np2 np

E. = e E, .
3 kT 3T e 3egkT 0L10c (4.2.18)

The averaged effective dipole moment counting on a single molecule can be obtained by
dividing N by n:

_%R_p
9tef_ — loc*
n  3xT

The orientation polarization can be characterized by the coefficient of orientation polar-

ization o,,,. Then p = o, &,E,,., wherefrom

p2

oy, = :
P 3ekT

(4.2.19)

Evaluation of ¢, for an HCl molecule gives p = 1 D = 3.33 X 1073 C m and 7 = 300 K

__ @X107) s s
(3x107")x107% X300 '

or

which is higher than . The value of «, is inversely proportional to absolute temperature
and is proportional to the square of the molecular dipole moments.

In extreme conditions (in very high fields or at very low temperatures when pE > kT—
something that is technically very difficult to achieve), all dipoles are built along an exter-
nal field; further increase does not essentially change polarization, the polarization reaches
saturation. The polarization value in this condition depends only on dipole moment value
p and concentration 7.

In Figure 4.27 a graph of polarization versus external electric field strength is given. At
pE<<«T this function is linear (eq. (4.2.18)), the higher the molecular dipole moment and
the lower the temperature, the steeper is the linear function, i.e., tan f§ = dW/dE. In the
other limiting case (pE >>> kT), polarization is constant ()t = constant, saturation state). A
smooth curve connects these two extremes.

It is obvious that in polar dielectrics all three mechanisms of polarization (two of defor-
mation and one of orientation) are exhibiting simultaneously. The total polarization of
isotropic polar dielectrics )i, atomic N, and orientation N, is a sum: R = R, + R, + N
The total polarization can also be given as the sum

N= (ot + oty + 00, )nggEpes (4.2.20)
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Figure 4.27 A relationship of a dielectric polarization 9t and the external electric field strength E at
orientational polarization.

a molecule can be characterized by a total averaged polarization coefficient

o= 0 + Xyt + Lor - (4221)

In different molecules each term can exhibit differently depending on structure and elec-
tron density distribution as well as syntheses, temperature, experimental methods, etc.

EXAMPLE E4.10

An electric dipole with a moment p = 2 nC m is in a uniform electric field E = 30
kV/m; vector p is oriented at & = 60° to E. Determine the work A of external forces
to rotate the dipole at an angle 30°.

Solution: From the initial position the dipole moment can be turned on f§ = /6 =
30° in two directions: (1) clockwise at an angle o, = o, — f§ = n/3 — n/6 = 7/6 or
(2) anticlockwise at o, = o, + f = n/3 + 7/6 = 7/2. In the first case, the rotation
occurs under the action of inner forces, therefore the work is negative; in the
second case, only external forces can do the turn and correspondingly the work is
positive.

The work can be determined by two methods: (1) direct integration and (2) using
the relation between work and potential energy change.

The first method comes to the integration dA = M do. = pE sin o do. in the limits
from o, to o

A= :TpE sinado = pET sina do;

%o oo

executing the calculation we obtain A = pE(cos o, — cos o). Accordingly, the
clockwise rotation gives A = pE(cos &, — cos o;) = —21.9 pJ and in anticlockwise
rotation, A = pE(cos o, — cos o,) = 30 uJ.

We think that the second method is preferable. In fact, A = U, — U, (see Section
1.4.5) and A = pE(cos o, — cos «). This coincides with the previous expression.
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EXAMPLE E4.11

In an iodine atom at a distance » =1 nm from an «-particle, an induction dipole
moment p = 1.5 X 10732 C m appears. Find the polarization coefficient o of the
iodine atom.

Solution: The polarization coefficient o can be found according to eq. (4.2.9),
o = ple,E,.., where E, . is the field in which a given atom occurs. In this case, the
field created by an a-particle is a local field. Therefore, it is equal to E, .= E =
2le|/4me, 2. Combining the last two expressions, we arrive at o =27r’p/ |e|. Executing
the calculation, we obtain o = 5.9 X 10739 m?3.

EXAMPLE E4.12

Krypton is under a pressure p = 10 MPa at a temperature 7 = 200 K. Find (1) the
dielectric permittivity p of krypton and (2) its polarization i in an external field
E, = 1 MV/m. Krypton polarizability o is 4.5 X 1072 m?.

