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Magnetics

Before describing the magnetic properties of a chemical substance we will briefly discuss
some of the properties of a magnetic field itself. Whereas the sources of an electrostatic
field are motionless electric charges, the sources of a magnetic field are moving charges,
i.e., an electric current. Let us consider some characteristics of a permanent electric cur-
rent and the conditions of its maintenance.

5.1 GENERAL CHARACTERISTICS OF THE MAGNETIC FIELD

5.1.1 A permanent (direct) electric current

An electric current can run in a substance in which free charges (current carriers) are pres-
ent. They can be either electrons (in metals, for example) or ions (in liquids or solid elec-
trolytes). Such substances are referred to as the conductors of an electric current. However,
if a conductor is brought into an external electrostatic field there will be only an instant
displacement of charges according to electrostatic laws; this will lead to the creation of an
internal electrostatic field in a conductor directed opposite to the external electrostatic field
and numerically equal to it; the current instantly stops. Therefore, inside a conductor the
electric field is always zero. This means that additional conditions to support the current
flow are necessary. We shall consider these a little later, but first we shall introduce some
ideas about the electric current.

The ordered motion of electric charges is referred to as an electric current (a current of
conductivity). The scalar value I determined by a total charge dQ having run through a
cross-section of the conductor in a unit time interval dt, i.e.,

(5.1.1)

is referred to as a current strength or simply current. The motion of positive charges is
accepted as the current direction, the current flow generally being opposite to the electron
movement. If the current magnitude does not change with time it is referred to as a per-
manent (constant, direct) current. If the current strength changes with time it is referred to
as an alternating current.

I
dQ

dt
� ,
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The current I is a macroscopic characteristic of a particular conductor. For the distribu-
tion of an electric current throughout the conductor section a vector of current density j is
introduced. The vector of current density j is directed along the carrier’s motion and is
numerically equal to the electric charge current, which in the unit time crosses a unit con-
ductor area perpendicular to the carrier velocity (see Figures 2.19 and 2.20). Thus, the
modulus of a j-vector is equal to the ratio of the current strength dI through an elementary
area dS located in a given conductor point perpendicular to the direction of the ordered car-
rier motion: j � dI/dS⊥. To attach to the current density a vector character, we can multi-
ply j to the unit vector of a direction of the carrier motion � /�; therefore,

(5.1.2)

The integral current strength is therefore

(5.1.3)

where S is the conductor cross-section.
Let us establish correlation between the microscopic current characteristics, the

density of current j, the concentration of current carriers n and the average velocity of car-
rier motion ��� (current speed of drifts). Let charge �Q be transferred in time �t through
the cross-section S, perpendicular to the ordered carrier movement (Figure 5.1). By defi-
nition, the density of a current j is numerically equal to the ratio I/S. The charge �Q
is equal to the product of a single carrier charge and their full number in the volume
�V � S� l. Therefore j � q n�l�S�/�t�S� �q n���. Because current density vector
j and the velocity of positive curriers ��� are codirectional, hence 

(5.1.4)

Taking into account the possible movement of both positive and negative charges (for
instance in an electrolyte) the total current density is

j q n q n� �� � � �� �� � � �� � .

j� qn� �� .
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Figure 5.1 Relationship of a current density j, carrier concentration n and drift velocity �.
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Now derive Ohm’s law in differential form. At a fragment of a uniform conductor in an
electric circuit, the current I is proportional to voltage loss U and inversely proportional to
its resistance R: I � U/R. Consider an elementary cylindrical volume in the vicinity of an
arbitrary point inside the conductor (Figure 5.2) with the cylinder generatrix parallel to
current density vector j. A current jdS flows through the cross-section of the cylinder. The
voltage loss U on the cylinder ends is equal to Edl, where E is the strength of the electric
field in the vicinity of the given point. This means that

where � is the specific resistance and R��(dl/dS). Since the charge carriers at every point
move parallel to vector E, the Ohm’s law in differential form acquires the form 
j � E/� � �E, where � � 1/� is the specific electroconductivity. Therefore, the current
density at any current point j(r) is equal to the product of specific electroconductivity and
the electric field strength E(r):

(5.1.5)

This is Ohm’s law in differential form. 
Another characteristic of a current is the mobility of the current carrier b, which is the

average speed acquired by the current carrier in a field of unit electric field strength. If
charges have average speed ��� in a field E then, by definition, their mobility is b � ���/E.
The mobility b can be expressed through the specific electroconductivity � and carrier
concentration n. As the current density is j � nq��� and j � �E, therefore, �E � nq���.
Having divided both parts of equality by E we shall obtain: � � nqb or 

(5.1.6)

Let us now consider the conditions that can maintain the electric current in a closed elec-
tric circuit. In fact, the current in a circuit can exist only if external forces maintain at the
conductor ends a constant voltage difference (to say nothing about superconductivity).
Therefore, in the closed circuit, along with the parts in which positive charges move along
the decreasing potential �, there should be parts where the positive charges move against
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Figure 5.2 Derivation of the Ohm law in differential form.
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the potential loss, i.e., against the forces of an electrostatic field. Figure 5.3 shows a closed
circuit with a part where the electrostatic field is acting (1-a-2) and a part (2-b-1),
where the so-called extraneous (outside) forces operate. The extraneous forces are of a
different, nonelectrostatic nature; they can be of chemical (galvanic cells), induction (elec-
trogenerators), or of thermal origin, etc. These extraneous forces are capable of maintain-
ing the ordered movement of carriers against Coulomb forces. There exists a field of
extraneous forces, characterized by the extraneous force Fext having field strength 
Eext. By analogy with eq. (4.1.2) we can write 

(5.1.7)

The extraneous forces produce the work on charges moving along a circuit. The physical
value equal to the work of the extraneous forces produced in moving a positive unit charge
Q from point 1 to point 2 is referred to as electromotive force (EMF) �� Thus,

Thus, for the closed circuit

Therefore, the work of the EMF along the closed circuit is ��Q�Eld l.
Both extraneous and Coulomb forces act on the charge moving along the closed circuit.

The work produced is A�Q�Edl, where E symbolizes the sum of the extraneous Eext and
the Coulomb Ecol field strengths, i.e., A�Q�(Eext�Ecou)dl. Since �Ecoudl�0, hence
A�Q�Eextdl�Aext. Therefore � � A/Q, i.e., the work on the unit positive charge along the
closed circuit, i.e., the EMF force � is

(5.1.8)� � �E dl�∫ ,
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dA = Eextra⋅dl
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Figure 5.3 A closed circuit with extraneous forces.
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where E is the combined strength of both fields. If we consider the charge motion in a limit
from point 1 to point 2, then A12�Q�2

1 
Eext�d l�Q�2

1
Ecou�d l, and consequently

(5.1.9)

The value U12 is numerically equal to the work of both fields, electrostatic and extrane-
ous, at the displacement of a unit positive charge from point 1 to point 2, referred to as
voltage loss (voltage) at a given section of circuit

(5.1.10)

If the circuit is open ended (I � 0, U12 � 0) then �12 � (�2 � �1), i.e., the EMF is equal
to the potential difference on the clumps of a current source.

5.1.2 A magnetic field induction

The electric current (moving charges) creates a magnetic field in the surrounding space.
This field affects the charges (currents) moving in it. Thus, the interaction of two currents
has an electromagnetic character. Ampere’s experiments showed that two parallel infinite
currents I1 and I2 running in one direction attract each other, whereas currents directed
oppositely repelled (Figure 5.4). The interaction force falling at a unit conductor length,
f, is inversely proportional to distance b between them, i.e., f�(I1I2/b). The given state-
ment is the essence of Ampere’s law. In SI this law takes the form

(5.1.11)

where 	0 is the permeability constant (refer to Appendix 1).
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Figure 5.4 Ampère’s law: interactions of currents, (a) currents are codirectional and (b) antidirectional.
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310 5. Magnetics

It can be imagined that one conductor creates the magnetic field and the other in this
field acquires its action.

Consider first how an electric current creates a magnetic field and then how the mag-
netic field acts on the conductor with a current. When we analyzed an electrostatic field it
was convenient to use a unit point positive charge (probe charge), which we imagined to
be placed in each point of the field and measured the force acting on it; this was the elec-
tric field strength E. It is impossible to apply such a procedure in the case of a magnetic
field because there are no magnetic charges (monopoles) in nature. It is necessary to use a
multipole of the next order, i.e., a dipole, placing it at different points in the magnetic field
and measuring the torque acting on it (refer to Appendix 3).

In order to carry out such a magnetic field analysis, we need to use a model. Such a
model is a magnetic dipole moment, which is a small (ideally, a point) flat contour with
a current (a probe contour). Orientation of the probe contour in space is determined by a
vector n normal to the contour (Figure 5.5). Placing the probe contour into every point
one can see that in a given point it accepts a definite position: the normal vector n is
oriented in a strictly determined direction. Experience also shows that the action of
the magnetic field on the contour is associated with the value IS (where I is the current
flowing around an area S). This contour M � IS is called the magnetic moment of a
contour. The magnetic moment of a contour is the vector value directionally coinciding
with the normal n to the contour and determined by the contour current by a right-hand
system rule, so

(5.1.12)

Accept the direction of the probe contour normal n freely oriented in a given point of the
magnetic field as a direction of the force line. The force characteristic of the magnetic field
is a vector B in the direction of the normal vector n; its absolute value is determined by
the maximum torque acting on a contour in this point. Then, 

(5.1.13)

Vector B � Bn is referred to as a magnetic field induction vector.

B �
Mmax .
M

M M� �n n.IS

n

M

I

Figure 5.5 An elementary magnetic moment.
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The magnetic field is schematically presented in full analogy to the electric field: the B
vectors at any point are parallel to the tangent to force lines and their density is propor-
tional to the �B� value.

For the description of the magnetic field we require one more characteristic—field
strength H. In vacuum, the two characteristics differ only by a constant, namely, B � 	0H;
however inside of a body magnetic characteristics mentioned differ noticeably (refer to
Section 5.4). Remember that the two characteristics appear also in the description of the
electric field properties (see Section 4.2.2).

The magnetic field obeys the general principle of superposition (see Section 2.9.1). With
reference to the case given it can be formulated as follows: the magnetic field created at a
given point of space by any current does not depend on whether there are other sources of
a field (other currents) in this space or not. Owing to the vector character of the magnetic
field, the total induction of a system of currents is equal to the vector sum of particular
field inductions, which are created by each current separately:

(5.1.14) 

and when current is distributed continuously

(5.1.15)

where dB is the induction created by the elementary current Idl.
An empirical method of calculating the induction of a magnetic field at some point in

space if the distribution of currents is known was suggested by Biot and Savart; a corre-
sponding law relates a current element Idl (I is a scalar current running in the conductor
element dl) to an induction dB at a point A, the latter being assigned by the radius vector
r drawn from the element dl to point A (Figure 5.6):

(5.1.16)

A multiplier 	0/4
 entered into the law formula in the SI.
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Figure 5.6 Biot–Savart law.

