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Preface

The main goal of numerical analysis remains what it has always been, to find
approximate solutions to complex problems using only the simplest operations of
arithmetic. In short, it is a business of solving hard problems by doing lots of easy
steps. Rather clearly, this means finding procedures by which computers can do
the solving for us. The problems come from a variety of mathematical origins,
particularly algebra and analysis, the boundaries being at times somewhat
indistinct. Much background theory is borrowed from such fields by the numerical
analyst, and some must be included in an introductory text for clarity. It is also
true that our subject returns more than raw numbers across the boundaries.
Numerical method has made important contributions to algebraic and analytic
theory.

Many new topics have been added for this second edition. Included are
backward error analysis, splines, adaptive integration, fast Fourier transforms,
finite elements, stiff differential equations, and the QR method. The chapter on
linear systems has been completely rewritten. A number of older topics have
been shortened or eliminated, but a representative portion of classical numerical
analysis has been retained partly for historical reasons. Some of the cuts have
brought a tear to the author’s eye, especially that of the constructive proof for the
existence of solutions to differential equations. On the whole the new edition is a
bit more demanding, but the same can be said of the subject itself.

The presentation and purposes remain the same. There is adequate material
for a year course at beginning graduate level. With suitable omissions an
introductory semester course can easily be arranged. The problem format allows
convenient use as a supplement to other texts and facilitates independent study.
Each chapter still begins with a summary of what is to come and should be taken
as a table of contents for the chapter. It is not intended to be self-explanatory,
and supporting detail is provided among the solved problems.

To repeat the closing paragraph of my original preface, there is no doubt
that, in spite of strenuous effort, errors do remain within the text. Numerical
analysts are among the world’s most error conscious people, probably because
they make so many of them. I will be grateful to hear from readers who discover
errors. (The response to this request in the first edition was humbling.) There is
still no reward except the exhilaration that accompanies the search for the
all-too-elusive “truth.”

FRANCIS SCHEID
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Chapter 1

What Is Numerical Analysis?

ALGORITHMS

The objective of numerical analysis is to solve complex numerical problems using only the simple
operations of arithmetic, to develop and evaluate methods for computing numerical results from
given data. The methods of computation are called algorithms.

Our efforts will be focused on the search for algorithms. For some problems no satisfactory
algorithm has yet been found, while for others there are several and we must choose among them.
There are various reasons for choosing one algorithm over another, two obvious criteria being speed
and accuracy. Speed is clearly an advantage, though for problems of modest size this advantage is
almost eliminated by the power of the computer. For larger scale problems speed is still a major
factor, and a slow algorithm may have to be rejected as impractical. However, other things being
equal, the faster method surely gets the nod.

EXAMPLE 1.1. Find the square root of 2 to four decimal places.
More than one algorithm, using only the four basic operations of arithmetic, exists. The favorite is without
much doubt

1 2
x=1 x,,+1=§<x,,+x—>

from which a few mental calculations quickly manage

3 v (2
273 ST AT
or, rounded to four decimal places,
x, =1.5000 x;=1.4167 x,=1.4142

the last being correct to all four places. This numerical algorithm has a long history, and it will be encountered
again in Chapter 25 as a special case of the problem of finding roots of equations.

ERROR

The numerical optimist asks how accurate are the computed results; the numerical pessimist asks
how much error has been introduced. The two questions are, of course, one and the same. Only
rarely will the given data be exact, since it often originates in measurement processes. So there is
probably error in the input information. And usually the algorithm itself introduces error, perhaps
unavoidable roundoffs. The output information will then contain error from both of these sources.

EXAMPLE 1.2. Suppose the number .1492 is correct to the four decimal places given. In other words, it is an
approximation to a true value that lies somewhere in the interval between .14915 and .14925. The error is then
at most five units in the fifth place, or half a unit in the fourth. In such a case the approximation is said to have
four significant digits. Similarly, 14.92 has two correct decimal places and four significant digits provided its
error does not exceed .005.

EXAMPLE 1.3. The number .10664 is said to be rounded to four decimal places when abbreviated to .1066,
while .10666 would be rounded to .1067. In both cases the error made by rounding is no more than .00005,
assuming the given figures are correct. The first is an example of rounding down, the second of rounding up. A
borderline case such as .10665 is usually rounded to the nearest even digit, here to .1066. This is to avoid
long-range prejudice between the ups and downs.

EXAMPLE 1.4. When 1.492 is multiplied 13y 1.066, the product is 1.590472. Computers work to a fixed “word

1



2 WHAT IS NUMERICAL ANALYSIS? [CHAP. 1

length,” all numbers being tailored to that length. Assuming a fictitious four-digit machine, the above product
would be rounded to 1.590. Such roundoff errors are algorithm errors and are made by the unavoidable millions
in modern computing.

SUPPORTING THEORY

Though our view of numerical analysis will be applications oriented, we will naturally be
concerned with supporting theory, which is used both to discover algorithms and to establish their
validity. Often the theory to which we are led has intrinsic interest; it is attractive mathematics. We
then have the best of both worlds, but must not forget that our interests are more functional than
aesthetic.

EXAMPLE 1.5. Computing values of the trigonometric, exponential, and other nonelementary functions
clearly depends upon supporting theory. To get the cosine of x for small x, the classic series is still a good

choice.

x*t x®

cosx=l=o*ta e

With x = .5 this becomes

cos .5 =1-.125 +.0026041 — .0000217 + - - -
= .877582

which is correct as far as it goes. The error bound in this case is guaranteed by further supporting theory which
states that for series such as this the error is no greater than the first omitted term. (See Problem 1.9.) Here the
first omitted term is x®/8!, which for x =.5 amounts to just less than .0000001.

NUMBER REPRESENTATIONS

Since our ultimate objectives are numerical, a word or two about the representation of numbers
will not be out of place. Numerical input will usually be in decimal form, since this is the form with
which we are most familiar. As almost everyone knows, however, computers generally find binary
representations more convenient, their 0 and 1 digits matching the off and on or high and low states
of electrical components. For positive integers the binary form is

d,2"+d, 2" '+ +d2'+d2°
while for positive numbers less than one it is
d_27'+d_ 272 +d_273+---

with all binary digits d; either 0 or 1. Such representations are unique.

Floating-point representations have an additional convenience. In this form, numbers are
described by three parts, a sign, a mantissa, and an exponent (which itself has a sign). Turning to
decimals for the first illustrations, the number .1492 might appear as

+.1492 10°

the sign being +, the mantissa .1492, and the exponent 0. The alternative +1.492 10~! is available,
among other possibilities, but standard practice calls for the leading (nonzero) digit to come just
after the point. The exponent then takes care of the order of magnitude. Such representations are
called normalized. Thus 1492 would be expressed as -+.1492 10*.

EXAMPLE 1.6. Convert the decimal 13.75 into a binary floating-point form.
More formal conversion methods exist, but even without them the binary equivalent of 13.75 is easily seen
to be 1101.11, with 8 +4 + 1 on the left of the point and j + } on the right. Now rewrite this as

+.110111(+100)
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where the +100 in parentheses serves as exponent 4. A final conversion to
01101110100

in which nothing but zeros and ones appear is attractive for electrical purposes, provided that certain
conventions are understood. The leading zero is interpreted as a plus sign. (1 would mean minus.) Six binary
digits, or bits, then make the mantissa, a binary point being assumed at its head. The zero that follows is
another plus sign, this time for the exponent, which then ends the representation. The final form does not look
very much like 13.75 but is understandable. In practice both the mantissa and exponent would involve more
digits, and the forms of sign and exponent will vary, but floating-point representations are a basic tool of
modern computing.

NORMS OF VECTORS AND MATRICES

The Euclidean length of a vector, that is,

Wi+vi+- -+

for the vector V with components v;, is also called a norm of V and given the symbol ||V||. Three
basic properties of this norm are

1. ||[V||Z0, and equals 0 if and only if V =0

2. |lcV|[=c - |IV]|l for any number ¢

VW= VI+ W
The last is known as the triangle inequality.

Several other real functions also have these properties and are also called norms. Of particular
interest are the L, norms

n 1p
VI = (3 rr)

for p 2 1. With p =1, it is the L, norm, the sum of the component magnitudes. With p =2, it is the
familiar vector length, or Euclidean norm. As p tends to infinity, the dominant v; takes over and we
have the maximum norm

IV~ = max ;]
i

On more than one occasion, we will find use for these norms, particularly in studying the error
behavior of algorithms.

EXAMPLE 1.7. Using the L, norm, the vectors (1, 0) (, 3) (0, 1) among others have norm one. A plot of such
unit vectors is given as Fig. 1-1a, all emanating from the origin. Their terminal points form a square. Figure
1-1b shows the more familiar unit vectors of the Euclidean norm. Using the L.. norm, the vectors (1, 0) (1, 1)
(0,1) among others have norm one. Their plot appears as Fig. 1-1c, terminal points again forming a square.

Fig. 1-1
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Turning to matrices, we define
lA|l = max ||AV|]

the maximum being taken over all unit vectors V. The meaning of unit here depends upon the type
of vector norm being used. Such matrix norms have parallel properties to those listed above for
vectors.

1. ||A||Z0, and equals zero if and only if A =0
2. ||cA]|=c - ||A|l for any number ¢
3. la+ Bl =lAll+ 1Bl
In addition, for matrices A and B and vector V, the properties
4. JlAVII=1AL- VI
5. ABI[=|lAll- 1Bl

will be useful. The L, and L. norms have the advantage of being easy to compute, the first being the
maximum absolute column sum

.
|[A||1=m;ax2 |ay|
i=1

and the second the absolute row sum of A

M=

[|A]l. = miax |a]

j=1

Many of these features will be proved in the solved problems.

EXAMPLE 1.8. Find the L,, L,, and L. norms of this matrix:
11
A=
(i o |
The maximum column sum and row sum are found instantly, and we are off to a fast start with

Li=L.=2

Unfortunately there is no corresponding supporting theory to help with L, and this very innocent-appearing
matrix does not yield this value without some resistance. By definition, the L, norm of A is the maximum L,

for x*+y>=1, that s, for (x, y) on the unit circle of Fig. 1-1b. The square of this norm is
@+yP+x=1+2y +x°=1+22VI-22+1

which can be maximized by elementary calculus. The assumption that y is positive is not restrictive here since
the norm takes the same value for (x, y) and (—x, —y). Eventually one finds that a maximum occurs for
x*=14+1/5/10 and that

3+V5
2

lAalz=

Solved Problems

1.1. Calculate the value of the polynomial
px)=2"—3x*+5x—4

for the argument x = 3.
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1.2.

1.3.

14.

1.5.

Following the natural course, we find x> =9, x> =27, and putting the pieces together,
p(3)=54-27+15-4=38

A ‘count finds that five multiplications, an addition, and two subtractions have been performed.
Now rearrange the polynomial as

px)=[2x-3)x+5x—4

and try again. From x =3 we have successively 6, 3, 9, 14, 42, and 38. This time only three-
multiplications have been made, instead of five. The reduction is not dramatic, but it is suggestive. For a
general polynomial of degree n, the first algorithm requires 27 — 1 multiplications, the second just n. In
a larger operation, involving many polynomial evaluations, the saving in time and algorithm (roundoff)
errors may be significant.

Define the error of an approximation.
The traditional definition is

True value = approximation + error

so that, for example, \/§ =1.414214 + error
= 3.1415926536 + error

What is relative error?
This is error measured relative to the true value.

. error
Relative error = —————
true value

In the common event that the true value is unknown, or unwieldy, the approximation is substituted for it
and the result still is called, somewhat loosely, the relative error. Thus the familiar approximation 1.414
for V2 has a relative error of about

.0002
Taa- .00014

while the cruder approximation 1.41 has a relative error near .003.

Suppose the numbers x4, x,, . . ., x, are approximations to Xy, X, . .., X,, and that in each
case the maximum possible error is E. Prove-that the maximum possible error in the sum of
the x; is nE.

Since x, ~-E=X,=x,+E
it follows by addition that Y x-nESY> X, = > x;+nE
so that ~nE=X X,— > 5, SnE

which is what was to be proved.

Compute the sum V1 + V2 + - - - + V100 with all the roots evaluated to two decimal places.
By the preceding problem, what is the maximum possible error?

Whether by a few well-chosen lines of programming or by a more old-fashioned appeal to tables,
the roots in question can be found and summed. The result is 671.38. Since each root has a maximum
error of E=.005, the maximum possible error in the sum is nE = 100(.005) = .5, suggesting that the
sum as found may not be correct to even one decimal place.



L.6.

1.7.

1.8.

1.9.

1.10.

WHAT IS NUMERICAL ANALYSIS? [CHAP. 1

What is meant by the probable error of a computed result?

This is an error estimate such that the actual error will exceed the estimate with probability
one-half. In other words, the actual error is as likely to be greater than the estimate as less. Since this
depends upon the error distribution, it is not an easy target, and a rough substitute is often used, VrE,
with E the maximum possible error.

What is the actual error of the result in Problem 1.5, and how does it compare with the
maximum and probable errors?

A new computation, with square roots found to five decimal places, resulted in the sum 671.46288.
This time the maximum error is 100(.000005) which is .0005, so we have the sum correct to three places
as 671.463. The actual error of the earlier result is thus about .08, compared with the maximum .50 and
the probable .05. One of our estimates was too pessimistic and the other slightly optimistic.

Suppose a thousand square roots are to be summed, instead of a mere hundred. If three-place
accuracy is wanted, how accurately should the individual roots be computed?

For a solid guarantee it is best to assume the worst, that the maximum possible error might be
attained. The formula nE of Problem 1.4 becomes 1000E, showing that three decimal places may be
lost in a summation of this length. Since three are wanted in the output, it may be wise to have six places
correct in the input. The point is, in very long computations there is time for very small errors to make a
substantial collective contribution.

Calculate the series

correct to three digits.

This series illustrates an often-used theorem of analysis. Because its terms alternate in sign and
steadily decrease, the partial sums dodge back and forth across the limit, the series value. This implies
that the error at any point will be less than the first omitted term. To get the specified accuracy, we
therefore need 1/n=.0005, or n Z2000. Two thousand terms will have to be added. Working to eight
decimal places, the 2000 roundoffs may accumulate to

nE = 2000(.000000005) = .00001

which seems negligible, so we permit the computation to proceed, round the result to three places, and
have .693.

Note that in this problem we have no input error, only algorithm errors. First, we take just a partial
sum instead of the series, and then we make numerous roundoff errors in trying to evaluate this sum.
The first is called a truncation error and it seems to be the larger of the two error sources in this
problem. In summary

Actual error = truncation error + roundoff error
=.0005 + .00001

more or less. In fact the series value is the natural logarithm of 2, and to three places it is our .693.

Prove that if the series
a,—a,+as—az+- -

is convergent, all the a; being positive, then

1 1
(a> = as) "‘E(az —ag)t

1 1
_a1+§(a1_a2)_2

2

is also convergent and represents the same number.
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1.11.

1.12.

1.13.

1.14.

With A, and B, representing the nth partial sums of the two series, it is easily seen that
A, — B, = *1a,. Since the first series is convergent, lim a, is zero and the result follows.

Apply the theorem of the preceding problem to evaluate the series of Problem 1.9, again to
three decimal places.

A little algebra finds B, =1, and for n>1

1 & 1
B,=-+ 1)
"2 ,(2:2( ) 2k(k —1)
This is again an alternating series with monotone terms, so the theorem of Problem 1.9 is again
available. For three-digit accuracy we need

1
——=.0005
2n(n+1)
or n =32. This is far fewer terms than were needed earlier and roundoff will hardly be an issue on an
eight-digit machine. The new algorithm is much faster than the other and manages the same .693 with
less effort.

Given that the numbers .1492 and .1498 are correct as far as they go, that is, the errors are no
larger than five units in the fifth place, illustrate the development of relative error by
considering the quotient 1/(.1498 — .1492).

For the given numbers the relative errors are about 5/15,000 which is near .03 percent. For their
sum and difference a maximum error of one unit in the fourth place is possible. In the case of the sum,
this again leads to a relative error of about .03 percent, but with the .0006 difference we find an error of
one part in six, which is 17 percent. Turning to the required quotient, it may be just as well to take the
pessimistic view. As given, a quotient of 1667 would be calculated, to the nearest integer. But
conceivably it is 1/(.14985 — .14915) which ought to have been found instead, and this would have
brought us 1429. At the other extreme is 1/(.14975 — .14925) = 2000. This very simple example makes it
clear that a large relative error generated at some interior stage of a continuing calculation can lead to
large absolute errors down the line.

What is meant by the condition of a numerical problem?

A problem is well-conditioned if small changes in the input information cause small changes in the
output. Otherwise it is ill-conditioned. For instance, the system

x+y=1
llx+y=2

presents an obvious difficulty. It represents the intersection of nearly parallel lines and has the solution
x=10,y= —-9.

Now change the 1.1 to 1.05 and solve again. This time x =20 and y = —19. A 5 percent change in
one coefficient has caused a 100 percent change in the solution.

What is a stable algorithm?

In extended calculations it is likely that many roundoffs will be made. Each of these plays the role
of an input error for the remainder of the computation, and each has an impact on the eventual output.
Algorithms for which the cumulative effect of all such errors is limited, so that a useful result is
generated, are called stable algorithms. Unfortunately, there are times when the accumulation is
devastating and the solution is overwhelmed by error. Needless to say, such algorithms are called
unstable.
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1.16.

1.17.

1.18.

1.19.

1.20.
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Interpret the floating-point decimal + .1066 * 10*.

Clearly the exponent shifts the decimal point four places to the right, to make 1066. Similarly,
+.1066 * 107% is .001066.

Interpret the floating-point binary symbol +.10111010 * 2*.

The exponent shifts the binary point four places to the right, to make 1011.1010, equivalent to
decimal 11+ 3 or 11.625. Similarly, +.10111010 27! is .01011101. This is, of course, 3 times the
number given originally.

Interpret the floating-point binary symbol 0101110100100, given that the mantissa uses eight
places and the exponent three, apart from their signs.

The zeros in positions one and ten are to be taken as plus signs.

0101110100100
]~

/
Sign” Mantissa Sign Exponent

The binary point is assumed at the head of the mantissa. With these understandings we have once again
+.10111010 * 2*. Similarly, and with the same conventions, +.10111010 * 2% becomes 0101110101001,
the last four digits meaning an exponent of —1.

Add these floating-point numbers, using the conventions of the preceding problem.
0101101110010
0100011001100

One way or another, the binary points will have to be “lined up.” Interpreting the symbols leads to
the following sum:

10.110111
+ .000010001100
=10.111001001100

In the form used for the inputs this becomes
0101110010010

with the mantissa again taking eight places and the exponent three, apart from signs. A roundoff error is
made when the last six binary digits are eliminated to conform with machine capabilities.

What is overflow?

Again using the conventions of our fictitious machine, the largest number that can be expressed is
0111111110111, both the mantissa and the exponent being maximal. Seven shifts of the binary point
make this the equivalent of 1111111.1 which comes to decimal 127 + 3, or 27 —27". Any number larger
than this cannot be represented under the given conventions and is called an overflow.

What is underflow?

The smallest number that can be represented in the form being used, apart from zero and negatives,
is 0000000011111, However, for various reasons it is convenient to insist that the leading digit of a
mantissa be a 1. This is known as the normalized form, and fixes the exponent. Again an exception must
be made for the number zero. If normalization is required, the smallest positive number becomes
0100000001111. In decimal this is 27" * 277 or 27, Any positive number smaller than this cannot be
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1.21.

1.22.

1.23.

represented and is called an underflow. Any floating-point system of number representation will have
such limitations and the concepts of overflow and underflow will apply.

Imagine an even simpler floating-point system, in which mantissas have only three binary
digits and exponents are —1, 0, or 1. How are these numbers distributed on the real line?

Assuming normalization, these numbers have the form .1xx apart from exponent. The entire set,
therefore, consists of three subsets of four numbers each, as follows:

.0100 .0101 .0110 .0111 (for exponent —1)
.100 .101 110 111 (for exponent 0)
1.00 1.01 1.10 1.11 (for exponent 1)

These are plotted in Fig. 1-2. Notice the denser packing of the smaller numbers, the separation
increasing from 15 to § as we pass from group to group. This is due, of course, to the fact that we have
only three significant digits (the leader fixed at 1) with the exponent supplying progressive magnification
as it increases. For example, 1.005 is not available here. The set is not that dense in this part of its
range. A fourth significant digit would be needed. Realistic floating-point systems have this same
feature, in a more complex way, and the ideas of significant digits and relative error are relevant.

1 1
0 T El 1 2
1 11111 I 1 1 1 1 1 1 1
—— —— | e —
\
exponem =0 Overﬂow
exponent = —1 exponent = 1
underflow

Fig. 1-2

Assume a number x represented by a floating-point binary symbol, rounded to a mantissa of »n
bits. Also assume normalization. What are the bounds for the absolute and relative errors
caused by the rounding?

Rounding will cause an error of at most a unit in the (z + 1)th binary place, or half a unit in the nth
place. So
Absolute error =271

while for the relative error we must take into account the true value x. Normalization means a mantissa
no smaller than } and this leads to the following bound:

—n-1

|Relative error| = 7T =2

It is useful to rewrite this letting fl(x) represent the floating-point symbol for x. Then

Relative error = fl(x)_—x =E
x

or filx)=x(1+ E)=x +xE

with |E| =27". The operation of rounding off can thus be viewed as the replacement of x by a perturbed
value x + xE, the perturbation being relatively small.

Find a bound for the relative error made by the addition of two floating-point numbers.

Let the numbers be x =m, *2° and y = m, * 2 with y the smaller. Then m, must be shifted e — f
places to the right (lining up the binary points). The mantissas are then added, the result normalized and
rounded. There are two possibilities. Either overflow occurs to the left of the binary point (not overflow
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in the sense of Problem 1.19), or it does not. The first possibility is characterized by
1= |my +my* 27| <2
and the second by

1
5§|m,+m2*2”“|<1

If overflow does occur, a right shift of one place will be required, and we have
fl(x +y)=[(m + my % 27727 + €] x 2°%!
where € is the roundoff error. This can be rewritten
2e
fi(e +y) = (x + (1 + ——)
) = (14—

=x+y)1+E)
with |[E|=2e=27"
If there is no overflow, then

fiix+y)=[(mi+m,*2 ")+ e} % 2°

=(x+ —_—
S y)<l+m, +my * 2”9)

=(x+y)(1+E)
with E bounded as before.
A corresponding result for floating-point subtraction will be found in Problem 1.45.

1.24. Find a bound for the relative error made by multiplying two floating-point numbers,

Again let the two numbers be x = m, * 2° and y = m, * 2. Then xy = m,m, * 2°* with } = |m,m,| <
1 because of normalization. This means that to normalize the product there will be a left shift of at most
one place. Rounding will, therefore, produce either m,;m,+ € or 2m;m,+ €, with |¢|=27""". This can
be summarized as follows:

1
(mymy+ €) 2V if |m,m,| éi
fiey) = . )
(2m,my + €) x 227! if§>|m,mzléz
1
1+ if |m,m,| 25
= mym, *x 2% mym;
€ 1 1
if => e
1+2m,m2 ifs |mym,| y

= xy(1+E)

with |E|<2|e|=27".

A similar result is sketched for the operation of division in Problem 1.46. This means that in all four
arithmetic operations, using floating-point numbers, the relative error introduced does not exceed 1 in
the least significant place of the mantissa.

1.25. Estimate the error generated in computing the sum
XpHXa X
using floating-point operations.
We consider the partial sums s;. Let s, =x,. Then

s;=1(s, +x2) = (5, +x)(L + E})
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1.26.

1.27.

1.28.

with E; bounded by 27" as shown in Problem 1.23. Rewriting,
s;=x(1+E)+x,(1+E))
Continuing
s3=f(s; +x3) = (s, + x:)(1 + Ey)
=x,(1+E)A+E)+x,(1+E)1+E)+x(1+E)

and eventually Se=Mls1m1 +x) = (1 +x) (1 + E )

=xil+c)+x(l+e)+ - +x(l+c¢)
where, fori=2,...,k,
I+c=0+E_)A+E) - (1+E.)
and 1+ ¢, =1+c,. In view of the uniform bound on the E;, we now have this estimate for the 1+ ¢;:
Q-2 =14+ S(1+27m)!

Summarizing

ﬂ(i xj) = (/; x,-)(l +E)

k
where E= x,c,/

Note that if the true sum X x; is small compared with the x;, then the relative error E can be large. This
is the cancellation effect caused by subtractions, observed earlier in Problem 1.12.

Illustrate a forward error analysis.

Suppose the value of A(B + C) is to be computed, using approximations a, b, ¢ which are in error
by amounts e,, €,, €;. Then the true value is

AB+C)=(a+e)(b+e,+c+ey)=ab+ac+error
where Error =a(e, + es) + be, + ce, + e,e, + €15
Assuming the uniform bound |e;| = e and that error products can be neglected, we find

|[Error| = (2 |a| + |b] +|c|)e

This type of procedure is called forward error analysis. In principle it could be carried out for any
algorithm. Usually, however, the analysis is tedious if not overwhelming. Besides, the resulting bounds
are usually very conservative, suitable if what is needed is an idea of the worst that might happen. In the
present example one point of minor interest does surface. The value of a seems to be twice as sensitive
as the values of b and c.

What is backward error analysis?

The underlying idea of backward error analysis is to take the result of a computation and try to
determine the range of input data that could have produced it. It is important not to misunderstand the
motive here. There is no intention of modifying the data to accommodate the answer. If a backward
error analysis is completed and shows that the result found is consistent with the input data, within the
range of observational or roundoff error, then one may have some confidence in the result. If this does
not happen, then a major source of error exists elsewhere, presumably within the algorithm itself.

Show that the error analysis in Problem 1.23 was a backward error analysis.
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1.29.

1.30.

1.31.

1.32.
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The result obtained was
flix+y)=(x+y)1+E)
with |E|Z2", where n is the number of binary places in the mantissas. Rewriting this as
fiix +y)=x(1+ E)+y(1+E)

and recalling Problem 1.22, we see that the sum as computed, namely fi(x +y), is also the true sum of
numbers differing from the original x and y by no more than the roundoff error bound E. That is, the
output can be explained by input data well within the recognized error limit.

Show that the analysis done in Problem 1.24 was a backward error analysis.
We found
fi(xy)=xy(1+E)

which we can think of as the product of x by y(1+ E). This means that the computed fi(xy) is also the
true product of numbers differing from the original x and y by no more than the roundoff error. It is
consistent with input data well within our recognized error limit.

What does the backward error analysis made in Problem 1.25 indicate?

First, the equation
k
ﬂ(z x,) =x(1+c)+ - +x(1+c)
=1

shows that the floating-point sum of k& numbers x, to x, is also the true sum of & numbers which differ
from the x; by relative errors of size ¢;. Unfortunately the estimates then obtained in Problem 1.25 also
show that these errors can be much greater than simple roundoffs.

Prove the triangle property of vector length, the L, norm, by first proving the Cauchy-
Schwarz inequality.

X ab) = (2 a2 b7)

One interesting proof begins by noting that ¥, (a,— bx)* is nonnegative, so that the quadratic
equation

S =S ab)+ S a2=0

cannot have distinct real roots. This requires
4T ab) -4 at 2 b=0

and cancelling the 4’s we have the Cauchy—Schwarz inequality. )
The triangle inequality now follows quite directly, but with a bit of algebra. Written in component
form, it states
[ +w)+ -+ @, +w)] =i+ + vHV 4 (wid -+ wi)?
Squaring, removing common terms, squaring again, and using Cauchy-Schwarz will bring the desired
result (see Problem 1.50).

Show that the vector L, norm approaches max |v;| for p tending to infinity.
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Suppose v,, is the absolutely largest component and rewrite the sum as

|v,,,]<1+ > p)“p

i+m
Within the parentheses all terms but the first approach zero as limit, and the required result follows.

Ui
v,

m

1.33. Show that the definition ||A|| = max ||AV|| for unit V satisfies properties 1 to 3 as given in the
introduction.

These follow rather easily from the corresponding properties of the companion vector norm. Since
AV is a vector, ||[AV|Z0 and so ||A|| = 0. If ||A|| = 0 and even one element of A were not zero, then V'
could be chosen to make a component of AV positive, a contradiction of max ||AV|| = 0. This proves the
first.

Next we find

: llcAll = max ||cAV || = max [c| - |[AV]| = c] - ||A[l

proving the second. The third is handled similarly.

1.34. What are the L,, L,, and L. norms of the identity matrix?

They are all 1. We have
]| = max [IV|| = max [| V|| =1

since V is a unit vector.

11
1.35. What are the L,, L,, and L. norms of the matrix {1 1]?
We have

AV = [vl + UZ:I

v+ v,

Assume for simplicity that v,, v, are nonnegative. Then for L, we add, and find {|[AV|| =2(v, + v,) =2,
since V is a unit vector in L, norm. Thus ||A|, =2. For the L, norm we must square and add the two
components, obtaining 2(v} + 2v,v,+ v3). In this norm v+ v3=1 so we maximize v,v,. Elementary
calculus then produces v, =v, = 1/V2 leading quickly to ||A|, = 2. Finally ||AV ||, =v, + v,, since with
this norm we seek the maximum component. But here again the maximum is 2, because with this norm
neither v; can exceed 1. The L, and L.. norms could have been read instantly using the result of the
following problem or its companion.

1.36. Show that
Al = max 21 la,|
=

Choose a vector V with all components of size 1 and signs matching the a,; such that ¥ |a,| is
maximal. Then ¥ a,v; is an element of AV equaling this maximal value and clearly cannot be exceeded.

Since this V has norm 1, the norm of A also takes this value. The similar result for the L, norm is left as
Problem 1.52.

1.37. Prove that |AV|| = |4l - [V]|.

For a unit vector U we have, by definition of ||A]],

AU = max |AU]| = [I4]
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1.38.

1.39.

1.41.

1.42.
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so choosing U = V/||V|| and applying property 2,

’§ llAll lAvii= Al - 1vi

()

Prove [|AB| = ||A]l - | BI|-
We make repeated use of the result of Problem 1.37:

lAB|| = max |ABU|| = max ||A| - |BU|| S max [[A[l - |BI| - 1]l = Al - | Bl

Supplementary Problems

Compute 1/.982 using the supporting theory

=1+x+x+-:-

Ju—

=

with x = .018.

Numbers are accurate to two places when their error does not exceed .005. The following square roots
are taken from a table. Round each to two places and note the amount of the roundoff. How do these
roundoff errors compare with the maximum of .005?

n 1 12 13 14 15 16 17 18 19 20

Vntothree places 3.317 | 3.464 | 3.606 | 3.742 | 3.873 | 4.000 | 4.123 | 4.243 | 4.359 | 4.472

Vn to two places 3.32 | 3.46

approx. roundoff +.003| —.004

The total roundoff error could theoretically be anywhere from 10( — .005) to 10(.005). Actually what is
the total? How does it compare with the “probable error” of V10(.005)?

Suppose N numbers, all correct to a given number of places, are to be summed. For about what size N
will the last digit of the computed sum probably be meaningless? The last two digits? Use the probable
error formula.

A sequence Jy, Jy, Jo, . . . is defined by
Joir= 2nt, —Jy

with J,=.765198 and J, =.440051 correct to six places. Compute J, ..., J; and compare with the
correct values which follow. (These correct values were obtained by an altogether different process. See
the next problem for explanation of errors.)

n 2 3 4 5 6 7

Correct J, .114903 019563 .002477 000250 .000021 000002

Show that for the sequence of the preceding problem,
J;=136,767J, — 21,144J,
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1.44.

1.46.

1.47.

1.48.

1.49.

exactly. Compute this from the given values of J, and J;,. The same erroneous value will be obtained.
The large coefficients multiply the roundoff errors in the given J, and J; values and the combined results
then contain a large error.

To six places the number J; should be all zeros. What does the formula of Problem 1.42 actually
produce?

Show that the error introduced by floating-point subtraction is bounded by 27", Let x =m, * 2° and
y =m, *2 as in Problem 1.23. Then x —y = (m, — m, * 27°)2¢ and unless this is zero
27E My —myx 2T <2

Normalizing the new mantissa may require up to n — 1 left shifts, the actual number s being determined
by
27T S my —my 2 <270

Now show that
f(x —y) =[(m,—m, 277 % 2 + €] x 2~
and eventually filx —y)=(x-y)1+E)
with [E|=27"
Show that the error introduced during floating-point division is bounded by 27", With the conventions of

Problem 1.24, let one-half of the numerator mantissa be divided by the denominator mantissa (to avoid
quotients greater than one) and the exponents subtracted. This gives

f: ( m ) * 23—[4—1
y 2m,

with } = |m,/2m,| < 1. Now follow the remainder of the analysis made for the multiplication operation to
show that once again the relative error is bounded as stated.

Analyze the computation of the inner product

=y +x2y+ -+ xy0)
much as in Problem 1.25. Let

& =fl(x.y,) fori=1,...,k
and then set s1=b4 s =1fl(s,, + 1)

fori=1,..., k. This makes s, the required inner product. Now find relations and estimates similar to
those found in the earlier problem.

Using the conventions of Problem 1.17, interpret this floating-point symbol: 0100110011010. (This is as
close as one can come to .1492 with only an 8-bit mantissa.)

Imitating Problem 1.21, imagine a floating-point system in which normalized mantissas have 4 bits and
the exponents are —1, 0, and 1. Show that these numbers form three groups of eight, according to their
exponents, one group falling in the interval § to 3, another in the interval 1 to 1, and the third between 1
and 2. Which positive numbers will cause overflow? Underflow?

Complete the proof begun in Problem 1.31.

Complete Problem 1.33 by showing that the norm of the sum of two matrices does not exceed the sum
of their norms.

By a suitable choice of unit vector (one component 1, the rest 0) show that the L, norm of a matrix A
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1.54.

1.56.
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can be computed as the maximum column sum of absolute elements. Compare with the related proof in
Problem 1.36.

b
Show that for A = [Z a] the L,, L,, and L. norms are equal.
a b H 2 23172
Show that for A = b —a the L, norm is (a* + b*)"".

Show that for A = {Z Z] a vector V that maximizes [JAV ||, can be found in the form (cos ¢, sin ¢)” with

cos 2t =0 in the case b> = a® while tan 2t = 2a/(a — b) otherwise.

It has been suggested that the following message be broadcast to outer space as a sign that this planet
supports intelligent life. The idea is that any form of intelligent life elsewhere will surely comprehend its
intellectual content and so deduce our own intelligent presence here. What is the meaning of the
message?

11.001001000011111101110

If the vector V with components x, y is used to represent the point (x,y) of a plane, then points
corresponding to unit vectors in the L, norm form the classic unit circle. As Fig. 1-1 shows, in the L, and
L. norms the “circle” takes a square shape. In a city of square blocks, which is the suitable norm for
taxicab travel? (Find all the intersections at a given distance from a given intersection.) On a
chessboard, why is the appropriate norm for the travels of the chess king the L.. norm?



Chapter 2

The Collocation Polynomial

APPROXIMATION BY POLYNOMIALS

Approximation by polynomials is one of the oldest ideas in numerical analysis, and still one of
the most heavily used. A polynomial p(x) is used as a substitute for a function y(x), for any of a
dozen or more reasons. Perhaps most important of all, polynomials are easy to compute, only simple
integer powers being involved. But their derivatives and integrals are also found without much effort
and are again polynomials. Roots of polynomial equations surface with less excavation than for other
functions. The popularity of polynomials as substitutes is not hard to understand.

CRITERION OF APPROXIMATION

The difference y(x) — p(x) is the error of the approximation, and the central idea is, of course, to
keep this error reasonably small. The simplicity of polynomials permits this goal to be approached in
various ways, of which we consider

1. collocation, 2. osculation, 3. least squares, 4. min.-max.

THE COLLOCATION POLYNOMIAL

The collocation polynomial is the target of this and the next few chapters. It coincides
(collocates) with y(x) at certain specified points. A number of properties of such polynomials, and of
polynomials in general, play a part in the development.

1. The existence and uniqueness theorem states that there is exactly one collocation
polynomial of degree n for arguments x,, . . ., x,, that is, such that y(x) =p(x) for these
arguments. The existence will be proved by actually exhibiting such a polynomial in
succeeeding chapters. The uniqueness is proved in the present chapter and is a consequence
of certain elementary properties of polynomials.

(s8]

The division algorithm. Any polynomial p(x) may be expressed as

px)=(x—r)gx) + R

where r is any number, g(x) is a polynomial of degree n — 1, and R is a constant. This has
two quick corollaries.

3. The remainder theorem states that p(r) = R.

4. The factor theorem states that if p(r) =0, then x —r is a factor of p(x).

5. The limitation on zeros. A polynomial of degree n can have at most n zeros, meaning that
the equation p(x) =0 can have at most n roots. The uniqueness theorem is an immediate
consequence, as will be shown.

6. Synthetic division is an economical procedure (or algorithm) for producing the g(x) and R
of the division algorithm. It is often used to obtain R, which by the remainder theorem
equals p(r). This path to p(r) may be preferable to the direct computation of this
polynomial value.

7. The product (x) = (x — xo)(x —x1) - - - (x ~x,) plays a central role in collocation theory.
Note that it vanishes at the arguments xq, x1, . . . , x,, which are our collocation arguments.
The error of the collocation polynomial will be shown to be

y(E)m(x)

y(x)—p(x)= e+ 1)1

17
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2.1.

2.2.

2.3.

THE COLLOCATION POLYNOMIAL [CHAP. 2

where £ depends upon x and is somewhere between the extreme points of collocation,
provided x itself is. Note that this formula does reduce to zero at xo, x,, . . . , X, so that p(x)
does collocate with y(x) at those arguments. Elsewhere we think of p(x) as an
approximation to y(x).

Solved Problems

Prove that any polynomial p(x) may be expressed as
p(x)=(x-r)gx) +R
where r is any number, g(x) is a polynomial of degree » — 1, and R is a constant.
This is an example of the division algorithm. Let p(x) be of degree n.
px)=ax"+a, x" '+ +a,

1

Then px)~(x—rax""'=q(x)=b, X"+
will be of degree n — 1 or less. Similarly,
Gi(x) = (x = Nbp X" P =galx)=c, x4

will be of degree n — 2 or less. Continuing in this way, we eventually reach a polynomial g,(x) of degree
zero, a constant. Renaming this constant R, we have

p(xX)=(x—r)(ax"""+b,x"+ - )+R=(x—r)q(x)+R

Prove p(r) = R. This is called the remainder theorem.

Let x =r in Problem 2.1. At once, p(r)=0-¢g(r)+R.

Illustrate the “synthetic division” method for performing the division described in Problem
2.1, using r =2 and p(x) =x>—3x*+5x + 7.

Synthetic division is merely an abbreviated version of the same operations described in Problem
2.1. Only the various coefficients appear. For the p(x) and r above, the starting layout is

r=2 1 -3 5 7<coefficients of p(x)

1
Three times we “multiply by » and add” to complete the layout.

r=2 1 -3 5 7

2 -2 6
1 -1 3 13 «the number R
%,}-—/
coefficients
of g(x)

Thus, g(x) =x*—x +3 and R =f(2) =13. This may be verified by computing (x — r)g(x) + R, which
will be p(x). It is also useful to find g(x) by the “long division” method, starting from this familiar
layout:

(x—2)|x* = 3x>+5x +7

Comparing the resulting computation with the “‘synthetic” algorithm just completed, one easily sees the
equivalence of the two.
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24.

2.5.

2.6.

2.7.

Prove that if p(r) =0, then x —r is a factor of p(x). This is the factor theorem. The other
factor has degree n — 1.

If p(r) =0, then 0 =0g(x) + R making R =0. Thus, p(x) = (x — r)q(x).

Prove that a polynomial of degree n can have at most n zeros, meaning that p(x) = 0 can have
at most n roots.

Suppose 7 roots exist. Call them ry, r,, .. ., r,. Then by n applications of the factor theorem,
PER)=Ax—nr)x—n) - (x—r)

where A has degree 0, a constant. This makes it clear that there can be no other roots. (Note also that
A=a,.)

Prove that at most one polynomial of degree n can take the specified values y, at given
arguments x,, where k =0,1,...,n.

Suppose there were two such polynomials, p,(x) and p,(x). Then the difference p(x) = p,(x) — p,(x)
would be of degree n or less, and would have zeros at all the arguments x,: p(x,) =0. Since there are
n + 1 such arguments this contradicts the result of the previous problem. Thus, at most one polynomial
can take the specified values. The following chapters display this polynomial in many useful forms. It is
called the collocation polynomial.

Suppose a polynomial p(x) of degree n takes the same values as a function y(x) for x=
Xo» X1, - - -, X, [This is called collocation of the two functions and p(x) is the collocation
polynomial.] Obtain a formula for the difference between p(x) and y(x).

Since the difference is zero at the points of collocation, we anticipate a result of the form
YX)=p(x)=Clx —x)(x —x1) - -+ (x —x,) = C(x)
which may be taken as the definition of C. Now consider the following function F(x):
Fx)=y(x)—px) - Cr(x)
This F(x) is zero for x =x,, x, . . . , x, and if we choose a new argument x,,,; and
C= y(xn+l) —P(X,,ﬂ)
Jt(xm»l)

then. F(x,,) will also be zero. Now F(x) has n +2 zeros at least. By Rolle’s theorem F'(x) then is
guaranteed 7 + 1 zeros between those of F(x), while F"(x) is guaranteed n zeros between those of
F’(x). Continuing to apply Rolle’s theorem in this way eventually shows that F*"*P(x) has at least one
zero in the interval from x, to x,, say at x = & Now calculate this derivative, recalling that the (r + 1)th
derivative of p(x) will be zero, and put x equal to &:

0=y"*&) —C(n+1)!
This determines C, which may now be substituted back:

yorE)
(n+ 1)

Y(Eni) =P (Xni1) = T(Xps1)
Since x,,, can be any argument between x, and x, except for x,, . . . , x, and since our result is clearly
true for x,, . . ., x, also, we replace x, ., by the simpler x:

B y(n+1)(§)

Y(6) = pe) =5 )

This result is often quite useful in spite of the fact that the number & is usually undeterminable, because
we can estimate y"*?(&) independently of .
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2.38.

2.9.
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Find a first-degree polynomial which takes the values y(0)=1 and y(1) =0, or in tabular
form,

The result p(x) =1 —x is immediate either by inspection or by elementary geometry. This is the
collocation polynomial for the meager data supplied.

The function y(x)=cos 37x also takes the values specified in Problem 2.8. Determine the
difference y(x) — p(x).

By Problem 2.7, with n =1,

2 cos inE

3 x(x—1)

y(x)-plx)=

Even without determining & we can estimate this difference by
.7'[2
Y@ —p@I=gxx—1)

Viewing p(x) as a linear approximation to y(x), this error estimate is simple, though generous. At x =3}
it suggests an error of size roughly .3, while the actual error is approximately cos 37 — (1 —3) = .2.

As the degree n increases indefinitely, does the resulting sequence of collocation polynomials
converge to y(x)?

The answer is slightly complicated. For carefully chosen collocation arguments x, and reasonable
functions y(x), convergence is assured, as will appear later. But for the most popular case of equally
spaced arguments x;, divergence may occur. For some y(x) the sequence of polynomials is convergent
for all arguments x. For other functions, convergence is limited to a finite interval, with the error
y(x) — p(x) oscillating in the manner shown in Fig. 2-1. Within the interval of convergence the
oscillation dies out and lim (y — p) =0, but outside that interval y(x) — p(x) grows arbitrarily large as n
increases. The oscillation is produced by the 7(x) factor, the size being influenced by the derivatives of
y(x). This error behavior is a severe limitation on the use of high-degree collocation polynomials.

y(x) — pla)

interval of
convergence

Fig. 2-1
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2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

Supplementary Problems

Apply synthetic division to divide p(x) =x’ — x> +x — 1 by x — 1. Note that R =f(1) =0, so that x — 1 is
a factor of p(x) and r =1 is a zero of f(x).

Apply synthetic division to p(x) = 2x* — 24x> + 100x> — 168x + 93 to compute p(1). (Divide by x — 1 and
take the remainder R.) Also compute p(2), p(3), p(4), and p(5).

To find a second-degree polynomial which takes the following values:

x|10 1 2

w0 1 0

we could write p(x) = A + Bx + Cx* and substitute to find the conditions
0=A4 1=A+B+C 0=A+2B+4C

Solve for A, B, and C and so determine this collocation polynomial. Theoretically the same procedure
applies for higher-degree polynomials, but more efficient algorithms will be developed.

The function y(x) = sin $7x also takes the values specified in Problem 2.13. Apply Problem 2.7 to show
that
73 cos 3nE

T x(x—1(x-2)

y(x) —px)= -
where & depends on x.
Continuing Problem 2.14, show that

) =p ()| = | x(x ~Dx ~2)

This estimates the accuracy of the collocation polynomial p(x) as an approximation to y(x). Compute
this estimate at x =4 and compare with the actual error.

Compare y'(x) and p’(x) for x = 4.
Compare y”(x) and p"(x) for x = 3.
Compare the integrals of y(x) and p(x) over the interval (0, 2).

Find the unique cubic polynomial p(x) which takes the following values.

Xy 0o 1 2 3

%} 0 1 16 81

The function y(x) =x* also takes the values given in the preceding problem. Write a formula for the
difference y(x) — p(x), using Problem 2.7.

What is the maximum of {y(x) — p(x)| on the interval (0, 3)?



Chapter 3

Finite Differences

FINITE DIFFERENCES

Finite differences have had a strong appeal to mathematicians for centuries. Isaac Newton was
an especially heavy user, and much of the subject originated with him. Given a discrete function,
that is, a finite set of arguments x; each having a mate y,, and supposing the arguments equally
spaced, so that x, ., — x, = h, the differences of the y, values are denoted

Ay = Yes1— Yk
and are called first differences. The differences of these first differences are denoted
A% = A(AY) = AV = AYe = Yowz = iear + i
and are called second differences. In general,
A"y = A"y~ A"y,

defines the nth differences.
The difference table is the standard format for displaying finite differences. Its diagonal pattern
makes each entry, except for the x,, y,, the difference of its two nearest neighbors to the left.

Xo Yo
Ayo
X1 N AZYO
Ay, A%y,
X2 ¥ A%y, Ay,
Ay, Ay,
X3 Y3 A%y,
Ay,
X4 Y4

Each differences proves to be a combination of the y values in column two. A simple example is
A3y, =y3— 3y, + 3y, — yo. The general result is

k k
a0= 2 (=1 Jpcs
where (%) is a binomial coefficient.

DIFFERENCE FORMULAS

Difference formulas for elementary functions somewhat parallel those of calculus. Examples
include the following:

1. The differences of a constant function are zero. In symbols,
AC=0,
where C denotes a constant (independent of k).
2. For a constant times another function, we have

A(Cu) = CAuy
3. The difference of a sum of two functions is the sum of their differences:

Aup + i) = Auy + Av,
22
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The linearity property generalizes the two previous results to
A(Ciuy + Cyup) = CiAuy + CAv,

where C, and C, are constants.
The differences of a product are given by the formula

A(upvy) = up Avg + v 1Ay
in which the argument & + 1 should be noted.

The differences of a quotient are

A(ﬂ) v Ay — ukAvk)
Uk Vr+1Vk
and again the argument k + 1 should be noted.

The differences of the power function are given by
ACk=CHC-1)
The special case C =2 brings Ay, = y,.

The differences of sine and cosine functions are also reminiscent of corresponding results of
calculus, but the details are not quite so attractive.

1
A(sink)=2 sin%cos (k + z)

1
Acosk)= —2 sinisin (k + %)

The differences of the logarithm function are a similar disappointment. With x, = x, + kA,
we have

A(log x;) =log (1 + ﬁ)
Xk

When h/x, is very small this makes A(logx,) approximétely h/x,, but otherwise the
reciprocal of x, which is so prominent in the calculus of logarithms, is quite remote.

The unit error function, for which y, =1 at a single argument and is otherwise zero, has a
difference table consisting of the successive binomial coefficients with alternating signs. The
detection of isolated errors in a table of y, values can be based on this property of the unit
error function.

The oscillating error function, for which y, = £ 1 alternately, has a difference table
consisting of the successive powers of 2 with alternating signs.

Other functions of special interest will be studied in succeeding chapters, and the
relationships between difference and differential calculus will be of continuing interest.

Solved Problems

Compute up through third differences of the discrete function displayed by the x; y, columns
of Table 3.1. (The integer variable k also appears for convenience.)

The required differences appear in the remaining three columns. Table 3.1 is called a difference
table. Its diagonal structure has become a standard format for displaying differences. Each entry in the
difference columns is the difference of its two nearest neighbors to the left.
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Table 3.1
k X | oy | An | APy | Ay,
0 1 1
7
1 2 8 12
19 6
2 3 27 18
37 6
3 4 64 24
61 6
4 5 125 30
91 6
5 6 216 36
127 6
6 7 | 343 42
169
7 8 | 512
Any such table displays differences as shown in Table 3.2.
Table 3.2
0 Xo Yo
Ay,
1 Xy Y1 Ay,
Ay, A’y
2 X2 Y2 A%y,
Ay, Ay,
3 X3 Vs A%y,
Ay;
4 X4 Ya
For example, Ayo=y,=yo=8-1=17

3.2.

3.3.

3.4.

A=Ay, —Ay=19-7=12  etc.

What is true of all fourth and higher differences of the function of Problem 3.1?

Any such differences are zero. This is a special case of a result to be obtained shortly.

Prove that Ay, =y;— 3y, + 3y, — Y-
Either from Table 3.2 or by the definitions provided at the outset,
Alyy= Ay, = Alyo= (3= +y) = (2= 1+ y0) =y = 2+ 3y = Yo

Prove that A'y, =y, — dy; + 6y, — 4y, + yo.
By definition, A'y, = Ay, — A'y,. Using the result of Problem 3.3 and the almost identical
Ay =y, =3y, + 3, —n

obtained by advancing all lower indices, the required result follows at once.

[CHAP. 3
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3.5. Prove that for any positive integer £,
a5=3 (e

where the familiar symbol for binomial coefficients,

(k) kKl kk=1)---(k—=i+1)
i/ itk—i i!

has been used.

The proof will be by induction. For k=1, 2, 3, and 4, the result has already been established, by
definition when k is 1. Assume it true when k is some particular integer p:

a=3 =10y
By advancing all lower indices we have also

2yi= 3 (0 i

and by a change in the summation index, namely, i =j + 1,

2y =5= 2 /(.2 o

It is also convenient to make a nominal change of summation index, i =J, in our other sum:

230='3 0 (P (<110

o=t
Then APHY(y:AP)ﬁ_APy =Ypr1— 2 (-1 [(] _+_1) + (?)]yp—,_(_l)p}’(i
j=0
i 2+ ()=(20)
N sin, + =
ow using (j-+-1 i)\t

(see Problem 4.5) and making a final change of summation index, j + 1 =,

2, Ip+1 +1
8023015 3 (T = 190= S (P

Thus our result is established when k is the integer p + 1. This completes the induction.

3.6. Prove that for a constant function all differences are zero.
Let y, = C for all k. This is a constant function. Then, for all ,
AYe =Y =y =C—-C=0
3.7.  Prove A(Cy,) = CAy,.

This is analogous to a result of calculus. A(Cy,) = Cyy,, — Cy, = CAy,.

Essentially this problem involves two functions defined for the same arguments x,. One function
has the values y,, the other has values z, = Cy,. We have proved Az, = CAy;.

3.8. Consider two functions defined for the same set of arguments x,. Call the values of these
functions u; and v,. Also consider a third function with values

Wy = Crup + CLu,
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3.9.

3.10.

3.11.
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where C; and C, are two constants (independent of x,). Prove
Aw, = C1Auy + C,AY,
This is the linearity property of the difference operation.
The proof is direct from the definitions.
AW = Wiy = Wi = (Cithesy + CoUprr) — (Crgge + C,0)
= Cy(Ugrr — ) + CoUsyy — Ui) = CiAU + CAU,

Clearly the same proof would apply to sums of any finite length.

With the same symbolism as in Problem 3.8, consider the function with values z, = u, v, and
prove Az, = u Avy + Vg1 Aty

Again starting from the definitions,

Az = Upe Vs — WUs = Upq Ukt — WUkt + UicUpq — WU
= U1 (e = ) + ieVsry — Vi) = e AU + Vi 1 Bty

The result Az, = u, ,1Av, + v, Au, could also be proved.

Compute differences of the function displayed in the first two columns of Table 3.3. This may
be viewed as a type of “error function,” if one supposes that all its values should be zero but
the single 1 is a unit error. How does this unit error affect the various differences?

Some of the required differences appear in the other columns of Table 3.3.

Table 3.3

Xo 0
0

X, 0 0
0 0

x 0 0 1
0 1

X3 0 1 -4
1 -3

X 1 -2 6

-1 3

Xs 0 1 —4
0 -1

X 0 0 1
0 0

X7 0 0
0

Xg 0

This error influences a triangular portion of the difference table, increasing for higher differences
and having a binomial coefficient pattern.

Compute differences for the function displayed in the first two columns of Table 3.4. This may
be viewed as a type of error function, each value being a roundoff error of amount one unit.
Show that the alternating + pattern leads to serious error growth in the higher differences.
Hopefully, roundoff errors will seldom alternate in just this way.
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Some of the required differences appear in the other columns of Table 3.4. The error doubles for
each higher difference.

Table 3.4
Xo 1
=2
Xy -1 4
2 -8
X5 1 -4 16
-2 8 =32
X3 -1 4 -16 64
2 -8 32
X4 1 -4 16
-2 8
Xs -1 4
2
X 1

3.12. One number in this list is misprinted. Which one?
1 2 4 8 16 26 42 64 93
Calculating the first four differences, and displaying them horizontally for a change, we have

1 2 4 8 10 16 22 29

and the impression is inescapable that these binomial coefficients arise from a data error of size 1 in the
center entry 16 of the original list. Changing it to 15 brings the new list

1 2 4 8 15 26 42 64 93
from which we find the differences

1 2 4 7 11 16 22 29
1 2 3 4 5 6 7

which suggest a job well done. This is a very simple example of data smoothing, which we treat much
more fully in a later chapter. There is always the possibility that data such as we have in our original list
comes from a bumpy process, not from a smooth one, so that the bump (16 instead of 15) is real and not
a misprint. The above analysis can then be viewed as bump detection, rather than as error correcting.

Supplementary Problems

3.13. Calculate up through fourth differences for the following y, values. (Here it may be assumed that
X =k.)

k10 1 2 3 4 5 6

»w |0 1 16 81 256 625 1296
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3.14. Verify Problem 3.5 for k =5 by showing directly from the definition that
A°yy=ys — Sy, + 10y; — 10y, + Sy, — yo

3.15. Imitating Problem 3.9, prove that A% =w.
Uk Uk +1Vk

3.16. Calculate differences through the fifth order to observe the effect of adjacent ““errors” of size 1.

kK 1o 1 2

w
KN
W
(o))
-

yvl0 0 0 1 1 0 0 0

3.17. Find and correct a single error in these y, values.

k 0 1 2 3 4 5 6 7

Yk 0 0 1 6 24 60 120 210

3.18. Use the linearity property to show that if y, = k*, then
AYk=yk+1_yk=3k2+3k+ 1 AZYk=Ayk+| — Ay, =6k+6 A3yk= Az}’kn_ Az}’k=6

3.19. Show that if y, = k*, then A%y, =24.
3.20. Show that if y, = 2%, then Ay, = y,.
3.21. Show that if y, = C, then Ay, = C*(C - 1).

3.22. Compute the missing y, values from the first differences provided

»w 0 : : :
Ay, 1 2 4 7 11 16

3.23. Compute the missing y, and Ay, values from the data provided.

Yeoo® : . 6
Ay, . . 3 . .
Ay, 1 4 13 18 24

3.24. Compute the missing y, values from the data provided.
» 0 0 0 6 24 60

Aye 0 0 6 18 36
Ay, 0 6 12 18 - .
Ay, 6 6 6 6 6 6

3.25. Find and correct a misprint in this data.

y» 1 3 11 31 69 113 223 351 521 739 1011

3.26. By advancing all subscripts in the formula A%y, =y, -2y, +y,, write similar expansions for A, and
A%y,. Compute the sum of these second differences. It should equal Ay; — Ay, =y, — ys — y; + Yo

3.27. Find a function y, for which Ay, =2y,.
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3.28. Find a function y, for which A%, = 9y,. Can you find two such functions?

3.29. Continuing the previous problem, find a function such that A%, =9y, and having y, =0, y, = 1.
3.30. Prove A(sin k) =2sin 3 cos (k +3).

3.31. Prove A(cos k)= —2sin }sin (k + 3).

3.32. Prove A(log x,) =log (1 + h/x,) where x, = x, + kh.

29



Chapter 4

Factorial Polynomials

FACTORIAL POLYNOMIALS
Factorial polynomials are defined by
Ye=k®=k(k-1)- - (k—=n+1)

where n is a positive integer. For example, k¥ = k(k — 1) = k? — k. These polynomials play a central
role in the theory of finite differences because of their convenient properties. The various differences
of a factorial polynomial are again factorial polynomials. More specifically, for the first difference,

AK® = nk®=D

which is reminiscent of how the powers of x respond to differentiation. Higher differences then
become further factorial polynomials of diminishing degree, until ultimately
A"k = p!

with all higher differences zero.
The binomial coefficients are related to factorial polynomials by

ky k™
<n) " al
and therefore share some of the properties of these polynomials, notably the famous recursion
(o)~ (20)=()
n+1 n+1/ \n
which has the form of a finite difference formula.
The simple recursion

KeD = (k = n)k®™

follows directly from the definition of factorial polynomials. Rewriting it as

(n+1)
k(n) = k
k—n
it may be used to extend the factorial idea successively to the integers n =0, —1, —2, . ... The basic

formula
Ak = kD

is then true for all integers 7.

STIRLING’S NUMBERS

Stirling’s numbers of the first kind appear when factorial polynomials are expressed in standard
polynomial form. Thus

K =8Pk + -+ SME" =, SOk

the S being the Stirling numbers. As an example,
k® =2k -3k + k°

30
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which makes S =2, §& = —3, and S’ = 1. The recursion formula
S0 2§ — S
permits rapid tabulation of these Stirling numbers.

Stirling’s numbers of the second kind appear when the powers of k are represented as
combinations of factorial polynomials. Thus

k= s({‘)k(l) NI +s£,")k(") = Z s,(")k(")

the s being the Stirling numbers. As an example,
k* = kM +3k@ + k@
so that s =1, s& =3, and s’ = 1. The recursion formula
sIHD =5 s
permits rapid tabulation of these numbers. A basic theorem states that each power of k can have

only one such representation as a combination of factorial polynomials. This assures the unique
determination of the Stirling numbers of the second kind.

REPRESENTATION OF ARBITRARY POLYNOMIALS

The representation of arbitrary polynomials as combinations of factorial polynomials is a natural
next step. Each power of k is so represented and the results are then combined. The representation
is unique because of the basic theorem just quoted. For example,

K2+ 2k + 1= [k® + kO] + 26D 4 1= k@ 4 3D 4 1

Differences of arbitrary polynomials are conveniently found by first representing such polyno-
mials as combinations of factorial polynomials and then applying our formula for differencing the
separate factorial terms.

The principal theorem of the chapter is now accessible, and states that the difference of a
polynomial of degree n is another polynomial, of degree n — 1. This makes the nth differences of
such a polynomial constant, and still higher differences zero.

Solved Problems

4.1. Consider the special function for which y, = k(k — 1)(k — 2) and prove Ay, =3k(k —1).
Ay =Yir1=ye=(k+ Dk(k = 1) —k(k = 1)(k =2) =[(k + 1) = (k = 2)Jk(k — 1) = 3k(k — 1)

In tabular form this same result, for the first few integer values of k, is given in Table 4.1.

4.2. This generalizes Problem 4.1. Consider the special function
Ve=k(k—1)- - (k—n+1)=k®
(Note that the upper index is not a power.) Prove, for n > 1,
Ay, = nk®™Y

a result which is strongly reminiscent of the theorem on the derivative of the nth power

function.
Aye=Yeri =y =[k+1)---(k—n+2)]—[k---(k—n+1)

=[(k+1) = (k—n+1D)k(k—1)-- (k—n +2) = nk®D
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Table 4.1

k Yi Ay,

0 0
0

1 0
0

2 0
6

3 6
18

4 24
36

5 60

4.3. Prove that if y, = k™, then A%, =n(n —1)k"=2,
Problem 4.2 can be applied to Ay, rather than to y,.
Ak™ = AAK® = Ank" "V =n(n - Dk"?

Extensions to higher differences proceed just as with derivatives.

4.4. Prove A"k =n! and A"k =(.

After n applications of Problem 4.2, the first result follows. (The symbol &” can be interpreted as
1.) Since n! is constant (independent of k) its differences are all 0.

4.5. The binomial coefficients are the integers

ky k™ k!
(n)_ n! " nl(k—n)!

Prove the recursion

(e =G5+ ()
n+1 n+1 n
Using factorial polynomials and applying Problem 4.2,

<k+1)_< k )_(k+1)("*”_ KD _Ak("*"_(n+1)k‘”)_k‘")_(k)
n+1 n+1) @+ @+ (m+1)! (m+1)! al

n

which transposes at once into what was to be proved. This famous result has already been used.

4.6. Use the recursion for the binomial coefficients to tabulate these numbers up through k = 8.

x )
The first column of Table 4.2 gives (0> which is defined to be 1. The diagonal, where k =n, is 1 by

definition. The other entries result from the recursion. The table is easily extended.

k
4.7. Show that if k is a positive integer, then £ and ( ) are 0 for n > k. [For n >k the symbol
n

(k) is defined as k(")/n!]
n
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Table 4.2
n
k 0 1 2 3 4 5 6 7 8
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 2 7 1
8 1 8§ 28 56 70 36 28 8 1

Note that k**Y=k(k —1)- - -0. For n> k the factorial kX will contain this 0 factor, and so will
k
(n) ’
4.8. The binomial coefficient symbol and the factorial symbol are often used for nonintegral k.

k
Calculate £ and (n) fork=4%andn=2,3.
nN® 171 1 nN® 1/1 1 3
@2} =2({2_9)=_2 @2} =2(2_ e
k (2) 2(2 1) : K (2) 2(2 1)(2 2) 8
(k)_ﬂ_l(_l)__l (k)_ﬂ_l(é)_l
2/ 2t 2\ 4/ 8 3/7 31 6\8/ 16

4.9. The idea of factorial has also been extended to upper indices which are not positive integers.
It follows from the definition that when » is a positive integer, k™*D = (k — n)k™. Rewriting
this as i
kD =~ pn+D)
k—
and using it as a definition of k™ for n=0,-1,—2,..., show that k¥ =1 and
kM =1/(k + n)™.
With n =0 the first result is instant. For the second we find successively
1 1 1 1 1 1

K V= O _- = KD = gD -
k+1 k+1 (k+1)® k+2 k+2)(k+1) (k+2)®

and so on. An inductive proof is indicated but the details will be omitted. For k =0 it is occasionally
convenient to define k=1 and to accept the consequences.

4.10. Prove that Ak™ = nk®"~" for all integers n.

For n > 1, this has been proved in Problem 4.2. For n=1 and 0, it is immediate. For n negative,

say n=—p,
1 1 1
() — -pr) = = —
Ak Ak A(k+p)("> (k+1+p)---(k+2) (k+p)---(k+1)
- 1 ( 1 ﬁ;)__—z’_*
T(k+p)- o (k+2) \k+14p k+1) (k+14p)---(k+1)
n

= = k"D
(k+1—n)"" "
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4.11.

4.12.

4.13.

4.14.
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n—1s

This result is analogous to the fact that the theorem of calculus “if f(x) = x", then f'(x) = nx is
also true for all integers.

Find Ak,
By the previous problems, Ak™D = —k"? = —1/(k +2)(k + 1).

Show that k@ = —k + k%, k® =2k — 3k* + k>, k™ = —6k + 11k* — 6k + k*.
Directly from the definitions:
kP =k(k—-1)=—k+k*
kD = kD (k —2) =2k = 3k* + &
k9 =k®(k —3)= -6k + 11k* — 6k* + k*

Generalizing Problem 4.12, show that in the expansion of a factorial polynomial into standard
polynomial form

KO =8Mk + - -+ SWE" =3, Sk
the coefficients satisfy the recursion
S+ = §M) — nS

These coefficients are called Stirling’s numbers of the first kind.
Replacing n by n + 1,
k(n+1)=s(ln+l)k +.. '+S£ln++ll)kn+l
and using the fact that K"+ = k™(k — n), we find
S¢ O 44 SUEVKTH =[SOk + - - -+ SR (k = n)
Now compare coefficients of k' on both sides. They are
S¢Y = O, — ns(

for i=2,...,n The special cases S"*" = —nS{ and S3,” = S{” should also be noted, by comparing
coefficients of k and k™",

Use the formulas of Problem 4.13 to develop a brief table of Stirling’s numbers of the first
kind.

The special formula ${"*V = —nS{” leads at once to column one of Table 4.3. For example, since
S{ is clearly 1,

§P=-sP=-1 §P=-28P=2
and so on. The other special formula fills the top diagonal of the table with 1s. Our main recursion then
completes the table. For example,
§P =828 = (-1)-2(1)=-3
SP =50 -38P=(2)-3(-3)=11
SP =8P -38P=(-3)-3(1)=-6
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and so on. Through n = 8 the table reads as follows:

Table 4.3

i
n 1 2 3 4 5 6 7 8
1 1
2 -1 1
3 2 -3 1
4 -6 11 -6 1
5 24 -50 35 -10 1
6 -120 274 —225 85 -15 1
7 720 -1,764 1,624 =735 175 =21 1
8 —5,040 13,068 -13,132 6,769 —1,960 322 —28 1

4.15. Use Table 4.3 to expand £©.

4.16.

4.17

4.18.

Using row five of the table, k™ = 24k — 50k* + 35k* — 10k* + k°.

Show that k%= kM + k@, k3= kW £ 3kD 4 O k4= D 4 74@ 4 65O 4 k@
Using Table 4.3,
KU+ k@ =k + (—k + k) =k*
KD+ 3@ 4+ kO =k + 3(—k + k%) + 2k = 3K2 + k%) = k°
KD+ Tk® 4 6k + k= k + 7(—k + k) + 6(2k — 3K* + k) + (—6k + 11k* — 6K° + k*y=k*

As a necessary preliminary to the following problem, prove that a power of k can have only
one representation as a combination of factorial polynomials.

Assume that two such representations exist for k?.
kP=AKD +. -+ AkD kP =Bik® + .- -+ Bk
Subtracting leads to
0=(A;—B)kM+:--+(4, - B,)k®»

Since the right side is a polynomial, and no polynomial can be zero for all values of , every power of k
on the right side must have coefficient 0. But k” appears only in the last term; hence A, must equal B,
And then k”~! appears only in the last term remaining, which will be (A, ,— B,_)k”""; hence
A,_1=B,_,. This argument prevails right back to 4, = B,.

This proof is typical of unique representation proofs which are frequently needed in numerical
analysis. The analogous theorem, that two polynomials cannot have identical values without also having
identical coefficients, is a classic result of algebra and has already been used in Problem 4.13.

Generalizing Problem 4.16, show that the powers of k can be represented as combinations of
factorial polynomials
Kt =sk® 4o 4 s =N WO

and that the coefficients satisfy the recursion s{"*? = s, + is{™. These coefficients are called
Stirling’s numbers of the second kind.




36 FACTORIAL POLYNOMIALS [CHAP. 4

We proceed by induction, Problem 4.16 already having established the existence of such
representations for small k. Suppose

K =sk® 4+ sk
and then multiply by & to obtain
K =ksk D + -+ ks
Now notice that k - k9 = (k — i)k + ik = k" + ik so that
=K@ + kDY + - 4 5D 4+ nk ™)
This is already a representation of k"**, completing the induction, so that we may write
Kl =S(1n+l)k(l)+ et Ssln:-ll)k("+1)
By Problem 4.17, coefficients of k” in both these last lines must be the same, so that
s =50+ is(

for i=2,...,n. The special cases s{"*"=5{" and 57" =s{" should also be noted, by comparing

coefficients of k" and k"'*".

4.19. Use the formulas of Problem 4.18 to develop a brief table of Stirling’s numbers of the second
kind.

The special formula s{"*" = s leads at once to column one of Table 4.4, since s{" is clearly 1. The
other special formula produces the top diagonal. Our main recursion then completes the table. For
example,

sP=5P+ 2P =(1)+2(1)=3 s =5P+ 28 =(1)+23)=7

s =5 + 359 = (3)+3(1) =6

and so on. Through n =8, the table reads as follows:

Table 4.4
n 1 2 3 4 5 6 7 8
1 1
2 1
3 1 3
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1

4.20. Use Table 4.4 to expand k° in factorial polynomials.
Using row five of the table, k* = k™ + 15k® + 25k + 10k™ + k.

4.21. Prove that the nth differences of a polynomial of degree n are equal, higher differences than
the nth being zero.

Call the polynomial P(x), and consider its values for a discrete set of equally spaced arguments
Xgy X1, X, . - .. It is usually convenient to deal with the substitute integer argument k which we have



CHAP. 4] FACTORIAL POLYNOMIALS 37

4.22.

4.23.

4.24.

4.26.

used so frequently, related to x by x, —x, = kh where & is the uniform difference between consecutive x
arguments. Denote the value of our polynomial for the argument k by the symbol P,. Since the change
of argument is linear, the polynomial has the same degree in terms of both x and k, and we may write it
as

Pi=ao+ak +ak*+- - -+ ak"

Problem 4.18 shows that each power of & can be represented as a combination of factorial polynomials,
leading to a representation of P, itself as such a combination.

P =bo+ bk +b,k® + - + b,k
Applying Problem 4.2 and the linearity property
AP =b,+2b,k® + - +nb, k"""

and reapplying Problem 4.2 leads eventually to A"P, =n!b,. So all the nth differences are this number.
They do not vary with k and consequently higher differences are zero.

Assuming that the following y, values belong to a polynomial of degree 4, compute the next
three values.

k 0 1 2 3 4 5 6 7

Y 0 1 2 1 0

A fourth-degree polynomial has constant fourth differences, according to Problem 4.21. Calculating
from the given data, we obtain the entries to the left of the line in Table 4.5.

Table 4.5

16 30

Assuming the other fourth differences also to be 4 leads to the entires to the right of the line from
which the missing entries may be predicted: ys =35, ys =26, y, =77.

Supplementary Problems
Compute the factorials: 6, 6, 67, (1)@, (3)@, (3)“.

Compute the factorials: 67, 62, 60, (H)V, ()2, (3).

Compute the binomial coefficients: (6) (6) (6) (%) (%) (é)
i © 3/ 6/ \7)\2)7\3) \a)-

Compute differences through fourth order for these values of y, = k.

k 0 1 2 3 4 5 6 7

Y 0 0 0 0 24 120 360 840
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4.27.

4.28.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.

4.40.

4.41.

4.42.

4.43.

FACTORIAL POLYNOMIALS [CHAP. 4
Apply Problem 4.2 to express the first four differences of y, =k in terms of factorial polynomials.
Apply Problem 4.2 to express the first five differences of y, = k® in terms of factorial polynomials.
Use Table 4.3 to express y, =2k® — k® + 4k™ — 7 as a conventional polynomial.

Use Table 4.3 to express y, = kX + k® + 1 as a conventional polynomial.

Use Table 4.4 to express y, = 3(2k* — 8k* + 3) as a combination of factorial polynomials.

Use Table 4.4 to express y, = 80k> —30k* + 3k” as a combination of factorial polynomials.

Use the result of the previous problem to obtain Ay, in terms of factorial polynomials. Then apply Table
4.3 to convert the result to a conventional polynomial

Use the result of Problem 4.32 to obtain Ay, and Ay, in terms of factorial polynomials. Then apply
Table 4.3 to convert both results to conventional polynomials.

Assuming that the following y, values belong to a polynomial of degree 4, predict the next three values.

k 0 1 2 3 4 5 6 7

Vi 1 -1 1 -1 1

Assuming that the following y, values belong to a polynomial of degree 4, predict the next three values.

k 0 1 2 3 4 5 6 7

Vi 0 0 1 0 0

What is the lowest degree possible for a polynomial which takes these values?

k 0 1 2 3 4 5
Ve 0 3 8 5 24 35

What is the lowest degree possible for a polynomial which takes these values?

k 0 1 2 3 4 5

Ve o 1 1 1 1 0

Find a function y, for which Ay, =k® =k(k —1).
Find a function y, for which Ay, = k(k ~ 1)(k — 2).
Find a function y, for which Ay, =k*=k® + k",
Find a function y, for which Ay, = k.

Find a function y, for which Ay, = 1(k + 1)(k +2).



Chapter 5

Summation

Summation is the inverse operation to differencing, as integration is to differentiation. An
extensive treatment appears in Chapter 17 but two elementary results are presented here.

1. Telescoping sums are sums of differences, and we have the simple but useful
n—1

> AVe=Y.— Yo
k=0

analogous to the integration of derivatives. Arbitrary sums may be converted to telescoping
sums provided the equation Ay, = z; can be solved for the function y,. Then

n-1 n—1
2 =2 Aye=y.~Yo
k=0 k=0
Finite integration is the process of obtaining y, from
Ay, =1z
where z; is known. Since it obviously follows that
n-1
Ya=Yot 2 2
k=0

finite integration and summation are the same problem. As in integral calculus, however,
there are times when explicit finite integrals (not involving }.) are useful.

2. Summation by parts is another major result of summation calculus and involves the formula

n—1 n—1
2 U Av; = u,U, — Ul — 2 v Ay;
i=0 i=0

which resembles the corresponding integration by parts formula.
Application of this formula involves exchanging one summation for a (presumably)
simpler summation. If one of the ¥.’s is known, the formula serves to determine the other.

Infinite series may also be evaluated in certain cases where the partial sums respond to the
telescoping or summation by parts methods.

Solved Problems
n—1
51. Prove Y Ay =y, —
k=0

This is a simple but useful result. Since it involves the summation of differences, it is usually
compared with an analogous result of calculus involving the integration of a derivative. First notice that
Ayo=y1=Yo
Ayt Ay =(n=y) + 2 =y) ==
Ayt Ay + Ay =(y; =) + (2= y) + (=) =y~
which illustrate the sort of telescoping sums involved. In general,

n—1

2 Ay =(n=y) T (a=y)+ (=) + + G =Ya) =Ya— o
k=0

39
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5.2,

5.3.

S.4.

SUMMATION [CHAP. 5

all other y values occurring both plus and minus. Viewed in a table of differences, this result looks even
simpler. The sum of adjacent differences gives the difference of two entries in the row above.

Yo : : . . : . Yn
Ay, Ay, Ay, . : : Ay,

Similar results hold elsewhere in the table.

_nmn+1H@2n+1)
B a—

We need a function for which Ay, =i* This is similar to the integration problem of calculus. In this
simple example, the y; could be found almost by intuition, but even so we apply a method which handles
harder problems just as well. First replace i> by a combination of factorial polynomials, using Stirling’s
numbers.

n
Prove 24+ 224 .- -+pn2= 3 2
i=1

Ay, =2 =i+
A function having this difference is
1 1
O
=l s
T3t Ty

as may easily be verified by computing Ay, Obtaining y; from Ay; is called finite integration. The
resemblance to the integration of derivatives is obvious. Now rewrite the result of Problem 5.1 as

Y Ay, =y..: — y: and substitute to obtain
i=1

§ﬁ=[§m+4y”+%m+1wﬂ—[§ay”+%uwﬂ

_(n+Dn(r-1) + (n+Dn_n(r+1)2n+1)
B 3 2 6

= 1
Evaluate the series Eom'
) S
TG+DGE+2)
n—1 1

n—1 1
= = — A'(*1)=_ (—1)_0(—1) =1-—
S 21, (+1)@i+2) ‘S::; ! [n ] n+1

By an earlier result Ai“”" Then, using Problem 4.9 to handle 07,

The series is defined as lim S, and is therefore equal to 1.

Consider two functions defined for the same set of arguments x,, having values 1, and v,.
Prove

n—1 n=1

Z u; Av; = U, U, — Uglo — 2 Ui Dy
i=0 i=0

This is called summation by parts and is analogous to the result of calculus

I

o

W () s =)0 (5) = a0~ [ v (x) e

The proof begins with the result of Problem 3.9, slightly rearranged.
u; Av; = A(uv) — vy Ay
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5.5.

5.6.

5.7.

5.8.

Sum fromi=0toi=n-1,
n-1 n—1 n—1
2w Av =3 Awp) = 3 v Ay,
i=0 i=0 i=0

and then apply Problem 5.1 to the first sum on the right. The required result follows.

Evaluate the series ¥ iR’ where —1<R < 1.

i=0

Since AR'=R""'— R'=R(R — 1), we may put &, =i and v, = R'/(R — 1) and apply summation by
parts. Take the finite sum

n—1 n=1 n n—1 RHI

S,,=EiR‘=Eu,~AU,=n-

i=0 i=0 R-1 - i=0 R-1

The last sum is geometric and responds to an elementary formula, making
_ nR" + R(1-R")
" R-1 (1-R)

Since nR” and R™*' both have limit zero, the value of the infinite series is lim S, = R/(1 — R).

A coin is tossed until heads first shows. A payoff is then made, equal to i dollars if heads first
showed on the ith toss (one dollar if heads showed at once on the first toss, two dollars if the
first head showed on the second toss, and so on). Probability theory leads to the series

1(5)+2G)+3(E)+ =216

for the average payoff. Use the previous problem to compute this series.

By Problem 5.5 with R = 1, i @) = (3)/(3) =2 dollars.

Apply summation by parts to evaluate the series ¥, i?R’.
i=0

Putting 4, =i*, v;= R'/(R — 1) we find Ay, =2i + 1 and so

n—1 n n—1 i+l

- R
— 2pi - _
S,,-—;:BtR Z%MAU, nR i 2 R=1

The first of the two remaining sums was evaluated in Problem 5.5 and the second is geometric. So we
come to

_nR" 2R [ nR" R(1—R")]_ R 1-R"
""R-1 R-1 (1-R?*J R-1 1-R

and letting n— = finally achieve lim S, = (R + R*)/(1 — R)>.

A coin is tossed until heads first shows. A payoff is then made, equal to i* dollars if heads first

showed on the ith toss. Probability theory leads to the series Z i*(3) for the average payoff.
Evaluate the series.

By Problem 5.7 with R =1, Z P3) =G +1)/(3) =6 dollars.
=0
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5.9.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

SUMMATION [CHAP. 5

Supplementary Problems

=n(n +1)

Use finite integration (as in Problem 5.2) to prove i i=1+2+---+n 3
i=1

Evaluate ¥ i° by finite integration.
i=1

a1l A1
Show that ¥ A’ =21 by using finite integration. (See Problem 3.21.) This is, of course, the
i=0

geometric sum of elementary algebra..

n i /f n 1
Show that %, (k) = (k + 1) - (k + 1)'

= 1
Evaluate by finite integration: Eom

kel 1
Evaluate i§l m .

Evaluate ¥ R’ for —1 <R <1.
i=0

Alter Problem 5.8 so that the payoff is i>. Use Problem 5.15 to evaluate the average payoff, which is
¥ P
i=0

Alter Problem 5.8 so that the payoff is +1 when i is even and —1 when i is odd. The average payoff is

f} (—1)'(3)". Evaluate the series.
=1

n 1
Evaluate ¥ log (1 + —,)‘

i=1 1

N
Evaluate )] {” in terms of Stirling’s numbers.
i=1

= 1
e £ [ 1]
valuate 2 | )
Evaluate E} i"R".

i=0

Express a finite integral of Ay, =1/k in the form of a summation, avoiding k = 0.

Express a finite integral of Ay, =log k in the form of a summation.



Chapter 6

The Newton Formula

The collocation polynomial can now be expressed in terms of finite differences and factorial
polynomials. The summation formula

LN
Yk:;]<i)A')’0

is proved first and leads directly to the Newton formula for the collocation polynomial, which can be

written as

& (kN

P = E ( ) Ay,
i=0 \1
An alternative form of the Newton formula, in terms of the argument x,, may be obtained using
Xy =Xxo+ kh, and proves to be
Ay A% A"y
plx) =yo + (‘f)(xk —xo) + (ﬂ%)(xk —xo)(xp —x)+ -+ (n! hi)(xk —xg) * - (% = Xp1)

The points of collocation are x, ..., X, At these points (arguments) our polynomial takes the
prescribed values yg, . . ., Yu.

Solved Problems

6.1. Prove that
Y1=Yo+ Ay, Y2=Yyo +2Ay, + A%, Y3 =Yo + 3Ay, + 3A%;, + A%,
and infer similar results such as
Ay, = Ayo+ 20%,+ Ay, A%y, = A%y, + 20%, + A%y,

This is merely a preliminary to a more general result. The first result is obvious. For the second,
with one eye on Table 6.1,

Y2 =1+ Ay = (Yo + Ayo) + (Ays + Ayo)

leading at once to the required result. Notice that this expresses y, in terms of entries in the top diagonal
of Table 6.1. Notice also that almost identical computations produce

Ay, = Ayo + 20%,+ A%y, A%y, = NPy + 20%, + Ay,
etc., expressing the entries on the “y, diagonal” in terms of those on the top diagonal. Finally,
3=y, + Ay, = (yo + 24y, + A%y) + (Ayy + 20%0 + A’yg)

leading quickly to the third required result. Similar expressions for Ays;, A%y, etc., can be written by
simply raising the upper index on each A.

Table 6.1

Xq Yo
Ay, 2
X A%y,
xl ;1 Ay, Azyu A3}’0 A4y
2 2 Ayz S 1 A’iy] 0

X3 Y3 Ay A%y,

3
X4 Ya

43
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6.2.

6.3.

6.4.

THE NEWTON FORMULA [CHAP. 6

kK kN
Prove that for any positive integer k, y, = & (z) Alyy. (Here Ay, means simply yo.)
i=0

The proof will be by induction. For k =1, 2, and 3, see Problem 6.1. Assume the result true when k
is some particular integer p.

P
Yo = Z <P) Alyo
i=0 \1
Then, as suggested in the previous problem, the definition of our various differences makes
P
Ay, = 2 (1;) A"y,
i=0
also true. We now find

L (p ) p+1 P
yP+|=yP+AyP=2(') A’}’o+2 ( )AJYU
j=0 \J N =1

P
S e
j=1

2 (p+1\ ., B p+1
=Y+ Z (p . ) Ny, + Ay =3 (p . ) Ay,
j=1 ] j=0 ]
Problem 4.5 was used in the third step. The summation index may now be changed from j to / if desired.
Thus our result is established when k is the integer p + 1, completing the induction.

Prove that the polynomial of degree n,

1 1
Pe=Yotk AY(x*'Ek(Z)AZ u+"‘+;kmAn}’0

L rork\
= E —~ k@ Alyy= E ( ) Ayo
=oi! i=0 M\
takes the values p, =y, for k=0, 1, ..., n. This is Newton’s formula.

Notice first that when k is 0 only the y, term on the right contributes, all others being 0. When k is 1
only the first two terms on the right contribute, all others being 0. When k is 2 only the first three terms
contribute. Thus, using Problem 6.1,

Po=Yo Pi=Yot+ Ayo=y P2=Yo+t 248y, + Ay=y,

and the nature of our proof is indicated. In general, if k is any integer from O to n, then k will be 0 for
i > k. (It will contain the factor k — k.) The sum abbreviates to

k 1 }
pi =2 kY A,

and by Problem 6.2 this reduces to y,. The polynomial of this problem therefore takes the same values
as our y, function for the integer arguments £ =0, . . ., n. (The polynomial is, however, defined for any
argument k.)

Express the result of Probiem 6.3 in terms of the argument x,, where x; = xo + kh.
Notice first that

X~ Xo k_lhxk—l_x(]_xk_xl

k= ez X0 Xk T2
h h h h h
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6.5.

6.6

6.7.

and so on. Using the symbol p(x,) instead of p,, we now find

A A? A"
P8 =yt 72 = 20) + 2 = w) k= 1) + 2 (=) (o =)

which is Newton’s formula in its alternative form.

Find the polynomial of degree three which takes the four values listed in the y, column below
at the corresponding arguments x;.

The various differences needed appear in the remaining columns of Table 6.2.

Table 6.2

k Yr Y Ay Aly, Ay,
0 ® O

@
1 ® 3 ®

5 O]
2 8 7

12
3 10 20

Substituting the circled numbers in their places in Newton’s formula,
2 3 4
plx)=1+ 5 (e —4)+ g (e — 4)(x — 6) +E (e — 4)xe — 6)(x, —8)
which can be simplified to
1
plx) = % (2x3 — 27x} + 142x, — 240)

though often in applications the first form is preferable.

Express the polynomial of Problem 6.5 in terms of the argument k.

Directly from Problem 6.3,

3 4
=142k +Zk@+-k®
Px 2k +6

which is a convenient form for computing p, values and so could be left as is. It can also be rearranged
into
11 1 2
=1+—k—-=k2+=k%
D 3 k 3 k*+ 3 k

Apply Newton’s formula to find a polynomial of degree four or less which takes the y, values
of Table 6.3.

The needed differences are circled. Substituting the circled entries into their places in Newton’s

formula,

4 8 16
=1-2k+-k® ——k®+ — k@
Pe 2 6 uk

S 1
which is also Pe=3 (2k* — 16k> + 40k* ~ 32k + 3)



6.8.

6.9.

6.10.

6.11.

6.12.

THE NEWTON FORMULA

Table 6.3
k X W A A? A? A*
Qe
1 2 -1 @
2 ),
2 3 1 —4 S
-2 8
3 4 -1 4
2
4 5 1

Since k = x, — 1, this result can also be written as

1
P(x) =3 (2l ~ 24xf + 1000} — 168x, +93)

Supplementary Problems

Find a polynomial of degree four which takes these values.

[CHAP. 6

Xk 2 4 6 8 10
Vi 0 0 1 0 0
Find a polynomial of degree two which takes these values.
k=x; 0 1 2 3 4 S 6 7
Ve 1 2 4 7 11 16 22 29
Find a polynomial of degree three which takes these values.
X 3 4 5 6
Vi 6 24 60 120
Find a polynomial of degree five which takes these values.
k=x; 0 1 2 3 4 5
Y 0 0 1 1 0 0
Find the cubic polynomial which includes these values.
k=x; 0 1 2 3 4 5
Ve 1 2 4 8 15 26

(See also Problem 3.12.)
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6.13.

6.18.

6.19.

Expressing a polynomial of degree » in the form

Pi=ag+a kD +ak®+ . 4+ g k™

calculate Ap,, A’py, . .., A"p.. Then show that the requirement
Dk =Yk k=0,...,n
leads to Apo= Ay,, A’y = Ay, etc. Next deduce
1., 1.,
ay =y, a, = Ay, aZ=EAy0 a,1=rﬁAy0

and substitute these numbers to obtain once again Newton’s formula.
Find a quadratic polynomial which collocates with y(x) =x*at x =0, 1, 2.

Find a cubic polynomial which collocates with y(x) =sin (7x/2) at x =0, 1, 2, 3. Compare the two
functions at x =4. Compare them at x = 5.

Is there a polynomial of degree four which collocates with y(x) =sin (z#x/2) at x =0, 1, 2, 3, 4?
Is there a polynomial of degree two which collocates with y(x) =x> at x = —1, 0, 1?

Find a polynomial of degree four which collocates with y(x) = |x| at x = =2, ~1, 0, 1, 2. Where is the
polynomial greater than y(x), and where less?

Find a polynomial of degree two which collocates with y(x)=\/; at x=0,1,4. Why is Newton’s
formula not applicable?

Find a solution of A%y, =1 for all integers & with y, = Ay, = A%, =0.



Chapter 7

Operators and Collocation Polynomials

OPERATORS

Operators are used here and there in numerical analysis, in particular for simplifying the
development of complicated formulas. Some of the most interesting applications are carried out in a
spirit of optimism, without excessive attention to logical precision, the results subject to verification
by other methods, or checked experimentally.

A number of the formulas to be derived in this chapter are, in part, of historical interest,
providing a view of the numerical priorities of an earlier time. The attached names, such as Newton
and Gauss, indicate their importance in those times. Changes in computing hardware have reduced
their range of application, a point that will be repeated in Chapter 12 where certain classic
applications will be offered.

The specific operator concepts now to be used are these:

1.

The operator A is defined by
AYie = Yiear = Vi

We now think of A as an operator which when offered y, as an input produces y,,; — yx as
an output, for all k values under consideration.

Vi - A I Yie+1 ™ Yk

The analogy between operator and an algorithm (as described in Chapter 1) is apparent.
The operator E is defined by

Eyi = yis1

Here the input to the operator is again y,. The output is yj.;.

Vi - E I Yie+1

Both A and E have the linearity property, that is,

A(Cyyi + Coz) = C1 Ay + C, Az,
E(Cyyi + Coz) = C,Ey, + CEz,

where C; and C, are any constants (independent of k). All the operators to be introduced
will have this property.

Linear combinations of operators. Consider two operators, call them L; and L,, which
produce outputs L;y, and L,y, from the input y,. Then the sum of these operators is
defined as the operator which outputs L; y, + L yx.

Ve | — Li+L, — | Line+ Ly

A similar definition introduces the difference of two operators.

48
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More generally, if C; and C, are constants (independent of k) the operator
C,L; + C,L, produces the output C;L; y; + CoL; yi.

Yk — | CLi+GL, | — | CiLiy + CoLyy

4. The product of operators L, and L, is defined as the operator which outputs L;L,y,. A
diagram makes this clearer.

Vi - L, I Loy -_— L, — LyLoyi

The operator L, is applied to the output produced by L,. The center three parts of the
diagram together represent the operator L;L,.

Vi B L\L, — LyLaye

With this definition of product, numbers such as the C; and C, above may also be thought
of as operators. For instance, C being any number, the operator C performs a
multiplication by the number C.

5. Equality of operators. Two operators L, and L, are called equal if they produce identical
outputs for all inputs under consideration. In symbols,

Li=L, if Ly = Loy

for all arguments k under consideration. With this definition a comparison of outputs shows
at once that for any operators L, L,, and L,,

Li+L,=L,+L,
Li+(Ly+Ly)y=(L+ L)+ Ls
Ly(LsLs) = (LiLy)Ls
Ly(Lo+ L3)=L,L,+ LLs

but the commutative law of multiplication is not always true:

LL,#L,L,
If either operator is a number C, however, equality is obvious from a comparison of
outputs,

CL,=L,C

6. Inverse operators. For many of the other operators we shall use, commutativity will also be
true. As a special case, L, and L, are called inverse operators if

LL,=L,L,=1
In such a case we use the symbols
1 1
Li=Ly'=— Ly=Li'=—
1 2 L2 2 1 L1

The operator 1 is known as the identity operator and it is easy to see that it makes
1-L=L-1 for any operator L.
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7. Simple equations relating A and E include, among others,
E=1+A A*=FE*-2E+1
EA=AE A*=F*-3E*+3E-1

Two related theorems, already proved earlier by other means, appear as follows in
operator symbolism:

Ak = 20 (—1)"(?)EH Ef= éo (]:) o

8. The backward difference operator V is defined by

V¥ = Y = Y1
and it is then easy to verify that
VE=EV=A
The relationship between V and E~' proves to be
E7'=1-V

and leads to the expansion

Skk+1)- - (k+i-1
Ye=Yo+ ( ) i‘( )
i=1 .

V%
for negative integers k.
9. The central difference operator is defined by
6 — El/Z _ E‘l/Z

It follows that SE2=A. In spite of the fractional arguments this is a heavily used
operator. It is closely related to the following operator.

10. The averaging operator is defined by
1
n=s (E + E™'?)

and is the principal mechanism by which fractional arguments can be eliminated from
central difference operations.

COLLOCATION POLYNOMIALS

The collocation polynomial can now be expressed in a variety of alternative forms, all equivalent
to the Newton formula of Chapter 6, but each suited to somewhat different circumstances. We
discuss the following, which find use beginning with Chapter 12.

1. Newton’s backward formula

k(k+1 k---(k+n—-1
Pk=YO+kV)’o+_(2, —)V2y0+---+i(n' )V”yo
represents the collocation polynomial which takes the values y, for k =0, —-1,..., —n.

2. The Gauss forward formula may be obtained by developing the relationship between E and

& and reads
S [/k+i—1 . k+i—-1 .
pk=}’0+21[< 2i—1 )52' 1)’1/2"‘( 2 )62‘}’0]
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if the polynomial is of even degree 2n and collocation is at k = —#, . . ., n. It becomes
S[/k+i—1 ; k+1 .
= 62: + ( ) 6214-1 ]
Pr Zg[( 2i ) Yo \2i+1 N

if the polynomial is of odd degree 2n + 1 and collocation is at k = —n, ..., n + 1.

3. The Gauss backward formula may be derived in a similar way. For even degree it takes the
form
Slrk+i=1\ K+i\ o
Pe=yot 2 [( 2i -1 >52’ ly*“2+< 2i )62y°]

with collocation again at k = —n, . .., n. One principal use of the two formulas of Gauss is
in deriving Stirling’s formula.

4. Stirling’s formula is one of the most heavily applied forms of the collocation polynomial. It
reads
k k\(k k+1
= (y) o+ (3)() o+ (*7 ) 0
D yo+<1> Wot{Z)\1) 0Vt 5 )W

K\ k+1\ <k+n—1) - <k><k+n—1> 2
J— ... n —_— 6"
+<4>( 3 >5y°+ Fonog )0t Gy )0

and is a very popular formula. Needless to say, collocation is at k= —n, . .., n.
5. Everett’s formula takes the form

k k+1 k+2 k+n
pk=<1>)’1+( 3 >52)’1+( >54)’1+"'+( >62"}’1

5 2n+1
k-1 k k+1 k+n-1
— - 62 _( )64 _..._< > 2n
( 1 >y° (3) »ols )OO i1 )0
and may be obtained by rearranging the ingredients of the Gauss forward formula of odd
degree. Collocation is at k= —n, ..., n+ 1. Note that only even differences appear.

6. Bessel’s formula is a rearrangement of Everett’s and can be written as

1 k 1 1\ /k
Pr = UWyiz + (k _5> y12+ (2>#52)’1/2 +§(k - §)<2>53)’1/2

k+n—1 N ( 1 >< 1><k+n—1> 2
n. —_ P 6n+1
* +< 2n )“6 et s\ o Yz

Solved Problems

71. Prove E=1+A.
By definition of E, Ey, = y,.,; and by definition of 1+ A,
(1+A)=1ye+ Aye=yi + Vi1 = Yi) = Vi

Having identical outputs for all arguments k, the operators E and 1 + A are equal. This result can also
be written as A= E — 1.

7.2. Prove EA=AE.
EA)’):=E(YI<+1*)’k)=)’k+z_)’k+l and AEY, = AYii1 = Yir2 — Y1
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7.3.

7.4.

7.5.

7.6.

1.1.

OPERATORS AND COLLOCATION POLYNOMIALS {CHAP. 7

The equality of outputs makes the operators equal. This is an example in which the commutative law of
multiplication is true.

Prove A2=FE*—2E +1.
Using various operator properties,

A*=(E-1)E-1)=E*~1-E-E-1+1=E>-2E+1

Apply the binomial theorem to prove Afy, = Z (-1) ( )yk_,

k [k o
The binomial theorem, (a +b)* =} (i)a""b‘, is valid as long as a and b (and therefore a + b)
i=0

commute in multiplication. In the present situation these elements will be £ and —1 and these do
commute. Thus,

k
M= E-1r=3 (e
i=0 i
Noticing that Ey,=y,, E’y, =y, etc., we have finally

Z( 1)( )ykx

which duplicates the result of Problem 3.5.

k [k )
Prove y, = X (1) A'yp.
i=0

k(K
Since E =1+ A, the binomial theorem produces E* = (1+ A)*= ¥, <1) A'. Applying this operator
i=0

to y,, and using the fact that E*y, =y, produces the required result at once. Note that this duplicates
Problem 6.2.

The backward difference is defined by Vy, =y, — yx—1 = Ay,-,. Clearly it involves assigning a
new symbol to y, — y_;. Show that VE=EV=A, E"'=1-V.

VEY: = Vyis1 = Yee1 ~ Y = Ay EVy.=E(yx _yk—l) = Yirr — Yk = Ayi

Since these are true for all arguments k, we have VE=EV=A=F — 1.

Using the symbol E~' for the operator defined by E™'y, = y,_,, we see that EE™'y, and E™'Ey, are
both y,. In operator language this means that these two operators are inverses: EE"'=E'E=1.
Finally, as an exercise with operator calculations,

V=E'EV=E'A=E Y E-1)=1-E' ad E'=1-V

Backward differences are normally applied only at the bottom of a table, using negative k
arguments as shown in Table 7.1. Using the symbols Yy, = VVy, Py, = YV, etc., show
that A"y, = V'yi

Since A = EV, we have A" = (EV)". But E and V commute, so the 2# factors on the right side may
be rearranged to give A" = V"E". Applying this to y,, A"y, =V"'E"y, =V"y,,,.
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7.8.

7.9.

7.10.

Table 7.1

k x y

-4 X_4 Y-a
Vy_s

-3 X_3 V-3 VZ}’ 2
Yy, Viy_

-2 X 2 V-2 sz—l VA,VO
Vy_s V3Y0

-1 X ya V%o
Vyo

0 Xo Yo
Prove that
Y-1=Yo— V¥ Y—2= Yo~ 2Vyo + Vi Y-3=Yo =39y +3V%,— Py,

Fkk+1)---(k+i-1)_,
and that in general for k a negative integer, y, =yo + L ( ) i ktiz1) V.
i=1 :

Take the general case at once: y, = E“yo=(E ') *y,= (1 — V) *y,. With k a negative integer the
binomial theorem applies, making

Ve = g; (—1)'<_ik>vi)’0 =Y +‘__=2k1 (-1y (

=yﬁ+§k(k+1)~-.-(k+i—1)

—k)(—k—-1)---(-k—i+1)_,
k= oy,
i Viyo

The special cases now follow for k = —1, —2, —3 by writing out the sum.

Prove that the polynomial of degree n which has values defined by the following formula
reduces to p, =y, when k=0, —1, ..., —n. (This is Newton’s backward difference formula.)
k(k+1 k- -(k+n-1
(Eal (oot
! n!
S k(k+1)- - (k+i-1)

=yo+ 2,

i=1 i!

Pe=Yot kVy+ VYot -+

Vo

The proof is very much like the one in Problem 6.3. When k is 0, only the first term on the right
side contributes. When k is —1, only the first two terms contribute, all others being zero. In general, if k
is any integer from 0 to —n, then k(k +1) - -+ (k+i —1) will be 0 for i > —k. The sum abbreviates to
Sk(k+1)---(k+i—1)

!

Pi=Yo+ 2, Vi

i=1

and by Problem 7.8 this reduces to y,. The polynomial of this problem therefore agrees with our y,
function for k =0, =1,..., —n.

Find the polynomial of degree three which takes the four values listed as y, in Table 7.2 at the
corresponding x, arguments.

The differences needed appear in the remaining columns of Table 7.2.
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Table 7.2
k Xi Y Vi Vi Vo
-3 4 1
2
-2 6 3 3

Substituting the circled numbers in their places in Newton’s backward difference formula,
7
D =20+ 12k +§k(k +1) +gk(k +1)(k+2)

Notice that except for the arguments k this data is the same as that of Problem 6.5. Eliminating k by the
relation x, = 10 + 2k, the formula found in that problem

1
plxe) = 7 (2x7 — 27x2 + 142x, — 240)

is again obtained. Newton's two formulas are simply rearrangements of the same polynomial. Other
rearrangements now follow.

7.11. The central difference operator 0 is defined by 6 = EY? — E™"? 50 that 8y, =y; — Yo = Ay =
Vy,, and so on. Observe that E' and E~'2 are inverses and that (E"?)*=E, (E7"??=E".
Show that A", = 6"Yirnpn.

From the definition of 8, we have SE">=E —1=A and A" = §"E™? Applied to y,, this produces
the required result.

7.12. In & notation, the usual difference table may be rewritten as in Table 7.3.

Table 7.3
k Vi d 8 & &
-2 Y-2
6y*3/2
-1 Yo &%y,
6y-1r 51
0 Yo % 8%,
Y1 Y1
1 N &y
03
2 Y2

Express 812, 6%o, 0%y, and 8y, using the A operator.
By Problem 7.11, 8y, = Ayo, 879 =A%_y, 8y1n=A%_y, 8% =A%y,
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7.13. The averagmg operator y is defined by u = 3(E"? + E™"2) so that uy,, = 3(y, + ¥o), and so on.
Prove u?>=1+148%

First we compute 8>°=E —2+ E~'". Then y>=%(E+2+E ") =4(6*+4) =1+ 36~

7.14. Verify the following for the indicated arguments k:

k=0,1 yk=y0+</;> P

=-1,0,1 yk=yo+( >6y1/2+( )6yo

k=-1,0,1,2 yk=y0+< )éym( )620+<k+ )5y1/2
k=-2,-1,0,1,2 yk=y0+( >5ym+< ) S0+ (k;-1> 63ym+(k+1) 5%

For k =0 only the y, terms on the right contribute. When k =1 all right sides correspond to the
operator
1+8E"=1+(E-1)=E

which does produce y,. For k = —1 the last three formulas lead to
1-8E™+8=1-(E-1)+(E-2+E )=E"!
which produces y_;. When & = 2 the last two formulas bring
1+28E"+ 8+ 8°EV=1+2(E-1)+(E-2+E )1 +E~-1)=E?
producing y,. Finally when k& = —2 the last formula involves
1-28E+38°-8EV+8'=1-2E-1)+(E-2+E)3-(E-1)+(E-2+EY)]=

leading to y_,.
The formulas of this problem generalize to form the Gauss forward formula. It represents a
polynomial either of degree 2n

k+ . k+i-1
=Y+ Z [( - ) 8y + ( 211. ) 62‘}’0]

taking the values p, =y, for k= —n, ..., n, or of degree 2n + 1
ETk+i=1) (k ) sier ]
= + i
Pe ;,[( 2 )'5y° 2i+1) %
taking the values p, =y, for k =—n, ..., n+1. (In special cases the degree may be lower.)

7.15. Apply Gauss’ formula with #» =2 to find a polynomial of degree four or less which takes the y,
values in Table 7.4.

The differences needed are listed as usual. This resembles a function used in illustrating the two
Newton formulas, with a shift in the argument k and an extra number pair added at the top. Since the
fourth difference is O in this example, we anticipate a polynomial of degree three. Substituting the
circled entries into their places in Gauss’ formula,

pk=3+5k+%k(k—1)+%(k+1)k(k~1)

If k is eliminated by the relation x, = 6 + 2k, the cubic already found twice before appears once again.
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Table 7.4
k X5 Ve
-2 2 -2
3
-1 4 1 -1
2 4
0 6 ©) ©) ©
® ®
1 8 8 7
12
2 10 20

7.16. Apply Gauss’ forward formula to find a polynomial of degree four or less which takes the y,
values in Table 7.5.

The needed differences are circled.

Table 7.5
k Xx Yi
-2 1 1
-2
-1 2 -1 4
© L e
0 3
S
1 4 -1 4
2
2 5 1

Substituting into their places in the Gauss formula,

k(k=1) _(k+Dk(k—1)  (k+1k(k-1)(k-2)
S +8 5 +16 o

pe=1-2k—4

which simplifies to 1
D =§(2k4 —8k*+3)

Since k = x, — 3, this result can also be written as
1 2
plx) = 3 (2x% — 24x3 + 100xF — 168x, + 93)

agreeing, of course, with the polynomial found earlier by Newton’s formula.

7.17. Verify that, for k = -1,0, 1,

k k+1
}’k=)’0+(1) 6}’—1/2"'( 2 )52}’0

and, for k=-2,-1,0,1, 2,

k k+1 k+1 k+2
)’kz)’o+<1)6)’—1/2+( ) )52)’0"'( )53}’—1/2"'( 4 )54)’0
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7.18.

7.19.

7.20.

7.21.

For k =0, only the y, terms on the right contribute. When k = 1 both formulas involve the operator
1+86E " +8°=1+(1-EH)+(E-2+EY)=E
which does produce y,. For k = —1 both formulas involve
1-8E"=1-(1-EY)=E"'
which does produce y..,. Continuing with the second formula, we find, for k =2,
1428E™"+38°+ 8 E"+8*°=1+201-E W+ (E-2+EY3+1-E'+E-2+E)=E*
and, for k = -2,
1-28E"""+6*-8E"=1-201-E ")+(E-2+E " Y1-14+E")=E"?

as required.
The formulas of this problem can be generalized to form the Gauss backward formula. It represents
the same polynomial as the Gauss forward formula of even order and can be verified as above.

L [(k+i-1 K+ o
p*=y°+2{( 2i -1 )521_1”““( 2 )62%]

i=1
Prove <k+i>+(k+i—1>_l_c<k+i—1>
ove A a2 2 /T i\2i-1 /)
From the definitions of binomial coefficients,

k+i k+i—1 k+i—-1 ; 1

<2i)+< 2 )'( 2i—1)[(k+’)+(k D5

as required.

Deduce Stirling’s formula, given below, from the Gauss formulas.

Adding the Gauss formulas for degree 2n term by term, dividing by two, and using Problem 7.18,

S[/k+i—-1 _ k(k+i-1
Pe=Yo+ 2 {( )52, 1“)’0"‘"( )521}’0]

L\ 2i-1 2i\ 2i—-1
k k [k k+1 k(k+1
ae(fomd(ons ()
Yo (1) uyo+2<l)éyo+ 3 éuyo+4 3 8%
k+n-1\ .., k (k+n—1) -
+ +<2n—1)6 Woto\ gn—q )00

This is Stirling’s formula.

Apply Stirling’s formula with # =2 to find a polynomial of degree four or less which takes the
¥« values in Table 7.6.

The differences needed are again listed. Substituting the circled entries into their places in Stirling’s
formula,

2+5 kK 4+4k+Dkk—1)
pe=3+ 3 k+3 T+t 5
which is easily found to be a minor rearrangement of the result found by the Gauss forward formula.

k+i—=1\ <k+i> . k+i\ o (k+i—1y
- 5eiymm (51 520 ) o
Prove ( 2i )‘w" 2i+1 =4 1) 0 iy )OO
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Table 7.6
k X Ve ) & 8 &
-2 2 -2
3
-1 4 1 -1
@ @
0 6 O] O] ©
® @
1 8 8 7
12
2 10 20

The left side becomes (using Problem 4.5)

ki (k+im1\] (k+i) . _(k+i) ” " k+i=1\
[(2i+1> (2i+1 )]‘”"J' 2i41) % Y=g 4 IOTAFOE )y°]'( 2%+1 )‘”‘l

(kD <k+i—1) N
_(2i+1>‘5y‘ 241 ) O

7.22. Deduce Everett’s formula from the Gauss forward formula of odd degree.

where in the last step we used 1+ 8E"?=E.

Using Problem 7.21, we have at once

NV TIAgw A(k+i—1) 2,.]
Pk‘g\,[(ziﬂ)ay‘ 2ie1 )0

(k k+1\ ., <k+2) . (k+n) )
_(1)y‘+( 3 )‘sy‘+ s )Mt 4) 0

k-1 kY o (k+1) 4 (k+n—1) -
( 1 )y“ (3)5”’ s )% 1 ) O
which is Everett’s formula. Since it is a rearrangement of the Gauss formula it is the same polynominal

of degree 2n + 1, satisfying p, =y, for k=-n,...,n+1. It is a heavily used formula because of its
simplicity, only even differences being involved.

7.23. Apply Everett’s formula with n =2 to find a polynomial of degree five or less which takes the
yi values of Table 7.7.

The needed differences are circled.

Table 7.7
k Xi Ve d 8 & &
-2 0 0
-1
-1 1 -1 10
9 108
‘ 2 127 324
' ? @ 569 660
2 4 704 1102
1671
3 5 2375
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Substituting the circled entries into their places in Everett’s formula,

(k+1k(k—1) (k+2)(k + Dk(k - 1)(k - 2)
6 120

k(k —1)(k-2)
6

Pr =135k + 442 +336

(k + Dk(k = 1)(k = 2)(k — 3)

—8(k—1)— 118 =

- 216

which can be simplified, using x, =k + 2, to p(x;) =x3 — xi — x7.

7.24. Show that

k+i-1y . k=3 /k+i—1\ k+iy o (k+i—1y
621 + ( >621+1 :( )52; ‘< ) 62:
( 2i )“ TR G ¥ 125000 1) 9N T gigq )OO

The left side corresponds to the operator

k+i—-1\1 2k—1 qk+i=1\/k+i k—i—1
2i - — = 5% E -
6( 2i )2[E+1+2i+1(E 1)} 6( 2 )(2i+1 2i+1 >

The right side corresponds to the operator

J/k+i k+i-1 k+i—-1\/k+i k—i—-1
Mtz = (e T
2i+1E 2i+1 o 2i 2i+1E 2i+1

so that both sides are the same.

7.25. Show that Bessel’s formula is a rearrangement of Everett’s formula.

Bessel’s formula is

< k+i—1) ; 1 NN/k+i-1
Pe= E |:( . )Héz‘)'uz‘*'_* (k “_)( . ) 52'“}’1/2]

i=o 21 2i+1 2 2i
1 k 1 I\ /k
=y t+ (k - E) Oyt (2)1462}’1/2 +§ <k - E)(Z) yin

k+n—1 1 W\ /k+n—1
+. 4 2n —< __)( 2n+1
( 2n )”6 et U o )‘5 Y

By the previous problem it reduces at once to Everett’s.

7.26. Apply Bessel’s formula with n = 1 to find a polynomial of degree three or less which takes the
s yx values in Table 7.8.

Table 7.8
k X Yee
-1 4 1
2
0 6 ©) ®
® ®
1 8 @
12
2 10 20

The needed differences are circled and have been inserted into their places in Bessel’s formula. Needless
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7.27.

7.28.

7.29.

7.30.

7.31.
7.32.

7.33.

7.34.

7.35.

7.36.

7.37.
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to say, the resulting polynomial is the same one already found by other formulas.

3+8 1y 347k(k-1) 1 l)k(k—l)
=2r° B DL Wk -=
Pe=" +5(k 2>+ 2 2 +3()(k 2/ 2

This can be verified to be equivalent to earlier results.

Supplementary Problems
Prove V=0E “?=1-E'=1~-(1+A)™"
Prove VI + 6°u°=1+ 16>
Prove E?=yu+46 and E™"?=pu —36.

Two operators L; and L, commute if L,L,=L,L,. Show that u, 6, E, A, and V all commute with one
another.

Prove ud = 1AE™' + 1A,
Prove A =16+ 6V1+ 162

Apply Newton’s backward formula to the following data, to obtain a polynomial of degree four in the
argument k:

k -4 -3 -2 -1 0
Xk 1 2 3 4 5
Y 1 -1 1 -1 1

Then use x; = k + 5 to convert to a polynomial in x,. Compare the final result with that of Problem 6.7.

Apply Newton’s backward formula to find a polynomial of degree three which includes the following
Xk, Yi Pairs:

Using x, = k + 6, convert to a polynomial in x, and compare with the result of Problem 6.10.

Show that the change of argument x, = x, + kh converts Newton’s backward formula into

Vy, 2y, v’y
Pl =30t =5 (r = x0) + 502 0 —xo)(x —x )+ o

(r=x0) - (¥ = %Xns1)

Apply Problem 7.35 to the data of Problem 7.34 to produce the cubic polynomial directly in the
argument x.

Apply the Gauss forward formula to the data below and compare the result with that of Problem 6.8.
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7.38.

7.39.

7.40.

7.41.

7.43.

7.44.

7.45.

7.46.

7.47.

7.48.

7.49.

7.50.

7.51.
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k -2 -1 0 1 2
X 2 4 6 8 10
Ve 0 0 1 0 0

Apply the Gauss backward formula to the data of Problem 7.37.

Apply the Gauss backward formula to the data of Problem 7.34, with the argument k shifted so that
k=0atx=6.

'Apply the Gauss forward formula to the data below and compare the result with that of Problem 6.11.

k -2 -1 0 1 2 3
X 0 1 2 3 4 5
Ve 0 0 1 1 0 0

Verify that for k=-1,0

k
Ye=Yot (1) Sy_1

and that for k = -2, ~1,0, 1
k k+1\ k+1
.Vk=.Vu+<1) ‘5.)/—1/2"'( 2 )‘SZ.YO"'( 3

These can also be considered forms of the Gauss backward formula, the degree of these polynomials
being odd rather than even.

> 8% _1n

Apply Stirling’s formula to the data of Problem 7.37.

Apply Stirling’s formula to the data of Problem 6.9. Choose any three equally spaced arguments and let
them correspond to k= -1, 0, 1.

Apply Everett’s formula to the data of Problem 7.34, with the center pair of arguments corresponding to
k=0and 1.

Apply Everett’s formula to the data of Problem 7.40.
Apply Everett’s formula to the data of Problem 6.9.

Apply Bessel’s formula to the data of Problem 7.44.

Apply Bessel’s formula to the data of Problem 7.40.

Prove E*=38+pu=(1+46%)"+35=1+16+46*+---.
Show that u™'=1— 362+ 3:6* — 556°+- - -.

Prove 6(fi8x) = uf0gi + 1gidfe.



Chapter 8

Unequally Spaced Arguments

The collocation polynomial for unequally spaced arguments x,, . . ., x,, may be found in several
ways. The methods of Lagrange, determinants, and divided differences will be presented in this

chapter.
1. Lagrange’s formula is

p(x)= éol-.-(x)y,-

where L;(x) is the Lagrange multiplier function

e xg)(e —xq) - (=) (X = Xawa) (X = xR)
- (= xo) (o = x1) -+ (= X)) = Xpn) - 0 (6 — %)

Li(x)

having the properties
Li(xx)=0  fork#i Li(x)=1

Lagrange’s formula does represent the collocation polynomial, that is, p(x;) =y, for
k=0, ...,n The function

() = (x = x0) - ~~(x—xn>=_ljl<x—x,-)

may be used to express the Lagrange multiplier function in the more compact form
7(x)
Li(x)=—"2

W )

The closely related function
E()=11(x-x)
i*k
leads to a second compact representation of the Lagrange multiplier function,
F(x)
E(x)

2. A determinant form of the collocation polynomial p(x) is

Lix)=

p(x) 1 x x* --- x"
Yo 1 x x5 -+ xb
1 1 x x% oo x7|=0
Yoo 1 x, 2 X
since p(x,) =y, for k=0, ..., n. It finds occasional use, mostly in theoretical work.

3. The first divided difference between x, and x, is defined as

¥, x) = 220
X1 — Xg
with a similar formula applying between other argument pairs.

62
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Then higher divided differences are defined in terms of lower divided differences. For

example,
X1, X2) — ¥ (X0, X
y(xo,xl,x2)=y( 1> %2) = ¥ (%o, X1)
X2~ Xg
is a second difference, while
YO, o Xn) = Yoy - s Xnm1)
X0y X1y o ooy Xn) =
y(xo, 1 ) X, — xo

is an nth difference. In many ways these differences play roles equivalent to those of the
simpler differences used earlier.

A difference table is again a convenient device for displaying differences, the standard
diagonal form being used.

X0 Yo
y(xo, x1)
X1 N Y(xo, X1, X3)
y(x1, x2) y(xo, X1, X2, X3)
X2 Y2 y(x, X2, X3) Y(xo, X1, X2, X3, Xa)
y(x2, x3) y(x1, X2, X3, X4)
X3 Y3 ¥(x2, X3, X4)
y(xs, x4)
X4 Ya

The representation theorem

n
Yi
Y (X0, X1, + + oy Xp) ,Zf)F?(x;)
shows how each divided difference may be represented as a combination of y; values. This should be
compared with a corresponding theorem in Chapter 3.

The symmetry property of divided differences states that such differences are invariant under all
permutations of the arguments x,, provided the y, values are permuted in the same way. This very
useful result is an easy consequence of the representation theorem.

Divided differences and derivatives are related by

yorE)

(X Xo5 o X)) = T 1)!

In the case of equally spaced arguments, divided differences reduce to ordinary finite differences;
specifically,
. Anyo
n!h"

Y(Xoy X145« vy Xp) =

A useful property of ordinary finite differences may be obtained in this way, namely,

Ayo=y™(E)h"
For a function y(x) with bounded derivatives, all y”*(x) having a bound independent of n, it
follows that, for small 4,
lim A"y, =0

for increasing n. This generalizes the result found earlier for polynomials and explains why the
higher differences in a table are often found to tend toward zero.

The collocation polynomial may now be obtained in terms of divided differences. The classic
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result is Newton’s divided difference formula,

Ppx) =yo+ (x — x0)y(xo, X1) + (x — x0)(x — x1)y(x0, X1, X2)

+- ‘+(x_x0)(x fxl) t '(X_xn—l)}’(xo, s an)

the arguments x, not being required to have equal spacing. This generalizes the Newton formula of
Chapter 6, and in the case of equal spacing reduces to it.

The error y(x) — p(x), where y(x) and p(x) collocate at the arguments x,, . . ., x,, is still given
by the formula obtained earlier,
(n+1)
| Y@
y(x) —p(x) 1)

since we are still discussing the same collocation polynomial p(x). An alternative form of this error,
using divided differences, is

8.1.

8.2.

8.3.

¥x) —p(x) = y(x, X0, - -+, Xa)(x —X0) -+ (x ~ x)

Solved Problems

What values does the Lagrange multiplier function

(—x)(x —x1) - (=X )X —xy) - (x—xy)
(i = xo)(x = x1) -+ - (= X ) = Xiwn) - (% — %)

Li(x)=

take at the data points x = xg, X1, . . ., X,,?

First notice that the numerator factors guarantee L,(x,) =0 for K #/, and then the denominator
factors guarantee that L,(x;) = 1.

Verify that the polynomial p(x)= f] L;(x)y: takes the value y, at the argument Xx,, for
i=0
k=0, ...n This is Lagrange’s formula for the collocation polynomial.

By Problem 8.1, p(x) = f] L;(x.)y; = Li(x,)yx =y, so that Lagrange’s formula does provide the
collocation polynomial. i=0

With 7(x) defined as the product 7(x) = ﬁ (x —x;), show that
i=0

m(x)
(x = x )7 (xe)

Since 7 (x) is the product of n + 1 factors, the usual process of differentiation produces 7'(x) as the
sum of n + 1 terms, in each of which one factor has been differentiated. If we define

E@) =] x-x)

i#k

Li(x)=

to be the same as x(x) except that the factor x — x, is omitted, then
w'(x)=Fx)+---+E(x)
But then at x = x, all terms are zero except F,(x,), since this is the only term not containing x — x,. Thus
7 () = Fe(xi) = (e = X0) + + + (0 = Xem) (e — Xiewr) = - (4 — X,)
n0)  _ B _ Ak
(x=x)7'(x)  w'(x)  Filxe)

and =L,(x)
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8.4. Show that the determinant equation

p(x) 1 x x* -+ x"

yo 1 xo x3 -+ Xxp

v o1 x xf oo x{]=0
2

Yo 1 x, x3 Xy

also provides the collocation polynomial p(x).

