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Preface 

The main goal of numerical analysis remains what it has always been, to find 
approximate solutions to complex problems using only the simplest operations of 
arithmetic. In short, it is a business of solving hard problems by doing lots of easy 
steps. Rather clearly, this means finding procedures by which computers can do 
the solving for us. The problems come from a variety of mathematical origins, 
particularly algebra and analysis, the boundaries being at times somewhat 
indistinct. Much background theory is borrowed from such fields by the numerical 
analyst, and some must be included in an introductory text for clarity. It is also 
true that our subject returns more than raw numbers across the boundaries. 
Numerical method has made important contributions to algebraic and analytic 
theory. 

Many new topics have been added for this second edition. Included are 
backward error analysis, splines, adaptive integration, fast Fourier transforms, 
finite elements, stiff differential equations, and the QR method. The chapter on 
linear systems has been completely rewritten. A number of older topics have 
been shortened or eliminated, but a representative portion of classical numerical 
analysis has been retained partly for historical reasons. Some of the cuts have 
brought a tear to the author's eye, especially that of the constructive proof for the 
existence of solutions to differential equations. On the whole the new edition is a 
bit more demanding, but the same can be said of the subject itself. 

The presentation and purposes remain the same. There is adequate material 
for a year course at beginning graduate level. With suitable omissions an 
introductory semester course can easily be arranged. The problem format allows 
convenient use as a supplement to other texts and facilitates independent study. 
Each chapter still begins with a summary of what is to come and should be taken 
as a table of contents for the chapter. It is not intended to be self-explanatory, 
and supporting detail is provided among the solved problems. 

To repeat the closing paragraph of my original preface, there is no doubt 
that, in spite of strenuous effort, errors do remain within the text. Nmrierical 
analysts are among the world's most error conscious people, probably because 
they make so many of them. I will be grateful to hear from readers who discover 
errors. (The response to this request in the first edition was humbling.) There is 
still no reward except the exhilaration that accompanies the search for the 
all-too-elusive "truth." 

FRANCIS SCHEID 
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Chapter 1 

What Is Numerical Analysis? 

ALGORITHMS 

The objective of numerical analysis is to solve complex numerical problems using only the simple 
operations of arithmetic, to develop and evaluate methods for computing numerical results from 
given data. The methods of computation are called algorithms. 

Our efforts will be focused on the search for algorithms. For some problems no satisfactory 
algorithm has yet been found, while for others there are several and we must choose among them. 
There are various reasons for choosing one algorithm over another, two obvious criteria being speed 
and accuracy. Speed is clearly an advantage, though for problems of modest size this advantage is 
almost eliminated by the power of the computer. For larger scale problems speed is still a major 
factor, and a slow algorithm may have to be rejected as impractical. However, other things being 
equal, the faster method surely gets the nod. 

EXAMPLE 1.1. Find the square root of 2 to four decimal places. 
More than one algorithm, using only the four basic operations of arithmetic, exists. The favorite is without 

much doubt 

Xn+l =~ (xn +i) 
from which a few mental calculations quickly manage 

3 
Xz=z 

or, rounded to four decimal places, 

X 2 = 1.5000 x3 = 1.4167 X4 = 1.4142 

the last being correct to all four places. This numerical algorithm has a long history, and it will be encountered 
again in Chapter 25 as a special case of the problem of finding roots of equations. 

ERROR 

The numerical optimist asks how accurate are the computed results; the numerical pessimist asks 
how much error has been introduced. The two questions are, of course, one and the same. Only 
rarely will the given data be exact, since it often originates in measurement processes. So there is 
probably error in the input information. And usually the algorithm itself introduces error, perhaps 
unavoidable roundoffs. The output information will then contain error from both of these sources. 

EXAMPLE 1.2. Suppose the number .1492 is correct to the four decimal places given. In other words, it is an 
approximation to a true value that lies somewhere in the interval between .14915 and .14925. The error is then 
at most five units in the fifth place, or half a unit in the fourth. In such a case the approximation is said to have 
four significant digits. Similarly, 14.92 has two correct decimal places and four significant digits provided its 
error does not exceed .005. 

EXAMPLE 1.3. The number .10664 is said to be rounded to four decimal places when abbreviated to .1066, 
while .10666 would be rounded to .1067. In both cases the error made by rounding is no more than .00005, 
assuming the given figures are correct. The first is an example of rounding down, the second of rounding up. A 
borderline case such as .10665 is usually rounded to the nearest even digit, here to .1066. This is to avoid 
long-range prejudice between the ups and downs. 

EXAMPLE 1.4. When 1.492 is multiplied ~y 1.066, the product is 1.590472. Computers work to a fixed "word 
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length," all numbers being tailored to that length. Assuming a fictitious four-digit machine, the above product 
would be rounded to 1.590. Such roundoff errors are algorithm errors and are made by the unavoidable millions 
in modern computing. 

SUPPORTING THEORY 

Though our view of numerical analysis will be applications oriented, we will naturally be 
concerned with supporting theory, which is used both to discover algorithms and to establish their 
validity. Often the theory to which we are led has intrinsic interest; it is attractive mathematics. We 
then have the best of both worlds, but must not forget that our interests are more functional than 
aesthetic. 

EXAMPLE 1.5. Computing values of the trigonometric, exponential, and other nonelementary functions 
clearly depends upon supporting theory. To get the cosine of x for small x, the classic series is still a good 
choice. 

With x = .5 this becomes 

cos .5 = 1- .125 + .0026041- .0000217 + 0 0 0 

= .877582 

which is correct as far as it goes. The error bound in this case is guaranteed by further supporting theory which 
states that for series such as this the error is no greater than the first omitted term. (See Problem 1.9.) Here the 
first omitted term is x8 /8!, which for x = .5 amounts to just less than .0000001. 

NUMBER REPRESENTATIONS 

Since our ultimate objectives are numerical, a word or two about the representation of numbers 
will not be out of place. Numerical input will usually be in decimal form, since this is the form with 
which we are most familiar. As almost everyone knows, however, computers generally find binary 
representations more convenient, their 0 and 1 digits matching the off and on or high and low states 
of electrical components. For positive integers the binary form is 

dn2n + dn-Izn-I + · · · + d121 + da2° 

while for positive numbers less than one it is 

d_Iz-I + d_zz-2 + d_3z-3 + ... 

with all binary digits d; either 0 or 1. Such representations are unique. 
Floating-point representations have an additional convenience. In this form, numbers are 

described by three parts, a sign, a mantissa, and an exponent (which itself has a sign). Turning to 
decimals for the first illustrations, the number .1492 might appear as 

+.1492 10° 

the sign being+, the mantissa .1492, and the exponent 0. The alternative +1.492 10- 1 is available, 
among other possibilities, but standard practice calls for the leading (nonzero) digit to come just 
after the point. The exponent then takes care of the order of magnitude. Such representations are 
called normalized. Thus 1492 would be expressed as + .1492 104

• 

EXAMPLE 1.6. Convert the decimal 13.75 into a binary floating-point form. 
More formal conversion methods exist, but even without them the binary equivalent of 13.75 is easily seen 

to be 1101.11, with 8 + 4 + 1 on the left of the point and!+! on the right. Now rewrite this as 

+ .110111( + 100) 
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where the + 100 in parentheses serves as exponent 4. A final conversion to 

01101110100 

in which nothing but zeros and ones appear is attractive for electrical purposes, provided that certain 
conventions are understood. The leading zero is interpreted as a plus sign. (1 would mean minus.) Six binary 
digits, or bits, then make the mantissa, a binary point being assumed at its head. The zero that follows is 
another plus sign, this time for the exponent, which then ends the representation. The final form does not look 
very much like 13.75 but is understandable. In practice both the mantissa and exponent would involve more 
digits, and the forms of sign and exponent will vary, but floating-point representations are a basic tool of 
modem computing. 

NORMS OF VECTORS AND MATRICES 
The Euclidean length of a vector, that is, 

(vi + v~ + · · · + v~) 112 

for the vector V with components V;, is also called a norm of V and given the symbol IIVII· Three 
basic properties of this norm are 

1. I lVII ~ 0, and equals 0 if and only if V = 0 

2. llcVII = c · IIVII for any number c 

3. IIV + Wll ~ IIVII + IIWII 
The last is known as the triangle inequality. 

Several other real functions also have these properties and are also called norms. Of particular 
interest are the LP norms 

IIVIIP = (~ lv;lp rp 
for p ~ 1. With p = 1, it is the L1 norm, the sum of the component magnitudes. With p = 2, it is the 
familiar vector length, or Euclidean norm. As p tends to infinity, the dominant V; takes over and we 
have the maximum norm 

IIVII, =max lv;l 
i 

On more than one occasion, we will find use for these norms, particularly in studying the error 
behavior of algorithms. 

EXAMPLE 1.7. Using the L1 norm, the vectors (1, 0) (!, D (0, 1) among others have norm one. A plot of such 
unit vectors is given as Fig. 1-1a, all emanating from the origin. Their terminal points form a square. Figure 
1-1b shows the more familiar unit vectors of the Euclidean norm. Using the Loo norm, the vectors (1, 0) (1, 1) 
(0, 1) among others have norm one. Their plot appears as Fig. 1-1c, terminal points again forming a square. 

(a) (b) 

Fig.l-1 

(c) 
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Turning to matrices, we define 
IIAII =max IIAVII 

the maximum being taken over all unit vectors V. The meaning of unit here depends upon the type 
of vector norm being used. Such matrix norms have parallel properties to those listed above for 
vectors. 

1. IIA II~ 0, and equals zero if and only if A= 0 

2. IleA II= c · IIAII for any number c 

3. IIA +Ell~ IIAII +liB II 

In addition, for matrices A and B and vector V, the properties 

4. IIAVII ~ IIAII·IIVII 

5. IIABII ~ IIAII·IIBII 

will be useful. The L1 and Lx norms have the advantage of being easy to compute, the first being the 
maximum absolute column sum 

IIAII1 =max "f laijl 
J i=l 

and the second the absolute row sum of A 

IIAIIx=maxi laijl 
i j=l 

Many of these features will be proved in the solved problems. 

EXAMPLE 1.8. Find the L 1 , L 2 , and Lx norms of this matrix: 

A=[~ ~] 
The maximum column sum and row sum are found instantly, and we are off to a fast start with 

Unfortunately there is no corresponding supporting theory to help with L 2 and this very innocent-appearing 
matrix does not yield this value without some resistance. By definition, the L 2 norm of A is the maximum L 2 

norm of the vector 

for x 2 + y 2 = 1, that is, for (x, y) on the unit circle of Fig. 1-1b. The square of this norm is 

(x + y )2 + x 2 = 1 + 2xy + x2 = 1 + 2xY1 - x2 + x2 

which can be maximized by elementary calculus. The assumption that y is positive is not restrictive here since 
the norm takes the same value for (x, y) and (- x, - y ). Eventually one finds that a maximum occurs for 
x2 = ~ + Vs/10 and that 

IIAII~ = 
3 +

2
Vs 

Solved Problems 

1.1. Calculate the value of the polynomial 

p(x) = 2.x 3
- 3x2 + 5x- 4 

for the argument x = 3. 
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Following the natural course, we find x 2 = 9, x 3 = 27, and putting the pieces together, 

p(3) =54- 27 + 15-4 = 38 

A ·count finds that five multiplications, an addition, and two subtractions have been performed. 
Now rearrange the polynomial as 

p(x) = [(2x- 3)x + 5]x- 4 

and try again. From x = 3 we have successively 6, 3, 9, 14, 42, and 38. This time only three" 
multiplications have been made, instead of five. The reduction is not dramatic, but it is suggestive. For a 
general polynomial of degree n, the first algorithm requires 2n - 1 multiplications, the second just n. In 
a larger operation, involving many polynomial evaluations, the saving in time and algorithm (roundoff) 
errors may be significant. 

1.2. Define the error of an approximation. 

The traditional definition is 

True value = approximation + error 

so that, for example, V2 = 1.414214 +error 

n = 3.1415926536 +error 

1.3. What is relative error? 

This is error measured relative to the true value. 

Relative error=~ 
true value 

In the common event that the true value is unknown, or unwieldy, the approximation is substituted for it 
and the result still is called, somewhat loosely, the relative error. Thus the familiar approximation 1.414 
for v'2 has a relative error of about 

.0002 
1.414 = .00014 

while the cruder approximation 1.41 has a relative error near .003. 

1.4. Suppose the numbers x 1, x 2 , •.• , xn are approximations to X 1, X 2 , .•• , Xn and that in each 
case the maximum possible error is E. Prove·that the maximum possible error in the sum of 
the x,. is nE. 

Since x1 - E ~X; ~x, + E 

it follows by addition that 

so that 

which is what was to be proved. 

2:: x,- nE ~ 2:: X;~ 2:: x, + nE 

- nE ~ 2:: X; - 2:: x, ~ nE 

1.5. Compute the sum Vl + V2 + · · · + YlOO with all the roots evaluated to two decimal places. 
By the preceding problem, what is the maximum possible error? 

Whether by a few well-chosen lines of programming or by a more old-fashioned appeal to tables, 
the roots in question can be found and summed. The result is 671.38. Since each root has a maximum 
error of E = .005, the maximum possible error in the sum is nE = 100(.005) = .5, suggesting that the 
sum as found may not be correct to even one decimal place. 
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1.6. What is meant by the probable error of a computed result? 

This is an error estimate such that the actual error will exceed the estimate with probability 
one-half. In other words, the actual error is as likely to be greater than the estimate as less. Since this 
depends upon the error distribution, it is not an easy target, and a rough substitute is often used, VnE, 
with E the maximum possible error. 

1.7. What is the actual error of the result in Problem 1.5, and how does it compare with the 
maximum and probable errors? 

A new computation, with square roots found to five decimal places, resulted in the sum 671.46288. 
This time the maximum error is 100(.000005) which is .0005, so we have the sum correct to three places 
as 671.463. The actual error of the earlier result is thus about .08, compared with the maximum .50 and 
the probable .05. One of our estimates was too pessimistic and the other slightly optimistic. 

1.8. Suppose a thousand square roots are to be summed, instead of a mere hundred. If three-place 
accuracy is wanted, how accurately should the individual roots be computed? 

For a solid guarantee it is best to assume the worst, that the maximum possible error might be 
attained. The formula nE of Problem 1.4 becomes 1000£, showing that three decimal places may be 
lost in a summation of this length. Since three are wanted in the output, it may be wise to have six places 
correct in the input. The point is, in very long computations there is time for very small errors to make a 
substantial collective contribution. 

1.9. Calculate the series 

correct to three digits. 

1 1 1 
1--+---+··· 

2 3 4 

This series illustrates an often-used theorem of analysis. Because its terms alternate in sign and 
steadily decrease, the partial sums dodge back and forth across the limit, the series value. This implies 
that the error at any point will be less than the first omitted term. To get the specified accuracy, we 
therefore need 1/n ~ .0005, or n ~ 2000. Two thousand terms will have to be added. Working to eight 
decimal places, the 2000 roundoffs may accumulate to 

nE = 2000(.000000005) = .00001 

which seems negligible, so we permit the computation to proceed, round the result to three places, and 
have .693. 

Note that in this problem we have no input error, only algorithm errors. First, we take just a partial 
sum instead of the series, and then we make numerous roundoff errors in trying to evaluate this sum. 
The first is called a truncation error and it seems to be the larger of the two error sources in this 
problem. In summary 

Actual error = truncation error + roundoff error 

= .0005 + .00001 

more or less. In fact the series value is the natural logarithm of 2, and to three places it is our .693. 

1.10. Prove that if the series 

is convergent, all the a; being positive, then 

1 1 1 1 
-al +- (a1- az)- -(a2- a3) + -(a3- a4) + · · · 
2 2 2 2 

is also convergent and represents the same number. 
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With An and Bn representing the nth partial sums of the two series, it is easily seen that 
An - Bn = ±~an. Since the first series is convergent, lim an is zero and the result follows. 

1.11. Apply the theorem of the preceding problem to evaluate the series of Problem 1.9, again to 
three decimal places. 

A little algebra finds B1 = !, and for n > 1 

This is again an alternating series with monotone terms, so the theorem of Problem 1.9 is again 
available. For three-digit accuracy we need 

-(-1 -~.0005 
2n n + 1) 

or n ~ 32. This is far fewer terms than were needed earlier and roundoff will hardly be an issue on an 
eight-digit machine. The new algorithm is much faster than the other and manages the same .693 with 
less effort. 

1.U. Given that the numbers .1492 and .1498 are correct as far as they go, that is, the errors are no 
larger than five units in the fifth place, illustrate the development of relative error by 
considering the quotient 1/(.1498- .1492). 

For the given numbers the relative errors are about 5/15,000 which is near .03 percent. For their 
sum and difference a maximum error of one unit in the fourth place is possible. In the case of the sum, 
this again leads to a relative error of about .03 percent, but with the .0006 difference we find an error of 
one part in six, which is 17 percent. Turning to the required quotient, it may be just as well to take the 
pessimistic view. As given, a quotient of 1667 would be calculated, to the nearest integer. But 
conceivably it is 1/(.14985- .14915) which ought to have been found instead, and this would have 
brought us 1429. At the other extreme is 1/(.14975- .14925) = 2000. This very simple example makes it 
clear that a large relative error generated at some interior stage of a continuing calculation can lead to 
large absolute errors down the line. 

1.13. What is meant by the condition of a numerical problem? 

A problem is well-conditioned if small changes in the input information cause small changes in the 
output. Otherwise it is ill-conditioned. For instance, the system 

x+y=1 

1.1x + y = 2 

presents an obvious difficulty. It represents the intersection of nearly parallel lines and has the solution 
X= 10, y = -9. 

Now change the 1.1 to 1.05 and solve again. This timex= 20 andy= -19. A 5 percent change in 
one coefficient has caused a 100 percent change in the solution. 

1.14. What is a stable algorithm? 

In extended calculations it is likely that many roundoffs will be made. Each of these plays the role 
of an input error for the remainder of the computation, and each has an impact on the eventual output. 
Algorithms for which the cumulative effect of all such errors is limited, so that a useful result is 
generated, are called stable algorithms. Unfortunately, there are times when the accumulation is 
devastating and the solution is overwhelmed by error. Needless to say, such algorithms are called 
unstable. 
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1.15. Interpret the floating-point decimal + .1066 * 104
• 

Clearly the exponent shifts the decimal point four places to the right, to make 1066. Similarly, 
+ .1066 * 10-2 is .001066. 

1.16. Interpret the floating-point binary symbol + .10111010 * 24
• 

The exponent shifts the binary point four places to the right, to make 1011.1010, equivalent to 
decimal 11 + ~ or 11.625. Similarly, + .10111010 * T 1 is .01011101. This is, of course, 1z times the 
number given originally. 

1.17. Interpret the floating-point binary symbol 0101110100100, given that the mantissa uses eight 
places and the exponent three, apart from their signs. 

The zeros in positions one and ten are to be taken as plus signs. 

0101110100100 

/~!~"" 
Sign Mantissa Sign Exponent 

The binary point is assumed at the head of the mantissa. With these understandings we have once again 
+.10111010 * 24

. Similarly, and with the same conventions, +.10111010 * T 1 becomes 0101110101001, 
the last four digits meaning an exponent of -1. 

1.18. Add these floating-point numbers, using the conventions of the preceding problem. 

0101101110010 

0100011001100 

One way or another, the binary points will have to be "lined up." Interpreting the symbols leads to 
the following sum: 

10.110111 
+ .000010001100 

= 10.111001001100 

In the form used for the inputs this becomes 

0101110010010 

with the mantissa again taking eight places and the exponent three, apart from signs. A roundoff error is 
made when the last six binary digits are eliminated to conform with machine capabilities. 

1.19. What is overflow? 

Again using the conventions of our fictitious machine, the largest number that can be expressed is 
0111111110111, both the mantissa and the exponent being maximal. Seven shifts of the binary point 
make this the equivalent of 1111111.1 which comes to decimal 127 +tor 27

- T 1
• Any number larger 

than this cannot be represented under the given conventions and is called an overflow. 

1.20. What is underflow? 

The smallest number that can be represented in the form being used, apart from zero and negatives, 
is 0000000011111. However, for various reasons it is convenient to insist that the leading digit of a 
mantissa be a 1. This is known as the normalized form, and fixes the exponent. Again an exception must 
be made for the number zero. If normalization is required, the smallest positive number becomes 
0100000001111. In decimal this is 2- 1 * T 7 or T 8

• Any positive number smaller than this cannot be 
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represented and is called an underflow. Any floating-point system of number representation will have 
such limitations and the concepts of overflow and underflow will apply. 

1.21. Imagine an even simpler floating-point system, in which mantissas have only three binary 
digits and exponents are -1, 0, or 1. How are these numbers distributed on the real line? 

Assuming normalization, these numbers have the form .1xx apart from exponent. The entire set, 
therefore, consists of three subsets of four numbers each, as follows: 

.QlOO .Q101 .0110 .0111 

.100 .101 .110 .111 

1.00 1.01 1.10 1.11 

(for exponent -1) 

(for exponent 0) 

(for exponent 1) 

These are plotted in Fig. 1-2. Notice the denser packing of the smaller numbers, the separation 
increasing from -h to ~ as we pass from group to group. This is due, of course, to the fact that we have 
only three significant digits (the leader fixed at 1) with the exponent supplying progressive magnification 
as it increases. For example, 1.005 is not available here. The set is not that dense in this part of its 
range. A fourth significant digit would be needed. Realistic floating-point systems have this same 
feature, in a more complex way, and the ideas of significant digits and relative error are relevant. 

I I 
4 2 

\ ex~onent = 0 ! overflow 

\ 

'-v--~ --------------------- t 
exponent = -I exponent = I 

underflow 

Fig. 1-2 

1.22. Assume a number x represented by a floating-point binary symbol, rounded to a mantissa of n 
bits. Also assume normalization. What are the bounds for the absolute and relative errors 
caused by the rounding? 

Rounding will cause an error of at most a unit in the (n + 1)th binary place, or half a unit in the nth 
place. So 

Absolute error~ z-n-I 

while for the relative error we must take into account the true value x. Normalization means a mantissa 
no smaller than ~ and this leads to the following bound: 

z-n-1 

!Relative error!~ z::t"" = z-" 

It is useful to rewrite this letting fl(x) represent the floating-point symbol for x. Then 

Relative error = fl(x) - x = E 
X 

or fl(x) =x(1 +E) =x +xE 

with lEI~ T". The operation of rounding off can thus be viewed as the replacement of x by a perturbed 
value x + xE, the perturbation being relatively small. 

1.23. Find a bound for the relative error made by the addition of two floating-point numbers. 

Let the numbers be x = m 1 * ze and y = m 2 * 21 with y the smaller. Then m 2 must be shifted e- f 
places to the right (lining up the binary points). The mantissas are then added, the result normalized and 
rounded. There are two possibilities. Either overflow occurs to the left of the binary point (not overflow 
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in the sense of Problem 1.19), or it does not. The first possibility is characterized by 

1 ~ lml + m2 * 21-el < 2 
and the second by 

If overflow does occur, a right shift of one place will be required, and we have 

fi(x + y) = ((ml + m2 * 2f-e)2-l + Ej * 2e+l 

where E is the roundoff error. This can be rewritten 

fl(x+y)=(x+y)(1+ 
2

E 
1

) 
ml +m2 * 2 e 

= (x + y )(1 + E) 
with IE1~2E~z-n. 

If there is no overflow, then 

fl(x + y) = ((mi + mz * 21-e) + Ej * 2e 

=(x+y)(1+ E f-e) 
m1 +mz * 2 , 

= (x + y)(1 +E) 
withE bounded as before. 

A corresponding result for floating-point subtraction will be found in Problem 1.45. 

[CHAP. 1 

1.24. Find a bound for the relative error made by multiplying two floating-point numbers. 

Again let the two numbers be X = ml * 2e andy = m2 * 21. Then xy = mlm2 * 2e+f with ~ ~ lmlm21 < 
1 because of normalization. This means that to normalize the product there will be a left shift of at most 
one place. Rounding will, therefore, produce either m 1m 2+ E or 2m 1m 2+ E, with lEI ~z-n- 1 . This can 
be summarized as follows: 

' >1 
If lm1m2l =z 
if!>lm m 1~! 2 I 2-4 

. >1 
If lm1m2l =z 
if!>lm m 1~! 2 I 2-4 

xy(1 +E) 

with lEI ~21EI ~z-n. 
A similar result is sketched for the operation of division in Problem 1.46. This means that in all four 

arithmetic operations, using floating-point numbers, the relative error introduced does not exceed 1 in 
the least significant place of the mantissa. 

1.25. Estimate the error generated in computing the sum 

x 1 + x2 + · · · + xk 

using floating-point operations. 

We consider the partial sums s1• Let s1 =x1. Then 
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with £ 1 bounded by T" as shown in Problem 1.23. Rewriting, 

s2 = X1(1 + E 1) + X2(1 + E 1) 

Continuing 

5 3 = fl(s 2 + X3) = (s 2 + X3)(1 + Ez) 

= x 1(1 + £ 1)(1 + £ 2) + xz(1 + £ 1)(1 + E 2 ) + X3(1 + Ez) 

and eventually 
sk = fl(sk-1 + xk) = (sk-t + xk)(1 + Ek-1) 

= x 1(1 + C1) + x2(1 + c2) + · · · + xk(1 + ck) 

where, fori= 2, ... , k, 

and 1 + c1 = 1 + c2 • In view of the uniform bound on the Ej, we now have this estimate for the 1 + ci: 

(1 - z-n)k-i+1 ~ 1 + ci ~ (1 + z-n)k-i+! 

Summarizing 

where 

fl(t
1 
xj) = (~ xj)(l +E) 

E= t,v/t,xj 

Note that if the true sum I: xj is small compared with the xj, then the relative error E can be large. This 
is the cancellation effect caused by subtractions, observed earlier in Problem 1.12. 

1.26. Illustrate a forward error analysis. 

Suppose the value of A(B +C) is to be computed, using approximations a, b, c which are in error 
by amounts e1 , e2 , e3 • Then the true value is 

A(B +C)= (a+ e1)(b + e2 + c + e3) = ab + ac +error 

where 

Assuming the uniform bound led~ e and that error products can be neglected, we find 

iErrorl ~ (2ial + ibi + lcl)e 

This type of procedure is called forward error analysis. In principle it could be carried out for any 
algorithm. Usually, however, the analysis is tedious if not overwhelming. Besides, the resulting bounds 
are usually very conservative, suitable if what is needed is an idea of the worst that might happen. In the 
present example one point of minor interest does surface. The value of a seems to be twice as sensitive 
as the values of b and c. 

1.27. What is backward error analysis? 

The underlying idea of backward error analysis is to take the result of a computation and try to 
determine the range of input data that could have produced it. It is important not to misunderstand the 
motive here. There is no intention of modifying the data to accommodate the answer. If a backward 
error analysis is completed and shows that the result found is consistent with the input data, within the 
range of observational or roundoff error, then one may have some confidence in the result. If this does 
not happen, then a major source of error exists elsewhere, presumably within the algorithm itself. 

1.28. Show that the error analysis in Problem 1.23 was a backward error analysis. 
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The result obtained was 

fl(x + y) = (x + y )(1 + E) 

with [E[ ~ T", where n is the number of binary places in the mantissas. Rewriting this as 

fl(x + y)=x(1 +E)+ y(1 +E) 

and recalling Problem 1.22, we see that the sum as computed, namely fl(x + y), is also the true sum of 
numbers differing from the original x andy by no more than the roundoff error bound E. That is, the 
output can be explained by input data well within the recognized error limit. 

1.29. Show that the analysis done in Problem 1.24 was a backward error analysis. 

We found 

fl(xy) = xy(1 +E) 

which we can think of as the product of x by y(1 +E). This means that the computed fl(xy) is also the 
true product of numbers differing from the original x and y by no more than the roundoff error. It is 
consistent with input data well within our recognized error limit. 

1.30. What does the backward error analysis made in Problem 1.25 indicate? 

First, the equation 

shows that the floating-point sum of k numbers x, to xk is also the true sum of k numbers which differ 
from the xi by relative errors of size ci. Unfortunately the estimates then obtained in Problem 1.25 also 
show that these errors can be much greater than simple roundoffs. 

1.31. Prove the triangle property of vector length, the L 2 norm, by first proving the Cauchy
Schwarz inequality. 

One interesting proof begins by noting that I: (a1 - b,x)2 is nonnegative, so that the quadratic 
equation 

cannot have distinct real roots. This requires 

and cancelling the 4's we have the Cauchy-Schwarz inequality. 
The triangle inequality now follows quite directly, but with a bit of algebra. Written in component 

form, it states 

Squaring, removing common terms, squaring again, and using Cauchy-Schwarz will bring the desired 
result (see Problem 1.50). 

1.32. Show that the vector LP norm approaches max lvil for p tending to infinity. 
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Suppose vm is the absolutely largest component and rewrite the sum as 

Within the parentheses all terms but the first approach zero as limit, and the required result follows. 

1.33. Show that the definition JIAII =max JJAVJJ for unit V satisfies properties 1 to 3 as given in the 
introduction. 

These follow rather easily from the corresponding properties of the companion vector norm. Since 
AVis a vector, IIAVII i;:; 0 and so IIAII i;:; 0. If IIAII = 0 and even one element of A were not zero, then V 
could be chosen to make a component of AV positive, a contradiction of max IIAVII = 0. This proves the 
first. 

Next we find 
IleA II= max IleA VII= max lei· IIAVII = lei·IIAII 

proving the second. The third is handled similarly. 

1.34. What are the L 1, L2 , and Lx norms of the identity matrix? 

They are all 1. We have 
IIIII =max II/VII =max I lVII = 1 

since V is a unit vector. 

0 [1 1.35. What are the L 11 L2 , and Lx norms of the matnx 
1 

1]? 
1 0 

We have 

Assume for simplicity that v 1 , v 2 are nonnegative. Then for L 1 we add, and find IIAVII = 2(v 1 + v 2) = 2, 
since V is a unit vector in L 1 norm. Thus IIA 11 1 = 2. For the L 2 norm we must square and add the two 
components, obtaining 2(vi+2v 1v 2 +vD. In this norm vi+v~=1 so we maximize v 1v 2 • Elementary 
calculus then produces v 1 = v 2 = 1/VZ leading quickly to IIAIIz = 2. Finally IIAVIIoo = v 1 + v 2 , since with 
this norm we seek the maximum component. But here again the maximum is 2, because with this norm 
neither v, can exceed 1. The L 1 and Loo norms could have been read instantly using the result of the 
following problem or its companion. 

1.36. Show that 
n 

JJAllx =max 2: Ja;il 
i j~l 

Choose a vector V with all components of size 1 and signs matching the a,i such that ~ la,il is 
maximal. Then ~ a,ivi is an element of A V equaling this maximal value and clearly cannot be exceeded. 
Since this V has norm 1, the norm of A also takes this value. The similar result for the L 1 norm is left as 
Problem 1.52. 

1.37. Prove that IJAVJJ ~ IIAII • IJVJJ. 
For a unit vector U we have, by definition of IIAII, 

IIAVII ~max I lA VII= IIAII 
u 
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so choosing U = V !\lVII and applying property 2, 

IIAVII ~ IIAII·IIVII 

1.38. Prove IIABII ~ IIAII ·liB II· 
We make repeated use of the result of Problem 1.37: 

IIABII =max IIABUII ~max IIAII·IIBUII ~max IIAII·IIBII·IIUII = IIAII·IIBII 

Supplementary Problems 

1.39. Compute 1/.982 using the supporting theory 

with x = .018. 

-
1
- = 1 + x + x 2 + · · · 

1-x 

1.40. Numbers are accurate to two places when their error does not exceed .005. The following square roots 
are taken from a table. Round each to two places and note the amount of the roundoff. How do these 
roundoff errors compare with the maximum of .005? 

n 11 u 13 14 15 16 17 18 19 20 

Vn to three places 3.317 3.464 3.606 3.742 3.873 4.000 4.123 4.243 4.359 4.472 

Vn to two places 3.32 3.46 

approx. roundoff +.003 -.004 

The total roundoff error could theoretically be anywhere from 10(- .005) to 10(.005). Actually what is 
the total? How does it compare with the "probable error" of Vl0(.005)? 

1.41. Suppose N numbers, all correct to a given number of places, are to be summed. For about what size N 
will the last digit of the computed sum probably be meaningless? The last two digits? Use the probable 
error formula. 

1.42. A sequence 10 , 11, 12 , ..• is defined by 

Jn+J = 2nJn - Jn-J 

with ]0 = .765198 and 11 = .440051 correct to six places. Compute 12 , ••• , 17 and compare with the 
correct values which follow. (These correct values were obtained by an altogether different process. See 
the next problem for explanation of errors.) 

n 2 3 4 5 6 7 

Correct In .114903 .019563 .002477 .000250 .000021 .000002 

1.43. Show that for the sequence of the preceding problem, 

17 = 36,76711 - 21,14410 
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exactly. Compute this from the given values of ]0 and ]1 • The same erroneous value will be obtained. 
The large coefficients multiply the roundoff errors in the given ]0 and ]1 values and the combined results 
then contain a large error. 

1.44. To six places the number ]8 should be all zeros. What does the formula of Problem 1.42 actually 
produce? 

1.45. Show that the error introduced by floating-point subtraction is bounded by z-n. Let X = m1 * 2e and 
y = m2 * 21 as in Problem 1.23. Then X- y = (m1- mz * 21-e)2e and unless this is zero 

z-n ~ lm1- mz * 21 -el < 2 

Normalizing the new mantissa may require upton- 1left shifts, the actual numbers being determined 
by 

Now show that 

and eventually 

with lEI~ z-n. 

fl(x- y) = [(m1- mz * 21-e) * 2s + c] * 2e-s 

fl(x - y) = (x - y )(1 + E) 

1.46. Show that the error introduced during floating-point division is bounded by z-n. With the conventions of 
Problem 1.24, let one-half of the numerator mantissa be divided by the denominator mantissa (to avoid 
quotients greater than one) and the exponents subtracted. This gives 

~ = (~) * 2e-f+1 
y 2m2 

with ~ ~ lm1/2m 2 1 < 1. Now follow the remainder of the analysis made for the multiplication operation to 
show that once again the relative error is bounded as stated. 