Solution: (1) Expression (4.2.26) is suitable for solving this problem
(e—1)/(¢+2) = an/3, where n is krypton concentration. Find the dielectric polariz-
ability o from this equation: & = (1+(2/3)an)/(1—(1/3)an). The concentration is
equal to n = p/kT; therefore, ¢ = (3xT+20p)/(3kT—ap). Substituting all data in the
expression, we arrive at ¢ = 1.17. (2) In the uniform electric field krypton polariz-
ability can be given by eqgs. (4.2.2) and (4.2.10) % =np and p = gpnk,..
To rewrite the local field via the external field for nonpolar substances
(E\,.=((e+2)/3¢6)Ey) and n=p/xT = 3.6X 10?7 m?, we obtain p = ag((e+2)/3e)nE,.
Using all data obtained we arrive at p = 1.30 X 107° C/m?.

4.25 Dependence of the polarization on an alternative electric field
frequency

Polarization is a measure of a dielectric’s “response” to the action of an external electric
field. In a static electric field all the molecular dipoles align along the external field (we will
not take the thermal motion into account at the moment). To measure total polarization in
the static field is easy: having placed a dielectric sample in a condenser, its capacitance
depends on the dielectric permeability of the material between the plates (C = Ce, C, being
the capacitance of an “empty” condenser, remember the ratio between susceptibility x and
permittivity ¢). In an alternating electric field the molecular dipoles should have time to turn
as a whole when the electric field changes its direction. While field frequency v is not so
high, the dipoles have time to reorient, following the change of field direction. In a field of
high frequencies when v ~ 10°-107 Hz due to the molecules’ inertia, they begin to delay,
being unable to follow the electric field reorientation. The higher the frequency, the greater
is the delay. At very high frequencies the molecules will not be able to reorient and the
polarization comes to naught.
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We can conclude that in static electric field, all molecules regardless of their origin par-
ticipate in overall polarization; therefore, such measurements give the sum of three polariza-
tion mechanisms (refer to (4.2.21) and Figure 4.28 in which a range of frequencies is given).
When the electric field frequency reaches a value of 10! Hz, the molecules are unable to turn
over because of their great inertia; therefore, the orientation polarization is switched out.

Atomic polarization does not need the molecules’ reorientation; in a high frequency
field, the induced oscillations of atoms along the field direction take place. This will be
preserved up to a frequency of approximately 10'> Hz. At this value, atomic oscillations
also vanish and only electron oscillations (the lightest part of atoms) remain.

Atv ~ 10"-10' Hz, only electrons can accomplish their oscillations. This frequency cor-
responds to oscillations of light vectors, magnetic and, mainly, electric. At such frequencies,
only the electron part remains; at higher frequencies, even the electron part disappears.

The frequency dependence explains why the dielectric permeability of water measured
in a static electric field is 81, but at optic frequencies is only 1.77: in the first case all polar-
ization mechanisms are participating in the polarization but in the latter case only electron
polarization takes place.

Otherwise the polarization is exhibited in solids. The ability of a molecule to change
orientation or oscillate depends essentially on its geometrical form and interaction forces
with its neighborhood. If the form of the molecule is close to spherical and its electric
moment is not high, it can rather easily change its orientation (e.g., molecular group CH,).
Molecules HCI and H,O are less symmetric; in solids they have some steady orientations
and rather slowly pass from one to another. The average time 7 of such a transition is
referred to as relaxation time. The value reciprocal to the relaxation time is referred to as
relaxation frequency. When the frequency of an external alternative electric field is higher
than the relaxation frequency, the system will no longer react to the action of such a field.

The relaxation time depends on temperature and the aggregate substance state. So for
water (¢ = 200 °C), T = 3 X 107 !l¢; however, for ice (t = —20 °C), t = 107 3¢.

4.2.6 A local electric field in dielectrics. Lorentz field

A local or microscopic electric field is a field acting on the given dipole in a dielectric.
The strength of a local field is the geometrical sum of external field strength E; and the

10° 1010 1o'' 102 103 10M 10'5 1016 ©

Figure 4.28 Dielectric polarization in the alternating field of different frequencies.
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complex field YE, created by all dipoles, except that on which this field operates
(E,,. = E, + 2E). This field strongly changes within the limits of intermolecular
distances and, owing to thermal molecular motion, changes as well in time. In fact, it is
impossible to calculate E, . according to the formula presented because of the enormous
number of dipoles. However, if the dielectric is polarized homogeneously, i.e., the polar-
ization at any dielectric point is the same in magnitude and direction, it is possible, at a
certain approximation, to calculate its value.