Expansion of this determinant using minors of the first-row elements would clearly produce a
polynomial of degree n. Substituting x =x, and p(x) =y, makes two rows identical so that the
determinant is zero. Thus p(x;) = y, and this polynomial is the collocation polynomial. As attractive as
this result is, it is not of much use due to the difficulty of evaluating determinants of large size.

8.5. Find the polynomial of degree three which takes the values prescribed below.

Xk 0o 1 2 4

w1 1 2 5

The polynomial can be written directly.

- DE -2 -4 xx-2)x -4 xx-Dx-4), xx-1)x-2)
B 0O-1)(0-2)(0—-4) 1(1-2)(1-4) 22-1)(2-4) 4(4-1)4-2)
It can be rearranged into p(x) = 15(—x’ + 9x* — 8x + 12).

p(x)

5

8.6. Compute divided differences through the third for the y, values in Table 8.1.

The differences are listed in the last three columns.

Table 8.1
Xu Y )
0 1
0
1 1 3
1 —15
2 2 H
3
2
4 5
For example,
5-2 3 I-1.1
Y@ 4= 5=73 (L2, 4)=—=¢
1-0_1 i-1
yO0.1L,)=>=5=5 YO L2 A= ==
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8.8.

8.9.
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Prove y(xo, x1) = y(x1, Xo)- This is called symmetry of the first divided difference.

This is obvious from the definition but can also be seen from the fact that

Yo, x) =—2— 4 I
Xo—X; X;—Xg

sinee interchanging x, with x, and y, with y; here simply reverses the order of the two terms on the right.
This procedure can now be applied to higher differences.

Prove y(xo, x,, X,) is symmetric.

Rewrite this difference as

Yoy X1, X2) =y(x1, *2) = y(xo, xl)z lx (Yz‘)ﬁ g _)’o>
0

- Xo X1 X1~ Xp
Yo + b4t + Y2
(ro—x)(x0—x3)  (xy —x0)(x1 —x2) (2 = x0)(x2 — xy)

Interchanging any two arguments x; and x, and the corresponding y values now merely interchanges the
y; and y, terms on the right, leaving the overall result unchanged. Since any permutation of the
arguments x, can be effected by successive interchanges of pall‘S the divided difference is invariant
under all permutations (of both the x, and y, numbers).

Prove that, for any positive integer #,

y(xO:xl""lxn) EFn(x)

where F7(x;) = (x; —xo)(x; — x1) -+ - (x; = xi—1)(*¥: — X;41) - - - (x; — x,,). This generalizes the
results of the previous two problems.

The proof is by induction. We already have this result for » =1 and 2. Suppose it true for n = k.
Then by definition,

y(xl, Ca ,xkn)—y(xu, cae ,Xk)
Xe+1 — %o

Y(Xos X1, -y Xpsr) =
Since we have assumed our result true for differences of order &, the coefficient of y, on the right, for
i=1,2,...,k will be
1 [ 1 B 1 ]
Xiwr —Xo LG = x1) - (i = Xewr) (i —x0) o+ (3= x)

where it is understood that the factor (x; —x;) is not involved in the denominator products. But this
coefficient reduces to

1 _ 1
(i = x0) + + + (X = Xpern) a Ffﬂ(xf)

as claimed. For i =0 or i = k + 1 the coefficient of y, comes in one piece instead of two, but in both cases
is easily seen to be what is claimed in the theorem with n =& + 1, that is,

1 1
(xo—x1) * (X0 = X11) (ewr = x0)  + + (i — )

This completes the induction and proves the theorem.

8.10. Prove that the nth divided difference is symmetric.
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This follows at once from the previous problem. If any pair of arguments are interchanged, say x;
and x,, the terms involving y; and y, on the right are interchanged and nothing else changes.

8.11. Evaluate the first few differences of y(x) = x* and x°.

8.12.

8.13.

Take y(x) = x* first. Then

2
Xi—x Xy tx)—(x +x
°=x, + X Yt 11, 3 = Z T (b xg)

2_
1
X1— Xg X2 = Xo

y(xo, x1) = 1

Higher differences will clearly be 0. Now take y(x) =x°.

xi—x3

—_ 42 2
Y(xo, x1) = =X+ X%+ X0

X1—Xo

(x3 + x50, +x3) — (X2 + x1%0 + %5)

¥(xo, X1, X2) = =xo+% +%;
X2 —Xo

(x1+x2+x3) = (x0+x; +Jc2)=

X3~ Xg

Y(Xo, X1, X2, X3) = 1
Again higher differences are clearly zero. Notice that in both cases all the differences are symmetric
polynomials.

Prove that the kth divided difference of a polynomial of degree n is a polynomial of degree
n—kif k=n, and is zero if k >n.

Call the polynomial p(x). A typical divided difference is
px1) — p(xo)

X1 = Xo

p(xo, X1) =

Thinking of x, as fixed and x, as the argument, the various parts of this formula can be viewed as
functions of x,. In particular, the numerator is a polynomial in x,, of degree n, with a zero at x, = x,. By
the factor theorem the numerator contains x, —x, as a factor and therefore the quotient, which is
p(xo, x,), is a polynomial in x, of degree n —1. By the symmetry of p(xo, x,) it is therefore also a
polynomial in x, of degree n — 1. The same argument may now be repeated. A typical second difference
is

P(x1, x2) — p(xo, X1)

Xo, X1, X2) =
p(xo, X1, X2) Xs— %o

Thinking of x, and x; as fixed, and x, as the argument, the numerator is a polynomial in x,, of degree
n — 1, with a zero at x, = x,. By the factor theorem p(x,, x,, x,) is therefore a polynomial in x, of degree
n —2. By the symmetry of p(x,, x,, x,) it is also a polynomial in either x, or x,, again of degree n — 2.
Continuing in this way the required result is achieved. An induction is called for, but it is an easy one
and the details are omitted.

Prove that Newton’s divided difference formula

p(x)=yo+ (x = x0)y(xo, x1) + (x = x0)(x — x1)y(x0, X1, X2)
; ot x = xg)(x = xg) s (6= X )y (Ko, - Xn)
represents the collocation polynomial. That is, it takes the values p(x,) =y, for k=0, ..., n.

The fact that p(x,) =y, is obvious. Next, from the definition of divided differences, and using

tr
Symmetry, Yie = Yo + (X — X0)y (X0, Xx)

y(xo, X) = y(xo, x1) + (xx = x1)y (%0, ¥1, Xi)

Y (xo, X1, Xi) =y (X0, X1, X2) + (X — X2)Y (X0, X1, X2, Xi)

Yoy« s X2y X)) =Y (XKoo o+ 5 Xnm1) T Bk X))y (Xos -+ -5 Xt Xi)
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For example, the second line follows from

Xo, Xx) — Y(x1, X
y(xo, %1, %) =y (%1, X0, Xi) _xo, 3 =y, Xo)
X — X,
For k =1 the first of these proves p(x,) = y;. Substituting the second into the first brings

Vi = Yo+ (xi — X0)y (X0, X1) + (xx = X0) (X = X1)y (X0, X1, Xi)

which for k =2 proves p(x,) =y,. Successive substitutions verify p(x;) =y, for each x, in its turn until
finally we reach

Vo = Yo+ (xn = Xo)y (xo, X1) + (X — X0) (s — X1)y (X0, X1, X2)
+o (X, = x0)(Xy —X1) (X = X )Y Koy + -+ s X1y Xn)

which proves p(x,) = y,.
Since this Newton formula represents the same polynomial as the Lagrange formula, the two are
just rearrangements of each other.

Find the polynomial of degree three which takes the values given in Table 8.1.

Using Newton’s formula, which involves the differences on the top diagonal of Table 8.1,
1 1
p(x)=1+x—-0)0+(x-0)(x— 1)5 +(x-0)(x -1 *2)(—E>

which simplifies to p(x) = f5(—x* + 9x* — 8x + 12), the same result as found by Lagrange’s formula.

Supplementary Problems

Use Lagrange’s formula to produce a cubic polynomial which includes the following x,, y, number pairs.
Then evaluate this polynomial for x =2, 3, 5.

yvl1 -1 1 1

Use Lagrange’s formula to produce a fourth-degree polynomial which includes the following x, yx
number pairs. Then evaluate the polynomial for x = 3.

xlo 1 2 4 5

vl 0 16 48 88 0

Deduce Lagrange’s formula by determining the coefficients g, in the partial fractions expansion

p(x)= - a4
n(x) =X —x

[Multiply both sides by x —x; and let x approach x; as limit, remembering that p(x;) = y, for collocation.]

The result is a; = ’y,

7' (x)
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8.18.

8.19.

8.20.

8.21.

8.22.

8.23.

8.24.

8.25.

8.26.

I+ x+1 . .
-Apply Problem 8.17 to express ﬁfx—_a as a sum of partial fractions
ag a; a,

+—t
X—Xyg X—X; X—X3

[Hint. Think of the denominator as s (x) for some x,, x,, X, and then find the corresponding y,, y;, 2.
This amounts to regarding p(k) as a collocation polynomial.]

x+6x+1

m as a sum of partial fractions.

Express

Show that

L LEE Gmxemx) | (mx) o (x)
L) =1 +xu —x;  (xo—x)(x0—xy) (Xo=x1) - (xo—x,)

Similar expansions can be written by symmetry for the other coefficients.

Write the three-point Lagrange formula for arguments x,, xo + € and x, and then consider the limit as &
tends to 0. Show that

(x — x0)*

(1= xo)®

(= x)x +x, -
(1 = xo)?

20) 1) + & = )_(’;)_ 2 i) +

This determines a quadratic polynomial in terms of y(x,), y'(x,), and y(x,).

plx) = y) + 5 (6= = 1)y ()

Proceed as in the previous problem, beginning with the Lagrange formula for arguments x, x, + €,
X, — €, x, to represent a cubic polynomial in terms of y(x,), ¥'(xo), y(x,), and y'(x,).

Calculate divided differences through third order for the following x,, y, pairs:

x| 0 1 4 6

wll -1 1 -1

Find the collocation polynomial of degree three for the x,, y, pairs of Problem 8.23. Use Newton’s
formula. Compare your result with that obtained by the Lagrange formula.

Rearrange the number pairs of Problem 8.23 as follows:

x. | 4 1 6 0

wl1l -1 -1 1

Compute the third divided difference again. It should be the same number as before, “illustrating the
symmetry property.

Calculate a fourth divided difference for the following y, values:
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8.28.

8.29.

8.30.

8.31.
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Apply Newton’s formula to find the collocation polynomial for the data of Problem 8.26. What value
does this polynomial take at x = 3?

Show that 1 X ¥
‘1 Yo 1 x »n

_ 11y R

y(x0, x1) = '1 P y(x0, X1, x2) = 1 x =

1 x 1 x xi

1 x, x2

For y(x) = (x ~xo)(x —x;) - - - (x — x,) =7 (x), prove that

y(xo, X1, ..., x,)=0 forp=0,1,...,n

y(xo, X1, oo, X, x) =1 for all x
(X0 X1s -+, Xy X, 2)=0  forallx, z
Show that
X1, Xo) + y(x9, x_ X, +x_
play = yor TN D (- (x - 2522

+ Y (X2, X1, X0, X-1) + y (X1, X0, X1, X-2)

5 (x = x1)(x ~ xo)(x —x_y)

X+ Xx_
+y (X2, X1, Xo, X1, X_a)(x — o) (x —x1)(x —x_1)<x - %)

is another way of writing the collocation polynomial, by verifying
pxe) =ye fork=-2,-1,0,1,2
This is a generalization of Stirling’s formula for unequal spacing. It can be extended to higher degree.
Bessel’s formula and others can also be generalized.
Show that for arguments which are equally spaced, so that x;., — x, = h, we have
Ay,
n'h"

Y(Xos X1, -, X)) =

Divided differences with two or more arguments equal can be defined by limiting processes. For
example, y(xq, xo) can be defined as lim y(x, x,), where lim x = x,. This implies that

Y&x) —y
X —X

0

¥(x0, Xo) = lim =y'(x0)

Verify this directly when y(x) = x” by showing that in this case y(x, xo) = x + X, so that lim y(x, x,) =
y'(x0) =2x,. Also verify it directly when y(x)=x* by showing first that in this case y(x,x,)=
X2+ xxo+ X3

In the second divided difference

X, X3) —yXo, X
V(e %, x3) =L ¥ T Y (Ko X)

X —Xg
the right side may be viewed as having the form M with x, considered é constant. If limx = x,,
we define * T

y(xo, Xo, X2) = lim y(xo, ¥, X2)
This implies that Y(Xo, X0, X2) =y’ (X, x2) | x=x¢

Verify this directly when y(x) =x’ by showing first that in this case

y(xo, X, X2) =X + X0+ X, while y(x, x2) =7+ xx, + x3



Chapter 9

Splines

Instead of using a single polynomial, presumably of high degree, to represent a given function
over an interval to achieve a required accuracy, we may instead join together several polynomial
segments, each of low degree. The classic example is, of course, a set of line segments, each fit to the
given data over a subinterval. Such an approximation is continuous but has a first derivative with
discontinuities at the interval ends, the corners (Fig. 9-1). It is the basis for elementary interpolations
in tables and for the trapezoidal rule for numerical integration. The implicit assumption that between
data points the given function is almost linear may be reasonable if the points are close enough
together.

Yn

Ui

- -

!
|

T T T T T
Xi

=

Fig. 9-1 A primitive spline.

In Chapter 14 we will fit parabolic segments (quadratic polynomials) together to develop
Simpson’s rule for numerical integration. Other examples using slightly higher degree polynomials
will also be given. In all these cases there will be corners where the segments are joined.

We now consider a method in which cubic segments are pieced together in such a way that the
corners are rounded, both the first and second derivatives of the approximation being continuous.
High-degree polynomials have an oscillatory character. One of degree n can have as many as n — 1
turning points. When such a polynomial represents a given function accurately, it is usually by
oscillating back and forth across the function. This has undesirable side effects, poor approximation
of the derivative to mention only one. The spline approximation now to be derived avoids such
oscillations, because it consists of low-degree segments. The word spline is borrowed from the
drafting instrument of the same name, a flexible strip used in drawing curves.

Given an interval (a, b) = I divided into n subintervals by the points xo=a, xy, X5, ..., x,=b, a
cubic segment is to be fit on each subinterval, taking specified values y; at the points x;, with first and
second derivatives on adjacent subintervals agreeing in value at the join. The points x, to x,_, are
called the nodes, or knots, of the spline (Fig. 9-2). Details of the development of these spline
segments will be worked out in the solved problems, and examples will be provided.

. Cubic segments
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9.1.

9.2.

9.3.

94.
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Solved Problems

A polynomial of degree three, a cubic, has four coefficients. In a common representation
p(X)=co+ cyx + cox? + cax?

With the conventions of Fig. 9-2, the n cubic segments together will involve 4n coefficients.
How does this compare with the number of conditions being imposed upon the spline?

The point is that ordinarily we expect 4n coefficients to be well determined by 4n conditions. Here
we have four conditions to be met at each of the knots x, to x,_,, namely, the segment on either side
must reach this point, and the first two derivatives have to agree. This comes to 4n — 4 conditions. At
the two endpoints we are asking only for collocation, two more conditions, making a grand total of
4n —2. The spline is, therefore, not completely defined by the specifications given. Two degrees of
freedom remain. Sometimes these are used to make the second derivative zero at the endpoints, leading
to what is called the natural spline. Alternatively one may require the end segments to match the end
derivative values of the given function, if these are known or can be approximated. A third option, of
reducing the specifications at knots x, and x,_,, will also be explored.

Let the subintervals of Fig. 9-2 be called I, to I,, so that I =(x;,_;, x;). Also define
h; =x; — x;,_;, noting that the subintervals need not be of equal length. If S;(x) is the spline
segment on /;, show that

XX Cix - Xi_1

"(x) = C,_
Sr (x) i-1 hi hv,’

for constants C;and i=1, ..., n.

On I, the spline segment is cubic, so its first derivative will be quadratic and the second derivative
linear. It remains to verify the continuity at each knot x, for k =1, ..., n — 1. The segment S, touches
this knot at its right end while S, touches it at its left end. The required derivatives are thus

Xe— X, X — Xp—
Sixp) = G, =+ ¢, —==
hy hy
X - X,
and k+1(xk)—ck%+ Ck+lh_k
k+1 k+1

both of which reduce to C,. Continuity is thus assured and we discover that the constants C, are in fact
the common values of spline second derivatives.

Integrate the result of the preceding problem twice to obtain the spline segments and then
impose the requirement that segments pass through appropriate knots to determine the
constants of integration.

The two integrations manage

(xi‘x)3+c (x=x,)

Si(x)=Ci-, 6h; 6h,

+ci(x,—x)+di(x —x,)

the last two terms being the linear function introduced by the constants of integration. For collocation at
the knots, we must have S;(x; ;) =y;-, and S;(x;) = y,. These conditions fix ¢; and d; and lead to

- (x x)’ ( -x0)’ ( _M)X"x ( _C._M)):C,;l
Si(x)=Ciy 6, +C; 6h, Yi-1 6 h; +{ 3 7,

as may be verified by inserting x,_; and x;.

It remains to ensure the continuity of the first derivatives. To arrange this, differentiate the
result of the preceding problem and compare adjoining values as in Problem 9.2.
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Differentiating
(x; —x) (x X 1) —yim1_ G=Ciy
"(x)=—-C, h
Six) = —Cr =5+ G T 6
so the required derivatives at knot x, are
h _
S = Ck R R
, | h
and Sea(xi)= - 2 lck_ ké 1Ck+1 +Xk;ll oL
k+1
Since these are to be equal, we have, fork=1,...,n-1,
Iy e + hysy hk+1 Yirr “ Ve Y T Yk
e T
6 Ck 1 3 Ce + Ck+l th hk

73

which is a linear system of n — 1 equations for the constants C, to C,. As observed earlier, the system is

underdetermined. We are two equations short.

There is an interesting way to include two additional equations in the linear system, keeping our

options open and preserving the general character of the matrix. First let

I
! R+ hiyy
h
=1 =—
At
d= 6 (ym —Yi Vi _}’i—l)
Ykt R\ R hi

fori=1,...,n—1. The system can then be rewritten, still fori=1, ...,
BiCie1 +2Ci + ,Ciyy = d;
Now take two additional conditions in the form

2C, + 2o Ci=d, BaCo-i +2C, =d,

with ay, do, B., and d, at our disposal. The combined system then takes this shape:

- 9 - - -
2 a O Co
ﬂl 2 C,
0 B 2 C,
2 [0 F ) 0 Cn—Z
Br 2 Uy Coor
| 0 B 2 . ;C" 4 L

The coefficient matrix is triple diagonal, all other elements being zero.

How can the linear system of the preceding problem be used to find a natural spline?

n—1, as

do

Choose «q, dy, B., and d, as zero. The top and bottom equations then force C, and C, to be zero
also and this is what identifies the natural spline. The system is reduced to order n — 1 for determining

the remaining C, to C, _;.
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9.6. Similarly, how can we arrange that the end conditions

be met? Si(xo) =0 Su(xa) =Y.

Borrowing appropriate formulas from Problem 9.4, we have

R

sy = -2 -2 By

h, S

and S(x)— n1+3C 422 It h,},] =y,

which are easily converted to
20,+C =2 <y1_—_)is_y,)
0 1 h1 h, 0
. 6/ , Y= Vn 1>
C, 1 +2C,=—
and n—1 Cn h,,< n hn

Now comparing with the first and last equations of the linear system, namely 2C, + a,C; =d, and
B.C.-, +2C, =d,, suggests the choices

6 (n=xn 6 Yo = Yno1
I
w=1=p T\ " h,
which will, in fact, provide the required end values.

9.7. Fit cubic spline segments to the function f(x) =sinx on the interval (0, &r). Use just the two
interior points 7/3 and 27/3.

The corresponding data set is

X; 0 /3 27/3 T
v | 0 V32 V32 0

withi=0, ..., 3 and all &, = 7/3. There are three cubic segments to find. The uniform #; values at once
make @,, a,, B, and B all equal to 3. Then

3(0 \/_/2) _271V3

d=

h\h h 27°
with the same result for d,. This leads us to the equations
1 1 —27V3
. + “+ - =
7 Cot2Ci+3C 27
1 1 -27V3
ECl+2C2+§C;= P

and to the matter of end conditions. The natural spline is certainly appropriate here because the sine
function does have zero second derivatives at the endpoints. So we set C, and C, to zero. The remaining
system then quickly yields C, = C, = —27V3/57% Substituting into the formulas of Problem 9.3 finally
produces the spline segments, which after simplifications are these:

si0= (2 (2

107° Sn
s0= (G ) () + () %

ONE TG
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9.8.

9.9.

9.10.

Problem 9.19 asks that these cubics be verified by checking all the conditions imposed upon them. The
simplicity of the example has allowed exact values to be carried throughout. Notice also that the central
*‘cubic” segment is actually quadratic.

Again fit cubic segments to the sine function, this time asking that endpoint first derivatives
equal sine derivatives.

The new endpoint conditions are S;(0) =1 and §3(«r) = —1. From Problem 9.6 we find

weret e

so the new linear system is

18\ /3V3
20+ (BB
n/\ 21
1 1 -27V3
§C0+ 2C1+EC2 = o
1 1 -271V3
5C|+ 2C2+EC3= 2

e 26=(F)(30-)

and has this solution:

18V3 10
Co=Cy=—o——
JT T
2 93
¢ =C,=2-2%
M T

Substituting into the S;(x) formulas of Problem 9.3, we again have the cubic segments. Verification that
these segments meet all conditions imposed upon them is requested as Problem 9.20, where it may also
be found that the end values of $”(x) are not zero.

A third way to obtain a well-determined system for spline approximation is to relax our
requirements slightly. For example, omitting the segments S;(x) and S,(x), we can ask S,(x)
and S,-,(x) to take care of the endpoint collocations. This also eliminates continuity
requirements at x, and x,,,, which are no longer knots. Show that the resulting problem will
have just as many conditions to be met as coefficients available to meet them.

There will now be n ~2 instead of n cubic segments, with 4n — 8 coefficients available. But there
will be only n —3 rather than n» —1 knots. With four requirements per knot, this makes 4n —12
conditions to be satisfied. Since collocation is also required at x,, x;, x,_;, and x, the count of conditions
climbs to 4n — 8.

Modify the developments in Problems 9.2 to 9.4 to meet the requirements suggested in
Problem 9.9.

A careful rereading of the problems mentioned will show that a great deal can be saved. The center
n — 3 equations of our linear system, as presented in Problem 9.4, are still valid because they refer to
knots x, to x,_, where no changes are being made. These already provide n — 3 equations for the n — 1
coefficients C, to C,_,. The other two needed equations will make S,(x¢) =y, and S,_i(x,)= yu.
Returning to the S(x) formula given in Problem 9.3, these conditions can be implemented. After some
algebraic manipulation they can be induced to take the form

26+ G =4, BuiCaz +t2C,1=d,
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The final form of the

again triple diagonal,

SPLINES

with the following definitions:
2(hah — D)
(hy + h2)* = (hy + ho)h3

1=

[CHAP. 9

B, = 20k sho — B3
" (hn—1+hn)3‘(hn—l+hn)hi—1
hy+h h
12112(}’0—;)’1 +_1.Y2>
d= h, h,
' (hl + hz)3 - (hl + hz)"’%
by +h, h,
12h,,,,(y,, —————hl Yn71+;1_—.)}n—2>
d"_l = n—1 n—1

system is then

2 a O
B 2 a
0 B 2
2 ®, 3
Ba-a 2
0 B

all other elements being zero.

(hny + 1) = (s + BB,y

1r10¢,
.
G,
0 Cios
Qp—2 Cp-a
2 || G

d;
d,
d;
dns
dnos
L s .

Apply the method just developed to f(x)=sinx on the interval (0, ) using three equally
spaced interior points.

There are four subintervals, with spline segments to be found for the inner two. The one knot will
be at x, = 7/2. This makes it clear why we are not continuing the earlier example, which had one fewer
interval. There would be no knots at all and a single cubic would interpolate the four given points. The

present data set is

X; 0 /4

/2 3n/4

T

V2/2

¥i 0

1 V22

0

with all &; = 7 /4. The formulas for &; and 8; now apply only at the knot x, and yield a, = §, = 3. We also

find d, = 48(V2 - 2)/

so our linear system

7 and then the one equation

%C1+2C2+%C3=ﬁ\i~%:—2—)
Turning to more recent formulas, a, =0, 8;=0, and
4=, =20 —2\/5)
F4
is the following:
2C, =d,

3V2

1 1
Ec,+2c2+§cs=(—)d1

2

2C;y=4d,
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9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

Solving, and appealing again to Problem 9.3, we come to these two spline segments:

S = 16(1 = V2)(7 = 2x)* + (4V2 - 7)(dx — n)° . (8V2—2)(27 — 4x) + (19 — 4V2)(4x — )

127° 127
)= 16(1 = V2)(2x — 7)* + (4V2 - 7)(37 — 4x)? . (8V2 —2)(4x — 27) + (19 — 4V2)(3 — 4x)
R 127° 127

With a little patience it can be verified that S, joins the first three points, S, the last three, and that they
make a proper knot at x,. This is all that was required. Bonuses such as $3(0) = 1 or $3(z/2) = —1 would
have been nice, but there is no point in being greedy. The approximations 1.05 and —1.09 will have to
do.

What is the error of a spline approximation?

It can be shown that
5
max |f(x) — S(x)| éﬁ max |[f@(x)| H*

where H is the largest of the A, and the maxima are on the interval 1.

Apply the error bound of Problem 9.12 to the spline of Problem 9.7.

The fourth derivative of sinx is, of course, bounded by 1 and H = x/3. Thus

5 4
max [sinx — S(x)| = ———=.016

T
T38481
How well does a spline approximate the derivative f'(x)?
It can be shown that

@), 3
max 4f’(X)—S'(x)1§%U”24(XM

Apply the formula of Problem 9.14 to the spline of Problem 9.12.

We find H*/24 = .05 approximately. Generally speaking, splines are quite good approximations to
derivatives.

What is meant by saying that a spline is a global approximation to f(x)?

The segments of the spline are not determined independently of each other. Each is linked with all
the others. The set of coefficients C; which identify the segments is determined by one linear system. By
way of contrast, one could fit a cubic polynomial to the first four points, x, to xs, then another to set x,
to x¢, and so on across the interval /. Each segment would then be found independently of the others,
but the continuity properties of the spline at knots would almost surely be absent.

Show that the natural spline on (a, b) uniquely minimizes
b
f f”(x)2 dx

among all functions f(x) which have continuous second derivatives and satisfy f(x;) = y; at the
knots.
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9.18.
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First note that
[ rera- [ sra=[ 1w -swrae [ S - s

with S(x) the cubic spline. Integration by parts over each subinterval converts the last integral as
follows:

[ st - s e =5l - Sl - [ 16 - Silsoe) d

= SIS 0) = UL, — SPE W) - SO, + [ 16) = @ISO de

The last two terms vanish since f(x) equals S;(x) at the knots and S{*(x) is zero. Summing what is left
fori=1, ..., n there is cancellation of all interior values leaving

$"(B)f'(6) — 8" (B)] = §"(a)[f"(a) — $"(a)]

which also vanishes since S is the natural spline. Notice that this remnant would still vanish if we
assumed instead that f' and S’ agree at the endpoints. In either case, reordering the original equation
just slightly,

b b b
[ serac=[ rwra- 1w -swrda
which does make the first integral smaller than the second.

Fit a cubic spline to this data.

X; 0 2 2.5 3 3.5 4 4.5 5 6

2.9 35 3.8 3.5 3.5 3.5 2.6 0

Vi 0

Choosing the natural spline, the system of Problem 9.4 provides seven equations for the seven
interior C,. Their solution, rounded to two places, follows:

i 1 2 3 4 5 6 7

C; -.23 -.72  —4.08 2.65 69 -540 =70

A plot of the nine data points and the spline segments appears as Fig. 9-3. Recalling that the C; are the
second-derivative values at the data points, with C, and C, zero, it is reassuring to observe their
behavior across the interval, particularly the large values more or less where expected.

Yi
] PN
‘/'/ \u:*\\
3 -
/ >
’ \
24 / \
4 \
/
\
14 7/ \
/
; \
/ \
T T T T T T g Xi
0 1 2 3 4 5 6
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9.22.

9.23.

9.24.

9.25.

Supplementary Problems
Verify that the spline of Problem 9.7 meets all the conditions imposed upon it.

Verify that the first cubic segment in Problem 9.8 is
G, (n )3 C Canz( Sx) (\ﬁ Clnz) 3x
=—| == —_— ——— -+ |— - —

S@= 3 5 U T 50) T

and find the other two segments. Verify that they meet the requirements imposed upon them.

Verify the details given in Problem 9.10.

Find the natural spline that passes through these points.

X; 0 1 2 3 4

vy} 0 0 1 0 0

Apply the procedure of Problem 9.10 to the preceding data, finding a spline of two segments on the
center two subintervals. The only knot will be at x = 2, but the spline must also, of course, pass through
the two endpoints.

The case in which all data points fall on a straight line is hardly one that calls for a spline, but it is worth
a moment’s attention. Recall that the constants C; are values of the second derivative and in this case

must all be zero. How does our linear system manage this?

What happens to our linear system if all data points fall on a parabola?



Chapter 10

Osculating Polynomials

Osculating polynomials not only agree in value with a given function at specified arguments,
which is the idea of collocation, but their derivatives up to some order also match the derivatives of
the given function, usually at the same arguments. Thus for the simplest osculation, we require

p(xe) =y (xx) p'(x)=y"(xx)

for k=0,1,...,n In the language of geometry, this makes the curves representing our two
functions tangent to each other at these n + 1 points. Higher-order osculation would also require
p"(x,) =y"(xx), and so on. The corresponding curves then have what is called contact of higher
order. The existence and uniqueness of osculating polynomials can be proved by methods resembling
those used with the simpler collocation polynomials.

Hermite’s formula, for example, exhibits a polynomial of degree 2n +1 or less which has
first-order osculation. It has the form

px) = E Uiy + gv,-(x)y;

where y; and y; are the values of the given function and its derivative at x,. The functions Uj;(x) and
Vi(x) are polynomials having properties similar to those of the Lagrange multipliers L;(x) presented
earlier. In fact,

Ui(x) = [1 = 2Li(x)(x = x)][ L ()]

Vi(x) = (x = x)[Li(x)]?

The error of Hermite's formula can be expressed in a form resembling that of the collocation error
but with a higher-order derivative, an indication of the greater accuracy obtainable by osculation.
The error is

@n+2)
)= p(0) = (o

A method of undetermined coefficients may be used to obtain polynomials having higher-order

osculation. For example, taking p(x) in standard form
PX)=cot X + X+ o+ Capypx™ T

and requiring p(x,) =yi, p'(xx) =yi, p"(xi) =yi for the arguments xo, ..., x, leads to 3n+3
equations for the 3n + 3 coefficients c;. Needless to say, for large n this will be a large system of
equations. The methods of a later chapter may be used to solve such a system. In certain cases
special devices may be used to effect simplifications.

Solved Problems

10.1. Verify that p(x)=§0 Ui(x)y: + io Vi(x)y; will be a polynomial of degree 2n+1 or less,
satisfying p(x,) = yki_p’(xk) =y,’(‘provided
(a) Ui(x) and V(x) are polynomials of degree 2n + 1.
(b)  Uilxi) = 0, Vi(xi) = 0.

80
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10.2.

10.3.

(¢) Ulxi)=0, Vi(xy) = Oy
0 for i#k
1 for i=k

The degree issue is obvious, since an additive combination of polynomials of given degree is a
polynomial of the same or lower degree. Substituting x = x, we have

where 6, = {

Px) = Ux)ye + 0=y,
and similarly substituting x = x, into p’(x),
P'(x) = Vilxi)yi=yi

all other terms being zero.

Recalling that the Lagrangian multiplier L;(x) satisfies L;(x;) = ;, show that
U(x) = [1 = 2Li(x)(x = x)I[Li(x)P Vi(x) = (x = x)[Li(x)F
meet the requirements listed in Problem 10.1.

Since L,(x) is of degree n, its square has degree 2n and both U;(x) and V,(x) are of degree 2n + 1.
For the second requirement we note that U(x,)=Vi(x,)=0 for k#i, since L;(x,)=0. Also,
substituting x = x;,

U(x;) = [Lx)P =1 Vi(x) =0
so that Uj(x,) = 8, and V,(x,) = 0. Next calculate the derivatives
Ui(x) = [1-2Li(x)(x — x)]2L{(x) Li(x) = 2Li (x;)[L:(x)F
Vi(x)=(x = x)2L,(x)Li(x) + [L(x)]
At once U/(x,)=0 and V/(x,) =0 for k #i because of the L,(x,) factor. And for x=x,, U/(x;)=
2L;(x;) —2L{(x;) =0 since L,(x;) = 1. Finally, V/(x;) = [L,(x;)]*= 1. The Hermite formula is therefore

plx)= ; (1= 2L (x)(x = x)ULi)y: + (¢ = x)[Li(x)Py!

A switching path between parallel railroad tracks is to be a cubic polynomial joining positions
(0,0) and (4,2) and tangent to the lines y =0 and y =2, as shown in Fig. 10-1. Apply
Hermite’s formula to produce this polynomial.

4,2)

(0,0}
Fig. 10-1

The specifications ask for a cubic polynomial matching this data.

X Yr Y

0 0 0
4 2 0
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10.5.

10.6.
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With n =1, we have

X —x , 1 , 1
Ll(x)=rx(; Lo(x)=;0“: L) =—;
1 1 1 0

Ly(x) =

X=X
Xo—

and substituting into Hermite’s formula (only the y, term need be computed since y,=yo =y =0),

s ()Y 2o

The significance of this switching path is, of course, that it provides a smooth journey. Being tangent to
both of the parallel tracks, there are no sudden changes of direction, no corners. Since p”(0) and p”(4)
are not zero, there are, however, discontinuities in curvature. (But see Problem 10.7.)

Obtain a formula for the difference between y(x) and its polynomial approximation p(x).

The derivation is very similar to that for the simpler collocation polynomial. Since y(x) = p(x) and
y'(x) =p’(x) at the arguments x,, . . ., x,, We anticipate a result of the form

y)—p(x) = Cla(x)]
where 7(x) = (x —x,) - - - (x —x,) as before. Accordingly we define the function
F(x)=y(x) —p(x) — Clz(x)]

which has F(x;)=F'(x,)=0 for k=0, ..., n By choosing any new argument x,., in the interval
between x, and x,, and making

€ = 2Gns1) = P(Ensa)

[A(n )]
we also make F(x,.;)=0. Since F(x) now has n +2 zeros at least, F'(x) will have n + 1 zeros at
intermediate points. It also has zeros at x, . .., x,,, making 2n + 2 zeros in all. This implies that F"(x)

has 2n + 1 zeros at least. Successive applications of Rolle’s theorem now show that F®(x) has 2n zeros
at least, F(x) has 2n — 1 zeros, and so on to F®*?(x) which is guaranteed at least one zero in the
interval between x, and x,,, say at x = . Calculating this derivative, we get

Fer2(g) = y@9(8) - C(2n +2)! =0
which can be solved for C. Substituting back,

(2n+2)
_yAE) 2
YXns1) = P(Xns1) “Gnv2) [72(x01)]
Recalling that x,,, can be any argument other than x,, . . . , x, and noticing that this result is even true
for xy, . . . , x, (both sides being zero), we replace x,,., by the simpler x:
yeAE)

Y(I)—P(I)=m[”(x)]2

Prove that only one polynomial can meet the specifications of Problem 10.1.

Suppose there were two. Since they must share common y, and y; values at the arguments x,, we
may choose one of them as the p(x) of Problem 10.4 and the other as the y(x). In other words, we may
view one polynomial as an approximation to the other. But since y(x) is now a polynomial of degree
2n +1, it follows that y®**?(§) is zero. Thus y(x) is identical with p(x), and our two polynomials are
actually one and the same.

How can a polynomial be found which matches the following data?

Xo Yo Yo Yo
X oyn o oy
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10.7.

10.8.

10.9.

In other words, at two arguments the values of the polynomial and its first two derivatives are

specified.

Assume for simplicity that x, = 0. If this is not true, then a shift of argument easily achieves it. Let

1
px) =y +xyg +5x2y8+Ax3 +Bx* + Cx°

with A, B, and C to be determined. At x = x,= 0 the specifications have already been met. At x =x,

they require
2.n

s , 1
Ax+ Bxi+ Cxi=y = Yo—x1¥6 "Exl}’O
3Ax3+4Bx}+5Cxt=y{ —yi—x1 ¥4
6Ax; + 12Bx? + 20Cx} = y7 — y§

These three equations determine A, B, C uniquely.

A switching path between parallel railroad tracks is to join positions (0,0) and (4,2). To

avoid discontinuities in both direction and curvature the following specifications are made:

X Yi Y Y

0 0 0 0
4 2 0 0

Find a polynomial which meets these specifications.
Applying the procedure of Problem 10.6,
p(x)=Ax*+ Bx* + Cx®
the quadratic portion vanishing entirely. At x, =4 we find
64A +256B +1024C =2 48A +256B + 1280C =0 24A +192B +1280C =0
from which A = %, B = — 15, C =%. Substituting, p(x) = 25(80x* —30x* + 3x°).

Supplementary Problems

Apply Hermite’s formula to find a cubic polynomial which meets these specifications.

X | » | Y

0 0 0
1 1 1

This can be viewed as a switching path between nonparallel tracks.

Apply Hermite’s formula to find a polynomial which meets these specifications.

’

Xi Y Yk

N o= O
S = O
o © O
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10.10.

10.11.

10.12.

10.14.

10.15.

10.16.
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Apply the method of Problem 10.6 to find a fifth-degree polynomial which meets these specifications.

X | W | yie | ¥R

0 0 0 0
1 1 1 0

This is a smoother switching path than that of Problem 10.8.

Find two second-degree polynomials, one having p,(0) = pi(0) = 0, the other having p,(4) =2, p5(4) =0,
both passing through (2, 1), as shown in Fig. 10-2. Show that pi(2) = p5(2) so that a pair of parabolic
arcs also serves as a switching path between parallel tracks, as well as the cubic of Problem 10.3.

Fig. 10-2

Find two fourth-degree polynomials, one having p,(0) = pi(0) = pi(0) = 0, the other having p,(4) =2,
pi(4) =p4(4) =0, both passing through (2, 1) with p(2) = p5(2) = 0. This is another switching path for
which direction and curvature are free of discontinuities, like the fifth-degree polynomial of Problem
10.7. Verify this by showing that first and second derivatives agree on both sides of (0, 0), (2, 1), and
(4, 2) where the four pieces of track are butted together.

. From Hermite’s formula for two-point osculation derive the midpoint formula

1 1 , ,
171,'2=§(}’0+y1) +§L(.y0_.y1)

where L =x, —x,.

Show that the error of the formula in Problem 10.13 is L*y(§)/384.
Find a polynomial of degree four which meets the following conditions:
Xk Y Yi
0 1 0
1 0 —
2 9 24

Note that one of the y, values is not available.

Find a polynomial of degree four which meets these conditions.

Xe | ¥ | Yi| ¥k

0 11 -1 0
1 2 7 —
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10.17. Find a polynomial of degree three which meets these conditions.

85



Chapter 11

The Taylor Polynomial

TAYLOR POLYNOMIAL
The Taylor polynomial is the ultimate in osculation. For a single argument x, the values of the
polynomial and its first # derivatives are required to match those of a given function y(x). That is,
pxg)=yPxy) fori=0,1,...,n

The existence and uniqueness of such a polynomial will be proved, and are classical results of
analysis. The Taylor formula settles the existence issue directly by exhibiting such a polynomial in
the form

)
pw)= 35 oy

The error of the Taylor polynomial, when viewed as an approximation to y(x), can be expressed
by the integral formula

Y =) = [ YD) x = xo)dry

Lagrange’s error formula may be deduced by applying. a mean value theorem to the integral
formula. It is
_y"E) nt1
yx)—px)= 1) (x = xo)
and clearly resembles our error formulas of collocation and osculation.

If the derivatives of y(x) are bounded independently of #, then either error formula serves to
estimate the degree n required to reduce |y(x)— p(x)| below a prescribed tolerance over a given
interval of arguments x.

Analytic functions have the property that, for n tending to infinity, the above error of
approximation has limit zero for all arguments x in a given interval. Such functions are then
represented by the Taylor series

= 0Oy ,
Yo =3
i=0 .
The binomial series is an especially important case of the Taylor series. For —1 <x <1 we have

(A+x)p=3 (‘;>x"

i=0

DIFFERENTIATION OPERATOR D
The differentiation operator D is defined by

d
D=h—
dx
The exponential operator may then be defined by
ekD _ < kiDi
izo !

86



CHAP. 11] THE TAYLOR POLYNOMIAL 87

and the Taylor series in operator form becomes

y () = €Py(xo)
The relationship between D and A may be expressed in either of the forms

1 1
A+l=¢e” D=A--A*+-A*-
¢ 2873
both of which involve “infinite series” operators.
The Euler transformation is another useful relationship between infinite series operators. It may
be written as
1 1 1 1
1+E “=—[1——A+—A2—-—A3+~-~]
( ) 2 2 4 8
by using the binomial series.
The Bernoulli numbers B; are defined by

|
1= 2 5 B

Actually expanding the left side into its Taylor series we shall find B,=1, B, = —3, B, =4, and so on.
These numbers occur in various operator equations. For example, the indefinite summation operator
A~!is defined by

AF, =y F=AT"y
and is related to D by
= 1 _
=D =BD’
=oi!

where the B; are Bernoulli numbers. The operator D! is the familiar indefinite integral operator.
The Euler-Maclaurin formula may be deduced from the previous relationship,

n—1 n
Zny.-=]0ykdk- I (e

and is often used for the evaluation of either sums or integrals.
The powers of D may be expressed in terms of the central difference operator 8 by using Taylor
series. Some examples are the following:

12 5 12'22 5 12'22.32 ;
D—u<6——76 R B +)
1
D2=62——64 —_ 6___68 —_slo_ ..
12 906 560 +31506

Solved Problems
11.1. Find the polynomial p(x), of degree n or less, which together with its first n derivatives takes
the values y,, y$V, y§2, . .., y§ for the argument x,.
A polynomial of degree n can be written

p(x)=ao+ a;(x —xo) + - - - + a,(x — x)"
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11.2.

11.3.
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Successive differentiations produce
pU(x) =a,+ 2ax(x —xo) + - - - + na,(x —x)""!
pP(x)=2a,+3-2as(x —xo) + - - + n(n — Da,(x — xo)" *

p(x)=nla,
The specifications then require
p(xo) =ay=y, P(l)(xo) =a, =y§l) P(z)(xn) =2az=y$2’ t P(")(Xo) =nla, =y§."’

Solving for the a, coefficients and substituting
1 S 1, ;
PO)=yo+y62(x —xo) 4o +1yix —xo)" = 2> Y9 —xo)f
! =oi!

Find a polynomial p(x) of degree n, such that, at x, =0, p(x) and e* agree in value together
with their first n derivatives.

Since for e* derivatives of all orders are also e*,

Yo=yil =y = =yf=1
The Taylor polynomial can then be written
— S 1 n o_ 1 2 1 3 1 n
p(x)—gnﬁx Sltxtdattox’d b

Consider a second function y(x) also having the specifications of Problem 11.1. We shall think
of p(x) as a polynomial approximation to y(x). Obtain a formula for the difference
y(x) — p(x) in integral form, assuming y®*Y(x) continuous between x, and x.

Here it is convenient to use a different procedure from that which led us to error estimates for the
collocation and osculating polynomials. We start by temporarily calling the difference R,

R=y(x)~p()
or in full detail ) .
R(x, x0) = y(x) = y(x0) = y'"(¥0) (x — x0) —Ey,'(xu)(x —xg)f = —Ey("’(xo)(x —xo)"

This actually defines R as a function of x and x,,. Calculating the derivative of R relative to x,, holding x
fixed, we find

R'(x, x0) = —y'(x0) +y"(x0) = y"(x0)(x —Xo) + y"(¥0) (x —xo)

1 1
=5 Y ) —x)* 4 =y ) (x = xo)"

1 n n
= ==y Do) (x — xo)

n!
since differentiation of the second factor in each product cancels the result of differentiating the first
factor in the previous product. Only the very last term penetrates through. Having differentiated relative
to x,, we reverse direction and integrate relative to x, to recover R.

1 .
R(x, xo) = *;f y"*P(u)(x — u)" du + constant

By the original definition of R, R(x,, xo) =0 and the constant of integration is 0. Reversing the limits,

1
R(x, xo) =r7f YO (u)(x — u)" du

xp

which is known as an integral form of the error.
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11.4.

11.5.

11.6.

11.7.

Obtain Lagrange’s form of the error from the integral form.

Here we use the mean value theorem of calculus, which says that if f(x) is continuous and w(x)
does not change sign in the interval (a, b) then

b b
[ reme as =@ [ weo ax
where & is between a and b. Choosing w(x) = (x —xo)", we easily get

RGx,x0) =y @ =2

(+1

where § is between x, and x but otherwise unknown. This form of the error is very popular because of
its close resemblance to the terms of the Taylor polynomial. Except for a & in place of an x, it would be
the term which produced the Taylor polynomial of next higher degree.

Estimate the degree of a Taylor polynomial for the function y(x) =e*, with x,=0, which
guarantees approximations correct to three decimal places for —1<x<1. To six decimal
places.

By the Lagrange formula for the error,

e
(n+1)!

le" —p(x)|=IR|=
For three-place accuracy this should not exceed .0005, a condition which is satisfied for n = 7 or higher.
The polynomial
Ty
px)=3 ¥
i=ols

is therefore adequate. Similarly, for six-place accuracy |R| should not exceed .0000005, which will be
true for n = 10.

The operator D is defined by D = h - What is the result of applying the successive powers of
D to y(x)?

We have at once D'y(x) = h'y®(x).

Express the Taylor polynomial in operator symbolism.

Let x —x,=kh. This is the symbolism we have used earlier, with x, now abbreviated to x. Then
direct substitution into the Taylor polynomial of Problem 11.1 brings

n

P = 535 x0) = 3 1y = 3, LD ()

A common way of rewriting this result is

n

P = (S 340"y

or in terms of the integer variable & alone as

where as usual p(x,) = p,.
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11.8.

11.9.

11.10.

11.11.

11.12.

11.13.
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A function y(x) is called aralytic on the interval |x — xo| =7 if as n—> e,
lim R(x, x0) =0

for all arguments x in the interval. It is then customary to write y(x) as an infinite series,
called a Taylor series

Y () =lim p(x) = 3, 2 x = 30

i=0

Express this in operator form.

L . =1 .
Proceeding just as in Problem 11.7, we find y(x;) = ()] l,-,k'D‘)yo. This is our first “infinite series
i=01.

operator.” The arithmetic of such operators is not so easy to justify as was the case with the simpler
operators used earlier.

. =1 .. . . . .
The operator ¢*? is defined by ¢*° = ¥, iTle" Write the Taylor series using this operator.
i=oi!

We have at once y(x,) = €°y,.

Prove ¢” =E.
By Problem 11.9 with k =1 and the definition of E, y(x,) =y, = Ey, = €”y, making E = e”.

Develop the Taylor series for y(x) =In (1 +x), using xo=0.

he derivatives are y@(x) = (=1)""'( — 1)!/(1 +x)' so that y?(0) = (~1)"*'(i — 1)!. Since y(0) =
In1=0, we have
( l)lﬂ i i 2 i 3 i 4
= —_— + -— p—— e
;X =x o gxt oo +

y(x)=In (1+x)=i

The familiar ratio test shows this to be convergent for —1 <x < 1. It does not, however, prove that the
series equals In (1 + x). To prove this let p(x) represent the Taylor polynomial, of degree #n. Then by the
Lagrange formula for the error,

PR S 1
ey G e Y

In(1+x)—p(x) .
For simplicity consider only the interval 0=x < 1. The series is applied mostly to this interval anyway.

Then the error can be estimated by replacing & by 0 and x by 1 to give |In (1 +x) —p(x)|=1/(n +1) and
this does have limit 0. Thus lim p(x) = In (1 + x), which was our objective.

Estimate the degree of a Taylor polynomial for the function y(x) =1n (1 + x), with x,=0,
which guarantees three-decimal-place accuracy for 0 <x <1.
By the Lagrange formula for the error,
1 n! 1
In(1+x) —p)| S — s e g S
I+ —pOIEEo ey Snt1

Three-place accuracy requires that this not exceed .0005, which is satisfied for n =2000 or higher. A
polynomial of degree 2000 would be needed! This is an example of a slowly convergent series.

Express the operator D in terms of the operator A.

Frome? =Ewefind D=InE=In(1+A)=A - 3A?+3A*—JA*+---.
The validity of this calculation is surely open to suspicion, and any application of it must be care-
fully checked. It suggests that the final series operator will produce the same result as the operator D.
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11.14. Express y(x) = (1 4+ x)” as a Taylor series.

For p a positive integer this is the binomial theorem of algebra. For other values of p it is the
binomial series. Its applications are extensive. We easily find

YO)=p(p=1) - (p =i+ D1 +xP ' =pO(1+xy~
where p® is again the factorial polynomial. Choosing x, = 0
yO0)=p®
and substituting into the Taylor series,

y) =Z"l—(,)x=2<7)"

i=0

where (7) is the generalized binomial coefficient. The convergence of this series to y(x) for —1<x <1
can be demonstrated.

11.15. Use the binomial series to derive the Euler transformation.

The Euler transformation is an extensive rearrangement of the alternating series S =a,—a, +a, —
as+ - - - which we rewrite as

S=(1-E+E*—E’+--)a,=(1+E)a,
by the binomial theorem with p =—1. The operator (1+ E)~' may be interpreted as the inverse

operator of 1+ E. A second application of the binomial theorem now follows.

-1 —1 1 A?
S=(1+E) a,=02+A) a0=5 1+E) ag

1 A A AP 1 1 1 1
=—(]l——=4—=—4... == - Z A2, A3 )
2( 2+4 8+ )an z(ao 2Aag+4Aa0 8Aa0+

Our derivation of this formula has been a somewhat optimistic application of operator arithmetic. No
general, easy-to-apply criterion for ensuring its validity exists.

11.16. The Bernoulli numbers are defined to be the numbers B; in the following series:
x _$1
e—1 Sl

M

y(x) = B!

I

Find By, . . ., By.

The Taylor series requires that y(0) = B;, but it is easier in this case to proceed differently.
Multiplying by e* — 1 and using the Taylor series for e*, we get

1 1 1 1
x=<x+§x2+6x3+< . ~)(B“+le +§Bzx2+633x3+~~~)

Now comparing the coefficients of the successive powers of x,

1 1 1
Bn=1 Bl=—§ EZ=E B3=0 BA=_E Bs=0
1 1 5
B=p B=0 Bi=-3 B=0 Bo=g

The process could be continued in an obvious way.

11.17. Suppose AF; = y,. Then an inverse operator A" can be defined by
F = A_l}’k



THE TAYLOR POLYNOMIAL [CHAP. 11

This inverse operator is “indefinite” in that for given y, the numbers F; are determined except
for an arbitrary additive constant. For example, in the following table the numbers y, are
listed as first differences. Show that the number F, can be chosen arbitrarily and that the other
F, numbers are then determined.

E | A

Y Yo N Y2 Y3 Ya

We have at once

FR=F+y E=F+y=h+y+y E=E+yp=RK+Y+y+y.

k-1
and in general F, = F,+ Y y. The requirements plainly hold for an arbitrary F,, and the analogy with
i=0

indefinite integration is apparent.

Obtain a formula for A™" in terms of the operator D.
The result e” =1+ A suggests
Al=(”-1)"'=D D’ -1
where D~ is an indefinite integral operator, an inverse of D. From the definition of Bernoulli numbers,

=1
A"'=D"' Y = BD’
i

i=0ts

1 1 1 1.1 1
= -1 _— — z 4 s |l = -1z —_— —_—— 3 CECIES
b (1 2D+12D 720D+ ) b 2+12D 720D+

As always with the indefinite integral (and here we also have an indefinite summation) the presence
of an additive constant may be assumed.

Derive the Euler—Maclaurin formula operationally.

Combining the results of the previous two problems, we have
k-1
E=A"y=FK+2Xy
i=0
1 1 1
=(p-d4 oD D)
(D 2" 2P 77w Ve

From the first of these,

n—1
E-FE=3y
i=0
while from the second,
1 1 h h?
R LR URE TR LY
i), y(x) 2 On =20+ 5 (= ye) =56 (V7 = y) +

so that finally,

i=0

n-1 1 (¥ 1 h , .
> vi=y f y(X)dx—E(yn —}’0)+E(}’n_)’0)+"'

which is the Euler-Maclaurin formula. The operator arithmetic used in this derivation is clearly in need
of supporting logic, but the result is useful in spite of its questionable pedigree and in spite of the fact
that the series obtained is usually nor convergent.
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11.20.

11.21.

11.22.

11.23.

1.24.

11.25.

11.26.

11.27.

11.28.

11.29.

Supplementary Problems

Find the Taylor polynomials of degree # for sin x and cos x, using x,=0.

Express the error term in Lagrange’s form, for both sinx and cosx. Show that as n—> o this error has
limit O for any argument x.

For what value of n will the Taylor polynomial approximate sin x correctly to three decimal places for
0<x<m/2?

For what value of n will the Taylor polynomial approximate cos x correctly to three decimal places for
0<x <m/2? To six decimal places?

Express the operator A as a series operator in D.
The functions sinh x and cosh x are defined by
x_ ,-x PP
sinhx:e Ze coshx=e 2e
Show that their Taylor series are
sinhx = i LI coshx = i Lx”
(20 + 1) =0 (2)!

Show by operator arithmetic that § =2 sinh 1D, yu = cosh $D.
Use the binomial series to express A = 382 + §V1 + 1% as a series in powers of 8, through the term in 7.

Combine the results of Problems 11.13 and 11.27 to express D as a series in powers of §, verifying these
terms through §7.

1, 173 1735
Tt T e O

D=6

Verify these terms of a Taylor series for D*:
1 1

1 1
D=8 —— 8+ — 5 ——— 88+ —— §°
2% %5°% 7560° 31502

by squaring the result of Problem 11.28 and collecting the various powers of 8.



Chapter 12

Interpolation

HISTORICAL PLACE

Previous chapters have consisted almost entirely of supporting theory. That theory will now be
used in several ways, beginning with the classic problem of interpolation. Interpolation is the
familiar process of estimating the values of a function y(x) for arguments between x, ..., x, at
which the values y,, ..., y, are known. Inverse interpolation simply proceeds in the opposite
direction. Subtabulation is the systematic interpolation of many values between each pair of
arguments x;, X;,; and so reducing the spacing of a table of values, perhaps from % to h/10.
Prediction requires estimating a value y(x) for x outside the interval in which the data arguments
fall.

All these operations were much more pressing before the arrival of high-speed computers, which
now calculate values of all the familiar functions by series or other nontabular ways. The formulas of
this chapter bear the names of prominent mathematicians of a century and more ago, when tables of
functions were indispensable. Their place in our subject is partly, but not entirely, historical. It is
interesting to see how the computational hurdles of an earlier time were surmounted, but important
to note that tables of special functions are still constructed so that some of this work continues to
have a useful role.

METHODS OF SOLUTION

The methods of interpolation involve substituting for y(x) some more easily computed function,
often a polynomial, and simplest of all a straight line. The values y, . . . , y, may be introduced into
any of our polynomial formulas (Newton, Everett,...) which then becomes an algorithm for
interpolation, the output being an approximation to y(x). It was realized that using data from both
sides of the interpolation argument x “made sense” and led to better values or briefer computations.
The formulas of Stirling, Bessel, and Everett were motivated by this reasoning and a study of the
errors involved provides logical support. At the ends of a table this could not be done and the
Newton forward and backward formulas had their turn. It was unnecessary to choose the degree of
the approximating polynomial in advance, simply to continue fitting differences from the table into
appropriate places as long as the results seemed to warrant. It was also realized that a point of
diminishing returns occurs, where results deteriorate instead of improve, and that this point depends
upon the accuracy of the tabulated values.

The alternative procedure of Lagrange fits the polynomial to the data without using finite
differences. The degree has to be chosen in advance, but the method has compensating advantages.
Aitken’s method is another variant, not requiring equal spacing of tabular arguments or of the
polynomial’s degree at the outset.

Osculating polynomials and the Taylor polynomial also find application to interpolation
problems in special circumstances.

INPUT AND ALGORITHM ERRORS

Input and algorithm errors occur in all these applications. Their impact on the completed
outputs can be estimated only up to a point. It is customary to identify three main error sources.

1. Input errors arise when the given values y,,...,y, are inexact, as experimental or
computed values usually are.

2. Truncation error is the difference y(x) — p(x), which we accept the moment we decide to

94
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12.1.

use a polynomial approximation. This error has been found earlier to be

- _ ) en
Y =p) = Y E)
Though & is unknown, this formula can still be used at times to obtain error bounds.
Truncation error is one type of algorithm error. In prediction problems this error can be
substantial, since the factor (x) becomes extremely large outside of the interval in which
the data arguments x,, . . ., x,, fall.

Roundoff errors occur since computers operate with a fixed number of digits and any excess
digits produced in multiplications or divisions are lost. They are another type of algorithm
error.

Solved Problems

Predict the two missing values of y,.

k=x, 1 0 1 2 3 4 5 6 7

Ve 1 2 4 815 26

This is a simple example, but it will serve to remind us that the basis on which applications are to
be made is polynomial approximation. Calculate some differences.

124711
12 3 4
111

Presumably the missing y, values might be any numbers at all, but the evidence of these differences
points strongly toward a polynomial of degree three, suggesting that the six y, values given and the two
to be predicted all belong to such a polynomial. Accepting this as the basis for prediction, it is not even
necessary to find this collocation polynomial. Adding two more 1s to the row of third differences, we
quickly supply a 5 and 6 to the row of second differences, a 16 and 22 as new first differences, and then
predict y,=42, y,=64. This is the same data used in Problem 6.12 where the cubic collocation
polynomial was found.

Values of y(x)=Vx are listed in Table 12.1, rounded off to four decimal places, for
arguments x = 1.00(.01)1.06. (This means that the arguments run from 1.00 to 1.06 and are
equally spaced with # =.01.) Calculate differences to A® and explain their significance.

The differences are also listed in Table 12.1.

For simplicity, leading zeros are often omitted in recording differences. In this table all differences
are in the fourth decimal place. Though the square root function is certainly not linear, the first
differences are almost constant, suggesting that over the interval tabulated and to four-place accuracy
this function may be accurately approximated by a linear polynomial. The entry A? is best considered a
unit roundoff error, and its effect on higher differences follows the familiar binomial coefficient pattern
observed in Problem 3.10. In this situation one would ordinarily calculate only the first differences.
Many familiar functions such as \/;, logx, sinx, etc., have been tabulated in this way, with arguments
so tightly spaced that first differences are almost constant and the function can be accurately
approximated by a linear polynomial.

Apply Newton’s forward formula with # =1 to interpolate for V1.005.
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Table 12.1
x ya)=Vx A A* A* A* A5 AS
1.00 1.0000
50
1.01 1.0050 0
50 -1
1.02 1.0100 -1
49 1 -3
1.03 1.0149 0 -1 4
49 0
1.04 1.0198 0
49 0
1.05 1.0247 0
49
1.06 1.0296
Newton’s formula reads
= ot (F)an+ (S)am+ o+ ()
Px=Yo 1 Yo 2 ( n Yo
Choosing n =1 for a linear approximation we find, with k = z ;x" = %50_11_09=1

pk=1nmo+%LMﬂn=L0m5

[CHAP.

12

This is hardly a surprise. Since we have used a linear collocation polynomial, matching our y =Vx

values at arguments 1.00 and 1.01, we could surely have anticipated this midway result.

12.4. What would be the effect of using a higher-degree polynomial for the interpolation of

Problem 12.3?

An easy computation shows the next several terms of the Newton formula, beginning with the

second difference term, to be approximately .00001. They would not affect our result at all.

12.5. Values of y(x) = Vx are listed in Table 12.2, rounded off to five decimal places, for arguments

=1.00(.05)1.30. Calculate differences to A® and explain their significance.

The differences are listed in Table 12.2.

Table 12.2
x [yw=Vx A A* A* A* A® AC
1.00 | 1.00000
2470
1.05] 1.02470 -59
2411 5
1.10 | 1.04881 —54 -1
2357 4 -1
1.15| 1.07238 -50 -2 4
2307 2 3
1.20| 1.09544 —48 1
2259 3
1.25| 1.11803 -45
2214
1.30| 1.14017
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Here the error pattern is more confused but the fluctuations of + and —- signs in the last three columns
are reminiscent of the effects produced in Problems 3.10 and 3.11. It may be best to view these three
columns as error effects, not as useful information for computing the square root function.

Use the data of Problem 12.5 to interpolate for V1.01.

Newton’s forward formula is convenient for interpolations near the top of a table. With k =0 at the
top entry x, = 1.00, this choice usually leads to diminishing terms and makes the decision of how many
terms to use almost automatic. Substituting into the formula as displayed in Problem 12.3, with
k = (x — x0)/h = (1.01 - 1.00)/.05 =4, we find

1 2 6
=1. +=(. —=(-. — (.
Pr = 1.00000 3 (.02470) by (—.00059) + 5 (.00005)
stopping with this term since it will not affect the fifth decimal place. Notice that this last term uses the
highest-order difference which we felt, in Problem 12.5, to be significant for square root computations.
We have not trespassed into columns which were presumably only error effects. The value p, reduces to

Dr = 1.000000 +.004940 + .000048 + .000002 = 1.00499

which is correct to five places. (It is a good idea to carry an extra decimal place during computations, if
possible, to control “algorithm errors” described in Chapter 1. In machine computations, of course, the
number of digits is fixed anyway, so this remark would not apply.)

Use the data of problem 12.5 to interpolate for V1.28.

Here Newton’s backward formula is convenient and most of the remarks made in Problem 12.6
again apply. With k = 0 at the bottom entry x, = 1.30, we have k = (x —x,)/h = (1.28 — 1.30)/.05= — 3.
Substituting into the backward formula (Problem 7.9)

k(k+1 k(k+1)(k+2 k(k+1)---(k+n—-1
. o+ k ¥y, (2 )szo ( 3)'( )Vs ot ( ) ‘( )V"}’u
we obtai =1 14017+(——)(0 14)+(——3 )(— 0 45)+(——‘8 )( 00003
e obtain pr=1 5)¢ 22 5 -000: 125 )¢ )

=1.140170 — .008856 + .000054 — .000002 = 1.13137

which is correct to five places.

The previous two problems have treated special cases of the interpolation problem, working
near the top or near the bottom of a table. This problem is more typical in that data will be
available on both sides of the point of interpolation. Interpolate for \/1.12 using the data of
Problem 12.5.

The central difference formulas are now convenient since they make it easy to use data more or less
equally from both sides. In Problem 12.15 we will see that this also tends to keep the truncation error
small. Everett’s formula will be used.

R k+1 k+2 k=1 (K k+1
O T A e G R L O L

where higher-order terms have been omitted since we will not need them in this problem. Choosing
k=0 at xo=1.10, we have k = (x —x,)/h = (1.12 —1.10)/.05 = 3. Substituting into Everett’s formula,

)( — .00050) + (%8)( —.00002)

2 7
=(%)(1.0723 +(——
Pr (5)( 8) 125

_ ( - g)(1.04881) - (%)( —.00054) — ( - 15%2)( —.00001)

=.428952 + .000028 + .629286 + .000035
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the two highest-order terms contributing nothing (as we hoped, since these are drawn from the error
effects columns). Finally p, =1.05830, which is correct to five places. Notice that the three
interpolations made in Table 12.2 have all been based on collocation polynomials of degree three.

The laboratory’s newest employee has been asked to “look up” the value y(.3333) in table
NBS-AMS 52 of the National Bureau of Standards Applied Mathematics Series. On the
appropriate page of this extensive volume he finds abundant information, a small part of
which is reproduced in Table 12.3. Apply Everett’s formula for the needed interpolation.

Table 12.3

x y(x) 8

31 .1223 4609 2392
32 1266 9105 2378
.33 .1310 5979 2365
.34 1354 5218 2349
.35 .1398 6806 2335

Choosing x =0 at x,=.33, we have k= (x —x,)/h =(.3333 —.33)/.01 =.33. Writing Everett’s
formula through second differences in the form

P =ky + (1= k)y, + E 8%, — Eo8%y,

k+1
where E1=( 3

k =.33, we find E, = —.0490105, E, =.0615395. Then

e = (.33)(.13545218) + (.67)(.13105979) + (~.0490105)(.00002349) — (.0615395)(.00002365)
= 13250667

k
) and E,= ( 3), the interpolator will find all ingredients available in tables. For

This table was prepared with Everett’s formula in mind.

Apply the Lagrange formula to obtain V1.12 from the data of Table 12.2.

The Lagrange formula does not require equally spaced arguments. It can of course be applied to
such arguments as a special case, but there are difficulties. The degree of the collocation polynomial
must be chosen at the outset. With the Newton, Everett, or other difference formulas the degree can be
determined by computing terms until they no longer appear significant. Each term is an additive
correction to terms already accumulated. But with the Lagrange formula a change of degree involves a
completely new computation, of all terms. In Table 12.2 the evidence is strong that a third-degree

polynomial is suitable. On this basis we may proceed to choose x,=1.05, ..., x3=1.20 and substitute
into
= x)(x —x)(x — x3) (& ~ xo)(x — x2)(x ~ x3)
(o= %) (Ko = X (o= %) 7" (%1 = Xo)(®1 = X2) (1 — %)
(= x)x = x)(x — x3) (x —x0)(x —x))(x — x2)

(%2 = x0)(x2 = x1) (x2 — x3) : (3 = x0) (s — x1) (X3 — x2) :

to produce

p =5 (1.02470) + % (1.04881) +

56 -7
s 35 (1.07238) + < (1.09544) = 1.05830

This agrees with the result of Problem 12.8.
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12.11.

12.13.

The problem of inverse interpolation reverses the roles of x, and y,. We may view the y,
numbers as arguments and the x; as values. Clearly the new arguments are not usually equally
spaced. Given that Vx = 1.05, use the data of Table 12.2, to find x.

Since we could easily find x = (1.05)*=1.1025 by a simple multiplication, this is plainly another
“test case” of our available algorithms. Since it applies to unequally spaced arguments, suppose we use
Lagrange’s formula. Interchanging the roles of x and y,

===y | =Y~y — ) .
(¥o = (Yo = ¥2)(¥o = ¥3) ‘ =) = y2) (31— ys) !

(Y —¥0)(y = y)(y —y5) O =3 = y)(y = 3)
T 0= 0= G e )

With the same four x,, y, pairs used in Problem 12.10, this becomes

P =(—.014882)1.05 + (.97095)1.10 + (.052790)1.15 + ( — .008858)1.20 = 1.1025

as expected.

Apply Everett’s formula to the inverse interpolation problem just solved.

Since the Everett formula requires equally spaced arguments, we return x and y to their original
roles. Writing Everett’s formula as

k+2

1.05 = k(1.07238) + (k;“ 1)(—.00050) + ( s

) (=.00002)

+ (1~ k)(1.04881) — (;‘)(—.00054) - (k 5+ 1)(—.00001)

we have a fifth-degree polynomial equation in k. This is a problem treated extensively in a later chapter.
Here a simple, iterative procedure can be used. First neglect all differences and obtain a first
approximation by solving

1.05 = £(1.07238) + (1 — k)(1.04881)

The result of this linear inverse interpolation is k =.0505. Insert this value into the &2 terms, still
neglecting the 6* terms, and obtain a new approximation from

1.0505
3
This proves to be k =.0501. Inserting this value into both the 6% and 6 terms then produces k =.0500.

Reintroduced into the 6 and 8* terms this last value of k reproduces itself, so we stop. The
corresponding value of x is 1.1025 to four places.

1.05 = k(1.07238) + ( )(—‘00050) + (1~ k)(1.04881) ('0205)(.00054)

Interpolate for V1.125 and V1.175 in Table 12.2.

For these arguments which are midway between tabulated arguments, Bessel’s formula has a strong
appeal. First choose k = 0 at x, = 1.10, making k = (1.125 — 1.10)/.05 = }. The Bessel formula (Problem
7.25) is
k
2

if we stop at degree four. The odd difference terms disappear entirely because of the factor k — 3.
Substituting,

k+1
pk=uyuz+( )Ml52)’u2+( 4 )ué“ym

3

1
Pr = 1.06060 + ( - g)(—.ooosz) + (128

)(—.000015) =1.06066

with the 6* term again making no contribution. Similarly in the second case, with k =0 now at xo=1.15,
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we again have k =3 and find p, = 1.08397. By finding all such midway values, the size of a table may be
doubled. This is a special case of the problem of subtabulation.

In using a collocation polynomial p(x) to compute approximations to a function y(x), we
accept what is called a truncation error, y(x) — p(x). Estimate this error for our interpolations
in Table 12.1.

The formula for truncation error of a collocation polynomial was derived in Chapter 2 and is

Y0 =P = )

when the polynomial approximation is of degree n. For Table 12.1 we found n =1 suitable. The
collocation points may be called x, and x;, leading to this error estimate for linear interpolation:

y) ~pl) = EEUE =Ty KEZD g
Since # =.01 and y®(x) = — $x™*?, we have
ly(x) =px)l éﬂg_—l) (.0001)

For k between 0 and 1, which we arrange for any interpolation by our choice of x,, the quadratic
k(k — 1) has a maximum size of § at the midpoint k =3 (see Fig. 12-1). This allows us to complete our
truncation error estimate,

[y(x) = p(x)l §3—12(.0001)

P k=1

Fig. 12-1

and we discover that it cannot affect the fourth decimal place. Table 12.1 was prepared with linear
interpolation in mind. The interval & = .01 was chosen to keep truncation error this small.

Estimate truncation errors for our computations in Table 12.2.

Here for the most part we used Everett’s formula for a cubic polynomial. For other cubic formulas
the same error estimate follows. Assuming equally spaced collocation arguments x_;, x,, x;, and x,,

_ (x —x_)x _X04)!(x —x)(x ‘xz)y(4)(§)
~(k+ Dk(k — (k= 2)htyWE
- 24

y(x)—px)

The polynomial (k + 1)k(k —1)(k —2) has the general shape of Fig. 12-2. Outside the interval
—1<k <2 it climbs sensationally. Inside 0 <k <1 it does not exceed 1 and this is the appropriate part
for interpolation. We now have, for the maximum error in cubic interpolation,

A
16 24

For this example 4 = .05 and y*'(x) = —42x™"?, and hence |y(x) — p(x)| = &(.00005) so that truncation

error has not affected our five-decimal calculations.

1Y)~ P S 22 5 Y OE) = g V@)
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Fig. 12-2
12.16. How large could the interval length 4 be made in a table of Vx with a cubic formula still
giving five-place accuracy? (Assume 1=x.)
This sort of question is naturally of interest to table makers. Our truncation error formula can be
written as
9 15/ 1
-rer= (1))
ly@) =p@i=1eh 10 )\5;

To keep this less than .000005 requires A*<.000228, or very closely & < §. This is somewhat larger than
the 7 =.05 used in Table 12.1, but other errors enter our computations and it pays to be on the safe
side.

12.17. The previous problem suggests that Table 12.2 may be abbreviated to half length, if Everett’s
cubic polynomial is to be used for interpolations. Find the second differences needed in this
Everett formula.

The result is Table 12.4, in which first differences may be ignored.

Table 12.4
X Vi ) 62
1.00 | 1.00000
4881
1.10 | 1.04881 =217
4664
1.20 | 1.09544 —191
4473

1.30 | 1.14017

12.18. Use Table 12.4 to interpolate for y(1.15).

With Everett’s formula and k =3,
1 1 1 1
Pe=75(1.09544) = £ (~.00191) + (L.04881) ~ - (~.00217) = 107238

as listed in Table 12.2. This confirms Problem 12.16 in this instance.

12.19. Estimate the truncation error for a fifth-degree formula.

Assume the collocation arguments equally spaced and at k= —2, —1,...,3 as in Everett’s
formula. (The position is actually immaterial.)
7(x) _(k+2)(k + Dk(k = 1)(k = 2)(k —3)

y(x) —px)= my("”)(é) = 0 Koy ©(E)
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12.20

12.21.

12.22.

12.23
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The numerator factor, for 0< k <1, takes a maximum absolute value of 2§ at k =, as may easily be

verified, making
’ 1225
ly(x) —p®)I=555

iy SRRV O]
= e K YO

For the function y(x) =Vx, and 1=x, how large an interval 4 is consistent with five-place
accuracy if Everett’s fifth-degree formula is to be used in interpolations?

For this function, y©@(x) = %x "> =%  Substituting this into the result of the previous problem
and requiring five-place accuracy,

1225 |, 945_
s = 5
720 6 M eq =:00000

leading to A =% approximately. Naturally the interval permitted with fifth-degree interpolation exceeds
that for third-degree interpolation.

For the function y(x) =sinx, how large an interval 4 is consistent with five-place accuracy if
Everett’s fifth-degree formula is to be used in interpolations?

For this function y®(x) is bounded absolutely by 1, so we need g+ 2 + A°=.000005, leading to
h =.317. This is the equivalent of 18° intervals, and means that only four values of the sine function,
besides sin 0 and sin 90° are needed to cover this entire basic interval!

A second source of error in the use of our formulas for the collocation polynomial (the first
source being truncation error) is the presence of inaccuracies in the data values. The numbers
Vi, for example, if obtained by physical measurement will contain inaccuracy due to the
limitations imposed by equipment, and if obtained by computations probably contain
roundoff errors. Show that linear interpolation does not magnify such errors.

The linear polynomial may be written in Lagrangian form,
p=ky+ (1=K

where the y, are as usual the actual data values. Suppose these values are inaccurate. With Y; and ¥,
denoting the exact but unknown values, we may write

Yo=yo+eo Yi=y+e
where the numbers e, and e, are the errors. The exact result desired is therefore
P=kY +(1-k)Y,
making the error of our computed result
P—p=ke,+(1—k)e,
If the errors e, do not exceed E in magnitude, then
|P—p|SkE+(1-KE=E

for 0<k < 1. This means that the error in the computed value p does not exceed the maximum data
error. No magnification of error has occurred.

Estimate the magnification of data inaccuracies due to cubic interpolation.

Again using the Lagrangian form but assuming equally spaced arguments at k = — 1, 0, 1, 2, the
cubic can be written as

po k== kDK -DK-2)  (k+ Dkk=2)

¢ (k+ Dk =1

2 ) N 6 2
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As in Problem 12.22, we let Y, =y, + e, with Y, denoting the exact data values. If P again stands
for the exact result desired, then the error is

poKkoDk=2)  (k+DK-D(K=2) (K Dk(k=2)  (k+DEk=D)

P_
-6 ! 2 -2 6

Notice that for 0<k <1 the errors e_; and e, have negative coefficients while the other two have
positive coefficients. This means that if the errors do not exceed E in magnitude,
k(k —1)(k—2) + (k+1)(k—1)(k—-2) + (k+1)k(k—2) + (k + Dk(k — 1)]

6 2 -2 -6

1P -pI<E|

which simplifies to |P—p|SE(-KkK+k+1)E=mE

Not surprisingly the quadratic magnification factor m, takes its maximum at k& =3} (Fig. 12-3) and so
|P —p|=3E. The data error E may be magnified by as much as 5. This is, of course, a pessimistic
estimate. In certain cases errors may even annul one another, making the computed value p more

accurate than the data y,.

my,

Fig. 12-3

12.24. What other source of error is there in an interpolation?

One source which is very important to keep in mind, even though it is often entirely out of one’s
control, is the continual necessity to make roundoffs during the carrying out of the algorithm. Working
to a limited number of digits, this cannot be avoided. Our various formulas, even they represent exactly
the same collocation polynomial, process the data involved in differing ways. In other words, they
represent different algorithms. Such formulas accept the same input error (data inaccuracies) and may
have the same truncation error but still differ in the way algorithm roundoffs develop.

12.25. Describe how Taylor’s series may be used for interpolation.
Consider the function y = ¢*. But Taylor’s series,
et = g* '€'=€x(1 +t+%f2+" )

Assume the factor ¢ known. Truncating the series after the > term means an error (inside the
parentheses) of at most §(h/2)® where 4 is the interval at which arguments are spaced in the table. This
assumes that interpolation will always be based on the nearest tabular entry. If 4 =.05 this error is
(%2)107%, or (2.6)107°. This means that, stopping at the ¢* term, accuracy to five digits (not decimal
places) will be obtained in the computed value of e**'. For example, using the data of Table 12.5 the
interpolation for ¢*”'® runs as follows. With ¢ =.018, 1+ ¢+ 1 =1.01816 and

€271 = ¢7(1.01816) = (14.880)(1.01816) = 15.150

which is correct to its full five digits. Our collocation polynomials would also produce this result.
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12.26.

12.27.

12.28.

12.29.
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Table 12.5

x 2.60 2.65 2.70 2.75 2.80

y=e"] 13.464 14.154 14.880 15.643 16.445

How can Taylor series interpolation be used for the function y(x) = sinx?
Since sin x and cos x are usually tabulated together, we may express
sin (x £¢)=sinx £¢cosx — 3t*sinx

Here, of course, ¢ is measured in radians. If the tabular interval is £ =.0001, as it is NBS-AMS 36, of
which Table 12.6 is a brief extract, then the above formula will give accuracy to nine digits, since 3(h/2)*
is out beyond the twelfth place.

Table 12.6
x sin x cosx
1.0000 .8414 70985 .5403 02306
1.0001 .8415 25011 .5402 18156
1.0002 841579028 .5401 34001
1.0003 .8416 33038 .5400 49840

Compute sin 1.00005 by the Taylor series interpolation.
With x =1 and ¢ =.00005,

sin 1.00005 = .8414 70985 + (.00005)(.5403 02306) — <%>(10‘R)(.8414 70985) = .8414 97999

Apply Newton’s backward formula to the prediction of V1.32 in Table 12.2.
With k =0 at x,=1.30 we find k = (1.32 — 1.30)/.05 = .4. Substituting into the Newton formula,

p = 1.14017 + (.4)(.02214) + (.28)( — .00045) + (.224)(.00003) = 1.14891

which is correct as far as it goes. Newton’s backward formula seems the natural choice for such
prediction problems, since the supply of availabie dfferences is greatest for this formula and one may
introduce difference terms until they do not contribute to the decimal places retained. This allows the
degree of the approximating polynomial to be chosen as the computation progresses.

Analyze the truncation error in prediction.

The truncation error of the collocation polynomial can be expressed as

k(k+1)- - (k+n)

D! hn+1y(n+l)(§)

where the collocation points are at k =0, —1, ..., —n as is the case when Newton’s backward formula
is used. For prediction, k is positive. The numerator factor grows rapidly with increasing k, more
rapidly for large n, as Fig. 12-4 suggests. This indicates that truncation error will not be tolerable beyond
a certain point, and that prediction far beyond the end of a table is dangerous, as might be anticipated.
The truncation error of a collocation polynomial is oscillatory between the points of collocation, but
once outside the interval of these points it becomes explosive.
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12.30.

12.32.

12.33.
12.34.

12.35.

12.36.

12.37.

12.38.

12.39.

12.40.

n=1 /:J n=23

Fig. 12-4

Predict V1.50 from the data of Table 12.2.
With & = (1.50 — 1.30)/.05 = 4,
p = 1.14017 + (4)(.02214) + (10)(—.00045) + (20)(.00003) = 1.22483

while the correct result is 1.22474. Note also that higher difference terms, which we believe to be error
effects anyway, would only make the result worse because they are positive.

Supplementary Problems

. From the data of Table 12.1 obtain V1.012 and V1.017 by linear interpolation, to four decimal places.

Would the second difference term affect the result? Would higher-order terms?

From the data of Table 12.1 obtain V1.059 by linear interpolation. Note that if Newton’s forward
formula is used (with £ =0 at x = 1.05) no second difference would be available in this case.

Interpolate for V1.03 in Table 12.2.
Interpolate for V1.26 in Table 12.2.

Apply Stirling’s formula to obtain V1.12 from the data of Table 12.2. Does the result agree with that of
Problem 12.87

Apply Everett’s formula to Table 12.3, obtaining y(.315).

Apply the Lagrange formula to interpolate for y(1.50) using some of the following values of the normal
error function, y(x) = e *"2/\/2x.

Xk 1.00 1.20 1.40 1.60 1.80 2.00

Ve 2420 1942 11497 .1109  .0790 .0540

The correct result is .1295.

Use Lagrange’s formula to inverse interpolate for the number x corresponding to y =.1300 in the data
of Problem 12.37.

Apply the method of Problem 12.12 to the inverse interpolation of Problem 12.38.

Apply Bessel’s formula to obtain y(1.30), y(1.50), and y(1.70) for the data of Problem 12.37.
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12.45.

12.46.

12.47.

12.49.

12.50.

12.51.

12.52.
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. In a table of the function y(x) =sinx to four decimal places, what is the largest interval z consistent with

linear interpolation? (Keep truncation error well below .00005.)

. In a table of y(x) =sinx to five places, what is the largest interval 4 consistent with linear interpolation?

Check these estimates against familiar tables of the sine function.

. If Everett’s cubic polynomial were used for interpolations, rather than a linear polynomial, how large an

interval 4 could be used in a four-decimal-place table of y(x) =sinx? In a five-place table?

. In quadratic approximation with Newton’s formula, the function k(k —1)(k —2) appears in the

truncation error estimate. Show that this function has the shape indicated in Fig. 12-5 and that for
0< k <2 it does not exceed 2V/3/9 in absolute value.

Fig. 12-5

The function k(k? — 1)(k* — 4) appears in the truncation error estimate for Stirling’s formula. Diagram
this for —2 <k <2 and estimate its maximum absolute value for — } <k <34, which is the interval to
which use of this formula is usually limited.

Show that the relative maxima and minima of the polynomials
k(k*—1)(k*—4) k(k* - 1)(k*— 4)(k* - 9)

increase in magnitude as their distance from the interval —1 <k <1 increases. These polynomials
appear in the truncation error for Stirling’s formula. The implication is that this formula is most accurate
in the center of the range of collocation.

Show that the relative maxima and minima of the polynomials
(k+ Dk(k —1)(k-2) (k +2)(k + 1)k(k —1)(k —2)(k - 3)

increase in magnitude with distance from the interval 0<k <1. These polynomials appear in the
truncation error for Everett’s or Bessel’s formula. The implication is that these formulas are most
accurate over this central interval.

. How large an interval A is consistent with interpolation by Everett’s fifth-degree formula if the function

is y(x) = log x and five-place accuracy is required?

Estimate the magnification of data inaccuracies due to second-degree interpolation. Follow the
argument of Problems 12.22 and 12.23, with 0 <k <1.

Estimate the magnification of data inaccuracies due to fourth-degree interpolation, again for 0 <k <1.
Apply Stirling’s formula to compute y(2.718) from the data of Table 12.5.

Compute sin 1.00015 from the data provided in Table 12.6.
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12.53.

12.54.

12.55.

12.56.

12.57.

12.58.

12.59.

12.60.

Show that the Taylor series interpolation

log(x +¢)=logx +1lo (1+£)—lo x+£—l—z+

8 g g p)Tlosxt s

may be truncated after the £* term with six-decimal-place accuracy for 1<x, provided the tabular
spacing is 4 =.01.
Use Newton’s backward formula to predict V1.35, V1.40, and V1.45 from the data of Table 12.2.
Predict V1.40 and V1.50 from the data of Table 12.4.
Diagram the error of the quadratic polynomial of Problem 6.14. Show that the error equals zero at
x= —3 as well as at the points of collocation. How can this be explained in terms of our collocation

error formula 7 (x)y?(£)/3!?

In Problem 6.15 how can the zero error at x =4 be explained in terms of the error formula
m(x)y(E) /41

Use the result of Problem 10.15 to estimate the missing y'(1).
Use the result of Problem 10.16 to estimate the missing y"(1).

Use the result of Problem 10.17 to estimate the missing y'(0) and y'(1).



Chapter 13

Numerical Differentiation

APPROXIMATE DERIVATIVES

Approximate derivatives of a function y(x) may be found from a polynomial approximation p(x)
simply by accepting p’, p®, p®, ... in place of y', y®, y®, ... . Our collocation polynomials lead
to a broad variety of useful formulas of this sort. The three well-known formulas

Yx+h) —yx) oy XX TR —y(x—h) oy ) — ¥ —h)
y(x) Y y'(x)= o y' ()= 7
follow by differentiation of the Newton forward, Stirling, and Newton backward formulas,

respectively, in each case only one term being used. More complicated formulas are available simply
by using more terms. Thus
'(x) =2 [A + <k—1)A2 +
y h Yo 5 Yo

comes from the Newton formula, while

3k?— 6k +2

6 A3y0+...:|

, 1 3k2—1
Y=y <6uyo + k8o + o Suyo + - - )
results from differentiating Stirling’s. Other collocation formulas produce similar approximations.
For second derivatives one popular result is
2

1/, . 6k .
YO =2 (80 + koo + %0+

and comes from the Stirling formula. Retaining only the first term, we have the familiar

yx+h)-2y(x) +ylx —h)
hZ

y@(x) =

SOURCES OF ERROR IN APPROXIMATE DIFFERENTIATION

The study of test cases suggests that approximate derivatives obtained from collocation
polynomials be viewed with skepticism unless very accurate data are available. Even then the
accuracy diminishes with increasing order of the derivatives.

The basic difficulty is that y(x) — p(x) may be very small while y’'(x) —p'(x) is very large. In
geometrical language, two curves may be close together but still have very different slopes. All the
other familiar sources of error are also present, including input errors in the y; values, truncation
errors such as y' —p’, y@ —p®, etc., and internal roundoffs.

The dominant error source is the input errors themselves. These are critical, even when small,
because the algorithms magnify them enormously. A crucial factor in this magnification is the
reciprocal power of A which occurs in the formulas, multiplying both the true values and the errors
which are blended together to make the y; data. An optimum choice of the interval # may sometimes
be made. Since truncation error depends directly on 4, while input error magnification depends
inversely, the usual method of calculus may be used to minimize the combination.

Large errors should be anticipated in approximate derivatives based on collocation polynomials.
Error bounds should be obtained whenever possible. Alternative methods for approximate
differentiation may be based upon polynomials obtained by least squares or min-max procedures
rather than by collocation. (See Chapters 21 and 22.) Since these methods also smooth the given

108
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data, they are usually more satisfactory. Trigonometric approximation (Chapter 24) provides still
another alternative.

13.1.

13.2.

Solved Problems

Differentiate Newton’s forward formula,
k k k k
Pi=Yo+ (1)Ay°+ (2)A2y°+ <3>A3y°+ (4)A4y°+ o

The Stirling numbers may be used to express the factorials as powers, after which an easy
computation produces derivatives relative to k. With the operator D continuing to represent such
derivatives, Dp,, D?py, ..., we use the familiar x =x,+kh to obtain derivatives relative to the
argument x.

8 D,

. Dp
P’ === PP =3

The results are

1 1 3k’ -6k +2 2k°—9k*+ 11k -3

p'(x) 7 |:A}’u+ (k _E)Az o+ 6 Ay, + 1 Alyo+ - :|
1 6k*— 18k + 11

PPx) == <A2 o+ (k= DAY+ ———— A+ )
h 12
1 2k -3

PO =33 <A3yo+ T Aot )

) = 1 4,
p (x)—}F(AyU+'-~) and so on

Apply the formulas of Problem 13.1 to produce p’(1), p®(1), and p®(1) from the data of
Table 13.1. (This is the same as Table 12.2 with the differences beyond the third suppressed.
Recall that those differences were written off as error effects. The table is reproduced here for
convenience.)

Table 13.1
x yx)=Vx

1.00 1.00000

2470
1.05 1.02470 -59

2411 5
1.10 1.04881 —54

2357 4
1.15 1.07238 -50

2307 2
1.20 1.09544 —48

2259 3
1.25 1.11803 —45

2214
1.30 1.14017
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With & =.05, and k =0 at x,=1.00, our formulas produce
p’(1) =20(.02470 +.000295 + .000017) = . 50024
p@(1) = 400(—.00059 — .00005) = —.256
p®(1) = 8000(.00005) = .4
The correct results are, since y(x) =V, y'(1) =1, y®(1) = -4, and y®(1) = 2.
Though the input data are accurate to five decimal places, we find p'(1) correct to only three places,

p@(1) not quite correct to two places, and p®(1) correct to only one. Obviously, algorithm errors are
prominent.

13.3. Differentiate Stirling’s formula,

k k kY . k+1 kk+1
p"zy°+(1)6“y°+5(1)ézy"+< 3 )63“y"+2< 3 )64y"+

Proceeding as in Problem 13.1, we find

1 3k2-1 2K —k
p'x)=y (5uyo+ kd%y, + Suyy + TR )
1 6k> — 1
pP)=7 (52)’0 + k&>uy, + Syot -+ )
h 12
3), _ 1 a
PO) =15 (Ouyo + kdyo+--)
), = 1 4.
D (x)—’?(ﬁy0+---) and so on

13.4. Apply the formulas of Problem 13.3 to produce p'(1.10), p®(1.10), and p©®(1.10) from the
data of Table 13.1.

With k& =0 at x, =1.10, our formulas produce

) . .00005 + 00004

p,(1.10)=20[02411+ 02357+0_1<000> )]=.4766
2 6 2

P@(1.10) = 400(—.00054 + 0) = ~.216

p®(1.10) = 8000(.000045) = .360

The correct results are y'(1.10) =.47674, y®(1.10) = —.2167, and y©®(1.10) = .2955.
The input data were correct to five places, but our approximations to these first three derivatives
are correct to roughly four, three, and one place, respectively.

13.5. The previous problems suggest that approximate differentiation is an inaccurate affair.
Tllustrate this further by comparing the function y(x)=esin (x/e?) with the polynomial
approximation p(x) =0.

The two functions collocate at the equally spaced arguments x = ie’s for integers i. For a very small
number e, the approximation is extremely accurate, y(x)—p(x) never exceeding e. However, since
y'(x)=(1/€) cos (x/e®) and p’(x) =0, the difference in derivatives is enormous. This example shows that
accurate approximation of a function should not be expected to mean accurate approximation of its
derivative. See Fig. 13-1.
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N N N /S
SN N N

Fig. 13-1

13.6. Problems 13.1, 13.3, and 13.23 suggest three approximations to y’(x,) using only first
differences,
1=y Y17Y1 Yo~ Y1
h 2h h

Interpreted geometrically, these are the slopes of the three lines shown in Fig. 13-2. The
tangent line at x, is also shown. It would appear that the middle approximation is closest to
the slope of the tangent line. Confirm this by computing the truncation errors of the three

formulas.
é\

1 o Iy

Fig. 13-2

Newton’s forward formula, truncated after the first difference term, leaves the truncation error
h2
y&)=pO)=7[k(k - Hy®(§)]

with x = x,+ kh as usual. It is helpful here to consider & as a continuous argument, no longer restricting
it to integer values. Assuming y®(§) continuous, we then find the error of our derivative formula (by
the chain rule) for k =0.

Y () =) = = yg)

Note that for k =0 the derivative of the troublesome y®(&) factor is not involved. Similarly for
Newton’s backward formula,

¥ () = ') = 2y ()

With Stirling’s formula we receive an unexpected bonus. Retaining even the second difference term
in our approximation we find that at k = 0 it disappears from p’'(x). (See Problem 13.3.) Thus we may
consider the middle approximation under discussion as arising from a second-degree polynomial
approximation. The truncation error is then

yx) —p(x) =%[(k + Dk(k = 1y2(&)]

oy
6

leading to y'(xo) = p'(xe) =——yAE)
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13.8.

13.9.

13.10.
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It is true that the symbol & probably represents three distinct unknown numbers in these three
computations. But since A is usually small, the appearance of h? in the last result, compared with 4 in
the others, suggests that this truncation error is the smallest, by an “order of magnitude.” This confirms
the geometrical evidence.

Apply the middle formula of Problem 13.6 to approximate y'(1.10) for the data of Table 13.1.
Find the actual error of this result and compare with the truncation error estimate of Problem
13.6.

This approximation is actually the first term computed in Problem 13.4: y'(1.10) =.4768. The actual
error is, to five places, .
y'(1.10) — .4768 = .47674 — .47680 = —.00006

The estimate obtained in Problem 13.6 was —h%y®(£)/6. Since y©(x) = 3x>* we exaggerage only
slightly by replacing the unknown & by 1, obtaining —4’y®(§)/6 = —(.05)*(35) = —.00016. This estimate
is generous, though not unrealistic.

Convert the formula for p'(x,) obtained in Problem 13.3 to a form which exhibits the y,
values used rather than the differences.

We have k =0 for this case, making

171 1 1
P =3 (S0 =y ) =15 0= 4 2=y S O 8 B )

Estimate the truncation error in the formula of Problem 13.8.

Since the formula was based on Stirling’s fourth-degree polynomial,

Pk - 4)(k* — Dy (&)
120

@) —pE)=

Differentiating as in Problem 13.6 and putting k =0, y’(xo) — p'(xo) = A*y®()/30.

Compare the estimate of Problem 13.9 with the actual error of the computed result in
Problem 13.4.

To five places the actual error is
$'(1.10) — p’(1.10) = .47674 — .47660 = .00014
while the formula of Problem 13.9, with y®(1) substituting for the unknown y©(&) and causing a slight
exaggeration, yields

hYy®(&) 7
B cosy(2) -
) (.05) & 0000007
Surely this is disappointing! Though the truncation error has been essentially eliminated by using
differences of higher order, the actual error is greater. Clearly another source of error is dominant in
these algorithms. It proves to be the input errors of the y; values, and how the algorithm magnifies them.
For brevity we shall include this in the term roundoff error.

13.11. Estimate the roundoff error behavior for the formula (y, —y_,)/2h.

As before, let Y, and Y_, be the exact (unknown) data values. Then Y, =y, +e,and Y_,=y_,+e_;
with e; and e_, representing data errors. The difference
Y, ‘Y—l_yl_y—1=el — €
2h 2h 2h
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13.14.

13.15.

is then the error in our output due to input inaccuracies. If e; and e_, do not exceed E in magnitude,
then this output error is at worst 2E/2h, making the maximum roundoff error E/A.

Apply the estimate of Problem 13.11 to the computation of Problem 13.7.
Here h=.05 and E =.000005, making E/h =.00010. Thus roundoff error in the algorithm may
influence the fourth place slightly.

Estimate roundoff error behavior for the formula of Problem 13.8.

Proceeding just as in Problem 13.10, we find (1/12k)(e_, — 8¢_, + 8¢, — e,) for the error in the output
due to input inaccuracies. If the e, do not exceed E in magnitude, then this output error is at worst
18E/12h, i.e., maximum roundoff error= (3/2k)E. The factor (3/2h) is the magnification factor, as
(1/h) was in Problem 13.11. Note that for small 4, which we generally associate with high accuracy, this
factor is large and roundoff errors in the input information become strongly magnified.

Apply the estimate of Problem 13.13 to the computation of Problem 13.4. Then compare the
various errors associated with our efforts to compute y’(1.10).

With & =.05 and £ =.000005, (3/2k)E =.00015. The various errors are grouped in Table 13.2.

Table 13.2
Formula Actual error | Est. trunc. error Max. R.O. error
(y1—y-1)/2h —.00006 —.00016 +.00010
(y-2—8y_y + 8y, — y,)/12h .00014 .0000007 +.00015

In the first case roundoff error has helped, but in the second case it has hurt. Plainly, the high
magnification of such errors makes low truncation errors pointless, except for extremely accurate data.

Estimate the truncation error of the formula

1 1
yP(xo) = 7 8%y = 2= 20+y)

obtainable from Problem 13.3 by stopping after the second difference term.

Here it may be convenient to follow a different route to the truncation error, using Taylor series. In
particular

B D 1
N=Yo+ hyot s hy§ + oy + 57k O(E)
/12(2)13(3) 14(47
Ya=yo hyot S hye? — ey + 5 hy ()
so that adding these up and then subtracting 2y, we find
1
840= P + 3 h Y O(8) +y ()]

Unfortunately & is probably not the same as &,, but for an estimate of truncation error suppose we
replace both fourth derivatives by a number y which remains open for our choice. For complete safety
we could choose y® =max |y®(x)| over the interval involved, leading to an upper bound for the
magnitude of truncation error, but conceivably other choices might be possible. We now have

_1 B w

Truncation =yP - S8y, = ——
runcation error = y§” =5 8% Y
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13.16.

13.17.

13.18.

13.19.
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Apply the estimate in Problem 13.15 to the computation of Problem 13.4.

The computation of p®(1.10) in Problem 13.4 was actually made by the formula
62
»?(1.10) =—h—f9= — 21600

since higher difference terms contributed nothing. The result has already been compared with the

correct y”(1.10) = —.21670. The truncation error estimate of Problem 13.15, with
15 15
Dy 22 22
TS 16

suggests a slight exaggeration

. 1
Truncation error = 5120 .00020

The actual error is —.00070, again indicating that truncation is not the major error source.

Estimate the roundoff error of the formula 8%y,/h%

Proceeding as before, we find the output error due to input inaccuracies to be (1/h%)(e; —2e,+e_;)
where the e, are the input errors. If these do not exceed E in magnitude, then this can be at worst
(4/h?)E; thus the maximum roundoff error = (4/h%)E.

Apply the formula of Problem 13.17 to the computation of Problem 13.4 and compare the
actual error of our approximation to y®(1.10) with truncation and roundoff estimates.

As before & = .05 and E =.000005, making (4/A%)E =.00800.

The magnification factor (4/h%) has a powerful effect. Our results confirm that roundoff has been
the principal error source in our approximation of y®(1.10), and it has contributed only about 90 of a
potential 800 units.

Actual error Est. truncation error Max. R.O. error

-.00070 .00020 +.00800

Apply the splines of Problems 9.7 and 9.8 to find approximate derivatives of the sine function.

In Problem 9.7 we found the natural spline, having zero second derivatives at the endpoints. Since
the sine itself has these end derivatives, the natural spline is appropriate in this case. Taking the center
point first, we find the derivative of the center spline segment S, to be

271V3

107°

Six)= — (27x — %)
which is precisely zero at x = /2. Clearly the symmetry has been helpful. A fairer test may be made at
x = /3 which was one of the knots, where we find S to be .496. The error of .4 percent may be judged
keeping in mind that only three spline segments were used over the interval (0, 7).
In Problem 9.8 we found the spline that matched the endpoint first derivatives of the sine function.
For the center section we found
27 -9V3

, 3
Si) == 5 (Zax - 7’)
which is again zero at x = /2. Atx = /3, it manages (9\/5 —27)/67 or .494.

For the second derivative the anticipated deterioration again appears. The natural spline predicts
S5 = —.948 for the entire center interval, where the true second derivative ranges from — .866 to —1.
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13.20. How can the Richardson extrapolation method be applied to numerical differentiation?

As usual, information about the error in an approximation formula is used to make a correction. As
an illustration take the central formula

yig IR
where T is the truncation error. An easy calculation using Taylor series finds
T=ah*+ah*+ah°+---
Making two applications, using / and h/2, we have
y'(x)=F(h) +a;h* +ah* +- - -

h\  ah®  ah’
) =F(—)+—‘—+2 P
YO=FG) e

with F(k) and F(h/2) denoting the approximate derivatives, and where we assume that the a; do not
change much for small 4. Eliminating the a, terms leads to

_4F(h/2) - F(h)
3

y'(x) + b,k + O(h®)

so that in

g <g> _ 4F(h/2; —F(h)

we have an approximate differentiation formula of fourth-order accuracy, obtained by combining two
results from a formula of second-order accuracy.
The argument can now be repeated, beginning with

y'(x)= F,(g) +b,h* + O(h%)

, _ h bk 6
v )= (3)+ 22+ 00r)

and eliminating the b, term to produce an approximation

h\ _16F(h/4) - F(k/2)
Fz(z) - 15

with sixth-order accuracy. Clearly further repetitions are possible, the overall process being known as
extrapolation to the limit.

The set of approximations calculated during an extrapolation to the limit is usually displayed as
follows:

F F, F, F,

h F(h)
hi2 | F(h/2)  F(k/2)

hi4 | Fh14)  F(h14)  E(ri4)

ni8 | F(h/8) F(h/8) E(h/8) Eh/S)

more entries being added as needed. The general formula is this:

()=o) Y )

2k

It is not hard to modify the process just sketched so that the step size is reduced in some other way,
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perhaps h; = r'"'h, with h, the initial o. An arbitrary sequence of h; could even be handled at little cost.
Examples exist to show that sometimes these variations can be profitable.

Apply Richardson extrapolation to the function y(x) = — 1/x to find y'(.05). The exact value
is 400.

The computations are summarized in Table 13.3 and were carried out on an eight-digit computer.
The original formula of Problem 13.20 produced the column headed F (all table entries being reduced
by 400) so its best effort, for 2 =.0001, was off in the third decimal place. After that roundoff error took
over. Looking elsewhere in the table one sees that values almost correct to five places appear.

Table 13.3+

h F F, F, F,
.0128 28.05289
0064 6.66273 —.46732
.0032 1.64515 —.02737  .0019
0016 41031 —.00130  .00043  .00041
.0008 .10250  —.00010  —.00002 —.00002
0004 02625 .00084  .00090  .00091
0002 00750 .00125  .00127  .00127
0001 00500 .00417  .00436  .00441
.00005 01000 .01166  .01215  .01227

+ Entries reduced by 400

Supplementary Problems

Differentiate Bessel’s formula, obtaining derivatives up to p®(x) in terms of differences through the
fifth.

Apply the results of the previous problem to produce p', p®, and p® at x =1.125 from the data of
Table 13.1.

. Find the truncation error of the formula for p’(x) obtained in Problem 13.22 using k = . Estimate it by

using & = 1. Compare with the actual error.

Find the maximum possible roundoff error of the formula of the previous problem. Compare the actual
error with the truncation and roundoff error estimates.

Show that Stirling’s formula of degree six produces
1 1, 1
p'x) =4 (5;% gt 55;%)
Show that the truncation error of this formula is —h®% 7(£)/140.
Convert the formula of the previous problem to the form
1
p'(xo) = SO (=y_s+9y_,— 45y, +45y, =9y, +y3)

and prove that the maximum roundoff error is 11E/6h.
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13.28. Find the argument corresponding to y’ = 0 in Table 13.4 by inverse cubic interpolation, using either the
Lagrange or Everett formula. (See again Problems 12.11 and 12.12.) Then find the corresponding y
value by direct interpolation.

Table 13.4
x y Y
1.4 .98545 .16997
1.5 .99749 .07074
1.6 .99957 —.02920
1.7 199166 —.12884

13.29. Ignoring the top and bottom lines of Table 13.4, apply Hermite’s formula to find a cubic polynomial
fitting the remaining data. Where does the derivative of this cubic equal zero? Compare with the
previous problem. [Here the data correspond to y(x) = sinx and so the correct argument is 7/2.]

13.30. The normal distribution function y(x)= (1/V27)e =™ has an inflection point exactly at x =1. How
closely could this be determined from each of the following four-place data tables independently?

x y * y

.50 | .3521 .98 | .2468
.75 .3011 .99 | .2444
1.00 | .2420 ] 1.00 | .2420
1.25 .1827 | 1.01 | .2396
150 | .1295 | 1.02 | .2371

13.31. From Problems 13.9 and 13.13 we find the combined truncation and roundoff errors of the
approximation

, 1
¥'(xo) =I5 (y-2—8y_; +8y,—y,)

to have the form Ah*+3E/2h where A =]y(£)/30]. For what interval /# will this be a minimum?
Compute your result for the square root function and five-place accuracy.

13.32. Show that the truncation error of the formula y“(x,) = 8*,/h* is h?y©(£)/6.

13.33. Show that the maximum roundoff error of the formula in Problem 13.38 is 16E/A*.



Chapter 14

Numerical Integration

The importance of numerical integration may be appreciated by noting how frequently the
formulation of problems in applied analysis involves derivatives. It is then natural to anticipate that
the solutions of such problems will involve integrals. For most integrals no representation in terms of
elementary functions is possible, and approximation becomes necessary.

POLYNOMIAL APPROXIMATION

Polynomial approximation serves as the basis for a broad variety of integration formulas, the
main idea being that if p(x) is an approximation to y(x), then

[ @ a= [y as

and on the whole this approach is very successful. In numerical analysis integration is the “easy”
operation and differentiation the “hard” one, while the reverse is more or less true in elementary
analysis. The best-known examples are the following:

1. Integrating Newton’s forward formula of degree n between x, and x, (the full range of
collocation) leads to several useful formulas, including

X1 h
[ peyar=3 00+ )
X2 h .
[ ey =3 00+ 4y +3)

*3 3h
[ pwr =3 0u+ 3n 32430
X0
for n =1, 2, and 3. The truncation error of any such formula is

Ey(x) dx — J:p(x) dx

and may be estimated in various ways. A Taylor series argument, for example, shows this
error to be approximately —4%y®(§)/12 when n =1, and approximately —h%y*(&)/90
when n=2.

2. Composite formulas are obtained by applying the simple formulas just exhibited repeatedly
to cover longer intervals. This amounts to using several connected line segments or
parabolic segments, etc., and has advantages in simplicity over the use of a single
high-degree polynomial.

3. The trapezoidal rule,

Xn 1
[(y@ as=ShGoran+- 42,40

X0

is an elementary, but typical, composite formula. It, of course, uses connected
line segments as the approximation to y(x). Its truncation error is approximately
—(x, = x0)h*yD(§)/12.

. n h
4. Simpson’s rule, J y(x)dx =§(y0 +A4y +2y,+4ys+ -+ 2y, 0+ 4y, +y,)
X0

118
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10.

is also a composite formula, and comes from using connected parabolic segments as the
approximation to y(x). It is one of the most heavily used formulas for approximate
integration. The truncation error is about —(x, — xo)*y®(&)/180.

Romberg’s method is based upon the fact that the truncation error of the trapezoidal rule is
nearly proportional to 2% Halving 4 and reapplying the rule thus reduces the error by a
factor of ;. Comparing the two results leads to an estimate of the error remaining. This
estimate may then be used as a correction. Romberg’s method is a systematic refinement of
this simple idea.

More complex formulas may be obtained by integrating collocation polynomials over less
than the full range of collocation. For example, Simpson’s rule with correction terms may
be derived by integrating Stirling’s formula of degree six, which provides collocation at
X_s,...,Xs3, over just the center two intervals x_; to x;, and then using the result to
develop a composite formula. The result is

2 h h X
f y(X)dxlg(yo+4y1+2yz+~~+yn)—9—0(54y1+5“y3+~~-+é"yH)

h
+75—6(56y1 +8%;+ -+ 8%,)

the first part of which is Simpson’s rule.

Gregory’s formula takes the form of the trapezoidal rule with correction terms. It may be
derived from the Euler-Maclaurin formula by expressing all derivatives as suitable
combinations of differences to obtain

"Xp h
j y(x) dx=§(yo+2y1+'~-+2y,.-1+yn)
X0

i koo 2y 197 s 3
2 (Vy. — Ayp) 24(V Yn + A%yo) 720 (Vyn = Nyo)

and again the first part is the trapezoidal rule. The Euler-Maclaurin formula itself may be
used as an approximate integration formula.

Taylor’s theorem may be applied to develop the integrand as a power series, after which
term-by-term integration sometimes leads to a feasible computation of the integral. More
sophisticated ways of using this theorem have also been developed.

The method of undetermined coefficients may be used to generate integration formulas of a
wide variety of types for special purposes.

Adaptive integration covers the many methods that have been devised to deal with the fact
that most functions are harder to integrate accurately over certain intervals than over
others. A particularly difficult section might, for example, force the use of a very small
value in Simpson’s rule and lead to a great deal of unnecessary computation. Adaptive
methods use finer subdivisions only where they are actually needed. One systematic way of
doing this will be illustrated.

ERROR SOURCES

The usual error sources are present. However, input errors in the data values y,, . . . , y, are not
magnified by most integration formulas, so this source of error is not nearly so troublesome as it is in
numerical differentiation. The truncation error, which is

[ @ -pea
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for our simplest formulas, and a composite of similar pieces for most of the others, is now the major
contributor. A wide variety of efforts to estimate this error have been made. A related question is that
of convergence. This asks whether, as continually higher degree polynomials are used, or as
continually smaller intervals 4, between data points are used with limhk, =0, a sequence of
approximations is produced for which the limit of truncation error is zero. In many cases, the
trapezoidal and Simpson rules being excellent examples, convergence can be proved. Roundoff
errors also have a strong effect. A small interval 4 means substantial computation and much
rounding off.

These algorithm errors ultimately obscure the convergence which should theoretically occur, and
it is found in practice that decreasing 4 below a certain level leads to larger errors rather than
smaller. As truncation error becomes negligible, roundoff errors accumulate, limiting the accuracy
obtainable by a given method.

Solved Problems
14.1. Integrate Newton’s formula for a collocation polynomial of degree n. Use the limits x, and x,,
which are the outside limits of collocation. Assume equally spaced arguments.

This involves integrating a linear function from x, to x;, or a quadratic from x, to x., and so on. See
Fig. 14-1.

Lo &y o R3] Ty Ty 'y Ty T3

Fig. 14-1

The linear function certainly leads to 3#(y, + y,). For the quadratic
1
Pe=yo+ kAyo+ 5 k(k = DA%,
and easy computation produces, since x =x, + kh,

2 2 1 h
f px) dxzhj D dk=h(2y0+2AyU+3Azyn)=§(}’n+4y1+y2)
%0 o

For the cubic polynomial a similar calculation produces

xy 3 3 K k
j p(x)dx =h[ pudk = hf [y0+kAy(,+ (Z)A“yo+ (3)A3y0:| dk
xo 0 o

9 9 3 3n
= h<3}’0 +3 8wty A%+ 3 A3yn) =3 Do+ 3+ 3y +y)

Results for higher-degree polynomials can also be obtained in the same form

J p(x) dx = Ch(Cn}’A)+ B Cn}’n)
*0
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14.2.

14.3.

and values of C and c; for the first few values of » are given in Table 14.1. Such formulas are called the
Cotes formulas.

Table 14.1
n C Co ¢ c, c3 Cq Cs Cs c; Cg
1 1/2 1 1
2 1/3 1 4 1
3 3/8 1 3 3 1
4 2/45 7 32 12 32 7
6 1/140 41 216 27 272 27 216 41
8 | 4/14,175 | 989 5888 —928 10,496 —4540 10,496 —928 5888 989

Higher-degree formulas are seldom used, partly because simpler and equally accurate formulas are
available, and partly because of the somewhat surprising fact that higher-degree polynomials do not
always mean improved accuracy.

Estimate the truncation error of the n = 1 formula.

For this simple case we can integrate the formula

Y@ —p) =3 (& —x0)x = 5y P(@)

directly and apply the mean value theorem as follows, obtaining the exact error:

[ yerae =m0 = [ 5= xoc oy e a

-1

=) [ 2 - —x) dv = = YO

where h =x; — x,. The application of the mean value theorem is possible because (x — xo)(x — x,) does
not change sign in (x,, x;). The continuity of y®(£) is also involved. For n >1 a sign change prevents a
similar application of the mean value theorem and many methods have been devised to estimate
truncation error, most having some disadvantages. We now illustrate one of the oldest methods, using
the Taylor series, for the present simple case n = 1. First we have

1 1 1
Fh(ety) =5h[yo + (yo+hy6+5h2ytf’+ & )]
Using an indefinite integral F(x), where F'(x) = y(x), we can also find

1 1 1 1 , 1
I y(x) dx = F(x,) — F(xo) = hF ' (x,) +Eh2F(z)(xD) +6h3F(3)(x0) +---=hy, +Eh2y0 +6h3y32) +e
xq

. xq 1 h3
and subtracting, f () dx —ih(yo‘*'}’n) - _Eyg) 4
xo

presenting the truncation error in series form. The first term may be used as an error estimate. It should
be compared with the actual error as given by — (h*/12)y® (&) where xo< & <x,.

Estimate the truncation error of the » =2 formula.
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Proceeding as in the previous problem, we find first

h(}’0+4)’1+)’2) ‘h[)’o+4()’0+h)’0+;h2 ‘2’+éh’y“)+ B+ )

+ (yn +2hy§+ 207y + %My{f’ + %h"yﬁ” +-- )]
1 ' 2,2 3@ 1O e @
=§h 6y, + 6hyo + 4h7yo” + 2h%y§ +Eh Yo - )
The integral itself is

[y @ =P - Py

=2hF'(xo) += (2h)2F(2)(xo) += (2h)3F‘3)(x0) +— (2h)* F®(xo) + (2h)5F(5)(x )+

4
=2hy, + 2%y, + P +hyE + -y + -
Yo Yo 3hy 3hy 15hy

. 2 1 1
and subtracting, f y(x) dx — gh(yo +4y, +y,)= — %hsyé“) o
X0

we again have the truncation error in series form. The first term will be used as an approximation. It can

also be shown that the error is given by —(#°/90)y (&) where x, < & <x,. (See Problem 14.65.)

A similar procedure applies to the other formulas. Results are presented in Table 14.2, the first

term only being shown.

Table 14.2
n Truncation error n Truncation error
1 - (R/12)y® 4 —(8h7/945)y®
2 —(h*/90)y® 6 —(91°/1400)y®
3 —(3h°/80)y® 8 —(2368h'1/467,775)y "

Notice that formulas for odd n are comparable with those for the next smaller integer. (Of course,
such formulas do cover one more interval of length %, but this does not prove to be significant. The even

formulas are superior.)

14.4. Derive the trapezoidal rule.

This ancient formula stills finds application and illustrates very simply how the formulas of Problem
14.1 may be stretched to cover many intervals. The trapezoidal rule applies our n =1 formula to

successive intervals up to x,.

1 1 1 1

ShGoty) +3h(+ ) +Sh(tys) + o+ 5 h(Yoos +30)
This leads to the formula

xn 1
f yx)dx =S h(yo+ 24+ War + 30)

x0

which is the trapezoidal rule.
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14.5.

14.6.

14.7.

14.8.

14.9.

14.10.

Apply the trapezoidal rule to the integration of Vx between the arguments 1.00 and 1.30. Use
the data of Table 13.1. Compare with the correct value of the integral.

We easily find
1.30 05
f Vx dx ='7[1 +2(1.02470 + - - - + 1.11803) + 1.14017] = .32147
1.00

The correct value is 3[(1.3)** — 1] = .32149 to five places, making the actual error .00002.

Derive an estimate of the truncation error of the trapezoidal rule.

The result of Problem 14.2 may be applied to each interval, producing a total truncation error of
about

h3
BETL IR ST ¢
Assuming the second derivative bounded, m <y® < M, the sum in brackets will be between nm and
nM. Also assuming this derivative continuous allows the sum to be written as ny®(&) where x, < § <x,,.
This is because y@(&) then assumes all values intermediate to m and M. It is also convenient to call the

ends of the interval of integration x,=a and x, = b, making b —a = nh. Putting all this together, we
have

b - 2
Truncation error= — (1—2“)]1):(2)(&)

Apply the estimate of Problem 14.6 to our square root integral.

With # =.05, b —a=.30, and y®(x) = —x~*?/4, truncation error=.000016 which is slightly less
than the actual error of .00002. However, rounding to five places and adding this error estimate to our
computed result does produce .32149, the correct result.

Estimate the effect of inaccuracies in the y; values on results obtained by the trapezoidal rule.

With Y, denoting the true values, as before, we find 3h(e, + 2e, + - - - +2e,_; +¢,) as the error due
to inaccuracies € = Y; — y,. If the e, do not exceed E in magnitude, this output error is bounded by
$h[E+2(n—1)E+E)=(b—a)E.

Apply the above to the square root integral of Problem 14.5.
We have (b —a)E = (.30)(.000005) = .0000015, so that this source of error is negligible.

Derive Simpson’s rule.

This may be the most popular of all integration formulas. It involves applying our n =2 formula to
successive pairs of intervals up to x,, obtaining the sum

h h h
300+ dy +y) + 2 (tdys+y) 4 3 Gnztdyai )
3 3 3
which simplifies to
h
oty + 2, +4ys+ -+ 2y, o+ Ay Ya)
3

This is Simpson’s rule. It requires n to be an even integer.



124

NUMERICAL INTEGRATION [CHAP. 14

14.11. Apply Simpson’s rule to the integral of Problem 14.5.

14.12

14.13.

14.14.

14.15.

14.16.

1.30

J Vxdx= 1 0000 + 4(1.02470 + 1.07238 + 1.11803) + 2(1.04881 + 1.09544) + 1.14017] = .32149

which is correct to five places.

Estimate the truncation error of Simpson’s rule.

The result of Problem 14.3 may be applied to each pair of intervals, producing a total truncation
error of about

5
—9% O +yP 4 +yi

Assuming the fourth derivative continuous allows the sum in brackets to be written as (1/2)y(§) where
X< & <x,. (The details are almost the same as in Problem 14,6,) Since b — a = nh,

GO o)

Truncation error = —

Apply the estimate of Problem 14.12 to our square root integral.
Since y®(x) = — £x 777, truncation error =.00000001 which is minute.

Estimate the effect of data inaccuracies on results computed by Simpson’s rule.

As in Problem 14.8, this error is found to be
1
gh(eu-+-4fe1 +2e,+4des+ - +2e, ,+4e, +e,)

and if the data inaccuracies e, do not exceed E in magnitude, this output error is bounded by

1 1 1

JE[1+4(3n) +2(3n-1) +1]= 6 -

3h [l (2" ok 1)+1|(=(—-a)E
exactly as for the trapezoidal rule. Applying this to the square root integral of Problem 14.11 we obtain
the same .0000015 as in Problem 14.9, so that once again this source of error is negligible.

Compare the results of applying Simpson’s rule with intervals 22 and 4 and obtain a new
estimate of truncation error.

Assuming data errors negligible, we compare the two truncation errors. Let E, and E, denote these
errors for the intervals 24 and A, respectively. Then
(b —a)(2h)*
180

yoE)  E= -8 e

E,= —
! 180

so that E; = E,/16. The error is reduced by a factor of 16 by halving the interval 4. This may now be
used to get another estimate of the truncation error of Simpson’s rule. Call the correct value of the
integral , and the two Simpson approximations A, and A,. Then

I=A+E =A,+E,=A, + 16E,

Solving for E,, the truncation error associated with interval 4 is E, = (A4, — A,)/15.

Use the estimate of Problem 14.15 to correct the Simpson’s rule approximation.

This is an elementary but very useful idea. We find

LA Ay _164; - A,

I=A,+E,=A,+ 5 15



CHAP. 14] NUMERICAL INTEGRATION 125

14.17. Apply the trapezoidal, Simpson, and z = 6 formulas to compute the integral of sin x between
0 and /2 from the seven values provided in Table 14.3. Compare with the correct value of 1.

