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Wave Optics and Quantum��Optical

Phenomena

6.1 PHYSICS OF ELECTROMAGNETIC OPTICAL WAVES

Wave optics deals with the propagation of light waves and their interaction with 
matter. 

A schematic drawing of electromagnetic waves was given at the end of Chapter 5
(Figure 5.43b) and their main characteristics were summarized (Table 5.3). The frequen-
cies (the wavelength) corresponding to the range of waves visible to the naked eye are pre-
sented in Figure 6.1: relative eye sensitivity S is depicted which reflects the property of the
human eye. Two areas adjoin the optical range: infrared (IR) and ultraviolet (UV) radia-
tion (see Table 5.3). Remember also the ratio � � c/n between light velocity in a vacuum
c and in some isotropic media �. n being the refraction index, n � �����. A useful scheme of
the wavelengths of visible light is also presented.
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Figure 6.1 The relative eye sensitivity S of the standard observer to different wavelengths, S(�), for
a normal level of illumination.
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362 6. Wave Optics and Quantum–Optical Phenomena

All sets of optical phenomena comprise three general parts: geometrical, wave and
physical optics. In this chapter, substantial attention will be given to wave optics and its
transition to quantum optics, in which light exhibits as a flow of particles.

To make an atom emit an electromagnetic wave it is necessary to excite the atom, i.e.,
to transfer it to a higher energy state with a short lifetime. In the ground state, an atom can
exist for an indefinitely long time without changing its state. However, an atom can be
transferred from the ground state to some other state with higher energy, i.e., to the so-
called excited state with a limited lifetime � (in many cases approximately 10�8 sec; see
Section 7.2 and Section 8). For this time, an atom emits a continuous wave referred to as
a wavetrain or zug. The wavetrain length l can be estimated as follows: time � (~10�8 sec)
multiplied by the light velocity (3.108 m/sec) gives value of the order of the wavetrain
length l ~ 1 m. We can describe a simplified diagram of a wavetrain as a single wave with
definite properties. Groups of such wavetrains form a bunch of waves or a light beam.

Electromagnetic waves do not require a medium to propagate. Different kinds of elec-
tromagnetic waves are produced by different emitters. As a rule, an emitter does not emit
a single wave, but a bundle of waves (we don’t touch coherent laser radiation here). An
emitter produces waves by changing its own state (for instance, at the transition from one
energy level to another, the energy difference contributes to the wave’s energy). Each spec-
ified wave is characterized by some properties. So, a beam consists of an enormous
amount of particular waves having a definite length (Section 7.2). 

Electric interactions are stronger than magnetic ones. In other words, all physiological,
photochemical, photoelectric, etc., actions of light are caused by the operation of an elec-
tric field. Therefore, the vector E is referred to as the light vector and the plane of its oscil-
lation is called the plane of oscillation. Each light beam consists of many wavetrains with
particular orientation of the plane of oscillation, i.e., polarizations.

Figure 6.2 shows the polarization for a number of cases, viewed along the wave propa-
gation direction. In Figure 6.2a, a natural beam of transverse electromagnetic waves is
depicted; a cylindrical symmetry can be seen in the beam; the direction of the symmetry
axis coincides with the beam propagation direction (axis x in the picture). The beam as a
whole is completely unpolarized. In Figure 6.2c, the electric field vector E (i.e., the single
orientation of the oscillation plane) is shown; a beam is totally polarized. Such a wave is
called a plane-polarized wave. However, in many cases the beam consists of waves with

(c)(b)(a)

Figure 6.2 Polarization of electromagnetic wave beams: (a) completely polarized beam, (b) partly
polarized beam, (c) natural unpolarized beam.
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partly ordered planes of oscillations; a partly polarized beam is formed (Figure 6.2b). In
solids, in the given propagation direction two perpendicular oscillation planes can exist;
they are denoted by the letter s, which can be equal to 1 and 2; in addition, a third, longitu-
dinal, polarization can exist too (s � 3). The waves in solids can thus have three polariza-
tions (s → 1, 2, 3), but in liquids and gases only one (s � 3, longitudinal) polarization exists.

Different orientations of the planes of oscillation are possible in a beam. However, many
planes of vibrations take place in a beam, they can all always be reduced to two mutually
perpendicular planes.

The equations of running waves were derived in Chapter 2 (eqs. (2.8.5) and (2.8.7)). In
these equations, �(x, t) symbolizes the displacement � of any point from its equilibrium
position x in time instance t. In this chapter we have passed from mechanical to electro-
magnetic waves; by displacement � we shall now mean oscillations of the electric field
strength E and those of the magnetic field H in mutually perpendicular planes (Figure 5.45).
The cross line of these planes coincides with the axis of wave propagation, which coincides
with a wave vector k (refer to Section 2.8.2). A plane that is determined by the vector k and
the plane of E vector oscillations is a plane of oscillation. 

Let us present some fundamental laws of optics; later we shall use them from the point
of view of the wave nature of light. Consider a beam of light falling on the border of two
media 1 and 2 with absolute refraction indexes n1 and n2 (Figure 6.3). The medium with
the higher refraction index is referred to as the optically denser one (Figure 6.3, n1 < n2)
and vice versa. At a point O, every wavetrain splits: part of it reflects (reflected beam OB)
and the other part refracts (refracted beam OO�). The law of reflection–refraction asserts
that all beams, namely, initial AO, reflected OB and refracted OO� together with a normal
KL to the border plane in a point O, lie in one plane. The angle of incidence � is equal to
the reflection angle �. The ratio of the sine of the angle of incidence � to the sine of the
refraction angle � is equal to the ratio of the absolute refraction indexes of two media

(6.1.1)

where n2,1 is the relative refraction index. This equation is referred to as Snell’s law. Since
the air refraction index is near to 1, the relative refraction index on the border with air is
practically equal to the absolute index.
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Figure 6.3 Reflection and refraction at an air–glass interface (n2 � n1).
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If, having undergone a number of reflections and refractions, a beam has passed along
a path; another beam directed along the same path, but in the opposite direction, will pass
along the path; in exactly the same way, having repeated all features. This statement is
referred to as the law of reversibility. Taking advantage of this law, if we follow the path
of the return beam at its propagation from optically more dense medium 2 and on the bor-
der of the media contact, then sin� � n21sin�. Since n21 � 1, at some angle �, the refracted
beam will propagate along the border without leaving medium 2 (the refraction angle
becomes �/2; Figure 6.4). The angle �C being in this very case an incident angle is referred
to as the critical angle of total internal reflection. At greater values of � (� � �C) the total
reflection is preserved.

The phenomenon of total internal reflection plays a basic role in the construction of fiber
light guides, i.e., thin fibers made up of transparent materials (Figure 6.4): if an optic ray
enters the guide, it will be unable to abandon it, propagating inside to its end because any
incident angle for it will be larger �C because of the small fiber diameter.

Consider now a path of beams in a prism in air with a vertex angle � of a material with
a refraction index n (Figure 6.5). At small angles � a deviation 	 is determined by the
refraction index n and angle � as:

(6.1.2)

i.e., the angle of deviation 	 linearly depends on the refraction index n of the material that
the prism was made of. Since the refraction index depends on the wavelength � (see
Section 6.5), the prism is the simplest device for decomposition of light in a spectrum on
the wavelength. A rainbow in the sky after rain is a widely known example of decomposi-
tion of white light into a spectrum by water drops in air.

In Chapter 2 (Section 2.9.2 and Figure 2.27), the effects arising from the reflection of
waves from the borders were considered. There, a very simple model of a traveling wave

	 �� �( 1) ,n
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Figure 6.4 A total internal reflection of light from a source S at different incident angles: larger and
smaller than the critical angle �C.
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propagated in some media with a reflection index n1 was used. The reflection was exam-
ined for two cases: when the reflecting wave on an interface has a node or antinode. This
is of importance since it influences whether or not the wave at reflection loses a half-
wavelength. It was shown that if the reflection takes place from the denser media with a refrac-
tion index n2 � n1, the wave loses a half-wavelength and, in contrast, if n2 � n1 it does not.

In Table 6.1, the refraction indexes of some substances are presented.

EXAMPLE E6.1

From a source of monochromatic light with wavelength � into a screen point A, there
come two beams (Figure E6.1): one beam S1A comes directly from a source hori-
zontally perpendicular to the vertical screen, and the second beam S1BA is reflected
in a point B from a horizontally located mirror. The distance from the source to the
screen l1 is 1 m, the distance from the horizontal beam to the mirror surface is h � 2 mm.
Determine (1) what will be observed in point A of the screen—strengthening or

6.1 Physics of Electromagnetic Optical Waves 365

n

A

�

violet

red

�

Figure 6.5 Light ray paths in a prism.

Table 6.1

Refraction indexes of some materials

Media Refraction  index (n) Light speed in the medium 
(in the light speed unit)

Absolute vacuum 1 1
Air 1.0003 0.9997
Water 1.33 0.75
Glass 1.4 � 1.8 0.56 � 0.71
Diamond 2.4 0.42
Silicon 3.5 0.29
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lowering of intensity? (2) how will the intensity in point A be changed if a plane-
parallel glass plate (n � 1.55) of thickness d � 6 �m is placed perpendicular to the
path of the horizontal beam? 

Solution: Let us find the position of an imaginary image S2 of the source S1 in the
mirror. Sources are coherent; therefore, at superposition of the waves coming from
these sources on the screen point A there will be an interference. Strengthening or
weakening of intensity depends on the difference 
 of the length of the optical path
of two beams; in other words, from the number of half-wavelengths stacked on an
optical path difference 
: m � 
/(�/2)*; if 
 is a whole even number, intensity will
be maximal, if a whole odd number then intensity is minimal.

(1) The optical path difference 
1 will consist of both the geometrical difference
l2�l1 (both beams go in air) and the additional difference in �/2 appearing on reflec-
tion from the mirror. Therefore,

Since , l2 � ���2��H�2�,

Since (H/l1) ^ 1, therefore, for the root calculation we can use the approximation
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After substituting this expression into **, we obtain

Then we have to decide commensurability of the last expression with (�/2):

Since H � 2h, then 

Executing calculations, we have m1� 33. Therefore, in point A there will be a minimum
of intensity.

(2) The glass plate of thickness d introduced into the path of the horizontal beam
will change the optical path length. The optical path length will be sum of the geo-
metrical path length and optical path length of the beam in the plate itself:

The optical path length difference is now

or using * 

Executing calculations, we obtain m2 � 19.8. Since this number is nearer to 20
(even) than to 19 (odd) in point A there will be a partial increase of intensity.
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EXAMPLE E6.2

On a thick glass plate with refraction index n3 � 1.5 covered with a very thin film,
the refraction index of which is equal n2 � 1.4, a parallel beam of monochromatic
light (� � 0.6 �m) falls nearly along a normal. The reflected light, owing to inter-
ference, is maximally weakened. Determine the thickness of the film.

Solution: Let us allocate a narrow light beam from the light falling on the film. The
path of this beam in the case when the angle of incidence is � is shown in Figure E6.2.
At point A, the beam is in part reflected and refracted. The reflected beams AS1 and
ABCS2 fall on a convex lens S1�S2 and interfere at point F. As the parameter of
refraction of air n1 � 1 is less than the refraction index of the film, which in turn 
is less than the glass refraction index, in both rays reflection occurs in total without
phase change. Since the light is maximally weakening the optical path length 
 � l2n2

– l1n1 � (�AB� � �BC�n2 – �AD�n1 should be equal to an odd number of half-
wavelengths (�AB� � �BC�n2 – �AD�n1�(2k � 1) (�/2). If the incidence angle tends to
zero, AD → 0 and �AB� � �BC� → 2d and we obtain 
 � 2dn2 � (2k � 1) (�/2). Then
the film thickness is d � [(2k�1)�]/4n. Taking k � 0, 1, 2, 3, we arrive at a number
of possible values for d:

EXAMPLE E6.3

A monochromatic light of wavelength � falls onto a nearly parallel glass wedge (two
plate) with a very small wedge angle � , normal to its sides. An interference picture
appears. It consists of a sequence of light and dark strings (see Figure 6.9). On a
length of wedge l � 1 cm, 10 strips are observed. Define the refracting angle of the
wedge (Figure E6.3).
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Solution: A parallel beam of light falling normally onto the wedge reflects from
both sides of the wedge, upper and lower. Both beams are coherent and practically par-
allel; though an optical path length difference 
 is created, therefore an interference
picture is observed. Dark strips are visible on those sites of the wedge for which 
 is
multiple to an odd number of half-wavelengths: 
 � (2k � 1)(�/2) with k � 0, 1, 2….
The geometrical difference of paths length is 2dn cos�; losses of �/2 appeared at the
reflection from the upper side of the wedge and should be added. Therefore, for dark
strips we have 
 � (2k � 1)(�/2) � 2dkn cos� � (�/2), where n (n � 1.5) is refractive
index of glass, dk is the thickness of the glass wedge in a point of dark strip. The inci-
dent angle is assumed to be zero. Therefore after simplification, we obtain 2dkn � k�*.
Let the thickness for any dark strip be dk and the thickness of glass in the point k � 10
is dk � 10, the distance between them being l. Then (� expressed in radians)

Calculating values of d’s from expression * and substituting them into the last
expression we arrive at � � 5�/(nl). The angle sought is then � � 2 	 10�4 rad. This
angle in degrees is � 2 	 10�4 	 2.06
	105 � 41.2
.