Else_PE-OZEROV_ch005.qxd  2/9/2007  6:57 PM  Page 311



We can illustrate the application of the Biot–Savart law with two important examples.
Calculate a field that creates a circular current (Figure 5.7) in its center point O. The mag-
netic induction dB at the point O is created by an element of current Idl accordingly. The
vector product in (5.1.16) assign elementary vector dB: it is directed perpendicular to a
plane of a drawing and is related to the current element by the right-handed system rule.
The vector dB is directed along the same axis (a symmetry axis of a ring) independently
of where on the circuit the current element is chosen; therefore, integration (5.1.15) can be
executed in a scalar form. Proceeding from the general formula (5.1.16), keeping in mind
that the angle between vectors dl and r remains 
/2, we arrive at dB�(	0/4
)(Idl/R2),
where r � R is the ring radius. The circular current integration gives

(5.1.17)

Next, calculate a field created by the current I running along a rectilinear section of the
conductor. In Figure 5.8 conductor MN and an observation point A at a distance b from it
are presented alongside the current element dl and a corresponding vector r. Wherever the
element dl is chosen, the vector dB is directed along the same direction (perpendicular to
the plane of the drawing). Therefore, integration (5.1.15) can be executed in a scalar form.
Applying (5.1.16), we obtain

There are several variables in this expression; they should be expressed by a single vari-
able. We shall choose for the integration variable an angle � (see Figure 5.8). Expressing
r and dl through the distance b and an angle �:

Having substituted these expressions in the formula for dB, we obtain dB�(rd�/4
)(I/b)�
sin �d�, and consequently 

(5.1.18)

Angles �1 and �2 are defined by the extreme points M and N.
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Figure 5.7 Application of Biot–Savart law to the calculation of the magnetic field of a circular current.
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For the infinite direct conductor wire (where �1 � 0 and �2 � 
 and the difference cos0
� cos
 is 2): 

(5.1.19)

The magnetic field of a direct current in a plane, perpendicular to a conductor, is depicted
in Figure 5.9 by the force lines. They appear as concentric circles; their density decreases
as the distance increases.

EXAMPLE E5.1

Along two parallel indefinitely long wires identical currents I � 60 A flow in the
same direction. The wires are located at distance d �10 cm from each other. Define
the magnetic induction B at a point A (Figure E5.1)  at distance of r1 � 5 cm from
one conductor and r2 � 12 cm from another.

B2

B

B1

A
�

r1

D
l l

d

r2

+ + C

�

B
I

b

I

b
� � �

	



	



0 0

4
2

2
.

5.1 General Characteristics of the Magnetic Field 313

M
b A

dB

α
r

d�
r d�

dl

N

+

Figure 5.8 Application of Biot–Savart law to the calculation of the magnetic field of a direct current.

Figure 5.9 Magnetic force lines of a direct current in planes perpendicular to the current.
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Solution: In order to find the magnetic induction at the specified point A we
should define the directions of induction vectors B1 and B2 created by each conduc-
tor separately and then combine two vectors B � B1 � B2. We can find the module
of total induction according to the cosine theorem

Induction values B1 and B2 are expressed accordingly by the current strength I and
distances r1 and r2: B1�(	0I/2
r1) and B2�(	0I/2
r2). Substituting these values in *
we obtain 

Find cos� using the cosine theorem

Substituting all constants and given values we arrive at 286 �T.

EXAMPLE E5.2

Determine the magnetic field induction B produced by a section of infinitely long
wire at point A at a distance r0 � 20 cm from the center of the wire segment (Figure
E5.2). The flowing current I � 30 A, the segment length l � 60 cm. 

dl

�1

r

r0

I

l

�2

A

�

d�

r 
d�

cos
2

 0.576.1
2

2
2 2

1 2

��
� �

�
r r d

r r

B
I

r r r r
� � �

	



�0

1
2

2
2

1 22

1 1 2
cos .

B B B B B� � �1
2

2
2

1 22 cos .��

314 5. Magnetics

Else_PE-OZEROV_ch005.qxd  2/9/2007  6:57 PM  Page 314



Solution: The magnetic field induction B can be calculated according to eq. (5.1.18).
The scalar form of this equation is dB�(	0I sin �d�/4
r2). There are three variables
in this equation: �, r and l. It is more convenient to integrate over an angle � provided
all the variables are expressed through this angle. So d��rd�/sin �. Substituting this
ratio into the first equation we obtain

dB� � ;

besides r is also a variable and should be expressed through � r � (r0/sin �) and there-
fore dB�	0I sin �d�/4
r0. This expression should be integrated over variable �.

Note that in the case of the symmetrical position of wire cos �1 � �cos �2, therefore
the formula * is (	0I/2
r0) cos �1. We need to define angle �. It can be seen from
Figure E5.2 that

Therefore, 

Substituting all data into the formula obtained we arrive at 

EXAMPLE E5.3

A long wire with a current I � 50 A is bent at an angle � � 2
/3. Determine induc-
tion B at a point A (Figure E5.3). The distance d is equal to d � 5 cm.

�2

d

π−�
A

B

�1 0
I

I

�
2

r0

+

B � � � ��2.49 10 N A m 24.9 T.5 �

B
I

r

I

r r
� �

�

	



�
	



0

0
1

0

0 0
2 22 2 4

.cos
�

�

cos
4

.2

0
2

2
2

0
2 2

��
�

�
�

�

�

�

�r r� �

dB
I

r
d

I

r
� � �

	



� �
	



� �
�

�
0

0 1

2
0

0
1 24

sin
4

(cos cos ) .∫ �

	0Id�
�

4
r
	0� sin �rd�
��

4
r2 sin �

5.1 General Characteristics of the Magnetic Field 315

Else_PE-OZEROV_ch005.qxd  2/9/2007  6:57 PM  Page 315



Solution: A bent wire can be considered as consisting of two semiinfinite pieces.
According to the principle of magnetic fields superposition, the magnetic induction B at
a point A is equal to the geometrical sum of the magnetic inductions B1 and B2, i.e., the
fields created by two wire pieces 1 and 2, B � B1 � B2. The field magnetic induction
B2 is zero: it follows from the Biot–Savart law, according to which in points lying on an
axis of a conductor, dB � 0 ([dlr] � 0). Therefore, we need to find only B1. In Section
5.1.2 this problem was considered in detail and eq. (5.1.18), i.e., B�(	0I/4
r0)
(cos �1�cos �2) was derived, where r0 is the shortest distance from the wire to point
A (the length of the perpendicular descended from point A on the wire). In the case
considered �1 → 0 (the wire is infinite, cos �1 � 1), �2 � � � 2
/3 (cos �2 � 2
/3 �
�1/2). The distance is r0 � d sin(
 � �) � d sin (
/3) � d(�3	/2). Correspondingly, 

Executing calculations we obtain B � 34.6 �T. Vector B is directed perpendicular to
the drawing in downward direction.

EXAMPLE E5.4

A wire in the form of a thin half ring of radius R � 10 cm is in a uniform magnetic
field (B � 50 mT) perpendicular to magnetic force lines. A current I � 10 A flows
along the wire. Find the force acting on the half ring.

Solution: (See first the Section 5.1.4). (Let us arrange the wire in a plane of the draw-
ing and direct the coordinate axes as is represented in Figure E5.4. On the wire allocate
an elementary section with a current Idl. On this area an Ampere force dF � I[dl B]
(5.1.24) operates. Let us divide the elementary force into two components dF � i dFx �
j dFy. The force acting on the whole conductor can be found by the integration

where the symbol L indicates that the integration is taken over the whole half ring length.
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Using symmetry of the problem we can a priory write �L dFx�0. Therefore the
whole force depends only on y-component dFy � dF cos �, where dF is the modu-
lus of the force dF, dF � IBdl. Expressing dl through R and � (dl � Rd�) we can
write dFy � IBR cos �d�. Integration over a quarter of ring (multiplied by 2) gives
F�j � IRB�2�



0

/2 cos �d� and |F| � 2 IBR. It can be seen that the force is directed
along the y-axis. Executing calculations gives F � 0.1 N.

EXAMPLE E5.5

A current I � 80 A is flowing along a thin conducting ring of radius R �10 cm. Find
the magnetic induction B at the z-axis perpendicular to the circle crossing the ring
center at an arbitrary point of the axis. Then find the magnetic induction at a point 
r � 20 cm (Figure E5.5).

Solution: Since the z-axis is perpendicular to the ring plane and passes the center
of the ring, it is a symmetry axis L	. This means that the induction vector certainly
must be codirectional to the z-axis and only the Bz component gives contribution to
the field induction B. First, derive the general expression for B(z).

Use the Biot–Savart law dB�(	0/4
)(I[dl�r]/r3) to determine the dBz component: 

dBz � 
dB
 sin� � dB (R / �R	2�	Z	2	). The vector product [dl.r] is perpendicular to 
the plane fixed by vectors dl and r. Then 

where sin � � R/(R2�z2)1/2. The only variable is dl. The integration over the whole
circle gives 
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This is the general result. To make sure of the result we can use the border conditions
B(0) and B(	). We know that B(0) is equal to (	0I/2R) (see eq. (5.1.17)); by assum-
ing z � 0 we arrive at the correct result. The magnetic field diminishes at z → 	,
which is also in agreement with our result.

In order to find the field at an equidistant point r we can use the result obtained,
accept r2 � x2 � R2 and substitute it into the general result; therefore B�(	0IR

2/2r3).
Executing calculations, we arrive at 62.8 � 10�5 T or 628 �T.

5.1.3 The law of a total current (Ampere law)

The sign of the potential character of a force field is the equality to zero of the circulation
of the field intensity vector along any closed contour. Let us see whether the magnetic field
is potential, i.e., whether the integral �LB�dl is equal to zero or not.

Consider the simplest case when a magnetic field is created by a linear conductor with cur-
rent I. The magnetic force lines in this case are the concentric circles lying in parallel planes,
perpendicular to the conductor, with their centers on the linear conductor (Figure 5.9).
Choose for simplicity contour L coinciding with one circular force line of any radius R
(Figure 5.10). Then the circulation of the vector B along the contour L will be equal to

Therefore, by using eq. (5.1.19):

(5.1.20)

Since circulation of the magnetic field induction is not zero the magnetic field is not poten-
tial. (Notice that in the above integral dl is an element of a contour L but not current.)
To obtain this ratio for a noncircular contour of any form is not a difficult task. 

Expression (5.1.20) is the essence of Ampere’s law: circulation of the induction vector
along a closed contour L is equal to the current multiplied by 	0 comprised by this contour.
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Figure 5.10 An Ampere law consideration.

Else_PE-OZEROV_ch005.qxd  2/9/2007  6:57 PM  Page 318



(This means that if the current passes outside the contour chosen, this particular current does
not contribute to the total current.) A field satisfying the condition (5.1.20) is referred to as a
nonpotential field. Expression (5.1.20) is also referred to as Ampere’s law to emphasize the
unity of the phenomena of interaction of currents with each other and with the magnetic fields.

If contour L comprised N currents then, according to the principle of superposition, the
circulation of a vector B is equal to their algebraic sum

(5.1.21)

the current is considered positive if it corresponds to the clockwise rule, otherwise it is
considered negative.

If the current is distributed nonuniformly across the conductor this law can be rewritten as

(5.1.22)

where a surface S is resting on contour L (Figure 5.11).

Let us apply Ampere’s law to calculate the induction of a magnetic field created by a
solenoid. Remember that a coil that has been reeled up by thin wires without misses on the
cylinder (Figure 5.12) is referred to as a solenoid. We shall choose a rectangular contour
1–2–3–4, depicted in the figure. Then circulation along the whole contour can be divided
into four integrals:

It can be seen that the integrals along segments 2 � 3 and 4�1 are zero since the angle
between B and d l is 
/2. The integral on the segment 3�4 is also zero because this
segment can be chosen far enough from the solenoid where B � 0. Therefore,
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Figure 5.11 A surface rested on a contour loop.
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where l is the length of segment 1–2, n is a number of turns over a unit solenoid length, I
is the current in the solenoid. Therefore,

(5.1.23)

i.e., the induction inside an infinitely long solenoid is proportional to the overall current
running onto the length unit.