1.47. Analyze the computation of the inner product 

sk = fl(x1Y1 + XzYz + · · · + xkyk) 

much as in Problem 1.25. Let 

and then set 

fori= 1, ... , k 

S; = fl(sH + t;) 
fori= 1, ... , k. This makes sk the required inner product. Now find relations and estimates similar to 
those found in the earlier problem. 

1.48. Using the conventions of Problem 1.17, interpret this floating-point symbol: 0100110011010. (This is as 
close as one can come to .1492 with only an 8-bit mantissa.) 

1.49. Imitating Problem 1.21, imagine a floating-point system in which normalized mantissas have 4 bits and 
the exponents are -1, 0, and 1. Show that these numbers form three groups of eight, according to their 
exponents, one group falling in the interval~ to!, another in the interval! to 1, and the third between 1 
and 2. Which positive numbers will cause overflow? Underflow? 

1.50. Complete the proof begun in Problem 1.31. 

1.51. Complete Problem 1.33 by showing that the norm of the sum of two matrices does not exceed the sum 
of their norms. 

1.52. By a suitable choice of unit vector (one component 1, the rest 0) show that the L 1 norm of a matrix A 
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can be computed as the maximum column sum of absolute elements. Compare with the related proof in 
Problem 1.36. 

1.53. Show that for A=[; :J the L1 , L2 , and Loo norms are equal. 

1.54. Show that for A=[; _:J the L2 norm is (a 2 + b2
)

112
• 

1.55. Show that for A = [; : J a vector V that maximizes IIA Vllz can be found in the form (cost, sin tf with 

cos 2t = 0 in the case b 2 = a2 while tan 2t = 2a/(a- b) otherwise. 

1.56. It has been suggested that the following message be broadcast to outer space as a sign that this planet 
supports intelligent life. The idea is that any form of intelligent life elsewhere will surely comprehend its 
intellectual content and so deduce our own intelligent presence here. What is the meaning of the 
message? 

11.001001000011111101110 

1.57. If the vector V with components x, y is used to represent the point (x, y) of a plane, then points 
corresponding to unit vectors in the L2 norm form the classic unit circle. As Fig. 1-1 shows, in the L 1 and 
Lx norms the "circle" takes a square shape. In a city of square blocks, which is the suitable norm for 
taxicab travel? (Find all the intersections at a given distance from a given intersection.) On a 
chessboard, why is the appropriate norm for the travels of the chess king the Lx norm? 



Chapter 2 

The Collocation Polynomial 

APPROXIMATION BY POLYNOMIALS 

Approximation by polynomials is one of the oldest ideas in numerical analysis, and still one of 
the most heavily used. A polynomial p(x) is used as a substitute for a function y(x), for any of a 
dozen or more reasons. Perhaps most important of all, polynomials are easy to compute, only simple 
integer powers being involved. But their derivatives and integrals are also found without much effort 
and are again polynomials. Roots of polynomial equations surface with less excavation than for other 
functions. The popularity of polynomials as substitutes is not hard to understand. 

CRITERION OF APPROXIMATION 
The difference y(x)- p(x) is the error of the approximation, and the central idea is, of course, to 

keep this error reasonably small. The simplicity of polynomials permits this goal to be approached in 
various ways, of which we consider 

1. collocation, 2. osculation, 3. least squares, 4. min.-max. 

THE COLLOCATION POLYNOMIAL 
The collocation polynomial is the target of this and the next few chapters. It coincides 

(collocates) with y(x) at certain specified points. A number of properties of such polynomials, and of 
polynomials in general, play a part in the development. 

1. The existence and uniqueness theorem states that there is exactly one collocation 
polynomial of degree n for arguments x0 , • •• , xn, that is, such that y(x) = p(x) for these 
arguments. The existence will be proved by actually exhibiting such a polynomial in 
succeeeding chapters. The uniqueness is proved in the present chapter and is a consequence 
of certain elementary properties of polynomials. 

2. The division algorithm. Any polynomial p(x) may be expressed as 

p(x) = (x- r)q(x) + R 

where r is any number, q(x) is a polynomial of degree n- 1, and R is a constant. This has 
two quick corollaries. 

3. The remainder theorem states that p(r) = R. 
4. The factor theorem states that if p(r) = 0, then x- r is a factor of p(x). 
5. The limitation on zeros. A polynomial of degree n can have at most n zeros, meaning that 

the equation p(x) = 0 can have at most n roots. The uniqueness theorem is an immediate 
consequence, as will be shown. 

6. Synthetic division is an economical procedure (or algorithm) for producing the q(x) and R 
of the division algorithm. It is often used to obtain R, which by the remainder theorem 
equals p (r ). This path to p (r) may be preferable to the direct computation of this 
polynomial value. 

7. The product .n(x) = (x -x0)(x -x1) • • • (x -xn) plays a central role in collocation theory. 
Note that it vanishes at the arguments x 0 , x 1 , ••• , Xn which are our collocation arguments. 
The error of the collocation polynomial will be shown to be 

yen+ 1)( ~).n(x) 

(n + 1)! 
y(x)- p(x) 

17 
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where ; depends upon x and is somewhere between the extreme points of collocation, 
provided x itself is. Note that this formula does reduce to zero at x0 , x 1 , • •• , xn so that p(x) 
does collocate with y(x) at those arguments. Elsewhere we think of p(x) as an 
approximation to y(x). 

Solved Problems 

2.1. Prove that any polynomial p(x) may be expressed as 

p(x) = (x- r)q(x) + R 

where r is any number, q(x) is a polynomial of degree n- 1, and R is a constant. 

This is an example of the division algorithm. Let p(x) be of degree n. 

p(x) = anXn + an-tXn-l + · · · + ao 

Then 

will be of degree n - 1 or less. Similarly, 

ql(x)- (X- r)bn-tXn-z = qix) = Cn-zXn-z + · · · 

will be of degree n- 2 or less. Continuing in this way, we eventually reach a polynomial qn(x) of degree 
zero, a constant. Renaming this constant R, we have 

p(x) = (x- r)(anxn-l + bn_ 1Xn-z + · · ·) + R = (x- r)q(x) + R 

2.2. Prove p(r) = R. This is called the remainder theorem. 

Let x = r in Problem 2.1. At once, p(r) = 0 · q(r) + R. 

2.3. Illustrate the "synthetic division" method for performing the division described in Problem 
2.1, using r = 2 and p(x) = x 3

- 3x2 + 5x + 7. 

Synthetic division is merely an abbreviated version of the same operations described in Problem 
2.1. Only the various coefficients appear. For the p(x) and r above, the starting layout is 

r = 21 -3 5 7 ~coefficients of p(x) 

Three times we "multiply by r and add" to complete the layout. 

r=21 -3 7 
2 -2 6 

1 -1 3 13~the number R 
'--v----1 
coefficients 

of q(x) 

Thus, q(x)=x 2 -x+3 and R=/(2)=13. This may be verified by computing (x-r)q(x)+R, which 
will be p(x). It is also useful to find q(x) by the "long division" method, starting from this familiar 
layout: 

Comparing the resulting computation with the "synthetic" algorithm just completed, one easily sees the 
equivalence of the two. 
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2.4. Prove that if p(r) = 0, then x- r is a factor of p(x). This is the factor theorem. The other 
factor has degree n - 1. 

If p(r) = 0, then 0 = Oq(x) + R making R = 0. Thus, p(x) = (x- r)q(x). 

2.5. Prove that a polynomial of degree n can have at most n zeros, meaning that p (x) = 0 can have 
at most n roots. 

Suppose n roots exist. Call them r1 , r1 , .•• , 'n· Then by n applications of the factor theorem, 

where A has degree 0, a constant. This makes it clear that there can be no other roots. (Note also that 
A =an.) 

2.6. Prove that at most one polynomial of degree n can take the specified values Yk at given 
arguments xk> where k = 0, 1, ... , n. 

Suppose there were two such polynomials, p 1(x) and p 2(x ). Then the difference p (x) = p, (x) - p 2(x) 
would be of degree n or less, and would have zeros at all the arguments xk: p(xd = 0. Since there are 
n + 1 such arguments this contradicts the result of the previous problem. Thus, at most one polynomial 
can take the specified values. The following chapters display this polynomial in many useful forms. It is 
called the collocation polynomial. 

2.7. Suppose a polynomial p(x) of degree n takes the same values as a function y(x) for x = 
x0 , x 1 , •.• , xn- [This is called collocation of the two functions and p (x) is the collocation 
polynomial.] Obtain a formula for the difference between p(x) and y(x). 

Since the difference is zero at the points of collocation, we anticipate a result of the form 

y(x)- p(x) = C(x -x0)(x -x,) · · · (x -xn) = Cn(x) 

which may be taken as the definition of C. Now consider the following function F(x): 

F(x) = y(x)- p(x)- Cn(x) 

This F(x) is zero for x =x0 , x1 , ••• , Xn and if we choose a new argument Xn+l and 

C y(xn+l)- p(Xn+l) 
n(xn+l) 

then F(xn+ 1 ) will also be zero. Now F(x) has n+2 zeros at least. By Rolle's theorem F'(x) then is 
guaranteed n + 1 zeros between those of F(x), while F"(x) is guaranteed n zeros between those of 
F'(x). Continuing to apply Rolle's theorem in this way eventually shows that p(n+l)(x) has at least one 
zero in the interval from x0 to Xn, say at x = ;. Now calculate this derivative, recalling that the (n + 1)th 
derivative of p(x) will be zero, and put x equal to;: 

0 = y(n+n(s)- C(n + 1)! 

This determines C, which may now be substituted back: 

Y(n+l)(s) 
y(xn+l)- p(Xn+l) = (n + 1)! n(xn+l) 

Since Xn+l can be any argument between x0 and Xn except for x0 , ••• , Xn and since our result is clearly 
true for X0 , ••• , Xn also, we replace Xn+l by the simpler x: 

Y(n+'>(s) 
y(x)- p(x) = (n + 1)! n(x) 

This result is often quite useful in spite of the fact that the number s is usually undeterminable, because 
we can estimate y(n+l)(s) independently of;. 
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2.8. Find a first-degree polynomial which takes the values y(O) = 1 and y(l) = 0, or in tabular 

form, 

~ 
~ 

The result p (x) = 1 - x is immediate either by inspection or by elementary geometry. This is the 
collocation polynomial for the meager data supplied. 

2.9. The function y(x) =cos !nx also takes the values specified in Problem 2.8. Determine the 

difference y(x)- p(x). 

By Problem 2.7, with n = 1, 

Jt
2 cos ~Jt~ 

y(x)-p(x)= ---
8
-x(x-1) 

Even without determining ~ we can estimate this difference by 

Viewing p(x) as a linear approximation to y(x), this error estimate is simple, though generous. At x = ~ 
it suggests an error of size roughly .3, while the actual error is approximately cos ~Jt- (1 - ~) = .2. 

2.10. As the degree n increases indefinitely, does the resulting sequence of collocation polynomials 

converge to y(x)? 

The answer is slightly complicated. For carefully chosen collocation arguments xk and reasonable 
functions y (x ), convergence is assured, as will appear later. But for the most popular case of equally 

spaced arguments xk> divergence may occur. For some y(x) the sequence of polynomials is convergent 
for all arguments x. For other functions, convergence is limited to a finite interval, with the error 
y(x) -p(x) oscillating in the manner shown in Fig. 2-1. Within the interval of convergence the 
oscillation dies out and lim (y - p) = 0, but outside that interval y(x)- p(x) grows arbitrarily large as n 
increases. The oscillation is produced by the n(x) factor, the size being influenced by the derivatives of 
y(x). This error behavior is a severe limitation on the use of high-degree collocation polynomials. 

y(.T)- p(;r) 

interval of 
convergence 

Fig. 2-1 
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Supplementary Problems 

2.11. Apply synthetic division to divide p(x) = x3 
- x 2 + x - 1 by x - 1. Note that R = f(1) = 0, so that x - 1 is 

a factor of p(x) and r = 1 is a zero of f(x). 

2.12. Apply synthetic division to p(x) = 2x 4
- 24x3 + 100x2 -168x + 93 to compute p(1). (Divide by x -1 and 

take the remainder R.) Also compute p(2), p(3), p(4), and p(S). 

2.13. To find a second-degree polynomial which takes the following values: 

xk 0 1 2 

Yk 0 1 0 

we could write p(x) =A+ Bx + Cx 2 and substitute to find the conditions 

O=A 1=A+B+C O=A +2B +4C 

Solve for A, B, and C and so determine this collocation polynomial. Theoretically the same procedure 
applies for higher-degree polynomials, but more efficient algorithms will be developed. 

2.14. The function y(x) =sin ~nx also takes the values specified in Problem 2.13. Apply Problem 2.7 to show 
that 

Jl'
3

COS ~Jl'S 
y(x) -p(x) =- -

4
-
8
-x(x -1)(x -2) 

where s depends on x. 

2.15. Continuing Problem 2.14, show that 

ly(x)- p(x)l ~ ~~x(x -1)(x- 2)1 

This estimates the accuracy of the collocation polynomial p(x) as an approximation to y(x). Compute 
this estimate at x = ! and compare with the actual error. 

2.16. Compare y'(x) and p'(x) for x = !. 

2.17. Compare y"(x) and p"(x) for x = ~. 

2.18. Compare the integrals of y(x) and p(x) over the interval (0, 2). 

2.19. Find the unique cubic polynomial p(x) which takes the following values. 

xk 0 1 2 3 

Yk 0 1 16 81 

2.20. The function y (x) = x4 also takes the values given in the preceding problem. Write a formula for the 
difference y(x)- p(x), using Problem 2.7. 

2.21. What is the maximum of ly(x)- p(x)l on the interval (0, 3)? 



Chapter 3 

Finite Differences 

FINITE DIFFERENCES 

Finite differences have had a strong appeal to mathematicians for centuries. Isaac Newton was 
an especially heavy user, and much of the subject originated with him. Given a discrete function, 
that is, a finite set of arguments xk each having a mate Yk> and supposing the arguments equally 
spaced, so that xk+l- xk = h, the differences of the Yk values are denoted 

!l.Yk = Yk+l- Yk 

and are called first differences. The differences of these first differences are denoted 

!l.2Yk = !l.(!l.Yk) = !l.Yk+l- !l.Yk = Yk+2- 2Yk+l + Yk 

and are called second differences. In general, 

!l.nYk = fl.n-lh+l _ fl.n-lYk 

defines the nth differences. 
The difference table is the standard format for displaying finite differences. Its diagonal pattern 

makes each entry, except for the xk> Yk> the difference of its two nearest neighbors to the left. 

Xo Yo 
!l.yo 

x1 Y1 !l.
2
Yo 

!l.yl !l.
3
Yo 

Xz Yz !l.2yl !l.4Yo 
!l.yz !l.3yl 

x3 Y3 !l.2y2 
!l.y3 

x4 Y4 

Each differences proves to be a combination of the y values in column two. A simple example is 
!l.3y0 = y3- 3y2 + 3y1 - y0 • The general result is 

k - ~ ;(k) !l. Yo - 6 ( - 1) i Yk -1 

where (7) is a binomial coefficient. 

DIFFERENCE FORMULAS 

Difference formulas for elementary functions somewhat parallel those of calculus. Examples 
include the following: 

1. The differences of a constant function are zero. In symbols, 

!l.C=O, 

where C denotes a constant (independent of k). 

2. For a constant times another function, we have 

!l.(Cuk) = C!l.uk 

3. The difference of a sum of two functions is the sum of their differences: 

!l.(uk + vk) = !l.uk + !l.vk 

22 
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4. The linearity property generalizes the two previous results to 

.il(C1uk + C2vk) = C1.iluk + C2.ilvk 

where C1 and C2 are constants. 
5. The differences of a product are given by the formula 

.il(ukvk) = uk.ilvk + vk+ 1Lluk 

in which the argument k + 1 should be noted. 

6. The differences of a quotient are 

Ll(!!..!5) = vk.iluk- uk.ilvk) 
vk vk+lvk 

and again the argument k + 1 should be noted. 
7. The differences of the power function are given by 

.ilCk = Ck(C- 1) 

The special case C = 2 brings .ilyk = Yk· 

23 

8. The differences of sine and cosine functions are also reminiscent of corresponding results of 
calculus, but the details are not quite so attractive. 

. . 1 ( 1) .il(smk)=2sm:zcos k+:z 

.il(cosk)= -2sin~sin(k+D 
9. The differences of the logarithm function are a similar disappointment. With xk = x0 + kh, 

we have 

.il(log xk) =log ( 1 + ~) 
When h/xk is very small this makes .il(logxk) approximately h/xk, but otherwise the 
reciprocal of x, which is so prominent in the calculus of logarithms, is quite remote. 

10. The unit error function, for which Yk = 1 at a single argument and is otherwise zero, has a 
difference table consisting of the successive binomial coefficients with alternating signs. The 
detection of isolated errors in a table of Yk values can be based on this property of the unit 
error function. 

11. The oscillating error function, for which Yk = ± 1 alternately, has a difference table 
consisting of the successive powers of 2 with alternating signs. 

12. Other functions of special interest will be studied in succeeding chapters, and the 
relationships between difference and differential calculus will be of continuing interest. 

Solved Problems 

3.1. Compute up through third differences of the discrete function displayed by the xk Yk columns 
of Table 3.1. (The integer variable k also appears for convenience.) 

The required differences appear in the remaining three columns. Table 3.1 is called a difference 
table. Its diagonal structure has become a standard format for displaying differences. Each entry in the 
difference columns is the difference of its two nearest neighbors to the left. 
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Table 3.1 

k xk Yk Ayk A 2yk A3yk 

0 1 1 
7 

1 2 I 8 - 12 
19 - 6 

2 3 27 - 18 -
37 - 6 

3 4 64 - 24 r--
61 - 6 

4 5 125 r-- 30 ,-----

91 - 6 
5 6 216 r------ 36 -

127 r---- 6 
6 7 343 - 42 

169 
7 8 512 

Any such table displays differences as shown in Table 3.2. 

Table 3.2 

0 Xo Yo 
Llyo 

X! Yt Ll2Yo 
Lly! Ll3Yo 

2 Xz Yz Ll2yl 
Llyz Ll3y! 

x3 Y3 Ll2y2 
Lly3 

4 x4 Y4 

For example, Lly0 = y,- Yo= 8- 1 = 7 

Ll2y0 = Lly1 - Lly0 = 19- 7 = 12 etc. 

3.2. What is true of all fourth and higher differences of the function of Problem 3.1? 

Any such differences are zero. This is a special case of a result to be obtained shortly. 

3.3. Prove that ~3Yo = Y3- 3yz + 3y1- Yo· 

Either from Table 3.2 or by the definitions provided at the outset, 

Ll3Yo = Ll2y1 - Ll2Yo = (y3- 2yz + YI)- (Yz- 2yl +Yo)= Y3- 3y2 + 3y!- Yo 

3.4. Prove that ~ 4y0 = y4 - 4y3 + 6yz- 4yl +Yo· 

By definition, Ll4y0 = Ll3y1 - Ll3y0 . Using the result of Problem 3.3 and the almost identical 

Ll3y, = Y4- 3y3 + 3yz- y, 

obtained by advancing all lower indices, the required result follows at once. 

[CHAP. 3 
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3.5. Prove that for any positive integer k, 

k - ~ i(k) ~Yo- t:'o (-1) i Yk-i 

where the familiar symbol for binomial coefficients, 

has been used. 

(k) k! 
i =i!(k-i)! 

k(k-l)···(k-i+l) 
i! 
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The proof will be by induction. Fork= 1, 2, 3, and 4, the result has already been established, by 
definition when k is 1. Assume it true when k is some particular integer p: 

By advancing all lower indices we have also 

and by a change in the summation index, namely, i = j + 1, 

L1Py! = Yp+!- ~~ ( -l)t ~ 1)Yp-i 

It is also convenient to make a nominal change of summation index, i = j, in our other sum: 

L1Py0 = ~
1 

( -1)i(~)YP-i + ( -1fyo 
j~O } 

Then Llp+!Yo = L1Py!- LlPYo = Yp+!-% ( -1)i[ c ~ 
1

) + (~) ]Yp-i- (- 1fyo 

Now using 

(see Problem 4.5) and making a final change of summation index, j + 1 = i, 

p ·(P + 1) p+! ·(P + i) Llp+ 1Yo = Yp+! + L (- 1)' . Yp+!-i- (- 1fYo = L ( -1)' . Yp+!-i 
i=l l i=O l 

Thus our result is established when k is the integer p + 1. This completes the induction. 

3.6. Prove that for a constant function all differences are zero. 

Let yk = C for all k. This is a constant function. Then, for all k, 

llyk = Yk+1- Yk = C- C = 0 

This is analogous to a result of calculus. !l(Cyd = Cyk+I- Cyk = Cllyk. 

Essentially this problem involves two functions defined for the same arguments xk. One function 
has the values yk, the other has values zk = Cyk. We have proved Llzk = C!lyk. 

3.8. Consider two functions defined for the same set of arguments xk. Call the values of these 
functions uk and vk. Also consider a third function with values 

wk = C1uk + C2vk 
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where C1 and C2 are two constants (independent of xk). Prove 

Llwk = C1Lluk + C2Llvk 

This is the linearity property of the difference operation. 

The proof is direct from the definitions. 

~wk = wk+l- wk = (Cluk+l + Czvk+J)- (Cluk + Czvk) 

= C 1(Uk+!- uk) + Cz(vk+!- vd = C1~Uk + C2~Vk 

Clearly the same proof would apply to sums of any finite length. 

[CHAP. 3 

3.9. With the same symbolism as in Problem 3.8, consider the function with values zk = ukvk and 
prove Llzk = ukLlvk + vk+ 1Lluk. 

Again starting from the definitions, 

= vk+!(uk+!- ud + uk(vk+!- vd = uk~vk + vk+!~uk 

The result ~zk = uk+l~vk + vk~uk could also be proved. 

3.10. Compute differences of the function displayed in the first two columns of Table 3.3. This may 
be viewed as a type of "error function," if one supposes that all its values should be zero but 
the single 1 is a unit error. How does this unit error affect the various differences? 

Some of the required differences appear in the other columns of Table 3.3. 

Table 3.3 

x0 0 
0 

0 0 
0 0 

0 0 
0 

-4 
-3 

6 

x5 0 -4 
0 -1 

0 0 
0 0 

0 0 
0 

Xg 0 

This error influences a triangular portion of the difference table, increasing for higher differences 
and having a binomial coefficient pattern. 

3.11. Compute differences for the function displayed in the first two columns of Table 3.4. This may 
be viewed as a type of error function, each value being a roundoff error of amount one unit. 
Show that the alternating ± pattern leads to serious error growth in the higher differences. 
Hopefully, roundoff errors will seldom alternate in just this way. 
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3.12. 

Some of the required differences appear in the other columns of Table 3.4. The error doubles for 
each higher difference. 

Table 3.4 

Xo 

-2 
X1 -1 4 

2 -8 
x2 -4 16 

-2 -32 
X3 -1 4 -16 64 

2 -8 32 
X4 -4 16 

-2 
Xs -1 4 

2 
x6 

One number in this list is misprinted. Which one? 

2 4 8 16 26 42 64 93 

Calculating the first four differences, and displaying them horizontally for a change, we have 

2 4 10 16 22 29 
2 4 2 6 6 7 

2 -2 4 0 
-4 6 -4 

and the impression is inescapable that these binomial coefficients arise from a data error of size 1 in the 
center entry 16 of the original list. Changing it to 15 brings the new list 

2 4 15 26 42 64 93 

from which we find the differences 

2 4 7 11 16 22 29 
2 3 4 6 7 

which suggest a job well done. This is a very simple example of data smoothing, which we treat much 
more fully in a later chapter. There is always the possibility that data such as we have in our original list 
comes from a bumpy process, not from a smooth one, so that the bump (16 instead of 15) is real and not 
a misprint. The above analysis can then be viewed as bump detection, rather than as error correcting. 

Supplementary Problems 
3.13. Calculate up through fourth differences for the following yk values. (Here it may be assumed that 

xk = k.) 

k 0 1 2 3 4 5 6 

Yk 0 1 16 81 256 625 1296 
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3.14. Verify Problem 3.5 for k = 5 by showing directly from the definition that 

~5Yo = Ys- 5y4 + l0y3- lOyz + 5yi- Yo 

[CHAP. 3 

3.16. Calculate differences through the fifth order to observe the effect of adjacent "errors" of size 1. 

k 0 1 2 3 4 5 6 7 

Yk 0 0 0 1 1 0 0 0 

3.17. Find and correct a single error in these yk values. 

k 0 1 2 3 4 5 6 7 

Yk 0 0 1 6 24 60 120 210 

3.18. Use the linearity property to show that if yk = e, then 

3.19. Show that if yk = e, then ~4Yk = 24. 

3.20. Show that if Yk = 2\ then ~Yk = Yk· 

3.21. Show that if yk = Ck, then ~Yk = Ck(C -1). 

3.22. Compute the missing yk values from the first differences provided 

Yk 0 
~Yk 2 4 7 11 16 

3.23. Compute the missing Yk and ~Yk values from the data provided. 

4 13 18 24 

3.24. Compute the missing yk values from the data provided. 

Yk 0 0 0 6 24 60 

~Yk 0 0 6 18 36 

~2Yk 0 6 12 18 

~3Yk 6 6 6 

3.25. Find and correct a misprint in this data. 

yk 1 3 11 31 69 113 223 351 521 739 1011 

3.26. By advancing all subscripts in the formula ~2y0 = y2 - 2y1 + y0 , write similar expansions for ~2y1 and 
~2y2 . Compute the sum of these second differences. It should equal ~y3 - ~Yo= Y4- y3 - y1 +Yo· 

3.27. Find a function yk for which ~Yk = 2yk. 
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3.28. Find a function Yk for which ~2Yk = 9yk. Can you find two such functions? 

3.29. Continuing the previous problem, find a function such that ~2yk = 9yk and having Yo= 0, y1 = 1. 

3.30. Prove ~(sink)= 2 sin~ cos (k + !). 

3.31. Prove ~(cos k) = -2 sin !sin (k + !). 

3.32. Prove ~(log xd =log (1 + h /xk) where xk = x0 + kh. 

29 



Chapter 4 

Factorial Polynomials 

FACTORIAL POLYNOMIALS 

Factorial polynomials are defined by 

Yk = k(n) = k(k- 1) 0 0 0 (k- n + 1) 

where n is a positive integer. For example, k(2
) = k(k- 1) = k 2

- k. These polynomials play a central 
role in the theory of finite differences because of their convenient properties. The various differences 
of a factorial polynomial are again factorial polynomials. More specifically, for the first difference, 

which is reminiscent of how the powers of x respond to differentiation. Higher differences then 
become further factorial polynomials of diminishing degree, until ultimately 

!:i"k(n) = n! 

with all higher differences zero. 
The binomial coefficients are related to factorial polynomials by 

(
k) = k(n) 
n n! 

and therefore share some of the properties of these polynomials, notably the famous recursion 

which has the form of a finite difference formula. 
The simple recursion 

k(n+l) = (k- n)k(n) 

follows directly from the definition of factorial polynomials. Rewriting it as 

k(n+l) 
k(n)=--

k-n 

it may be used to extend the factorial idea successively to the integers n = 0, -1, -2, .... The basic 
formula 

is then true for all integers n. 

STIRLING'S NUMBERS 

Stirling's numbers of the first kind appear when factorial polynomials are expressed in standard 
polynomial form. Thus 

the S}") being the Stirling numbers. As an example, 

k(J) = 2k - 3k2 + k 3 
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which makes S~3 ) = 2, S~3 ) = -3, and S~3 ) = 1. The recursion formula 

s~n+I) = S~~.lr- nS~n) 

permits rapid tabulation of these Stirling numbers. 

31 

Stirling's numbers of the second kind appear when the powers of k are represented as 
combinations of factorial polynomials. Thus 

the s~n) being the Stirling numbers. As an example, 

p = er) + 3e2) + e 3) 

so that s~3) = 1, s~3 ) = 3, and s~3 ) = 1. The recursion formula 

s~n+I) = s~~)I + is~n) 

permits rapid tabulation of these numbers. A basic theorem states that each power of k can have 
only one such representation as a combination of factorial polynomials. This assures the unique 
determination of the Stirling numbers of the second kind. 

REPRESENTATION OF ARBITRARY POLYNOMIALS 
The representation of arbitrary polynomials as combinations of factorial polynomials is a natural 

next step. Each power of k is so represented and the results are then combined. The representation 
is unique because of the basic theorem just quoted. For example, 

k 2 + 2k + 1 = [e2) + er)] + 2el) + 1 = e 2) + 3k(l) + 1 

Differences of arbitrary polynomials are conveniently found by first representing such polyno
mials as combinations of factorial polynomials and then applying our formula for differencing the 
separate factorial terms. 

The principal theorem of the chapter is now accessible, and states that the difference of a 
polynomial of degree n is another polynomial, of degree n- 1. This makes the nth differences of 
such a polynomial constant, and still higher differences zero. 

Solved Problems 

4.1. Consider the special function for which Yk = k(k - 1)(k - 2) and prove ~Yk = 3k(k - 1). 

Llyk = Yk+ 1 - Yk = (k + 1)k(k- 1)- k(k- 1)(k- 2) = [(k + 1)- (k- 2)]k(k -1) = 3k(k- 1) 

In tabular form this same result, for the first few integer values of k, is given in Table 4.1. 

4.2. This generalizes Problem 4.1. Consider the special function 

Yk = k(k - 1) · · · (k - n + 1) =en) 

(Note that the upper index is not a power.) Prove, for n > 1, 

~Yk =nen-r) 

a result which is strongly reminiscent of the theorem on the derivative of the nth power 
function. 

Llyk = Yk+J- Yk = [(k + 1) · · · (k- n + 2)]- [k · · · (k- n + 1)] 
= [(k + 1)- (k- n + 1)]k(k- 1) · · · (k- n + 2) = nk<n-J) 
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Table 4.1 

k Yk Ayk 

0 0 
0 

1 0 
0 

2 0 
6 

3 6 
18 

4 24 
36 

5 60 

4.3. Prove that if Yk = klnl, then I::!.ZYk = n(n- l)kln-zJ. 

Problem 4.2 can be applied to I1Jk rather than to Yk· 

112k(n) = 11f1k(n) = 11nk(n-!) = n(n- 1)k(n-2) 

Extensions to higher differences proceed just as with derivatives. 

4.4. Prove !::J.nklnl = n! and !::J.n+lklnl = 0. 

4.5. 

After n applications of Problem 4.2, the first result follows. (The symbol k(o) can be interpreted as 
1.) Since n! is constant (independent of k) its differences are all 0. 

The binomial coefficients are the integers 

(k) = k(n) 
n n! 

k! 
n!(k-n)! 

Prove the recursion 

Using factorial polynomials and applying Problem 4.2, 

(k + 1) ( k ) (k + 1)(n+I) ~ = f1k(n+!) = (n + 1)k(n) k(n) = (k) 
n + 1 - n + 1 (n + 1)! (n + 1)! (n + 1)! (n + 1)! n! n 

which transposes at once into what was to be proved. This famous result has already been used. 

4.6. Use the recursion for the binomial coefficients to tabulate these numbers up through k = 8. 

The first column of Table 4.2 gives (~) which is defined to be 1. The diagonal, where k = n, is 1 by 

definition. The other entries result from the recursion. The table is easily extended. 

4.7. Show that if k is a positive integer, then k<nl and (~) are 0 for n > k. [For n > k the symbol 

(~)is defined as enl/n!] 
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Table 4.2 

~ 0 1 2 3 4 5 6 7 8 

1 1 1 
2 1 2 1 
3 1 3 3 1 
4 1 4 6 4 1 
5 1 5 10 10 5 1 
6 1 6 15 20 15 6 1 
7 1 7 21 35 35 21 7 1 

8 1 8 28 56 70 56 28 8 1 

Note that k(k+
1
J = k(k -1) · · · 0. For n > k the factorial k<nJ will contain this 0 factor, and so will 

(~). 

4.8. The binomial coefficient symbol and the factorial symbol are often used for nonintegral k. 

4.9. 

Calculate k(n) and (~) for k =! and n = 2, 3. 

k(2)= Gf) =~ G-1) = -~ 

(~) = ~~) = ~ (- ~) = - ~ 

k(3) = G) (3) = ~ G- 1) G- 2) = ~ 

(k) = k(J) = ~ (~) = _!_ 
3 3! 6 8 16 

The idea of factorial has also been extended to upper indices which are not positive integers. 
It follows from the definition that when n is a positive integer, k(n+l) = (k- n)k<"). Rewriting 
this as 

k(n) = _1_ k(n+l) 
k-n 

and using it as a definition of k (n) for n = 0, -1, -2, ... , show that k (O) = 1 and 
k(-n) = 1/(k + n)(n)_ 

With n = 0 the first result is instant. For the second we find successively 

k(-1) = _1_ eo)= _1_ = __ 1 __ 
k + 1 k + 1 (k + 1)(1) 

k(-2)=_1_k(-1)= 1 
k+2 (k+2)(k+1) (k+2)(2) 

and so on. An inductive proof is indicated but the details will be omitted. For k = 0 it is occasionally 
convenient to define k<oJ = 1 and to accept the consequences. 

4.10. Prove that jj.k(n) = nk<n-l) for all integers n. 

For n > 1, this has been proved in Problem 4.2. For n = 1 and 0, it is immediate. For n negative, 
say n = -p, 

fl.k(n) = fl.k(-p) = fl.--1__ 1 1 
(k+p)(p) (k+1+p)···(k+2) (k+p)···(k+1) 

1 ( 1 1 ) -p 
(k + p) 0 0 0 (k + 2) k + 1 + p k + 1 (k + 1 + p) 0 0 0 (k + 1) 

n nk(n-1) 
(k + 1- n)<1-n) 
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This result is analogous to the fact that the theorem of calculus "if f(x) = x", then f'(x) = nx"- 1
" is 

also true for all integers. 