6.2 AN INTERFERENCE

6.2.1 Superposition of two colinear light waves of the same frequencies

In Section 2.3.1 a summation of two oscillations of the same frequencies and propagating in
the same direction was considered analytically and using a vector diagram. It was also shown
in Section 2.8.3 that the oscillation intensity is proportional to the square of amplitude. Apply
now the conclusions mentioned to the calculation of the light intensity at waves imposed in
any fixed point of space; let it be x0. At the fixed coordinate the equation of a running wave
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E (x0, t) � E0 cos (�t–kx0) transforms into the equation of oscillation E(t) � E0 cos (�t��),
where product kx0 is included as a certain number into the phase �. A splintered wavetrain
traveled in two parts, 1 and 2; then they superpose (Figure 6.6) enhancement or weakening
of the light intensity. The expression for the square of total amplitude (2.3.1) is

(6.2.1)

Consider a number of cases of the addition of two light waves with equal amplitude (i.e.,
at E0,1 � E0,2) at various phase differences (�1��2) � 
�. If light waves from two differ-
ent independent sources are summed, the average value of cos 
� is equal to 0. This
means that if in expression (6.2.1), E 2

0 � 2E2
1,2, i.e., the intensity of light will increase

twice, there will be an enhancement of intensities.
If 
� remains constant the two waves are coherent (refer to Section 2.9.1). At 
� �

(2m � 1)� (m is an integer), cos 
� � �1 and the resulting light amplitude and inten-
sity in the given point are equal to zero. At 
� � 2m�, cos 
� � 1 and the resulting
light amplitude is twice as high as the amplitudes of each of the initial waves, i.e., an
enhancement of amplitudes takes place; intensity thus grows four times. The phenome-
non of redistribution of intensity of light in space on imposing two or several coherent
waves is referred to as the interference.

Interference phenomena (including diffraction phenomena) are the direct consequence,
and proof of, the wave nature of light.

6.2.2 Interference in thin films

The practical realization of two coherent light sources is very difficult (it can be achieved, for
instance, with the use of lasers). However, there is a relatively simple way to carry out an
interference. It consists of splitting a single light beam into two components by reflection
from a pair of mirrors and then superposing them in a single point; they will interfere, thus
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Figure 6.6 Reflection and refraction ray paths of two split parts of a single wavetrain in two media:
1 and 2; P1 and P2 are mirrors.
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a splintered wave “interferes with itself.” The basic scheme of such an experiment is sub-
mitted in Figure 6.6. At point O, on the border of the two media with the refraction indexes
n1 and n2, a wave is splintered in two parts. With two mirrors P1 and P2 both parts go to point
M at which they interfere. The speed of propagation of the two beams, due to different media
properties, is c/n1 and c/n2. At point M, the two parts of the wave will superpose with each
other with constant shift in time equal to S1/�1 � S2/�2, where S1 and S2 are geometrical lengths
of the path traveled by the two parts of the wave. The oscillations of electric field strength at
point M will be E0,1 cos �(t – S1/� 1) and E0,2 cos �(t– S2/�2). The square of the resulting oscil-
lation amplitude at point M is 

(6.2.2)

Since � � 2�/T and � � c/n, the expression in square brackets is equal to 
� �
(2�/cT )(S2n2–S1n1) � (2�/�o)(S2n2–S1n1). The product of the path traveled S and refraction
index n is referred to as optical path length denoted by 
. Keeping in mind that cT � �0

(�0 being the wavelength in vacuum), 

(6.2.3)

This expression joins the phase differences and the optical length traveled in the splintered
wave. 
� defines the interference effects. Indeed, cos 
� � 1 corresponds to the maximum
intensity since 
� � (2�/�0) 
 � 2�m. From this, the condition of the intensity maximum
can be derived: 

(6.2.4)

The largest diminishing of the light intensity corresponds to cos 
� � �1, i.e., 
� �
(2m � 1)�. Then (2m � 1)� � (2� /�0) 
 or 

(6.2.5)

It is easy to see that the summation of waves described above with fourfold enhance-
ment of intensity corresponds to the displacement of the two “parts” of the splintered wave
from each other by the difference in lengths equal to the integer wavelengths (or, accord-
ingly, to the phase difference 
� � 2�m). The complete extinction of the wave’s intensity
is observed at the displacement of the two wave parts on the wavelength half (on an odd
number of the wavelength half, i.e., 
� � (2m � 1)�).

Consider as an example the interference of light at the reflection from thin films (or from
a thin plane-parallel plate; Figure 6.7). The direction of a beam falling on the film is shown
in the figure by an arrow. Splitting of the wavetrains occurs in this case at partial reflection
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of each part of it on the upper (point A) and the lower surfaces (point B) of the film. We
shall consider that the light beam goes from air and leaves after a point B into air (with air
refraction index equal to unity) whereas the parameter of this film material is equal to n.
Every wave of the beam falling at an angle � at point A is split into two parts: one of them
is reflected (beam AD) and the other refracts (beam AB). At point B every wave of the
refracted beam is split again: part is reflected from the lower film surface and part refracts
leaving the film. At point C the wave is again split, but we will follow that wave part which
leaves the film at the same angle as beam AD. The two reflected beams are gathered by a
lens (not shown in the picture) at one point. Being parts of the same primary wave the beams
are coherent and can participate in the interference, the intensity being dependent on the dif-
ference of their optical traveled lengths (or differences in phases).

The phase difference in waves 1 and 2 is accumulated in traveling along path lengths
AD and ABC. The optical path length is 
 � (AB � BC)n – AD, where AB � BC
�2d/cos � and AD � 2d sin � sin �/cos �. Remembering that sin � � n sin �, then 
 �
(2dn/cos �) (1 – sin2�) or 
 � 2dncos�. Since angle � is usually given in problems but not
�, it is more convenient to present the 
 value in the form 

(6.2.6)

When defining the conditions of light intensity (maximum and/or minimum), it was nec-
essary to equate the 
 value to the integer or half integer to the number of wavelengths
(eqs. (6.2.4) and (6.2.5)). However, as well as estimating the optical path length difference

, it is also necessary to analyze the opportunity of the loss of half a wavelength during
reflection. This depends on a specific condition, namely, whether the media from which
the reflection occurs is more or less dense. So, if the film with n � 1 is surrounded with
air with n � 1, the loss of half-wavelength occurs at point A (Figure 6.7). If the film is on
a surface of a medium whose reflection index is higher than for the film material, the loss


 �� �2 sin 2 .2d n
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Figure 6.7 Ray paths in a thin film.
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of half a wavelength occurs at two points—A and B; as in this case the whole wavelength
is accumulated, this effect should not be taken into account at all. It follows, that specific
tasks demand individual consideration. The main principle consists in finding the whole
difference of optical lengths 
, to consider the possible loss of half a wavelength at reflec-
tion, if necessary, to add (or subtract, it does not matter) it to (or from) 
 and to bring it
into correlation with the conditions presented. In the case of a film in air represented in
Figure 6.7, the condition of maximum interference looks like

(6.2.7)

Since the refraction index depends on the wavelength (see Section 6.5), the interference
conditions are qualitatively different. Therefore, the film will decompose falling light in a
spectrum, i.e., in falling white light the thin film always looks as if it has been painted. 
We all have met examples of this: observing multicolored soap bubbles or an oil stain on
the surface of water.

Consider now the example of a thin air wedge. This wedge is opposite to the thin film
picture (Figure 6.8). A plate with well-polished surfaces lies on another, similarly per-
fect plate. At a definite place between the two plates a thin subject (e.g., a thin wire) is
introduced, so an air wedge is formed. Consider a beam of light falling normally onto
the upper plate. We shall accept that there is no divergence at surface points on reflec-
tion and refraction, keeping in mind that the wedge angle  is very small. Admit that A
is a point on the lower plate where the optical path length between plates 
 is equal to
integer m of wavelengths � plus �/2 (due to reflection from the optically more dense
lower plate); two reflected waves are nearly parallel to each other. Suppose that there is
the condition of maximum interference intensity at this point. An equation describes this
condition (factor 2 appears because the beam runs the distance twice):

(6.2.8)

If we look at this picture from above (for this purpose a simple optical system is
required), it is possible to see geometrical strips in which, at certain m, light (or dark)
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Figure 6.8 An air wedge.
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strips are formed. Along this strip condition (6.2.8) is fulfilled, i.e., along it the backlash
of air has the same thickness. Such strips referred to as strips of equal thickness. Provided
that the plates are made carefully, the strips of equal thickness are represented by paral-
lel straight lines. If, however, there are defects in the plates, the appearance 
of the strips changes appreciably, and the position and form of the defects develop clearly.
Fringes of equal thickness are shown in Figure 6.9: in an air wedge a narrow stream of
warm air is produced, the density of which and, accordingly, the refraction index, differ
from the values for cold air. The curvature of the lines of constant thickness is visible.

If a convex lens touches a perfect flat plate, at a favorable ratio of the lens curvature
radius, light wavelength and the presence of an optical magnifying system, so-called
Newton’s rings can be observed. They represent the fringes of equal thickness in the form
of concentric circles.

EXAMPLE E6.4

A vivid example of strips of equal thickness is Newton rings. They appear when
a lens of a radius of curvature R lying on a carefully processed glass plate is
irradiated with monochromatic light in the wavelength �. Determine the radius of
the mth ring.
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Figure 6.9 Lines of constant thickness.
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Solution: A geometrical diagram and the interference picture are presented in
Figure E6.4a.

The condition of interference maxima is

The air refraction index is assumed to be unity. In Figure 4a, it can be seen that

where r is the radius of the mth ring. Taking into account the fact that the radius of
curvature R is much larger than the size of the interference picture, we can expand
the last equation into binominal series limiting ourselves by two terms
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The ring’s radii r can be deduced as

The character of rings—light or dark—depends on the loss of �/2 at the reflection
from the more dense matter: in each particular case this needs to be derived
separately. In our problem, we use a light falling from above, therefore, there is
only one reflection from a denser media (from a glass plate). Therefore, for the light
ring

An overall picture of Newton’s rings is depicted in Figure E6.4b.
If the light is directed from below (and the results are observed from above), there
will be no loss of a half-wavelength because the reflection from the denser media
takes place twice: from the lens and from the glass plate).

EXAMPLE E6.5

Find the radii of the second r2 dark, and fifth r5 light Newton rings in a monochro-
matic light �0� 0.56 �m provided the lens radius is R � 1.2 m.

Solution: Using the star equations from the previous example, keeping in mind
that the air refraction index is 1 and taking into account that we are first searching for
the radius of the dark ring, we can write 
 � (2m�1)(�/2) � (r2

m /R)�(�0 /2), there-

fore, rm � �m�R���. Therefore, at m � 2, r2 � �2�	�1�.2�	�5�.6�	�1�0���7� m � 1.16 mm.

For the light ring, 
 � m�0 � (r2
m/R) � (�0/2) and rm � �(2�m���1�)R�(��/2�)�. Executing

calculations, we obtain r5 � �(2�.5� �� 1�)1�.2�(5�.6�/2�)1�0���7� � 1.74 mm.

The phenomena of interference find wide application in chemistry and the chemical
industry. In particular, they are used in interferometry in defining the refraction indexes of
substances in their three states: solid, liquid and gaseous. There is a large number of vari-
ous interferometers which differ by their assignment.