The magnetic field inside the solenoid is uniform. In this respect the solenoid plays the
same role as a plate condenser plays in electrostatics.

5.1.4 Action of the magnetic field on the current, on the moving charge

Comparing the expression of the Ampere law (5.1.11) with the expression for a field cre-
ated by an infinite conductor (5.1.19), one can imagine that current I1 (Figure 5.4) is
creating the magnetic field B1 which in turn acts on a neighboring conductor with current
I2; then f12 � B1I2. Accordingly, f21 � B2I1. If the conductor is not rectilinear, we should
consider a conductor element dl and then f�(dF/dl)�IB or, finally, in the vector form

(5.1.24)

Figure 5.13 shows the arrangement of the vectors describing the field B, the conductor
element dl and force acting on the conductor dF. Since the differential expression (5.1.24)
is obtained starting from the Ampere law (5.1.11) the force dF is accordingly referred to
as Ampere force.

Another manifestation of the Ampere force is the action of a magnetic field on a moving
charge. Moreover, from the point of view of electromagnetic dynamics all macroscopic (pon-
deromotive) forces can be reduced finally to the forces applied to the electric charges included
in this body. We shall reduce force FA, which operates on the whole conductor, to a force that

d I dF B� [ ].l

B nI� 	0 ,
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Figure 5.12 Calculation of a solenoid magnetic field strength.
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operates on each single charge moving inside the conductor. For this purpose allocate the ele-
mentary cylinder of a volume dV � dlS inside a conductor so that its generatrix is parallel to
the direction of the carriers’ motion (Figure 5.14). According to eq. (5.1.24) force dFA, acting
on this cylinder, is equal to dFA � I [dl.B] � jS [dl.B]. On the other hand, the current density
j can be submitted according to eq. (5.1.4). Taking into account that j is codirected with u and,
accordingly, with dl, the force dFA can be rewritten as dFA�qnSdl[�B]�qdN[�B], where dN
is the number of electric carriers in the allocated cylinder. If the overall force is divided by the
number of carriers (dFA/dN), force acting on a single charge is obtained

(5.1.25)

The force acting on a single charge moving with a speed �� in a magnetic field B is
referred to as a Lorentz force. The sign (direction) of the force depends on the sign of the
moving charge, i.e., from sign q in eq. (5.1.25).

From the expression defined for the Lorentz force Flor it can be seen that it is always
perpendicular to the particle velocity. Therefore, a Lorentz force does not produce work.
It follows that it is impossible to accelerate the particles by means of a Lorentz force, i.e.,
an electric field is required to do so. (Nevertheless, the Lorentz force is used in accelera-
tors to make a motion cyclic.)

The Lorentz force defines the movement of charged particles in a magnetic field. If the
particles enter the magnetic field in a plane perpendicular to the induction B, the Lorentz
force will act perpendicular to both vectors �� and B. In the absence of any other force, the
Lorentz force is centripetal, and a circular movement will occur (Figure 5.15). Write the
equation of Newton’s second law for this case q�B�man�m(�2/R). The radius of a circle
R can be derived from this expression

(5.1.26)

where q/m is the specific particle charge. The periodT of the circular particle motion turns
out to be

(5.1.27)

The period does not depend either on the particle radius R or on the speed.
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If the particle velocity is directed at an angle � to a vector B (Figure 5.16, where B is
directed along the z-axis), vector �� has to be projected in two directions: perpendicular �⊥
and parallel �

 to the induction vector B. Accordingly, the component �⊥ defines the cir-
cular motion of the particle and another component �

 determines its uniform motion along
axis z since the Lorentz force for this component is zero. This results in the particle’s spiral
movement. The basic spiral increment h is defined as

(5.1.28)

whereas the circus radius R depending upon the perpendicular constituent �� � � sin � is

(5.1.29)

Therefore, the particle entering the magnetic field moves with a winding-up movement
on the magnetic force lines.

The charged particle movement described above permitted the development of a pow-
erful instrument – the mass spectrometer: a device for “sorting” ions on their specific
charge q/m. Such an opportunity is extremely tempting for modern chemistry for the
analysis and synthesis of new substances and for many other problems.

The basic scheme of a mass spectrometer is shown in Figure 5.17. The gas to be analyzed
enters a vacuum chamber at a point S and is ionized (by any method, for example, by an elec-
tron beam impact). Between points S and A the potential difference �� is applied and ions are
accelerated by an electric field. Passing an aperture (at point A) all ions possess identical
energy, but not speed. To select ions with identical speed from a beam a speed filter is used in
which both forces, Coulomb’ (Fcou � qE) and Lorentz’ (Flor � qB1�), operate perpendicular to
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Figure 5.14 To a Lorentz force derivation.
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each other; the filter allows the singly ionized particles with speed � � E/B1 to pass through.
This filtered beam goes to another point A1 in the chamber where the ions start to move in a
circular trajectory with a radius depending on the q/m ratio. In a collector (or a film, or spe-
cial detector device) located on line A1C ions with different specific charges q/m fall in dif-
ferent points. In Figure 5.18 the mass spectrum of the air is shown, where along abscissa axis
values A/q (A is a mass number, q is a particle charge) are plotted, whereas along the ordinate
a relative number of the given molecules in the object under investigation are shown.

The construction of the modern mass spectrometer differs significantly from the one
described above, although it is based on the same principle.

EXAMPLE E5.6

An electron is projected into a uniform field of induction B (B � 30 mT) with its
velocity vector �� (� � 2 � 106 m/sec) making an angle of � � 30o with B. It begins
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Figure 5.16 Movement of a charge at an arbitrary orientation of a field induction B and a charge
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Figure 5.17 Scheme of a mass spectrometer.
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to move along the helix (refer to Figure 5.16). Find the radius R of the helix and its
pitch h.

Solution: A Lorentz force is acting on the electron changing the direction of travel
of the electron. Let us divide electron’s velocity into two components �|| and �� rel-
ative to vector B: ��� � � sin � and �� � � cos �. The helix radius can be found from
the second Newton law: F � man, therefore F � 
e
 ��B and an � ��

2/R. Then 
e
��B
� m(��

2/R) and further R�(m��/ 
e
B)�(m� sin �/�e�B). Substituting the given values
we obtain R � 0.19 mm.

The helix pitch is h � ��� T, where T � 2
R/��. Substituting this value into an
expression for h we obtain

Calculation shows that the pitch is h � 2.06 mm.

EXAMPLE E5.7

An electron enters a uniform magnetic field of induction B � 0.03 T and
begins to move along a circle of radius R � 10 cm. Determine the electron’s
speed �.

Solution: The second Newton law can be applied to the movement of the electron
along a circle (m�2/r)��e�B�; its momentum can be found from the expression 
p � m� � �e�Br. However, relativistic laws should be used in this case (as we will
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see in the end). In this case p�(m0c/�1	�		2	) (the electron’s velocity is included in
the value ). Solve the last expression relative to :

Our solution can be simplified; calculating separately the value appears equal to
(�e�Br/m0c) � 1.76. Therefore, the  value can be calculated ( � 0.871) and then the
velocity found � � c � 2.61 � 108 m/sec. The electron moving with such a velocity is
the relativistic one.

EXAMPLE E5.8

An alpha particle runs through the accelerating potential difference �� � 104 V and
projects into two fields crossing at right angles – magnetic B � 0.1 T and electro-
static E � 10 kV/m. Find the charge/mass ratio of this particle if, when traveling in
these fields perpendicular to both the fields, it does not diverge from a rectangular
motion.

Solution: In order to find the ratio it is useful to apply the relationship between
the electrostatic forces work qU and the change of its kinetic energy m�2/2. From this
equality it follows that (q/m)�(�2/2��)*. The special arrangement of the Coulomb
and Lorentz fields provides the equality of their action and straight-line motion
(Figure E5.8). Therefore, qE � q�B. This equation permits us to find particle speed
� as � � E/B. Inserting this equality into the * fraction, we arrive at
(q/m)�(E2/2��B2). Executing calculations, we obtain (q/m)�4.81�107 C/kg.
Let us check the dimension of the result: (E2/��B2)�((1B/m)2/1BT2)�
(1B A2/1B N2)�1J C/(1N sec)2�1C m/(1N sec)2�1C/kg. Dimension is just the
specific charge.
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EXAMPLE E5.9

In one plane with an infinite direct wire is a frame with sizes as shown in Figure
E5.9. Along the wire flows a current I � 50 A. Find the magnetic induction flux d�
through the frame in square S � al .

Solution: In full analogy with the electrostatic strength flux the induction of the
magnetic field is d� � B dS. In our problem induction of the magnetic field depends
on the distance from the wire x, therefore the flux is

d� �

2a

�
a

B(x)dx. Since B(x)�(	0I/2�x) the flux is equal to ��(	0lI/2�)ln 2. Executing

the calculation we arrive at � � 4.5 �Wb.

EXAMPLE E5.10

An infinite wire is bent as is shown in Figure E5.10. The circle radius is R � 10 cm
and the current flowing along it is I � 80 A. Determine the magnetic induction B at
a point O. 

Solution: Divide the current wire into three pieces: 1, 2 and 3. The magnetic field
induction is the vector sum B � B1 � B2 � B3. The first segment does not produce
a magnetic field at point O since dB � 0 ([dl r] � 0), according to Biot–Savart law
along the whole segment piece. Two components remain both giving codirectional

x
O
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B = B1 + B2 + B3
2

1

�2 π

3

l

+

B
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induction perpendicular to the drawing plane; they can be summed as scalar values.
The half-ring induction B2 can be found according to eq. (5.1.17) taking only half of
it: B2�(	0I/4R). Induction B3 can be found according to eq. (5.1.18) taking into
account that �1 � 
/2 and �2 � 
; therefore B3 � (	0 I / 4 
 R). Then

5.1.5 A magnetic dipole moment in a magnetic field

Just as an electrostatic field acts on an electric dipole moment (refer to Section 4.1.5), a
magnetic field acts on a magnetic dipole moment. At a significant difference of working
forces the results are very similar.

Let us first consider a homogeneous magnetic field; we accept a magnetic dipole moment
as a rectangular hoop (Figure 5.19). If the contour is oriented so that vector B is parallel to
its plane, the sides having length b will not fill any action of the Ampere force because the
vector product in eq. (5.1.24) is zero. The forces acting on the side a are F � IaB (refer to
eq. (5.1.24)), the force couple renders the torque rotating moment of the contour

or in vector form:

(5.1.30)

This expression corresponds to eq. (4.1.32). The torque MF aspires to turn the contour
so that the magnetic moment M as a vector turns along the field. On two sides having
length b the Ampere forces act oppositely and will stretch (or compress) the contour but
not rotate it. It is also possible to show that formula (5.1.30) is valid for a contour of any
form and, hence, can be used regardless of the form of the magnetic moment M.