4.11. Find fl.e-1). 

By the previous problems, l'l.k<-Jl = -k<-2> = -1/(k + 2)(k + 1). 

Directly from the definitions: 

k<2
> = k(k -1) = -k + e 

e 3
) = ez)(k- 2) = 2k- 3e + k3 

k<4
> = k<3>(k- 3) = -6k + ue- 6e + k 4 

4.13. Generalizing Problem 4.12, show that in the expansion of a factorial polynomial into standard 
polynomial form 

the coefficients satisfy the recursion 

These coefficients are called Stirling's numbers of the first kind. 

Replacing n by n + 1, 

and using the fact that k(n+l) = en)(k- n), we find 

S\"+ 1lk + ... + S~"+~1 >k"+ 1 = [S\">k + · · · + S~"lk"](k- n) 

Now compare coefficients of k; on both sides. They are 

S~"+ 1 > = S~:'.\- nS~"> 

for i = 2, ... , n. The special cases S\"+ 1
) = -nS\") and S~"+~J) = S~"l should also be noted, by comparing 

coefficients of k and k"+ 1
• 

4.14. Use the formulas of Problem 4.13 to develop a brief table of Stirling's numbers of the first 
kind. 

The special formula S\"+ 1
) = -nS\") leads at once to column one of Table 4.3. For example, since 

sp> is clearly 1, 

and so on. The other special formula fills the top diagonal of the table with 1s. Our main recursion then 
completes the table. For example, 

S~3 > = S\2>- 2S~2> = ( -1)- 2(1) = -3 

S~4 > = S\3>- 3S~3> = (2)- 3( -3) = 11 

s~4 > = s~3>- 3S~3 > = ( -3)- 3(1) = -6 
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and so on. Through n = 8 the table reads as follows: 

Table 4.3 

~ 1 2 3 4 5 6 7 8 

1 1 

2 -1 1 

3 2 -3 1 
4 -6 11 -6 1 

5 24 -50 35 -10 1 

6 -120 274 -225 85 -15 1 

7 720 -1,764 1,624 -735 175 -21 1 

8 -5,040 13,068 -13,132 6,769 -1,960 322 -28 1 

4.15. Use Table 4.3 to expand k<5l. 

Using row five of the table, kcsJ = 24k- 50k 2 + 35k 3
- 10k4 + k5

. 

4.16. Show that k 2 = k(l) + k<2l, k 3 = k(l) + 3k(2l + k<3l, k 4 = k<1l + 7k<2l + 6k<3l + k<4l. 

Using Table 4.3, 

k< 1J + k(Z) = k + c -k +e)= k 2 

k( 1
) + 3k(Z) + k(3

) = k + 3( -k + k 2) + (2k- 3k 2 + k 3) = k3 

k(1
) + 7k(Z) + 6k(3

) + k(4
) = k + 7( -k + k 2

) + 6(2k- 3k2 + k3 ) + ( -6k + llk2 - 6k 3 + k4 ) = k4 

4.17 As a necessary preliminary to the following problem, prove that a power of k can have only 
one representation as a combination of factorial polynomials. 

Assume that two such representations exist for kP. 

Subtracting leads to 

0 = (A1- B1)k<1J + · · · + (Ap - Bp)k<Pl 

Since the right side is a polynomial, and no polynomial can be zero for all values of k, every power of k 
on the right side must have coefficient 0. But kP appears only in the last term; hence AP must equal BP. 
And then kp-1 appears only in the last term remaining, which will be (AP_ 1 - BP_ 1)k<p- 1J; hence 
AP_1 = BP_1. This argument prevails right back to A 1 = B1. 

This proof is typical of unique representation proofs which are frequently needed in numerical 
analysis. The analogous theorem, that two polynomials cannot have identical values without also having 
identical coefficients, is a classic result of algebra and has already been used in Problem 4.13. 

4.18. Generalizing Problem 4.16, show that the powers of k can be represented as combinations of 
factorial polynomials 

and that the coefficients satisfy the recursion s}n+l) = s}~l1 + is}nl. These coefficients are called 
Stirling's numbers of the second kind. 



36 FACTORIAL POLYNOMIALS [CHAP. 4 

We proceed by induction, Problem 4.16 already having established the existence of such 

representations for small k. Suppose 

and then multiply by k to obtain 

kn+l = ks)"lk(l) + · · · + ks~")k(n) 

Now notice that k · kUl = (k - i)kul + ik<1l = k(i+ll + ik<1l so that 

kn+l = s)"l(k(2) + k(l)) + ... + s~")(k(n+ l) + nk(n)) 

This is already a representation of k"+l, completing the induction, so that we may write 

By Problem 4.17, coefficients of k<1
l in both these last lines must be the same, so that 

for i = 2, ... , n. The special cases s\"+tl = s)"l and s~"++ttl = s~"l should also be noted, by comparing 
coefficients of k(tl and k(n+tl. 

4.19. Use the formulas of Problem 4.18 to develop a brief table of Stirling's numbers of the second 

kind. 

The special formula s\"+tl = s\"l leads at once to column one of Table 4.4, since s\1l is clearly 1. The 

other special formula produces the top diagonal. Our main recursion then completes the table. For 

example, 
s~3 l = s\2l + 2s~2 l = (1) + 2(1) = 3 s~4l = s\3l + 2s~3 l = (1) + 2(3) = 7 

s~4l = s~3 l + 3s~3l = (3) + 3(1) = 6 

and so on. Through n = 8, the table reads as follows: 

Table 4.4 

~ 1 2 3 4 5 

1 1 

2 1 1 

3 1 3 1 

4 1 7 6 1 

5 1 15 25 10 1 

6 1 31 90 65 15 

7 1 63 301 350 140 

8 1 127 966 1701 1050 

4.20. Use Table 4.4 to expand k 5 in factorial polynomials. 

6 

1 
21 

266 

Using row five of the table, e = k<tl + 15k<2l + 25k<3l + 1Qk<4l + k<5l. 

7 8 

1 
28 1 

4.21. Prove that the nth differences of a polynomial of degree n are equal, higher differences than 

the nth being zero. 

Call the polynomial P(x), and consider its values for a discrete set of equally spaced arguments 

x0 , x 1 , x2 , •••• It is usually convenient to deal with the substitute integer argument k which we have 
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used so frequently, related to x by xk - x0 = kh where h is the uniform difference between consecutive x 
arguments. Denote the value of our polynomial for the argument k by the symbol h. Since the change 
of argument is linear, the polynomial has the same degree in terms of both x and k, and we may write it 
as 

Problem 4.18 shows that each power of k can be represented as a combination of factorial polynomials, 
leading to a representation of Pk itself as such a combination. 

Pk = bo + blk(l) + hzk(Z) + · · · + bnk(n) 

Applying Problem 4.2 and the linearity property 

I'!..Pk = b1 + 2bzk<1l + · · · + nbnk<n-l) 

and reapplying Problem 4.2 leads eventually to 11"Pk = n! b". So all the nth differences are this number. 
They do not vary with k and consequently higher differences are zero. 

4.22. Assuming that the following Yk values belong to a polynomial of degree 4, compute the next 
three values. 

0 2 4 6 7 

0 2 0 

A fourth-degree polynomial has constant fourth differences, according to Problem 4.21. Calculating 
from the given data, we obtain the entries to the left of the line in Table 4.5. 

Table 4.5 

21 51 
0 -2 16 30 

-2 10 14 
4 4 

Assuming the other fourth differences also to be 4 leads to the entires to the right of the line from 
which the missing entries may be predicted: y5 = 5, y6 = 26, y7 = 77. 

Supplementary Problems 

4.25. Compute the binomial coefficients: (~), (~), (~), (;), (;), (~). 

4.26. Compute differences through fourth order for these values of yk = k<4
l. 

0 2 4 6 7 

0 0 0 0 24 120 360 840 
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4.27. Apply Problem 4.2 to express the first four differences of yk = k<4
l in terms of factorial polynomials. 

4.28. Apply Problem 4.2 to express the first five differences of yk = k<5l in terms of factorial polynomials. 

4.29. Use Table 4.3 to express yk = 2k<3l- k<2 l + 4k<1l- 7 as a conventional polynomial. 

4.30. Use Table 4.3 to express yk = k<6 l + k<3 l + 1 as a conventional polynomial. 

4.31. Use Table 4.4 to express yk = 1(2k4
- 8k2 + 3) as a combination of factorial polynomials. 

4.32. Use Table 4.4 to express yk = 80k3
- 30k4 + 3k5 as a combination of factorial polynomials. 

4.33. Use the result of the previous problem to obtain ~Yk in terms of factorial polynomials. Then apply Table 
4.3 to convert the result to a conventional polynomial 

4.34. Use the result of Problem 4.32 to obtain ~Yk and ~2yk in terms of factorial polynomials. Then apply 
Table 4.3 to convert both results to conventional polynomials. 

4.35. Assuming that the following yk values belong to a polynomial of degree 4, predict the next three values. 

0 2 3 4 5 6 

-1 -1 

4.36. Assuming that the following yk values belong to a polynomial of degree 4, predict the next three values. 

0 2 3 4 6 7 

0 0 0 0 

4.37. What is the lowest degree possible for a polynomial which takes these values? 

0 2 3 4 

0 8 15 24 

4.38. What is the lowest degree possible for a polynomial which takes these values? 

0 2 3 4 

0 0 

4.39. Find a function yk for which ~Yk = k<2l = k(k- 1). 

4.40. Find a function yk for which ~Yk = k(k- 1)(k- 2). 

4.41. Find a function yk for which ~Yk = k2 = k<2
l + k<ll. 

4.42. Find a function yk for which ~Yk = k 3
• 

4.43. Find a function yk for which ~Yk = 1(k + 1)(k + 2). 



Chapter 5 

Summation 

Summation is the inverse operation to differencing, as integration is to differentiation. An 
extensive treatment appears in Chapter 17 but two elementary results are presented here. 

1. Telescoping sums are sums of differences, and we have the simple but useful 
n-l 

2: Llyk = Yn -Yo 
k=O 

analogous to the integration of derivatives. Arbitrary sums may be converted to telescoping 
sums provided the equation Llyk = zk can be solved for the function Yk· Then 

n-l n-l 

2: Zk = 2: LlYk = Yn -Yo 
k=O k=O 

Finite integration is the process of obtaining Yk from 

Llyk = zk 

where zk is known. Since it obviously follows that 
n-l 

Yn =Yo+ 2: Zk 
k=O 

finite integration and summation are the same problem. As in integral calculus, however, 
there are times when explicit finite integrals (not involving I:) are useful. 

2. Summation by parts is another major result of summation calculus and involves the formula 
n-l n-l 

2: U LlV; = UnVn- UoVo- 2: V LlU; 
i=O i=O 

which resembles the corresponding integration by parts formula. 
Application of this formula involves exchanging one summation for a (presumably) 

simpler summation. If one of the I:'s is known, the formula serves to determine the other. 

Infinite series may also be evaluated in certain cases where the partial sums respond to the 
telescoping or summation by parts methods. 

n-l 
5.1. Prove I: Llyk = Yn -Yo· 

k=O 

Solved Problems 

This is a simple but useful result. Since it involves the summation of differences, it is usually 
compared with an analogous result of calculus involving the integration of a derivative. First notice that 

~Yo= Y1- Yo 

~Yo+ ~Y1 = (y1 -Yo) + (Yz- Y1) = Yz- Yo 

~Yo+ ~Y1 + ~Yz = (y1 -Yo) + (Yz- Y1) + (y3 - Yz) = Y3- Yo 

which illustrate the sort of telescoping sums involved. In general, 
n-1 
L ~Yk = (y1- Yo)+ (Yz- Y1) + (y3- Yz) + · · · + (y"- Yn-1) = Y"- Yo 
k~o 

39 
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5.2. 

5.3. 

SUMMATION [CHAP. 5 

all other y values occurring both plus and minus. Viewed in a table of differences, this result looks even 
simpler. The sum of adjacent differences gives the difference of two entries in the row above. 

Yo Yn 
LlYn-! 

Similar results hold elsewhere in the table. 

Prove lz+2z+···+nz= f iz=n(n+1)(2n+l) 
i=l 6 

We need a function for which ily, =e. This is similar to the integration problem of calculus. In this 
simple example, they, could be found almost by intuition, but even so we apply a method which handles 
harder problems just as well. First replace e by a combination of factorial polynomials, using Stirling's 
numbers. 

A function having this difference is 

Y. =! i(3) +! i(2) 
' 3 2 

as may easily be verified by computing ily,. Obtaining y, from ily, is called finite integration. The 
resemblance to the integration of derivatives is obvious. Now rewrite the result of Problem 5.1 as 

t ily, = Yn+I- y1 and substitute to obtain 
i=l 

i>2 = [! (n + 1)(3) +! (n + 1)(2)]- [! (1)(3) +! (1)(2)] 
i~l 3 2 3 2 

(n + 1)n(n -1) + (n + 1)n = n(n + 1)(2n + 1) 
3 2 6 

" 1 
Evaluate the series .I: (. l)(. l) . 

•=0 l + l + 

By an earlier result ili(-JJ = (' )
1
. ) . Then, using Problem 4.9 to handle QHl, 

1 + 1 (z +2 

n-1 1 n-1 1 
s,.=2:c 

1
)C 

2
) -2:ili(-l)=-[n(-l)_o(-1)]=1---

'~a l + l + ;~o n + 1 

The series is defined as lim S,. and is therefore equal to 1. 

5.4. Consider two functions defined for the same set of arguments xk> having values uk and vk. 
Prove 

n-1 n-1 

L ui ~vi= UnVn- UoVo- L Vi+l ~ui 
i=O i=O 

This is called summation by parts and is analogous to the result of calculus 

f" u(x)v'(x) dx = u(x,.)v(xn)- u(x0 )v(x0 )- f" v(x)u'(x) dx 
~ ~ 

The proof begins with the result of Problem 3.9, slightly rearranged. 

u, Llv, = Ll(u,v,)- v,+ 1 Llu, 
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Sum from i = 0 to i = n -1, 
n-1 n-1 n-1 

L u1 11v, = L !1(u,v;)- L v1+ 1 11u1 
i=O i=O i=O 

and then apply Problem 5.1 to the first sum on the right. The required result follows. 

5.5. Evaluate the series ~ iR; where -1 < R < 1. 
i=O 
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Since L1R 1 = R1
+

1
- R 1 = R'(R -1), we may put u1 = i and v1 = R 1/(R -1) and apply summation by 

parts. Take the finite sum 

n-1 . n-1 Rn n-1 Ri+l 

S" = L iR' = L u1 11v1 = n · --- 0 - L --
t~o t~o R - 1 t~o R - 1 

The last sum is geometric and responds to an elementary formula, making 

nR" R(1-R") 
5
" = R - 1 + (1 - R)2 

Since nR" and R"+ 1 both have limit zero, the value of the infinite series is lim S" = R/(1- Rf. 

5.6. A coin is tossed until heads first shows. A payoff is then made, equal to i dollars if heads first 
showed on the ith toss (one dollar if heads showed at once on the first toss, two dollars if the 
first head showed on the second toss, and so on). Probability theory leads to the series 

for the average payoff. Use the previous problem to compute this series. 

By Problem 5.5 with R = t ~ iG)' = <n!O) = 2 dollars. 
i=O 

5.7. Apply summation by parts to evaluate the series ~ i 2R;. 
i=O 

Putting u1 = i 2
, v1 = R 1/(R -1) we find 11u1 =2i + 1 and so 

n-1 . n-1 Rn n-1 Ri+l 

S" = L i 2R' = L u, 11v1 = n 2 
--- 0- L -- (2i + 1) 

t~o t~o R - 1 t~o R - 1 
R" 2R n-1 . R n-1 

=n2 -----2: iR'---2: R 1 

R - 1 R - 1 1 ~o R - 1 1 ~o 

The first of the two remaining sums was evaluated in Problem 5.5 and the second is geometric. So we 
come to 

n 2
R" 2R [ nR" R(1- R")J R 1- R" 

S" = R - 1- R - 1 R - 1 + (1 - R)2 - R - 1 . 1- R 

and letting n-HX; finally achieve lim sn = (R + R2)/(1- Rt 

5.8. A coin is tossed until heads first shows. A payoff is then made, equal to i 2 dollars if heads first 

showed on the ith toss. Probability theory leads to the series f i2(!)i for the average payoff. 
Evaluate the series. i=O 

By Problem 5.7 with R = t ~ i 2(W = G + WW = 6 dollars. 
i=O 
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5.9. 

5.10. 

SUMMATION 

Supplementary Problems 

• • • • n • n(n + 1) 
Use fimte mtegrat10n (as m Problem 5.2) to prove 2: z = 1 + 2 + · · · + n = ---. 

Evaluate t i3 by finite integration. 
i=l 

i~l 2 

[CHAP. 5 

5.11. 
n-l . A" -1 

Show that 2: A'=-- by using finite integration. (See Problem 3.21.) This is, of course, the 
;~o A -1 

5.U. 

5.13. 

5.14. 

5.15. 

5.16. 

geometric sum of elementary algebra. 

n-l ( i) ( n ) ( 1 ) 
Show that ,~, k = k + 1 - k + 1 . 

~ 1 
Evaluate by finite integration: ,~0 (i + 1)(i + 2)(i + 3). 

~ 1 
Evaluate ,~, i(i + 2) . 

Evaluate ~ i 3R' for -1 < R < 1. 
i=O 

Alter Problem 5.8 so that the payoff is i 3
• Use Problem 5.15 to evaluate the average payoff, which is 

~em'. 
i=O 

5.17. Alter Problem 5.8 so that the payoff is +1 when i is even and -1 when i is odd. The average payoff is 

~ ( -1)'(D'. Evaluate the series. 
i=1 

5.18. Evaluate t log ( 1 + ~ ). 

N 

5.19. Evaluate ,~, i" in terms of Stirling's numbers. 

5.20. Evaluate .~ [:--------(. 
1 

) J. 
z~I l l +n 

5.21. Evaluate 2: i"R'. 
i=O 

5.22. Express a finite integral of !'!yk = 1/k in the form of a summation, avoiding k = 0. 

5.23. Express a finite integral of !'!yk =log k in the form of a summation. 



Chapter 6 

The Newton Formula 

The collocation polynomial can now be expressed in terms of finite differences and factorial 
polynomials. The summation formula 

Yk =to(~) ~iYo 
is proved first and leads directly to the Newton formula for the collocation polynomial, which can be 
written as 

Pk= ~C) ~iYo 
An alternative form of the Newton formula, in terms of the argument xk> may be obtained using 

xk = x0 + kh, and proves to be 

( ~Yo) (~
2

Yo) ( ~nYo) p(xk) =Yo+ h (xk- Xo) + 
2

! h 2 (xk- Xo)(xk- x1) + · · · + n! hn (xk- Xo) · · · (xk- Xn-1) 

The points of collocation are x0 , •.. , xn. At these points (arguments) our polynomial takes the 
prescribed values Yo, ... , Yn-

Solved Problems 

6.1. Prove that 

Y1 =Yo+ ~Yo 

and infer similar results such as 

~Yz =~Yo+ 2~2Yo + ~3Yo 

This is merely a preliminary to a more general result. The first result is obvious. For the second, 
with one eye on Table 6.1, 

Yz = Y1 + ~Y1 =(Yo+ ~Yo)+ (~Yo+ ~2Yo) 

leading at once to the required result. Notice that this expresses y2 in terms of entries in the top diagonal 
of Table 6.1. Notice also that almost identical computations produce 

~Yz =~Yo+ 2~2Yo + ~3Yo ~2Yz = ~2Yo + 2~3Yo + ~4Yo 

etc., expressing the entries on the "y2 diagonal" in terms of those on the top diagonal. Finally, 

Y3 = Yz + ~Y2 =(Yo+ 2~Yo + ~2Yo) +(~Yo+ 2~2Yo + ~3Yo) 

leading quickly to the third required result. Similar expressions for ~y3 , ~2y3 , etc., can be written by 
simply raising the upper index on each ~. 

Table 6.1 

Xo Yo 
~Yo 

XI Y1 
~Y1 

~2Yo 
~3Yo 

Xz Y2 
~Y2 

~2Y1 
~3Y1 

~4Yo 
X3 Y3 

~Y3 
~2Yz 

x4 Y4 

43 
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6.2. Prove that for any positive integer k, Yk = i~o ( ~) ~iy0 • (Here ~ 0y0 means simply Yo·) 

The proof will be by induction. Fork= 1, 2, and 3, see Problem 6.1. Assume the result true when k 
is some particular integer p. 

- p (p) i 
YP- ~ i ~Yo 

Then, as suggested in the previous problem, the definition of our various differences makes 

also true. We now find 

=Yo+ i (P: 1) ~jYo + ~p+ 1Yo = '±1 (P: 1) ~jYo 
j~! 1 j~O 1 

Problem 4.5 was used in the third step. The summation index may now be changed from j to i if desired. 
Thus our result is established when k is the integer p + 1, completing the induction. 

6.3. Prove that the polynomial of degree n, 

Pk =Yo+ k ~y + _!_ kc2l ~2y + · · · + _.!_ k<nl ~ny o 2! o n! o 

takes the values Pk = Yk fork= 0, 1, ... , n. This is Newton's formula. 

Notice first that when k is 0 only the Yo term on the right contributes, all others being 0. When k is 1 
only the first two terms on the right contribute, all others being 0. When k is 2 only the first three terms 
contribute. Thus, using Problem 6.1, 

Po= Yo p!=yo+~yo=Y! 

and the nature of our proof is indicated. In general, if k is any integer from 0 ton, then ku> will be 0 for 
i > k. (It will contain the factor k - k.) The sum abbreviates to 

and by Problem 6.2 this reduces to Yk· The polynomial of this problem therefore takes the same values 
as our yk function for the integer arguments k = 0, ... , n. (The polynomial is, however, defined for any 
argument k.) 

6.4. Express the result of Problem 6.3 in terms of the argument xko where xk = x0 + kh. 

Notice first that 

k = xk- Xo 

h 
k _ 2 = xk-2 -xo= xk -xz 

h h 
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and so on. Using the symbol p(xk) instead of pk, we now find 

Ah A~ A~ 
p(xk) =Yo+ h (xk- Xo) + 

2
! h2 (xk- Xo)(xk- x1) + · · · + n! h" (xk- Xo) · · · (xk -xn-1) 

which is Newton's formula in its alternative form. 

6.5. Find the polynomial of degree three which takes the four values listed in the Yk column below 
at the corresponding arguments xk. 

The various differences needed appear in the remaining columns of Table 6.2. 

Table 6.2 

k xk Yk A.yk A.2yk A.3yk 

0 @) CD 
@ 

1 @ 3 @ 
5 @) 

2 ® 8 7 
12 

3 10 20 

Substituting the circled numbers in their places in Newton's formula, 

which can be simplified to 

though often in applications the first form is preferable. 

6.6 Express the polynomial of Problem 6.5 in terms of the argument k. 

Directly from Problem 6.3, 

P 
= 1 + 2k + ~ k(Z) + ~ k(J) 

k 2 6 

which is a convenient form for computing pk values and so could be left as is. It can also be rearranged 
into 

6.7. Apply Newton's formula to find a polynomial of degree four or less which takes the Yk values 
of Table 6.3. 

The needed differences are circled. Substituting the circled entries into their places in Newton's 
formula, 

which is also Pk =~c2e -16k3 + 4oe- 32k + 3) 
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Table 6.3 

k xk Yk A A2 A3 A4 

0 1 CD @ 
1 2 -1 0 2 8 
2 3 1 -4 @ 

-2 8 
3 4 -1 4 

2 
4 5 1 

Since k = xk - 1, this result can also be written as 

1 
p(xk) = 3 (2x1- 24x~ + 100xi - 168xk + 93) 

Supplementary Problems 

6.8. Find a polynomial of degree four which takes these values. 

2 4 6 8 10 

0 0 0 0 

6.9. Find a polynomial of degree two which takes these values. 

0 2 4 6 7 

2 4 7 11 16 22 29 

6.10. Find a polynomial of degree three which takes these values. 

4 6 

6 24 60 120 

6.11. Find a polynomial of degree five which takes these values. 

I 
k =xk 

I 
0 2 4 

Yk 0 0 0 0 

6.U. Find the cubic polynomial which includes these values. 

I 
k =xk 

I 
0 2 4 

Yk 2 4 8 15 26 

(See also Problem 3.12.) 
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6.13. Expressing a polynomial of degree n in the form 

Pk = ao + a1k(!) + a 2kl2l + · · · + anklnl 

calculate 11pk> 112pk> ... , 11nPk· Then show that the requirement 

Pk = Yk 

leads to 11p 0 = 11y0 , 112p 0 = 112yo, etc. Next deduce 

ao =Yo 

k =0, ... , n 

and substitute these numbers to obtain once again Newton's formula. 

6.14. Find a quadratic polynomial which collocates withy (x) = x4 at x = 0, 1, 2. 
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6.15. Find a cubic polynomial which collocates with y(x) =sin (:rcx/2) at x = 0, 1, 2, 3. Compare the two 
functions at x = 4. Compare them at x = 5. 

6.16. Is there a polynomial of degree four which collocates with y(x) =sin (:rcx/2) at X= 0, 1, 2, 3, 4? 

6.17. Is there a polynomial of degree two which collocates with y(x) = x3 at x = -1, 0, 1? 

6.18. Find a polynomial of degree four which collocates with y(x) = lxl at x = -2, -1, 0, 1, 2. Where is the 
polynomial greater than y(x), and where less? 

6.19. Find a polynomial of degree two which collocates with y(x) = Vx at x = 0, 1, 4. Why is Newton's 
formula not applicable? 

6.20. Find a solution of 113yk = 1 for all integers k with Yo= 11y0 = 112y0 = 0. 



Chapter 7 

Operators and Collocation Polynomials 

OPERATORS 

Operators are used here and there in numerical analysis, in particular for simplifying the 
development of complicated formulas. Some of the most interesting applications are carried out in a 
spirit of optimism, without excessive attention to logical precision, the results subject to verification 
by other methods, or checked experimentally. 

A number of the formulas to be derived in this chapter are, in part, of historical interest, 
providing a view of the numerical priorities of an earlier time. The attached names, such as Newton 
and Gauss, indicate their importance in those times. Changes in computing hardware have reduced 
their range of application, a point that will be repeated in Chapter 12 where certain classic 
applications will be offered. 

The specific operator concepts now to be used are these: 

1. The operator ~ is defined by 

~Yk = Yk+l - Yk 

We now think of~ as an operator which when offered Yk as an input produces Yk+l- Yk as 
an output, for all k values under consideration. 

The analogy between operator and an algorithm (as described in Chapter 1) is apparent. 
2. The operator E is defined by 

Here the input to the operator is again Yk· The output is Yk+I· 

Both~ and E have the linearity property, that is, 

~(C1Yk + Czzd = C1 ~Yk + Cz ~zk 

E(C1Yk + Czzk) = C1EYk + CzEzk 

where C1 and C2 are any constants (independent of k). All the operators to be introduced 
will have this property. 

3. Linear combinations of operators. Consider two operators, call them L1 and L2 , which 
produce outputs L 1Yk and L 2 Yk from the input Yk· Then the sum of these operators is 
defined as the operator which outputs L 1Yk + L 2 Yk. 

A similar definition introduces the difference of two operators. 
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More generally, if C1 and C2 are constants (independent of k) the operator 
C1L 1 + C2 L 2 produces the output C1L 1yk + C2 L 2 Yk· 

4. The product of operators L 1 and L 2 is defined as the operator which outputs L 1L 2 Yk· A 
diagram makes this clearer. 

The operator L 1 is applied to the output produced by L 2 • The center three parts of the 
diagram together represent the operator L 1L 2 • 

With this definition of product, numbers such as the C1 and C2 above may also be thought 
of as operators. For instance, C being any number, the operator C performs a 
multiplication by the number C. 

5. Equality of operators. Two operators L 1 and L 2 are called equal if they produce identical 
outputs for all inputs under consideration. In symbols, 

if 

for all arguments k under consideration. With this definition a comparison of outputs shows 
at once that for any operators Lu L 2 , and L3, 

L1 + Lz = Lz + L1 

L1 + (Lz + L3) = (L1 + Lz) + L3 

L1(LzL3) = (L1Lz)L3 

Ll(Lz + L3) = L1Lz + L1L3 

but the commutative law of multiplication is not always true: 

L 1L2 =1=L2 L 1 

If either operator is a number C, however, equality is obvious from a comparison of 
outputs, 

6. Inverse operators. For many of the other operators we shall use, commutativity will also be 
true. As a special case, L 1 and L2 are called inverse operators if 

L 1L2 = L2 L 1 = 1 

In such a case we use the symbols 

The operator 1 is known as the identity operator and it is easy to see that it makes 
1 · L = L · 1 for any operator L. 
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7. Simple equations relating~ and E include, among others, 

£=1+~ ~2 =£2 -2£+1 

E~ = ~E ~3 = £ 3 -3£2 + 3£-1 

Two related theorems, already proved earlier by other means, appear as follows in 
operator symbolism: 

8. The backward difference operator Vis defined by 

vh = Yk- h-1 

and it is then easy to verify that 

VE=EV=~ 

The relationship between V and E- 1 proves to be 

E- 1 = 1- V 

and leads to the expansion 

- -kk(k+1)···(k+i-1) i 

Yk - Yo + L . 1 
V Yo 

i=1 l. 

for negative integers k. 

9. The central difference operator is defined by 

<'J = £112 _ E-112 

It follows that <'l£112 = ~. In spite of the fractional arguments this is a heavily used 
operator. It is closely related to the following operator. 

10. The averaging operator is defined by 

ll =! (£112 + E-112) 
2 

and is the principal mechanism by which fractional arguments can be eliminated from 
central difference operations. 

COLLOCATION POLYNOMIALS 

The collocation polynomial can now be expressed in a variety of alternative forms, all equivalent 
to the Newton formula of Chapter 6, but each suited to somewhat different circumstances. We 
discuss the following, which find use beginning with Chapter 12. 

1. Newton's backward formula 

k(k+1) k···(k+n-1) 
P k =Yo + k Vyo + --- V2Yo + · · · + VnYo 

2! n! 

represents the collocation polynomial which takes the values Yk for k = 0, -1, ... , -n. 

2. The Gauss forward formula may be obtained by developing the relationship between E and 
<'J and reads 

~ [(k + i- 1) 2i-1 (k + i- 1) 2i ] 
Pk =Yo+ 6 2i _ 1 <'l Y112 + 2i <'l Yo 
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if the polynomial is of even degree 2n and collocation is at k = -n, ... , n. It becomes 

-~[(k+i-1) 0 2i (k+l)o2i+l J 
Pk- t:'o 2i Yo+ 2i + 1 Y112 

if the polynomial is of odd degree 2n + 1 and collocation is at k = -n, ... , n + 1. 

3. The Gauss backward formula may be derived in a similar way. For even degree it takes the 
form 

Pk =Yo+~ [ (k 2~ ~ ~ 
1) D2i-1Y-112 + (k; i) D2iy0 ] 

with collocation again at k = -n, ... , n. One principal use of the two formulas of Gauss is 
in deriving Stirling's formula. 

4. Stirling's formula is one of the most heavily applied forms of the collocation polynomial. It 
reads 

Pk =Yo+(~) D!lYo + (~)(~) D2
Yo + (k; 1) D3

!lYo 

+ ( ~) ( k ; 1) 04Yo + ... + ( k 
2
: ~ ~ 1) 02

n_
1 !lYo + (~) ( k 

2
: ~ ~ 1) 02nYo 

and is a very popular formula. Needless to say, collocation is at k = -n, ... , n. 
5. Everett's formula takes the form 

Pk = (~)Y1 + (k; l) D2Y1 + (k; 2) D4Y1 + · · · + (;n :nJ D2ny1 

- ( k ~ 1 )Yo-(~) [J2Yo- ( k; 1) D4Yo- ... - ( k 2:: ~ 1) [J2nYo 

and may be obtained by rearranging the ingredients of the Gauss forward formula of odd 
degree. Collocation is at k = -n, ... , n + 1. Note that only even differences appear. 

6. Bessel's formula is a rearrangement of Everett's and can be written as 

Pk = llY112 + ( k- D oY112 + (~)!lo 2Y112 + H k- D(~)o 3yl/2 

(k+n-1) 2n ( 1 )( l)(k+n-1) 2 +l + ... + 2n !lD Yll2 + 2n + 1 k - 2 2n o n Y112 

Solved Problems 

7.1. Prove E = 1 + ~. 

By definition of E, EYk = Jk+ 1 ; and by definition of 1 + ~' 
(1 + ~) = 1 · Yk + ~Yk = Yk + (h+t -h)= Yk+t 

Having identical outputs for all arguments k, the operators E and 1 + ~ are equal. This result can also 
be written as ~ = E- 1. 

7 .2. Prove E ~ = ~E. 
and 
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The equality of outputs makes the operators equal. This is an example in which the commutative law of 
multiplication is true. 

7.3. Prove /j,_2 = £ 2
- 2E + 1. 

7.4. 

Using various operator properties, 

ll2 = (E -1)(E -1) = E2 -1 · E- E ·1 + 1 = E2
- 2E + 1 

. • k ~ ·(k) Apply the bmomtal theorem to prove d Yo= ;':::o ( -1)' i Yk-i· 

The binomial theorem, (a+ b )k =itO e)ak-ibi, is valid as long as a and b (and therefore a+ b) 

commute in multiplication. In the present situation these elements will be E and -1 and these do 
commute. Thus, 

Noticing that Ey0 = Y1, E2y0 = y2 , etc., we have finally 

k ~ ·(k) Ll Yo= Lt (-1)' . Yk-i 
i~o l 

which duplicates the result of Problem 3.5. 