Table 14.3

x 0 /12 2x/12 3x/12  4x/12 5S5m/12 /2

sinx | .00000 .25882 .50000 .70711 .86603 .96593  1.00000

The trapezoidal rule produces .99429. Simpson manages 1.00003. The »n = 6 formula leads to
140(12) [41(0) + 216(.25882) + 27(.5) + 272(.70711) + 27(.86603) + 216(.96593) + 41(1)] = 1.000003
Clearly the n = 6 rule performs best for this fixed data supply.

14.18. Show that to obtain the integral of the previous problem correct to five places by using the
trapezoidal rule would require an interval & of approximately .006 radian. By contrast, Table
14.3 has h = /12 =.26.

The truncation error of Problem 14.6 suggests that we want

(b — a)h? (w/2)h?
12

<
2 .000005

YO =

which will occur provided 4 <.006.

14.19. What interval & would be required to obtain the integral of Problem 14.17 correct to five
places using Simpson’s rule?

The truncation error of Problem 14.12 suggests

b —a)k*
180

(Jr/2)h

gy =220 < 000005

or h <.15 approximately.

14.20. Prove that the trapezoidal and Simpson’s rules are convergent.
If we assume truncation to be the only source of error, then in the case of the trapezoidal rule

I-A= (b

(”(5)
where [ is the exact integral and A the approximation. (Here we depend upon the exact representation
of truncation error mentioned at the end of Problem 14.2.) If lim /4 =0 then assuming y® bounded,
lim (I — A) = 0. (This is the definition of convergence.)

For Simpson’s rule we have the similar result

_b-a)h
180

If lim 4 = 0 then assuming y bounded, lim ( — A) = 0. Multiple use of higher-degree formulas also
leads to convergence.

1-4= yo®

14.21. Apply Simpson’s rule to the integral [§?sinx dx, continually halving the interval 4 in the
search for greater accuracy.
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Machine computations, carrying eight digits, produce the results in Table 14.4.

Table 14.4
h Approx. integral h Approx. integral
/8 1.0001344 /128 .99999970
/16 | 1.0000081 /256 99999955
/32 | 1.0000003 /512 99999912
n/64 .99999983 (best) /1024 .99999870

The computations of Problem 14.21 indicate a durable error source which does not disappear
as h diminishes, actually increases as work continues. What is this error source?

For very small intervals 4 the truncation error is small and, as seen earlier, data inaccuracies have
little impact on Simpson’s rule for any interval 4. But small # means much computing, with the prospect
of numerous computational roundoffs. This error source has not been a major factor in the much briefer
algorithms encountered in interpolation and approximate differentiation. Here it has become dominant
and limits the accuracy obtainable, even though our algorithm is convergent (Problem 14.20) and the
effect of data inaccuracies small (we are saving eight decimal places). This problem emphasizes the
importance of continuing search for briefer algorithms.

Develop the idea of Problems 14.15 and 14.16 into Romberg’s method of approximate
integration.

Suppose that the error of an approximate formula is proportional to 4". Then two applications of
the formula, with intervals # and 2k, involve errors

E,=C(2h)" E,=Ch"
making E,=E,/2". With [ = A, + E, = A, + E, as before, we soon find the new approximation
A, A, A - A

=~A,+
[=4 2"—1 2"—1

For n=4 this duplicates Problem 14.16. For n=2 it applies to the trapezoidal rule in which the
truncation error is proportional to A2 It is not hard to verify that for n =2 our last formula duplicates
Simpson’s rule, and that for n = 4 it duplicates the Cotes # = 4 formula. It can be shown that the error in
this formula is proportional to A"** and this suggests a recursive computation. Apply the trapezoidal
rule several times, continually halving A. Call the results A;, A,, A, ... . Apply our formula above with
n =2 to each pair of consecutive A;. Call the results B;, B,, B, ... . Since the error is now proportional
to h* we may reapply the formula, with n =4, to the B, The results may be called C,, C, C5, ... .
Continuing in this fashion an array of results is obtained.

A, A, A, As
B, B, B,

C, C;

D,

The computation is continued until entries at the lower right of the array agree within the required
tolerance.

Apply Romberg’s method to the integral of Problem 14.21.
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14.25.

14.26.

The various results are as follows:

Points used 4 8 16 32

Trapezoidal result 987116 .996785 .999196 999799
1.000008 1.000000 1.000000
1.000000 1.000000

1.000000

Convergence to the correct value of 1 is apparent.

More accurate integration formulas may be obtained by integrating a polynomial over less
than the full range of collocation. Integrate Stirling’s formula over the two center intervals.

Up through sixth differences Stirling’s formula is

k(K - 1) Kk -1)
6 a O

1
Px=Yo+ kudy, + 5 k*8%y, + u’yo+

k(k? - 1)(k2— 4)
120

KAk - 1)(k>— 4)
720

ud’y, + 8%,

Integration brings, since x — x, = kh and dx = h dk,

xg+h 1 1 1 1
= =h(2y,+= 8% — — 8% + = &6° )

‘[‘0*" p(x)dx=h ka dk ( Yo 3 Yo %0 Yo 756 Yo

More terms are clearly available by increasing the degree of the polynomial. Stopping with the
second difference term leaves us once again with the starting combination of Simpson’s rule, in the form
(R/3)(y-1 +4yo+y1). In this case the integration has extended over the full range of collocation, as in
Problem 14.1. With the fourth difference term we integrate over only half the range of collocation (Fig.
14-2).

p(x)

xg—h 7Y z,+h

Fig. 14-2

As more differences are used y(x) and p(x) collocate at additional arguments, but the integration is
extended over the center two intervals only. Since these are the intervals where Stirling’s formula has
the smallest truncation error (Problem 12.64), it can be anticipated that an integration formula obtained
in this way will be more accurate. This extra accuracy is, however, purchased at a price; in application
such formulas require y, values outside the interval of integration.

The truncation error of this formula may be estimated by the Taylor series method used in Problem

23R°

14.6, and proves to be approximately ~Ti3.2007°

Use the result of Problem 14.25 to develop Simpson’s rule with correction terms.
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We make 7/2 applications centered at x,, X3, . . . , X,_1, where n is even. The result is

n n
f p(X)dX=§(yU+4yl+2yz+~--+4y,,—1+yn)

0

h
2z (8% + 8%+ -+ 8%,1)

_ﬁ 4 4 4
90(5 i+ 8%+ +<5ym)+756

This can be extended to higher differences if desired.
The truncation error of the result will be approximately #/2 times that of the previous problem and
23(x, — xo)h®

@
2680 0 T

can be written as —

14.27. Develop the idea of adaptive integration.

The essential idea is to subdivide each part of the interval of integration just finely enough for it to
contribute only its proportion of the overall error. There are many ways of doing this. Suppose the
overall permissible error is E. Select an integration formula and apply it to the interval. Apply an error
estimator. If the error is less than E, we are finished. If not, apply the formula to the left half of the
interval. If the new error estimate is less than E/2, we are finished with that half interval. If not, this
interval is halved and the process goes on. Eventually an interval of length (b — a)/2* is reached, (a, b)
being the original interval, where the formula in use produces an acceptable result, the error being less
than E/2* The process then resumes, beginning at the right edge of the accepted interval.

As the basic integration formula, Simpson’s rule

h
A=3 0ot 4y + 2+ 4ys+3)
might be chosen. As error measure, the doubled interval rule
2h
Ay =3 (Yo +4y2 +ys)
is then convenient, since Problem 14.15 then estimates the error as (4, — A4,)/15. The approximation A,

is then accepted whenever A, — A, =15E/2* and is accumulated into the sum of other accepted results
to its left. Clearly, the process ends when the accepted fragments cover (a, b).

14.28. Apply the adaptive integration method of the preceding problem to this integral:

8
J’ x>dx
0

A few runs were made with different tolerances and slight changes in the upper limit. The following
abbreviated output is typical. Note especially the values of k, which started at 1 (not printed) and rose
to 7. An effort to increase the upper limit further found k& skyrocketing.

x x°/6 Computed k
2 10.667 10.667 4
4 682.667 682.667 5
6 7,776.000 7,775.99 6
8 43,690.67 43,690.58 7

14.29. Apply adaptive integration to the arcsine integral

[y
b V1—x?
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Tension is generated by the infinite discontinuity at the upper limit, which suggests a diminishing
step size near this end much as in the preceding problem. Values of k climbed steadily as the
computation progressed and reached 15 with this result:

Upper limit = .9999
Integral = 1.5573

At this point the correct arcsine value is 1.5575.

14.30. Derive Gregory’s formula.

This is a form of the trapezoidal rule with correction terms and can be derived in many ways. One
way begins with the Euler-Maclaurin formula (Problem 11.19) in the form

h K n

f Y& dx =5 (yo+ 2t + Dmrty) =5 (=) +

h6
12 720 (y?)—yﬁ”) _—(}’E.S) —yff’
x0

30,240

more terms being available if needed. Now express the derivatives at x, in terms of backward differences
and the derivatives at x, in terms of forward differences (Problem 13.1).

1 1 1 1
(A= AT+ A A= 5__“)
hyq ( 2A 3A 4A +5A Yo

1 1 1 1
h ”1=( + VoV V=V )
Y= (V4 VA3V VT,

3 7
Ky = (A3—§A4+ZA’— . ~>y0

3 7
h3(3)=<3+_ 44 Lys )
Vo v 2V 4V+ ¥,
Ky = (A= )y,

Ry =(V+- )y,

The result of substituting these expressions is

*n h h
f p(x)ax =§(yo T2t 2+ ya) I (Vy. — Ayo)
X0

863h
60,480

and again more terms can be computed if needed. This is Gregory’s formula. It does not require y,
values outside the interval of integration.

h 1% 3h
=52 (V¥n + A%0) =20 (Vs = Ay) = 160 (Vo +A%) -

70 (V5 = &%)

14.31. Apply Taylor’s theorem to evaluate the error function integral

H(x)=%fe"zdt

for x =.5 and x =1, correct to four decimal places.

> A
The seriese™“=1-#+=-——+———+..leads to
! 27624 120 cacs
2 * x X x* xM!
H =—( St )

W= "3 0 2 26 1320
For x =.5 this produces .5205, and for x =1 we find .8427. The character of this series assures that the
error made in truncating it does not exceed the last term used, so we can be confident in our results. The
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series method has performed very well here, but it becomes clear that if more decimal places are wanted
or if larger upper limits x are to be used, then many more terms of this series will become involved. In
such cases it is usually more convenient to proceed as in the next problem.

14.32. Tabulate the error function integral for x = 0(.1)4 to six decimal places.

H(x) =% J; " e dt

We adopt the method which was used to prepare the fifteen-place table of this function, NBS-AMS
41. The derivatives needed are

H'(x) = %e HO(x) = — 2cH'(x) HO(x)= — 2xHP(x) - 2H'(x)

and in general H™(x) = = 2xH" Y(x) = 2(n — 2)H"(x)

The Taylor series may be written as
H(x+h)=Hx)+hH'(x)+--- +%H(’"(x) +R

where the remainder is the usual R = 2"*""H"*(&)/(n + 1)!. Notice that if M denotes the sum of even
power terms and N the sum of odd power terms, then

Hx+h)=M+N H(x—h)=M—N

For six-place accuracy we use terms of the Taylor series which affect the eighth place, because the length
of the task ahead makes substantial roundoff error growth a possibility. With H(0) = 0, the computation
begins with
2 2 1
H()=—7=(1)——F= (1)’ +—=
D=7 57 5z

only the odd powers contributing. Next we put x =.1 and find

(-1)° =.11246291

H'(.1) =2 111ms16

Vr
H®(1)= - 2H'(.1)= —.22343032
H®(1)= - 2H®(1)-2H'(.1) = —2.1896171
H®(1)= - 2H®(.1) —4H®(.1) = 1.3316447
HO(1)= — 2H®(1) — 6H®(.1) = 12.871374
HO(1)= - 2H®(.1) -8H¥(.1) = —13.227432
leading to
M = 11246291 — .00111715 + .00000555 — .00000002 = .11135129
N =.11171516 — .00036494 + .00000107 = .11135129

Since H(x —h)=M — N, we rediscover H(0) =0 which serves as a check on the correctness of the
computation. We also obtain

H(2)=H(x +h) =M+ N = 22270258

The process is now repeated to obtain a check on H(.1) and a prediction of H(.3). Continuing in
this way one eventually reaches H(4). The last two decimal places can then be rounded off. Correct
values to six places are given in Table 14.15 for x = 0(.5)4. In NBS-AMS 41 computations were carried
to 25 places, then rounded to 15. Extensive subtabulations were then made for small x arguments.
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Table 14.5

x .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

H(x) | .520500 .842701 966105  .995322  .999593  .999978  .999999  1.000000

14.33.

14.34.

Illustrate the method of undetermined coefficients for deriving approximate integration
formulas, by applying it to the derivation of Simpson’s rule.

In this method we aim directly for a formula of a preselected type. For Simpson’s rule the choice
h

y(x)dx =h(c_1y_1+ coyot+ciys)

—h
is convenient. The selection of the coefficients ¢, can proceed in many ways, but for Simpson’s rule the
choice is made on the basis that the resulting formula be exact when y(x) is any of the first three powers
of x. Taking y(x) =1, x, and x? in turn, we are led to the conditions
2=citct 0=—-c +¢ §=c,+c1

which vield c¢_; = ¢, =3, ¢, =% making

h
h
J y(x) dx :g(yfl + 4y +y1)
~h
Applying this result to successive pairs of intervals between x, and x, again generates Simpson’s rule.
As a bonus, this result also proves to be exact for y(x) =x*, as is easily seen from the symmetries.

This means by addition that it is also exact for any polynomial of degree three or less. For higher-degree
polynomials there is an error term.

Apply the method of undetermined coefficients to derive a formula of the type

h
J y(x) dx = h(aoyo + a1y1) + h*(boyo + b1y1)
0

With four coefficients available, we try to make the formula exact when y(x) =1, x, x*, and x”. This
leads to the four conditions

l=ay+a,

1 +bo+ b

B = a, o 1

1

§= a, +2b,

1

Z: a, +3b,
which yield a=a, =3, b= — b, = 1. The resulting formula is

" h Ko,
[ y@ =3 0o+ 35055
o 2 12

which reproduces the first terms of the Euler—Maclaurin formula. A great variety of formulas may be
generated by this method of undetermined coefficients. As in the examples just offered, a little
preliminary planning and use of symmetry «can often simplify the system of equations which ultimately
determines the coefficients.
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14.35

14.36.

14.37.

14.38.

14.39.

14.40.

14.41.

14.42.

14.43.

14.44.

14.45.

14.46.

14.47.
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Supplementary Problems

Integrate Newton’s formula for a collocation polynomial of degree four and so verify the n =4 row of
Table 14.1.

Verify the n = 6 row of Table 14.1.

Use the Taylor series method to obtain the truncation error estimate for the n =3 formula as listed in
Table 14.2.

Use the Taylor series method to verify the truncation error estimate for the n = 4 formula.

Apply various formulas to the following limited data supply to approximate the integral of y(x):

X 1.0 1.2 1.4 1.6 1.8 2.0

y(x) | 1.0000 .8333 7143 6250 5556  .5000

Use the trapezoidal rule, applying correction terms. How much confidence do you place in your result?
Does it appear correct to four places? (See the next problem.)

The data of Problem 14.39 actually belong to the function y(x) = 1/x. The correct integral is, therefore,
to four places, In2 =.6931. Has any approximate method produced this?

Use the truncation error estimate for the trapezoidal rule to predict how tightly values of y(x) must be
packed (what interval k) for the trapezoidal rule itself to achieve a correct result to four places for
[Fdx/x. ’

Suppose the data of Problem 14.39 augmented by the inclusion of these new number pairs:

X 1.1 1.3 1.5 1.7 1.9

y&x) | 9091 7692 6667 5882 5263

Reapply the trapezoidal rule to the full data supply. Use this result as A,, the corresponding result in
Problem 14.39 as A;, and the formula of Problem 14.23 to obtain still another approximation to /. Is it
correct to four places?

Apply the trapezoidal rule with correction terms to the full data supply now available for y(x) = 1/x.

Apply Simpson’s rule to the data of Problem 14.39. Will correction terms as in Problem 14.26 be
needed? If so, apply them.

Use the truncation error estimate for Simpson’s rule to predict how many values of y(x), or how small
an interval 4, will be needed for this rule to produce In 2 correct to four places.

How small an interval 4 would be required to obtain In 2 correct to eight places using the trapezoidal
rule? Using Simpson’s rule?

Apply the Euler—Maclaurin formula (Problem 14.30) up through the fifth-derivative terms to evaluate
In 2 to eight decimal places. The correct value is .69314718. (Try & =.1.)
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14.48.

14.49.

14.50.

14.51.

14.52.

14.53.

14.54.

14.55.

14.56.

14.57.

14.58.

14.59.

14.60.

From the following data estimate [3y(x) dx as well as you can.

x 0 .25 .50 5 1.00 1.25 1.50 1.75 2

y(x) | 1000 1.284 1.649 2117 2718 3.490 4.482 5755 7.389

How much confidence do you place in your results? Do you believe them correct to three places?

The data of Problem 14.48 were taken from the exponential function y(x) = e*. The correct integral is,
therefore, to three places, [je”dx=e’—1=6.389. Were any of our formulas able to produce this
result?

From the following data, estimate [ y(x) dx as well as you can.

X 1 15 2 25 3 35 4 45 5

yx) | 0 41 69 .92 110 1.25 1.39 1.50 1.61

How much confidence do you place in your results?

The data of Problem 14.50 corresponds to y(x) =logx. The correct integral is, therefore, to two places,
J3logxdx =5log5—4=4.05. Were any of our formulas able to produce this result?

1

dx
Calculatefu R
places .7853982.

correct to seven places by adaptive integration. The correct value is /4, or to seven

Calculate [§?V1— }sin’¢dt to four decimal places. This is called an elliptic integral. Its correct value is
1.4675. Use adaptive integration.

Show that to four places [32V1 — {sin? df = 1.3506.

Use adaptive integration to verify
/2
" d.

f O —3.1415927

o SIn“x + 3cO08°x
the exact value being 7.
Apply the Taylor series method as in Problem 14.31, to compute the sine integral

sit) = [ a
ot

for x =0(.1)1, to five decimal places. The refined procedure used in Problem 14.32 is not necessary
here. [The last result should be Si (1) = .94608.]

Apply the Taylor series method as in Problem 14.32 to compute the sine integral for x = 0(.5)15, to five
decimal places. The final result should be Si (15) = 1.61819.

Apply the Taylor series method to compute J‘},\/;sinx dx to eight decimal places.
Apply the Taylor series method to compute [§ (1/V1 + x*) dx to four decimal places.

Compute the total arc length of the ellipse x* + y*/4 =1 to six decimal places.
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14.61.

14.62.

14.63.

14.64.

14.65.
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By adding (h/140)8%:; to the n = 6 formula of Table 14.1, derive Weddle’s rule,

% 3k
f y)dx =15 (ot Syt y2 0yt yat 595 + ¥e)
X0

Use the method of undetermined coefficients to derive a formula of the form
h
yx)dx =h(a_yy_1+ayo+ay) +h(b_ 1yl + beya+biyy)
—h

which is exact for polynomials of as high a degree as possible.

Use the method of undetermined coefficients to derive the formula

" h h3 @) @)
[y dr =5 00t =55 08 +59)

proving it exact for polynomials of degree up through three.

Use the method of undetermined coefficients to derive
g h?
dx = + @ 4 (2
[y ae=2 om0+ iy + 5 0 44
proving it exact for polynomials of degree up through five.
Derive an exact expression for the truncation error of our n =2 formula by the following method. Let
4
h
F = [ y)dx =3 1(=h)+4(0)+y(0)]
—h
Differentiate three times relative to k, using the theorem on “differentiating under the integral sign”

d rew b 3y
a _| @ b (k) — ,
an J;(;.) y(x, h)dx J; 7 dx +y(b, h)b'(h) —y(a, h)a'(h)

to obtain FO(h)= —h[ Oh) =y (= h)]

Notice that F’(0) = F®(0)= F®(0)=0. Assuming y(x) continuous, the mean value theorem now
produces

FO(h)= — % Ry (0h)

where 6 depends on 4 and falls between —1 and 1. We now reverse direction and recover F(h) by
integration. It is convenient to replace k by t (making 6 a function of ¢). Verify that

F(h)= - —;- fh (h— 0Py D(6r) dt

by differentiating three times relative to & to recover the above F(k). Since this formula also makes
F(0) = F'(0) = F®(0), it is the original F(h). Next apply the mean value theorem

[ ropwar=g@ [ r@ya

with a < & < b, which is valid for continuous functions provided f () does not change sign between a and
b. These conditions do hold here with f(f) = — *(h — t)*/3. The result is

Fin=y® [ Fo di= Ly
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This is the result mentioned in Problem 14.3. The early parts of this proof, in which we maneuver from
F(h) to its third derivative and back again, have as their goal a representation of F(h) to which the
mean value theorem can be applied. [Recall that f(r) did not change sign in the interval of integration.]
This is often the central difficulty in obtaining a truncation error formula of the sort just achieved.
14.66. Modify the argument of Problem 14.65 to obtain the formula given at the end of Problem 14.2,
h3
Truncation error = — o yA(&)

for the n =1 formula.

14.67. Evaluate [}e™* dx correct to six places.



Chapter 15

Gaussian Integration

CHARACTER OF A GAUSSIAN FORMULA

The main idea behind Gaussian integration is that in the selection of a formula

[ywar=3 ane)

it may be wise not to specify that the arguments x; be equally spaced. All the formulas of the
preceding chapter assume equal spacing, and if the values y(x;) are obtained experimentally this will
probably be true. Many integrals, however, involve familiar analytic functions which may be
computed for any argument and to great accuracy. In such cases it is useful to ask what choice of the
x; and A; together will bring maximum accuracy. It proves to be convenient to discuss the slightly
more general formula

[ woeyas =3 4y

in which w(x) is a weighting function to be specified later. When w(x) =1 we have the original,
simpler formula.

One approach to such Gaussian formulas is to ask for perfect accuracy when y(x) is one of the
power functions 1, x, x% ..., x*"~'. This provides 2n conditions for determining the 2» numbers x;
and A;. In fact,

A= wa(x)Li(x) dx

where L,(x) is the Lagrange multiplier function introduced in Chapter 8. The arguments x, . .., X,
are the zeros of the nth-degree polynomial p,(x) belonging to a family having the orthogonality
property

be(x)Pn(X)pm(x) dx=0 form#n

These polynomials depend upon w(x). The weighting function therefore influences both the A; and
the x; but does not appear explicitly in the Gaussian formula.

Hermite’s formula for an osculating polynomial provides another approach to Gaussian
formulas. Integrating the osculating polynomial leads to

b n
[ were =3 [y + By )

but the choice of the arguments x; as the zeros of a member of an orthogonal family makes all B; =0.
The formula then reduces to the prescribed type. This suggests, and we proceed to verify, that a
simple collocation polynomial at these unequally spaced arguments would lead to the same result.

Orthogonal polynomials therefore play a central role in Gaussian integration. A study of their
main properties forms a substantial part of this chapter.

The truncation error of the Gaussian formula is

Y&

J e ax= 3 a5y =252 [ weolatopas

where 7(x) =(x —x;) - - (x —x,). Since this is proportional to the (2n)th derivative of y(x), such
formulas are exact for all polynomials of degree 2n —1 or less. In the formulas of the previous
chapter it is y™(&) which appears in this place. In a sense our present formulas are twice as accurate
as those based on equally spaced arguments.

136
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PARTICULAR TYPES OF GAUSSIAN FORMULAS

Particular types of Gaussian formulas may be obtained by choosing w(x) and the limits of
integration in various ways. Occasionally one may also wish to impose constraints, such as specifying
certain x; in advance. A number of particular types are presented.

1.

Gaussian-Legendre formulas occur when w(x) =1. This is the prototype of the Gaussian
method and we discuss it in more detail than the other types. It is customary to normalize
the interval (a,b) to (—1,1). The orthogonal polynomials are then the Legendre
polynomials

n

2"l dx"

P.(x)= ®*=1y"

with Py(x) = 1. The x; are the zeros of these polynomials and the coefficients are

_ 2(1-x})

bRy ()P
Tab]es1 of the x; and A; are available to be substituted directly into the Gauss-Legendre
formula

b n
[ywar=3 4w

Various properties of Legendre polynomials are required in the development of these
results, including the following:

1
j x*P,(x)dx=0 fork=0,...,n—1
1

1 R _2n+1(n!)2
Lx P de=5m )

1 ) _ 2
IR

1
f P, (x)P,(x)dx=0 form#n
-1

P,(x) has n real zeros in (—1, 1)
(n+D)Pi(x) = 20 + DxPo(x) — nP,_y(x)
(=) 3 Qi+ DREPWO = (14 DR, s(OPx) ~ POPrn(x)]
VP, -2
—1X — X e (n + 1)Pysa(xe)
(1 —x®)P}(x) + nxP,(x) = nP,_(x)

Lanczos’ estimate of truncation error for Gauss—Legendre formulas takes the form

1 n
= D+y(-1)—1I- A,-,w’,»]

2n+1[y() YD 1= 3 Ay (x)
where I is the approximate integral obtained by the Gaussian n-point formula. Note that the
¥ term involves applying this same formula to the function xy'(x). This error estimate seems
to be fairly accurate for smooth functions.
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2. Gauss-Laguerre formulas take the form

[t a=3 e

the arguments x; being the zeros of the nth Laguerre polynomial

n

L,(x)=¢" d

(e

and the coefficients A; being
_ (a
box[Lx)P

The numbers x; and A, are available in tables.
The derivation of Gauss-Laguerre formulas parallels that of Gauss-Legendre very
closely, using properties of the Laguerre polynomials.

3. Gauss—Hermite formulas take the form
J‘ eFy(x)dx = A,y(x)
—x i=1

the arguments x; being the zeros of the nth Hermite polynomial

n

2 d 2.
H =(—=1)"e" — (e™*
() = (=1 = (e™)
and the coefficients A; being

_ 2n+1n ! ﬁ
[Ha(x)]?

The numbers x; and A; are available in tables.

A;

4. Gauss—Chebyshev formulas take the form

f_l 3 /)i(f)xz dx = .7;17 2:"1 y(x:)

the arguments x; being the zeros of the nth Chebyshev polynomial 7, (x) = cos (# arccos x).

Solved Problems

THE GAUSSIAN METHOD

15.1. Integrate Hermite’s formula for an osculating polynomial approximation to y(x) at arguments
X tO X,,. .

Here it is convenient to delete the argument x, in our osculating polynomial. This requires only
minor changes in our formulas of Chapter 10. The Hermite formula itself becomes

px)= é (1= 2L; () (x = x)ILix)Pys + (x = x)[Li(x)Pyi

where L;(x) = F(x)/F(x;) is the Lagrange multiplier function, F/(x) being the product F(x) = kll (x—xz).
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15.2.

15.3.

154.

15.5.

Integrating, we find
b n
[ wepeyas =3 i+ By
a i=1

where 4= [ W@ - 2L )G —x)LFdx B= | ) — 2L T de

a

Find the truncation error of the formula in Problem 15.1.

Surprisingly enough, this comes more easily than for formulas obtained from simple collocation
polynomials, because the mean value theorem applies directly. The error of Hermite’s formula (Problem
10.4), with n in place of n + 1 because we have deleted one argument, becomes

()
2n)!

yx)—px)= [

Multiplying by w(x) and integrating,

b b (2n)
[ wotye = s = [ win 2o intoypax

Since w(x) is to be chosen a nonnegative function and [7(x)]? is surely positive, the mean value theorem

at once yields

yeAO) [
@) J

for the truncation error. Here a < 6 < b, but as usual @ is not otherwise known. Notice that if y(x) were

a polynomial of degree 2n — 1 or less, this error term would be exactly 0. Our formula will be exact for
all such polynomials.

E= [ wwly@ -p@) e = W)l e

Show that all the coefficients B, will be 0 if
b
fw(x)n(x)x"dx=0 fork=0,1,...,n—1
By Problem 8.3 (x —x,)L;(x) = 7(x)/x’(x;). Substituting this into the formula for B,,
l b
B; —mi w(x)m(x)L,(x) dx
But L;(x) is a polynomial in x of degree n —1 and so

B, =—ﬂ,EXi) fw(x)n:(x) :2;: ax* dx =*n'zxi) :2;; o :w(x)n(x)x" dx =0

Define orthogonal functions and restate the result of Problem 15.3 in terms of orthogonality.

Functions f;(x) and f;(x) are called orthogonal on the interval (a, b) with weight function w(x) if

[ weonwne =0

The coefficients B; of our formula will be zero if #(x) is orthogonal to x” forp=0,1,...,n—1. By
addition 7 (x) will then be orthogonal to any polynomial of degree n —1 or less, including the Lagrange
multiplier functions L;(x). Such orthogonality depends upon and determines our choice of the
collocation arguments x, and is assumed for the remainder of this chapter.

Prove that with all the B; =0, the coefficients A4; reduce to A4; = [%w(x)[L;(x)]*dx and are
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therefore positive numbers.

b
A= f w(x)[L.(x))> dx —2L/(x;)B; reduces to the required form when B, =0

Derive the simpler formula A; = [ w(x)L,(x) dx.

The result follows if we can show that [2w(x)L,(x)[L,(x) — 1] dx =0.
But L,(x) — 1 must contain (x —x;) as a factor, because L;(x;) — 1=1—1=0. Therefore
(x)
L(x)[L/(x) - 1|=———"——[Lix) - 1]=
(IL) = 1) = s L) = 1= 7P @)

with p(x) of degree n — 1 at most. Problem 15.3 then guarantees that the integral is zero.

The integration formula of this section can now be written as

[ Wy dr=3 Ayt

where A; = [2w(x)L/{(x)dx and the arguments x, are to be chosen by the orthogonality
requirements of Problem 15.3. This formula was obtained by integration of an osculating
polynomial of degree 2n — 1 determined by the y; and y; values at arguments x,. Show that the
same formula is obtained by integration of the simpler collocation polynomial of degree n —1
determined by the y; values alone. (This is one way of looking at Gaussian formulas; they
extract high accuracy from polynomials of relatively low degree.)

The collocation polynomial is p(x) = i L;(x)y(x;) so that integration produces
i=1

[ wep ax =§1A.-y(x.)

as suggested. Here p(x) represents the collocation polynomial. In Problem 15.1 it stood for the more
complicated osculating polynomial. Both lead to the same integration formula. (For a specific example
of this, see Problem 15.25.)

GAUSS-LEGENDRE FORMULAS

15.8.

The special case w(x)=1 leads to Gauss-Legendre formulas. It is the custom to use the
interval of integration (=1, 1). As a preliminary exercise, determine the arguments x directly
from the conditions of Problem 15.3

1
[ a(x)x*de=0 k=0,1,...,n-1
-1

for the value n =3.

The polynomial 7(x) is then cubic, say m(x) =a + bx + cx”+ x°. Integrations produce

2 2 2 2 2
2a+§c—0 §b+‘5-—0 §a+§c—0

which lead quickly to @ =c =0, b = —32. This makes

3 3 3
e SN
The collocation arguments are therefore x, = —\/%, 0, \/%

Theoretically this procedure would yield the x, for any value of n but it is quicker to use a more
sophisticated approach.
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15.9. The Legendre polynomial of degree n is defined by

P(x)=
with Py(x) = 1. Prove that for k =0, 1

2n \dx n(x _1)
,n—1

1
f x*P,(x)dx =0
-1

making P, (x) also orthogonal to any polynomial of degree less than n
Apply integration by parts k times

1 d ., T dnt R n‘:|1 fl s dnt
J x* i —(x*-1)"dx = [ n_l(x 1) . _lkx 7
;——w——/

P x?—1)"dx

=0
o Lo gk ) N
="'=(—1)k. F(x—l) dx =0
-1

1
15.10. Prove J

2n+1 y 2
2P (x) dy = 2 ()"
-1

@2n+1)!°
Taking & = n in the preceding problem,

J’l i ,,(x —1)'dx = (- 1)"n’j (x*=1)"dx

/2
=2n! j (1-x?"dx =2n! j cos**'t dt
0 0
This last integral responds to the treatment

/2

/2 2n : /2
cos™ tsint 2n
[P EIE Y
0

2n—1
w1 o Taner) oo

=0
__n@n-2)-- J
T TN 1) 3, costdt
1 n
da ., 2n(2n—=2)- - -
n @ 1) dy = 25!
so that f R A P TP -3
Now multiply top and bottom by 2n(2n —2) 2=2"n! and recall the definition of P,(x) to obtain, as
required,
1 L, 2ni2nl_ 27l
f_ X R dx = e D) @+ 1!
1 " 2
A1. P v[ P,(x))°dx= .
15 roe_l[ €3] il

Splitting off the highest power of x in one P,(x) factor

! T 1 @2n)! }
? dx = + -+ - |Po(x) dx
f_l[P"(x)] & L [2"n! PII ")
Powers below x” make no contribution, by Problem 15.9. Using the preceding problem, we have
1 n+1 2
(2n)! 2"*'(nY)
2 = =
L B =5 @n 1)

2
2n+1
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15.12. Prove that for m #n, [1, P, (x)P,(x) dx = 0.

Writing out the lower-degree polynomial, we find each power in it orthogonal to the higher-degree
polynomial. In particular with m =0 and n # 0 we have the special case 1, P,(x) dx =0.

15.13. Prove that P,(x) has n real zeros between —1 and 1.

The polynomial (x*>—1)" is of degree 2n and has multiple zeros at +1. Its derivative therefore has
one interior zero, by Rolle’s theorem. This first derivative is also zero at +1, making three zeros in all.
The second derivative is then guaranteed two interior zeros by Rolle’s theorem. It also vanishes at +1,
making four zeros in all. Continuing in this way we find that the nth derivative is guaranteed » interior
zeros, by Rolle’s theorem. Except for a constant factor, this derivative is the Legendre polynomial
P,(x).

15.14. Show that for the weight function w(x) = 1, m(x) = [2"(n!)*/(2n)!]P,(x).

Let the n zeros of P,(x) be called x4, .. ., x,. Then
2"n?
{(2—”)!]&():) =(x—x)(x—x,)

The only other requirement on #x(x) is that it be orthogonal to x* for k=0, 1, ..., n —1. But this
follows from Problem 15.9.

15.15. Calculate the first several Legendre polynomials directly from the definition, noticing that

only even or only odd powers can occur in any such polynomial.
Py(x) is defined to be 1. Then we find

1 d. - _1 & 2 31 s
Pi(x) —de(x 1)=x Py(x) =R x*=1) —2(5x 3x)
_ 14 2 2 1 2 ‘ 1 a 2 4 1 4 2
Ple) =55 (W=7 =5(0=1)  R() =g 5 75 (&~ D =5 (35r =307 +3)
Similarly,
1
P(x)= é (63x° — 70x* + 15x) P(x)= I (429x7 — 693x° + 315x* — 35x)

P(x) = % (231x° —315x* + 105x* —5)  Px) = lvi—é (6435x® — 12,012x° + 6930x* — 1260x> + 35)

and so on. Since (x*>—1)" involves only even powers of x, the result of differentiating n times will
contain only even or only odd powers.

15.16. Show that x" can be expressed as a combination of Legendre polynomials up through P,(x).

The same is then true of any polynomial of degree n.

Solving in turn for successive powers, we find

=B x=B@) X =3PR)+AW)
©=1RPW+IRE] = [8P) +20R) + TR(0)]

and so on. The fact that each P,(x) begins with a nonzero term in x* allows this procedure to continue
indefinitely.
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15.17.

15.18.

15.19.

Prove the recursion for Legendre polynomials,
(n+1)P,1(x) = 2n + 1)xP,(x) — nP,_y(x)

The polynomial xP,(x) is of degree n + 1, and so can be expressed as the combination (see Problem
15.16)

n+1

xP,(x) = 2, ¢:P(x)

Multiply by Pi(x) and integrate to find

flek(x)P,,(x) dx =c¢; J: Pi(x) dx

all other terms on the right vanishing since Legendre polynomials of different degrees are orthogonal.
But for k£ <n — 1 we know P,(x) is also orthogonal to xP,(x), since this product then has degree at most
n — 1. (See Problem 15.9.) This makes ¢, =0 for k<n —1 and

XPn(x) =Cna1 n+1(x) + CnPn(x) + Cn'flpnﬂl(x)
Noticing that, from the definition, the coefficient of x” in P,(x) will be (2rn)!/2"(n!)?, we compare
coefficients of x"*" in the above to find

(2n)! c (2n +2)!
21?2 (e + DI

from which ¢, ., = (n + 1)/(2n + 1) follows. Comparing the coefficients of x”, and remembering that only
alternate powers appear in any Legendre polynomial, brings ¢, = 0. To determine c,_, we return to our
integrals. With k =n — 1 we imagine P(x) written out as a sum of powers. Only the term in "~ need
be considered, since lower terms, even when multiplied by x, will be orthogonal to P,(x). This leads to

2n -2)!

27 (n = DI

1 1
f x"P,(x) dx =c,,,,f P2_(x) dx
1 -1

and using the results of Problems 15.10 and 15.11 one easily finds ¢,_; =n/(2n + 1). Substituting these
coefficients into our expression for xP,(x) now brings the required recursion. As a bonus we also have
the integral

n 2 2n
n+12n—1 4n*—1

1
[ xp R =
1
Illustrate the use of the recursion formula.
Taking n =5, we find
11 5 1 . . i
Py(x)= gxPS(x) —6P4(x) =% (231x° = 315x* + 105x* = 5)

and with n =6,

1 1
P(x)= 73xPé(x) - g Py(x) = % (429x" — 693x° + 315x* — 35x)

confirming the results obtained in Problem 15.15. The recursion process is well suited to automatic
computation of these polynomials, while the differentiation process of Problem 15.15 is not.

Derive Christoffel’s identity,

(t—x) 2 26 + PGP = (1 + D[Py rs(PL(x) = B (1) Pass (1))

The recursion formula of Problem 15.17 can be multiplied by P,(¢) to obtain
(20 + DxPOP() = (i + VP, ()P + P (2) P
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Writing this also with arguments x and ¢ reversed (since it is true for any x and ) and then subtracting,
we have

(2i + 1)(t = x)P(x)P(0) = (i + D[Pis(VP(x) = P(OPrsa(0)] = i[B()Pioi(x) = B ()P(X)]

Summing from i =1 to { = n, and noticing the “telescoping effect” on the right, we have
(t=x) 2 Qi + DPx)P() = (1 + D[P, 1 (0)P.(x) = Pu())P, s (x)] = (t = %)
i=1

The last term may be transferred to the left side where it may be absorbed into the sum as an i =0 term.
This is the Christoffel identity.

15.20. Use the Christoffel identity to evaluate the integration coefficients for the Gauss—Legendre
2

nP (2 )Py y(x)
Let x, be a zero of P,(x). Then the preceding problem, with ¢ replaced by x,, makes

(n+ )P, 1 (x)Pulx) _
X — X B

case, proving A, =

-3 @i+ DP@P(x)

Now integrate from —1 to 1. By a special case of Problem 15.12 only the i = 0 term survives on the right,

and we have
' P -2
J P dx=——"7——
X — Xk (n + 1P, i(xi)
The recursion formula with x = x, makes (n + 1)P,,(x,) = —nP,_,(x,) which allows us the alternative

1
PW, 2
-1 X~ Xk 1P, 1(xy)
By Problems 15.6 and 15.14 we now find

A= J:Lk(x) dx =f 7(x) dx = ' P.(x)

V) =) D Palx)(x —x)

leading at once to the result stated.

15.21. Prove that (1—x*)P)(x) +nxP,(x) =nP,_,(x), which is useful for simplifying the result of
Problem 15.20.

We first notice that the combination (1 — x*) P, + nxP, is at most of degree n + 1. However, with A
representing the leading coefficient of P,(x), it is easy to see that x**' comes multiplied by —nA + nA
and so is not involved. Since P, contains no term in x" ', our combination also has no term in x". Its
degree is at most n — 1 and by Problem 15.16 it can be expresed as

n—1
(1 =x?)Py(x) + nxP,(x) = 2, ¢.P(x)
i=0
Proceeding as in our development of the recursion formula, we now multiply by P,(x) and integrate. On
the right only the kth term survives, because of the orthogonality, and we obtain

Zk%ck = Jl (1= x*)P(x)Pc(x) dx + nf xP,(x)P.(x) dx

Integrating the first integral by parts, the integrated piece is zero because of the factor (1 —x?). This
leaves
2

2k +1

= —Jl P,,(X)Ed; [(A=x*)P(x))dx +n f xP,(x)P.(x) dx
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15.22.

15.23.

15.24.

For k <n — 1 both integrands have F,(x) multiplied by a polynomial of degree n — 1 or less. By Problem
15.9 all such ¢ will be zero. For k = n — 1 the last integral is covered by the Problem 15.17 bonus. In the
first integral only the leading term of P,_,(x) contributes (again because of Problem 15.9) making this
term
! d { (2n -2)!
P, el o3 n—1} d
L i e TPy L

Using Problem 15.10, this now reduces to

(2n -2)! 27 (nty? 2n(n +1)
n—1 s(n+1) =
2" (n -1 @Cn+1)! 2n+1)2n-1)
Substituting these various results, we find
. _2n—1( 2n(n +1) 2n? ]—n
T2 l@e+D)@r-1) 2n+1D)@2n-1)

which completes the proof.

Apply Problem 15.21 to obtain A 21 - %)
roblem 15. obtain Ay =—5———.
nz[Pn—l(xk)lz
Putting x = x,, a zero of P,(x), we find (1 —x3)P,(x;) =nP,_i(x;). The derivative factor can now
be replaced in our result of Problem 15.20, producing the required result.

The Gauss—Legendre integration formula can now be expressed as

[ ywa=3 a5

where the arguments x;, are the zeros of P,(x) and the coefficients A, are given in Problem
15.22. Tabulate these numbers for n =2, 4,6, ..., 16.

For n =2 we solve Py(x)=14(3x>—1) =0 to obtain x, = £V} = +.57735027. The two coefficients
prove to be the same. Problem 15.22 makes A, = 2(1 — 3)/[4(3)] = L

For n = 4 we solve Py(x) = §(35x* — 30x* + 3) = O to find x3 = (15 + 2V/30)/35, leading to the four argu-
ments x, = £[(15 £ 2V/30)/35]'2.

Computing these and inserting them into the formula of Problem 15.22 produces the x,, A, pairs
given in Table 15.1. The results for larger integers n are found in the same way, the zeros of the
high-degree polynomials being found by the familiar Newton method of successive approximations.
(This method appears in a later chapter.)

Apply the two-point formula to [¥2sin ¢ dt.
The change of argument ¢ = & (x + 1)/4 converts this to our standard interval as

! +1
Zin Tt

)

and the Gaussian arguments x; = £.57735027 lead to y(x,) =.32589, y(x,) =.94541. The two-point
formula now generates (7/4)(.32589 +.94541) = 99848 which is correct to almost three places. The
two-point Gaussian formula has produced a better result than the trapezoidal rule with seven points
(Problem 14.17). The error is two-tenths of 1 percent!

It is amusing to see what a one-point formula could have done. For n =1 the Gauss—Legendre
result is, as one may easily verify, [, y(x) dx = 2y(0). For the sine function this becomes

‘a . am(x+1) n
L4sm 2 dx—4\/§—1.11

which is correct to within about 10 percent.



146 GAUSSIAN INTEGRATION [CHAP. 15

Table 15.1
n Xi Ay n X Ay
2 +.57735027 1.00000000 14 +.98628381 03511946
. + 86113631 34785485 +.92843488 08015809
+ 32908104 165214515 +.82720132 12151857
' +.68729290 15720317
17132449
6 +.93246951 +.51524864 18553840
36076157
+.66120939 r791399 +.31911237 20519846
+.23861919 ' +.10805495 21526385
10122854
8 +.96028986 16 +.98940093 02715246
22238103
+.79666648 +.94457502 .06225352
31370665
+.52553241 roansrs +.86563120 109515851
+.18343464 ' +.75540441 12462897
10 +.97300653 ;)jgi;g;‘ +.61787624 14959599
86506337 Lasestas +.45801678 16915652
67940957 2150863 +.28160355 18260342
43339539 2026672 +.09501251 18945061
+.14887434 :
04717534
12 +.98156063
+.90411725 1283322
+. 76990267 20316743
+.58731795 aionss
+.36783150 ot
+.12533341 :

15.25. Explain the accuracy of the extremely simple formulas used in Problem 15.24 by exhibiting
the poynomials on which the formulas are based.

The n=1 formula can be obtained by integrating the collocation polynomial of degree zero,
p(x) =y(x;) = y(0). However, it can also be obtained, and this is the idea of the Gaussian method, from
the osculating polynomial of degree 2n — 1 =1, which by Hermite’s formula is y(0) + xy’(0). Integrating
this linear function between —1 and 1 produces the same 2y(0), the derivative term contributing zero.
The zero-degree collocation polynomial produces the same integral as a first-degree polynomial, because
the point of collocation was the Gaussian point (Fig. 15-1).

/ osculating

collocation

T
-1 =0 !

Fig. 15-1

Similarly, the n =2 formula can be obtained by integrating the collocation polynomial of degree
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one, the points of collocation being the Gaussian points

Tix—r o x+r
o+ T Y=y, +
f_l(_zr%"’ o }’2) »nty

where r = V1. This same formula is obtained by integrating the osculating polynomial of degree three,
since

1 x+r\3 N x—n3 3L, ,
L[<1+ . )4(x r) 1+(1 p )4(x+r)y2+4(x —)(x —r)y)
3
+Z(x2_r2)(x+r)y;:|dx=yl+y2

The polynomial of degree one performs so well because the points of collocation were the Gaussian
points. (Fig. 15-2).

collocation

osculating

T
1l 2 = 0 wr 11

15.26. Apply the Gaussian four-point formula to the integral of Problem 15.24.

4
Using the same change of argument, the four-point formula produces }; A;y, = 1.000000, correct to
i=1

six places. Comparing with the Simpson 32-point result of 1.0000003 and the Simpson 64-point result of
.99999983, we find it superior to either.

15.27. Adapt the truncation error estimate of Problem 15.2 to the special case of Gauss-Legendre
approximation.

Combining Problems 15.2, 15.11, and 15.14, we find the error to be

=y(2n)(6) [2"("!)2]2 2 21 (1

@t L@l w1~ @’ @

This is not an easy formula to apply if the derivatives of y(x) are hard to compute. Some further idea
of the accuracy of Gaussian formulas is, however, available by computing the coefficient of y©™ for
small n.

2 E=.0074y®
4 E=.0000003y®
6 E=15(10"12)y0

n
n
n

15.28. Apply the error estimates of Problem 15.27 to the integral of Problem 15.24 and compare
with the actual errors.

After the change of argument which brings this integral to our standard form, we find

powi<(E) yowi<(3)
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For n =2 this makes our error estimate E =(.0074)(.298)=.00220, while for n =4 we find E =
(.0000003)(.113) = .00000003. The actual errors were .00152 and, to six places, zero. So our estimates
are consistent with our results.

This example offers a favorable situation. The sine function is easy to integrate, even by
approximate methods, because its derivatives are all bounded by the same constant, namely, 1. The
powers of 7/4 do enter with the change of argument, but they actually help in this case. The next
example deals with a familiar function whose derivatives do not behave so favorably.

Apply the Gauss—Legendre formula to [§%log (1 +¢) dt.

The correct value of this integral is

(1 +’E’) [log (1 +’2—T) - 1} +1=.856590

to six places. The change of argument ¢ = z(x + 1)/4 converts the integral to

[ Son[ 12

The fourth derivative of the new integrand is (/4)°’[—6/(1+1)*]. In the interval of integration this
cannot exceed 6(s/4)°, so the truncation error cannot exceed 6(rr/4)°(.0074) if we use the two-point
Gaussian formula. This is six times the corresponding estimate for the integral of the sine function.
Similarly, the eighth derivative is (7/4)°[—7!/(1+1)*]. This means a truncation error of at most
(7w/4)° - 7' (.0000003) which is 7! times the corresponding estimate for the integral of the sine function.
While the successive derivatives of the sine function remain bounded by 1, those of the logarithm
function increase as factorials. The difference has an obvious impact on the truncation errors of any of
our formulas, perhaps especially on Gaussian formulas where especially high derivatives are involved.
Even so, these formulas perform well. Using just two points we obtain .858, while four points manage
.856592 which is off by just two units in the last place. The six-point Gaussian formula scores a bull’s-eye
to six places, even though its truncation error term involves y*®(x), which is approximately of size 12!.
For contrast, Simpson’s rule requires 64 points to produce this same six-place result.

The function log (1 + ¢) has a singularity at £ = —1. This is not on the interval of integration, but it is
close, and even a complex singularity nearby could produce the slow kind of convergence in evidence
here.

How does the length of the interval of integration affect the Gaussian formulas?

. . b—a
For an integral over the interval a =t=b, the change of argument t=a + (x + 1) produces

the standard interval —1=x = 1. It also makes

b 1 _ —_
Jy(t)dt=f ——bzay[a+b
a -1

The effect on truncation error is in the derivative factor, which is

_o\2n+1
(59" e

In the examples just given b —a was /2 and this interval length actually helped to reduce error, but
with a longer interval the potential of the powers of b — a to magnify error is clear.

a(x+1)]dx

Apply the Gaussian method to (2/V7) [§e™" di

The higher derivatives of this error function are not easy to estimate realisticaily. Proceeding with
computations, one finds the n =4, 6, 8, 10 formulas giving these results:

n 4 6 8 10

Approximation .986 1.000258 1.000004 1.000000
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For larger n the results agree with that for n = 10. This suggests accuracy to six places. We have already
computed this integral by a patient application of Taylor’s series (Problem 14.32) and found it to equal
1, correct to six places. For comparison, the Simpson formula requires 32 points to achieve six-place
accuracy.

Apply the Gaussian method to [§ V1 + Vrdr.
The n =4, 8, 12, 16 formulas give the results

n 4 8 12 16

Approximation 6.08045 6.07657 6.07610 6.07600

This suggests accuracy to four places. The exact integral can be found, by a change of argument, to be
£(2V3 + 1), which is 6.07590 correct to five places. Observe that the accuracy obtained here is inferior to
that of the previous problem. The explanation is that our square root integrand is not as smooth as the
exponential function. Its higher derivatives grow very large, like factorials. Our other formulas also feel
the influence of these large derivatives. Simpson’s rule for instance produces these values:

No. of points 16 64 256 1024

Simpson values 6.062 6.07411 6.07567 6.07586

Even with a thousand points it has not managed the accuracy achieved in the previous problem with just
32 points.

Derive the Lanczos estimate for the truncation error of Gaussian formulas.

The relation [, [xy(x)]’ dx =y(1) + y(~1) holds exactly. Let I be the approximate integral of y(x)
obtained by the Gaussian n-point formula, and I* be the corresponding result for [xy(x)]’. Since

[y @) =y @) +xy'(x), i
I'=I+3 Axy'(x)

so that the error in I* is E*=y()+y(-1)—1-2 Axy'(x)
i=1

Calling the error in [ itself E, we know that
E=C,y®(6)) E*=C,(xy)*(8,)

for suitable 6, and 6, between —1 and 1. Suppose 6, = 6, = 0. On the one hand (xy)®"*?(0)/(2n)! is the
coefficient of x*" in the Taylor series expansion of (xy)’, while on the other hand

y(Zn)(O)XZn

y(x) =... +W
L R ¢ 0 ) S (UL
leading directly to [xy(x)]' = +——(2n)!
from which we deduce (xy)®D(0) = (2n + 1)y@(0)

Thus E* = (2n + 1)E approximately, making

C2n+1

[y +3-0-1-F Ay )

This involves applying the Gaussian formula to xy'(x) as well as to y(x) itself, but it avoids the often
troublesome calculation of y®(x). Putting 6, = 6, =0 is the key move in deducing this formula. This
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has been found to be more reasonable for smooth integrands such as that of Problem 15.31, than for
integrands with large derivatives, which seems reasonable since y©"(6,)/y%"(8,) should be nearly 1
when y@**Y is small.

Apply the error estimate of the previous problem to the integral of Problem 15.31.

For n =8 the Lanczos estimate is .000004 and is identical with the actual error. For n = 10 and
above, the Lanczos estimate correctly predicts a six-place error of zero. If applied to the integral of
Problem 15.32, however, in which the integrand is very unsmooth, the Lanczos estimate proves to be
too conservative to be useful. The limits to the usefulness of this error formula are still to be
determined.

OTHER GAUSSIAN FORMULAS

15.35.

15.36.

15.37.

What are the Gauss—-Laguerre formulas?

These formulas for approximate integration are of the form
[ evwa=3 Ay
0 i=1
the arguments x; being the zeros of the nth Laguerre polynomial

L,(x)=¢" % (e™*x")

and the coefficients A, being

A= [y
CLi)h ox-x o xlLi@)F
The truncation error is E= ("_!)zy(ZrO(@)
(2n)!

These results are found very much as the similar results for the Gauss—Legendre case. Here the
weight function is w(x) =¢™*. The n-point formula is exact for polynomials of degree up to 2n —1.
Arguments and coefficients are provided in Table 15.2.

X

Apply the Gauss—Laguerre one-point formula to the integration of ™.

Since L,(x) = 1 - x, we have a zero at x, = 1. The coefficient is A; = 1/[L;(1)]* which is also 1. The
one-point formula is therefore

[evwa=yo
0
In this case y(x) =1 and we obtain the exact integral, which is 1. This is no surprise, since with n =1 we

are guaranteed exact results for any polynomial of degree one or less. In fact with y(x) =ax +b the
formula produces

J'ze”(ax +b)dx=y(1)=a+b

which is the correct value.

Apply the Gauss~Laguerre method to 3 e~ sin x dx.

The exact value of this integral is easily found to be 4. The smoothness of sin x, by which is meant
the boundedness of its derivatives, suggests that our formulas will perform well. The error estimate of
(n!)*/(2n)!, which replaces y®* by its maximum of 1, reduces to g3 for n =6 and suggests about
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Table 15.2
n X A, n X Ay

2 58578644 185355339 12 11572212 26473137

3.41421356 14644661 61175748 37775928

4 32254769 60315410 ;ggggiz '(2];32252;

1.74576110 35741869 + somred otoras

4.53662030 03888791 : :

o 29507051 00053925 6.84452545 00266397

’ ’ 9.62131684 .00020323

6 22284660 45896467 13.00605499 00000837

1.18893210 41700083 17.11685519 00000017

2.99273633 11337338 22.15100038 00000000

5.77514357 01039920 28.48796725 00000000

9.83746742 00026102 37.09912104 00000000
15. 98 00000090

982873 14 09974751 23181558

8 17027963 36918859 52685765 35378469

90370178 41878678 1.30062912 25873461

2.25108663 17579499 2.43080108 11548289

426670017 103334349 3.93210282 03319209

7.04590540 00279454 5.82553622 00619287

10.75851601 00009077 8.14024014 00073989

15.74067864 .00000085 10.91649951 00005491

22.86313174 00000000 14.21080501 00000241

10 13779347 30844112 18.10489222 :00000006

12945455 10111993 2272338163 00000000

1.80834290 21806829 28.27298172 -00000000

3.40143370 06208746 35.14944366 -00000000

5.55249614 00950152 44.36608171 -00000000
8.33015275 00075301
11.84378584 00002826
16.27925783 00000042
21.99658581 00000000
29.92069701 00000000

three-place accuracy. Actually substituting into )’j A, sinx; brings the results
i=1
n 2 10 14
b 43 5000002 50000000

so that our error formula is somewhat pessimistic.

15.38. Apply the Gauss-Laguerre method to {7 (e™'/r) dr.
The unsmoothness of y(f) = 1/¢, meaning that its nth derivative

YO(E) = (=1)nt 70D

151



152

15.39.

GAUSSIAN INTEGRATION [CHAP. 15

increases rapidly with n, does not suggest overconfidence in approximation formulas. Making the change
of argument ¢ =x + 1, this integral is converted into our standard interval as

=
J;e e(x+l)dx

and the error formula becomes _ [(n!)z}[ (2n)! ]
T L@n)!lle(8 + 1!

which reduces to (n!)*/e(6 + 1)***'. If we replaced 6 by 0 to obtain the maximum derivative this would
surely be discouraging and yet no other choice nominates itself. Actual computations with the formula

14 4
eTix;+1
bring these results:
n 2 6 10 14
Approximation 21 21918 21937 21938

Since the correct value to five places is .21938 we see that complete pessimism was unnecessary. The
elusive argument 6 appears to increase with n. A comparison of the actual and theoretical errors allows
6 to be determined:

n 2 6 10

5} 1.75 3.91 5.95

In this example the function y(x) has a singularity at x = —1. Even a complex singularity near the
interval of integration can produce the slow convergence in evidence here. (Compare with Problem
15.29.) The convergence is more rapid if we move away from the singularity. For example, integration
of the same function by the same method over the interval from 5 to  brings these results:

n 2 6 10

Approximation .001147 0011482949 .0011482954

The last value is correct to almost ten places.

What are the Gauss—Hermite formulas?

These are of the form
[ ewa=3 Ay
—o i=1
the arguments x; being the zeros of the nth Hermite polynomial

4
o
_2niVm

and the coefficients A; being THN)E

. _n!Vry®(6)

. . E
The truncation error is (20!

H,(x)=(=1)" (™)
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These results are found very much as in the Gauss-Legendre case. Here the weight function is
w(x)=e™". The n-point formula is exact for polynomials up to degree 2n —1. Arguments and
coefficients are provided in Table 15.3.

Table 15.3
n Xi Ay n Xi Ay
2 + 70710678 .88622693 12 + 31424038 57013524
L] e | e || LomeR | e
+1.65068012 08131284 : :
+2.27950708 00390539
6 + 43607741 72462960 +3.02063703 00008574
+1.33584907 15706732 +3.88972490 00000027
35060497 00453001
£2 14 + 29174551 53640591
8 + 38118699 66114701 + 87871379 27310561
+1.15719371 20780233 +1.47668273 06850553
+1.98165676 01707798 +2.09518326 00785005
+2.93063742 00019960 +2.74847072 00035509
10 + 34290133 61086263 +3.46265693 00000472
+1.03661083 24013861 +4.30444857 -00000001
+1.75668365 03387439
+2.53273167 00134365
+3.43615912 .00000764

15.40. Apply the Gauss—Hermite two-point formula to the integral [*..e™*'x? dx.

An exact result can be obtained, so we first compute

2

. d
Hyx)=e” 5™ =4’ -2

The zeros of this polynomial are x, = +V/2/2. The coefficients A, are easily found from the formula in
Problem 15.39 to be V7/2. The two-point formula is therefore

[evma=Fl(5) (-]

With y(x) = x* this becomes [~..e™*’x*dx = V/m/2 which is the exact value of the integral.

@

15.41. Evaluate correct to six places <..e~* sin?x dx.

The Gauss—Hermite formula produces these results:

n 2 4 6 8 10

Approximation 748 .5655 .560255 .560202 .560202

This appears to suggest six-place accuracy and the result is actually correct to six places, the exact
integral being V7 (1 — e~")/2 which is to eight places .56020226.

15.42. Evaluate correct to three places [.. (e™*/V1 + x?) dx.
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The square root factor is not so smooth as the sine function of the preceding problem so we should
not expect quite so rapid convergence, and do not get it.

n 2 4 6 8 10 12

Approximation 145 151 15202 15228 15236 15239

The value .152 seems to be indicated.

15.43. What are the Gauss—Chebyshev formulas?
These are of Gaussian form with w(x) =1/V1—x?,

1
y(x) ]
dx = X;
[ [Fse-22 e
the arguments x, being the zeros of the nth Chebyshev polynomial

T,.(x) = cos (n arccos x)

Contrary to appearances this actually is a polynomial of degree n, and its zeros are
2i —
% = cos [(l*l)ﬂ]
2n
All coefficients A, are simply 7/n. The truncation error is
_2my®(6)

22"(2n)!

15.44. Apply the Gauss—Chebyshev formula for n =1 to verify the familiar result

1 1
= |dx=nx
.[_1 (Vl - xz)
For n =1 we find T,(x) = cos (arccos x) = x. Since there is just one zero, our formula collapses to

my(0). Since the Gaussian formula with n =1 is exact for polynomials of degree one or less, the given
integral is exactly 7 - y(0) = 7.

15.45. Apply the n = 3 formula to [1, (x*/V1 - x?) dx.

Directly from the definition we find Ty(x) = 4x® — 3x so that x, =0, x,=V3/2, x;= —V/3/2. The
Gauss—Chebyshev formula now yields (/3)(0 + % + 15) = 37/8 which is also exact.

Supplementary Problems

15.46. Prove that P.(x)=xP._,(x)+nP,_,(x), beginning as follows. From the definition of Legendre
polynomials,

Pa(x)= [n(x )]

>t dx"
Apply the theorem on the nth derivative of a product to find

n d da! - -
L [ L -y 2 - ) e - 1]

dn?

Pi(x)

= & P ]+ (2 = VP, )
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15.47. Prove that (1—x*)PP(x) —2xP;(x)+n(n +1)P,(x)=0, as follows. Let z=(x2—1)". Then z’'=
2nx(x*=1)"", making (x* — 1)z’ — 2nxz = 0. Repeatedly differentiate this equation, obtaining

x*—1)z?—-(2n-2)xz' = 2nz=0
(=12 - (2n—xz® - [2n + (2n - 2)]z' =0

(> =1z - 2n - 6)x2® — 2n + 2n —2) + (2n — 4)]z@ =0
and ultimately

=1z - @2n—2n-2xz" V= 2n+(2n—-2)+ 2n —4) + - - + 2n —2n)]2" =0
which simplifies to (P =1z + 22 —n(n + 1)z =0
Since P,(x) =z"/2"n!, the required result soon follows.
15.48. Differentiate the result of Problem 15.21 and compare with Problem 15.47 to prove
xP)(x) = P,_(x) =nP,(x)

15.49. Use Problem 15.21 to prove that for all n, P,(1)=1, P,(-1)=(-1)".
15.50. Use Problem 15.46 to prove P,(1) = in(n + 1), P(—1) = (=1)"*'P;(1).

15.51. Use Problem 15.46 to show that
PE(x) =xP{(x) + (n + k — )PV (x)

Then apply the method of summing differences to verify

+2)@ (n+3)®
P21 2" (1) =
D=z =67
and in general PH(1)= (n+ k) (n+k)!

K1 (n—k) 2!
Since Legendre polynomials are either even or odd functions, also verify that
Pf,k)(—l) - (*1)n+kP£k)(1)
15.52. Use Problems 15.46 and 15.48 to prove P;,,,(x) — P, _;(x) = (2n + 1)P,(x).

15.53. The leading coefficient in P,(x) is, as we know, A4, = (2r)!/2"(n!)”. Show that it can also be written as
357 2n-1 1-3-5---(2n-1)
234 no n! :

15.54. Compute the Gauss-Legendre arguments and coefficients for the case n =3, showing the arguments to
be x, =0, :t\/g and the coefficients to be § for x, =0 and 2 for the other arguments.

15.55. Verify these Gauss-Legendre arguments and coefficients for the case n =5:

Xi Ay

0 .56888889
+.53846931 47862867
+.90617985 .23692689

15.56. Apply the three-point Gaussian formula of Problem 15.54 to the integral of the sine function,
$2sintdr. How does the result compare with that obtained by Simpson’s rule using seven points
(Problem 14.17)?
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15.57.

15.58.

15.60.

15.61.

15.62.

15.63.

15.64.

15.65.

15.66.

15.67.

15.68.

15.69.

15.70.

15.71.

15.72.

15.73.

15.74.
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1
1
Apply the Gauss—Legendre two-point formula (r =2) to f ——dt and compare with the exact value
7/2~1.5708. alte

Diagram the linear collocation and cubic osculating polynomials which lead to the n =2 formula, using
the function y(¢) = 1/(1 + £) of Problem 15.57. (See Problem 15.25.)

. How closely do our formulas verify [§x* dx =.7834 to four places? Also apply some of our formulas for

equally spaced arguments to this integral. Which algorithms work best? Which are easiest to apply “by
hand”? Which are easiest to program for automatic computation?

As in Problem 15.59 apply various methods to [§ e™* dx =~3.1044 and decide which algorithm is best
for automatic computation.

Compute Laguerre polynomials through n =5 from the definition given in Problem 15.35.
Find the zeros of L,(x) and verify the arguments and coefficients given in Table 15.2 for n = 2.

Use the method of Problem 15.9 to prove that L,(x) is orthogonal to any polynomial of degree less than
n, in the sense that

f e "L, (x)p(x)dx =0

0

where p(x) is any such polynomial.

Prove that [5 e *L}(x) dx = (n!)* by the method of Problems 15.10 and 15.11.

Apply the Gauss—Laguerre two-point formula to obtain these exact results:

f e xdx =2! j e *x*dx = 3!
0 0

Find the exact arguments and coefficients for three-point Gauss—Laguerre integration.
Use the formula of the previous problem to verify

f e~ x* dx = 4! f e x> dx =5!
0 0

Apply the n =6 and n = 8 formulas to the *“smooth” integral [5 e ™ cos x dx.

Apply the n =6 and n = 8 formulas to the “unsmooth” integral [5e ™ log (1 + x) dx.
Show that correct to four places [ e~ dx = .2797.

Compute Hermite polynomials through n =5 from the definition given in Problem 15.39.

Show that the Gauss-Hermite one-point formula is [“.e % (x) dx =Vmy(0). This is exact for
polynomials of degree one or less. Apply it to y(x) =1.

Derive the exact formula for n =3 Gauss—Hermite approximation. Apply it to the case y(x) =x* to
obtain an exact result.

How closely do the four-point and eight-point formulas duplicate this result?

f e cosxdx=Vme " ~1.3804
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15.75.

15.76.

15.77.

15.78.

15.79.

15.80.

15.81.

How closely do the four- and eight-point formulas duplicate this result?

f ey = \/’—fz .11994
o 2e*

Show that correct to three places [=.. [e™*/(1 +x?)] dx = 1.343.
Evaluate correct to three places [*..e V1 + x? dx.
Evaluate correct to three places [*.. e log (1 + x?) dx.

Apply the Gauss—-Chebyshev n = 2 formula to the exact verification of

jl XZ d T
x ==
L Vi-x? 2
Find the following integral correct to three places: [, [(cos x)/V1 — x*] dx.

Find the following integral correct to two places: [*, (V1 +x*/V1 —x?)dx.



Chapter 16

Singular Integrals

It is unwise to apply the formulas of the preceding two chapters blindly. They are all based on
the assumption that the function y(x) can be conveniently approximated by a polynomial p(x). If
this is not true then the formulas may produce poor, if not completely deceptive, results. It would be
comforting to be sure that the following application of Simpson’s rule will never be made:

2 dx
A -2

1 17 31

1+4(4)+= ]
6 [ @ 12
but less obvious singular points have probably been temporarily missed. Not quite so serious are the
efforts to apply polynomial-based formulas to functions having singularities in their derivatives. Since
polynomials breed endless generations of smooth derivatives, they are not ideally suited to such
functions, and poor results are usually obtained.

PROCEDURES FOR SINGULAR INTEGRALS

A variety of procedures exist for dealing with singular integrals, whether for singular integrands
or for an infinite range of integration. The following will be illustrated:

1. Ignoring the singularity may even be successful. Under certain circumstances it is enough to
use more and more arguments x; until a satisfactory result is obtained.

2. Series expansions of all or part of the integrand, followed by term-by-term integration, is a
popular procedure provided convergence is adequately fast.

3. Subtracting the singularity amounts to splitting the integral into a singular piece which
responds to the classic methods of analysis and a nonsingular piece to which our
approximate integration formulas may be applied without anxiety.

4. Change of argument is one of the most powerful weapons of analysis. Here it may exchange
a difficult singularity for a more cooperative one, or it may remove the singularity
completely.

5. Differentiation relative to a parameter involves embedding the given integral in a family of
integrals and then exposing some basic property of the family by differentiation.

6. Gaussian methods also deal with certain types of singularity, as reference to the previous
chapter will show.

7. Asymptotic series are also relevant, but this procedure is treated in the following chapter.

Solved Problems

16.1. Compare the results of applying Simpson’s rule to the integration of Vx near 0 and away
from 0.

Take first the interval between 1 and 1.30 with k= .05, since we made this computation earlier
(Problem 14.11). Simpson’s rule gave a correct result to five places. Even the trapezoidal rule gave an
error of only .00002. Applying Simpson’s rule now to the interval between 0 and .30, which has the same
length but includes a singular point of the derivative of Vx, we obtain f“\/_dx =.10864. Since the
correct figure is .10954, our result is not quite correct to three places. The error is more than a hundred
times greater.

158
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16.2.

16.3.

16.4.

16.5.

What is the effect of ignoring the singularity in the derivative of Vx and applying Simpson’s
rule with successively smaller intervals A?

Polya has proved (Math. Z., 1933) that for functions of this type (continuous with singularities in
derivatives) Simpson’s rule and others of similar type should converge to the correct integral.
Computations show these results:

1/h 8 32 128 512

1
j Vxde | .663 L6654 66651 666646
0

The convergence to } is slow but does appear to be occurring.

Determine the effect of ignoring the singularity and applying Simpson’s rule to the following
integral: [§(1/Vx)dx =2.

Here the integrand itself has a discontinuity, and an infinite one, but Davis and Rabinowitz have
proved (SIAM Journal, 1965) that convergence should occur. They also found Simpson’s rule producing
these results, which show that ignoring the singularity is sometimes successful:

1/h 64 128 256 512 1024 2048

Approx. integral | 1.84 1.89 1.92 194 196 1.97

The convergence is again slow but does appear to be occurring. At current computing speeds slow
convergence may not be enough to rule out a computing algorithm. There is, however, the usual
question of how much roundoff error will affect a lengthy computation. For this same integral the
trapezoidal rule with & = ;55 managed 1.98, while application of the Gauss 48-point formula to quarters
of the interval (192 points in all) produced 1.99.

Determine the result of ignoring the singularity and applying the Simpson and Gauss rules to
1.1
the following integral: j -sin - dx =.6347.
b X X
Here the integrand has an infinite discontinuity and is also highly oscillatory. The combination can

be expected to produce difficulty in numerical computation. Davis and Rabinowitz (see preceding
problem) found Simpson’s rule failing.

1/h 64 128 256 512 1024 2048

Approx. integral | 231 1.69 —-.60 121 .72 .32

and the Gauss 48-point formula doing no better. So the singularity cannot always be ignored.

Evaluate to three places the singular integral [} (¢*/Vx) dx.

Direct use of the Taylor series leads to

fl (e—x)dx=f1 (i+xm+lx3’z+1x5’z+~-~) dx
o \Wax o \Vx 27 6

211 1 1 1 1
L I e
243%5% 21 108 T 660 Taes0 TImso0 T =20
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16.6.

16.7.

16.8.

16.9.
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After the first few terms the series converges rapidly and higher accuracy is easily achieved if needed.
Note that the singularity 1/Vx has been handled as the first term of the series. (See also the next
problem.)

Apply the method of “subtracting the singularity” to the integral of Problem 16.5.
Calling the integral /, we have

-1
+
[ \fdx A \/; ——dx
The first integral is elementary and the second has no singularity. However, since (¢* — 1)/Vx behaves
like Vx near zero, it does have a singularity in its first derivative. This is enough, as we saw in Problem
16.1, to make approximation integration inaccurate.
The subtraction idea can be extended to push the singularity into a higher derivative. For example,
our integral can also be written as
J‘ 1+ X J e —1-— X,

Further terms of the series for the exponential function may be subtracted if needed. The first integral
here is §, and the second could be handled by our formulas, though the series method still seems
preferable in this case.

Evaluate the integral of Problem 16.5 by a change of argument.

The change of argument, or substitution, may be the most powerful device in integration. Here we
let £=Vx and find =2 [}e” dr which has no singularity of any kind, even in its derivatives. This
integral may be evaluated by any of our formulas or by a series development.

Evaluate correct to six decimal places [§ (cos x)(logx) dx.

Here a procedure like that of Problem 16.5 is adopted. Using the series for cosx, the integral

becomes s

! x* x* x
L(l—a+z—a+»-~>logxdx

! 1

o (+1P

Using the elementary integral

1 xl+l 1
-
L“"gx i+1\VEF T

the integral is replaced by the series

1111
N TR TRE T

which reduces to — .946083.

*1 .1 . . NP
Evaluate f t—zsint—zdt by a change of variable which converts the infinite interval of
1

integration into a finite interval.

Let x = 1/¢. Then the integral becomes [§ sin (x*) dx which can be computed by various approximate
methods. Choosing a Taylor series expansion leads to

bl 1,1 1
Lsm(x)dx_3 2 1320 Bt

which is .310268 to six places, only four terms contributing.
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16.10.

16.11.

16.12.

= gin ¢
Show that the change of variable used in Problem 16.9 converts f %dr into a badly
1

singular integral, so that reducing the interval of integration to finite length may not always be
a useful step.

11 .
With x = 1/t we obtain the integral j —sin —dx encountered in Problem 16.4, which oscillates badly
h X x

near zero, making numerical integration nearly impossible. The integral of this problem may best be
handled by asymptotic methods to be discussed in the next chapter.

x

1. . . - .
Compute | — sin mx dx by direct evaluation between the zeros of sinx, thus developing part
;X

of an alternating series.

Applying the Gauss 8-point formula to each of the successive intervals (1,2), (2,3), and so on,
these results are found:

Interval Integral Interval Integral
1,2) —.117242 2,3) .007321
3.4 —.001285 4,5) .000357
(5,6) —.000130 6,7) .000056
(7,8) —.000027 8,9) .000014
(9, 10) —.000008

The total is —.11094, which is correct to five places.

This method of direct evaluation for an interval of finite length resembles in spirit the method of
ignoring a singularity. The upper limit is actually replaced by a finite substitute, in this case ten, beyond
which the contribution to the integral may be considered zero to the accuracy required.

Compute [ e~ dx by differentiation relative to a parameter.

This problem illustrates still another approach to the problem of integration. We begin by
imbedding the problem in a family of similar problems. For ¢ positive, let

F(= j e~ gy
0
Since the rapid convergence of this singular integral permits differentiation under the integral sign, we
next find .
1 —x2—2x2
F'(ty= -2t | e "™ dx
o X
Now introduce the change of argument y = t/x, which allows the attractive simplification
Fl()= -2 f e dy = 2F (1)
0

Thus F(t) = Ce ™ and the constant C may be evaluated from the known result

F(0) =f e dx =%’
0

” . 1 5
The result is J’ = Yy = 3 Vme ™
0

For the special case ¢ =1, this produces .119938 correct to six digits.
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16.13.

16.14.

16.15.

16.16.

16.17.

16.18.

16.19.

16.20.

16.21.

16.22.

16.23.

16.24.

16.25.

16.26.
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Supplementary Problems
Compare the results of applying Simpson’s rule with # =14 to [§x dx and [} x log x dx.

Use successively smaller 4 intervals for the second integral of Problem 16.13 and notice the convergence
toward the exact value of —3.

Evaluate to three places by series development: [} (sinx)/x*? dx.

Apply the method of subtracting the singularity to the integral of Problem 16.15, obtaining an
elementary integral and an integral which involves no singularity until the second derivative.

Ignore the singularity in the integral of Problem 16.15 and apply the Simpson and Gauss formulas,
continually using more points. Do the results converge toward the value computed in Problem 16.15?
(Define the integrand at zero as you wish.)

Evaluate f§e *logx dx correct to three places by using the series for the exponential function.

Compute the integral of the preceding problem by ignoring the singularity and applying the Simpson and
Gauss formulas. Do the results converge toward the value computed in Problem 16.18? (Define the
integrand at zero as you wish.)

Use series to show that

_['logx A ‘logx ,  A° lIngdx=—%2

b 1—x 6 b 1+ x 12 b 1—x2
Verify that to four places [§ [e™*/(1 + x?)] dx = .6716.
Verify that to four places [§ e > logx dx = —.5772.
Verify that to four places [§ e ™™ " dx = .2797.
Verify that to four places [§ e *Vx dx = .8862.
Verity that to four places [} (1/V —logx) dx = 1.772.

Verify that to four places [§7 (sin x)(log sin x) dx = —.3069.



Chapter 17

Sums and Series

REPRESENTATION OF NUMBERS AND FUNCTIONS AS SUMS

The representation of numbers and functions as finite or infinite sums has proved to be very
useful in applied mathematics. Numerical analysis exploits such representations in many ways
including the following:

1. The telescoping method makes it possible to replace long sums by short ones, with obvious
advantage to the computer. The classic example is

s Sy L) O B
1.2 2.3 3.4 nn+1) " 2/ 23 n n+l)" " n+1
in which the central idea of the method can be seen. Each term is replaced by a difference.

2. Rapidly convergent infinite series play one of the leading roles in numerical analysis. Typical
examples are the series for the sine and cosine functions. Each such series amounts to a
superb algorithm for generating approximations to the functions represented.

3. Acceleration methods have been developed for more slowly converging series. If too many
terms must be used for the accuracy desired, then roundoffs and other troubles associated
with long computations may prevent the attainment of this accuracy. Acceleration methods
alter the course of the computation, or in other words, they change the algorithm, in order
to make the overall job shorter.

The Euler transformation is a frequently used acceleration method. This transformation
was derived in an earlier chapter. It replaces a given series by another which often is more
rapidly convergent.

The comparison method is another acceleration device. Essentially the same as the
method of subtracting singularities, it splits a series into a similar, but known, series and
another which converges more rapidly than the original.

Special methods may be devised to accelerate the series representations of certain
functions. The logarithm and arctan functions will be used as illustrations.

4. The Bernoulli polynomials are given by

By(x) = :Z::o (l;)Bk—ixi

with coefficients B; determined by

k—1 k
By=1 Z(i>B"=O

i=0

tor k=2, 3, etc. Properties of Bernoulli polynomials include the following:
Bi(x)=iB;_4(x)
Bi(x + 1)~ Bi(x) = ix"!

1
f Bi(x)dx=0 fori>0
0
B;(1) = B,(0) fori>1
163
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The Bernoulli numbers b; are defined by
bi=(—=1)"'B,
fori=1, 2, etc.

Sums of integer powers are related to the Bernoulli polynomials and numbers. Two such
relationships are
i = B, i(n+1)—B,.,(0) and i 1 _ b;2m)*
=1 p+1 Sk 2(20)!
The Euler-Maclaurin formula may be derived carefully and an error estimate obtained
through the use of Bernoulli polynomials. It may be used as an acceleration method. Euler’s
constant

. 11 1
= e
C llrrl(l+2 3+ +n 10gn>

can be evaluated using the Euler-Maclaurin formula. Six terms are enough to produce
almost ten-decimal-place accuracy.

Wallis’ product for 7 is
T lim 2:2:4:4.6-6---2k-2k
2 1-3:3:5:5:7--(2%k - 1)(2k +1)
and is used to obtain Stirling’s series for large factorials, which takes the form
nle” b, b, b (=D*,
1 = 4
B N2an™ % 2 3-4n® 5-6m (2k)(2k — Dyn** T
the b; still being Bernoulli numbers. The simpler factorial approximation
nl=\2mn"*12e"

is the result of using just one term of the Stirling series.

Asymptotic series may be viewed as still another form of acceleration method. Though
usually divergent, their partial sums have a property which makes them useful. The classic
situation involves sums of the form

L

S,(x)=2,—=

=23
which diverge for all x as » tends to infinity, but such that
im x"[f(x) = S,(x)] =0

for x tending to infinity. The error in using S,(x) as an approximation to f(x) for large
arguments x can then be estimated very easily, simply by looking at the first omitted term of
the series. Stirling’s series is a famous example of such an asymptotic series. This same
general idea can also be extended to other types of sum.

Integration by parts converts many common integrals into asymptotic series. For large x
this may be the best way for evaluating these integrals.

Solved Problems

THE TELESCOPING METHOD

n ;—1
17.1. Evaluate ). log l—
i=2 1
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17.2.

17.3.

17.4.

17.5.

This is another telescoping sum. We easily find

2 2 [log(i — 1) —logi] = —logn
The telescoping method is of course the summation of differences as discussed in Chapter 5. The sum

ar

b b
L y: can be easily evaluated if y; can be expressed as a difference, for then ¥, y,= Y AY,=Y,., - Y,.

i=u

Evaluate the power sum Z i
i=1
Since powers can be expressed in terms of factorial polynomials, which in turn can be expressed as
differences (see Chapter 4), any such power sum can be telescoped. In the present example

= i [{P+7i® +6i® + D] = 2 A[ i@ +—-,‘3)+—6-1(“) +_1.l(5)]
3 4 5

i=1

[:4;

¥

1 7 6 1 1
== @ (O @ 4 - ) — 2 _
2(n+1) +3(n+1) +4(n+1) +5(n+1) 30n(n+1)(2n+1)(3n +3n—1)

Other power sums are treated in similar fashion.

Evaluate Zn] F+3i+2).
i=1

Since power sums may be evaluated by summing differences, sums of polynomial values are easy
bonuses. For example,

2:+321+22 n(n+1)(2n+1) 3,,(n+1) v

i=1 =1 =1 2

1
Evaluate ) —
Va““,g.l(z+1)(z+2)

This can also be written as a sum of differences. Recalling the factorial polynomials with negative
1 1

2(+1) 26+D)(+2) iG+DG+2)

exponent, of Chapter 4, we find

1
4 2+ 1)(n +2)

and it follows that the given
sum telescopes to

1
In this example the infinite series is convergent and 1}_: m T

3
Evaluate 121 3

Simple rational functions such as this (and in Problem 17.4) are easily summed. Here

3 _i(i_L) PR ST S S
ZiGi+3) 2\i i+3 A TS T AT

3 11
The infinite series converges to )] W+3) =%
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RAPIDLY CONVERGENT SERIES

17.6.

17.7.

17.8.

How many terms of the Taylor series for sinx in powers of x are needed to provide
eight-place accuracy for all arguments between 0 and z/2?

Since the series sinx = ¥ (—1)x¥*!/(2i +1)! is alternating with steadily decreasing terms, the
i=0

truncation error made by using only n terms will not exceed the (n + 1)th term. This important property
of such series makes truncation error estimation relatively easy. Here we find (7/2)**/15!=8-10"" so
that seven terms of the sine series are adequate for eight-place accuracy over the entire interval.

This is an example of a rapidly convergent series. Since other arguments may be handled by the
periodicity feature of this function, all arguments are covered. Notice, however, that a serious loss of
significant digits can occur in argument reduction. For instance, with x =31.4 we find

sinx = sin 31.4 = sin (31.4 — 10x) = sin (31.4 — 31.416) = sin (-.016) = — .016
In the same way sin 31.3 = —.116 while sin 31.5 = .084. This means that although the input data 31.4 is
known to three significant figures the output is not certain even to one significant figure. Essentially it is

the number of digits to the right of the decimal point in the argument x which determines the accuracy
obtainable in sinx.

How many terms of the Taylor series for e* in powers of x are needed to provide eight-place
accuracy for all arguments between 0 and 1?

The series is the familiar e* = ¥, x'/i!. Since this is not an alternating series, the truncation error
i=0

may not be less than the first omitted term. Here we resort to a simple comparison test. Suppose we
truncate the series after the x" term. Then the error is

@ xi n+1 x x2
=l ————— -+
it (n+ 1) [ n+2 (n+2)(n+3) ]
and since x <1 this error will not exceed
xn+l [ 1 1 ] xn +1 1 xn+1 n+2
— | 1+—+ s+ | = = —
(n+1)! n+2 (n+2) m+D'1-1/(n+2) (m+Din+1

so that it barely exceeds the first omitted term. For n =11 this error bound becomes about 2 - 10™° so
that a polynomial of degree eleven is indicated. For example, at x =1 the successive terms are as
follows:

1.00000000 .50000000 .04166667 .00138889 .00002480 .00000028
1.00000000 .16666667 .00833333 00019841 00000276 .00000003

and their total is 2.71828184. This is wrong by one unit in the last place because of roundoff errors.
The error could also have been estimated using Lagrange’s form (Problem 11.4), which gives

1

—— 5! ith0< &<
(n+1)!ex with 0 <& <x

Compute e~ to six significant digits.

This problem illustrates an important difference. For six places we could proceed as in Problem
17.7, with x = —10. The series would however converge very slowly and there is trouble of another sort.
In obtaining this small number as a difference of larger numbers we lose digits. Working to eight places
we would obtain e~'*=.00004540 which has only four significant digits. Such loss is frequent with
alternating series. Occasionally double-precision arithmetic (working to twice as many places)
overcomes the trouble. Here, however, we simply compute ¢'® and then take the reciprocal. The result

is e '°=.0000453999 which is correct to the last digit.
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In Problem 14.34 the integral (2/V/7) 3 e~ dt was calculated by the Taylor series method for
x =1. Suppose the series is used for larger x, but to avoid roundoff error growth no more than
twenty terms are to be summed. How large can x be made, consistent with four-place
accuracy?

The nth term of the integrated series is 2x*~*/\/(2n — 1)(n — 1)! apart from the sign. Since this
series alternates, with steadily decreasing terms, the truncation error will not exceed the first omitted
term.

Using 20 terms we require that (2/V7)x*'/41 - 201 <5-1075. This leads to x <2.5 approximately.
For such arguments the series converges rapidly enough to meet our stipulations. For larger arguments it
does not.

ACCELERATION METHODS

17.10.

17.11.

Not all series converge as rapidly as those of the previous problems. From the binomial series
—1~=1—x2+x4—x"’+- .-
142

one finds by integrating between 0 and x that

1 1 1
¢ =x 3o T
arctanx =x =zx”+ 20— _x
At x =1 this gives the Leibnitz series
Z_,_ 1,11
477 375 7

How many terms of this series would be needed to yield four-place accuracy?

Since the series is alternating with steadily decreasing terms, the truncation error cannot exceed the
first term omitted. If this term is to be .00005 or less, we must use terms out to about 1/20,000. This
comes to 10,000 terms. In summing so large a number of terms we can expect roundoff errors to
accumulate to 100 times the maximum individual roundoff. But the accumulation could grow to 10,000
times that maximum if we were unbelievably unlucky. At any rate this series does not lead to a pleasant
algorithm for computing 7 /4.

Apply the Euler transformation of Chapter 11 to the series of the preceding problem to
obtain four-place accuracy.

The best procedure is to sum the early terms and apply the transformation to the rest. For example,
to five places,

11 1
1 3+5 19~.76046
The next few reciprocals and their differences are as follows:

04762

—414
104348 66

—348 -14
04000 52 3

-296 ~11
.03704 41

—255

.03448
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The Euler transformation is

L (=1 Ay 11 1,
yc‘)’x‘*’)’z‘)’s"""=2(_TO=*}’0‘_AYU+'A‘YO""
- 2 2 4 8

and applied to our table produces
-02381 +.00104 + .00008 + .00001 = .02494

Finally we have
I 1.1 1
Z—I—S+§—i+- -+ =.76046 +.02494 = 78540

which is correct to five places. In all, 15 terms of the original series have seen action rather than 10,000.

The Euler transformation often produces superb acceleration like this, but it can also fail.

COIHPUte -7[/4 from the formula
— =2 arctan - + arctan 2 arctan
a . -+ -

working to eight digits.

This illustrates how special properties of the function involved may be used to bring accelerated
convergence. The series
1 1 1
arctanx =x —=x’+-x’——x"+---
3 5 7

converges quickly for the arguments now involved. We find using no more than five terms of the series:
1 1 1
2 arctan 5= .39479112 arctan 7= .14189705 2 arctan 3= .24870998

with a total of .78539815. The last digit should be a 6.

How many terms of % 711 would be needed to evaluate the series correct to three places?
=1

Terms beginning with i = 45 are all smaller than .0005, so that none of these individually affects the
third decimal place. Since all terms are positive, however, it is clear that collectively the terms from
i =45 onward will affect the third place, perhaps even the second. Stegun and Abramowitz (Journal of
SIAM, 1956) showed that 5745 terms are actually required for three-place accuracy. This is a good
example of a slowly convergent series of positive terms.

Evaluate the series of Problem 17.13 by the “comparison method,” correct to three places.
(This method is analogous to the evaluation of singular integrals by subtracting out the
singularity.)

The comparison method involves introducing a known series of the same rate of convergence. For
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17.15.

17.16.

17.17.

example,

||Mx

1 +l o1

2(z +1)
We will prove later that the first series on the right is .71:2/6. The second converges more rapidly than the
others, and we find
2 1 1,1 1 l 1 .1 1., 1 + 1 +
= lzz(z + 1) 2 ”0 90 272 650 1332 2450

with just ten terms being used. Subtracting from /6 ~ 1.64493 makes a final result of 1.07695, which
can be rounded to 1.077.

-+ =.56798

Verify that the result obtained in Problem 17.14 is correct to at least three places.

The truncation error of our series computation is

3

‘I»—'

ﬁ'Mg

l 10
-3

The fifst series on the right will later be proved to be x*/90, and the second comes to at least 1.08200.
This makes E <1.08234 —1.08200=.00034. Roundoff errors cannot exceed 11-5-107° since 11
numbers of five-place accuracy have been summed. The combined error therefore does not exceed
.0004, making our result correct to three places.

o 1
2(1+1) ;T‘

i=111

= 1
Apply the comparison method to I_Z:jl 2@+

This series was summed directly in the preceding problem. To illustrate how the comparison
method may be reapplied, however, notice that

- -y =
gz(1+l -2_“_;‘(1+1)

i=1l

. 1
Direct evaluation of the last series brings 1 ! L

1
tot—t——+ +- - - which comes to .51403.
Subtracting from 7*/90 we find 2 80 810 4352 16,250

12112(1 2 =1.08234 — 51403 = .56831

which agrees nicely with the results of the previous two problems, in which this same sum was computed
to be .56798 with an estimated error of .00034. The error estimate was almost perfect.

Evaluate E to four places.

The series converges a little too slowly for comfort. Applying the comparison method,
= 1
=1+
gl -2(1—1) i(i +1) ,2212(1 it

The first series on the right is telescoping and was found in Problem 17.4 to be exactly . The last may be
summed directly,

11 1 1 1
LIS S SUE S S S
247216 T960 3000 " 7560 ' 16,464

and comes to .04787. Subtracting from 1.25, we have finally Z 1/i*=1.20213 which is correct to four
places. See Problem 17.39 for a more accurate result.
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THE BERNOULLI POLYNOMIALS
17.18. The Bernoulli polynomials B;(x) are defined by

t 2t
e A :Zoi_'Bi(x)

Let B;(0) = B; and develop a recursion for these B; numbers.

Replacing x by 0, we have

= 4
t=(e' — Z
© 1) r 1' (FEI]‘)(EO il ) Z 2
3 kAl B k=1 [k
with ¢, = m This makes k!c, =}, (l_)B,-. Comparing the coefficients of ¢ in the series
i=0 - i=0

equation above, we find that
k—1 k
By=1 E(i)B,:O fork=2,3,...
i=0

Written out, this set of equations shows how the B, may be determined one by one without difficulty:
By=1
By+2B,=0
By+ 3B, +3B,=0
By+4B,+ 6B, +4B,=0
etc. The first several B; are therefore

1 1 1 1
B=1 Bj=-5 B,=- B=0 B= N Bs=0 Be=4_2

and so on. The set of equations used can also be described in the form
(B+1)*-B*=0 fork=23,...

where it is understood that after applying the binomial theorem each “power” B’ is replaced by B

17.19. Find an explicit formula for the Bernoulli polynomials.

From the defining equation and the special case x =0 treated above,

ETET)-Zanw

i=o 1!
. . 1 - 1
Comparing the coefficients of ¢* on both sides makes i Bi(x)=Y Bk_i'(k")'xl or
! =i
51k
Bi(x) = 2 (i)Bk,,.x’
i=0
The first several Bernoulli polynomials are
3 1
By(x)=1 By(x)=x> ——x +2x
B(x)=x—1 B(x)=x*—-2+x*— =
k 2 N 30
1 5 5 1
B(x)=x’—x+= Bs(x)=x"—-Zx*+>x?-=
(X)) =x"—x 6 S(x) =x pX tyr gy
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17.22.

17.23.
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etc. The formula can be summarized as B.(x) = (x + B)* where once again it is to be understood that the
binomial theorem is applied and then each “power” B’ is replaced by B;.

Prove that B/(x) =iB;_,(x).

The defining equation can be written as

e & t'Bi(x)
=1+
e -1 ! ,gl il
Differentiating relative to x and dividing through by ¢,
e’ &[Bix)] .,
Lo L)) qy
o ;[ p ]t (-1

But the defining equations can also be written as

lext et ti—‘l
-1 & [Bi—l(x)][(i — 1)!]
and comparing coefficients on the right, B/(x) =iB,_i(x) for i=1,2,... . Notice also that the same

result can be obtained instantly by formal differentiation of B;(x) = (x + B)".

Prove B/(x + 1) — Bi(x) = ix'~".
Proceeding formally (even though a rigorous proof would not be too difficult from (B + 1)* = B,

vt § ([ 2 (e

(B+1+x) —i(B+1)x"" = (B +x)' ~ iBx'"

From the abbreviated formula for Bernoulli polynomials (Problem 17.19), this converts immediately to
B(x +1) = Bi(x)=ix"""

Prove B,(1) = B;(0) for i > 1.

This follows at once from the preceding problem with x replaced by zero.

Prove that [§ B(x)dx=0fori=1,2,....
By the previous problems

Bi(1) = Bs(0) _

0
i+1

J:B,(x)dx=

The conditions of Problems 17.20 and 17.23 also determine the Bernoulli polynomials, given
By(x) = 1. Determine B,(x) and B,(x) in this way.

From Bi(x) = By(x) it follows that B,(x) = x + C, where C, is a constant. For the integral of B,(x) to
be zero, C; must be — 3. Then from Bj(x) = 2B,(x) = 2x — 1 it follows that By(x) = x*>— x + Cs. For the
integral of By(x) to be zero, the constant C, must be §. In this way each B,(x) may be determined in its
turn.

Prove By, _;=0fori=2,3,...

Notice that
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is an even function, that is, f(t) = f(—¢). All odd powers of ¢ must have zero coefficients, making B; zero
for odd 7/ except i = 1.

17.26. Define the Bernoulli numbers b;.

These are defined as b, = (—1)"*'B,, fori=1,2, ... . Thus
1 1 7
b, = g b,= 3—0 b,= 5
1 5 3617
b2—3_0 bs—@ T
bl 601 43,867
T ¢ 2730 ° 798

as is easily verified after computing the corresponding numbers B, by the recursion formula of Problem
17.18.

17.27. Evaluate the sum of pth powers in terms of Bernoulli polynomials.
Since, by Problem 17.21, AB(x)=B(x+1)— B,(x)=ix""', the Bernoulli polynomials provide
“finite integrals” of the power functions. This makes it possible to telescope the power sum.

z 1 B,.\(n+1)— B, ,,(0)
P —~— AB,. =\ 7 77 PptiY)
on ;::Op-kl o1(x) p+1

17.28. Evaluate the sums of the form ¥ 1/k% in terms of Bernoulli numbers,
k=1

It will be proved later (see chapter on trigonometric approximation) that the function
E,.(x)=B,.(x) 0=x<1
E(x tm)=FE,(x) for m an integer

known as a Bernoulli function, having period 1, can be represented as

Q) &k
2 o sin 2mwkx
E, = (=102, .. —_—
for even n, and as (x)=(-1) n ey ATk

when n is odd. For even n, say n =2i, we put x =0 and have

E(x)=(—1)"*1 . n1. 2  cOs 27wkx

L

S L _ Ly BOED”
“ K

200!
But F,(0) = B,(0) = By, = (—1)*'b, and so % 1/k* = b,(21)*/2(2i)..
k=1
In particular, i 1/k* = n*/6, f 1/k* = m*/90, etc.
k=1 k=1

17.29. Show that all the Bernoulli numbers are positive and that they become arbitrarily large as i
increases.
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Noting that 1< i 1/k* = i 1/k* = n?/6 <2, we see that
k=1 k=1

2(2i)! 4(2i)!
2i i < 2
(2r) 2r)
In particular all the b, are positive and they grow limitlessly with increasing i.

2i
17.30. Show that as i increases, lim (2”,)
2(2i)!

b

;=

This also follows quickly from the series of Problem 17.28. All terms except the k =1 term
approach zero for increasing i, and because 1/x” is a decreasing function of x,

1<J'k ld
P p-1

As p increases (in our case p = 2i) this entire series has limit zero, which establishes the required result.
Since all terms of this series are positive, it also follows that b, >2(2i)!/(27)%.

THE EULER-MACLAURIN FORMULA

- 1 =1 1
so that, if p > 1, EF<,( Sdx=
k=2 1

estimate.)

17.31. Use the Bernoulli polynomials to derive the Euler—-Maclaurin formula with an error estimate.
(This formula was obtained in Chapter 11 by an operator computation, but without an error

We begin with an integration by parts, using the facts that B|(¢) = By(t)=1 and B,(1) = —-B,(0) = 1.
1 1 , 1 1

[yoa=[ yoBoa=2on- [ yosoa

0 0 0

Again integrate by parts using B(t) = 2B,(¢) from Problem 17.20 and B,(1) = B,(0) = b, to find

! 1 1 1!

f y@&ydt =2 (yo+y) =5 bi(yi—yo) +5 j yO(1)By(t) dt
o 2 2 2

The next integration by parts brings

3 [ O0B O a= 2080

1 1 1
-5 [ oorwa
0 0
But since By(1) = B;(0) = 0, the integrated term vanishes and we proceed to

1 1 1 1 1
z 0] — =3 = “)
5 f YIOB i = =50y OB() | +35 f YO WB() dt

1
=55 02008 = y§

1 1
+=| y*(
) 24J; Y (O)Bu(t) dt
since By(1) = B4(0) = B,= — b,. Continuing in this way, we develop the result

L y(D)at =%(YQ+y1) +> w(ytzf—l

& @y TR
where

1 1
Ri=——| y® (B

= 20! J; YOO Bk (2) dt
Integrating R, by parts the integrated part again vanishes, leaving

1 e
R~y | OB
* 40

173



174

17.32.

17.33.

SUMS AND SERIES [CHAP. 17

Corresponding results hold for the intervals between other consecutive integers. Summing, we find
substantial telescoping and obtain

n

; )’(t)dt+ (Yo+ya)— Zl((zzl))l (y&D — y@=1y

with an error of

E. =

G T Y OFn

where F(t) is the Bernoulli function of Problem 17.28, the periodic extension of the Bernoulli
polynomial B,.(¢). The same argument may be used between integer arguments a and b rather than 0
and n. We may also allow b to become infinite, provided that the series and the integral we encounter
are convergent. In this case we assume that y(¢) and its derivatives all become zero at infinity, so that
the formula becomes

(1B, @D

Sm[roa e 3 00

Evaluate the power sum Z i" by use of the Euler—Maclaurin formula.
<o
In this case the function y(¢) = r*, so that with k =2 the series of the preceding problem terminates.
Moreover, the error E, becomes zero since y®(t) is zero. The result is

i4:1n5+1n4+—1-(4n3) ﬁ(24n) n(n+1)(2 +1)(3n*+3n -1
L TET TR 720 n+ 1)@ +3n —1)

R

i

as in Problem 17.2. This is an example in which increasing & in the Euler—Maclaurin formula leads to a
finite sum. (The method of Problem 17.27 could also have been applied to this sum.)

. 1 1 .
Compute Euler’s constant C = lim (1 +-+=-+---+——log n> assuming convergence. (See
23 n
also Problem 17.77.)
1
Using Problem 17.1, this can be rewrittenas C =1+ 2 (z +log ——)

The Euler-Maclaurin formula may now be applied w1th y(t)=1/t —logt +log (t — 1). Actually it is
more convenient to sum the first few terms directly and then apply the Euler—Maclaurin formula to the
rest of the series. To eight places,

9
2( +logf)— 63174368

Using 10 and o as limits, we first compute

I t
f[f—logt+log(t—l)]dt=(1—t)log—
ol =1l

=—1+9log 10— 9log9 = —.05175536

the first term coming from the upper limit by evaluation of the “indeterminate form.” Next
L e=— 00268026 “Ly-- 00009259 Lo .00000020
20T PRI 72070 =

all values at infinity being zero. Summing the five terms just computed, we have C=.57721567.
Carrying ten places and computing only one more term would lead to the better approximation
C = 5772156650 which is itself one unit too large in the tenth place.

In this example the accuracy obtainable by the Euler-Maclaurin formula is limited. After a point,
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17.34.

using more terms (increasing k) leads to poorer approximations to Euler’s constant rather than better.

In other words, we have used a few terms of a divergent series to obtain our results. To see this we need
(=1)"*'b, (21‘ +9 1 )

— ———— ) and that b, .29 the b;

, Q)i \ 107 @ and that by Problem 17 e b,

exceed 2(2i)!/(2)* which guarantees the unlimited growth of this term. Divergence is more typical than

convergence for the Euler—Maclaurin series.

only note that the ith term of the series is

A truck can travel a distance of one “leg” on the maximum load of fuel it is capable of
carrying. Show that if an unlimited supply of fuel is available at the edge of a desert, then the
truck can cross the desert no matter what its width. Estimate how much fuel would be needed
to cross a desert 10 “legs” wide.

On just one load of fuel the truck could cross a desert one leg wide. With two loads available this
strategy could be followed: Loading up, the truck is driven out into the desert to a distance of one-third
leg. One-third load of fuel is left in a cache and the truck returns to the fuel depot just as its fuel
vanishes. On the second load it drives out to the cache, which is then used to fill up. With a full load the
truck can then be driven one more leg, thereby cross a desert of width (1 + ) legs, as shown in Fig. 17-1.
With three loads of fuel available at the depot two trips can be made to establish a cache of ¢ loads at a
distance of £ leg out into the desert. The third load then brings the truck to the cache with (2 + %) loads
available. Repeating the previous strategy then allows a journey of 1+ + § legs, as shown in Fig. 17-2.

. X First
First trip two trips
——— . D ;
O Second trip O Third_ﬂA
Depot D
e 9Cache epot 9 Cache
— 13 - 1 P 15 e 14}
Fig. 17-1 Fig. 17-2
. . 1.1 1 .
A similar strategy allows a desert of width {1+ 3 +§ +- +ﬁ to be crossed using # loads of
n —

fuel. Since this sum grows arbitrarily large with increasing n, a desert of any width can be crossed if
sufficient fuel is available at the depot.
To estimate how much fuel is needed to cross a desert ten legs wide, we write

P N (143434 --+i)—1(1+1+1+ +2)
3 2n—1 23 2n/ 2 2 3 n

and apply the approximation of Problem 17.33:

1 1 1
1+=4 e~ —=
3+ +2 1 log 2n) + C 2(logn+C)

1 1 1
== +log2+-C== .
2logn og 2C 2logn+ 98

This reaches ten for  equal to almost 100 million loads of fuel.

WALLIS’ INFINITE PRODUCT

17.35.

Obtain Wallis’ product for 7.
Repeated applications of the recursion formula

n

/2 —1 (2
f sin" x dx = f sin" "% x dx forn>1
0 0

n
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available in integral tables, easily brings the results

e 2k—-1 2k -3 1
102k — e e —
L sin® x dx = —— % %2 Z-L dx
e 2k 2%-2 2 (™
2k+l L Z. .. :
L et Ty g Ty L sinx dx
Evaluating the remaining integrals and dividing one result by the other,
/2
in% x de
2:2:4:4.646---2k -2k Lsmx

r_
2

1.3.3.5.5.7- (Zk )2k +1) fﬂz I

The quotient of the two integrals converges to 1 as k increases. This can be proved as follows. Since

0<sinx <1,
0<j z"“dec<J' sin® xdx<f “xdx

Dividing by the first integral and using the original recursion formula,

Jn'r/Z

sin® x dx
1=_® < 2k +1
j“a 12k +1 2k
sin®*! x dx
0

so that the quotient does have limit 1. Thus

T 2:2:4-4-6-6---2k 2k
2 1-3.3.5.5.7- (2k—1)(2k+1)

which is Wallis’ infinite product.

17.36. Obtain Wallis’ infinite product for V.
Since lim 2k/(2k +1) = 1, the result of the previous problem can be written as

7 2.8 (2k -2)

o lme———— 2 27

2 M EE k-1

Taking the square root and then filling in missing integers, we find

5 2k

T - (2k — 2) _ 22"(k')
\/;_h (k- \/_ im e v2k
from which Wallis’ product follows at once in the form
2% (k1)
= lim ——2
Vr=lim EARY

This will be needed in the next problem.

STIRLING’S SERIES FOR LARGE FACTORIALS
17.37. Derive Stirling’s series for large factorials.
In the Euler-Maclaurin formula let y(r) = log t and use the limits 1 and 7. Then

(=1)b; <1 l)ﬁ " Fun(t)

PES \ W

1
logl+log2+---+logn=nlogn—n+- logn+2 dt

=1(2)2i-1)



CHAP. 17] SUMS AND SERIES 177

This can be rearranged into

< (—l)ibl - F2k+1(t)
2 @)@i-Dnm ), 2+ e @
& (=1, T Fya(t)

where 2 @)2i-1) ) @+

1
logn!=(n +E) logn—n+c—

dt

To evaluate ¢ let n—>« in the previous equation. The finite sum has limit zero. The integral, since Fi,,
is periodic and hence bounded, behaves as 1/n* and so also has limit zero. Thus

| gn
) n-e .
c=1lim log ey i lim log a,

(n1)2e™ B (2n)l e

p2tt Xon = (Zn)2n+1/z

A simple artifice now evaluates this limit. Since o = we find

RO <t

Vn (2n)!
by Wallis’ product for V7. Thus ¢ = log V2. Our result can now be written as the Stirling series
o nte” by b, by + (—1)**'b,
S omn ™ 2n 3-4m 56 @k)@k = D
: Y B
the error being E, = Wdt For large n this means that the logarithm is near zero, making
nl=V2mn"*'"2e"

17.38. Approximate 20! by Stirling’s series.
1 1
For n =20 the series itself becomes —— ——————+...=.00417 to five places, only one term
being used. We now have 240 2,880, 000
log 20! = .00417 — 20 + log V27 + 20.5 log 20 = 42.33558
20!=2.43281- 10"

This is correct to almost five digits. More terms of the Stirling series could be used for even greater
accuracy, but it is important to realize that this series is not convergent. As k is increased beyond a
certain point, for fixed n, the terms increase and the error E grows larger. This follows from the fact
(see Problem 17.29) that by > 2(2k)!/(27)*. As will be proved shortly, the Stirling series is an example
of an asympiotic series.

17.39. Compute i 1/ to seven places.

Sum the first nine terms directly to find )] 1/i*=1.19653199. With f(¢f) = 1/ the Euler-Maclaurin
formula now involves

1 1 1
== = f(10) = .0005 -—f’ =, —_f® =
f .005 2f(l ) 12f (10) = .000025 720)‘ (10) =.00000008
and the total is 1.2020569. This improves the result of Problem 17.17.

ASYMPTOTIC SERIES
17.40. Define an asymptotic series.

Let S,(x) = i ax'. If for x—0, lim [f(x) — S,(x)}/x" =0 for any fixed positive integer n, then
i=0
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f(x) is said to be asymptotic to f] ax' at zero. This is represented by the symbol
i=0

flx)= E ax'
i=0
With x replaced by x — x, the same definition applies, the series being asymptotic to f(x) at x,.
Perhaps the most useful case of all is the asymptotic expansion at infinity. If for x— oo,
lim x"[f(x) = S.(x)] =0

where now S,(x) = ¥ a;/x’, then f(x) has an asymptotic series at infinity, and we write
=0
= g,
fE=>-
i=0X
The idea can be further generalized. If, for example,

@) -8skx) <
h(x) =

then we also say that f(x) has the following asymptotic representation:

1) =5) +h(x) 3

Note that none of these series is assumed to converge.

17.41. Obtain an asymptotic series for [T (e™'/z) dt.

Successive integrations by parts bring

gt e [Pet e* e @ gt
= *d;=__f ‘d’=___+2!J’ —-di
fx) L P X . 7 e . 7 t

and so on. Ultimately one finds

e~ o121 3 (n—1)!
= —_— t= X ___+___+‘~.+ "1’1+1‘]+R"
L I e R e
e'-l
tn+1

where R, = (— 1)"n!j dt. Since |R,| <n!e™*/x"**, we have

n!
<
X

v - 3 ELEE

so that as x — = this does have limit 0. This makes e*f(x) asymptotic to the series and by our generalized
definition

/11 2 3
flx)=e (*—;+;——4+"')

X X

Notice that the series diverges for every value of x.

17.42. Show that the truncation error involved in using the series of the preceding problem does not
exceed the first omitted term.

The truncation error is precisely R,. The first omitted term is (—1)"*%¢n!/x"*" which is identical
with the estimate of R, occurring in Problem 17.41.

17.43. Use the asymptotic series of Problem 17.41 to compute f(5).
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We find
e’f(5)=.2—.04 +.016 — .0096 + .00746 — .00746 + - - -

after which terms increase. Since the error does not exceed the first term we omit, only four terms need
be used, with the result
f(5)=e3(.166) = .00112

with the last digit doubtful. The point is, the series cannot produce f(5) more accurately than this. For
larger x arguments the accuracy attainable improves substantially but is still limited.

17.44. Use the series of Problem 17.41 to compute f(10).
We find, carrying six places,
e'°f(10) = .1 — .01 +.002 — .0006 + .00024 — .000120 + .000072
—.000050 +.000040 — .000036 + .000036 — - - -
after which the terms increase. Summing the first nine terms, we have
£(10) =e'°(.091582) = .0000041579

with the last digit doubtful. In the previous problem two-place accuracy was attainable. Here we have
managed four places. The essential idea of asymptotic series is that for increasing x arguments the error
tends to zero.

17.45. Prove that the Stirling series is asymptotic.

With n playing the role of x and the logarithm the role of f(x) (see Problem 17.37), we must show

B ®)
o (2k + 1)

that

lim n*7'E, = lim n%~ dt=0

Since F.(t) repeats, with period 1, the behavior of B,.,(¢) in the interval (0, 1) it is bounded, say
|F| <M. Then

nzk—lM

2k—1 <
< ek e

and with increasing » this becomes arbitrarily small.

17.46. Find an asymptotic series for [=e™"" dr.

The method of successive integrations by parts is again successful. First
- “ 1 1 ~1
j e P dr= f —=(—te"™ydt =27~ j Se 24t
x A X et

and continuing in this way we find

= a1 113 L 1:3---(2n=3)
[e ’2/2d2=e /zl:;—;"'x—s—"""(—l) IT}‘FR"

= 1
where R,=1-3:5---(2n—1) J e"z’zt;;dz. The remainder can be rewritten as

1305 Qn=1)

2n+1 R,

R, =
x

Since both remainders are positive, it follows that

3.5 .(2n—1
(IPELELAMIC k) szm,fzn ) -z
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17.47.

17.48.

17.49.

17.50.

17.51.

17.52.
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This achieves a double purpose. It shows that the truncation error does not exceed the first omitted
term. And since it also makes lim e**%x*""'R, = 0, it proves the series asymptotic.
jze"z’zdt:e"m(l—l+1'3— 1 -3-5+ - )
x x

X x

Compute V2/7 [ e~ dt by the series of Problem 17.46.
With x = 4 we find

-
2
\/; e~*[.25 - .015625 + .002930 — .000916 + .000401 — .000226

+.000155 — .000126 +.000118 — .000125 + - - -]

to the point where terms begin to increase. The result of stopping before the smallest term is

\E f e dg = 0000633266
T Ja

with the 2 digit in doubt. This agrees nicely with our results of Problem 14.32. Independent
computations which confirm one another are very reassuring. Note the difference in methods in these
two problems, and the simplicity of the present computation.

Find an asymptotic series for the sine integral.

Once again integration by parts proves useful. First

. “sint cosx [“cost
Si(x)=| —dt=—-— dt
.t x . 2

after which similar steps generate the series

— dl ~— —
t x x? x° x*

j”sint cosx sinx 2lcosx 3l!sinx
e

which can be proved asymptotic as in previous problems.

Compute Si (10).
Putting x = 10 in the previous problem,

Si (10) = —.083908 — .005440 + .001678 + .000326 — .000201
—.000065 + .000060 + .000027 — .000034 — .000019

after which both the cosine and sine terms start to grow larger. The total of these ten terms rounds to
—.0876, which is correct to four places.

Supplementary Problems

Express as a sum of differences and so evaluate ¥, (:*—3i +2).
i=1

n
Express as a sum of differences and so evaluate Y] i°

i=

. noo1
Express as a sum of differences and so evaluate ¥, — .
i=1i(i +2)
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17.53.

17.54.

17.55.

17.56.

17.57

17.58.

17.59.

17.60.

17.61.

17.62.

17.63.

17.64.

17.66.

17.67.

Evaluate the sum in Problem 17.51 by the Euler-Maclaurin formula.
Evaluate the sum in Problem 17.50 by the Euler-Maclaurin formula.

How many terms of the cosine series are needed to provide eight-place accuracy for arguments from 0 to
n/2?

Show that
1 1/ D 2D
yU'_y‘”Z_'"=1+Ey”=5<e"—1_e2”—1>y°
(14—t 16-1 _, 64—1
~(3-B P B D =S 0

where the B; are Bernoulli numbers. Apply this to the Leibnitz series for x/4 to obtain the six-place
result .785398.

1 1
Apply the Euler transformation to evaluate 1 — % + % - W + - - - to four places.
! 1. 1 1 . .
Use the Euler transformation to evaluate l——+——5+- - - to eight places, confirming the result
91596559. 9B
. 1 1 1
Use the Euler transformation to show that 1 ———+—————+- . to four places equals .0757.

log2 log3 log4

Apply the Euler transformation to log2=1-3+31-1+

i

For how large an argument x will twenty terms of the series

1 1 1
log(l+x)=x—-x*+-x’—>x*+...
glltx)=x—oxt43x—g
produce four-place accuracy?
. . 1, 1, .
How many terms of the cosine series cosx = 1 —Ex +ox e are needed to guarantee eight-place
accuracy for the interval from 0 to 7/2? 4
For how large an argument x will twenty terms of the series
1 1 1
arctanx =x — X +-x*—-x"+ -
3 5 7
produce six-place accuracy?
x3 .XS 7
For the series sinhx =x +—=+—+ =+ - estimate the truncation error in terms of the first term

35t 7t
omitted. (See Problem 17.7 for a possible method.) For how large an argument x will twenty terms be
enough for eight-place accuracy?

. Apply the comparison method of Problem 17.14 to compute f 1/(#+i+1) to three places. [Use
o i=1

¥ 1/(i +1)i =1 as the comparison series. ]

i=1

Compute f] 1/(* + 1) to three places by the comparison method using the result of Problem 17.17.
i=1

Compute f] 1/(i* + 2i + 2) to three places by the comparison method.
i=1
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17.68.

17.69.

17.70.

17.71.

17.72.

17.73.

17.74.

17.75.

17.76.

17.77.

17.78.

17.79.

17.80.

17.81.

17.82.

17.83.

17.84.

17.85.
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Compute Y, i/(i* + 1) to three places by the comparison method.
i=1

Determine the first ten b; numbers from the recursion of Problem 17.18.
Write out Be(x) through B,o(x) from the formula of Problem 17.19.
Prove [**!'B(x)dx =x".

Determine Bs(x) and B,(x) as in Problem 17.24.

‘What polynomials are determined by the conditions

Qi(x) =iQ:-1(x) 2:(0)=0
starting with Qo(x)=1?

Use Problem 17.28 to evaluate f} 1/k? for p =6, 8, and 10, verifying the results 7°/945, 78/9450, and
7°/93,555. k=1

Use the Euler-Maclaurin formula to prove Z"] ?=n*(n+1)*/4.
i=0
Use the Euler-Maclaurin formula to evaluate Z’] (% + 3i +2). Compare with Problem 17.3.
i=1

Use the Euler—-Maclaurin formula to show that
&1 1 > F(r
S,,=2—,—logn=C+—+f #dt
i=1 2n ), 1
where C is Euler’s constant and F(¢) is the periodic extension of B,(¢). This proves the convergence of
S, and also allows estimation of the difference between S, and C for large n.

By applying the Euler-Maclaurin formula, show that
(=1)*'b; (2i+1
(&

1 1 &
C=Zlog2+-+> ~—2 20
29857y ,.:21(21')(21'—1)

and use this to evaluate Euler’s constant C. Show that as k increases, the sum on the right becomes a
divergent series. At what point do the terms of this series begin to grow larger?

- 1) + error term

Referring to Problem 17.34, show that a desert of width five legs requires more than 3000 loads of fuel.

Compute f] 1/k°” to six places.
k=1

Compute Y, 1/(2k — 1)* to three places.
k=1

Evaluate } —}+ 4 — 4 + 25 — - - - exactly.
Evaluate the sum of Problem 17.81 exactly.

Show that the Euler transformation converts Y, ( — 3)* into a more rapidly convergent series.
k=0

Show that the Euler transformation converts Y. (—3)* into a more slowly convergent series.
k=0
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17.86. How accurately does the Stirling series produce 2! and at what point do the terms of the series start to
increase?

17.87. Derive the asymptotic series

sinPdi=cos (e 2433 T ying( e -2 3,309
% 2%° 25¢° 223 947 2611

and use it when x = 10, obtaining as much accuracy as you can.



Chapter 18

Difference Equations

DEFINITIONS

The term difference equation might be expected to refer to an equation involving differences.
However, an example such as

A% +2Ay +y. =0

which quickly collapses to y..,=0, shows that combinations of differences are not always
convenient, may even obscure information. As a result, difference equations are usually written
directly in terms of the y, values. As an example take

Ye+1= G Yie + by

where a, and b, are given functions of the integer argument k. This could be rewritten as
Ay, = (a; — 1)y + by but this is not normally found to be useful. In summary, a difference equation
is a relation between the values y, of a function defined on a discrete set of arguments x,. Assuming
the arguments equally spaced, the usual change of argument x, = x, + kh leaves us with an integer
argument k.

A solution of a difference equation will be a sequence of y, values for which the equation is true,
for some set of consecutive integers k. The nature of a difference equation allows solution sequences
to be computed recursively. In the above example, for instance, y,..; may be computed very simply if
Y is known. One known value thus triggers the computation of the entire sequence.

The order of a difference equation is the difference between the largest and smallest arguments k
appearing in it. The last example above has order one.

ANALOGY TO DIFFERENTIAL EQUATIONS

A strong analogy exists between the theory of difference equations and the theory of differential
equations. For example, a first-order equation normally has exactly one solution satisfying the initial
condition y,=A. ‘And a second-order equation normally has exactly one solution satisfying two
initial conditions y, = A, y, = B. Several further aspects of this analogy will be emphasized, such as
the following:

1. Procedures for finding solutions are similar in the two subjects. First-order linear equations
are solved in terms of sums, as the corresponding differential equations are solved in terms
of integrals. For example, the equation y.; =Xy, + Ces1 With yo=c, has the polynomial
solution

Ya=cCox"+ex" M4+,

Computation of this polynomial recursively, from the difference equation itself, is known as
Horner’s method for evaluating the polynomial. It is more economical than the standard
evaluation by powers.