Let us illustrate the determination of the refraction index of substances by a simple
interferometer intended for the measurement of the refraction indexes of liquid and
gaseous substances (Figure 6.10). Two completely identical thick plane-parallel glass
plates A and B are fixed in parallel to each other. The light from source S falls onto the
surface of plate A at an angle close to 45°. As a result of its reflection from both sides
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of plate A, two parallel beams 1 and 2 are produced. Running through two identical glass
cells K1 and K2, these beams fall onto plate B and are again reflected from both its sides
and are gathered at a point P by a lens L. At this point, they interfere, and the interfer-
ence strips are examined with an ocular, which is not shown in the figure. If one of the
cells (e.g., K1) is filled by gas with a known absolute refraction index n1 and the second
with a substance with a measured refraction index n2, the optical path length difference
between plates will be equal to  � (n1�n2) l, where l is the cell length. With the help
of a special device, the displacement of the interference strips concerning their position
with empty cells can be observed. Displacement  is proportional to the difference
(n1�n2), which allows one to determine one parameter knowing another. We note that
while there are rather low requirements as to the accuracy of the measurement of the
strips’ position, the relative accuracy in defining the refraction indexes can achieve val-
ues of 10�6–10�7. This accuracy enables the study of small impurities in gases and liq-
uids, measurement of the different dependences of the refraction indexes on
temperature, pressure, humidity, etc.

There are still many other designs of interferometer construction, intended for various
physical measurements. In particular, using a specially designed interferometer, Michelson
and Morley in 1881 established the independence of light speed from the speed of its
source (refer to Section 1.6). Einstein took this fact as a principle of his Special Theory of
Relativity.

6.3 DIFFRACTION

Diffraction is a set of phenomena arising from the propagation of light in a media with
pronounced heterogeneity and consisting of light deviations from the laws of geometrical
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Figure 6.10 The diagram of a simple interferometer.
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optics. Diffraction leads to light deviating from rectilinear distribution, bending around
opaque obstacles and penetrating into an area of geometrical shadow.

6.3.1 Huygens–Fresnel principle: Fresnel zones

Taking into account experiments in which light exhibited its wave nature C. Huygens
assumed that each point of a primary light wavefront serves in its turn as a source of sec-
ondary spherical wavelets. The new position of the wavefront will be the enveloping sur-
face of these secondary waves (Figure 6.11); in turn, each point of the secondary
wavefront is again the source of the next generation of waves and so on. In Figure 6.12,
this principle is illustrated with an example where a light wave is passed through an
aperture; it can be seen that, due to secondary waves, light can penetrate into the area of
geometrical shadow. These phenomena are only exhibited in an appreciable measure
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diffracted beams

areas of geometric
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Figure 6.12 Diagram of penetration of the diffraction radiation into the area of geometrical shadow.

envelop of secondary waves
at time instance t+dt

r=c∆twavefront at instant of
time t
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at instant
of time

t+dt

Figure 6.11 Huygens principle (the wavefront at time instants t and t � 
t is shown, each point is
the source of the second waves).
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when the diameter of the aperture is commensurable with the light wavelength: only in
this case do the angles of diffraction appear to be measurable (see below).

A.J. Fresnel enlarged this principle by assuming the same laws of interference which
had already been developed for primary waves were also applicable to secondary waves.

It is rather difficult to calculate the distribution of intensity in a diffraction picture. However,
a method allowing an essentially simplified calculation of the diffraction effects, at least at a
qualitative level, has been offered: Fresnel has suggested mentally breaking a wave surface into
zones, the distance from respective points of which up to the sighting point differs from the
previous one by �/2. In this case light waves from the adjacent zones are in an antiphase
(because of the shift by �/2); this leads to the mutual cancellation of such waves; in other
words, the adjacent zones extinguish each other. The method has been successfully used to
solve different problems of wave optics, in particular, in the explanation of rectilinear distri-
bution of light. We shall take advantage of this principle by considering the diffraction on a slit.

Two kinds of diffraction can be distinguished: diffraction in parallel light rays from a
plane front wave (referred to as Fraunhofer diffraction), and diffraction in converging
beams (Fresnel diffraction). Here we will consider only the Fraunhofer diffractions. 
The scheme of this diffraction is presented in Figure 6.13: point S marks the light source,
a condenser lens K provides a parallel light beam, and lens L with a focal length f con-
centrates the result of the diffraction at an angle � at a screen point P. A central ray O and
axis sin � along which the figure is expanded are shown.

6.3.2 Diffraction on one rectangular slit

We use the Fresnel zone principle for qualitative consideration of the Fraunhofer diffraction
on a single rectangular slit. By definition, each following zone extinguishes the previous
one. This means that if, at the slit width d and wavelength � at an angle �, an even number
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Figure 6.13 Diffraction in parallel rays (Fraunhofer diffraction).
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of Fresnel zones opens, all zones extinguish each other; in this direction the intensity of
diffraction becomes equal to zero. On the contrary, if at another angle �, an odd number of
zones open, there should be a maximum in the spectrum. It can be seen in Figure 6.14 that
if the condition is even, the zone number corresponds to the length of a segment MN �
dsin� on which the integer of wavelengths is stacked (the even half-wavelengths). This is
an indication of the minimum intensity. Mathematically, it looks like

(6.3.1)

where k is an integer which shows the diffraction order. The maximum intensity appears
when an odd number of half-wavelengths stack up in the segment MN

(6.3.2)

In Figure 6.15, an experimental diffraction spectrum on a single slit is schematically
depicted: at � � 0 in a direct beam the maximum is seen because only one zone is opened

d sin (2 1)
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Figure 6.15 Light intensity distribution after single slit diffraction.
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Figure 6.14 Fraunhofer diffraction from a single slit (the � angle corresponds to eight Fresnel
zones half of them faintly marked in the figure).
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(the whole slit width). On changing � in both directions the maximums and minimums
alternate in an orderly way. The quantitative solution of this plot shows that 

the square of which gives the so-called interference function

(6.3.3)

This function describes the intensity distribution at the diffraction on a single slit 
(Figure 6.15). At the diffraction on a single slit the intensity of diffraction rapidly decreases
with angle.

6.3.3 Diffraction grating

A diffraction grating is composed of a large number of identical, regularly distributed
alternating transparent strips on an opaque flat carrier. A constant of the diffraction
grating b is the distance between corresponding points of two adjacent strips 
(Figure 6.16).
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Figure 6.16 Diffraction from a diffraction grating: e is a grating constant, N is the number of slits,
eN is the total width of the grating, � is the diffraction angle; the faintly marked zones in Figure 6.14
are now completely nontransparent.
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For simplicity we shall consider that the grating consists of transparent and opaque strips
of identical width. We shall designate N as the number of transparent and opaque pairs. Then
the general width of the grating will be bN. Compare the condition of minimum intensity for
one slit (eq. 6.3.1) with that for diffraction grating. Imagine that we could close every second
Fresnel zone at the diffraction on a single slit. Therefore all open zones, having no “antago-
nists,” make a full contribution to the diffraction spectrum.

Figure 6.16 presents a scheme to illustrate this idea. What was the slit width d, is now
bN, the minimum condition (6.3.1) transforms into the maximum condition eN sin� �
� � � or esin� � � k/N �, where k and N are integers.

There can be two cases, the most important is when � is divisible by N, i.e., when (�/N)
� m, where m is a simple integer. In this case, a so-called main maximum of order m is
obtained; it corresponds to diffraction maximum when all transparent slits are “in a phase.”
The main maximum condition can be written as:

(6.3.4)

The second case is when in expression (�/N) both numbers are integers, but are not divisi-
ble by each other. This gives the so-called subsidiary maxima of small intensity, which are
obtained due to diffraction only on a single-grating slit. As a result, the spectrum consists
of a rear strong main and many weak subsidiary maxima, as shown in Figure 6.17a.

The intensity of the diffraction maxima (eq. (6.3.2) and (6.3.3)) increases N2 times in
comparison with one slit, and the maxima width decreases by 1/N.

The condition of the main maximum (6.3.4) is of primary importance. It shows that for a
given diffraction grating (at fixed b), a different wavelength gives maxima at different points
of the spectrum. This is the basis of the use of diffraction gratings in optical spectroscopy.

b msin .� ���

382 6. Wave Optics and Quantum–Optical Phenomena

m=−2 m=−1 m=2 m=3m=1m=0m=−3

a

m=4
m=3

m=2m=−2
m=−3

m=−4

b m=1m=−1

m=0

−20 20 40 60 
0−40−60

Figure 6.17 Spectrum of white light as viewed in a grating instrument. The different orders of
spectra identified by the order number m are shown separated vertically. The central line in each
order corresponds to � � 0.55 �m.
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If white light falls on a diffraction grating each of the main maxima is broadened. The
width of a white spectrum is defined by boundary wavelengths 0.4–0.7 �m of visible
light. Spectrum of adjacent orders can sometimes overlap. This overlapping is shown in
Figure 6.17b where, for clarity, spectra of different orders are given on a different verti-
cal level. It can be seen that spectra of zero-, first- and second-orders exist separately,
whereas spectra of the third- and fourth-orders are partially overlapped.

Notice that a diffraction grating can also be used in a reflecting position.

6.3.4 Diffraction grating as a spectral instrument

Spectroscopy is the method of studying the composition and structure of a substance or the
control of technological processes (refer to Chapter 7, Section 7.8). The main stage in
spectroscopy is the decomposition of electromagnetic radiation in a spectrum on the wave-
length or frequency. Optical spectroscopy deals with the optical range of electromagnetic
radiation, including UV and IR. The basic units of optical spectrometers are either a prism
or a diffraction grating.

The most important characteristics of the quality of a spectral device are dispersion D
and resolution R. Distinguish an angular and linear dispersion. The value numerically
equal to the ratio of the angular distance between spectral lines � to the difference of
wavelengths � of these spectral lines is referred to as angular dispersion. The angular dis-
persion is equal

(6.3.5)

In order to obtain an expression for angular dispersion, we should find a derivative d�/d�
from eq. (6.3.4) and change further the differentials into finite increments (neglecting the
minus sign). At small angles, eq. (6.3.4) can be rewritten as b� ≈ m� and then

(6.3.6)

Linear dispersion Dl is the value numerically equal to the ratio of the linear distance in
the spectrum between the spectral lines l to the difference � corresponding to those lines

(6.3.7)

and at small �

(6.3.8)

where f is the focal length of lens L (Figure 6.13). From the above formulas, it can be seen
that the dispersion (both angular and linear) is larger for higher order of the spectrum m.
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Another device that permits the decomposition of incident radiation in the spectrum is
a prism. Decomposition in the spectrum by a prism is due to the dependence of the angle
of refraction on the wavelength. The corresponding formula for the prism can be obtained
using expression (6.1.2). Notice that the sign of the derivative �/� for the diffraction
grating and for the prism is different.

On wavelength resolution (resolving power) of the spectral device, there is a mini-
mal distance at which two close spectral lines are accepted as being two instead of see-
ing them as one single widened line (Figure 6.18). Rayleigh has offered a criterion by
which the spectral lines are considered as resolved if the middle of the maximum posi-
tion of one line coincides with the edge of the adjacent line (Figure 6.18, center). The
resolving power R of a spectral device is a dimensionless reversed value of the wave-
length difference of the resolved neighboring lines to the wavelength of one of them:
the value is

(6.3.9)

Using the Rayleigh criterion, we arrive at the expression

(6.3.10)

It can be seen that the resolving power is larger when a longer grating length and higher
order reflections are used.

In Figure 6.19, two spectral lines obtained with three different diffraction gratings are
presented. Gratings I and II are characterized by identical resolution (lines have identical
half-widths) but provide a different dispersion, whereas gratings II and III have different
resolution (maxima have different half-widths at identical dispersion).
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Figure 6.18 Image of two distant point objects formed by a converging lens; (a) the angular sepa-
ration of the objects is so small that the images are not resolved, (b) the objects are farther apart and
the images obey Rayleigh’s criterion of resolution, (c) the objects are still farther apart and the
images are well resolved.
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6.3.5 X-ray diffraction

X-rays, discovered by W.K. Röntgen in 1895, as well as visible light are both electromag-
netic waves; however the X-ray wavelength is 103–104 times shorter (about 10�10 m, i.e.,
0.1 nm). This circumstance defines their high penetrating ability, which the great majority
of mankind has experienced during medical inspections. Our interest here is in X-ray dif-
fraction (XRD) in crystals.

For experimental observation of diffraction, the radiation wavelength should be of the
same order of magnitude as the diffraction grating period. This follows from eq. (6.3.4):
in order to measure diffraction angle � the ratio mb/� should have the order of unity, i.e.,
b should be commensurable to �. Therefore, to observe XRD using diffraction gratings is
extremely difficult in practice.