Since E = 1 + Ll, the binomial theorem produces Ek = (1 + Ll)k =ito e) Lli. Applying this operator 

to y0 , and using the fact that Eky0 = yk, produces the required result at once. Note that this duplicates 
Problem 6.2. 

7.6. The backward difference is defined by Vyk = Yk- Jk- 1 = dJk- 1• Clearly it involves assigning a 
new symbol to Yk- Jk- 1• Show that V E = EV = d, E- 1 = 1- V. 

Since these are true for all arguments k, we have V E = EV = Ll = E - 1. 
Using the symbol E- 1 for the operator defined by E- 1yk = yk_ 1, we see that EE- 1yk and E- 1Eyk are 

both Yk· In operator language this means that these two operators are inverses: EE- 1 = E- 1E = 1. 
Finally, as an exercise with operator calculations, 

and 

7.7. Backward differences are normally applied only at the bottom of a table, using negative k 
arguments as shown in Table 7.1. Using the symbols V2Jk = VVyb V3Jk = VV2Jk, etc., show 
that dnJk = vnh+n-

Since Ll = EV, we have Ll" = (EV)". But E and V commute, so the 2n factors on the right side may 
be rearranged to give ll" = V"E". Applying this to yk> Ll"yk = V"E"yk = V"yk+n· 
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Table 7.1 

k X y 

-4 x_4 Y-4 
V'y_3 

-3 x_3 Y-3 V'
2
Y-z 

V'y_2 V'3y_, 

-2 x-2 Y-z V'2y_, V'4Yo 
V'y_, V'3Yo 

-1 x_, y_, V'2Yo 
V'yo 

0 Xo Yo 

7 .8. Prove that 

Y-1 =Yo-~% 

-k k(k + 1) ... (k + i- 1) . 
and that in general fork a negative integer, Yk =Yo+ i~l i! V'Yo· 

Take the general case at once: yk = Eky0 = (E- 1)-ky0 = (1- V')-ky0 • With k a negative integer the 
binomial theorem applies, making 

Yk = ~ ( -1);( ~k)viYo =Yo+~ ( -1r ( -k)( -k -1) ~!·. ( -k- i + 1) V'iYo 

- ~ k(k + 1) ... (k + i- 1) i 
-Yo+~ i! V'yo 

The special cases now follow for k = -1, -2, -3 by writing out the sum. 

7.9. Prove that the polynomial of degree n which has values defined by the following formula 
reduces to Pk = Yk when k = 0, -1, ... , -n. (This is Newton's backward difference formula.) 

Pk =Yo+ k Vyo + k(k + 1) vzYo + ... + k . .. (k + n- 1) vnYo 
2! n! 

- ~k(k+1) .. ·(k+i-1) i 
- Yo + L. . 1 V Yo 

i~I l. 

The proof is very much like the one in Problem 6.3. When k is 0, only the first term on the right 
side contributes. When k is -1, only the first two terms contribute, all others being zero. In general, if k 
is any integer from 0 to -n, then k(k + 1) · · · (k + i- 1) will be 0 fori> -k. The sum abbreviates to 

- ~ k(k + 1) ... (k + i -1) i 
Pk-Yo+ L; .

1 
V'yo 

i=l l. 

and by Problem 7.8 this reduces to Yk· The polynomial of this problem therefore agrees with our yk 
function for k = 0, -1, ... , -n. 

7.10. Find the polynomial of degree three which takes the four values listed as Yk in Table 7.2 at the 
corresponding xk arguments. 

The differences needed appear in the remaining columns of Table 7.2. 
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Table 7.2 

k xk Yk "ilyk "il2yk "il3yk 

-3 4 1 
2 

-2 6 3 3 
5 0 

-1 8 8 (}) 
@ 

0 10 @ 

Substituting the circled numbers in their places in Newton's backward difference formula, 

7 4 
Pk = 20 + 12k +-zk(k + 1) +6k(k + 1)(k + 2) 

Notice that except for the arguments k this data is the same as that of Problem 6.5. Eliminating k by the 
relation xk = 10 + 2k, the formula found in that problem 

1 3 2 
p(xd = 24 (2xk- 27xk + 142xk - 240) 

is again obtained. Newton's two formulas are simply rearrangements of the same polynomial. Other 
rearrangements now follow. 

7.11. The central difference operator Dis defined by D = E 112 - E- 112 so that Dy112 = y1- y0 =~Yo= 

Vy1, and so on. Observe that E 112 and E- 112 are inverses and that (E112f = E, (E- 112
)

2 = E-1. 
Show that 1:1nYk = DnYk+n/2· 

From the definition of D, we have D£ 112 = E- 1 = ~ and ~n = {JnEn12. Applied to yk> this produces 
the required result. 

7.U. In D notation, the usual difference table may be rewritten as in Table 7.3. 

Table 7.3 

k Yk b b2 b3 b4 

-2 Y-2 
DY-3t2 

-1 Y-1 D2Y-l 
{Jy_l/2 D

3
Y-112 

0 Yo D
2
Yo D4Yo 

{Jyl/2 [J3yl/2 

1 Y1 [J2yl 
{Jy312 

2 Yz 

Express Dy112 , D2y0 , D2y112, and D4y0 using the ~ operator. 

By Problem 7.11, DYvz =~Yo, D2Yo = ~2Y-1, D3Yuz = ~3Y-1, D4Yo = ~4Y-2· 
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7.13. The averaging operator f..l is defined by f..l = !(£1!2 + E-v2) so that f..lYv2 = !(y1 + y0), and so on. 
Prove f..l 2 = 1 + ic'> 2

• 

First we compute <5 2 = E- 2 + E- 1
• Then 11 2 =HE+ 2 + E- 1

) = H<'i 2 + 4) = 1 +!<5 2
• 

7.14. Verify the following for the indicated arguments k: 

k=O, 1 Yk =Yo+(~) DYv2 

k = -1, 0, 1 

k = -1, 0, 1, 2 (k) (k) 2 (k + 1) 3 Yk =Yo+ 
1 

DYv2 + 
2 

cS Yo + 3 cS Yv2 

k= -2, -1, 0, 1, 2 (k) (k) 2 (k + 1) 3 (k + 1) 4 Yk =Yo + 1 cSyl/2 + 2 cS Yo+ 3 cS Yv2 + 4 cS Yo 

For k = 0 only the Yo terms on the right contribute. When k = 1 all right sides correspond to the 
operator 

1 + <'i£112 = 1 + (E- 1) = E 

which does produce y1 • For k = -1 the last three formulas lead to 

1- <'i£112 +<5 2 = 1- (E- 1) + (E- 2 + E- 1
) = E- 1 

which produces y_ 1• When k = 2 the last two formulas bring 

1 + 2<5£112 +<5 2 + <5 3£ 112 = 1 + 2(£ -1) + (E- 2 + E-1)(1 + E -1) = £ 2 

producing y2 • Finally when k = -2 the last formula involves 

1- 2<5£112 + 3<5 2
- <5 3£ 112 +<54 = 1- 2(£ -1) + (E- 2 + E- 1)[3- (E -1) + (E- 2 + E-1

)] = E-2 

leading to y_ 2 • 

The formulas of this problem generalize to form the Gauss forward formula. It represents a 
polynomial either of degree 2n 

Pk =Yo+~ [ (\: ~ ~ 1) D2
HY112 + (k + ;i -1

) D2iYo] 

taking the values pk = yk fork= -n, ... , n, or of degree 2n + 1 

= ~ [(k + i -1) <5 2; + ( k + i) <52i+1 J 
Pk ~ 2i Yo 2i + 1 Yv2 

taking the values pk = yk fork= -n, ... , n + 1. (In special cases the degree may be lower.) 

7.15. Apply Gauss' formula with n = 2 to find a polynomial of degree four or less which takes the Yk 
values in Table 7.4. 

The differences needed are listed as usual. This resembles a function used in illustrating the two 
Newton formulas, with a shift in the argument k and an extra number pair added at the top. Since the 
fourth difference is 0 in this example, we anticipate a polynomial of degree three. Substituting the 
circled entries into their places in Gauss' formula, 

3 4 
pk = 3 + Sk + z k(k- 1) + 6 (k + 1)k(k- 1) 

If k is eliminated by the relation xk = 6 + 2k, the cubic already found twice before appears once again. 
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Table 7.4 

k xk Yk 

-2 2 -2 
3 

-1 4 1 -1 
2 4 

0 6 ® ® ® 
C2) @) 

1 8 8 7 
12 

2 10 20 

7.16. Apply Gauss' forward formula to find a polynomial of degree four or less which takes the Yk 
values in Table 7.5. 

The needed differences are circled. 

Table 7.5 

k xk Yk 

-2 1 1 
-2 

-1 2 -1 4 
2 -8 

0 3 CD 8 @ 
@ ® 

1 4 -1 4 
2 

2 5 1 

Substituting into their places in the Gauss formula, 

1 2k 4k(k-1) (k+1)k(k-1) 6(k+1)k(k-1)(k-2) 
pk= - - --2-+ 8 6 + 1 24 

which simplifies to 

Since k = xk- 3, this result can also be written as 

1 
p(xk) = 3 (2x!- 24xi + lOOxz- 168xk + 93) 

agreeing, of course, with the polynomial found earlier by Newton's formula. 

7.17. Verify that, fork= -1, 0, 1, 

Yk = Yo + ( ~) Dy -112 + ( k ; 
1
) <5 

2y0 

and, fork= -2, -1, 0, 1, 2, 

(k) (k + 1) 2 (k + 1) 3 (k + 2) 4 Yk = Yo + 
1 

Dy -112 + 
2 

D Yo + 
3 

D Y -112 + 
4 

<5 Yo 
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Fork= 0, only the Yo terms on the right contribute. When k = 1 both formulas involve the operator 

1 + cSE- 112 + D2 = 1 + (1- E- 1
) + (E- 2 + E- 1

) = E 

which does produce y1 • For k = -1 both formulas involve 

1- cSE- 112 = 1- (1- E- 1
) = E- 1 

which does produce y_ 1 • Continuing with the second formula, we find, fork= 2, 

1+ 2!5£- 112 + 3!52 + !5 3£- 112 +!54 = 1 + 2(1- E- 1
) + (E- 2 + E"- 1)(3 + 1- E- 1 + E- 2 + E- 1

) = E 2 

and, fork= -2, 

1- 2!5£- 112 +!52
- c5 3E- 112 = 1- 2(1- E- 1

) + (E- 2 + E- 1)(1-1 + E- 1
) = E- 2 

as required. 
The formulas of this problem can be generalized to form the Gauss backward formula. It represents 

the same polynomial as the Gauss forward formula of even order and can be verified as above. 

~ [(k + i -1) 2i-1 (k + i) 2i ] P k =Yo + 6 2i _ 1 D Y -112 + 2i D Yo 

7.18. Prove (k ~ i) + (k + i_- 1) = ~ (k ~ i- 1). 
2z 2z z 2z-1 

From the definitions of binomial coefficients, 

( k ~ i) + (k + i.-1) = (k ~ i -1)[(k + i) + (k- i)] ~ 
21 21 21-1 21 

as required. 

7.19. Deduce Stirling's formula, given below, from the Gauss formulas. 

Adding the Gauss formulas for degree 2n term by term, dividing by two, and using Problem 7.18, 

This is Stirling's form!lla. 

7.20. Apply Stirling's formula with n = 2 to find a polynomial of degree four or less which takes the 
Yk values in Table 7.6. 

The differences needed are again listed. Substituting the circled entries into their places in Stirling's 
formula, 

p = 3 + 2 + 5 k + 3 ~ + 4 + 4 (k + 1)k(k- 1) 
k 2 2 2 6 

which is easily found to be a minor rearrangement of the result found by the Gauss forward formula. 

7.21. Prove (k + i - 1) (j2i + ( k + i) {j2i+l = ( k + i) (j2i - (k + i - 1) {j2i . 
2i Yo 2i + 1 y 112 2i + 1 YI 2i + 1 Yo 



58 OPERATORS AND COLLOCATION POLYNOMIALS [CHAP. 7 

Table 7.6 

k xk Yk b bl b3 b4 

-2 2 -2 
3 

-1 4 1 -1 
G) @ 

0 6 Q) Q) ® 
<2) @ 

1 8 8 7 
12 

2 10 20 

The left side becomes (using Problem 4.5) 

[( 
k + i) _ (k + i -1)] [J2iy + ( k + i) [J2i+1y = ( k + i )r[J2i<1 + {)£112) 1 _ (k + i -1) [J2i 

2i + 1 2i + 1 ° 2i + 1 112 2i + 1 Yo 2i + 1 Yo 

= ( k + i) [J2i - (k + i - 1) [J2i 
2i + 1 Yt 2i + 1 Yo 

where in the last step we used 1 + {)£ 112 =E. 

7.22. Deduce Everett's formula from the Gauss forward formula of odd degree. 

Using Problem 7.21, we have at once 

- ~ [( k+i) [J2i (k+i-1) 2i J 
Pk - ~ 2i + 1 Yt - 2i + 1 {) Yo 

_ (k) (k + 1) _. 2 (k + 2) _. 4 ( k + n) _. 2" -
1 

Yt + 
3 

u Yt + 
5 

u Y1 + · · · + 
2

n + 1 u Y1 

_ (k - 1) _ (k) {) 2 _ (k + 1) {) 4 _ ••• _ (k + n - 1) {) 2" 

1 Yo 3 Yo 5 Yo 2n + 1 Yo 

which is Everett's formula. Since it is a rearrangement of the Gauss formula it is the same polynominal 
of degree 2n + 1, satisfying Pk = yk for k = -n, ... , n + 1. It is a heavily used formula because of its 
simplicity, only even differences being involved. 

7 .23. Apply Everett's formula with n = 2 to find a polynomial of degree five or less which takes the 
Yk values of Table 7. 7. 

The needed differences are circled. 

Table 7.7 

k xk Yk b bl b3 b4 

-2 0 0 
-1 

-1 1 -1 10 

0 
9 

(§ 
108 

@ 0 2 
127 324 

1 3 @) @ @) 
569 660 

2 4 704 1102 
1671 

3 5 2375 
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Substituting the circled entries into their places in Everett's formula, 

= 135k + 442 (k + 1)k(k -1) + 336 (k + 2)(k + 1)k(k -1)(k- 2) 
~ 6 uo 

- 8(k- 1)- 118 k(k- 1tk- 2) 216 (k + 1)k(k- 111~k- 2)(k- 3) 

which can be simplified, using xk = k + 2, to p(xk) =xi- x1- x~. 

7 .24. Show that 

(k + i- 1) (j2i + k- ~ (k + i- 1) (j2i+l - ( k + i) (j2i - (k + i- 1) (j2i 

2i !1 Yllz 2i + 1 2i Yvz- 2i + 1 y1 2i + 1 Yo 

The left side corresponds to the operator 

02;(k + i.-1)! [£ + 1 + 2~ -1 (E _ 1)] = 02;(k + i.-1)( ~ + i E _ k-. i -1) 
2z 2 2z + 1 2z 2z + 1 2z + 1 

The right side corresponds to the operator 

02;[( k + i )E _ (k + i- 1)] = 02;(k + i -1)(~ E _ k- i -1) 
2i + 1 2i + 1 2i 2i + 1 2i + 1 

so that both sides are the same. 

7.25. Show that Bessel's formula is a rearrangement of Everett's formula. 

Bessel's formula is 

+ ... + (k + n -1)uozny + _1_ (k _ !)(k + n -1) 02n+ly 
2n "" 112 

2n + 1 2 2n 112 

By the previous problem it reduces at once to Everett's. 

7 .26. Apply Bessel's formula with n = 1 to find a polynomial of degree three or less which takes the 
Yk values in Table 7.8. 

Table 7.8 

k xk Yk 

-1 4 1 
2 

0 6 ® ® 
<2) @ 

1 8 ® (!) 
12 

2 10 20 

The needed differences are circled and have been inserted into their places in Bessel's formula. Needless 
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to say, the resulting polynomial is the same one already found by other formulas. 

This can be verified to be equivalent to earlier results. 

Supplementary Problems 

7.27. Prove V = oE- 112 = 1- E- 1 = 1- (1 + ~)- 1 • 

7.28. Prove Y1 + 6 2~-t 2 = 1 + ~6 2 . 

7.29. Prove E 112 = 1-1 + !o and E- 112 = 1-1- !o. 

7.30. Two operators L 1 and L 2 commute if L 1L 2 = L2 L 1 • Show that /1-, 0, E, ~. and Vall commute with one 
another. 

7.33. Apply Newton's backward formula to the following data, to obtain a polynomial of degree four in the 
argument k: 

k -4 -3 -2 -1 0 

xk 1 2 3 4 5 

Yk 1 -1 1 -1 1 

Then use xk = k + 5 to convert to a polynomial in xk. Compare the final result with that of Problem 6.7. 

7.34. Apply Newton's backward formula to find a polynomial of degree three which includes the following 
xk> yk pairs: 

3 4 5 6 

6 24 60 120 

Using xk = k + 6, convert to a polynomial in xk and compare with the result of Problem 6.10. 

7.35. Show that the change of argument xk = x 0 + kh converts Newton's backward formula into 

Vyo V2Yo VnYo ) 
p(xk) =Yo+ h (x- Xo) + 

21
h2 (x- Xo)(x- X_ 1) + · · · + n !hn (x- Xo) · · · (x- X-n+l 

7.36. Apply Problem 7.35 to the data of Problem 7.34 to produce the cubic polynomial directly in the 
argument xk. 

7.37. Apply the Gauss forward formula to the data below and compare the result with that of Problem 6.8. 
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k -2 -1 0 1 2 

xk 2 4 6 8 10 

Yk 0 0 1 0 0 

7.38. Apply the Gauss backward formula to the data of Problem 7.37. 

7.39. Apply the Gauss backward formula to the data of Problem 7.34, with the argument k shifted so that 
k = 0 at x = 6. 

7.40. Apply the Gauss forward formula to the data below and compare the result with that of Problem 6.11. 

k -2 -1 0 1 2 3 

xk 0 1 2 3 4 5 

Yk 0 0 1 1 0 0 

7.41. Verify that for k = -1, 0 

and that fork= -2, -1, 0, 1 

(k) (k + 1) 2 (k + 1) 3 Yk =Yo+ 
1 

DY-112 + 
2 

D Yo+ 
3 

D Y-112 

These can also be considered forms of the Gauss backward formula, the degree of these polynomials 
being odd rather than even. 

7.42. Apply Stirling's formula to the data of Problem 7.37. 

7.43. Apply Stirling's formula to the data of Problem 6.9. Choose any three equally spaced arguments and let 
them correspond to k = -1, 0, 1. 

7.44. Apply Everett's formula to the data of Problem 7.34, with the center pair of arguments corresponding to 
k = 0 and 1. 

7.45. Apply Everett's formula to the data of Problem 7.40. 

7.46. Apply Everett's formula to the data of Problem 6.9. 

7.47. Apply Bessel's formula to the data of Problem 7.44. 

7.48. Apply Bessel's formula to the data of Problem 7.40. 



Chapter 8 

Unequally Spaced Arguments 

The collocation polynomial for unequally spaced arguments x0 , ••• , xn may be found in several 
ways. The methods of Lagrange, determinants, and divided differences will be presented in this 
chapter. 

1. Lagrange's formula is 
n 

p(x) = 2: L;(x)y; 
i=O 

where L;(x) is the Lagrange multiplier function 

L-(x) = (x- Xo)(x- x1) · · · (x- X;- 1)(x- X;+ 1) · · · (x- xn) 
' (x;- x0)(x;- x 1) · · · (x;- X;_ 1)(x;- X;+l) · · · (x;- Xn) 

having the properties 

fork i=i 

Lagrange's formula does represent the collocation polynomial, that is, p(xk) = Yk for 
k = 0, ... , n. The function 

n 

n(x) = (x - x0) • • • (x - xn) = IT (x -X;) 
i=O 

may be used to express the Lagrange multiplier function in the more compact form 

L-(x) = n(x) 
' (x-x;)n'(x;) 

The closely related function 

Fk(x) =IT (x- x;) 
i:Pk 

leads to a second compact representation of the Lagrange multiplier function, 

L-(x) = F;(x) 
' F;(x;) 

2. A determinant form of the collocation polynomial p(x) is 

p(x) X xz xn 

Yo Xo X~ x3 

Y1 xl X~ x7 =0 
0000 0 00 00 ••••••••••••••• 

Yn 1 Xn X~ ... X~ 

since p(xk) = Yk fork= 0, ... , n. It finds occasional use, mostly in theoretical work. 

3. The first divided difference between x0 and x 1 is defined as 

with a similar formula applying between other argument pairs. 

62 
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Then higher divided differences are defined in terms of lower divided differences. For 
example, 

is a second difference, while 

is an nth difference. In many ways these differences play roles equivalent to those of the 
simpler differences used earlier. 

A difference table is again a convenient device for displaying differences, the standard 
diagonal form being used. 

Xo Yo 
y(xo, x1) 

x1 Y1 
y(xu Xz) 

y(xo, Xu Xz) 
y(xo, Xu Xz, X3) 

Xz Yz 
y(xz, X3) 

y(x1, Xz, x3) 
y(xu Xz, X3, X4) 

y(xo, Xu Xz, X3, X4) 

x3 Y3 
y(x3, x4) 

y(xz, X3, X4) 

X4 Y4 

The representation theorem 

n Y; 
y(xo, Xu ... , Xn) = L ------;;---( ) 

i=oF; X; 

shows how each divided difference may be represented as a combination of Yk values. This should be 
compared with a corresponding theorem in Chapter 3. 

The symmetry property of divided differences states that such differences are invariant under all 
permutations of the arguments xk> provided the Yk values are permuted in the same way. This very 
useful result is an easy consequence of the representation theorem. 

Divided differences and derivatives are related by 

In the case of equally spaced arguments, divided differences reduce to ordinary finite differences; 
specifically, 

A useful property of ordinary finite differences may be obtained in this way, namely, 

For a function y(x) with bounded derivatives, all yn(x) having a bound independent of n, it 
follows that, for small h, 

for increasing n. This generalizes the result found earlier for polynomials and explains why the 
higher differences in a table are often found to tend toward zero. 

The collocation polynomial may now be obtained in terms of divided differences. The classic 
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result is Newton's divided difference formula, 

p(x) =Yo+ (x- x0 )y(x0 , x1) + (x- x0)(x- xl)y(x0 , Xu x2) 

+ · · · + (x- Xo)(x- x1) · · ·(x- Xn- 1)y(xo, ... , Xn) 

the arguments xk not being required to have equal spacing. This generalizes the Newton formula of 
Chapter 6, and in the case of equal spacing reduces to it. 

The error y (x) - p(x), where y (x) and p (x) collocate at the arguments x0 , ••• , xn> is still given 
by the formula obtained earlier, 

y(x)_- p(x) 
y<n+ 1)( s).n(x) 

(n + 1)! 

since we are still discussing the same collocation polynomial p(x). An alternative form of this error, 
using divided differences, is 

y(x)- p(x) = y(x, x0 , ••• , xn)(x- x0) • • • (x- xn) 

Solved Problems 

8.1. What values does the Lagrange multiplier function 

L;(x) = (x- Xo)(x- x1) • · • (x- X;_ 1)(x- X;+ 1) • • • (x- xn) 
(x;- x0)(x;- x1) · · · (x;- X;_ 1)(x;- X;+l) · · · (x;- Xn) 

take at the data points x = x0 , Xu ... , Xn? 

First notice that the numerator factors guarantee L;(xd = 0 for k =I= i, and then the denominator 
factors guarantee that L;(x;) = 1. 

8.2. Verify that the polynomial p(x) = f L;(x)y; takes the value Yk at the argument xk> for 
i=O 

k = 0, ... n. This is Lagrange's formula for the collocation polynomial. 

By Problem 8.1, p(xk) = ~ L;(xdy; = Lk(xdyk = yk so that Lagrange's formula does provide the 
collocation polynomial. ;~o 

8.3. With .n(x) defined as the product .n(x) = IT (x - x;), show that 
i=O 

.n(x) 

(x- xd.n'(xd 

Since n(x) is the product of n + 1 factors, the usual process of differentiation produces n'(x) as the 
sum of n + 1 terms, in each of which one factor has been differentiated. If we define 

Fk(x) = TI (x- X;) 
i¢-k 

to be the same as n(x) except that the factor x - xk is omitted, then 

n'(x) = Fo(x) + · · · + F,(x) 

But then at x = xk all terms are zero except Fk(xd, since this is the only term not containing x- xk. Thus 

n'(xd = r~(xk) = (xk- Xo) · · · (xk- Xk-l)(xk- Xk+l) · · · (xk- Xn) 

and 
n(x), Fk(x) Fk(x)=Lk(x) 

(x- xdn (xk) n'(xd Fk(xd 
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8.4. Show that the determinant equation 

p(x) X x2 xn 

Yo Xo x6 x3 
Y1 x1 xi x7 =0 

Yn 1 Xn X~ • • • X~ 

also provides the collocation polynomial p (x ). 

Expansion of this determinant using minors of the first-row elements would clearly produce a 
polynomial of degree n. Substituting x = xk and p (x) = Yk makes two rows identical so that the 
determinant is zero. Thus p(xk) = yk and this polynomial is the collocation polynomial. As attractive as 
this result is, it is not of much use due to the difficulty of evaluating determinants of large size. 

8.5. Find the polynomial of degree three which takes the values prescribed below. 

xk 0 1 2 4 

Yk 1 1 2 5 

The polynomial can be written directly. 

p(x) 
(x- 1)(x- 2)(x- 4) x(x- 2)(x- 4) x(x- 1)(x- 4) x(x- 1)(x- 2) 
(0- 1)(0- 2)(0- 4) 

1 + 1(1- 2)(1- 4) 
1 + 2(2- 1)(2- 4) 

2 + 4(4- 1)(4- 2) 
5 

It can be rearranged into p (x) = f:,(-x 3 + 9x 2
- 8x + 12). 

8.6. Compute divided differences through the third for the yk values in Table 8.1. 

The differences are listed in the last three columns. 

For example, 

xk 

0 

1 

2 

4 

5-2 3 
y(2, 4) = 4-2 =2 

1-0 1 
y(O, 1, 2) = 2- 0 = 2 

Table 8.1 

Yk 

1 

1 

2 

5 

0 
1 
2 

1 1 
-TI 

1 
6 

3 
2 

~-1 1 
y(1, 2, 4) = 4=1=6 

~-! 1 
y(O, 1, 2, 4) = 

4 
_ O = -U 
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8.7. Prove y(x0 , x 1) = y(x 1, x0 ). This is called symmetry of the first divided difference. 

This is obvious from the definition but can also be seen from the fact that 

since interchanging x 0 with x 1 and Yo with y1 here simply reverses the order of the two terms on the right. 
This procedure can now be applied to higher differences. 

8.8. Prove y(x0 , x 1, x2 ) is symmetric. 

Rewrite this difference as 

~ + h + ~ 
(xo- xi)(xo- Xz) (xi- Xo)(xi- Xz) (x2- Xo)(x 2- xi) 

Interchanging any two arguments xj and xk and the corresponding y values now merely interchanges the 
yj and yk terms on the right, leaving the overall result unchanged. Since any permutation of the 
arguments xk can be effected by successive interchanges of pairs, the divided difference is invariant 
under all permutations (of both the xk and yk numbers). 

8.9. Prove that, for any positive integer n, 

where F7(x;) = (x;- x0)(x;- x 1) • • • (x;- X;_ 1)(x;- X;+ 1) · · · (x;- Xn)· This generalizes the 
results of the previous two problems. 

The proof is by induction. We already have this result for n = 1 and 2. Suppose it true for n = k. 
Then by definition, 

Since we have assumed our result true for differences of order k, the coefficient of Yk on the right, for 
i = 1, 2, ... , k, will be 

xk+I
1

-x0 [(x; -xi)··~ (x; -xk+I) (x, -xo) · ~ · (x; -xk)] 

where it is understood that the factor (x,- x,) is not involved in the denominator products. But this 
coefficient reduces to 

(x,- Xo) · · · (x,- xk+I) F7+I(x,) 

as claimed. Fori= 0 or i = k + 1 the coefficient of y; comes in one piece instead of two, but in both cases 
is easily seen to be what is claimed in the theorem with n = k + 1, that is, 

This completes the induction and proves the theorem. 

8.10. Prove that the nth divided difference is symmetric. 
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This follows at once from the previous problem. If any pair of arguments are interchanged, say x1 
and xk, the terms involving y1 and yk on the right are interchanged and nothing else changes. 

8.11. Evaluate the first few differences of y(x) = x2 and x3. 

Take y(x) = x2 first. Then 

Higher differences will clearly be 0. Now take y(x) =x3. 

xi- x6 2 2 
y(xo, Xt) =--=xt +XtXo+Xo 

Xt -xo 

(x~ + X2X1 +xi) -(xi+ XtXo + x~) 
X2 -xo 

X2 -xo 

Xo+X1+X2 

Again higher differences are clearly zero. Notice that in both cases all the differences are symmetric 
polynomials. 

8.12. Prove that the kth divided difference of a polynomial of degree n is a polynomial of degree 
n- kif k ~ n, and is zero if k > n. 

Call the polynomial p(x). A typical divided difference is 

( ) 
p(xt)- p(xo) 

p Xo, Xt = 
Xt -xo 

Thinking of x0 as fixed and x 1 as the argument, the various parts of this formula can be viewed as 
functions of x1. In particular, the numerator is a polynomial in x1, of degree n, with a zero at x1 = x0. By 
the factor theorem the numerator contains x 1 - x0 as a factor and therefore the quotient, which is 
p(x0, x1), is a polynomial in x1 of degree n -1. By the symmetry of p(x0, x1) it is therefore also a 
polynomial in x0 of degree n - 1. The same argument may now be repeated. A typical second difference 
is 

Thinking of x0 and x1 as fixed, and x2 as the argument, the numerator is a polynomial in x2, of degree 
n -1, with a zero at x2 = x0. By the factor theorem p(x0, x1, x2) is therefore a polynomial in x2 of degree 
n - 2. By the symmetry of p(x0, x1, x2) it is also a polynomial in either x0 or x1, again of degree n -2. 
Continuing in this way the required result is achieved. An induction is called for, but it is an easy one 
and the details are omitted. 

8.13. Prove that Newton's divided difference formula 

p(x) =Yo+ (x- Xo)y(xo, x1) + (x- Xo)(x- x 1)y(x0, x 11 x 2) 

+ · · · + (x- x0)(x- x 1) • • • (x- Xn_ 1)y(x0, ... , Xn) 

represents the collocation polynomial. That is, it takes the values p(xk) = Yk fork= 0, ... , n. 

The fact that p(x0) =Yo is obvious. Next, from the definition of divided differences, and using 
symmetry, 

y(xo, xk) = y(xo, Xt) + (xk- Xt)Y(Xo, Xt, xd 

y(xo, Xt, xk) = y(xo, Xt, x2) + (xk- x2)y(xo, X1, X2, xk) 
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For example, the second line follows from 

Fork= 1 the first of these proves p(x 1) = y1 • Substituting the second into the first brings 

Yk =Yo+ (xk- Xo)y(xo, Xt) + (xk- Xo)(xk- xt)y(xo, Xt, xk) 

which for k = 2 proves p(x2 ) = y2 • Successive substitutions verify p(xk) = yk for each xk in its turn until 
finally we reach 

Yn =Yo+ (xn- Xo)y(x!, Xt) + (xn- Xo)(xn- X1)y(xo, Xt, Xz) 

+ · · · + (xn -xo)(xn -xt) · · · (xn -xn-t)y(xa, ... , Xn-l' Xn) 

which proves p(xn) = Yn-
Since this Newton formula represents the same polynomial as the Lagrange formula, the two are 

just rearrangements of each other. 

8.14. Find the polynomial of degree three which takes the values given in Table 8.1. 

Using Newton's formula, which involves the differences on the top diagonal of Table 8.1, 

p(x) = 1 + (x- 0)0 + (x- O)(x- 1) ~ + (x- O)(x- 1)(x- 2)(- ..!._) 
2 12 

which simplifies to p(x) = 12( -x3 + 9x2- 8x + 12), the same result as found by Lagrange's formula. 

Supplementary Problems 

8.15. Use Lagrange's formula to produce a cubic polynomial which includes the following xk, Yk number pairs. 
Then evaluate this polynomial for x = 2, 3, 5. 

xk 0 1 4 6 

Yk 1 -1 1 -1 

8.16. Use Lagrange's formula to produce a fourth-degree polynomial which includes the following xk> yk 
number pairs. Then evaluate the polynomial for x = 3. 

xk 0 1 2 4 5 

Yk 0 16 48 88 0 

8.17. Deduce Lagrange's formula by determining the coefficients a, in the partial fractions expansion 

p(x)=±~ 
n(x) ;~ 0 x-x, 

[Multiply both sides by x - x, and let x approach x, as limit, remembering that p (x,) = y, for collocation.) 

The result is a,= 'y(, ). 
n x, 
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8.18. 

8.19. 

8.20. 

3x2+x + 1 . . 
Apply Problem 8.17 to express x3 _ 

6
x 2 + 

11
x _ 

6 
as a sum of partial fractiOns 

ao a1 az --+--+-
X - Xo X -X 1 X - X2 

[Hint. Think of the denominator as .n(x) for some x0 , x 1, x2 and then find the corresponding y0 , y1, Yz. 
This amounts to regarding p(k) as a collocation polynomial.] 

x2 + 6x + 1 
Express (x 2 _ 1)(x _ 

4
)(x _ 6) as a sum of partial fractions. 

Show that 
Lo(x) = 1 +X -xo + (x -xo)(x -x1) + ... + (x -x0 ) • • • (x -xn_ 1) 

Xo- X1 (xo- X1)(xo- Xz) (xo- X1) · · · (xo- Xn) 

Similar expansions can be written by symmetry for the other coefficients. 