2. The digamma function is defined as

Y(x)= E

z(z+x) -¢

where C is Euler’s constant. It is one summation form of the solution of the first-order
difference equation

1
M) =

184
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This also gives it the character of a finite integral of 1/(x + 1). For integer arguments #, it
follows that
51
Y(n)= 2 7 €
k=1
This function plays a role in difference calculus somewhat analogous to that of the logarithm
function in differential calculus. Compare, for instance, these two formulas:
S 1 (b)) — y(a) _log(b+1)—log(a+1)

- dx
,zl(k+a)(k+b)_ b—a jl (x +a)(x +b) b—a

Various sums may be expressed in terms of the digamma function and its derivatives.
The above is one example. Another is

- 2k+1

=== (1) - p(0)— y'(1

PRl IORRIORERC)
which also proves to be 72/6.

_The gamma function is related to the digamma function by

'x+1)

T+ V@

The linear homogeneous second-order equation
Yerz F @1 Vo1t a2y =0
has the solution family Vi = Crldy + C2Ux

where u, and v, are themselves solutions and ¢, c, are arbitrary constants. As in the theory
of differential equations, this is called the principle of superposition. Any solution of the
equation can be expressed as such a superposition of u, and v, by proper choice of ¢, and
¢2, provided the Wronskian determinant

U Uy
Wi =

Up—1 Vg1
is not zero.
The case of constant coefficients, where @, and a, are constants, allows easy determination
of the solutions u, and v,. With 7, and r, the roots of the characteristic equation

P +ar+a,=0

these solutions are

k
u=rf ve=rk when a?>4a,
u, =rk v = krk when a?=4a,, ri=r,=r
—pko -
ur = R"sin kB v, =R* cos kO when a?<da,, r, rn= R(cos 8 t+isin 6)

The analogy with differential equations is apparent. The Wronskian determinants of these
Uy, Vi pairs are not zero, and so by superposition we may obtain all possible solutions of the
difference equation.

The Fibonacci numbers are solution values of

Yie+2 = Yr+11 Y

and by case 1 above may be represented by real power functions. They have some
applications in information theory.
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The nonhomogeneous equation
Yera + @1 Yis1 T a2y = by
has the solution family Vi = Cily + U + Y,

where u;, v, are as above and Y} is one solution of the given equation. This is also
analogous to a result of differential equations. For certain elementary functions b it is
possible to deduce the corresponding solution Y, very simply.

IMPORTANCE OF DIFFERENCE EQUATIONS

Our interest in difference equations is twofold. First, they do occur in applications. And second,
numerous methods for the approximate solution of differential equations involve replacing them by
difference equations as substitutes.

Solved Problems

FIRST-ORDER EQUATIONS

18.1.

18.2.

18.3.

18.4.

Solve the first-order equation y,.,; = ky, + k* recursively, given the initial condition y, = 1.

This problem illustrates the appeal of difference equations in computation. Successive y, values are
found simply by doing the indicated additions and multiplications,

»=0 »=1 y:=6 ya=27 ys =124

and so on. Initial-value problems of difference equations may always be solved in this simple recursive
fashion. Often, however, one wishes to know the character of the solution function, making an analytic
representation of the solution desirable. Only in certain cases have such representations been found.

Given the functions a, and b,, what is the character of the solution of the linear first-order
equation yy..1 = ax ¥, + b, with initial condition y,=A?
Proceeding as in the previous problem, we find
i =aA+ b,
w=ay+b =awA+aby+b;
Ys=ay ¥, + by =aea,0,A + a,a,by + ab, + b,
etc. With p, denoting the product p, =aea, - - - a,_,, the indicated result appears to be

mp(a Dy e
Py P2 Pn

This could be verified formally by substitution. As in the case of linear first-order differential equations,
this result is only partially satisfactory. With differential equations the solution can be expressed in terms
of an integral. Here we have a sum. In certain cases, however, further progress is possible. It is
important to notice that there is exactly one solution which satisfies the difference equation and assumes
the prescribed initial value y, = A.

What is the character of the solution function in the special case a, =r, b, =0?
Here the result of Problem 18.2 simplifies to the power function y, = Ar". Such power functions

play an important role in the solution of other equations also.

What is the character of the solution function when a, =r and b, =1, with yy,=A=1?
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Now the result of Problem 18.2 simplifies to

n+1

rr =1
=T T
% r—1

18.5. What is the character of the solution function of y;.1 = xy; + ¢pry With yo=A = ¢y?

This problem serves as a good illustration of how simple functions are sometimes best evaluated by
difference equation procedures. Here the result of Problem 18.2 becomes

Ya=Cox"Fex" M4+,

The solution takes the form of a polynomial. Horner’s method for evaluating this polynomial at
argument x involves computing y;, y», . .., ¥, successively. This amounts to n multiplications and »
additions, and is equivalent to rearranging the polynomial into

Yo =Cot X(Car -+ - +x(cs + x(c2+ x(c)y +xC0))))

It is more efficient than building up the powers of x one by one and then evaluating by the standard
polynomial form.

. . k+1 e
18.6. What is the character of the solution of y,.; = ——y, + 1 with initial value y, = 1?
x

Here the p, of Problem 18.2 becomes p,=n!/x", while all b, =1. The solution is therefore
expressible as
w _ X"Yn 1 1
A1 U N g
pn n! 2 n!

so that for increasing n, limx"y,/n! = ¢*.

18.7. What is the character of the solution of y,,, =[1 —x%/(k + 1)*]y, with y,=1?

Here all the b, of Problem 18.2 are zero and A = 1, making

This product vanishes for x = £1, +2, ..., +n. For increasing n we encounter the infinite product
© 2
iy = 1 [1- 2]
my, =11 k+17

which can be shown to represent (sin x)/7x.

THE DIGAMMA FUNCTION

18.8. The method of summing by “telescoping” depends upon being able to express a sum as a sum
of differences,

n n
2 b= 2 AYr = Yne1— Yo
k=0 k=0
That is, it requires solving the first-order difference equation

Ay = Y1 — Y = by

Apply this method when b, =1/(k + 1), solving the difference equation and evaluating the
sum.

Start by defining the digamma function as y(x) = f] ﬁ—C where C is Euler’s constant.
i=1
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Directly we find for any x # —i,

> x+1 X
Ay =ylrrl) - (x)=§ [z(l+x+ 1) t(i+x)]
S 1 1
ik

i+x+1/ x+1

When x takes integer values, say x = k, this provides a new form for the sum of integer reciprocals, since
n—1 1 n—1
o= 2 Aw(k) = p(n) = p(0) = y(n) + C
k:l)k + 1 k=0

We may also rewrite this as
Y(n)= 2 7= C
i1k

so that the digamma function for integer arguments is a familiar quantity. Its behavior is shown in Fig.
18-1, and the logarithmic character for large positive x is no surprise when one recalls the definition of
Euler’s constant. In a sense (x) generalizes from w(n) much as the gamma function generalizes
factorials.

w(x)

Fig. 18-1

18.9. Evaluate the sum ), 1/(k +¢) for arbitrary ¢.
k=1
From Problem 18.8, for any x, ¥(x + 1) — yw(x) = 1/(x + 1). Replace x by k + ¢ — 1 to obtain

1
k+¢ k+t—-1
Wik +0) — w( )=
Now we have the ingredients of a telescoping sum and find

5 R
Zlm E[W(k+t)—w(k+t—l)] Y+ — ()

18.10. Evaluate the series i 1/(k +a)(k + b) in terms of the digamma function.
k=1

Using partial fractions, we find

n

z 1
2(k+a)(k+b) b- aZ,<k+a k+b)

Now applying the previous problem, this becomes

S =ﬁ[w(n +a)=y(@) = y(n+b)+ y(b)]
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From the series definition in Problem 18.8 it follows after a brief calculation that

1

y(n+a)-yn+b)=(a- b)zm

so that for n—  this difference has limit zero. Finally,

S o - v(®)—v(a)
2(k+a)(k+b) fims, ==

18.11. Find formulas for y’'(x), 9@ (x), etc., in series form.

Differentiating the series of Problem 18.8 produces v’(x)= i 1/(k +x)*. Since this converges
k=1
uniformly in x on any interval not including a negative integer, the computation is valid. Repeating,
- )
vOE) =2 YO =2

P k+x)3 Zk+x)

etc.

In particular, for integer arguments, Problem 17.28 makes v'(0) = f} 1/k* = 7°/6 after which we lose
one term at a time to obtain k=1

( ) K 1 (2) —_——1—- and in gellelal Yy (Z) 6 4 n-
18.12. Evaluate the series 2 k(k + ])2

This further illustrates how sums and series involving rational terms in k may be evaluated in terms
of the digamma function. Again introducing partial fractions,
- 2k+1 - |:1 _ 1 + 1 ]
k=1 k(k+1) Sk k+1 (k+1)

The first two terms cannot be handled separately since the series would diverge. They can, however, be
handled together as in Problem 18.10. The result is

M
M

= 1 1 N i
,‘El[k(k+1) (k+1)2] wil)= (0)“"(1)'6

Other sums of rational terms may be treated in similar fashion.

18.13. Evaluate the series Z S e

Summing the squares as in Problem 5.2 we may replace this by

i 6 6 24)

6 6, 6 _
:k(k+1)(2k+1) “(k k+1 2k+1

Since no one of these three series is individually convergent, we do not treat each separately. Extending
the device used in the problem just solved we may, however, rewrite the combination as

2 [("‘) (%‘E) (21(211 2k>] g [k(k+1) k(k6+ 2)]
= sty () - w1+ 12 v (3) - v )|
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where Problem 18.10 has been used twice in the last step. Finally,

18.14.

- 1 )
2112+22+.”+kz_12u’(i>—6+12c

Show that $(x) =T"(x + 1)/T(x + 1) also has the property A¥(x) =1/(x + 1), where I'(x) is
the gamma function.

The gamma function is defined for positive x by
I(x)= j et adr
0

Integration by parts exposes the familiar feature
I(x +1)=xT(x)
and then differentiation brings I''(x + 1) =xI"(x) + I'(x), or
Mx+1) I'x) 1
Mx+1) Tx) =x
from which the required result follows upon replacing x by x + 1.
Since y(x + 1) — y(x) =1/(x + 1), we find that
I'(x+1) _
Tarn Y®=4

where A is a constant, and where x is restricted to a discrete set with unit spacing. The same result can
be proved for all x except negative integers, the constant A being zero.

LINEAR SECOND-ORDER EQUATION, HOMOGENEOUS CASE

18.15.

18.16.

The difference equation Y.z + a3 Yx+1 + @2y =0 in which @, and a, may depend upon £ is
called linear and homogeneous. Prove that if u, and v, are solutions, then so are ¢,u + C2Ux
for arbitrary constants ¢; and c,. (It is this feature that identifies a linear homogeneous
equation. The equation is homogeneous because y, =0 is a solution.)

Since .2+ @ity + a2t =0 and Vii, + @, Veer + a2, =0, it follows at once by multiplying the
first equation by c;, the second equation by c,, and adding that

Crthrz + ColUisz + A1(C1llis 1 + CoUk11) + A2(Crtle + cu) =0

which was to be proved.

Show that for a, and a, constant, two real solutions can be found in terms of elementary
functions.
First suppose a; > 4a,. Then we may take
w,=rk Ve =ri
where r, and r, are the distinct real roots of the quadratic equation r’+a,r +a,=0. To prove this we

verify directly that
Upr + Qg + au =1*(FP +ayr +a) =0
where r is either root. The quadratic equation involved here is known as the characteristic equation.

Next suppose aj=4a,. Then the characteristic equation has only one root, say r, and can be
rewritten as

1 2
r2+alr+a2=(r+5al) =0
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18.18.

18.19.
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Two real solutions are now available in
w, =r* v = kr®
The solution u, may be verified exactly as above. As for v,,
(k+2)r* " + ay(k + 1)r'* + agkr* = r*[k(r* + ayr + a2) + (2r +a,)r] =0

since both parentheses are zero.
Finally suppose a%<4a, Then the characteristic equation has complex conjugate roots Re
Substituting, we find
R%*?° + a,Re™ + a, = R*(cos 26 * i sin 20) + a,R(cos 6 £ i sin 6) + a,
=(R*cos20 +a;R cos 6§ +a,) £ i(R*sin 26 + a,R sin ) =0

+i0

This requires that both parentheses vanish:
R?*cos26 +a;Rcos O +a,=0 R?*sin260 + a,Rsin 6 =0
We now verify that two real solutions of the difference equation are
u, = R* sin k6 v, = R* cos k6
For example,
Upess + @yl yq + a2t = R*sin (k +2)60 + a,R**'sin (k + 1)8 + a,R* sin k6
= R*(sin k8)(R?cos 20 + a,R cos 0 + a,) + R*(cos kO)(R?sin 26 + a,R sin 6) =0

since both parentheses vanish. The proof for v, is almost identical.
It now follows that for a, and a, constant, the equation y,., + @, Yx+1 + @2y, =0 always has a family
of elementary solutions y, = ¢,uy + 2%

Solve the difference equation y;., —2Ay, .1 + ¥ =0 in terms of power functions, assuming
A>1.

Let y, = r* and substitute to find that r> — 24r + 1 =0 is necessary.

This leads to r = A+ VA*—1=r, r, and y, = c,r¥ + c,rk = cou + co0,.

One of these power functions grows arbitrarily large with k, and the other tends to zero, since r, > 1
but 0<r,<1. [The fact that r,=A —VA*—1<1 follows from (A —1)>=A4%+1-24<A?—1 after
taking square roots and transposing terms.]

Solve the equation y,,, — 2y,41 + ¥, = 0.

Here we have a} = 4a, =4. The only root of r¥»—2r +1=01is r = 1. This means that u, =1, v, =k
are solutions and that y, = ¢, + ¢,k is a family of solutions. This is hardly surprising in view of the fact
that this difference equation may be written as A%, =0.

Solve yiio — 2Ayi41 + yi =0 where A< 1.
Now a} <4a,. The roots of the characteristic equation become
Re*®=A+i\1—A*=cos @ isin6
where A =cos 6 and R =1. Thus u, = sin k6, v, = cos k6 and the family of solutions
Y = ¢y 8in kB + ¢, cos kO

is available.
The v, functions, when expressed as polynomials in A, are known as Chebyshev polynomials. For
example,
vo=1 v, =A v,=247—1

The difference equation of this problem is the recursion for the Chebyshev polynomials.
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18.20.

18.21.

18.22.

18.23.

18.24.
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Show that if two solutions of y..,+a;y..1+a,y, =0 agree in value at two consecutive
integers k, then they must agree for all integers k. (Assume a, #0.)

Let u, and v, be solutions which agree in value at k equal to m and m + 1. Then their difference
dy = U — Uy is a solution (by Problem 18.15) for which d,, = d,,., = 0. But then

szt Q18iyy + a2d, =0 sy + 018 + 02d,, 1 =0

from which it follows that d,.,=0 and d,,_,=0. In the same way we may prove d, to be zero for
k>m +2 and for kK <m — 1, taking each integer in its turn. Thus d; is identically zero and u, = v,. (The
assumption a, # 0 merely guarantees that we do have a second-order difference equation.)

Show that any solution of y, ., + a; yi+1 + a2y, =0 may be expressed as a combination of two
particular solutions u, and v,

Yie = Crlg T CoUg
provided that the Wronskian determinant
Uy Uy
U1 Vk-1

#0

Wy =

We know that c,u + c,u; is a solution. By the previous problem it will be identical with the
solution y, if it agrees with y, for two consecutive integer values of k. In order to obtain such agreement
we choose k =0 and k =1 (any other consecutive integers would do) and determine the coefficients ¢,
and ¢, by the equations

Cilhg T C2U0= Yo G + U =Y

The unique solution is ¢, = (y;Uo — YoU1)/ W1, C2(Yolts — yitdo)/w, since  w; #0.

Show that if the Wronskian determinant is zero for one value of k, it must be identically zero,
assuming i, vy to be solutions of the equation of Problem 18.20. Apply this to the particular
case of Problem 18.16 to prove w, #0.

We compute the difference
Aw, = (uk+1vk - Uk+1uk) - (ukval - vkuk—1)
=Ue(—a Uy ~ Aty 1) — w(—a Ve — A2V 1) = UpVpoy + Uy
=(a;— Dwe= w1 — Wi
from which it soon follows that w, = aw,. Since a, # 0, the only way for w; to be zero is to have w,=0.
But then w, is identically zero.
When w, is identically zero, it follows that u, /v, is the same as u,_,/v,_, for all k, that is,

u, /v, = constant. Since this is definitely not true for the u,, v, of Problem 18.16, w;, cannot be zero
there.

Solve by direct computation the second-order initial-value problem

Yier2 = Ye+1 T Vi Yo=0 n=1

Taking £ =0, 1, 2, .. . we easily find the successive y, values 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .
which are known as Fibonacci numbers. The computation clearly shows a growing solution but does not
bring out its exact character.

Determine the character of the solution of the previous problem.

Following the historical path mapped in Problems 18.15, 18.16, etc., we consider the characteristic
equation r* —r —1=0.



CHAP. 18] DIFFERENCE EQUATIONS 193

18.25.

18.26.

18.27

Since a3 >4a,, there are two real roots, namely r,, r, = (1 :t\/g)/Z. All solutions can therefore be
expressed in the form
() e
Yk =Cilly + U =0¢

)

1-V5
To satisfy the initial conditions, we need ¢,+c¢,=0 and c,( ( 2\/_
1 1 7/1+V5 1-5
2=%a“dy*=%( 2 )_< 2 )

2 ) =1. This makes

2

¢, =—c

Show that for the Fibonacci numbers, lim (ye.,/y:) = (1 + \/g)/Z.

For such results it is convenient to know the character of the solution function. Using the previous
problem we find, after a brief calculation,

Ve _1+V5 1-[(1-V5)/A+ V5
Vi 2 1-[1-VH/A+VEF
and (1 — V5)/(1+V/5) has absolute value less than 1, so that the required result follows.

The Fibonacci numbers occur in certain problems involving the transfer of information along
a communications channel. The capacity C of a channel is defined as C =lim (log y,)/k, the
logarithm being to base 2. Evaluate this limit.

Again the analytic character of the solution y, is needed. But it is available, and we find
logy, = log = +1o [(”—ﬁ)k—(l_%)k]
8 Yk g\/g 2 2 2

=1og\7+ log (1 +2\/§)k +log [1 - (:;\\g)k]
making C =lim {lo‘g(}c/—\/gl+logl—+2—\/§+%log [1— (:;\\g)k]}=logl+2\/§

THE NONHOMOGENEOUS CASE

. The equation y., + @, Yx41 + @2y = by is linear and nonhomogeneous. Show that if u, and v,

are solutions of the associated homogeneous equation (with b, replaced by 0) with
nonvanishing Wronskian and if Y} is one particular solution of the equation as it stands, then
every solution can be expressed as y.=c u, +c,ux+ Y where ¢, and c, are suitable
constants.

With y, denoting any solution of the nonhomogeneous equation, and Y, the particular solution,

Yerz F @1 Yisr + a2 Y0 = by
Yirota, Y1 +aYe=by
and subtracting, diirtayde, +ad, =0

where d, =y, — Y,. But this makes d, a solution of the homogeneous equation, so that d; = ¢,u, + ¢,v,.
Finally, y. = ¢,u, + c,u, + Y, which is the required result.

18.28. By the previous problem, to find all solutions of a nonhomogeneous equation we may find

just one such particular solution and attach it to the solution of the associated homogeneous
problem. Follow this procedure for yi., — yi41 — i = Ax~.
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18.29.

18.30.

18.31.

18.32.

18.33.

18.34.

18.35.
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When the term b, is a power function, a solution can usually be found which is itself a power
function. Here we try to determine the constant C so that Y, = Cx*.

Substitution leads to Cx*(x*> —x — 1) = Ax¥, making C = A/(x> —x — 1). All solutions are therefore
expressible as

(1 + \/3)* (1 -V5\E Ax
Ve =0y +c ) +

2 2 X
Should x*>— x — 1 =0, this effort fails.

For the preceding problem, how can a particular solution Y, be found in the case where
2
x*=x-1=0?

Try to determine C so that Y, = Ckx*.
Substitution leads to Cx*[(k +2)x* — (k + 1)x — k] = Ax* from which C = A/(2x* - x). This makes
Y, = Akx* /(2% — x).

For what sort of b, term may an elementary solution Y; be found?

Whenever b, is a power function or a sine or cosine function, the solution Y; has similar character.
Table 18.1 makes this somewhat more precise. If the Y, suggested in Table 18.1 includes a solution of
the associated homogeneous equation, then this Y, should be muitiplied by & until no such solutions are
included. Further examples of the effectiveness of this procedure will be given.

Table 18.1
b, Y,
Ax* Cx*
k" Co+ Cik+ Ck* + - -+ C k"
sin Ak or cos Ak C, sin Ak + C, cos Ak
k"x* x(Co+ Cik + Ck*+ - -+ C,k™)
x*sin Ak or x*cosAk x*(C, sin Ak + C, cos Ak)

Supplementary Problems

Given yi, =ry. +k and y,=A, compute yi,....,y, directly. Then discover the character of the
solution function.

Given y.1 =y +4 and y,=1, compute y,, ..., y, directly. What is the character of the solution
function? Can you discover the solution character for arbitrary y,?

If a debt is amortized by regular payments of size R, and is subject to interest rate i, the unpaid balance
1+ -1
is P, where P,.; = (1 +i)P. — R. The initial debt being F, = A, show that P, = A(1 +i)* - Rg—i)__'

Also show that to reduce P, to zero in exactly n payments (P, =0) we must take R = Ai/[1 - (1+i)™"].

Show that the difference equation ys.; = (k + 1)y, + (k + 1)! with initial condition y, =2 has the solution
Ve =k (k+2).

Solve yi.1 = ky + 2%k ! with y,=0.
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18.36.

18.37.

18.38.

18.39.

18.40

18.41.

18.42.

18.43.

18.44.

18.45.

18.46.

18.47.

18.48.

18.49.

18.50.

18.51.

18.52.

18.53.

18.54.

18.55.

18.56.

18.57.

18.58.

Apply Horner’s method of Problem 18.5 to evaluate p(x)=1+x +x*+---+x%atx = 1.
Adapt Horner’s method to p(x) =x —x*/3!1 + x*/5! — x7/71 + x°/9\.

Show that for k£ >0, (k + 1)y... + ky, =2k — 3 has the solution y, =1—2/k.

Show that the nonlinear equation y,.; = y,/(1 + y,) has the solutions y, = C/(1 + Ck).
Solve the equation Ay, = (1/k — 1)y, with initial condition y; = 1.

Compute y@(0), ¥(1), and y®(2) from the results in Problem 18.11. What general result is indicated
for integer arguments?

Evaluate )“j 1/k(k + 2) in terms of the v function.
k=1

Evaluate 3 1/k*(k + 2)%, using Problem 18.41.
k=1

Compute ¥(3) to three places from the series definition, using an acceleration device. Then compute
w(3) and y(-3) from Ay(x) =1/(x + 1).

What is the behavior of y(x) as x approaches —1 from above?

Evaluate f] 1/P;(x) where Py(x) is the Legendre polynomial of degree three.
x=1

Evaluate f] 1/Ty(x) where Ty(x) = 4x* — 3x and is the Chebyshev polynomial of degree three.
x=1

Evaluate i 1/Py(x) where P,(x) is the Legendre polynomial of degree four.
x=1

Given .2+ 3y,41 + 2y, = 0 with initial conditions y,=2, y, =1, compute y,, . .., y;o directly.
Solve the preceding problem by the method of Problem 18.16.

Show that the solutions of Y., —4y,,, +4dy, =0 are yk=2"(c,+c2k), where ¢, ¢, are arbitrary
constants.

Find the solution family of y,., —y, =0. Also find the solution satisfying the initial conditions y, =0,
=1

Solve yirz2 ~ Tyis1 + 12y, = cos k with y,=0, y, =0.
Solve 4y,.2 + 4y, 11+ y, = k* with y, =0, y, =0.
Show that the solutions of y, > — 2y,41 + 2y, =0 are

k
Ve = €,(V2)* sin ”Tk +¢,(V2) cos %

Solve 2y,42 = 5Yir1 + 2y, = 0 with initial conditions y, =0, y, =1.
Solve Y.z + 6yis1 + 25y, = 2% with y, =0, y, =0.

Solve Yir2 — 4Yi+1 + 4y, = sin k + 2* with initial conditions y, =y, =0.



196

18.59.

18.60.

18.61.

18.62.

18.63.
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For what values of a are the solutions of yx,, — 2y:+; + (1 — @)y, =0 oscillatory in character?
SOIve Yirz2 = 2Vk+1 — 3y = Py(k) where Py(k) is the second-degree Legendre polynomial and y, =y, =0.
What is the character of the solutions of y, ., — 2ay,,, +ay, =0 for 0 <a <1? For a=1? For a >1?

Show that the nonlinear equation ., =a—b/Q, can be converted to the linear equation
Yi+2 — @i +1 + by, = 0 by the change of argument Qy =y, ,1/Vs-

Show that for N even there is no solution of y,,,— y, =0 satisfying the boundary conditions y, =0,
yw=1

Show that there are infinitely many solutions of the equation of the preceding problem satisfying
Yo=yn=0.

Show that there is exactly one solution of y,., — y, = 0 satisfying the boundary conditions y, =0, yy =1
if Nis odd. Find this solution. Also show that there is exactly one solution satisfying y, = yy =0, namely
ye=0.




Chapter 19

Differential Equations

THE CLASSICAL PROBLEM

Solving differential equations is one of the major problems of numerical analysis. This is because
such a wide variety of applications lead to differential equations, and so few can be solved
analytically. The classical initial value problem is to find a function y(x) which satisfies the first-order
differential equation y’' =f(x, y) and takes the initial value y(x,) = yo. A broad variety of methods
have been devised for the approximate solution of this problem, most of which have then been
generalized for treating higher-order problems as well. The present chapter is focused on solution
methods for this one problem.

1.

The method of isoclines is presented first. Based upon the geometrical interpretation of
y'(x) as the slope of the solution curve, it gives a qualitative view of the entire solution
family. The function f(x, y) defines the prescribed slope at each point. This “direction field”
determines the character of the solution curves.

The historical method of Euler involves computing a discrete set of y, values, for arguments
X, using the difference equation
Yeer1 = Yi + hf (xe, yi)

where & = x;.1 — x;. This is an obvious and no too accurate approximation of y' =f(x, y).

More efficient algorithms for computing solutions are then developed. Polynomial ap-
proximation is the basis of the most popular algorithms. Except for certain series methods,
what is actually computed is a sequence of values y, corresponding to a discrete set of
arguments x,, as in the Euler method. Most methods are equivalent to the replacement of
the given differential equation by a difference equation. The particular difference equation
obtained depends upon the choice of polynomial approximation.

The Taylor series is heavily used. If f(x, y) is an analytic function the successive derivatives
of y(x) may be obtained and the series for y(x) written out in standard Taylor format.
Sometimes a single series will serve for all arguments of interest. In other problems a single
series may converge too slowly to produce the required accuracy for all arguments of
interest and several Taylor series with different points of expansion may be used. The
eventual truncation of any such series means that the solution is being approximated by a
Taylor polynomial.

Runge-Kutta methods were developed to avoid the computation of high-order derivatives
which the Taylor method may involve. In place of these derivatives extra values of the given
function f(x, y) are used, in a way which duplicates the accuracy of a Taylor polynomial.
The most common formulas are

ky=hf(x, y)
k —hf/ +1h +1k)
2= (x 2 YTk
ki=h ( +1h +lk)
E f X 2 >y 2 2
ka=hf(x+h,y+ks)
1
y(x+h)=y(x)+6(k1+2k2+2k3+k4)
but there are numerous variations.

197



198 DIFFERENTIAL EQUATIONS [CHAP. 19

6. Predictor—corrector methods involve the use of one formula to make a prediction of the
next y, value, followed by the application of a more accurate corrector formula which then
provides successive improvements. Though slightly complex, such methods have the
advantage that from successive approximations to each y, value an estimate of the error may
be made. A simple predictor—corrector pair is

Yis1=Yi + hyi
1 ’ 1
Ye+1=Yi +§h(}’k + Yi+1)

the predictor being Euler’s formula and the corrector being known as the modified Euler
formula. Since y; =f(xx, ¥i) and yzi1 = f (Xx4+1, Yi+1) the predictor first estimates y, ;. This
estimate then leads to a y,.; value and then to a corrected y, ;. Further corrections of y; .,
and y, ., successively can be made until a satisfactory result is achieved.

7. The Milne method uses the predictor—corrector pair

4h ' ’ ’
Yer1=Yre—3t 3 (2Yk-2=Yi-1+2yi)

h 1 ! 1
Yier1 = Yr-1 +‘§(}’k+1 +4Yi+ Yi-1)

in which Simpson’s rule is easily recognized. It requires four previous values
(Yks Ye—15 Yk—2, Yi—3) to prime it. These must be obtained by a different method, often the
Taylor series.

8. The Adams method uses the predictor—corrector pair

h , . , ,
Ye+1 ==Yk +‘22 (55y% = 59y -1+ 37yr—2— 9yi—3)

R oo s ,
Yie+1 ==Yk +ﬂ (kw1 + 194 = 5yi—1+ Yi-2)
and like the Milne method requires four previous values.

ERROR

Truncation error is made when a partial sum is used to approximate the value of an infinite
series and this is perhaps the original use of the term, which is now used more loosely. When a
differential equation is replaced by a difference equation, a local truncation error is made with each
forward step from k to k + 1. These local errors then blend together in some obscure way to produce
the cumulative or global truncation error. It is rarely possible to follow error development through a
differential equations algorithm with any realism but some rough estimates are possible.

A convergent method is one which, when continually refined (more and more terms of a series
being used, or smaller and smaller intervals between successive arguments), yields a sequence of
approximate solutions converging to the exact solution. The Taylor, Runge-Kutta, and some
predictor—corrector methods will be proved convergent under appropriate circumstances. Conver-
gence proofs deal with truncation error only, ignoring the problem of roundoffs.

Roundoff error is, needless to say, present in all these methods, sometimes in an important way.
It is more elusive than truncation error and very limited success has rewarded the efforts made to
analyze it.

The relative error of an approximation, the ratio of error to exact solution, is usually of greater
interest than the error itself, since if the solution grows larger, then a larger error can probably be
tolerated. Even more important, if the exact solution diminishes, then error must do the same or it
will overwhelm the solution and computed results will be meaningless. The simple problem y’ = Ay,
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¥(0) =1, for which the exact solution is y = e**, often serves as a test case for tracing relative error
behavior in our various methods. One hopes that information obtained in this way will have some
relevance for the use of the same methods on the general equation y' =f(x, y). This may seem
optimistic, but the study of error has its limitations.

A stable method is one for which relative error remains bounded, hopefully by its initial value.
This is a strong requirement and one that may be hard to verify. Also, a method may be stable for
some equations and unstable for others. Only partial results can be offered, in particular for the
equation y' = Ay.

Error monitoring refers to a step-by-step effort to measure local truncation error and to use this
information for determining whether or not the current step size is suitable. With predictor-
corrector methods, a practical error estimate can be made using the predicted and corrected values.
With Runge-Kutta methods, a parallel computation using double step size leads to an error estimate
much as in adaptive integration. Here, as there, the objective is to attain a final result of specified
accuracy with minimum effort.

Solved Problems

THE METHOD OF ISOCLINES

19.1. Use the method of isoclines to determine the qualitative behavior of the solutions of
y'(x)=xy*.

This equation can of course be solved by elementary methods but we shall use it as a test case for
various approximation methods. The method of isoclines is based on the family of curves y’(x)=
constant which are not themselves solutions but are helpful in determining the character of solutions. In
this example the isoclines are the family xy* = M where M is the constant value of y’(x). Some of these
curves are sketched (dashed) in Fig. 19-1, with- M values indicated. Where a solution of the differential
equation crosses one of these isoclines it must have for its slope the M number of that isocline. A few
solution curves are also included (solid) in Fig. 19-1. Others can be sketched in, at least roughly.

Accuracy is not the goal of the isocline method but rather the general character of the solution
family. For example, there is symmetry about both axes. One solution through (0, 0) and those above it
have a U shape. Solutions below this are more unusual. Along y =0 different solutions can come
together. A solution can even include a piece of the x axis. One such solution might enter (0,0) on a
descending arc,- follow the x axis to (2,0) and then start upwards again as shown in Fig. 19-2. The
possible combinations of line and arc are countless. Information of this sort is often a useful guide when
efforts to compute accurate solutions are made.

Fig. 19-1 Fig. 192
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THE EULER METHOD

19.2.

19.3.

Illustrate the simplest Euler method for computing a solution of

y' =f@x y)y=xy" y(=1

This is perhaps the original device for converting the method of isoclines into a computational
scheme. It uses the formula

Xj41
}’k+1—)’k=J’ y'dx =hy;
Kk
which amounts to considering y’ constant between x, and x;,. It also amounts to the linear part of a
Taylor series, so that if y, and y, were known exactly the error in y,., would be 3A%y®(E). This is called
the local truncation error, since it is made in this step from x, to x,.,. Since it is fairly large, it follows
that rather small increments 4 would be needed for high accuracy.
The formula is seldom used in practice but serves to indicate the nature of the task ahead and some
of the difficulties to be faced. With x,, y,=1 three applications of this Euler formula, using & = .01,
bring

=1+ (.01)(1) = 1.0100
y,=1.0100 + (.01)(1.01)(1.0033) = 1.0201
y3=1.0201 + (.01)(1.02)(1.0067) = 1.0304

Near x = 1 we have y® =y"*+ xy **(xy'?) =3, which makes the truncation error in each step about

.00007. After three such errors, the fourth decimal place is already open to suspicion. A smaller
increment A is necessary if we hope for greater accuracy. The accumulation of truncation error is further
illustrated in Fig. 19-3 where the computed points have been joined to suggest a solution curve. Our
approximation amounts to following successively the tangent lines to various solutions of the equation.
As a result the approximation tends to follow the convex side of the solution curve. Notice also that

Euler’s formula is a nonlinear difference equation of order one: yi.i = yi + hxy:”.

exact solution

computed solution

Fig. 19-3

Illustrate the concept of convergence by comparing the results of applying Euler’s method
with & = .10, .05, and .01 with the correct solution y = [(x* + 2)/3]*.

Convergence refers to the improvement of approximations as the interval /4 tends to zero. A
method which does not converge is of doubtful value as an approximation scheme. Convergence for the
various schemes to be introduced will be proved later, but as circumstantial evidence the data of Table
19.1, obtained by Euler’s method, are suggestive. Only values for integer x arguments are included, all
others being suppressed for brevity.

Notice that across each row there is a reassuring trend toward the exact value. Using smaller
intervals means more computing. The value 25.96 in the bottom row, for instance, was obtained in 50
steps whereas the value 26.89 required 500 steps. The extra labor has brought an improvement, which
seems only fair. As A tends to zero the computation grows even longer and we hope that the results
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Table 19.1

x h=.10 h=.05 h=.01 Exact

1.00 1.00 1.00 1.00
2.72 2.78 2.82 2.83
6.71 6.87 6.99 7.02

14.08 14.39 14.63 14.70
25.96 26.48 26.89 27.00

[CURF U S R

approach the exact values as limits. This is the convergence concept. Needless to say, roundoff errors
will limit the accuracy attainable but they are not a part of the convergence issue.

THE TAYLOR METHOD

194.

Apply the local Taylor series method to obtain a solution of y’ =xy'?, y(1) =1 correct to
three places for arguments up to x =35.

Generally speaking the method involves using p(x +#) in place of y(x + &), where p(x) is the
Taylor polynomial for argument x. We may write directly

1
Y+ Ry = y(0) + hy () 4 HYO00) + Wy +20 Ay )

accepting a local truncation error of amount E = k°y®(£)/120.
The higher derivatives of y(x) are computed from the differential equation:

1, _ 1, _ _ 1 2,
ym(x)=§x2y 1y yO(x) = _gxsy L gy~ y9(x) =6x4y75/3_§x.y—1 Fyow

The initial condition y(1) =1 has been prescribed, so with x =1 and 4 = .1 we find

2 4 1
1+ D)=1+.1+Z(1) +=(1)’+=(1)*=1.
y( )1+1+3(1)+27(1)+54(1) 1.10682

Next apply the Taylor formula at x = 1.1 and find
y(1.1+.1)=1.22788 y(1.1 = .1) = 1.00000

The second of these serves as an accuracy check since it reproduces our first result to five-place
accuracy. (This is the same procedure used in Chapter 14 for the error function integral.) Continuing in
this way, the results presented in Table 19.2 are obtained. The exact solution is again included for
comparison. Though 4 =.1 was used, only values for x = 1(.5)5 are listed. Notice that the errors are
much smaller than those made in the Euler method with 4 =.01. The Taylor method is a more rapidly
convergent algorithm.

Table 19.2

x Taylor result Exact result Error
1.0 1.00000 1.00000

15 1.68618 1.68617 -1
2.0 2.82846 2.82843 -3
2.5 4.56042 4.56036 -6
3.0 7.02123 7.02113 -10
3.5 10.35252 10.35238 -14
4.0 14.69710 14.69694 -16
4.5 20.19842 20.19822 =20
5.0 27.00022 27.00000 -22
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19.5. Apply the Taylor method to y’ = —xy? to obtain the solution satisfying y(0) = 2.
The procedure of the preceding problem could be applied. Instead, however, an alternative will be
illustrated, essentially a method of undetermined coefficients. Assuming convergence at the outset, we

write the Taylor series y(x) = i a;x'. Then
i=0

w

y3(x) = @l a,x')(éo a,-x’) => <i aiak*,)x" y'(x)= 2 iax™!

k=0 N=0
Substituting into the differential equation and making minor changes in the indices of summation,
o » = i1
2 G+ Dax==3 <E L i)xl
j=0 j=1

i=0

Comparing coefficients of x’ makes a; =0 and

j-1
(G +Dajq= —Za,a,—_l,, forj=1,2,...
i=0
The initiai condition forces a, =2 and then we find recursively
1 2 1 2
a,= —§a0=—2 ag= —g(2aoa4+2a1a3+a2)=—2
1 1
as= —3(2a0a.)=0 a;= —7(2a0a5+2a1a4+2a2a3)=0
1 2 1 2
a=-7 Qaga, +a3)=2 ag = —§(2a0a6 +2a,as + 2a,a, + a3) =2

1
as= —§(2a0a3 +2a,a,) =0

and so on. The recursion can be programmed so that coefficients could be computed automatically as far
as desired. The indicated series is

yx)=2(1-x*+x*—x*+x*—--")
Since the exact solution is easily found to be y(x) =2/(1 + x?), the series obtained is no surprise.

This method sees frequent application. The principal assumption involved is that the solution does
actually have a series representation. In this case the series converges only for —1<x<1. For
—1 < x <} only six terms are needed to give three-place accuracy. In the previous problem a new Taylor
polynomial was used for each value computed. Here just one such polynomial is enough. The issue is
one of range and accuracy required. To proceed up to x =5, for example, the earlier method can be
used. In further contrast we may also note that in Problem 19.4 polynomials of fixed degree are used
and the convergence issue does not arise explicitly. Here in Problem 19.5 we introduce the entire series
into the differential equation, assuming y(x) analytic in the interva} of interest.

RUNGE-KUTTA METHODS
19.6. Find coefficients a, b, ¢, d, m, n, and p in order that the Runge—Kutta formulas
ky=hf(x,y)
k,=hf(x + mh, y + mk,)
ky=hf(x + nh, y + nk,)
ka=hf(x + ph, y + pk3)
y(x + h) — y(x) =ak, + bk, + ck; + dk,

duplicate the Taylor series through the term in h*. Note that the last formula, though not a
polynomial approximation, is then near the Taylor polynomial of degree four.
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We begin by expressing the Taylor series in a form which facilitates comparisons. Let

R=f+1ff Fo=fu+2f +17%, B =fo + 3ffuy + 3 f0y + 1%,
Then differentiating the equation y’ = f(x, y), we find

yO=f+hy =f+ff=F

YO = fo + 2 +Fhy + (L + ) = E+ £,

YO = foax + My + 3 Loy +F Foy + 5(fu + 2y + F7,) +3(F + ) (fy + ) +F2S + 1)
=FE+fE+3E(f, +ff,) + R

which allows the Taylor series to be written as
1 1 1
Y0+ 1) =y () = Bf + 5 R+ B (E+ L F) + 5 WUE 4 LF+3(F, +f,)F 4 f3F]+- -
Turning now to the various k values, similar computations produce
ky=hf
1 1
k, =h[f + mhF, + imzh2F2+gm3h3F5 +-- J
1 1
ks= h{f + nhF + 3 R (n’F, + 2mnf,F) + 3 W (n°F, + 3m°nf, B, + 6mn*(f,, + ff,,)F) + - - J
1 1
ky= h[f + phF, + > W (pE + 2npf,F) + s W (p°F, + 3n°pf, F, + 6np*(f., + ff,, ), + 6mnpf2F) + - - ]
Combining these as suggested by the final Runge-Kutta formula,
1
y(x+h)—yx)=(a+b+c+d)hf + (bm+cn+dp)h’F + 5 (bm? + cn* + dp*)h°F,
1 5 1
+ s (bm®> + cn’ + dp®)h*F, + (cmn + dnp)hf,F, + 3 (cm’n + dn’p)h*f,E

+ (cmn® + dnp”)h*(f., + ff,y)F, + dmnph*f2E + - - -

Comparison with the Taylor series now suggests the eight conditions

1
at+tb+c+d=1 cmn+dnp:g
1 N . 1
bm+cn+dp=5 cmn® + dnp =3
bm2+cn2+dp2=l cm’n +dn? -1
3 P=n
bm3+cn3+dp3=1 dmn -1
4 P=%
These eight equations in seven unknowns are actually somewhat redundant. The classical solution set is
1 1 1
m=n=3 p=1 a—d—g b—c—g
leading to the Runge-Kutta formulas
1 1 1 1
k=i@y)  amhf(seghyesk)  k=h(xeshy k)

ki=hf(x+h,y+ks) y(x+h)=y(x)+é(k1+2k2+2k3+k4)
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It is of some interest to notice that for f(x, y) independent of y this reduces to Simpson’s rule applied to

y'(x)=£ ).

What is the advantage of Runge—Kutta formulas over the Taylor method?

Though approximately the same as the Taylor polynomial of degree four, these formulas do not
require prior calculation of the higher derivatives of y(x), as the Taylor method does. Since the
differential equations arising in applications are often complicated, the calculation of derivatives can be
onerous. The Runge-Kutta formulas involve computation of f(x, y) at various positions instead and this
function occurs in the given equation. The method is very extensively used.

Apply the Runge—Kutta formula to y' =f(x, y) =xy"?, y(1) =1.
With xo=1and 2 =.1 we find

ki=(1fI, =1 Ky = (.1)f(1.05, 1.05336) = . 10684
ko= (1)f(1.05, 1.05) = . 10672 ko= (1)f(1.1, 1.10684) ~ . 11378

from which we compute
1
n=1+ g (.1+.21344 4+ .21368 +.11378) = 1.10682

This completes one step and we begin another with x; and y, in place of x, and y,, and continue in this
way. Since the method duplicates the Taylor series through h*, it is natural to expect results similar to
those found by the Taylor method. Table 19.3 makes a few comparisons and we do find differences in
the last two places. These are partly explained by the fact that the local truncation errors of the two
methods are not identical. Both are of the form Ch®, but the factor C is not the same. Also, roundoff
errors usually differ even between algorithms which are algebraically identical, which these are not.
Here the advantage is clearly with the Runge—Kutta formulas.

Table 19.3
x Taylor Runge-Kutta Exact
1 1.00000 1.00000 1.00000
2 2.82846 2.82843 2.82843
3 7.02123 7.02113 7.02113
4 14.69710 14.69693 14.69694
5 27.00022 26.99998 27.00000

Illustrate variations of the Runge—Kutta formulas.

It is not hard to verify that
1
Y+ ) =y +hf (x4 Ry 43 )

in which y denotes y(x), duplicates the Taylor series through terms of second degree. (See Problem
19.63). It is, therefore, known as a Runge-Kutta method of order two. Similarly,

ki=hf(x,y)

k2=hf<x +1h,y+1k1)
2 2

ks=hf(x+h,y —k,+2k,)

yx+h)=yx) +%(k1+4k2+k3)
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has order three. Other methods of order two and three also exist. The set
ki =hf(x, y)
1 1
k2=hf(x +Eh,y +§k,>
1 1 1
k;—hf(x +§h,y +Zkl+zk2)
ka=hf(x +h, y — ko + 2ks)

yx +h)=y(x) +%(k1 +4ks+ k,)

is an alternate method of order four, while the more exotic
ki=f(x,y)

1 1
kz—hf(x +5h,y+§k,>

1 1 1
k3—hf(x +-2—h,y +Zk1+2k2)

ko=hf(x +h,y —k,+2k;)

2 7 10 1
ks—hf(x +§h,y +Ekl+2_7k2+ﬁk4)

1 28 1 546 54 378
kﬁ_hf(x +gh,y+@k1—gk2+5§k3+@k4—@ 5>

5 27 125

1
y(x+h)—y(x)+ﬂk1 +4_8k4+%k5+ﬁk6

has order five. The higher the order, the greater is the diversity of possible methods, and the lower the
truncation error. A method of order n duplicates the Taylor series through terms of nth degree, and so

has truncation error
(1 +)pn+l

T=cy

which means that for a smooth function y(x) the computation can proceed with a relatively large # and
progress more rapidly. The development of high-order methods involves some strenuous algebra, and it
has been feasible only with the aid of computer programs for doing the manipulations.

CONVERGENCE OF THE TAYLOR METHOD

19.10. The equation y’ =y with y(0) = 1 has the exact solution y(x) = ¢*. Show that the approximate
values y, obtained by the Taylor method converge to this exact solution for % tending to zero
and p fixed. (The more familiar convergence concept keeps 4 fixed and lets p tend to infinity.)

The Taylor method involves approximating each correct value y,,,; by
1 > 1
Yo=Yt hYi4 S RY2 4 - +Eh”Y§(”)
For the present problem all the derivatives are the same, making

1 1
YH.=(1+h +—h2+---+“h")Yk=rYk
2 p!

When p =1 this reduces to the Euler method. In any case it is a difference equation of order one. Its
solution with ¥Y,=1is

1 1 3\*
Yk=r*=(1+h +—h2+~~+—'h”)
2 p!
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But by Taylor’s polynomial formula,

1 hP+l

_P+_ &h
LTI

e"=1+h+%h2+~~~+

with & between 0 and 1. Now recalling the identity

d—r=@-rnN@ 1t +ad 4+ +arf i+
we find for the case a >r >0, a* —r* <(a —r)ka*™!
Choosing a = e” and r as above, this last inequality becomes

hF"’l eéh k—1)h th+1 kh
(p+1)! (p+1)!

the last step being a consequence of 0 <& <1. The question of convergence concerns the behavior of
values computed for a fixed argument x as & tends to zero. Accordingly we put x, = kh and rewrite our
last result as

0<e* -Y, <

hP
0<e k—)’k<mxke 3

Now choose a sequence of step sizes 4, in such a way that x, recurs endlessly in the finite argument set
of each computation. (The simplest way is to continually halve h.) By the above inequality the sequence
of Y, values obtained at the fixed x, argument converges to the exact e*x as #”. The practical implication
is, of course, that the smaller % is chosen the closer the computed result draws to the exact solution.
Naturally roundoff errors, which have not been considered in this problem, will limit the accuracy
attainable.

How does the error of the Taylor approximation, as developed in the previous problem,
behave for a fixed step size as k increases, in other words as the computation is continued to
larger and larger amounts?

Note that this is not a convergence question, since 4 is fixed. It is a question of how the error, due
to truncation of the Taylor series at the term 4”, accumulates as the computation continues. By the last
inequality we see that the error contains the true solution as a factor. Actually it is the relative error
which may be more significant, since it is related to the number of significant digits in our computed
values. We find

hP
i

ex =Y,

ek

Relative error =

which, for fixed k4, grows linearly with x,.

Prove the convergence of the Taylor method for the general first-order equation y’ =f(x, y)
with initial condition y(x,) = y, under appropriate assumptions on f(x, y).

This generalizes the result of Problem 19.10. Continuing to use capital Y for the approximate
solution, the Taylor method makes

1 1
Yo=Y, +hY,L+§h2Y,9’+- Ct S hPYY)
p!

where all entries Y are computed from the differential equation. For example,

Yi=f(x, Yk) Y£2)=f;(xk' Yk) +fy(xk: Yk)f(xk’ Y =f’(xk) Yk)

and suppressing arguments for brevity,

Y =fu + 26 f + 5,17+ (f+ 50 =", Yo

it being understood that f and its derivatives are evaluated at x,, Y, and that Y, denotes the computed
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value at arguments x,. The other Y are obtained from similar, but more involved, formulas. If we use
¥(x) to represent the exact solution of the differential problem, then Taylor’s formula offers a similar
expression for y(x.1),

aa
(p+1)!

provided the exact solution actually has such derivatives. As usual £ is between x, and x,.,,. In view of
y'(x)=f(x, y(x)), we have

1 1
Y @ier1) =y (i) +hy'(xe) + Ehzy“’(xk) +e +-’;h”y"”(xk) + }’“’H)(E)

¥ () =f (x> y(x4))

and differentiating,
YO (xe) = fe (e, ¥ (i) + G y))f (e y (i) = £ (x5 y(xi))
In the same way YOx) = (e y(xa))

and so on. Subtraction now brings

1
Y @Ees1) = Yesr =y () = Yo + Ay’ (xe) - Yi] +5h2[y(2)(xk) -2
p+1

p+”

0(E)

o W) - YL+

Now notice that if f(x, y) satisfies a Lipschitz condition,
1" () = Yl = 1f (s y (30)) = f (e, YIS L |y () = il
We will further assume that f(x, y) is such that
1Y) = Y1 = 1D, y(x)) = F e YIS Lly(x) - Y

This can be proved to be true, for instance, fori =1, ..., p if f(x, y) has continuous derivatives through
order p + 1. This same condition also guarantees that the exact solution y(x) has continuous derivatives
through order p+1, a fact assumed above. Under these assumptions on f(x, y) we now let
di = y(xi) — Y, and have

denlSldl(1+hL+ 20+ - ~+thL>+ W g
e = Il : SPL) YT
where B is a bound on |y?*!(x)|. For brevity, this can be rewritten as
ldeal = A+ a) ldil + 8
1, 1 ot
where cr—L(h+5h +-"+E—!h"> ﬂ—mB
e —1
We now prove that ldl =8

The numbers o and B are positive. Since the exact and approximate solutions both satisfy the initial
condition, do =0 and the last inequality holds for ¥ = 0. To prove it by induction we assume it for some
nonnegative integer & and find

ko

e =1 1+ a)e*“—1 et~
e S+ app —tep =T g

o [+2

the last step following since 1+ a <e® The induction is therefore valid and the inequality holds for
nonnegative integers k. Since o = Lh + eh < Mh where € tends to zero with h, we can replace L by the
slightly larger M and obtain

B Mo -1

[)’(Xk)—Ykiém' 7

with the usual change of argument x, =x,+ kh, so that convergence is again like h”.
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19.13. What does the result of Problem 19.12 tell about the error for fixed h as the computation

continues to larger arguments x,?

The result is adequate for proving convergence, but since the exact solution is unknown it does not
lead at once to an estimate of the relative error. Further error analysis and an extrapolation to the limit
process have been explored.

19.14. Are Runge-Kutta methods also convergent?

Since these methods duplicate the Taylor series up to a point (in our example up to the term in h*),
the proof of convergence is similar to that just offered for the Taylor method itself. The details are more
complicated and will be omitted.

THE PREDICTOR-CORRECTOR METHOD
19.15. Derive the modified Euler formula y,.; =y, + 32(y} + y+..) and its local truncation error.

The formula can be produced by applying the trapezoidal rule to the integration of y' as follows:
k41 1
Ve =ye= [y dx = h(rit yin)
73

By Problem 14.66, the error in this application of the trapezoidal rule to y’ will be —#*y®(§)/12,
and this is the local truncation error. (Recall that local truncation error refers to error introduced by the
approximation made in the step from x, to X,.;, that is, in the integration process. Effectively we
pretend that y, and earlier values are known correctly.) Comparing our present result with that for the
simpler Euler method, we of course find the present error substantially smaller. This may be viewed as
the natural reward for using the trapezoidal rule rather than a still more primitive integation rule. It is
also interesting to note that instead of treating y' as constant between x, and X, so that y(x) is
supposed linear, we now treat y’ as linear in this interval, so that y(x) is supposed quadratic.

19.16. Apply the modified Euler formula to the problem y' =xy'?, y(1) = 1.

Though this method is seldom used for serious computing, it serves to illustrate the nature of the
predictor—corrector method. Assuming y, and y; already in hand, the two equations

1
Yier1 = Y +§h()’l’<+)’;<+1) Yier =F X1y Yier1)

are used to determine y,., and y4.;. An iterative algorithm much like those to be presented in Chapter
25 for determining roots of equations will be used. Applied successively, beginning with k=0, this
algorithm generates sequences of values y, and y;. It is also interesting to recall a remark made in the
solution of the previous problem, that we are treating y(x) as though it were quadratic between the x;
values. Our overall approximation to y(x) may thus be viewed as a chain of parabolic segments. Both
y(x) and y’(x) will be continuous, while y"(x) will have jumps at the “corner points™ (x, ys)-

To trigger each forward step of our computation, the simpler Euler formula will be used as a
predictor. It provides a first estimate of y,.,. Here, with x, = 1 and & = .05 it offers

y(1.05) =1+ (.05)(1) =1.05
The differential equation then presents us with
y'(1.05) = (1.05)(1.016) = 1.0661
Now the modified Euler formula serves as a corrector, yielding
y(1.05) =1+ (.025)(1 + 1.0661) = 1.05165

With this new value the differential equation corrects y’(1.05) to 1.0678, after which the corrector is
reapplied and produces

9(1.05) =1+ (.025)(1 + 1.0678) = 1.0517
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Another cycle reproduces these four-place values, so we stop. This iterative use of the corrector
formula, together with the differential equation, is the core of the predictor—corrector method. One
iterates until convergence occurs, assuming it will. (See Problem 19.29 for a proof.) It is then time for
the next step forward, again beginning with a single application of the predictor formula. Since more
powerful predictor-corrector formulas are now to be obtained, we shall not continue the present
computation further. Notice, however, that the one result we have is only two units too small in the last
place, verifying that our corrector formula is more accurate than the simpler Euler predictor, which was
barely yielding four-place accuracy with 4 =.01. More powerful predictor—corrector combinations will
now be developed.

Derive the “predictor” formula y, .1 = y,_3 + $2(2y% 2 — Yi_1 + 2¥i).

Earlier (Chapter 14) we integrated a collocation polynomial over the entire interval of collocation
(Cotes formulas) and also over just a part of that interval (formulas with end corrections). The second
procedure leads to more accurate, if more troublesome, results. Now we integrate a collocation
polynomial over more than its interval of collocation. Not too surprisingly, the resulting formula will
have somewhat diminished accuracy but it has an important role to play nevertheless. The polynomial

1=y =2y +yl
k=y6+ky1 Y 1+k2)’1 )’20 Y-

P

satisfies p, =y for k = =1, 0, 1. It is a collocation polynomial for y'(x) in the form of Stirling’s formula
of degree two, a parabola. Integrating from k& = —2 to k =2, we obtain

? L84 .
f P dk =4tz (i-2Zyo+y) =§(2y{ —yo+2yl)
-2

With the usual change of argument x = x, + kk this becomes
X 4 ’
[ ey ax=Snyi-yivayy
X2

Since we are thinking of p(x) as an approximation to y'(x),

x 4
[ y@rar=y-ya=theyi-yi+nry

¥-2

Since the same argument applies on other intervals, the indices may all be increased by k — 1 to obtain

the required predictor formula. It is so called because it allows the y, to be predicted from data for
smaller arguments.

What is the local truncation error of this predictor?

It may be estimated by the Taylor series method. Using zero as a temporary reference point,

c 1 5, 1 1 1
Ye=yo+ (kh)ys+ 3 (kh)’y§ + 3 (kh)’y§ +5 (kh)*y§? 10 (kh)’y§ + - - -

8 8
it follows that Y2~ y2=4hys+3 my§ +

Bhsyg)_f_ .

Differentiation also brings
2 1 1 1
Yi=yo+ (kh)y§ + 2 (khYy(” + 2 (kh)y (2 + 2 (k) 'y + - -
1
from which we find 2yi—yo+2y", =3ys+ 2hY + gh“yé” I
The local truncation error is therefore

4 , , , 14
(n=y2)—shyi—yo+ 2y ) =z AP +- -+
3 45
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of which the first term will be used as an estimate. For our shifted interval this becomes

14
E,= = Ry

19.19. Compare the predictor error with that of the “corrector” formula

1, A
Yee+1==Yi-1 +'3'h(}’k—1 T4kt Vi)

This corrector is actually Simpson’s rule applied to y’(x). The local truncation error is therefore
Xk+1 , 1 1
E“=J Y'(x) dx =S h(Yi 1 +4pi+ yinn) = — S BYD(E)
- 3 90

by Problem 14.65. Thus E, = —28E, where the difference in the arguments of y® has been ignored.

19.20. Show that the error of the corrector formula of Problem 19.19 can be estimated in terms of
the difference between predictor and corrector values.

Considering just the local truncation errors made in the step from x; to x,,,;, we have
Yerr=P+E,=C+E,
with P and C denoting the predictor and corrector values. Then

P-C=E.—E,=29E.

P-C
and E.= 2
more or less. It is not uncommon to apply this estimate as a further correction, yielding
P-C
Yer1=C+ 29

and this formula does have truncation error of order #°. Under some conditions, however, the use of
such “mop-up” terms can make a computation unstable.

19.21. The Milne method uses the formula
Vi1 = Vi3 +§h(2yl’<-z = Yk-1=294)
as a predictor, together with
Vo =Yeer + 3 Ak + 435+ Vi)

as a corrector. Apply this method using & = .2 to the problem y’ = —xy?, y(0) =2.

The predictor requires four previous values, which it blends into y,.,. The initial value y(0) =2 is
one of these. The others must be obtained. Since the entire computation will be based on these starting
values, it is worth an extra effort to get them reasonably accurate. The Taylor method or Runge-Kutta
method may be used to obtain

y(.2) =y, =1.92308 y(4) =y, =1.72414 y(.6) = y;=1.47059
correct to five places. The differential equation then yields

Y0 =y;=0 y'(.2) =y} = — 73964 9'(.4) = y3 = —1.18906 y'(.6) =y, =—1.29758
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correct to five places. The Milne predictor then manages
4
ya=yo+3(2)(2y3 = yz+2y1)=1.23056

In the differential equation we now find our first estimate of y;,
ya= —(.8)(1.23056)> ~ —1.21142

The Milne corrector then provides the new approximation,
1
Ya=y,+ 3 (:2)(—1.21142 + 4y; + y;) = 1.21808

Recomputing y' from the differential equation brings the new estimate y;=—1.18698. Reapplying the
corrector, we next have

1
ye=ya+ 3 (2)(~ 118698 + 4y} + 1) =1.21971

Once again applying the differential equation, we find
yi=-1.19015

and returning to the corrector,
1
Ya=y,+ 3 (:2)(—1.19015 + 4y; + y;) = 1.21950

The next two rounds produce
yi=—1.18974 ¥4=1.21953 ya=—1.18980 ¥a=1.21953

and since our last two estimates of y, agree, we can stop. The iterative use of the corrector formula and
differential equation has proved to be a convergent process, and the resulting y, value is actually correct
to four places. In this case four applications of the corrector have brought convergence. If & is chosen
too large in a process of this sort, an excessive number of iterative cycles may be needed for
convergence or the algorithm may not converge at all. Large differences between predictor and
corrector outputs suggest reduction of the interval. On the other hand, insignificant differences between
predictor and corrector outputs suggest increasing # and perhaps speeding up the computation. The
computation of ys and y; may now be made in the same way. Results up to x = 10 are provided in Table
19.4. Though & =.2 was used, only values for integer arguments are printed in the interest of brevity.
The exact values are included for comparison.

Table 19.4
x y (correct) y (predictor) Error y (corrector) Error
0 2.00000
1 1.00000 1.00037 =37 1.00012 -12
2 .40000 .39970 30 39996 4
3 .20000 .20027 =27 .20011 -11
4 11765 11737 28 11750 15
5 .07692 07727 =35 07712 =20
6 .05405 05364 41 .05381 14
7 .04000 .04048 —-48 .04030 =30
8 .03077 .03022 55 .03041 36
9 02439 .02500 -61 .02481 —42
10 .01980 .01911 69 .01931 49
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19.22. Discuss the error of the previous computation.

Since the exact solution is known for this test case, it is easy to see some things which would usually
be quite obscure. The fifth derivative of y(x) =2/(1 + x°) has the general behavior shown in Fig. 19.4.

y(.))

1004

o

100 +

Fig. 19-4

The large fluctuations between 0 and 1 would usually make it difficult to use our truncation error
formulas. For example, the local error of the predictor is 144°y*/45 and in our first step (to x =.8) we
actually find the predictor in error by —.011. This corresponds to y* =~ —100. The local corrector error
is —h°y®/90 and in the same first step the error was actually —.00002. This corresponds to y® = 6. This
change of sign in y® annuls the anticipated change in sign of error between the predictor and corrector
results. It also means that an attempt to use the extrapolation to the limit idea would lead to worse
results rather than better, in this case. The oscillating sign of the error as the computation continues will
be discussed later.

19.23. Derive the Adams predictor formula

_ R T §3,)
yk+1_yk+h<yk+zvyk+12Vyk+8Vyk

1 , , . ,
=Yt 2 h(55yk =59 k-1+ 37yi2 — 9k-3)

As in Problem 19.17, we obtain this predictor by integrating a collocation polynomial beyond the
interval of collocation. The Newton backward formula of degree three, applied to y'(x), is

1 1
Pr=yo+kVy, +§k(k +1) Py +€k(k + 1)(k +2) Vy,

where as usual x, = x,+ kh. Integrating from k=0 to k=1 (though the points of collocation are
k=0, —1, =2, —3), we obtain

! I3 1 1 5 2.1 3 3.1
Pedk=yi+5 Vyo+— Vyg+2 Vyg
A 2 12 8
In terms of the argument x and using p(x) =y'(x), this becomes
M oo, 5 L, 3.,
J;U y (x)dx:}’i—)’n:h()’o+zvyo+ﬁvyo+§Vyg>

Since the same reasoning may be applied between x, and x,.,,, we may raise all indices by k to obtain
the first result required. The second then follows by writing out the differences in terms of the y values.
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19.24. What is the local truncation error of the Adams predictor?
The usual Taylor series approach leads to E = 251h%9/720.

19.25. Derive other predictors of the form

Vir1=doYk + a1 Y1+ QY2+ h(boyi+ b1 yi_1+byyi 2+ bsyi_s)

Varying the approach, we shall make this formula exact for polynomials through degree four. The
convenient choices are y(x)=1, (x —x), (x —x¢)’, (x —xx)?, and (x —x,)*. This leads to the five
conditions

l=a,+a,+a, 1=—a,—8a,+3b,+12b, +27b,
1=-a,—2a,+bo+b,+b,+b; 1=a,+16a,—4b, — 32b, — 108b;
1=a,+4a,—2b,—4b,—6b;

which may be solved in the form
1
a,=1—a,—a, b,=ﬁ(37—5a1+8a2)
1 1
b0=52(55+9a1+8a2) b3=271(—9+a,)
1
by =% (=59 + 194, + 32a,)

with a; and g, arbitrary. The choice a, = a, =0 leads us back to the previous problem. Two other simple
and popular choices are a; =3, a, =0 which leads to

1 1 , , . ,
Yr+1 =”2‘(Yk + Yi-1) +@h(1]9)’k =991+ 69y — 17y, 3)

with local truncation error 1614°y®/480 and a, = %, a, =} which leads to

1 1 , , , /
Y1 =3 (2¥k-1+ Yi—2) +7_2 h(191y; — 107y _, + 109y, _» — 25y} _3)

with local truncation error 7074%/2160.

Clearly, one could use these two free parameters to further reduce truncation error, even to order
h’, but another factor to be considered shortly suggests that truncation error is not our only problem. It
is also clear that other types of predictor, perhaps using a y,_; term, are possible, but we shall limit
ourselves to the abundance we already have.

19.26. Hlustrate the possibilities for other corrector formulas.

b

The possibilities are endless, but suppose we seek a corrector of the form
Vis1=0oYi + Q1Yic1t @22+ (CYis1 + boYit bryia + bayis)

for which the local truncation error is of the order #°. Asking that the corrector be exact for y(x) =1,

(x =xx), ..., (x —x¢)* leads to the five conditions
ata;+a,=1 13a, +32a, - 24b, =5
a,+24c=9 a;—8a,+24b,=1

13a, + 8a, — 24by= —19

involving seven unknown constants. It would be possible to make this corrector exact for even more
powers of x, thus lowering the local truncation error still further. However, the two degrees of freedom
will be used to bring other desirable features instead to the resulting algorithm. With a,=0 and 4, =1
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the remaining constants prove to be those of the Milne corrector:

1 4 1
(l2=0 C=§ bu=§ b1=‘ b2=0

Another choice, which matches to some extent the Adams predictor, involves making a, =a, =0,
which produces the formula

Yre+1=Yie +2—1-4h(9yL,1 + 19y = 5Yk-1 + ¥i-2)
If a, = %, a, = 3, then we have a formula which resembles another predictor just illustrated:
Yie+1 =%(2y,t,1 + Ye_2) +%h(25y,’}+1 + 91y + 43y, +9y; )
Still another formula has a, = a, = 3, making
Vews =3 On 1)+ 3 ATk + S04 s + 4

The various choices differ somewhat in their truncation errors.

19.27. Compare the local truncation errors of the predictor and corrector formulas just illustrated.

The Taylor series method can be applied as usual to produce the following error estimates:

Predictor:  Yi+1= Yk +ih(55)’l’< =59k 3Tyk2 = Wies) +3§%ym
Corrector:  Ye+1= Yk +214h(9y1'wl + 19y = Syia +yia) - 19?253(5)
Predictor:  Yx+1= % (V& + Yi-1) +4_léh(119y"< = 9%i-1+ 69y~ 1Tyia) + %z)y@
Corrector:  Ye+1= % e+ Ye-) + é h(17yks + 51yt 3yioa + yiea) = %ﬁ
707h%y®

1 1 . . , .
Predictor:  Yis1 =7 (Vi1 + Yi-2) +7_2h(1QIYk —107y;_ + 109y, _, — 25y 3) +

3 2160

1 1 , , . , 43p°y®
Corrector: Yen1 =3 Y1+ ye2) 5 h(25y41 +91yi+43yi + 995 0) — 160

In each case the corrector error is considerably less than that of its predictor mate. It is also of
opposite sign, which can be helpful information in a computation. The lower corrector error can be
explained by its pedigree. It uses information concerning y;., while the predictor must take the leap
forward from y,. This also explains why the burden of the computation falls on the corrector, the
predictor being used only as a primer.

For each pair of formulas a mop-up term may be deduced. Take the Adams predictor and the
corrector below it, the first pair above. Proceeding in the usual way, considering local truncation errors
only and remaining aware that results so obtained must be viewed with some skepticism, we find

I=P+E =C+E,

where I is the exact value. Since 19E, = —251E,, we have E, = 35(P — C). This is the mop-up term and
I=C+3%(P — C) is the corresponding extrapolation to the limit. Once again it must be remembered
that y® does not really mean the same thing in both formulas, so that there is still a possibility of sizable
error in this extrapolation.

19.28. Apply the Adams method to y’ = —xy? with y(0) =2, using h =.2.
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The method is now familiar, each step involving a prediction and then an iterative use of the
corrector formula. The Adams method uses the first pair of formulas of Problem 19.27 and leads to the
results in Table 19.5.

Table 19.5

x y (correct) y (predicted) Error y (corrected) Error
0 2.000000
1 1.000000 1.000798 —789 1.000133 -133
2 .400000 .400203 —203 .400158 —158
3 .200000 .200140 -140 .200028 —28
4 117647 117679 -32 117653 -6
5 .076923 .076933 -10 076925 -2
6 054054 .054058 -4 054055 -1
7 040000 .040002 -2 .040000
8 030769 .030770 -1 030769
9 024390 .024391 -1 024390

10 019802 .019802 019802

The error behavior suggests that £ = .2 is adequate for six-place accuracy for large x, but that a smaller
h (say .1) might be wise at the start. The diminishing error is related to the fact (see Problem 19.36) that
for this method the “relative error’’ remains bounded.

19.29. Prove that, for A sufficiently small, iterative use of a corrector formula does produce a
convergent sequence, and that the limit of this sequence is the unique value Y, satisfying
the corrector formula.

We are seeking a number Y, with the property
Yiar=hef (err, Yerr)+ - -

the dots indicating terms containing only previously computed results, and so independent of Y;.,,.
Assume as usual that f(x, y) satisfies a Lipschitz condition on y in some region R. Now define a

sequence
O 1 2]
¢ )} Y¢ J} Y®

subscripts k + 1 being suppressed for simplicity, by the iteration
YO = hef (xpas, YD) + - -

and assume all points (x;,;, Y) are in R. Subtracting, we find

YO = YO = helf (ter, Y) = f(er, V)
Repeated use of the Lipschitz condition then brings

YD — YO S heK YO - Y V| S- - - S (heK) YD = YO

Now choose 4 small enough to make |hcK|=r <1, and consider the sum

YO - YO = (YO~ YO) 4 4 (YO — YD)

For n tending to infinity the series produced on the right is dominated (apart from a factor) by the
geometric series 1+ 7 + 7% + - - - and so converges. This proves that Y has a limit. Call this limit Y,.,.
Now, because of the Lipschitz condition,

If Ge1s Y) = Fiins Y| SK |Y(n) = Yl
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and it follows that lim f(x;,1, Y*) =f(xx+1, Yes1). We may thus let # tend to infinity in the iteration
Y = hef (xir, YOO 40

and obtain at once, as required,
Y =hef(xesr, Yewd) £

To prove uniqueness, suppose Z,,, were another value satisfying the corrector formula at x.;.
Then much as before,

[Yesr = Zisr| S heK |Yiis — Zi | == (hCK)w Yie1 = Zial

for arbitrary i. Since |hcK|=r <1, this forces Y;., = Z;,,. Notice that this uniqueness result proves the
correct Y,,, to be independent of Y, that is, independent of the choice of predictor formula, at least
for small h. The choice of predictor is therefore quite free. It seems reasonable to use a predictor of
comparable accuracy, from the local truncation error point of view, with a given corrector. This leads to
an attractive “mop-up” argument as well. The pairings in Problem 19.27 keep these factors, and some
simple esthetic factors, in mind.

CONVERGENCE OF PREDICTOR-CORRECTOR METHODS
19.30. Show that the modified Euler method is convergent.

In this method the simple Euler formula is used to make a first prediction of each y,., value, but
then the actual approximation is found by the modified formula

1
Y=Y+ z (Y +Y5)

The exact solution satisfies a similar relation with a truncation error term. Calling the exact solution y(x)
as before, we have

Ye) =) + 3 Y Ceen) + 501 =5 BYOE)

the truncation error term having been evaluated in Problem 19.15. Subtracting and using d; for
y(x) — Yi, we have

1 1
[l = |del +35 BL( | + 1di]) +5 H°B
2 12

provided we assume the Lipschitz condition, which makes
19" (xe) = Yl = 1f Cee, y(xe)) = f (i Yi)l = L 1di]

with a similar result at argument k + 1. The number B is a bound for |y®(x)|, which we also assume to
exist. Our inequality can also be written as

(1 - % hL)]d,ﬁd = (1 + % hL)|dk[ +1—12h3B
Suppose no initial error (do=0) and consider also the solution of
<1 - % hL)D,m = (1 + % hL)D,( + é h’B
with initial value D, = 0. For purposes of induction we assume |d;| = D, and find as a consequence
(1-34L)idert= (1-3hL) D4,
2 2

so that |di, | = Dys,. Since dy= D, the induction is complete and guarantees |di|= D, for positive
integers k. To find D, we solve the difference equation and find the solution family

1+ %hL)" KB

1-3hL 12L

b=
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19.31.

with C an arbitrary constant. To satisfy the initial condition D, =0, we must have C = (h*B/12L) so that

BB [[1+3hL\F
ly(xe) — Yal 2L I\ T=1hL

To prove convergence at a fixed argument x, = xo+ kh we must investigate the second factor, since as
tends to zero k will increase indefinitely. But since

(1 + %hL)k _ [1 + L(xx _Xo)/zk]k_) el —x02
1—3ihL 1= L(x, —x0)/2k
we have y(x) = Yo =0(h7)

Thus as 4 tends to zero, lim Y, = y(x,), which is the meaning of convergence. Our result also provides a
measure of the way truncation errors propagate through the computation.”

= pLlk—x0)
o Lk—x0)2

Prove the convergence of Milne’s method.

The Milne corrector formula is essentially Simpson’s rule and provides the approximate values
1 ’
Yo=Y+ gh(Yl,(+1 +4Y; + Yk—l)
The exact solution y(x) satisfies a similar relation, but with a truncation error term
1 ' i ’ 1 5,,(5)
Ves1 =Y+ 2 h(Yiwi + &Y+ yi) — - ByP(E)
3 90
with & between x,_, and x4.,. Subtracting and using d; = y(x;) — Yz,
1 1
disal Eldimal + 3 L el + 4 ldi| +1desl) +9—0h53
with the Lipschitz condition again involved and B a bound on y©(x). Rewriting the inequality as
1 4 1 1
(1 - 3hL)|dk+1| §§hL |d,| + (1 + ghl_)ldk_l[ + % h°B
we compare it with the difference equation

1 4 1 1
(1 _ShL)Dk+l =§hLDk + (1 +§hL)Dk,1 +% h°B

Suppose initial errors of d; and d,. We will seek a solution D, such that d,= D, and d, = D,. Such a
solution will dominate |d,|, that is, it will have the property |d,| = D, for nonnegative integers k. This
can be proved by induction much as in the previous problem, for if we assume |d,_,|= D,_, and
|di| = D, we at once find that |d,,,|= D,., also, and the induction is already complete. To find the
required solution the characteristic equation

L. 4 _( 1 ),
(1 3hL)r 3er 1+3hL =0

may be solved. It is easy to discover that one root is slightly greater than 1, say », and another in the
vicinity of ~1, say r,. More specifically,

rn=1+hL+0(h% r2=—1+§hL+0(h2)

The associated homogeneous equation is solved by a combination of the kth powers of these roots. The
nonhomogeneous equation itself has the constant solution —h*B/180L. And so we have

h*B

180L

Dy=ciri+c,ri—
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Let E be the greater of the two numbers d, and d,. Then

KB\, K*B
D"_<E+180L)”_180L

will be a solution with the required initial features. It has D, =E, and since 1<r it grows steadily
larger. Thus

h*B ) . h'B

q §<E+ -
Idel 1802/ T 180L

If we make no initial error, then d,=0. If also as & is made smaller we improve our value Y; (which
must be obtained by some other method such as the Taylor series) so that d; =0(k), then we have
E =0(h) and as h tends to zero so does d,. This proves the convergence of the Milne method.

Generalizing the previous -problems, prove the convergence of methods based on the
corrector formula

Yea=aYi+a; Y +ay Y o +h(cY i +bYi+ 0, Y +b,Y5 )

We have chosen the available coefficients to make the truncation error of order 4°. Assuming this to
be the case, the difference dx = y(x;) — Y, is found by the same procedure just employed for the Milne
corrector to satisfy

(1= |c| kL) |disi] é;} (la;l + L |b;|) |dii| + T

where T is the truncation error term. This corrector requires three starting values, perhaps found by the
Taylor series. Call the maximum error of these values E, so that |d,|=E for k=0, 1, 2. Consider also
the difference equation

(1= le| RL)Disr= 2, (lail + AL DD + T
=0

We will seek a solution satisfying E=D, for k=0, 1,2 Such a solution will dominate |d,|. For,
assuming |dy_;| = Dy, for i =0, 1,2 we at once have |di.| = Dy.;. This completes an induction and
proves |di| = D, for nonnegative integers k. To find the required solution we note that the characteristic
equation

2
(1= lc| ALY =Y, (la)} + RL b )r*~" =0
i=0
has a real root greater than one. This follows since at 7 =1 the left side becomes
2
A=1=lc|hL -3, (lai| + hL b))
i=0

which is surely negative since a,+a,+a,=1, while for large r the left side is surely positive if we
choose k small enough to keep 1 — |c| AL positive. Call the root in question r,. Then a solution with the
required features is

T

T
Dk=<E—Z>r’1‘+Z

since at k =0 this becomes E and as k increases it grows still larger. Thus
T T
peo-nis(E-g )+ g

As h tends to zero the truncation error T tends to zero. If we also arrange that the initial errors tend to
zero, then lim y(x,) = Y; and convergence is proved.

ERROR AND STABILITY

19.33.

‘What is meant by a stable method for solving differential equations?

The idea of stability has been described in many ways. Very loosely, a computation is stable if it
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doesn’t “blow up,” but this would hardly be appropriate as a formal definition. In the introduction to
this chapter stability was defined as boundedness of the relative error and without question this would be
a desirable feature for an algorithm. Gradual deterioration of the relative error means gradual loss of
significant digits, which is hardly something to look forward to. The trouble is, over the long run relative
error often does deteriorate. An easy example may be useful to gain insight. Consider the modified
Euler method.

1
Yier1 = Y +§ h(Yis1 +¥5)
Apply it to the trivial problem y' =Ay y(0)=1

for which the exact solution is y = ¢**. The Euler formula becomes

1 1
(1 - EAh)ka = (1 + EAh)yk
which is a difference equation of order one with solution

=rk_(1+%Ah)*
V== \15an

eWDAR |k
For small 4 this is close to (

— pAkh _ LAx
e—(l/’Z)Ah) =e =e

giving us an intuitive proof of convergence. But our goal here lies in another direction. The exact
solution satisfies

(1 -%Ah)y(xkﬂ) = (1 +%Ah)y(xk) +T

where T is the truncation error —h>A%y(£)/12. Subtracting, and using d, = y(x:) — yx, we find the
similar equation

i R 1.,
(1 2Ah)dk+l—<1+2Ah)dk S AYE)

for the error d,. Now divide by (1 — 3Ah)y,., and assume Ak small to obtain
Ris1=R,— 1 WA
k+1 k 12
for the relative error R, = y,/y(x,). Solving

1 1
Ry =R, — — kh®A’ =Ry — — x,h*A®
V) BV
suggesting that the relative error grows like x,, or linearly, as the computation proceeds. This may be far
from a blow-up, but neither is it a case of relative error remaining bounded.

Taking another view, we will watch the progress of a single error as it penetrates through the
solution process, say an initial error d,. Assuming no other errors committed, we omit 7 and have

14 3Ah\* "
dk:do(l—zéAh) = doe™

which makes the relative error R, =d,/e**" =d,. So the long-range effect of any single error is an
imitation of the behavior of the solution itself. If A is positive, the error and the solution grow in the
same proportion, while if A is negative, they decay in the same proportion. In both cases the relative
error holds firm. That this view is slightly optimistic is suggested by the linear growth predicted above,
but at least no blow-up is forecast. By some definitions this is enough to consider the Euler algorithm
stable. This informal, relaxed usage of the term can be convenient.

There remains the question of how small Ak should be to justify the approximations made in these argu-
ments. Since the true solution is monotone, it seems advisable to keep the value of (1 + 34h)/(1 ~ 3Ah)
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positive. This is true only for A4 between —2 and 2. Prudence suggests keeping one’s distance from both
of these extremes.

Analyze error behavior in the Milne corrector formula.

h. C
Yie+1= Y1 +§ (Yis1+ 4k + i)

Again choosing the special equation y’' = Ay, the error d, is easily found to satisfy the difference
equation of order two

1 4
(1——Ah>dk+,=—

1
3 3Ahdk+<1+§Ah)dk,,+T

for which the characteristic equation is (see Chapter 18)

EEPTATEE _( 1 )_
(1 3Ah)r 3Ahr 1+3Ah =0

The roots are
rn=1+Ah+0(h?) rz=~1+%Ah+0(h2)
which makes
de=c(1 + Ah) + cz(—l + -13; Ah)k

2C]eAhk +(do— C])(_l)ke—/\hkﬁ

Now it is possible to see the long-range effect of the initial error d,. If A is positive, then d, behaves very
much like the correct solution e**, since the second term tends to zero. In fact, the relative error can be
estimated as

d
eT:k =+ (d(, - cl)(__l)kefhhk/a

which approaches a constant. If A is negative, however, the second term does not disappear. Indeed it
soon becomes the dominant term. The relative error becomes an unbounded oscillation and the
computation degenerates into nonsense beyond a certain point.

The Milne method is said to be stable for A positive and unstable for A negative. In this second
case the computed “solution” truly blows up.

Do the computations made earlier confirm these theoretical predictions?

Referring once again to Table 19.4 the following relative errors may be computed. Though the
equation y’ = —xy? is not linear its solution is decreasing, as that of the linear equation does for negative
A. The oscillation in the above data is apparent. The substantial growth of relative error is also
apparent.

X 1 2 3 4 5 6 7 8 9 10

defy. | —.0001 .0001 -—.0005 .0013 —.0026 .0026 —.0075 .0117 -—.0172 .0247

Analyze error behavior for the Adams corrector

1
Yo=Y +5‘Zh(9Y,LH +19Y, = 5Y,, +Yi_o)
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The usual process in this case leads to

9 19 5 1
(1 - ﬂAh)dk-n = (1 + ﬂAh)dk - ézAhdk,l + ﬁAhdkAg +T

Ignoring 7 we attempt to discover how a solitary error would propagate, in particular what its influence
on relative error would be over the long run. The first step is once again to consider the roots of the
characteristic equation.

S 3 ( v )z S Lo
(1 24Ah)r Lt A+ = Abr =52 A =0

This has one root near 1, which may be verified to be r, =14 Ah. If this root is removed, the quadratic
factor
(24— 9AR)* — 4Ahr + Ah =0
remains. If A# were zero this quadratic would have a double root at zero. For Ak nonzero but small the
roots, call them 7, and r;, will still be near zero. Actually for small positive Ah they are complex with
moduli |r| =V Ah/24, while for small negative Ah they are real and approximately +V—6A#/12. Either
way we have
2, Irsl <1+ Ah =e*"

for small Ah. The solution of the difference equation can now be written as
dye = co(1+ AR) + O(JAR[*?) = ¢,e**" + 0(e**")

The constant ¢, depends upon the solitary error which has been assumed. Dividing by the exact solution,
we find that relative error remains bounded. The Adams corrector is therefore stable for both positive
and negative A. A single error will not ruin the computation.

Do the computations made earlier confirm these theoretical predictions?

Referring once again to Table 19.5, the following relative errors may be computed:

Xk 1 2 3 4 5 6 7 to 10

dil Y —.00013 —.00040 —.00014 —.00005 —.00003 ~—.00002 ZETO0

As predicted the errors are diminishing, even the relative error. Once again results obtained for a linear
problem prove to be informative about the behavior of computations for a nonlinear problem.

What are parasitic solutions and what is their connection with the idea of computational
stability which underlies the preceding problems?

The methods in question involve substituting a difference equation for the differential equation, and
for the case y’ = Ay it is a difference equation which is linear with constant coefficients. Its solution is,
therefore, a combination of terms of the form r¥ with the 7, the roots of the characteristic equation. One
of these roots will be r, = 1+ Ah, apart from terms of higher degree in h, and rf will then be close to
e?"™ = ¢** when h is small. This is the solution we want, the one that converges to the differential
solution. Other components, corresponding to the other r,, are called parasitic solutions. They are the
price paid for the lower truncation error that methods such as Milne and Adams bring.

If the parasitic terms are dominated by the r, term, then their contribution will be negligible and the
relative error will remain acceptable. If, on the other hand, a parasitic solution becomes dominant, it
will ruin the computation. In Problem 19.33, for the modified Euler method, the relevant difference
equation had only the root

_1+A4hp2

- 2
rl_l—Ah/Z 1+ Ah +0(h*)
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There were no parasitic solutions. In Problem 19.34, the Milne method offered us
1
n=1+Ah rz=~1+§Ah

up to the terms in A%. For A>0 it is r, that dominates, but for A <0 it is r, that takes over and the
desired solution is buried. In Problem 19.36, apart from the usual » =1+ Ah, we found two parasitic
solution terms, both of size about Ah. Both are dominated by the r, term, whether A is positive or
negative. The Adams method means stable computing in either case.

We are drawn to the conclusion that to avoid a computational blow-up any parasitic term should be
dominated by the principal term, that is, we want

[n=n

for i #1. Any method for which these conditions are violated is called unstable. In fact, it is best if the
inequalities are satisfied by a wide margin.

19.39. Apply the second-order Runge—Kutta method

1 1
Yer1 =Yt hf<xk +§h: Vi +§hf(xk, Yk)>

to y' = Ay. What does this reveal about the stability of this formula?
Substituting Ay for f(x, y) brings
1.5
Y1 = (1 + Ah + EAZh')yk

1, "
making Y= (1 + Ah +§A2h')

which is close to the true solution y, = e*" = e if Ah is small. But how small should Ak be? Figure 19-5
provides a view of the quadratic » =1+ Ah + 3A%h*. When A is positive, r will be greater than one, so
both #* and e will be increasing. The qualitative behavior of r* is, therefore, correct. But when A is
negative, we want a decreasing solution, and this will occur only if Ak is between —2 and 0. Below this
interval the approximate solution r* will be increasing and will bear no resemblance whatsoever to e**.
Here there are no parasitic solutions, since Runge—Kutta methods do not reach back beyond y, to do
their work. The blow-up of relative error has a different origin, in the nature of the root », itself.

o] — — — —

Fig. 19-5

19.40. Apply the fourth-order Runge—Kutta formulas of Problem 19.12 to y’ = Ay. For what range
of Ah values is it stable?
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With a little care we find
YVew1= (1+Ah+1A2h2+lA3h3+iA4h“)y
k+1 2 6 24 k

in which the approximation to e** is prominent. Denoting it by 7, our approximate solution is again
¥ =7* A plot of r against Ak appears as Fig. 19-6 and, as with the second-order method, suggests that
for positive A the true and the approximate solutions will have the same character, both increasing
steadily. But for negative A, just as in the preceding problem, there is a lower bound below which the r*
values will not follow the decreasing trend of the true solution. Here that bound is near ~2.78. For Ak
smaller than this, we find r greater than one and an exploding computation.

/

Fig. 19-6

How can an analysis based upon the equation y’ = Ay tell us anything useful about the
general problem y' = f(x, y)?

There are certainly no guarantees, but the general equation is too difficult for such analysis so the
issue is really one of doing what is possible. One link that can be established between the two problems
is the identification of our constant A with the partial derivative f,, evaluated originally in the vicinity of
the initial point (x,, o), and later at other regions of the plane to which the solution has penetrated. If f,
changes sign along the way, we would expect the stability of Milne’s method to react quickly and that of
Runge—Kutta methods to show some sensitivity as well.

Apply the fourth-order Runge—Kutta method to the nonlinear equation y’ = —100xy* with
y(0) =2. The exact solution is y = 2/(1 + 100x?). Test the stability for different step sizes.

Since f, = ~200xy = —400x/(1 + 100x?), which is zero initially but climbs quickly to —20 at x = .1,
we recall the stability condition

—2.78= Ah =—-20h

and decide to test & values around .14. With 4 = .10 the computed solution decays nicely to .0197 at
x=1 and to .0050 at x =2. With = .12, a similar descent is observed. But with s =.13, three steps
bring us to the very unsatisfactory —29.11, followed by overflow. This definite blow-up speaks well for
efforts to transfer our linear stability criteria to the nonlinear scene.

What can be done to control roundoff error?

In a long solution process, roundoff can become a serious factor. If double precision arithmetic is
available, it should probably be used, in spite of the additional expense. It may be the only recourse.
There is an intermediate step which may be helpful if the use of higher precision throughout the entire
computation is deemed too time consuming. To illustrate, many of our formulas for solving differential
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equations amount to
Yis1 =Y + B Ay,

with the term Ay, small compared with y, itself. To perform the addition on the right, this small
correction term has to be shifted (to line up the binary points) and this is where many roundoffs occur.
To avoid them, the y, are stored in double precision and this addition is done in double precision. The
job of computing Ay,, usually the heaviest work, is still done in single precision because this term is
expected to be small anyway. In this way double precision is used only where it is needed most.

ADAPTIVE METHODS, VARIABLE STEP SIZE

19.4.

19.45.

How can the idea of adaptive integration, introduced in Problem 14.27, be extended to treat
differential equations?

Suppose the goal is to solve y’' =f(x, y) approximately from an initial point x =a to a terminal
point x = b, arriving with an error no greater than e. Assume that the error will accumulate linearly, so
that over a step of length & we can allow an error of size eh/(b —a). This is precisely the idea of
adaptive integration used earlier. Let 7' be an estimate of the truncation error made in taking the step of
length A. Then if T does not exceed ek /(b —a), this step is accepted and we move on to the next.
Otherwise, the step size £ is reduced (to .5k or a suitable alternative) and the step repeated. With a
convergent method the requirements will eventually be met, provided the step size 4 does not become
so small that roundoff becomes the dominant error source.

If the Milne predictor—corrector method is being used, then Problem 19.20 provides the needed
truncation error estimate (P — C)/29 and the condition for acceptance is

29eh
b—a

|P—C|=

which is easily computed from ingredients already in hand. If the Adams method is being used, then
Problem 19.27 leads to the similar condition of acceptance
270
h
P-ClI= qoen
| ! b—a

In either case, rejection will require reactivating the supplementary start-up procedure.

To make Runge-Kutta methods adaptive, a practical way of estimating local truncation error
is needed. Develop such an estimate, one that does not involve the higher derivatives of y(x).

The now familiar idea of comparing errors for step sizes # and 2k will be used. Take the classical
fourth-order method and make a step of size 2k from the current position x,. The local error is about

T = C(2h)* =32Ch’
Now cover the same interval in two steps of size 4. The combined error is about
2T, =2Ch*
leading to these two estimates of the true value y.o:
Vv = Ay +32Ch* = A, +2CH°

The subscripts 2k and £ indicate the step sizes used in getting the two approximations. Subtraction now
yields the value of C and the error estimate

A,—-A
T =Ch5= h 2h
" 30

which may be doubled for the full forward run. This estimate assumes that Ch® is an appropriate error
measure and that C (with the higher derivatives imbedded) does not change much over the interval.
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Use the error estimate of the preceding problem to make the Runge—Kutta method adaptive.

For the interval (4, b) let the allowable error be e. For this to be distributed proportionately, we ask
that between x, and x, ., the local error not exceed 2eh/(b — a). If 2T, as just estimated does not exceed
this, that is, if
30eh
b—a

|Ah _'Alh‘ =

the value A, can be accepted at x,., and one moves on. Otherwise a smaller step size #* is needed such
that the new truncation error 7). will be suitable. Returning to basics, we assume

T h *5

T, =Ch* T,,.=Ch*5=—"hs

with the latter not to exceed h*e/(b —a) in magnitude. Putting the pieces together, the new step size is

determined.
h* _ [ ehS }1’4
(b—-a)T,

In view of the various assumptions made in deriving this formula, it is suggested that it not be pushed to
the limit. An insurance factor of .8 is usually introduced. Moreover, if 4 is already quite small, and T,
small with it, the computation of #* may even cause an overflow. The formula should be used with
discretion.

Which methods are better for adaptive computing, the predictor-corrector pairs or
Runge-Kutta?

Predictor—corrector methods have the advantage that ingredients for estimating local error are
already in hand when needed. With Runge—Kautta a separate application of the formulas must be made,
as just outlined. This almost doubles the number of times that f(x, y) has to be evaluated, and since this
is where the major computing effort is involved, running time may be almost doubled. On the other
band, and as said before, whenever the step size is changed it will be necessary to assist a
predictor—corrector method in making a restart. This means extra programming, and if frequent changes
are anticipated, it may be just as well to use Runge—Kutta throughout.

Try varying the step in the classical Runge—Kutta method as it solves the problem
y'=—xy? y(0)=2
for which we have the exact solution y = 2/(1 + x?).

The solution starts with a relatively sharp downward turn, then gradually levels off and becomes
rather flat. So we anticipate the need for a small step size at the start and a gradual relaxation as things
move along. It is interesting to watch these expectations develop in a run to x =27.

x 15 1 2 3 4 9 12 17 27

h 07 05 1 2 3 9 14 27 43

What are variable order methods?

Varying the order of the formulas used in integrating a differential equation is another way of trying
to achieve a given level of accuracy with a minimum of computing. Starting with a low-order formula to
make the process self-starting, and a small step size to keep it accurate, both are adjusted as
computation proceeds. The idea is to find an optimal order and step size for the current step. A variety
of professional programs are available for doing this, all somewhat complex, but the underlying strategy
is similar to that in Problems 19.44 to 19.46.
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STIFF EQUATIONS

19.50.

19.51.

19.52.

What is a stiff differential equation?

The term is usually associated with a system of equations, but can be illustrated in principle at a

simpler level. Take the equation
y' = =100y + 99¢™

which has the solution y=e*—e 1%
satisfying the initial condition y(0) = 0. Both terms of this solution tend to zero, but the point is, the
second decays much faster than the first. Atx =.1, this term is already zero to four decimal places. It is
truly a transient term compared with the first, which could almost be called the ‘“‘steady state.” Systems
in which different components operate on quite different time scales are called stiff systems and offer
more than normal resistance to numerical solution.

In view of the rapid decay of the above transient term, one might expect a step size of A =.1
to generate values of the remaining term e™. What does the classic Runge—Kutta method
actually produce?

Much as in Problem 19.42, we have f, = —100 and associate this with the A of our stability criterion,
which becomes

—2.78=Ah = —100h

and suggests that we keep the step size / less than .0278. This is something of a surprise because it seems
to imply that the transient term, negligible in size after x = .1, can still influence the computation in an
important, underground way. Putting theory to the test, a run was made with 4 =.03. The predicted
blow-up did occur, values of y quickly descending to the vicinity of —10"*. But using # =.025 led to a
successful run, producing .04980 at x = 3. This is just one unit high in the fifth place.

Develop the Gear formula

Vyns1 + % VYar + % Va1 =y
where V is the backward difference operator. Show that it is equivalent to
18 9 2 6h ,
S TR TR L R TR AR TR
where Yne1 =fXns1s Yns1)
Starting with the Newton backward formula
Pe=Yurr Tk VY + k(kTH)VZym + WV%H

(see Problem 7.9) in which x — x,,,, = kk and p, is a polynomial of degree three in k collocating with y at
k=0, —1, —2, —3, we differentiate and set k =0

_dly _1

dp ap
veo dkh o h

1 1
o <Vy,.+1+§sznﬂ +§V3ym)

Adopting this as an approximation to y,.,, we already have the first Gear formula. The second follows
easily by replacing the backward differences with their equivalents in terms of the y;.

These formulas can also be found by the method of undetermined coefficients, requiring exactness
for polynomials of degree up to three. Corresponding formulas of higher order are available by
extension. For example, if the Newton formula is extended back to k = —4, by introducing the fourth
difference term, then § V'y,,, is added to the left side above.
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19.53.

19.54.

19.55.

19.56.

Why are the formulas of Gear preferred for solving stiff equations?

They prove to be stable for considerably larger values of A than our other formulas. Take once
again the equation of Problem 19.50. We have found the Runge—Kutta method unstable for # =.03. In
contrast, the Gear formula now reduces to
18y, — 9y,_1 + 2y, + 59dhe =Gt

11 + 600A

Yne1=

upon inserting y' from the equation and then solving for y,,;. With 2 =1, this generated (using three
correct starting values)

x 2 4 6

y .135336 .018316 1002479

the first of which is one unit high in the final place. Even & = .5 can be considered a modest success.

x 2 4 6

y 1350 .01833 .002480

The larger A brings more truncation error but there is no cause to complain about the stability.

The Gear formulas are usually nonlinear in y,.,. Develop the Newton iteration as it applies
to the extraction of this unknown.

In the above example f(x, y) was linear in y, permitting a direct solution for y,.,. Generally,
however, we must view the Gear formula as

6h
F(y)=y —Hf(xm,y)—5=0

where y,,, has been abbreviated to y and § stands for the sum of three terms not involving y,.,.
Newton’s iteration is then

*+1) y(k) _ F(y(k))
F(®)
6

h
where F'(y) =1—ﬁfy(xmu )

y

Supplementary Problems

By considering the direction field of the equation y’ =x*—y? deduce the qualitative behavior of its
solutions. Where will the solutions have maxima and minima? Where will they have zero curvature?
Show that for large positive x we must have y(x) <x.

For the equation of the preceding problem try to estimate graphically where the solution through
(=1, 1) will be for x =0.

. By considering the direction field of the equation y’= —2xy, deduce the qualitative behavior of its

solutions.
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Apply the simple Euler method to y’ = —xy?, y(0) =2, computing up to x = 1 with a few / intervals such
as .5, .2, .1, .01. Do the results appear to converge toward the exact value y(1) =1?

Apply the “midpoint formula” ye.; =y, +2hf(xe, y) to y'=—xy? y(0)=2, using A=.1 and
verifying the result y(1) =.9962.

Apply the modified Euler method to y’ = —xy®, y(0) =2 and compare the predictions of y(1) obtained
in the last three problems. Which of these very simple methods is performing best for the same &

interval? Can you explain why?

Apply the local Taylor series method to the solution of y’ = —xy?, y(0) =2, using # =.2. Compare your
results with those in the solved problems.

Apply a Runge-Kutta method to the above problem and again compare your results.
Verify the first statement in Problem 19.9.

Apply the Milne predictor—corrector method to y’ =xy'?, y(1) =1, using 4 =.1. Compare results with
those in the solved problems.

Apply the Adams predictor—corrector method to the above problem and again compare results.

Apply two or three other predictor—corrector combinations to Problem 19.64. Are there any substantial
differences in the results?

Apply various methods to y’ =x>—y? y(—1)=1. What is y(0) and how close was your estimate made
in Problem 19.56?

Apply various methods to y’ =—2xy, y(0) =1. How do the results compare with the exact solution
22
y=e7?

. Show that Milne’s method applied to y’ =y with y(0) =1, using & =.3 and carrying four decimal places,

leads to the following relative errors:

x 15 3.0 4.5 6.0

Rel. error .00016 .00013 .00019 .00026

This means that the computation has steadily produced almost four significant digits.

Show that Milne’s method applied to y’ = —y with y(0) =1, using # =.3 and carrying five decimal
places, leads to the following relative errors:

x 1.5 3.0 4.5 6.0

Rel. error 0 —.0006 .0027 —.0248

Though four almost correct decimal places are produced, the relative error has begun its growing
oscillation.

Prove the instability of the midpoint method,

Yeri =Y + 2hf(1ky Yk)
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19.72.

19.73.

19.74.

19.75.

19.76.

Show that this formula has a lower truncation error than the Euler method, the exact solution satisfying

1
Yer1= Y1 + 2hf (i, yi) +§h3y(3)(§)

For the special case f(x, y) = Ay, show that
Ay =di_y +2hAd,

ignoring the truncation error term in order to focus once again on the long-range effect of a single error
dy. Solve this difference equation by proving the roots of r* —2hAr — 1=0 to be

r=hA+VIPAT+1=hA 1+ 0

"4 and the solution is

For small 74 these are near ¢ and —e~
de = ci(1+ AR)* + (= 1) (1 — AR)* = ce™™ + cy(—1)ke
Setting k =0, show that d, = ¢, + ¢,. Dividng by y,, the relative error becomes
re=cy + (do— ¢;)(—1)*e 4"
Show that for positive A this remains bounded, but that for negative A it grows without bound as k
increases. The method is therefore unstable in this case.

The results in Table 19.6 were obtained by applying the midpoint method to the equation y’ = —xy* with
y(0) =2. The interval A =.1 was used but only values for x =.5(.5)5 are printed. This equation is not
linear, but calculate the relative error of each value and discover the rapidly increasing oscillation
forecast by the analysis of the previous linear problem.

Table 19.6
X Computed y, Exact y, X Computed y, Exact y,
.5 1.5958 1.6000 3.0 1799 .2000
1.0 .9962 1.0000 3.5 .1850 .1509
1.5 .6167 6154 4.0 .0566 1176
2.0 .3950 .4000 4.5 .1689 .0941
2.5 .2865 .2759 5.0 —-.0713 .0769

Analyze relative error for the other corrector formulas listed in Problem 19.27.
Show that the formula
Veor =3+ hkas YD)+ (Y +0)
has truncation error 4°y®(&)/720, while the similar predictor
Voo =i+ 3h(=ick i)+ HQTYL+ Ty

has truncation error 31h5y‘5)(5)/6!. These formulas use values of the second derivative to reduce
truncation error.

Apply the formulas of the preceding problem to y’ = —xy?, y(0) =2, using & =.2. One extra starting
value is required and may be taken from an earlier solution of this same equation, say the Taylor series.

As a test case compute y(a/2), given y' = V1—y? y(0) =0, using any of our approximation methods.
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Use any of our approximation methods to find y(2), given y’ =x —y, y(0) =2.

y(1-x%% - _
Solve by any of our approximation methods y’ = s, y()=1luptox=2.
x(1+x%%)
2xy +e”
Solve by any of our approximation methods y' = — 2y+ :y ,y(1)=0uptox=2.
x*+x

+
y,y(1)=0up tox=2.

Solve by any of our approximation methods y' = — 3
y —x

An object falling toward the earth progresses, under the Newtonian theory with only the gravitational
attraction of the earth considered, accordmg to the equation (also see Problem 20.16)

=

where y = distance from the earth’s center, g =32, R =4000(5280), and H = initial distance from the
earth’s center. The exact solution of this equation can be shown to be

=5 o () s (3-1)]
X_ Z-1
|:VH ()+zarccos H

the initial speed being zero. But apply one of our approximation methods to the differential equation
itself with initial condition y(0) = H = 237,000(5280). At what time do you find that y = R? This result
may be interpreted as the time required for the moon to fall to earth if it were stopped in its course and
the earth remained stationary.

A raindrop of mass m has speed v after falling for time 7. Suppose the equation of motion to be

dv cv?

dt m
where c is a measure of air resistance. It can then be proved that the speed approaches a limiting value.
Confirm this result by directly applying one of our approximate methods to the differential equation
itself for the case ¢/m =2. Use any initial speed.

A shot is fired upwards against air resistance of cv”. Assume the equation of motion to be

d_ g,

dt m
If ¢/m =2 and v(0)=1, apply one of our methods to find the time required for the shot to reach
maximum height.

1)

Fig. 19-7
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19.84. One end of a rope of length L is carried along a straight line. The path of a weight attached to the other
end is determined by (see Fig. 19-7)

(SO A
ST

The exact solution may be found. However, use one of our approximation methods to compute the path
of the weight, starting from (0, L). Take L= 1.



Chapter 20

Differential Problems of Higher Order

THE BASIC PROBLEM
A system of first-order differential equations such as

Yi=HG Y, ey V) i=1,...,n
for determining the n functions y;(x), with given initial conditions y;(x,) = a;, is the basic problem to
be considered in this chapter. It arises in a wide variety of applications. That it is a direct
generalization of the initial value problem treated in Chapter 19 is made especially plain by writing it
in the vector form
Y'(x)=F(x Y) Y(xp)=A

where Y, F, and A have components y,, f;, and a;, respectively.
An equation of higher order can be replaced by such a system of first-order equations and this is
the standard method of treatment. As the simplest example, the second-order equation

y'=fxyy"
becomes the system y'=p p'=f(xy,p)

for the two functions y and p. The accompanying initial conditions y(x,) = a, y'(x,) = b are replaced
by y(xo) =a and p(x,) = b. The basic problem above is then in hand. With a third-order equation,
the definitions y’ = p and y” = ¢ quickly lead to a system of three first-order equations, and so on.
Systems of higher-order equations are handled by treating each as just described. The option is thus
available to reduce any higher-order problem to a system of first-order equations.

SOLUTION METHODS

The methods of the preceding chapter are easily extended to systems of first-order equations.
Taylor series are frequently appropriate, their application being quite direct.

Runge-Kutta methods also apply, each equation of the system being treated almost exactly as in
Chapter 19. The same is true of predictor—corrector methods. Examples of such extensions will be
provided in the solved problems.

Solved Problems

20.1. [Illustrate the Taylor series procedure for simultaneous equations by solving the system
x'=—-x-y
y'= x-y
for the two functions x(¢) and y(¢) satisfying initial conditions x(0) = 1, y(0) =0.

We substitute directly into the two series

x(t) = x(0) + tx'(0) +%;2x"(0) PR
y(&)=y(0) +1ty'(0) +%t2y”(0) R

232
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obtaining the needed ingredients from the given system. First x'(0)= —1 and y'(0)=1. Then from
x"=-x"—y" and y"=x"—y' come x"(0) =0, y"(0) = —2. Higher derivatives follow in the same way.
The series begin as follows:

1, 1,
=1l—t4+=F=ZF4...
x(H)=1 t+3t ¢
2 13
y(t)=t—t+5t+--~

The given system is not only linear but also has constant coefficients. Writing it in the form

X' (1) =AX()

with X:<x> and A=[_1 _1}
y 1 -1

the exact solution can be found by trying

=Ala
Xe(b)

Substituting into the system leads to an eigenvalue problem for the matrix A. For the present A we have
(=1-MNa - b=0
a+(-1-2)b=0
yielding A= — 1+ and after a slight effort
x(t)=e"cost  y(t)=e 'sint

The Taylor series begun above is, of course, the series for these functions.
The process as illustrated is easily extended to larger systems of equations.

20.2. Write out the Runge—Kutta formulas for two simultaneous first-order equations using the
classical fourth-order set.

Let the given equations be

y' =fi(x,y,p) p'=Ffx,y,p)

with initial conditions y(x,) = yo, p(xo) = po. The formulas

ky = hfi(Xn, Yur Pu) ks = hfi(xn + 31, Yo + 3Kz, pu + 31)
L= hf(xn, Y Pn) L= hfy(x, + 3k, y, + 3ka, po+ 312)
ky = hfi(x, + 3h, y, + 3ki, pa +31) ka=hfi(xn +h, yu + ks, pa +13)
L= hfy(x, + 3k, y, + 3k1, po + 31) Li=hfy(xn +h, Yo+ ks, po+13)

Vne1 =Y + 50y + 2k, + 2ks + k)
Do =P+ 5 +2L,+2L+1)

may be shown to duplicate the Taylor series for both functions up through terms of order four. The
details are identical with those for a single equation and will be omitted. For more than two
simultaneous equations, say n, the extension of the Runge-Kutta method parallels the above, with n
sets of formulas instead of two. For an example of such formulas in use see Problem 20.7.

20.3. Write out the Adams type predictor—corrector formula for the simultaneous equations of the
preceding problem.

Assume that four starting values of each function are available, say yo, y1, ¥», ¥s and po, p1, p2, Ps.
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Then the predictor formulas
1
Yee1 =Y + % h(55yk = 59V i1+ 37yic2 — yi-s)
1 , , . .
Pr+1= Dk +2_4 h(55pi = 59pi—1 + 37pi—2 = 9pi—3)

may be applied with Vi =fi(xe, Yoo Pi) i =Xk Yir Pr)

The results may be used to prime the corrector formulas
1 ) ey .
Yier1= Y +2_4 R(O9ykir + 19Y6 — 5yimy + Yi-2)

1 , , . .
Pr+1™= P +ﬂh(9pk+1 + 19k = 5pi 1+ pi-2)

which are then iterated until consecutive outputs agree to a specified tolerance. The process hardly
differs from that for a single equation. Extension to more equations or to other predictor—corrector

combinations is similar.

HIGHER-ORDER EQUATIONS AS SYSTEMS

20.4. Show that a second-order differential equation may be replaced by a system of two first-order

20.5.

20.6.

20.7.

equations.

Let the second-order equation be y”=f(x, y, y'). Then introducing p =y’ we have at once y' =p,
p'=f(x, y, p). As aresult of this standard procedure a second-order equation may be treated by system

methods if this seems desirable.

Show that the general nth-order equation

YO =y, y®, ..y

may also be replaced by a system of first-order equations.

For convenience we assign y(x) the alias y,(x) and introduce the additional functions y(x), . . . , y.(x)
by
Yi=y:  Yi=)s Yn-1=Yn
Then the original nth-order equation becomes
Yn=F(6 Y1, Y2 -+ ¥n)

These n equations are of first order and may be solved by system methods.
Replace the following equations for the motion of a particle in three dimensions:

x"=fit, x, y, 2, %",y 2') y'=htxy 2,5y, 2) 2"=f(t,x,y, 2%,y 2")

by an equivalent system of first-order equations.

Letx'=u, y' =wv, z' =w be the velocity components. Then

uw=ftx,y, z,u,v,w) v =L X, y, 2, u, v, W) w =ft,x,y,z,u,v,w)

These six equations are the required first-order system. Other systems of higher-order equations may be

treated in the same way.

Compute the solution of van der Pol’s equation

Yy =(DA=y}y' +y=0
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with initial values y(0)=1, y'(0) =0 up to the third zero of y(¢). Use the Runge-Kutta
formulas for two first-order equations.

An equivalent first-order system is

y'=p=f(ty p)
p'=—y+ (1)1 -y)p=£ly,p)

The Runge-Kutta formulas for this system are

k,=hp, Li=h[=y, + (1)1 - y2)p.]
k=h(p, +%zl) lz=h{ - (o +%kl) + (.1)[1 - (y,, +%k1) ](p,, +%ll)}
1 1 1.V 1
b=ilpovgh)  beal-(ne i) +0[1- G o) e 31
ko=h(p,+1)) L= h{=(yn + k3) + (D[1 = (ya + ks)’](p + )}
and y,,+1=y,,+%(k1+2kz+2k3+k4) p,,+1=p,,+%(ll+212+213+l4)
Choosing & = .2, computations produce the following results to three places:
k;=(.2)(0)=0 L=(2)[-1+(1)A~-1)0)])=-.2
ky=(.2)(—.1)=-.02 L=([-1+(HA-1(-.1)]=-.2
ky=(2)(=.1)=-.02 L= (.2)[-.99 + (.1)(.02)(—.1)] = ~.198
ky=(.2)(—.198)=—.04 L= (.2)[—(.98) + (.1)(.04)(—.198)] = —.196

These values now combine into

1
P=1+2(-.04~ .04 -.04) = .98

1
Pr=0+7 (=2~ .4~ .39~ .196) = —.199

The second step now follows with n =1 and the computation is continued in this way. Results up to
t=6.4 when the curve has crossed below the y axis again are illustrated in Fig. 20-1, in which y and p
values serve as coordinates. This “‘phase plane” is often used in the study of oscillatory systems. Here
the oscillation (shown solid) is growing and will approach the periodic oscillation (shown dashed) as x
tends to infinity. This is proved in the theory of nonlinear oscillations.
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HIGHER-ORDER EQUATIONS SOLVED BY SERIES

20.8.

20.9.

20.10

Obtain a series solution of the linear equation y” + (1 +x%y =e* in the neighborhood of
x=0.

Let the series be y(x) = X a.x’ and substitute to obtain
i=0

uMa

H—l)x‘ 2+ 1+x2)2ax —E*

o i!

which can be converted by changes of indices to

(@0 +2a5) + (a, + 6az)x + X [(k +2)(k + Dag,q + @ + a_oJx* =
k=2

uMs

x
0k!
Comparing coefficients of the powers of x brings a, = (1 — 4,)/2, a5 = (1 — a,)/6, and then the recursion
1
(k+2)(k + 1)a,, = —a, —a,_ 2+k'

which yields successively a, = —a,/24, as = —a,/24, as = (13a,— 11)/720, and sc on. The numbers a, and
a, would be determined by initial conditions.

A similar series could be developed near any other argument x, since the ingredients of our
differential equation are analytic functions. Such series may be adequate for computation of the solution
over the interval required, or if not, serve to generate starting values for other methods.

Obtain a series solution of the nonlinear equation y” =1+ y* in the neighborhood of x =0,
with y(0) = y'(0) = 0.

The method of the preceding problem could be used, but the alternative of computing the higher
derivatives directly will be illustrated once again. We easily compute
y@=2yy" O =214y 42y’ yO =10y + 6y’ yO=20p(y") + (1 +y?)(10y* +6)

and so on. With the initial conditions given these are all zero except for y, and by Taylor’s theorem
1.2 1.6
y=2x"+mx +---.

. Apply the Gear method of Problem 19.52 to the stiff system

y'=p
p'=-100y — 101p

with initial conditions y(0) = 1 and p(0) = —1. This system is equivalent to the second-order
equation

y"+101y’ + 100y =0
with y =1 and y’ = —1 initially. The exact solution is y(x) =e™*.

Runge-Kutta methods could handle this system, but the classic fourth-order set would require a
step size less than .0278 for a stable computation. Writing out the Gear formula for both y and p we
have

1 6h
Yo =17 (18yn = 91+ 2y,2) + Hpm

1
pn+l=ﬁ(18p,. 9p"1+2pn-z)+ (100ym 101p,41)
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which can be rewritten as a linear system for y, ., and p,. :

6h 1
Yner = Ty Prvt =77 (18Yn = W1+ 292)

600h 606h 1

—Vprt{l+——1p,1=—(18p, = 9p,_, +2p,_

1 Yn+1 ( 11 )Pn LT (18p, = 9pn—1 +2ps-2)

Since the system is linear, there is no need to use the Newton iteration for its solution. Results for two
choices of step size h appear below, both much larger than what is needed for Runge—Kutta. The true
values are also listed for comparison.

x y=e™ h=.1 h=.2
2 1353 1354 1359
4 .01832 .01833 .0185
6 .002479 .002483 00251
8 .0003355 0003362 000342
10 .0000454 .0000455 0000465

20.11. A dog, out in a field, sees his master walking along the road and runs toward him. Assuming
that the dog always aims directly at his master, and that the road is straight, the equation
governing the dog’s path is (see Fig. 20-2)

xy"=cV1+(y')?
with c the ratio of the man’s speed to the dog’s. A well-known line of attack leads to the exact

solution
_1 (x1+c xl—c> + c
Y it 1=d 1=

for ¢ less than one. As x approaches zero, the dog catches his master at position
y =c¢/(1—c?). Solve this problem by an approximate method for the case ¢ =3. The chase
should end at y =3.

yl

master dog

0.0 (1.0

Fig. 20-2

The second-order equation is first replaced by the system

y'=p
» _cVi+p?

X

and the initial conditions by y(1) =0, p(1) =0. The Runge—Kutta formulas of Problem 20.2 can again
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be used, this time with a negative h. The only difficulty here is that as x nears zero the slope p grows
very large. An adaptive method, with / decreasing in size, seems to be indicated. A primitive strategy
was attempted, with 2 =—.1 down to x =.1, then h = —.01 down to x =.01, and so on. The results
appear as Table 20.1. The last two x entries appear to contain roundoff error. Values of p are not listed
but rose to nearly 1000 in size.

Table 20.1

* y
.1 .3608
.01 .5669
.001 .6350
.0001 .6567
.00001 .6636
.0000006 .6659
—.0000003 .6668

The equations

.9 2 o' 3
=== ==
PR 2

in which primes refer to differentiation relative to time ¢, describe the Newtonian orbit of a
particle in an inverse square gravitational field, after suitable choices of some physical
constants. If t = 0 at the position of minimum r (Fig. 20-3) and

r(0)=3 0(0)=0 r(0)=0

then the orbit proves to be the ellipse r =9/(24 cos 8). Use one of our approximation
methods and compare with this exact result.

Fig. 20-3

The application is quite straightforward. The familiar reduction to a first-order system comes first,

9 2 3
- 2 _Z 9'==
r=p p e R e
followed by the programming of three sets of Runge-Kutta formulas, still following the model of
Problem 20.2. Integration continued until the angle 6 exceeded 2. A selected fragment of the output is
provided as Table 20.2 (step size & =.1 was used) and it clearly has the desired orbital quality. As a
further check, theory offers the period T = 12V/3, or about 65.3, and this fits in very nicely.
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20.13.

20.14.

20.15.

20.16.

Table 20.2

t r 0 ¥4

0 3.00 .00 .00

6 4.37 1.51 .33

7 4.71 1.66 .33
32 9.00 3.12 .01
33 9.00 3.15 —.004
59 4.47 4.73 -.33
65 3.00 6.18 ~.03
66 3.03 6.52 .08

Supplementary Problems

The equations
2x 2y
()= - —— "N=1-——=
( ) \/xz +,V2 y'( ) m
describe the path of a duck attempting to swim across a river by aiming steadily at the target position 7.
The speed of the river is 1 and the duck’s speed is 2. The duck starts at S, so that x(0) =1 and y(0) = 0.
(See Fig. 20-4.) Apply the Runge—Kutta formulas for two simultaneous equations to compute the duck’s

path. Compare with the exact trajectory y = 3(x"? — x*?). How long does it take the duck to reach the
target?

Fig. 20-4

Solve the preceding problem by the Adams predictor—corrector method.
Apply the Milne method to Problem 20.13.

The classical inverse square law for an object falling toward an attracting gravitational mass (say the

earth) is
2

" gR
Y= 5T

where g is a constant and R is the earth’s radius. This has the well-known and somewhat surprising
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20.17.

20.18.

20.19.

20.20.

DIFFERENTIAL PROBLEMS OF HIGHER ORDER [CHAP. 20

solution
H” y y zZ 2y
=— — = + —_ -
8 [ Va (H) g arecos <H 1)]
where H is the initial altitude and the initial speed is zero. Introducing the equivalent system
RZ
y'=pr p=-8
y
apply the Runge-Kutta formulas to compute the velocity p(¢) and position y(#). When does the falling
object reach the earth’s surface? Compare with the exact result. (If miles and seconds are used as units,
then g = 5355, R = 4000, and take H to be 200,000 which is the moon’s distance from earth. The problem
illustrates some of the difficulties of computing space trajectories.)

Apply the Adams method to Problem 20.16.

Show that the solution of yy”+ 3(y’)*> =0 with y(0) =1 and y'(0) = } can be expressed as

(x)_1+§_3_x2+1£_77x4+
Y =TT 3 18 T 2088

Show that x’” — 2x?’ + (4 + x*)y =0 has a solution of the form
y(x) = Vx(ao+ ax +asx*+ - - )
- . X . .
and determine the coefficients if the condition llm% = 1is required for x approaching zero.
Apply the Runge—Kutta formulas to
y'=-12y+9z z'=11y - 10z
which have the exact solution
y=9¢ " + 5¢7** z=1le™*—5¢~*"*

using y(1)=9"", z(1)=11e™" as initial conditions. Work to three or four decimal places with 4 =.2
and carry the computation at least to x =3. Notice that 11y/9z, which should remain close to one,
begins to oscillate badly. Explain this by comparing the fourth-degree Taylor approximation to e™*'*
(which the Runge—Kutta method essentially uses) with the exact exponential.



Chapter 21

Least-Squares Polynomial Approximation

THE LEAST-SQUARES PRINCIPLE

The basic idea of choosing a polynomial approximation p(x) to a given function y(x) in a way
which minimizes the squares of the errors (in some sense) was developed first by Gauss. There are
several variations, depending on the set of arguments involved and the error measure to be used.