The potential energy of a magnetic moment in a magnetic field can be calculated
according to the recipe given in Section 1.4.5. Taking into account that in this case MF is
the moment of external forces, we obtain

dU M d B dF� �� � �M sin
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Figure 5.19 A frame with a current in a uniform magnetic field.
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and after integration

Accept C to be zero at � � 0. Thus, finally in vector form

(5.1.31)

The graph is just the same as for an electric analog (Figure 4.18).
In a nonuniform field besides the torque, a force F will act on the magnetic dipole

moment (providing the moment is turned into a stable position with � � 0 and cos � � �1).
To calculate the force we can take the advantage of eq. (1.4.32) describing it as dependent
on potential energy. Then (for a one-dimensional case, B � B(x))

(5.1.32)

It follows from this equation that the magnetic moment M can be dragged in or pushed
out of the magnetic field depending on the angle � (cos � � �1) and the sign of magnetic
field gradient.

5.1.6. Electromagnetic induction

The concept of a vector flux d� through a surface dS has been given in Sections (2.8.3)
and (4.1.3). Being a particular case of a more general theory of a vector field, the same
concepts can be applied to a magnetic field as well. An elementary flux d� of a magnetic
field induction vector B through the surface dS is equal to a scalar product of B and dS 

(5.1.33)

Depending on the angle between a normal n to the surface dS (Figure 2.20) and the induc-
tion vector B, a flux d� can vary in limits �BdS. In general, flux � through surface S is
defined by the integration

(5.1.34)

In 1812 the English physicist Michael Faraday made a discovery, which has signifi-
cantly influenced the development of all mankind. Having made a real conducting contour,
confined to a surface S, he established that by changing the flux (5.1.34) an electric current
appeared in the circuit. By numerous experiments, Faraday established that current value
does not depend on the way the flux changes but on the speed of this change. The mathe-
matical form of Faraday’s law is extraordinary simple:

(5.1.35)

The minus sign in this expression corresponds to the general physical law of inertia: the
induction current in a contour is always directed in a way that opposes the reason of its
appearance. This statement is referred to as the Lenz rule.
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To exemplify Faraday’s law, let us imagine a simple experiment. We shall create a
closed electric contour with motionless rails and a metal axis with wheels moving on
them (Figure 5.20). On this “construction,” impose a magnetic field perpendicular to
the plane of the image. Move the axis at a uniform speed �. At the same time and with
the same speed begin to move electric carriers creating a current in the metal axis and in
the circuit in general. The force F directed along the axis and equal to q[� .B] will oper-
ate on the carriers. The action of this force is equivalent to the action of the electric field
E � [� .B].

This field is not electrostatic because it has been created in a different way – the move-
ment of charges in a magnetic field. The circulation of the electric field strength E along
the contour will produce EMF in the contour (see eq. (5.1.8)):

(5.1.36)

Only the movable part of the contour creates EMF, therefore

Supposing that both the axis movement and the magnetics field are uniform, we can obtain

Multiplying and dividing this intermediate expression by dt we derive

�i
B dt

dt
�

��
.

�i B d B� �� �� �
1

2

.∫

�i d d�  � �E Bl l
L 1

2

.�∫ ∫[ ]�

�i d d�  � �E Bl l
L L

.� �∫ ∫ [ ]�

5.1 General Characteristics of the Magnetic Field 329

2

dl

+
B

�i
E'

1

υ l

Figure 5.20 A modeling of a Faraday magnetic induction law.

Else_PE-OZEROV_ch005.qxd  2/9/2007  6:58 PM  Page 329



Taking into account that �ldt � dS and BdS � d�, we obtain �i�(d�/dt), which coincides
with eq. (5.1.35). The sign appeared in this expression after analysis of the vector disposi-
tion and accounting for the negative sign of electron.

The integral �LEdl is not zero since E is not an electrostatic field. It represents quite
different, solenoidal (or vertex or curl) electric field. The acting force F is also non-
Coulomb in origin; in contrast, it can be related to the extraneous one. Therefore, we can
proceed by adding to the nonzero integral �LEdl the zero’s addition �LEdl and write the
expression

(5.1.37)

Here, however, E* is the strength of both the conservative and (potential and nonpoten-
tial) electric fields.

Furthermore, if the left-hand part of eq. (5.1.35) is written in the form (5.1.37) and using
eq. (5.1.34), we can arrive at an important expression which is referred to as a Maxwellian
equation 

(5.1.38)

At the left-hand side the integral is taken on any contour L, whereas the surface S is fixed
by the already chosen contour L: the surface S rests on the contour L (see Figure 5.11).
From this Maxwellian equation it follows that any change of a magnetic field (the right-
hand side of the equation) generates an electric field (the left-hand side of the equation). If
a conducting wire is drawn along the contour L an electric current would occur in it. If
contour L is in vacuum, along it the electric field would be excited.

Once again we would like to emphasize that an induction electric field is not electro-
static. In fact, the source of an electrostatic field is motionless electric charge whereas in
producing a nonpotential electric field the source of the field is an alternating magnetic
field. This field, induction by origin, is solenoidal (i.e., is not potential) and certainly
possesses other than electrostatic field properties.

Faraday’s law is one of the general laws of electrodynamics. 
In an alternating magnetic field, induction leads to the excitement of EMF. It defines the

mutual induction of one conductor onto another. However, even if there is only one con-
ductor with an alternative current a force appears that renders back the current value state.
A magnetic flux that penetrates its own contour with current I and generates current vari-
ation, is referred to as its own, intrinsic magnetic flux and is designated as �S. This flux
is not influenced by a change of counter orientation; it is firmly connected with a contour.
Since, according to Biot–Savart law, B is proportional to I, therefore it is also proportional
to �

(5.1.39)

The coefficient L is called the self-inductance of the counter. It describes the relation
between an alternating current and the intrinsic magnetic field produced by it.
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If the counter consisted of N windings and the magnetic flux penetrated all of them
without omission, then the total magnetic flux linkage � is equal to � � N�c or

(5.1.40)

Excitation of an induction � in a closed counter when a current change is taking place
is referred to as self-induction. It is equal to the speed of flux linkage � change taken with
the sign minus:

or for solenoids without a ferromagnetic core:

(5.1.41)

In order to calculate the inductance of a long solenoid, we can use an expression for the
total magnetic flux (Ampere law) � � LI and � � N�c � nlBS (where n is the number
of solenoid windings on a unit length and l is the total solenoid length; the stroke at L is
omitted). Since the solenoid magnetic induction is B � 	0nI (see eq. (5.1.22)), hence 

Therefore,

(5.1.42)

It can be seen that the solenoid inductance depends quadratically upon the number of
windings on a unit length and is proportional to the solenoid volume. In the absence of a
ferromagnetic core the inductance is constant and is not dependent on the current strength.

5.2 MAGNETIC PROPERTIES OF CHEMICAL SUBSTANCES

From the point of view of their reaction to an external magnetic field, all substances are
referred to as magnetic. Its chemical structure defines the magnetic properties of a
substance. All magnetic materials can be divided mainly into three main classes: diamag-
netic, paramagnetic and magnetically ordered substances.

Diamagnetics are pushed out of an external nonuniform magnetic field; they consist of
those molecules that do not possess their own (i.e., “intrinsic”) magnetic dipole moments.
Paramagnetics are drawn into the external nonuniform magnetic field; they consist of
molecules possessing inherent magnetic dipole moments in the absence of an internal
magnetic field. Among the magnetically ordered substances are ferromagnetics and
ferrimagnetics, highly reacting on an external magnetic field. There is also a class of
antiferromagnetic substances, weakly reacting on an external field. Further we shall
describe in more detail the nature of all these substances and consider those characteristics
that describe macro- and microproperties of magnetics.
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Moreover, we shall follow approximately the same logic we used for the description of
dielectrics. In particular, we should establish where the magnetic properties originated
from. It is logical to connect magnetic properties with magnetic dipole moments of atoms
and molecules.

5.2.1 Atomic magnetism

In semiclassical Bohr theory an atom is represented as consisting of a nucleus and elec-
trons traveling along circular stationary orbits. This motion can be characterized by an
orbital angular momentum: the orbital angular (mechanical) moment Ll (see Section
1.3.9). An intrinsic electron angular momentum is also considered; sometimes it is
described by electron rotation around its own axis (see Chapter 6.7 and Section 7.5.5); it
is referred to as electron spin with its own angular momentum Ls. Orbital and spin states
are sometimes imagined as circular electric currents. These currents create orbital and spin
magnetic dipole moments. More advanced notions have been developed in quantum
mechanics, but these semiclassical representations are very distinct and useful at this point.

There are three sources of the magnetic properties of substances: (1) electron spin; (2)
orbital electron motion; (3) change of the electron orbital angular momentum at the impo-
sition of an external magnetic field. The first two can explain paramagnetism, and the third
can be used in considering diamagnetism.

A nuclear magnetic moment is very weak in comparison with orbital and spin electron
magnetic moments; thus it can be temporarily neglected here. However, nuclear magnet-
ism will be closely considered in Chapter 8 because the nuclei participate strongly in res-
onant methods of investigations in chemistry.

We shall take advantage of the semiclassical Bohr theory as it provides an elementary
model for understanding the physical essence of the phenomenon. We will begin by cal-
culating a inasmuch as the Bohr theory permits us to do it very easily. The gyromagnetic
ratio is the ratio of the magnetic and mechanical moments is referred to as giromagnetic
ratio (Figure 5.21).

Remember that the angular momentum L of an MP (an electron, in our case) relative
to an origin (nucleus) is defined as a vector product L � [r�p], where r is the electron
radius vector relative to the nucleus, and p the linear electron momentum (p � m�). On
traveling along a circular orbit the linear velocity is perpendicular to r (� � r), then 
Ll � �Ll� � m�r. The direction of the vector Ll is defined by the rule of vector product
(the right-hand screw rule).
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Figure 5.21 A gyromagnetic ratio for orbital electron movement in an atom.

Else_PE-OZEROV_ch005.qxd  2/9/2007  6:58 PM  Page 332



The circular current caused by the electron traveling along the orbit produces an orbital
magnetic moment Ml, the direction of which is also defined by the right-hand screw rule
(Figure 5.21). The module of the orbital magnetic moment is Ml � IS � (�e�
r2/T ), where
T is the period of revolution. Thus, the gyromagnetic ratio is

Canceling r and taking into account that � � (2
r/T ) we arrive at

(5.2.1)

Eq. (5.2.1) can be rewritten as

(5.2.2)

where g is the gyromagnetic ratio in the unit (�e�/m). In this unit the orbital gyromagnetic
ratio is equal to 1 (gorb � 1).

In their outstanding experiments, Einstein and de Haas showed that for spin the gyro-
magnetic ratio is equal to 2 (gsp � 2) and consequently (Ms /Ls)�2 � (�e�/m).

This gyromagnetic ratio anomaly is a source of some of the most interesting and impor-
tant phenomena and is used, in particular, in many physical methods of chemical substances’
research.

5.2.2 Macroscopic properties of magnetics

The magnetization of a substance is quantitatively characterized by magnetization �,
which is numerically equal to the magnetic moment of a volume unit

(5.2.3)

Alongside with magnetization of a unit volume, a specific and mole magnetization are
considered as well. The specific magnetization (magnetization of a mass unit) is equal to:

(5.2.4)

where �m is a mass of the physically infinitesimal volume �V (refer to Section 4.2.1).
Having replaced �m on ��V where � is a substance density we shall obtain
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Mole magnetization (magnetization of one mole) is

(5.2.6)

where � is the number of moles in a physically infinitesimal volume � � �m/M, M is a
molar mass.

Alongside with a magnetic induction B one more value characterizes the magnetic field
H, a strength of the magnetic field, is used; in isotropic magnetic the magnetization � is
proportional to magnetic field strength H, that is

(5.2.7)

where � is the scalar value referred to as a magnetic susceptibility. The magnetic suscep-
tibility characterizes ability of substance to be magnetized in a magnetic field. As � and H
have identical dimension � is dimensionless value.