Without carrying out a detailed calculation (because of its complexity), we shall, never-
theless, note the general remarks that allowed H.A. Lorentz to solve this problem. His
method is as follows. Remember that the further the dipole from the point of considera-
tion, the less is its contribution to the local field (the dipole field falls down as E ~ 1/73,
eq. (4.1.31)) but the larger their number. This allows him to replace summation upon indi-
vidual dipoles onto integration, i.e., calculate a local field macroscopically.

Lorentz suggested allocating in a homogeneously polarized dielectric a sphere of rather
small radius, inside which there exist a large but, nevertheless, limited number of dipoles.
The center of the Lorentz sphere should coincide with the point of observation (Figure 4.29).
In an external field, polarization will take place, including the allocated sphere. We shall
mentally remove the originally allocated sphere from the dielectric body. There appears a
spherical cavity with charges distributed on its internal surface. The strength of the local field
can now be given by four terms E, . = E; + E, + E, + E;, where E, is the external field, E,
is the depolarizing field created by bounded charges distributed on an external dielectric sur-
faces, E, is the field created by the bounded charges on the internal surface of the spherical
cavity (Lorentz field) and E; represents the field of the nearest neighbors; in isotropic
dielectrics (in gases, liquids and isotropic crystals), this field is equal to zero. The values E,
and E, have already been considered above, and calculation of the strength of the field E, is
the subject of our consideration. Integration over the internal cavity surface gives a field E,
which is referred to as a Lorentz field:

1%
E,=-2.
3¢ (4.2.22)

Correspondingly, the local field strength can be written as:

R
E,=E+—. (4.2.23)
3¢,

—_—
E,

Figure 4.29 A dielectric’s body polarization.
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In scalar form, it can be given as

IR

=E+-—.
loc 3 £ (4224)

E

This field should be presented in all expressions in which a local field appears.

4.2.7 Clausius-Mossoti formula

For rarefied dielectrics, eq. (4.2.11) connecting the macroscopic characteristic x with the
microscopic one o, which in turn provides access to the analysis of the molecule prop-
erties, was given. In more complex cases of the more condensed matter at no noticeably
larger than unity, the given simple ratio is not fair. In order to find the proper ratio in
more dense substances we should substitute in the expression (4.2.10) the local field E,
by eq. (4.2.24):

1% ,
N=ang,E , =ong,| E+—-— |=ang,E + 2.
3g, 3

Solving this equation relative to )i, we obtain

f=— """ ¢ E
1— (no/3)

If we accept no < 1, it goes to (4.2.10), i.e., k = no. However, if this is not the case, then
we have to compare it with eq. (4.2.7). The comparison gives

o= no. _ 3na
1—(no/3)  3—no’

or

P 422
3 k+3 (42:25)
Substituting here x (4.2.8) accordingly, we arrive at
L=t
3 S (4.2.26)

This is one of the forms of the Clausius—Mossoti law. It connects the macroscopic value
of the susceptibility ¢ with polarizability o of molecules.
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One can express a molecule concentration n in eq. (4.2.26) via the Avogadro constants
N, and a molar volume M/p: n = N,/(M/p) = (p/M)N,. Then the Clausius—Mossoti
formula can be written as

ﬂ% - %ocNA. 4.2.27)
pe

Clausius and Mossoti independently obtained eq. (4.2.27) for nonpolar dielectrics in the
middle of the 19th century. In 1912, using Langevin theory for magnetization of para-
magnetic substances, Debye obtained for polar dielectrics a connection between polariza-
tion and electric dipole moments. He suggested a concept of orientation polarizability of
polar molecules and has generalized the Clausius—Mossoti equation for the case of polar
dielectrics. This Debye—Langevin formula is usually written as

Me—1 1 I's
— =—|o,, +—— |N,,
pet?2 3[ def 380KTJ A (4.2.28)

where o, is the deformational polarization (see Section 4.2.4) or the polarization of elas-
tic displacement, which is the sum of electronic o, and atomic o, polarizations. Taking
into account all three types of polarization mechanisms, the Debye—Langevin formula can
be written as:

Me—1 1 p’
2 =, o+ Ny.
) 3[ o T 380KTJ A (4.2.29)

The Debye—Langevin formula is applicable to polar dielectrics at definite restrictions. It
achieves good fulfillment for gases and vapors at low pressure, and for highly dissolved
solutions of polar liquids in nonpolar solvents. This formula is of great importance in the
interpretation of molecular structures.