First of all, when the data are discrete we may minimize the sum

N
Szz (}’i—ao—mxi— N —a,,,x,f")z
i=0

for given data x;, y;,, and m <N. The condition m <N makes it unlikely that the polynomial
p(x)=ap+ax +ax*+- - +a,x"

can collocate at all N data points. So S probably cannot be made zero. The idea of Gauss is to make
S as small as we can. Standard techniques of calculus then lead to the normal equations, which
determine the coefficients a;. These equations are

Sodot 8141+ +5,a,=1t

S1a9+ S, + -+ S8 =14

St S0+ -+ 82,8, = ¢,

N N
where s, = Y, x¥, t; = X yx¥. This system of linear equations does determine the a; uniquely, and
i=0 i=0

the resulting a; do actually produce the minimum possible value of S. For the case of a linear
polynomial

p(x)=Mx+B
the normal equations are easily solved and yield
_ Soly —81lp _ St — 815
S0z — 87 SoSa — 87

In order to provide a unifying treatment of the various least-squares methods to be presented,
including this first method just described, a general problem of minimization in a vector space is
considered. The solution is easily found by an algebraic argument, using the idea of orthogonal
projection. Naturally the general problem reproduces our p(x) and normal equations. It will be
reinterpreted to solve other variations of the least-squares principle as we proceed. In most cases a
duplicate argument for the special case in hand will also be provided.

Except for very low degree polynomials, the above system of normal equations proves to be
ill-conditioned. This means that, although it does define the coefficients a; uniquely, in practice it
may prove to be impossible to extricate these a;. Standard methods for solving linear systems (to be
presented in Chapter 26) may either produce no solution at all, or else badly magnify data errors. As
a result, orthogonal polynomials are introduced. (This amounts to choosing an orthogonal basis for
the abstract vector space.) For the case of discrete data these are polynomials P, x(¢) of degree
m=0,1,2,... with the property

g: Pm,N(t)Pn,N(t) =0

241
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This is the orthogonality property. The explicit representation
” Am\/m+i\ t®
B =2 ()" )
M0=2 (T e
will be obtained, in which binomial coefficients and factorial polynomials are prominent.
An alternate form of our least-squares polynomial now becomes convenient, namely

m

()= 2 axPin(t)

k=0

with new coefficients a,. The equations determining these a, prove to be extremely easy to solve. In
fact,

I 072

=)

; YePrn(2)
ay=—"——"""

o1z

PEA()

0
These a, do minimize the error sum S, the minimum being
N m
_ 2 2
Smin—' 2 Yi— E Wkak
=0 k=0

where W, is the denominator sum in the expression for ay.

APPLICATIONS
There are two major applications of least-squares polynomials for discrete data.
1. Data smoothing. By accepting the polynomial

px)=ap+ax+---+a,x"

in place of the given y(x), we obtain a smooth line, parabola, or other curve in place of the
original, probably irregular, data function. What degree p(x) should have depends on the
circumstances. Frequently a five-point least-squares parabola is used, corresponding to
points (x;, y;) withi=k =2, k=1, ..., k +2. It leads to the smoothing formula

- 2 g
Y(xe) =plxe) =y 355)/k

This formula blends together the five values y,_», . . ., yx4» to provide a new estimate to the
unknown exact value y(x,). Near the ends of a finite data supply, minor modifications are
required.

The root-mean-square error of a set of approximations A; to corresponding true values
T; is defined as

N T_A 271712
RMS error = [E M]
i—o N

In various test cases, where the T; are known, we shall use this error measure to estimate the
effectiveness of least-squares smoothing.

2. Approximate differentiation. As we saw earlier, fitting a collocation polynomial to irregular
data leads to very poor estimates of derivatives. Even small errors in the data are magnified
to troublesome size. But a least-squares polynomial does not collocate. It passes between
the data values and provides smoothing. This smoother function usually brings better
estimates of derivatives, namely, the values of p'(x). The five-point parabola just mentioned
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leads to the formula

' r 1
Y () =p'(x) = 100 (=22 = Yic1+ Vi1 + 2Vi42)

Near the ends of a finite data supply this also requires modification. The formula usually
produces results much superior to those obtained by differentiating collocation polynomials.
However, reapplying it to the p'(x,) values in an effort to estimate y”(xx) again leads to
questionable accuracy.

CONTINUOUS DATA

For continuous data y(x) we may minimize the integral
1
1= ) —aoBx) = - = 4B )P dx
-1

the F(x) being Legendre polynomials. [We must assume y(x) integrable.] This means that we have
chosen to represent our least-squares polynomial p(x) from the start in terms of orthogonal
polynomials, in the form

p(x) = aoBo(x) + -+ + amPn(x)
The coefficients prove to be

2k+1
2

1
a="5 | R
For convenience in using the Legendre polynomials, the interval over which the data y(x) are given
is first normalized to (—1,1). Occasionally it is more convenient to use the interval (0, 1). In this
case the Legendre polynomials must also be subjected to a change of argument. The new
polynomials are called shifted Legendre polynomials.

Some type of discretization is usually necessary when y(x) is of complicated structure. Either the
integrals which give the coefficients must be computed by approximation methods, or the continuous
argument set must be discretized at the outset and a sum minimized rather than an integral. Plainly
there are several alternate approaches and the computer must decide which to use for a particular
problem.

Smoothing and approximate differentiation of the given continuous data function y(x) are again
the foremost applications of our least-squares polynomial p(x). We simply accept p(x) and p'(x) as
substitutes for the more irregular y(x) and y'(x).

A generalization of the least-squares principle involves minimizing the integral

b
1= [ W) - a00ux) =+~ 4,00 dx

where w(x) is a nonnegative weight function. The Q(x) are orthogonal polynomials in the
generalized sense

b
[ woewe.w ar=o
for j # k. The details parallel those for the case w(x) =1 already mentioned, the coefficients a, being
given by
b
[ w0 &
=t -

[ Wi ax
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The minimum value of I can be expressed as
b m
= [ WY@ e = 3 Wik
a k=0
where W, is the denominator integral in the expression for a,. This leads to BessePs inequality

m b
gOWkaié [ w(x)y*(x) dx

and to the fact that for m tending to infinity the series Y. Wa% is convergent. If the orthogonal
k=0

family involved has a property known as completeness and if y(x) is sufficiently smooth, then the
series actually converges to the integral which appears in I.;,. This means that the error of
approximation tends to zero as the degree of p(x) is increased.

CHEBYSHEV POLYNOMIALS

Approximation using Chebyshev polynomials is the important special case w(x)=1/V1 —x? of
the generalized least-squares method, the interval of integration being normalized to (—1, 1). In this
case the orthogonal polynomials Q,(x) are the Chebyshev polynomials

T,.(x) = cos (k arccos x)

The first few prove to be To(x)=1 Ti(x)=x Lx)=2x*-1 T(x)=4x> - 3x

Properties of the Chebyshev polynomials include
T,11(x) = 2xT,(x) — T,-1(x)
0 .
R AETAC WD BN
VIS x=97 iftm=n

T ifm=n=0
T.(x)=0 for x =cos [(2i + 1)/2n], i=0, 1,...,n—1
T, (x)=(-1) for x =cos (ix/n), i=0,1,...,n

An especially attractive property is the equal-error property, which refers to the oscillation of the
Chebyshev polynomials between extreme values of +1, reaching these extremes at n + 1 arguments
inside the interval (—1,1). As a consequence of this property the error y(x) — p(x) is frequently
found to oscillate between maxima and minima of approximately £ E. Such an almost-equal-error is
desirable since it implies that our approximation has almost uniform accuracy across the entire
interval. For an exact equal-error property see the next chapter.

The powers of x may be expressed in terms of Chebyshev polynomials by simple manipulations.
For example,

1 1 '
1=7, x=T =2 (T +T;) X= (T +T)

This has suggested a process known as economization of polynomials, by which each power of x in a
polynomial is replaced by the corresponding combination of Chebyshev polynomials. It is often
found that a number of the higher-degree Chebyshev polynomials may then be dropped, the terms
retained then constituting a least-squares approximation to the original polynomial, of sufficient
accuracy for many purposes. The result obtained will have the almost-equal-error property. This
process of economization may be used as an approximate substitute for direct evaluation of the
coefficient integrals of an approximation by Chebyshev polynomials. The unpleasant weight factor
w(x) makes these integrals formidable for most y (x).
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Another variation of the least-squares principle is to minimize the sum
N-1
2 [y(e) —aoTolx) — - - - — ame(Xi)]z
i=0

the arguments being x; = cos [(2i + 1)7r/2N]. These arguments may be recognized as the zeros of
Ty(x). The coefficients are easily determined using a second orthogonality property of the
Chebyshev polynomials,

N1 0 itm#n
S L)) =4 N2 itm=n#0
= N  iftm=n=0

1 N-1 2 N-1
and prove to be ag=~ 2, y(x) @e=7 2, y()Tilx)
N i=0 N i=0
The approximating polynomial is then, of course,
px)=agTy(x)+ - +a,T,(x)
This polynomial also has an almost-equal-error.
THE L, NORM
The underlying theme of this chapter is to minimize the norm

ly —pll
where y represents the given data and p the approximating polynomial.

Solved Problems
DISCRETE DATA, THE LEAST-SQUARES LINE

N
21.1. Find the straight line p(x) = Mx + B for which ). (y,— Mx,— B)? is a minimum, the data
(x:, ;) being given. <o

Calling the sum S, we follow a standard minimum-finding course and set derivatives to zero.
as N as N
—==-22,1-(yi—Mx,—B)=0 5= iy~ Mx;—B)=
35 gu (yi— Mx,— B) B 2§)x(y Mx,—B)=0
Rewriting we have
(N+1D)B+(Zx)M=3 y, (X x)B+(Zx)M=Z xy,

which are the “normal equations.” Introducing the symbols

so=N+1 Sl=2x, 52=2X,2 fo=2y:’ l‘1=zx.>’f
these equations may be solved in the form

_Soli =81ty

Salo — 811,
M B =22 1h

Snsz—sf 3032—5%
To show that ses, — 57 is not zero, we may first notice that squaring and adding terms such as (x, — x,)?
leads to
0<D (ti—x)=N-2 x2=2 xx
i<i

i<j
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But also Cxy=Xx+23 XX
i<j
so that s,5, — s? becomes
WN+D I 2= Cx)y=N-2x2-2>x%>0
1<j

Here we have assumed that the x, are not all the same, which is surely reasonable. This last inequality
also helps to prove that the M and B chosen actually produce a minimum. Calculating second
derivatives, we find

s s 3%

352 20 oM:~ 72 3BoM~ >

Since the first two are positive and since
(251)* = 2(N + 1)(25,) = 4(s7 — 5652) <0
the second derivative test for a minimum of a function of two arguments B and M is satisfied. The fact

that the first derivatives can vanish together only once shows that our minimum is an absolute minimum.

The average scores reported by golfers of various handicaps on a difficult par-three hole are as
follows:

Handicap 6 8 10 12 14 16 18 20 22 24

Average 3.8 37 40 39 43 42 42 44 45 45

Find the least-squares linear function for this data by the formulas of Problem 21.1.

Let h represent handicap and x = (h — 6)/2. Then the x; are the integers 0,...,9. Let y represent
average score. Then s, =10, 5, =45, 5, =285, t,=41.5, t;=194.1 and so

_(10)(194.1) = (45)(4L.5) oo 5= (289)(4L5) — (45)(194.1) _
T (10)(285)— (45 T (10)(285) — (45

This makes y = p(x) where p(x)=.09x + 3.76 = .045h + 3.49.

3.76

Use the least-squares line of the previous problem to smooth the reported data.

The effort to smooth data proceeds on the assumption that the reported data contain inaccuracies of
a size to warrant correction. In this case the data seem to fall roughly along a straight line, but there are
large fluctuations, due perhaps to the natural fluctuations in a golfer’s game. (See Fig. 21-1 below.) The

average score

. andics
36 handicap
T T T T T T T T T
6 8 10 12 14 16 18 20 22 24

Fig. 21-1
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least-squares line may be assumed to be a better representation of the true relationship between the
handicap and the average scores than the original data are. It yields the following smoothed values:

Handicap 6 8 10 12 14 16 18 20 22 24

Smoothed y 376 3.85 394 4.03 4.12 421 430 439 4.48 457

21.4. Estimate the rate at which the average score increases per unit handicap.

From the least-squares line of Problem 21.2 we obtain the estimate .045 stroke per unit handicap.

21.5. Obtain a formula of the type P(x) = Ae™* from the following data:

X 1 2 3 4

i

P, 7 11 17 27

Let y=logP, B=IlogA. Then taking logarithms, log P =logA + Mx which is equivalent to
y(x)=Mx+B.
We now decide to make this the least-squares line for the (x;, y;) data points.

X 1 2 3 4

Vi 1.95 2.40 2.83 3.30

Since so=4, s, =10, 5,=130, t,=10.48, ¢, =28.44, the formulas of Problem 21.1 make M =.45 and
B =1.5. The resulting formula is P = 4.48¢"**,

It should be noted that in this procedure we do not minimize Y. [P(x,) — BJ, but instead choose the
simpler task of minimizing ¥, [y(x;) — y;]> This is a very common decision in such problems.

DISCRETE DATA, THE LEAST-SQUARES POLYNOMIAL
21.6. Generalizing Problem 21.1, find the polynomial p(x)=ag+a;x +---+a,x™ for which

N
S= .EO (y:— ao—a1x; — - - - — a,x7")* is a minimum, the data (x;, ;) being given, and m < N.
P

We proceed as in the simpler case of the straight line. Setting the derivatives relative to

ag, ai, . . ., a, to zero produces the m + 1 equations
as il
— =23 xMyi—ag—aix; = ~aux7)=0
day. i=0
. N N .
where k=0, ..., m. Introducing the symbols s, = ¥ x{, t, = X y.x{, these equations may be rewritten
as =0 i=0

So@ots@a; +---t+ Spa,=1k
Siaptsa;,  +c+S,a,=4
Smo t Syt ot 20, =1,

and are called normal equations. Solving for the coefficients a;, we obtain the least-squares polynomial.
We will show that there is just one solution and that it does minimize S. For smaller integers m, these
normal equations may be solved without difficulty. For larger m the system is badly ill-conditioned and
an alternative procedure will be suggested.
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Show how the least-squares idea, as just presented in Problem 21.6 and earlier in Problem
21.1, may be generalized to arbitrary vector spaces. What is the relationship with orthogonal
projection?

This more general approach will also serve as a model for other variations of the least-squares idea
to be presented later in this chapter and focuses attention on the common features which all these
variations share. First recall that in Euclidean plane geometry, given a point y and a line S, the point on
S closest to y is the unique point p such that py is orthogonal to S, p being the orthogonal projection
point of y onto S. Similarly in Euclidean solid geometry, given a point y and a plane S, the point on §
closest to y is the unique point p such that py is orthogonal to all vectors in S. Again p is the orthogonal
projection of y. This idea is now extended to a more general vector space.

We are given a vector y in a vector space E and are to find a vector p in a given subspace § such
that

Iy =pll<lly —q|| -

where g is any other vector in § and the norm of a vector v is

Il = V(v, v)

parentheses denoting the scalar product associated with the vector space. We begin by showing that
there is a unique vector p for which y —p is orthogonal to every vector in §. This p is called the
orthogonal projection of y.

Let e, . . ., e, be an orthogonal basis for § and consider the vector

P =(y, eneat (¥, e)er+ -+ (y, en)e

Direct calculation shows that (p, e,) = (y, e,) and therefore (p —y, e,)=0 for k=0,..., m. It then
follows that (p —y, q) =0 for any ¢ in S, simply by expressing ¢ in terms of the orthogonal basis. If
another vector p' also had this property (p' —y, ¢) =0, then it would follow that for any ¢ in §

21.8.

21.9.

(p—p7,q)=0.Since p — p”is itself in S, this forces (p — p’, p — p') = 0 which by required properties of
any scalar product implies p = p’. The orthogonal projection p is thus unique.
But now, if ¢ is a vector other than p in S,
Iy =alP=I(y-p)+ (-’
=ly=pIP+llp—ql*+2(y —p.p —q)
Since the last term is zero, p — g being in S, we deduce that ||y —p|| <||y —q|| as required.

If ug, Uy, . - . , U, is an arbitrary basis for S, determine the vector p of the preceding problem
in terms of the u,.

We must have (y —p, u,)=0 or (p, ue)=(y, we) for k=0,...,m. Since p has the unique
representation p = agldy + @,y + - - - + a,u,,, substitution leads directly to

(w0, ti)ag + (uy, w)ay + -+ + + (U, Ui)ap = (¥, 1)

for k=0, ..., m. These are the normal equations for the given problem and are to be solved for the
coefficients a, . . ., a,,. A unique solution is guaranteed by the previous problem. Note that in the
special case where the ug, U, . . ., U, are orthonormal, these normal equations reduce to a, = (y, ;) as
in the proof given in Problem 21.7.

Note also the following important corollary. If y itself is represented in terms of an orthogonal basis
in E which includes u,, . . ., 4, say

y=agigta+ -+ a,u, tan Uyt

then the orthogonal projection p, which is the least-squares approximation, is available by simple
truncation of the representation after the a,u,, term:

p=agugtau,+ - +ayl,

How is the specific case treated in Problem 21.6 related to the generalization given in
Problems 21.7 and 21.8?
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The following identifications must be made:

E:

S:

y:

(v, v2):
[l

Ui

p:

ly —pli*:

(¥, we):

(w;, ug):

The space of discrete real-valued functions on the set of arguments x,, . . .

The subset of E involving polynomials of degree m or less

The data function having values y,, .. ., yy

N
The scalar product ¥ v,(x;)va(x;)
=0

The norm _ﬁo [w(x))

The function with values x¥

The polynomial with values p, =ao + a,x; + - - - + a,.x"
N
Thesum S= ¥ (y; —p,)°
i=0
N
=X ylxl{‘
i=0

K ek
S i
Sjtk = Eo X
=

249

» XN

With these identifications we also learn that the polynomial p of Problem 21.6 is unique and actually
does provide the minimum sum. The general result of Problems 21.7 and 21.8 establishes this.

21.10. Determine the least-squares quadratic function for the data of Problem 21.2.

The sums sy, 51, 52, o, and ¢, have already been computed. We also need s, = 2025, s, = 15,333,
and ¢, = 1292.9 which allow the normal equations to be written

10a, + 45a, + 285a, = 41.5 45a, + 285a, + 2025a, = 194.1 285a, + 2025a, + 15,3334, = 1248

After some labor these yield a;=3.73, a,=.11, and a,= —.0023 so that our quadratic function is
p(x) =3.73 + .11x — .0023x%

21.11. Apply the quadratic function of the preceding problem to smooth the reported data.

Assuming that the data should have been values of our quadratic function, we obtain these values:

Handicap

6 8 10 12 14 16 18 20 22 24

Smoothed y

3.73 3.84 394 4.04 413 422 431 439 4.46 4.53

These hardly differ from the predictions of the straight-line hypothesis, and the parabola corresponding
to our quadratic function would not differ noticeably from the straight line of Fig. 21-1. The fact that a,

is so small already shows that the quadratic hypothesis may be unnecessary in the golfing problem.

SMOOTHING AND DIFFERENTIATION

21.12. Derive the formula for a least-squares parabola for five points (x;, y;) where i=k -2, k—1,

k,k+1, k+2.

Let the parabola be p(t)=a,+ a;t + at* where t=(x —x;)/h, the arguments x; being assumed
equally spaced at interval . The five points involved now have arguments t = -2, —1, 0, 1, 2. For this
symmetric arrangement the normal equations simplify to

Sa, +10a,= .y,
10a, = 2 t:y;

10a, +34a,= D ty,
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and are easily solved. We find first

70a,=34, y;— 10 ), tly,

= —6y;2+ 24y, + 34y, + 24y, — 6Yis2
=70y = 6(Yi—2 = 41 + 6yx ~ 4Yicsr + Yir2)

3
from which ap=yi — = 0%,
35
Substituting back we also obtain

1
a = ﬁ (2}’k—z Y17 2}’1( — Y1t 2}’k+2)

And directly from the middle equation

1
a; :1_0 (= 22— Y1+ Yierr + 2is2)

21.13. With y(x,) representing the exact value of which y, is an approximation, derive the smoothing
formula y(x;) =y, — 55 %Y.

The least-squares parabola for the five points (Xx_z, Yx—2) t0 (Xes2, Yics2) is
px)=aog+at +a

At the center argument ¢ = 0 this becomes p(x:) = ao =y, — 3 6"y, by Problem 21.12. Using this formula
amounts to accepting the value of p on the parabola as better than the data value y,.

21.14. The square roots of the integers from 1 to 10 were rounded to two decimal places and a
random error of —.05, —.04,...,.05 added to each (determined by drawing cards from a
pack of 11 cards so labeled). The results form the top row of Table 21.1. Smooth these values
using the formula of the preceding problem.

Table 21.1
X 1 2 3 4 5 6 7 8 9 10
Ve 1.04 1.37 1.70 2.00 2.26 2.42 2.70 2.78 3.00 3.14
dy 33 33 30 26 16 28 8 22 14
8% 0 -3 -4 -10 12 -20 14 -8
8% -3 -1 -6 22 -32 34 -22
Y 2 -5 28 —54 66 -56
6% 0 0 2 -5 6 -5
(%) 1.70 2.00 2.24 2.47 2.64 2.83

Differences through the fourth also appear in Table 21.1, as well as 58"y. Finally the bottom row
contains the smoothed values.

21.15. The smoothing formula of Problem 21.13 requires two data values on each side of x, for
producing the smoothed value p(x,). It cannot therefore be applied to the two first and last



CHAP. 21] LEAST-SQUARES POLYNOMIAL APPROXIMATION 251

entries of a data table. Derive the formulas

1 3 5 1
y(xO) = Yo + g A3y0 +3*5 A4y0 y(fol) =yy_1 + g Vg_YN _§V4yN

2 1, 1 3
YED =y =5 A% =5 A% yOw) = v =5 Vow + 32 Vi

for smoothing end values.

If we let t = (x — x,)/h, then the quadratic function of Problem 21.12 is the least-squares quadratic
for the first five points. We shall use the values of this function at x, and x, as smoothed values of y.
First

p(xo0) =a,—2a, +4a,

and inserting our expressions for the a,, with k replaced by 2,

1
p(xo)= 20 (62y, + 18y, — 6y, — 10y; + 6y,)
1
=Y +7_O [(—14yo + 42y, — 42y, + 14y;) + (63, — 24y, + 36y, — 24y; + 6y,)]

which reduce to the above formula for y(x,). For p(x,) we have
px)=as—a;+a,
and insertion of our expressions for the 4, again leads to the required formula. At the other end of our

data supply the change of argument ¢ = (x — x5_,)// applies, the details being similar.

21.16. Apply the formulas of the preceding problem to complete the smoothing of the y values in
Table 21.1.

We find these changes to two places

1 3
Y(r0) = 104+ 2 (=.03) + 2 (.02) = 1.03 Y(xw-r) =3.00 +%(—.22) ——71-(—.56) =2.99

1
y(x)~1.37 —%(—.03) ~5(02)=1.38 y(xn) :3,14—§(—.22) +315(—‘56) ~3.14

21.17. Compute the RMS error of both the original data and the smoothed values.

The root-mean-square error of a set of approximations A; corresponding to exact values 7; is
defined by

(T—A—)Z 12
e

M=

RMS error = [

In this example we have the following values:

T; 1.00 141 173 2.00 224 245 265 283 300 316

Vi 1.04 137 170 200 226 242 270 278 300 3.14

p(x) | 103 138 170 200 224 247 2.64 283 299 3.14
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The exact roots are given by two places. By the above formula,

. 1 172
RMS error of y, = <%> =.033
10
172
RMS error of p(x,) = (%) =.019

so that the error is less by nearly half. The improvement over the center portion is greater. If the two
values at each end are ignored we find RMS errors of .035 and .015, respectively, for a reduction of
more than half. The formula of Problem 21.13 appears more effective than those of Problem 21.15.

Use the five-point parabola to obtain the formula
1
y'(xe) :'16;2‘ (= 2Vk—2= Vi1 F Vi1 + 20022)

for approximate differentiation.

With the symbols of Problem 21.13 we shall use y’(x;), which is the derivative of our five-point
parabola, as an approximation to the exact derivative at x,. This again amounts to assuming that our
data values y; are approximate values of an exact but unknown function, but that the five-point parabola
will be a better approximation, especially in the vicinity of the center point. On the parabola

p=a+at+at

and according to plan, we calculate p'(¢) at £ =0 to be a,. To convert this to a derivative relative to x
involves merely division by 4, and so, recovering the value a, found in Problem 21.12 and taking p'(x)
as an approximation to y’(x), we come to the required formula.

Apply the preceding formula to estimate y’(x) from the y, values given in Table 21.1.
At x, =3 we find
y'3) =% (~2.08 = 1.37 + 2.00 + 4.52) = .307
and at x, =4, y'(4) :Ilﬁ (~274-1.70+2.26 +4.84) = 266

The other entries in the top row shown are found in the same way. The second row was computed using
the approximation

1
¥' () :ﬁ (Pr—2 = 8Yi—1+ 8Yks1 = Yiu2)

found earlier from Stirling’s five-point collocation polynomial. Notice the superiority of the present
formula. Errors in data were found earlier to be considerably magnified by approximate differentiation
formulas. Preliminary smoothing can lead to better results, by reducing such data errors.

y'(x) by least squares 31 027 24 20 18 .17

y'(x) by collocation 31029 20 23 18 .14

Correct y'(x) 29 25 22 20 .19 .18

The formula of Problem 21.18 does not apply near the ends of the data supply. Use a



CHAP. 21] LEAST-SQUARES POLYNOMIAL APPROXIMATION 253

21.21.

four-point parabola at each end to obtain the formulas

1
y'(x0) '—”m (—21yo + 13y, + 17y, — 9y3)
, 1
y'(x) =0 (—=11y, + 3y, + 7y, + y3)

1
y'(xyor) = 0h (Myny —3yn—1— Tyw—2— Yn-3)

1
y'(xn) 2@ (lyny — 13yy_1 — 17yn—2+ yn_3)

Four points will be used rather than five, with the thought that a fifth point may be rather far from
the position x, or x5 where a derivative is required. Depending on the size of A, the smoothness of the
data, and perhaps other factors, one could use formulas based on five points or more. Proceeding to the
four-point parabola we let ¢ = (x — x,)/h so that the first four points have arguments t = —1, 0, 1, 2. The
normal equations become

dag+2a,+6a, =y +y +y,+¥s 2a0+6a,+8a,= —y,+y,+2y;
6ay+ 8a, +18a, =y, +y, + 4y,
and may be solved for
20ao = 3y, + 11y, + 9y, — 3y, 20a,= =11y, + 3y, + 7y, + y5 da,=yo—y1— Y2+

With these and y’(xo) = (2, — 2a,)/h, y’(x,) = a,/h the required resuits follow. Details at the other end
of the data supply are almost identical.

Apply the formulas of the preceding problem to the data of Table 21.1.
We find

y'(1) :% [—21(1.04) + 13(1.37) + 17(1.70) — 9(2.00)] = .35

y'(2) =% [—11(1.04) + 3(1.37) + 7(1.70) + 2.00] = .33

Similarly y'(9) =.16 and y’(10)=.19. The correct values are .50, .35, .17, and .16. The poor results
obtained at the endpoints are further evidence of the difficulties of numerical differentiation. Newton’s
original formula
1 1 1
¥'(x0) =Ayn—§A2yu+§A3yu—ZA“ ot

produces from this data the value .32, which is worse than our .35. At the other extreme the
corresponding backward difference formula manages .25 which is much worse than our .19.

21.22. Apply the formulas for approximate derivatives a second time to estimate y”(x), using the

data of Table 21.1.

We have already obtained estimates of the first derivative, of roughly two-place accuracy. They are
as follows:

yey | 35 33 31 27 24 20 .18 .17 .16 .19
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Now applying the same formulas to the y’(x) values will produce estimates of y“(x). For example, at
x=3,
y"(5) =1i0 [=2(.31) = (.27) + (.20) + 2(.18)] = —.033

which is half again as large as the correct —.022. Complete results from our formulas and correct values
are as follows:

—y" (computed) .011 .021 .028 .033 .033 .026 .019 .004 .012 -0.32

—y" (correct) 250 .088 .048 .031 .022 .017 .013 .011 .009  .008

Near the center we have an occasional ray of hope but at the ends the disaster is evident.

21.23. The least-squares parabola for seven points leads to the smoothing formula

3 2
= 8%~ 56}’k

Y(xk):)’k‘7 7

(The derivation is requested as a supplementary problem.) Apply this to the data of Table
21.1. Does it yield better values than the five-point smoothing formula?

A row of sixth differences may be added to Table 21.1:
40 -115 202 —242

2
Then the formula yields y(4)=2.00— ; (—.05) - n (.40)=1.98
(5)=~2.26 — > (.28) = 2 (~1.15) = 2.25
yR)=&S L) Ty i) ES

and similarly y(6)=2.46, y(7)=2.65. These are a slight improvement over the results from the
five-point formula, except for y(4) which is slightly worse.

ORTHOGONAL POLYNOMIALS, DISCRETE CASE

21.24. For large N and m the set of normal equations may be badly ill-conditioned. To see this show
that for equally spaced x; from O to 1 the matrix of coefficients is approximately

1 1 1 1
2 3 m+1
1 1 1 1
2 3 4 m+2
1 1 1 1
m+l m+2 m+3  IZm+1

if a factor of N is deleted from each term. This matrix is the Hilbert matrix of order m + 1.

For large N the area under y(x)=x" between 0 and 1 will be approximately the sum of N
rectangular areas. (See Fig. 21-2.) Since the exact area is given by an integral, we have

1 N B 1 N 1
— ko dx = ——

N2 Lx k+1

Thus s, = N/(k + 1), and deleting the N we have at once the Hilbert matrix. This matrix will later be
shown to be extremely troublesome for large N.
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Yo Xy Xp TN

Fig. 21-2

21.25. How can the Hilbert matrices be avoided?

The preceding problem shows that the normal equations which arise with the basis 1, x, . .., x™ and
equally spaced arguments involve an approximately Hilbert matrix, which is troublesome. It is
computationally more efficient to find an orthogonal basis so that the corresponding normal equations
become trivial. A convenient orthogonal basis is constructed in the next problem. It is interesting to
note that in developing this basis we will deal directly with the Hilbert matrix itself, not with
approximations to it, and that the system of equations encountered will be solved exactly, thus avoiding
the pitfalls of computing with ill-conditioned systems. (See also Chapter 26.)

21.26. Construct a set of polynomials P, (¢) of degrees m =0, 1, 2, . . . such that
N
2 Pun®P A(6)=0  form>n
=0

Such polynomials are called orthogonal over the set of arguments ¢.
Let the polynomial be
P O =1+cit+ct®+ -+, t™
where ¢ is the factorial ¢(t— 1) - - - (t — i + 1). We first make the polynomial orthogonal to (¢ +5)* for
s=0,1,..., m—1, which means that we require

i (t+ )P, A1) =0

Since (t+5)OPu ) =(t+5)O +ci(t+5) V4 + ¢, (e +5)C+™
summing over the arguments ¢ and using Problem 4.10 brings

_(N+s+1)¢  (N+s+ 1)"*2’Jr g NHsH 1)ermey

N
t+5)OP, N(t) = +
go( $)VEmn(t) s+1 & s+2 s+m+1

m

which is to be zero. Removing the factor (N + s +1)“*", the sum becomes

1 Nc, +N(2)cz+ N,
s+1 s+2 s+3 s+m+1

and setting N®c, = g, this simplifies to

1 4 L) +o 4 o =
s+1 s+2 s+3 s+m

fors =0, 1,..., m—1. The Hilbert matrix again appears in this set of equations, but solving the system
exactly will still lead us to a useful algorithm. If the last sum were merged into a single quotient it would
take the form Q(s)/(s +m+1)"*" with Q(s) a polynomial of degree at most m. Since Q(s) must be
zero at the m arguments s =0, 1, ..., m —1, we must have Q(s) = Cs" where C is independent of s.
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To determine C we multiply both the sum and the equivalent quotient by (s + 1) and have

14( +1)< I . )— G
STINT2 stm+1) (5+2) - G+m+1)
which must be true for all s except zeros of denominators. Setting s=—1, we see that C=
m!/[(-1)(=2) - - - (=m)] = (—1)". We now have
A e G __ (=17
s+1 s+2 s+m+1 (s+m+ 1Y

The device which produced C now produces the 4, Multiply by (s + m + 1)**" and then set s = —i — 1
tofindfori=1,...,m

(=Dt (m—i)a;=(—1)"(=i = )" =(m+i)"
) _ (m+)™ m\(m+i
and then solve for ai—(—l)m—(—1)<i)< ; )
Recalling that a; = ¢;N®, the required polynomials may be written as
i m\(m+ i\ 19
L
=2 (")
What we have proved is that each P,, »(t) is orthogonal to the functions
1 t+1  (@+2)(¢+D) -+ (t+m-1"Y

but in Problem 4.18, we saw that the powers 1, ¢, ¢, ..., "' may be expressed as combinations of
these, so that P, () is orthogonal to each of these powers as well. Finally, since P, () is a
combination of these powers we find P,, »(¢) and P, 5(t) to be themselves orthogonal. The first five of
these polynomials are

Pon=1
2t
P y=1- N
_, 6 6i(r—1)
Pon=1 N+N(N— 1)
12t 30e(t—1) 200 —1D(r—2)
Py=1-

NEINON-) TNV-DW-2)

P o—1- 2_0t+ 90r(e—1) 140e(r —1)(r=2) 70e(t = 1)t —2)(t = 3)
ANTETN UN(N-1) NN-1D(N-2) N(N-1N-2)(N-3)

21.27. Determine the coefficients a, so that

p(x) =agPon(®) + a1 P n(t) + - - - + 4, Py p (D)

[with ¢ = (x —x,)/h] will be the least-squares polynomial of degree m for the data (x,, y),
t=0,1,...,N.

We are to minimize

M=

8= [y — aPon(t) =+ — @ P NO)]*

=0

Il

Setting derivatives relative to the a, equal to zero, we have

as 2
5= "2 aPonl) = = AP (DPen() =0
(73 =0
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for k=0, 1, ..., m. But by the orthogonality property most terms here are zero, only two contributing.

M=

[y — @ P n(O)] Pin(t) =0

0

i

Solving for g, we find ~
L yiPn(t)

t=0
=TT
L Pin()

This is one advantage of the orthogonal functions. The coefficients a, are uncoupled, each appearing in a
single normal equation. Substituting the a, into p(x), we have the least-squares polynomial.

The same result follows directly from the general theorem of Problems 21.7 and 21.8. Identifying E,
S, y, (vy, v,), and ||v|| exactly as before, we now take u, = P, y(f) so that the orthogonal projection is
still p = agito+ - - - + a,,U,,. The kth normal equation is (u, ux)a, = (¥, w) and leads to the expression
for a, already found. Our general theory now also guarantees that we have actually minimized §, and
that our p(x) is the unique solution. An argument using second derivatives could also establish this but
is now not necessary.

N m N
21.28. Show that the minimum value of S takes the form ¥ y?— ¥ Wiai where W, = ¥ P% \(t).
=0 k=0 =0

Expansion of the sum brings

N N m N m
S=2y1=22 5 2 &Pun(t) + 2, X aa P n(O)Pn(D)
=0 =0 k=0 1=0j,k=0
The second term on the right equals —~2 in] a,(Wea )= -2 ’Z"] Weay. The last term vanishes by the
k=0 k=0

orthogonality except when j =k, in which case it becomes Y. W,a;. Putting the pieces back together,
&=0

N m
Smin= 2 yi — 2, Wea}

Notice what happens to the minimum of S as the degree m of the approximating polynomial is
increased. Since S is nonnegative, the first sum in S, clearly dominates the second. But the second
increases with m, steadily diminishing the error. When m =n we know by our earlier work that a
collocation polynomial exists, equal to y, at each argument t=0, 1, ..., N. This reduces $ to zero.

21.29. Apply the orthogonal functions algorithm to find a least-squares polynomial of degree three
for the following data:

X; 0 1 2 3 4 5 6 7 8 9 10

yi | 122 141 1338 142 148 158 184 179 203 204 217

X; 11 12 13 14 15 16 17 18 19 20

i | 236 230 257 252 285 293 3.03 3.07 3.31 348

The coefficients «; are computed directly by the formula of the preceding problem. For hand
computing, tables of the W, and P, n(¢) exist and should be used. Although we have “inside
information” that degree three is called for, it is instructive to go slightly further. Up through m =5 we
find a,=2.2276, a, = —1.1099, a,=.1133, a;=.0119, a,=.0283, as = —.0038; and with x =¢,

p(x) =2.2276 — 1.1099P, 5 + .1133P; 50 + .0119P; 5 + .0283P, 50— .0038Ps 5
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By the nature of orthogonal function expansions we obtain least-squares approximations of various
degrees by truncation of this result. The values of such polynomials from degree one to degree five are
given in Table 21.2 below, along with the original data. The final column lists the values of
y(x) = (x +50)*/10° from which the data were obtained by adding random errors of size up to .10. Our
goal has been to recover this cubic, eliminating as much error as we can by least-squares smoothing.
Without prior knowledge that a cubic polynomial was our target, there would be some difficulty in
choosing our approximation. Fortunately the results do not disagree violently after the linear
approximation. A computation of the RMS error shows that the quadratic has, in this case,
outperformed the cubic approximation.

Raw
Degree 1 2 3 4 5 data
RMS .060 .014 .016 .023 .023 .069
Table 21.2
Given Correct
x data 1 2 3 4 5 results
0 1.22 1.12 1.231 1.243 1.27 1.27 1.250
1 1.41 1.23 1.308 1.313 1.31 1.31 1.327
2 1.38 1.34 1.389 1.388 1.37 1.38 1.406
3 1.42 1.45 1.473 1.469 1.45 1.45 1.489
4 1.48 1.56 1.561 1.554 1.54 1.54 1.575
5 1.58 1.67 1.652 1.645 1.63 1.63 1.663
6 1.84 1.78 1.747 1.740 1.74 1.73 1.756
7 1.79 1.89 1.845 1.839 1.84 1.84 1.852
8 2.03 2.01 1.947 1.943 1.95 1.95 1.951
9 2.04 2.12 2.053 2.051 2.07 2.07 2.054
10 2.17 2.23 2.162 2.162 2.18 2.18 2.160
11 2.36 2.34 2.275 2.277 2.29 2.29 2.270
12 2.30 2.45 2.391 2.395 2.41 2.41 2.383
13 2.57 2.56 2.511 2.517 2.52 2.52 2.500
14 2.52 2.67 2.635 2.642 2.64 2.64 2.621
15 2.85 2.78 2.762 2.769 2.76 2.76 2.746
16 2.93 2.89 2.892 2.899 2.88 2.88 2.875
17 3.03 3.00 3.027 3.031 3.01 3.01 3.008
18 3.07 3.12 3.164 3.165 3.15 3.15 3.144
19 331 3.23 3.306 3.301 3.30 3.30 3.285
20 3.48 3.34 3.451 3.439 3.47 3.47 3.430

CONTINUOUS DATA, THE LEAST-SQUARES POLYNOMIAL
21.30. Determine the coefficients a; so that

1= [ )= aohie) ~ asPix) = =P T

will be a minimum, the function P,(x) being the kth Legendre polynomial.
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Here it is not a sum of squares which is to be minimized but an integral, and the data are no longer
discrete values y; but a function y(x) of the continuous argument x. The use of the Legendre polynomials
is very convenient. As in the previous section it will reduce the normal equations, which determine the
a,, to a very simple set. And since any polynomial can be expressed as a combination of Legendre
polynomials, we are actually solving the problem of least-squares polynomial approximation for
continuous data. Setting the usual derivatives to zero, we have

ol !
30" Zf [y(x) —aoPo(x) — - - - —a,, By(x)]Pc(x) dx =0
k -1
fork=0,1,..., m. By the orthogonality of these polynomials, these equations simplify at once to

-[1 [y(x) — acPi(x)]P.(x) dx =0

Each equation involves only one of the a4, so that

[ YOPE) d

Ay

Lk =2k2+1Ly(x)Pk(x) dx
j Pi(x) dx

Here again it is true that our problem is a special case of Problems 21.7 and 21.8, with these
identifications:

E: The space of real-valued functions on —1=x =1
S: Polynomials of degree m or less
y: The data function y(x)

1
(vy, va): The scalar product f v, (x)va(x) dx
-1
1

[lvll:  Thenorm | [v(x)]*dx

Uy P.(x)
p: aPo(x)+- - +a,P,(x)
Ay (v, w)/ (e, )

These problems therefore guarantee that our solution p(x) is unique and does minimize the integral 1.

Find the least-squares approximation to y(¢) = ¢* on the interval (0, 1) by a straight line.

Here we are approximating a parabolic arc by a line segment. First let = (x + 1)/2 to obtain the
interval (—1,1) in the argument x. This makes y =(x +1)*/4. Since Py(x)=1 and P,(x)=x, the
coefficients a, and a, are

1 1
u0=%f_‘%(x+1)2dx=% a1=%£l%(x+1)zxdx=%
and the least-squares line is y = 3Py(x) + 3P(x) =3+ 3x =t~ L.

Both the parabolic arc and the line are shown in Fig. 21-3. The difference between y values on the
line and the parabola is > — ¢ + §, and this takes extreme values at ¢ =0, 3, and 1 of amounts &, — 5, and
% The error made in substituting the line for the parabola is therefore slightly greater at the ends than at
the center of the interval. This error can be expressed as

1 1 1 1
7O+ =3 Rkx) -~ 5 Px) =¢PM)

and the shape of P,(x) corroborates this error behavior.
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Fig. 21-3

21.32. Find the least-squares approximation to y(z) = sin ¢ on the interval (0, ) by a parabola.

Let ¢ = m(x + 1)/2 to obtain the interval (—1, 1) in the argument x. Then y =sin [z(x + 1)/2]. The
coefficients are

1 [ax+1) 2
a, EJ_1SIH[ 3 ]dx—]r

30 . [akx+1D)
al—-éJilsm[ 3 ] dx =0

50 n(x+1)]l 2 _10( 12)
az—zj;sm[ 3 2(3x 1)dx—Jr 1 p

so that the parabola is
2 10 12\ 1 2 10 12\[ 6 m\* 1
(a2 - (3
YTz n(l nz)z(Sx b n+n(l 7*/ L 2/ 2

The parabola and sine curve are shown in Fig. 21-4, with slight distortions to better emphasize the over
and under nature of the approximation.

Fig. 21-4

21.33. What are the “shifted Legendre polynomials”?

These result from a change of argument which converts the interval (—1,1) into (0,1). Let
t=(1—x)/2 to effect this change. The familiar Legendre polynomials in the argument x then become

-1

=1 P=3 (%' =1)=1-61+68

1
P=x=1-2% Pi=3 (5x7 = 3x) =1 - 12+ 30~ 20°
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and so on. These polynomials are orthogonal over (0, 1) and we could have used them as the basis of
our least-squares analysis of continuous data in place of the standard Legendre polynomials. With this
change of argument the integrals involved in our formulas for coefficients become

fl [P dt= 4= (2k+1) J'ly(t)Pk(t) dt

2n+1
The argument change ¢ = (x + 1)/2 might also have been used, altering the sign of each odd-degree
polynomial, but the device used leads to a close analogy with the orthogonal polynomials for the discrete
case developed in Problem 21.26.

21.34. Suppose that an experiment produces the curve shown in Fig. 21-5. It is known or suspected
that the curve should be a straight line. Show that the least-squares line is approximately
given by y = .21t + .11, which is shown dashed in the diagram.

Fig. 21-5

Instead of reducing the interval to (—1,1) we work directly with the argument ¢ and the shifted
Legendre polynomials. Two coefficients are needed,

a0=fly(t)dt a1=3f1y(t)(l—2t)dt

Since y(¢) is not available in analytic form, these integrals must be evaluated by approximate methods.
Reading from the diagram, we may estimate y values as follows:

t 0 .1 .2 3 4 .5 .6 7 .8 9 1.0

y 00 17 13 15 .23 .25 .2 22 .25 29 .36

Applying Simpson’s rule now makes a,=.214 and a, = —.105. The resulting line is
y=.214~-.105(1 = 2¢) = .21r + .11

and this appears in Fig. 21-5. An alternative treatment of this problem could involve applying the
methods for discrete data to the y values read from the diagram.

CONTINUOUS DATA, A GENERALIZED TREATMENT

21.35. Develop the least-squares polynomial in terms of a set of orthogonal polynomials on the
interval (a, b) with nonnegative weight function w(x).
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21.36.

21.37.

21.38.

21.39.
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The details are very similar to those of earlier derivations. We are to minimize
1= [ Wl 6~ Qute) =~ an Qo)
by choice of the coefficients a,, where the functions Q,(x) satisfy the orthogonality condition
[ v wew a=o0

for j+# k. Without stopping for the duplicate argument involving derivatives, we appeal at once to
Problems 21.7 and 21.8, with the scalar product

b
W v = [ weuieyvae) dx
and other obvious identifications, and find
b
[ Wy @) ax
gG=

j w(x)Qi(x) dx

With these a, the least-squares polynomial is p(x) =aoQq(x) + - * - + @, Q,u(x).

What is the importance of the fact that a, does not depend upon m?

This means that the degree of the approximation polynomial does not have to be chosen at the start
of a computation. The a, may be computed successively and the decision of how many terms to use can
be based on the magnitudes of the computed 4. In nonorthogonal developments a change of degree will
usually require that all coefficients be recomputed.

Show that the minimum value of I can be expressed in the form
b m b
j w(x)yX(x)dx — >, Weai  where W, =f w(x)Q%(x) dx
a k=0 a
Explicitly writing out the integral makes
b m b m b
I=f w(x)y*(x)dx —2 2 f w(x)y(x)a, Qu(x) dx + 2 f w(x)a;a,Q;(x)Qx(x) dx
a k=0"a jk=0Ya
The second term on the right equals —2 rf] a(Wea,)= -2 f Wiai. The last term vanishes by the
k=0 k=0
orthogonality except when j =k, in which case it becomes E W,.a;. Putting the pieces back together,
k=0
Ln = [2w(@x)y*(x) dx — ¥ Wia;.
k=0
m
Prove Bessel’s inequality, Y, W.a%= [5w(x)y*(x) dx.
k=0

Assuming w(x) 20, it follows that I Z0 so that Bessel’s inequality is an immediate consequence of
the preceding problem.

Prove the series Y, W.a? to be convergent.
k=0

It is a series of positive terms with partial sums bounded above by the integral in Bessel’s inequality.
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This guarantees convergence. Of course, it is assumed all along that the integrals appearing in our
analysis exist, in other words that we are dealing with functions which are integrable on the interval
(a, b).

21.40. Is it true that as m tends to infinity the value of I, tends to zero?

With the families of orthogonal functions ordinarily used, the answer is yes. The process is called
convergence in the mean and the set of orthogonal functions is called complete. The details of proof are
more extensive than will be attempted here.

APPROXIMATION WITH CHEBYSHEV POLYNOMIALS

21.41. The Chebyshev polynomials are defined for —1=x =1 by T, (x) = cos (n arccos x). Find the
first few such polynomials directly from this definition.

For n =0 and 1 we have at once Ty(x) =1, Ty(x) =x. Let A =arccosx. Then
T(x)=cos2A=2cos’A—1=2x*—1
Ty(x) =cos3A =4cos’ A —3cos A = 4x> — 3x, etc.

21.42. Prove the recursion relation 7,,,,(x) = 2xT,(x) — T,_ (x).

The trigonometric relationship cos (n + 1)A + cos (n — 1)A =2 cos A cos nA translates directly into
Loaa(x) + Toma(x) = 2T (x).

21.43. Use the recursion to produce the next few Chebyshev polynomials
Beginning with n = 3,
T(x)=2x(4x*—3x) — (2x*—1) =8x*—8x*+1
Ty(x) =2x(8x* + 1) — (4x® — 3x) = 16x° — 20x* + 5x
Ty(x) = 2x(16x° — 20x° + 5x) — (8x* — 8x® + 1) = 32¢° — 48x* + 18x> — 1
T(x) = 2¢(32x° — 48x* + 18x> — 1) — (16x° — 20x° + 5x) = 64x” — 112¢° + 56x° = Tx  etc.

21.44. Prove the orthogonality property

0 m#n

'TL,)T(x) , _
VI dx =13 /2 m=n#0
m=n=0

Let x = cos A as before. The above integral becomes

sin (m +n)A  sin (m — n)A]”
2(m+n) 2(m—n)

F (cos mA)(cos nA) dA = [ =0

o

for m #n. If m =n =0, the result & is immediate. If m = n# 0, the integral is

1 /sinnA cos nA T om
(el -
o 2

J cos’nA dA = [—
0

2 n

21.45. Express the powers of x in terms of Chebyshev polynomials.
We find

1 1
1=T, x=T x2=§(To+Tz) x3:1(3Tl+T3)
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1 1
x= 2 (L +4T+ T) x* =2 (0T, + 5T, + T5)
1 1
%= (10T, + 15T, + 6T, + ) ¥ = QST+ AT+ 7L+ )

and so on. Clearly the process may be continued to any power.

21.46. Find the least-squares polynomial which minimizes the integral

1
1
———[y(x) —aTo(x) =+ * — @ T,n ()] dx
j_lm[Y( ) — aoTox) ()]
By results of the previous section the coefficients g, are

[ wewemwa o
-1 _z )

wly VI-x?

a=

fl w(x)T3(x) dx

boy)

1
except for a, which is aO:; Vs dx. The least-squares polynomial is aoTo(x) + - - - + a,, T, (x).

21.47. Show that T,(x) has n zeros inside the interval (—1, 1) and none outside. What is the “equal-

ripple” property?
Since T,(x)=cosnf, with x=cos® and —1=x=1, we may require 0=6 =x without loss.
Actually this makes the relationship between € and x more precise. Clearly T,(x) is zero for
0 =i +1)x/2n, or
2i+1
—cos H DT

=0,1,...,n—-1
n 0 n

Xi
These are n distinct arguments between —1 and 1. Since T,(x) has only n zeros, there can be none
outside the interval. Being equal to a cosine in the interval (~1, 1), the polynomial 7,(x) cannot exceed
one in magnitude there. It reaches this maximum size at n + 1 arguments, including the endpoints.

T,(x)=(-1) at x=cosZ i=0,1,...,n
n

This oscillation between extreme values of equal magnitude is known as the equal-ripple property. This
property is illustrated in Fig. 21-6 which shows T,(x), T3(x), Ti(x), and Ti(x).




CHAP. 21] LEAST-SQUARES POLYNOMIAL APPROXIMATION 265

21.48.

21.49.

In what way does the equal-ripple property make the least-squares approximation
yx)=ayTH(x)+-- - +a,T,(x)
superior to similar approximations using other polynomials in place of the T (x)?

Suppose we assume that, for the y(x) concerned, the series obtained by letting 7 tend to infinity
converges to y(x) and also that it converges quickly enough so that

Y&) = aoTo(x) = -+ - = 0, T(x) = @i Ta(x)

In other words, the error made in truncating the series is essentially the first omitted term. Since 7,,,,(x)
has the equal-ripple property, the error of our approximation will fluctuate between a,,,, and

—a,,., across the entire interval (—1, 1). The error will not be essentially greater over one part of the
interval compared with another. ThlS error uniformity may be viewed as a reward for accepting the
unpleasant weighting factor 1/V1 — x? in the integrals.

Find the least-squares line for y(¢f) =¢* over the interval (0,1) using the weight function
1V1-x2

The change of argument ¢ = (x + 1)/2 converts the interval to (—1, 1) in the argument x, and makes
¥ =4(x*+2x + 1). If we note first the elementary result

F11 p=0
' 0 p=1
—=dx = f cos AY dA =
aV1—x? ( Y /2 p=2
0 p=3
then the coefficient a, becomes (see Problem 21.46) a,=4(3+0+1)=%; and since y(x)Ty(x) is

i +2x* +x), we have 4, =5(0+2+0)=1. The least-squares polynomial is, therefore,

—To(x)+ Tix) =2 +;x

There is a second and much briefer path to thls result. Using the results in Problem 21.45,

1

@ =4 3B+ LM T) =24 41 T
Truncating this after the linear terms, we have at once the result just found. Moreover we see that the
erTor is, in the case of this quadratic y(x), precisely the equal ripple function T,(x)/8. This is, of course,
a consequence of the series of Chebyshev polynomials terminating with this term. For most functions the
error will only be approximately the first omitted term, and therefore only approximately an equal-ripple
error. Comparing the extreme errors here (3, — §, 3) with those in Problem 21.31 which were (3, — &, 1),
we see that the present approximation sacrifices some accuracy in the center for improved accuracy at
the extremes plus the equal ripple feature. Both lines are shown in Fig. 21-7.

Fig. 21-7
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21.50. Find a cubic approximation in terms of Chebyshev polynomials for y(x) = sin x.

The integrals which must be computed to obtain the coefficients of the least-squares polynomial
with weight function w(x) =1/V1—x* are too complicated in this case. Instead we will illustrate the
process of economization of polynomials. Beginning with

. 1 1
sinx=x —-x>+—x’

6 120
we replace the powers of x by their equivalents in terms of Chebyshev polynomials, using Problem
21.45.
1 1 169 5
inx=T,—-—=0QBNL+ L) +—— 10+ 5L+ ) =—T~—L+—T,
sinx 1 24( 1 %) 1920( 1 3 5) 192 ' 128 020 0

The coefficients here are not exactly the a, of Problem 21.46 since higher powers of x from the sine
series would make further contributions to the 7;, T3, and T; terms. But those contributions would be
relatively small, particularly for the early 7, terms. For example, the x° term has altered the T; term by
less than 1 percent, and the x” term would alter it by less than .01 percent. In contrast the x° term has
altered the T, term by about 6 percent, though x” will contribute only about .02 percent more. This
suggests that truncating our expansion will give us a close approximation to the least-squares cubic.
Accordingly we take for our approximation

inx =~ 95 5 o _ s

sinx = 9 T 28 T ~.9974x — . 1562x
The accuracy of this approximation may be estimated by noting that we have made two “truncation
errors,” first by using only three terms of the power series for sinx and second in dropping 75. Both
affect the fourth decimal place. Naturally, greater accuracy is available if we seek a least-squares
polynomial of higher degree, but even the one we have has accuracy comparable to that of the
fifth-degree Taylor polynomial with which we began. The errors of our present cubic and the Taylor
cubic, obtained by dropping the x* term, are compared in Fig. 21-8. The Taylor cubic is superior near
zero but the almost-equal-error property of the (almost) least-squares polynomial is evident and should
be compared with Tx(x).

.002

Taylor error

.001

Present

/ error

. / 1

Fig. 21-8
21.51. Prove that for m and n less than N,

N1 0 m#n

> Ta(x)T.(x)=9 N/2 m=n+0
i=0

N m=n=90

where x; =cos 4; =cos [(2{ + 1)2/2N], i=0,1,...,N—-1.
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From the trigonometric definition of the Chebyshev polynomials, we find directly

N-1 N-1 =

Z T.(x)T,(x;) = Z cos mA, cos nA; =5 E [cos (m +n)A; + cos (m — n)A/]

i=0 =0 i=0
Since cos ai = (5 sin 3a)[A sin a(i — )] both cosine sums may be telescoped. It is simpler, however, to
note that except when m +n or m —n is zero each sum vanishes by symmetry, the angles A; being
equally spaced between 0 and . This already proves the result for m # n. If m =n # 0 the second sum
contributes N/2, while if m = n = 0 both sums together total N. It should be noticed that the Chebyshev
polynomials are orthogonal under summation as well as under integration. This is often a substantial
advantage, since sums are far easier to compute than integrals of complicated functions, particularly
when the factor V1 —x* appears in the latter but not in the former.

What choice of coefficients a, will minimize

DIy — aTolx) — - - - — @ Tu(x)P

where the x; are the arguments of the preceding problem?

With proper identification it follows directly from Problems 21.7 and 21.8 that the orthogonal
projection p =a,Ty + - - - + a,, T,, determined by

zi: y(x) T(x;)
" LLGP

[

provides the minimum. Using Problem 21.51 the coefficients are

ao:l%lz,y(xi) ”k:%z’y(x,)Tk(x,.) k=1,...,m

For m = N — 1 we have the collocation polynomial for the N points (x;, y(x;)) and the minimum sum is
Zero.

Find the least-squares line for y(t) = t* over (0, 1) by the method of Problem 21.52.

We have already found a line which minimizes the integral of Problem 21.46. To minimize the sum
of Problem 21.52, choose ¢ = (x + 1)/2 as before. Suppose we use only two points, so that N = 2. These
points will have to be x,=cos n/4 = 1/V2 and x, = cos 3x/4= —1/V2. Then

171 1 =73
a0=§[§(3+2\f2)+§(3—2\/2)]=§

1 1 1 1 1
=-(3+2V2 (T)+— 3-2V2 (——):—
a=gB+2V2)(5)+36-2VD(-5) =3

and the line is given by p(x) = 3T, + 1T, =1 + 3x. This is the same line as before and using a larger N

would reproduce it again. The explanation of this is simply that y itself can be represented in the form

y=a,Ty+a,T,+a,T, and, since the T, are orthogonal relative to both integration and summation, the

least-squares line in either sense is also available by truncation. (See the last paragraph of Problem
21.8.)

Find least-squares lines for y(x) = x* over (—1, 1) by minimizing the sum of Problem 21.52.

In this problem the line we get will depend somewhat upon the number of points we use. First take
N =2, which means that we use xo= —x; = 1/\/5 as before. Then

1
a,==(xp+x3)=0 a1=x3+x?=§

N
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Choosing N =3 we find x, = \/5/2, x;=0, and x,= — V/3/2. This makes
1 2
a0=§(x3+x?+x§)=0 a1=§(x3+x‘:+x‘2’)=g
Taking the general case of N points, we have x; = cos A; and
1 N-1
4=y gﬂ cos’A; =0

by the symmetry of the A, in the first and second quadrants. Also,

N 1

2 cos* A4; ——2 ( + - cos24; +;cos4A)

Since the A, are the angles x/2N, 37/2N,..., 2N —1)n/2N, the doubled angles are x/N,
3%/N, ..., (2N —1)x/N and these are symmetrically spaced around the entire circle. The sum of the
cos 24; is therefore zero. Except when N =2, the sum of the cos 44, will also be zero so that 4, = 3, for
N =2. For N tending to infinity we thus have trivial convergence to the line p(x) = 37;/4 = 3x /4.

If we adopt the minimum integral approach, then we find

. 1 f x? dx=0 2 J‘ 'ox dx 3
== x = a, == ==
CTalVi=i? Urlviexe 4
which leads to the same line.
The present example may serve as further elementary illustration of the Problem 21.52 algorithm,
but the result is more easily found and understood by noting that y =x*=3T, + 4T and once again

appealing to the corollary in Problem 21.8 to obtain 37,/4 or 3x/4 by truncation. The truncation process
fails for N =2 since then the polynomials T, T;, T, T; are not orthogonal. (See Problem 21.51.)

Find least-squares lines for y(x) = |x| over (—1, 1) by minimizing the sum of Problem 21.52.
With N =2 we quickly find a,= 1/\/5, a;=0. With N =3 the results g,= 1/\/5, a, =0 are just as
easy. For arbitrary N,
1 N-1 2 1
a0=ﬁ 20 |cos A;| =N§ncosA,-
where I is (N — 3)/2 for odd N, and (N — 2)/2 for even N. This trigonometric sum may be evaluated by
telescoping or otherwise, with the result

_sin[z(I +1)/N]
% ="N sin (z/2N)

It is a further consequence of symmetry that a, = 0 for all N. For N tending to infinity it now follows
that ; ; 1 2
im gy = lim ————=—
0 Nsinz/2N &
As more and more points are used, the limiting line is approached. Turning to the minimum integral
approach, we of course anticipate this same line. The computation produces

1 2
ik, 2

=ﬂ V1 —x?
_2 boxlxl
=dx =0
TlaV1l—x

and so we are not disappointed. The limiting line is the solid line in Fig. 21-9.

21.56. Apply the method of the previous problems to the experimentally produced curve of Fig.

21-5.
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Fig. 21-9

For such a function, of unknown analytic character, any of our methods must involve discretization
at some point. We have already chosen one discrete set of values of the function for use in Simpson’s
rule, thus maintaining at least in spirit the idea of minimizing an integral. We could have used the same
equidistant set of arguments and minimized a sum. With the idea of obtaining a more nearly
equal-ripple error, however, we now choose the arguments x; = cos A; = 2, — 1 instead. With 11 points,
the number used earlier, the arguments, x; = cos A, = cos [(2i + 1)7x/22] and corresponding t, as well as y;
values read from the curve are as follows:

X; 99 91 75 54 28 .00 -.28 -—-54 -75 -91 -.99

100 .96 .88 .77 .64 .50 .36 .23 12 .04 .00

Vi 36 .33 .28 24 21 .25 .20 12 17 .13 .10

The coefficients become

1 2
ao—ﬁz)’i_'22 al=ﬁ2xiyi=-ll

making the line p(x) =.22 +.11x =.22r +.11 which is almost indistinguishable from the earlier result.
The data inaccuracies have not warranted the extra sophistication.

Supplementary Problems

21.57. The average scores reported by golfers of various handicaps on a par-four hole were as follows:

Handicap 6 8 10 12 14 16 18 20 22 24

Average 46 48 46 49 50 54 51 55 56 6.0

Find the least-squares line for this data.
21.58. Use the least-squares line of the preceding problem to smooth the reported data.
21.59. Estimate the rate at which the average score increases per unit handicap.

21.60. Find the least-squares parabola for the data of Problem 21.57. Does it differ noticeably from the line just
found?

21.61. When the x; and y; are both subject to errors of about the same size, it has been argued that the sum of
squares of perpendicular distances to a line should be minimized, rather than the sum of squares of
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vertical distances. Show that this requires minimizing
1 N
S=—5 — Mx;,— B)?
1+ Mz,-go (: x; = B)
Then find the normal equations and show that M is determined by a quadratic equation.

Apply the method of the preceding problem to the data of Problem 21.57. Does the new line differ very
much from the line found in that problem?

Find the least-squares line for the three points (xo, yo), (X1, y1), and (x,, y,) by the method of Problem
21.1. What is true of the signs of the three numbers y(x;) — y,?

. Show that for the data

x, | 22 27 35 41

P, 65 60 53 50

the introduction of y =log P and computation of the least-squares line for the (x;, y;) data pairs leads
eventually to P =91.9x =%,

Find a function of type P = Ae™ for the data

X; 1 2 3 4

P, 60 30 20 15

Show that the least-squares parabola for seven points leads to the smoothing formula
1
¥ (6) =y 51 (98, +28%4)
by following the procedures of Problems 21.12 and 21.13.

Apply the preceding formula to smooth the center four y; values of Table 21.1. Compare with the
correct roots and note whether or not this formula yields better results than the five-point formula.

Use the seven-point parabola to derive the approximate differentiation formula

1
y' (%) = ﬁ (= 3Yk=3 = Wi-2 = Yim1 t Yer1 T Was2 + 3as3)

Apply the preceding formula to estimate y'(x) for x =4, 5, 6, and 7 from the y, values of Table 21.1.
How do the results compare with those obtained by the five-point parabola? (See Problem 21.19.)

The following are values of y(x)=x> with random errors of from —.10 to .10 added. (Errors were
obtained by drawing cards from an ordinary pack with face cards removed, black meaning plus and red
minus.) The correct values 7 are also included.

x]10 11 12 13 14 15 16 1.7 1.8 1.9 20

Vi 98 . 1.23 140 1.72 1.86 217 255 2.82 3.28 3.54 392

T, | 1.00 1.21 1.44 1.69 196 225 256 2.89 324 361 4.00




CHAP. 21] LEAST-SQUARES POLYNOMIAL APPROXIMATION 271
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21.72.

21.73.

21.74.

21.75.

21.76.

21.77.

21.78.

Apply the smoothing formulas of Problem 21.13 and 21.15. Compare the RMS errors of the original and
smoothed values.

Apply the differentiation formula of Problem 21.18, for the center seven arguments. Also apply the
formula obtained from Stirling’s polynomial (see Problem 21.19). Which produces better approxima-
tions to y'(x) = 2x? Note that in this example the “true” function is actually a parabola, so that except
for the random errors which were introduced we would have exact results. Has the least-squares
parabola penetrated through the errors to any extent and produced information about the true y'(x)?

What is the least-squares parabola for the data of Problem 21.70? Compare it with y(x) =x*

Use the formulas of Problem 21.20 to estimate y’(x) near the ends of the data supply given in Problem
21.70.

Estimate y"(x) from your computed y’(x) values.

The following are values of sinx with random errors of —.10 to .10 added. Find the least-squares
parabola and use it to compute smoothed values. Also apply the method of Problem 21.13 which uses a
different least-squares parabola for each point to smooth the data. Which works best?

x 0 2 4 .6 8 10 12 14 16

sin x -09 13 4 57 .64 .82 97 .98 1.04

A simple and ancient smoothing procedure, which still finds use, is the method of moving averages. In
this method each value y; is replaced by the average of itself and nearby neighbors. For example, if two
neighbors on each side are used, the formula is

1
pi=3 Yzt Yica + Y+ Yicr + Yin2)

where p; is the smoothed substitute for .. Apply this to the data of the preceding problem. Devise a
method for smoothing the end values for which two neighbors are not available on one side.

Apply the method of moving averages, using only one neighbor on each side, to the data of Problem
21.75. The formula for interior arguments will be

1
pi= 5 (Vi1 + Y+ i)
Devise a formula for smoothing the end values.

Apply the formula of the preceding problem to the values y(x) = x> below, obtaining the p; values listed.

X; 0 1 2 3 4 5 6 7

y=x; 0 1 8 27 64 125 216 343

P 3 12 033 72 135 228

Show that these p; values belong to a different cubic function. Apply the moving average formula to the
p; values to obtain a second generation of smoothed values. Can you tell what happens as successive
generations are computed, assuming that the supply of y; values is augmented at both ends indefinitely?
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Apply the method of moving averages to smooth the oscillating data below.

x | o 1 2 3 4 5 6 7 8

¥, 0 1 0

What happens if higher generations of smooth values are computed endlessly? It is easy to see that
excessive smoothing can entirely alter the character of a data supply.

Use orthogonal polynomials to find the same least-squares line found in Problem 21.2.

Use orthogonal polynomials to find the same least-squares parabola found in Problem 21.10.

Use orthogonal polynomials to find the least-squares polynomial of degree four for the square root data
of Problem 21.14. Use this single polynomial to smooth the data. Compute the RMS error of the

smoothed values. Compare with those given in Problem 21.17.

The following are values of e¢* with random errors of from —.10 to .10 added. Use orthogonal
polynomials to find the least-squares cubic. How accurate is this cubic?

x 0 .1 2 3 4 5 .6 N .8 .9 1.0

y 92 115 1.22 144 144 166 1.79 198 232 251 281

The following are values of the Bessel function Jy(x) with random errors of from —.010 to .010 added.
Use orthogonal polynomials to find a least-squares approximation. Choose the degree you feel
appropriate. Then smooth the data and compare with the correct results which are also provided.

x 0 1 2 3 4 5 6 7 8 9 10
y(x) 994 761  .225 -—.253 —.400 -.170 .161 .301 .177 -—.094 —.240
Correct | 1.00 765 224 -—.260 -.397 -.178 .151 300 .172 -.090 -.246

Find the least-squares line for y(x) =x? on the interval (-1, 1).

Find the least-squares line for y(x) =x° on the interval (-1, 1).

Find the least-squares parabola for y(x)=x> on the interval (-1, 1).

Find approximately the least-squares parabola for the function in Fig. 21-10, evaluating the integrals by

Simpson’s rule. This curve should be imagined to be an experimental result which theory claims ought to
have been a parabola.

Fig. 21-10
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21.89. Show that the Chebyshev series for arcsin x is

sinx—i'T+lT+iT+iT+ )
are n(193255497

by evaluating the coefficient integrals directly. Truncate after 7, to obtain the least-squares cubic for this
function. Compute the actual error of this cubic and compare with the first omitted term (the 75 term).
Notice the (almost) equal-ripple behavior of the error.

21.90. Find the least-squares line for y(x) =x* on the interval (-1, 1) with weight function w(x)=1/V1—x".
Compare this line with the one found in Problem 21.85. Which one has the equal-ripple property?

21.91. Find the least-squares parabola for y(x)=x on the interval (—1,1) with weight function w(x)=
1/V1 —x*. Compare this with the parabola found in Problem 21.87.

21.92. Represent y(x)= e by terms of its power series through x’. The error will be in the fifth decimal place
for x near one. Rearrange the sum into Chebyshev polynomials. How many terms can then be dropped
without seriously affecting the fourth decimal place? Rearrange the truncated polynomial into standard
form. (This is another example of economization of a polynomial.)

21.93. Show that for y(x)= T,(x) = cos (n arccos x) = cos nA it follows that y'(x) = (nsinnA)/(sin A). Then
show that (1—x?)y"—xy'+n’ =0, which is the classical differential equation of the Chebyshev
polynomials.

21.94. Show that S,(x) =sin (n arccos x) also satisfies the differential equation of Problem 21.93.
21.95. Let U,(x) =S,(x)/VI —x? and prove the recursion U, ,,(x) = 2xU,(x) — U,_,(x).

21.96. Verify that Uy(x)=0, Ui(x)=1 and then apply the recursion to verify Us(x)=2x, Us(x)=4x"—1,
Uy(x) =8x* —dx, Us(x) = 16x* — 12x7 + 1, Uy(x) =32x" — 32x> + 6x, Us(x)=64x" — 80x* + 24x" — 1.

21.97. Prove T,.n(x)+ T,,—,(x) =2T,,(x)T,(x) and then put m = n to obtain
Tu(x) =2T3(x) - 1

21.98. Use the result of Problem 21.97 to find T;, T, and Ts,.

1 1
21.99. Prove - T, =2T,_,+—— T, _, and then deduce
n n-—

2
T =220+ 1) (T + Tynz+ -+ ) +1 T3, =2(20)(Tanor + Tons+ -+ T))

21.100. Prove To,\1 =x(2T, = 2T2p2 + 2T, s+ - - = T).

21.101. Economize the result In (1 +x)=x — 3x* + 3x* — ix* + &° by rearranging into Chebyshev polynomials
and then retaining only the quadratic terms. Show that the final result In (1 +x) =4 + %¥x — 3x* has
about the same accuracy as the fourth-degree part of the original approximation.

21.102. Economize the polynomial y(x)=1+x + 3x”+ 4x” + 35x*, first representing it as a combination of
Chebyshev polynomials, then truncating to two terms. Compare the result with 1+x + ix*, considering
both as approximations to e*. Which is the better approximation? In what sense?

21.103. Show that the change of argument x =2r — 1, which converts the interval to (0, 1) in terms of ¢, also
converts the Chebyshev polynomials into the following, which may be used instead of the classical
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polynomials if the intervals (0, 1) is felt to be more convenient:
Tex)=1 Ti(x)=2t—-1 T3(x)=8—-8r+1 T3(x)=32—48+18—1 etc.
Also prove the recursion T, ,(f) = (41 = 2)Tx(¢) — Tx_,(?).

21.104. Prove [ Ty(x) dx = Ty(x), [ Ty(x) dx = §Tx(x), and, for n>1,
f T,(x) dx :% [Tn+1(x) _ Tn*l(x):'

n+1 n—1

21.105. Show that the same line found with N =2 in Problem 21.53 also appears for arbitrary N.

21.106. Use the method of Problem 21.52 to obtain a least-squares parabola for y(x) = x> over (—1, 1) choosing
N =3. Show that the same result is obtained for arbitrary N and also by the method of minimizing the
integral of Problem 21.91.

21.107.Find the least-squares parabolas for y(x) = |x| over (-1, 1) and for arbitrary N. Also show that as N
tends to infinity this parabola approaches the minimum integral parabola.

21.108. Apply the method of Problem 21.52 to the experimental data of Fig. 21-10. Use the result to compute
smoothed values of y(x) at x = — 1(.2)1.

21.109. Smooth the following experimental data by fitting a least-squares polynomial of degree five:

t 0 5 10 15 20 25 30 35 40 45 50

y 0 .127 .216 .286 .344 387 415 .437 451 .460 .466

21.110. The following table gives the number y of students who made a grade of x on an examination. To use
these results as a standard norm, smooth the y numbers twice, using the smoothing formula

1
P=3% (= 3yo + 12y, + 17y, + 125 — 3y.)

It is assumed that y = 0 for unlisted x values.

x 100 95 90 85 80 75 70 65 60 55 50 45

y 0 13 69 147 208 195 195 126 130 118 121 &5

x 40 35 30 25 20 15 10 5 0

y 93 75 54 42 30 34 10 8 1

21.111. Find the least-squares polynomial of degree two for the following data. Then obtain smoothed values.

X 78 1.56 2.34 3.12 3.81

y 2.50 1.20 1.12 2.25 4.28




Chapter 22

Min—Max Polynomial Approximation

DISCRETE DATA

The basic idea of min—-max approximation by polynomials may be illustrated for the case of a
discrete data supply x;, y, where i=1,..., N. Let p(x) be a polynomial of degree n or less and let
the amounts by which it misses our data points be h; = p(x;) —y;. Let H be the largest of these
“errors.” The min-max polynomial is that particular p(x) for which H is smallest. Min-max
approximation is also called Chebyshev approximation. The principal results are as follows:

1. The existence and uniqueness of the min—max polynomial for any given value of » may be
proved by the exchange method described below. The details will be provided for the case
n=1 only.

2. The equal-error property is the identifying feature of a min—max polynomial. Calling this
polynomial P(x), and the maximum error

E =max|P(x;) — y(x;)]
we shall prove that P(x) is the only polynomial for which P(x;) — y(x;) takes the extreme
values +F at least n + 2 times, with alternating sign.

3. The exchange method is an algorithm for finding P(x) through its equal-error property.
Choosing some initial subset of n + 2 arguments x;, an equal-error polynomial for these data
points is found. If the maximum error of this polynomial over the subset chosen is also its
overall maximum H, then it is P(x). If not, some point of the subset is exchanged for an
outside point and the process is repeated. Eventual convergence to P(x) will be proved.

CONTINUOUS DATA

For continuous data y(x) it is almost traditional to begin by recalling a classical theorem of
analysis, known as the Weierstrass theorem, which states that for a continuous function y(x) on an
interval (a, b) there will be a polynomial p(x) such that

lpx)—y()i=e

in (a, b) for arbitrary positive €. In other words, there exists a polynomial which approximates y(x)
uniformly to any required accuracy. We prove this theorem using Bernstein polynomials, which have
the form .

B,(x)= ;:,Opnkyé)

where y(x) is a given function and
Puc = (Z)xk(l —x)r

Our proof of the Weierstrass theorem involves showing that lim B, (x) = y(x) uniformly for n tending
to infinity. The rate of convergence of the Bernstein polynomials to y(x) is often disappointing.
Accurate uniform approximations are more often found in practice by min—-max methods.

The essential facts of min—max methods somewhat parallel those for the discrete case.

1. The min—max approximation to y(x), among all polynomials of degree n or less, minimizes
the max |p(x) — y(x)| for the given interval (a, b).

2. Tt exists and is unique.

275
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It has an equal-error property, being the only such polynomial for which p(x) — y(x) takes
extreme values of size E, with alternating sign, at n + 2 or more arguments in (g, b). Thus
the min—max polynomial can be identified by its equal-error property. In simple examples it
may be displayed exactly. An example is the min—max line when y"(x) > 0. Here

P(x)=Mx+B
i Y0 —y@) _y(@+yx) (a+x)yb)-y@)]
e B F=T 2b-a)
and x, determined by P'(%s) = Y (blz :Z (a)

The three extreme points are a, x,, and b. Ordinarily, however, the exact result is not
within reach and an exchange method must be used to produce a polynomial which comes
close to the equal-error behavior.

Series of Chebyshev polynomials, when truncated, often yield approximations having almost
equal-error behavior. Such approximations are therefore almost min—max. If not entirely
adequate by themselves, they may be used as inputs to the exchange method which then
may be expected to converge more rapidly than it would from a more arbitrary start.

THE INFINITY NORM

The underlying theme of this chapter is to minimize the norm

Iy —pll-

where y represents the given data and p the approximating polynomial.

Solved Problems

DISCRETE DATA, THE MIN-MAX LINE

22.1. Show that for any three points (x;, ¥;) with the arguments x; distinct, there is exactly one

straight line which misses all three points by equal amounts and with alternating signs. This is
the equal-error line or Chebyshev line.

Let y(x) = Mx + B represent an arbitrary line and let k; = y(x;) — Y, =y, — Y; be the “errors” at the
three data points. An easy calculation shows that, since y, = Mx; + B, for any straight line at all

(x3=X2)y; = (X3 = X1)y2 + (2= x1)y; =0
Defining B, = x5 — x5, f=x3—x1, B3 =x,— x;, the above equation becomes
Biyi— B2yt Bays=0

We may take it that x; <x, <x; so that the three 8’s are positive numbers. We are to prove that there is
one line for which

hi=h h,=—h hy=h

making the three errors of equal size and alternating sign. (This is what will be meant by an
“equal-error” line.) Now, if a line having this property does exist, then

n=Yi+h »=Y—-h »n=Ys+h

and substituting above, Bi(Yi+h)—Bo(Y—h)+ Ba(Ys+h) =0
Solving for ,
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22.2.

223.

_ﬁlyvl_ﬁZYl+ﬁ3Y3
Bi+ B2+ Bs

This already proves that at most one equal-error line can exist and that it must pass through the three
points (x,, Y1 +h), (x2, Y2—h), (xs, Y5+ k) for the value 4 just computed. Though normally one asks a
line to pass through only two designated points, it is easy to see that in this special case the three points
do fall on a line. The slopes of PP, and P,P; (where P,, P,, P, are the three points taken from left to
right) are

h=

Y,-Y. ~2h Y,-Y.+2h
—_— and ——
X2 =Xy X3~ X2

and using our earlier equations these are easily proved to be the same. So there is exactly one
equal-error, or Chebyshev, line.

Find the equal-error line for the data points (0, 0), (1,0), and (2. 1).
First we find 8, =2-1=1, f,=2-0=2, B,=1-0=1, and then compute

_OO-@0+M1) _ 1

h= 1+2+1 3

The line passes through (0, —3), (1, %), and (2, 3) and so has the equation y(x) = ix — 1. The line and
points appear in Fig. 22-1.

Fig. 22-1

Show that the equal-error line is also the min—max line for the three points (x;, Y;).

The errors of the equal-error line are h, —h, h. Let h,, h,, h; be the errors for any other line. Also
let H be the largest of |hy|, |h,|, |hs|. Then using our earlier formulas,

h=— B.Yi- BV + ﬁ3Y3= _ B = hy) = Ba(y2 = h2) + Ba(ys = h3)
Bi+ B2+ Bs Bi+ B2+ Bs
where y,, y2, y; here refer to the “any other line.” This rearranges to
_ By = B2ya + Bsys) ~ (Bihy — Boha + Bshs)
Bi+ B+ Bs

and the first term being zero we have a relationship between the h of the equal-error line and the
hy, hy, hy of the other line,

h=

— ﬁlhl - ﬂzhz + ﬁahs
Bi+ B2+ Bs
Since the B’s are positive, the right side of this equation will surely be increased if we replace k,, h,, h,

by H, —H, H, respectively. Thus || = H, and the maximum error size of the Chebyshev line, which is
|h|, comes out no greater than that of any other line.

h
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Show that no other line can have the same maximum error as the Chebyshev line, so that the
min—max line is unique.

Suppose equality holds in our last result, |#|= H. This means that the substitution of H, —H, H
which produced this result has not actually increased the size of §14, — B.h, + B3h;. But this can be true
only if h,, h, h; themselves are all of equal size H and alternating sign, and these are the features which
led us to the three points through which the Chebyshev line passes. Surely these are not two straight
lines through these three points. This proves that the equality |4| = H identifies the Chebyshev line. We
have now proved that the equal-error line and the min—max line for three points are the same.

Tllustrate the exchange method by applying it to the following data:

X; 0 1 2 6 7

Y 0 0 1 2 3

We will prove shortly that there exists a unique min-max line for N points. The proof uses the
exchange method, which is also an excellent algorithm for computing this line, and so this method will
first be illustrated. It involves four steps.

Step 1. Choose any three of the data points. (A set of three data points will be called a triple. This
step simply selects an initial triple. It will be changed in Step 4.)

Step 2. Find the Chebyshev line for this triple. The value 4 for this line will of course be computed
in the process.

Step 3. Compute the errors at all data points for the Chebyshev line just found. Call the largest of
these k; values (in absolute value) H. If |i| = H the search is over. The Chebyshev line for the triple in
hand is the min—max line for the entire set of N points. (We shall prove this shortly.) If |#| < H proceed
to Step 4.

Step 4. This is the exchange step. Choose a new triple as follows. Add to the old triple a data point
at which the greatest error size H occurs. Then discard one of the former points, in such a way that the
remaining three have errors of alternating sign. (A moment’s practice will show that this is always
possible.) Return, with the new triple, to Steps 2 and 3.

To illustrate, suppose we choose for the initial triple
(0,00 (1,00 (21

consisting of the first three points. This is the triple of Problem 22.2, for which we have already found
the Chebyshev line to be y = 3x — § with & = —1%. This completes Steps 1 and 2. Proceeding to Step 3 we
find the errors at all five data points to be —3, 1, =4, 3, 1. This makes H = 4, = 3. This Chebyshev line is
an equal-error line on its own triple but it misses the fourth data point by a larger amount. (See the
dashed line in Fig. 22-2.)
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22.6.

22.7.

Moving therefore to Step 4 we now include the fourth point and eliminate the first to obtain the
new triple

Lo @1 (62

on which the errors of the old Chebyshev line do have the required alternation of sign (3, —31, 3). With
this triple we return to Step 2 and find a new Chebyshev line. The computation begins with

Bi=6-2=4 ,=6-1=5 ,=2-1=1
h=_ @O -OM+MR)_3
4+5+1 10

so that the line must pass through the three points (1, 3,), (2, 7), and (6, ). This line is found to be
y =%x — 15. Repeating Step 3 we find the five errors —15, &, — 1, 13, —15; and since H = & = |k, the job
is done.

The Chebyshev line for the new triple is the min—max line for the entire point set. Its maximum
error is 15. The new line is shown solid in Fig. 22-2. Notice that the || value of our new line (3) is larger
than that of the first line (§). But over the entire point set the maximum error has been reduced from 2
to 15, and it is the min—max error. This will now be proved for the general case.

Prove that the condition || = H in Step 3 of the exchange method will be satisfied eventually,
so that the method will stop. (Conceivably we could be making exchanges forever.)

Recall that after any particular exchange the old Chebyshev line has errors of size |k|, [k}, H on the
new triple. Also recall that |h| < H (or we would have stopped) and that the three errors alternate in
sign. The Chebyshev line for this new triple is then found. Call its errors on this new triple h*, —h*, h*.
Returning to the formula for 4 in Problem 22.3, with the old Chebyshev line playing the role of ‘“‘any
other line,” we have

:ﬁlhl — ﬁ2h2+ ﬁzhz
B+ Bt Bs

where hi, h,, h; are the numbers h, h, H with alternating sign. Because of this alternation of sign all
three terms in the numerator of this fraction have the same sign, so that

ey B B+
B+ B2+ Bs

if we assume that the error H is at the third point, just to be specific. (It really makes no difference in
which position it goes.) In any event, |h*| > |h| because H > |h|. The new Chebyshev line has a greater
error size on its triple than the old one had on its triple. This result now gives excellent service. If it
comes as a surprise, look at it this way. The old line gave excellent service (h =} in our example) on its
own triple, but poor service (H = }) elsewhere. The new line gave good service (h = &) on its own triple,
and just as good service on the other points also.

We can now prove that the exchange method must come to a stop sometime. For there are only so
many triples. And no triple is ever chosen twice, since as just proved the k values increase steadily. At
some stage the condition |h| = H will be satisfied.

h*

Prove that the last Chebyshev line computed in the exchange method is the min—max line for
the entire set of N points.

Let & be the equal-error value of the last Chebyshev line on its own triple. Then the maximum error
size on the entire point set is H = |h|, or we would have proceeded by another exchange to still another
triple and another line. Let k4, h,, . . ., hy be the errors for any other line. Then |h| < max |h,| where A,
is restricted to the three points of the last triple, because no line outperforms a Chebyshev line on its
own triple. But then certainly k| < max |k;| for h; unrestricted, for including the rest of the N points can
only make the right side even bigger. Thus H = |h|<max |k, and the maximum error of the last
Chebyshev line is the smallest maximum error of all. In summary, the min-max line for the set of N
points is an equal-error line on a properly chosen triple.
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22.8. Apply the exchange method to find the min-max line for the following data:

X; 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Y, o 1 1 2 1 3 2 2 3 5 3 4 5 4 5 6
X; 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Y, 6 5 7 6 8 7 7 8 7 9 11 10 12 11 13

The number of available triples is C(31, 3) = 4495, so that finding the correct one might seem
comparable to needle-hunting in haystacks. However, the exchange method wastes very little time on
inconsequential triples. Beginning with the very poor triple at x = (0, 1, 2) only three exchanges are
necessary to produce the min-max line y(x)=.38x —.29 which has coefficients rounded off to two
places. The successive triples with 2 and H values were as follows:

Triple at x = (0,1,2) (0, 1, 24) (1, 24, 30) (9, 24, 30)
250 354 —1.759 —1.857
H 5.250 3.896 2.448 1.857

Note that in this example no unwanted point is ever brought into the triple. Three points are needed,
three exchanges suffice. Note also the steady increase of |A|, as forecast. The 31 points, the min-max
line, and the final triple (dashed vertical lines show the equal errors) appear in Fig. 22-3.

y

15—

Fig. 22-3

DISCRETE DATA, THE MIN-MAX POLYNOMIAL
22.9. Extend the exchange method to find the min—max parabola for the data below.

Xi

Yi

The data are of course drawn from the function y = |x| but this simple function will serve to
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illustrate how all the essential ideas of the exchange method carry over from the straight-line problems
just treated to the discovery of a min—max polynomial. The proofs of the existence, uniqueness, and
equal-error properties of such a polynomial are extensions of our proofs for the min-max line and will
not be given. The algorithm now begins with the choice of an “initial quadruple” and we take the first
four points, at x = —2, —1, 0, 1. For this quadruple we seek an equal-error parabola, say

pi(x)=a+bx+cx’
This means that we require p(x;) — y, = A alternately, or
a—2b+4c—-2= h
a—b+ c—1=-h
a -0= h
a+ b+ c—1=-h

Solving these four equations, we find a =4, b =0, c =3, h = § so that p,(x) = § + 3x*. This completes the
equivalent of Steps 1 and 2, and we turn to Step 3 and compute the errors of our parabola at all five data
points. They are §, —%, §, —4, § so that the maximum error on the entire set (H = }) equals the maximum
on our quadruple (|| = }). The algorithm is ended and our first parabola is the min-max parabola. It is
shown in Fig. 22-4.

Fig. 22-4

22.10. Find the min—max parabola for the seven points y = |x|, x = —3(1)3.

This adds two more points at the ends of our previous data supply. Suppose we choose the same
initial quadruple as before. Then we again have the equal-error parabola p,(x) of the preceding
problem. Its errors at the new data points are 7 so that now H =1} while || =1. Accordingly we
introduce one of the new points into the quadruple and abandon x = —2. On the new quadruple the old
parabola has the errors —%, 4, —%, 7 which do alternate in sign. Having made the exchange, a new

equal-error parabola
Pax) =as+ byx + cpx”
must be found. Proceedmg as in the previous problem we soon obtam the equal error i, = —} and the
parabola p: 2(x) =3(1 +x°). Its errors at the seven data points are §, —%, —1 1 —1i ;, % so that
=|h| =% and the algorithm stops. The parabola p,(x) is the min-max parabola. The fact that all
errors are of uniform size is a bonus, not characteristic of min-max polynomials generally, as the
straight-line problems just solved show.

CONTINUOUS DATA, THE WEIERSTRASS THEOREM

22.11. Prove that Z p(")(k —nx) =0 where p§ = (Z)Xk(l —x)"k



282 MIN-MAX POLYNOMIAL APPROXIMATION [CHAP. 22

The binomial theorem for integers » and %,

(ptay= éﬂ (Z)p*q”’*

is an identity in p and q. Differentiating relative to p brings
n(p+q)yt=2 (n)kp* e
k=0 k

Multiplying by p and then setting p =x, ¢ =1 —x, this becomes nx = Z kp%). Using the same p and g
in the binomial theorem itself shows that 1 =73, p% and so finally k=0

n

> p@k —nx)=nx —nx =0

22.12. Prove also that 2 pS(k — nx? =nx(1—x).
A second differentiation relative to p brings

nn=1(p+ay 2= 3 (k- 1pt 2
k=0
Multiplying by p” and then setting p =x, ¢ = 1 —x, this becomes

n(n = 1x*= 3 k(k = DpR
k=0

from which we find 2 P =n(n—1)x*+ E kp$=n(n—1)x*+nx

Finally we compute
2 PSRk = nx)* =2 Kpli = 2nx 3 kpli + n'x’ X pli)

=n(n — 1)x* + nx — 2nx(nx) + n’x* = nx(1 —x)

22.13. Prove that if d >0 and 0=x =1, then
/ (x)sx(l -Xx)
2 pnk = i’ldz

where Y’ is the sum over those integers k for which |(k/n) —x| = d. (This is a special case of
the famous Chebyshev inequality.)

Breaking the sum of the preceding problem into two parts

ne(1-x) =3 pRk —nxy+ 3 piR(k - nx)?
where X" includes those integers k omitted in ¥’. But then
n(1-x)2 3 pik — nxy?
=3 pre
the first of these steps being possible since %" is nonnegative and the second because in L' we find

|k — nx| Z nd. Dividing througt by n°d*, we have the required result.

22.14. Derive these estimates for %' and %"

> psfzf >pwzE1-

4nd>
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The function x(1 — x) takes its maximum at x = 3 and so 0=x(1 — x) =% for 0=x = 1. The result for
¥’ is thus an immediate consequence of the preceding problem. But then £"=1-%'Z1— (1/4nd”).

22.15. Prove that if f(x) is continuous for 0=x =1, then lim Z N ®f(k/n) =f(x) uniformly as n
tends to infinity.

This will prove the Weierstrass theorem, by exhibiting a sequence of polynomials

5= 3 pi2 (%)

which converges uniformly to f(x). These polynomials are called the Bernstein polynomials for f(x).
The proof begins with the choice of an arbitrary positive number €. Then for |x’ — x| <d,

F)-F)I<3

and d is independent of x by the uniform continuity of f(x). Then with M denoting the maximum of
If (x)], we have

1B, =01 = | 2 p21(5) 10|
=3 o [f(5) -0 + 2 pi

<2M2 p(x)+ EE p&)

i(%) - 1

with k/n in the ¥" part playing the role of x’. The definition of ¥” guarantees |x' — x| <d. Then
)+3e
2
1

1
§§e+§e=e

1B~ ) = (o

for n sufficiently large. This is the required result. Another interval than (0, 1) can be accommodated by
a simple change of argument.

22.16. Show that in the case of f(x) = x?, B,(x) =x*+ x(1 —x)/n so that Bernstein polynomials are
not the best approximations of given degree to f(x). [Surely the best quadratic approximation
to f(x) = x*is x? itself.]

Since the sum ¥ k*p% was found in Problem 22.2,

5. =3, ps(£) = 3 2 < Lpan - e ma] =7+ 22

as required. The uniform convergence for n tending to infinity is apparent, but clearly B,(x) does not
duplicate x*>. We now turn to a better class of uniform approximation polynomials.

CONTINUOUS DATA, THE CHEBYSHEV THEORY

22.17. Prove that if y(x) is continuous for @ =x =5, then there is a polynomial P(x) of degree n or
less such that max |P(x) — y(x)| on the interval (4, b) is a minimum. In other words, no other
polynomial of this type produces a smaller maximum.

Let p(x) =ao+a,x + - - - + a,x" by any polynomial of degree n or less. Then
M(a) =max |p(x) = y(x)|
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22.18.
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depends on the polynomial p(x) chosen, that is, it depends upon the coefficient set (ao, a1, . . ., 4,)
which we shall call 4 as indicated. Since M(a) is a continuous function of @ and nonnegative, it has a
greatest lower bound. Call this bound L. What has to be proved is that for some particular coefficient set
A, the coefficients of P(x), the lower bound L is actually attained, that is, M(A) = L. By way of
contrast, the function f(¢) = 1/¢ for positive ¢ has greatest lower bound zero, but there is no argument ¢
for which f(¢) actually attains this bound. The infinite range of ¢ is of course the factor which allows this
situation to occur. In our problem the coefficient set 4 also has unlimited range, but we now show that
M(A) = L nevertheless. To begin, let 4, = Cb, for i=0, 1,..., nin such a way that ¥ b7 =1. We may
also write @ = Ch. Consider a second function

m(b) =max |bo+ byx + - - + b,x"|

where max refers as usual to the maximum of the polynomial on the interval (g, b). This is a-continuous
function on the unit sphere ¥ b7 =1. On such a set (closed and bounded) a continuous function does
assume its minimum value. Call this minimum g. Plainly g Z0. But the zero value is impossible since
only p(x)=0 can produce this minimum and the condition on the b, temporarily excludes this
polynomial. Thus u > 0. But then

m(a) = max |ao + ayx + - - - + a,x"| =max |p(x)| = Cm(h) Z Cu

Now returning to M(@) =max |p(x) — y(x)|, and using the fact that the absolute value of a difference
exceeds the difference of absolute values, we find

M(a) = m(a) —max |y(x)|
= Cp — max |y(x)|

If we choose C>(L+1+max|y(x)|)/u=R, then at once M(a)ZL +1. Recalling that L is the
greatest lower bound of M(a), we see that M(a) is relatively large for C > R and that its greatest lower
bound under the constraint C=R will be this same number L. But this constraint is equivalent to
Y a?= R, so that now it is again a matter of a continuous function M(a) on a closed and bounded set (a
solid sphere, or ball). On such a set the greatest lower bound is actually assumed, say at a = A. Thus
M(A)is L, and P(x) is a min—max polynomial.

Let P(x) be a min—max polynomial approximation to y(x) on the interval (a, b), among all
polynomials of degree n or less. Let E =max |y(x)— P(x)|, and assume y(x) is not itself a
polynomial of degree n or less, so that E>0. Show that there must be at least one argument
for which y(x) — P(x) = E, and similarly for —E. [We continue to assume y(x) continuous.]

Since y(x) — P(x) is continuous for a =x = b, it must attain either £ E somewhere. We are to prove
y P!




CHAP

22.19.

. 22] MIN-MAX POLYNOMIAL APPROXIMATION 285

that it must achieve bot.h. Suppose that it did not equal E anywhere in (a, b). Then
max[y(x) - P(x)]=E—d
where d is positive, and so ~E=y(x)-P(x)=SE—-d

1 1 1
But this can be written as -E +§d§’V(x) - [P(x) _Ed] =E _Ed

which flatly claims that P(x) — 3d approximates y(x) with a maximum error of E — 3d. This contradicts
the original assumption that P(x) itself is a min-max polynomial, with maximum error of E. Thus
y(x) — P(x) must equal E somewhere in (a, b). A very similar proof shows it must also equal —E.
Figure 22.5 illustrates the simple idea of this proof. The error y(x) — P(x) for the min-max polynomial
cannot behave as shown solid, because raising the curve by 3d then brings a new error curve (shown
dashed) with a smaller maximum absolute value of E — %d, and this is a contradiction.

Continuing the previous problem, show that, for n = 1, approximation by linear polynomials,
there must be a third point at which the error |y(x) — P(x)| of a min—max P(x) assumes its
maximum value E.

Let y(x) — P(x) = E(x) and divide (g, b) into subintervals small enough so that for x,, x, within any
subinterval,

|E(x)) —E(x2)| =5 E

1
2
Since E(x) is continuous for a =x = b, this can surely be done. In one subinterval, call it /,, we know
the error reaches E, say at x =x .. It follows that throughout this subinterval,

|E(x) = E(x.)| = |E(x) - E| =}

making E(x)Z3E. Similarly, in one subinterval, call it L, we find E(x_)=—E, and therefore
|E(x)| = —3E. These two subintervals cannot therefore be adjacent and so we can choose a point u,
between them. Suppose that /, is to the left of . (The argument is almost identical for the reverse
situation.) Then u, —x has the same sign as E(x) in each of the two subintervals discussed. Let
R =max |u, — x| in (a, b).

Now suppose that there is no third point at which the error is +E. Then in all but the two
subintervals just discussed we must have

max |[E(x)|<E

and since there are finitely many subintervals,
max [max |[E(x)|]=E*<E

Naturally E* Z4E since these subintervals extend to the endpoints of /, and L where |E(x)| Z iE.
Consider the following alteration of P(x), still a linear polynomial:

P*(x)=P(x)+ e(u, —x)

If we choose € small enough so that €éR <E — E* =1E, then P*(x) becomes a better approximation
than P(x). For,

[y(x) — P*(x) = |E(x) — €(u, — x)|

so that in I; the error is reduced but is still positive while in I, it is increased but remains negative; in
both subintervals the error size has been reduced. Elsewhere, though the error size may grow, it cannot
exceed E* + eR < E, and so P*(x) has a smaller maximum error than P(x). This contradiction shows
that a third point with error +E must exist. Figure 22-6 illustrates the simple idea behind this proof. The
error curve E(x) cannot behave like the solid curve (only two +E points) because adding the linear
correction term €(u; — x) to P(x) then diminishes the error by this same amount, leading to a new error
curve (shown dashed) with smaller maximum absolute value.
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22.20.

22.21.

22.22.

22.23.
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Fig. 22-6

Show that for the P(x) of the previous problem there must be three points at which errors of
size E and with alternating sign occur.

The proof of the previous problem is already sufficient. If, for example, the signs were +, +, —,
then choosing u, between the adjacent + and — our P*(x) is again better than P(x). The pattern

+,—,— is covered by exactly the same remark. Only the alternation of signs can avoid the
contradiction.
Show that in the general case of the min—max polynomial of degree n or less, there must be

n + 2 points of maximum error size with alternating sign.

The proof is illustrated by treating the case n =2. Let P(x) be a min-max polynomial of degree two
or less. By Problem 22.18 it must have at least two points of maximum error. The argument of Problems
22.19 and 22.20, with P(x) now quadratic instead of linear but with no other changes, then shows that a
third such point must exist and signs must alternate, say +, —, + just to be definite. Now suppose that
no fourth position of maximum error occurs. We repeat the argument of Problem 22.19, choosing two
points u; and u, between the subintervals [, ,, and I in which the errors £E occur, and using the
correction term €(u, — x)(u, - x), which agrees in sign with E(x) in these subintervals. No other
changes are necessary. The quadratic P*(x) will have a smaller maximum error than P(x), and this
contradiction proves that the fourth +E point must exist. The alternation of sign is established by the
same argument used in Problem 22.20, and the extension to higher values of n is entirely similar.

Prove that there is just one min—max polynomial for each .
Suppose there were two, P,(x) and P(x). Then
—-E=Sy(x)-P(x)SE -E=Sy(x)-B(x)=E

Let Py(x) =3(P, + P,). Then

-E=Sy(x)-P(x)SE
and P, is also a min—max polynomial. By Problem 22.21 there must be a sequence of n + 2 points at
which y(x) — Py(x) is alternately +E. Let P,(x,) = E. Then at x, we have y — P,=E, or

(O -P)+(y—P)=2E

Since neither term on the left can exceed E, each must equal E. Thus P(x.)=Py(x_). Similarly
P(x_) = Py(x_). The polynomials P, and P, therefore coincide at the n +2 points and so are identical.
This proves the uniqueness of the min—max polynomial for each n.

Prove that a polynomial p(x) of degree n or less, for which the error y(x) —p(x) takes
alternate extreme values of te on a set of n + 2 points, must be the min-max polynomial.
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This will show that only the min—max polynomial can have this equal-error feature, and it is useful
in finding and identifying such polynomials. We have
max |y(x) = p(x)| = ¢ Z E = max |y(x) — P(x)|
P(x) being the unique min-max polynomial. Suppose e > E. Then since
P—p=(y-p)+(P-y)

we see that, at the n + 2 extreme points of y —p, the quantities P —p and y — p have the same sign.
(The first term on the right equals e at these points and so dominates the second.) But the sign of y —p
alternates on this set, so the sign of P — p does likewise. This is # + 1 alternations in all and means n + 1
zeros for P — p. Since P — p is of degree n or less it must be identically zero, making p = P and E =e.
This contradicts our supposition of e > E and leaves us with the only alternative, namely e = E. The
polynomial p(x) is thus the (unique) min—max polynomial P(x).

CONTINUOUS DATA, EXAMPLES OF MIN-MAX POLYNOMIALS

22.24. Show that on the interval (—1, 1) the min—-max polynomial of degree n or less for y(x) = x"
can be found by expressing x"*' as a sum of Chebyshev polynomials and dropping the
T, 1(x) term.

Let

+1

N =a0Tx) + ot a,T(x) + 4,01 Ty (x) =p () + 8,411 T, (%)
Then the error is
E(x)=x""=p(x)=a, T, .(x)

and we see that this error has alternate extremes of +a, ., at the n +2 points where T,,,, = £1. These
points are x; = cos [kz/(n + 1)], with k=0, 1, ..., n+ 1. Comparing coefficients of x"** on both sides
above, we also find that a,,,=2"". [The leading coefficient of T,,,(x) is 2". See Problems 21.42 and
21.43.] The result of Problem 22.23 now applies and shows that p(x) is the min~max polynomial, with
E =27". As illustrations the sums in Problem 21.45 may be truncated to obtain

n=1 xz—%T Error=%
n=2 x’= %T Error=§3
n=3 =é(37};+47’) Error=§1
n=4 16(107"1+5T3) Error=1—§

and so on. Note that in each case the min—max polynomial (of degree n or less) is actually of degree
n—1.

22.25. Show that in any series of Chebyshev polynomials i a;T(x) each partial sum S, is the
=0

min-max polynomial of degree n or less for the next sum S, . [The interval is again taken to
be (—1,1).]
Just as in the previous problem, but with y(x) = S,.,.(x) and p(x) = S,(x), we have
E(X) =8,.a(x)— Sn(x) Slniidny 1(x)

The result of Problem 22.23 again applies. Note also, however, that S, ,(x) may not be the min-max
polynomial of degree n — 1 or less, since 4,7, + a,,.7,.1 is not necessarily an equal-ripple function. (It
was in the previous problem, however, since a, was zero.)
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22.26.

22.27.

22.28.

22.29.

22.30.
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Use the result of Problem 22.24 to economize the polynomial y(x) =x — 2x* + 15x” to a cubic
polynomial, for the interval (-1, 1).

This was actually accomplished in Problem 21.50, but we may now view the result in a new light.
Since
1, 1 5 169 5 1
iy — = _ 2 —

*TE Tt T s Bt B
the truncation of the T; term leaves us with the min—max polynomial of degree four or less for y(x),
namely
9 5

P(x) = %x

—_— 3_
02* " )

This is still only approximately the min-max polynomial of the same degree for sinx. Further
truncation, of the 7; term, would not produce a min—-max polynomial for y(x), not exactly anyway.

Find the min—max polynomial of degree one or less, on the interval (a, b), for a function y(x)
with y"(x) >0.

Let the polynomial be P(x)=Mx + B. We must find three points x, <x,<x, in (a, b) for which
E(x) =y(x) — P(x) attains its extreme values with alternate signs. This puts x, in the interior of (a, b)
and requires E'(x,) to be zero, or y'(x,) = M. Since y” >0, y’ is strictly increasing and can equal M only
once, which means that x, can be the only interior extreme point. Thus x, = a and x; = b. Finally, by the
equal-ripple property,

y(a) = P(a) = =[y(x2) = P(x2)] = y(b) — P(b)
Solving, we have
_yb)—y(@) _Y@+y()  (a+x)[yd)-yla)]
M= B=
b-a 2 2(b —a)

with x, determined by y'(x,) = [y(b) — y(a)]/(b — a).

Apply the previous problem to y(x) = —sin x on the interval (0, 7/2).
We find M = =2/ first; and then from y’(x,) = M, x, = arccos (2/7). Finally,

B= ! /1—~4~+1arccosz
T2 T2 n
. 2x 1 4 1 2
sinx =—+- /1 ——+—arccos —
T2 Fal 4 T

the approximation being the min—max line.

and from P(x) = Mx + B we find

Show that P(x) =x2+ % is the min-max cubic (or less) approximation to y(x) = |x| over the
interval (-1, 1).

The error is E(x) = |x| — x*> —  and takes the extreme values —3, §, —§, %, s atx=—1, =3,0, 5, 1.
These alternating errors of maximal size E = at n+2=35 points guarantee (by Problem 22.23) that
P(x) is the min—max polynomial of degree n =3 or less.

Use the function y(x) = €* on the interval (=1, 1) to illustrate the exchange method for finding
a min—max line.

The method of Problem 22.27 would produce the min-max line, but for a simple first illustration,
we momentarily ignore that method and proceed by exchange, imitating the procedure of Problem 22.5.
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22.31.

Since we are after a line, we need n + 2 = 3 points of maximum error E. Try x = —1, 0, 1 for an initial

triple. The corresponding values of y(x) are about .368, 1, and 2.718. The equal-error line for this triple
is easily found to be

pu(x)=1.175x +1.272

with errors £ = £.272 on the triple. Off the triple, a computation of the error at intervals of .1 discovers a
maximum error of size H =.286 (and negative) at x =.2. Accordingly we form a new triple, exchanging
the old argument x = 0 for the new x =.2. This retains the alternation of error signs called for in Step 4
of the exchange method as presented earlier, and which we are now imitating. On the new triple y(x)
takes the values .368, 1.221, and 2.718 approximately. The equal-error line is found to be

Ppa(x) = 1.175x +1.264

with errors 4 = +.278 on the triple. Off the triple, anticipating maximum errors near x =.2, we check
this neighborhood at intervals of .01 and find an error of .279 at x =.16. Since we are carrying only
three places, this is the best we can expect. A shift to the triple x = —1, .16, 1 would actually reproduce
pax).

Let us now see what the method of Problem 22.27 manages. With a =—1 and b =1 it at once
produces M = (2.718 —.368)/2 = 1.175. Then the equation y'(x,) = e*2=1.175 leads to x,=.16, after
which the result B =1.264 is direct. The line is shown in Fig. 22-7 below, with the vertical scale
compressed.

Fig. 227

Use the exchange method to find the min-max quadratic polynomial for y(x)=e* over
(-1,1).
Recalling that truncation of a series of Chebyshev polynomials often leads to nearly equal ripple

errors resembling the first omitted term, we take as our initial quadruple the four extreme points of
T;(x), which are x = +1, +3. The parabola which misses the four points

3 1

i

x -1 -

e .3679 .6065 1.6487 2.7183

alternately by t4 proves to have its maximum error at x =.56. The new quadruple (-1, —.5,.56,1)
then leads to a second parabola with maximum error at x = —.44. The next quadruple is (~1, —.44,
.56, 1) and proves to be our last. Its equal-ripple parabola is, to five decimal places,

p(x)=.55404x* + 1.13018x + .98904

and its maximum error both inside and outside the quadruple is H =.04502.
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Supplementary Problems

DISCRETE DATA

22.32. Show that the least-squares line for the three data points of Problem 22.2 is y(x) = 3x — ¢. Show that its
errors at the data arguments are §, —3, 3. The Chebyshev line was found to be y(x) = 3x — } with errors
of —%, %, —4. Verify that the Chebyshev line does have the smaller maximum error and the least-squares
line the smaller sum of errors squared.

22.33. Apply the exchange method to the average golf scores in Problem 21.2, producing the min-max line.
Use this line to compute smoothed average scores. How do the results compare with those obtained by
least squares?

22.34. Apply the exchange method to the data of Problem 21.5, obtaining the min-max line and then the
corresponding exponential function P(x) = Ae™*.

22.35. Obtain a formula y(x) = Mx + B for the Chebyshev line of an arbitrary triple (x,, y,), (x5, y2), (3, ¥3)-
Such a formula could be useful in programming the exchange method for machine computation.

22.36. Show that if the arguments x; are not distinct, then the min—max line may not be uniquely determined.

For example, consider the three points (0, 0), (0, 1), and (1, 0) and show that all lines between y = } and
y =4 —x have H=14. (See Fig. 22-8.)

0,1) 7

0,0) NECT)

\
Ny=4—w
Fig. 22-8

* 22.37. Find the equal-error parabola for the four points (0, 0), (%/6, %), (%/3, V3/2), and (x/2, 1) of the curve
y =sinx.

22.38. Find the min—max parabola for the five points y =x>, x = 0(})1.

22.39. Use the exchange method to obtain the min-max parabola for the seven points y =cosx, x =
0(7/12)x/2. What is the maximum error |A| of this parabola? Compare its accuracy with that of the
Taylor parabola 1 — $x2.

22.40. Extend the exchange method to obtain the min—max cubic polynomial for the seven points y = sinx,
x =0(/12)7/2. What is the maximum error |4| of this cubic? Compare its accuracy with that of the

Taylor cubic x — gx°.

CONTINUOUS DATA

22.41. Find the min-max polynomial of degree five or less for y(x) =x° on the interval (-1, 1). What is the
error?

22.42. What is the min-max polynomial of degree two or less for y(x) = Ty + T, + T> + T; and what is its error?
Show that T;+ T; is not, however, the min-max line for y(x), by showing that the error of this
approximation is not equal-ripple.

22.43. Find the min-max polynomial of degree five or less for y(x) = 1 — 3x* + #x* — 75x° and what is its error?
[The interval is (=1, 1).]
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22.44.

22.45.

22.46.

22.47.

22.48.

22.49.

22.50.

22.51.

22.52.

22.53.

Apply Problem 22.27 to find the min—-max line over (0, 7/2) for y(x) = —cosx.

Does the method of Problem 22.27 work for y(x) = |x| over (-1, 1), or does the discontinuity in y'(x)
make the method inapplicable?

Use the exchange method to find the min-max line for y(x)=cosx over (0,7/2). Work to three
decimal places and compare with that found by another method in Problem 22.44.

Use the exchange method to find the min—max parabola for y(x) = cos x over (0, 7/2). [You may want
to use the extreme points of T3(x), converted by a change of argument to the interval (0, 7/2), as an
initial quadruple.]

Find a polynomial of minimum degree which approximates y(x) = cosx over (0, 7#/2) with maximum
error .005. Naturally, roundoff error will limit the precision to which the polynomial can be determined.

Prove that the min-max polynomial approximation to f(x) =0, among all polynomials of degree » with
leading coefficient 1, is 2'™"T,,(x). The interval of approximation is taken to be (—1,1). This is covered
by Problems 22.17 to 22.23, but carry out the details of the following historical argument. Let

px)=x"+ax""'+ - -+a,
be any polynomial of the type described. Since T, (x) = cos (n arccos x), we have
max |2 " T, (x)| =2'""

Notice that this polynomial takes its extreme values of +2' " alternately at the arguments x, = cos kx/n,
where k=0, 1, ..., n. Suppose that some polynomial p(x) were such that

max |p(x)| <2'™"
and let P(x)=p(x) —2""T,(x)
Then P(x) is of degree n—1 or less and it does not vanish identically since this would require
max |p(x)| =2'"". Consider the values P(x;). Since p(x) is dominated by 2!~"T,(x) at these points, we
see that the P(x,) have alternating signs. Being continuous, P(x) must therefore have n zeros between

the consecutive x,. But this is impossible for a polynomial of degree n — 1 or less which does not vanish
identically. This proves that max |p(x)| =2'™"

Values of y(x) = e“*?" are given in the table below. Find the min—max parabola for this data. What is
the min-max error?

x -2 -1 0 1 2

y(x) 1.0000 1.2840 1.6487 2.1170 2.7183

What is the minimum degree of a polynomial approximation to e* on the interval (—1, 1) with maximum
error .005 or less?

The Taylor series for In(1+x) converges so slowly that hundreds of terms would be needed for
five-place accuracy over the interval (0, 1). What is the maximum error of

p(x)=.999902x — .497875x" + .317650x> — .193761x* + .085569x° — .018339x°®
on this same interval?

Approximate y(x) =1-x +x* - x>+ x*—x°+x° by a polynomial of minimum degree, with error not
exceeding .005 in (0, 1).

. Continue the previous problem to produce a minimum degree approximation with error at most .1.



Chapter 23

Approximation by Rational Functions

COLLOCATION

Rational functions are quotients of polynomials and so constitute a much richer class of functions
than polynomials. This greater supply increases the prospects for accurate approximation. Functions
with poles, for instance, can hardly be expected to respond well to efforts at polynomial
approximation, since polynomials do not have singularities. Such functions are a principal target of
rational approximation. But even with nonsingular functions there are occasions when rational
approximations may be preferred.

Two types of approximations will be discussed, the procedures resembling those used for
polynomial approximation. Collocation at prescribed arguments is one basis for selecting a rational
approximation, as it is for polynomials. Continued fractions and reciprocal differences are the main
tools used. The continued fractions involved take the form

v
y(x) =y + d
p + X — X2
1
P2—n+ X%
ps— py+ 8
? ! Ps— P2

which may be continued further if required. It is not too hard to see that this particular fraction
could be rearranged into the quotient of two quadratic polynomials, in other words, a rational
function. The p coefficients are called reciprocal differences, and are to be chosen in such a way that
collocation is achieved. For the present example we shall find that

pofaTh o mmm
e T
3=y Y2=hn

with similar expressions for p; and p,. The term reciprocal difference is not unnatural.

MIN-MAX

Min-max rational approximations are also gaining an important place in applications. Their
theory, including the equal-error property and an exchange algorithm, parallels that of the
polynomial case. For example, a rational function

R(x)=

a+bx

can be found which misses three specified data points (x;, y;) alternately by +4. This R(x) will be the
min—max rational function for the given points, in the sense that

max |R(x;) — | =h

will be smaller than the corresponding maxima when R(x) is replaced by other rational functions of
the same form. If more than three points are specified, then an exchange algorithm identifies the
min-max R(x). The analogy with the problem of the min-max polynomial is apparent.

PADE APPROXIMATIONS

These take the form
Ba(x)

Q'l (x)
292

Rmn (x) =
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with P, and Q, polynomials of degree m and n, respectively. The normalization Q,(0)=1 is
customary. To approximate a given function y(x), Padé suggested making y and R,,, agree in value
at some specified point, together with their first N derivatives, where N = m + n. This provides N + 1
conditions for determining the remaining N + 1 coefficients of B, and Q,. The point in question is
usually taken to be x =0, by a suitable translation of argument if necessary. The parallel with the
Taylor polynomial of y(x) at x =0 is evident and in fact the Taylor polynomial is Ryo. As it turns
out, more accuracy is achieved for a given N by choosing m = n + 1 or m = n, that is, by numerator
and denominator polynomials of more or less equal degree.

Solved Problems

THE COLLOCATION RATIONAL FUNCTION
23.1. Find the rational function y(x) = 1/(a + bx) given that y(1) =1 and y(3) = 3.

Substitution requires a +b =1 and a +3b =2, which force a =5 =3. The required function is
y(x) =2/(1 + x). This simple problem illustrates the fact that finding a rational function by collocation is
equivalent to solving a set of linear equations for the unknown coefficients.

23.2. Also find rational functions y,(x)=Mx + B and y;(x) =c +d/x which have y(1)=1 and

y(3)=%

The linear function y,(x) = (5 —x)/4 may be found by inspection. For the other we need to satisfy
the coefficient equations c+d =1, 3c+d =3 and this means that c =%, d=3 making y,(x)=
(x +3)/4x. We now have three rational functions which pass through the three given points. Certainly
there are others, but in a sense these are the simplest. At x =2 the three functions offer us the
interpolated values %, 2, and 3. Inside the interval (1, 3) all three resemble each other to some extent.
Outside they differ violently. (See Fig. 23-1.) The diversity of rational functions exceeds that of
polynomials and it is very helpful to have knowledge of the type of rational function required.

Fig. 23-1
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Suppose it is known that y(x) is of the form y(x) = (a + bx*)/(c + dx?). Determine y(x) by the
requirements y(0) =1, y(1) =%, y(2)=3.

Substitution brings the linear system
2 5
a=c a+b=§(c+d) a+4b=§(c+4d)

Since only the ratio of the two polynomials is involved one coefficient may be taken to be 1, unless it
later proves to be 0. Try d =1. Then one discovers that a=b=c =1}, and y(x) = (1+x%)/(1 +2x?).
Note that the rational function y,(x) =10/(10 + 6x — x?) also includes these three points, and so does
y3(x) = (x +3)/[3(x + 1)].

CONTINUED FRACTIONS AND RECIPROCAL DIFFERENCES

23.4.

23.5.

Evaluate the continued fraction

y=1+ x

-3+

atx=0, 1, and 2
x—1

2
3

Direct computation shows y(0)=1, y(1)=3%, and y(2)=3. These are again the values of the

previous problem. The point here is that the structure of a continued fraction of this sort makes these
values equal to the successive “‘convergents” of the fraction, that is, the parts obtained by truncating the
fraction before the x and x — 1 terms and, of course, at the end. One finds easily that the fraction also
rearranges into our y;(x).

Develop the connection between rational functions and continued fractions in the case

Gt ax +ax”
bo+ byx + box?

y(x)

We follow another historical path. Let the five data points (x,, ;) for i=1,...,5 be given. For
collocation at these points,

ag—boy +ax —bixy + ax* — byx’y =0
for each x;, y, pair. The determinant equation

y x xy X xy

Yo ony X xn
Y2 X2 XY X3 X3
Y3 X3 X3)s x3 X§y3
Ya X4 Xa)4 X% X§Y4

2 2
Ys X5 XsYs X5 X5)s

Y
I
=

clearly has the required features. The second row is now reduced to 1, 0, 0, 0, 0, 0 by these operations:

Multiply column 1 by y, and subtract from column 2.
Multiply column 3 by y, and subtract from column 4.
Multiply column 5 by y, and subtract from column 6.
Multiply column 3 by x, and subtract from column 5.
Multiply column 1 by x, and subtract from column 3.
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At this point the determinant has been replaced by the following substitute:

y=n x—x x(y—y) xx—x) x¥(y-y)
0 0 0 0 0
Va=n Ka—X1 Xa(y2—y) Xao(x2—x1) x%(}’z =)
V= X=X x(¥z—yi) Xs(xs—x1) x3(ys—y)
Ye=W Xa—=%1 Xs(Ya—y1) Xalxa—x1) Xy —y)
Ys=wn Xs—X1 Xs(ys—y) xs(xs—Xx) x3(ys =)

T e e

Expand this determinant by its second row and then

Divide row 1 by y — y;.
Divide row i by y, — y,, fori =2, 3, 4, 5.