For diamagnetic materials � � 0, its value is ��10�5�10�7 , for paramagnetic mate-
rials � � 0, its value is �10�3�10�6; for ferromagnetic � � 103�105. One can see that
diamagnetic weakly and oppositely magnetized in an inner magnetic field and therefore
pushed out from it. Paramagnetic weakly magnetized too but positively. Ferromagnetic
magnetized very strong and intensively drawn in magnetic field.

Alongside with magnetic susceptibility � of the unit volume a specific magnetic sus-
ceptibility �sp is often used in practice �sp�(�sp/H ) the relation being exist �sp�(1/�)�. The
same is for molar magnetic susceptibility �M which is equal to

(5.2.8)
and

5.2.3 An internal magnetic field in magnetics

One more magnetic characteristic, a magnetic permeability 	, is usually introduced; it
shows how much the magnetic induction in a magnetic B is larger then that of the external
magnetic field B0:

(5.2.9)

This means that this value should be substituted into the Bio-Savare law (5.1.16) 
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Consider now a sample of a cylinder form placed in an external magnetic field with
induction B0. Let the cylinder by a cross section S and length l is oriented along the
external field force lines (Figure 5.22). Under an action of a field all of molecular cur-
rents (vectors of the magnetic dipole moments) will be ordered in the field (along or
opposite, it does not matter at the moment). At averaging, inside of the magnetic cylin-
der molecular currents will be mutually canceled. Not compensated micro-currents will
be left on the cylinder’s surface. The picture remained a solenoid and can be considered
as a certain total macroscopic current, flowing the cylinder over (with a magnetization
current Jm). We can introduce a value of current linear density ℘ being equal to
℘�Jm / l. The situation is really just like the solenoid with the magnetic field induction
B1 inside. The field inside the solenoid is defined by eqn (5.1.23). Considering the mag-
netized cylinder as the solenoid we can calculated the induction B1 superimposed on the
external field

(5.2.11)

Find the relation of the magnetic magnetization � and the surface density of the current
℘. According to eqn (5.2.3), the magnetization is the magnetic moment of the unit vol-
ume. Therefore for this case

(5.2.12)

i.e. the magnetization of a piece of the magnetic is numerically equal to the linear density
of a surface current.

The expressions obtained allow one to find a ratio outside and inside of the magnetic
and to establish the ratio between a magnetic susceptibility and magnetic permeability. The
macroscopic field in a substance is characterized by a magnetic induction which is the geo-
metrical sum of magnetic inductions of the external B0 and internal B1 fields, i.e.

(5.2.13)B B B� �0 1.

� = ∑Mi S (S ) ,�V I l� � �℘

B nI1 0 0� �	 	 ℘
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Figure 5.22 A magnetic in an external magnetic field; a circular micro-molecular current and sur-
face currents can be seen.
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Having replaced in this expression B0 and B1 according to (5.2.9) and (5.2.11), and taking
also into account a collinear arrangement of all three vectors, we obtain

(5.2.14)

It shows that the strength of the magnetic field inside of the magnetic differs from that of
an external field on the value of magnetization. Writing further the magnetization accord-
ing to (5.2.7) one can obtain

(5.2.15)

On the other hand, according to (5.2.9), B = 	B0. Therefore

(5.2.16)

and the induction inside of isotropic magnetic is

(5.2.17)

This expression corresponds to the definition of the magnetic susceptibility (5.2.9). It fol-
lows that

Let’s note here a distinction of the induction and the strength notions. The induction of
a magnetic field according to (5.2.9) depend on substance property, however the strength
of the field outside and that of inside of the magnetic is the same. Moreover, the strength
doesn’t depend at all on the sample magnetic properties (i.e. on 	) (H � B/	0	 �
	0	H/	0	 � H). At the same time the induction varies at transmitting from one magnetic
to another. Therefore at calculations of magnetic circuits to use the strength H is more
convenient.

5.2.4 Microscopic mechanism of magnetization

It has already been mentioned that from the point of view of their magnetic properties, we
can distinguish three main classes of substance: diamagnetic, paramagnetic and magneti-
cally ordered substances. We shall now consider the same question from a microscopic
point of view, i.e., which processes cause magnetic properties and how these properties are
related to their chemical structure. We shall start with a diamagnetic.

H
B

� �
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B = 	 	 � 	 �0 0 0 (1 ) .H H H� � �
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Diamagnetics magnetize opposite to an external magnetic field and are pushed out of it.
The magnetic susceptibility of a diamagnetic is thus negative and depends neither on
temperature, nor on the strength of the magnetic field.

Diamagnetic properties are defined by the electron atomic orbit. It is easier to begin with
one-electron atom. In a magnetic field the electron orbit precesses in the same way as a
spinning top in a gravitational field (refer to Appendix 2). This precession arises because
an atom possesses both magnetic and angular (mechanic) momentums (refer to 1.3.57 and
Figure 1.19). Find the angular velocity � of orbit precession.

Let the atom possess an angular momentum L and magnetic moment �, directed opposite
to each other (see Figure 5.23). In an external magnetic field B, excited along an axis z, a
torque MF will operate MF � [��B], directed perpendicular to vectors � and B (Figure 5.24).
Under the action of this torque, vector L in time dt will acquire an increment dL � MFdt
and, accordingly, L(t � dt) � L(t) �� dL. The vector dL is perpendicular to vector L
and therefore ��L�� � ��L��. Thus, the action of torque MF changes the direction of vector L,
but not its length. Thereof, the plane in which the axis z and vector L lie, will turn by
an angle d�

Since M � |MF| � MB sin �, hence

d
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Figure 5.23 An electron orbit precession.
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Dividing both sides by dt, we obtain the angular velocity of the electron orbit precession 

Using the gyromagnetic ratio the orbit angular velocity can be found: 

(5.2.18)

This expression can be applied both to orbit and spin precession taking the g-factor into
account. The angular velocity is named after J. Larmor and the magnetic precession is
also referred to as Larmor precession. In particular, for orbit precession, the angular
velocity is

(5.2.19)

Additional electron movement caused by orbit precession leads to the excitation of
an equivalent circular current I (Figure 5.24). This current induces the magnetic
moment M, which is the diamagnetic moment. Irrespective of the direction of the
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Figure 5.24 Origin of a diamagnetic moment.
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torque vector MF or of the direction of induction of an external magnetic field B, the
induced diamagnetic moment M is always directed against B. This is the origin of the
diamagnetic effect. Therefore, the minus sign is present in the expressions for the dia-
magnetic moment. 

The additional electron movement occurs along a circle smaller than r (the electron radius
designated in Figure 5.24 as r). A circular electric current corresponds to this movement

Strictly speaking, the radius (r) is not the radius of an electron orbit; besides, it depends
on the inclination angle �. As an electron orbit can be inclined to the induction direction
(to an external field), averaging over all these parameters allows us to obtain

where �(r)2� is the average value of the square of the electron distance from the z-axis.
Having substituted this value in the expression by M, we shall obtain for one-electron atom

(5.2.20)

Summing up the expression obtained for all electrons in a multielectron atom, we shall
find its induced moment as

(5.2.21)

where Z is the number of electrons in an atom. If we now increase this value by Avogadro
number NA we shall obtain the value of the mole magnetizations

Multiplying numerator and denominator by 	0 and comparing the expression obtained
with eq. (5.2.7), we shall find the molar magnetic susceptibility of multielectron atoms

(5.2.22)

It can be seen that the more electrons in an atom and the larger the radius of electron
orbits, the greater is the diamagnetic susceptibility. Substituting here values of fundamental
physical values and accepting the radius of atoms �10�10 m, we obtain �M � 10�7�10�8

m3/mol which corresponds well to experiment for molar susceptibilities of diamagnetics.
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The molar susceptibility of a number of compounds is presented in Table 5.1. Notice
that diamagnetism is inherent in all substances without exception.

Paramagnetics magnetize in the direction of an external magnetic field and are drawn into
it. The magnetic susceptibility of a paramagnetic is positive, depending on the
temperature and value of the magnetic field strength. Paramagnetism is inherent in substances
whose molecules possess permanent magnetic moments regardless of magnetic field. We shall
connect all these experimental facts with the microscopic properties of paramagnetics.

In the absence of an external magnetic field, the magnetic moments of paramagnetic mol-
ecules are disordered in space by the action of chaotic thermal movement (Figure 5.25a).
This means that the vector sum for magnetization (5.2.3) is zero; hence, the magnetization
� is also zero.

When a paramagnetic substance is brought into the magnetic field, each magnetic
moment aspires to be guided in the field’s direction; however, the molecule’s thermal
movement prevents it from doing so. A balance is established (Figure 5.25b); as a result
the vector sum in eq. (5.2.3) becomes distinct from zero, the substance is magnetized.

A factor which should be taken into account when describing the competition of the
ordering action of a magnetic field (whose energy is U(�)) and the disordering tendency
due to chaotic movement (with averaged energy �T ) is the Boltzmann factor:
exp(�U(�)/�T ). It is necessary to take all these circumstances into account when consid-
ering the magnetization process.
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(b)(a)

Figure 5.25 A paramagnetic (a) outside a magnetic field (�Mi � 0) and (b) inside a magnetic field
(�Mi� 0).

Table 5.1

Values of molar susceptibilities of some diamagnetic compounds

Substance �M, 10�11 m3/mol Substance �M, 10�11m3/mol

Helium (He) �2.4 Silver (Ag) �27
Neon (Ne) �8.2 Bismuth (Bi) �350
Argon (Ar) �25 Glass (SiO2) �50
Krypton �40 Methane (CH4) �76
Xenon (Xe) �84 Naphthalene (C10H8) �240

(perpendicular
to the molecule
plane)
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An analysis of all these processes was carried out by the French physicist P. Langevin. He
considered the behavior of a system of magnetic dipole moments in an external magnetic
field. (An identical problem exists in dielectric physics when describing the orientation
polarization, see Section 4.2.4.) The essence of both phenomena consists of the competition
between the two processes: the aspiration of a field to direct the dipole moments along the
field direction and the action of chaotic thermal movement interfering with it. At each tem-
perature a compromise is achieved. Finding this compromise is the essence of the Langevin
theorem. (The Langevin theorem is presented in full in Appendix 4.)

The result of this theorem is an expression for mole magnetic susceptibility of a paramag-
netic substance. At (	B/�T) �� 1 the mole paramagnetic susceptibility has been found to be

(5.2.23)

(see eq. (A4.10) in Appendix 4). It can be seen from this formula that �M is inversely pro-
portional to temperature:

(5.2.24)

This dependence is referred to as Curie’s law. Comparing eqs. (5.2.23) and (5.2.24), we
can find a constant C, which is also named after Curie:

(5.2.25)

Substituting into formula (5.2.23) the values of fundamental physical constants and the
value of the spin magnetic moment, we can obtain �M � 10�8 m3/mol, which is compati-
ble with most experimental data (see Table 5.2 below).