8.21. Write the three-point Lagrange formula for arguments x0 , x0 + E and x 1 and then consider the limit as E 

tends to 0. Show that 

P(
x) (x1-x)(x+x1-2xo) ( ) (x-xo)(xJ-x) '( ) (x-xo)

2 
( ) 1( )2( ) "'(!:) 

(xJ -xo? y Xo + (xJ -xo) y Xo + (xJ -xo)zY x1 +6 x -xo x -x1 y ~ 

This determines a quadratic polynomial in terms of y(x0 ), y'(x0 ), and y(x 1). 

8.22. Proceed as in the previous problem, beginning with the Lagrange formula for arguments x0 , x0 + E, 

x 1- E, x 1 to represent a cubic polynomial in terms of y(x0), y'(x0 ), y(x1), and y'(x 1). 

8.23. Calculate divided differences through third order for the following xk, yk pairs: 

xk 0 1 4 6 

Yk 1 -1 1 -1 

8.24. Find the collocation polynomial of degree three for the xk, h pairs of Problem 8.23. Use Newton's 
formula. Compare your result with that obtained by the Lagrange formula. 

8.25. Rearrange the number pairs of Problem 8.23 as follows: 

xk 4 1 6 0 

yk 1 -1 -1 1 

Compute the third divided difference again. It should be the same number as before, ·illustrating the 
symmetry property. 

8.26. Calculate a fourth divided difference for the following yk values: 

xk 0 1 2 4 5 

Yk 0 16 48 88 0 
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8.27. Apply Newton's formula to find the collocation polynomial for the data of Problem 8.26. What value 
does this polynomial take at x = 3? 

8.28. Show that 

I 
Xo ~I 11 Yol X1 Y1 

y(xo, x1) = ~ Xz Yz 

11 X
0 1 

y(x,, x,, x,) ~ I Xo x:l 1 X1 X1 xi 
Xz X~ 

8.29. For y(x) = (x -x0)(x -x1) · · · (x -xn) = n(x), prove that 

y(Xo, X1, ... , Xp) = 0 

y(Xo, X1, ... , Xn, X)= 1 

y(xo, X1, ... , Xn, X, z) = 0 

8.30. Show that 

for p = 0, 1, ... , n 

for all x 

for all x, z 

( ) _ y(x1, Xo) + y(xo, x_l) ( ) ( )( )( X1 + x_l) p X -Yo+ 
2 

X - Xo + Y X1, Xo, X-1 X- Xo X ---
2

-

is another way of writing the collocation polynomial, by verifying 

for k = -2, -1, 0, 1, 2 

This is a generalization of Stirling's formula for unequal spacing. It can be extended to higher degree. 
Bessel's formula and others can also be generalized. 

8.31. Show that for arguments which are equally spaced, so that xk+l- xk = h, we have 

Anyo 
y(Xo, X1, .. ·, Xn) = n! hn 

8.32. Divided differences with two or more arguments equal can be defined by limiting processes. For 
example, y(x0 , x 0 ) can be defined as lim y(x, x0 ), where lim x = x0 • This implies that 

( ) I. y(x)- Yo '( ) y X0 , X0 = Im---= y X0 
x -xo 

Verify this directly when y(x) = x2 by showing that in this case y(x, x0 ) = x + x0 so that limy(x, x0 ) = 
y'(x0 ) = 2x0 . Also verify it directly when y(x) = x3 by showing first that in this case y(x, x0 ) = 
x 2 +xxo + x~. 

8.33. In the second divided difference 

( )
_y(x,xz)-y(xo,Xz) 

y X 0 , X, X 2 -
x -xo 

h · h ·d b · d h · h f f(x)- f(xo) · h "d d 1· t e ng t SI e may e v1ewe as avmg t e arm Wit x2 cons1 ere a constant. If 1m x = x0 , 

we define x - Xo 

y(x0, x0, X 2 ) = limy(xo, X, Xz) 

This implies that y(xo,Xo,x2)=y'(x,xz) I x=xo 

Verify this directly when y(x) = x3 by showing first that in this case 

y(xo, X, Xz) =X + Xo + Xz while y(x, Xz) = X2 + XXz + x~ 



Chapter 9 

Splines 

Instead of using a single polynomial, presumably of high degree, to represent a given function 
over an interval to achieve a required accuracy, we may instead join together several polynomial 
segments, each of low degree. The classic example is, of course, a set of line segments, each fit to the 
given data over a subinterval. Such an approximation is continuous but has a first derivative with 
discontinuities at the interval ends, the corners (Fig. 9-1). It is the basis for elementary interpolations 
in tables and for the trapezoidal rule for numerical integration. The implicit assumption that between 
data points the given function is almost linear may be reasonable if the points are close enough 
together. 

11/ , .. 
Fig. 9-1 A primitive spline. 

In Chapter 14 we will fit parabolic segments (quadratic polynomials) together to develop 
Simpson's rule for numerical integration. Other examples using slightly higher degree polynomials 
will also be given. In all these cases there will be corners where the segments are joined. 

We now consider a method in which cubic segments are pieced together in such a way that the 
corners are rounded, both the first and second derivatives of the approximation being continuous. 
High-degree polynomials have an oscillatory character. One of degree n can have as many as n- 1 
turning points. When such a polynomial represents a given function accurately, it is usually by 
oscillating back and forth across the function. This has undesirable side effects, poor approximation 
of the derivative to mention only one. The spline approximation now to be derived avoids such 
oscillations, because it consists of low-degree segments. The word spline is borrowed from the 
drafting instrument of the same name, a flexible strip used in drawing curves. 

Given an interval (a, b)= I divided into n subintervals by the points x 0 =a, x1 , x 2, ... , xn = b, a 
cubic segment is to be fit on each subinterval, taking specified values Yi at the points xu with first and 
second derivatives on adjacent subintervals agreeing in value at the join. The points x1 to xn-l are 
called the nodes, or knots, of the spline (Fig. 9-2). Details of the development of these spline 
segments will be worked out in the solved problems, and examples will be provided. 

I Y; 

Fig. 9-2 

71 
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Solved Problems 

9.1. A polynomial of degree three, a cubic, has four coefficients. In a common representation 

p(x) =Co+ C1X + C2X
2 

+ C3X
3 

With the conventions of Fig. 9-2, the n cubic segments together will involve 4n coefficients. 
How does this compare with the number of conditions being imposed upon the spline? 

The point is that ordinarily we expect 4n coefficients to be well determined by 4n conditions. Here 
we have four conditions to be met at each of the knots x 1 to xn_ 1 , namely, the segment on either side 
must reach this point, and the first two derivatives have to agree. This comes to 4n - 4 conditions. At 
the two endpoints we are asking only for collocation, two more conditions, making a grand total of 
4n- 2. The spline is, therefore, not completely defined by the specifications given. Two degrees of 
freedom remain. Sometimes these are used to make the second derivative zero at the endpoints, leading 
to what is called the natural spline. Alternatively one may require the end segments to match the end 
derivative values of the given function, if these are known or can be approximated. A third option, of 
reducing the specifications at knots x 1 and xn_ 1 , will also be explored. 

9.2. Let the subintervals of Fig. 9-2 be called I 1 to In, so that I;= (x;_ 1, X;). Also define 
h; =x; -x;_ 1 , noting that the subintervals need not be of equal length. If S;(x) is the spline 
segment on I;, show that 

S;'(x) = ci-1 X;; X+ C; X -h~i-1 

for constants C; and i = 1, ... , n. 

On I; the spline segment is cubic, so its first derivative will be quadratic and the second derivative 
linear. It remains to verify the continuity at each knot xk for k = 1, ... , n - 1. The segment Sk touches 
this knot at its right end while Sk+l touches it at its left end. The required derivatives are thus 

and 

both of which reduce to C. Continuity is thus assured and we discover that the constants Ck are in fact 
the common values of spline second derivatives. 

9.3. Integrate the result of the preceding problem twice to obtain the spline segments and then 
impose the requirement that segments pass through appropriate knots to determine the 
constants of integration. 

The two integrations manage 

(x; -x)3 (x -x;_ 1)
3 

) ( ) 
S;(x) = C;_ 1 ~ + C;~+ c;(x; -x + d; x -x;-t 

the last two terms being the linear function introduced by the constants of integration. For collocation at 
the knots, we must have S;(x;_ 1) = Y;- 1 and S;(x;) = Y;· These conditions fix C; and d; and lead to 

S( )-C (x;-x)
3 

C(x-x;-t)
3 

(. _C;_ 1hf)x;-x ( _C;h7)x-x;_ 1 

; X - <-I 6h; + ; 6h; + y,_l 6 h; + Y; 6 h; 

as may be verified by inserting X;_ 1 and X;. 

9.4. It remains to ensure the continuity of the first derivatives. To arrange this, differentiate the 
result of the preceding problem and compare adjoining values as in Problem 9.2. 



CHAP. 9) SPLINES 73 

Differentiating 

so the required derivatives at knot xk are 

and 

Since these are to be equal, we have, fork= 1, ... , n -1, 

!!l:.c +hk+hk+ic +hk+ic _Yk+i_Yk_Yk-Yk-1 
6 k-i 3 k 6 k+l - hk+i hk 

which is a linear system of n -1 equations for the constants C0 to Cn. As observed earlier, the system is 
underdetermined. We are two equations short. 

There is an interesting way to include two additional equations in the linear system, keeping our 
options open and preserving the general character of the matrix. First let 

hi+! CY·=---
1 hi+hi+i 

hi 
{3i = 1 - CYi =hi+ hi+! 

di = __ 6_ (Yi+l- Yi _ Yi- Yi-1) 
hi+ hi+! hi+! hi 

for i = 1, ... , n -1. The system can then be rewritten, still for i = 1, ... , n - 1, as 

f3iC-i + 2C; + aici+i = di 

Now take two additional conditions in the form 

with a-0 , do, f3n, and dn at our disposal. The combined system then takes this shape: 

2 CYo 0 Co do 
{31 2 CY1 cl di 
0 {32 2 Cz dz 

2 Cl'n-2 0 Cn-2 dn-2 

f3n-i 2 Cl'n-1 cn-1 dn-1 
0 f3n 2 en dn 

The coefficient matrix is triple diagonal, all other elements being zero. 

9.5. How can the linear system of the preceding problem be used to find a natural spline? 

Choose £¥0 , d0 , f3n, and dn as zero. The top and bottom equations then force C0 and Cn to be zero 
also and this is what identifies the natural spline. The system is reduced to order n - 1 for determining 
the remaining cl to cn-1• 



74 SPLINES [CHAP. 9 

9.6. Similarly, how can we arrange that the end conditions 

be met? 
S~(xo) = Y~ 

and 

Borrowing appropriate formulas from Problem 9.4, we have 

s;(xci) = _!:.2. Co- !:.2. c +y1- Yo= y~ 
3 6 hi 

Sl( -)=~C +~C +yn-Yn-1= 1 
n Xn 6 n-1 3 n hn Yn 

which are easily converted to 

ZC + C = .§_ (Y1 -Yo_ 1) 
o I hi hi Yo 

and C + 2C = .§_ ( 1 _ Yn - Yn-1) 
n-1 n hn Y n hn 

Now comparing with the first and last equations of the linear system, namely 2C0 + a 0 C1 = d0 and 
f3nCn-l + 2Cn = dn, suggests the choices 

lXo = 1 = f3n d _ .§_ (Y1 -Yo_ 1) 
0 - h1 h1 Yo 

which will, in fact, provide the required end values. 

9.7. Fit cubic spline segments to the function f(x) = sinx on the interval (0, n). Use just the two 
interior points n /3 and 2n /3. 

The corresponding data set is 

X; 0 n/3 2n/3 :Jr 

Y; 0 0!2 0/2 0 

with i = 0, ... , 3 and all h; = n /3. There are three cubic segments to find. The uniform h; values at once 
make a 1 , a 2 , {3 1 , and {3 2 all equal to~. Then 

d =~ (2- 0/2) =- 270 
1 

h h h 2n2 

with the same result for d2 • This leads us to the equations 

1 1 -270 
2C0 + 2CJ +2 Cz Zn2 

1 1 -270 
2 C1 + 2Cz + 2 C3 = ----z;;z 

and to the matter of end conditions. The natural spline is certainly appropriate here because the sine 
function does have zero second derivatives at the endpoints. So we set C0 and C3 to zero. The remaining 
system then quickly yields C = C2 = -270/5n2

. Substituting into the formulas of Problem 9.3 finally 
produces the spline segments, which after simplifications are these: 

s ( ) = (-270) 3 (90) 
I X 10n3 X + 5n X 
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Problem 9.19 asks that these cubics be verified by checking all the conditions imposed upon them. The 
simplicity of the example has allowed exact values to be carried throughout. Notice also that the central 
''cubic" segment is actually quadratic. 

9.8. Again fit cubic segments to the sine function, this time asking that endpoint first derivatives 
equal sine derivatives. 

The new endpoint conditions are S;(O) = 1 and s;(n) = -1. From Problem 9.6 we find 

so the new linear system is 

and has this solution: 

a'o = f3n = 1 

~c + 2c 1 c 2 0 I+ 2 2 

~c + 2 I 

= (~)C2~ - 1) 

-27YJ 

c - c - 18YJ _ _!_2 
0- 3- JT2 JT 

Substituting into the S,(x) formulas of Problem 9.3, we again have the cubic segments. Verification that 
these segments meet all conditions imposed upon them is requested as Problem 9.20, where it may also 
be found that the end values of S"(x) are not zero. 

9.9. A third way to obtain a well-determined system for spline approximation is to relax our 
requirements slightly. For example, omitting the segments S1(x) and Sn(x), we can ask S2(x) 
and Sn_ 1(x) to take care of the endpoint collocations. This also eliminates continuity 
requirements at x 1 and Xn-l, which are no longer knots. Show that the resulting problem will 
have just as many conditions to be met as coefficients available to meet them. 

There will now be n - 2 instead of n cubic segments, with 4n - 8 coefficients available. But there 
will be only n - 3 rather than n - 1 knots. With four requirements per knot, this makes 4n - 12 
conditions to be satisfied. Since collocation is also required at x0 , x1 , x"_ 1 , and x" the count of conditions 
climbs to 4n - 8. 

9.10. Modify the developments in Problems 9.2 to 9.4 to meet the requirements suggested in 
Problem 9.9. 

A careful rereading of the problems mentioned will show that a great deal can be saved. The center 
n - 3 equations of our linear system: as presented in Problem 9.4, are still valid because they refer to 
knots x 2 to x"_2 where no changes are being made. These already provide n- 3 equations for then -1 
coefficients C1 to Cn+ The other two needed equations will make Sz(x0) =Yo and Sn-l(xn) = Yn· 
Returning to the S;(x) formula given in Problem 9.3, these conditions can be implemented. After some 
algebraic manipulation they can be induced to take the form 
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with the following definitions: 

(1'
1 (h 1 + h2)

3
- (h1 + hz)h~ 

{3 = 2(h~-1hn - h~) 
n- 1 (hn-1 + hS- (hn-1 + hn)h~-1 

The final form of the system is then 

2 (l'n-3 0 

f3n-2 2 

0 f3n-1 2 

again triple diagonal, all other elements being zero. 

9.11. Apply the method just developed to f(x) = sinx on the interval (0, .n) using three equally 
spaced interior points. 

There are four subintervals, with spline segments to be found for the inner two. The one knot will 
be at x2 = n/2. This makes it clear why we are not continuing the earlier example, which had one fewer 
interval. There would be no knots at all and a single cubic would interpolate the four given points. The 
present data set is 

X; 0 n/4 n/2 3n/4 n 

Y; 0 Vz/2 1 Vz/2 0 

with all h; = n/4. The formulas for a; and {3; now apply only at the knot x2 and yield a-2 = {3 2 =~-We also 
find d2 = 48(Vz- 2)/n2 and then the one equation 

1 1 48(Vz- 2) 
ZC1 +2Cz+zC3= n 2 

Turning to more recent formulas, a-1 = 0, {3 3 = 0, and 

32(1-Vz) 
d1 =d3= ][2 

so our linear system is the following: 

2C1 =d1 

1 1 (3Vz) zC1+2Cz+zC3= -
2
- d1 

2C3=d1 
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Solving, and appealing again to Problem 9.3, we come to these two spline segments: 

S ( ) _ 16(1- \1'2)(n- 2x)3 + (4\1'2 -7)(4x- n? (8\1'2- 2)(2n- 4x) + (19- 4\1'2)(4x- n) 
2 x - 12n3 + 12n 

S ( ) _16(1- \1'2)(2x- n) 3 + (4\1'2 -7)(3n- 4x )3 (8\1'2- 2)(4x- 2n) + (19- 4\1'2)(3n- 4x) 
3 x - 12n3 + 12n 

With a little patience it can be verified that S2 joins the first three points, S3 the last three, and that they 
make a proper knot at x2 . This is all that was required. Bonuses such as s;(O) = 1 or S~(n/2) = -1 would 
have been nice, but there is no point in being greedy. The approximations 1.05 and -1.09 will have to 
do. 

9.12. What is the error of a spline approximation? 

It can be shown that 

max lf(x)- S(x )I~ _2_ max lfl4l(x )I H 4 

384 

where His the largest of the h; and the maxima are on the interval /. 

9.13. Apply the error bound of Problem 9.12 to the spline of Problem 9.7. 

The fourth derivative of sinx is, of course, bounded by 1 and H = n/3. Thus 

5 JJ:4 
max !sin x- S(x )I~ 

384 
81 = .016 

9.14. How well does a spline approximate the derivative f' (x )? 

It can be shown that 

max lf'(x)- S'(x)l <max lfl4l(x)l H3 
24 

9.15. Apply the formula of Problem 9.14 to the spline of Problem 9.12. 

We find H 3/24 = .05 approximately. Generally speaking, splines are quite good approximations to 
derivatives. 

9.16. What is meant by saying that a spline is a global approximation to f(x)? 

The segments of the spline are not determined independently of each other. Each is linked with all 
the others. The set of coefficients C; which identify the segments is determined by one linear system. By 
way of contrast, one could fit a cubic polynomial to the first four points, x 0 to x 3 , then another to set x 3 
to x6 , and so on across the interval I. Each segment would then be found independently of the others, 
but the continuity properties of the spline at knots would almost surely be absent. 

9.17. Show that the natural spline on (a, b) uniquely minimizes 

f f"(x) 2 dx 

among all functions f(x) which have continuous second derivatives and satisfy f(x,) = y, at the 
knots. 
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First note that 

b {b {b {b L f"(x? dx -)a S"(x )2 dx =)a [f"(x)- S"(x W dx + 2 )a S"(x )[f"(x)- S"(x )] dx 

with S(x) the cubic spline. Integration by parts over each subinterval converts the last integral as 
follows: 

r S;'(x)[f"(x)- S;'(x)] dx = S;'(x)[f'(x)- s;(x)]l~;_ 1 -r [f'(x)- s;(x)]S~3l(x) dx 
~~ ~~ 

= S;'(x)[f'(x)- S;(x)]l~;_ 1 - S~3l(x)[f(x)- S;(x)]l~;_ 1 + r [f(x)- S;(x)]S)4l(x) dx 
Xj-1 

The last two terms vanish since f(x) equals S;(x) at the knots and S)4l(x) is zero. Summing what is left 
for i = 1, ... , n there is cancellation of all interior values leaving 

S"(b )[f'(b)- S'(b )]- S"(a)[f'(a)- S'(a)] 

which also vanishes since S is the natural spline. Notice that this remnant would still vanish if we 
assumed instead that f' and S' agree at the endpoints. In either case, reordering the original equation 
just slightly, 

f S"(x? dx = f f"(x? dx- f [f"(x)- S"(x)]2 dx 

which does make the first integral smaller than the second. 

9.18. Fit a cubic spline to this data. 

I :: I 
0 2 2.5 3 3.5 4 4.5 6 

0 2.9 3.5 3.8 3.5 3.5 3.5 2.6 0 

Choosing the natural spline, the system of Problem 9.4 provides seven equations for the seven 
interior C;. Their solution, rounded to two places, follows: 

2 3 4 6 7 

-.23 -.72 -4.08 2.65 .69 -5.40 -.70 

A plot of the nine data points and the spline segments appears as Fig. 9-3. Recalling that the C; are the 
second-derivative values at the data points, with C0 and C8 zero, it is reassuring to observe their 
behavior across the interval, particularly the large values more or less where expected. 

lf; 

...... ,_.- .._ ..... , 
/' \ 

I \ 
I \ 

I \ 
I \ 

I \ 
\ 

-+--,----,---,--,-,-,-,-,--e\ ~ x; 

Fig. 9-3 
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Supplementary Problems 

9.19. Verify that the spline of Problem 9.7 meets all the conditions imposed upon it. 

9.20. Verify that the first cubic segment in Problem 9.8 is 

s (x) =S (:!: -x)
3 +Sx3 _ Con

2 

(l-~) + (V3 _ C1n
2

) ~ 1 
2 3 2 54 n 2 54 n 

and find the other two segments. Verify that they meet the requirements imposed upon them. 

9.21. Verify the details given in Problem 9.10. 

9.22. Find the natural spline that passes through these points. 

I :: I 
0 2 4 

0 0 0 0 

9.23. Apply the procedure of Problem 9.10 to the preceding data, finding a spline of two segments on the 
center two subintervals. The only knot will be at x = 2, but the spline must also, of course, pass through 
the two endpoints. 

9.24. The case in which all data points fall on a straight line is hardly one that calls for a spline, but it is worth 
a moment's attention. Recall that the constants C; are values of the second derivative and in this case 
must all be zero. How does our linear system manage this? 

9.25. What happens to our linear system if all data points fall on a parabola? 



Chapter 10 

Osculating Polynomials 

Osculating polynomials not only agree in value with a given function at specified arguments, 
which is the idea of collocation, but their derivatives up to some order also match the derivatives of 
the given function, usually at the same arguments. Thus for the simplest osculation, we require 

for k = 0, 1, ... , n. In the language of geometry, this makes the curves representing our two 
functions tangent to each other at these n + 1 points. Higher-order osculation would also require 
p"(xk) = y"(xk), and so on. The corresponding curves then have what is called contact of higher 
order. The existence and uniqueness of osculating polynomials can be proved by methods resembling 
those used with the simpler collocation polynomials. 

Hermite's formula, for example, exhibits a polynomial of degree 2n + 1 or less which has 
first-order osculation. It has the form 

p(x) = i U/x)y; + i V:(x)y; 
i=O i=O 

where Y; andy; are the values of the given function and its derivative at X;. The functions U;(x) and 
V,-(x) are polynomials having properties similar to those of the Lagrange multipliers L;(x) presented 
earlier. In fact, 

U/x) = [1- 2L;(x;)(x -x;)][L;(xW 

V:(x) = (x -x;)[L;(xW 

The error of Hermite's formula can be expressed in a form resembling that of the collocation error 
but with a higher-order derivative, an indication of the greater accuracy obtainable by osculation. 
The error is 

Y(2n+2)(;) 
y(x)- p(x) = (2n + 2)! [.n(xW 

A method of undetermined coefficients may be used to obtain polynomials having higher-order 
osculation. For example, taking p (x) in standard form 

p(x) =Co+ C!X + C2X2 + ... + C3n+2X3n+2 

and requiring p(xk)=yb p'(xk)=y~, p"(xk)=y'k for the arguments x0 , ••• ,xn leads to 3n+3 
equations for the 3n + 3 coefficients C;. Needless to say, for large n this will be a large system of 
equations. The methods of a later chapter may be used to solve such a system. In certain cases 
special devices may be used to effect simplifications. 

Solved Problems 

10.1. Verify that p(x) = f U;(x)y; + f V:(x)y; will be a polynomial of degree 2n + 1 or less, 
i=O i=O 

satisfying p(xk) = Yb p'(xd = y~ provided 

(a) U;(x) and V:(x) are polynomials of degree 2n + 1. 

(b) U;(xk)=o;b V:(xk)=O. 

80 
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The degree issue is obvious, since an additive combination of polynomials of given degree is a 
polynomial of the same or lower degree. Substituting x = xk we have 

p(xk) = Uk(xk)yk + 0 = Yk 

and similarly substituting x =xk into p'(x), 

p'(xk) = V~(xk)y~ = y~ 

all other terms being zero. 

10.2. Recalling that the Lagrangian multiplier L;(x) satisfies L;(xk) = O;k, show that 

U;(x) = [1- 2L;(x;)(x -x;)][L;(xW V;(x) = (x -x;)[L;(xW 

meet the requirements listed in Problem 10.1. 

Since L 1(x) is of degree n, its square has degree 2n and both U,(x) and V;(x) are of degree 2n + 1. 
For the second requirement we note that U,(xk) = V;(xk) = 0 for k i= i, since L1(xk) = 0. Also, 
substituting x = x1, 

U,(xJ = [L1(x1)]
2 = 1 V;(x1) = 0 

so that U,(xk) = D1k and V;(xk) = 0. Next calculate the derivatives 

u;(x) = [1- 2L;(x,)(x -x,)]2L;(x)L,(x)- 2L;(x,)[L,(xW 

v;(x) = (x- x,)2L,(x)L;(x) + [L,(xW 

At once u;(xk) = 0 and v;(xk) = 0 for k * i because of the L,(xk) factor. And for X= x,, u;(x,) = 
2L;(x1)- 2L;(x1) = 0 since L 1(x1) = 1. Finally, v;(x1) = [L1(xJ] 2 = 1. The Hermite formula is therefore 

p(x) = 2: [1- 2L;(x1)(x -x,)][L,(xWy, + (x -x,)[L,(xWy; 
i=O 

10.3. A switching path between parallel railroad tracks is to be a cubic polynomial joining positions 
(0, 0) and (4, 2) and tangent to the lines y = 0 and y = 2, as shown in Fig. 10-1. Apply 
Hermite's formula to produce this polynomial. 

L'"~ 
(4,2) 

~(0,0) 
I Ill 

Fig. 10-1 

The specifications ask for a cubic polynomial matching this data. 

xk Yk y~ 

0 0 0 

4 2 0 
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With n = 1, we have 

LMx)=-
1
-

xa-xi 
L;(x)=-

1
-

xl -xo 

and substituting into Hermite's formula (only the y1 term need be computed since y0 = yb = y; = 0), 

( x-4)(x-0)
2 

1 p(x)= 1-2-- -- ·2=-(6-x)x2 

4-0 4-0 16 

The significance of this switching path is, of course, that it provides a smooth journey. Being tangent to 
both of the parallel tracks, there are no sudden changes of direction, no corners. Since p"(O) and p"(4) 
are not zero, there are, however, discontinuities in curvature. (But see Problem 10.7.) 

10.4. Obtain a formula for the difference between y(x) and its polynomial approximation p(x). 

The derivation is very similar to that for the simpler collocation polynomial. Since y (x) = p (x) and 
y'(x) = p'(x) at the arguments x 0 , ••• , Xn we anticipate a result of the form 

y(x)- p(x) = C[.n(xW 

where .n(x) = (x -x0 ) • • • (x -xn) as before. Accordingly we define the function 

F(x) = y(x)- p(x)- C[.n(xW 

which has F(xd = F'(xk) = 0 for k = 0, ... , n. By choosing any new argument Xn+I in the interval 
between x0 and Xn, and making 

C =y(xn+l)- p(xn+l) 
[.n(xn+!W 

we also make F(xn+I) = 0. Since F(x) now has n + 2 zeros at least, F'(x) will have n + 1 zeros at 
intermediate points. It also has zeros at x 0 , ••• , Xn, making 2n + 2 zeros in all. This implies that F"(x) 
has 2n + 1 zeros at least. Successive applications of Rolle's theorem now show that p(3l(x) has 2n zeros 
at least, F<4J(x) has 2n- 1 zeros, and so on to p<Zn+ZJ(x) which is guaranteed at least one zero in the 
interval between x0 and Xn, say at x = £. Calculating this derivative, we get 

pt2n+2J(£) = y<2n+2J(£) _ C(2n + 2)! = 0 

which can be solved for C. Substituting back, 

Recalling that Xn+I can be any argument other than x 0 , ••• , Xn and noticing that this result is even true 
for x 0 , ••• , Xn (both sides being zero), we replace Xn+I by the simpler x: 

_y<2n+2)(£) 2 
y(x)- p(x)- (2n + 2)! [.n(x)] 

10.5. Prove that only one polynomial can meet the specifications of Problem 10.1. 

Suppose there were two. Since they must share common Yk andy~ values at the arguments xkl we 
may choose one of them as the p(x) of Problem 10.4 and the other as the y(x). In other words, we may 
view one polynomial as an approximation to the other. But since y(x) is now a polynomial of degree 
2n + 1, it follows that yezn+ZJ(£) is zero. Thus y(x) is identical with p(x), and our two polynomials are 
actually one and the same. 

10.6. How can a polynomial be found which matches the following data? 

Yo 

Y1 

y~ 

y'{ 
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In other words, at two arguments the values of the polynomial and its first two derivatives are 
specified. 

Assume for simplicity that x 0 = 0. If this is not true, then a shift of argument easily achieves it. Let 

p(x) =Yo +xyh + ~x2y~ + Ax3 + Bx4 + Cx 5 

2 

with A, B, and C to be determined. At x = x 0 = 0 the specifications have already been met. At x = x 1 

they require 

3Axi + 4Bxf + 5Cxi = y;- yh- XtY~ 

6Ax 1 + 12Bxi + 20Cxf = y~- y~ 

These three equations determine A, B, C uniquely. 

10.7. A switching path between parallel railroad tracks is to JOin positions (0, 0) and (4, 2). To 
avoid discontinuities in both direction and curvature the following specifications are made: 

xk Yk y~ YZ 

0 0 0 0 

4 2 0 0 

Find a polynomial which meets these specifications. 

Applying the procedure of Problem 10.6, 

p(x) = Ax3 + Bx 4 + Cx 5 

the quadratic portion vanishing entirely. At x 1 = 4 we find 

64A + 256B + 1024C = 2 48A + 256B + 1280C = 0 24A + 192B + 1280C = 0 

from which A = -tfs, B = - ffi, C = ~. Substituting, p (x) = zk;(80x 3
- 30x 4 + 3x 5

). 

Supplementary Problems 

10.8. Apply Hermite's formula to find a cubic polynomial which meets these specifications. 

xk Yk y~ 

0 0 0 

1 1 1 

This can be viewed as a switching path between nonparallel tracks. 

10.9. Apply Hermite's formula to find a polynomial which meets these specifications. 

xk Yk y~ 

0 0 0 

1 1 0 

2 0 0 
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10.10. Apply the method of Problem 10.6 to find a fifth-degree polynomial which meets these specifications. 

xk Yk y~ YZ 

0 0 0 0 
1 1 1 0 

This is a smoother switching path than that of Problem 10.8. 