At the same time, a diffraction grating with a period of about 1 Å has the nature that
the interatomic distances in crystals are about this size. As the interatomic distances are
approximately 10�10 m and the size of even the smallest crystal is 10�7 m (repetition is
103 in the majority of cases), the crystal can be considered infinite. If a beam of X-rays
falls on a crystal, under the action of an electromagnetic wave the atoms’ electrons begin
to oscillate and scatter secondary radiation of the same wavelength in all directions
(compare with Compton-effect, Section 6.6). As the atoms in a crystal are ordered, these
secondary waves are coherent and interfere; this defines the diffraction effect.

The diffraction problem of X-rays in crystals “on transmission” has been solved by
M. Laue. However, a more evident picture has been given by W.L. Bragg and also inde-
pendently by G.V. Wulf. Formalizing the picture described above, they reduced the scat-
tering of secondary waves to the X-ray reflection from so-called crystallographic planes
(see Section 9.1). (These are planes drawn through the nodes of a crystal lattice.)
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Figure 6.19 The intensity patterns of light with wavelength �1 and �2 incident on the different
gratings; grating II has the same resolution as I however higher dispersion, grating III – the same
dispersion but lower resolution.
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The atoms of a crystal and two most rational crystallographic planes are shown in Figure
6.20a. An X-ray beam falls on a crystallographic plane at an incident angle �. Because of
its high penetrating ability, the X-ray radiation passes into the crystal without refraction
(the refraction index n � 1). Therefore, the difference in the lengths traveled by waves 1
and 2 can be easily counted, making 
 � 2d sin �, where d is the distance between the
nearest parallel planes (interplanar distance). The maximum of intensity will be observed
if this difference is equal to an integer of wavelengths (refer to Section 6.2):

(6.3.11)

where m is the reflection order. This formula is referred to as the Bragg formula.
Knowing the arrangement of atoms in a crystal, it is easy to calculate the intensity of

X-ray reflection. More difficult, however, is the problem of calculating the arrangement
of atoms in a crystal from an experimentally measured diffraction picture. This problem
is the essence of modern X-ray crystal structure analysis for which M. von Laue (1914)
and W.L. and W.H. Bragg (1915) were awarded Nobel Prizes.

6.4 POLARIZATION

6.4.1 Polarized light: definitions

An important feature of a wave beam is its polarization. A wavetrain has two mutually
perpendicular planes in which oscillations of the vectors of E and H takes place (Figure 5.45).
It has already been mentioned that the action of an electromagnetic wave is defined
mainly by the vector E. Therefore, vector H in many cases is neglected in drawings,
whereas the plane of E vector oscillation is referred to as the plane of oscillations. The
wavetrain is, therefore, linearly polarized, i.e., it possesses a single plane of oscillation
(Section 2.8.1; Figures 6.2a and 6.21b and c).

2 sin ,d m� ��
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Figure 6.20 The Bragg’s law: (a) the ordered atom’s array and two arbitrary crystallographic planes,
(b) an incident X-ray beam scattered by the entire family of crystallographic planes, the X-ray’s
paths difference ACB is marked.
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Because all atoms of a source emit electromagnetic waves independently, the beam consists
of large numbers of independent wavetrains; their planes of oscillations are not correlated,
such light being referred to as nonpolarized or natural. In this case, axial symmetry of the oscil-
lation planes disposition takes place (Figure 6.2b and 6.21b and c). The direction of the axis
of symmetry coincides with the direction of the wave propagation. If there is a partial infringe-
ment of the axial symmetry, the light beam is partly polarized (Figure 6.2b and 6.21b and c).

The following designations are accepted in the schematic representation of light polari-
zation in physics literature (Figure 6.21). The plane of oscillations of the vector E is set by
arrows. The polarized beam is represented accordingly by a number of parallel arrows. If
the plane of oscillations is perpendicular to the drawing plane, arrows are projected in
points. A nonpolarized beam is represented by alternate points and arrows. 

6.4.2 Malus law

There are devices called polarizers, sensitive to polarization of a light beam. These devices
freely transmit the incident electromagnetic waves with a plane of oscillation parallel to
the plane of the polarizer, and completely absorb oscillations perpendicular to this plane.
Hence, behind the polarizer the natural light becomes polarized with the plane of oscilla-
tion parallel to the plane of the polarizer. If, in the way of this secondary beam, a second
polarizer is installed with a plane perpendicular to the first, it will detain the first polarized
beam completely. This second polarizer is in the position of an analyzer; it is sensitive to
the degree of polarization of the light beam.

What will happen if the plane of oscillations in the beam makes an angle with the plane
of the polarizer? Let the plane polarized beam falls on the analyzer with the oscillation
plane oriented at an angle � relative to this plane and the plane of the polarizer. Separate
the E0 vector into two components: parallel and perpendicular to the polarizer planes
(Figure 6.22). The perpendicular component will be completely absorbed by the polarizer,
whereas the component of the electric field in the parallel position will be equal to
E0 cos�, and the corresponding intensity will be

(6.4.1)I I( ) cos cos .0
2 2

0
2� � �� �E
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Natural light(a)

(b)

(c)

Partly polarized light

Plane polarized light

Figure 6.21 Schematic representation of light polarization: (a) natural light, (b) partly polarized
light and (c) completely polarized light.
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This equation is called Malus’ law. It can be seen that if the wave’s plane of oscillation is
parallel to the polarizer axis, the beam will pass through with no intensity loss (� � 0,
cos � � 1). In contrast, at � � �/2 cos � � 0 and light will be absorbed completely.

If natural light falls on a polarizer the intensity of the passed light is proportional to
average value of �cos2��; since in an interval 0 � � � �/2 the value �cos2�� is equal to 1/2,
Ipol. � Inat/2: intensity of light passed through the polarizer is a half of that of the incident
natural light.

6.4.3 Polarization at reflection: Brewster’s law

If natural light falls on the border surface of two media the reflected and refracted
beams are partly polarized. This occurs because of the fact that from a dielectric sur-
face only the component of the E vector which is parallel to the border surface (per-
pendicular to the incidence plane) is reflected. Then, in the reflected light the
oscillations perpendicular to the plane of incidence will predominate, whereas in the
refracted beam the oscillations parallel to the plane of incidence will prevail. It has
been experimentally established that when reflected from a dielectric surface light is
completely polarized if there is a certain relationship between the incidence angle � and
the refraction index:

(6.4.2)

Here the angle �B is referred to as the Brewster angle and the given reflection is known as
Brewster’s law. However, the refracted beam is polarized only in part.

When the beam falls on the two-phase border at the Brewster angle, the angle
between the reflecting and refracting beams is equal to �/2 (Figure 6.23). Indeed, as
tan � � (sin �/cos �) and (sin �/sin �) � n to satisfy Brewster’s law (tan �B � n) it turns
out that cos �B � sin �, which is possible only when �B � � � � � � � �/2.

tan .B� � n
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EXAMPLE E6.6

A beam of natural light falls on a polished glass surface plate submerged in a liquid.
The beam of light reflected from the plate is at an angle of � � 97° to the incident
beam. Define the refraction index of the liquid if the reflected light is completely
polarized (Figure E6.6).

Solution: According to Brewster’s law, when reflected from a dielectric light
is completely polarized if the tangent of the incidence angle is equal to
tan �1 � (n2/n1) � n21 where n21 is the relative index of the second body (glass) rel-
ative the first (liquid). The relative refractive index n21 is the ratio of absolute indexes,
i.e., tan �12 � (n2/n1). The reflected beam makes an angle of 2� � � and, consequently,
tan (�/2) � (n2/n1). Therefore, n1 � n2/tan (�/2) and the refraction index n1 is 1.33.

6.4.4 Rotation of the polarization plane

When passing plane-polarized light through some substances, the plane of polarization can
change its position in space, namely, it rotates around the light wave vector k. Substances

n1

�1'

�2'

�1

n2
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�
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partly-polarized ray

Figure 6.23 Illustration of Brewster’s law.
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possessing such properties are referred to as being optically active. Among optically active
substances there are many anisotropic crystal (i.e., whose structure does not relate to cubic
and hexagonal systems, see Section 9.1) and liquids (e.g., turpentine, nicotine, solutions of
many organic and inorganic substances in inactive solvents, etc.).

Experience shows that the angle of rotation of the polarization plane � around the wave
vector k in optically active media is proportional to the length l, traveled by a beam in a
sample

(6.4.3)

The coefficient �, generally dependent on the wavelength, is referred to a rotation constant
and is expressed in angular degrees on millimeters of distance run. In solutions of optically
active substances the angle of polarization plane rotation is proportional to the length trav-
eled l and concentration of the active substance c:

(6.4.4)

where [�] is the specific rotation  constant. So, knowing [�] and having measured l, it is
possible to define the concentration of an active substance in a solution.

The direction of rotation of the polarization plane depends on the substance: if the plane
of polarization turns clockwise in relation to k, the substance is referred to as a right-hand
(or dextrorotatory); if it turns anticlockwise, the substance is a left-hand (or laevorotatory)
substance. Thus the direction (the wave vector k) and the beam direction of rotation in a
dextrorotatory substance forms a left-hand system, and in a laevorotatory substance forms
a right-hand system.

For an explanation of the rotation of the polarization plane it is supposed that plane
polarization in inactive substances is the superposition of two oppositely directed circular
polarizations with identical amplitude and angular velocity. In Figure 6.24, a scheme
explaining this supposition is given. On the left, vectors E1 and E2 rotate around the k vec-
tor in opposite directions with equal angular velocities, therefore the total vector E oscil-
lates in the vertical plane. If the angular velocities differ, the plane of oscillations turns
around k (Figure 6.24, on the right).

The angular velocity’s characteristic in optically active substances is caused by an asym-
metric arrangement of atoms in molecules and crystals. In Figure 6.25, an example of a
hypothetical tetrahedron in two various enantiomorphous forms is depicted. In the center
of the tetrahedron is an atom (e.g., carbon as a complexation atom, not shown in the
picture), and in the vertexes various atoms are arranged A, X, Y and Z. If the tetrahedron
is looked at from above at a detour alternation XYZ (Figure 6.25a), a clockwise motion
takes place. The tetrahedron in Figure 6.25b is a mirror image of the one Figure 6.25a.
Such molecules are referred to as enantiomorphic. Therefore, if a substance with tetrahe-
drons of a-type in the structure is, for instance, dextrorotatory, an isomer with tetrahedrons
of b-type is a left-handed isomer.

Research into the effects of rotation of the polarization plane is one of the methods of
structural chemistry.

� ��[ ] ,c l

� �� l
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6.4.5 Birefringence: a Nichol prism

Let us consider now a phenomenon known as double refraction in anisotropic crystals.
In the XVIIth century, Huygens discovered that light passing through some crystals is
split into two beams (Figure 6.26). One passes through the crystal in strict conformity
with the laws of geometrical optics and is referred to as an ordinary beam (marked on
the figure by the letter “o”). The other beam is called an extraordinary beam (marked on
figure by the letter “e”); it passes the crystal’s surfaces with an infringement of the law
of refraction: i.e., it cannot lie in one plane with an incident beam and a normal to an
interface. The important thing is that both beams are completely polarized in mutually
perpendicular planes. This is the basic, and most practically important, property of bire-
fringent crystals.

In the crystals described there are one or two directions along which the double refraction
does not occur. These directions are referred to as the optical axes of a crystal (in 
Figure 6.26 and further defined by line MN). Certainly, they are determined by the atomic
structure of a crystal. If the crystal has one such direction it is referred to as a single-axis
crystal; there are also biaxial crystals with two such directions. Any plane which runs
through the crystal’s optical axis is referred to as the main section or the main plane. Most
interesting is the main section containing the light beam. The plane of the vector E oscilla-
tions in an ordinary beam is perpendicular to the main section and in extraordinary beam
lies in the main plane.
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The properties of isotropic media (including optical properties) are identical in all direc-
tions. Nearly all gases and liquids and highly symmetric crystals with cubic and, in part,
hexagonal structure (see Chapter 9.1) are referred to as isotropic ones. With anisotropic
crystals light interacts differently than with isotropic media.

Remember that the refraction index n defines the light speed in a medium � � c/n. For
weakly magnetic substances (M ≈ 1), it is connected to the dielectric permeability of the
medium � by an equation n � ���. In anisotropic crystals the dielectric permeability depends
on direction. In particular, in the optic single-axis crystals the dielectric permeability � in the
direction of the optical axis and perpendicular to it have different values, �|| and �⊥ respectively.
In other directions � has intermediate values. If we draw a sketch of � values in a single-axial
crystal for different directions by segments from an origin, the ends of these segments form a
rotation ellipsoid. Its axis of symmetry will coincide with the crystal optical axis. In 
Figure 6.27, an ellipsoid of the dielectric permeability of a single-axis crystal is presented.