Being written as

Me—1

1
— —— = — O+ N,
P orn 3 THONA

it successfully describes nonpolar gases at low and average pressures (500 kPa and lower),
can be applied approximately for nonpolar gases at elevated pressures (above 500 kPa) and
nonpolar liquids, and is good enough for crystals with face-centered lattice if atoms pos-
sess only electronic polarization and approximate for ionic crystals with a cubic lattice (see
Section 9.6).

As was already mentioned in Section 4.2.5, the polarizability of molecules depends
on the frequency of the alternative electric field, especially at high frequencies. In the
Maxwell electromagnetic theory, the ratio between a refraction index n and the
dielectric permeability ¢ of substances is given. For low-magnetic substances, n = e, If
in eq. (4.2.27) we substitute ¢ by n? and take into account that at optical frequencies
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(v ~ 10'5—10'6 Hz) all polarizability mechanisms, except the electronic one, are sup-
pressed, it is possible to write

MnP—1 1
— =—0yN,.

P - el
pn+2 3 (4.2.30)
This is the H.A. Lorentz—L. Lorentz formula. The right-hand side of this equation is a
molar refraction R. It is fair for gases, nonpolar liquids and isotropic crystals (with cubic
lattices). It is approximately applicable to nonpolar liquids at relatively high frequencies
when the orientation polarization is not exhibiting.

EXAMPLE E4.13

The density of liquid benzene is p = 899 kg/m? and its refraction index n = 1.50.
Determine the benzene electron polarizability o,

Solution: The Lorentz—Lorentz formula (4.2.30) can serve us in solving this prob-
lem. Using it, we can solve it relative to o,

_ 3M(n*—1)
el 2 .
PN, (n” +2)
In this equation all the entries are known except for mole mass M. Since the atomic
composition of benzene is C(H, the benzene relative mole mass is 78. Therefore,

the molar mass is M = 78 X 107 kg/mol. Substituting all the values, we arrive at
oy = 1.27 X 1072 m?.

4.2.8 An experimental determination of the polarization and molecular
electric dipole moments

Experimental determination of microscopic characteristics is based on the
Debye-Langevin (eq. (4.2.28)) and Lorentz—Lorentz (eq. (4.2.30)) equations. They con-
nect macroscopic molecular characteristics, measured directly in physical experiment,
with microscopic ones. Measuring dielectric permeability ¢ in an electrostatic field, the
molar polarization IT can be found:

1
IT= g(uel +aat +aor)NA’
from which the total polarizability of a molecule can be obtained

II
OC—3H
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or
M e—1
PN, e+2°

o=3
(4.2.31)
Measurements of a refraction index n in an optical range of frequencies allows us to

find the molar refraction R, and consequently, the molecule electron polarizability using
eq. (4.2.30) (R = o,N,/3) or

M n’—1
Oy = -
PNy n”+2 (4.2.32)
The difference between o and o, gives the sum:
Im-R
O to, =0a—0, =3 .
Na (4.2.33)

There are two ways of separating atomic and orientation polarizabilities: either taking
advantage of the frequency dependence of the polarizability or using the temperature
dependence of the molar polarization II (I1 , ~ 1/T). In the latter case the temperature
dependence of molar polarization is removed and a graph [ [(1/T) (Figure 4.30) is drawn.
The segment under the horizontal dashed line gives that part of the molar polarization
which does not depend on temperature

II

el

1
+II, = 3@t o, N .. (4.2.34)

The value o, can be determined by refractometric experiments (4.2.33) and o, can be
found according to formula (4.2.34)

I, +11
=3 g, (4.2.35)