In very highly magnetic fields and/or at very low temperatures (	B �� �T ) the field
can orient all the magnetic moments of all molecules in parallel; this results in saturation,
i.e., further increase of the field intensity cannot appreciably change the magnetization of
the sample since all moments are already parallel along the field 
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Table 5.2

The molar magnetic susceptibility of some paramagnetics

Substance �M, 10�11 m3/mol Substance �M, 10�11 m3/mol

Sodium (11Na) 2.0 MnSO4 1.7
Aluminum (13Al) 2.1 Fe2O3 4.8
Lithium (3Li) 3.1 NiSO4 5.0
Vanadium (23V) 37 FeCl2 16
Oxygen (O2) 430 Dysprosium (66Dy) 150
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In an intermediate area where 	B��T one dependence �m(H) smoothly passes to
another (Figure 5.26). The curve repeats for orientation polarization (Figure 4.28).

Consider now a number of examples that will allow us to see how the structure of chem-
ical substances influences their magnetic properties.

In the creation of diamagnetic properties the main role is played by the electron orbit. This
means that diamagnetism is inherent to all substances without any exception. All atoms pos-
sess diamagnetic properties but they cannot always be measured because, as a rule, diamag-
netism is masked by a larger paramagnetic effect. Accordingly, diamagnetism becomes
apparent in substances consisting of atoms with completely compensated magnetic moments.

This takes place in noble gases (He, Ne, Ar, Xe and Rn). As an example consider a neon
atom: it has 10 electrons in its electron shell (1s22s22p6). Figure 5.27 shows the electron dis-
tribution among quantum cells. Notice that for s-electrons the orbital magnetic moment is
zero (l � 0). The total magnetic moment of s-shells is also zero because all quantum cell
are occupied by pairs; the p-shell is also filled completely. So the total magnetic moment of
the neon atom is zero. In this case diamagnetic properties can be exhibited and measured.

Ions Na� and Cl� whose electron configurations coincide with Ne and Ar will also be
diamagnetic. On the other hand, the neutral atoms Na and Cl possess magnetic moments
as there is one noncoupled 3s electron in the Na atom and a 3p electron in the Cl electron
shell. While forming a chemical compound, the Na atom’s 3s electron passes to the Cl
atom and a NaCl molecule with ionic bond is formed. Since Na� and Cl� magnetic
moments do not possess noncoupled spins, the molecule NaCl is diamagnetic.

Note that, in general, the majority of chemical compounds are diamagnetic. In particu-
lar, this is true for the ionic compounds of the type considered and covalence compounds
with nonsaturated bonds. By way of example, we can consider a CCl4 molecule. Upon for-
mation of this molecule, the carbon atom, having two noncoupled 2p electrons, is excited
(Figure 5.28); 2s electrons are dicoupled and, as a result, sp3-hybridizations are generated;
four equivalent sp3-hybrid orbits arise, with two electrons on each bond. These orbits form
chemical bonds with the Cl atom. Thus, in the molecule CCl4 there are no free noncoupled
electrons and consequently it is diamagnetic.
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Figure 5.27 Neon atom’s electron configuration.
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Figure 5.26 Paramagnetic magnetization versus magnetic field strength H.
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In addition to the substances already listed, metals Pb, Zn, Hg, Sb, Ge, elementary sul-
fur, water and others also exhibit diamagnetic properties. (See Table 5.1 above for values
of the molar susceptibilities for some of diamagnetic substances.)

The origin of paramagnetism is mainly due to the electron spins. Therefore, an analysis of
paramagnetism should begin with a consideration of quantum cell filling by spins. A lithium
atom, for example, has two coupled electrons in 1s-state and one 2s electron (Figure 5.29).
The spin magnetic moments of the coupled electrons are zero. Therefore, the paramagnetic
moment of a lithium atom is defined exclusively by the single 2s-electron spin.

A free carbon atom is also paramagnetic as it possesses a significant magnetic moment
due to the two noncoupled 2p2 electrons. However, diamond and graphite are diamagnetic;
the diamond’s diamagnetism is caused by four equivalent saturated sp3-hybrid covalence
bonds participating in the crystal formation. The diamagnetism of graphite with layered
structure is of the other type. The layer-forming carbon atoms are bonded by sp2-hybrid
bonds; whereas between the layers, the forces are of the van der Waals type. Within each
layer probably free electron’s movement is possible along the closed orbits of the large
ring radius; this leads to strong diamagnetic effect.

Oxygen paramagnetism is defined by the presence of a noncoupled electron pair on the
antibonding molecular orbits.

Many rare earth elements together with their alloys and compounds clearly exhibit para-
magnetic properties. The atoms of these elements have incompletely filled deeply laying
4f-shells; they are shielded by outer electrons. So, for example, a dysprosium atom 66Dy
has four noncoupled (according to the Hund rule) 4f electrons (Figure 5.30). They define
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Figure 5.29 Lithium atom’s electron configuration.
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Figure 5.28 A carbon atomic configuration in sp3-hybridization state.
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Figure 5.30 Dysprosium atom’s electron configuration (K, L and M are closed and omitted).
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the magnetic properties of this atom. At the same time, the outer electron shell (5s25p66s2)
takes part in bond formation and very poorly influences the magnetism. Therefore, the
magnetic molar susceptibility of the rare earth element compounds depends only insignif-
icantly on particular compounds and on what state the rare earth atom is in.

Compounds of elements with incompletely filled d-shells exhibit strong magnetic prop-
erties, especially 3d-metals. However, in this case some of the 3d electrons take part both
in magnetism and in chemical bonding. Therefore, the magnetic properties of compounds
of the same d-element can behave differently in different chemical compounds.

Analysis of the participation of orbital state in the formation of atomic magnetic
moments shows that, for a variety of reasons, its contribution can frequently be
ignored; it is either too small in comparison with spin, or is suppressed (“frozen”) by a
crystal field. In Table 5.2 values of molar susceptibilities of some paramagnetic sub-
stances are given.

There are, however, exceptions to this general law (for example, 29Cu, 47Ag, 83Bi with
odd numbers of electrons), exhibiting diamagnetic properties. Due to the large number of
electrons (Z in eq. (5.2.22)) diamagnetism is great in these substances and suppresses
paramagnetic effects. If the number of electrons is even the orbital and spin magnetic
moments can be compensated in pairs.

5.3 MAGNETICALLY ORDERED STATE

A magnetic state is magnetically ordered if the atomic magnetic moments in the absence
of an external magnetic field in a macroscopic crystal volume are orderly directed to each
other. From this definition it is clear that a magnetically ordered state is mainly typical for
a crystalline state.

There are two basic magnetically ordered structures, which can be distinguished from
each other by the presence or absence of permanent macroscopic magnetization, namely
ferromagnetic and antiferrimagnetic.

In the ferromagnetic-ordered state the atomic magnetic moments are spontaneously
oriented parallel to each other (Figure 5.31a), and in antiferromagnetics they are ori-
ented mutually antiparallel (Figure 5.31b). A ferrimagnetic state is referred to as an
ordered state and arises when the antiferromagnetic structure consists of atoms (ions)
with different magnetic moments. The magnetic moments in this case do not com-
pletely compensate each other (the moments in positions A in Figure 5.31c differ from
that in position B). Macroscopically such a state appears to be ferromagnetic; how-
ever, the magnetic ordering is nearer to an incompletely compensated antiferromag-
netic state.

5.3.1 Ferromagnetism

Ferromagnetics are intensively macroscopically magnetized in an external field and are
strongly drawn into it. They have the greatest application techniques. Ferromagnetic
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5.3 Magnetically Ordered State 345

(a)

(b)

(c)

Figure 5.31 Magnetic ordering in (a) ferro, (b) antiferro and (c) ferrimagnetic crystals.
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susceptibility � is � �� 1 and, consequently, magnetic permeability is nearly equal to its sus-
ceptibility (	 � �). The ferromagnetic state is also characterized by the following features: 

• the existence of spontaneous magnetization in macroscopic volumes that are referred
to as domains; magnetic hysteresis, i.e., ambiguous dependence of the magnetization
on the strength of an external magnetic field; 

• pronounced dependence of ferromagnetic susceptibility on temperature and on the
intensity of an external magnetic field; 

• the presence of a Curie point, i.e., temperatures above which the ferromagnetic loses
its specific properties and transforms into a paramagnetic state (for example, the Curie
point for Fe is 1043 K,  for Ni is 631 K, etc.).

Einstein and de Haas carried out an experiment to determine the gyromagnetic ratio (see
Section 5.2.1) for ferromagnetic materials; later their results were repeatedly confirmed.
Experience has inevitably led to the gyromagnetic ratio g � 2 instead of the expected g � 1
(as for orbital magnetic moments). Goudsmit and Uleneck explained this result suggesting
an inherent electron magnetic moment (spin). Thus, it was established that ferromagnetism
is defined by electron spin.

A typical example of a ferromagnetic is iron. Figure 5.32 shows a scheme of the electron
distribution on the quantum cells in an iron atom. The d-shell has four noncoupled electrons.
They define the atomic magnetic moment. In an isolated iron atom an orbital electron move-
ment creates some orbital moment. In crystals, however, the orbital moments are “frozen” by
the action of intracrystalline fields and do not contribute to the atomic magnetic moment. The
reason for the “freezing” of the orbital moments is not yet completely understood. However,
experience clearly shows that the orbital moments do not participate in the ferromagnetism
of transition d-elements. Moreover, in the transition metals (iron, for instance) the distribu-
tion of the valence electrons on the quantum cells is influenced by many factors; so it is
impossible to predict, a priori, in which state outer 3d and 4s electrons are. From saturation
magnetization measurements (see formula (5.2.35)), it is known only that the atomic mag-
netic moment of iron is equal to 2.86 �B (Bohr magnetons, see Section 7.5.5). 

In iron compounds the iron atom can be either in a di- or a trivalent state; in this case
the electron distribution on quantum cells is certainly known (Figure 5.33). In an Fe2� ion
there are four noncoupled spins and in Fe3� there are five such electrons. Accordingly, the
magnetic moment of ion Fe2� is 4 �B and ion Fe3� is 5 �B. 
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Figure 5.32 Electronic configuration of an iron atom.
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In addition to transition d-elements (Fe, Co, Ni), magnetic ordering (including ferro-
magnetic) is found in rare earth metals: gadolinium, terbium, dysprosium, etc., as well as
other elements of the yttrium group, their compounds and alloys. In spite of the fact that
the number of magnetically active atoms (ions) is limited, the number of their combina-
tions in alloys and chemical compounds is very high.

The presence of noncoupled d- and f-electrons in atoms does not yet completely provide
the conditions necessary for ferromagnetism to occur. For example, such elements as Cr,
Mn, Pt, etc., also have noncoupled electrons, but they are not ferromagnetic. In some cases
they possess antiferromagnetic behavior.

The phenomenon of magnetic ordering is collective; magnetic atoms themselves, being
isolated from each other, do not show any ferromagnetic properties. The nature of mag-
netic ordering has a quantum mechanical origin, a description of which is beyond the
scope this book.

5.3.2 Domains: magnetization of ferromagnetics

At temperatures lower than Curie point Tc the magnetic moments of a ferromagnetic are
ordered, i.e., they build in parallel to each others. If such ordering is established in the
whole sample (as in Figure 5.31a) it would be saturated even in the absence of an external
magnetic field. However this is not the case. Below Tc the ferromagnetic sample splits up
into small volumes referred as domains. There is nearly perfect magnetic ordering in each
domain however all of them are oriented disorderly, i.e., a sample exhibits no magnetic
moment. A scheme of the ferromagnetic sample splitting into domains is shown in Figure
5.34a-d; in Figure 5.34e the final splitting is depicted.