Because the light speed � in a substance depends on the dielectric permeability �, the
given scheme also represents a diagram of the dependence of � on the crystal direction.
In this case this figure is called an indicatrix of speeds. Since the light speed does not
depend on direction in isotropic media, the indicatrix is represented by a spherical sur-
face. In anisotropic crystals, the properties of which depend on direction, the indicatrix
differs from a spherical one. Moreover, they can differ for ordinary and extraordinary
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Figure 6.26 The birefraction of natural light by a single crystal of spar CaCO3: MN is the optical
axis, o is the ordinary ray (o-ray), e is the extraordinary ray (e-ray).
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beams. Therefore, two indicatrixes exist: spherical for ordinary beams and as rotational
ellipsoids for extraordinary beams. They appear to be “inserted” in each other. Both
indicatrixes touch in the direction of an optical axis because in this direction they have
an identical light velocity. In a perpendicular direction, both indicatrixes differ maxi-
mally. In single-axis crystals there are two opportunities: in optically positive crystals
the velocity of extraordinary beam �e is less than that of ordinary �0, in optically nega-
tive crystals �e � �0 (Figure 6.28). By taking into account the difference in the optical
properties of the crystal, it is possible to find the refraction of all rays in all directions
graphically.

Nichol suggested a relatively simple method of making a completely polarized beam;
the method is based on arranging two split pieces of a crystal of Iceland spar (CaCO3) in
such a way that the beam transmitted through it is polarized. Such a device is now
referred to as a Nichol (Figure 6.29). In order to obtain such a polarizer the single crystal
of Iceland spar should be cut first into two pieces of proper orientation and then be stuck
together by a special glue substance. This substance should have the refraction index n,
lying in an interval between indexes n0 and ne of an initial crystal (n0 � n� ne); it is the
Canadian balm. The angle of fall onto the plane of pasting is selected in order to make
the ordinary beam undergo a total internal reflection (refer to Section 6.1) and then
be absorbed by the frame of the prism. The extraordinary beam freely passes through the
thin layer of balm and leaves the Nichol. Accordingly, it is completely polarized and can
be used in optical measurements.
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Figure 6.29 Schematic presentation of a Nichol. BD—the Canadian balm layer.
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A similar Nichol can be used as an analyzer. If two Nichols are one after another, one
as polarizer and the other as analyzer, their rotation around the beam axis essentially influ-
ences the transmission of light through this double system. If both Nichols are installed
identically the light transmission has maximal intensity, the rotation of the second Nichol
(the analyzer) around the beam at a right angle (crossed Nichol) completely extinguishes
light. If, however, an optically active substance is placed between the Nichol, the sample
becomes visible in crossed Nichols. To determine the angle of polarization plane rotation
it is necessary to turn the Nichol-analyzer at a certain angle to achieve extinction again.
The angle of rotation will be equal to angle � (Section 6.4.2). This fact relates to optical
methods of substances research.

EXAMPLE E6.7

A plate of quartz of thickness d1 � 1 mm cut out perpendicularly to the optical
axis of a crystal, turns a polarization plane of monochromatic light of a certain
wavelength at an angle of 20°. Define: (1) what the thickness of the quartz plate
placed between two parallel Nichols should be in order to extinguish the light
completely; (2) what lengths a tube l with a solution of sugar of mass concentra-
tion C � 0.4 kg/l should be placed between Nichols in order to obtain the same
effect? The specific rotation of the sugar solution is 0.665°/(m.kg.m�3) (refer to
Section 6.6.4).

Solution: (1) An optically active medium rotates a polarization plane at an
angle � � �d*. Therefore we can present the thickness of the quartz plate as d2

� (�2/�)**, where �2 is an angle totally extinguishing the light (�2 � 90°). The
rotation constants � can be found from * formula � � (� 1/d1). Substituting this
expression into **, we obtain d2 � (�2/�1) d1. Executing the calculations, we
obtain d2 � 4.5 mm. (2) The length of the tube with the sugar solution can be
found from the expression �2 � [�]Cd which defines the sugar solution turning
angle of the polarization plane � � �2[�]C. Substituting all known data we obtain
l � 0.38 m.

EXAMPLE E6.8

A parallel beam of light with a wavelength � � 0.5 �m falls normal to a diffrac-
tion grating. A lens with a focal length l � 1 m is behind the diffraction grating
to project a diffraction picture on a screen (Figure E6.8). The distance between
two first-order maxima is l � 20.2 cm. Determine (1) the diffraction grating con-
stant, (2) the specific number of grating grooves (on 1 cm), (3) the limiting dif-
fraction maxima and their total amount N and (4) the angle �max corresponding to
this maximum.
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Solution: (1) The diffraction grating formula is d sin � � k�. In our case k � 1.
sin � ≈ tan � (because L p l) and 2 tan � � l/L. Therefore, d·�/2L � �. From this
equation it follows that d � 2L�/�. Executing calculations, d � 4.95 �m.

(2) The specific number (on 1cm) of grating grooves is n � (1/d) � 2.02 	 103 cm�1.
(3) In order to find the number of diffraction maxima we need to calculate the

kmax corresponding to kmax � d/�(sin �max)*. kmax corresponds to max sin �.
Therefore, kmax � 9.9; however for this number sin � is larger than 1, therefore,
kmax is 9. This value allows us to find the general number of diffraction maxi-
mums N. The obvious relation exists N � 2kmax � 1. Therefore, N � 19.

(4) �max can be found from star relation: �max � arcsin(kmax�/d) � 65.4°.

6.5 DISPERSION OF LIGHT

All phenomena caused by the dependence of the refraction index on frequency (or on
wavelength) are united under the name light dispersion. Dispersion is referred to as nor-
mal if the refraction index steadily falls with an increase of wavelength (dn/d� � 0) or,
grows with an increase of frequency ((dn/d�) � 0); otherwise the dispersion is referred to
as being anomalous ((dn/d�) � 0). A typical picture of dependence n(�) for a normal dis-
persion is given in Figure 6.30.
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Figure 6.30 Normal dispersion: the relation between refraction index and �.
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For a better understanding of the presence of abnormalities in the dependence n(�), it
is useful to consider the process of light interaction with atoms in a substance. In Section
4.2.4 in the analysis of electronic types of dielectric polarization, it was shown that the
internal electric field in an atom linearly depends on displacement and creates a force
that returns the charge to its initial position. This means that an electron, being forced
out of its equilibrium position, begins to make harmonic oscillations with a frequency of
its natural frequency �0. The strength of an electric field in a light wave acts with its own 
frequency �. Under the action of an electric field, an electron starts to oscillate with fre-
quency � causing secondary radiation. The process of forced oscillation was considered
in Chapter 2.7. There it was shown that the amplitude of the forced oscillations of a sys-
tem A(�) depends inversely on the difference of squares of natural frequency and the
frequency of the driving force (�0

2 – �2). When �2 approaches �0
2, a sharp increase in

oscillation amplitude can be observed (eq. (2.7.4) and Figure 2.15). Accordingly, the 
resonance is accompanied by an additional absorption of the incident wave; which is
expressed in more or less sharp lines in spectra of absorption and emission. 

The refraction index n is expressed through dielectric permeability � and magnetic 
susceptibility � by an equation n � (��)1/2. In Section 4.2.5, it was mentioned that only elec-
tron polarization will be exhibited in light with a frequency ≈ 1015 sec�1. Accordingly for
substances with � ≈ 1 (which is characteristic of the overwhelming number of chemical
compounds) n2 � �. Taking into account that � � 1 � � and � � ℜ/�0E (refer to Section
4.2.2, eq. (4.2.8)), we obtain n2 � 1�(ℜ/�0E). For dielectrics in this frequency range the
polarization ℜ can be presented as: ℜ � np (eq. (4.2.2)). In its turn an induced electric
moment p, according to definition, is the product of the charge ⏐e⏐ and shoulder x of the
induced dipole; then

(6.5.1)

The displacement value x can be found by solving a differential equation of forced oscilla-
tions. In this case the electric field strength is acting as the force: Ffrc � ⏐e⏐E(t)
�⏐e⏐E0cos�t, a restoring force can be considered as an elastic force Frst � ��x  � �m�2

0x.
Therefore, the differential equation for x determination has the form: 

(6.5.2)

The solution of such an equation is given in Chapter 2.7 where it was shown that:

(6.5.3) x
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Substituting the result into eq. (6.5.1) we obtain

(6.5.4)

At � ^ �0 or � p �0, the value n2 does not depend on � and is near to 1. If the light 
frequency approaches �0, resonance phenomena appear and the refraction index rises 
significantly (Figure 6.31). In reality the picture, n2(�) is like that presented in Figure 6.32.
It is important that the position of abnormal dispersion ((dn/d�) � 0) coincides with the
light absorption line in a substance.
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Figure 6.31 Graphic representation of the relationship of the square refraction index and the light
frequency (as follows from eq. (6.5.4)).
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Figure 6.32 The experimentally measured dependence of n2 versus the incident light angular
frequency �. The position of the anomaly dispersion maximum coincides with the absorption
line position.

Else_PE-OZEROV_ch006.qxd  2/9/2007  7:10 PM  Page 397



The figure at which n � 1, the light speed in a substance becomes larger than the
speed of light c, should not confuse the reader. In this case the phase speed is consid-
ered, i.e., the speed of distribution of the given, constant phase. The wave energy and
momentum are transferred by group speed which cannot be more than the speed of light
(see Section 2.9.4).

6.6 THE QUANTUM-OPTICAL PHENOMENA

6.6.1 Experimental laws of an ideal black body radiation

The radiation of electromagnetic waves by a heated body refers to as thermal radiation.
Any body radiates at any temperature, however at medium temperature range its intensity
cannot be measured by an ordinary device at sure. 

For the quantitative characteristic of thermal radiation the concept of an emittance R is
used: the emittance is referred as to the energy that is emitted by a unit surface of a heated
body in all directions within a solid angle 2� (a half of full solid angle, i.e., one side of a
plane) in a unit time in a whole interval of frequencies (wavelengths).

Thermal radiation basically contains waves of all frequencies. When allocate an inter-
val of frequencies d� at temperature T, part of emittance dR corresponds to it: the wider
d� the higher dR. However the ratio between them is not linear, it depends on frequency
� (wavelength �). The value r, connecting dR with d� depends also on radiation frequency
and referred to as spectral density of emittance, i.e.

or

(6.6.1)

The total emittance R can be obtained by integration of function r(�,T ) over the whole
interval of frequencies, therefore R does not depend on frequency and is entirely defined
by temperature:

(6.6.2)

Function r(�,T ) also describes of a body’s ability to emit thermal radiation. 
Basically, the curve of dependence r (�) at the fixed temperature T can be experimen-

tally measured (Figure 6.33).  The figure shows: a muffle furnace with a radiating body
inside, aperture in the furnace door and in a screen cutting out the desirable stream of
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the thermal energy directed further to a spectral device. A purpose of the spectral device
is to decompose the whole falling radiation into a spectrum on frequency. Consequently
the spectrum of thermal radiation is obtained which should be investigated and
explained.

To measure such curve represents significant difficulty as beams of different wavelength
demand various techniques. In a result, the various parts of a general curve are “tailored”. 

Figure 6.34 schematically depicts the emission spectra of bodies heated to various tem-
peratures, from almost room temperature to temperature of the sun surface. In the same
figure the curve of luminosity presents (see also Figure 6.1) which enables one to know
radiation at what emitter temperature is radiation perceived by eye as light. Part of a spec-
trum of thermal radiation can be felt as heat on the skin of the human – this is mainly IR
radiation. UV radiation can also be felt by the skin – this we think of as sunburn. All this
is an insignificant part of the general thermal radiation. Perhaps, only the sun radiation
contains in its spectrum all the wavelengths that humans perceives with almost all their
sensory organs.