OCal

A

Ao=o,

XLdef

/T

Figure 4.30 A relationship of a molar dielectric polarization versus reciprocal temperature.
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The orientation polarization o, corresponding to a given temperature, can also be found
from the graph: the angle coefficient tan y is determined by . Indeed,

1
o N
A/T) 1T 3

from which the orientation polarizability can be found

3
o, = tany.
or =y gAY (4.2.36)

A

The tan 7 value is determined by expression AIT/A (1/T) m?® C/mol. Therefore, the slope
has the same dimension. Note that o, decreases with decrease in temperature. Knowing o
we can determine the molecular dipole moment. According to eq. (4.2.19), p>=3¢,xT0,;
substituting further o, according to eq. (4.2.36), we can obtain P*=(9/N e i tan y, from
which

or’

1/2
p::{;o tanyj : (4.2.37)

A

We would like to underline once more that dielcometry is a relatively simple though
rather powerful, method of chemical structure investigation.

EXAMPLE E4.14.

Thin semi-infinite rod is charged uniformly with linear density T = 1 uC/m. At a dis-
tance r, = 20 cm from the end of the rod perpendicular to it a point O is located (Figure
E4.15). Calculate the electric field strength created by the charged rod in point O.

y
dE
K dE,
N d M
?
(6]
X
do dE,
@
)
K
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Solution: Allocate a piece of the rod with a charge dQ = 7d! in an arbitrary point

(1tdl / 4mey)
2

of the rod. This charge create a field in the point OdE = , 1 being the

distance MO from the elementary charge to the point mentioned. Denoting angles
MOL and, consequently MON, as ¢ we have r = ry/cos¢ and dl = rd¢/cos?e.
T

Substitute these equations into formula for E, we can obtain |dE/= Trer do.
o’o

Decompose the vector |E] into two components: dE, = dE cos¢p and dE, = dE sin ¢.
Proceeding further, we can find dE, = (tcos ¢/ 4neyry)dg and dE, = (tsing/ e ry)dep.
Integration over the limits ¢, =0 and ¢, =n/2 (both ends of the semi-infinite rod)
gives

nj' Teosg and Ex:njzrsin(p dp— T
0 4n60r0 47t£0r0 o 41, 4meyr,
) ) V21
After summing these two vector components, we arrive at the final value E = P
o'o
o , . 1076X9X 10912
Substituting the numerical values we obtain E= = = 7.05 kV/m
20X 10
(keeping in mind that numerically = 9X10°%).
4me,
PROBLEMS/TASKS

4.1. There are two similar small balls of mass 1g each. Find the electric charge ¢ which
should be given to the balls in order to compensate for the force of their mutual
Newtonian attraction.

4.2. In the semiclassical theory of the hydrogen atom, an electron is supposed to travel
around a proton along a circular orbit. Determine its speed v if the orbit radius is
r = 53 pm and the frequency of the electron’s revolution.

4.3. In vertexes of an ideal hexagon with a side length @ = 10 cm, charges Q, 20, 30,
40, 50 and 60 (Q = 0.1 nC) are situated. Find the force F, which acts on a point
charge Q placed in the center of the hexagon.

4.4. A thin rod of / =10cm in length is uniformly charged with T =10°nC/m. On an
extension of it at @ = 20cm from its end, a point charge Q = 100nC is placed.
Determine the interaction force between the rod and the charge.

4.5. A thin ring of R = 10 cm radius carries a uniformly distributed charge Q = 10?>nC.
On a plane perpendicular to the ring, just over its center, is a point charge O, =10
nC at heights of (1) [, = 20m and (2) /, = 2m. Determine the interaction force of
the ring and the point charge.
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4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4. Dielectric Properties of Substances

There are two coaxial cylinders made of thin metal foil of radius R and 2R. They
carry uniformly distributed charges with density ¢ and —o (¢ = 60nC/m?).
(1) Using the Gauss theorem find the electric field distribution inside both cylinders
and between them (areas I and II) and outside them (area III). (2) Calculate the field
strength at the point E(3R). Draw a graph E(r) in all areas and calculate the charac-
teristic (border) values.

There are two concentric sphere made of thin metal foil of radius R and 2R. They
carry uniformly distributed charges —2¢ and ¢ (¢ = 0.1 wC/m?). Using the Gauss
theorem find the electric field distribution inside both cylinders (areas I and II) and
outside them (area III). Calculate the field strength at the point E(3R). Draw a graph
E(r) in all areas and calculate the characteristic values.