—-X

Introducing the symbol p,(xx,) = p

! , the equation may now be written as
1

ouxx)  x xpy(xxy)  x
pr(xax1)  Xp X01(%2%1) 1
pi(xsx)  x3 xapi(xsx,) x3|=0
Pi(xax) X4 Xapr(xaxy) x5

pilxsx)) x5 Xspi(xsxy) x5

U

The operation is now repeated, to make the second row 1,0,0, 0, 0:
Multiply column 1 by p;(x,x,) and subtract from column 2.
Multiply column 3 by p,(x,x,) and subtract from column 4.
Multiply column 3 by x, and subtract from column 5.
Multiply column 1 by x, and subtract from column 3.

The determinant then has this form:

pi(xx) — pi(xax:) X —x2  x[pi(xx1) — pi(xax))]  x(x —x2)
0 0 0 0

pi(xax)) — pu(xax) X3 —x2  x[pi(xsx1) = pu(xax))] X5(xs —x2)

pi(xax)) — pr(x2x1) X4 X2 x[pi(x4x)) = pi(x2x1)] xa(x4—x2)

p1(xsx) — pa(xaxy)  xs—%x;  x[p1(xsx1) — Pr(xx1)] xs5(xs — x2)

e e e

Expand by the second row, and then
Divide row 1 by p,(xx,) — pi(x,%,).
Divide row i by p,(x;41X,) — p.(x2x,), for i =2, 3, 4.

An additional step is traditional at this point in order to assure a symmetry property of the p quantities
to be defined. (See Problem 23.6.)

Multiply column 1 by y, and add to column 2.
Multiply column 3 by y, and add to column 4.
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X =X,

——————————+y,, the equation has now been reduced to
p1(xxy) = p1(xax1) ! d

Introducing the symbol p,(xx;x,)=
Pz(-xxxxz) X xPz(xxlxz)
P2(X3x1X2) X3 Xapa(X3X1X2) _
Pa(xax1X2) X4 Xapa(XaX1X2)

PaAxsx1X2) X5 XspPa(XsX1X2)

[ Y

Another similar reduction produces

1 pslexixaxs)  x
1 ps(xaxixaxs) x4| =0
1 palxsxixaxs) xs

X —X3

_—Y—+ XX
Pl — palarry | L)

where P3(xx1X2X3) =

Finally, the last reduction manages
1 pa(xxix,x3xs) -0
1 palxsx x,xsxy)

X —X4
P3(xx1x2%5) — P3(x4x2x2%1)

where PalXx1X2X3%,) = + pa(x1X2%3)

We deduce that p,(xx,x,x3x4) = pa(xsx,x2x3x,). The various p;’s just introduced are called reciprocal

differences of order i, and the equality of these fourth-order reciprocal differences is equivalent to the

determinant equation with which we began and which identifies the rational function we are seeking.
The definitions of reciprocal differences now lead in a natural way to a continued fraction. We find

successively
y—y+x_x1—y+ X=X
! p1(xxy) ! pixaxs) + X — X
T po(exaxs) —
X —x
=nt Y —x
p1(x2x1) + 2
Pa(X3x1X2) =y + — ks
: P3(xx1x2%3) — p1(x,%2)
- X —x
-1
x—x
pi(x2x)) + 2
X —Xx;

X3X1X3) =y, +
92(312) B2t -1,

PalXsX1X2X3X4) — Po(X1X2X3)

P3(¥ax1X2%3) — pi(x1%2) +

where, in the last denominator, the equality of certain fourth differences, which was the culmination of
our extensive determinant reduction, has finally been used. This is what makes the above continued
fraction the required rational function. (Behind all these computations there has been the assumption
that the data points do actually belong to such a rational function, and that the algebraic procedure will
not break down at some point. See the problems for exceptional examples.)

23.6. Prove that reciprocal differences are symmetric.

For first-order differences it is at once clear that p,(x,x,) = p,(x2x;). For second-order differences
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23.7.

one verifies first that

X3— X, X3—X; X3— X,

tyn= +y,= +ys
X3—X1_X2—X; Xg—xz_)(l—Xz Xz_xs_xl_xs
Ys=»1 V2= Ys=Y2 V1= )2 Y2=Ys V1=

from which it follows that in p,(x,x,x3) the x, may be permuted in any way. For higher-order differences
the proof is similar.

Apply reciprocal differences to recover the function y(x) = 1/(1 + x?) from the x, y data in the
first two columns of Table 23.1.

Various reciprocal differences also appear in this table. For example, the entry 40 is obtained from
the looped entries as follows:

4-1
Pa(Xax3xaxs) = -2 +(-10)=40
25
Xs—X
= + p1(x3x4)

" pa(xsxaxs) — palxansx.)
From the definition given in Problem 23.5 this third difference should be
X2—Xs

————————+ py(x3x
Pa(¥2x3x4) — Po(X5X3X4) pilexa)

Pa(x2x3x4%5) =

but by the symmetry property this is the same as what we have. The other differences are found in the
same way.

Table 23.1
x y
0 1
-2
@ 5 -1
—1 0
&
—1n0 140
@ | + ~
_aa2
9
e

The continued fraction is constructed from the top diagonal

y=1+ x=0
ot x—1
-2
—1-1+ ad —
0—(—2)+0—T_1)

and easily rearranges to the original y(x) =1/(1 +x?). This test case merely illustrates the continued
fractions algorithm.

By substituting successively the arguments x =0, 1, 2, 3, 4 into this continued fraction it is easy to
see that as the fraction becomes longer it absorbs the (x, y) data pairs one by one. This further implies
that truncating the fraction will produce a rational collocation function for an initial segment of the data.
The same remarks hold for the general case of Problem 23.5. It should also be pointed out that the zeros



298 APPROXIMATION BY RATIONAL FUNCTIONS [CHAP. 23

in the last column of the table cause the fraction to terminate without an x —x, term, but that the
fraction in hand absorbs the (xs, x5) data pair anyway.

23.8. Use a rational approximation to interpolate for tan 1.565 from the data provided in Table
23.2.

The table also includes reciprocal differences through fourth order.

Table 23.2

x tanx
1.53 24.498

.0012558
1.54 32.461 —-.033

0006403 2.7279
1.55 48.078 -.022 —.4167

0002245 1.7145
1.56 92.631 —.0045

0000086
1.57 1255.8

The interpolation then proceeds as follows:

1.565—1.53
1.565—1.54
1.565 —1.55

1.565 -1.56
2. —_—
7266 + 3837

tan 1.565 = 24.498 +

.0012558 +

—24.531+

which works out to 172.552. This result is almost perfect, which is remarkable considering how terribly
close we are to the pole of the tangent function at x = /2. Newton’s backward formula, using the same
data, produces the value 433, so it is easy to see that our rational approximation is an easy winner. It is
interesting to notice the results obtained by stopping at the earlier differences, truncating the fraction at
its successive ‘“convergents.” Those results are

52.37 172.36 172.552

so that stopping at third and fourth differences we find identical values. This convergence is reassuring,
suggesting implicitly that more data pairs and continuation of the fraction are unnecessary and that even
the final data pair has served only as a check or safeguard.

23.9. It is possible that more than one rational function of the form in Problem 23.5 may include
the given points. Which one will the continued fraction algorithm produce?

As the continued fraction grows it represents successively functions of the forms

ao+ ax g+ a.x + ax*? a0+ arx + arx?
bo+bix bo+byx bo+ byx + b,x?

aot+a.x
Our algorithm chooses the simplest form (left to right) consistent with the data. See Problems 23.4,

23.18, and 23.19 for examples.

23.10. Given that y(x) has a simple pole at x =0 and is of the form used in Problem 23.5, determine
it from these (x, y) points: (1, 30), (2, 10), (3, 5), (4, 3).
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Such a function may be sought directly starting with

1+ax +ax’

)= bix + byox?
It may also be found by this slight variation of the continued fractions algorithm. The table of reciprocal
differences
x y
1 30
_L
20
2 10 -
_1 8
5 5
3 5 -3 0
_% 1
4 3 -3
0
] ©
leads to the continued fraction
x—1
=30+
¢ 1, x=2
20 100 x—3
——
33 s 4
20 ¥

which collapses to y(x) = 60/[x(x + 1)].

MIN-MAX RATIONAL FUNCTIONS

23.11. How can a rational function R(x) = 1/(a + bx) which misses the three points (x,, y;), (x2, y2),
and (xs, y;) alternately by +4 be found?

The three conditions

y,—m=h,—h,h forz=1,2,3

can be rewritten as
a(y,—h)+b(y,—h)x,—1=0
a(y,+h)+b(y,+h)x,—1=0
a(y;—h)+b(ys—h)x;—1=0
Eliminating 4 and b, we find that / is determined by the quadratic equation
nw—h (n—hx, -1
yth (y+h)x, —1[=0
ys—h (ys—h)xs —1

Choosing the root with smaller absolute value, we substitute back and obtain a and b. (It is not hard to
show that real roots will always exist.)

23.12. Apply the procedure of Problem 23.11 to these three points: (0, .83), (1,1.06), (2, 1.25).

The quadratic equation becomes 44> —4.12h —.130=0 and the required root is # = —.03. The
coefficients a and b then satisfy .86a —1=0, 1.03a + 1.03b —1=0 and are a =1.16, b = —.19.
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23.13. Extending the previous problem, apply an exchange method to find a min—max rational

function of the form R = 1/(a + bx) for these points: (0, .83), (1, 1.06), (2, 1.25), (4, 4.15).

Our problem will be a close parallel to earlier exchange methods. Let the triple of the previous
problem serve as initial triple. The equal-error rational function for this triple was found to be
R;(x)=1/(1.16 — .19x). At the four data points its errors may be computed to be ~.03, .03, —.03, 1.65
and we see that R,(x) is very poor at x = 4. For a new triple we choose the last three points, to retain
alternating error signs. The new quadratic equation is

6h* —21.24h +1.47=0
making & =.07. The new equations for a and b are
a+b=1.010 a+2b=.758 a+4b=.245

making g =1.265 and b = —.255. The errors at the four data points are now .04, .07, —.07, .07; and
since no error exceeds the .07 of our present triple we stop, accepting

1

00 R —
%) = 1265 — 255

as the min—max approximation. This is the typical development of an exchange algorithm. Our result is
of course accurate only to a point, but the data themselves are given to only two places so a greater
struggle seems unwarranted. It is interesting to notice that the computation is quite sensitive. Rounding
the third-digit 5s in our R,(x), for instance, can change R,(4) by almost half a unit. This sensitivity is due
to the pole near x =5. Both R,(x) and R,(x) are shown in Fig. 23-2.

Ry(x) R, (x)

Fig. 232

23.14. The data points of the preceding problem were chosen by adding random “noise” of up to 5

percent to values of y(x) =4/(5 —x). Use Ry(x) to compute smoothed values and compare
with the correct values and the original data.

The required values are as follows, with entries at x = 3 added:

Original “noisy” data .83 1.06 1.25 — 4.15
Values of R,(x) .79 .99 1.32 2.00 4.08
Correct values of y(x) .80 1.00 1.33 2.00 4.00

Only the error at x =4 is sizable and this has been reduced by almost half. The influence of the pole
at x =5 is evident. Approximation by means of polynomials would be far less successful.
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Derive conditions on the coefficients such that the Padé rational function
Ba(x)
Rmn(x) =
Q'l(x)
with P.(x)=a¢+ arx +ax®+ - +a,x"

Q,(x)=1+bx +box’+- - +b,x"
will satisfy RE(0) =y®(0) k=0,1,...,N
for N =m + n, assuming that y(x) has the series representation

y(x)=co+cix +epx®+ -
We have

Yo ) (8 bat) - 8 ax
$(x) = Rom(x) = ﬂcx)(g ") L apx

and will have achieved the required goal if the numerator on the right has no terms of lower degree than
x™*'. For this we need

ao=boco a,=byc, +bico a,=bocy+ bic, + biycy
J
and in general G=>bc, j=01...,N
i=0
subject to the constraints b, =1 and
a,=0 ifi>m
b=0 ifi>n

Apply the preceding problem to y(x) =e* withm =n =2.
For this function we have ¢, =1, ¢, =1, ¢, =13, ¢3=4§, ¢, =5, leading to these equations:
1

a,=1 a,=1+b, a2=i+bl+b2
1 1 1 1 1
0=Z+>b,+ O==+-b+=
gtz 2utehityh
Their solution is ay =1, a, =3, a, =15, b; = —3, and b, = 75. Substituting back we have finally
' 124 6x +x°
Ral) =10 v

for the Padé approximation. On the interval (—1, 1) its absolute error ranges from zero at the center to
.004 at x = 1. It is interesting to note that the approximation reflects a basic property of the exponential
function, namely that replacing x by —x produces the reciprocal.

For y(x) = e* it is clear that

1,1
Rp=l+x+ x> +-x"+---
40 x+2x +6x

but use the method of Problem 23.15 to find Ry4(x).
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23.18.

23.19.

23.20.

23.21.

23.22.

23.23.
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The appropriate equations include a, =1 and then the triangular system

0=1+b,

1
0=§+b1+b2

11
O=g+5b1+b2+b3

11 1
O=ﬁ+gb1+5b2+b3+b4

leading to the approximation
1

Roslx) =

T—x+ 5" — 5 + st

of which the denominator is a five-term approximation to the reciprocal of y(x). Presumably this could
have been anticipated.

Over (—1,1) Ry, is closer to e” on the left half and farther from it on the right, relative to Ry,. It is
inferior all the way to R, and this is generally true of Padé approximations. Those with m and n equal
or nearly equal are the most accurate.

Supplementary Problems

Find directly, as in Problem 23.1, a function y(x) = 1/(a + bx) such that y(1) =3 and y(3) = 1. Will our
method of continued fractions yield this function?

Find directly a function y(x) = 1/(a + bx + cx?) such that y(0)=1, y(1)=1%, and y(10) =3%. Will our
method of continued fractions yield this function?

Use the continued fractions method to find a rational function having the following values:

x 0 1 2 3

~

y -1 0 2 H

<l

x 0 1 9 19
y 0 3 8.1 18.05
Find a rational function with these values:
x 0 1 +
y 3 H 1

Find a rational function with these values:

x 0 1 2 4 ©

y -2 +oo 2 s 1

(The symbol £ refers to a pole at which the function changes sign.)
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23.26.

23.27.

23.28.

23.29.

23.31.

. Find a rational function with the values given below. Interpolate for y(1.5). Where are the “poles” of

this function?

x 0 +1 +2
y 3 1 -3
. Find the min—-max function
R(x)=——
x) a+bx

for y(x) =x*— 1 on the interval (-1, 1).

Use an exchange method to find the min-max approximation R(x)=1/(a +bx) to y(x) =¢* on the
interval (0, 3).

Develop an exchange method for finding the min-max approximation R(x) = (a + bx)/(1 + dx) for a set
of points (x;, y;) where i =1,..., N. Apply it to the following data:

x 0 1 2 3 4 5

y .38 .30 .16 .20 12 .10

Use R(x) to smooth the y values. How close do you come to y(x)=1/(x + 3) which was the parent
function of this data, with random errors added?

Find a rational function which includes these points:
x -1 0 1 2 3
y ® 4 2 4 7
Find a rational function which includes these points:
x -2 -1 0 1 2
y —o 0 3 8 ©

x -2 -1 0 1 2 3
¥ 3 2 2 3 5 3

Interpolate for y(1.5) in the table below, using a rational approximation function.

x 1 2 3 4

y 57.298677 28.653706 19.107321 14.335588
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23,32. Find a rational function, in the form of a cubic polynomial over a quadratic, including these points:

X 0 1 2 3 4 5

y 12 0 —4 -6 6 4

23.33. Work Problem 23.16 with m =3, n = 1.

23.34. Work Problem 23.16 with m =1, n =3.



Chapter 24

Trigonometric Approximation

DISCRETE DATA

The sine and cosine functions share many of the desirable features of polynomials. They are
easily computed, by rapidly convergent series. Their successive derivatives are again sines and
cosines, the same then holding for integrals. They also have orthogonality properties, and of course
periodicity, which polynomials do not have. The use of these familiar trigonometric functions in
approximation theory is therefore understandable.

A trigonometric sum which collocates with a given data function at 2L + 1 prescribed arguments
may be obtained in the form

1 L 2n . 27
y(x) =ia0+ k§=:1 (ak COSka + b, Sll’lmk)()

a slightly different form being used if the number of collocation arguments is even. An orthogonality
property of these sines and cosines,

Esn 2T, { 0 if j#k
1 X SIN ———— =
NPT R T i v e = k0
2

. kx=0

xznsm X cos o kx
0 ifj#k

N, 2T . 27 o
gocos]\u_l}xcosmkx— (N+1)/2 ifj=k#0, N+1

N+1 ifj=k=0 N+1

allows the coefficients to be easily determined as

a = 2L+12)m)cm2L+lk k=0,1,...,L

Zy() k=1,2,...,L

b= 2L+1

These coefficients provide the unique collocation function of the form specified. For an even number
of collocation arguments, say 2L, the corresponding formula is

1 1
y(x)——a0+ 2 <ak cos — kx + by, smka>+~a,_coszrx

2
2L-1 T
with 2 y(x)coszkx k=0,1,...,L
x=0
2L-1

Zy(x)sm—kx k=1,...,L-1
Least-squares approximations for the same discrete data, using the same type of trigonometric
sum, are obtained simply by truncation of the collocation sum. This is a famous and convenient

result. As observed in Problem 21.8, it is true of other representations in terms of orthogonal
functions. What is minimized here, in the case of 2L + 1 arguments, is

= 2 [y() - T

305
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where Ty,(x) is the abbreviated sum (M being less than L)

1 il 2 2
Ty(x) == Ag+ > (A = kx + B, sin-——— )
uE) =34 = KoOS k¥ Besing T kx

The result just stated means that to minimize S we should choose A, =ay, By = b;. The minimum
value of S can be expressed as

Smin =

2 1 L
L2l S @+

2 k=M=+1

For M =L this would be zero, which is hardly a surprise since then we have once again the
collocation sum.

Periodicity is an obvious feature of trigonometric sums. If a data function y(x) is not basically
periodic, it may still be useful to construct a trigonometric approximation, provided we are
concerned only with a finite interval. The given y(x) may then be imagined extended outside this
interval in a way which makes it periodic.

Odd and even functions are commonly used as extensions. An odd function has the property
y(—x)= —y(x). The classic example is y(x)=sinx. For an odd function of period P =2L, the
coefficients of our trigonometric sum simplify to

4 Lt L 2@
a, =0 bk=;21y(x)sm—}—;kx

An even function has the property y(—x)=y(x). The classic example is y(x) = cos x. For an even
function of period P = 2L, the coefficients become

2 4! 27
4, == [y(0) + y(L) cos kx] +— >, y(x)cos = kx by=0
P P P
These simplifications explain the popularity of odd and even functions.

CONTINUOUS DATA

Fourier series replace finite trigonometric sums when the data supply is continuous, much of the
detail being analogous. For y(x) defined over (0, 27), the series has the form

1 *
5% + > (a cos kt + By sin ki)
k=1

A second orthogonality property of sines and cosines,

2 0 ifj#k
in it sin ki dr =
L sin jt sin kt dt {n ifj=k#0

27
f sin jt cos ktdt =0

0

27 0 ifj#k
j cosjtcosktdt=4 ifj=k#0
0 2 ifj=k=0

allows easy identification of the Fourier coefficients as
1 25 1 2
a/k=—J’ y(t) cos kt dt 5k=*J- y(t) sin kt dt
7o Ty

Since the series has period 27, we must limit its use to the given interval (0, 27) unless y(x) also
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happens to have this same period. Nonperiodic functions may be accommodated over a finite
interval, if we imagine them extended as periodic. Again, odd and even extensions are the most
common and in such cases the Fourier coefficients simplify much as above.

Fourier coefficients are related to collocation coefficients. Taking the example of an odd number
of arguments we have, for example,

—1[1 (0 +1 (2L)+2L2_1 ()cosﬁ']
4=713Y ) 7Y 2 X

which is the trapezoidal rule approximation to
1 7
=7 A y(x)coszjxdx

in which a change of argument has been used to bring out the analogy.
Least-squares approximations for the case of continuous data are obtained by truncation of the
Fourier series. This will minimize the integral

21

I=| [y()—Tu®)dt

1 M
where Tu(t) = EAO + Z (Ax cos kt + By sin kt)
k=1

In other words, to minimize / we should choose A; = &, By = B;. The minimum value of I can be
expressed as

Imin = 2 (sz + ﬁi)
k

=M+1

Convergence in the mean occurs under very mild assumptions on y(¢). This means that, for M
tending to infinity, I;, has limit zero.

APPLICATIONS

The two major applications of trigonometric approximation in numerical analysis are

1. Data smoothing. Since least-squares approximations are so conveniently available by
truncation, this application seems natural, the smoothing effect of the least-squares principle
being similar to that observed for the case of polynomials.

2. Approximate differentiation. Here too the least-squares aspect of trigonometric approxima-
tion looms in the background. Sometimes the results of applying a formula such as

Y@ =35 =20 = 2) =y~ 1) + 3+ 1) + 25+ 2)]

derived earlier from a least-squares parabola, are further smoothed by the use of a
trigonometric sum. The danger of oversmoothing, removing essential features of the target
function, should be kept in mind.
COMPLEX FORMS
All the foregoing can also be represented in complex form. Trigonometric sums become
1
2 ¢ U
j=—1I
where i is the imaginary unit. Because of the Euler formula

e” =cosx +isinx
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do

this is the equivalent of >

1
+ 2, (a; cos jx + b; sin jx)
j=1
with a=c+c_; b;=i(c; —c_;)

The coefficients a;, b;, ¢; may be real or complex. The Fourier series becomes

fo= 3 e

jE—=

27
with the Fourier coefficients fi= o f(x)e ™™ dx
. 7 Jo

The finite sum
1 N-1

i1 =y 2 fen)e™

where x, =2zn/N for n=0to N — 1, is an obvious approximation to f; and is also the appropriate
coefficient in the trigonometric sum which interpolates f(x) at the data points x,,. '

1
Y= fre®
j=—1
The f} are essentially the elements of what is called a discrete Fourier transform. Given a vector V
with components v, to vy_;, the discrete Fourier transform of V may be defined as the vector V7

having components No1

v =2 v,0f
n=0
forj=0toj=N -1 and wy an Nth root of 1.

Wy = e 2N

These various relationships will be explored in the problems.

What this means is that it is possible to compute approximations to the Fourier coefficients f; by
using discrete transforms. The use of Fast Fourier Transforms (FFT) has made such computations
efficient even for rather large values of N. These coefficients are of interest in many applications,
since they give the relative weights of the component terms in a complex periodic process.

Solved Problems

TRIGONOMETRIC SUMS BY COLLOCATION
24.1. Prove the orthogonality conditions

2 27 kx—{ 0 ifj#korj=k=0
27 N+1 N+1 7 " UN+1/2 ifj=k#0

P2 N+1]xcosN+1kx=0
0 ifj#k
s 2 2
Zcos—njxcos—nkx= (N+1)/2 ifj=k#0
<=0 N+1 N+1 o
N+1 ifj=k=0

forj+k=N.
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The proofs are by elementary trigonometry. As an example,

T 2 1 27 2n

ko= = k= cos o K |

Sy TSy 2[°°5N+1(’ W —cos g (G k)x

and each cosine sums to zero since the angles involved are symmetrically spaced between 0 and 2,
except when j =k #0, in which case the first sum of cosines is (N +1)/2. The other two parts are

proved in similar fashion.

24.2. For collocation at an odd number of arguments x =0, 1, ..., N =2L, the trigonometric sum
may take the form

1 2r

ag+ § k. )

Zao (akCOSZL k)c+bksm2]_’+1 X
Use Problem 24.1 to determine the coefficients a, and b,.

2n
To obtain g; multiply by cos2

n ]x and sum. We find

Ey(x)cos i j=0,1,...,L

4= 2L+1 1

since all other terms on the right are zero. The factor  in y(x) makes this result true also for j =0. To

2
obtain b; we multiply y(x) by sin2 7 jx and sum, getting

L+1

b, 2L+12Y( )stL+1 j=1,2,...,L

Thus only one such expression can represent a given y(x), the coefficients being uniquely determined by
the values of y(x) at x =0, 1, . .., 2L. Notice that this function will have period N + 1.

24.3. Verify that, with the coefficients of Problem 24.2, the trigonometric sum does equal y(x) for
x=0, 1,...,2L. This will prove the existence of a unique sum of this type which collocates
with y(x) for these arguments.

Calling the sum 7(x) for the moment and letting x* be any one of the 2L +1 arguments,
substitution of our formulas for the coefficients leads to

2 27 2 2
s Srolte 3 )
x*)= 2L+12y(x)[ 2 coszL+1kxcoszL+1kx +sm2L+lkxsm2L+1kx

2L+12y( )[ +2°°52L+1k(x x*)]

x=0

in which the order of summation has been altered. The last sum is now written as

L L

l *
2cos2L+1k(x x*)= 22 2L+1k(x x)+— 2 COSZL k(x x*

which is possible because of the symmetry property

2 2
——kx~x*)= + *
2 1 (x—x*)= 0052 (2L 1-k)(x—x*)

of the cosine function. Filling in the k =0 term, we now find

50| 3 cos o ke =)

T(x*)_2L+1
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But the term in brackets is zero by the orthogonality conditions unless x =x*, when it becomes 2L + 1.
Thus 7T(x*) =y(x*), which was to be proved.

Suppose y(x) is known to have the period 3. Find a trigonometric sum which includes the
following data points and use it to interpolate for y(3) and y(3).

x 0 1 2

y o 1 1

Using the formulas of Problem 24.2, we find

2 4 2 2n 4n 2
ao—§(0+1+1)—§ a,= 3(cos?+cos?>——g
2 2n 4
b,= 3 <sm?+sm§> 0

For an even number of x arguments (N + 1= 2L) the collocation sum is
L-1

1 1
y(x):§a0+ kzl (ak cos%kx+b,c sin%kx) +£aLcos X

with collocation at x=0,1,..., N. The coefficients are found by an argument almost
identical with that of Problems 24.1 and 24.2 to be
12L -1
~=—-Zy(x)cos—]x j=0,1,...,L
L =
ZL 1

ny(x)sm ]x j=1,...,L—-1

Once again the function y(x) is seen to have the period N + 1. Apply these formulas to the
data below, and then compute the maximum of y(x).

We find L=2 and then a,=3Q2)=1, a;=3%(-1)= -3, aa=3(—-1+1)=0, b,=3(1)=3. The
trigonometric sum is therefore

()—l—lc(}‘1 +ls'n1n
y() =3 =5 cos o mx +5sin 5

The maximum of y(x) is then found by standard procedures to be y(3) = 3(1 + V2).

TRIGONOMETRIC SUMS BY LEAST SQUARES, DISCRETE DATA

24.6.

Determine the coefficients A, and B so that the sum of squares
2L
=2 [y(x)~ T,(x)] = minimum
=0
where T,,(x) is the trigonometric sum

2
T(x)——A0+2 (Akcos kx+Bk8m2L]—+t—lkx)

2
2L +
and M < L.
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ODD
24.8.

24.9.

Since by Problem 24.3 we have

1 L 27 . 2z
y(x)fian Z(akcos L+1kx+bksm2L+1kx)
the difference is

M

Y() = ) =3 (@0 = A0) + s [(ak A cos

2 . 2
2L+]kx+(bk B,()smziL_‘_lkx]

+ E [akcos

k=M+1

2 2
i k
A1l T besing x]
Squaring, summing over the arguments x, and using the orthogonality conditions,

2L+1
4

2L+1 &
2 (a2 +b2)

k=M+1

aO—A02+2L
( )

_Ak)z+ (bk - Bk) ]

= %[Y(X) — L) =

Only the first two terms depend upon the A, and B,, and since these terms are nonnegative the
minimum sum can be achieved in only one way, by making these terms zero. Thus for a minimum,

Ac=a, B =b,

and we have the important result that truncation of the collocation sum T(x) at k = M produces the
least-squares trigonometric sum T}, (x). (This is actually another special case of the general result found
in Problem 21.8.) We also find
2L +1 &
Smin = E (“k +b k)

k=M+1

Since an almost identical computation shows that
& X 2L +1 2L +1
2 [y = E [T = ag+

this may also be expressed in the form

)

2L

Sin= 2, [y(e)] =

+l 2L+

a2
ag—

S

As M increases this sum steadily decreases, reaching zero for M = L, since then the least-squares and
collocation sums are identical. A somewhat similar result holds for the case of an even number of x
arguments.

Apply Problem 24.6 with M =0 to the data of Problem 24.4.

Truncation leads to To(x) =3.

OR EVEN PERIODIC FUNCTIONS

Suppose y(x) has the period P =2L, that is, y(x + P) = y(x) for all x. Show that the formulas
for a; and b; in Problem 24.5 may be written as

2
a,-=§ 2 y(x)cos—jx j=0,1,...,L
x=~L+1
E y(x)sm—]x j=1,...,L-1
x—7L+1

Since the sine and cosine also have period P, it makes no difference whether the arguments
x=0,...,2L—1or the arguments —L +1, ..., L are used. Any such set of P consecutive arguments
will lead to the same coefficients.

Suppose y(x) has the period P =2L and is also an odd function, that is, y(—x)= —y(x).
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Prove that 4o 2
T

a;=0 b;=— x) sin — jx

j j PZ])’() P]

By periodicity, y(0) = y(P) = y(—P). But since y(x) is an odd function, y(—P) = —y(P) also. This
implies y(0) =0. In the same way we find y(L) =y(—L)= —y(L)=0. Then in the sum for g; each
remaining term at positive x cancels its mate at negative x, so that all g; will be 0. In the sum for b; the
terms for x and —x are identical and so we find b; by doubling the sum over positive x.

24.10. Find a trigonometric sum 7'(x) for the function of Problem 24.5, assuming it extended to an

odd function of period P = 6.
By the previous problem all g; =0, and since L =3,
b= (sinf+sin2—”) A (sinz—”+ sin4—”) =0
3 3 3/ V3 3 3 3
making T(x) = (2/V3) sin (7x/3).

24.11. If y(x) has the period P =2L and is an even function, that is, y( —x)=y(x), show that the

formulas of Problem 24.8 become

2 \ 41t 21 . .
a;==[y(0)+y(L)cosjm]+— > y(x)cos=jx j=0,1,...,L
P P = P
b,=0

The terms for +x in the formula for b; cancel in pairs. In the g; formula the terms for x =0 and
x = L may be separated as above, after which the remaining terms come in matching pairs for +x.

24.12. Find a T(x) for the function of Problem 24.5 assuming it extended to an even function of

period 6. (This will make three representations of the data by trigonometric sums, but in
different forms. See Problems 24.5 and 24.10.)

All b; will be zero, and with L=3 we find ay=3, 4,=0, a,= ~3%, a;=0 making T(x)=
2(1 - cos 37x).

CONTINUOUS DATA. THE FOURIER SERIES
24.13. Prove the orthogonality conditions

aid 0 ifj#k
in jit si ktdt={ e

L sin j¢ sin ﬂ_ it j=k#0
2n
J sinjt cos ktdt=0
0

o 0 ifj#k

cosjtcosktdt=4 7 ifj=k#0
0 2t ifj=k=0

where j, k=0, 1, ... to infinity.
The proofs are elementary calculus. For example,
sin jt sin kt = 3[cos (j — k)t — cos (j + k)t]

and each cosine integrates to zero since the interval of integration is a period of the cosine, except when
j=k#0, in which case the first integral becomes 3(27). The other two parts are proved in similar
fashion. )
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24.14. Derive the coefficient formulas

1 27 1 25
a;j==| y(t)cosjtdt Bi==| y(@®)sinjtdt
T Jy T
. . 1 < .
of the Fourier series y(@)= > ay+ 2 (a cos kt + B, sin kt)
k=1

These are called the Fourier coefficients. As a matter of fact all such coefficients in sums or
series of orthogonal functions are frequently called Fourier coefficients.

The proof follows a familiar path. Multiply y(¢) by cos jt and integrate over (0, 2x). All terms but
one on the right are zero and the formula for «; emerges. The factor 3 in the a, term makes the result
true also for j =0. To obtain §; we multiply by sin jt and integrate. Here we are assuming that the series
will converge to y(¢) and that term-by-term integration is valid. This is proved, under very mild
assumptions about the smoothness of y(¢), in the theory of Fourier series. Clearly y(f) must also have
the period 2.

24.15. Obtain the Fourier series for y(¢) =|t|, —n=t=m.

Let y(f) be extended to an even function of period 27. (See solid curve in Fig. 24-1.) The limits of
integration in our coefficient formulas may be shifted to (—z, x) and we see that all §;=0. Also &, = 7;

and for j >0
2 (" 2 jt—1
a,=7j tcosjtdt=(coL];2
T Jo 7
T 4 cos 3t cos 5t
==-—
Thus y(®) 2 n(cost+ 7 + = >

Fig. 24-1

24.16. Obtain the Fourier series for y(t) =¢, —n <t <.

We extend y(¢) to an odd function of period 2. (See Fig. 24-2). Again shifting to limits (-7, ) we
find all a; =0, and

2 (" 2(-1)!
[5,-=—f tsinjtdt=(—,)—
7wty j
Thi (t)_z(sim_sin 2t+sin3t_sin 4t+ )
us Y= 2 73 3

Notice that the cosine series of Problem 24.15 converges more rapidly than the sine series. This is
related to the fact that the y(¢) of that problem is continuous, while this one is not. The smoother y(t) is,
the more rapid the convergence. Notice also that at the points of discontinuity our sine series converges
to zero, which is the average of the left and right extreme values (7 and —7) of y(z).
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Fig. 24-2

t(m —1t), 0=t=nm

24.17. Find the Fourier series for y(f) = {t(n +1), —m=1=0°

Extending the function to an odd function of period 2z, we have the result shown in Fig. 24-3.
Notice that this function has no corners. At ¢ =0 its derivative is & from both sides, while both y'(x)
and y'(—x) are — « so that even the extended periodic function has no corners. This extra smoothness
will affect the Fourier coefficients. Using limits (—x, 7) we again find all «; =0, and

2 (™ . 2 ("n
ﬁ,—;_[] t(rr~t)sm]tdt—ﬁj0

-2t 4(1 —cos jm)

7

4 =
cosjtdt= 'lf sinjtdt =
] Jo

3 in5
The series is therefore y(t)=- (smt + sindt sindt, . )

53
The coefficients diminish as reciprocal cubes, which makes for very satisfactory convergence. The extra
smoothness of the function has proved useful.

o

Fig. 24-3

24.18. Show that for the Bernoulli function
E,(x) = B,(x) 0<x<1 E(x £ m)=FE\(x) m an integer
B, (x) being a Bernoulli polynomial, the Fourier series is

& cos 2mkx
2 pubatiinbhihitd

Ex=( 1)("/2)”"'[(2”)"} = &

2 sin 27wkx
when n is even, and E(x 1)y [ ]
w(0)=(-1 @ny ;1 o

when r is odd. This result was used in Problem 17.28 of the chapter on sums and series.
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Since B;(x) =x — 3, the series for F;(x) may be found directly from the coefficient formulas to be

1 /sin2ax sindzx sin 6zx
F,(x)=—; I + 3 + 3 +o--

Integrating, and recalling that
1
Bi(x) = nB,_,(x) j B(x)dx=0 forn>0
0

2.2 (cos 2nx  cos4mx  cosbmx )
+ + e

we soon find E(x)= 2ny . + > 7

The next integration makes

2-3!/sin2xx sindax sin6xx
F(x) = ( )

Cay\ 1 TP 3

and an induction may be used to complete a formal proof. (Here it is useful to know that integration of
a Fourier series term by term always produces the Fourier series of the integrated function. The
analogous statement for differentiation is not generally true. For details see a theoretical treatment of
Fourier series.

24.19. How are the collocation coefficients of Problem 24.5, or of Problem 24.2, related to the
Fourier coefficients of Problem 24.14?

There are many ways of making the comparisons. One of the most interesting is to notice that in
Problem 24.5, assuming y(x) to have the period P = 2L, we may rewrite a; as

171 1 Ky 7,
4=7|7yO0+5yCL)+ gl y(x) cos - jx
and this is the trapezoidal rule approximation to the Fourier coefficient
1 2 1 2L
afj-=;L y(t)cosjtdt=zf0 y(x)cos%jxdx

Similar results hold for b; and B; and for the coefficients in Problem 24.2. Since the trapezoidal rule
converges to the integral for L becoming infinite, we see that the collocation coefficients converge upon
the Fourier coefficients. (Here we may fix the period at 2z for convenience.) For an analogy with
Chebyshev polynomials see Problems 21.53 to 21.55.

LEAST SQUARES, CONTINUOUS DATA

24.20. Determine the coefficients A, and B, so that the integral
25

I=| [y()~ Tu()) ar
0
M
will be a minimum where T,(f) =3A,+ ¥ (A, cos kt + By sin kt).
k=1
More or less as in Problem 24.6, we first find
1 M ES
y(@) - Tu() = E(a'u_ Ag)+ X [(a— A)coskt + (B — B sinki] + 2, (o coskt + By sin k)
k=1 k=M+1

and then square, integrate, and use the orthogonality conditions to get

1S (@AY +7 3 (@ =AY+ G- BT +1 3 (@4 D
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For a minimum we choose all A, = &, B, = 8, so that
Lin=m E (o + ﬁi)
k=M+1

Again we have the important result that truncation of the Fourier series at k = M produces the
least-squares sum 7,,(¢). (Once again this is a special case of Problem 21.8.) The minimum integral may
be rewritten as

27 1 M
o= [ OPd -3 nai-7 S (o + )
0 k=1

As M increases, this diminishes; and it is proved in the theory of Fourier series that I, tends to zero for
M becoming infinite. This is called convergence in the mean.

24.21. Find the least-squares sum with M =1 for the function y(¢) of Problem 24.15.

Truncation brings 7y(t) = /2 — (4/7) cos t. This function is shown dashed in Fig. 24-1. Notice that
it smooths the corners of y().

SMOOTHING BY FOURIER ANALYSIS
24.22. What is the basis of the Fourier analysis method for smoothing data?

If we think of given numerical data as consisting of the true values of a function with random errors
superposed, the true functions being relatively smooth and the superposed errors quite unsmooth, then
the examples in Problems 24.15 to 24.17 suggest a way of partially separating functions from error. Since
the true function is smooth, its Fourier coefficients will decrease quickly. But the unsmoothness of the
error suggests that its Fourier coefficients may decrease very slowly, if at all. The combined series will
consist almost entirely of error, therefore, beyond a certain place. If we simply truncate the series at the
right place, then we are discarding mostly error. There will still be error contributions in the terms
retained. Since truncation produces a least-squares approximation, we may also view this method as
least-squares smoothing.

24.23. Apply the method of the previous problem to the following data:

x 0 1 2 3 4 5 6 7 8 9 10

y 0 43 85 105 160 19.0 21.1 249 259 263 27.8

x 11 12 13 14 15 16 17 18 19 20

y |30.0 304 30.6 268 257 218 184 127 7.1 0

Assuming the function to be truly zero at both ends, we may suppose it extended to an odd function
of period P=40. Such a function will even have a continuous first derivative, which helps to speed
convergence of Fourier series. Using the formulas of Problem 24.9, we now compute the b,.

i 1 2 3 4 5 6 7 8 9 10
b; 30.04 358 1.35 -.13 —.14 -.43 .46 .24 -.19 .04
j 11 12 13 14 15 16 17 18 19 20
b; .34 .19 .20 =12  -.36 -18 =05 =37 .27
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The rapid decrease is apparent and we may take all b, beyond the first three or four to be largely error
effects. If four terms are used, we have the trigonometric sum

3ax 4mx
20+135 sin—— 20 ~.135sin 2

T(x)=30.04si -3.

(x) =30.04 sin> 20 58 sin
The values of this sum may be compared with the original data, which were actually values of
y(x) = x(400 — x2)/100 contaminated by artificially introduced random errors. (See Table 24.1). The

RMS error of the given data was 1.06 and of the smoothed data .80.

Table 24.1
x Given | Correct | Smoothed x Given | Correct | Smoothed
1 4.3 4.0 4.1 11 30.0 30.7 29.5
2 8.5 7.9 8.1 12 30.4 30.7 29.8
3 10.5 11.7 11.9 13 30.6 30.0 29.3
4 16.0 15.6 15.5 14 26.8 28.6 28.0
5 19.0 18.7 18.6 15 25.7 26.2 25.8
6 21.1 22.7 21.4 16 21.8 23.0 22.4
7 24.9 24.6 23.8 17 18.4 18.9 18.0
8 25.9 26.9 25.8 18 12.7 13.7 12.6
9 26.3 28.7 27.4 19 7.1 7.4 6.5
10 27.8 30.0 28.7 20

24.24. Approximate the derivative y'(x) = (400 — 3x*)/100 of the function in the preceding problem

on the basis of the same given data.
First we shall apply the formula
1
Y@ =5 ye =) e -DHy - +2yx +2)]

derived earlier from the least-squares parabola for the five arguments x —2, ..., x +2. With similar
formulas for the four end arguments, the results form the second column of Table 24.2. Using this local
least-squares parabola already amounts to local smoothing of the original x, y data. We now attempt
further overall smoothing by the Fourier method. Since the derivative of an odd function is even, the
formula of Problem 24.11 is appropriate.

=—[y 0)+y'(20) cosm:]+ Z y'(x) cos

These coefficients may be computed to be

j 0 1 2 3 4 5 6 7 8 9 10

0 48 -1.05 .71 -05 .05 -20 .33 .15 .00 .06

j 11 12 13 14 15 16 17 18 19 20

-.04 .16 -.09 .10

06 .06 -.03 .11 .06 .14

Again the sharp drop is noticeable. Neglecting all terms beyond j = 4, we have

3mx
+ 71cos T _ 05cos I

2
105 cos = 20 20

y'(x)= 48100520
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Computing this for x =0, .. ., 20 produces the third column of Table 24.2. The last column gives the
correct values. The RMS error in column 2, after local smoothing by a least-squares parabola, is .54,
while the RMS error in column 3, after additional Fourier smoothing, is .39.

Table 24.2

x Local Fourier Correct x Local Fourier Correct
0 5.3 4.4 4.0 11 1.1 5 4
1 4.1 4.4 4.0 12 -1 -1 -3
2 3.8 4.1 3.9 13 -1.2 -9 -1.1
3 3.7 3.8 3.7 14 -2.2 -1.8 -1.9
4 3.4 34 35 15 -2.9 -2.9 -2.8
5 34 3.0 32 16 -3.6 -4.0 -3.7
6 2.6 2.5 2.9 17 —4.6 -5.0 —4.7
7 1.9 2.1 2.5 18 -5.5 -5.8 =5.7
8 1.5 1.8 2.1 19 -7.1 -6.4 -6.8
9 1.2 1.4 1.6 20 —6.4 —6.6 —8.0
10 1.3 1.0 1.0

COMPLEX FORMS

24.25. Prove the following orthogonality property of the functions e, ¢** for j and k integers. The
overbar denotes a complex conjugate.

o 0 if k#j
fo e ekxd":{zn if k=j
The proof is elementary, the integral reducing at once to
1
i(k=J)
for k #j. But this is equal to one at both limits, hence zero. For k =j, the left side above is
clearly 2m.

27
i(k—j)x
0

27 . )
f e *=D dy = e
0

24.26. Derive the formula for Fourier coefficients in complex form.

The proof takes a familiar path. The Fourier series is
f)= 2 fe*
jm—=

Multiplying by e** and integrating brings

r”f(x)e"“ dx = i fie™e™ dx

j=—

and since all terms on the right vanish by orthogonality except the one for j =k, the required result is
found.

1 .
fomgn | e ax
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24.27. Show that the functions e’*, e** are orthogonal in the following sense.

N L (N ifk=j
xp pikxn —
2 e { 0 ifk#j
Here as before x,, =2xn/N.
i(k=)2IN.

We will find a geometric sum with ratio r=e¢
N-1__ - R
> eTngtin = Y @ikt = D] P 4 MY
n=0 n=0

For j = k we have r =1 and the sum is N. Otherwise the sum of the powers of r is (1 —r")/(1—-7) by a
familiar formula. But r" is ¢**” which is 1, making the numerator zero and establishing the
orthogonality.

24.28. Show that if N =2/ +1 then the trigonometric sum

il
2 dieijx

j==1
must have coefficients d; = f} if it is to collocate with the function f(x) at x, = 2zn/N.

Assume that collocation occurs, multiply by ¢ and sum.

2 F(x, )g:kx"_ 2 s Zlde,,x,,_ Zld Z o litn
n=0 j=- j=- n=0

Again all terms on the right are zero except one, for j = k, and we have

3. f(w)e"r= du(N) =fIN

24.29. How are the coefficients f; related to discrete Fourier transforms?

Let V be the vector with components f(xo), ..., f(¥ny-1). For N=2[+1 this makes V (2/ +1)-
dimensional, as is the vector of coefficients f* for the trigonometric sum
1
S fre
j==1
in which

175 .
=5 2_: flx)e™
for j = — 1/ to j =I. Comparing with
N— N-1 .
2 o= 3, flx)e

n=0 n=0

where x,=2nn/N, and j=0 to j=N —1, the match is conspicuous. We do have one problem: the
ranges of validity do not coincide. But we may deduce that where the ranges overlap, from] =0toj=1,
v/ =Nff j=0,...,1

Now we observe that
N-1 .
viin= 2 FOr)e™0 M= 3 f(x, e
n=0
for j+N=0,...,N—1lorj=-1,..., —N. Once again we have a match, this time for j=~1 to

j=-l
vaw=Nff  j=-L..., -1
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Apart from the factor 1/N the components v do, therefore, match the coefficients f7, though in a
slightly scrambled order. Taking the v in their natural order v{ to v3 it is easy to verify that the order
of the coefficients will be this.

fo, . ft froofh

Work through the details of the preceding problem for the simple example V = (1, 0, —1).
Here N=3 and /=1.

2 2
7= 2 fee = 3 fr)ol = 1- o3
n= n=0

This makes i =1—ws =0 Fr=1-w}

and we have the three coefficients directly. Turning to the transform,
2
vf =3 fla)oh =1- 0¥
n=0

we find vi=0 vi=1-w? vi=1-w,

and the correspondence discovered in Problem 24.29 is confirmed.

What is the central idea behind the Fast Fourier Transform?

When N is the product of integers, the numbers f prove to be closely interdependent. This
interdependence can be exploited to substantially reduce the amount of computing required to generate
these numbers.

Develop the FFT for the simplest case, when N is the product of two integers ¢ and ¢,.

Letj=j,+¢tj, and n=n,+t,n,. Then for j,, n,=0to ¢, — 1, and j,, n,=0to t,— 1 both jand n
run their required ranges 0 to N — 1. Now

1+t +1: 11 +j +11j:
wlt 1) (na+any) — w/[‘ll?'l jina+iyjang

since ,4,= N and %= 1. The transform can then be written as a double sum
=1 t;—1
vi= v w],\l]’z"lwg\l,"2+’li2"2
n
ny=0 n=0
This can also be arranged in a two-step algorithm.

-1

R(ji, m) = 2 v,

n1=0
-1

2
vf=B(j1, j2) = X R, np)orrim
0

ny=

What is the gain in computing efficiency if the FFT of Problem 24.32 is used? In other words,
just how fast is the Fast Fourier Transform?

To compute F, there are ¢, terms to be processed; to compute F, there are ¢,. The total is ¢, +1,.
This must be done for each (j,, n,) and (ji, j,) pair, or N pairs. The final count is thus N(t, + ;) terms
processed. The original form of the transform

N-=1

=2 v,0h

n=0

processed N terms for each j, a total of N? terms. The gain in efficiency, if measured by this standard, is
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thus
i+t
N

and depends very much upon N. For a small data set, say N =12 =3 X 4, the FFT will need about Z the
computing time of a direct approach. This is hardly significant but points out the direction of things to
come.

24.34. Run the FFT of Problem 24.32 for the following vector:

n 0 1 2 3 4 5

U, 0 1 1 0 -1 -1 0

The small scale of the problem, N = 6, makes it easy to see all the detail. Here N =#1,=2 X3 so we
first find the F, values from

1
F(jy, ny) = E V0" n=n,+3n,

n1=0

and they prove to be the following, with ® = ws.

F(0,0)=v,+v;=0 F(1,0)=v,—v;=0
FO, )=v,+v,=0 E(1,D)=v,—v,=2
F(0,2)=v,+vs=0 F(1,2)=v,—vs=2
2
Then v/ =F(jn )= 2 F(ji, o'
ny=0

leading to, since j =j, +2j,
Ve =F(0,0)=vo+ v, + U, +Us+ s+ Us=0
vT=FE(1, 0)=F(l, 0) + F(L, Do + F(, 2o’ =20 + 20> =2V3i
vI'=F(0, 1) = E(0, 0) + £(0, )w*+ E(0, 2)w* =0
vI=F(1,1)=E(@,0)+ £(1, Do*+ F(1, 2)o’=0
and similarly
vi=E(0,2)=0
vI=FE(1,2)=-2V3i

Note that Nt, terms were involved in computing the F, values and Nt, terms in getting F;, a total of
12 +18 =30 terms. The direct computation would have used 36 and would confirm the results just
found. Also note the order of processing ji, j» pairs. In programming language, the j, loop is external to
the j, loop.

24.35. Extend the FFT of Problem 24.32 to the case N = t,t,t;.
The details will suggest the way to generalization for still longer products. Let
j=ht+ ittt n=n;+ 0, + t:t,n,
and observe that of the nine possible power terms in

i+t jatrtag +13ny+ 3L
w;\{x tiztntaf3)ns+iznatiatong)

three will contain the product #,¢,¢; and may be neglected since wy=1. The remaining six may be
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grouped as follows in the transform,

5-1

=1 ;-1

T 711302701 | oy Un+11i2)3n2 | ) G+ t1ia+it2iz)ng

=S [S (S v o] ag
n3=0 Lny=0 \n;=0

with n, appearing only in the inner sum and n, not appearing in the outer. As before, this triple sum can
be expressed as an algorithm, this time having three steps.

1=1
. - J1t3fant
F(ji, na, n3) = Z UV, 0N
ny=0
11

E(j1, J2y n3) = Z F(j, 2, na)wglﬂmﬁm
ny=0
31

v/ = F(jy, jor j) = 2 B(ji, o na)ofrriizrains
n3=0

This is the required FFT.

24.36. Estimate the saving in computing time if this algorithm is used.

At each of the three steps the number of triples, such as (jj, n,, 1), that must be processed is
titt;=N. In the sums we find the number of terms to be #;, &,, £ in turn. This makes a total of
N(t, + t, + ;) terms altogether. The transform as defined still uses N> terms, so the efficiency of the FFT
may be estimated as

Lhtt+t
N

If, for instance, N = 1000 = 10 x 10 x 10, then only 3 percent of the original 1,000,000 terms are needed.

24.37. Run the FFT algorithm of Problem 24.35 manually for this input vector.

n 0 1 2 3 4 5 6 7

v, 1 1+i i i-1 -1 -1-i —i 1-i

We have N=8=2x2Xx2, making j=j, +2j,+4j, and n=n,+ 2n,+ 4n,. The formula for F
is then

1
E(ji, 2, n3) = 2, v,08™

ny=0
and we have
F(0,0,0)=vo+v,=0 F(1,0,0)=vo+v,0*=2
FE(0,0,1)=v,+vs=0 F(1,0,1)=v,+vs0*=2+2i
E(0,1,0)=v,+vs=0 F(1,1,0)=v,+ vew* =2i
R0, 1,1)=v,+v;,=0 F(L, 1, 1) =vs+v,0*=2i—2

with wg abbreviated to w. Notice the N, =8 X 2 terms used. Next we use
1
Fz(in J2 "3) = 2 Fl(fh ny, ﬂz)wz(h”h)"z
ny=0
to compute
E(0,0,0)=0 E(1,0,0)=F(1,0,0)+ F(1, 1, 0)w*=4
E0,0,1)=0 E(1,0,1)=FE(1,0, 1)+ E(1, 1, )o*=4+4i
E(0,1,0)=0 E(1,1,0)=F(1,0,0)+ F(L, 1, 0)0®*=0
E0,1,1)=0 E(1,1,1)=F(,0,1)+E(1, 1, D)o®=0
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and finally 1 ‘
UiT= E}(}lly J2» ]3) = En Fz(fb J2s ”3)‘0]"3
ny=

to get the transform

vI=F(0,0,0) = F(0, 0, 0) + F(0, 0, 1) =0

vT=F(1,0,0)=F(1,0,0)+ E®1, 0, o =4+4V2

vI=F(0,1,0)=F(0, 1,0) + B0, 1, Ho?*=0

vI=F(1,1,0)=5(1,1,0)+ F(1,1, Do*=0

vI=F(0,0, 1) = F(0, 0, 0) + K(0, 0, Do*=0
=F(1,0,1)=F(1, 0,0) + B(1, 0, o’ =4 —4V2
=E(0, 1, 1)=F5(0,1,0) + £(0, 1, D*=0

vI=F(1,1,1)=51,1,0+E( 1, )w’=0

A total of N(t, + £, + ;) = 48 terms have been processed, only a slight saving from N* =64 because of
the problem’s small scale.

24.38. The inverse discrete transform may be defined by

E uw E ue™
Show that this definition does give an inverse relationship by inserting ; = v/ and discovering
that u; "= v,. That is, the components of the original vector V are regained.
It may be useful to first rewrite the result of Problem 24.31 using
@ = ¢~
S N ifk=j
= jn_ —kn —-
to obtain » S oo {0 .y
for j, k in the interval (0, N —1). Now
1 N-1 N—-1 N-1 1 N-1
- UT -k — ey IR = —
N ,:ZU Z 2 verot=g 3 v,

and the last sum being zero, unless n takes the value &, we soon have the anticipated v,.

1 1

Wk

\\[\4|Z

-1
N

24.39. Invert the transform found in Problem 24.37.

The FFT could be used, but in view of the large number of zero components this is a good chance
to proceed directly.

7
=>uf=8 u;'=1=v,
j=0

)
8u; 7= viw =4 +4V)o " + (4- 4V

j=0
=8(1+i) wu'=1+i=v,
8u; 7 EUT V= 4+ 4V 1+ (- 4V2)w

=8i w;T=i=v,

The remaining components may be verified as Problem 24.63.
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Supplementary Problems

Apply the method of Problem 24.2 to the data below.

x 0 1 2 3 4

y|lo 1 2 1 o0

Derive the coefficient formulas of Problem 24.5.

Apply the method of Problem 24.5 to the following data:

. Use the result of Problem 24.6 to obtain least-squares sums 7Ty(x) and Ty(x) for the data of Problem

24.40.

. Imitate the argument of Problem 24.6 to obtain a somewhat similar result for the case of an even

number of x arguments.
Apply the preceding problem to the data of Problem 24.42.

Extend the data of Problem 24.40 to an odd function of period 8. Find a sum of sines to represent this
function.

. Extend the data of Problem 24.40 to an even function of period 8. Find a sum of cosines to represent

this function.

Show that the Fourier series for y(x) = [sin x|, the “fully rectified” sine wave, is

n )_i(l_coslx_cosétx_cosﬁx_”_)
Y=z \T T3 T35 s

Show that the Fourier series for y(x) = x for x between —x and 7z, and of period 27, is

n? & (—1)% ' cos kx
R
k=1

Use the result to evaluate the series Y (—1)*"'/k*and % 1/k°
k=1 k=1

Use the Fourier series of Problem 24.15 to evaluate i 1/(2k - 1)
k=1

Use the Fourier series of Problem 24.16 to show that #/4=1-3+%~%+..-,
Use the series of Problem 24.17 to evaluate 1 —1/3*+1/5*—1/7+- - -.

What is the four-term least-squares trigonometric approximation to the function of Problem 24.487
What is the two-term least-squares approximation?

Apply Fourier smoothing to the following data, assuming that the end values are actually zero and
extending the function as an odd function. Also try other methods of smoothing, or combinations of
methods. Compare results with the correct values y(x) =x(1~x) from which the given data were
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obtained by the addition of random errors of up to 20 percent. The arguments are x = 0(.05)1.

.00, .06, .10, .11, .14, .22, .22, .27, .28, .21, .22, .27, .21, .20, .19, .21, .19, .12, .08, .04, 0O

24.55. Verify the coefficient relationships
aG=c+tc; by=i(c;~c_y)
given in the introductory section, and the inverse relations

C_=a,—ib,. . _a+ib
/ 2 - 2

Deduce that if the a;, b; are real, then ¢; and c_; must be complex conjugates. Recalling that for the
collocation trigonometric polynomial, we have ¢; =7, and assuming g;, b;, and f(x) all real, show that

2 N~1
4=2Re(f}) == 2 f(x.) cosjx,
N2
2 N-1
by==2Im(f}) =+ X f(x,)sinjx,
N>
24.56. Proceed as in Problem 24.30 using V =(1, —1, 0).

24.57. Proceed as in Problem 24.34 using this vector V:

n 0 1 2 3 4 5

Uy, 0 0 1 1 1 0

24.58. Proceed as in Problem 24.37 using this vector V:

n 0 1 2 3 4 5 6 7

U, 1 1+i 0 1-1 0 1+i 0 1-i

24.59. Confirm the result of Problem 24.58 by applying the original transform
N-1
vi= v,0l
n=0

24.60. Using elementary calculus show that if ¢,, = N, then the minimum of ¢, + ¢, occurs for #, =¢,. Extend
this result to the case ¢,4,/, = N. What is the implication for the FFT?

24.61. Invert the transform found in Problem 24.30.

24.62. Apply the FFT of Problem 24.32 to invert the output of Problem 24.34.

n 0 1 2 3 4 5
0 2V3i 0 0 0 —2V3i

=7y

24.63. Complete the inversion begun in Problem 24.39.

24.64. Make the same inversion using an FFT.



Chapter 25

Nonlinear Algebra

ROOTS OF EQUATIONS

The problem treated in this chapter is the ancient problem of finding roots of equations or of
systems of equations. The long list of available methods shows the long history of this problem and
its continuing importance. Which method to use depends upon whether one needs all the roots of a
particular equation or only a few, whether the roots are real or complex, simple or multiple, whether
one has a ready first approximation or not, and so on.

1.

The iterative method solves x = F(x) by the recursion
Xn = F(xn-l)

and converges to a root if |F'(x)| = L <1. The error e, =r —x,,, where r is the exact root,
has the property
e, =F'(r)e,_,

so that each iteration reduces the error by a factor near F’(r). If F'(r) is near 1 this is slow
convergence.
The A” process can accelerate convergence under some circumstances. It consists of the
approximation
rex . — (A%,

n+2 AZX,,

which may be derived from the error property given above.
The Newton method obtains successive approximations

_ S (xp-1)

F'(nr)
to a root of f(x) =0 and is unquestionably a very popular algorithm. If f'(x) is complicated,
the previous iterative method may be preferable, but Newton’s method converges much
more rapidly and usually gets the nod. The error e, here satisfies

Ui (1P

SO

Xn = Xp—1

This is known as quadratic convergence, each error roughly proportional to the square of
the previous error. The number of correct digits almost doubles with each iteration.

The square root iteration
1
=3 <x,,_1 +xQ )

n—1

is a special case of Newton’s method, corresponding to f(x)=x”— Q. Tt converges
quadratically to the positive square root of Q, for Q >0.
The more general root-finding formula

Y
-1
pxh=y

is also a special case of Newton’s method. It produces a pth root of Q.

=Xpo17

Interpolation methods use two or more approximations, usually some too small and some
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too large, to obtain improved approximations to a root by use of collocation polynomials.
The most ancient of these is based on linear interpolation between two previous
approximations. It is called regula falsi and solves f(x) = 0 by the iteration

(tn—1 = Xn—2)f (Xn-1)

fln-1) = f(Xn-2)

The rate of convergence is between those of the previous two methods. A method based on

quadratic interpolation between three previous approximations xo, X1, X, uses the formula
2C

B+ VB*—4AC

Xn = Xn—1

X3 =Xz~

the expressions for A, B, C being given in Problem 25.18.
Bernoulli’s method produces the dominant root of a real polynomial equation
agx"+ax"'+---+a,=0

provided a single dominant root exists, by computing a solution sequence of the difference
equati
quation AoXe+ a1 X1+ -+ a,x-, =0
and taking lim (x;+1/x;). The initial values x_,.,=---=x_,=0, xo=1 are usually used. If
a complex conjugate pair of roots is dominant, then the solution sequence is still computed,
but the formulas )
2 Xk T Xp+1Xp—1 k+1Xk—2 7 Xg—1Xk

X
ple=————n —2rcos ¢ =

2 2
Xe—1 7~ XiXp—2 Xi—1 ~ XpXp—2

serve to determine the roots as r;, r, =r(cos ¢ i sin ¢).

Deflation refers to the process of removing a known root from a polynomial equation,
leading to a new equation of lower degree. Coupled with Bernoulli’s method, this permits
the discovery of next-dominant roots one after another. In practice it is found that continued
deflation determines the smaller roots with diminishing accuracy. However, using the results
obtained at each step as starting approximations for Newton’s method often leads to
accurate computation of all the roots.

The quotient-difference algorithm extends Bernoulli’s method and may produce all roots of
a polynomial equation, including complex conjugate pairs, simultaneously. It involves
computing a table of quotients and differences (resembling a difference table) from which
the roots are then deduced. The details are somewhat complicated and may be found in
Problems 25.25 to 25.32.

Sturm sequences offer another historical approach to the real roots of an equation, again
producing them more or less simultaneously. A Sturm sequence

Jole), Ax), - fulx)

meets five conditions as listed in Problem 25.33. These conditions assure that the number
of real zeros of f,(x) in the interval (a, b) is precisely the difference between the number of
sign changes in the sequence fy(a), fi(a), ..., f.(a) and the corresponding number in
fo(b), fi(b), . .., f.(b). By choosing various intervals (a, b) the real zeros can therefore be
located. When f(x) is a polynomial, a suitable Sturm sequence may be found by using the
Euclidean algorithm. Letting f,(x) = fo(x), the rest of the sequence is defined by

Jolx) = AL (x) = fox)
fix) = L) Lo(x) ~ f(x)

fumax) = farr(X)Lpoa () = fu(¥)
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Like the deflation and quotient-difference methods, Sturm sequences can be used to obtain
good starting approximations for Newton iterations, which then produce highly accurate
roots at great speed.

SYSTEMS OF EQUATIONS AND OPTIMIZATION PROBLEMS

Systems of equations respond to generalizations of many of the previous methods and to other
algorithms as well. We choose three.

1. The iterative method, for example, solves the pair of equations
x=F(x,y) y=G(x,y)
by the formulas Xp=F(Xy_1, Yn_1) Vo= G(Xu_1, Yuo1)
assuming convergence of both the x,, and y, sequences. Newton’s method solves
fx,y)=0 g(x, y)=0
through the sequences defined by
Xp =Xyo1+hpy Yn=Yn-1+ Kny
with 4, _, and k,_; determined by
.ﬁc(‘xn—l’ yn—l)hnfl +f;(xn71’ ynfl)knfl = _f(xn—l’ yn—l)
&:(Xu—ts Yu—1)hn_1 +gy(xn—1) Yn-kn1= = 8(Xuots Yu1)
More generally, the system
F(x)=0
in which F, x, and 0 are vectors of n dimensions, may respond to the iteration
x(n) - G(x""l))

obtained by a rearrangement of the original system, with a suitable initial vector x®. Or the
Newton approach can be expressed in a compact vector-matrix form beginning with the
Taylor series

F(x@=D 4+ k) = Fx D) + T Dy + - - -

ignoring the higher-order terms and setting the left side to the zero vector. The result is a
linear system for £
J(x® D= — F(x"™V)

which can even be written h=—J Y (x""D)F(x"~D)
The matrix J is called the Jacobian of F and has the elements
of
o2
ox;
where f; and x; are components of F and x. With an accurate initial approximation, and a
cooperative F, the error decreases quadratically in the sense

llx —x® Zc [l —x@70)?

but it must be pointed out that this quadratic convergence can be elusive. Finding
sufficiently accurate first approximations is not always easy with systems of equations and
Newton approximations sometimes wander about. In some cases it has been found that the
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shortened step
xW=x"Dykn k<1
does better, with k chosen to assure that the norm of F decreases.
IEE) <IIFE"D)
In this way each step improves the situation. The device has been called the damped
Newton method.

Optimization methods are based upon the idea that the system F=0, or f;=0 for
i=1,...,n, is solved whenever the function

S=fi+fi+- - +fi

is minimized, since the minimum clearly occurs when all the f; are zero. Direct methods for
seeking this minimum, or descent methods, have been developed. For example, the
two-dimensional problem (with a familiar change of notation)

fxy)=0 gx,y)=0
is equivalent to minimizing this sum
S(,y)=f*+¢
Beginning at an initial approximation (x,, y,), we select the next approximation in the form
X1= X~ S0 V1= Yo~ 1850

where S, and S, are the components of the gradient vector of § at (x,, y;). Thus progress is
in the direction of steepest descent and the algorithm is known as the steepest descent
algorithm. The number ¢ may be chosen to minimize S in this direction, though alternatives
have been proposed. Similar steps then follow. The method is often used to provide initial
approximations to the Newton method.

The above equivalence is, of course, often exploited in the opposite way. To optimize a
function f(xy, . . ., x,), one looks for places where the gradient of f is zero

grad (f)=(f, for ..., f) =(0,0,...,0)

Here f; denotes the partial derivative of f relative to x;. The optimization is then attempted
through the solution of the system of » nonlinear equations.

Bairstow’s method produces complex roots of a real polynomial equation p(x)=0 by
applying the Newton method to a related system. More specifically, division of p(x) by a
quadratic polynomial suggests the identity

p(x)= ("= ux —v)q(x) + r(x)
where r(x) is a linear remainder
r(x)=b,_1(u, v)(x —u) + b,(u, v)
The quadratic divisor will be a factor of p(x) if we can choose u and v so that

b,_1(u,v)=0 b,(u, v)=0

This is the system to which Newton’s method is now applied. Once u and v are known, a
complex pair of roots may be found by solving

—ux—v=0
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Solved Problems

THE ITERATIVE METHOD

25.1.

25.2.

Prove that if r is a root of f(x)=0 and if this equation is rewritten in the form x = F(x) in
such a way that |F'(x)| =L <1 in an interval I centered at x=r, then the sequence
x, = F(x,_,) with x, arbitrary but in the interval I has lim x,, = r.

First we find
IFx) = F(y)I=F'(E)x =) =L x —y|

provided both x and y are close to r. Actually it is this Lipschitz condition rather than the more
restrictive condition on F'(x) which we need. Now

o == F(n1) = F(I =L |x,o1 =7

so that, since L <1, each approximation is at least as good as its predecessor. This guarantees that all
our approximations are in the interval /, so that nothing interrupts the algorithm. Applying the last
inequality » times, we have

[, —r|SL" |xg—r|

and since L <1, limx, =r.

The convergence is illustrated in Fig. 25-1. Note that choosing F(x,_,) as the next x, amounts to
following one of the horizontal line segments over to the line y = x. Notice also that in Fig. 25-2 the case
|F'(x)| > 1 leads to divergence.

N\
N\
2

3 N

~

y = F(z)

Yy = F(x)
x a

t
%1 %y qu EFRE ) *3 % o %y x4

Fig. 25-1 Fig. 25-2

In the year 1225 Leonardo of Pisa studied the equation
fx)=x>+2x*+10x—20=0

and produced x = 1.368,808,107. Nobody knows by what method Leonardo found this value
but it is a remarkable result for his time. Apply the method of Problem 25.1 to obtain this
result.

The equation can be put into the form x = F(x) in many ways. We take x = F(x) = 20/(x* + 2x + 10)
which suggests the iteration

20

Txi g +2x, ,+10

Xn

With x,=1 we find x; = %3 = 1.538461538. Continuing the iteration produces the sequence of Table 25.1.
Sure enough, on the twenty-fourth round Leonardo’s value appears.
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25.3.

Table 25.1
n X n X
1 1.538461538 13 1.368817874
2 1.295019157 14 1.368803773
3 1.401825309 15 1.368810031
4 1.354209390 16 1.368807254
5 1.375298092 17 1.368808486
6 1.365929788 18 1.368807940
7 1.370086003 19 1.368808181
8 1.368241023 20 1.368808075
9 1.369059812 21 1.368808122
10 1.368696397 22 1.368808101
11 1.368857688 23 1.368808110
12 1.368786102 24 1.368808107

Why is the convergence of the algorithm of the previous problem so slow?

The rate of convergence may be estimated from the relation
en=r—x,=F(r) = F(x,-) = F'(§)(r = x,1) = F'(§)en

which compares the nth error e, with the preceding error. As n increases we may take F'(r) as an
approximation to F’(), assuming the existence of this derivative. Then e, = F'(r)e,_,. In our example,
40(r +1)
F'iry= ———F——F5=—.44
)=~ v 107

making each error about —.44 times the one before it. This suggests that two or three iterations will be
required for each new correct decimal place, and this is what the algorithm has actually achieved.

Apply the idea of extrapolation to the limit to accelerate the previous algorithm.

This idea may be used whenever information about the character of the error in an algorithm is
available. Here we have the approximation e, = F'(r)e,.,. Without knowledge of F'(r) we may still
write

r = Xp = F(r)(r = x,)

r_an’»Z:F,(r)(r—xn-i»l)
F=Xpq1  F—Xn
r=Xpyz T~ Xp4

(xn+2_xn+l)2 =y _(Axn+l)z
Xoiz=opitx, 0 Ak,

Dividing we find

and solving for the root P =Xy —

This is often called the Aitken A® process.

Apply extrapolation to the limit to the computation of Problem 25.2.
Using x,0, X1, and x;,, the formula produces

(.000071586)?

r=1.368786102 — 000232877

=1.368808107

which is once again Leonardo’s value. With this extrapolation, only half the iterations are needed. Using
it earlier might have made still further economies by stimulating the convergence.
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25.6. Using extrapolation to the limit systematically after each three iterations is what is known as
Steffensen’s method. Apply this to Leonardo’s equation.

The first three approximations x,, x,, and x, may be borrowed from Problem 25.2. Aitken’s
formula is now used to produce x;:

(xz_xl)z
=x, ————*—=1.370813882
B T+ Xo

The original iteration is now resumed as in Problem 25.2 to produce x, and xs:
x4 = F(x;) = 1.367918090 x5 = F(x,) = 1.369203162
Aitken’s formula then yields x:

_Grs—x

=1.368808169
Xs—2x4+ X,

X6 =X5—

The next cycle brings the iterates
x,=1.368808080 xg = 1.368808120
from which Aitken’s formula manages x, = 1.368808108.

25.7. Show that other rearrangements of Leonardo’s equation may not produce convergent
sequences.

As an example we may take x = (20 — 2x> — x*)/10 which suggests the iteration

Y
" 10

Again starting with x, =1, we are led to the sequence
x;=1.70 x3=1.75 xs=1.79 x,=1.83
X,= .93 x4= .85 Xe= .79 xg= .72
and so on. It seems clear that alternate approximations are headed in opposite directions. Comparing

with Problem 25.1 we find that here F'(r)=(—4r—3r")/10<—1, confirming the computational
evidence.

THE NEWTON METHOD

 fxen)
" f' (1)

25.8. Derive the Newton iterative formula x,, = x, for solving f(r) =0.

Beginning with Taylor’s formula
1
) =F@na) + (0 = 2,20)f () + 5 =%V (8)

we retain the linear part, recall that f(r) =0, and define x, by putting it in place of the remaining r to
obtain

0=FCtna) + (tw = %01} (x0-1)

_ AC))
")

which rearranges at once into r =x, =x

25.9. What is the geometric interpretation of Newton’s formula?

It amounts to using the tangent line to y =f(x) at x,._, in place of the curve. In Fig. 25-3 it can be
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fl@a-1)
h

L1 Ly T

Fig. 25-3
seen that this leads to

fxn1) _0=f'(

Xn-1)
Xn—1 = Xn

which is once again Newton’s formula. Similar steps follow, as suggested by the arrow.
25.10. Apply Newton’s formula to Leonardo’s equation.

With f(x) = x>+ 2x* + 10x — 20 we find f'(x) = 3x> + 4x + 10, and the iterative formula becomes

X +22, +10x, , —20
3x2_ +4x,_,+10

Xp =Xpq—

Once more choosing x, = 1, we obtain the results in Table 25.2.

Table 25.2

n 1 2 3 4

X 1.411764706 1.369336471 1.368808189 1.368808108

The speed of convergence is remarkable. In four iterations we have essentially Leonardo’s value. In
fact, computation shows that
£(1.368808107) = —.000000016

£(1.368808108) = —.000000005

which suggests that the Newton result is the winner by a nose.

25.11. Explain the rapid convergence of Newton’s iteration by showing that the convergence is
“quadratic.”

Recalling the equations of Problem 25.8 which led to the Newton formula,
1
FO)=f o) + (7 = X0 ) (aot) +5 (7 = 2,0)F ()
0=f(xn-1) + (0 = Xna)f " (%a-1)

1 ,
we subtract to obtain 0=(r—x.)f "(xp-1) + 3 (r —x.1)’f"(&)

1
or, letting e, =7 — x,, O=e,f (x,_1)+ Eei,lf”(&)

Assuming convergence, we replace both x,_; and & by the root r and have

A

MO
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25.12.

25.13.
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Each error is therefore roughly proportional to the square of the previous error. This means that the
number of correct decimal places roughly doubles with each approximation and is what is called
quadratic convergence. It may be compared with the slower, linear convergence in Problem 25.3, where
each error was roughly proportional to the previous error. Since the error of our present x; is about
.00000008, and [f"(r)]/[2f'(r)] is about .3, we see that if we had been able to carry more decimal places
in our computation the error of x, might have been about two units in the fifteenth place! This superb
speed suggests that the Newton algorithm deserves a reasonably accurate first approximation to trigger
it, and that its natural role is the conversion of such a reasonable approximation into an excellent one.
In fact, other algorithms to be presented are better suited than Newton’s for the “global” problem of
obtaining first approximations to all the roots. Such methods usually converge very slowly, however, and
it seems only natural to use them only as a source of reasonable first approximations, the Newton
method then providing the polish. Such procedures are very popular and will be mentioned again as we
proceed. It may also be noted that occasionally, given an inadequate first approximation, the Newton
algorithm will converge at quadratic speed, but not to the root expected! Recalling the tangent line
geometry behind the algorithm, it is easy to diagram a curve for which this happens, simply putting the
first approximation near a maximum or minimum point.

Show that the formula for determining square roots,
1 Q )
n =3 -1t
* 2 (x ! Xp_1

is a special case of Newton’s iteration.

With f(x) =x*~ Q, it is clear that making f(x) =0 amounts to finding a square root of Q. Since
f'(x) =2x, the Newton formula becomes

2
=0 1 Y
x,.=xn_1——2;H =i(x,.ﬂ+xnil)

Apply the square root iteration with Q = 2.

Choosing xo=1, we find the results in Table 25.3. Notice once again the quadratic nature of the
convergence. Each result has roughly twice as many correct digits as the one before it. Figure 25-4
illustrates the action. Since the first approximation was on the concave side of y =x*— 2, the next is on
the other side of the root. After this the sequence is monotone, remaining on the convex side of the
curve as tangent lines usually do.

Table 25.3

b}

xll

1.5

1.416 666 667
1.414 215 686
1.414 213 562
1.414 213 562

AW N =

Fig. 25-4
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9

1
1

X1~
pxh_

25.14. Derive the iteration x,, = x,_; — for finding a pth root of Q.

With f(x) =x” — Q and f'(x) = px”"~', the result is at once a special case of Newton’s method.

25.15. Apply the preceding problem to find a cube root of 2.

2 1
With Q =2 and p = 3, the iteration simplifies to x, =3 (x,, 1 +7)
n—1
Choosing x, =1, we find x, = % and then
x, = 1.263888889 x5 =1.259933493 x4 = 1.259921049 xs=1.259921049

The quadratic convergence is conspicuous.

INTERPOLATION METHODS

25.16. This ancient method uses two previous approximations and constructs the next approximation
by making a linear interpolation between them. Derive the regula falsi (see Fig. 25-5),

_a—b)f(a)
f(a) —f(b)

The linear function

a)

REPA (G L

a

clearly has y = f(x) at @ and b. It vanishes at the argument ¢ given in the regula falsi. This zero serves as
our next approximation to the root of f(x) =0, so effectively we have replaced the curve y =f(x) by a
linear collocation polynomial in the neighborhood of the root. It will also be noticed in Fig. 25-5 that the
two given approximations a and b are on opposite sides of the exact root. Thus f(a) and f(b) have
opposite signs. This opposition of signs is assumed when using regula falsi. Accordingly, having found c,
to reapply regula falsi we use this ¢ as either the new a or the new b, whichever choice preserves the
opposition of signs. In Fig. 25-5, ¢ would become the new a. In this way a sequence of approximations

Xo, X1, X2, . .. may be generated, x, and x, being the original a and b.

1
i
I

a c b

E

| Yy = f()

Fig. 25-5

25.17. Apply regula falsi to Leonardo’s equation.

Choosing x, =1 and x, = 1.5, the formula produces

.5(2.875) (—.15)(—.3946)
»=1.5————>=135 =135 —+—Fr——"=1.
X5 9875 1 x3;=1.35 32696 1.368
and so on. The rate of convergence can be shown to be better than the rate in Problem 25.2 but not so
good as that of Newton’s method.

25.18. A natural next step is to use a quadratic interpolation polynomial rather than a linear one.
Assuming three approximations x,, x;, x, are in hand, derive a formula for a new
approximation x; which is a root of such a quadratic.
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It is not hard to verify that the quadratic through the three points (xo, yo), (x1, y1), (x2, y2), where
y =f(x), can be written as
X1

p()f)=x2

"0 (AR + Bh + C)
X
where h =x —x, and A, B, C are

(s = x0)yz + (xo — X2)y1 + (x2— x1)¥o

A=
(xz - xl)(xl - Xn)z
_ (n = x0)(2x05 = x5 = xo)ys = (%2 — Xo)»1 + (x2— X1)°¥y
B= 2
(x2 = x1)(x; = x0)
C=XZ_XG Y2
X1— X
Solving p(x) =0 for & we find
h=-—— 26
B+ VB*—4AC

this form of the quadratic formula being chosen to avoid loss of significant digits during subtraction.
Here the sign which makes the denominator larger in absolute value should be chosen. Then

X3=Xx,+h
becomes the next approximation and the process may be repeated with all subscripts advanced by one.
The method just described is what is known as Muller’s method and has been found to converge to
both real and complex roots. For the latter it is necessary, of course, to run the algorithm in complex

arithmetic, but even with real roots, complex arithmetic is the wiser choice since traces of imaginary
parts occasionally enter.

BERNOULLI'S METHOD
25.19. Prove that if the polynomial of degree n

p(x)=apx"+a;x"'+---+a,
has a single dominant zero, say r;, then it may be found by computing a solution sequence for
the difference equation of order n

Aoxp + a1xp 1+ axe, =0
and taking lim (x;1/x;).

This difference equation has p(x) = 0 for its characteristic equation and its solution can therefore be
written as
= k K k
Xg=Ciritery+--+c,r,

If we choose initial values so that ¢, # 0, then

X1 _ 1+ (Cz/Cl)(rz/h)kH +-+ (Cn/cl)(rn/rl)k‘l
%o L L+ (cle)(mln) + - (cale)(rln)F

and since r, is the dominant root,

mZ=0 i=2,3,...,n
n

making lim (xx.1/Xx) =r as claimed. It can be shown using complex variable theory that the imtial
values x..,.; =+ -=x_,=0, x, =1 will guarantee c, #0.
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25.20.

25.21.

25.22.

Apply the Bernoulli method to the equation x* — 5x* + 9x*>— 7x +2=0.

The associated difference equation is
X = 5%+ 9% — Txpa+2x,_4=0

and if we take the initial values x_, =x_,=x_, =0 and x, = 1, then the succeeding x, are given in Table
25.4. The ratio x,,,/x, is also given. The convergence to r =2 is slow, the rate of convergence of
Bernoulli’s method being linear. Frequently the method is used to generate a good starting
approximation for Newton’s or Steffensen’s iteration, both of which are quadratic.

Table 25.4

k Xi X1/ X k Xk Xiew/ X
1 51 3.2000 9 4,017 2.0164
2 16 | 2.6250 10 8,100 2.0096
3 42 | 2.3571 11 16,278 2.0056
4 99 | 2.2121 12 32,647 2.0032
5 219 | 2.1279 13 65,399 2.0018
6 466 | 2.0773 14 130,918 2.0010
7 968 | 2.0465 15 261,972 2.0006
8 1,981 | 2.0278 16 524,097

Modify the Bernoulli method for the case in which a pair of complex conjugate roots are
dominant.

Let r, and r, be complex conjugate roots. Then |r| <|r| for i=3, ..., n, since the r,, r, pair is
dominant. Using real starting values, the solution of the difference equation may be written as

Xe=Criteri+ - +e,rk

where ¢, and ¢, are also complex conjugate. Let r,=re’* =", ¢,=ae'’=¢, with r>0, a>0, and
0< ¢ <z so that r, is the root in the upper half plane. Then

x,=2ar* cos (k¢p + 8) + csrs +- - - +c,rk

cs (r\* ¢y (ra\*
=2ar"[cos k¢ +0)+=2 (—3) +oe +—"(—") ]
(ko ) 2a \r 2a\r
All terms except the first have limit zero; and so for large &, x, =2ar* cos (k¢ + 8). We now use this
result to determine r and ¢. First we observe that
Xps1—2rcos o x, + rix, =0

as may be seen by substituting for x, from the previous equation and using the identities for cosines of
sums and differences. Reducing the subscripts, we also have

X —2rcos ¢ x,_,+rix,_,=0

Now solving these two simultaneously,

2
X — X, X — X, Xe—2—X X

2 k" Xre+1Xe—1 k+1Xk—2 ~ X1 Xk

PRtk hrikol —2rcos p =—AUIkE_—ko1k
Xi—1 7 XpX—2 Xie—1 7~ XiXp—2

The necessary ingredients for determining r, and r, are now in hand.

Apply Bernoulli’s method to Leonardo’s equation.

The associated difference equation is x, = — 2x,_, — 10x,_, + 20x,_; and the solution sequence for
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initial values x_, =x_, =0, xo,=1 appears in Table 25.5. Some approximations to 7> and —2r cos ¢ also
appear. The fluctuating + signs are an indication that dominant complex roots are present. This may be
seen by recalling the form of the x, as given in Problem 25.21, namely x, =2ar* cos (k¢ + 6). As k
increases, the value of the cosine will vary between =+ 1 in a somewhat irregular way which depends on
the value of ¢.

Table 25.5
k X k X r ~2rcos ¢
1 -2 7 —2,608 14.6026 3.3642
2 —6 8 —32,464 14.6076 3.3696
3 52 9 147,488 14.6135 3.3692
4 —84 | 10 —22,496 14.6110 3.3686
5 —472 | 11 —2,079,168 14.6110 3.3688
6 2,824 | 12 7,333,056

From the last approximations we find
rcos ¢ =—1.6844 rsin ¢ = = Vr*— (rcos ¢)* = £3.4313

making the dominant pair of roots r,», = —1.6844 + 3.4313i. Since Leonardo’s equation is cubic, these
roots could also be found by using the real root found earlier to reduce to a quadratic equation. The
Bernoulli method was not really needed in this case. The results found may be checked by computing
the sum ( —2) and product (20) of all the roots.

DEFLATION

25.23.

25.24.

Use the simple equation x* — 10x> + 35x% — 50x + 24 = 0 to illustrate the idea of deflation.

The dominant root of this equation is exactly 4. Applying the factor theorem we remove the factor
x — 4 by division,

1 -10 335 =50 24 |4
4 -u 4 -2
1 -6 i1 -6 0

The quotient is the cubic x*— 6x*+ 11x — 6 and we say that the original quartic polynomial has been
deflated to this cubic. The dominant root of the cubic is exactly 3. Removing this factor,

1 -6 1mn -6 |3
3. -9 6
1 -3 2 0

we achieve a second deflation, to the quadratic x*> — 3x + 2 which may then be solved for the remaining
roots 2 and 1. Or the quadratic may be deflated to the linear function x — 1. The idea of deflation is that,
one root having been found, the original equation may be exchanged for one of lower degree.
Theoretically, a method for finding the dominant root of an equation, such as Bernoulli’s method,
could be used to find all the roots one after another, by successive deflations which remove each
dominant root as it is found, and assuming no two roots are of equal size. Actually there are error
problems which limit the use of this procedure, as the next problem suggests.

Show that if the dominant root is not known exactly, then the method of deflation may yield
the next root with still less accuracy, and suggest a procedure for obtaining this second root to
the same accuracy as the first.
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Suppose, for simplicity, that the dominant root of the previous equation has been found correct to
only two places to be 4.005. Deflation brings

1 =10 35 —-50 24 4.005
4.005 —24.01 44.015 -23.97
1 —5.995 10.99 -5.985 .03

and the cubic x* — 5.995x% + 10.99x — 5.985. The dominant zero of this cubic (correct to two places) is
2.98. As far as the original quartic equation is concerned, this is incorrect in the last place. The natural
procedure at this point is to use the 2.98 as the initial approximation for a Newton iteration, which
would rapidly produce a root of the original equation correct to two places. A second deflation could
then be made. In practice it is found that the smaller “roots” require substantial correction and that for
polynomials of even moderate degree the result obtained by deflation may not be good enough to
guarantee convergence of the Newton iteration to the desired root. Similar remarks hold when complex
conjugate roots a + bi are removed through division by the quadratic factor x* — 2ax + a” + b%

THE QUOTIENT-DIFFERENCE ALGORITHM

25.25.

25.26.

What is a quotient-difference scheme?
Given a polynomial agx” +a,x" "' + - - - + a, and the associated difference equation

agXe + a1 X 1+ - +ax_,=0

consider the solution sequence for which x_,.;=---=x_,=0 and x,=1. Let g} =X,,./x, and d}=0.
Then define
e [ Fen : ; : 1
@' =(B)gh =g air i)
k
where j=1,2,...,n—1and k=0,1,2,.... These various quotients (q) and differences (d) may be

displayed as in Table 25.6. The definitions are easily remembered by observing the rhombus-shaped
parts of the table. In a thombus centered in a (g) column the sum of the SW pair equals the sum of the
NE pair. In a rhombus centered in a (d) column the corresponding products are equal. These are the
rhombus rules.

Table 25.6

9
0 d)

A q
0 d! d;

93 qi %
0 di a3 d3

93 % q; qs
0 d d2 &

i g il q
0 d: &z &

' 9 . g q;

Compute the quotient-difference scheme for the polynomial x*>—x — 1 associated with the
Fibonacci sequence.

The results appear in Table 25.7.
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Table 25.7
k| x| di ‘Ill( di qi d;
0] 10
1.0000
11110 1.0000
2.0000 —1.0000
21210 —.5000 —.0001
1.5000 —.5001
31 3]0 .1667 —.0001
1.6667 —.6669
41 510 —.0667 .0005
1.6000 -.5997
5] 8]0 .0250 .0007
1.6250 —.6240
6|113]0 —.0096 -.0082
1.6154 —.6226
712110 .0037
1.6190
813410

What is the first convergence theorem associated with the quotient-difference scheme?
Suppose no two zeros of the given polynomial have the same absolute value. Then
limgi,=r, j=12,...,n

for k tending to infinity, where r,, 1,, . . ., 1, are in the order of diminishing absolute value. For j =1 this
is Bernoulli’s result for the dominant root. For the other values of j the proof requires complex function
theory and will be omitted. It has also been assumed here that none of the denominators involved in the
scheme is zero. The convergence of the g’s to the roots implies the convergence of the d’s to zero. This
may be seen as follows. By the first of the defining equations of Problem 25.25,

dii_ gk
_j=qi_._)L<1
d; Gr+1 ¥

The d/, therefore converge geometrically to zero. The beginning of this convergence, in the present
problem, is evident already in Table 25.7, except in the last column which will be discussed shortly. In
this table the (g) columns should, by the convergence theorem, be approaching the roots (1 +V5)/2
which are approximately 1.61803 and —.61803. Clearly we are closer to the first than to the second.

How can a quotient-difference scheme produce a pair of complex conjugate roots?

The presence of such roots may be indicated by (d) columns which do not converge to zero.
Suppose the column of d, entries does not. Then one forms the polynomial

pi= x*= ij + B]
where for k tending to infinity,
Ay =lim (esr + ¢i) B, =lim qiq"’

The polynomial will have the roots 7; and r,,, which will be complex conjugates. Essentially, a quadratic
factor of the original polynomial will have been found. Here we have assumed that the columns of @t
and d)"* entries do converge to zero. If they do not, then more than two roots have equal absolute value
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and a more complicated procedure is needed. The details, and also the proofs of convergence claims just
made, are given in National Bureau of Standards Applied Mathematics Series, vol. 49.

25.29. What is the row-by-row method of generating a quotient-difference scheme and what are its
advantages?

The column-by-column method first introduced in Problem 25.25 is very sensitive to roundoff error.
This is the explanation of the fact that the final column of Table 25.7 is not converging to zero as a (d)
column should but instead shows the typical start of an error explosion. The following row-by-row
method is less sensitive to error. Fictitious entries are supplied to fill out the top two rows of a
quotient-difference scheme as follows, starting with the df column and ending with d7. Both of these
boundary columns are to consist of zeros for all values of k. This amounts to forcing proper behavior of
these boundary differences in an effort to control roundoff error effects.

—ai/a, 0 0 0
0 a/a, as/a, as/as 0

The rhombus rules are then applied, filling each new row in its turn. It can be shown that the same
scheme found in Problem 25.25 will be developed by this method, assuming no errors in either
procedure. In the presence of error the row-by-row method is more stable. Note that in this method it is
not necessary to compute the x,.

25.30. Apply the row-by-row method to the polynomial of the Fibonacci sequence, x* —x — 1.

The top rows are filled as suggested in the previous problem. The others are computed by the
rhombus rules. Table 25.8 exhibits the results. The improved behavior in the last (g) column is

apparent.
Table 25.8

k d q d q d
1 0

1 0 1 0
2 -1

2 0 —.5000 0
1.5000 —.5000

3 0 .1667 0
1.6667 —.6667

4 0 —.0667 0
1.6000 —.6000

5 0 .0250 0
1.6250 —.6250

6 0 —.0096 0
1.6154 —.6154

7 0 .0037 0
1.6191 —-.6191

8 0 0

25.31. Apply the quotient-difference algorithm to find all the roots of
x* = 10x* 4+ 35x* — 50x + 24 =0

The roots of this equation are exactly 1, 2, 3, and 4. No advance information about the roots is,
however, required by this algorithm, so the equation serves as a simple test case. The quotient-
difference scheme, generated by the method of Problem 25.29, appears as Table 25.9. Clearly the
convergence is slow, but the expected pattern is emerging. The (d) columns seem headed for zero and
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Table 25.9
k|d q d q d q d q d
10 0 0 0
110 —3.5000 —1.4286 —.4800 0
6.5000 2.0714 .9486 .4800
2]o0 -1.1154 —.6542 —.2429 0
5.3846 2.5326 1.3599 7229
310 —.5246 -.3513 —-.1291 0
4.8600 2.7059 1.5821 .8520
410 —.2921 -.2054 —.0695 0
4.5679 2.7926 1.7180 9215
510 —.1786 —.1264 —-.0373 0
4.3893 2.8448 1.8071 9588
610 —-.1158 —~.0803 —.0198 0
4.2735 2.8803 1.8676 .9786
710 —.0780 -.0521 —.0104 0
4.1955 2.9062 1.9093 .9890
8lo —.0540 —.0342 -.0054 0
4.1415 2.9260 1.9381 .9944

the (g) columns for 4, 3, 2, 1 in that order. Probably it would be wise to switch at this point to Newton’s
method, which very quickly converts reasonable first approximations such as we now have into accurate
results. The quotient-difference algorithm is often used for exactly this purpose, to prime the Newton
iteration.

25.32. Apply the quotient-difference algorithm to Leonardo’s equation.

Again using the row-by-row method, we generate the scheme displayed in Table 25.10.

Table 25.10

k|d q d q d q d
-2 0 0

110 5 -2 0
3 -7 2

210 —11.6667 5714 0
—8.6667 5.2381 1.4286

310 7.0513 1558 0
—-1.6154 —1.6574 1.2728

410 7.2346 -.1196 0
5.6192 -9.0116 1.3924

510 —11.6022 0185 0
—5.9830 2.6091 1.3739

610 5.0596 .0097 0
—.9234 —2.4408 1.3642

The convergence being slow, suppose we stop here. The second (d) column hardly seems headed
for zero, suggesting that r, and r, are complex, as we already know anyway. The next (d) column does
appear to be tending to zero, suggesting a real root which we know to be near 1.369. The Newton
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method would quickly produce an accurate root from the initial estimate of 1.3642 we now have here.
Returning to the complex pair, we apply the procedure of Problem 25.28. From the first two (gq)
columns we compute

5.6192 —9.0116 = —3.3924 (~1.6154)(—9.0116) = 14.5573
—5.9830 + 2.6091 = —3.3739 (5.6192)(2.6091) = 14.6611
—.9234 — 2.4408 = —3.3642 (—5.9830)(—2.4408) ~ 14.6033

so that A,~ —3.3642 and B,=14.6033. The complex roots are therefore approximately given by
%% +3.3642x + 14.6033 = 0 which makes them r,, = —1.682 + 3.431i.

Newton’s method using complex arithmetic could be used to improve these values, but an
alternative procedure known as Bairstow’s method will be presented shortly. Once again in this problem
we have used the quotient-difference algorithm to provide respectable estimates of all the roots. A
method which can do this should not be expected to converge rapidly, and the switch to a quadratically
convergent algorithm at some appropriate point is a natural step.

STURM SEQUENCES
25.33. Define a Sturm sequence.

A sequence of functions fy(x), fi(x), - . . , f,(x) which satisfy on an interval (a, b) of the real line the
conditions:

1. Each f(x) is continuous.

2. The sign of f,(x) is constant.
3. If f(r) =0 then f,_,(r) and f,,,(r) #0.
4. If f(r) =0 then f,_,(r) and f;,,(r) have opposite signs.
5. If fo(r) = 0 then for h sufficiently small
. folr=h) . folr +h)
signT————== —1 sign——— ==
I Fheen

is called a Sturm sequence.

25.34. Prove that the number of roots of the function fy(x) on the interval (a, b) is the difference
between the number of changes of sign in the sequences fy(a), fi(a),...,f,(a) and

Jo®), fi(D), . . ., fulB).

As x increases from a to b the number of sign changes in the Sturm sequence can only be affected
by one or more of the functions having a zero, since all are continuous. Actually only a zero of fy(x) can
affect it. For, suppose f;(r) =0 with i #0, n, then by properties 1, 3, and 4 the following sign patterns
are possible for small 4:

e S Fn Jfa £ S
r—h{ + £ - r—h} - £+ +
r + 0 - r - 0 +
or
r+h| + £ - r+h| - £+ +

In all cases there is one sign change, so that moving across such a root does not affect the number of sign
changes. By condition 2 the function f,(x) cannot have a zero, so we come finally to fy(x). By condition 5
we lose one sign change, between f, and f,, as we move across the root . This proves the theorem. One
sees that the five conditions have been designed with this root-counting feature in mind.
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25.35. If fy(x) is a polynomial of degree n with no multiple roots, how can a Sturm sequence for

25.36.

enumerating its roots be constructed?

Let fi(x) =fo(x) and then apply the Euclidean algorithm to construct the rest of the sequence as
follows:

Jolx) = fi(x)Li(x) — folx)
Fi(x) = Hx)Lox) = f5(x)

fa-a(x) = fums () L1 (x) — (%)
where f;(x) is of degree n — i and the L,(x) are linear.

The sequence fy(x), fi(x), . . ., f.(x) will be a Sturm sequence. To prove this we note first that all
fi(x) are continuous, since f; and f; surely are. Condition 2 follows since f, is a constant. Two consecutive
fi(x) cannot vanish simultaneously since then all would vanish including f, and £, and this would imply a
multiple root. This proves condition 3. Condition 4 is a direct consequence of our defining equations and
5 is satisfied since f; = f.

If the method were applied to a polynomial having multiple roots, then the simultaneous vanishing
of all the fi(x) would give evidence of them. Deflation of the polynomial to remove multiplicities allows
the method to be applied to find the simple roots.

Apply the method of Sturm sequences to locate all real roots of
x*—2.4x*+1.03x% + .6x —.32=0

Denoting this polynomial fy(x), we first compute its derivative. Since we are concerned only with
the signs of the various fi(x), it is often convenient to use a positive multiplier to normalize the leading
coefficient. Accordingly we multiply f4(x) by 4 and take

filx)=x>~1.8x* + .515x + .15

The next step is to divide f; by f. One finds the linear quotient L,(x) = x — .6 which is of no immediate
interest, and a remainder of —.565x>+ .759x —.23. A common error at this point is to forget that we
want the negative of this remainder. Also normalizing, we have

falx) =x>—1.3434x + .4071

Dividing f; by f, brings a linear quotient L,(x)=x —.4566 and a remainder whose negative, after
normalizing, is

fi(x) =x — .6645
Finally, dividing f, by f; we find the remainder to be —.0440. Taking the negative and normalizing, we
may choose
fulx)=1
We now have our Sturm sequence and are ready to search out the roots. It is a simple matter to confirm
the signs displayed in Table 25.11. They show that there is one root in the interval (— 1, 0), one in (1, 2),

Table 25.11
b A £ S fi | Changes
-+ - 4+ - + 4
-1+ - + - + 4
of- + + - + 3
1l- - + + + 1
21+ + + + + 0
of + 4+ 4+ + 4+ 0
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and two roots in (0, 1). Choosing more points within these intervals, all roots may be more precisely
pinpointed. As with the quotient-difference algorithm, however, it is wise to shift at a certain point to a
more rapidly convergent process such as Newton’s. A method which provides first estimates of the
locations of all real roots, as the Sturm method does, is uneconomical for the precise determination of
any one root. In this example the roots prove to be —.5, .5, .8, and 1.6.

25.37. Show that Newton’s method will produce all the roots of the equation in the previous problem
provided sufficiently good initial approximations are obtained.

Figure 25-6 below exhibits the qualitative behavior of this polynomial. Clearly any first
approximation x,<—.5 will lead to a sequence which converges upon this root, since such an x, is
already on the convex side of the curve. Similarly any x, > 1.6 will bring convergence to the largest root.
Roots that are close together ordinarily require accurate starting approximations. The simplicity of the
roots in this example may be ignored in order to see how a more obscure pair might be separated. From
the diagram it is apparent that an x, slightly below .5 will bring convergence to .5, while an x, slightly
above .8 will bring convergence to .8, since in both cases we start on the convex side. Notice that
starting with x, = .65, which is midway between two roots, means following an almost horizontal tangent
line. Actually it leads to x, =5, after which convergence to the root at 1.6 would occur. This sort of
thing can occur in a Newton iteration.

5 /"v :

Fig. 25-6

SYSTEMS OF EQUATIONS, NEWTON’S METHOD
25.38. Derive the formulas for solving f(x, y) =0, g(x, y) =0,
Xn=Xp_1t huq
Yn=Yn-1t kn_y
where £ and k satisfy
FeGnmts Y )ny + f,(Xnets Yre1)Kno1 = = f(Xn—1, Yn1)
& (Xn—1s Va1 + 8y (Xnty Yue)kno1 = — (X1, Yn1)
These formulas are known as the Newton method for solving two simultaneous equations.
Approximate f and g by the linear parts of their Taylor series for the neighborhood of (x,_1, y.-1):
FO6y) = a1 Yu-i) + (8 = X0} (Kmty Y1) + (¥ = Yoty Kty Yo r)
8%, ¥)=8(%n-1, Yuo1) + (% = Xu-1)ge(Xn -1, Yu-1) + (¥ = Yu-1)8,(Xnc1s Yar)

This assumes that the derivatives involved exist. With (x, y) denoting an exact solution, both left sides
vanish. Defining x = x, and y =y, as the numbers which make the right sides vanish, we have at once the
equations required. This idea of replacing a Taylor series by its linear part is what led to the Newton
method for solving a single equation in Problem 25.8.
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25.39. Find the intersection points of the circle x> + y*> =2 with the hyperbola x> — y* =1.

This particular problem can easily be solved by elimination. Addition brings 2x>=3 and
x = £ 1.2247. Subtraction brings 2y*> =1 and y = £.7071. Knowing the correct intersections makes the
problem a simple test case for Newton’s method. Take xo =1, y,= 1. The formulas for determining 4
and k are
2ty thnoy + 20 ika =2 -5, —yf.-l

2y ahp1 = 20 tkno =1 -xi, +yi_1
and with n =1 become 2k, + 2k, =0, 2ho — 2ko=1. Then hy= — ko =}, making
X1 =Xo+ ho=1.25 n=yot+tko=.75

The next iteration brings 2.5k, + 1.5k; = —.125, 2.5h, — 1.5k, =0 making k, = —.025, k,= —.04167
and
X, =x;+ h; = 1.2250 2=y +k, =.7083

A third iteration manages 2.45h, + 1.4167k, = —.0024, 2.45h, — 1.4167k, = .0011 making A, = —.0003,
k,= —.0012 and

X3=x,+ h,=1.2247 ys=ya+ k,=.7071
The convergence to the correct results is evident. It can be proved that for sufficiently good initial

approximations the convergence of Newton’s method is quadratic. The idea of the method can easily be
extended to any number of simultaneous equations.

25.40. Other iterative methods may also be generalized for simultaneous equations. For example, if
our basic equations f(x, y) =0, g(x, y) =0 are rewritten as

x=F(xy) y=G(xy)
then under suitable assumptions on F and G, the iteration
X, = F(Xn_1, Yn-1) Yn=GXn1, Yn-1)
will converge for sufficiently accurate initial approximations. Apply this method to the
equations x =sin (x +y), y =cos (x — y).

These equations are already in the required form. Starting with the uninspired initial approxima-
tions xo = y, =0, we obtain the results given below. Convergence for such poor starting approximations
is by no means the rule. Often one must labor long to find a convergent rearrangement of given
equations and good first approximations.

n 0 1 2 3 4 5 6 7

X, 0 0 .84 984 932 936 .935 .935

Yn 0 1 .55 .958 1.000 .998 .998 .998

DESCENT METHODS AND OPTIMIZATION
25.41. What is the idea of a steepest descent algorithm?

A variety of minimization methods involves a function S(x, y) defined in such a way that its
minimum value occurs precisely where f(x, y) =0 and g(x, y) =0. The problem of solving these two
equations simultaneously may then be replaced by the problem of minimizing S(x, y). For example,

S, ) =[f(x, y)P + [g(x, YT

surely achieves its minimum of zero wherever f =g =0. This is one popular choice of S(x, y). The
question of how to find such a minimum remains. The method of steepest descent begins with an initial
approximation (xo, o). At this point the function S(x, y) decreases most rapidly in the direction of the
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vector
—gradient S(x, ¥)lxy0 =1 = e =8 1lxo50

Denoting this by — grad §; =[ — S,0, —S,0] for short, a new approximation (x,, y,) is now obtained in the
form
X1 =Xo— S0 =Yoo~ tsyu

with ¢ chosen so that S(x,, y,) is @ minimum. In other words, we proceed from (x,, y,) in the direction
— grad §; until § starts to increase again. This completes one step and another is begun at (x,, y,) in the
new direction —grad S,. The process continues until, hopefully, the minimum point is found.

The process has been compared to a skier’s return from a mountain to the bottom of the valley in a
heavy fog. Unable to see his goal, he starts down in the direction of steepest descent and proceeds until
his path begins to climb again. Then choosing a new direction of steepest descent, he makes a second
run of the same sort. In a bowl-shaped valley ringed by mountains it is clear that this method will bring
him gradually nearer and nearer to home. Figure 25-7 illustrates the action. The dashed lines are
contour or level lines, on which S(x, y) is constant. The gradient direction is orthogonal to the contour
direction at each point, so we always leave a contour line at right angles. Proceeding to the minimum of
S(x, y) along this line means going to a point of tangency with a lower contour line. Actually it requires
infinitely many steps of this sort to reach the minimum and a somewhat uneconomical zigzag path is
followed.

Apply a method of steepest descent to solve the equation of Problem 25.40:
x=sin(x +y) y=cos(x—y)
Here we have
S=f*+g*=[x —sin (x +y)]*+ [y — cos (x —y)?

making
1
ES" =[x —sin(x +y)][1 —cos (x +y)] + [y — cos (x — y)][sin (x — )]
1 . .
5 S, =[x —sin(x +y)][ —cos (x +y)] + [y —cos (x —y)][1 —sin (x — y)]

Suppose we choose x,=y,=.5. Then —gradS,=[.3,.6]. Since a multiplicative constant can be
absorbed in the parameter f, we may take

X, =.5+¢t y=.5+2t

The minimum of S(.5 +¢, .5 +2¢) is now to be found. Either by direct search or by setting §'(¢) to zero,
we soon discover the minimum near ¢ =.3, making x, =.8 and y, = 1.1. The value of S(x,, y;) is about
.04, so we proceed to a second step. Since — grad §; =[.5, —.25], we make our first right angle turn,
choose

X,=.8+2t y=11-t
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and seek the minimum of S(x,, y,). This proves to be near ¢t =.07, making x,=.94 and y,=1.03.
Continuing in this way we obtain the successive approximations listed below. The slow convergence
toward the result of Problem 25.40 may be noted. Slow convergence is typical of this method, which is
often used to provide good starting approximations for the Newton algorithm.

Xn .5 .8 .94 .928 .936 .934
Vn 5 1.1 1.03 1.006 1.002 .998
S, .36 .04 .0017 .00013 .000025 000002

The progress of the descent is suggested by path A in Fig. 25-8.

Fig. 25-8

25.43. Show that a steepest descent method may not converge to the required results.

Using the equations of the previous problem, suppose we choose the initial approximations
Xxo=yo=0. Then — grad S, =[0, 2], so we take x, =0 and y, = t. The minimum of S(0, ¢) proves to be at
t=.55=y, with S(x,, y,) =.73. Computing the new gradient, we find — grad S, =[ — .2, 0]. This points
us westward, away from the anticipated solution near x =y = 1. Succeeding steps find us traveling the
path labeled B in Fig. 25-8. Our difficulty here is typical of minimization methods. There is a secondary
valley near x = ~.75, y =.25. Our first step has left us just to the west of the pass or saddle point
between these two valleys. The direction of descent at (0, .55) is therefore westward and the descent
into the secondary valley continues. Often a considerable amount of experimentation is necessary before
a successful trail is found.

25.44. Generalize the idea of descent methods for the solution of optimization problems or of
nonlinear systems.

The two principal questions are in what direction to proceed and how far to go. The formula
xW=x"V 4,

keeps all options open, with x"~" the current approximation, u,-, a unit vector in the next direction of
search, and ¢ the measure of how far to go. For steepest descent, u,_, is the negative gradient vector. A
wide variety of options have been proposed. Ideally perhaps one ought to follow a curve which is an
orthogonal trajectory of the contour surfaces, on which f is constant, where f is the function being
optimized. However, this leads to differential equations. Using steepest descent steps of equal length is
equivalent to applying Euler’s method for solving the differential equations. Even Newton’s method
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might be viewed as a descent method, with fu,_, equal to —J~'(x"")F(x*"") in the notation used in
the introduction.

QUADRATIC FACTORS. BAIRSTOW’S METHOD

25.45.

25.46.

25.47.

Develop a recursion for the coefficients b, in
qx)=box" 2 +---+b, , r(x)=b,_,(x —u)+b,
when g(x) and r(x) are defined by
p(x)=agx™ +- - +a,=(x*—ux —v)q(x) + r(x)

Multiplying out on the right and comparing the powers of x, we have

by=ay
b,=a, + ub,
by,=a, +ub,_, +vb,_, k=2,...,n

If we artificially set b_, =b_, =0, the last recursion holds for k=0, 1, ... n. The b, depend of course
upon the numbers % and v.

How may the recursion of the previous problem be used to calculate p(x) for a complex
argument x = a + bi? (Assume the a, are real.)

With u =2a and v = — a®— b?, we have x> — ux — v =0 so that
p(x)=b,_,(x —2a) +b,

The advantage of this procedure is that the b, are found by real arithmetic, so that no complex
arithmetic occurs until the final step. In particular, if b,_, = b, =0 then we have p(x) = 0. The complex
conjugates a + bi are then zeros of p(x).

Develop Bairstow’s method for using the Newton iteration to solve the simultaneous
equations b, _,(u, v) =0, b,(u, v) =0.

To use Newton’s iteration, as described in Problem 25.38, we need the partial derivatives of b,_,
and b, relative to u and v. First taking derivatives relative to u, and letting ¢, = 3b,,,/3u, we find
c2=c_=0, ¢cg=by, ¢,=b,+ ucy, and then

e =bituc,_,+vc,»

The last result is actually valid for k=0, 1, ..., n — 1. Thus the ¢, are computed from the b, just as the
b, were obtained from the a,. The two results we need are
3b,_1 8b, _
au =Cp-2 5u =Cp1

Similarly taking derivatives relative to v and letting d, = 9b,,,/0v we find d_,=d_,=0, then
d, = b, + ud,, after which
di=b,+ud,_, +vd,_,

The latter holds for k=0, 1, ..., n — 2. Since the ¢, and d, therefore satisfy the same recursion with the
same initial conditions, we have proved ¢, = d, for k =0, 1, ..., n —2. In particular,
3b,_y _ b, _
30 =Ch-3 30 Cn2z

and we are ready for Newton’s iteration.
Suppose we have approximate roots a £bi of p(x)=0, and the associated quadratic factor
x?—ux — v of p(x). This means we have approximate roots of b,., = b, =0 and are seeking improved
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approximations u + A, v + k. The corrections 4 and k are determined by
Coh +Cnsk=—b,,
Cooth +Co2k=—b,
These are the central equations of Newton’s iteration. Solving for 4 and &,
_ bz —bu1Cus by 11— buCns

k=

2 2
Crn2 ™ Cn-1Cn—3 Cr2—"Cn1Cn3

h

25.48. Apply Bairstow’s method to determine the complex roots of Leonardo’s equation correct to
nine places.

We have already found excellent initial approximations by the quotient-difference algorithm (see
Problem 25.32): uy= —3.3642, v,= — 14.6033. Our recursion now produces the following b, and ¢:

k 0 1 2 3

ay 1 2 10 =20

b, 1 —1.3642 —.01386 —.03155
Ck 1 —4.7284 1.2901

The formulas of Problem 25.47 then produce & = — .004608, k = - .007930 making

u; =ty +h = —3.368808 v, =v,+ k= —14.611230
Repeating the process, we next find new b, and ¢;:
k 0 1 2 3
e 1 2 10 -20
b 1 —1.368808 000021341 —.000103380
C 1 —4.737616 1.348910341
These bring h = ~.000000108 k = —.000021852

u, = —3.368808108 v, = —14.611251852

Repeating the cycle once more finds b, = b; = h = k =0 to nine places. The required roots are now

1 [ 1
X1, X, = 5 utiy/—v-— Zuz = —1.684404054 + 3.431331350i

These may be further checked by computing the sum and product of all three roots and comparing with
the coefficients of 2 and 20 in Leonardo’s equation.

Supplementary Problems

25.49. Apply the method of Problem 25.1 to the equation x =e™* to find a root near x =.5. Show that starting
with x, = .5, the approximations x,, and x,; agree to three places at .567.

25.50. Apply the Aitken acceleration to earlier approximations computed in the previous problem. When does
it produce three-place accuracy?



CHAP. 25] NONLINEAR ALGEBRA 351

25.52.

25.53.

25.54.

25.55.

25.56.

25.57.

25.58.

25.59.

25.60.

25.61.

25.62.

25.63.

25.64.

25.65.

25.66.

25.67.

25.68.

25.69.

25.70.

25.71.

25.72.

. Rewrite the equation x>=x*+x+1 as x =1+1/x +1/x* and then use an iteration of the sort in

Problem 25.1 to find a positive root.

Apply Newton’s method to the equation of Problem 25.49. How many iterations are needed for
three-place accuracy? For six-place accuracy?

Apply Newton’s method to the equation of Problem 25.51.
Find the square root of 3 to six places.

Find the fifth root of 3 to six places.

Show that Newton’s method applied to f(x) = 1/x — Q = 0 leads to the iteration x,, =x,_,(2 — Qx,_,) for
producing reciprocals without division. Apply this iteration with Q = e =2.7182818, starting with x,=.3
and again starting with x,=1. One of these initial approximations is not close enough to the correct
result to produce a convergent sequence.

Apply regula falsi to the equation of Problem 25.49, starting with the approximations 0 and 1.

Apply the method of Problem 25.18 (quadratic interpolation) to the equation of Problem 25.49.

Apply the quadratic interpolation method to Leonardo’s equation.

Use Bernoulli’s method to find the dominant (real) root of the Fibonacci equation x> —x —1=0.

Apply Bernoulli’s method to the equation of Problem 25.31.

Apply Bernoulli’s method to find a dominant pair of complex conjugate roots of

4t +4x*+3x*—x—1=0
Use the quotient-difference method to find all the roots of the equation of Problem 25.36.
Use the quotient-difference method to locate all the roots of the equation of Problem 25.62.

Use a Sturm sequence to show that 36x° + 36x° + 23x* — 13x® ~ 12x* + x + 1 =0 has only four real roots
and to locate these four. Then apply Newton’s method to pinpoint them.

Use a Sturm sequence to show that 288x° — 720x* + 694x> — 321x* + 71x — 6 = 0 has five closely packed
real roots. Apply Newton’s method to determine these roots to six places.

Use the iterative method to find a solution of

x=.T7sinx +.2cosy y=.7cosx —.2siny
near (.5, .5).

Apply Newton’s method to the system of the preceding problem.

Apply Newton’s method to the system x =x>+y? y =x*>—y” to find a solution near (.8, .4).
Apply the method of steepest descent to the system of the previous problem.

Apply the method of steepest descent to the system of Problem 25.67.

Given that 1 is an exact root of x> — 2x>— 5x + 6 =0, find the other two roots by deflation to a quadratic
equation.
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25.73.

25.74.

25.75.

25.76.

25.77.

25.78.

25.79.

25.80.

25.81.

25.82.

25.83.

25.84.

25.86.

25.87.

25.88.

25.89.

25.90.

25.91.

25.92.

25.93.

25.94.

. Find the smallest positive root of 1 ~x
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Find all the roots of x* + 2x® + 7x*>— 11 = 0 correct to six places using a deflation method supported by
the Newton and Bairstow iterations.

Apply the Bairstow method to x*—3x*+20x>+44x +54=0 to find a quadratic factor close to
X +2+2.

Find the largest Toot of x* — 2.0379x” — 15.4245x” + 15.6696x + 35.4936 = 0.
Find two roots near x = 1 of 2x* + 16x* + x> — 74x + 56 =0,

Find any real roots of x>=x + 4.

Find a small positive root of x*** =5.2171x — 2.1167.

Find a root near x =2 of x =2 sinx.

Find a complex pair of roots with negative real part for x* — 3x* + 20x* + 44x + 54 =0.

Find a solution of the system
x =sinx coshy y=cosxsinhy

nearx=7,y=3.

Solve the system x* +y* —67=0, x* ~3xy*+35=0near x =2, y =3.
Find the minimum for positive x of y = (tanx)/x.

Where does the curve y = e *log x have an inflection point?

x? x*

x2
o s .
@y Gy @y
Find the maximum value of y(x) near x =1, given that sin (xy)=y — x.
Find to twelve digits a root near 2 of x* —x =10.

—x

Find the smallest real root of ¢ ™ =sinx.

Split the fourth-degree polynomial x* + 5x® +3x> — 5x — 9 into quadratic factors.
Find a root near 1.5 of x =} +sinx.

Find all the roots of 2x* — 13x> — 22x +3=0.

Find a root near 1.5 of x®*=x*+ x>+ 1.

Find two roots near x =2 of x* — 5x* — 12x* + 76x — 79 = 0.

Show that the second-degree term is removed from the general cubic equation
P +ax*+bx+c=0

by the translation x =y —a/3. See also the following problem.
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absence of a second-degree term.)

5T T

Apply it to find at least the real root x =1 of
X +3x—4=0

Can it also manage the real root x =4 of x> — 15x — 4 =0?
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{

c

2

b

-6

3

)T

353

25.95. In 1545 Cardano published this formula for solving the cubic equation x*+bx +c=0. (Note the



Chapter 26

Linear Systems

SOLUTION OF LINEAR SYSTEMS

This may very well be the principal problem of numerical analysis. Much of applied mathematics
reduces to a set of linear equations, or a linear system,

Ax=b

with the matrix A and vector b given and the vector x to be determined. An extensive set of
algorithms have been developed for doing this, several of which will be presented. The variety of
algorithms available indicates that the apparently elementary character of the problem is deceptive.
There are numerous pitfalls.
Gaussian elimination is one of the oldest algorithms and still one of the most popular. It involves
replacing equations by combinations of equations in such a way that a triangular system is obtained.
Up Xy HUpXs+ ot upx, =c;

UpXot o+ UX,=Cp

UpnXp = Cy

After this, the components of the vector x are easily found, one after the other, by a process called
back-substitution. The last equation determines x,, which is then substituted in the next-to-last
equation to get x,,_;, and so on.

The Gauss algorithm also yields a factorization of the matrix A, in the form A = LU, where U is
the upper triangular matrix shown above and L is a lower triangle with 1s on the diagonal. The
algorithm can be used to prove the fundamental theorem of algebra, which deals with the question of
whether or not a solution exists. The theorem guarantees a unique solution of Ax = b precisely when
the corresponding homogeneous system Ax =0 has only the solution x = 0. Both systems, as well as
the coefficient matrix A, are then called nonsingular. When Ax = 0 has solutions other than x =0,
both systems and the matrix A are singular. In this case Ax = b will have either no solution at all or
else an infinity of solutions. Singular systems occur in eigenvalue problems. If the methods of this
chapter are applied inadvertently to a singular system, there is the curious possibility that
unavoidable roundoff errors will alter it to an “almost identical” nonsingular system. A computed
“solution” may then be produced where none actually exists.

Factorization methods convert A into products of the form LU or LDU, where L is zero above
the main diagonal, U is zero below it, and D has only diagonal elements different from zero. The
matrix L is called lower triangular and U is upper triangular. If L or U has all diagonal elements
equal to 1, it is called unit triangular. The methods of Doolittle, Crout, Cholesky, and, as already
mentioned, Gauss produce factorizations. When A has been factored in this way, the solution is
easily accessible. Since

Ax=LUx=L(Ux)=Ly=b

we first solve Ly =b for y and then Ux =y for x. The first of these triangular systems responds to
forward-substitution, and the second to back-substitution.

Iterative methods generate sequences of successive approximations to the solution vector x. The
classic of this type is the Gauss—Seidel method, which reshapes the system Ax = b in the form

X1 =

Xp="+""

Xy ="
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by solving the ith equation for x;. An initial approximation to all the x; allows each component to be
corrected in its turn and when the cycle is complete to begin another cycle. A number of
convergence theorems have been proved. The method is often used for sparse matrices A, in which
many elements are zero.