The sample splitting into domains is due to the fact that a single-domain sample would
posses too big energy because of a presence on a sample edges the similar poles (Figure
5.34a). The sample splitting into domains with opposite moments directions leads to
reduction of energy (Figure 5.34b-d). Partitioning the sample body into domains is accom-
plished by creation of the large number of domain walls to what the energy is spent.
Splitting comes to the end when the gain as a result of splitting into domains is equal to
expense of the domain walls production. In Figure 5.35 the scheme of such domain wall
between two neighboring domains is shown.

In Figure 5.36 a curve of a preliminary ferromagnetic magnetization, i.e., dependence
of a magnetization � on the magnetic field strength H is given. Figure 5.37 describes
graphically a respective alteration of the sample domain structure.
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Figure 5.34 Scheme of the ferromagnetic sample splitting into domains.
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The magnetization process can be conditionally divided into some stages. In the begin-
ning (at low H) volume of those domains which are energetically more favorable (from the
point of view of their orientation in the magnetic field) increases. This increase is accom-
plished by the displacement of the domain walls. The volume of “unfavorable” domain
decreases in their total amount and vise versa. When process of domain walls comes to the
end an additional turn of an already single domain to the direction of the external field
takes place. As a result almost all atomic magnetic moments of the whole sample drew up
in the direction of the external field; the sample comes nearly to saturation. There is only
a small part of the moments disoriented due to the  thermal vibration. Finally, all magnetic
moments are aligned, there comes the saturation.

The subsequent reduction of intensity of magnetic field strength does not occur in
the same way as discussed earlier. The magnetization decrease follows a curve 1–2
(Figure 5.38). When the external field disappears, magnetization is kept at a nonzero level
�r, referred to as residual magnetization. In fact, this is the magnetization that we all expe-
rienced working with permanent magnets. To demagnetize the sample, an opposite field (a
part of a curve 2–3) must be applied.

The field strength corresponding to the sample demagnetization Hc is referred to as the
coercive force. To continue increasing an opposite field, the sample magnetization will fol-
low along curve 3–4; to then change the field direction the magnetization process will
follow curve 4–5–6–1. The closed curve of the ferromagnetic magnetization (Figure 5.38)
is called a magnetic hysteresis loop.

Modern techniques have certain requirements of various magnetic materials in respect
of their saturation magnetization value, residual magnetization, coercive force, etc. Thin
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and thick, high- and flat-loop materials are required and these can be achieved by the syn-
thesis of new magnetic compounds and alloys. Differentiation of the primary magnetiza-
tion curve (Figure 5.36) shows that the magnetic susceptibility �(H) of a ferromagnetic
depends on the strength of the external field (Figure 5.39).

5.3.3 Antiferro- and ferrimagnetics

The magnetic structure of antiferromagnetics can be imagined as two identical ferro-
magnetic sublattices inserted into each other with opposite moment directions. As an
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Figure 5.37 Change of a ferromagnetic domain structure at magnetization: (a) the domain struc-
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Figure 5.39 A ferromagnetic susceptibility � in external magnetic field H.
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example, Figure 5.40 shows the magnetic structure of MnO (diamagnetic oxygen atoms
are not shown). It can also be visualized by ferromagnetic atomic layers with antiparallel
orientation of the magnetic moments in every following layer. Naturally, such crystal does
not show ferromagnetic properties, all the magnetic moments are mutually compensated.
The study of antiferromagnetics is nevertheless of interest exclusively from the point of
view of the theory of magnetic interactions in magnetic materials.

Also, antiferromagnetism exists in a limited range of temperature. The transition of an
antiferromagnetic (as well as a ferrimagnetic) to a paramagnetic state occurs at certain
temperature points, referred to as Neel points.

There is technical interest in ferrimagnetics. The majority of them are antiferromagnet-
ics, the structure of which includes two (or more) ions whose magnetic moments differ, and
therefore sublattices do not completely compensate each other in the crystal. The macro-
scopic magnetic moment arises. In many respects, a ferrimagnetic crystal behaves as a fer-
romagnetic one. The domain structure and, consequently, a hysteresis loop, also exhibit.

Magnetite Fe3O4, having the structure of a noble spinel (CaAl2O4) is a good example of
a ferrimagnetic. The magnetite’s chemical formula does not, however, reflect a valence
state of atoms in this compound. It would be more correct to present the chemical mag-
netite formula as Fe2

3�Fe2�O4. As we have already mentioned, the ionic magnetic moments
of iron Fe3� and Fe2� are different (Figure 5.33). They can occupy (in ordered or disor-
dered manner) different crystallographic positions in the structure. In every case crystals
can possess different properties. Moreover, a lot of isomorphic substitutions are possible
in the crystal structure. They are all referred to as ferrites. Each particular compound can
have different magnetic properties (saturation magnetization, coercive force, residual mag-
netization, etc.). They are dielectrics and do not lose energy for induction currents and
Joule heat release, which is why they are widely used in portable radio sets.

The creation of special materials with preset properties is one of the tasks of the chemist.

5.4 DISPLACEMENT CURRENT: MAXWELL’S EQUATIONS

To end this chapter it is useful to generalize all the aspects discussed; they compose a system
of equations of classical Maxwellian electrodynamics from which all the laws of electricity
and magnetism can be derived, including electromagnetic radiation. Nearly all the equations
are already known to the readers, so we can concentrate mainly on the physical conclusions.

Let us start with those equations that describe stationary phenomena. One of the equa-
tions is the Gauss law (Section 4.1.3). Its physical sense concerns the statement: the sources

350 5. Magnetics

Figure 5.40 An antiferromagnetic structure of MnO.
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of an electrostatic field are motionless (in the given reference frames) electric charges. In
fact, if there are no electric charges in a system the right-hand parts of all specified equa-
tions are equal to zero; this also leads to the absence of an electrostatic strength flux. The
significance of Coulomb and Gauss laws has already been mentioned in Section 4.1.3.

The Ampere law from which the nonpotential character of the magnetic field follows is
the next Maxwell equation. It follows from this law that the source of the magnetic field is
the electric current and that it is of a nonpotential character: 

(5.4.1)

The potential character of an electrostatic field follows from equality to zero of circula-
tion of the strength vector E of the electrostatic field.

Since there are no magnetic charges (monopoles) in nature, the flux of the magnetic
induction through the closed surface is zero (�SB�dS�0). 

The next equation in the Maxwellian series is the Faraday’s law (5.1.38)

(5.4.2)

a change of the magnetic field causes the appearance of an electric vortex field (being not
of an electrostatic nature).

Comparison of  eqs. (5.4.1) and (5.4.2) allows us to find an infringement of symmetry
in the magnetic and electric laws. In fact, if the source of a vertex electric field is an alter-
nating magnetic field, it can be expected that the alternating electric field should cause the
occurrence of the magnetic field. From the equations presented above, this does not follow.
So Maxwell came analytically to the symmetry brake phenomenon, which later originated
the new notion of displacement current.

Let us consider an electric contour with a condenser as its component (Figure 5.41). If the
contour is connected to a permanent electric source, the current in the circuit does not flow.
If, however, the source generates an alternating voltage, there appears an alternating current in
the circuit, which depends on the frequency of the electric generator and on condenser capac-
ity. Charges will periodically appear on the condenser clamps creating a variable electric field
in the condenser. At the same time lines of electric current density seem to terminate on the
surface of the condenser plates. Moreover, the alternative current in the circuit creates a mag-
netic field around it, though such a field is unlikely to be present around the condenser.
Maxwell solved this uncertainty by introducing a current inside the condenser (Figure 5.41),
which closed the electric current lines. This current is referred to as a displacement current.
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Figure 5.41 Lines of a displacement current.
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Consider these phenomena in more detail. According to the definition the conductivity
current I in an electric circuit is dq/dt. It can also be written as jcond S � dq/dt, from which
follows jcond � dq/(Sdt) � d�/dt (since dq/S is a surface charge density d�). On the other
hand, the electric strength of the field inside the condenser is �/�0�. Therefore, 

(5.4.3)

The value (dD/dt)�D� is the displacement current. Denote it as jdisp. Notice that this value
is of a vector nature as far as the jcond is concerned; then we can write  (dD/dt)�D� . The
displacement current force lines enclose the conduction current forces lines, besides, the
displacement current produces a magnetic field around.

Therefore the current density is the sum

(5.4.4)

Eq. (5.4.1) can be rewritten as

(5.4.5)

Two more equations are included in the Maxwellian system, which connect the fields in
a vacuum to the fields inside a medium (refer to Sections 4.2 and 5.2).

(5.4.6)

(5.4.7)

And the last equation

(5.4.8)

relates to the local characteristics of the medium. Remember that this is the Ohm’s equa-
tion in differential form (refer to eq. (5.1.5)).

Let us come back to eqs. (5.4.2) and (5.4.5). There are no conductivity currents in a
vacuum; therefore the last equation can, for this particular case, be rewritten as

(5.4.9)

(5.4.10)

The symmetry between the two is clearly seen.
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It follows from them that the change in time of a magnetic field is the source of an
electric field, whereas a time-varying electric field produces a magnetic field. Together
they explain the existence of an electromagnetic wave. Notice that the excitation
of electromagnetic waves needs only one field: the variable electric field is easier to
create.

Consider in brief the principle of the creation of an electromagnetic wave. This can be
produced by a dipole antenna. It is well known that in an electric contour containing induc-
tance L and capacitance C (insertion in Figure 5.42), oscillations can be excited with a
period T depending on the values of L and C. Turn the condenser plates to align them as a
simple dipole antenna (Figure 5.42). Certainly, the value of the condenser’s capacitance
will change, but this does not interest us at the moment. Suppose, in a given instant of time,
the left side of the antenna is charged positive and the right side is charged negative. In a
plane xy there will be an electric field, and an excitement created immediately begins to
move away from the antenna along the x-axis with a high but finite speed. This speed c in
vacuum is equal to c � 3 � 1010 m/sec (see Appendix 5). After a quarter of the period, the
charge on the sides of the antenna becomes zero, the force lines of the already created elec-
tric field become closed, but excitement continues the movement. After another quarter of
the period, the antenna will have an opposite charge to the initial one. Again, there will be
an electric field with oppositely directed force lines. After three quarters of the period, the
antenna again becomes uncharged and the force lines of the second “ringlet” become iso-
lated (closed), but in the opposite direction. All these “ringlets” will follow each other and
never be caught because they move at the same speed. In a period of time, all the events
will be repeated.

According to eq. (5.4.10) the change in time of an electric field generates a variable
magnetic field in a plane perpendicular to the “ringlets” of an electric field. There will be
similar “ringlets” of a magnetic field moving together with the first. Sometimes this pic-
ture is represented as “couplings” as shown in Figure 5.43a. However, a more realistic
picture is given in Figure 5.43b: in the Cartesian coordinates two mutually perpendicular
planes result in which oscillations of the vectors of the strengths of electric and magnetic
fields take place. The wave is propagated with a speed c.

It was shown in Section 2.8.3 that the energy transferred by an electromagnetic wave is
proportional to the square of the wave amplitude E. Without proof, we state that the energy
density carried by a wave is defined by the vector product [E.B] � S; vector S being
referred to as the Poynting vector.

The mechanism of electromagnetic radiation emission in electronic and nuclear subsys-
tems of atoms differs significantly from that discussed above. However, all characteristics
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of the radiation remain the same. A more detailed consideration of the Maxwellian equa-
tion system is given in Appendix 5.

Table 5.3 gives the range of known electromagnetic waves.
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Figure 5.43 Electromagnetic wave: (a) schematic representation of electromagnetic bundles and
(b) oscillation of the field inductions vectors E and B in an electromagnetic wave.