The curves can be schemed in coordinates r(�) and r(�) keeping in mind the relation 

(6.6.3)

In order to transfer from r(�) to r (�) one should to compare equivalent peaces of the
graphs  areas of both functions

(6.6.4) r d r d( ) ( ) .� � � ��

� � �� �2 ,c

6.6 The Quantum-Optical Phenomena 399

heated body

screen

spectral unit

intensity

final curve

wavelength

Figure 6.33 The experimental scheme of the measurement of the spectral composition of heat radi-
ation; furnace to heat a body, screen protector, spectral device to measure the radiation intensity; the
experimental graph coordinates are shown.
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Derivation of the eq. (6.6.3) gives

(6.6.5)

(The minus sign in this expression specifies only that with increase one value another
one decreases. Therefore the sign minus further will be omitted). Changing in the equa-
tion (6.6.4) d� on d� according to (6.6.5) we can obtain r (�)d� � r (�)(2πc/�2)d� �
r(�)(�2/2�c)d�, or, finally:

(6.6.6)

The radiation power flux d � (�) is the thermal radiation energy emitted in the unit of
time from the surface dS of the radiated body
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Figure 6.34 Spectral intensity distribution of the heat radiation at different emitter temperature:
boiling water (400 K), electric heater (800 K), red incandescence (1000 K), blowtorch (2000 K),
voltage arc (3000 K) and the sun radiation (6000 K).
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Falling on any surface, this flux will be partly absorbed (this part we will call the absorbed
flux of energy d� �(�)), and partly reflected. The dimensionless value

(6.6.8)

is referred to as the absorbing capacity of a body a. In general cases, absorbing capacity a
depends both on frequency and on temperature of the radiator.

For a body that completely absorbs all the thermal radiation falling on it in all ranges of
frequencies and at any temperature, the value a is constant and equal to 1; such a body is
called a perfect black body (PBB). If the body’s absorbing capacity depends on frequency
and/or on temperature, but is constant (less than 1), the body is called gray. The majority
of bodies, however, are not PBB or gray, their absorbing capacity is less than 1 and
depends on frequency and temperature; these are arbitrary bodies.

There is a certain connection between the emitting and absorbing capacity of a body
namely the Kirchhoff law: the ratio of the body’s emitting and absorbing capacity does not
depend on the nature of the body but is identical, i.e., universal, for all bodies’ functions
of frequency and temperatures (function f(�,T ) 

(6.6.9)

This function is referred to as Kirchhoff function.
The Kirchhoff law defines one of the most important properties of thermal radiation,

distinguishing it from other types of radiation (fluorescence, luminescent, etc.): thermal
radiation is an equilibrium one. From eq. (6.6.9), it follows that the more a body absorbs,
the more it radiates. Hence, in an isolated system of bodies their temperature will eventu-
ally be equalized, becoming identical. If a body absorbs more, it also radiates more. The
values r(�,T) and a(�,T) can differ, but their ratio is identical.

The analysis of the curves, similar to those presented in Figure 6.34, allows one to
understand and formulate some laws of thermal radiation. Thus it has been experimentally
established that emittance is proportional to the fourth degree of absolute temperature:

For a gray body the given ratio can be rewritten:

(6.6.10)

This is the Stefan–Boltzmann law. The value of constant � in this law is experimentally
established: � � 5.7 	 10�8 W/(m2 K4). The expression (6.6.2) shows that the area under
the curves in Figure. 6.34 is proportional to the fourth degree of absolute temperature.
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From the same figure it can be seen that, depending on temperature, the radiation spec-
trum is shifted to the shorter wavelengths. This law can be written as

(6.6.11)

where �max represents the wavelength corresponding to the maximum of radiation spectral
distribution. This dependence is referred to as Wien’s law of displacement, constant b is
equal to 2.90 	 10�3 mK.

All the above-mentioned experimental facts and laws require a theoretical explanation.

6.6.2 Theory of radiation of an ideal black body from the point of view of

wave theory: Rayleigh–Jeans formula

Before examining the theory of thermal radiation, one should suggest the model of an ideal
black body (IBB), i.e., a body that absorbs all falling radiation. The most simple, yet 
successful, is a model representing an almost completely closed cavity with a small aperture
(Figure 6.35): all beams that get inside the cavity lose their intensity after consecutive reflec-
tions, and do not leave the cavity.

Because the heated-up walls of the cavity are a source of thermal radiation and only an
insignificant part of it leaves, a certain equilibrium density of radiation is established in the
cavity. Standing waves (such as in a string (see Section 2.9.3) are produced in the cavity,
the wavelength of which is defined by eq. (2.9.8). As for standing waves in a string, the
maximum wavelength of a standing wave is determined by the size of the cavity. Also, the
minimum length of a wave is determined by the discrete character of the material from
which the walls are made. Therefore, the density of standing waves in the cavity is finite.
After detailed consideration, one can obtain �2/4�2c2.

Within the framework of classical physics, an oscillator with certain frequency � can
be put in conformity to each standing wave. According to the law of uniform distribu-
tion of energy on degrees of freedom (see Chapter 3), to every oscillator an average
energy �T can be attributed (because two (½)�T goes to the oscillation degree of

�max �
b

T
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Figure 6.35 Model of an ideal black body (IBB).
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freedom connected to kinetic and potential energy). Hence, the total energy of radiation
of an IBB is 

(6.6.12)

or in terms of wavelengths

(6.6.12�)

This formula was first suggested by Rayleigh and Jeans, and was irreproachable from the
point of view of the wave nature of light. It equally concerns experimentally measured
dependence of heat radiation of an ideal black body.

At the same time, the theory and experiment are in a glaring contradiction with one
another, mainly in the area of small wavelengths (large frequencies). From Figure 6.36b,
it can be seen that at small wavelengths (or at increase of frequency, in other figures) the
theoretical curve soars sharply upwards, whereas the curve achieved by experiment
(Figures 6.34 and 6.36a) goes downwards. This also leads to the incorrect conclusion that
the luminosity R (6.6.2) becomes senselessly infinite. Because of the area where the diver-
gence takes place, the discrepancy between theory and experiment has been called an “UV
accident,” thus recognizing the inability of the theory to explain the laws of radiation
within the framework of wave theory as it existed at that time.

A completely different approach to the theory of radiation was, therefore, necessary.
One was proposed by W. Wien (awarded the Nobel Prize in 1911) who, on the basis of the
laws of thermodynamics, obtained a “bell-shaped” theoretical curve. A revolutionary
approach was suggested by Planck (1900), which resulted in the full agreement between
theory and experiment. 
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Figure 6.36 The spectral density of heat radiation r versus the wavelength �: (a) experimental
curve, (b) “ultraviolet catastrophe,” (c) the correspondence of the theory and experiment in the
framework of Planck theory.
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EXAMPLE E6.9

The maximum of spectral density of the sun’s radiation emission corresponds to 
the wavelength � � 500 nm. Assuming that the sun radiates like an IBB, determine:

(1) emittance of sun R* (R* means the emittance of IBB), (2) energy flux of sun
radiation �, (3) total mass m of electromagnetic radiation irradiated by the sun in one
sec (refer to Section 6.6.1).

Solution: (1) The Stefan–Boltzmann law describes the radiation emittance R* of an
IBB R* � �T4, where � equals to 5.67 	 10�8 W/(m2K4). The sun’s surface tempera-
ture can be determined using the Wien’s law �max � b/dT, where b � 2.90 	 10�3mK.
Combining these two formulas, we obtain

Executing calculations, we arrive at R* � 6.4 	 107 W/m2.
(2) The energy flux � radiated by the sun is the product of radiation emittance

and the sun’s surface area � � RS or � � 4�r2R* where r is the sun’s radius.
Substituting all data into the last formula, we arrive at � � 3.9 	 1026 W.

(3) The total mass of electromagnetic radiation emitted by the sun in 1 sec can be
determined using the correspondence mass and energy E � mc2. The energy of the
electromagnetic radiation in the time t is equal to the product of the flux and time
E � �t. Therefore �t � mc2 and further m � �(t/c2). Executing calculations, we
arrive at m � 4.3 	 109 kg.

6.6.3 Planck’s formula: a hypothesis of quanta—intensity of light from

wave and quantum points of view

Analysis of the state of theory and experiment concerning IBB radiation and the mathe-
matical description of the phenomenon led Planck to recall Newton’s hypothesis that light
is a stream of particles (corpuscles); this had been rejected on the basis of successive works
on interference and diffraction. Planck suggested a revolutionary idea: that each particle of
radiation is a corpuscle or quantum, i.e., a particle bears a portion of energy h� � ��
where h is a certain constant, and � � h/2�. Then the total radiation energy flux should be
expressed by the total number of quanta, ��, i.e., E � �N

i�1ni��i, where �� is the energy
of a single quantum, ni is the amount of such quanta and N is their total number. The dis-
tribution of quanta on energy is set by the Boltzmann factor.

According to the statistical method of average values calculation (see eq. (3.2.11)), we
can write a similar expression for the average energy of a quantum oscillator �� having
replaced integrals by sums. Therefore, following Planck, we arrive at:

� �
�

�
�
�

�

�
�

�

�

�
��

�

n
n

T
n

T

xn

N

n

N

�
�

�
�

exp

exp

[exp( )0

0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∑

∑
�� � �

� � � � �

2exp( 2 ) ]

1 exp( ) exp( 2 )
,

x

x x

�
�

R
b� ��

�max

4

.
⎛
⎝⎜

⎞
⎠⎟

404 6. Wave Optics and Quantum–Optical Phenomena

Else_PE-OZEROV_ch006.qxd  2/9/2007  7:10 PM  Page 404



where x � �(��/�T). In the last expression a fraction can be rewritten as

from which the sought value �� is derived:

(6.6.13)

Leaving unchanged the part of the calculation in which the oscillation density in the cav-
ity of an IBB was counted, and attributing to every oscillator the above-mentioned average
energy ��, Planck came to the formula of function r(�,T) for an IBB

(6.6.14)

The formula obtained not only correctly reflected an agreement between the theory and
experiment, but also allowed the determination of the h value; in Figure 6.36c the theoretical
results are “adjusted” to the experimental, from which the value of the constant h (� 6.626 	
10�34 J sec) has been determined. This value was later named after M. Planck; it is typical that
Planck’s constant has the dimension of the momentum or quantum of action (i.e., the product
of energy and time of its action). 

Proceeding further to corresponding functions from wavelength ((6.6.1) and (6.6.6)), it
is possible to obtain the dependences r and f on �:

(6.6.15)

Planck’s formula well describes limiting transitions. So, at �� ^ �T the exhibitor in the
denominator of function (6.6.14) can be decomposed in a series and be limited by two
terms. This leads to Rayleigh–Jeans formula which describes very well experiment in this
area of frequencies. In contrast, at �� p �T the unit in the denominator can be neglected
and functions r and f fall according to the exponent that is found by experiment.
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The Planck formula suggests how to find numerical values of constants in Stefan–
Boltzmann and Wien laws. In particular on integration of Kirchhoff’s law on the whole 
frequency range one can arrive at the Stefan–Boltzmann formula. The constant in Wien’s
law b can be found by derivation of the Kirchhoff’s function on frequency and equalizing
it to zero. We hope that readers can carry out these calculations themselves.

Thus in the phenomena described, radiation is represented by a flow of corpuscles,
quanta of energy which have been called photons. The energy of each photon is defined by
product ��. Though for a long time it was known that in other experiments the same radi-
ation manifests itself as a flow of waves. There is a problem, which has occupied the minds
of many physicists, which is now known as particle-wave dualism and to which we shall
pay more attention.

Wave and quantum theory lead to completely different representations of the intensity of
light. We should remember that intensity is understood as energy falling normally on a unit
of area in a unit of time. Within the framework of wave theory, the intensity of a mono-
chromatic beam of light is defined by the square of the wave amplitude and does not depend
on frequency, i.e., I ~ A2. In quantum theory at a fixed wavelength (and, correspondingly,
frequency) intensity is defined by the number of quanta, i.e., I ~ N��. As will be shown
below, a number of experiments have excellently confirmed Planck’s quantum hypothesis.

Let us emphasize once again that the theory of thermal radiation became the starting
point for quantum mechanics, which has subsequently received confirmation in many
areas of physics.

Laws of thermal radiation are widely used in technology to initiate and support chemi-
cal processes and to measure the temperature of bodies, contact with which is either
impossible or complicated (e.g., measuring the temperature of the stars, the heated up
gases during the launch of missiles, etc). These laws form the basis of optical pyrometry.
It can be seen in Figure 6.34 that measurement of an integral of luminosity R (the area
under the curves) can be a measure of body’s temperature. There are several kinds of
pyrometry: one is based on color and another on brightness. The first is based on the posi-
tion of the curve maximum and the second on the ordinate at fixed wavelength. Certainly,
all the laws used here are only fair for IBB, however there are ways to account for the
uncertainty arising in experiments.