In an area extending between two half-circled rings of radii R and 2R (R =10 cm),
a charge Q = 20nC is uniformly distributed. Find in the central point O (the center
of the rings) the field E(O).

An infinite thin wire is charged with a linear density t = 0.2 uC/m. The wire is bent
at right angle. Determine point A is denoted on a continuation of one of the wire
side at a distance r,=15 cm from the corner. Determine at this point the field E.
An electric dipole p = 0.4 p.C m is in a uniform electric field of strength £ = 25 kV/m
at an angle o, = 1/6. Find the work of external forces at dipole reorientation (o, = 77/6).
An electric dipole p = 200 nC m is in a uniform electric field of strength E = 50
kV/m at an angle « = /3. Find the change of its potential energy AU at its rotation
anticlockwise at the angle § = 2m/3.

An electric dipole p = 0.2 wC m is in a nonuniform electric field with dE/dx = —10
kV/m? oriented against the electric field E and electric field gradient. Find the force
direction and calculate its F, value.

Two HCI molecules with the same orientation of their electric dipole moments p = 1.91
D in value are at a distance r = 5 nm from each other. Considering the molecules as
point ones, determine the potential U energy of their interaction.

Two polar molecules SO, (p = 1.60 D) are at a distance » = 8 nm from each other.
Considering them as a point dipole, determine the force of their interaction.

Argon is under normal conditions in an electric filed £ = 30 kV/m. Determine the
shoulder / of the induced dipole moment of an Ar atom if the dielectric permeability at
the same state is 1.000554.

The dielectric susceptibility x of the gas Ar under normal conditions is 5.54 X 107,
Find the dielectric permeabilities ¢, and &, of liquid (p, = 1.40 g/cm?) and solid
(p, = 1.65 g/cm?) argon.

What minimum velocity v, should a proton possess in order to reach the surface of a
metallic sphere charged up to 400 V?

From point 1 on the surface of an infinite negatively charged cylinder (t = 20 nC/m)
of radius R, an electron starts with zero velocity. Find the electron kinetic energy K at
point 2 which is at a distance of 9R from the cylinder surface.

Knowing the electric dipole moment p, of a chlorobenzene (phenyl chloride) molecule
(C¢HCD (p, = 1.59 D), find the dipole moment of ortho-dichlorobenzene (ortho-
di-phenyl chloride) p,.
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4.20. A xenon atom (the polarizability of which is & = 5.2 X 107 m%) is at a distance r = 1

nm from a proton. Determine the xenon atom’s induced electric moment p.

ANSWERS

4.1. Q =2m\ne,G = 86.7 X 107'5C (G is a gravitational constant).
42. v= L =2.19%10° m/sec; n = v/(2mr)= 6.58X107sec™ .

\J4ne,mr

2

43 F= 60 =54 mN.

4reya
44. F= Q—Te =1.5mN.

4re, (£ +a)a

€
4dmey (R™+4€7) 4meyls

4.6.

4.7.

R R
(1) E; =0 (t <R);Ey(r) = (R =r < 2R); Eyy (r) = — = (r = 2R).
N N

@) E.= —% =226 KV/m.
0

2 2

20R
(R=r<2R); Ey(r)="=

20R
(1) E;=0a <R);E;(r)= >
&t NG

(r=2R).

@) Ey =22 =251kV/m.
9¢,

48, E=-2"2 _ 559 kv/m.
3n7e R
49, E= " 268 kvim.

4mer,
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4.10.

4.11. AU = pE[cos o —cos(a + )] = 15ml.
4.12. F,= p(dE/dx)cos o =2 mN.
p2
413. Uy=- T =—5.82X10*J (—=36.4peV).
2meyr
2
414 F=——P  __374%107° N,
2meyr
—1)e,E
415, 0=CD0E 1901078 .
Myorm |e|Z
416, 5= M 2kpVom 51 ~161.
3M —xpVom
3
417, v, = ,/m = 0.24x10° m/sec.
2m
218, k=7 110 = gagev.
2me,
s
4.19. p, =2p, cosE.
420. p = 6.6 X 10 C/m.

A, =2pE cos o= 17.3 ml.
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