Iterative refinement of an approximate solution x* using the residual vector r, defined by

r=b—Ax®
is often a useful algorithm. Let e be the error
e=x —x®
and observe that Ae=Ax—AxV=b—(b-r)=r

Solving Ae = r yields an approximation to e, say e, from which

@ = x4 o

manages a new approximation to the true solution x. The routine can be continued as long as it
seems productive.

There are a wide variety of more elaborate iterative methods.

The error in a computed solution x© occurs for a combination of reasons. The input information
may be imperfect, that is, the elements of A and b may contain error. There will almost surely be
roundoff errors made during the course of the solution algorithm, probably millions of them in a
large-scale problem. When a convergent iterative process is terminated, it is unlikely that the
approximation in hand is the true solution. Estimates of the eventual error due to such sources can
be made, and they are important, though often rather conservative. Backward error analysis is a
useful tool in investigating the internal roundoff problem.

The character of the coefficient matrix A strongly influences error behavior. Nearly singular
systems are extremely sensitive to even small errors in A and b and to internal roundoffs. The
condition of A can be described numerically using the idea of a matrix norm, a high condition
number meaning a nearly singular matrix and relatively poor error control. Such matrices are also
called ill-conditioned. Sometimes poor condition will make itself known by erratic behavior of the
algorithm. Unfortunately, this is not always true.

MATRIX INVERSION

Knowing the inverse of A would, of course, allow the system Ax =b to be solved as a
by-product, since
x=A"'

but this is usually an uneconomical route to the solution of a linear system. Complete knowledge of
the elements of A™! is required only in a few types of applications, notably statistical analysis. The
methods just discussed for solving Ax = b can be adapted to find inverses. Elimination, factorization,
iteration, and an exchange method will be illustrated in the problems.

EIGENVALUE PROBLEMS

Eigenvalue problems require that we determine numbers A such that the linear system Ax = Ax
will have solutions other than x =0. These numbers are called eigenvalues. The corresponding
solutions, or eigenvectors, are also of interest. Three general methods of approach will be presented.

1. The characteristic polynomial of a matrix A has as its zeros the eigenvalues of A. A direct
procedure, resembling Gaussian elimination, for finding this polynomial will be included. To
find its zeros, the methods of Chapter 25 may be used. With an eigenvalue in hand,
substitution into Ax = Ax yields a singular system. The value of some component of x may
be specified and the reduced system solved by our methods for linear systems.
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2. The power method generates the vectors
x®P =A@y

with V a somewhat arbitrary initial vector, and produces the dominant eigenvalue with its
eigenvector. For large values of p it proves that x(’ is close to an eigenvector corresponding
to L DT 4

T @
a formula known as the Rayleigh quotient. Modifications lead to the absolutely smallest and
certain next-dominant eigenvectors.
An interesting variation uses the idea of shifting the eigenvalues to speed up the

convergence of the power method. The inverse power method and inverse iteration are
developments of this idea.

3. Reduction to canonical forms (simplified forms such as diagonal, triple diagonal, triangular,
Hessenberg) is possible in many ways. When done by similarity transformations, the
eigenvalues are not changed. The Jacobi method subjects a real, symmetric matrix to
rotations based upon the submatrix

e o)

and leads to an almost diagonal form. The Givens method uses similar rotations and
achieves a triple diagonal form in a finite number of steps. The QR method produces, under
certain circumstances, a triangular matrix. The underlying idea of all these procedures is
that eigenvalues of the canonical forms are found more easily.

COMPLEX SYSTEMS

Many of the methods used for real systems can be taken over for complex if a computer capable
of complex arithmetic is available. If not, complex systems may be exchanged for equivalent, and
larger, real systems. Thus, comparing real and imaginary parts of

(A+iB)x+iy)=a+ib

leads to [A —B][x] = [a]
B A lly b
to which our real algorithms apply. The inversion problem
(A+iB)YC+iD)=1

responds to similar treatment. Eigenvalues can also be approached in this way.

Solved Problems
GAUSSIAN ELIMINATION

26.1. Solve by Gaussian elimination. 1 )
X, +§x2+§x3= 1

1x +lx -f—1 =0
PR R i

1
§x1+2x2+§x3=0
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We begin by seeking the absolutely largest coefficient in column 1. Here it is in the top place. If this
were not so, an interchange of rows would be made to arrange it. This largest element is called the first
pivot. Now define

ay, 1 as 1
Ly=-2== ===
21 an, 2 31 a, 3
and reduce the two lower coefficients in column 1 to zero in a familiar way, subtracting from the ith
equation the product of /;; by the first. Here is the result:

1 1
X1 +-x+ Sxa= 1

2 3
1 1 1
2" R®T 72
1 4
2 s

This is the first modified system. The same procedure is now applied to the smaller system consisting of
the two lower equations. Again the absolutely largest coefficient is already at the top of the leading
column, so no interchange of rows is needed. We find

_o_
s
and so subtract from the third equation the product of /5, and the second equation. [The superscript (1)

refers to the first modified system.] We then have

1 1
X, +=x,+ §x3= 1

2

1 1 1

PR TR
1 1
m0"7 6

and the triangular system is evident. The solution process is then completed by back-subsitution, which
finds the components x; from the bottom up, and in reverse order:

x3=30 x,=-36 x,=9

Why is pivoting important?
Consider this extreme example:
107, +x,=1
X, +x,=2

The very small coefficient makes it clear that the solution ought to be quite close to x, =x, = 1. Suppose
we solve without pivoting and with the assumption that only four decimal places can be carried. Exact
subtraction would yield the equation

1-10%x,=2-10°

but with the restriction on decimal places we must settle for
10°x, = 10°
which still presents us with x, = 1. However, continuing the back-substitution we then face
107, +1=1

making x, =0 instead of the anticipated 1.
But now interchange the two equations, bringing the largest coefficient of column 1 into the pivot
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26.3.
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position:
X, +x,=2

1075, +x,=1

Exact subtraction would now bring
(1-10"")x, =1-2(107%)

which the same restrictions would round to x, = 1. This time the back-substitution manages
x,+1=2

and x; = 1. Pivoting has made the difference between nonsense and a perfect result. Experience with
many less dramatic systems has shown that pivoting is an important part of the elimination algorithm.
The technique described is called partial pivoting, since the search for largest coefficient is limited to the
immediate column. The value of a broader search, into other columns, and leading to column
interchanges, is a matter of debate.

The example in hand may be used to illustrate a further point. Multiply the first equation by 10° to
obtain

x, + 10°%, = 10°

X+ x;=2

and make pivoting unnecessary. The usual subtraction manages

(1-10%x,=2-10°
when done exactly, but becomes —10°x, = —10°
after rounding. So x, =1. But then X =10°~-10°=0
and we have the earlier “solution.” The point is, even pivoting may not help when very large coefficients
occur elsewhere. One way out of the difficulty might be to interchange columns, but an alternative is to
normalize each equation, making the absolutely largest coefficient in each about the same. A popular
way to do this is dividing each equation by its coefficient of greatest size. The “norm” of each equation
will then be 1. In our example we would, of course, return to the original system. The lesson appears to

be that the combination of normalization and partial pivoting has a good chance of yielding a good
result.

Summarize the Gauss algorithm for the general n by n linear system.

Suppose that & steps of the type described in Problem 26.1 have been made, bringing the system to
this form:

UpXy+ UpXa+ o UpXe F UpeaXe ot U, =b)
UpXa+ ot UyXe t Up X1+ UzX, = b,
UerXpe + U pes1Xiesr T+ UinXy =D

1) 3 _ Rk
[ Fewe PR a5<+)1,nxn =b¥,

(k) K _
GhiXen T+ alx, =b%

The top k equations are in their final form, with u,,, .. ., u,, the first k pivots. In the remaining n — k
equations the coefficients bear the superscript (k) of this modified system. We next seek the (k + 1)th
pivot among the coefficients of x,, in the lower n — k equations. It will be the absolutely largest and its
equation will be interchanged with equation k + 1. With this new pivot in place, now called u, ., 4.1, @
new set of multipliers is found

a”ﬂ

i=k+2,...,n

Lijsr=
Ukt 1,6+1
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26.4.

26.6.

and zeros are arranged under the new pivot by subtracting equations. Coefficient changes are governed
by

k=0,...,n-2

j=k+2,...,n

i=k+2,...,n

k+1) _ (K 03
aE} )= ax(/ )~ I,k+1a§c+1,f

k+1) _ p(k k
bz( N )—bzg )“li,k+1b§<)

with k = 0 referring to the original system. The back-substitution part of the algorithm is represented by

1 n
x,~=—(b,"— 2 u,»]»xi) i=n,...,1

Ui j=it1

What is the Gauss—Jordan variation?

Here zeros are generated both below and above each pivot, by further subtractions. The final
matrix is thus diagonal rather than triangular and back-substitution is eliminated. The idea is attractive,
but it involves more computing than the original algorithm and so is little used.

Estimate the amount of computing needed to carry out the Gauss algorithm for an »n by n
system.

Consider the reduction of the coefficient matrix A to triangular form. This is where the lion’s share
of the effort occurs. At the first step, (n — 1)* modified coefficients are obtained. We further limit our
attention to a count of such coefficients. In successive steps this number is reduced and the grand total
will be

(=17 +(n-2%+ - +1

coefficients. By a well-known result of algebra this is equal to (2n°—3n®+n)/6, from which the
principal term n°/3 is extracted as a simple measure of the computation’s size. If # = 100, this number
runs to six figures.

Apply Gaussian elimination to this system, assuming that a computer capable of carrying only
two floating-point digits is to do the calculations.

X1 +.67x,+.33x3=2
A5x + . xp+.55x3=2
67x1+ .33+ x3=2

With [, = .45 and /;; = .67, the array below left summarizes the first stage of the process, and then

with I, = —.17 the array at the right shows the final triangularization.
1 .67 .33 20 1 .67 .33 1 20
0 .70 .40 ¢ L1 0 .70 .40 : 1.1
0 -.12 .78 .7 0 0 .85 : .89

Back-substitution now begins with
.89
=—=1047
2785
if we assume a double precision accumulator, but rounding to 1.0 in any event. Then

1

X= <—>(1.1 —4)=10
7

X, =2-.67—.33=1.0

and the exact (1, 1, 1) solution has been found in spite of the severe limitations of the computer. This is
because we have a very cooperative matrix. (See also Problem 26.20.)
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26.7. What is the connection between Gaussian elimination and factors of the coefficient matrix?

Form matrices L and U as follows, using results of Problem 26.1:

1 0 0 100
L—110=110
21 2
1
1311321 511
1 1
133
Up Uz Ups
1 1
U=| 0 uyp up{={0 = —
2
0 0 wusm 12 12
1
00 —
180
11
1_._
2 3
111
Thy LUu=l= = - |=
en 23 4|74
111
345

For a general proof of this factorization see the following problem.

26.8. Show that if L is a lower triangular matrix with elements /; and /; =1, and if U is an upper
triangular matrix with elements u;, then LU = A.

The proof involves some easy exercise with triangular matrices. Returning briefly to the opening
example, define

100
1 1 0
210

Si=l 2 ! S=]|0 0
1 0 - 1
-= 01
3

and observe that the product S, A effects Step 1 of the Gauss algorithm, as it applies to the left sides of
the equations, while S,5,A4 then effects Step 2. This means that

$8A=U A=87'S;'U=LU

with L = 87'S5". Also note that

100
110 100
S;‘:E $5'=10 10
010
1
= 0 1
3

so that inversions are achieved by changing the signs of the /; entries.
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For the general problem assume at first that no interchanges will be needed. Define matrices

=l 1
with all other elements zero. As in the example, each of these effects one step of the elimination
process, making

L,.L,, - LA=U

This means that A=L7'--- L7 U=LU

Since the product of lower triangles with diagonal 1s is itself of the same type we have our factorization.
In addition, since each inversion is achieved by changing the signs of the I; entries, these are readily in
hand and may be multiplied to rediscover

1 0 0
L= Iy 1 0
bny lnz e ln,n—1 1

Now suppose that some interchanges are to be made. Introduce the interchange matrices

1

row i
Iij =

row j

col col
i
The product I;A will have rows i and j of A interchanged, while Al; has the corresponding columns

interchanged. The elimination algorithm now uses a chain of I, interchanges and L, operations, leading
to this representation:

L Ln*ZIn-—Z,rn,z ot L1L1,r,A =U

n=1tn—1,n,_;

where the r, are the rows containing the selected pivots. This can be rearranged as
(LooiLpoze - Ll)(ln—m,,,, e 11,r,)A =U

or L7'PA=U PA=LU

with P the permutation matrix including the # — 1 interchanges. Assuming A nonsingular, this means
that there is a permutation of rows such that PA has an LU factorization. The uniqueness of this
factorization will be evident from Problem 26.14.

26.9. Solve the system Ax = b assuming an LU factorization has been done.
We have, since L, U, and P are in hand,

Ax =LUx =PAx =Pb
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and letting y = Ux, first solve Ly = Pb for y. This is easily done by forward-substitution. Then Ux =y is
solved by back-substitution. More specifically, and with p; denoting an element of Pb, the system
Ly=PFPbis

Ly =D
by + 12y, =p2

Layitboya+ o+ Ly =pa

with all /; = 1. The solution by forward-substitution is clearly y, =p,, y.=p, =y, ‘or more generally,

Yr=pDr— ln}’l - Ir—l,r—lyr—l

for r=1, ..., n. The backward-substitution is then achieved by the formula of Problem 26.3, modified
only by the replacement of the vector b’ by y:

1
X = (u_“)(}’n —UpiprXier =0 UXn)
withi=n, ..., 1. The combination of factoring and forward-backward substitution is particularly useful

if the system must be solved for more than one vector b.

26.10. What is a compact algorithm?

When Gaussian elimination was done by hand, many elements of A were copied many times. In a
computer this would be equivalent to making liberal use of storage space. With large-scale systems it is
advisable to be economical both of storage space and computer time. For this reason, compact
algorithms have been devised. For example, as elimination proceeds, the lower triangle of matrix A is
replaced by zeros. These storage locations may better be used to record successively the values /;, for
j<i. At the end of the run the upper triangle of A will then have been replaced by U, and the lower
triangle by L without its unit diagonal. And there is no need to store all the interchange matrices I;. It is
enough to define initially a vector v with elements (1,2,3,...,n) and at each step to simply
interchange the appropriate elements. If, for instance, the first pivot is in row 3, then (3,2,1,4,...,n)
records this. It is not necessary to physically interchange the rows, thus saving the time that would have
been used for this maneuver. From the final v the permutation matrix P can be constructed if desired, or
v itself used to permute the elements of vector b.

26.11. Apply the procedure of Problem 26.10 to this matrix

Ll \S I US I e
[\S I UN B s RSN
WO =
L=l SRV

The essential computations are displayed in Fig. 26-1. In three steps the original matrix is replaced
by a four by four array containing all the information needed, except for the vector v which traces the
interchanges.

At this point matrix A has been replaced by a triangular matrix in the LU factorization of PA. The
vector v tells us that the triangle will be evident if we look at rows 2,3,4,1 in that order. Indeed the
unstarred elements are the factor U. The factor L can also be read by taking the starred elements in the
same row order. As for the permutation matrix P, it is constructed by placing 1s in columns 2, 3,4, 1 of
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01 2 37

301 2
2301

123 0]

0 |1 2 37
® 0 1 2
z 2 1
3 33
oy 8 _2
3 3 3]
[« 1] 2 28]
309 9

0o 1 2

2 21
3 @ 75 73
O - .
K 3] 9 9
[ 1 5* 247
* - - —_
0 7 7
30 1 2
2% 2 1
3 3 73 73
ror _4
3 3 9
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The given matrix A
v=(1,2,34)
Identify the first pivot, 3.

Bring its row number to the first position in v. v =(2, 1, 3, 4).
Compute and store the [, (starred).
Compute the nine new entries by subtractions (right of the solid

line).

Identify the second pivot (column 2 and right of the solid line).
Bring its row number to second position in v (2, 3, 1, 4).

Compute the /;, and store them (starred).

Compute the four new entries.

Identify the last pivot (column 3 and right of the solid line). Bring
its row number to third position in v (2, 3, 4, 1).

Compute the /;; and store them.

Compute the one new entry.

an otherwise zero matrix, as follows:

One may now calculate

Fig. 26-1
0100
0010

P=10001
1000

301 2
2301
PA=LU=I, 5 3
0123

and so verify all steps taken.

26.12. Using the results of the preceding problem and given the vector b with components
(0,1,2,3), solve Ax = b.

We use the suggestion in Problem 26.9. First either Pb or the vector v rearranges the components
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of b in the order (1,2,3,0). Although it is not necessary, suppose we display the system Ly = Pb
directly.

1 0 0 0] [1‘
% 1 0 0fl»] |2
% % 1 0|}y B 3
LO % g 1- _yi_ _0-

Forward-substitution then manages y = (1, 3, ¥, —%)”. Turning to Ux =y we face

J
1
4
1
J

30 1 27 1
2

EERINE

-0 0 0 27—4__x4- .._172.4

from which comes x = (3, 4, 3, —3)7, which may be verified directly in Ax =b.

Prove the fundamental theorem of linear algebra.

We use the Gauss algorithm. If it can be continued to the end, producing a triangular system, then
back-substitution will yield the unique solution. If all the b; are zero, this solution has all zero
components. This is already a principal part of the theorem. But suppose the algorithm cannot be
continued to the anticipated triangular end. This happens only when at some point all coefficients below
a certain level are zero. To be definite, say the algorithm has reached this point.

U+ =b;
UpXp+ - =b;
UpXy + - = by
0=b,
k
0=b®

Then in the homogeneous case, where all the b’s are zero, we may choose x,., to x, as we please and
then determine the other x,. But in the general case, unless by}, to b% are all zero, no solution is
possible. If these b’s do happen to be zero, then again we may choose x,., to x, freely, after which the

other x; are determined. This is the content of the fundamental theorem.

FACTORIZATIONS

26.14.

Determine the elements of matrices L and U such that A= LU by a direct comparison of
corresponding elements.

Assume that no interchanges will be necessary. Then we are to equate corresponding elements from
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26.15.

26.16.

the two sides of

! 0 0 Ofjun up ws Uin ap Q1n
In 1 0 0 0 up Uy Uzp az; 2
Iy Ip 1 0 0 0 usm Uz, a3 Q3n
Lo Lo s 1JjLo 0 o0 Upn a,, [

which amounts to n” equations in the n* unknowns /; and u,;. The determination runs as follows. First
multiply the top row of L by all columns of U to get
Uy =ay; i=1,...,n

Next multiply the rows of L (omit the first) by column 1 of U, finding /,u;; = a,, from which the /;
follow.

a1

L= i=2...,n

Ui

It is next the turn of the second row of L to multiply the columns of U (omit the first). The second row
of U is then
Uy = Gz~ Iy ji=2,...,n

Now multiply the rows of L (omit the first two) by column 2 of U. All elements involved except the [,
are in hand, so we solve for these.

an — s .
ly=—"—"— i=3,...,n
Uz

Continuing in this recursive way, we alternately find the rows of U to be

r—1
uy=a,— > Ly j=r...,n
k=1
each row followed by the corresponding column of L.

r=1
a,— ¥ Ly,
k=1 .
fy=—— i=r+1,...,n
U,

This procedure is called the Doolittle algorithm.

What is the Crout algorithm?

The Crout algorithm also produces a factorization of A, in the form L'U’, with U’ having the
diagonal of 1s and L' the general diagonal. Formulas for the elements of the factors may be found very
much as in Problem 26.14, but it is of interest to note that, with D denoting the matrix of diagonal
elements of our earlier U and zeros elsewhere,

A=LU=L(DDHU=(LD)D 'U)=L'U’

so the two factorizations are closely related.

Develop the Choleski method for factoring a real, symmetric, positive definite matrix.

Here we will find factors of the form
A=LL"

the T denoting the transpose. The procedure is almost identical with that of Problem 26.14, with
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symmetry allowing us to consider only the lower triangle of A. The Hilbert matrix of order three can
once again serve as a small-scale introduction.

11

Ly 0 0|1t by by 1 E 5
111

Iy L, O 0 In b= 5 3 Z
111

131 ln s 0 0 133 5 Z g

The elements of L will be found from top to bottom and left to right.

lala =1 =1
1 1
balyy =§ 121=§
1 1
l%1+l§z=§ lzz=“E
1 1
lsllu=§ 131_3
1 1
Lalyy + Il = Z Ip= _12
1 1
I§1+I§z+l§3=§ 133=m

The computation is again recursive, each line having only one unknown.
Because of the way the algorithm develops, should we now wish to extend our effort to the Hilbert
matrix of order four, it is only necessary to border L with a new bottom row and fourth column.

- - 111
1 0 0 0 (1 231
1 1 111
T B F
LLT=} 2 12 LT=|12 3 45
11 1 1111
3 12 V180 3456
1111
1 1} - - = =
[ a1 42 Ly lmd _4 36 7_‘
We then find
1 1
laln = Z 141 =Z
1 3V3
Ly + ol =3 lp= 20

and so on to /= V5/20 and 1., = V/7/140.
The algorithm can be summarized in the equations

i—1

zlrilif+lril;i=arz i=1,...,r—1
=1

r—1

2 2
Z Li+,=a,
j=1

to be used for r =1, ..., nin turn.
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ERRORS AND NORMS
26.17. What is a condition number of a matrix A?

It is a measure of how trustworthy the matrix is in computations. For a given norm, we define the
condition number as
ClA) = IAll- 147"

and observe, using Problem 1.34, that C(I) = 1, where I is the identity matrix. Moreover, using Problem
1.38,
CAy=1A|- 11471z M1N=1

so the identity matrix has the lowest condition number.

26.18. Suppose the vector b of the system Ax = b contains input errors. Estimate the influence of
such errors on the solution vector x.

Rewrite the system as
Ax.=b+e

and combine with Ax = b to obtain
Alx,~x)=e x.—x=A""e
from which it follows that, using Problem 1.60,
llx = x| = HAT' - llell

To convert this to a relative error estimate, we have, from Ax = b,

b
AL - NIl = (151 x|l ==+
(2]
Ilxe — x| Zop el llell
and finall ——=||A]| - 147 = C(A)
y TR TR T
in which the condition number of A appears.
Similarly from
llell = llAll - tx.—xll  and AT - b1 Z ||x]i
we find
llell Ibxe — x|
CA) ol flxIl

giving us both a lower and an upper bound for the relative error.

26.19. Suppose the matrix A of the system Ax = b contains input errors. Estimate the influence of
such errors on the solution vector x.

Write the system as

(A+E)x,.=b
and combine with Ax = b to obtain A(x,—x)=—Ex,
leading to llxe = xl S AT - E] - x|l
e =xll o 41 ILE]| ILET
e a4l - 2= = ca) 1=t
[lx. |l A== Al 1Al ( )IIAII

which estimates the error relative to the solution x.. Here again the condition number of A appears.
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Here and in the preceding problem it measures how much the input errors are inflated.
An estimate relative to the solution x can also be found. One such estimate is this:
. —xll . _ CAUIEN/NAID
[1x1] 1= CAXIIEN/1IAIN)

Rework the opening example (Problem 26.1) under the assumption that a computer carrying
only two floating-point digits is to do the computations.

The system now takes the form
1.0x; +.50x, +.33x5=1.0
.50x; +.33x, 4+ .25%; =0
33x; +.25x, +.20x; =0
and with /,; =.5 and I;; = .33 is soon converted to
.08x, +.09x; = —.50
.09x, +.09x; = —.33

with the first equation retained as is. Here we may as well complete the triangularization by simply
subtracting what we have.
Olx,=.17

Now back-substitution manages x, =17, x3=—21, x; =—.6, and a “solution” vector (—.6, 17, —21).
Comparing with the correct (9, —36, 30) we see no resemblance whatsoever. The point is, the matrix of
this system is a junior member of a notorious family, the Hilbert matrices. Coupling this with the severe
limitations of our computer has led to a grotesque result.

In Problem 26.42 the inverse matrix will be found to be

9 =36 30
=36 192 -180
30 -180 180

in which the large elements should be noted. The maximum norm is 36 + 192 + 180 = 408, making a
condition number of

11
ClA) = IAll - AT = (408) =748

By Problem 26.19 we now have the estimate

.005

11
6

Ibxe — x|l

x|l

§748( )=2‘O4

suggesting a relative error of 200 percent. Clearly the computation was naive. At least four digits are
needed.

By way of contrast, recall the cooperative matrix of Problem 26.6 which permitted an exact solution
to be found even by a two-digit computer. For that matrix the maximum norm is 2 and the inverse also
has norm near 2. The condition number is then near 4 and we estimate

ol 005)
———=4—]=.02
Il 1

or a maximum error of 2 percent.

What is the “nearest singular matrix”” theorem?

Suppose A is nonsingular and B singular. Then, by the fundamental theorem of linear algebra,
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there exists a vector x # 0 satisfying Bx = 0. For this x
lAx|{ = || Ax — Bx|| = |[(A — B)x|| = ||A - BJ| - [IxIl
and since x = A"'Ax, we also have X[l =NA7Y - A

Since A is nonsingular, we cancel the factor ||Ax|| and have

=4
”A_B"—IIA I
which is the required theorem.

Its message is that the size of the inverse matrix of A is at least the reciprocal of the ‘“‘distance” of A
from the nearest singular matrix B. If A is nearly singular, then A~ will have a large norm. If A4 is
normalized, in the sense ||A|| =1, the condition number will also be large.

As a corollary we have the following intuitive result. If B is “close enough” to the nonsingular A4, in
the sense that 1/||A — B|| is larger than ||JA™"||, then B is nonsingular also.

Use the theorem of Problem 26.21 to estimate the condition of the matrix of this system,
presented earlier in Problem 1.13.
X +x,=1
11x,+x,=2

The point is that A~', required for the condition number, is not always easy to find with accuracy.
Though this is not true here, we observe that the matrix of coefficients is close to the singular matrix

11
B= [1 1}
and find, using maximum norms, ||A| =2.1, ||A — BJ| =.1, so that

Ay le= 10 C(A)Z (2.1)(10) =21

Estimate the error caused by using 1.01x, in place of x, in the second equation in Problem
26.22.

The error matrix is E = [(? :] with maximum norm .01. Thus

.01

lie=ll _ o IEI (00 _
= c = )=+

2.1

which is our estimate. For an input error of 1 percent we anticipate an output error of 10 percent. This
inflation is due to the ill-condition of A, as measured by C(A).

Solving the system directly, we find x = (10, —9) and x, = (11, —10). This makes ||x, —x|| =1 and
lix.|| =11, for a relative error of .09. So the 10 percent inflation is just about realized.

The many intermediate computations that are made in solving a linear system make roundoff
error an important factor. How can this error be estimated?

Backward error analysis has produced the only real successes in this difficult area. It shows that the
cumulative effect of roundoffs can be estimated by considering the substitute system (A + E)x =b,
where E is a perturbation of A. It then finds bounds for the elements of E. The error in x can then be
estimated by the formula of Problem 26.19. The details are far from trivial but have been carried
through for most of the solution algorithms. The full story must be sought in the literature, but a
simplified approach leading to the partially satisfactory bound

max |e;| = nA[max |a;| + (3 + nA) max |byl]
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is offered in Problems 26.113 to 26.117. Here A depends upon the unit roundoff and the b, upon the
computed factors L and U of the given matrix A.
The somewhat deeper estimate

IIE|| = (1.06 max |u;|)(3n° + n*)2*

may be easier to apply. For example, if A has order ten (n = 10), and the equivalent of eight decimal
places are carried (277 = 107®), and we make the crude guess of ten for the first factor, then we find

IEN = (1.3)107

suggesting that perhaps half the digits being carried may no longer be significant. The estimate is, of
course, conservative, since it ignores the fact that errors often cancel one another to some extent.

How does the condition of the coefficient matrix A enter into the roundoff error estimation
process?

Recalling Problem 26.19, the relative error of the solution is bounded by

bre=xll_ . IEI
= C WA

where E is now the perturbation of A due to internal roundoffs. For a normalized A, the relative error
in x, is thus the product of two factors, the condition of 4 and the norm of E.

If double precision arithmetic is available, how much does it improve the roundoff situation?

By the formula in Problem 26.24, if the factor 277 can be reduced from 1078 to 107", eight
additional decimal figures will be gained, surely a significant improvement. But there is a side effect. A
large-scale system uses a lot of computer storage space, even at single precision. Doubling the precision
may just burst the seams. There is a compromise, similar to the one described in Problem 19.48, where
the motivation was computing time rather than storage space. Instead of doing and storing everything in
double precision, limit this higher level of activity to the numerous inner product evaluations which
permeate these algorithms. Once calculated, their values can be stored in single precision, making just
one roundoff where there might have been n. Only a modest programming effort is needed to
incorporate this feature, and the reward can be dramatic.

The residual of an approximate solution x, is defined as the vector
r=b—Ax,

and gives the amount by which each equation of the linear system fails to be satisfied. How is
the residual related to the error of x,?

Since Ax = b for the exact solution x, we have

r=A(x —x,) x—x,=A7'r
and, using Problem 1.37, %é e = x I = 4] - 17
From Ax = b we have similarly LAY - 1Bl = x|l él-ll-ls—u

so dividing corresponding elements leads to the required result.

R
caibl= =W

Il
o
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The relative error of x, is bounded above and below by multiples of the relative residual, the multipliers
involving the condition number of A. If C(A) is near 1, then the relative error is close to the relative
residual, which is, of course, readily available. If, however, C(A) is large, there may be good reason to
suspect inaccuracy in x, even though r may be small. In other words, if A is ill-conditioned, the system
may be nearly satisfied by an x, containing large error. On the optimistic side, and looking primarily at
the left half of the above inequality, when C(A) is large, even a large residual still allows the error x — x,
to be small, though the probability of this happening is likely to be rather small too.

What is the method of iterative refinement?
Let h = x — x, and rewrite the equation A(x —x,.) = r of the preceding problem as
Ah=r

This system has the same coefficient matrix as the original. If A has been factored, or the steps of
Gaussian elimination retained in some way, it is solved with relatively little cost. With 4 in hand, one
computes

x=x,+h

and has a new, and presumably better, approximation to the true solution. New residuals may now be
calculated and the process repeated as long as seems fruitful. This is the idea of iterative refinement. If
double precision arithmetic is available, this is an excellent opportunity to use it.

ITERATIVE METHODS

26.29.

Illustrate the Gauss—Seidel iteration for solving linear systems using the following well-known
example. A dog is lost in a square maze of corridors (Fig. 26-2). At each intersection it
chooses a direction at random and proceeds to the next intersection, where it again chooses at
random and so on. What is the probability that a dog starting at intersection i will eventually
emerge on the south side?

1 2 3
4 5 [}
7 8 9
Fig. 26-2

Suppose there are just nine interior intersections, as shown. Let P, stand for the probability that a
dog starting at intersection 1 will eventually emerge on the south side. Let P, ..., P, be similarly
defined. Assuming that at each intersection he reaches, a dog is as likely to choose one direction as
another, and that having reached any exit his walk is over, probability theory then offers the following
nine equations for the P;:

1
H=i(O+O+Pz+P4) P4=i(Pl+O+PS+P7) P7=Z(R,+0+P8+1)
1 1 1
P2=Z(0+P1+P3+P5) P5=Z(P2+P4+}’6+Pg) PB=Z(P5+P7+P9+1)
1 1 1
P3=Z(0+P2+O+P§) P6=Z(P3+PS+O+P9) PQ=Z(P6+R-,+O+1)

Leaving the equations in this form, we choose initial approximations to the P,. It would be possible to
make intelligent guesses here, but suppose we choose the uninspired initial values P, =0 for all k.
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Taking the equations in the order listed we compute second approximations, one by one. First P, comes

out zero. And so do P,, P, . .., P;. But then we find
1 1 1 1 5 1 5 21
== (0+0+0+1)== =—{0+=- == =={0+= ==
P=3( =3 B 4( 4+0+1) 16 B 4<0+16+0+1) 64

and the second approximation to each P, is in hand. Notice that in computing P; and P, the newest
approximations to P, and P respectively have been used. There seems little point in using more antique
approximations. This procedure leads to the correct results more rapidly. Succeeding approximations
are now found in the same way, and the iteration continues until no further changes occur in the
required decimal places. Working to three places, the results of Table 26.1 are obtained. Note that P;
comes out .250, which means that one-fourth of the dogs starting at the center should emerge on the
south side. From the symmetry this makes sense. All nine values may be substituted back into the
original equations as a further check, to see if the residuals are small.

Table 26.1
Iteration 1\ P, 5 F, Fs Fy P, P p,
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 .250 312 328
2 0 0 0 .062 .078 .082 .328 394 328
3 .016 .024 .027 .106 152 127 .375 .464 .398
4 .032 .053 .045 .140 .196 .160 .401 .499 415
5 .048 .072 .058 161 223 174 415 513 422
6 .058 .085 .065 174 .236 .181 422 .520 425
7 .065 .092 .068 181 244 .184 425 .524 427
8 .068 .095 .070 .184 247 .186 427 525 .428
9 .070 .097 071 .186 .249 187 .428 .526 428
10 .071 .098 .071 187 250 187 428 .526 428

In this example of the Gauss—Seidel method each of the nine equations comes to us in the form
P=-..

and is used to update the approximation to P, using the most recent values of the other components. It is
worth noting that in each equation the unknown on the left side has the dominant coefficient.

26.30. Develop the Gauss—Seidel method for a general linear system.

The algorithm is applied most often to systems Ax = b for which the diagonal elements of A are
dominant. In any event, one should arrange by row and column interchanges that larger elements fall
along the diagonal, to the extent that this is possible. The ith equation of the system is then solved for x;
in terms of the other unknowns. If we use the symbol x{¥) to represent the kth approximation to x;, then
the algorithm proceeds as in the example.

0 0
w_bi—aux? - —a,x?
X1 =
an
1 0 0
o)) by = anx{’ = ayx’ — - - - = ayx{
X; =
Az
1 1 0 0
* ) = by — aaxxg )— aazx(z T a3nxr(l )
O =
as3

the superscript (0) denoting an initial approximation. More generally we have for the kth approximation
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to x;

i—1 n k1

bi— Lax®— ¥ axf P
=1 f=i+1
xf=— =
i

in which the first sum uses kth approximations to x; having j<i, while the second uses (k —1)th
approximations to x; with j>i. Here i=1,...,rand k=1,....

26.31. Express the Gauss—Seidel algorithm in matrix form.
First the matrix A is split into

A=L+D+U

where L and U are lower and upper triangles with zero elements on the diagonal. The general formula
for Problem 26.30 can then be written as

%) = D7(b — Lx® — Ux D)
which can be solved for x*). First
(I+D7'L)x® = D~'p — D1 Ux*D
which leads to x®={I+D7'LYy (Db - D 'Ux%™)
or ¥®=—(D+L)y'Ux*P+(D+L)"

26.32. What is a stationary matrix iteration?
A matrix iteration of the form
x®=Mx* P+ Cb
is called stationary if M, and C, are independent of k. The iteration then becomes
x® = Mx*=Y + Cp
The Gauss—Seidel method is stationary, with this M and C.
M=—-(D+L)"'U C=(D+L)™"

26.33. Discuss the convergence of matrix iterations.

First we ask that the exact solution of Ax = b be a fixed point of the iteration. That is, we substitute
x =A"'b for both the input and output approximations in

x® = Mx® D 1 Cub
and have x=A""b=MAb+Cib=Mx+ Cib
This is to hold for all vectors b, so we equate coefficients.
AT =MAT+ C,

I=M, +CA
Now define e*’ as the error of the kth approximation.

e =y — x®
Then e®=x — Mx“ V- Cb

=M (x —x* V)= Me* P
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which shows that it is the matrices M, that control error behavior. Using this result repeatedly,
e® = MM, _, - - - Mye®
where ¢© is the initial error. For a stationary iteration this becomes

e® = pre©

Prove that the Gauss—Seidel iteration converges for an arbitrary initial vector x@, if the
matrix A is positive definite, symmetric.

Because of the symmetry, A =L+ D + L”, which makes
M=—-(D+L)'L"
If A and v are an eigenvalue and eigenvector of M, then
D+L)y'L'v=-Aiv
L'v=-AMD + L)v
Premultiplying by the conjugate transpose of v (denoted v*)
v*Lv = —v*A(D + L)
and then adding v*(D + L)v to both sides
v*Av =(1-Aw*(D + L)v

since A =L+ D + L. But the conjugate transpose of v*Av is v*Av, so the same must be true for the
right side of this last equation. Thus, with A denoting the conjugate of 4,

(1= Av*D+L)Yv=(1-Av*D+Lyw
=(1-A)(v*Dv +v*Lv)
=(1-A)@*Dv — w*(D + L)"v)

Combining terms
1=|APv*(D+ L)Y v=(1-Av*Dv

multiplying both sides by (1 — 1), and doing a little algebra we have finally
(1-|AP)v*4Av = |1 - APv*Dv

But both v*Av and v*Dv are nonnegative and A cannot equal 1 (since this would lead back to Av =0),
SO

[AF<1

placing all eigenvalues within the unit circle and guaranteeing that lim M* = 0. Thus e® has limit zero
for any e©.

How can an acceleration method be applied to the Gauss—Seidel iteration?

Since e® = Me*~, we anticipate that errors may diminish in a constant ratio, much as in Problem
25.4. The extrapolation to the limit idea then suggests itself. Here it would take the form

(k+1)
i

AP

X =xED -

fori=1,...,n The superscripts denote three successive approximations.

For example, using the center column of Table 26-1, in which we know the correct value to be .250,
the errors in rows 4 to 8 are 54, 27, 14, 6, and 3 in the third decimal place. This is very close to a steady
reduction by one-half. Suppose we try extrapolation to the limit using the three entries below, together
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26.36.

26.37.

with the corresponding differences as given.

196
.027

223 —.014
.013

.236

We find
(.013)*
P;=.236 o4 .248

which is in the right direction if not especially dramatic.

What are relaxation and overrelaxation methods?

The central idea is to use residuals as indicators of how to correct approximations already in hand.

For example, the iteration
x®=x* 4 (b - Ax*V)

has the character of a relaxation method. It has been found that giving extra weight to the residual can
speed convergence, leading to overrelaxation formulas such as

x® =x® D 4 (b — Ax*D)

with w > 1. Other variations of the idea have also been used.

Adapt the overrelaxation method to accelerate the convergence of Gauss—Seidel.

The natural adaptation is
x® =x*D 4 b — Lx® — (D + U)x* V]

with A =L + D + U as before. We take w =1.2, x? =0, and try once more the problem of the dog in
the maze. We find zeros generated as earlier until

1
PP =pPP+ 1.2(.250 + 1 PY — PO+ % Pg")) =.300
(1 (0) 1 (1 1 (1 (0) 1 ©)
PP =PP+1.2 '250+ZP5)+ZP7)—P5 +ZP" =.390
(1 (0) 1 1) 1 (1) (0)
Py’ =Py +1.2 .250+ZP6 +4—PE — Py’ ) =.418

Succeeding approximations are found in the same way and are listed in Table 26.2. Notice that about
half as many iterations are now needed.

Table 26.2
Iteration P, P, P, P, P Py P, Py B
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 .300 .390 418
0 0 0 .090 144 .169 .384 .506 419

.052 .066 .149 234 182 .420 520 427
.054 .096 071 .183 247 .187 427 .526 428
.073 .098 .071 .188 251 .187 428 527 .428
071 .098 071 .187 .250 .187 428 .526 428

AN AW = O
[=}
[\
o0
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MATRIX INVERSION

26.38. Extend the Gauss elimination algorithm to produce the inverse of the coefficient matrix A,
that is, the A~! such that AA™'=1.

Taking once again the system of Problem 26.1, we simply treat three b vectors simultaneously. The
starting point is the array

11
1 - -1
23 00
1 11
111
335001

the left half of which is A and the right half 1. The first Gaussian step now leads to this new array.

1 1
153100
1 1 1
O %5 772 V0
1 4 1

Here the method is modified slightly by reducing the next pivot to 1, a multiplication by 12 performing
this service.

1 1
1 3 3 1 0 0
0 1 1 -6 12 0
1 1

The second step has also been performed to triangularize the system. At this point back-substitution
could be used to solve three separate systems, each involving one of the last three column vectors.
Instead, however, we extend the second Gaussian step. Continuing with the second row as pivotal row,
-we subtract half of it from row 1 to create one more zero:

The third Gaussian step then follows, after reducing the last pivot to 1. The purpose of this step is to
create zeros above the new pivot. The final array then appears.

1 0 0 9 =36 30
0 1 0 -36 192 -180
0 0 1 30 -180 180
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Since we have actually solved three linear systems of the form Ax =b, with vectors b” = (1,0,0),
(0,1, 0), and (0,0, 1) in turn, it is clear that the last three columns now contain A™". The original array
was (A, I). The final array is (I, A™"). The same process can be applied to other matrices A, row or
column interchanges being made if required. If such interchanges are made, they must be restored at the
completion of the algorithm.

26.39. Assuming that the matrix A has been factored as A = LU, how can A~' be found from the
factors?

Since A™'=U"'L™", the question is one of inverting triangular matrices. Consider L and seek an
inverse in the same form.

1 0 0 <. 1 0 0 0
b 1 0 cn 1 0 0
Iy I 1 [N | 0|=LL'=1I
by o L 1Jlem €2 Cus 1

The validity of the assumption will be clear as we proceed. Now match the elements of the two sides,
much as in the Choleski factorization algorithm, top to bottom and left to right. We find

Iy+en=0 cn=—ln
I3+ 3560 + 03, =0 ¢ = ~(ls1 + 132621)
ln+ecn=0 Cn=—l5
Ly + lipCoy + L3¢5+ 04 =0 Ca1 = —(lag + LipCon + 1iscsy)
lp+lacp+cp=0 Can = —(laa ¥ La3¢3;)

la+ci=0 Ci=—ly

The elements are determined recursively, the general formula being

=y i=2,...,n
&= ,él’kck’ i=1,...,i-1
All diagonal elements are 1.
The inversion of U is similar. Assuming the inverse to be an upper triangle, with elements d;, we
proceed from bottom to top and right to left, finding

1
dy=— i=n, , 1
-1 & i=n,...,1
and i T T

26.40. Apply the method of the preceding problem to the matrix of Problem 26.11.

In that problem the factorization

1
i |
1
]

—_

o

o

o

w
|

W= WIN
o
N O W= N
BIEN 1

PA=LU=

W= WIN =
[,

o

=

=

|

(=}

L
L
L
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was made. Applying the above recursions, we now have

63 0 0 0 56 0 -18 =35

L-l=i —-42 63 0 0 U"=L 0 56 12 7

63 7 —-42 63 0 1681 0 0 54 7

9 9 —45 63 0 0 0 49

from which there comes eventually
7 1 ~5
1] -5
“l_ gyl -l
(PA) vtL 24 1 -5
1 -5

To produce the ultimate A~', we use A~' = (PA) 'P and recall that postmultiplication by a permutation
matrix P rearranges the columns. Referring back to the earlier problem, it is found that the above
columns should be taken in the order 4,1, 2, 3.

Derive the formula for making an exchange step in a linear system.
Let the linear system be Ax =b, or
Za,-kxk=b, i=1,...,n
k=1

The essential ingredients may be displayed as in this array for n =3.

X X2 X3
by | an a; a3
b, | ay az az3
b3 | ay, as, a3

We proceed to exchange one of the “dependent” variables (say b,) with one of the independent
variables (say xs). Solving the second equation for x3, X3 = (b, — @21X) — G22X,)/a,3. This requires that the
pivot coefficient a,5 not be zero. Substituting the expression for x; in the remaining two equations brings
ay3(by — 2%, — anx
b|=a|1x1+a12xZ+ I3( 2 2141 22 2)

Az
a35(b2 — a1 X1 — 8xnX;)

by=asx,+apx:+
Q23

The array for the new system, after the exchange, is as follows.

X1 X2 b,
a,302; Q1302 a3
by|an-— A= -
az Az a2

ay axn 1
X3 - - -
az az3 az;
Q33021 A33822 a3
by| ay——— Ay —— -
Ay 7% 2%

This may be summarized in four rules:

1. The pivot coefficient is replaced by its reciprocal.
2. The rest of the pivot column is divided by the pivot coefficient.
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3. The rest of the pivot row is divided by the pivot coefficient with a change of sign.

Ay im

4. Any other coefficient (say @) is replaced by a;,, — where a,, is the pivot coefficient.

ik
26.42. Tllustrate the exchange method for finding the inverse matrix.
Once again we take the matrix of Problem 26.1.

X1 X2

=
@

—

b,

b,

Wik N
Bim W= N
Dk Blm Wi

bs

For error control it is the practice to choose the largest coefficient for the pivot, in this case 1.
Exchanging b, and x,, we have this new array:

b, X2 X3

1 1
1 _—— -_—

o 2 3
1 1 1

b - —_— _—
2 2 12 12
1 1 4

b et — —
? 3 12 45

Two similar exchanges of b; and x;, then of b, and x,, lead to the two arrays shown below. In each case
the largest coefficient in a b row and an x column is used as pivot.

by X2 by by b, by
x 2 _3 _b 9 36 30
' 4 16 4 i
3 1 15
b, R 19—2 E X5 -36 192 —180
B _b b 30 180 180
*a 4 16 4 *2

Since what we have done is to exchange the system b = Ax for the system x = A7'b, the last matrix is
AL

26.43. Derive the formula A"'=(I+ R + R*+ - - -)B where R =1 — BA.

The idea here is that B is an approximate inverse of A, so that the residual R has small elements. A
few terms of the series involved may therefore be enough to produce a much better approximation to
A~', To derive the formula note first that (/ — R)(I + R + R*+ - - ) =1 provided the matrix series is
convergent. Then I+ R+ R*+---=( —R)™" and so

(I+R+R*+--)B=(I-R)'B=(BA)'B=A"'B"'B

which reduces to A",
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26.44. Apply the formula of the preceding problem to the matrix

1 10 1
A=12 01
3 32
assuming only a three-digit computer is available. Since any computer carries only a limited
number of digits, this will again illustrate the power of a method of successive corrections.
First we apply Gaussian elimination to obtain a first approximation to the inverse. The three steps,

using the largest pivot available in each case, appear below along with the approximate inverse B which
results from two interchanges of rows, bringing the bottom row to the top.

1 1 1 a1 0 0 0 1 .037 111 0 -.0371
20 0 1.0 0 1 0 0 0 -.260 .222 1 -.742
27 0 1.7 -3 0 1 1 0  .630 -.111 0 371

Step 1 Step 2
0 1 0 143 143 -.143 427 243 -1.43
0 0 1 —-.854 -3385 2.85 .143 143 —-143
1 0 0 427 243 -143 -.854 ~3.85 2.85
Step 3 The Matrix B

.003  .020 .003
Next we easily compute R=I-BA=| 0 -.001 0
.004 —.010 .004

after which RB, B + RB, R*B = R(RB), and B + RB + R*B are found in that order. (Notice that because
the elements in R*B are so small, a factor of 10,000 has been introduced for simplicity in presentation.)

.001580 —.001400 .001400 428579 2.428600 —1.428600
—.000143 —.000143 000143 142857 .142857  —.142857
—.003140 —.007110 .007110 [ —.857138 —3.857110  2.857110
RB B+RB
—.07540 —.28400  .28400 4285715 2.4285716 —1.4285716
00143 00143 —.00143 1428571 .1428571 —.1428571
—.04810 —.32600  .32600 —.8571428 —3.8571426  2.8571426
10*- R(RB) B+RB+RB

Notice that except in the additive processes, only three significant digits have been carried. Since the
exact inverse is

|3 -
A=l 11 -1
-6 -21 20

it can be verified that B+ RB + R*B is at fault only in the seventh decimal place. More terms of the
series formula would bring still further accuracy. This method can often be used to improve the result of
inversion by Gaussian elimination, since that algorithm is far more sensitive to roundoff error
accumulation.
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DETERMINANTS

26.45.

Determinants are no longer used extensively in the solution of linear systems, but continue to
have application in other ways. Direct evaluation of a determinant of order n would require
the computation of n! terms, which is prohibitive except for small #. What is the alternative?

From the properties of determinants, no step in a Gaussian elimination alters the determinant of
the coefficient matrix except normalization and interchanges. If these were not performed, the
determinant is available by multiplication of the diagonal elements after triangularization. For the
matrix of Problem 26.1 the determinant is, therefore, a quick (i5)(14) = 7. This small value is another
indication of the troublesome character of the matrix.

Determinants can also be found from the factorization PA = LU. Since A = P~'LU we have

det (A) = det (P*) det (L) det (U) = (—1)* det (U)

where p is the number of interchanges represented by the permutation matrix P, or P~". For the matrix

of Problem 26.11
_ 28 <24) _
det (U) = 3(3)( ; ) ) =96
while det (P) is easily found to be —1. (Or recall that three interchanges were made during factorization,
making p = 3.) Thus
det (A) = —96

EIGENVALUE PROBLEMS, THE CHARACTERISTIC POLYNOMIAL
26.46. What are eigenvalues and eigenvectors of a matrix A?

26.47.

A number A for which the system Ax = Ax or (A — Al)x = 0 has a nonzero solution vector x is called
an eigenvalue of the system. Any corresponding nonzero solution vector x is called an eigenvector.
Clearly, if x is an eigenvector then so is Cx for any number C.

Find the eigenvalues and eigenvectors of the system
2-A)x - Xs =0
—x1+(2—-A)x— x3=0

—x;+ (2 - l)x; =0

which arises in various physical settings, including the vibration of a system of three masses
connected by springs.

We illustrate the method of finding the characteristic polynomial directly and then obtaining the
eigenvalues as roots of this polynomial. The eigenvectors are then found last. The first step is to take
linear combinations of equations much as in Gaussian elimination, until only the x; column of
coefficients involves A. For example, if E,, E,, and E; denote the three equations, then —E, + AEj; is
the equation

X =2+ (1+2A—2A)x;,=0
Calling this E,, the combination E, — 2E, + AE, becomes
A, = Sx,+ (2+A+222 - P)x; =0

These last two equations together with E; now involve A in only the x; coefficients.
The second step of the process is to triangularize this system by the Gauss elimination algorithm or
its equivalent. With this small system we may take a few liberties as to pivots, retain

X =2+ (1424 = 2%, =0
—x, + 2-A)x;=0
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as our first two equatiéns and soon achieve
(4—10A+6A*=A%)x;=0

to complete the triangularization. To satisfy the last equation we must avoid making x; = 0, because this
at once forces x, =x, =0 and we do not have a nonzero solution vector. Accordingly we must require

4-10A+6A°—2°=0

This cubic is the characteristic polynomial, and the eigenvalues must be its zeros since in no other way
can we obtain a nonzero solution vector. By methods of an earlier chapter we find those eigenvalues to
be A, =2- \/f, A =2,A:=2+ VZin increasing order.

The last step is to find the eigenvectors, but with the system already triangularized this involves no
more than back-substitution. Taking A, first, and recalling that eigenvectors are determined only to an
arbitrary multiplier so that we may choose x;=1, we find x,= V2 and then x;=1. The other
eigenvectors are found in the same way, using A, and ;. The final results are

A Xy X2 X3
2-V2 1 V2 1
2 -1 0 1
2+V2 1 -V2 1

In this case the original system of three equations has three distinct eigenvalues, to each of which there
corresponds one independent eigenvector. This is the simplest, but not the only, possible outcome of an
eigenvalue problem. It should be noted that the present matrix is both real and symmetric. For a real,
symmetric n X n matrix an important theorem of algebra states that

(a) All eigenvalues are real, though perhaps not distinct.
(b) n independent eigenvectors always exist.

This is not true of all matrices. It is fortunate that many of the matrix problems which computers
currently face are real and symmetric.

To make the algorithm for direct computation of the characteristic polynomial more clear,
apply it to this larger system:

E;: A-A)x + X, + X3+ x,=0

E,: 0n+Q—-Ax+ 3x3+ 4x,=0

E;: X+ 3x,+(6—A)x; + 10x,=0

E,: x, + 4x, + 10x3+ (20— A)x4=0

Calling these equations E,, E,, E;, E,, the combination E, +4E, + 10E; + AE, is
15x; + 39x, + 73x5 + (117 + 204 — A%)x, =0

and is our second equation in which all but the x, term are free of A. We at once begin triangularization
by subtracting 15E, to obtain

Es: —21x, = 77x5 + (=183 + 354 — A%)x, =0
The combination —21E, — 77E; + AE becomes
—98x, — 273x, — 525x5 + (—854 — 1834 + 354> — AM)x, =0

and is our third equation in which all but the x, term are free of A. The triangularization continues by
blending this last equation with E, and E; to obtain

Eg: 392x, + (1449 — 17361 + 616A% — 21A4°)x, =0
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Now the combination 392F; + AE, is formed,

392x, + 1176x, + 2352x5 + (3920 + 14494 — 1736A° + 6164° — 214*)x, =0
and the triangularization is completed by blending this equation with E,, Es, and E, to obtain
E;: (1 =294 + 724> — 292° + A%x, =0

The system E,, Es, Es, E; is now the triangular system we have been aiming for. To avoid the zero
solution vector, A must be a zero of 1 —29A +72A*— 29A% + A* which is the characteristic polynomial.
Finding these zeros and the corresponding eigenvectors will be left as a problem. The routine just used
can be generalized for larger systems.

Illustrate the use of the Cayley—Hamilton theorem for finding the characteristic equation of a
matrix.

Writing the equation as
FA)=2"+ch" "+ -+ A+, =0

the Cayley—Hamilton theorem states that the matrix A itself satisfies this equation. That is,
fA)=A"+c, A" '+ +c, 1 A+c,I=0

where the right side is now the zero matrix. This comes to n” equations for the n coefficients c; so there is
substantial redundance.

11 21
Take, for example, the Fibonacci matrix F = [1 O] Since F*= [1 1], we have

[2 1]+ [1 1]+ [1 o]_[o 0]
1 1171 ol ™% 1170 o
or 24c¢i+c,=0

1+¢,=0 1+c,=0

with the second of these repeated. The familiar equation A>=4+ 1 is again in hand. (See Problems
18.24 and 26.128.)
Or consider the permutation matrix P with

001 010 1 00
P=|1 00 P=10 0 1 PP=10 10
010 100 00 1
which leads quickly to the set
1+¢;,=0 =0 ;=0

repeated twice. The characteristic equation is A*—1=0.
Several devices have been suggested for selecting a suitable subset of the available n* equations.
One such device calls for computing

f(Ap=0

for an appropriate vector v, and solving this system.

Prove Gerschgorin’s theorem, which states that every eigenvalue of a matrix A falls within
one of the complex circles having centers at a; and radii
R;= E a;
J#Ei

withi=1,...,n
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Let x, be the component of largest magnitude of one of the eigenvectors of A. From the ith
equation of the system (A — Al)x =0, we have

(@i — A)x; = _2 X,

JE
M
lag = A= lagl |2 = layl
j#i X =

which is the theorem.

What does the Gerschgorin theorem tell us about the eigenvalues of a permutation matrix
which has a single 1 in each row and column, with zeros elsewhere?

The circles either have center at 0 with radius 1, or center at 1 with radius 0. All eigenvalues lie
within a unit of the origin. For example, the eigenvalues of

O = o

01
00
10

are the cube roots of 1. In particular, the eigenvalues of the identity matrix must be within the circle
having center at 1 and radius 0.

The Gerschgorin theorem is especially useful for matrices having a dominant diagonal. Apply
it to this matrix.
4 -1 -1 0
-1 4 -1 -1
-1 -1 4 -1
0 -1 -1 4

All the eigenvalues must fall inside the circle with center at 4 and radius 3. By the symmetry, they
must also be real.

POWER METHOD
What is the power method for producing the dominant eigenvalue and eigenvector of a
matrix?

Assume that the matrix A is of size n X n with n independent eigenvectors V,, V,, ..., V, and a
truly dominant eigenvalue A;: |A;|>|A,|Z-- - Z|A,|. Then an arbitrary vector V can be expressed as a
combination of eigenvectors,

V=a,Vi+ta,V,+---+a,V,
It follows that
AV =a,AVi+ AV, + - - -+ a,AV, = a, M Vi + @A, Vo + - - -+ a,AY,

Continuing to multiply by A we arrive at

A\? A\
APV = a MV, + aJ5Vy+ - - -+ a,AEV, = A‘,’[alVl + az<f) Vit -t u(l—> Vn]
1 1
provided a; # 0. Since A, is dominant, all terms inside the brackets have limit zero except the first term.
If we take the ratio of any corresponding components of A?*'V and APV, this ratio should therefore
have limit A,. Moreover, A;?APV will converge to the eigenvector a,V;.
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26.54. Apply the power method to find the dominant eigenvalue and eigenvector of the matrix used
in Problem 26.47.

2 -1 0
A=|-1 2 -1
0 -1 2

Choose the initial vector V = (1, 1, 1). Then AV =(1, 0, 1) and A%V = (2, -2, 2). It is convenient
here to divide by 2, and in the future we continue to divide by some suitable factor to keep the numbers
reasonable. In this way we find

A’V = ¢(99, —140, 99) APV =c¢(338, —478,338)
where ¢ is some factor. The ratios of components are
338 478
— =3, — =3.41429
) 3.41414 120

and we are already close to the correct A, =2 + V2 =3.414214. Dividing our last output vector by 338, it
becomes (1, —1.41420, 1) approximately and this is close to the correct (1, —V/2, 1) found in Problem
26.47.

26.55. What is the Rayleigh quotient and how may it be used to find the dominant eigenvalue?

The Rayleigh quotient is x"Ax/x"x, where T denotes the transpose. If Ax = Ax this collapses to A.
If Ax=2Ax then it is conceivable that the Rayleigh quotient is approximately A. Under certain
circumstances the Rayleigh quotients for the successive vectors generated by the power method
converge to A,. For example, let x be the last output vector of the preceding problem, (1, —1.41420, 1).
Then

Ax = (3.41420, —4.82840, 3.41420) xTAx =13.65672 xTx =3.99996

and the Rayleigh quotient is 3.414214 approximately. This is correct to six decimal places, suggesting
that the convergence to 4, here is more rapid than for ratios of components.

26.56. Assuming all eigenvalues are real, how may the other extreme eigenvalue be found?

If Ax=A2x, then (A —gl)x=(A—q)x. This means that A—gq is an eigenvalue of A—gql. By
choosing g properly, perhaps ¢ = 1,, we make the other extreme eigenvalue dominant and the power
method can be applied. For the matrix of Problem 26.55 we may choose g =4 and consider

-2 -1 0
A-4I=| -1 =2 -1
0 -1 =2

Again taking V = (1, 1, 1) we soon find the Rayleigh quotient —3.414214 for the vector (1,1.41421,1
which is essentially (A — 4/)*V. Adding 4 we have .585786 which is the other extreme eigenvalue 2 — V/2
correct to six places. The vector is also close to (1, V2, 1), the correct eigenvector.

26.57. How may the absolutely smallest eigenvalue be found by the power method?

If Ax = Ax, then A™'x = A”'x. This means that the absolutely smallest eigenvalue of A can be found
as the reciprocal of the dominant A of A™". For the matrix of Problem 26.55 we first find

321
A'==12 4 2
123



386

26.58.

26.59.

LINEAR SYSTEMS [CHAP. 26

Again choosing V =(1, 1, 1) but now using A" instead of A, we soon find the Rayleigh quotient
1.707107 for the vector (1, 1.41418,1). The reciprocal quotient is .585786 so that we again have this
eigenvalue and vector already found in Problems 26.47 and 26.56. Finding A" is ordinarily no simple
task, but this method is sometimes the best approach to the absolutely smallest eigenvalue.

How may a next dominant eigenvalue be found by a suitable choice of starting vector V'?

Various algorithms have been proposed, with varying degrees of success. The difficulty is to
sidetrack the dominant eigenvalue itself and to keep it sidetracked. Roundoff errors have spoiled several
theoretically sound methods by returning the dominant eigenvalue to the main line of the computation
and obscuring the next dominant, or limiting the accuracy to which this runnerup can be determined.
For example, suppose that in the argument of Problem 26.53 it could be arranged that the starting
vector V is such that a, is zero. Then A, and V] never actually appear, and if A, dominates the remaining
eigenvalues it assumes the role formerly played by A, and the same reasoning proves convergence to A,
and V,. With our matrix of Problem 26.54 this can be nicely illustrated. Being real and symmetric, this
matrix has the property that its eigenvectors are orthogonal. (Problem 26.47 allows a quick verification
of this.) This means that VIV =a,VV, so that a, will be zero if V is orthogonal to V;. Suppose we take
V =(-1,0, 1). This is orthogonal to V;. At once we find AV = (-2, 0, 2) =2V, so that we have the
exact A,=2 and V, = (-1, 0, 1). However, our choice of starting vector here was fortunate.

It is almost entertaining to watch what happens with a reasonable but not so fortunate V,
say V =(0, 1, 1.4142) which is also orthogonal to V, as required. Then we soon find A’V =
4.8(—1, .04, 1.20) which is something like V, and from which the Rayleigh quotient yields the
satisfactory A,=1.996. After this, however, the computation deteriorates and eventually we come to
APV =¢(1, —1.419, 1.007) which offers us good approximations once again to A, and V,. Roundoff
errors have brought the dominant eigenvalue back into action. By taking the trouble to alter each vector
APV slightly, to make it orthogonal to V;, a better result can be achieved. Other devices also have been
attempted using several starting vectors.

Develop the inverse power method.

This is an extension of the eigenvalue shift used in Problem 26.56. If A has eigenvalues A, then
A ~1tI and (A — tI)"" have eigenvalues A, —r and (4, — r)”', respectively. Applying the power method as
in Problem 26.53, but using (A — #I)™" in place of A, we have

(A—=t)PV =a) (A —t)PVi+- - - +a,(A, — )7V,

If ¢ is near an eigenvalue A,, then the term a, (A, —t) "V, will dominate the sum, assuming that a, #0
and A, is an isolated eigenvalue. The powers being computed will then lead to an eigenvalue of A,
because all these matrices have the same eigenvectors. This is the basis of the inverse power method.
An interesting variation of this idea uses a sequence of values #. Given an initial approximation to
an eigenvector, say x©, compute successively
OT 4O
x"Ax i G
Lo = oo xV = (A= 6, D) %P
xOx
the 1, being Rayleigh quotient estimates to A, and the x“*" approximations to V;. Convergence has
been proved under various hypotheses. The factor c;., is chosen to make ||x“*"|| =1 for some norm.
It is not actually necessary to compute the inverse matrix. What is needed is the vector w@*"
defined by
Wi+ = (A- tiﬂl)—lx(i)

so it is more economical to get it by solving the system
(A=t HwP = O

for this vector. Then x“*V =¢,,;w*V, As the sequence develops, the matrices A — t,,,I will approach
singularity, suggesting that the method may have a perilous character, but with attention to
normalization and pivoting, accurate results can be obtained.
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26.60. What is inverse iteration?

Given an accurate approximation to an eigenvalue of A, inverse iteration is a fast way to obtain the
corresponding eigenvector. Let ¢ be an approximation to A, obtained from the characteristic polynomial
or other method which produces eigenvalues only. Then A —¢ is near singular, but still has a
factorization

PA-t)=LU A-t=P'LU
as in Problem 26.8. Just as in the preceding problem, we begin an iteration with
(A—tDHx® =P 'LUx" = x©

using an x© with a nonzero component in the direction of x, the eigenvector corresponding to A. The
choice x»=P7'L(1, 1,. .., 1)7 has sometimes been suitable, or what is the same thing,

Ux®=(1,1,...,1)7

26.61. Apply inverse iteration to the matrix of Problem 26.47, using .586 as an approximation to the
eigenvalue 2 — V2. Since the eigenvector x = (1, V2, 1) has already been found, this will serve
as a small-scale illustration of the method’s potential.

To start, we need the factors L and U, which prove to be the following:

1 0 0 1.414 -1 0
L=] —.70721 1 0 U=1|0 7068 —1
0 —1.4148 1 0 0 — .0008
In this example P =1 The solution of Ux®=(1,1,...,1)7, found by back-substitution, is x™ =

(1250, 1767, ~1250)7, after which
LUX® =x®

vields x® = (31,319, 44,273, 31,265)" to five figures. Normalizing then brings the approximate eigen-
vector (1, 1.414, .998)".

REDUCTION TO CANONICAL FORMS

26.62. A basic theorem of linear algebra states that a real symmetric matrix A has only real
eigenvalues and that there exists a real orthogonal matrix Q such that Q~'AQ is diagonal.
The diagonal elements are then the eigenvalues and the columns of Q are the eigenvectors.
Derive the Jacobi formulas for producing this orthogonal matrix Q.

In the Jacobi method Q is obtained as an infinite product of “rotation” matrices of the form

cos¢ —sin ¢
Q= .
sin¢g cos ¢
all other elements being identical with those of the unit matrix I. If the four entries shown are in
positions (i, i), (i, k), (k, ), and (k, k), then the corresponding elements of Q7'AQ, may easily be
computed to be
b;;= a; cos® ¢ + 2ay sin ¢ cos ¢ + ay, sin ¢
by =bi = (@ — a;;) sin ¢ cos ¢ + a;(cos” ¢ — sin® ¢)
byx = a; sin® ¢ — 2ay, sin ¢ cos ¢ + ay, cos® ¢

Choosing ¢ such that tan2¢ =2a,/(a; — aix) then makes b, =b,, =0. Each step of the Jacobi
algorithm therefore makes a pair of off-diagonal elements zero. Unfortunately the next step, while it
creates a new pair of zeros, introduces nonzero contributions to formerly zero positions. Nevertheless,
successive matrices of the form Q;'Q;'A40,Q,, and so on, approach the required diagonal form and

0=0,0;--.
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2 -1 0
26.63. Apply Jacobi’s methodto A=| -1 2 -1
0 -1 2

With i=1, k=2 we have tan2¢ = —2/0 which we interpret to mean 2¢ = /2. Then cos ¢ =
sin ¢ = 1/V2 and

1 1 1 1 1
— — 0 - = = 1 0 -—
5 7 2 -1 ofl - 0 7
1 1 1 1 1
— 0740, =| —— — - 1= = = o -
A=07'AQ; 3 V2 0 1 2 1 V2 5 0 3 7
1 1
0 0 1 0 -1 24L 0 0 1 - % - % 2
Next we take i =1, k =3 making tan 2¢ = —\/2/(—=1) = V/2. Then sin ¢ =.45969, cos ¢ =.88808 and
we compute
88808 0  .45969 .88808 0 —.45969
A=0,'A0,=| 0 10 Al O 1 0
—.45969 0 .88808 45969 0 .88808
.63398 —.32505 0
=] —-.32505 3 —.62797
0 —.62797 2.36603

The convergence of the off-diagonal elements toward zero is not startling, but at least the decrease has
begun. After nine rotations of this sort we achieve

.58578  .000000  .000000
Ao = .00000 2.00000 .00000
.00000 .00000 3.41421

in which the eigenvalues found earlier have reappeared. We also have

.50000 70710  .50000
0=0,0,---Qy=].70710  .00000 -.70710
.50000 —.70710  .50000

in which the eigenvectors are also conspicuous.

26.64. What are the three main parts of Givens’ variation of the Jacobi rotation algorithm for a real
symmetric matrix?

In the first part of the algorithm rotations are used to reduce the matrix to triple-diagonal form,
only the main diagonal and its two neighbors being different from zero. The first rotation is in the (2, 3)
plane, involving the elements a,,, 4, 43, and as. It is easy to verify that such a rotation, with ¢
determined by tan ¢ = a,,/a,,, will replace the a,; (and a5,) elements by 0. Succeeding rotations in the

(2, i) planes then replace the elements a,, and a;, by zero, for i =4, ..., n. The ¢ values are determined
by tan ¢ = a;/a;,, where a;, denotes the current occupant of row 1, column 2. Next it is the turn of the
elements @, ..., a,, which are replaced by zeros by rotations in the (3,4),...,(3,n) planes.

Continuing in this way a matrix of triple-diagonal form will be achieved, since no zero that we have
worked to create will be lost in a later rotation. This may be proved by a direct computation and makes
the Givens’ reduction finite whereas the Jacobi diagonalization is an infinite process.
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The second step involves forming the sequence

) =1 ) = (= a)fia(R) — BL1fia(R)

where the a’s and B’s are the elements of our new matrix

@ B 0 .- 0
B @ B

B=|0 B, a --- 0
................ Bos

and B,=0. These f,(A) prove to be the determinants of the principal minors of the matrix A — B, as may
be seen from

A—ay —-B 0 0

B A-—w B 0

fi(A) 0 - A-a 0
......................... —Bis
.................... _ﬁi—l A— o,

by expanding along the last column,

Q) =4~ a)fi (A) + BinD

where D has only the element —f;_; in its bottom row and so equals D = —f,_,f,_,(). For i =n we
therefore have in f,(A) the characteristic polynomial of B. Since our rotations do not alter the
polynomial, it is also the characteristic polynomial of A.

Now, if some f; are zero, the determinant splits into two smaller determinants which may be treated
separately. If no B, is zero, the sequence of functions f;(A) proves to be a Sturm sequence (with the
numbering reversed from the order given in Problem 25.33). Consequently the number of eigenvalues in
a given interval may be determined by counting variations of sign.

Finally, the third step involves finding the eigenvectors. Here the diagonal nature of B makes
Gaussian elimination a reasonable process for obtaining its eigenvectors U; directly (deleting one
equation and assigning some component the arbitrary value of 1). The corresponding eigenvectors of A
are then V; = QU; where Q is once again the product of our rotation matrices.

26.65. Apply the Givens method to the Hilbert matrix of order three.

—

Wik N
Blm Wim N
Nl B = G =

For this small matrix only one rotation is needed. With tan ¢ =3, we have cos ¢ =3/V13 and
sin ¢ = 2/V/13. Then

Vi3 0 0 1 @ 0
_1 oo |V M9
0= 13 0 3 =2 B=0 HO=|"" & 20
0 2 3 0 = 2

260 195
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and we have our triple diagonal matrix. The Sturm sequence consists of

=1 AW=A-l W= (i-F)e-D-g
2

2 81
195

67,600
which lead to the * signs shown in Table 26.3. There are two roots between 0 and 1 and a third between

1 and 1.5. Iterations then locate these more precisely at .002688, .122327, and 1.408319. The eigenvalue
so close to zero is another indication of the near singularity of this matrix.

£ = (4~ 153 )60 - g (A= D

Table 26.3
Jo h h 5 Changes
0 + - + - 3
1 + 0 - -
1.5 + + + + 0

To find the eigenvector for A,, we solve BU,=A,U; and soon discover u,;=1, u,=—1.6596,
us =7.5906 to be one possibility. Finally

V,=QU, =(1, —-5.591, 5.395)7

which can be normalized as desired. Eigenvectors for the other two eigenvalues respond to the same
process.

A similarity transformation of A is defined by M~*AM, for any nonsingular matrix M. Show
that such a transformation leaves the eigenvalues unchanged.

Since Ax = Ax implies
MAM™(Mx) = A(Mx)

we have at once that A is an eigenvalue of MAM ™" with corresponding eigenvector Mx. The orthogonal
transformations used in the Jacobi and Givens methods are special cases of similarity transformations.

Show that a matrix having all distinct eigenvalues, and corresponding independent eigenvec-
tors, can be reduced to diagonal form by a similarity transformation.

Form the matrix M by using the eigenvectors of A as columns. It follows that
AM =MD

where D is diagonal and has the eigenvalues along its diagonal. Because the eigenvectors are linearly
independent, M~ exists and

MT7'AM =D
as required. This classic theorem on the reduction of matrices to special, or canonical, form has

questionable computational value, since to find M appears to presuppose the solution of the entire
problem.

What is a Hessenberg matrix?

It is a matrix in which either the upper or the lower triangle is zero except for the elements adjacent
to the main diagonal. If the upper triangle has the zeros, the matrix is a lower Hessenberg, and vice
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versa. Here are two small Hessenbergs, the second being also triple diagonal since it is symmetric:

L] e
o1a|  [11e
0011

26.69. Show that a matrix A can be reduced to Hessenberg form by Gaussian elimination and a
similarity transformation.

Suppose we take an upper Hessenberg as our goal. The required zeros in the lower triangle can be
generated column by column in n — 2 stages. Assume k — 1 such stages finished, and denote the new
elements by a;. The zeros for column k are then arranged as follows:

(a) From the elements .y, - - - , @, find the absolutely largest and interchange its row with row
k + 1. This is the partial pivoting step and can be achieved by premultiplying the current
matrix A’ by an interchange matrix 7, .., as introduced in Problem 26.8.

(b) Calculate the multipliers

Go=——2 j=k+2,...,n

Q1,5
(the double prime referring to elements after the interchange). Add c; times row & + 1 to row
j- This can be done for all the j simultaneously by premultiplying the current matrix A” by a
matrix G, similar to the L, of Problem 26.8.
1 .
1

G, = “Cer2k 1 . rowk +2

—Cie 1

col.k+1

This is the Gaussian step.

Postmultiply the current matrix by the inverses of 7, and G,. This is the similarity step. Of
course, I, .. is its own inverse, while that of G, is found by changing the signs of the ¢
elements. This completes the kth stage of the reduction, which can be summarized by

Gil riA'L k1 Gi

~

(c

with A’ the input from the preceding stage, or A itself if k = 1.

The steps a, b, and ¢ are carried out for k=1,...,n—2 and it is easy to discover that the target
zeros of any stage are retained.

26.70. Apply the algorithm of the preceding problem to this matrix:

0
2
3
1

N O W e
W = O N
(= S ]

All the essentials appear in Fig. 26-3, the two stages side by side. Remember that as a premultiplier,
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Fig. 26-3
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1,11 SWaps rows but as its own inverse and postmultiplier it swaps columns. The given matrix A is not
symmetric so the result is Hessenberg but not triple diagonal. The matrix M of the similarity
transformation MAM ™' is G,1L,,G, L.

26.71. What is the QR method of finding eigenvalues?
Suppose we have an upper Hessenberg matrix H and can factor it as
H=0R

with Q orthogonal and R an upper (or right?) triangle. In the algorithm to come what we actually find
first is

Q'™H=R
by reducing H to triangular form through successive rotations. Define
H®=RQ = 0"HQ

and note that H® will have the same eigenvalues as H, because of the theorem in Problem 26.66. (Since
Q is orthogonal, Q7 = Q") It turns out that H® is also Hessenberg, so the process can be repeated to
generate H**V from H®), with H serving as H" and k=1,.... The convergence picture is fairly
complicated, but under various hypotheses the diagonal elements approach the eigenvalues while the
lower triangle approaches zero. (Of course, the R factor at each stage is upper triangular, but in forming
the product RQ, to recover the original eigenvalues, subdiagonal elements become nonzero again.) This
is the essential idea of the QR method, the eventual annihilation of the lower triangle.

26.72. How can the matrix Q®, required for the kth stage of the QR method, be found? That is,
find Q) such that

HEHD = gWTH® o)
fork=1,....

One way of doing this uses rotations, very much as in the Givens method presented in Problem
26.64. Since we are assuming that H is upper Hessenberg, it is only the elements 4., ; that need our

attention, fori=1,...,n — 1. But h;.1,; can be replaced by zero using the rotation
1 .
§T= " cos¢ sing TOW |
! -sin¢ cos¢ rowi+1
1
col. col.
i i+1

and calculating S7H, provided tan ¢ =hirifhi (It is easier to let sin ¢ =ch;,,,, cos ¢ =ch;, and
choose ¢ to make the sum of squares 1.) Then the product of these rotations

QT= :-1"‘SlT

is what we need. The same argument applies for any stage, so the superscript (k) has been suppressed
here.

26.73. How has the idea of eigenvalue shifting, presented in Problem 26.56, been applied to
accelerate the convergence of the QR algorithm?
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Instead of factoring the matrix H, we try instead the reduction
Q"(H-pl)=R
for some suitable value of p. The factorization H — pI = QR is thus implied. Then
QT(H-pl)Q=RQ =H® - pl
exhibits the reversed product which is central to the method and also defines H®. But then

H®=Q"(H-pl)Q +pl = Q"HQ

so H® again has the same eigenvalues as H. With H® in hand, we are ready to begin the next iteration.
It would be nice to choose p near an eigenvalue, but in the absence of such inside information, the
following alternative is recommended. Find the eigenvalues of the 2 by 2 submatrix in the lower right
corner of the current H and set p equal to the one closest to £,,, assuming these eigenvalues real. If they
are complex, set p to their common real part.

26.74. Given the midget Hessenberg matrix

4 21
H=|10 10
023

find the eigenvalues by the QR method.

It is easy to discover that the eigenvalues are the diagonal elements 4, 1, 3. But it is also interesting
to watch the QR method perform the triangularization. Choosing a shift of 3, we compute

1 2 1
H-3I= -2
0 2 0

which will need just one rotation to reach triangular form.

. V2 0 0 . V2 2vV2 V2
sT=—| 0 -1 1 STH-3)=—4| 0 4 0
V2| g o VIl 0 o o

Postmultiplication by S then completes the similarity transformation.

]2 -V2 -3V2
ST(H-3DS = 7 0 -4 —4
0 0 0
Finally we add 37 and have
. Y2 3V2
HO - 2 2
1 -2
0 0 3

the triangular form having been preserved. Ordinarily this will not happen, and several stages such as
the above will be needed.
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26.75. Apply the OR method to the Hessenberg matrix

4 1 11

1 411
H=

01 41

001 4

for which the exact eigenvalues are 6, 4, 3, and 3.

A substantial number of rotation cycles eventually reduced this matrix to the following triangle:

5.99997  1.50750 —.17830  .29457
3.99997 —.44270  .22152

3.00098 —.60302

2.99895

in which the eigenvalues are evident along the diagonal. For larger jobs a saving in computing time
would be realized by a reduction of the order when one of the subdiagonal elements becomes zero. Here
it was entertaining simply to watch the lower triangle slowly vanish. Using the above approximate
eigenvalues, the corresponding vectors were found directly and matched the correct (3,3,2,1),
(=1,-1,0,1), and (0, 0, —1,1) to three decimal places more or less. There is no fourth eigenvector.

26.76. Apply the QR method to the triple diagonal matrix

4 100
1410
0141
001 4

and then use the results obtained to “guess’ the correct eigenvalues.

Once again the rotation cycles were allowed to run their course, with this result. Off-diagonal
elements were essentially zero.

5.618031
4.618065
3.381945
2.381942

Since the given matrix was symmetric, both the lower and upper triangles have become zero, leaving the
eigenvalues quite conspicuous. Taking the largest, a direct calculation of the eigenvector managed

(1.00002, 1.61806, 1.61806, 1)

the fourth component having been fixed in advance. Guessing that this ought to have been (1, x, x, 1)
leads quickly to the equations
A=x+4 xP—=x—-1=0

the second of which is familiar by its connection with Fibonacci numbers. The root x = (1+ V3)/2 is
now paired with A = (9 + V/5)/2, while x = (1 — V/5)/2 is paired with A = (9 — V/5)/2 giving us two of the
exact solutions. The other two are found similarly.
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COMPLEX SYSTEMS

26.77.

26.78.

26.79.

How can the problem of solving a system of complex equations be replaced by that of solving
a real system?

This is almost automatic, since complex numbers are equal precisely when their real and imaginary
parts are equal. The equation
(A+iB)(x+iy)=a+ib
is at once equivalent to Ax—By=a Ay +Bx=b

and this may be written in matrix form as

5 216)-6)
B A l\y b
A complex n X n system has been replaced by a real 2n X 2n system, and any of our methods for real
systems may now be used. It is also possible to replace this real system by two systems
(BT'TA+ A 'B)x=B'a+ A"
(BT'TA+A'B)y=B'b—-A""a
of size n X n with identical coefficient matrices. This follows from
(BT'TA+A'B)x=B'(Ax-By)+ A '(Bx +Ay)=B'a+A"'b
(BT'"A+A'B)y=B YAy +Bx)+A'(By—Ax)=B"'b—-A""a

Using these smaller systems slightly shortens the overall computation.

Reduce the problem of inverting a complex matrix to that of inverting real matrices.

Let the given matrix be A +iB and its inverse C+iD. We are to find C and D such that
(A +iB)(C +iD) =1. Suppose A is nonsingular so that A~! exists. Then

C=(A+BA'B)™ D=-A"'"B(A+BA'B)™*
as may be verified by direct substitution. If B is nonsingular, then
C=B 'A(AB'A+B)™ D=—-(AB'A+B)!

as may be verified by substitution. If both A and B are nonsingular, the two results are of course
identical. In case both A and B are singular, but (A +iB) is not, then a more complicated procedure
seems necessary. First a real number ¢ is determined such that the matrix £ =A +¢B is nonsingular.
Then, with F =B —tA, we find E + iF = (1 —it)(A +iB) and so

(A+iB)'=(1—-it)(E+iF)™!

This can be computed by the first method since E is nonsingular.

Extend Jacobi’s method for finding eigenvalues and vectors to the case of a Hermitian matrix.

We use the fact that a Hermitian matrix H becomes diagonalized under a unitary transformation,
that is, U"'HU is a diagonal matrix. The matrices H and U have the properties H” = H and U7 = U™~
The matrix U is to be obtained as an infinite product of matrices of the form

U _[ cos ¢ —sin¢e'”’]
' lsinge® cos ¢

all other elements agreeing with those of /. The four elements shown are in positions (i, i), (i, k), (k, i),
and (k, k). If the corresponding elements of H are

a b—ic
H_[b+ic d ]
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then the (i, k) and (k, i) elements of U"'HU will have real and imaginary parts equal to zero,
(d —a) cos ¢ sin ¢ cos 0 + b cos®> ¢ — b sin” ¢ cos 20 — ¢ sin” ¢ sin 26 =0
(a —d) cos ¢ sin ¢ sin 6 — c cos® ¢ + b sin” ¢ sin 20 — ¢ sin® ¢ cos20=0

if ¢ and 6 are chosen so that

2(b cos 6 + c sin 6)

c
tanB—B tan2¢ = P

This type of rotation is applied iteratively as in Problem 26.62 until all off-diagonal elements have been
made satisfactorily small. The (real) eigenvalues are then approximated by the resulting diagonal
elements, and the eigenvectors by the columns of U = U,U,U; - - -.

26.80. How may the eigenvalues and vectors of a general complex matrix be found? Assume all
eigenvalues are distinct.

As a first step we obtain a unitary matrix U such that U AU = T where T is an upper triangular
matrix, all elements below the main diagonal being zero. Once again U is to be obtained as an infinite
product of rotation matrices of the form U, shown in the preceding problem, which we now write as

o[y 7]
y x
The element in position (k, i) of U;'AU, is then
x* + (@ — @)Xy — agy*

To make this zero we let y = Cx, x = 1/V1 + |C|* which automatically assures us that U; will be unitary,
and then determine C by the condition a;C* + (a; — @ )C — ai; = 0 which makes

1
C=—[(au — @) = V(aw — a:)’ + 4a,a,]

2a;

Either sign may be used, preferably the one that makes |C| smaller. Rotations of this sort are made in
succession until all elements below the main diagonal are essentially zero. The resulting matrix is

where U= U, U, - - - Uy. The eigenvalues of both T and A are the diagonal elements ¢;.
We next obtain the eigenvectors of 7, as the columns of

T owy wy Win
0 1 wy Won
w=|0 0 P ooeeeeaes
0 0 0 Won

The first column is already an eigenvector belonging to t,;. To make the second column an eigenvector
belonging to t,, wWe require t;; Wiz + t1; = [nWiy OF Wiy = b,/ (8, — t,) assuming t,, # t,. Similarly, to make
the third column an eigenvector we need

5} _toWntis

W3 = Wi3
ty3— by by — Iy
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In general the w, are found from the recursion

t‘..w.
= i VK
Wy =

jei+1 bk — i

withi=k—1,k—2,..., 1 successively. Finally the eigenvectors of A itself are available as the columns
of UW.

Supplementary Problems

26.81. Apply the Gauss elimination algorithm to find the solution vector of this system:

w+ 2x—12y +82=27
Sw+ dx+ Ty—-2z= 4
3w+ Tx+ 9y +5z=11
6w —12x - 8y +3z=49

26.82. Apply the method of Problem 26.10 to find the solution vector of this system:

33x, + 16x, + 72x; = 359
~24x, — 10x, — 57x; = 281
—8x;— 4x,—17x;= 85

26.83. Suppose it has been found that the system

1.7%, +2.3%, — 1.5x, = 2.35
11x; + 1.6x, — 1.9x, = —.94
2.7%,— 2.2, + 1.5x, = 2.70

has a solution near (1, 2, 3). Apply the method of Problem 26.28 to obtain an improved approximation.

26.84. Apply Gaussian elimination to the system which follows, computing in rational form so that no roundoff
errors are introduced, and so getting an exact solution. The coefficient matrix is the Hilbert matrix of
order four.

x+1 +1 +1 =1
1 zxz 3x3 4-x4—

1 1
§X1+§x2+:‘X3+§X4=0

1 1
§x1+1x2+§x3+6x4=0

1 1 1 1
ed +3x2+gx3+§x4—0
26.85. Repeat the preceding problem with all coefficients replaced by decimals having three significant digits.
Retain only three significant digits throughout the computation. How close do your results come to the
exact solution of the preceding problem? (The Hilbert matrices of higher order are extremely
troublesome even when many decimal digits can be carried.)
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Apply the Gauss—Seidel iteration to the following system:

=21+ x, =-1
X1 — 2%+ x3 = 0
X, —2x3+ x4= 0
x3—2x4= 0

Start with the approximation x, =0 for all k, rewriting the system with each equation solved for its
diagonal unknown. After making several iterations can you guess the correct solution vector? This
problem may be interpreted in terms of a random walker, who takes each step to left or right at random
along the line of Fig. 26-4. When he reaches an end he stops. Each x, value represents his probability of
reaching the left end from position k. We may define x, =1 and x5 =0, in which case each equation has
the form x,_; —2x, + %1 =0, k=1,...,4.

T

0 1

]
step length

Fig. 26-4

Does overrelaxation speed convergence toward the exact solution of Problem 26.86?

Apply the Gauss—Seidel method to the system
3 1
xkzzxk—1+zxk+l k=1,...,19
x=1 X20=0

which may be interpreted as representing a random walker who moves to the left three times as often as
to the right, on a line with positions numbered 0 to 20.

. The previous problem is a boundary value problem for a difference equation. Show that its exact

solution is x, =1 — (3* = 1)/(3*° — 1). Compute these values for k = 0(1)20 and compare with the results
found by the iterative algorithm.

- Apply overrelaxation to the same system. Experiment with values of w. Does underrelaxation (w <1)

look promising for this system?

Apply any of our methods to the following system:
xit+ x4+ x5+ x4+ x5=1
X1+ 2,4+ 3x3+ 4dx,+ 5x5=0
X1+ 3x,+ 6x3+ 10x, + 15x5=0
X1+ 4x,+ 10x; + 20x, + 35x5 =0
X1+ 5%, 4 15x5 4+ 35x,+ 70x5=0

Invert the coefficient matrix of Problem 26.81 by the elimination algorithm of Problem 26.38.
Invert the same matrix by the exchange method.

Invert the coefficient matrix of Problem 26.86 by any of our methods.
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26.95. Try to invert the Hilbert matrix of order four using three-digit arithmetic.

26.96. Try to invert Wilson’s matrix. Invert the inverse. How close do you come to the original?

07 8 7
75 6 5
8§ 6 10 9
75 9 10

26.97. Apply the method of Problem 26.43 to the matrix of Problem 26.82. Does it appear to converge toward
the exact inverse?

1 -58 —-16 —192
AT =% 48 15 153
16 4 54

26.98. Evaluate the determinant of the coefficient matrix of Problem 26.81.

26.99. Evaluate the determinant of the coefficient matrix of Problem 26.82.

26.100. What is the determinant of the Hilbert matrix of order four?

26.101. Apply the method of Problem 26.48 to find the eigenvalues and eigenvectors of Ax = Ax where A is the
Hilbert matrix of order three. Use rational arithmetic and obtain the exact characteristic polynomial.

26.102. Referring to Problem 26.101, apply the same method to

2-M)x, - X2 =0
—x1+ (2= Ax,— X3 =0
X2+ (2= A)x;— X, =0

X3+ (22— A)x,— xs=0

—x (2= Dxs=0

26.103. Use the power method to find the dominant eigenvalue and eigenvector of the matrix

2 -1 0 0

-1 2 -1 0
4=l -1 2 -1
0 0 -1 2

26.104. Use the power method to find the dominant eigenvalue and eigenvector of the Hilbert matrix of order
three.

26.105. Apply Jacobi’s method to the Hilbert matrix of order three.
26.106. Apply Jacobi’s method to the matrix of Problem 26.103.
26.107. Apply Givens’ method to the matrix of Problem 26.103.

26.108. Apply Givens’ method to the Hilbert matrix of order four.
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Solve the system
Xy +ix; =1
—ix;+ x,+ix;=0
—ixy+ x3=0

by the method of Problem 26.77.

Apply the method of Problem 26.78 to invert the coefficient matrix in Problem 26.109.

Apply Jacobi’s method, as outlined in Problem 26.79, to find the eigenvalues and vectors for the
coefficient matrix of Problem 26.109.

14 -1
Apply the algorithm of Problem 26.80 to the matrix A = i1
-1 i 1

Assuming that a matrix A has an LU factorization, we have the formulas of Problem 26.14 for
determining the factor elements.
uq=aq‘lnu1j_lrzuz,"' . -lr,yflurfl.j jET
b, =a, = by, —buy, — - =1 qu,y, i>r

Suppose these are computed from left to right. With primes denoting computed values, subject to
roundoff error, the calculation of u,; then begins like this. (See Problems 1.22 and 1.23.)

a,(1+E) =1L uj(l+E)®

Each E represents a roundoff error, probably a different error at each appearance, and the superscript is
not a power but only a count of the number of different (1 + E) factors. This device will shorten some
otherwise lengthy expressions. Continuing,

a,(1+E)® —Lui(1+E)® - ILuy(1+E)®
until ultimately we obtain the computed u};:
up=a,(1+E) = Lu(1+E)?— - =1 _ul , (1+E)®
Show that the corresponding expression for the computed 7}, is as follows:
wli(1+ E)=a,(1+ E) " =L (1+ E)O = -~ _ul_, (1+E)®
Define A, by
(I+E)(1+E)=1+2A,

1
and note that 1A, = E(E1+E2+E]EZ) §u+%uz

with « the maximum roundoff error. Show similarly that with A, defined by (1 + E,)(1+ E;)(1 + E;) =
1+ 3A; the bound u + u® + Ju’ exists, and that more generally we may write

(A+E)Y=1+nA,
with A, bounded by [(1 4+ u)" —1]/n.

Combine the results of the preceding two problems to obtain (with A an appropriate A;)
Dty — ;= a,;(j — )A = LiuyjA — - - = Lu,A r>j
=a,(r— DA —=ljurA— - —LuA r=j

and note that this is equivalent in matrix form to

LU =A+F
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with the elements of F as shown on the right-hand side above. This shows that the factorization L'U" is
exact for the perturbed matrix A + F.

Show that the elements of the matrix F of the preceding problem do not exceed in absolute value nA
times the combined terms of A and L'U’. That is,

Ifyl EnA(lay| + by)

where A bounds all the A, involved and b; is computed from the absolute elements of the ith row of L’
and the jth column of U’. This estimate of the effect of internal roundoffs depends strongly upon the b;.
These may be computed after the factorization has been made. Here n is the order of the original matrix
A. In a way we may deduce that the overall error is a modest multiple of the maximum roundoff,
provided that n is not too large and the b;; cooperative.

The formulas for forward- and back-substitution, derived in Problem 26.9
Yy=b,—layi— =, 1Y
UiXi = Yi —Uj i1 Xier — 000~ UpXy

have the same form as those just analyzed for roundoff error propagation. Reasoning much as in the
preceding problem, one may obtain this equation for the computed y’

(L'+G)y'=b
where |g;| = nA |lj], and then to (U'+H)x'=y'

for the computed solution itself. Here |h;| S nA |u;).

By combining these results with that of the preceding problem, show that
(A+E)x'=b
with E a blend of F, G, H, L, and U. Further deduce the estimate

les| S nAflay + (3+nA) |byl]
with b;; as defined earlier.

Apply the algorithm of Problem 26.80 to the real but nonsymmetric matrix
123
A=|1 3 5
1 47

Solve the system
6.4375x, + 2.1849x, — 3.7474x; + 1.8822x, = 4.6351
2.1356x, + 5.2101x, + 1.5220x; — 1.1234x, = 5.2131
—3.7362x; + 1.4998x, + 7.6421x, + 1.2324x, = 5.8665
1.8666x, — 1.1104x, + 1.2460x, + 8.3312x, = 4.1322

Find all the eigenvalues of this system:
4x+2y+ z=Ax
2 +4y +2z=12y
x+2y+4z=27z

Find all the eigenvalues and eigenvectors of this system:
4 2 2\|/x X,
2 5 1| x,1=4Af x,
2 1 6 \xs X3
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26.122. Invert Pascal’s matrix.

11 1 1 1
12 3 4 5
13 6 10 15
1 4 10 20 35
15 15 35 70
26.123. Invert the following matrix:
p b1
3 5
1 1 1
3.5 7
1 1 1
5.7 9
26.124. Invert the following matrix:
S+i 442
{10 +3i 8+ 611

26.125. Find the largest eigenvalue of

25 -41 10 -6
—-41 68 -17 10
10 -17 5 -3
-6 10 -3 2

to three places.

26.126. Find the largest eigenvalue of

8 =5i 3-2
S5i 3 0
3+2i 0 2
and the corresponding eigenvector.
9 10 8
26.127.Find the two extreme eigenvaluesof | 10 5 -1
8 -1 3

26.128. Show that the characteristic polynomial for the matrix

i ol

403

is 22— 2 —1 and note the relationship with Fibonacci numbers as encountered in Problem 18.23 and
elsewhere. What is the characteristic polynomial for the more general “Fibonacci” matrix of order n?
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Find its eigenvalues by any of our methods.

111 - 11

100 - 00

010 - 00
F, =

001 - 0 0

0 00 10

Given some initial vector x, what are the vectors Fix forp =2,...?

26.129. Apply the QR method to this Hessenberg matrix:

21 5.1
13 1.5
01 2 1
00 .51

26.130. Apply the QR method to this triple diagonal matrix:

25 =20 0 0
-20 35 15 0

0 1.5 25 -1.0

0 0 -10 15

26.131. Rotating a square a quarter turn clockwise can be simulated by applying the permutation matrix R to the
vector (1,2,3,4)". (See Fig. 26-5.) Reflection in the vertical (dashed) line can be simulated using the
matrix V. The eigenvalues of R are easily found to be 1,i, —1, —i, while those of V are 1,1, -1, —1.
Both matrices are of Hessenberg type. Will the QR algorithm of Problem 26.73 be convergent in either

case?

1 2 1 2
4 1 2 1
ry PN
3 2 3 : 4
4 3 4 3

00 01 0100
1000 10 00
R= =
0100 v 0001
0010 0010

Fig. 26-5



Chapter 27

Linear Programming

THE BASIC PROBLEM
A linear programming problem requires that a linear function

H=cx+- - +tcux,
be minimized (or maximized) subject to constraints of the form
apx,+- -+ aux, =b; 0=y
wherei=1,...,mandj=1,...,n In vector form the problem may be written as
H(x)=c"x =minimum Ax=b, 0=x

An important theorem of linear programming states that the required minimum (or maximum)
occurs at an extreme feasible point. A point (xi, . . ., x,) is called feasible if its coordinates satisfy all
n +m constraints, and an extreme feasible point is one where at least n of the constraints actually
become equalities. The introduction of slack variables X, 41, - . . , X,4 converts the constraints to the
form

anXi+apts + -+ @p¥, + X0 =b;

fori=1,...,m. It allows an extreme feasible point to be identified as one at which n or more
variables (including slack variables) are zero. This is a great convenience. In special cases more than
one extreme feasible point may yield the required minimum, in which case other feasible points also
serve the purpose. A minimum point of H is called a solution point.

The simplex method is an algorithm for starting at some extreme feasible point and, by a
sequence of exchanges, proceeding systematically to other such points until a solution point is found.
This is done in a way which steadily reduces the value of H. The exchange process involved is
essentially the same as that presented in the previous chapter for matrix inversion.

The duality theorem is a relationship between the solutions of the two problems

¢’x = minimum Ax Zb, 0=x

y7h = maximum yTA=cT 0=y
which are known as dual problems, and which involve the same a;, b;, and ¢; numbers. The
corresponding minimum and maximum values prove to be the same, and application of the simplex

method to either problem (presumably to the easier of the two) allows the solutions of both
problems to be extracted from the results. This is obviously a great convenience.

TWO RELATED PROBLEMS

1. Two-person games require that R choose a row and C choose a column of the following
“payoff”’ matrix:

a2 Ain
1  dxn Aan

The element a; where the selected row and column cross, determines the amount which R
must then pay to C. Naturally C wishes to maximize his expected winnings while R wishes to
minimize his expected losses. These conflicting viewpoints lead to dual linear programs

405
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which may be solved by the simplex method. The solutions are called optimal strategies for
the two players.

2. Overdetermined systems of linear equations, in which there are more equations than
unknowns and no vector x can satisfy the entire system, may be treated as linear
programming problems in which we seek the vector x which in some sense has minimum
error. The details appear in Chapter 28.

Solved Problems

THE SIMPLEX METHOD
27.1. Find x, and x, satisfying the inequalities
0=x, 0=x, —x +2x,=2 X +x,=4 x =3
and such that the function F =x, —x, is maximized.

Since only two variables are involved it is convenient to interpret the entire problem geometrically.
In an x,, x, plane the five inequalities constrain the point (x4, x,) to fall within the shaded region of Fig.
27-1. In each case the equality sign corresponds to (x,, x,) being on one of the five linear boundary
segments. Maximizing F subject to these constraints is equivalent to finding that line of slope 1 having
the largest y intercept and still intersecting the shaded region. It seems clear that the required line L, is
1=x,—x, and the intersection point (0, 1). Thus, for a maximum, x, =0, x,=1, F=1.

Ta

(0,1)

(0,0 1 2 13,0)

Fig. 27-1

27.2. With the same inequality constraints as in Problem 27.1, find (x,, x,) such that G = 2x, + x, is
a maximum.

We now seek the line of slope —2 and having the largest y intercept while still intersecting the
shaded region. This line L, is 7=2x, + x, and the required point has x, = 3, x, = 1. (See Fig. 27-1.)
27.3. Find y,, y, y; satisfying the constraints
0=y 0=y, 0=y; n-y-p=sl =2y =y=-1
and minimizing H = 2y, + 4y, + 3y,.

Interpreting the entire problem geometrically, we find that the five inequalities constrain the point
(1, y2» y5) to fall within the region pictured in Fig. 27-2. This region is unbounded in the positive y;, y,,
ys directions, but is otherwise bounded by portions of five planes, shown shaded. These planes
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Fig. 27-2

correspond to equality holding in our five constraints. Minimizing H subject to these constraints is
equivalent to finding a plane with normal vector (2, 4, 3) having smallest intercepts and still intersecting
the given region. It is easy to discover that this plane is 1 =2y, + 4y, + 3y, and the intersection point is
(,0,0).

.

27.4. List three principal features of linear programming problems and their solutions which are
illustrated by the previous problems.

Let the problem be to find a point x with coordinates (x;, x,, . . ., x,,) subject to the constraints
0=x, Ax=b and minimizing a function H(x)=c"x =Y ¢, Calling a point which meets all the
constraints a feasible point (if any such exists), then:

1. The set of feasible points is convex, that is, the line segment joining two feasible points consists
entirely of feasible points. This is due to the fact that each constraint defines a half-space and the set
of feasible points is the intersection of these half-spaces.

2. There are certain extreme feasible points, the vertices of the convex set, identified by the fact that at
least n of the constraints become equalities at these points. In the two-dimensional examples, exactly
n =2 boundary segments meet at such vertices. In the three-dimensional example, exactly three
boundary planes meet at each such vertex. For n =3 it is possible, however, that more planes (or
hyperplanes) come together at a vertex.

3. The solution point is always an extreme feasible point. This is due to the linearity of the function
H(x) being minimized. (It is possible that two extreme points are solutions, in which case the entire
edge joining them consists of solutions, etc.)

These three features of linear programming problems will not be proved here. They are also true if
H(x) is to be maximized, or if the constraints read Ax = b.

27.5. What is the general idea behind the simplex method for solving linear programs?

Since the solution occurs at an extreme feasible point, we may begin at some such point and
compute the value of H. We then exchange this extreme point for its mate at the other end of an edge,
in such a way that a smaller (in the case of a minimum problem) H value is obtained. The process of
exchange and edge-following continues until H can no longer be decreased. This exchange algorithm is
known as the simplex method. The details are provided in the following problem.

27.6. Develop the simplex method.
Let the problem be

0=x Ax=b H(x) = c"x = minimum
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We first introduce slack variables x,., . . . , X,,m t0 make

anx, +apxs+ 00+ aX, X0 =by
Anx; +apx,+ -+ ayX, +x,4.,=b,

i X1+ AaXo + 20 F QX+ Xy = b1

Notice that these slack variables, like the other x;, must be nonnegative. The use of slack variables
allows us to identify an extreme feasible point in another way. Since equality in Ax = b now corresponds
to a slack variable being zero, an extreme point becomes one where at least n of the variables
X15 - .5 Xnom are zero. Or said differently, at an extreme feasible point at most m of these variables are
nonzero. The matrix of coefficients has become

ay,  ap a, 1 0 - 0
an 4p a, 0 1 - 0
Am1 Q2 4, 0 0 1

the last m columns corresponding to the slack variables. Let the columns of this matrix be called
U1, Uz . . ., Unym. The linear system can then be written as

XU+ X0+ + X Unym = b

Now suppose that we know an extreme feasible point. For simplicity we will take it that
Xm+1s - + - » Xm+n are all zero at this point so that x,, . . ., x,, are the (at most m) nonzero variables. Then

XU+ XU+ XU = b (1
and the corresponding H value is

Hy=x1¢,+ %6+ +X,,Cpy 2
Assuming the vectors vy, . . ., v,, linearly independent, all n + m vectors may be expressed in terms of
this basis:

v=vu U, j=1, 000,04 m 3
Also define h=vje+- -+, —¢  j=1,...,n+m (4)
Now, suppose we try to reduce H, by including a piece px;, for k >m and p positive. To preserve the
constraint we multiply (3) for j = k by p, which is still to be determined, and subtract from (1) to find
(1= pva)vr + (X2 — paUa + - - - + (X — PUpi )V + pU = b
Similarly from (2) and (4) the new value of H will be
(x1 = puw)er + (X2 = pvy)ca+ - - - + (X — PUpk)Crn + PCx = Hy — phy

The change will be profitable only if 4, >0. In this case it is optimal to make p as large as possible
without a coefficient x; — pv;, becoming negative. This suggests the choice

XX
p=min—=—
i U Up
the minimum being taken over terms with positive v, only. With this choice of p the coefficient of ¢,
becomes zero, the others are nonnegative, and we have a new extreme feasible point with H value

H{=H, —ph,

which is definitely smaller than H,. We also have a new basis, having exchanged the basis vector v, for
the new v,. The process is now repeated until all 4, are negative, or until for some positive 4, no vy is
positive. In the former case the present extreme point is as good as any adjacent extreme point, and it
can further be shown that it is as good as any other adjacent or not. In the latter case p may be
arbitrarily large and there is no minimum for H.
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Before another exchange can be made all vectors must be represented in terms of the new basis.
Such exchanges have already been made in our section on matrix inversion but the details will be
repeated. The vector v, is to be replaced by the vector v,. From

U=V 4 4 UV

we solve for v, and substitute into (3) to obtain the new representation

o ) ' ' ,
U =030+ U U UG U Ui T U0,

v, .
u,-,-——"v,-k for i #1
_ Ui

where vy =

— fori=1

Also, substituting for v, in (1) brings

X1+ A XU XY XUt A XY, = b
X .
xi—Ltu, fori#l
= Un
1=
where X; for =1
— ori=
Uik
Furthermore, a short calculation proves

vy
hi=vje,+ - +v,’,,,c,,,—c,»=h,—v—"hk
1k

and we already have H,=H, _h hy,
Uik

This entire set of equations may be summarized compactly by displaying the various ingredients as
follows:

X1 Un U - Ulaem

X2 Uz Uzn *°° Uzpum
Xm Umi Um2 Um,n+m
H n h, ot e

Calling vy the pivot, all entries in the pivot row are divided by the pivot, the pivot column becomes zero
except for a 1 in the pivot position, and all other entries are subjected to what was formerly called the
rectangle rule. This will now be illustrated in a variety of examples.

27.7. Solve Problem 27.1 by the simplex method.
After introducing slack variables, the constraints are
=X+ 2x,+ X3 =2
X1+ X, + X, =4
Xy +x5=3

with all five variables required to be nonnegative. Instead of maximizing x, —x; we will minimize
X1—X,. Such a switch between minimum and maximum problems is always available to us. Since the
origin is an extreme feasible point, we may choose x; =x,=0, x3=2, x, =4, x5 =3 to start. This is very
convenient since it amounts to choosing vs, v,, and vs as our first basis which makes all v; =a;. The
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starting display is therefore the following:

Basis b vy v, Us Uy Us
U, 2 -1 @ 1 0
U, 4 1 1 0 1 0
Us 3 1 0 0 0

0 -1 1 0 0 0

Comparing with the format in Problem 27.6, one finds the six vectors b and vy, . . . , vs forming the
top three rows, and the numbers H, hy, . . ., hs in the bottom row. Only 4, is positive. This determines
the pivot column. In this column there are two positive v,, numbers, but 2/2 is less than 4/1 and so the
pivot is vy, =2. This number has been circled. The formulas of the previous problem now apply to
produce a new display. The top row is simply divided by 2, and all other entries are subjected to the
rectangle rule:

Basis b v, v, Us vy Us
U, 1 —% 1 % 0 0
U, 3 % 0 —% 1 0
Us 3 1 0 0 0 1

-1 _% 0 ——% 0 0

The basis vector v, has been exchanged for v, and all vectors are now represented in terms of this
new basis. But more important for this example, no /; is now positive so the algorithm stops. The
minimum of x; —x, is —1 (making the maximum of x, —x, equal to 1 as before). This minimum is
achieved for x,=1, x,=3, xs=3 as the first column shows. The constraints then make x, =0, x;=0
which we anticipate since the x; not corresponding to basis vectors should always be zero. The results
x;=0, x, =1 correspond to our earlier geometrical conclusions. Notice that the simplex algorithm has
taken us from the extreme point (0, 0) of the set of feasible points to the extreme point (0, 1) which
proves to be the solution point. (See Fig. 27-1.)

Solve Problem 27.2 by the simplex method.

Slack variables and constraints are the same as in the previous problem. We shall minimize
H = —2x, — x,. The origin being an extreme point, we may start with this display:

Basis b v, U, I8 vy Us
v, 2 -1 2 1 0
v, 4 1 1 0 1
vs 3 @ 0 0 0
0 2 1 0 0 0

Both &, and h, are positive, so we have a choice. Selecting &, = 2 makes v,; the pivot, since 3/1 is
less than 4/1. This pivot has been circled. Exchanging vs for v, we have a new basis, a new extreme
point, and a new display.

v, | 5 0 2 1 0 1
ve | 1 0o @® o 1 -1
v, | 3 1 0 0 0 1

~6 0 1 0 0 -2
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27.9.

Now we have no choices. The new pivot has been circled and means that we exchange v, for v, with
the following result:

v, | 3 0 0 1 =2 3
v, | 1 0 1 0 1 -1
v, | 3 1 0 0 0 1

=7 0 0 0 -1 -1

Now no #; is positive, so we stop. The minimum is —7, which agrees with the maximum of 7 for
2x, + x, found in Problem 27.2. The solution point is at x, =3, x, =1 which also agrees with the result
found in Problem 27.2. The simplex method has led us from (0,0) to (3, 0) to (3, 1). The other choice
available to us at the first exchange would have led us around the feasible set in the other direction.

Solve Problem 27.3 by the simplex method.
With slack variables the constraints become
N=y2=ysty =1
2=y +ys=-1

all five variables being required to be positive or zero. This time, however, the origin (y, =y, =y;=0) is
not a feasible point, as Fig. 27-2 shows and as the enforced negative value y; = —1 corroborates. We
cannot therefore follow the starting procedure of the previous two examples based on a display such as
this:

Basis I b v, v, v, v, s
Uy 1 1 -1 -1 1 0
Us -1 -2 -1 0 0 1

The negative value ys=—1 in the b column cannot be allowed. Essentially our problem is that we do
not have an extreme feasible point to start from. A standard procedure for finding such a point, even for
a much larger problem than this, is to introduce an artificial basis. Here it will be enough to alter the
second constraint, which contains the negative b component, to

—2p—ytys—ys=—1

One new column may now be attached to our earlier display.

Basis I b v, U, v; U, Us Vg
A 1 1 -1 -1 1 0 0
s -1 -2 -1 0 o0 1 -1

But an extreme feasible point now corresponds to y,=ys=1, all other y, being zero. This makes it
natural to exchange v for v, in the basis. Only a few sign changes across the v, row are required.

Basis b v, v, Us Uy Us Us
U, 1 1 -1 -1 1 0 0
Vs 1 @) 1 0 0 -1

w 2W -2 w—-4 -3 0 -w 0

The last row of this starting display will now be explained.

Introducing the artificial basis has altered our original problem, unless we can be sure that y, will
eventually turn out to be zero. Fortunately this can be arranged, by changing the function to be
minimized from H = 2y, + 4y, + 3y, as it was in Problem 27.2 to

H* =2y, + 4y, + 3y, + Wy,
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where W is such a large positive number that for a minimum we will surely have to make ys equal to
zero. With these alterations we have a starting H value of W. The numbers 4, may also be computed and
the last row of the starting display is as shown.

We now proceed in normal simplex style. Since W is large and positive we have a choice of two
positive 4; values. Choosing 4, leads to the circled pivot. Exchanging v, for v, brings a new display from
which the last column has been dropped since v is of no further interest:

1 3 1
— _ — 1 -
vy 2 0 5 1 2
1 1 1
Wy 5 1 E 0 0 _E
1 0 -3 -3 0 -1

Since no 4; is positive we are already at the end. The minimum is 1, which agrees with our geometrical
conclusion of Problem 27.3. Moreover, from the first column we find y, = 3, y, = 3 with all other y; equal
to zero. This yields the minimum point (3, 0, 0) also-found in Problem 27.3.

27.10. Minimize the function H =2y, +4y,+3y; subject to the constraints y, - V2= 3= -2,

—2y1 —y, = —1, all y; being positive or zero.

Slack variables and an artificial basis convert the constraints to

Nn=y2=ystys — s ==2
—2y= ). +ys —-y,=-1

and much as in the preceding problem we soon have this starting display:

Basis b v, v, U3 Uy Vs Vs vy
Vs 2 -1 1 1 -1 0 1 0
v, 1 2 @ 0 0 -1 0

3w wW-2 2W -4 w-3 -w -w 0 0

The function to be minimized is
H* =2y, + 4y, + 3y, + Wys + Wy,

and this determines the last row. There are various choices for pivot and we choose the one circled. This
leads to a new display by exchanging v, for v, and dropping the v; column.

s 1 -3 0 @ -1 1 1
v, 1 2 1 0 0 -1 0
W+4  —3W+6 0 W-3 W W-4 0

A new pivot has been circled and the final display follows:

v, |1 -3 0 1 -1 1
v, | 1 2 1 0 0 -1
7 -3 0 0 -3 -1

The minimum of H* and H is 7, and it occurs at (0, 1, 1).
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THE DUALITY THEOREM
27.11. What is the duality theorem of linear programming?

27.12.

27.13.

Consider these two linear programming problems:

Problem A Problem B
¢"x = minimum y'b = maximum
xZ0 yZ0
AxZb y'A=cT

They are called dual problems because of the many relationships between them, such as the following:

1. If either problem has a solution then the other does also and the minimum of c¢’x equals the
maximum of y7b.

2. For either problem the solution vector is found in the usual way. The solution vector of the dual
problem may then be obtained by taking the slack variables in order, assigning those in the final basis
the value zero, and giving each of the others the corresponding value of —#;.

These results will not be proved here but will be illustrated using our earlier examples. The duality
makes it possible to obtain the solution of both Problems A and B by solving either one.

Show that Problems 27.1 and 27.3 are dual problems and verify the two relationships claimed
in Problem 27.11.

A few minor alterations are involved. To match Problems 27.1 and A we minimize x, — x, instead
of maximizing x, — x,. The vector ¢” is then (1, —1). The constraints are rewritten as

X - 2,22 —x —x,Z—4 -x,z-3
1 -2 -2
which makes A=] -1 -1 b=| -4
-1 0 -3

For Problem B we then have

-y = 1
T4A= [J’1 Y2 Y3:| = |: :|
Y —2n -y, -1

which are the constraints of Problem 27.3. The condition y"b = maximum is also equivalent to

y7(=b) =2y, + 4y, + 3y; = minimum

so that Problems 27.3 and B have also been matched. The extreme values for both problems proved to be
1, which verifies relationship 1 of Problem 27.11. From the final simplex display in Problem 27.7 we
obtain x” = (0, 1) and y” = (3, 0, 0) while from the computations of Problem 27.9 we find y” = (3, 0, 0)
and x” = (0, 1), verifying relationship 2.

Verify that Problems 27.2 and 27.10 are duals.

The matrix A and vector b are the same as in Problem 27.12. However, we now have
¢’ = (-2, —1). This matches Problem 27.2 with Problem A and Problem 27.10 with Problem B. The
final display of Problem 27.8 yields x” =(3, 1) and y” =(0,1, 1) and the same results come from
Problem 27.10. The common minimum of ¢”x and maximum of y7b is —7.
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SOLUTION OF TWO-PERSON GAMES
27.14. Show how a two-person game may be made equivalent to a linear program.

Let the payoff matrix, consisting of positive numbers a;, be

an G A4
A=lay ay axp

a3 Q3 as

by which we mean that when player R has chosen row i of this matrix and player C has (independently)
chosen column j, a payoff of amount a is then made from R to C. This constitutes one play of the game.
The problem is to determine the best strategy for each player in the selection of rows or columns. To be
more specific, let C choose the three columns with probabilities p,, p,, ps, respectively. Then

D1, D2, P53 =0 and pi+p.+ps=1
Depending on R’s choice of row, C now has one of the following three quantities for his expected
winnings:
Pi=anpi+anp,+anisps
Po=ayp,+app,+axyps
Py=aupi+anp,+anps

Let P be the least of these three numbers. Then, no matter how R plays, C will have expected winnings
of at least P on each play and therefore asks himself how this amount P can be maximized. Since all the
numbers involved are positive, so is P; and we obtain an equivalent problem by letting

X, = ‘% X2 —% X3 —%
I 1
and minimizing F=x;+x,+x;,= P

The various constraints may be expressed as x,, x,, x; =0 and

apx,+apx,+apx; =1
Ay X+ ApX, +apx, =1
A3 X+ ApXs +apx; 21

This is the type A problem of our duality theorem with ¢” =57 =(1, 1, 1).

Now look at things from R’s point of view. Suppose he chooses the three rows with probabilities g,
q2, g, Tespectively. Depending on C’s choice of column he has one of the following quantities as his
expected loss:

G101 + G202 + 305, = Q

G1812+ G202 + @24 = Q

1013+ @205 + @305, = Q
where Q is the largest of the three. Then, no matter how C plays, R will have expected loss of no more
than Q on each play. Accordingly he asks how this amount Q can be minimized. Since Q >0, we let

n= % Y= % Y3 =%
and consider the equivalent problem of maximizing

1
G=p+y,+y=—=

©



CHAP. 27] LINEAR PROGRAMMING 415

The constraints are y;, ¥,, ;=0 and
1811 + Yo + Y303, =1
Y1812+ Y02 + Y305, =1
V1813 + Yol + y3a33 =1

This is the type B problem of our duality theorem with ¢” = b” = (1, 1, 1). We have discovered that R’s
problem and C’s problem are duals. This means that the maximum P and minimum Q values will be the
same, so that both players will agree on the average payment which is optimal. It also means that the
optimal strategies for both players may be found by solving just one of the dual programs. We choose
R’s problem since it avoids the introduction of an artificial basis.

The same arguments apply for payoff matrices of other sizes. Moreover, the requirement that all a;
be positive can easily be removed since, if all a; are replaced by a; +a, then P and Q are replaced by
P +a and Q + a. Thus only the value of the game is changed, not the optimal strategies. Examples will
now be offered.

27.15. Find optimal strategies for both players and the optimal payoff for the game with matrix
012

A=11 0 1

120

Instead we minimize the function —G = —y, — y, — y; subject to the constraints

Yot Y3t ya =1
Y1 +2y; +s =1
2y +y2 +ys=1

all y; including the slack variables y,, ys, ys being nonnegative. Since the origin is an extreme feasible
point, we have this starting display:

Basis b v, Vs Vs V4 Us Vs
v, 1 0 1 1 1 0 0
Us 1 1 0 2 0 1 0
Ve 1 ® 1 0 0 0

0 1 1 1 0 0 0

Using the indicated pivots we make three exchanges as follows:

v, 1 0 1 1 1 0 0
1 1 1
~ 0 — _

Us 2 2 @ 0 ! 2
1 1 1
= 1 = 0 0 0 =

v 2 2 2
1 1 1

—r 0 - —
2 2 1 0 0 >
3 5 1 1

Uy Z 0 Z 0 1 _E Z
1 1 1 1

Vs Z 0 _Z 1 0 5 _Z
1 1 1

U, E 1 5 0 0 0 E
3 3 1 1

3 0 3 0 L
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v 3 _ _ _
2 5
ol 2 -
: 5
v 1 _ _ _ _
' 5
6 3 1 2
- 0 0 0 -= - -=
5 5 5 5

From the final display we deduce that the optimal payoff, or value of the game, is 2. the optimal strategy
for R can be found directly by normalizing the solution y, =%, y, =3, y; = 2. The probabilities q,, g,, g»
must be proportional to these y; but must sum to 1. Accordingly,
=1 3 2
91 6 9= 6 qs = 3

To obtain the optimal strategy for C we note that there are no slack variables in the final basis so that
putting the —#; in place of the (nonbasis) slack variables,

Il
=N SRV 1 ¥}

Normalizing brings p=g p2=

If either player uses the optimal strategy for mixing his choices the average payoff will be 3. To make the
game fair, all payoffs could be reduced by this amount, or C could be asked to pay this amount before
each play is made.

27.16. Find the optimal strategy for each player and the optimal payoff for the game with matrix

0 3 4
A=(1 2 1
4 30

Notice that the center element is both the maximum in its row and the minimum in its column. It is
also the smallest row maximum and the largest column minimum. Such a saddle point identifies a game
with pure strategies. The simplex method leads directly to this result using the saddle point as pivot. The
starting display is as follows:

Basis b v Uy U3 A Us Vs
vy 1 0 1 4 1 0 0
Us 1 3 @ 3 0 1 0
Vg 1 1 0 0 0 1

One exchange is sufficient:

1
Uy 5 —_ — —_— —_— — —
1
(3 E — —_— —_— — — -
1
Ve E - - - —_ — —_—
1 1 1 1
2 2 0 "2 0 2 0
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27.17.