Table 5.3

Electromagnetic wave scales and their peculiarities

Energy Frequency
(s−1) Radiation type Emitter Detector
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EXAMPLE E5.11

A square frame with a side length of a � 2 cm consisting of N � 100 winds of a thin
wire is suspended by an elastic thread. The thread elasticity C is equal to C � 10
�N/m grad. The frame plane coincides with an external magnetic field induction.
Determine the field induction if at a current I � 1 A the frame plane is turned at
angle � � 60° (Figure E5.11).

Solution: The frame is in equilibrium if two angular momentums, the action of
the magnetic field M1 � pmBsin� and the resistance of the elastic thread M2 � C�,
are equal: M1 � M2 and, consequently, pmBsin� � C�. We know that pm � ISN �
Ia2N (where S � a2); we can rewrite the previous equation as NIa2Bsin� � C�.
Therefore, B � (C�/Na2 sin�).

In this particular case � � (
/2) � � (refer to Figure E5.8); therefore sin � � cos �.
Finally we can find B � (C�/Na2 cos�) and substituting all known values arrive at
B � 0.03 T � 30 mT.

EXAMPLE E5.12

A frame of area S � 150 cm2 consisting of N � 1000 winds is rotating in a magnetic
field of induction B � 0.1 T with frequency n � 10 sec�1. Find the instant EMF �i in the
magnetic field with induction B � 0.1 T which corresponds to the turn angle � � 30o.

Solution: An instant value of �i can be determined according to eq. (5.1.35): �i �
(d�/dt), where � � N� is a magnetic linkage. Therefore, �i � � N(d�/dt). At revo-
lution � changes according to the induction law � � BScos�t, where �� 2
n is the
angular frequency of rotation. Substituting the last equation into the previous equation
we obtain �i � 2
nNBS sin �t. Executing the calculations we arrive at �i � 47.1 V.

EXAMPLE E5.13

Determine the bismuth magnetic susceptibility � and its molar susceptibility �M if
specific bismuth susceptibility �sp� �1.3 � 10�9 m3/kg. The bismuth density is 
� � 9.8 � 103 kg/m3.

M2

a

I

�

pm�

B

I
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Solution: All the equations in use are given in Section 5.2.2. In order to solve the
problem we will use the equation � � �sp�: � � –1.3 � 10�5 (dimensionless quantity).
To determine the molar susceptibility �M we have to multiply �sp by the molar mass M:
�M � M�sp. Executing the calculations we arrive at �M ��2.7 � 10�10 m3/mol.

EXAMPLE E5.14

A bismuth ball of radius R � 1 cm is in a uniform magnetic field with B � 0.5 T.
Determine the magnetic moment of the ball pm acquired by it if the bismuth mag-
netic susceptibility � is �1.5 � 10�4.

Solution: Use the expression for magnetization � (5.2.3) �� �N
i�1�i , where �i

is the magnetic moment of an ith bismuth atom and N is the number of atoms in the
volume V. The vector qualities stay under the sum sign; however, bismuth is a very
strong diamagnetic. Therefore all induced atomic moments are codirectional
and equal on modulus. Therefore, we can rewrite the expression in scalar form as
��(1/ V) 	JN. The product 	JN is the total magnetic moment of the unit volume;
therefore the ball magnetic moment is pm � �V. Since the magnetization � relates to
the magnetic field strength H as ���H ��(B / 	0) and the ball volume is V�(4/3)
R3,
hence pm� 
�(B/	0)R

3. Express all values in SI and execute calculations:

pm� 
(�1.5�10�4) (0.01)3��2.5�10�4Am2��250 �A m2.

The minus sign shows that the acquired ball magnetic moment is directed opposite
to the external magnetic field.

EXAMPLE E5.15

A square frame with a side b � 10 cm is made of a thin wire. It consists of N � 255
winds. The frame is in a uniform magnetic field with induction B � 0.25 T; the
frame can rotate around an axis which passes through the middle of its opposite sides
and is perpendicular to the magnetic induction force lines. Determine the maximum
amplitude value of EMF induction Ei,max arising in the frame winding with frequency
n � 1800 min�1.

Solution: The change of a magnetic flux crossing the frame occurs at the rotation
of the frame. Instant value of magnetic flux �(t) is defined by the expression �(t) �
BS cos �, where S is the frame area (S � b2); � is the angle between the normal 
vectors n to the frame plane and that of a magnetic induction B. At uniform rotation
this angle linearly changes with t, i.e., � � �t where � is the angular velocity of the
frame rotation. According to law of Faraday electromagnetic induction in which Ei is
defined by the time derivative from the flux Ei � – (d�/dt) and using flux linkage
notion Ei is Ei � –(d�/dt) or Ei � –N(d�/dt). Executing differentiation we obtain 
Ei � NBb2� sin �t. The maximum instant EMF is at maximum sin �t, i.e., sin �t �1.
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��
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�10�7

4
�
3

4�
3

1
�v
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The Ei,max � NBb2� or Ei,max � 2
NBb2n. Express all values in the SI: N � 255;
B � 0.25 T; b � 10 cm � 0.1 m; n � 1800 min�1 � 30 sec�1. Substitute them in the
expression obtained: Ei,max � 2
 � 255 � 0.25(0.1)2 � 30 � 120 V.

EXAMPLE E5.16

Two identical codirectional point magnetic moments pm � 5 �Am2 are at a distance
r � 1 m from each other. Determine: (1) the potential energy U of their interaction;
(2) the force F of their interaction.

Solution: In order to solve this problem it is convenient to use the result of Example
E5.5, where an expression for the magnetic field induction on the perpendicular axes
B(z) was obtained. In the case of point dipole r �� R and the expression takes the form

The magnetic moment pm of the ring with electric current I is pm � nIS, where n is a
normal unit vector to the plane of the ring and S is an area of the ring S � 
R2. It is
easy to obtain from the equation *: B�(	0I(
R2)/2
r3) and further B � (	0pm/2
r3)**.

(1) Assume that one dipole creates a field and the other is experiencing its action.
The potential energy of the magnetic dipole in the magnetic field is defined by an
expression U � �pmBcos� (see Section 5.1.5), where � is the angle between vectors
pm and B. In our case � � 0 and cos� � 1. Therefore, U � –pmB. Substituting B by
the expression ** we obtain U��(	0 p2

m /2
r 3). Expressing all values in SI units
and executing calculations we obtain

(2) In order to determine the interaction force we can use the relation (1.4.28) 

Using the potential energy expression obtained after differentiation one has

Substituting all the values into this expression (in SI) we arrive at 

The minus sign in both final expressions shows that the force is attractive.
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PROBLEMS/TASKS

5.1. A thin tape l � 40 cm in width is folded into a cylinder of radius R � 30 cm
(Figures T5.1). An electric current I � 200 A flows, uniformly distributed, across
the tape. Define the magnetic induction B on the axis of the cylinder at two points:
at a central point of the cylinder B1 and at a point at the end of the cylinder B2.

5.2. Entering the uniform magnetic field with B� 0.1 T an electron began to move along
a circle of radius R� 5 cm. Find the equivalent current I produced by this movement
and associated magnetic moment �.

5.3. Assume that in metallic state an iron atom contains four noncoupled 3d electrons.
Determine the theoretical value of the corresponding saturation magnetization �sat of
the metallic iron.

5.4. An infinitely long straight wire is bent at a right angle at point O. An electric current
flows through the wire (I � 100 A). Calculate the magnetic field induction B at the
points on the line of bisection of the right angle at distances a �10 cm from point
O to both sides of it.

5.5. An electric current I � 60 A flows through a thin wire bent as a rectangle. The
dimensions of the rectangle are 30 and 40 cm. Calculate the magnetic field induc-
tion (B) at the point of intersection of the diagonals.

5.6. An electric current I � 1 kA flows through a straight wire passing through a uniform
magnetic field that is perpendicular to the lines of the field induction. With what
force F/l does the magnetic field act on a l � 1 m long wire. The magnetic field
induction is equal to B �1 T.

5.7. A square wire frame is placed in the same plane as a long straight wire; the wire is par-
allel to the two opposite sides of the square frame. The same current (I � 1 kA) flows
along all wires. Determine the force F applied to the whole wire frame if the distance
of the nearest frame side from the direct wire is equal to the length of the frame side.

5.8. A current of I � 10 A flows along two similar wire rings with a radius R � 10 cm.
Determine the force F interaction between the rings if they are on the same plane
parallel to each other; the distance (d) between the rings is 1 mm.

z

I

1 l

R2
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5.9. A thin ring with a radius R � 10 cm is carrying a charge Q � 10 nC. The ring is
rotating at n � 10 sec�1 around its symmetry axis, i.e., perpendicular to the ring
plane. Find: (1) the magnetic moment pm of the ring; (2) the relationship between
the magnetic moment and the angular momentum (pm/L), if the weight of the ring
is 10 g.

5.10. Two ions with the same charge but different masses move into a uniform mag-
netic field. The first ion moves along a circular path with a radius R1 � 5 cm and
the second ion with a radius R2 � 2.5 cm. Find the ratio between the masses
(m1/m2) of the two ions if they initially pass through the same accelerating poten-
tial difference.

5.11. An electron enters a uniform magnetic field of strength H � 16 kA/m with a veloc-
ity � � 8 � 106 m/sec. The velocity vector is oriented at an angle � � 60° relative
to the force field lines. Determine the spiral radius R and pitch h.

5.12. A rod of length l � 10 cm is spinning in a uniform magnetic field with an induction
B � 0.4 T in the plane perpendicular to the induction force lines. The axis of rota-
tion passes through one end of the rod. Determine the potential difference ��
inducted at ends of the rod if the rod rotates with frequency n � 16 sec�1.

5.13. Determine the nonuniformity of the magnetic field (dB/dx) if the maximum force
acting on the point magnetic dipole is Fmax �1 mN. The dipole moment of the point
dipole is �m � 2 mA m2.

5.14. Find the electric current I flowing along the thin ring of a radius R � 0.2 m if the
magnetic field induction in the equidistant point at r � 0.3 m on the z-axis from the
ring is B � 20 �T (Figure T5.14).

5.15. A rectangular copper bail (Figure T5.15) of a wire section S � a2 � 2 mm2 is in a
uniform magnetic field of B � 10 mT directed vertically downwards. The bail can
freely rotate around a line OO. A current I � 20 A is flowing along the wire. Find
the angle � on which the bail will turn as a result of Ampere interaction. The copper
density is � � 8.9 � 103 kg/m3.

RO
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A
z
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5.16. A long solenoid is wound closely with wire d � 5 mm in diameter. What is the
strength H of the magnetic field inside the solenoid at electric current I � 4 A?

ANSWERS

5.1. B1 � 349 �T, B2 � 251�T.
5.2. Ief � 1.1 mA, H � 10 MA/m.

� � Be2R2/(2m) � 14.08pA m2. 
5.3. �sat � 3.13MA/m.

5.4.

5.5.

5.6. (F/l) �1 kN/m.

5.7.

5.8.

5.9. (1) �m � �qnR2 � 3.14 nAm; (2) (�m/L) � 500nC/kg.
5.10. (m1/m2) � 4.
5.11. R � 1.96 mm, h � 7.1mm.
5.12. �� � �l2Bn � 201mV.
5.13. (dB/dx) � (Fmax/�m) � 0.5 T/m.

5.14.

5.15.

5.16. H � 8 kA/m.
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