The stated theory of thermal radiation also allows  an explanation of a phenomenon that
has an influence on life on earth. This is the so-called green-house effect. The sun’s radia-
tion (the spectrum is depicted in Figure 6.34), passes through open space, and reaches the
external layers of the earth’s atmosphere, naturally with a loss of intensity, but without a
special change of spectral composition. In the atmosphere there is selective absorption of
the sun’s radiation by natural and industrial gases. This selectivity is defined by the struc-
ture of molecules, by their concentration and properties. It is natural also, that absorption
of radiation depends on humidity, dust content and other properties of the atmospheric lay-
ers close to the surface of the earth.

The sun’s radiation reaches the surface of the earth and heats it up and, together with the
internal heat of the planet, defines the temperature of its parts (depending on geographical
place). At the same time, the earth’s surface also radiates thermal energy. The temperature of
the “radiator” in this case is essentially less than the sun’s temperature, accordingly the entire
spectrum, under Wien’s law, is shifted to the long-wavelength region area (see Figure 6.34).
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This radiation is directed from the earth surface and should again penetrate through the
atmosphere in the opposite direction. However, being long wavelength the earth’s radiation
is absorbed by the atmosphere differently than the radiation from the sun. The transmission
ability of long-wavelength radiation is less than solar radiation, the earth’s radiation is appre-
ciably “absorbed” in the atmosphere, heating it up. This is the green-house effect. 

Taking billions of years to establish, the thermal equilibrium in the solar system defines
life on earth. Every large-scale action can affect the established balance to some extent,
displacing it in one way or another. In particular, the industrial activity of mankind leads
to a change in the chemical composition of the atmosphere, increasing the concentration
of industrial waste products. This change influences the absorption of the radiation falling
to earth and leaving it. However, to a much greater degree, it concerns the radiation of the
earth rather than that of the sun. All these events cause “over-warming” of the atmosphere
and disturbance of the equilibrium.

The effect is probably not so large: it is estimated at approximately 1–2°. The results,
however, can be catastrophic. One example is the appreciable effect on the people living
in those European countries that are below sea-level and protected from the sea by dams
(e.g., Denmark, The Netherlands). The increase in atmospheric temperature can melt much
more ice than would normally maintain the existing balance. The consequences are dan-
gerous for large cities such as Venice, Saint Petersburg and will affect the climate of
Florida and many other pearls of human civilization.

In this connection it is also worth mentioning the so-called “ozone holes”—the local
destruction of a centuries-old balance in the composition of the atmosphere resulting from
the products of industrial activity (e.g., chlorofluorocarbons—freons) which create areas
(holes) in the atmosphere that are transparent to short-wave UV radiations. These holes in
the ozone layer are making the affected areas dangerous to live in because of the excess of
UV radiation, which is harmful to life on earth. It is also probable that short wavelengths
can cause undesirable mutations in living organisms.

6.6.4 Another quantum-optical phenomena

Planck’s hypothesis was confirmed and developed by Einstein’s theory of an external
photo-effect.

The photo-effect consists of knocking electrons out of the surface layers of some metals
and oxides on their irradiation by quanta of electromagnetic radiation. The scheme of an
experiment on the photo-effect is presented in Figure 6.37. The main part of the experi-
mental equipment is a vacuum bulb with two electrodes C and A with a window allowing
the irradiation of electrode C. The interaction of electromagnetic radiation of definite fre-
quency � and amplitude A results in knocking the electrons out of the surface of electrode
C. A voltage difference is applied to the electrodes (Figure 6.38). First a negative pole is
applied to K accelerating the kicked-out electrons. As the voltage increases, all the elec-
trons reach electrode A, and saturation takes place (the horizontal line in the scheme).
However, a device permits the signs of the electrodes to be changed; when a decelerating
voltage difference is applied, part of the electrons are not able to reach electrode A. When
the difference is zero only those electrons that have their own high enough kinetic energy
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can reach A. Furthermore, even at a coercive force some of the energetically active elec-
trons can still reach A. Only a locked-out voltage can stop the current through the bulb. If
the light intensity (i.e., the amplitude of the incident light, A) is increased and the same �
is kept, the saturation increases but the locked-in voltage remains the same. This means
that it is not the light electric field amplitude (intensity) but the frequency which is respon-
sible for kicking electrons out from the electrode and locking them. In fact, if the light fre-
quency � is increased, the locking in voltage also increases.

The result obtained in the experiment is in agreement with the supposition that, in a
given phenomenon in the photo-effect, light behaves as a flux of particles (photons). The
results obtained regarding the volt–ampere characteristic shown in Figure 6.38 are decep-
tive. These results can be explained as follows.

The energy of the falling quantum �� is transferred to an electron in photocathode
producing the work A. Part of the energy is expended for the work A1 of moving the
electron from the deep layers of the photocathode up to its surface, then in overcoming
electron binding to the photocathode body A2; the remaining energy is left to the
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photoelectron as its kinetic energy. According to the law of energy conservation we can
write:

(6.6.16)

In this expression, work A1 is undetermined since it is not known at precisely what point
of the cathode body the collision took place. The work A2 is a characteristic of every metal
and oxide and is referred to as work function. If we exclude the unknown term from this
line, i.e., remove the term A1, the equation become valid only for those electrons which, at
the moment of collision, were on the surface of electrode A; they have the highest possi-
ble kinetic energy. Therefore:

(6.6.17)

It is possible to determine the kinetic energy of the photoelectron using the experimen-
tal value of the locking out voltage. Then we can write:

(6.6.18)

It follows from this equation that there is a limiting frequency �k below which the photo-effect
in a given photocathode disappears completely. In fact, the quantum ��k does not have enough
energy to tear an electron out of the surface of electrode C. This happens when �� is lower
than the work function. The so-called photo-electric threshold takes place at ��k � A2.

In addition to the theory of an IBB, it has been proved in quite another experiment that,
in some circumstances, light behaves as a particle flux rather than a wave.

Albert Einstein was awarded a Nobel Prize in 1921 for his outstanding contribution to
physical science in general and especially for the photo-effect theory, which belonged mainly
to Einstein and provided convincing confirmation of Planck’s hypothesis energy quanta not
only in the theory of heat radiation but also in some other physical events. Einstein was also
responsible for the concept of a photon which is widely used in modern physics.

A short-wave border of X-ray radiation is another phenomenon, which supports the quan-
tum idea. Discovered by W.C. Röntgen in 1895 and referred to as X-rays, this is the electro-
magnetic radiation with a wavelength of the order 10�10 m (see Chapter 5, Table 5.3), arising
on the electron transition in atoms and also on electron movement with acceleration (linear
or centripetal). In the majority of countries this radiation is referred to as X-rays as it was
called by Röntgen himself, but in Germany and Russia the term “Röntgen rays” is used. The
generator of such radiation is the X-ray tube, the principle scheme of which is given in 
Figure 6.39. There are two electrodes in vacuum glass cylinder. The cathode represents a
heated string and the anode is a massive metal cylinder, compulsorily cooled from inside by
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flowing water. The cathode’s task is to emit electrons. A potential difference from tens to
hundreds of keV (and more) is applied between the cathode and the anode. This electric
field accelerates all emitted electrons up to an energy of 10–100 keV. The main part of
the electron energy, allocated in the anode as heat, is taken away by flowing water. The
remaining energy is used in the excitation of X-rays. Two kinds of X-ray radiation are
known. Characteristic radiation results from the return electron’ transitions from excited
to ground state levels in atoms. This radiation has a linear spectrum and is widely used in
modern science and technology for the analysis of chemical structures (refer to 7.6.4).

Bremschtralung radiation arises at the instant of the electron stopping in the anode sub-
stance. According to classical theory, the distribution of a frequency (wavelength), arising
due to electron stopping X-ray radiation should cover a wide range of spectrum from zero
to infinity (as in thermal radiation spectra). Experimental results contradict this supposi-
tion: in Figure 6.40 the X-ray intensity versus their wavelength is plotted, the curves
sharply terminating at the shortest wavelengths.

An explanation of this fact can be found in the quantum theory of radiation. The law of
energy conservation in this case can be written as:

(6.6.19)

The electron energy before impact with an anode is written on the left-hand side of this
expression; on right-hand side is the sum of all the photons’ energies, which appeared on
collision. Since the process of electron braking is uncontrollable in this process, photons
of all energies are produced, and the spectrum contains all wavelengths (so-called
“white” spectrum). However, a limiting case exists when an electron gives all its energy
to produce only one single unique photon. In this experiment this photon possesses the
largest energy. It defines the boundary value of the wavelengths; photons of larger energy
(smaller wavelength) in the bremschtralung X-ray spectrum cannot appear. For such a
photon, expression (6.6.19) becomes simpler

(6.6.20)eU
c

� ��
�

�
�

�max
min

2
,

eU i
i

N

�
�

��
1

.∑

410 6. Wave Optics and Quantum–Optical Phenomena

ground

X-rays

cathode anode

cooling water

high voltage
transformer

device to heat cathode

Figure 6.39 Scheme of an X-ray tube source.

Else_PE-OZEROV_ch006.qxd  2/9/2007  7:10 PM  Page 410



whence

(6.6.21)

The expression excellently coincides with experiment.
The presence of a short-wave limit of X-ray radiation in the X-ray tube spectrum is a

fact that cannot be explained by wave theory; in this experimental arrangement, the pho-
ton with larger energy cannot appear under the law of energy conservation: all the electron
energy has already been given to the single X-ray quantum, the photon with smaller wave-
length (greater energy) simply has no electron energy to appear;

The Compton effect is another phenomenon contradicting classical wave theory. This
effect arises on X-rays scattering by electrons weakly bonded to atoms. The scheme of the
experiment is given in Figure 6.41. A beam of monochromatic X-rays (with wavelength
�0) falls through a collimator onto a sample and is scattered. A special device investigates
the intensities of both incident and secondary radiation scattered at an angle �.

Proceeding from wave theory, it follows that the scattered radiation should contain only
one wavelength: the one that falls on the sample, i.e., �0. In fact, the electric field of an elec-
tromagnetic wave in the X-ray range should oscillate the electrons, which in turn should
radiate secondary waves of the same wavelength. However, in the scattered radiation, exper-
iment reveals that besides one unshifted �0, there is one more component, referred to as a
shifted component with wavelength � greater than �0 (Figure 6.42). It is experimentally
established that the value of displacement (shift) 
� � �� �0 does not depend on the sam-
ple material and that this displacement is greater, the larger the scattering angle �, namely,

(6.6.22)
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It is possible to explain all the features of the Compton effect if we consider them as a
process of elastic collisions of X-ray photons with peripheral atomic electrons (in terms of
the theory of particle collisions, see Section 1.4.5). We recall that, in elastic collision, both
conservation laws (kinetic energy and momentum) are valid. Since a feedback electron can
have a speed commensurable with the speed of light, it is more appropriate to use the rel-
ativistic theory (refer to Chapter 1.6) for the analysis.

At an initially rested electron, weakly bonded to an atom (with its kinetic energy and
momentum practically equal to zero), the photon falls with energy �� and a momentum
�k. In this case, the above-mentioned conservation laws in this case look like:

(6.6.23)

the energy conservation law, and

(6.6.24)

the momentum conservation law, � � �/c.
For the feedback electron, having lost its bonding to the atom, the momentum relativis-

tic expression pe can be given as:

(6.6.25)

where � is its speed.
Using a vector diagram (Figure 6.43), projecting electron and photon momentums on

x-axis, we obtain

(6.6.26)
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and on the y-axis

(6.6.27)

Exclude from the last expressions the electron parameters and we arrive at the final
expression:

(6.6.28)

The expression h/m0c is referred to as Compton wavelength and is denoted as Λ.
The same results can be obtained in the framework of nonrelativistic physics though the

Compton effect belongs to the relativistic case. Both arrive at the same result, but the non-
relativistic derivation is simpler. However, when examining the feedback electron, it is
necessary to use relativistic theory.

For his discovery and explanation of the effect, A. Compton was awarded the Nobel
Prize in 1927. At present this effect is used for the study of atomic valence electrons in the
structure of the chemical compounds.
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EXAMPLE E6.10

An electron runs accelerating voltage 104 V in an X-ray tube. Determine the wave-
length corresponding to the short-wave limit of the bremschtralung spectrum of the
X-ray radiation.

Solution: A simplified construction of an X-ray generating device is given in
Chapter 6.6. The accelerating electrons in the X-ray tube knock on an anode, 
X-rays being emitted in this process. In this example, a continuous spectrum is of
interest. The shortest wavelength limit in this bremschtralung spectrum appears. 
It corresponds to the case when the whole electron energy transfers to a single 
X-ray quantum. Therefore, for this point the energy conservation law is valid 
� � eU��� � hc/�.