27.18.

27.19.

27.20.

27.21.

27.22.

27.23.

27.24.

27.25.

The optimal payoff is the negative reciprocal of —3, that is, the pivot element 2. The optimal strategy for
R is found directly. Since y, =0, y, =3, y; =0, we normalize to obtain the pure strategy
9:=0 q.=1 q:=0

Only the second row should ever be used. The strategy for C is found through the slack variables. Since
v, and vg are in the final basis we have x, =x,=0, and finally x, = —hs=3%. Normalizing, we have
another pure strategy

Supplementary Problems

Make a diagram showing all points which satisfy the following constraints simultaneously:

0=x, 0=x, X, +2x,=4 —x,tx=1 x+x,=3

What are the five extreme feasible points for the previous problem? At which extreme point does
F =x,—2x, take its minimum value and what is that minimum? At which extreme point does this
function take its maximum value?

Find the minimum of F = x, — 2x, subject to the constraints of Problem 27.17 by applying the simplex
method. Do you obtain the same value and the same extreme feasible point as by the geometrical
method?

What is the dual of Problem 27.19? Show by using the final simplex display obtained in that problem
that the solution of the dual is the vector y, =4, y,=%, y;=0.

Find the maximum of F = x, — 2x, subject to the constraints of Problem 27.17 by applying the simplex
method. (Minimize —F.) Do you obtain the same results as by the geometrical method?

What is the dual of Problem 27.21? Find its solution from the final simplex display of that problem.

Solve the dual of Problem 27.19 directly by the simplex method, using one extra variable for an artificial
basis. The constraints should then read

ity Yty =1
“2p =)=y tYs—Ye=-2
with y, and ys the slack variables. The function H = 4y, +y,+ 3y, is to be minimized. From the final
display recover both the solution of the dual and of Problem 27.19 itself.

Minimize F = 2x, + x, subject to the constraints

3, +x,23 4x, +3x,26 X+ 2,22

all x; being nonnegative. (The solution finds x, =3, x,=$.

Show geometrically that for a minimum of F = x, — x, subject to the constraints of Problem 27.17 there
will be infinitely many solution points. Where are they? Show that the simplex method produces one
extreme solution point directly and that it also produces another if a final exchange of v, and v, is made
even though the corresponding #; value is zero. The set of solution points is the segment joining these
extreme points.
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27.26.

27.21.

27.29.

27.30.

27.31.

27.32.

27.33.
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Minimize F = x, + x, subject to the constraints

2%, 4+ 2x,+ x3,=7 Xs +x,21
2+ x,+2x3=4 Xo+x3+x,=3

all x; being nonnegative. (The minimum is zero and it occurs for more than one feasible point.)

Find optimal strategies and payoff for the game

a=ls 3]

using the simplex method. [The payoff is 2.5, the strategy for R being (3, 3) and that for C being (3, 2).]

. Solve the game with matrix

0 3 -4
A= 3 0 5
-4 5 0

showing the optimal payoff to be ¥, the optimal strategy for R to be (&, %, &%), and that for C to be the
same.

Solve the following game by the simplex method:

0o 0 1 1
1 1 -2 =2
A=
1 -2 1 -2
-2 3 -2 3

Find the min-max cubic polynomial for the following function. What is the min—max error and where is
it attained?

X -2 -1.5 -1 -.5 0 ) 1 1.5 2

yx) | 5 5 4 2 1 3 7 0 12

Find the min—-max quadratic polynomial for

1

y(X)=m x=0(.01)1

as well as the min—max error and the arguments at which it is attained.

What is the result of seeking a cubic approximation to the function of the preceding problem? How can
this be forecast from the results of that problem?
Maximize x, — x, + 2x; subject to

X1+ x,+ 3+ x, =5
X1 + x3—4x,=2

and all x, 0.

. Solve the dual of the preceding problem.
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27.36.

27.31.
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Maximize 2x; + x, subject to
X=X, =2 X +x,26 X +2,=A

and all x, 2 0. Treat the cases A =0, 3, 6, 9, 12.

Use linear programming to find optimum strategies for both players in the following game:

[ ]
4 -2
Solve as a linear program the game with payoff matrix

sl

419



Chapter 28

Overdetermined Systems

NATURE OF THE PROBLEM

An overdetermined system of linear equations takes the form
Ax=b

the matrix A having more rows than columns. Ordinarily no solution vector x will exist, so that the
equation as written is meaningless. The system is also called inconsistent. Overdetermined systems
arise in experimental or computational work whenever more results are generated than would be
required if precision were attainable. In a sense, a mass of inexact, conflicting information becomes a
substitute for a few perfect results and one hopes that good approximations to the exact results can
somehow be squeezed from the conflict.

TWO METHODS OF APPROACH
The two principal methods involve the residual vector

R=Ax-b
Since R cannot ordinarily be reduced to the zero vector, an effort is made to choose x in such a way

that r is minimized in some sense.

1. The least-squares solution of an overdetermined system is the vector x which makes the sum
of the squares of the components of the residual vector a minimum. In vector language we
want

R”R = minimum

For m equations and n unknowns, with m > n, the type of argument used in Chapter 21
leads to the normal equations

(ay, a)xy + - - + (a1, a,)x, = (a;, b)

(an, a)x; + - - + (an, @0)x, = (a,, b)
which determine the components of x. Here
(@i @) =aya;+ - -+ a,,0,,
is the scalar product of two column vectors of A.

2. The Chebyshev or min-max solution is the vector x for which the absolutely largest
component of the residual vector is a minimum. That is, we try to minimize

r=max (|, ..., |r)
where the r, are the components of R. For m =3, n =2 this translates into the set of
constraints
ayx;+apx,— b =r —apX;—apx,+ b =r
Ay Xy + apx,— by =7 —ayX;—apx,+b,=r
a3 X1+ anx, —b;=r ~a3;X; = Anpx, + by =r

with 7 to be minimized. This now transforms easily into a linear programming problem.
Similar linear programs solve the case of arbitrary m and n.

420
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Solved Problems

LEAST-SQUARES SOLUTION

28.1. Derive the normal equations for finding the least-squares solution of an overdetermined
system of linear equations.
Let the given system be
apx,+apx;=b,
anxi+anx,=b,
A3X; + 5%, = bs
This involves only the two unknowns x, and x, and is only slightly overdetermined, but the details for

larger systems are almost identical. Ordinarily we will not be able to satisfy all three of our equations.
The problem as it stands probably has no solution. Accordingly we rewrite it as

apx;+apx,—by=n
anxitapx,—ba=n,
anx,+anx;—bs=r

the numbers r,, 7,, r; being called residuals, and look for the numbers x,, x, which make r?+r3+r3
minimal. Since

4+ ri=(al + a3+ a3)x] + (ahh + ak + a3)x3 + 2(a1,812 + 02102 + A3185)X,1X,
—2(anb, + axb, + asba)x; — 2(apb, + anb, + anbs)x, + (b3 + b3+ b3)
the result of setting derivatives relative to x, and x, equal to zero is the pair of normal equations
(ay, a)x, + (ay, az)x, = (a,, b)
(a2, a)x, + (8, ax)x, = (a, b)
in which the parentheses denote
(a1, @) = ai, + a3 + a5, (a1, 82) =010, + ax8x + a3,8;5,

and so on. These are the scalar products of the various columns of coefficients in the original system, so
that the normal equations may be written directly. For the general problem of m equations in n
unknowns (m >n),

ayx,+---+a,x,=b,
Qyxi+ - +axx,=b,
X1+ +a,,x,=b,
an almost identical argument leads to the normal equations
(ar, a)x, +(ay, a)x, + - - -+ (ay, a,)x, = (a1, b)
(a2, a)x1 + (a3, a2)x, + - - - + (82, a,)x, = (a2, b)

(@n, @)1 + (a5, @2)xo+ - - - + (4, a,)x, = (a5, b)

This is a symmetric, positive definite system of equations.

It is also worth noticing that the present problem again fits the model of our general least-squares
approach in Problems 21.7 and 21.8. The results just obtained follow at once as a special case, with the
vector space E consisting of m-dimensional vectors such as, for instance, the column vectors of the
matrix A which we denote by a,, a,, . . ., a, and the column of numbers b; which we denote by b. The
subspace S is the range of the matrix A, that is, the set of vectors Ax. We are looking for a vector p in §



422 OVERDETERMINED SYSTEMS [CHAP. 28

which minimizes

lp =bif=1Ax=bIP =3 r}
and this vector is the orthogonal projection of b onto S, determined by (p — b, u,) =0, where the u, are
some basis for §. Choosing for this basis u, =a,, k=1,...,n, we have the usual representation

p=x1a;+" - +x,a, (the notation being somewhat altered from that of our general model) and
substitution leads to the normal equations.

28.2. Find the least-squares solution of this system:

xl‘szz
X, +x,=4
2%, +x,=8

Forming the required scalar products, we have
6x,+2x,=22 2%, +3x,=10

for the normal equations. This makes x, = 2 and x, = &. The residuals corresponding to this x, and x, are
rn=3% rn=3% and ;= —3, and the sum of their squares is 2. The root-mean-square error is therefore
p= \/2:2l This is smaller than for any other choice of x, and x,.

28.3. Suppose three more equations are added to the already overdetermined system of Problem

28.2:
X +2x,=4
2x1—x,=5
X1—2x,=2

Find the least-squares solution of the set of six equations.

Again forming scalar products we obtain 12x; =38, 12x,=9 for the normal equations, making

x1="%, x,=13. The six residuals are 5, — 1, =11, 8,7, and —4, all divided by 12. The RMS error is
23
pP=Va.

28.4. In the case of a large system, how may the set of normal equations be solved?

Since the set of normal equations is symmetric and positive definite, several methods perform very
well. The Gauss elimination method may be applied, and if its pivots are chosen by descending the main
diagonal then the problem remains symmetric to the end. Almost half the computation can therefore be
saved.

CHEBYSHEV SOLUTION
28.5. Show how the Chebyshev solution of an overdetermined system of linear equations may be
found by the method of linear programming.

Once again we treat the small system of Problem 28.1, the details for larger systems being almost
identical. Let r be the maximum of the absolute values of the residuals, so that |r,| v, |r| S, || =7
This means that r; =r and —r, =7, with similar requirements on r, and r;. Recalling the definitions of the
residuals we now have six inequalities:

apx,+apx,— b =r —apx,—apx,+b,=r
Ay X+ apx,—b,=r — X, — X, + by =7

AyXx;+apx, —bs=r —A3X, —ApX, + by =7
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If we also suppose that x, and x, must be nonnegative, and recall that the Chebyshev solution is defined
to be that choice of x;, x, which makes » minimal, then it is evident that we have a linear programming
problem. It is convenient to modify it slightly. Dividing through by r and letting x,/r =y, x,/r =y,,
1/r =y, the constraints become

apy+apy,—biy:=1 —auy,—apy:+by; =1
an1+any,—by;=1 —anyi—any:+ by =1
ayy,tany,—byy: =1 —ayy,—any, +bsy; =1
and we must maximize y; or, what is the same thing, make F = — y, = minimum. This linear program

can be formed directly from the original overdetermined system. The generalization for larger systems is
almost obvious. The condition that the x; be positive is often met in practice, these numbers representing
lengths or other physical measurements. If it is not met, then a translation z; = x; + ¢ may be made, or a
modification of the linear programming algorithm may be used.

28.6. Apply the linear programming method to find the Chebyshev solution of the system of
Problem 28.2.

Adding one slack variable to each constraint, we have

V1= V2= 2ys+ Y, =1
Vity2—4y; +ys =1
2y + 5= 8y; +Ys =1
Nty +2y +y =1
Nyt 4y + s =1
—2y1—y, +8y; +y=1
with F = —y, to be minimized and all y; to be nonnegative. The starting display and three exchanges

following the simplex algorithm are shown in Fig. 28-1. The six columns corresponding to the slack

Basis b U, v, U, Basis b N U2 Us
v, 1 1 -1 -2 v, s @ -5 o
s 1 1 1 —4 s 3 0 1 0
Ve 1 2 1 -8 e 2 0 0 0
v 1 -1 1 2 v 2 -1 5 0
g 1 -1 -1 4 s 1 0 -1 0
w [ -2 4 A R

0 0 0 1 -1 H L0

Basis b v, Uy U, Basis b vy Uy Vs
v, 3 1 -3 0 v, 10 1 0 0
s 3 0 @ o v, 3 0 1 0
Vs 2 0 0 0 Vs 2 0 0 0
v, 2 0 0 0 v, 2 0 0 0
Vs 1 0 -1 0 vg 2 0 0 0
U3 3 0 -3 1 v 3 0 0 1

-3 0 3 0 -3 0 0 0
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variables are omitted since they actually contain no vital information. From the final display we find
y1 =10 and y, = y; = 3. This makes r = 1/y; =} and then x, =%, x, = 1. The three residuals are 3, 3, — 3
so that the familiar Chebyshev feature of equal error sizes is again present.

Apply the linear programming method to find the Chebyshev solution of the overdetermined
system of Problem 28.3.

The six additional constraints bring six more slack variables, yio, . . . , y15. The details are very much
as in Problem 28.6. Once again the columns for slack variables are omitted from Fig. 28-2, which
summarizes three exchanges of the simplex algorithm. After the last exchange we find y, =%, y, =1,
ys=% Sor=3and x,=%, x,=3. The six residuals are 2, 0, -3, 3, 3, and ~1, all divided by 4. Once
again three residuals equal the min-max residual 7, the others now being smaller. In the general
problem 7 + 1 equal residuals, the others being smaller, identify the Chebyshev solution, n being the
number of unknowns.

Basis b U, v, Vs Basis b v, U, U;
v, 1 1 -1 -2 v, H 2 -3 0
s 1 1 1 -4 vs 2 0 ! 0
Us 1 2 1 -8 Vg 2 0 0 0
v, 1 -1 1 2 v, 3 -1 3 0
g 1 -1 -1 4 vg 1 0 -1 0
Uy 1 -2 -1 U 1 -1 -1 1
Uy 1 1 2 -4 vy 3 0 3 0
vy 1 2 -1 =5 vy B -2 0
V2 1 1 -2 -2 Uiz 3 3 -3 0
Vs 1 -1 -2 4 U3 i 0 -3 0
Vi 1 -2 1 5 Ui i -3 2 0
s 1 -1 2 2 Ui i -3 3 0

0 0 0 1 -3 i 5 0

Basis b Uy v, Us Basis b Uy v, Us
U, i 0 -1 0 v, H 0 0 0
s 3 0 1 0 s 1 0 0 0
e 2 0 0 0 Ve 2 0 0 0
v, 1 0 1 0 v, H 0 0 0
Uy H 0 -3 0 vg 1 0 0 0
Us 3 0 -3 1 U3 3 0 0 1
V1o 3 0 0 v, 1 0 1 0
v, L 1 -1 0 v, L 1 0 0
Vi 1 0 -1 0 Ui 4 0 0 0
g 3 0 -3 0 U1 2 0 0 0
Via 2 0 0 0 Vi 2 0 0 0
Uis %1 0 % 0 VUis % 0 0 0
2z 9 i 0 -4 0 0 0

Fig. 28-2

28.8. Compare the residuals of least-squares and Chebyshev solutions.

For an arbitrary set of numbers x,, . .., x, let |r|n., be the largest residual in absolute value. Then
ri+ -+ 7, =m|r[hx so that the root-mean-square error surely does not exceed |rlm.. But the
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least-squares solution has the smallest RMS error of all, so that, denoting this error by p, p.= |F|me. In
particular this is true when the x; are the Chebyshev solution, in which case ||, is what we have been
calling r. But the Chebyshev solution also has the property that its maximum error is smallest, so if
|P]max denotes the absolutely largest residual of the least-squares solution, |r|mex = |plmax- Putting the two
inequalities together, p =r = |p|ma.x and we have the Chebyshev error bounded on both sides. Since the
least-squares solution is often easier to find, this last result may be used to decide if it is worth
continuing on to obtain the further reduction of maximum residual which the Chebyshev solution brings.

28.9. Apply the previous problem to the systems of Problem 28.2.

We have already found p=VZ, r=1, and |p|m = % which do steadily increase as Problem 28.8
suggests. The fact that one of the least-squares residuals is three times as large as another already
recommends the search for a Chebyshev solution.

28.10. Apply Problem 28.8 to the system of Problem 28.3.

We have found p = \/3——%, r=3, and |0}max = %. The spread does support a search for the Chebyshev
solution.

Supplementary Problems

28.11. Find the least-squares solution of this system:
X —x;=-—1 2, —x,=2
X +x,=8 2 +x,=14

Compute the RMS error of this solution.
28.12. Compare | |max With p for the solution found in Problem 28.11.
28.13. Find the Chebyshev solution of the system in Problem 28.11 and compare its r value with p and |p|max-

28.14. Find both the least-squares and Chebyshev solutions for this system:
Xt Xx;—x3= 5 X +2,—2x;=1
2, = 3x+x3=—4 dx;— x;— x;=6

28.15. Suppose it is known that —1=x;. Find the Chebyshev solution of the following system by first letting
z;=x; + 1 which guarantees 0= z,. Also find the least-squares solution.

20, — 20+ x3+2x,=1 —2x;—2x,+3x;+3x,=4
X+ x,+ 2 +4x,=1 —x;— 3%, —3x3+ x,=3
X;—= 3%+ x3+2x,=2 2, +4x,+ x;+5x,=0

28.16. Find the least-squares solution of this system:
x, =0 xnt+ x,=-1
x,=0 x4+ 1x,= 01
What is the RMS error?

28.17. Find the Chebyshev solution of the system in Problem 28.16.



426

28.18

28.19

28.20.

28.21.

28.22

28.23.

OVERDETERMINED SYSTEMS [CHAP. 28

Four altitudes x,, x,, x3, x, are measured, together with the six differences in altitude, as follows. Find
the least-squares values.

x,=3.47 x,=2.01 x3=1.58 xa=.43
X, —Xx,=1.42 x;—x3=192 x;—x,=23.06 X;—x3=.44
X;—x4=153 X3 —x,=120
A quantity x is measured N times, the results being a,, a,, . . . , ay. Solve the overdetermined system
x=a; i=1,...,N

by the least-squares method. What value of x appears?

Two quantities x and y are measured, together with their difference x —y and sum x +y.
x=A y=B x—-y=C x+y=D
Solve the overdetermined system by least-squares.
The three angles of a triangle are measured to be A;, 4,, A;. If x,, x,, x5 denote the correct values, we
are led to the overdetermined system
X, =A, X, =A, T —X1—X;=A;
Solve by the method of least-squares.
The two legs of a right triangle are measured to be A and B, and the hypotenuse to be C. Let L,, L,,
and H denote the exact values, and let x, = L}, x, = L3. Consider the overdetermined system
x, = A? x,=B? X t+x,=C*

and obtain the least-squares estimates of x; and x,. From these estimate L,, L,, and H.

Verify that the normal equations for the least-squares solution of Ax = b are equivalent to A7A = A7b.



Chapter 29

Boundary Value Problems

NATURE OF THE PROBLEM

This is a subject that runs wide and deep. Volumes could be filled with its variations and
algorithms. This chapter can offer only a sampling of the many ideas that have been brought to bear
on it. This means that the coverage is, of necessity, supetficial, but the alternative of omission
seemed totally unacceptable.

A boundary value problem requires the solution of a differential equation, or system of
equations, in a region R, subject to additional conditions on the boundary of R. Applications
generate a broad variety of such problems. The classical two-point boundary value problem of
ordinary differential equations involves a second-order equation, an initial condition, and a terminal
condition.

y'=fxyy" y@=A y(b)=8

Here the region R is the interval (a, b) and the boundary consists of the two endpoints. A typical
problem of partial differential equations is the Dirichlet problem, which asks that the Laplace
equation

U.+U,=0
be satisfied inside a region R of the xy plane and that U(x, y) take specified values on the boundary
of R. These examples suggest two important classes of boundary value problems.

SOLUTION METHODS
1. The superposition principle is useful for linear problems. For example, to solve

y'=qx)y y@)=A4 y(b)=8

one could use the methods of Chapter 19 to solve the two initial value problems
yi=q(n yla)=1 yi(b)=0
y3=q(x) y2(a)=0 yb)=1

after which y(x) = Ayi(x) + Byx(x)

2. Replacement by a matrix problem is also an option when the problem is linear. For
example, replacing y”(x,) by a second difference converts the equation y” = g(x)y into the
difference equation

Vi1 = 2+ Eq)ye + Y1 =0

which is required to hold for k=1, ..., n corresponding to the arguments x4, . . ., x,. With
Yo=A and y,,;=B; we then have a linear system of order n, producing approximate y
values at the listed arguments.

Similarly, the Laplace equation U,, + U,, = 0 converts to the difference equation

U(x,y)=i[U(x—h,y) +U(x+h,y)+ U,y —h)+U(x,y +h)]

which makes each value the average of its four neighbors in the square lattice of points
X =Xo+ mh, y, =y, + nh. Writing this equation for each interior lattice point produces a
linear system of order N, where N is the number of such points. The idea can be adapted to
other equations, to regions with curved boundaries, and to more dimensions. Convergence
to the correct solution can be proved under fairly broad circumstances.

427
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The classic diffusion problem
=T T, 0=T1,1)=0 T(x,0)=f(x)

also responds to the finite difference treatment. The equation is to be satisfied inside the
semi-infinite strip 0=x =1, 0=r. On the boundaries of the strip, T is prescribed. There is a
well-known solution by Fourier series, but finite differences are useful for various
modifications. Replacing derivatives by simple differences, the above equation becomes

Trps1= AT 10+ (1 =20) T + AT 1

with x,, =mh, t, =nk, and A =k/h* A rectangular lattice of points thus replaces the strip.
In the form given, the difference equation allows each T value to be computed directly from
values at the previous time step, with the given initial values f(x,,) triggering the process.
For proper choices of # and k, tending to zero, the method converges to the true solution.
However, for small k£ the computation is strenuous and numerous variations have been
proposed for reducing the size of the job.

The garden hose method offers an intuitive approach to the classic two-point boundary value
problem. We first solve the initial value problem

Y'=fxyy) y(a)=A y'(@=M
for some choice of M. The terminal value obtained will depend upon the choice of M. Call it
F(M). Then what we want is that F(M) = B. This is a problem similar to the root-finding
problems of Chapter 25 and can be solved by similar methods. Successive approximations to
M are found, each one bringing a new initial value problem. As with root finding, there are
several ways for choosing the corrections to M, including a Newton-type method.

F(M\)-B
F'(My)
The calculus of variations establishes the equivalence of certain boundary value problems

with problems of optimization. To find the function y(x) which has y(a) = A and y(b) =B
and also makes

My=M, -

b

[ F(x,y,y")dx

a
a minimum (or maximum), one may solve the Euler equation

d
E=35

subject to the same boundary conditions. There are also direct methods, such as the Ritz
method, for minimizing the integral, which may, therefore, be considered as methods for

solving the Euler equation with its boundary conditions.
For the Laplace equation a corresponding minimization problem is

jj (U2 + U?) dx dy = minimum

with the double integral being taken over the region R of the boundary value problem.
For the Poisson equation U,, + U,, = K, the appropriate optimization problem is

1
j[ [i 2+ Uy + KU] dx dy = minimum

The finite element method is a powerful procedure for direct solution of optimization
problems. The region R is subdivided into basic pieces (triangles, squares, etc. for a
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“two-dimensional R) and a solution element is associated with each piece. For instance, over
a set of basic triangles one might choose a set of plane triangular elements, joined to form a
continuous surface. The vertical coordinates of the corners of these elements become the
independent variables of the optimization. Partial derivatives relative to these variables are
developed and equated to zero. The resulting system of equations must then be solved.

Infinite series provide solutions for many classic problems. They are a development of the
superposition principle. Fourier series and their various generalizations are prominent.

Solved Problems

LINEAR ORDINARY DIFFERENTIAL EQUATIONS

29.1.

29.2.

Find a solution of the second-order equation

L(y)=y"(x) = p(x)y’(¥) = q(x)y(x) = r(x)
satisfying the two boundary conditions

cuy(@) +cpy(b)+ey'(a) tewy'(b)=A

cuy(a) +cny(d) +cny'(a) +cuy'(b)=8
With linear equations, we may rely upon the superposition principle which is used in solving
elementary examples by analytic methods. Assuming that elementary solutions cannot be found for the

above equation, the numerical algorithms of an earlier chapter (Runge-Kutta, Adams, etc.) may be
used to compute approximate solutions of these three initial value problems for a=x =b.

L(y)=0 L(y)=0 L(Y) =r(x)
»a)=1 y(a)=0 Y(a)=0
yi(a)=0 yya)=1 Y'(a)=0

The required solution is then available by superposition,

y(x) = Cyy(x) + Coya(x) + Y(x)

where to satisfy the boundary conditions we determine C, and C, from the equations

[c11 + capi(b) + cayi(B)]C1 + [c13 + Claya(b) + clays(b)]Co= A — 1. Y (D) — ¢, Y' (D)
[c21 + caayilb) + 20y 1(B)IC1 + [Cas + €22 ya(b) + €24 Y3(D)]Ca= B — ¢, Y (b) ~ 24 Y' (b)

In this way the linear boundary value problem is solved by our algorithms for initial value problems. The
method is easily extended to higher-order equations or to linear systems. We assume that the given
problem has a unique solution and that the functions y,, y,, etc., can be found with reasonable accuracy.
The equations determining C;, C,, etc., will then also have a unique solution.

Show how a linear boundary value problem may be solved approximately by reducing it to a
linear algebraic system.

Choose equally spaced arguments x; =a + jh with xo=a and x5, =b. We now seek to determine
the corresponding values y; = y(x;). Replacing y"(x;) by the approximation

" Vs =2+ Y-
y (xf)z;hz’——”

Yir1r T Yi-1

and y'(x;) by Y ="
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29.3.

29.4.

BOUNDARY VALUE PROBLEMS [CHAP. 29

the differential equation L(y) =r(x) of Problem 29.1 becomes, after slight rearrangement,

7

1 1
(1 N Ehpi)y,fl +(=2+h7q))y + (1 * Ehpf)%n =hm

If we require this to hold at the interior points j=1,..., N, then we have N linear equations in the N
unknowns y, . . . , yn, assuming the two boundary values to be specified as y, = y(a) = A, yva=y(b)=
B. In this case the linear system takes the following form:

Biyi+ vy =h’r— oA

@yt By + vays =h’n,

@Y+ Bayst+ vaya=h'rs

anyn-1+ BrYa=Hory — ynb

1 1
where oz,=1—§hp,- Bi=-2+hg; y,-=1+§hpj
The band matrix of this system is typical of linear systems obtained by discretizing differential boundary
value problems. Only a few diagonals are nonzero. Such matrices are easier to handle than others which
are not so sparse. If Gaussian elimination is used, with the pivots descending the main diagonal, the
band nature will not be disturbed. This fact can be used to abbreviate the computation. The iterative
Gauss—Seidel algorithm is also effective. If the more general boundary conditions of Problem 29.1 occur
these may also be discretized, perhaps using

' Yi=Y YN+1 "IN

=" (b)Y~ TN
y'(a) 7 y'(b) h
This brings a system of N + 2 equations in the unknowns y,, . . ., YN+1-
In this and the previous problem we have alternative approaches to the same goal. In both cases the
output is a finite set of numbers y;. If either method is reapplied with smaller #, then hopefully the larger
output will represent the true solution y(x) more accurately. This is the question of convergence.

Show that for the special case
y'+y=0 y(0)=0 y)=1
the method of Problem 29.2 is convergent.
The exact solution function is y(x) = (sin x)(sin 1). The approximating difference equation is
Via+ (=24 By + 55, =0

and this has the exact solution
_sin (ax;/h)

%™ sin (a/h)
for the same boundary conditions y, =0, yy.;= 1. Here x; = jh and cos a = 1 — 3h® These facts may be
verified directly or deduced by the methods of our section on difference equations. Since lim (a/h)is 1
for h tending to zero, we now see that lim y; = y(x;), that is, solutions of the difference problem for
decreasing h converge to the solution of the differential problem. In this example both problems may be
solved analytically and their solutions compared. The proof of convergence for more general problems
must proceed by other methods.

Ilustrate the reduction of a linear differential eigenvalue problem to an approximating
algebraic system.

Consider the problem

y'+2y=0 y(0)=y(1)=0
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This has the exact solutions y(x)=Csinnax, for n=1,2,... . The corresponding eigenvalues are
A, =n*x Simply to illustrate a procedure applicable to other problems for which exact solutions are
not so easily found, we replace this differential equation by the difference equation

Vi1t ( -2+ A‘hz)YJ + Y= 0

Requiring this to hold at the interior points j=1,..., N, we have an algebraic eigenvalue problem
Ay = Ah*y with the band matrix
-2 1
1 -2 1
A= 1 -2
.................. 1
1 -2
all other elements being zero, and y” = (y,, . . ., y~). The exact solution of this problem may be found
to be
4 . ,nmh

y;=Csinnmx;  with  A,= RS 5

Plainly, as 4 tends to zero these results converge to those of the target differential problem.

NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS
29.5. What is the garden-hose method?

Given the equation y”=f(x, y, y'), we are to find a solution which satisfies the boundary conditions
y(@)=4, y(b)=B.
One simple procedure is to compute solutions of the initial value problem

y'=fCyy") y@)=A y(@=M

for various values of M until two solutions, one with y(b) < B and the other with y(b) > B, have been
found. If these solutions correspond to initial slopes of M, and M,, then interpolation will suggest a new
M value between these and a better approximation may then be computed (see Fig. 29-1). Continuing
this process leads to successively better approximations and is essentially the regula falsi algorithm used
for nonlinear algebraic problems. Here our computed terminal value is a function of M, say F(M), and
we do have to solve the equation F(M) = B. However, for each choice of M the calculation of F(M) is
no longer the evaluation of an algebraic expression but involves the solution of an initial value problem
of the differential equation.

Mz 1

M,

Fig. 29-1

29.6. How may the garden-hose method be refined?

Instead of using the equivalent of regula falsi, we may adapt Newton’s method to the present
problem, presumably obtaining improved convergence to the correct M value. To do this we need to
know F'(M). Let y(x, M) denote the solution of

y'=fGxyy) y@)=A y(@=M
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and for brevity let z(x, M) be its partial derivative relative to M. Differentiating relative to M brings
Z'=f,0, 90z + 5%y, y)2 ()
if we freely reverse the orders of the various derivatives. Also differentiating the initial conditions, we
have
z(a, M)=0 z'(a, M)=1
Let M, be a first approximation to M and solve the original problem for the approximate solution
y(x, M,). This may then be substituted for y in equation (I) and the function z(x, M;) computed. Then
F'(M) =z(b, M,). With this quantity available the Newton method for solving F(M) — B = 0 now offers
us the next approximation to M:

F(M)-B

M,=M, -
2 1 F’(Ml)

With this M, a new approximation y(x, M,) may be computed and the process repeated. The method
may be extended to higher-order equations or to systems, the central idea being the derivation of an
equation similar to (1), which is called the variational equation.

OPTIMIZATION

29.7.

29.8.

29.9.

Reduce the problem of maximizing or minimizing [%F(x, y, y')dx to a boundary value
problem.

This is the classical problem of the calculus of variations. If the solution function y(x) exists and has
adequate smoothness, then it is required to satisfy the Euler differential equation F, = (d/dx)F,. If
boundary conditions such as y(a) = A, y(b) = B are specified in the original optimization problem, then
we already have a second-order boundary value problem. If either of these conditions is omitted, then
the variational argument shows that F.=0 must hold at that end of the interval. This is called the
natural boundary condition.

Minimize [} (y*+ y'?) dx subject to y(0) = 1.

The Euler equation is 2y =2y" and the natural boundary condition is y’(1) = 0. The solution is now
easily found to be y = cosh x — tanh 1 sinh x and it makes the integral equal to tanh 1, which is about .76.
In general the Euler equation will be nonlinear and the garden-hose method may be used to find y(x).

Illustrate the Ritz method of solving a boundary value problem.
The idea of the Ritz method is to solve an equivalent minimization problem instead. Consider
y'=—x y(0)=y(1)=0

sometimes called a Poisson problem in one variable, but in fact requiring only two integrations to
discover the solution
3
x’)

_x(1-
Y ==

Methods are available for finding an equivalent minimization problem for a given boundary problem,
but here one is well known.

J(y)= J: [% (y)*-— xzy] dx = minimum

The Euler equation for this integral proves to be our original differential equation.
To approximate the solution by the Ritz method, we need a family of functions satisfying the
boundary conditions. Suppose we choose

P(x) =cx(1-x)

which is probably the simplest such family for this problem. Substituting ¢ for y in the integral, an easy
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calculation yields

1$)=%-=f()

which we minimize by setting f’(c) = 0. The resulting ¢ = 3 gives us the approximation
9(:) = x(1 )
=—x(1-x
20
which is compared with the true solution in Fig. 29-2. More accurate approximations are available
through the use of a broader family of approximating functions, perhaps
O(x)=x(1=x)(co+C1x + X’ + -+ - +¢,x")

leading to a linear system for determining the coefficients ¢;. The central idea of the Ritz method is the
search for the optimum function among members of a restricted family ¢(x), rather than among all y(x)
for which the given integral exists.

y
.04 +
[ ] \.
034 * s N\ °
L // \\ L ]
.02 v \
L] \\.
01 N
\
T T X
L 1
2

True solution
® e @ Ritz
— — — — Finite element

Fig. 29-2

29.10. Use the same boundary value problem solved in Problem 29.9 to illustrate a finite element

/

solution method.

The basic idea is the same. It is the nature of the approximating family that identifies a finite
element method. Suppose we divide our interval (0, 1) into halves and use two line segments

¢1(x) =2Ax @a(x) =2A4(1—x)

meeting at point (3,A) to approximate y(x). In fact, we have a family of such approximations, with
parameter A to be selected. The two line segments are called finite elements, and the approximating
function is formed by piecing them together. As before we substitute into the integral, and we easily
compute

12 1 N 7
16)=[ ords+ [ gudv=24—La=s(a)

which we minimize by setting f'(A) =0. This makes A =15. A quick calculation shows that this is
actually the correct value of the solution at x = 3. (See Fig. 29-2.) It has been shown that if line segments
are used as finite elements (in a one-dimensional problem, of course) correct values are systematically
produced at the joins.

29.11. Extend the procedure of the preceding problem to include more finite elements.
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Divide the interval (0, 1) into n parts, with endpoints at 0=x, x;, X5, ..., X, =1 Lety;, . .., y,_1
be corresponding and arbitrary ordinates, with y,=y, = 0. Define linear finite elements ¢,, ..., ¢, in
the obvious way. (See Fig. 29-3.) Then

XX X=Xy
(X)) = yi- ty
G:i(x) = Yia b S

X —X X=X

=Yiaa h +yiT

N

T T T T T
Yoy xp =1

Fig. 29-3 ~

the second equality holding if the x; are equally spaced. We also have
' _YiTYi y, Yi—1
= T

Now consider the integral
5oL n
103 [ 3007 -x0]ar=3
i=1Jx;_q i=1

=f(ys vy Yac1)

To minimize this, we could obtain f explicitly in terms of the y; and then compute the partial derivatives,
setting them to zero and solving the resulting system of equations. This is what was just done in the
simpler case. Here suppose we take derivatives first, integrate second, and then form the ultimate
system. The dependence of f upon a particular ordinate y, is through only two of the component terms J;
and J, ;. Accordingly, for k=1,...,n-1,

of _[* [)’k_)’k—x <1)_ zx_xk—l:| ka” [)’kﬂ }’k< 1)_ zxk+1"x:|
e hhxhdx+,khhxhdx

Xk—1

and the integrals being elementary we soon have the system

- + 2y — Lo+l ly e = Lxenl
Y1 T &Yk = Vi1 = 12Xk T X T o Xk T 3 XXk T XX

fork=1,...,n—1.
With n =2 and k =1, this quickly reproduces the y, =% found before. With n =3, the system
becomes
2y~ =
RGPS
25
N+ 2=
NTY =086

from which come y, =3 and y2 =15, both of which agree with the true solution values for these
positions.

THE DIFFUSION EQUATION
29.12. Replace the diffusion problem involving the equation

T (&
B (axY)’Lb(aD“T
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29.13.

and the conditions T'(0,¢)=f(t), T(l,t)=g(t), T(x,0)=F(x) by a finite difference
approximation.

Let x,, = mh and t, = nk, where x,,,, = I. Denoting the value T(x, ) by the alternate symbol T,,, ,,
the approximations

3T Tppir— T 8T Tpurn— Toin
a k ax 2h
FT Tparn=2Tnt T
. W’

convert the diffusion equation to
1
Trne1= A(a - % bh) Tp1n+[1-2A2a+ k)T, + )L(a + 3 bh) Tiin

where A=k/h*>, m=1,2,...,M and n=1,2,... . Using the same initial and boundary conditions
above, in the form T,,=f(t,), Tars1,.=8(t) and T, o= F(x,), this difference equation provides an
approximation to each interior T,, .., value in terms of its three nearest neighbors at the previous time
step. The computation therefore begins at the (given) values for ¢ =0 and proceeds first to ¢ = k, then to
t =2k, and so on. (See the next problem for an illustration.)

Apply the procedure of the preceding problem to the case a =1, b=c=0, f(t)=g(¢) =0,
F(x)=1,andI=1.

Suppose we choose 4 = and k = 3. Then A =3 and the difference equation simplifies to
1
Trns1= 5 (Tt Trusrn)

A few lines of computation are summarized in Table 29.1(a). The bottom line and the side columns are
simply the initial and boundary conditions. The interior values are computed from the difference
equation line by line, beginning with the looped @ which comes from averaging its two lower neighbors,
also looped. A slow trend toward the ultimate “steady state” in which all T values are zero may be
noticed, but not too much accuracy need be expected of so brief a calculation.

For a second try we choose & = 3, k =13, keeping A =3. The results appear in Table 29.1(b). The
top line of this table corresponds to the second line in Table 29.1(a) and is in fact a better approximation
to T(x, 5). This anjounts to a primitive suggestion that the process is starting to converge to the correct
T(x, t) values.

In Table 29.1(c) we have the results if =4, k=7 are chosen, making A=1. The difference
equation for this choice is

Tm,n+1 = Tm-l,n - Tm,n + Tm+1,n

Table 29.1
0 -12 17 -12 0
0 5 =7 50
0330 0 333133430 0 -2 3 -2 0
03 4%o0 0 21113430 0 1 -1 10
0r110 0 11111%0 0 0 1 0 0
0@®110 0 11111110 0 1 1 10
D1d®1 1 111111111 1 1 1 11
(2) ®) ()
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The start of an explosive oscillation can be seen. This does not at all conform to the correct solution,
which is known to decay exponentially. Later we shall see that unless A=} such an explosive and
unrealistic oscillation may occur. This is a form of numerical instability.

What is the truncation error of this method?

As earlier we apply Taylor’s theorem to the difference equation, and find that our approximation
has introduced error terms depending on 4 and k. These terms are the truncation error

1

1, 1., .
SkT, —— = o(h
ZkT" 12ah 7},,,+6bh Toex + 0(h%)

subscripts denoting partial derivatives. In the important special case a =1, b =0, we have T, = T, so
that the choice k =h/6 (or A =4%) seems especially desirable from this point of view, the truncation
error then being 0(h*).

Show that the method of Problem 29.12 is convergent in the particular case
T &°T
—_— = T0,)=T(x,t)=0 x, 0) =sin
R 0. 0)=T(x, ) 7, 0)=sinpx
where p is a positive integer.
The exact solution may be verified to be T(x,{)=e?sinpx. The corresponding difference
equation is
Tm,n+1 - Tm,n = A(Tm+l,n - 2Tm,n + Tm*l,n)

and the remaining conditions may be written

mpm
M+1

T, 0=sin Ton=Tys1n=0

This finite difference problem can be solved by “separation of the variables.” Let T, , = u,v, to
obtain

Uns1~Un A(“mﬂ = 2U, + um—l) =—iC
Up Uy

which defines C. But comparing C with the extreme left member we find it independent of m, and
comparing it with the middle member we find it also independent of n. It is therefore a constant and we
obtain separate equations for u,, and v, in the form

Upsr = (1= AC)v, U1 — 2= O+ Uy =0

These are easily solved by our difference equation methods. The second has no solution with
Ug = Uprsy = 0 (except u,, identically zero) unless 0 < C <4, in which case

U,, = A cos am + B sin am

where A and B are constants, and cos o = 1 — 3C. To satisfy the boundary conditions, we must now have
A=0and «(M + 1) = jx, j being an integer. Thus

Turning toward v,,, we first find that C =2(1 — cos ) = 4 sin’*{jz/[2(M + 1)]} after which

. i 1"
v, = [1 —4A Slnzm] Vo

It is now easy to see that choosing B =v,=1 and j = p we obtain a function

T, =u, =[1_4l L] in TPT
= UV, sin M1 Sin 1
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which has all the required features. For comparison with the differential solution we return to the
symbols x,, = mh, ¢, =nk.

1,/AR2
Tpn= (1 —4) sinz%h) sin px,,

As h now tends to zero, assuming A = k/h* is kept fixed, the coefficient of sin px,, has limit e ™ so that
convergence is proved. Here we must arrange that the point (x,,, £,) also remain fixed, which involves
increasing m and n as h and k diminish, in order that the T;, , values be successive approximations to the
same T'(x, f).

29.16. Use the previous problem to show that for the special case considered an explosive oscillation
may occur unless A = 3.

The question now is not what happens as & tends to zero, but what happens for fixed 4 as the
computation is continued to larger n arguments. Examining the coefficient of sin px,, we see that the
quantity in brackets may be less than —1 for some values of 4, p, and k. This would lead to an explosive
oscillation with increasing t,. The explosion may be avoided by requiring that A be no greater than 3.
Since this makes k = /%/2 the computation will proceed very slowly, and if results for large ¢ arguments
are wanted it may be useful to use a different approach. (See the next problem.)

29.17. Solve Problem 29.12 by means of a Fourier series.

This is the classical procedure when a is constant and b = ¢ = 0. We first look for solutions of the
diffusion equation having the product form U(x)V (¢). Substitution brings V'/V = U"/U = — a* where «
is constant. (The negative sign will help us satisfy the boundary conditions.) This makes

V=Ae " U =B cos ax + Csin ax

To make T(0, #) =0, we choose B =0. To make T(1, f)=0, we choose a = nx where n is a positive
integer. Putting C =1 arbitrarily and changing the symbol A to A,, we have the functions

-n2s2 -
A,e " sin nmx n=1,2,3,...

each of which meets all our requirements except for the initial condition. The series
T(x,t)= > A.e " sinnnx
n=1

if it converges properly will also meet these requirements, and the initial condition may also be satisfied
by suitable choice of the A4,. For F(x) =1 we need

T(x,0)=F(x)= >, A, sinnmx
n=1
and this is achieved by using the Fourier coefficients for F(x),
1
A, =2f F(x) sin nzx dx
0

The partial sums of our series now serve as approximate solutions of the diffusion problem. The exact
solution used in Problem 29.15 may be viewed as a one-term Fourier series.

THE LAPLACE EQUATION
29.18. Replace the Laplace equation
T 8T
5 +t===0
ox* dy
by a finite difference approximation. If the boundary values of T(x, y) are assigned on all four
sides of the square, show how a linear algebraic system is encountered.
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The natural approximations are

FT_T(x~hy) =27, y) + T(x +, y)

o h?
8T T y—h)~2T(x,y)+T(x,y+h)
ay27 h:

and they lead at once to the difference equation
1
T(x,y) =Z[T(x —hy)+Tx+h y)+Tx,y-h)+T(x,y+h)]

which requires each T value to be the average of its four nearest neighbors. Here we focus our attention
on a square lattice of points with horizontal and vertical separation 4. Our difference equation can be
abbreviated to

1

TZ:Z(T“Jr Ty+Te+Tp)

with points labeled as in Fig. 29-4. Writing such an equation for each interior point Z (where T is
unknown), we have a linear system in which each equation involves five unknowns, except when a
known boundary value reduces this number.

A
D B
C
Fig. 29-4

29.19. Apply the method of the previous problem when T'(x, 0) = 1, the other boundary values being 0.
For simplicity we choose 4 so that there are only nine interior points, as in Fig. 29-4. Numbering
these points from left to right, top row first, our nine equations are these:
1 1
=70+L+T,+0) L=3(B+0+ L+ 1)
1 1
T2=1(0+T3+TS+TI) T’=Z(T"+T8+1+O>
1
L=70+0+%+T) L=2(L+T5+1+T)

(L+0+1+ T

B

1

L=, (+T+5+0)  T=
1

L=3(L+ T+ +T)

The system could be rearranged for Gaussian elimination, but as it stands the Gauss—Seidel iteration
seems natural. Starting from the very poor initial approximation of zero for each interior 7; the

successive results given in Table 29.2 are obtained. Ten iterations bring three-place accuracy for this
linear system. (For a discussion of convergence of the Gauss—Seidel iteration see Problem 26.34.)



CHAP. 29] BOUNDARY VALUE PROBLEMS 439

Table 29.2
Iteration I T I N T; T I I I

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 .250 312 .328
2 0 0 0 062 .078 .082 .328 .394 .328
3 .016 .024 .027 .106 .152 .127 .375 .464 .398
4 .032 .053 .045 .140 .196 .160 .401 .499 .415
5 048 .072 .058 .161 .223 .174 .415 .513 .422
6 .058 .085 .065 .174 .236 .181 .422 .520 .425
7 065 .092 .068 .181 .244 .184 .425 .524 427
8 068 .095 .070 .184 .247 .186 .427 .525 .428
9 .070 .097 .071 .186 .249 .187 .428 .526 .428

10 071 .098 .071 .187 .250 .187 .428 .526 .428

A CONVERGENCE PROOF

29.20.

29.21.

Prove that the linear system encountered in Problem 29.18 will always have a unique solution.

The point is that, since we base our approximation on this system, it is important that it be

nonsingular. Denoting the unknown interior values T;, . .., Ty, we may rewrite the system in the form
N
2 ay T, =b; (1)
k=1

where the b; depend upon the boundary values. If all boundary values were zero, then all b, would be
zero also:

N
kz ax T, =0 2
=1

By the fundamental theorem of linear algebra the system (1) will have a unique solution provided that
(2) has only the zero solution. Accordingly, we suppose all boundary values are zero. If the maximum
T, value occurred at an interior point Z, then because of T, = (T, + T + Tc + Tp) it would also have to
occur at A, B, C, and D, the neighbors of Z. Similarly this maximum would occur at the neighboring
points of A, B, C, and D themselves. By continuing this argument we find that the maximum 7, value
must also occur at a boundary point and so must be zero. An identical argument proves that the
minimum 7; value must occur on the boundary and so must be zero. Thus all 7; in system (2) are zero
and the fundamental theorem applies. Notice that our proof includes a bonus theorem. The maximum
and minimum 7, values for both (I) and (2) occur at boundary points.

Prove that the solution of system (1) of Problem 29.20 converges to the corresponding
solution of Laplace’s equation as 4 tends to zero.

Denote the solution of (1) by T'(x, y, k) and that of Laplace’s equation by T'(x, y), boundary values
of both being identical. We are to prove that at each point (x, y) as & tends to zero

lim T(x, y, k) = T(x, y)
For convenience we introduce the symbol
LIFl=F(x+h,y)+F(x—h,y)+F(x,y +h)+F(x,y —h)—4F(x, y)

By applying Taylor’s theorem on the right we easily discover that for F = T(x, y), |L[T(x, y)]l = Mh*/6
where M is an upper bound of |T..| and |T,,,,|. Moreover, L[T(x,y, h)] =0 by the definition of
T(x, y, h). Now suppose the origin of x, y coordinates to be at the lower left corner of our square. This
can always be arranged by a coordinate shift, which does not alter the Laplace equation. Introduce the
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29.22.

29.23.
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function
Sy, )= T(5, 7, h) = T(x, y) = 503 (D* = = y) = 2
¥ B2 ) 2D? 2
where A is an arbitrary positive number and D is the diagonal length of the square. A direct
computation now shows

L[S(x,y, B)] =

2h°A + O(Mlj)
D? 6

so that for 4 sufficiently small, L[S] > 0. This implies that S cannot take its maximum value at an interior
point of the square. Thus the maximum occurs on the boundary. But on the boundary T(x, y, h) =
T(x, y) and we see that S is surely negative. This makes S everywhere negative and we easily deduce
that T'(x, y, k) ~ T(x, y) <A. A similar argument using the function

A A
R(x,y, h)=T(x,y) = T(x, , h) —W(Dz—xz—yz) -3

proves that T'(x,y)— T(x,y, h)<A. The two results together imply |T(x,y, h)—T(x, y)| <A for
arbitrarily small A, when £ is sufficiently small. This is what convergence means.

Prove that the Gauss-Seidel method, as applied in Problem 29.19, converges to the exact
solution T'(x, y, k) of system (1), Problem 29.20.

This is, of course, an altogether separate matter from the convergence result just obtained. Here we
are concerned with the actual computation of T(x,y, k) and have selected a method of successive
approximations. Suppose we number the interior points of our square lattice from 1 to N as follows.
First we take the points in the top row from left to right, then those in the next row from left to right,
and so on. Assign arbitrary initial approximations T} at all interior points, i=1,..., N. Let the
succeeding approximations be called T7. We are to prove

im T7 =T, = T(x, y, h)

as n tends to infinity. Let §7 = T7 — T. Now it is our aim to prove lim S7 = 0. The proof is based on the
fact that each S; is the average of its four neighbors, which is true since both T7 and 7, have this
property. (At boundary points we put S equal to zero.) Let M be the maximum |S°|. Then, since the first
point is adjacent to at least one boundary point,

[S{|§i(M+M+M+0)=%M
And since each succeeding point is adjacent to at least one earlier point,

[y é%(M +M+M+|S])
Assuming for induction purposes that |S/| =[1 — (5)']M we have at once

i i+1
st u-[o- ()

The induction is already complete and we have |Sy| =[1 — (3)"]M = &M which further implies
|S/|[EaeM  i=1,...,N

Repetitions of this process then show that |S7| = a”M, and since & <1 we have lim S} = 0 as required.
Though this proves convergence for arbitrary initial T?, surely good approximations T” will be obtained
more rapidly if accurate starting values can be found.

Develop the basic formulas for a finite element method using triangular elements and the
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Poisson equation
Us+U,=K (K aconstant)

The region over which this equation is to hold must first be divided up into triangular pieces,
making approximations where necessary. Let (x;,y,), (%), (%, y.) be the vertices of one such
triangle. The solution surface above this triangle is to be approximated by a plane element ¢“(x, y),
the superscript referring to the element in question. If z,, z;, z, are the distances up to this plane at the
triangle corners, or nodes, then

¢© = L%+ L0z + LYz,

where L{" is equal to 1 at node i and 0 at the other two nodes, with corresponding properties for L
and LY. Let A, be the area of the base triangle, formed by the three nodes. Then

1 x
2A.= |1 x
1 x w

which leads quickly to the following representations:

1 x y 1 1 x vy 1 1 x vy
LP= 2_Ae 1 x5 LJ(‘E) = 24, 1 % » LY = 24, 1 % »
1 xe w 1 x y 1 % y
; @1
If we also write LY = A (a; +bx +cy)

then from the determinants
@ = XYk = XY b=y = =X X
with these parallel formulas coming from L{ and L{.
G =X Y — XYk b=y —y: C =X — X
G =XY; — XY be=yi—y Ce =X =X,

All these a, b, c coefficients should have the superscript (e) but for simplicity it has been suppressed.
It is now time to consider the minimization problem equivalent to the Poisson equation. It is

1
J(U)= jj [E(Uf+ Ul + KU] dx dy = minimum
with the double integral to be evaluated over the given region R of the boundary value problem. We are

approximating U by a function ¢, a composite of plane triangular elements each defined over a
triangular portion of R. So we consider the substitute problem of minimizing

I(9) =2 J(¢“)

with each term of the sum evaluated over its own base triangle. We want to set the appropriate
derivatives of J(¢) to zero and to this end require the derivatives of the J, components. Note that

" 1

§)=—2AE (bizi + b;z; + biz,)
‘”)=L(cz-+c-z-+c z)
¥ ZAE i%q j&i k“k

so that, suppressing the superscript,

n=[[[302+ o)+ Kolasdy =1 2, 20
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The differentiations are straightforward. For example,

of f j { b; ¢ ) 1 (b? +c? bb; + ¢ biby + cici ) 4
== ——+¢,—+KL = + i+ +-A
% ¢X7-Ae b, A, KL, ) dx dy z, Z, Z "

A, 4 4 ’ 4 3

with very similar results for 8f/z; and 5f/z,. The three can be grouped neatly in matrix form:
of 1z 1 bi+c?  bbitae bbitcall z 4 1
oflz | = e bb+cc,  bi+c; bbetoa || 7 |+ 3 Al 1
af/zk ¢ b.by + cici b/bk + ¢ick bi + Clzc 2k 1

The fact that K has been assumed constant makes the integrations needed to achieve this result easy
enough. Note also that the integral of each L function is §, by elementary calculus.

The above matrix equation contains the ingredients needed to assemble the partial derivatives of
J(¢). It remains, in a particular application, to do the assembling properly. Specifically, for each
element ¢ the active nodes i, j, kK must be noted and contributions recorded for derivatives relative to
the corresponding variables among the z,, z,, z3, .. . .

29.24. Apply the finite element method of the preceding problem given that the region R is the unit
square of Fig. 29-5, with the boundary values indicated. The exact solution is easily seen to be
U(x, y) =x>+y? since this satisfies U,, + U,, = 4.

y

1 [Boundary values correspond
=2 2.2
to Ux, y)=x*+y%]

1o

3

X

Fig. 29-5

By symmetry only the lower right half of the square needs to be considered, and this has
been split into two triangles. The nodes are numbered 1 to 4, and the two triangles are
identified by the node numbers involved.

Node * y Elements (by node numbers)
1 1
! 2 2 123 (e=1)
2 0 0 134 (e=2)
3 1 0
4 1 1 A=A,=1

From this basic input information we first compute the a, b, ¢ coefficients. Each column below
corresponds to a node (i, j, k).

LY
1
—
LY
I
N

a 0 1 0 1.0 -3
bl o -+ 14-1 3 %
cl 1 -3z -3| 0 - 3
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It is useful to verify that columns do provide the desired L® functions. For instance, the first column
gives
LY =2[0 +(0)x + (1)y]

where the leading 2 is the 1/2A,. At node 1 this does produce the value 1, while at nodes 2 and 3 it
manages 0. The other columns verify in similar fashion.

For clarity the process of assembling the partial derivatives of J(¢) =f(z,, 2., z3, 24) will now be
presented in more detail than is probably needed. The matrix equation of the preceding problem
contains the contributions to these derivatives from each of our two elements. From element 1 comes

Fin | 1 -b b
flz, | -3 3 0 3
3f/z -3 0 z 3

2 23 Zs

of Iz I

3f/ Z3 —% % 0 %

flzy | -3 0 @3

Assembling the two matrices we have this finished product:
Z1 22 23 24

oz 2 -3 -1 -1 3
oflz | -1 > 00 ¢
8z | -1 0 1 0 3
offzs | =2 0 0 1 4

Having thus illustrated the process of assembling elements, it must now be confessed that for the
present case only the top row is really needed. The values of z,, 23, z4 are boundary values and given as
0, 1, 2. They are not independent variables, and the function f depends only upon z,. Setting this one
derivative to zero and inserting the boundary values, we have

1 1 2
=5 O-0-;@+3=0

making z, = 3. The correct value is, of course, 3.

29.25. Rework the preceding problem using the finer network of triangles shown in Fig. 29-6.

We have these input ingredients: first, the nodes 1 to 4 where the coordinates (x, y) are (3,3, G 9,
(4,3, and (3, 3) with corresponding z coordinates to be determined; second, the nodes 5 to 9 at which
boundary values are assigned making (x,y, z) coordinates (1,1,2), (1,4,3), (1,0, 1), (4,0, %), and
(0,0,0); and third, the eight basic triangles designated by node numbers:

29 8 2 81 1 83 38 7 376 136 1 6 4 4 6 5

A computer program to run the finite element algorithm as described would need this input information.
Suppose we begin a manual run, carrying it through only one of the eight elements, the first. The a,
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5
4
L 6
2 3
7
9 8 x
Fig. 29-6
b, c coefficients prove to be as follows:

a 0 8 0
b | 0 -3 i
el -4 2

This may be checked as in the preceding problem, the columns representing the three nodes in the given
order. The area of each basic triangle is 7. Since partial derivatives will be needed only relative to z to
z4, we can sherten our manual effort by finding only the terms contributing to these. For this element,

we have 11
I+ci=0+-=-
bl +¢; Yl

1 1 1 1

b,»b,»+C,-Cj=U—§= —g b,-bk+CiCk=O—§:—g

which, after multiplication by 1/4A, =4, we enter into columns 2, 8, and 9 of the partial derivative
matrix. The constant 4A,/3 = % is also recorded, all entries in row 2 which pertains to of [ z,.

21 22 23 24 s Zs Z7 s Zo
e | 3 % 0
3f [z 1 -1 -1 &
af /23
of/z

It remains to find the similar contributions of the other seven elements and to assemble them
into the above matrix. It is useful to verify that the second element introduces the terms
shown in row 1 and to find its further contributions to row 2. The rest of the assembly process
will be left to the computer as will the substitution of boundary values and solution of the
resulting fourth-order linear system. The following output was obtained:

Node | Computed | True
1 .500000 H
2 .166667 H
3 .666667 3
4 1.166667 H

The bull’s-eye at node 1 is interesting.
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29.26. Apply the same finite element method to the problem of a quarter circle, using just a single
element as shown in Fig. 29-7. The Poisson equation is again to be used, as are the boundary
values x*+ y% = 1. The true solution is thus the same x2 + y2

3

Fig. 29-7

The problem illustrates the approximation of a curved boundary by a straight-line
segment. In general, many such segments would be used. The three nodes have these

coordinates:

Node x y z
1 0 0 —
2 1 0 1
3 0 1 1

The value of z, is the independent variable of the optimization. The a, b, ¢ coefficients are

Nodel | Node2 | Node3
a 1 0 0
b -1 1 0
c -1 1
and lead to @r=z,—1zz—1z3+g=0

z 2

2

3

from which z, = follows at once. The true value is, of course, zero. By symmetry the same result would
be found for the full circle by using four such triangles.
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29.27. Illustrate the concept of convergence, as it applies to finite element methods, by comparing
the crude approximation just found with results from two-triangle and four-triangle efforts
based upon the arrangements shown in Figs. 29-8 and 29-9.

Needless to say, all these efforts are relatively crude, but it is interesting to observe the resuits.

Node 0,0 | G,0)

Fig. 29-7 33| —
Fig.29-8 | —.08 | .35
Fig. 29-9 -.03 .26

True 0 25

Things have begun to move in a good direction. Finite element methods have been shown to be
convergent provided the process of element refinement is carried out in a reasonable way.

THE WAVE EQUATION
29.28. Apply finite difference methods to the equation
o ox?

with initial conditions U(x, 0) =£(x), U.(x, 0) = g(x).

Flt,x, U, U, U] —o<x <o, 051

Introduce a rectangular lattice of points x,, = mh, t, = nk. Att=n =0 the U values are given by the
initial conditions. Using

U _Ul,t+k)-Uk, 1)
a k

at t =0 we have U(x, k) =f(x) + kg(x). To proceed to higher ¢ levels we need the differential equation,
perhaps approximated by

U, t+k)=2U(x, )+ Ux,t—k) Ux+h,t)-2U(x ) + Ux—h,1)

K’ h?
=F[t,x, v, Ux, 1) = Ulx, t—k)’ Ux+h t)-Ux—h, t)]
k 2h
which may be solved for U(x, t + k). Applied successively with t =k, k+1, . .., this generates U values

to any t level and for all x,,,.

29.29, Tllustrate the above method in the simple case F =0, f(x) =x?% g(x)=1.
The basic difference equation may be written (see Fig. 29-10)

Ua=2(1—A)Uc+ A(Us + Up) = Us

E
Fig. 29-10
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where A = k/h. For A =1 this is especially simple, and results of computation with 4 = k = .2 are given in
Table 29.3. Note that the initial values for x =0 to 1 determine the U values in a roughly triangular
region. This is also true of the differential equation, the value U(x, ) being determined by initial values
between (x — ¢, 0) and (x + 1, 0). (See Problem 29.30.)

Table 29.3
.6 1.00 1.20
4 .52 .64 .84 1.12
2 200 .24 .36 .56 .84 1.20
0 .00 .04 .16 .36 .64 1.00
t/x 0 2 4 .6 .8 1.0

29.30. Show that the exact solution value U{x,t) of U,=U,, U(x,0)=f(x), Ulx, 0)=g(x)
depends upon initial values between (x — ¢, 0) and (x +¢, 0).

For this old familiar problem, which is serving us here as a test case, the exact solution is easily
verified to be

(x+t)+f(xvt)+1 X

Ux, 1) . 5] g(&)d&

and the required result follows at once. A similar result holds for more general problems.

29.31. Illustrate the idea of convergence for the present example.

Keeping A =1, we reduce h and k in steps. To begin, a few results for # = k =.1 appear in Table
29.4. One looped entry is a second approximation to U(.2, .2) so that .26 is presumably more accurate
than .24. Using & =k = .05 would lead to the value .27 for this position. Since the exact solution of the
differential problem may be verified to be

Ulx, )=x>+1+t

we see that U(.2, .2) =.28 and that for diminishing 4 and k our computations seem to be headed toward
this exact value. This illustrates, but by no means proves, convergence. Similarly, another looped entry
is a second approximation to U(.4, .4) and is better than our earlier .64 because the correct value is .72.

Table 29.4

.61

40 45 .52 .61
.23 31 38 47 .58
10 11 14 .19 .26 35 46 .59
00 .01 .04 .09 .16 .25 .36 .49
x| 0 1 2 3 4 5 6 7

S S

29.32. Why is a choice of 2 = k/h > 1 not recommended, even though this proceeds more rapidly in
the ¢ direction?

The exact value of U(x, t) depends upon initial values between (x — ¢, 0) and (x +¢, 0). If A>1 the
computed value at (x, ) will depend only upon initial values in subset AB of this interval. (See Fig.
29-11.) Initial values outside AB could be altered, affecting the true solution, but not affecting our
computed value at (x, f). This is unrealistic.
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29.33.

29.34.

29.35.

29.36.

29.37.

29.38.

29.39.

29.40.

29.41.

29.42.

29.43.

29.4.
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y (z,t)
/7 ANN
yaui AN
s AN
> AN
¥ & NN
7/ N
/ 5/ \ N
/ / \ \\
(z—‘t, 0) A é (x-llt,o)
Fig. 29-11

Supplementary Problems
Solve the equation y” +y' + xy =0 with y(0) = 1 and y(1) = 0 by the method of Problem 29.1.

Solve the previous problem by the method of Problem 29.2. Which approach do you find more
convenient?

Solve y" + Vx y' +y = ¢* with y(0) =0 and y(1) =0.

Apply the method of Problem 29.4 to y” + Ay = 0 with y(0) =y and y’(1) = 0. Prove convergence to the
exact solution y = sin (21 + 1)(71x/2), A, =[(2n + 1)(x/2)]~

Apply the method of Problem 29.4 to obtain the largest eigenvalue of y” + Axy = 0 with y(0) = y(1) =0.
Apply the method of Problem 29.5 to y" =y*+ (y')% y(0)=0, y(1)=1.

An object climbs from ground level to height 100 feet in 1 second. Assuming an atmospheric drag which
makes the equation of motion y" = —32 — .1VYy’, what was the initial velocity?

An object climbs from (0, 0) to (2000, 1000) in 1second, distances being in feet. If the equations of
motion are
x"(t)= —.1Vvcos & y'(t)= —32—.1Vusina

where v? = (x')*+ (y')? and & = arctan (y'/x"), find the initial velocity.

Find the function y(x) which minimizes [}[xy>+ (y')*]dx and satisfies y(0)=0, y(1)=1. Use the
method of Problem 29.7.

Apply the method of Problem 29.12 to the case a=c =1, b=0, I=1, f(t)=g(¢)=0, F(x)=x(1—x).
Diminish h, obtaining successive approximations until you feel you have results correct to two decimal
places. Use 1 =1.

Repeat the previous problem with A = 4.
Try A= 1.

Are satisfactory results obtained more economically or not?

Show that replacement of derivatives by simple finite differences converts the two-dimensional diffusion
equation 7, = T;, + T, into

Tpmnsr=(1— 40T, .+ }'(Tl-n,m,n + Ttimn+ Timsrnt Time1.0)
I=T.+T,+T..

and obtain a similar approximation to the three-dimensional diffusion equation oy
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29.45.

29.47.

29.48.

29.49.

29.50.

29.51.

29.52.

29.53.

29.54.

29.55.

29.56.

29.57.

29.58.

Find an approximate solution to Laplace’s equation in the region 0=x, 0=y, y=1-x’> with
T(,y)=1-y, T(x,0)=1—x and the other boundary values zero. Use the simplest method for
handling curved boundaries, merely transferring boundary values to nearby lattice points. Try & =} and
h =1%. How accurate do you think your results are?

. Repeat the procedure of Problem 29.9 using the Ritz approximation ¢(x) =x(1 —x)(c, + ¢;x). Plot the

corresponding curve and compare with the true solution.

Write out the linear system of Problem 29.11 for the case n = 4. Solve it and verify that exact values are
found.

Verify the partial derivatives of f relative to z, z, z as given in Problem 29.23.

Complete the verifications of the a, b, c coefficients, as suggested in Problem 29.24.

Verify the contributions of the second finite element, as suggested in Problem 29.25.

Verify the results given in Problem 29.27 for the two-triangle and four-triangle configurations.

Apply the finite element method to the Laplace equation (set K =0 instead of 4) on the triangle with
vertices (0,0), (1,1), (—1,1) with boundary values given by y*— x*. Note that this makes U(x, y) =
y?> — x* the true solution. From the symmetry it will be enough to work with the right half of the triangle.
Use two interior nodes, at (0, 3) and (0, ), joining these to (1, 1) to form three basic triangles. The true
values of U at the two interior nodes are, of course, 5 and 3. What values do these three elements

produce?
Suggest a simple finite difference approximation to T,, + T, + T,, =0.

The boundary value problem y”=n(n—1)y/(x —1)?, y(0)=1, y(1)=0 has an elementary solution.
Ignore this fact and solve by the garden-hose method, using n =2.

Try the previous problem with n =20. What is the troublesome feature?

The boundary value problem y” —n’ = —n?/(1—e "), y(0)=0, y(1) =1 has an elementary solution.
Ignore this fact and solve by one of our approximation methods, using 7 = 1.

Try the previous problem with n = 100. What is the troublesome feature?

The boundary value problem
Ui+ U,=0 0<x 0<t Ulx, 0)=U(x,0)=U,(0,1)=0 U@, =1

represents the vibration of a beam, initially at rest on the x axis, and given a displacement at x = 0. This
problem can be solved using Laplace transforms, the result appearing as a Fresnel integral which must
then be computed by numerical integration. Proceed, however, by one of our finite difference methods.



Chapter 30

Monte Carlo Methods

RANDOM NUMBERS

For our purposes, random numbers are not numbers generated by a random process such as the
flip of a coin or the spin of a wheel. Instead they are numbers generated by a completely
deterministic arithmetical process, the resulting set of numbers having various statistical properties
which together are called randomness. A typical mechanism is

Xp+1= rx,(mod N)

—with r and N specified, and x, the “seed” of the sequence of ‘‘random” numbers x,. Such modular
multiplicative methods are commonly used as random number generators. With decimal computers

Xp41=T%,(mod 10°)  xo=1
has been used, and with binary computers
X,+1 = (8t — 3)x,(mod 2%) xo=1
with ¢ some large number. Some generators include an additive element in this way:
Xp+1 = (rx, +s)(mod N)
A simple example suitable for practice problems is
Xn4+1 = (25,173x, + 13,849)(mod 65,536)

which produces a well-scrambled arrangement of the integers from 0 to 65,535.

To be considered random, the sequence of x,, numbers must pass a set of statistical tests. They
must be evenly distributed over the interval (0, N), must have the expected number of upward and
downward double runs (13, 69, 97, for example), triple runs (09, 17, 21, 73), and so on. Sometimes a
successful sequence is said to consist of pseudorandom numbers, presumably to reserve the word
random for the output of truly random devices (roulette wheels?). In this chapter randomness will
refer to the qualities of the output, not to the nature of the generator. This will cover the apparent
contradiction in terms, which has a thoroughly deterministic mechanism producing random output.

Many programming languages (Fortran, for instance) have a built-in random number generator
subject to call. Very likely it is constructed to a modular multiplicative design.

APPLICATIONS

Monte Carlo methods solve certain types of problems through the use of random numbers.
Although in theory the methods ultimately converge to the exact results, in practice only modest
accuracy is attainable. This is due to the extremely slow rates of convergence. Sometimes Monte
Carlo methods are used to obtain good starting approximations for speedier refinement algorithms.
Two types of applications are offered.

1. Simulatien refers to methods of providing arithmetical imitations of “real” phenomena. In a
broad sense this describes the general idea of applied mathematics. A differential equation
may, for example, simulate the flight of a missile. Here, however, the term simulation refers
to the imitation of random processes by Monte Carlo methods. The classic example is the
simulation of a neutron’s motion into a reactor wall, its zigzag path being imitated by an
arithmetical random walk. (See Problems 30.2 and 30.4.)

2. Sampling refers to methods of deducing properties of a large set of elements by studying
only a small, random subset. Thus the average value of f(x) over an interval may be

450
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30.1.

30.2.

30.3.

estimated from its average over a finite, random subset of points in the interval. Since the
average of f(x) is actually an integral, this amounts to a Monte Carlo method for
approximate integration. As a second example, the location of the center of gravity of a set
of N random points on the unit circle may be studied by using a few hundred or a few
thousand such sets as a sample. (See Problem 30.5.)

Solved Problems

What are random numbers and how may they be produced?

For a simple but informative first example begin with the number 01. Multiply by 13 to obtain 13.
Again multiply by 13, but discard the hundred, to obtain 69. Now continue in this way, multiplying
continually by 13 modulo 100, to produce the following sequence of two-digit numbers.

01, 13, 69, 97, 61, 93, 09, 17, 21, 73, 49, 37, 81, 53, 89, 57, 41, 33, 29, 77

After 77 the sequence begins again at 01.

There is nothing random about the way these numbers have been generated, and yet they are
typical of what are known as random numbers. If we plot them on a scale from 00 to 99 they show a
rather uniform distribution, no obvious preference for any part of the scale. Taking them consecutively
from 01 and back again, we find ten increases and ten decreases. Taking them in triples, we find double
increases (such as 01,13,69) together with double decreases occurring about half the time, as
probability theory suggests they should. The term random numbers is applied to sequences which pass a
reasonable number of such probability tests of randomness. Our sequence is, of course, too short to
stand up to tests of any sophistication. If we count triple increases (runs such as 01, 13, 69, 97) together
with triple decreases, we find them more numerous than they should be. So we must not expect too
much. As primitive as it is, the sequence is better than what we would get by using 5 as multiplier
(01, 05,25,25,25, ... which are in no sense random numbers). A small multiplier such as 3 leads to
01, 03,09,27,81, ... and this long upward run is hardly a good omen. It appears that a well-chosen
large multiplier may be best.

Use the random numbers of the preceding problem in a simulation of the movement of
neutrons through the lead wall of an atomic reactor.

For simplicity we assume that each neutron entering the wall travels a distance D before colliding
with an atom of lead, that the neutron then rebounds in a random direction and travels distance D once
again to its next collision, and so on. Also suppose the thickness of the wall is 3D, though this is far too
flimsy for adequate shielding. Finally suppose that ten collisions are all a neutron can stand. What
proportion of entering neutrons will be able to escape through this lead wall? If our random numbers
are interpreted as directions (Fig. 30-1) then they may serve to predict the random directions of
rebound. Starting with 01, for example, the path shown by the broken line in Fig. 30-2 would be
followed. This neutron gets through, after four collisions. A second neutron follows the solid path in
Fig. 30-2, and after ten collisions stops inside the wall. It is now plain that we do not have enough
random numbers for a realistic effort, but see Problem 30.3.

How may a more extensive supply of random numbers be produced?

There are quite a few methods now available, but most of the best use the modular multiplication
idea of Problem 30.1. For example, the recursion

Xus1=Tx,(mod 10°)  x,=1

generates a sequence of length 5-10° having quite satisfactory statistical behavior. It is suitable for
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Fig. 30-1 Fig. 30-2

" decimal machines. The recursion

Xpo1 = (8t =3)x,(mod2")  x,=1

generates a permutation of the sequence 1,5,9,...,2" —3, again with adequate statistical behavior. It
is suitable for binary machines. The number ¢ is arbitrary but should be chosen large to avoid long
upward runs. In both these methods s represents the standard word length of the computer involved,
perhaps s =10 in a decimal machine and s = 32 in a binary machine.

Continue Problem 30.2 using a good supply of random numbers.

Using the first sequence of Problem 30.3 on a ten-digit machine (s = 10), the results given below
were obtained. These results are typical of Monte Carlo methods, convergence toward a precision
answer being very slow. It appears that about 28 percent of the neutrons will get through, so that a much
thicker wall is definitely in order.

Number of trials 5,000 10,000 15,000 20,000

Percent penetration 28.6 28.2 28.3 28.4

Suppose N points are selected at random on the rim of the unit circle. Where may we expect
their center of gravity to fall?

By symmetry the angular coordinate of the center of gravity should be uniformly distributed, that
is, one angular position is as likely as another. The radial coordinate is more interesting and we
approach it by a sampling technique. Each random number of the Problem 30.3 sequences may be
preceded by a decimal (or binary) point and multiplied by 27. The result is a random angle 6, between 0
and 2, which we use to specify one random point on the unit circle. Taking N such random points
together, their center of gravity will be at

1 N 1 N
X=ﬁl:210059,. Y=N,-:2,Sin0i

and the radial coordinate will be r = VX? + Y2 Dividing the range 0=r =1 into subintervals of length
%, we next discover into which subinterval this particular r value falls. A new sample of N random
points is then taken and the process repeated. In this way we obtain a discrete approximation to the
distribution of the radial coordinate. Results of over 6000 samples for the cases N = 2, 3, and 4 are given
in Table 30.1. The columns headed Freq give the actual frequency with which the center of gravity
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Table 30.1
n=2 n=3

Freq Cum Exact Freq Cum Freq Cum

1 121 .0197 .0199 7 .001 36 .005
2 133 .0413 .0398 37 .007 87 .018
3 126 .0618 .0598 58 .017 128 .038
4 124 .0820 .0798 67 .028 169 .063
5 129 .1030 .0999 95 .043 209 .094
6 111 1211 1201 113 .061 192 123
7 123 1411 .1404 141 .084 266 .163
8 115 .1598 .1609 172 112 289 207
9 129 .1808 .1816 224 .149 238 242
10 142 .2039 .2023 336 .203 316 .290
11 123 2240 2234 466 279 335 .340
12 138 .2464 .2447 344 335 360 .394
13 126 .2669 .2663 291 .383 357 .448
14 157 .2925 .2883 285 429 365 .503
15 126 .3130 .3106 269 473 365 .558
16 125 .3333 .3333 255 514 405 .618
17 150 3577 .3565 223 551 353 672
18 158 .3835 .3803 189 .581 255 710
19 135 .4054 .4047 208 615 275 751
20 148 .4295 .4298 185 .645 262 .790
21 157 .4551 .4558 215 .680 182 .818
22 158 .4808 .4826 197 712 159 .842
23 173 .5090 .5106 183 742 163 .866
24 190 .5399 .5399 201 775 168 .892
25 191 5710 .5708 188 .805 167 917
26 211 .6053 .6038 183 .835 131 .936
27 197 .6374 6393 163 .862 102 952
28 247 6776 .6783 176 .890 87 .965
29 262 7202 7221 170 918 87 978
30 308 7703 7737 162 .944 76 .989
31 424 .8394 .8407 163 971 45 .996
32 987 1.0000 1.0000 178 1.000 27 1.000

453

appeared in each subinterval, from the center outward. Columns headed Cum give the cumulative
proportions. For the case N =2 this cumulative result also happens to be exactly (2/m) arcsin (r/2)

which serves as an accuracy check. Note that we seem to have about three-place accuracy.

30.6. Solve the boundary value problem

Tat+T,=0

TO,y)=TQ1,y)=T(x,1)=0

by a sampling method which uses random walks.

T(x, 0)=1
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This is an example of a problem, with no obvious statistical flavor, which can be converted to a
form suitable for Monte Carlo methods. The familiar finite difference approximations lead to a discrete
set of points (say the nine in Fig. 30-3), and at each of these points an equation such as

1
L= (LA T+ T+ T)

makes each T value the average of its four neighbors. This same set of nine equations was encountered
in Problem 26.29, each unknown standing for the probability that a lost dog will eventually emerge on
the south side of our diagram, reinterpreted as a maze of corridors! Though a sampling approach is
hardly the most economical here, it is interesting to see what it manages. Starting a fictitious dog at
position 1, for example, we generate a random number. Depending on which of the four subintervals
0,9, G, %), G,3), or (3,1) this random number occupies, our dog moves north, east, south, or west to
the next intersection. We check to see if this brings him outside the maze. If it does not, another random
number is generated and a second move follows. When the dog finally emerges somewhere, we record
whether it was at the south side or not. Then we start a new fictitious dog at position 1 and repeat the
action. The result of 10,000 such computer samples was 695 successful appearances at a south exit. This
makes the probability of success .0695 and should be compared with the result .071 found by the
Gauss-Seidel iteration. The latter is more accurate, but the possibility of solving differential boundary
value problems by sampling methods may be useful in more complicated circumstances.

1 2 3

4 5 6

7 8 9
Fig. 30-3

Tllustrate approximate integration by Monte Carlo methods.

Perhaps the simplest procedure is the approximation of the integral by an average,

[rwa=5 3 s

where the x, are selected at random in (g, b). For example, if we use just the first five random numbers
of Problem 30.1, all preceded by a decimal point, then we have

1
J xdx 21(2.41)2.48
o 5

where the correct result is 5, and we also find [} x2dx =.36 where the correct result is 1. For the same
integrals, with N =100 and using the longer sequences of Problem 30.3, the results .523 and .316 are
obtained, the errors being about 5 percent. This is not great accuracy, but in the case of integration in
several dimensions the same accuracy holds and Monte Carlo methods compete well with other
integration algorithms.

Supplementary Problems

Generate a sequence of 20 random numbers using x,,., = rx,(mod 100), selecting your own multiplier .
Use these numbers to simulate three or four neutron paths as in Problem 30.2.
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30.10.

30.11.

30.12.

30.13.

30.14.

30.16.

Using a sequence of the sort in Problem 30.3, simulate 1000 neutron paths as in Problem 30.4. Repeat
for lead walls of thickness SD, 10D, and 20D. How does the shielding efficiency seem to grow?

Simulate 1000 random walks in a plane, each walk being 25 steps long, steps having equal lengths. Let
each walk start at (0,0) and each step be in a random direction. Compute the average distance from
(0, 0) after 4, 9, 16, and 25 steps.

Approximate this integral using random numbers: [ sin x dx.
Approximate this integral using random numbers:

J“J’lfJ"J"f dA dB dCdD dE dF

o Jo Jo JoJo o1+A+B+C+D+E+F

Golfers A and B have the following records:

Score | 80 81 82 83 84 85 86 87 88 89

A 5 5 60 20 10

B 5 5 10 40 20 10 10

The numbers in the A and B rows indicate how many times each man has shot the given score.
Assuming they continue this quality of play and that A allows B four strokes per round (meaning that B
can subtract four strokes from his scores), simulate 1000 matches between these men. How often does A
defeat B? How often do they tie?

A, B, and C each has an ordinary pack of cards. They shuffle the packs and each exposes one card, at
random. The three cards showing may include 1, 2, or 3 different suits. The winner is decided as follows:

Number of suits showing 1 2 3

Winner is A B C

The exposed cards are replaced and this completes one play. If many such plays are made, how often
should each man win? The answer can be found by elementary probability, but simulate the actual play
by generating three random numbers at a time, determining suits according to this scheme:

x falls inside interval 0,9 G

GH G
Suit is S H D C

. A baseball batter with average .300 comes to bat four times in a game. What are his chances of getting

0,1, 2, 3, and 4 hits, respectively? The answer can be found by elementary probability, but proceed by
simulation.

In the “first man back to zero” game two players take turns moving the same marker back and forth
across the board.

[ofofs]7]6[s[s]s]2]1]o]s]2]s]4[s[s[7[s]s 0]
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The marker is started at 0. Player A starts and always moves to the right and B to the left, the number
of squares moved being determined by the throw of one die. The first man to stop on zero exactly is the
winner. If the marker goes off either end of the board the game is a tie, the marker is returned to 0 and
a new game is started by player A. What are the chances of A winning? The answer is not so easy to find
by probability theory. Proceed by simulation.

The integers 1 to N are arranged in a random order. What are the chances that no integer is in its
natural place? This is the famous “probleme des rencontres” and is solved by probability theory. But
choose some value of N and proceed by simulation.

Generate three random numbers. Arrange them in increasing order x, <x, <x;. Repeat many times and
compute the average x,, average x,, and average x..

Suppose that random numbers y with nonuniform distribution are required, the density to be f(y). Such

numbers can be generated from a uniform distribution of random numbers x by equating the cumulative
distributions, that is,

J;xl-dx=f:f(y)dy

For the special case f(y) =e™, show how y may be computed from x.

. For the normal distribution f(y) = e™*/V2 the procedure of the preceding problem is troublesome. A

popular alternative is to generate 12 random numbers x, from a uniform distribution over (0, 1), to sum
these and, since a mean value of zero is often preferred for the normal distribution, to subtract 6. This
process depends upon the fact that the sum of several uniformly distributed random numbers is close to
normally distributed. Use it to generate 100 or 1000 numbers

y=(;221x,-)—6

Then check the distribution of the y numbers generated. What fraction of them are in the intervals
(0,1), (1,2), (2,3), and (3, 4)? The corresponding negative intervals should have similar shares.



Answers to Supplementary Problems

CHAPTER 1

1.39.
1.40.
1.41.
1.42.
1.43.

1.44.
1.48.

1.49.
1.56.
1.57.

14 .018, only two terms being needed.

-.009

N =100, N =10,000

.114904, .019565, .002486, .000323, .000744, .008605
.008605

Computed Jy =.119726.
.1494 approx.

Above £ there is overflow; below 4, underflow.
Pi in binary, approx.
L, for taxicabs, L. for the king.

CHAPTER 2

2.11.
2.12.
2.13.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.
2.21.

x-DE*+1)

3,-33-33

pl)=20—x*

Est. max. error = .242; actual error = .043.
y' =111, p' =1

y'==175p"=-2

4/7, §

y=x+Tx(x—1)+6x(x —1)(x —2)
ax)=x(x - 1)(x -2)(x—3)

1

CHAPTER 3

3.13.
3.14.

3.15.

3.16.
3.17.
3.22.
3.23.
3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.
3.31.

Fourth differences are all 24,

A%y, = A%, — A%, and now use our result for fourth differences.
Ukrr Uk _ Vglhg 1 — UV
Vi1 Uk Vi +1Vk
Fifth differences are 5, 0, —5.

Change y, to 0.

1, 3,7, 14, 25, 41

Ay, =0, 1, 5, 18, 36, 60; y, =0, 0, 1, 6, 24, 60, 120
A%y, =24, 30, 36; Ay, =60, 90, 126; y, = 120, 210, 336
Change 113 to 131.

A’y =y, =2y, + i3 A2YZ =y, =20+

3k

4 (-2

4 - (-2

Apply the identity for the sine of a difference.

, etc.

Apply the identity for the cosine of a difference.

457



458 ANSWERS TO SUPPLEMENTARY PROBLEMS

CHAPTER 4

4.23. 120,720,0, —3%, %, - & 4.34, A%, =150 — 30k — 180k + 60k>
424. L & 32 o 4.35. 31, 129, 351
4.25. 20,1,0, -5, &, — 2% 4.36. 10, 45, 126

4.26. Fourth differences are all 24. 437. 2

4.27. 4k, 12k?, 24k, 24 4.38. 4

4.28. 5k, 20k, 60k®, 120k, 120 4.39. k®/3

429, 2k>—Tk*+9% -7 4.40. k@/4

4.30. K5 — 15k° + 85k* — 224k° + 271k* — 118k + 1 44l %O+ 4

431 3O+ 4K 42k -2k 41 442, KO+ kO + 1@
4.32. 3k® 25k + 75k + 53k ™ 443, —1/(k+1)

4.33. Ay, =53+ 135k + 90k* — 90k> + 15k*

CHAPTER 5
59. Yn+1)@-19)
510. n’(n+1)*/4
511 Use the fact that A = A[A'/(4 — 1)].
5.12. Use the fact that (i) =i®/k! = A[i{**V/(k + 1)!].
513, 4
514, 2
515 (R’+4R*+R)/(1-R)*
5.16. 26
517. -1
518. log(n+1)
519, 5 (I + DTV + 1)
P

5.20. 1(1+1+3+-~+%)

n 23
5.21. Denote the sum by S,(R). Then S,.,(R) = RS,(R) which may be used to compute each sum in its turn.
1 1 1
22, ye=1+4+4 b
522, y.=1 5t 3 1

5.23. y.=log2+log3+---+log(k—1)

CHAPTER 6

6.8.  [(x—2)(x — 4)/64][8 — 4(x — 6) + (x — 6)(x — 8)]

69. l+x+ix(x—1)

6.10. 6+ 18(x — 3) +9(x — 3)(x —4) + (x — 3)(x — 4)(x — 5)

6.11. Degree four suffices, x(x — 1)[$ — 3(x — 2) + &(x - 2)(x = 3)].
612 1+x+3ix(x—1)+5x(x—1)(x—2)
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6.14. 7x*—6x

6.15. ix®—2x%+ 8x; collocation at x =4, but not at x = 5.
6.16. No, degree three.

6.17. No, degree one.

6.18. (7x*—x")/6; greater in (—2, —1) and (1,2).

6.19. (7x —x%)/6; arguments are not equalily spaced.
6.20. y,=1ik(k—1)/(k—2)

CHAPTER 7

733, 142k +2k(k + 1) + $k(k + 1)(k +2) + 3k(k + 1)(k +2)(k +3)
734, 120+ 60k + 12k(k + 1) + k(k + 1)(k +2)

7.36. 2x —3x*+x°

737 1—k—k(k — 1)+ 3(k + Dk(k — 1) + 2k + Dk(k — 1)(k — 2)
738, 14k — (k + 1)k = 3(k + Dk(k — 1) + 3(k + 2)(k + Dk(k — 1)
7.39. 24+ 36k + 9%k (k — 1) + (k + Dk(k — 1)

740, 1-Ye(k - 1)+ 5k + Dk(k — 1)(k —2)

742 1-K*+ 3k + kK —1)

743, Withk=0atx=1, y=2+ 3k + k>

7.44. 60k — 24(k — 1)+ 4(k + Dk(k — 1) = 3k(k — 1)(k —2)

7.45. 1Lk + Dk(k — 1) — k(k — 1)(k — 2)] + ${(k? — 4)(k* — 1)k — (k> — 1)k (k — 2)(k — 3)]
746, 4k —2(k — 1) + Y(k* = Dk — k(k — 1)(k — 2)]

747, 42+36(k —5) + 2k(k - 1)+ (k - Hk(k - 1)

748. 1-Yk(k - 1)+ &k + Dk(k — 1)(k —2)

CHAPTER 8
-DEx—-4)(x—-6 —4(x—6 —D(x—6 ) —4

g15. & )(X_24)(x ) x(x 1)S(x ) X _;E: ) x(x 63)(x )?Y(2)=—1,y(3)=0,y(5)=1
8.16. _er 4x(x — 1)(x —4)(x = 5) = 11% P
8.18. a,=3 a,=-15,4a,=%
8.19. T11 xl—l‘x—4 x7_06

(x —x,)* 2(x — xo) 0 G —xo) 2x —x) ‘
822 ("ﬂ_xl)z[(l_ Xo— Xy >y°+(x_x°)yn]+(x1—xo)2 [(1_ X1 —Xo >Y1+(x—x,)y|]

8.23. First order, =2, , —1; second order, %, —3; third order, —3.
824, 1-2x+3x(x—1)—gx(x—1)(x —4)

8.25. First order, %, 0, — i; second order, — 1}, ; third order, —3.
8.26. -1

8.27. 16x +8x(x —1) = 3x(x — 1)(x —2) — x(x — 1)(x — 2)(x — 4); y(3) =84

CHAPTER 9

922, Co=C.=0,C,=C,=%, C,= -2

923, S,(x)=(2—x)/6—T(x —1)*/12— (2 = x)/6 + 19(x — 1)/12;
Sy(x) = =73 = x)/12+ (x — 2)°/6 + 193 — x)/12 = (x = 2)/6
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9.24. The d, are all zero.
9.25. The 4, are six times the second divided difference of y, which is a constant. All equations except the end

conditions reduce to 3C =d,.

CHAPTER 10
108. 2x°—x° 10.12. p,(x) =x*(4 —x)/16, py(x) =2 — (4 —x)’x/16
109,  x*—4x> +4x? 1015, x*—2%*+1
10.10. 3x°—8x*+6x° 10.16. 2x*—x+1
1011 p,(x)=3x% po(x) =2—-1(@—x)? 1017. ¥*—-x*+1
CHAPTER 11
1120, sinx =x —x*/31+x°/5!=x7/71+ - - - to odd degree n;
cosx =1—x%/21+x*/41—x/6! + - - - to even degree n.
1121, +sin&-x"""/(n + 1)! for both functions.
11.22. n=7
1123, n=8 n=12
1124. ¥ D/t
i=1
1127, 6+16°+38°— 20"+ 1 &7+
CHAPTER 12
12.31. 1.0060, 1.0085, no 12.48. About i =.15 for x > 1.
12.32. 1.0291 12.49. 5
12.33.  1.01489 12.51. 15.150
12.34. 1.12250 12.52. 841552021
12.35. 105830 12.54. 1.16190, 1.18327, 1.20419,
12.36. .12451559 the last being 3 units off.
12.37. .1295 12.55. 1.20419, 1.22390,
12.38. 1.4975 both being somewhat in error.
12.39. 1.4975 12.56. Error =x*—7x*+6x;
12.40. 1714, .1295, .0941 & =0 explains the zero error.
12.41. .02 12.57. Fortunate value of &
12.42. .006 12.58. 0
12.43. .25,.12 12.59. 24
12.45. About 1 12.60. Oand1
CHAPTER 13 6k> — 6k +1 ak* — 6k —2k +2 Sk*—10k>+ 5k — 1
— 6k + — 6k~ 2k + - +5k —
13.22. hp'=0yin+ (k- %),‘462}’1/2 + 63_)’1/2 + #5“)’1/2 +—
12 24 120
12k - 12k — 2 4k —6k> +1
Wp® = 8o+ k= Dyt == ubat —— e
B(p)® = 8% + (k = D)ud*yip + (K — k)61,
h4P(4) =ub*yi,+ (k — %)65}’1/2 hp® = 6%,
13.23.  .4714, —.208, .32
13.24. Predicted error approx. 107%; actual error .000038.
13.25. Max. r.o. error is about 2.5E /h; for Table 13.1 this becomes .00025.

Y1
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13.28. Exact resultisx =n/2, y=1.
13.29. 1.57
13.31. A°=3E/8A; h=.11

CHAPTER 14

14.41. ~=V3/100
14.42. A, = .69564, A, =.69377, (44, — A,)/3 =.69315

14.43. .69315
14.44. .6931, no corrections needed.
1445. h=.14

14.46. \/3/10° trapezoidal, .014 Simpson.

14.52. Exact value is n/4 = .7853982.

14.53. Correct value is 1.4675.

14.58. .36422193

14.60. 9.68848

14.62. a_=a, =15, a,=1%, by=0,b_,= —b,=
14.67. .807511

G-

CHAPTER 15

15.56. 1.0000081
15.57. 1.5
15.61. Lo=1,L,=1-x, L,=2—-4dx+x% L;=6—18x + 9" — x>,
=24 —96x +72x* — 16x” + x*, Ls= 120 — 600x + 600x* — 200x> + 25x* — x°
15.68. Exact value is .5.
15.69. Correct value to five places is .59634.
15.71. H,=1, H =2x, H,=4x*>—2, H,=8x*—12x, H,= 16x* — 48x> + 12, H, = 32x° — 160x> + 120x
1573, (Va/6)[y(= VI +y(V3) + 4y (0)]; 3Va/4
15.77. 2.128
15.78. .587
15.80 2.404
15.81. 3.82

CHAPTER 16

16.13. .5 and — .23, compared with the exact values .5 and — .25
16.15. 1.935

16.18. -.797

CHAPTER 17

17.50. n(n—1)(n —2)/3 17.62. At most eight.
17.51. (n +1)°’n*(2n* +2n - 1)/12 17.63. Aboutx =.7.
3 2n+3 x>t (2n +2)?

N S TR U6 2 D s

5, about x = 10.

1 1 1 1 1 17.65. .798

.55, —-—= + +
17.55 18 3 (n +1 n+2 n+ 3) 17.66. .687
17.57. .6049 17.67. .577

17.61. About x =.7. 17.68. 1.1285
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17.73. Q;=x'
17.78. After four terms; this method yields C =.5769.
17.86. After seven terms.

CHAPTER 18

1 k 1
1831 y. =4 —] LI
Ye [ AT (R gy
1832 1,3, 1, 3, ete.; 2= (= 1)%; (yo—2)( = 1) +2
18.35. Let y, = (k — 1)! A(k) to obtain y, = (k — 1)! (2* — 1) for k >O.
1836, 2

2 2 2 2
. (575 1)55-1)55+)
8.3 53 Yigtsa Y55t

18.40. 1/(k —1)!
1
al

except when r =1.

”4
90

1841 yO(0) =3! 2*/90, w<3>(n)=3z[

i

18.42. ;3

1843, ~*/12-4

18.44. (3)=.0365, w(3)=.7032, y(— L) =1.9635

18.45. It takes arbitrarily large negative values.

18.46. 3p(0)—iyp(VD) -dy(- Vi)

1847, 39(0) - iy (VD - ty(- VD

18.50. 5(— 1) —3(—2)

18.52. A+B(-1)

18.53. A4*+ B3* + (acosk + b sin k)/(a® + b?),

where a=cos2—-7cosl+12,b=sin2—"7sin1l

A=(3a—-acosl—bsinl)/(a®+b?)
B=(—4a+acosl+bsinl)/(a®+b?)

18.54. [ —4(—3)* +2k(—3)* +3k* — 8k + 4]/27

18.56. 3[2* - (3)]

18.57. [5*(—cos k@ — 3 sin kO) +2%]/41, cos 8= -2, sinf = £

18.59. a<0

18.60. L(3F)—fs(— 1) —32*—+%

18.61. Oscillatory, linear, exponential.

18.65. 1[1—(—1)"]

CHAPTER 19

19.76. Exact value is 1.

19.77. 1.4060059

19.78. Exact solution is x*y* + 2y = 3x.

19.79. Exact solution is x% + xe* = 1.

19.80. Exact solution is log (x* + y*) = arctan y /x.
19.81. 4 days, 18 hours, 10 minutes

19.82. 4

19.83. Exact value is § arctan 5.

19.84. Exact solution is x = — V1—y®+log (1+ V1 —y?)/y.
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CHAPTER 20

20.16. See Problem 19.87.

20.19. ay=a,=1, kK%a, — 2k —1)ay_, +a,_,=0for k>1

20.20. Fourth-degree Taylor approximation to e~ is 6,2374 compared with the correct .014996.

CHAPTER 21

21.57. y=.07Th+4.07

21.58. 4.49, 4.63, 4.77, 4.91, 5.05, 5.19, 5.33, 5.47, 5.61, 5.75

21.59. .07.

21.60. No.

21.62. Very little.

21.63. They alternate.

21.65. A=84.8, M= —.456

21.67. Five-point formula does better here.

21.69. Results are almost the same as from five-point formula.

21.85. p(x)=3

21.86. p(x)=3x/5

21.87. p(x)=3x/5

21.88. p(x)=.37+.01x —.225(3x* - 1)/2

21.90. p(x)=1

21.91. p(x)=3x/4

21.92. Drop two terms and have 1.26607; — 1.13037; + .27157, — .0444T, + .0055T, — .00057s.
21.102. (81 + 72x)/64; over (—1, 1) this is only slightly worse than the quadratic.
21.106. 3x/4 9

21.107. Min. integral parabola is p = —+— (2x*-1).

21.109. .001, .125, .217, 288, .346, .385, .416, 1438, .451, .459, .466

21.110. .8, 19.4, 74.4, 143.9, 196.6, 203.9, 108.2, 143.4, 126.7, 118.4, 112.3, 97.3, 87.0, 73.3, 56.5, 41.8, 33.4,
26.5,15.3, 6.6, 1.2

21.111. 5.045 — 4.043x + 1.009x>

CHAPTER 22

2234, P=4.44e*>

22.37. 5 3\/_ 3 ( 3- ‘) 2 x2
16 n' *

22,38 =(1-18x +48x)/32; h =%

22.41. (1072) + 15T, + 6T2)/32; 3%

242 TLh+T+T;1

2243, R T~ 5% T+ 5 T; 1/23,040
22.44. p=2x/m—1.10525

22.45. Method fails, x, becoming the point of discontinuity.
22.46. p= —2x/m+1.105

22.50. 1.6476+.4252x + .0529x%; .0087
22.51. Degree four.

22.52. Not more than .000005.

22.53. Degree four.

22.54. Degree two.
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CHAPTER 23

23.18.

3/x; no, the method produces 4 — x.

—.9706 £ 1.0058

x =7.4977, y =2.7687
x =1.8836, y =2.7159
94775

x =2.55245

1.4458

x=1.086, y = 1.944
1.85558452522
.58853274

(x> +2.90295x — 4.91774)(x + 2.09705x + 1.83011)
1.497300

7.87298, 1.5, .12702
1.403602

23.19. 90/(90 + 97x — 7x%); no, the method produces (20 + 7x)/(20 + 34x).
23.20. (x*-1)/(x*+1)

2321, 2*/(1+x)

2322, (x+1)/(x+2)

2324, 1/2-x%

2325, -3

2328, 4(1-x+x)/(1+x)

2329, 12(x +1)/(4—x?)

2330, (*+x+2)/(x*+x+1)

23.31.  1/(sin 1°30") = 38.201547

23.32. (1680 — 2478x + 897x — 99x%)/(140 + 24x — 17x?)
2333, (24 +18x + 6x% + x°)/(24 — 6x)

2334, (24+6x)/(24 — 18x + 6x — x%)

CHAPTER 24

24.40. ay,=1.6, a,= —.8472, a,=.0472, b, = .6155, b,= —.1454
20442, ay=2 a;=—1, a,=a;=0, b;=V3/3, b,=0
24.43. .8;.8—.8472cos (2mx/5) + .6155 sin (27x/5)
24.45. Ty(x)=1; Ti(x) =1—cos (7x/3) + (V3/3) sin (mx/3) = y(x)
24.46. [(V2+2)/2]sin (mx/4) + [(V2 — 2)/2] sin (3x/4)
24.47. 1—cos(7x/2)

24.49. 7*/12 and 7%/6

24.50. #*/8

24.52. 7°/32

2456 1-04,0,1-w

24,57 VT=(3,-2,0, —1,0, —2)

2458 VT=(51,51,-3,1,-3,1)

CHAPTER 25

25.51. About 1.839. 25.80.
25.52. Two; three; .567143 25.81.
25.53. 1.83929 25.82.
25.54. 1.732051 25.83.
25.55. 1.245731 25.84.
25.60. 1.618034 25.85.
25.69. x=.772, y =.420 25.86.
25,72, 3 and -2. 25.87.
25.74. x*+1.9413x +1.9538 25.88.
25.75. 4.3275 25.89.
25.76. 1.123106 and 1.121320 25.90.
25.77. 1.79632 25.91.
25.78. .44880 25.92.
25.79. 1.895494267 25.93.

1.7684 and 2.2410
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CHAPTER 26

26.86. Exact solution is .8, .6, .4, .2.

26.88. Exact solution is given in Problem 26.55.

26.91. Exact solution is 5, —10, 10, —5, 1.

5 -10 10 -5 1

-10 30 -35 19 -4

26.92. Exact inverse is 10 -35 46 27 6
-5 19 =27 17 -4

1 -4 6 -4 1

25 -41 10 -6

-41 68 —17 10
10 -17 5 -3

L —6 10 -3 2

26.101. 2160A° — 331242+ 3814 —1=0

26.109. (0, —i, i)

26.96. Exact inverse is

0 i1
26.110. |—i -1
1 -i 0

26.119. 2.18518, —.56031, 2.00532, —.36819
26.120. 1.62772, 3, 7.37228
26.121. 8.3874, C(.8077,.7720, 1); 4.4867, C(.2170, 1, —.9473); 2.1260, C(1, —.5673, —.3698); C being any
constant.
5 =10 10 -5 1
-10 30 -35 19 -4
26.122. | 10 -35 46 -27 6
-5 19 -27 17 -4
1 -4 6 -4 1
sl B8 -0 e
26.123. — | —70 588 —630
63 —630 735
17 6-8 —~2+4i
26.124. 8[—3+10i 1—5:‘]
26.125. 98.522
26.126. 12.054; [1,.5522i, .0995(3 + 24)]
26.127. 19.29, —7.08
26.129. .625, 1.261, 1.977, 4.136
26.130. .227 = smallest A
26.131. No

CHAPTER 27

27.18. (0,0), (0,1), (3,3), (2, 1), (3,0); min. of —% at (3, 3); max. of 3 at (3,0).

27.19. See Problem 27.18.

27.20. — 4y, — y, — 3y; =max.; y;, ¥», ¥, nonnegative; —y; +y, —y; =1, =2y, —y, —y; = -2,
27.21. See Problem 27.18.
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27.22. 4y, +y,+ 3y; =min.; y;, y,, y; nonnegative; y; =y, + y: 21, 2y, + yo + y3 2 —2;
solution at (0, 0, 1).

27.23. See Problems 27.18 and 27.20.

2724, x,=3% x,=¢

27.25. Extreme solution points are (0, 1) and (%, 3).

27.27. Payoffis 2.5; R(%, 3), C(, 3).

27.30. 3+ ix + Bx 4 £x°% 1.3125; -2, -1, 0, 1, 2

27.31.  1.04508 —2.47210x + 1.52784x%; .04508; 0, .08, .31, .73, 1

27.32. Same result; five positions of maximum error.

27.33. Max. = 4.4 forx = (4.4, 0, 0, .6).

27.34. Min. (5y, +2y,) =4.4.

A |0 3 6 9 12

27.35.
Max. | 0 2 2 10 10

27.36. 3, %1
3

27.37. R(3, %), CG, 3

CHAPTER 28

28.11. x,=3.90, x,=5.25, error =.814 28.19. The average (X a;)/N.

28.12. p=.814, |pln=1.15 2820, x=(A+C+D)/3,y=(B—C+D)/3
28.16. x,= —.3278 =x,, error = .3004 2821 x;=A;+3i(n—A—A,— Ay

28.17. x;=—3=x, 2822, [?=A%-D,L:=B*-D, H*=C*+D
28.18. 3.472, 2.010; 1.582; .426 where D =3(A*+ B* - c?)
CHAPTER 29

2946, co=%, ¢, =1%

29.52. .2,.5

2953, T(x,y,2)=¢4[T(x+h,y,2)+T(x—h,y, 2)+ T(x,y + h, z) +etc.]
2954, y=(x-1)"

29.55. A near-singularity at x = 0.

29.56. y=(1—-e™)/(1—e™")

29.57. A near-singularity at x = 0.

XV
29.58. Exact solution is 1 — \/2/nJ_ [cos (4?) + sin (u?)] du.
0

CHAPTER 30

30.10. Theoretical values are 2, 3, 4, and 5 step lengths.
30.11. Exact value is 2.

30.14. Theoretical values are 1, 1%, -

30.15. Theoretical values are .2401, .4116, .2646, .0756, .0081.
30.17. For N— = the theoretical value is 1/e.

30.18. Theoretical values are &, 1, 3.

30.19. y= —log(l—x) or equally well y = —logx.

30.20. Theoretical values are .3413, .1359, .0215, .0013.
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Acceleration of convergence, 115, 126, 163,
167-169, 326, 350, 374-377
Adams method, 198, 212, 213, 220-223, 228
Adaptive methods:
for differential equations, 224-225, 238
for integration, 119, 128, 129
Aitken’s 8% process, 332, 333, 350
Algorithm, 1
Analytic function, 90
Approximation:
collocation, 17-21, 43-47, 62-65, 120
continued fractions, 292-299
least-squares, 241-274, 420-422, 305-316
min-max, 275-291, 299, 300
osculating, 80-85, 138-140
polynomial, 17, 64-70
rational, 292-304
Taylor, 86-93
trigonometric, 305-325
Asymptotic series, 158, 164, 178-180

Back substitution, 354

Backward error analysis, 11, 12, 362, 369—
370, 401-402

Bairstow’s method, 329, 343, 349, 350

Bernoulli numbers, 87, 91, 92, 163, 172, 181

Bernoulli polynomials, 163, 170-173

Bernoulli’s method, 327

Bernstein polynomials, 50, 54, 275, 283

Bessel functions, 272

Bessel’s formula, 51, 61, 70, 94, 99, 105, 106,
117

Bessel’s inequality, 244, 262

Binomial coefficients, 22, 23, 25, 30, 32, 33,
37, 57

Binomial series, 86, 91, 93, 167

Binomial theorem, 52, 170, 282

Blow-up, 219, 222

Boundary value problems:

for difference equations, 196
for differential equations, 427-449

Calculus of variations, 428, 432
Canonical forms, 356, 387-395
Cardano, 353

467

Cauchy inequality, 12
Characteristic equation, 190, 193, 336
Characteristic polynomial, 355, 381-383
Chebyshev:
formulas, 138, 154
Gauss quadrature, 138, 154, 157
inequality, 282
line, 276-280
polynomials, 138, 154, 191, 244, 245, 263-
269, 273-276, 287, 288
series, 273, 287
Christoffel identity, 143-144
Coin-tossing problem, 41
Collocation, 17-21, 43-47, 62-65, 293, 305,
308
Completeness, 244
Composite formulas, 118
Condition, 7, 367
Continued fractions, 292, 294-299, 302
Convergence:
of collocation polynomials, 20
in the mean, 307
methods for differential equations, 198,
200-208, 215-218
of quadrature formulas, 120, 125, 152
of root-finding algorithms, 326, 330-335,
337-338, 340-342
Cotes formulas, 121

Data smoothing (see Smoothing)
Deflation, 327
Desert-crossing problem, 175
Determinant, 62, 65, 294-296, 299, 381, 400
Difference:

backward, 50, 52

central, 50, 54

divided, 62-70

equations, 184-196, 336, 337

formulas, 22, 23, 28-32

forward, 22-29

of polynomials, 31, 36, 37

table, 22-28, 63
Differential equations, ordinary:

boundary value problems, 427

Euler method, 200, 201, 216

initial value problems, 199-202, 225-226
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Differential equations, ordinary (Cont.):
method of isoclines, 197, 199
predictor-corrector methods, 198, 208-218
Runge—Kutta methods, 197, 201-208, 210

222-225, 232-235, 238
stiff, 226-227, 236-237
systems, 232-240

Differential equations, partial, 434-438

Differentiation, approximate:
by difference methods, 108-114
by Fourier methods, 307, 317-318
with smoothing, 242-243, 252-254
using splines, 114

Diffusion equation, 434

Digamma function, 184, 187-190, 195

Divergent series (see Asymptotic series)

Division algorithm, 17, 18

Dual problems, 405, 413

Duck-river problem, 239

>

Economization, 244, 266, 273
Eigenvalue problems:
Cayley—Hamilton theorem, 383
characteristic polynomial, 381
Gerschgorin theorem, 383
Givens method, 388, 400
inverse iteration, 387
inverse power method, 386
Jacobi method, 387, 396, 400
power method, 384, 400
QR method, 393
Rayleigh quotient, 384
Elliptic integral, 133
Equal-error property, 244, 264265, 273-280
Equations, roots of (see Roots)
Equidistant data, 22
Error, 1-2, 5
algorithm, 94, 126
of collocation polynomial, 17-21, 64
detection of isolated, 27, 28
input, 1, 94-97, 102, 112, 123, 246
least-squares, 242, 251, 252, 258
magnification, 102, 103, 108, 368
monitoring, 199, 224
and norms, 367-371
of osculating polynomial, 82
probable, 6, 14
relative, 5, 7, 9-11, 15, 198-199, 215,
219-222, 229, 367, 371
roundoff, 1, 2, 6, 7, 10, 14, 26, 94, 103,
112-114, 117, 120, 126, 198, 201, 212—
213, 221-225, 228-229

Error (Cont.):
of Taylor polynomials, 86-90
truncation, 6, 20, 94, 100-101, 104, 106,
111-115, 117-124, 127, 128, 132-136,
139, 147, 152, 166, 178, 198, 208, 210,
219-222, 436
Error function, 130
Euclidean algorithm, 327
Euler method (see Differential equations)
Euler transformation, 87, 91, 163, 167, 181,
187
Euler’s constant, 174-175, 182, 184, 187
Euler-Maclaurin formula, 87, 92, 129, 164,
173-177, 181, 182
Everett’s formula, 51, 58, 61, 94, 97-99, 101,
102, 105-106, 117
Exchange method, 275, 278-281, 288, 289,
292, 303, 378-379, 408
Extrapolation to the limit, 115-116, 331

Factorial polynomials, 30-38, 40
Factor theorem, 17, 19, 338
False position (see Regula falsi)
Feasible point, 405-407
Fibonacci matrix, 403
Fibonacci numbers, 185, 193, 339, 341, 383,
395, 403
Finite differences (see Differences)
Finite elements, 428, 433—-434, 440-446
Finite integration, 39, 40, 42
Floating-point, 2, 3, 8-12, 15
Forward error analysis, 11, 362
Forward substitution, 354, 362, 364
Fourier analysis:
coefficients, 306, 315, 318, 325
complex forms, 307-308, 318-323, 325
differentiation, 307, 317-318
fast Fourier transforms, 308, 319-325
series, 312-315
smoothing, 307, 316-318, 324, 325
Fundamental theorem of linear algebra, 364,
368

Game theory, 405, 414-417, 419

Gamma function, 185, 190

Garden hose method, 428, 431-432

Gauss:
elimination method (see Linear systems)
formulas, 50, 51, 55-58, 60—61
quadrature methods, 137-157, 159, 162
Seidel iteration (see Linear systems)



Gear’s method, 226-227, 236-237
Geometric sum, 41, 42

Givens method, 388, 400
Gradient methods, 329, 346-349
Gregory’s formula, 119, 129

Hermite formula, 80-85, 117, 136, 138-139

Hermite polynomials, 138, 152, 156

Hermite—Gauss quadrature, 138, 152, 156

Hermitian matrices, 396-397

Hessenberg matrix, 390-395, 404

Hilbert matrix, 254, 255, 366, 368, 389, 398,
400

Horner’s method, 187, 195

Ignoring the singularity, 158-159
Ill-conditioning, 241, 247, 255, 355
Indefinite summation, 87
Infinite product, 175-176
Information, 1
Initial value problems:
for difference equations, 186, 192, 194-195
for differential equations, 199-202, 225—
226
Inner product, 15
Integration, approximate, 118-162
by Gaussian methods, 136-157
by Monte Carlo methods, 450-455
of singular integrals, 158-162
Interpolation, 94-107
historical place, 94
inverse, 99
Inversion of matrices, 368, 376-380, 396
Iterative methods, 326, 371-375
Iterative refinement, 371

Jacobi’s method, 387, 396, 400

Knot, 71

Lagrange multipliers, 62, 64, 80-82, 136,
139-140

Lagrange’s formula, 62, 64-65, 68-69, 94
98-99, 102-106, 117

Laguerre polynomials, 138, 156

Laguerre-Gauss quadrature, 138, 150-152,
156

Lanczos error estimate, 137, 149

’

469

Laplace equation, 437
Least-squares:
polynomial approximation, 241, 274
solution of overdetermined systems, 420—
422
trigonometric approximation, 305, 307, 310,
315-316
Legendre polynomials, 141-145, 154-155,
195, 196, 258, 259
shifted, 243, 260-261
Legendre-Gauss quadrature, 137-150
Leibnitz series, 167
Leonardo of Pisa, 330
Linear programming, 405-419, 422-424
Linear systems:
Choleski method, 365, 377
complex, 396-397
Crout method, 365
Doolittle method, 365
eigenvalues (see Eigenvalue problems)
errors and norms, 367-371
factorizations, 354, 360-366
Gauss—Jordan, 359
Gauss—Seidel, 354, 371-374, 399, 438, 440
Gaussian elimination, 354, 356-364, 376,
380, 398, 422
iterative methods, 354, 371-375
relaxation methods, 375, 399
Lipschitz condition, 207, 215, 216, 218
Loss of significant digits, 4

Mean value theorem, 86
Midpoint formula, 84, 228-229
Milne’s method, 198, 210-212, 217-218, 224,
228
Min-max:
polynomial approximation, 276291
rational approximation, 292, 299-300
solution of overdetermined systems, 420-
425
Modular multiplication, 450-454
Monte Carlo methods, 450-456

Nearly-singular (see Ill-conditioning)
Newton:
collocation formulas, 43-60, 67-68, 94-97,
104, 108-111, 118, 120, 212, 226, 298
Cotes, 121
iteration, 227, 326-329, 332-335, 345, 349-
350, 431
method, damped, 329
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Node, 71

Nonlinear equations, roots of, 326-353

Norm, 3, 4, 12-16

Normal equations, 241, 247-248, 255, 259,
421-422

Normalized, 8, 358

Nuclear reactor problem, 451-452

Operators, 48-61, 86-87, 89-93

Optimization, 328, 329, 432-434

Orthogonal functions, 139, 305, 308, 315, 319

Orthogonal polynomials, 142, 241-242, 245,
254-260

Orthogonal projection, 241, 248, 267, 422

Osculating polynomial, 94, 138-140

Overdetermined systems, 406, 420-426

Overflow, 8, 15

Over-relaxation, 375

Oversmoothing, 272

Padé approximations, 292, 301-302
Parasitic solutions, 221
Partial differential equations, 434—448
Partial fractions, 69, 189
Pascal matrix, 403
Perturbation matrix, 361-363, 378, 383
Phase plane, 235
Pivot, 357-358, 363, 376, 409-412
Pole, 298-303
Polynomial:

collocation, 17-21

factorial, 30-38

osculating, 80-85

Taylor, 86-93
Positive definite matrix, 374
Power method, 356, 384-387
Prediction, 104-105
Predictor-corrector methods, 198, 208-218
Probable error, 6, 14
Pseudo-random numbers, 450

Quadratic convergence, 326, 333
Quadrature (see Integration)
Quotient-difference algorithm, 327, 339-343

Random numbers, 450-454
Random walk, 450, 453-454
Rational approximation, 292-304

Rayleigh quotient, 356
Reciprocal differences, 292, 294-299
Recurrence relations, 30, 31, 143, 144, 202,
263

Regula falsi, 335, 431
Relative error (see Error)
Relaxation methods, 375, 389
Remainder theorem, 17, 18
Representation of numbers:

binary, 2-16

conversion, 2

floating-point, 2, 3, 8-15

normalized, 8, 10, 15
Rolle’s theorem, 19, 82
Romberg’s method, 119, 126-127
Roots of equations, methods:

Bairstow, 349

Bernoulli, 336

deflation, 338

descent, 346

interpolation, 335

iterative, 330, 346

Muller’s, 336

Newton’s 332, 345

QD, 339

Regula falsi, 335

Steffensen’s, 332

Sturm sequences, 343
Roundoff error (see Error)
Runge-Kutta methods (see Differential

equations)

Saddle point, 348
Sampling, 450, 452
Series:
accelerating convergence of, 6-7, 167-169
asymptotic, 177-180
rapidly convergent, 163, 166-167
telescoping, 164-165, 188-189
(See also Taylor series)
Significant digits, 1
Simplex method, 405, 407-412, 415-418
Simpson’s rule, 71, 118-119, 123-128, 131-
132, 158-159, 162, 210, 272
Simulation, 450-451
Simultaneous equations:
differential, 232
linear algebraic, 354
nonlinear algebraic, 328, 345
Singular integrals, 158-162
Smooth and unsmooth functions, 148, 156,
313-316
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Smoothing:
by differences, 27
by Fourier methods, 307, 316-318, 324-325
by least-squares polynomials, 119, 242, 246,
249-254, 274
by min-max methods, 300
by moving averages, 271
Speed of computation, 1, 5, 7
Splines, 71-79, 114
Square circles, 16
Square root, 1, 334
Stability, 7, 199, 218223, 228, 436
Steepest descent, 329
Steffensen’s method, 332
Stiff equations, 226-227, 236-237
Stirling’s formula, 51, 57, 61, 70, 94, 105-106,
108, 110-111
Stirling’s numbers, 30, 31, 34-36, 40, 42, 109
Stirling’s series, 164, 176-177, 179, 183
Sturm sequence, 327, 389
Successive  approximations (see Iterative
methods)
Summation, 30-33, 39-42, 156, 158, 163-165,
167, 172-173, 180, 181, 187
Superposition principle, 185
Supporting theory, 2, 14
Symmetric functions, 67
Symmetry of divided differences, 63-67
Synthetic division, 17, 18, 21

Taylor polynomial, 86-94, 197, 202

Taylor series, 86, 87, 90, 91, 93, 103-104, 107,
118, 127, 129-130, 132-133, 149, 166—
167, 197, 203, 228, 345

Taylor’s theorem, 119

Telescoping sums, 39, 144, 165, 172, 180

Trapezoidal rule, 71, 118, 122-123, 125, 132,
315
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Triangle inequality, 3, 12

Triangular matrix, 360—366, 382
Trigonometric approximation, 305-325
Triple diagonal matrix, 73, 76, 395
Truncation error (see Error)
Tschebycheff (see Chebyshev)
Two-person games, 405, 414-417, 419

Underflow, 8, 15

Undetermined coefficients, 80, 83, 131, 134
Unequally-spaced arguments, 62

Uniform approximation, 244, 275

Unit error function, 23-27

Van der Pol equation, 234-235

Variable order, 225

Variable step size, 224

Variational equation, 432

Variations, calculus of, 428, 432

Vector space, 241, 248-249, 257, 259, 262,
267, 421

Wallis’ product, 164, 175-176

Wave equation, 446

Weddle’s rule, 134

Weierstrass approximation theorem, 275,
281-283

Weight function, 243-244, 261-262, 265

Wilson’s matrix, 400

Wronskian determinant, 192, 193

Zeros of polynomials:
methods for finding (see Roots of
equations)
number of, 17, 19, 142, 291
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