10.11. Find two second-degree polynomials, one having p,(O) = p;(O) = 0, the other having p 2(4) = 2, p~(4) = 0, 
both passing through (2, 1), as shown in Fig. 10-2. Show that p;(2) = p~(2) so that a pair of parabolic 
arcs also serves as a switching path between parallel tracks, as well as the cubic of Problem 10.3. 

p 1(x) "" (2, I) 

~IKI+IHII+I~IIKI+IH~+A~I~IHI'~~-----
,o. 0) 

Fig. 10-2 

(4. 2) 

~~~~·~11111111 

- P2(x) 

10.12. Find two fourth-degree polynomials, one having p 1(0) = p;(O) = p~(O) = 0, the other having p 2(4) = 2, 
p~(4) = p~(4) = 0, both passing through (2, 1) with p'{(2) = p~(2) = 0. This is another switching path for 
which direction and curvature are free of discontinuities, like the fifth-degree polynomial of Problem 
10.7. Verify this by showing that first and second derivatives agree on both sides of (0, 0), (2, 1), and 
(4, 2) where the four pieces of track are butted together. 

10.13. From Hermite's formula for two-point osculation derive the midpoint formula 

P112 =~(Yo+ y,) + ~ L(yb- y;) 

where L =x, -x0 • 

10.14. Show that the error of the formula in Problem 10.13 is L4yl4l(g)/384. 

10.15. Find a polynomial of degree four which meets the following conditions: 

xk Yk y~ 

0 1 0 
1 0 -
2 9 24 

Note that one of they~ values is not available. 

10.16. Find a polynomial of degree four which meets these conditions. 

xk Yk y~ YZ 

0 1 -1 0 
1 2 7 -
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10.17. Find a polynomial of degree three which meets these conditions. 

xk Yk y~ 

0 1 -2 
1 1 4 



Chapter 11 

The Taylor Polynomial 

TAYLOR POLYNOMIAL 

The Taylor polynomial is the ultimate in osculation. For a single argument x 0 the values of the 
polynomial and its first n derivatives are required to match those of a given function y(x ). That is, 

p<il(x0) = y<il(x0) for i = 0, 1, ... , n 

The existence and uniqueness of such a polynomial will be proved, and are classical results of 
analysis. The Taylor formula settles the existence issue directly by exhibiting such a polynomial in 
the form 

n (i)( ) 

p(x) = L ~(x -xoY 
i=O l. 

The error of the Taylor polynomial, when viewed as an approximation to y(x ), can be expressed 
by the integral formula 

1 fx y(x)- p(x) =- y<n+ll(x0)(x- x 0)" dxo 
n! xo 

Lagrange's error formula may be deduced by applying a mean value theorem to the integral 
formula. It is 

and clearly resembles our error formulas of collocation and osculation. 
If the derivatives of y(x) are bounded independently of n, then either error formula serves to 

estimate the degree n required to reduce ly(x)- p(x )I below a prescribed tolerance over a given 
interval of arguments x. 

Analytic functions have the property that, for n tending to infinity, the above error of 
approximation has limit zero for all arguments x in a given interval. Such functions are then 
represented by the Taylor series 

X (i)( ) 

y(x) = L ~(x -x0 )i 
i=O l. 

The binomial series is an especially important case of the Taylor series. For -1 < x < 1 we have 

DIFFERENTIATION OPERATOR D 

The differentiation operator D is defined by 

D=h.!!:_ 
dx 

The exponential operator may then be defined by 

86 
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and the Taylor series in operator form becomes 

y(xk) = ekDYo(Xo) 

The relationship between D and ~ may be expressed in either of the forms 

both of which involve "infinite series" operators. 
The Euler transformation is another useful relationship between infinite series operators. It may 

be written as 

-1 1 [ 1 1 2 1 3 ] (1 +E) =- 1 -- ~ +- ~ -- ~ + · · · 
2 2 4 8 

by using the binomial series. 
The Bernoulli numbers B; are defined by 

X ~ 1 . 
~1 = L, -; B;x' 
e - i=o 1. 

Actually expanding the left side into its Taylor series we shall find B0 = 1, B1 = -~, B2 =!, and so on. 
These numbers occur in various operator equations. For example, the indefinite summation operator 
~ - 1 is defined by 

and is related to D by 
X 1 

~ -1 = D-1 L -; B;D; 
i=O l. 

where the B; are Bernoulli numbers. The operator D- 1 is the familiar indefinite integral operator. 
The Euler-Maclaurin formula may be deduced from the previous relationship, 

and is often used for the evaluation of either sums or integrals. 
The powers of D may be expressed in terms of the central difference operator (j by using Taylor 

series. Some examples are the following: 

( 
12 12 . 22 12 . 22 . 32 ) 

D = f.l c5 __ <53+ __ c5s _ c51 + ... 
3! 5! 7! 

D2 = c52 _ _!_<54+_!_ <56 _ __!___ c5s + _1_ c510 _ ... 
12 90 560 3150 

Solved Problems 

11.1. Find the polynomial p(x), of degree nor less, which together with its first n derivatives takes 
the values y0 , y&1l, y&2l, ... , Ybn) for the argument x0 • 

A polynomial of degree n can be written 

p(x) = ao + a1(X- Xo) + · · · + an(X- Xot 
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Successive differentiations produce 

p('l(x) =a,+ 2az(x -xo) + · · · + nan(X -xo)"- 1 

p(2l(x) = 2a2 + 3 · 2aJ(x- x0 ) + · · · + n(n -1)an(x- x0)"-
2 

p(n)(x) = n! an 

The specifications then require 

p(xo) = ao =Yo 

Solving for the an coefficients and substituting 

p(x) =Yo+ y&'l(x- Xo) + · · · + ~ y&nl(x- Xo)" = :f ~ y~l(x- x 0); 
n. ;~ 0 l. 

[CHAP. 11 

11.2. Find a polynomial p(x) of degree n, such that, at x0 = 0, p(x) and ex agree in value together 
with their first n derivatives. 

Since for ex derivatives of all orders are also ex, 

Yo= y&') = y&2) = ... = y&n) = 1 

The Taylor polynomial can then be written 

11.3. Consider a second function y(x) also having the specifications of Problem 11.1. We shall think 
of p(x) as a polynomial approximation to y(x). Obtain a formula for the difference 
y(x)- p(x) in integral form, assuming yen+ll(x) continuous between x0 and x. 

Here it is convenient to use a different procedure from that which led us to error estimates for the 
collocation and osculating polynomials. We start by temporarily calling the difference R, 

R = y(x)- p(x) 

or in full detail 

R(x, Xo) = y(x)- y(xa)- y'(xa)(x -xo) --
2

1 
y"(xa)(x -xof- · · · -~inl(x0)(x -x0 )"' 

n. 

This actually defines R as a function of x and x0 . Calculating the derivative of R relative to x0 , holding x 
fixed, we find 

R'(x, Xo) = -y'(xo) + y'(xo)- y"(xa)(x -xo) + y"(xa)(x -xo) 

--
2

1 
i 3l(x0)(x -X of+ · · ·-~ in+!)(xa)(x - Xo)" 

n. 

since differentiation of the second factor in each product cancels the result of differentiating the first 
factor in the previous product. Only the very last term penetrates through. Having differentiated relative 
to x0 , we reverse direction and integrate relative to x0 to recover R. 

1 Jxo R(x, x0) = -1 in+ll(u)(x- u)" du +constant 
n. x 

By the original definition of R, R(x0 , x 0 ) = 0 and the constant of integration is 0. Reversing the limits, 

1 Jx R(x, Xo) = 1 in+'l(u)(x- u)" du 
n. xo 

which is known as an integral form of the error. 
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11.4. Obtain Lagrange's form of the error from the integral form. 

Here we use the mean value theorem of calculus, which says that if f(x) is continuous and w(x) 
does not change sign in the interval (a, b) then 

f f(x)w(x) dx = f(s) f w(x) dx 

where sis between a and b. Choosing w(x) = (x- x0 )", we easily get 

1 
R(x, xo) = (n + 1)! y<n+tl(s)(x- Xo)"Tt 

where s is between x0 and x but otherwise unknown. This form of the error is very popular because of 
its close resemblance to the terms of the Taylor polynomial. Except for a sin place of an x0 it would be 
the term which produced the Taylor polynomial of next higher degree. 

11.5. Estimate the degree of a Taylor polynomial for the function y(x) =ex, with x0 = 0, which 
guarantees approximations correct to three decimal places for -1 < x < 1. To six decimal 
places. 

By the Lagrange formula for the error, 

lex- p(x)l = IRI ~-e
(n + 1)! 

For three-place accuracy this should not exceed .0005, a condition which is satisfied for n = 7 or higher. 
The polynomial 

is therefore adequate. Similarly, for six-place accuracy IR I should not exceed .0000005, which will be 
true for n = 10. 

11.6. The operator D is defined by D = h ~. What is the result of applying the successive powers of 
D to y(x)? 8x 

We have at once Diy(x) = hiy<il(x). 

11.7. Express the Taylor polynomial in operator symbolism. 

Let x- Xo = kh. This is the symbolism we have used earlier, with xk now abbreviated to x. Then 
direct substitution into the Taylor polynomial of Problem 11.1 brings 

A common way of rewriting this result is 

or in terms of the integer variable k alone as 

where as usual p(xk) = Pk· 
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11.8. A function y(x) is called analytic on the intervallx- x 01 ~ r if as n-Ht:J, 

lim R(x, x0 ) = 0 

for all arguments x in the interval. It is then customary to write y(x) as an infinite series, 
called a Taylor series 

~ 1 (.") . 
y(x) = limp(x) = L..J -:rYo (x -xo)' 

i=O l. 

Express this in operator form. 

Proceeding just as in Problem 11.7, we find y(xk) = (~0 ~k;D;)Yo· This is our first "infinite series 

operator." The arithmetic of such operators is not so easy to justify as was the case with the simpler 
operators used earlier. 

11.9. The operator ekD is defined by ekD = ~ ~ evi. Write the Taylor series using this operator; 
i=O z! 

11.10. Prove ev =E. 

By Problem 11.9 with k = 1 and the definition of E, y(x 1) = y1 = Ey0 = evy0 making E = ev. 

11.11. Develop the Taylor series for y(x) =In (1 + x), using x0 = 0. 

The derivatives are yU>(x) = ( -1)i+ 1(i --1)!/(1 + x)i so that yCil(O) = ( -1)i+ 1(i-- 1)!. Since y(O) = 
In 1 = 0, we have 

X c-1r+l . 1 1 1 
y(x) =In (1 +x) = 2:--. -x' =x-- -x2 +-x3 --x4 + · · · 

i=l l 2 3 4 

The familiar ratio test shows this to be convergent for --1 < x < 1. It does not, however, prove that the 
series equals In (1 + x). To prove this let p(x) represent the Taylor polynomial, of degree n. Then by the 
Lagrange formula for the error, 

( 
1 n! n+l 

Jln 1+x)-p(x)J~(n+ 1)!·( 1 +£r+l·x 

For simplicity consider only the interval 0 ~ x < 1. The series is applied mostly to this interval anyway. 
Then the error can be estimated by replacing £by 0 and x by 1 to give Jln (1 + x)-- p(x)l ~ 1/(n + 1) and 
this does have limit 0. Thus limp(x) =In (1 + x), which was our objective. 

11.U. Estimate the degree of a Taylor polynomial for the function y(x) =In (1 + x), with x0 = 0, 
which guarantees three-decimal-place accuracy for 0 < x < 1. 

By the Lagrange formula for the error, 

1 n! +I 1 
Jin(1+x)-p(x)J~--·--·xn ~--

(n + 1)! (1 + ,;r n + 1 

Three-place accuracy requires that this not exceed .0005, which is satisfied for n = 2000 or higher. A 
polynomial of degree 2000 would be needed! This is an example of a slowly convergent series. 

11.13. Express the operator D in terms of the operator ~-

From eD =Ewe find D =In E =In (1 + ~) = ~-- ~~2 + i~3 -- M4 + · · ·. 
The validity of this calculation is surely open to suspicion, and any application of it must be care

fully checked. It suggests that the final series operator will produce the same result as the operator D. 
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11.14. Express y(x) = (1 +x)P as a Taylor series. 

For p a positive integer this is the binomial theorem of algebra. For other values of p it is the 
binomial series. Its applications are extensive. We easily find 

y<il(x) = p(p -1) ... (p-i+ 1)(1 +xr' = p<il(1 +xY-' 

where pUJ is again the factorial polynomial. Choosing x0 = 0 

yUl(O) =p<'l 

and substituting into the Taylor series, 

where(~) is the generalized binomial coefficient. The convergence of this series to y(x) for -1 <x < 1 
can be demonstrated. 

11.15. Use the binomial series to derive the Euler transformation. 

The Euler transformation is an extensive rearrangement of the alternating series S = a0 - a1 + a2 -

a3 + · · · which we rewrite as 

S = (1- E + E 2
- E 3 + · · ·)a0 = (1 + E)- 1a0 

by the binomial theorem with p = -1. The operator (1 + E)- 1 may be interpreted as the inverse 
operator of 1 + E. A second application of the binomial theorem now follows. 

1 ( ~)-! S = (1 + E)- 1a0 = (2 + ~)- 1ao = 2 1 + 2 ao 

=!(1-~+~-~+· ··)a =!(a _!~a +!~2a _!~3a +· ··) 2 2 4 8 °2 °2 °4 °8 ° 

Our derivation of this formula has been a somewhat optimistic application of operator arithmetic. No 
general, easy-to-apply criterion for ensuring its validity exists. 

11.16. The Bernoulli numbers are defined to be the numbers Bi in the following series: 

X "' 1 . 
y(x)=~= 2::-;-Bix' 

e 1 i=ol. 

Find B0 , ••• , B10 . 

The Taylor series requires that yUl(O) = B;, but it is easier in this case to proceed differently. 
Multiplying by ex - 1 and using the Taylor series for eX, we get 

Now comparing the coefficients of the successive powers of x, 

Bz=! 
6 

B--_!_ 
8 - 30 

The process could be continued in an obvious way. 

B5 =0 

5 
Bw =66 

11.17. Suppose l:l.Fk = Yk· Then an inverse operator l:l. -l can be defined by 

Fk = l:l. -Ih 
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This inverse operator is "indefinite" in that for given Yk the numbers Fk are determined except 
for an arbitrary additive constant. For example, in the following table the numbers Yk are 
listed as first differences. Show that the number F0 can be chosen arbitrarily and that the other 
Fk numbers are then determined. 

Yo Yz 

We have at once 

k-1 

and in general Fk = Fo + I: y1. The requirements plainly hold for an arbitrary F0 , and the analogy with 
i=O 

indefinite integration is apparent. 

11.18. Obtain a formula for~ -I in terms of the operator D. 

The result e0 = 1 + ~ suggests 

~ -1 = (eD -1)-1 = v-1[D(eD- 1)-1] 

where D- 1 is an indefinite integral operator, an inverse of D. From the definition of Bernoulli numbers, 

X 1 
~-1=D-12:~B;D; 

i=ol. 

As always with the indefinite integral (and here we also have an indefinite summation) the presence 
of an additive constant may be assumed. 

11.19. Derive the Euler-Maclaurin formula operationally. 

Combining the results of the previous two problems, we have 
k-1 

Fk = ~ - 1Yk = Fo + 2: Yt 
i=O 

( 
-1 1 1 1 3 ) = D - z + U D -

720 
D + . . . Yk 

From the first of these, 
n-1 

F;,- Fo = 2: Yt 
i=O 

while from the second, 

so that finally, 

n-1 11'" 1 h 2: Yt =- y(x) dx --(yn- y0 ) +-(y~- y~) + ... 
,~o h ,0 2 12 

which is the Euler-Maclaurin formula. The operator arithmetic used in this derivation is clearly in need 
of supporting logic, but the result is useful in spite of its questionable pedigree and in spite of the fact 
that the series obtained is usually not convergent. 
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Supplementary Problems 

11.20. Find the Taylor polynomials of degree n for sin x and cos x, using x0 = 0. 

11.21. Express the error term in Lagrange's form, for both sinx and cosx. Show that as n~oo this error has 
limit 0 for any argument x. 

11.22. For what value of n will the Taylor polynomial approximate sin x correctly to three decimal places for 
O<x<:n:/2? 

11.23. For what value of n will the Taylor polynomial approximate cos x correctly to three decimal places for 
0 < x < :n; /2? To six decimal places? 

11.24. Express the operator A as a series operator in D. 

11.25. The functions sinh x and cosh x are defined by 

ex- e-x 
sinhx=--

2
-

Show that their Taylor series are 

X 1 
sinhx = L ---x2'+ 1 

i~O (2i + 1)! 

ex+ e-x 
coshx =--

2
-

X 1 
coshx = L -(2.)' x

2
' 

1=0 l · 

11.26. Show by operator arithmetic that fJ = 2 sinh ~D, 11 =cosh ~D. 

11.27. Use the binomial series to express A= ~D 2 + DY1 + ~{) 2 as a series in powers of D, through the term in D7
. 

11.28. Combine the results of Problems 11.13 and 11.27 to express D as a series in powers of D, verifying these 
terms through D7

• 

11.29. Verify these terms of a Taylor series for D 2
: 

D2 = {)2- _!_ {)4 + _!_ {)6- __!_ (JB + _1_ {J 10- ... 

12 90 560 3150 

by squaring the result of Problem 11.28 and collecting the various powers of D. 



Chapter 12 

Interpolation 

HISTORICAL PLACE 

Previous chapters have consisted almost entirely of supporting theory. That theory will now be 
used in several ways, beginning with the classic problem of interpolation. Interpolation is the 
familiar process of estimating the values of a function y(x) for arguments between x0 , ••• , Xn at 
which the values y0 , ••• , Yn are known. Inverse interpolation simply proceeds in the opposite 
direction. Subtabulation is the systematic interpolation of many values between each pair of 
arguments X;, X;+r and so reducing the spacing of a table of values, perhaps from h to h/10. 
Prediction requires estimating a value y(x) for x outside the interval in which the data arguments 
fall. 

All these operations were much more pressing before the arrival of high-speed computers, which 
now calculate values of all the familiar functions by series or other nontabular ways. The formulas of 
this chapter bear the names of prominent mathematicians of a century and more ago, when tables of 
functions were indispensable. Their place in our subject is partly, but not entirely, historical. It is 
interesting to see how the computational hurdles of an earlier time were surmounted, but important 
to note that tables of special functions are still constructed so that some of this work continues to 
have a useful role. 

METHODS OF SOLUTION 

The methods of interpolation involve substituting for y(x) some more easily computed function, 
often a polynomial, and simplest of all a straight line. The values y0 , ••• , Yn may be introduced into 
any of our polynomial formulas (Newton, Everett, ... ) which then becomes an algorithm for 
interpolation, the output being an approximation to y(x). It was realized that using data from both 
sides of the interpolation argument x "made sense" and led to better values or briefer computations. 
The formulas of Stirling, Bessel, and Everett were motivated by this reasoning and a study of the 
errors involved provides logical support. At the ends of a table this could not be done and the 
Newton forward and backward formulas had their turn. It was unnecessary to choose the degree of 
the approximating polynomial in advance, simply to continue fitting differences from the table into 
appropriate places as long as the results seemed to warrant. It was also realized that a point of 
diminishing returns occurs, where results deteriorate instead of improve, and that this point depends 
upon the accuracy of the tabulated values. 

The alternative procedure of Lagrange fits the polynomial to the data without using finite 
differences. The degree has to be chosen in advance, but the method has compensatin·g advantages. 
Aitken's method is another variant, not requiring equal spacing of tabular arguments or of the 
polynomial's degree at the outset. 

Osculating polynomials and the Taylor polynomial also find application to interpolation 
problems in special circumstances. 

INPUT AND ALGORITHM ERRORS 

Input and algorithm errors occur in all these applications. Their impact on the completed 
outputs can be estimated only up to a point. It is customary to identify three main error sources. 

1. Input errors arise when the given values y0 , ••• , Yn are inexact, as experimental or 
computed values usually are. 

2. Truncation error is the difference y(x)- p(x), which we accept the moment we decide to 

94 
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use a polynomial approximation. This error has been found earlier to be 

y(x)- p(x) =~yCn+l)(;) 
(n + 1)! 

95 

Though ; is unknown, this formula can still be used at times to obtain error bounds. 
Truncation error is one type of algorithm error. In prediction problems this error can be 
substantial, since the factor .n(x) becomes extremely large outside of the interval in which 
the data arguments x 0 , .•. , Xn fall. 

3. Roundoff errors occur since computers operate with a fixed number of digits and any excess 
digits produced in multiplications or divisions are lost. They are another type of algorithm 
error. 

Solved Problems 

12.1. Predict the two missing values of Yk· 

k =xk 0 1 2 3 4 5 6 7 

Yk 1 2 4 8 15 26 

This is a simple example, but it will serve to remind us that the basis on which applications are to 
be made is polynomial approximation. Calculate some differences. 

124711 
1 2 3 4 

1 1 1 

Presumably the missing yk values might be any numbers at all, but the evidence of these differences 
points strongly toward a polynomial of degree three, suggesting that the six yk values given and the two 
to be predicted all belong to such a polynomial. Accepting this as the basis for prediction, it is not even 
necessary to find this collocation polynomial. Adding two more 1s to the row of third differences, we 
quickly supply a 5 and 6 to the row of second differences, a 16 and 22 as new first differences, and then 
predict y6 = 42, y7 = 64. This is the same data used in Problem 6.12 where the cubic collocation 
polynomial was found. 

12.2. Values of y(x) = Vx are listed in Table 12.1, rounded off to four decimal places, for 
arguments x = 1.00(.01)1.06. (This means that the arguments run from 1.00 to 1.06 and are 
equally spaced with h = . 01.) Calculate differences to /}.6 and explain their significance. 

The differences are also listed in Table 12.1. 
For simplicity, leading zeros are often omitted in recording differences. In chis table all differences 

are in the fourth decimal place. Though the square root function is certainly not linear, the first 
differences are almost constant, suggesting that over the interval tabulated and to four-place accuracy 
this function may be accurately approximated by a linear polynomial. The entry !!2 is best considered a 
unit roundoff error, and its effect on higher differences follows the familiar binomial coefficient pattern 
observed in Problem 3.10. In this situation one would ordinarily calculate only the first differences. 
Many familiar functions such as Yx, logx, sinx, etc., have been tabulated in this way, with arguments 
so tightly spaced that first differences are almost constant and the function can be accurately 
approximated by a linear polynomial. 

12.3. Apply Newton's forward formula with n = 1 to interpolate for V1.005. 
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Table 12.1 

X y(x)=Vx A A2 A3 A4 As A6 

1.00 1.0000 
50 

1.01 1.0050 0 
50 -1 

1.02 1.0100 -1 2 
49 1 -3 

1.03 1.0149 0 -1 4 
49 0 1 

1.04 1.0198 0 0 
49 0 

1.05 1.0247 0 
49 

1.06 1.0296 

Newton's formula reads 

Pk =Yo+ (~)flYo + (~)t.2y0 + · · · + (~)t."y0 

Choosing n = 1 for a linear approximation we find, with k = x ~ Xo 

1 
Pk = 1.0000 + 2 (.0050) = 1.0025 

1.005- 1.00 1 
.01 2' 

[CHAP. 12 

This is hardly a surprise. Since we have used a linear collocation polynomial, matching our y = Vx 
values at arguments 1.00 and 1.01, we could surely have anticipated this midway result. 

12.4. What would be the effect of using a higher-degree polynomial for the interpolation of 
Problem 12.3? 

An easy computation shows the next several terms of the Newton formula, beginning with the 
second difference term, to be approximately .00001. They would not affect our result at all. 

12.5. Values of y(x) = Vx are listed in Table 12.2, rounded off to five decimal places, for arguments 
x = 1. 00(. 05) 1. 30. Calculate differences to l16 and explain their significance. 

The differences are listed in Table 12.2. 

Table 12.2 

X y(x)=Vx A A2 A3 A4 As A6 

1.00 1.00000 
2470 

1.05 1.02470 -59 
2411 5 

1.10 1.04881 -54 -1 
2357 4 -1 

1.15 1.07238 -50 -2 4 
2307 2 3 

1.20 1.09544 -48 1 
2259 3 

1.25 1.11803 -45 
2214 

1.30 1.14017 
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Here the error pattern is more confused but the fluctuations of + and - signs in the last three columns 
are reminiscent of the effects produced in Problems 3.10 and 3.11. It may be best to view these three 
columns as error effects, not as useful information for computing the square root function. 

12.6. Use the data of Problem 12.5 to interpolate for Vl.Ol. 
Newton's forward formula is convenient for interpolations near the top of a table. With k = 0 at the 

top entry x0 = 1.00, this choice usually leads to diminishing terms and makes the decision of how many 
terms to use almost automatic. Substituting into the formula as displayed in Problem 12.3, with 
k = (x- x0 )/h = (1.01- 1.00)/.05 = t we find 

1 2 6 
Pk = 1.00000 + S (.02470)- 25 (- .00059) + 

125 
(.00005) 

stopping with this term since it will not affect the fifth decimal place. Notice that this last term uses the 
highest-order difference which we felt, in Problem 12.5, to be significant for square root computations. 
We have not trespassed into columns which were presumably only error effects. The value pk reduces to 

Pk = 1.000000 + .004940 + .000048 + .000002 = 1.00499 

which is correct to five places. (It is a good idea to carry an extra decimal place during computations, if 
possible, to control "algorithm errors" described in Chapter 1. In machine computations, of course, the 
number of digits is fixed anyway, so this remark would not apply.) 

12.7. Use the data of problem 12.5 to interpolate for v'f.28. 
Here Newton's backward formula is convenient and most of the remarks made in Problem 12.6 

again apply. With k = 0 at the bottom entry x0 = 1.30, we have k = (x- x0 )/h = (1.28- 1.30)/.05 = - ~
Substituting into the backward formula (Problem 7.9) 

k(k + 1) 2 k(k + 1)(k + 2) 3 k(k + 1) · · · (k + n- 1) V'" 
pk=Yo+kV'yo=--

2
-V'yo+ 

3
! Y'yo+···+ n! Yo 

we obtain Pk = 1.14017 + ( -~)c.o2214) + ( -~)c- .ooo45) + ( - 1~5 )c.ooom) 
= 1.140170- .008856 + .000054- .000002 = 1.13137 

which is correct to five places. 

12.8. The previous two problems have treated special cases of the interpolation problem, working 
near the top or near the bottom of a table. This problem is more typical in that data will be 
available on both sides of the point of interpolation. Interpolate for v'f.TI using the data of 
Problem 12.5. 

The central difference formulas are now convenient since they make it easy to use data more or less 
equally from both sides. In Problem 12.15 we will see that this also tends to keep the truncation error 
small. Everett's formula will be used. 

Pk = (~)h + ( k; 1 )ozyl + ( k; 2)o4y! + ... - ( k ~ 1 )Yo- (~)ozyo- ( k; 1)o4Yo- ... 

where higher-order terms have been omitted since we will not need them in this problem. Choosing 
k = 0 at x0 = 1.10, we have k = (x- x0 )/h = (1.12 -1.10)/.05 = ~- Substituting into Everett's formula, 

Pk = (~)(l.on38) + (- 1~5)c- .ooo5o) + C5~
8)c- .oooo2) 

- (- ~)(1.04881)- C~5)c- .ooo54)- (-
1

5~
2)c- .ooo01) 

= .428952 + .000028 + .629286 + .000035 
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the two highest-order terms contributing nothing (as we hoped, since these are drawn from the error 
effects columns). Finally Pk = 1.05830, which is correct to five places. Notice that the three 
interpolations made in Table 12.2 have all been based on collocation polynomials of degree three. 

12.9. The laboratory's newest employee has been asked to "look up" the value y(.3333) in table 
NBS-AMS 52 of the National Bureau of Standards Applied Mathematics Series. On the 
appropriate page of this extensive volume he finds abundant information, a small part of 
which is reproduced in Table 12.3. Apply Everett's formula for the needed interpolation. 

Table 12.3 

X y(x) ~2 

.31 .1223 4609 2392 

.32 .1266 9105 2378 

.33 .1310 5979 2365 

.34 .1354 5218 2349 

.35 .1398 6806 2335 

Choosing x = 0 at x0 = .33, we have k = (x- x0)/h = (.3333- .33)/.01 = .33. Writing Everett's 
formula through second differences in the form 

Pk = ky1 + (1- k)y0 + E1D
2y1- E0D2y0 

(k + 1) (k) . . . . . . where E 1 = 
3 

and E 0 = 
3 

, the mterpolator will find all mgred1ents available m tables. For 

k = .33, we find E 1 = -.0490105, E0 = .0615395. Then 

pk = (.33)(.13545218) + (.67)(.13105979) + ( -.0490105)(.00002349)- (.0615395)(.00002365) 

= .13250667 

This table was prepared with Everett's formula in mind. 

12.10. Apply the Lagrange formula to obtain v1.i2 from the data of Table 12.2. 

The Lagrange formula does not require equally spaced arguments. It can of course be applied to 
such arguments as a special case, but there are difficulties. The degree of the collocation polynomial 
must be chosen at the outset. With the Newton, Everett, or other difference formulas the degree can be 
determined by computing terms until they no longer appear significant. Each term is an additive 
correction to terms already accumulated. But with the Lagrange formula a change of degree involves a 
completely new computation, of all terms. In Table 12.2 the evidence is strong that a third-degree 
polynomial is suitable. On this basis we may proceed to choose x0 = 1.05, ... , x3 = 1.20 and substitute 
into 

(x- x1)(x - Xz)(x- x 3) (x- x0)(x - x2)(x - x 3) 

p = (xo- x!)(xo- Xz)(xo- X3) Yo+ (x!- Xo)(x!- Xz)(x!- X3) y1 

(x -xo)(x -x~)(x -x3) (x -x0)(x -x~)(x -x2) 
+ (xz- Xo)(xz- xJ)(xz- X3) Yz + (x3- x0)(x3- x1)(x3- x2) y

3 

to produce 

-8 84 56 -7 
p = 125 (1.02470) + 125 (1.04881) + 125 (1.07238) + 125 (1.09544) = 1.05830 

This agrees with the result of Problem 12.8. 
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12.11. The problem of inverse interpolation reverses the roles of xk and Yk· We may view the Yk 
numbers as arguments and the xk as values. Clearly the new arguments are not usually equally 
spaced. Given that Vx = 1.05, use the data of Table 12.2, to find x. 

Since we could easily find x = (1.05? = 1.1025 by a simple multiplication, this is plainly another 
"test case" of our available algorithms. Since it applies to unequally spaced arguments, suppose we use 
Lagrange's formula. Interchanging the roles of x andy, 

(y - Yt)(y - Y2)(y - Y3) + (y - Yo)(y - Y2)(y - Y3) 
p =(Yo- Yt)(Yo- Yz)(Yo- Y3) Xo (Yt- Yo)(Yt- Y2)(Yt- Y3) Xt 

+ (y- Yo)(y- Yt)(y- Y3) + (y- Yo)(y- Yt)(y- Y2) 
CY2- Yo)(Y2- Yt)(Y2- Y3) x

2 
(y3- Yo)(y3- Yt)(y3- Y2) x

3 

With the same four xk, yk pairs used in Problem 12.10, this becomes 

p = (- .014882)1.05 + (. 97095)1.10 + (.052790)1.15 + (- .008858)1.20 = 1.1025 

as expected. 

12.12. Apply Everett's formula to the inverse interpolation problem just solved. 

Since the Everett formula requires equally spaced arguments, we return x and y to their original 
roles. Writing Everett's formula as 

1.o5 = k(l.o7238) + ( k; 1)c -.ooo5o) + (k; 2)c -.oooo2) 

+ C1-k)(1.04881)- (:)c-.ooo54)- (k; 1)c-.ooo01) 

we have a fifth-degree polynomial equation in k. This is a problem treated extensively in a later chapter. 
Here a simple, iterative procedure can be used. First neglect all differences and obtain a first 
approximation by solving 

1.05 = k(l.07238) + (1- k)(l.04881) 

The result of this linear inverse interpolation is k = .0505. Insert this value into the 62 terms, still 
neglecting the 64 terms, and obtain a new approximation from 

1.o5 = k(L07238) + (1.
0
;

05
)c -.ooo5o) + (1- k)(L04881)- (' 0~05)c.ooo54) 

This proves to be k = .0501. Inserting this value into both the 62 and 64 terms then produces k = .0500. 
Reintroduced into the 62 and 64 terms this last value of k reproduces itself, so we stop. The 
corresponding value of x is 1.1025 to four places. 

12.13. Interpolate for Vl.125 and V1.175 in Table 12.2. 

For these arguments which are midway between tabulated arguments, Bessel's formula has a strong 
appeal. First choose k = 0 at x0 = 1.10, making k = (1.125 -1.10)/.05 = ~. The Bessel formula (Problem 
7.25) is 

Pk = !1Yv2 + (~)1162Yv2 + ( k; 1 )1164
y112 

if we stop at degree four. The odd difference terms disappear entirely because of the factor k- ~. 
Substituting, 

Pk = 1.06060 + (- ~)( -.00052) + C~8 )( -.000015) = 1.06066 

with the 64 term again making no contribution. Similarly in the second case, with k = 0 now at Xo = 1.15, 
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we again have k = ~ and find Pk = 1.08397. By finding all such midway values, the size of a table may be 
doubled. This is a special case of the problem of subtabulation. 

12.14. In using a collocation polynomial p(x) to compute approximations to a function y(x), we 
accept what is called a truncation error, y(x)- p(x). Estimate this error for our interpolations 
in Table 12.1. 

The formula for truncation error of a collocation polynomial was derived in Chapter 2 and is 

y(x) -p(x) =~y<n+!)(;) 
(n + 1)! 

when the polynomial approximation is of degree n. For Table 12.1 we found n = 1 suitable. The 
collocation points may be called x0 and x 1 , leading to this error estimate for linear interpolation: 

Since h = .01 and yl 2l(x) = - h-312
, we have 

k(k -1) 
ly(x)- p(x)l ~-8- (.0001) 

For k between 0 and 1, which we arrange for any interpolation by our choice of x0 , the quadratic 
k(k- 1) has a maximum size of~ at the midpoint k = ~ (see Fig. 12-1). This allows us to complete our 
truncation error estimate, 

1 
ly(x)- p(x)l ~32 (.0001) 

Fig. U-1 

and we discover that it cannot affect the fourth decimal place. Table 12.1 was prepared with linear 
interpolation in mind. The interval h = .01 was chosen to keep truncation error this small. 

12.15. Estimate truncation errors for our computations in Table 12.2. 

Here for the most part we used Everett's formula for a cubic polynomial. For other cubic formulas 
the same error estimate follows. Assuming equally spaced collocation arguments x_ 1 , x0 , x 1 , and x 2 , 

y(x) -p(x) (x -x-J)(x -x~? -x1)(x -x2) y<4l(;) 

(k + 1)k(k- 1)(k- 2)hV4
); 

24 

The polynomial (k + 1)k(k- 1)(k- 2) has the general shape of Fig. 12-2. Outside the interval 
-1 < k < 2 it climbs sensationally. Inside 0 < k < 1 it does not exceed fi; and this is the appropriate part 
for interpolation. We now have, for the maximum error in cubic interpolation, 

For this example h = .05 and y<•l(x) = - ~x-712 , and hence ly(x)- p(x)l ~ ,h(.OOOOS) so that truncation 
error has not affected our five-decimal calculations. 
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Fig. 12-2 

12.16. How large could the interval length h be made in a table of Vx with a cubic formula still 
giving five-place accuracy? (Assume 1 ~ x.) 

This sort of question is naturally of interest to table makers. Our truncation error formula can be 
written as 

ly(x)- p(x)l ;:;;~ h 4(~)(_!_) 
16 16 24 