Therefore,

Substituting all the values we arrive at

EXAMPLE E6.11

Determine the cesium photoelectric threshold �0 if at its surface irradiation by violet
light � � 400 nm a maximal speed of photoelectrons �max is equal to 0.65 	 106 m/sec
(refer to Section 6.6.4).

Solution: The threshold corresponds to the situation where both the speed 
and energy of photoelectrons are equal to zero. Therefore, Einstein’s equation is

�min

34 8

19 4

o6.63 10 3 10

1.6 10 10
1.24 A.�

	 	 	

	 	
�

�

�

�min .�
hc

eU
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� � A where A is the photoelectric work function and � is the electron kinetic
energy. We can obtain the expression

The photoelectric work function can be determined using Einstein’s equation

To execute calculations we should express all the values in the SI system: ��1.05 	
10�34 J sec, c �3 	 108 m/sec, � � 400 nm � 4 	 10�7 m, m � 9.11 	 10�31 kg,
�max � 6.5 	 105 m/sec. Calculations give us A � 3.05 	 10�19 J. To define photoelec-
tric threshold �0, we should substitute the already known data and obtain � 0 � 651 nm.

EXAMPLE E6.12

A photon of energy � � 0.75 MeV is scattered by a nearly free electron at an angle
� � 60°. Assuming that the electron’s kinetic energy and momentum before the col-
lision were negligible small, define: (1) the energy �′ of the scattered phonon, (1) the
kinetic energy K of the recoil electron and (3) the direction of its movement.

Solution: (1) According to the Compton formula (refer to Section 6.6.4):

we can  express � and �′ using energy of photons � and �′:

Solving this equation regarding �� we obtain:
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Executing calculations we arrive at �� � 0.43 MeV.
(2) The kinetic energy can be found from the energy conservation law K � � – ��

� 0.32 MeV.
(3) The direction of the electron recoil motion can be found by applying the

momentum conservation law (see Figure 6.43) p � p� � m0�. From a triangle OCD
we can find

(We use here the general equation p � �/c). Let us express

tan� through the given data; therefore we find the ratio

Hence

Taking into account some trigonometric relation we arrive at

Executing calculations we obtain tan� � 0.701 and correspondingly � � 35�.

6.7 THE BOHR MODEL OF A HYDROGEN ATOM

In previous sections, experiments which do not have explanations within the framework of
Newtonian physics have been described. It is also known that reliably measured linear
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spectra of atoms, primarily hydrogen, also required the development of a completely new
approach. This approach was suggested by Bohr, who formulated the theory of the hydro-
gen atom (Nobel Prize, 1922). Today it is considered to be semi-quantitative although it
has not lost its significance.

If we accept that atoms radiate electromagnetic waves with an energy h�, it is necessary
to establish where this energy originates from. We can equate energy h� to the loss of
energy E2 - E1 but it is then necessary to explain the nature of these energies. It is tempt-
ing to accept Rutherford’s planetary atomic model, but this seems impossible since it is
known that the movement of a charged particle on a curvilinear trajectory undergoes a con-
tinuous loss of energy and the electron will inevitably fall onto a nucleus. However, in
order to connect energy E2 and E1 with orbital movement, it is necessary to understand the
stability of their orbits. The answers to all these questions were given by Niels Bohr in his
theory of hydrogen atom.

Bohr’s planetary model of the atom states that electrons in a hydrogen atom move in a
circular orbit of radius r around a proton. The proton is so heavy in comparison with the
electron that the center of mass of this system coincides with the position of the nucleus.
Following Bohr, calculate the total electron energy.

According to Newton’s second law 

(6.7.1)

where a Coulomb force electron–proton interaction equates to ma, a being centripetal
acceleration. The kinetic energy K can be derived from this equation:

(6.7.2)

whereas the potential energy of a negative charge in a field of the positive nucleus can also
be found

(6.7.3)

where � is the nucleus electrostatic potential at distance r (refer to eqs. (4.1.21) and
(4.1.22)). The total energy is then

(6.7.4)

Since the orbit radius can apparently take on any value, so can the energy E. The problem
of E quantization reduces to quantization of r.
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All the values listed above are unequivocally connected with r, other values are expressed
with its help as well. In particular, the linear electron speed � can be expressed as

(6.7.5)

The frequency � is

(6.7.6)

The linear momentum p is

(6.7.7)

And the angular momentum L is

(6.7.8)

Thus if r is known the orbit parameters K, U, E, �, �, p and L are also known. If any one
of them are quantized all others must be also.

Up to this point only classical physics has been used. Here, Bohr suggested that the nec-
essary quantization of the orbit’s parameters shows up most simply when applied to the
angular momentum and that, specifically, L can take on only values given by

(6.7.9)

where n can accept integer values 1, 2, 3, etc. The Planck constant appears again in a fun-
damental way.

Combining eqs. (6.7.8) and (6.7.9) leads to

(6.7.10)

and

(6.7.11)

i.e., to the energy quantization. 

E
me

h n
��

4

0
2 2 28

1

�

r
h

me
no�

2

2
2�

�

L n n
h

� ��
2

,
�

L pr
me r

� �
2

04
.

��

p m
me

r
� �y

2

04
.

��

�
�

� �
2 16

.
2

3
0

2� � �r

e

mr

��
e

mr

2

04
.

��

418 6. Wave Optics and Quantum–Optical Phenomena

Else_PE-OZEROV_ch006.qxd  2/9/2007  7:10 PM  Page 418



If we accept n � 1, the well-known radius of the first orbit in H-atom can be obtained

(6.7.12)

Further, the atom radiates or absorbs energy only when an electron passes from one sta-
tionary orbit to another. This portion of radiation has been referred to as a quantum (of energy). 

As the energy is connected to the frequency of the quantum and, accordingly, to wavelength
(in vacuum) the frequency of the quantum can be expressed through the quantum numbers
corresponding to two orbits (j and k being their quantum numbers) (compare with (7.5.33)): 

This is the famous serial formula which allows calculation of all the spectral lines in the
hydrogen atom spectrum. 

An expression me4/8�0
2h3 is referred to as a Rydberg constant.

The quantum mechanical theory of the hydrogen atom is given below (see Chapter 7.5)
The Bohr model of the hydrogen atom is a transition from purely classical presentations

to quantum mechanical ones: the motion of electrons along the orbits is accepted; however
not all orbits are permitted, the angular momentum is accepted, though its values and ori-
entations are subject to strict limitation. One can consider the Bohr model as the transition
from classical mechanics to quantum mechanics with the preservation of many its attrib-
utes. As a result, many of the ideas of the Bohr model will often be met in order to sim-
plify the students’ understanding.

A typical quantum mechanical object such as an atom possesses some classical charac-
teristics unexplainable within the framework of generally accepted presentations (no
orbital motion, yet the existence of angular momentum; no rotation of an electron around
its own axis, yet intrinsic angular and magnetic moments, i.e., spin, etc.). As a result, these
terms are used irrespective of their classical sense.

EXAMPLE E6.13

In the framework of the Bohr model of the hydrogen atom (refer to Section 6.6.7)
calculate the radius of the first electron orbit r and the linear electron speed �.

Solution: From Section 6.6.7, we know that r and � are united in equation m�r � n�
(in our case n � 1). In order to find two values one more relation is needed. For the rota-
tion of an electron around a nucleus we can write the Newton’s second law equation
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or

Solving all equation we can find

Substituting all known values, we arrive at r1 � ao � 5.29 	 10�11 m and � � �/mr
� 2.18 	 106 m/sec.

EXAMPLE E6.14

It is measured experimentally that the CuK� X-ray beam (� � 1.542 Å) being dif-
fracted by a corundum single crystal deviates from its initial direction at an angle
� � 41.66° (compare to Figure 6.20). The diffraction takes place from the crystal-
lographic plane (600). Find the deviation angle � from the same crystallographic
plane using the MoK� radiation (� � 0.710 Å). 

Solution: Bragg’s law should be used to solve this problem (refer to Section 6.3.5
and eq. (6.3.11), Figure 6.20). In the equation mentioned, � is the incident angle and
� is the deflection angle. The picture is repeated here to make the situation clearer
(Figure E6.14; an atomic arrangement is not depicted substituted by two reflected
planes with interplanar distance d600). It is seen in the picture that � � 2�. The crys-
tallographic plane’s index is (600), in fact there is no such plane in the crystal; this
should be understood as a 6th order of reflection from the plane (100) (i.e., at distance
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ACB in Figure 6.20 six wavelengths stack). Therefore, sin(�/2) � 6�/2d600; this equa-
tion is valid for both wavelengths. Dividing two equations for two wavelengths we
obtain (sin(�Mo/2) � sin(�Cu/2)(�Mo/�Cu). Executing calculations we arrive at
sin(�Mo/2) � 0.164, therefore, �Mo is equal to 4.72°.

PROBLEMS/TASKS

6.1. The surfaces of a glass wedge form an angle � � 0.2�. On the wedge perpendicular to
its surfaces a beam of monochromatic light with wavelength � � 0.55 �m falls.
Determine the width of interference strips b (the distance between the adjacent maxima).

6.2. The diameters of two light Newton rings are d1 � 4.0 and d2 � 4.8 mm. It is known
that three light rings settle between the two measured rings. The rings were observed
in reflected light. Find the curvature radius R of the plane-convex lens.

6.3. In the experiment with Newton rings, a liquid oil was poured between a lens and a
sample stage table, with its refraction index less than that of glass. The radius of the
eighth dark ring is d8 � 2 mm (� � 700 nm) whereas the radius R of the plane-
convex lens is 1 m. Find the refraction index n of oil.

6.4. On illuminating diffraction gratings by a white light, the spectra of second- and
third-orders partly overlap. On what wavelength in the second-order spectrum, does
ultraviolet (UV) of the third order (� � 0.4 �m) fall.

6.5. A monochromatic light with wavelength � � 600 nm falls on diffraction gratings
with the period d � 10 �m at an angle 30°. Find the diffraction angle � correspon-
ding to the second main maximum.

6.6. The energy flux � radiated through a muffle’s sight hole is � � 34 W. Assume that
the muffle radiates as an IBB and find its temperature T if its area is S � 6 cm2.

6.7. Assume that the sun radiates as an IBB; calculate its emittance R and surface tem-
perature T. The solar constant (the energy radiated by the sun per unit area measured
on the outer surface of earth’s atmosphere) is C � 1.4 kJ/m2 s. Assume the sun–earth
distance to be d � 1.49 	 1011 m.

6.8. Because of the change of temperature of an IBB, the position of the maximum
spectral density emittance shifts from �1 � 2.4 �m to �2 � 0.8 µm. How many
times are the emittance R and the maximum spectral density of emittance r
changed?

6.9. The temperature T of an IBB is T � 2000 K. Calculate: (1) the spectral density of
emittance r(�) for the wavelength � � 600 nm, (2) emittance R in an interval of
wavelength from �1 � 590 nm to �2 � 610 nm. Assume that the averaged spectral
density of emittance in this interval is equal to that for � � 600 nm.

6.10. Compton scattering of X-ray � � 55.8 pm occurs by graphite plate. Find the wave-
length �′ of light scattered at an angle � � 60°

6.11. A photon (� � 1 pm) is scattered by a free electron at an angle � � 90°. What part
of its energy W does the photon transmit to the electron?

6.12. The spectral density maximum rmax of the emittance (�) of the bright star Arcturus
corresponds to � � 580 nm. Assuming that the surface of this star emits as an IBB,
determine its temperature T.
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6.13. Find the wavelength � of a 1 MeV photon. Compare it with resting electron mass m0.
6.14. A photon’s wavelength is equal to Compton length �C. Determine the photon energy

� and momentum p.

ANSWERS

6.1. b � �/(2n�) �3.15 mm.  
6.2. R � 880 mm.
6.3. n � 1.4.
6.4. 0.6 �m.
6.5. � � arcsin (sin� � m�/d) � 38.3°.
6.6. T � 1 kK.
6.7. R � 64.7 MW/m2; T � 5.8 kK.
6.8. Increases R � 81 and r � 243 times.
6.9. r(�) � 30 MW/m2 mm, R �600 W/m2 .

6.10. �� � 57 nm.
6.11. 0.70.
6.12. T � 4.98 kK.
6.13. � � 1.24 pm, mph � 1.8 	 10�30 kg, pph � 5.3.10�22 kg m/sec, mph �2moe.
6.14. � � 0.511 MeV, p � 2.7 	 10�22 kg m/sec.
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