To keep this less than .000005 requires h4 < .000228, or very closely h < i. This is somewhat larger than 
the h = .05 used in Table 12.1, but other errors enter our computations and it pays to be on the safe 
side. 

12.17. The previous problem suggests that Table 12.2 may be abbreviated to half length, if Everett's 
cubic polynomial is to be used for interpolations. Find the second differences needed in this 
Everett formula. 

The result is Table 12.4, in which first differences may be ignored. 

Table 12.4 

xk Yk b b2 

1.00 1.00000 
4881 

1.10 1.04881 -217 
4664 

1.20 1.09544 -191 
4473 

1.30 1.14017 

12.18. Use Table 12.4 to interpolate for y(l.15). 

With Everett's formula and k = t 
1 1 1 1 

pk = 2 (1.09544)- i6 ( -.00191) + 2 (1.04881)- i6 ( -.00217) = 1.07238 

as listed in Table 12.2. This confirms Problem 12.16 in this instance. 

12.19. Estimate the truncation error for a fifth-degree formula. 

Assume the collocation arguments equally spaced and at k = - 2, - 1, ... , 3 as in Everett's 
formula. (The position is actually immaterial.) 

n(x) 
y(x)- p(x) = --·-y<n+l)(~) 

(n + 1)! 
(k + 2)(k + 1)k(k -1)(k- 2)(k- 3) 6 (6)(~) 

720 h y <; 
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The numerator factor, for 0< k < 1, takes a maximum absolute value of~ at k = t as may easily be 
verified, making 

1 225 
ly(x)- p(x)l ~ 720 · 64 · h6 li6l(s)l 

12.20. For the function y(x) = Vx, and 1 ~x, how large an interval h is consistent with five-place 
accuracy if Everett's fifth-degree formula is to be used in interpolations? 

For this function, y<6l(x) = ~x- 1112 ~ ~- Substituting this into the result of the previous problem 
and requiring five-place accuracy, 

J:_. 225. h6. 945 ~ .000005 
720 64 64 

leading to h ~! approximately. Naturally the interval permitted with fifth-degree interpolation exceeds 
that for third-degree interpolation. 

12.21. For the function y(x) = sinx, how large an interval his consistent with five-place accuracy if 
Everett's fifth-degree formula is to be used in interpolations? 

For this function y<6l(x) is bounded absolutely by 1, so we need~· "if· h6 ~ .000005, leading to 
h ~ .317. This is the equivalent of 18° intervals, and means that only four values of the sine function, 
besides sin 0 and sin 90° are needed to cover this entire basic interval! 

12.22. A second source of error in the use of our formulas for the collocation polynomial (the first 
source being truncation error) is the presence of inaccuracies in the data values. The numbers 
Yb for example, if obtained by physical measurement will contain inaccuracy due to the 
limitations imposed by equipment, and if obtained by computations probably contain 
roundoff errors. Show that linear interpolation does not magnify such errors. 

The linear polynomial may be written in Lagrangian form, 

p = ky1 + (1- k)Yo 

where the Yk are as usual the actual data values. Suppose these values are inaccurate. With 1-; and ¥;1 

denoting the exact but unknown values, we may write 

Yo= Yo+ eo 

where the numbers e0 and e1 are the errors. The exact result desired is therefore 

P = kY1 + (1- k)Ya 

making the error of our computed result 

P- p = ke 1 + (1- k)eo 

If the errors ek do not exceed E in magnitude, then 

IP- PI~ kE + (1- k)E = E 

for 0 < k < 1. This means that the error in the computed value p does not exceed the maximum data 
error. No magnification of error has occurred. 

12.23. Estimate the magnification of data inaccuracies due to cubic interpolation. 

Again using the Lagrangian form but assuming equally spaced arguments at k = - 1, 0, 1, 2, the 
cubic can be written as 

p 
k(k- 1)(k- 2) (k + 1)(k- 1)(k- 2) (k + 1)k(k- 2) (k + 1)k(k- 1) 

_ 
6 

Y-1 + 
2 

Yo+ _ 
2 

Y1 + 
6 

Y2 
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As in Problem 12.22, we let Yk = yk + ek> with Yk denoting the exact data values. If P again stands 
for the exact result desired, then the error is 

k(k- 1)(k- 2) (k + 1)(k- 1)(k- 2) (k + 1)k(k- 2) (k + 1)k(k -1) 
P- p = _

6 
e_i + 

2 
eo+ _ 

2 
e1 + 

6 
ez 

Notice that for 0 < k < 1 the errors e_ 1 and e2 have negative coefficients while the other two have 
positive coefficients. This means that if the errors do not exceed E in magnitude, 

[
k(k -1)(k- 2) (k + 1)(k -1)(k- 2) (k + 1)k(k- 2) (k + 1)k(k -1)] 

IP- Pi;;;::; E 6 + 2 + -2 + -6 

which simplifies to 

Not surprisingly the quadratic magnification factor mk takes its maximum at k =! (Fig. 12-3) and so 
iP- pi;;;::; ~E. The data error E may be magnified by as much as ~- This is, of course, a pessimistic 
estimate. In certain cases errors may even annul one another, making the computed value p more 
accurate than the data Yk· 

Fig. 12-3 

12.24. What other source of error is there in an interpolation? 

One source which is very important to keep in mind, even though it is often entirely out of one's 
control, is the continual necessity to make roundoffs during the carrying out of the algorithm. Working 
to a limited number of digits, this cannot be avoided. Our various formulas, even they represent exactly 
the same collocation polynomial, process the data involved in differing ways. In other words, they 
represent different algorithms. Such formulas accept the same input error (data inaccuracies) and may 
have the same truncation error but still differ in the way algorithm roundoffs develop. 

12.25. Describe how Taylor's series may be used for interpolation. 

Consider the function y =ex. But Taylor's series, 

ex+t =ex • e' = ex(l + t + !f2 + ... ) 

Assume the factor ex known. Truncating the series after the t2 term means an error (inside the 
parentheses) of at most Hh/2)3 where his the interval at which arguments are spaced in the table. This 
assumes that interpolation will always be based on the nearest tabular entry. If h = .05 this error is 
(l]i)10-6

, or (2.6)10-6
. This means that, stopping at the t 2 term, accuracy to five digits (not decimal 

places) will be obtained in the computed value of ex+t. For example, using the data of Table 12.5 the 
interpolation for e2

·
718 runs as follows. With t = .018, 1 + t + !t2 = 1.01816 and 

e2 718 = e2
·
70(1.01816) = (14.880)(1.01816) = 15.150 

which is correct to its full five digits. Our collocation polynomials would also produce this result. 
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Table 12.5 

X 2.60 2.65 2.70 2.75 2.80 

Y =ex 13.464 14.154 14.880 15.643 16.445 

12.26. How can Taylor series interpolation be used for the function y(x) = sinx? 

Since sin x and cos x are usually tabulated together, we may express 

sin (x ± t) =sin x ± t cos x- !t2 sin x 

Here, of course, tis measured in radians. If the tabular interval ish= .0001, as it is NBS-AMS 36, of 
which Table 12.6 is a brief extract, then the above formula will give accuracy to nine digits, since !(h/2? 
is out beyond the twelfth place. 

Table 12.6 

X sinx cosx 

1.0000 .8414 70985 .5403 02306 
1.0001 .8415 25011 .540218156 
1.0002 .8415 79028 .540134001 
1.0003 .8416 33038 .540049840 

12.27. Compute sin 1.00005 by the Taylor series interpolation. 

With x = 1 and t = .00005, 

sin 1.00005 = .8414 70985 + (.00005)(.5403 02306)- G)cl0-8)(.8414 70985) = .8414 97999 

12.28. Apply Newton's backward formula to the prediction of Vf.32 in Table 12.2. 

With k = 0 at x0 = 1. 30 we find k = (1. 32- 1. 30)/. 05 = .4. Substituting into the Newton formula, 

p = 1.14017 + (.4)(.02214) + (.28)(- .00045) + (.224)(.00003) = 1.14891 

which is correct as far as it goes. Newton's backward formula seems the natural choice for such 
prediction problems, since the supply of available dfferences is greatest for this formula and one may 
introduce difference terms until they do not contribute to the decimal places retained. This allows the 
degree of the approximating polynomial to be chosen as the computation progresses. 

12.29. Analyze the truncation error in prediction. 

The truncation error of the collocation polynomial can be expressed as 

k(k + 1) ... (k + n) hn+l (n+l)(~) 
(n + 1)! y 

where the collocation points are at k = 0, -1, ... , -n as is the case when Newton's backward formula 
is used. For prediction, k is positive. The numerator factor grows rapidly with increasing k, more 
rapidly for large n, as Fig. 12-4 suggests. This indicates that truncation error will not be tolerable beyond 
a certain point, and that prediction far beyond the end of a table is dangerous, as might be anticipated. 
The truncation error of a collocation polynomial is oscillatory between the points of collocation, but 
once outside the interval of these points it becomes explosive. 
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v 
n=l n=3 

Fig. 12·4 

12.30. Predict Vf.50 from the data of Table 12.2. 

With k = (1.50- 1.30)/.05 = 4, 

p = 1.14017 + (4)(.02214) + (10)( -.00045) + (20)(.00003) = 1.22483 

while the correct result is 1.22474. Note also that higher difference terms, which we believe to be error 
effects anyway, would only make the result worse because they are positive. 

Supplementary Problems 

12.31. From the data of Table 12.1 obtain Yl.012 and Yl.017 by linear interpolation, to four decimal places. 
Would the second difference term affect the result? Would higher-order terms? 

12.32. From the data of Table 12.1 obtain V1.059 by linear interpolation. Note that if Newton's forward 
formula is used (with k = 0 at x = 1.05) no second difference would be available in this case. 

12.33. Interpolate for v'1.03 in Table 12.2. 

12.34. Interpolate for v'f.26 in Table 12.2. 

12.35. Apply Stirling's formula to obtain v1.i2 from the data of Table 12.2. Does the result agree with that of 
Problem 12.8? 

12.36. Apply Everett's formula to Table 12.3, obtaining y(.315). 

12.37. Apply the Lagrange formula to interpolate for y(l.50) using some of the following values of the normal 
error function, y(x) = e-x212/Viir. 

xk 1.00 1.20 1.40 1.60 1.80 2.00 

Yk .2420 .1942 .1497 .1109 .0790 .0540 

The correct result is .1295. 

12.38. Use Lagrange's formula to inverse interpolate for the number x corresponding to y = .1300 in the data 
of Problem 12.37. 

12.39. Apply the method of Problem 12.12 to the inverse interpolation of Problem 12.38. 

12.40. Apply Bessel's formula to obtain y(1.30), y(1.50), and y(1.70) for the data of Problem 12.37. 
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12.41. In a table of the function y(x) = sinx to four decimal places, what is the largest interval h consistent with 
linear interpolation? (Keep truncation error well below .00005.) 

12.42. In a table of y(x) = sinx to five places, what is the largest interval h consistent with linear interpolation? 
Check these estimates against familiar tables of the sine function. 

12.43. If Everett's cubic polynomial were used for interpolations, rather than a linear polynomial, how large an 
interval h could be used in a four-decimal-place table of y(x) = sinx? In a five-place table? 

12.44. In quadratic approximation with Newton's formula, the function k(k- 1)(k- 2) appears in the 
truncation error estimate. Show that this function has the shape indicated in Fig. 12-5 and that for 
0 < k < 2 it does not exceed 2'1/3/9 in absolute value. 

Fig. 12-5 

12.45. The function k(e- 1)(k2
- 4) appears in the truncation error estimate for Stirling's formula. Diagram 

this for -2 < k < 2 and estimate its maximum absolute value for - t < k < t, which is the interval to 
which use of this formula is usually limited. 

12.46. Show that the relative maxima and minima of the polynomials 

increase in magnitude as their distance from the interval -1 < k < 1 increases. These polynomials 
appear in the truncation error for Stirling's formula. The implication is that this formula is most accurate 
in the center of the range of collocation. 

12.47. Show that the relative maxima and minima of the polynomials 

(k + 1)k(k- 1)(k- 2) (k + 2)(k + 1)k(k -1)(k- 2)(k- 3) 

increase in magnitude with distance from the interval 0 < k < 1. These polynomials appear in the 
truncation error for Everett's or Bessel's formula. The implication is that these formulas are most 
accurate over this central interval. 

12.48. How large an interval h is consistent with interpolation by Everett's fifth-degree formula if the function 
is y(x) = logx and five-place accuracy is required? 

12.49. Estimate the magnification of data inaccuracies due to second-degree interpolation. Follow the 
argument of Problems 12.22 and 12.23, with 0 < k < 1. 

12.50. Estimate the magnification of data inaccuracies due to fourth-degree interpolation, again for 0 < k < 1. 

12.51. Apply Stirling's formula to compute y(2. 718) from the data of Table 12.5. 

12.52. Compute sin 1.00015 from the data provided in Table 12.6. 
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12.53. Show that the Taylor series interpolation 

log (x + t) = log x +log (1 + _:) = log x + _:- __c_ + · · · 
X X 2x2 

may be truncated after the t 2 term with six-decimal-place accuracy for 1 < x, provided the tabular 
spacing ish= .01. 

12.54. Use Newton's backward formula to predict v'l.35, Vl.4o, and ViAs from the data of Table 12.2. 

12.55. Predict V1.4o and V1.50 from the data of Table 12.4. 

12.56. Diagram the error of the quadratic polynomial of Problem 6.14. Show that the error equals zero at 
x = - 3 as well as at the points of collocation. How can this be explained in terms of our collocation 
error formula n(x)y(3l(~)/3!? 

12.57. Ir; Problem 6.15 how can the zero error at x = 4 be explained in terms of the error formula 
n(x)/4l(~)/4!? 

12.58. Use the result of Problem 10.15 to estimate the missing y'(1). 

12.59. Use the result of Problem 10.16 to estimate the missing y"(1). 

12.60. Use the result of Problem 10.17 to estimate the missing y'(O) and y'(1). 



Chapter 13 

Numerical Differentiation 

APPROXIMATE DERIVATIVES 

Approximate derivatives of a function y (x) may be found from a polynomial approximation p (x) 
simply by accepting p 1

, p(2
), p(3

), ... in place of y 1
, /

2
), y(3), .... Our collocation polynomials lead 

to a broad variety of useful formulas of this sort. The three well-known formulas 

y(x) 
y(x +h)- y(x) 

h 
1() y(x+h)-y(x-h) 

y X = 
2h 

yl(x) 
y(x)- y(x- h) 

h 

follow by differentiation of the Newton forward, Stirling, and Newton backward formulas, 
respectively, il'l each case only one term being used. More complicated formulas are available simply 
by using more terms. Thus 

I 1 [ ( 1) 2 3k
2

- 6k + 2 3 ] Y (x) = h ~Yo+ k- 2. ~ Yo+ 
6 

~ Yo+ · · · 

comes from the Newton formula, while 

1 ( ) 1 ( _>: 2 3k
2 

- 1 3 ) Y X =h uf.1Yo+kc5 Yo+-
6
-D f.lYo+ · · · 

results from differentiating Stirling's. Other collocation formulas produce similar approximations. 
For second derivatives one popular result is 

and comes from the Stirling formula. Retaining only the first term, we have the familiar 

(2)( )_y(x+h)-2y(x)+y(x-h) 
y x - hz 

SOURCES OF ERROR IN APPROXIMATE DIFFERENTIATION 

The study of test cases suggests that approximate derivatives obtained from collocation 
polynomials be viewed with skepticism unless very accurate data are available. Even then the 
accuracy diminishes with increasing order of the derivatives. 

The basic difficulty is that y(x)- p(x) may be very small while y 1(x)- p 1(x) is very large. In 
geometrical language, two curves may be close together but still have very different slopes. All the 
other familiar sources of error are also present, including input errors in the y; values, truncation 
errors such as yl- p 1

, /
2
)- p(2

), etc., and internal roundoffs. 
The dominant error source is the input errors themselves. These are critical, even when small, 

because the algorithms magnify them enormously. A crucial factor in this magnification is the 
reciprocal power of h which occurs in the formulas, multiplying both the true values and the errors 
which are blended together to make the y; data. An optimum choice of the interval h may sometimes 
be made. Since truncation error depends directly on h, while input error magnification depends 
inversely, the usual method of calculus may be used to minimize the combination. 

Large errors should be anticipated in approximate derivatives based on collocation polynomials. 
Error bounds should be obtained whenever possible. Alternative methods for approximate 
differentiation may be based upon polynomials obtained by least squares or min-max procedures 
rather than by collocation. (See Chapters 21 and 22.) Since these methods also smooth the given 

108 
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data, they are usually more satisfactory. Trigonometric approximation (Chapter 24) provides still 
another alternative. 

Solved Problems 

13.1. Differentiate Newton's forward formula, 

The Stirling numbers may be used to express the factorials as powers, after which an easy 
computation produces derivatives relative to k. With the operator D continuing to represent such 
derivatives, Dpk> D2Pk, ... , we use the familiar x = x0 + kh to obtain derivatives relative to the 
argument x. 

The results are 

p'(x) = Dpk 
h 

<Zl( ) - Dzpk 
p X - h2 

and so on 

13.2. Apply the formulas of Problem 13.1 to produce p'(1), p<2l(1), and p<3l(1) from the data of 
Table 13.1. (This is the same as Table 12.2 with the differences beyond the third suppressed. 
Recall that those differences were written off as error effects. The table is reproduced here for 
convenience.) 

Table 13.1 

X y(x) =Vx 
1.00 1.00000 

2470 
1.05 1.02470 -59 

2411 5 
1.10 1.04881 -54 

2357 4 
1.15 1.07238 -50 

2307 2 
1.20 1.09544 -48 

2259 3 
1.25 1.11803 -45 

2214 
1.30 1.14017 
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With h = .05, and k = 0 at x0 = 1.00, our formulas produce 

p 1 (1) = 20(.02470 + .000295 + .000017) = .50024 

p(2)(1) = 400( -.00059- .00005) = - .256 

p(3)(1) = 8000(.00005) = .4 

The correct results are, since y(x) = Vx, Y1(1) = t yC2l(1) = - t and y(3l(1) = i. 

[CHAP. 13 

Though the input data are accurate to five decimal places, we find p 1(1) correct to only three places, 
p(2)(1) not quite correct to two places, and p<3l(l) correct to only one. Obviously, algorithm errors are 
prominent. 

13.3. Differentiate Stirling's formula, 

(k) k (k) 2 (k + 1) 3 k (k + 1) 4 Pk =Yo+ 1 Of.lYo + 2 1 0 Yo+ 3 O .UYo + 4 
3 

o Yo+··· 

Proceeding as in Problem 13.1, we find 

I 1 ( 2 3k
2 

- 1 3 2k
3 

- k 4 ) 
P (x) = h Df-lYo + ko Yo+ - 6- D f-lYo + ----u- D Yo+ · · · 

1 
p<3l(x) =h3(0 3f-lYo + kD 4Yo + · · ·) 

p<4l(x) = ~ (D 4Yo + · · ·) and so on 

13.4. Apply the formulas of Problem 13.3 to produce p 1 (1.10), p<2l(l.10), and p<3l(1.10) from the 
data of Table 13.1. 

With k = 0 at x0 = 1.10, our formulas produce 

[
.02411 + .02357 0 1 (.00005 + .00004)] 4766 

pl(l.lO) = 20 2 + -6 2 =. 

p(2)(1.10) = 400( -.00054 + 0) = -.216 

p(3)(1.10) = 8000(.000045) = .360 

The correct results are y 1 (1.10) = .47674, yC2l(1.10) = - .2167, and yC3l(1.10) = .2955. 
The input data were correct to five places, but our approximations to these first three derivatives 

are correct to roughly four, three, and one place, respectively. 

13.5. The previous problems suggest that approximate differentiation is an inaccurate affair. 
Illustrate this further by comparing the function y (x) = e sin (xI e2

) with the polynomial 
approximation p(x) = 0. 

The two functions collocate at the equally spaced arguments x = ie 2:rr for integers i. For a very small 
number e, the approximation is extremely accurate, y(x)-p(x) never exceeding e. However, since 
y 1 (x) = (1/ e) cos (xI e2

) and p 1 (x) = 0, the difference in derivatives is enormous. This example shows that 
accurate approximation of a function should not be expected to mean accurate approximation of its 
derivative. See Fig. 13-1. 
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Fig. 13-1 

13.6. Problems 13.1, 13.3, and 13.23 suggest three approximations to y'(x0 ) using only first 
differences, 

Y1- Yo 
h 

Y1 -y-l 

2h 
Yo- Y-1 

h 

Interpreted geometrically, these are the slopes of the three lines shown in Fig. 13-2. The 
tangent line at x0 is also shown. It would appear that the middle approximation is closest to 
the slope of the tangent line. Confirm this by computing the truncation errors of the three 
formulas. 

h h 

Fig. 13-2 

Newton's forward formula, truncated after the first difference term, leaves the truncation error 

h2 
y(x)- p(x) = Z [k(k -1)/2)(~)] 

with x = x0 + kh as usual. It is helpful here to consider k as a continuous argument, no longer restricting 
it to integer values. Assuming /2l(~) continuous, we then find the error of our derivative formula (by 
the chain rule) for k = 0. 

Note that for k = 0 the derivative of the troublesome / 2
)( ~) factor is not involved. Similarly for 

Newton's backward formula, 

With Stirling's formula we receive an unexpected bonus. Retaining even the second difference term 
in our approximation we find that at k = 0 it disappears from p'(x). (See Problem 13.3.) Thus we may 
consider the middle approximation under discussion as arising from a second-degree polynomial 
approximation. The truncation error is then 

h2 
y(x)- p(x) =(j [(k + 1)k(k -1)/3)(~)] 

leading to 
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It is true that the symbol £ probably represents three distinct unknown numbers in these three 
computations. But since h is usually small, the appearance of h2 in the last result, compared with h in 
the others, suggests that this truncation error is the smallest, by an "order of magnitude." This confirms 
the geometrical evidence. 

13.7. Apply the middle formula of Problem 13.6 to approximate y'(l.lO) for the data of Table 13.1. 
Find the actual error of this result and compare with the truncation error estimate of Problem 
13.6. 

This approximation is actually the first term computed in Problem 13.4: y '(1.10) = .4768. The actual 
error is, to five places, 

y'(l.lO)- .4768 = .47674- .47680 = - .00006 

The estimate obtained in Problem 13.6 was -h2y(3l(£)/6. Since yl3l(x) = ~x-512 we exaggerage only 
slightly by replacing the unknown~ by 1, obtaining -hV3l(£)/6 = -(.05f(-h) = -.00016. This estimate 
is generous, though not unrealistic. 

13.8. Convert the formula for p'(x0) obtained in Problem 13.3 to a form which exhibits the Yk 

values used rather than the differences. 

We have k = 0 for this case, making 

1 [1 1 J 1 p'(xo) = h z (yi- Y-I)- U (y2- 2yi + 2y_I- Y-z = 12h (Y-2- 8y_I + 8y1- Y2) 

13.9. Estimate the truncation error in the formula of Problem 13.8. 

Since the formula was based on Stirling's fourth-degree polynomial, 

h5(k 2
- 4)(k2

- 1)kyl5l(£) 

120 
y(x)- p(x) 

Differentiating as in Problem 13.6 and putting k = 0, y'(x 0)- p'(x0) = hV5l(£)/30. 

13.10. Compare the estimate of Problem 13.9 with the actual error of the computed result in 
Problem 13.4. 

To five places the actual error is 

y'(l.lO)- p'(l.lO) = .47674-.47660 = .00014 

while the formula of Problem 13.9, with yl5l(1) substituting for the unknown yl5l(£) and causing a slight 
exaggeration, yields 

hVs)C£) = c.os)4(2) = .oooooo1 
30 64 

Surely this is disappointing! Though the truncation error has been essentially eliminated by using 
differences of higher order, the actual error is greater. Clearly another source of error is dominant in 
these algorithms. It proves to be the input errors of they; values, and how the algorithm magnifies them. 
For brevity we shall include this in the term roundoff error. 

13.11. Estimate the roundoff error behavior for the formula (y1 - y_ 1)/2h. 

As before, let Y; and Y_1 be the exact (unknown) data values. Then Y; = y1 + e1 and Y_ 1 = y_1 + e_1 
with e1 and e_ 1 representing data errors. The difference 
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is then the error in our output due to input inaccuracies. If e1 and e_, do not exceed E in magnitude, 
then this output error is at worst 2E/2h, making the maximum roundoff errorE/h. 

13.12. Apply the estimate of Problem 13.11 to the computation of Problem 13.7. 

Here h = .05 and E = .000005, making E/h = .00010. Thus roundoff error in the algorithm may 
influence the fourth place slightly. 

13.13. Estimate roundoff error behavior for the formula of Problem 13.8. 

Proceeding just as in Problem 13.10, we find (1/12h)(e_2 - 8e_ 1 + 8e 1 - e2) for the error in the output 
due to input inaccuracies. If the ek do not exceed E in magnitude, then this output error is at worst 
18E/12h, i.e., maximum roundoff error= (3/2h)E. The factor (3/2h) is the magnification factor, as 
(1/h) was in Problem 13.11. Note that for small h, which we generally associate with high accuracy, this 
factor is large and roundoff errors in the input information become strongly magnified. 

13.14. Apply the estimate of Problem 13.13 to the computation of Problem 13.4. Then compare the 
various errors associated with our efforts to compute y '(1.10). 

With h = .05 and E = .000005, (3/2h)E = .00015. The various errors are grouped in Table 13.2. 

Table 13.2 

Formula Actual error Est. trunc. error Max. R.O. error 

(y1- Y-1)/Zh -.00006 -.00016 ±.00010 
(Y-z- 8y_1 + 8y1- y2)/12h .00014 .0000007 ±.00015 

In the first case roundoff error has helped, but in the second case it has hurt. Plainly, the high 
magnification of such errors makes low truncation errors pointless, except for extremely accurate data. 

13.15. Estimate the truncation error of the formula 

(2) - 1 2 - 1 
Y (xo)- -,;'2 D Yo- -,;'2 (YI- 2yo + Y-I) 

obtainable from Problem 13.3 by stopping after the second difference term. 

Here it may be convenient to follow a different route to the truncation error, using Taylor series. In 
particular 

1 1 1 
Y-1 =Yo- hy~ + 2 h 2

Yh
2
)- 6 h 3

yh
3

) + 24 hV4l(~z) 

so that adding these up and then subtracting 2y0 we find 

bzyo = hzy~z) + ~h4[yl4l(~,) + y<4)(~z)] 

Unfortunately ~1 is probably not the same as ~2 , but for an estimate of truncation error suppose we 
replace both fourth derivatives by a number yl4

l which remains open for our choice. For complete safety 
we could choose yl4l =max ll4l(x)l over the interval involved, leading to an upper bound for the 
magnitude of truncation error, but conceivably other choices might be possible. We now have 

1 h2 

Truncation error= yh2
)- J;i b 2y0 = - i2 yl4l 
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13.16. Apply the estimate in Problem 13.15 to the computation of Problem 13.4. 

The computation of pC2l(1.10) in Problem 13.4 was actually made by the formula 

p(2l(1.10) = c5
2

;'
0 = - . 21600 

h 

since higher difference terms contributed nothing. The result has already been compared with the 
correct y"(l.lO) = -.21670. The truncation error estimate of Problem 13.15, with 

yC4l(x) = _ _!2 x-112 = _ _!2 
16 16 

suggests a slight exaggeration 

0 1 
TruncatiOn error= 

5120 
= .00020 

The actual error is -.00070, again indicating that truncation is not the major error source. 

13.17. Estimate the roundoff error of the formula cPy0 /h 2
• 

Proceeding as before, we find the output error due to input inaccuracies to be (1/h2)(e1 - 2e0 + e_ 1) 

where the ek are the input errors. If these do not exceed E in magnitude, then this can be at worst 
(4/h 2)E; thus the maximum roundoff error= (4/h 2)E. 

13.18. Apply the formula of Problem 13.17 to the computation of Problem 13.4 and compare the 
actual error of our approximation to yC2l(l.10) with truncation and roundoff estimates. 

As before h = .05 and E = .000005, making (4/h 2)E = .00800. 

The magnification factor (4/h2
) has a powerful effect. Our results confirm that roundoff has been 

the principal error source in our approximation of yl2l(l.10), and it has contributed only about 90 of a 
potential 800 units. 

Actual error Est. truncation error Max. R.O. error 

-.00070 .00020 ±.00800 

13.19. Apply the splines of Problems 9. 7 and 9.8 to find approximate derivatives of the sine function. 

In Problem 9.7 we found the natural spline, having zero second derivatives at the endpoints. Since 
the sine itself has these end derivatives, the natural spline is appropriate in this case. Taking the center 
point first, we find the derivative of the center spline segment S2 to be 

27V3 
S~(x) = - l0n3 (2nx - n 2

) 

which is precisely zero at x = n/2. Clearly the symmetry has been helpful. A fairer test may be made at 
x = n/3 which was one of the knots, where we findS~ to be .496. The error of .4 percent may be judged 
keeping in mind that only three spline segments were used over the interval (0, n). 

In Problem 9.8 we found the spline that matched the endpoint first derivatives of the sine function. 
For the center section we found 

'( ) 2n- 9...;3 2 
S 2 x =~(2nx-n) 

which is again zero at x = n/2. At x = n/3, it manages (9...;3- 2n)/6n or .494. 
For the second derivative the anticipated deterioration again appears. The natural spline predicts 

S~ = - . 948 for the entire center interval, where the true second derivative ranges from - .866 to -1. 
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13.20. How can the Richardson extrapolation method be applied to numerical differentiation? 

As usual, information about the error in an approximation formula is used to make a correction. As 
an illustration take the central formula 

'() y(x+h)-y(x-h) 
y x 2h +T 

where Tis the truncation error. An easy calculation using Taylor series finds 

T = a1h 2 + a2h 4 + a3h
6 + · · · 

Making two applications, using h and h/2, we have 

y'(x) = F(h) + a1h
2 + a2h

4 + · · · 

(h) a h2 
a h

4 

y'(x) = F - +-1-+-2-+ .. · 
2 4 16 

with F(h) and F(h/2) denoting the approximate derivatives, and where we assume that the a; do not 
change much for small h. Eliminating the a1 terms leads to 

so that in 

(~) _ 4F(h/2)- F(h) 
F; 2 - 3 

we have an approximate differentiation formula of fourth-order accuracy, obtained by combining two 
results from a formula of second-order accuracy. 

The argument can now be repeated, beginning with 

and eliminating the b1 term to produce an approximation 

(~)- 16F;(h/4)- F;(h/2) 
F; 2 - 15 

with sixth-order accuracy. Clearly further repetitions are possible, the overall process being known as 
extrapolation to the limit. 

The set of approximations calculated during an extrapolation to the limit is usually displayed as 
follows: 

F F1 Fz F3 

h F(h) 
h/2 F(h/2) F;(h/2) 
h/4 F(h/4) F;(h/4) F;(h/4) 
h/8 F(h/8) F;(h/8) F;(h/8) F':J(h/8) 

more entries being added as needed. The general formula is this: 

It is not hard to modify the process just sketched so that the step size is reduced in some other way, 
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perhaps hi= rHh 1 with h 1 the initial h. An arbitrary sequence of h, could even be handled at little cost. 
Examples exist to show that sometimes these variations can be profitable. 

13.21. Apply Richardson extrapolation to the function y(x) = -l/x to find y'(.OS). The exact value 
is 400. 

The computations are summarized in Table 13.3 and were carried out on an eight-digit computer. 
The original formula of Problem 13.20 produced the column headed F (all table entries being reduced 
by 400) so its best effort, for h = .0001, was off in the third decimal place. After that roundoff error took 
over. Looking elsewhere in the table one sees that values almost correct to five places appear. 

Table 13.3t 

h F F1 F2 F3 

.0128 28.05289 

.0064 6.66273 -.46732 

.0032 1. 64515 -.02737 .00196 

.0016 .41031 -.00130 .00043 .00041 

.0008 .10250 -.00010 -.00002 -.00002 

.0004 .02625 .00084 .00090 .00091 

.0002 .00750 .00125 .00127 .00127 

.0001 .00500 .00417 .00436 .00441 

.00005 .01000 .01166 .01215 .01227 

t Entries reduced by 400 

Supplementary Problems 

13.22. Differentiate Bessel's formula, obtaining derivatives up to p<5l(x) in terms of differences through the 
fifth. 

13.23. Apply the results of the previous problem to produce p', p(2), and p<3l at x = 1.125 from the data of 
Table 13.1. 

13.24. Find the truncation error of the formula for p'(x) obtained in Problem 13.22 using k = 4. Estimate it by 
using ; = 1. Compare with the actual error. 

13.25. Find the maximum possible roundoff error of the formula of the previous problem. Compare the actual 
error with the truncation and roundoff error estimates. 

13.26. Show that Stirling's formula of degree six produces 

1( 1, 1 ) p'(xo) = h D/1-Yo- 6 D3
!1-Yo + 3Q D5

/1-Yo 

Show that the truncation error of this formula is -h6y(7l(;)/140. 

13.27. Convert the formula of the previous problem to the form 

p'(xa) = ~h (- Y-3 + 9y_ 2 - 45y_ 1 + 45yl- 9yz + Y3) 

and prove that the maximum roundoff error is 11E/6h. 
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13.28. Find the argument corresponding toy'= 0 in Table 13.4 by inverse cubic interpolation, using either the 
Lagrange or Everett formula. (See again Problems 12.11 and 12.12.) Then find the corresponding y 
value by direct interpolation. 

Table 13.4 

X y y' 

1.4 .98545 .16997 

1.5 .99749 .07074 

1.6 .99957 -.02920 

1.7 .99166 -.12884 

13.29. Ignoring the top and bottom lines of Table 13.4, apply Hermite's formula to find a cubic polynomial 
fitting the remaining data. Where does the derivative of this cubic equal zero? Compare with the 
previous problem. [Here the data correspond to y(x) = sinx and so the correct argument is .n/2.] 

13.30. The normal distribution function y(x) = (1/V2Ji)e-x
212 

has an inflection point exactly at x = 1. How 
closely could this be determined from each of the following four-place data tables independently? 

X y X y 

.50 .3521 .98 .2468 

.75 .3011 .99 .2444 

1.00 .2420 1.00 .2420 

1.25 .1827 1.01 .2396 

1.50 .1295 1.02 .2371 

13.31. From Problems 13.9 and 13.13 we find the combined truncation and roundoff errors of the 
approximation 

y'(xo) = l;h (Y-z- 8y_I + 8y1- Yz) 

to have the form Ah4 + 3E/2h where A= li5>(;)/301. For what interval h will this be a minimum? 
Compute your result for the square root function and five-place accuracy. 

13.33. Show that the maximum roundoff error of the formula in Problem 13.38 is 16E/h4
• 



Chapter 14 

Numerical Integration 

The importance of numerical integration may be appreciated by noting how frequently the 
formulation of problems in applied analysis involves derivatives. It is then natural to anticipate that 
the solutions of such problems will involve integrals. For most integrals no representation in terms of 
elementary functions is possible, and approximation becomes necessary. 

POLYNOMIAL APPROXIMATION 

Polynomial approximation serves as the basis for a broad variety of integration formulas, the 
main idea being that if p(x) is an approximation to y(x), then 

f p(x) dx = f y(x) dx 

and on the whole this approach is very successful. In numerical analysis integration is the "easy" 
operation and differentiation the "hard" one, while the reverse is more or less true in elementary 
analysis. The best-known examples are the following: 

1. Integrating Newton's forward formula of degree n between x 0 and Xn (the full range of 
collocation) leads to several useful formulas, including 

for n = 1, 2, and 3. The truncation error of any such formula is 

rn y(x) dx- rn p(x) dx 
xo xo 

and may be estimated in various ways. A Taylor series argument, for example, shows this 
error to be approximately -h3y<2l(£)/12 when n = 1, and approximately -h5y<4l(£)/90 
when n =2. 

2. Composite formulas are obtained by applying the simple formulas just exhibited repeatedly 
to cover longer intervals. This amounts to using several connected line segments or 
parabolic segments, etc., and has advantages in simplicity over the use of a single 
high-degree polynomial. 

3. The trapezoidal rule, 

is an elementary, but typical, composite formula. It, of course, uses connected 
line segments as the approximation to y (x ). Its truncation error is approximately 
-(xn- Xo)h 2y<2l(£)/12. 

4. Simpson's rule, rn y(x) dx =~(Yo+ 4y1 + 2y2 + 4y3 + · · · + 2Yn-2 + 4Yn- 1 + Yn) 
xo 

118 



CHAP. 14] NUMERICAL INTEGRATION 119 

is also a composite formula, and comes from using connected parabolic segments as the 
approximation to y(x). It is one of the most heavily used formulas for approximate 
integration. The truncation error is about -(xn- x0)h 4yC4l(.;)/180. 

5. Romberg's method is based upon the fact that the truncation error of the trapezoidal rule is 
nearly proportional to h2

• Halving h and reapplying the rule thus reduces the error by a 
factor of !. Comparing the two results leads to an estimate of the error remaining. This 
estimate may then be used as a correction. Romberg's method is a systematic refinement of 
this simple idea. 

6. More complex formulas may be obtained by integrating collocation polynomials over less 
than the full range of collocation. For example, Simpson's rule with correction terms may 
be derived by integrating Stirling's formula of degree six, which provides collocation at 
x_3 , ••• , x3 , over just the center two intervals x_ 1 to x 1, and then using the result to 
develop a composite formula. The result is 

fXn h h (04 04 04 y(x)dx=-(yo+4y1+2yz+···+yn)-9Q Y1+ y3+···+ Yn-1) 
xo 3 

h ( >:6 6 >:6 +- u Y1 + 0 Y3 + · · · + u Yn-1) 
756 

the first part of which is Simpson's rule. 

7. Gregory's formula takes the form of the trapezoidal rule with correction terms. It may be 
derived from the Euler-Maclaurin formula by expressing all derivatives as suitable 
combinations of differences to obtain 

f
Xn h 

y(x) dx = 2 (Yo+ 2y1 + · · · + 2Yn-1 + Yn) 
xo 

h h 2 ~ l9h 3 3 - U (v'yn- Llyo)- 24 (V Yn + Ll-yo)-
720 

(V Yn- Ll Yo)- · · · 

and again the first part is the trapezoidal rule. The Euler-Maclaurin formula itself may be 
used as an approximate integration formula. 

8. Taylor's theorem may be applied to develop the integrand as a power series, after which 
term-by-term integration sometimes leads to a feasible computation of the integral. More 
sophisticated ways of using this theorem have also been developed. 

9. The method of undetermined coefficients may be used to generate integration formulas of a 
wide variety of types for special purposes. 

10. Adaptive integration covers the many methods that have been devised to deal with the fact 
that most functions are harder to integrate accurately over certain intervals than over 
others. A particularly difficult section might, for example, force the use of a very small h 
value in Simpson's rule and lead to a great deal of unnecessary computation. Adaptive 
methods use finer subdivisions only where they are actually needed. One systematic way of 
doing this will be illustrated. 

ERROR SOURCES 

The usual error sources are present. However, input errors in the data values y0 , ••• , Yn are not 
magnified by most integration formulas, so this source of error is not nearly so troublesome as it is in 
numerical differentiation. The truncation error, which is 

f [y(x)- p(x)] dx 
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for our simplest formulas, and a composite of similar pieces for most of the others, is now the major 
contributor. A wide variety of efforts to estimate this error have been made. A related question is that 
of convergence. This asks whether, as continually higher degree polynomials are used, or as 
continually smaller intervals hn between data points are used with lim hn = 0, a sequence of 
approximations is produced for which the limit of truncation error is zero. In many cases, the 
trapezoidal and Simpson rules being excellent examples, convergence can be proved. Roundoff 
errors also have a strong effect. A small interval h means substantial computation and much 
rounding off. 

These algorithm errors ultimately obscure the convergence which should theoretically occur, and 
it is found in practice that decreasing h below a certain level leads to larger errors rather than 
smaller. As truncation error becomes negligible, roundoff errors accumulate, limiting the accuracy 
obtainable by a given method. 

Solved Problems 

14.1. Integrate Newton's formula for a collocation polynomial of degree n. Use the limits x0 and xn 
which are the outside limits of collocation. Assume equally spaced arguments. 

This involves integrating a linear function from x 0 to x 1 , or a quadratic from x 0 to x 2 , and so on. See 
Fig. 14-1. 

Fig. 14-1 

The linear function certainly leads to ~h(y0 + y1). For the quadratic 

1 ) 2 Pk =Yo+ k!'l.yo + 2 k(k- 1 !'l. Yo 

and easy computation produces, since x = Xo + kh, 

For the cubic polynomial a similar calculation produces 

Results for higher-degree polynomials can also be obtained in the same form 

f" p(x) dx = Ch(CoYo + · · · + CnYn) 
xo 
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and values of C and C; for the first few values of n are given in Table 14.1. Such formulas are called the 
Cotes formulas. 

Table 14.1 

n c Co c1 Cz c3 c4 Cs c6 c, Cs 

1 1/2 1 1 
2 1/3 1 4 1 

3 3/8 1 3 3 1 

4 2/45 7 32 12 32 7 

6 1/140 41 216 27 272 27 216 41 

8 4/14,175 989 5888 -928 10,496 -4540 10,496 -928 5888 989 

Higher-degree formulas are seldom used, partly because simpler and equally accurate formulas are 
available, and partly because of the somewhat surprising fact that higher-degree polynomials do not 
always mean improved accuracy. 

14.2. Estimate the truncation error of the n = 1 formula. 

For this simple case we can integrate the formula 

directly and apply the mean value theorem as follows, obtaining the exact error: 

where h = x 1 - x 0 . The application of the mean value theorem is possible because (x - x 0)(x- x 1) does 
not change sign in (x 0 , x1). The continuity of y<2J(s) is also involved. For n > 1 a sign change prevents a 
similar application of the mean value theorem and many methods have been devised to estimate 
truncation error, most having some disadvantages. We now illustrate one of the oldest methods, using 
the Taylor series, for the present simple case n = 1. First we have 

Using an indefinite integral F(x), where F'(x) = y(x), we can also find 

J.
xl 1 1 1 1 

y(x) dx = F(xt)- F(xo) = hF'(xo) +- h 2F(2l(x0) + -
6 

h 3F(3l(xo) + · · · = hy0 +- h2Yo + -
6 

h3yh2
) + · · · 

xo 2 2 

and subtracting, 

presenting the truncation error in series form. The first term may be used as an error estimate. It should 
be compared with the actual error as given by - (h 3/12)y<2J(s) where x 0 < s <x1 • 

14.3. Estimate the truncation error of the n = 2 formula. 
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Proceeding as in the previous problem, we find first 

1 1[ ( 1 1 1 ) 3h(Yo + 4yl +h) =3h Yo+ 4 Yo+ hyb + 2h2Yb2
l +6h3Yb3

l +24h2Yb4
l + · · · 

+(Yo+ 2hyb + 2h2Yb2
l + ~ h 3Yb3

l + ~ h4Yb4
l + · · ·) J 

= ~ h( 6y0 + 6hyb + 4h2yb2
l + 2h3yb3

l + ~ h4yb4
l + .. ·) 

The integral itself is 

rz J. y(x) dx = F(x2 )- F(x0 ) 

xo 

and subtracting, 

we again have the truncation error in series form. The first term will be used as an approximation. It can 
also be shown that the error is given by - (h 5 /90)y<4l( ;) where x0 <; < x 2 • (See Problem 14.65.) 

A similar procedure applies to the other formulas. Results are presented in Table 14.2, the first 
term only being shown. 

Table 14.2 

n Truncation error n Truncation error 

1 - (h 3 /12)y<2
) 4 - (8h 7 /945)y<6

) 

2 - (h 5 /90)y<4l 6 -(9h9 /1400)y<8
) 

3 - (3h 5 /80)y<4
l 8 - (2368h II I 467' 775)y (IO) 

Notice that formulas for odd n are comparable with those for the next smaller integer. (Of course, 
such formulas do cover one more interval of length h, but this does not prove to be significant. The even 
formulas are superior.) 

14.4. Derive the trapezoidal rule. 

This ancient formula stills finds application and illustrates very simply how the formulas of Problem 
14.1 may be stretched to cover many intervals. The trapezoidal rule applies our n = 1 formula to 
successive intervals up to Xn. 

This leads to the formula 

which is the trapezoidal rule. 
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14.5. Apply the trapezoidal rule to the integration of Vx between the arguments 1.00 and 1.30. Use 
the data of Table 13.1. Compare with the correct value of the integral. 

We easily find 

i!.30 05 
Vx dx = :...._ [1 + 2(1.02470 + ... + 1.11803) + 1.14017] = .32147 

1.00 2 

The correct value is H(1.3)312 -1] = .32149 to five places, making the actual error .00002. 

14.6. Derive an estimate of the truncation error of the trapezoidal rule. 

The result of Problem 14.2 may be applied to each interval, producing a total truncation error of 
about 

Assuming the second derivative bounded, m < yi 2
l < M, the sum in brackets will be between nm and 

nM. Also assuming this derivative continuous allows the sum to be written as nyi2l(;) where x 0 <; < x". 
This is because yi2l(;) then assumes all values intermediate tom and M. It is also convenient to call the 
ends of the interval of integration x 0 =a and x" = b, making b- a= nh. Putting all this together, we 
have 

(b- a)h 2 

Truncation error= - --
1
-
2

- i 2l( ;) 

14.7. Apply the estimate of Problem 14.6 to our square root integral. 

With h = .05, b- a= .30, and yi2l(x) = - x- 312 /4, truncation error= .000016 which is slightly Jess 
than the actual error of .00002. However, rounding to five places and adding this error estimate to our 
computed result does produce .32149, the correct result. 

14.8. Estimate the effect of inaccuracies in the Yk values on results obtained by the trapezoidal rule. 

With Yk denoting the true values, as before, we find ~h(e0 + 2e1 + · · · + 2e"_ 1 +en) as the error due 
to inaccuracies ek = Yk - Yk· If the ek do not exceed E in magnitude, this output error is bounded by 
~h[E + 2(n -1)£ +E)= (b- a)E. 

14.9. Apply the above to the square root integral of Problem 14.5. 

We have (b- a)E = (.30)(.000005) = .0000015, so that this source of error is negligible. 

14.10. Derive Simpson's rule. 

This may be the most popular of all integration formulas. It involves applying our n = 2 formula to 
successive pairs of intervals up to x", obtaining the sum 

which simplifies to 

This is Simpson's rule. It requires n to be an even integer. 
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14.11. Apply Simpson's rule to the integral of Problem 14.5. 

f
l.30 05 

Vx dx = .:____ (1.0000 + 4(1.02470 + 1.07238 + 1.11803) + 2(1.04881 + 1.09544) + 1.14017] = .32149 
1.00 3 

which is correct to five places. 

14.U. Estimate the truncation error of Simpson's rule. 

The result of Problem 14.3 may be applied to each pair of intervals, producing a total truncation 
error of about 

-~ (y(4) +y(4) + ... +y(4)) 
90 

0 2 n-2 

Assuming the fourth derivative continuous allows the sum in brackets to be written as (n/2)y'4l(~) where 
x0 < ~ < Xn- (The details are almost the same as in Problem 14.6.) Since b -a= nh, 

. (b-a)h 4 

Truncation error= -~ y'4l(~) 

14.13. Apply the estimate of Problem 14.12 to our square root integral. 

Since yl4l(x) = - iix-712
, truncation error= .00000001 which is minute. 

14.14. Estimate the effect of data inaccuracies on results computed by Simpson's rule. 

As in Problem 14.8, this error is found to be 

and if the data inaccuracies ek do not exceed E in magnitude, this output error is bounded by 

exactly as for the trapezoidal rule. Applying this to the square root integral of Problem 14.11 we obtain 
the same .0000015 as in Problem 14.9, so that once again this source of error is negligible. 

14.15. Compare the results of applying Simpson's rule with intervals 2h and h and obtain a new 
estimate of truncation error. 

Assuming data errors negligible, we compare the two truncation errors. Let £ 1 and E 2 denote these 
errors for the intervals 2h and h, respectively. Then 

E = _ (b- a)(2ht <4l(!::) 
1 180 y ':ol 

E = _(b-a)h4 (4)(!::) 
2 180 y "' 2 

so that £ 2 = Ed16. The error is reduced by a factor of 16 by halving the interval h. This may now be 
used to get another estimate of the truncation error of Simpson's rule. Call the correct value of the 
integral I, and the two Simpson approximations A 1 and A 2 • Then 

I= A1 + £ 1 = A 2 + E2 = A1 + 16Ez 

Solving for £ 2 , the truncation error associated with interval h is £ 2 = (A 2 - A 1)/15. 

14.16. Use the estimate of Problem 14.15 to correct the Simpson's rule approximation. 

This is an elementary but very useful idea. We find 

I =Az + Ez =Az + A 2 -A 1 = 16A2 -A1 

15 15 
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14.17. Apply the trapezoidal, Simpson, and n = 6 formulas to compute the integral of sinx between 
0 and :rr/2 from the seven values provided in Table 14.3. Compare with the correct value of 1. 

Table 14.3 

X 0 n/12 2n/12 3n/12 4n/12 5n/12 n/2 

sinx .00000 .25882 .50000 .70711 .86603 .96593 1.00000 

The trapezoidal rule produces .99429. Simpson manages 1.00003. Then= 6 formula leads to 

n 
140(12) [41(0) + 216(.25882) + 27(.5) + 272(.70711) + 27(.86603) + 216(.96593) + 41(1)] = 1.000003 

Clearly then= 6 rule performs best for this fixed data supply. 

14.18. Show that to obtain the integral of the previous problem correct to five places by using the 
trapezoidal rule would require an interval h of approximately .006 radian. By contrast, Table 
14.3 hash= :rr/12 = .26. 

The truncation error of Problem 14.6 suggests that we want 

(b- a)h 2 (n/2)h 2 

_1_2_ y<2)( ;) ~ -12-<. 000005 

which will occur provided h < .006. 

14.19. What interval h would be required to obtain the integral of Problem 14.17 correct to five 
places using Simpson's rule? 

The truncation error of Problem 14.12 suggests 

(b- a)h4 (n/2)h4 

1sO i 4
)(;) ~ ~ < .000005 

or h < .15 approximately. 

14.20. Prove that the trapezoidal and Simpson's rules are convergent. 

If we assume truncation to be the only source of error, then in the case of the trapezoidal rule 

where I is the exact integral and A the approximation. (Here we depend upon the exact representation 
of truncation error mentioned at the end of Problem 14.2.) If lim h = 0 then assuming y<2

J bounded, 
lim (I- A)= 0. (This is the definition of convergence.) 

For Simpson's rule we have the similar result 

If lim h = 0 then assuming y<4
J bounded, lim (I- A)= 0. Multiple use of higher-degree formulas also 

leads to convergence. 

14.21. Apply Simpson's rule to the integral f012 sin x dx, continually halving the interval h in the 
search for greater accuracy. 
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Machine computations, carrying eight digits, produce the results in Table 14.4. 

Table 14.4 

h Approx. integral h Approx. integral 

n/8 1.0001344 n/128 .99999970 

n/16 1.0000081 n/256 .99999955 

n/32 1.0000003 n/512 .99999912 

n/64 . 99999983 (best) n/1024 .99999870 

14.22. The computations of Problem 14.21 indicate a durable error source which does not disappear 
as h diminishes, actually increases as work continues. What is this error source? 

For very small intervals h the truncation error is small and, as seen earlier, data inaccuracies have 
little impact on Simpson's rule for any interval h. But small h means much computing, with the prospect 
of numerous computational roundoffs. This error source has not been a major factor in the much briefer 
algorithms encountered in interpolation and approximate differentiation. Here it has become dominant 
and limits the accuracy obtainable, even though our algorithm is convergent (Problem 14.20) and the 
effect of data inaccuracies small (we are saving eight decimal places). This problem emphasizes the 
importance of continuing search for briefer algorithms. 

14.23. Develop the idea of Problems 14.15 and 14.16 into Romberg's method of approximate 
integration. 

Suppose that the error of an approximate formula is proportional to h". Then two applications of 
the formula, with intervals h and 2h, involve errors 

E 2 = Ch" 

making E2 = £ 1 /2". With I= A 1 + E 1 = A 2 + E2 as before, we soon find the new approximation 

A 2 -A 1 2"Az-A 1 

I=A 2 + 2n_ 1 =~ 

For n = 4 this duplicates Problem 14.16. For n = 2 it applies to the trapezoidal rule in which the 
truncation error is proportional to h 2

• It is not hard to verify that for n = 2 our last formula duplicates 
Simpson's rule, and that for n = 4 it duplicates the Cotes n = 4 formula. It can be shown that the error in 
this formula is proportional to h"+2 and this suggests a recursive computation. Apply the trapezoidal 
rule several times, continually halving h. Call the results A 1 , A 2 , A 3 , •••• Apply our formula above with 
n = 2 to each pair of consecutive A,. Call the results B1 , B2 , B3 , •••• Since the error is now proportional 
to h4 we may reapply the formula, with n = 4, to the B,. The results may be called C1 , C2 , C3 , . 

Continuing in this fashion an array of results is obtained. 

The computation is continued until entries at the lower right of the array agree within the required 
tolerance. 

14.24. Apply Romberg's method to the integral of Problem 14.21. 
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The various results are as follows: 

Points used 4 8 16 32 

Trapezoidal result .987116 .996785 .999196 .999799 
1.000008 1.000000 1.000000 

1.000000 1.000000 
1.000000 

Convergence to the correct value of 1 is apparent. 

14.25. More accurate integration formulas may be obtained by integrating a polynomial over less 
than the full range of collocation. Integrate Stirling's formula over the two center intervals. 

Up through sixth differences Stirling's formula is 

1 2 2 k(e -1) 3 ece -1) 4 Pk =Yo+ k,ubyo + Z k D Yo+ --
6
-- ,ub Yo+ --

2
-
4

- D Yo 

+ k(e- 1)(e- 4) 65 + k2(k 2
- 1)(k2

- 4) 66 
120 .U Yo 720 Yo 

Integration brings, since x - x 0 = kh and dx = h dk, 

L:~:h p(x) dx = h L Pk dk = h( 2yo + ~ D2Yo -~ D4Yo + 7~6 D6Yo) 

More terms are clearly available by increasing the degree of the polynomial. Stopping with the 
second difference term leaves us once again with the starting combination of Simpson's rule, in the form 
(h/3)(Y-l + 4yo + Y1). In this case the integration has extended over the full range of collocation, as in 
Problem 14.1. With the fourth difference term we integrate over only half the range of collocation (Fig. 
14-2). 

x 0 - h x 0 + h 

Fig. 14-2 

As more differences are used y(x) and p(x) collocate at additional arguments, but the integration is 
extended over the center two intervals only. Since these are the intervals where Stirling's formula has 
the smallest truncation error (Problem 12.64), it can be anticipated that an integration formula obtained 
in this way will be more accurate. This extra accuracy is, however, purchased at a price; in application 
such formulas require Yk values outside the interval of integration. 

The truncation error of this formula may be estimated by the Taylor series method used in Problem 
23h9 

14.6, and proves to be approximately ----yb8
) + · · · 

113,400 

14.26. Use the result of Problem 14.25 to develop Simpson's rule with correction terms. 
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We make n/2 applications centered at x,, x 3 , ••• , x"_" where n is even. The result is 

This can be extended to higher differences if desired. 
The truncation error of the result will be approximately n/2 times that of the previous problem and 

23(xn - x 0 )h 8 
(S) 

can be written as -
226

,
800 

Yo + · · ·. 

14.27. Develop the idea of adaptive integration. 

The essential idea is to subdivide each part of the interval of integration just finely enough for it to 
contribute only its proportion of the overall error. There are many ways of doing this. Suppose the 
overall permissible error is E. Select an integration formula and apply it to the interval. Apply an error 
estimator. If the error is less than E, we are finished. If not, apply the formula to the left half of the 
interval. If the new error estimate is less than E/2, we are finished with that half interval. If not, this 
interval is halved and the process goes on. Eventually an interval of length (b- a)/2k is reached, (a, b) 
being the original interval, where the formula in use produces an acceptable result, the error being less 
than E/2k. The process then resumes, beginning at the right edge of the accepted interval. 

As the basic integration formula, Simpson's rule 

h 
Az = 3 (Yo+ 4y, + 2yz + 4y3 + Y4) 

might be chosen. As error measure, the doubled interval rule 

2h 
A, =3 (Yo+ 4yz + Y4) 

is then convenient, since Problem 14.15 then estimates the error as (A 2 - A,)/15. The approximation A 2 

is then accepted whenever A 2 - A,~ 15E/2k and is accumulated into the sum of other accepted results 
to its left. Clearly, the process ends when the accepted fragments cover (a, b). 

14.28. Apply the adaptive integration method of the preceding problem to this integral: 

f x 5
dx 

A few runs were made with different tolerances and slight changes in the upper limit. The following 
abbreviated output is typical. Note especially the values of k, which started at 1 (not printed) and rose 
to 7. An effort to increase the upper limit further found k skyrocketing. 

X x6 /6 Computed k 

2 10.667 10.667 4 

4 682.667 682.667 5 

6 7,776.000 7,775.99 6 

8 43,690.67 43,690.58 7 

14.29. Apply adaptive integration to the arcsine integral 

L
1 dx 

o v'l-x2 
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Tension is generated by the infinite discontinuity at the upper limit, which suggests a diminishing 
step size near this end much as in the preceding problem. Values of k climbed steadily as the 
computation progressed and reached 15 with this result: 

Upper limit= .9999 

Integral= 1.5573 

At this point the correct arcsine value is 1.5575. 

14.30. Derive Gregory's formula. 

This is a form of the trapezoidal rule with correction terms and can be derived in many ways. One 
way begins with the Euler-Maclaurin formula (Problem 11.19) in the form 

iXn h h2 I I h4 3 3 h6 5 5 
y(x)dx=-(y +2y + .. ·+2y +y )--(y -y )+-(y<l-y<l)---(y<l-y<l) 

xo 2 0 1 n-1 n 12 n 0 720 n 0 30,240 n 0 

more terms being available if needed. Now express the derivatives at x" in terms of backward differences 
and the derivatives at x0 in terms of forward differences (Problem 13.1). 

I( 12131415) hy = V+-V +-V +-V +-V +··· y 
n 2 3 4 5 n 

3 (3) ( 3 3 4 7 5 ) hyo = ~ -2~ +4~ -···Yo 

h3y~3) = ( v3 + ~ v4 + ~ v5 + .. }n 
h5y~5) = (~s- ... )Yo 

h5y~5J = (V5 + .. ·)y" 

The result of substituting these expressions is 

h 2 2 19h 3 3 3h 4 4 863h 5 5 -24 (V Yn +~Yo)- no (V Yn -~Yo)-
160 

(V Yn +~Yo)-
60

,
480 

(V Yn -~Yo) 

and again more terms can be computed if needed. This is Gregory's formula. It does not require yk 
values outside the interval of integration. 

14.31. Apply Taylor's theorem to evaluate the error function integral 

2 r 
H(x) = Vn Jo e-tz dt 

for x = .5 and x = 1, correct to four decimal places. 

t4 t6 t8 t10 
The series e- 12 = 1- t2 +---+--- + · · · leads to 

2 6 24 120 

2 ( x3 x5 x7 x9 xu ) 
H(x) =Vii x - 3 + lo- 4z + 216- 1320 + ... 

For x = .5 this produces .5205, and for x = 1 we find .8427. The character of this series assures that the 
error made in truncating it does not exceed the last term used, so we can be confident in our results. The 
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series method has performed very well here, but it becomes clear that if more decimal places are wanted 
or if larger upper limits x are to be used, then many more terms of this series will become involved. In 
such cases it is usually more convenient to proceed as in the next problem. 

14.32. Tabulate the error function integral for x = 0(.1)4 to six decimal places. 

We adopt the method which was used to prepare the fifteen-place table of this function, NBS-AMS 
41. The derivatives needed are 

H<2l(x) = - 2xH'(x) 

and in general 

The Taylor series may be written as 

hn 
H(x +h)= H(x) + hH'(x) + · · · +;;~ H(n)(x) + R 

where the remainder is the usual R = hn+!H(n+!)(s)/(n + 1)!. Notice that if M denotes the sum of even 
power terms and N the sum of odd power terms, then 

H(x+h)=M+N H(x-h)=M-N 

For six-place accuracy we use terms of the Taylor series which affect the eighth place, because the length 
of the task ahead makes substantial roundoff error growth a possibility. With H(O) = 0, the computation 
begins with 

2 2 3 1 5 
H(.1) = y'Ji (.1)-

3
y'Ji (.1) + 

5
y'Ji (.1) = .11246291 

only the odd powers contributing. Next we put x = .1 and find 

leading to 

H'(.1) = .Jne- 01 = 1.1171516 

H<2l(.1) = - .2H'(.1) = -.22343032 

H<3l(.1) = - .2H<2l(.1)- 2H'(.1) = -2.1896171 

H<4l(.1) = - .2H<3l(.1)- 4H<2l(.1) = 1.3316447 

H<5l(.1) = - .2H<4l(.1)- 6H<3l(.1) = 12.871374 

H<6l(.1) = - .2H<5l(.1)- 8H<4l(.1) = -13.227432 

M = .11246291 - . 00111715 + . 00000555 - . 00000002 = .11135129 

N= .11171516-.00036494 + .00000107 = .11135129 

Since H(x- h)= M- N, we rediscover H(O) = 0 which serves as a check on the correctness of the 
computation. We also obtain 

H(.2) = H(x +h)= M + N = .22270258 

The process is now repeated to obtain a check on H(.1) and a prediction of H(.3). Continuing in 
this way one eventually reaches H(4). The last two decimal places can then be rounded off. Correct 
values to six places are given in Table 14.15 for x = 0(. 5)4. In NBS-AMS 41 computations were carried 
to 25 places, then rounded to 15. Extensive subtabulations were then made for small x arguments. 
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Table 14.5 

X .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

H(x) .520500 .842701 .966105 .995322 .999593 .999978 .999999 1.000000 

14.33. Illustrate the method of undetermined coefficients for deriving approximate integration 
formulas, by applying it to the derivation of Simpson's rule. 

In this method we aim directly for a formula of a preselected type. For Simpson's rule the choice 

is convenient. The selection of the coefficients ck can proceed in many ways, but for Simpson's rule the 
choice is made on the basis that the resulting formula be exact when y(x) is any of the first three powers 
of x. Taking y(x) = 1, x, and x2 in turn, we are led to the conditions 

which yield c_ 1 = c1 = t c0 = ~ making 

J
h h 
-h y(x) dx = 3 CY-1 + 4y0 + y1) 

Applying this result to successive pairs of intervals between x0 and Xn again generates Simpson's rule. 
As a bonus, this result also proves to be exact for y(x) =x3

, as is easily seen from the symmetries. 
This means by addition that it is also exact for any polynomial of degree three or less. For higher-degree 
polynomials there is an error term. 

14.34. Apply the method of undetermined coefficients to derive a formula of the type 

f y(x) dx = h(aoYo + aiYI) + h2(b 0 yb + b1 y;) 

With four coefficients available, we try to make the formula exact when y(x) = 1, x, x 2
, and x 3

• This 
leads to the four conditions 

2 

4 

which yield a0 = a 1 = t b0 = - b1 = fz. The resulting formula is 

l
h h h2 

a y(x) dx = 2 (Yo+ Y1) + i2 (Yo- yi) 

which reproduces the first terms of the Euler-Maclaurin formula. A great variety of formulas may be 
generated by this method of undetermined coefficients. As in the examples just offered, a little 
preliminary planning and use of symmetry ·can often simplify the system of equations which ultimately 
determines the coefficients. 
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Supplementary Problems 

14.35 Integrate Newton's formula for a collocation polynomial of degree four and so verify the n = 4 row of 
Table 14.1. 

14.36. Verify the n = 6 row of Table 14.1. 

14.37. Use the Taylor series method to obtain the truncation error estimate for the n = 3 formula as listed in 
Table 14.2. 

14.38. Use the Taylor series method to verify the truncation error estimate for then= 4 formula. 

14.39. Apply various formulas to the following limited data supply to approximate the integral of y(x): 

X 1.0 1.2 1.4 1.6 1.8 2.0 

y(x) 1.0000 .8333 .7143 .6250 .5556 .5000 

Use the trapezoidal rule, applying correction terms. How much confidence do you place in your result? 
Does it appear correct to four places? (See the next problem.) 

14.40. The data of Problem 14.39 actually belong to the function y(x) = 1/x. The correct integral is, therefore, 
to four places, In 2 = .6931. Has any approximate method produced this? 

14.41. Use the truncation error estimate for the trapezoidal rule to predict how tightly values of y(x) must be 
packed (what interval h) for the trapezoidal rule itself to achieve a correct result to four places for 
fidx/x. 

14.42. Suppose the data of Problem 14.39 augmented by the inclusion of these new number pairs: 

X 1.1 1.3 1.5 1.7 1.9 

y(x) .9091 .7692 .6667 .5882 .5263 

Reapply the trapezoidal rule to the full data supply. Use this result as A 2 , the corresponding result in 
Problem 14.39 as A 1 , and the formula of Problem 14.23 to obtain still another approximation to I. Is it 
correct to four places? 

14.43. Apply the trapezoidal rule with correction terms to the full data supply now available for y(x) = 1/x. 

14.44. Apply Simpson's rule to the data of Problem 14.39. Will correction terms as in Problem 14.26 be 
needed? If so, apply them. 

14.45. Use the truncation error estimate for Simpson's rule to predict how many values of y(x), or how small 
an interval h, will be needed for this rule to produce In 2 correct to four places. 

14.46. How small an interval h would be required to obtain In 2 correct to eight places using the trapezoidal 
rule? Using Simpson's rule? 

14.47. Apply the Euler-Maclaurin formula (Problem 14.30) up through the fifth-derivative terms to evaluate 
In 2 to eight decimal places. The correct value is . 69314718. (Try h = .1.) 
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14.48. From the following data estimate ny(x) dx as well as you can. 

X 0 .25 .50 .75 1.00 1.25 1.50 1. 75 2 

y(x) 1.000 1.284 1.649 2.117 2.718 3.490 4.482 5.755 7.389 

How much confidence do you place in your results? Do you believe them correct to three places? 

14.49. The data of Problem 14.48 were taken from the exponential function y(x) =ex. The correct integral is, 
therefore, to three places, n ex dx = e2 -1 = 6.389. Were any of our formulas able to produce this 
result? 

14.50. From the following data, estimate fiy(x) dx as well as you can. 

X 1 1.5 2 2.5 3 3.5 4 4.5 5 

y(x) 0 .41 .69 .92 1.10 1.25 1.39 1.50 1.61 

How much confidence do you place in your results? 

14.51. The data of Problem 14.50 corresponds to y(x) = logx. The correct integral is, therefore, to two places, 
fi logx dx =Slog 5-4= 4.05. Were any of our formulas able to produce this result? 

14.52. Calculate J' dx 2 correct to seven places by adaptive integration. The correct value is n/4, or to seven 
o 1 +x 

places .7853982. 

14.53. Calculate f~12 Y1 - ~ sin2 t dt to four decimal places. This is called an elliptic integral. Its correct value is 
1.4675. Use adaptive integration. 

14.54. Show that to four places f~12 \1'1-! sin2 t dt = 1.3506. 

14.55. Use adaptive integration to verify 

L
n:/2 dx 

. 2 1 2 = 3.1415927 
o Sill X+ 4 COS X 

the exact value being n. 

14.56. Apply the Taylor series method as in Problem 14.31, to compute the sine integral 

. Lxsin t S1(x)= -dt 
0 t 

for x = 0(.1)1, to five decimal places. The refined procedure used in Problem 14.32 is not necessary 
here. [The last result should be Si (1) = .94608.] 

14.57. Apply the Taylor series method as in Problem 14.32 to compute the sine integral for x = 0(.5)15, to five 
decimal places. The final result should be Si (15) = 1.61819. 

14.58. Apply the Taylor series method to compute n Vx sin X dx to eight decimal places. 

14.59. Apply the Taylor series method to compute n (1/V1 + x4
) dx to four decimal places. 

14.60. Compute the total arc length of the ellipse x 2 + y 2/4 = 1 to six decimal places. 
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14.61. By adding (h/140)<5 6y3 to then= 6 formula of Table 14.1, derive Weddle's rule, 

lx 6 3h 
y (x) dx =-(Yo+ Sy1 + Yz + 6y3 + Y4 + 5ys + Y6) 

xo 10 

14.62. Use the method of undetermined coefficients to derive a formula of the form 

fh y(x) dx = h(a~1Y~1 + aoYo + a1y1) + h 2(b~1Y'-1 +boy~+ b1y;) 

which is exact for polynomials of as high a degree as possible. 

14.63. Use the method of undetermined coefficients to derive the formula 

proving it exact for polynomials of degree up through three. 

14.64. Use the method of undetermined coefficients to derive 

{h h h2 h3 
Jo y(x) dx = 2 (Yo+ YJ) + iQ (y~- y;) + 120 (y~2l + y~2l) 

proving it exact for polynomials of degree up through five. 

14.65. Derive an exact expression for the truncation error of our n = 2 formula by the following method. Let 

J
h h 

F(h) = ~/(x) dx- 3" [y(- h)+ 4y(O) + y(h)] 

Differentiate three times relative to h, using the theorem on "differentiating under the integral sign" 

to obtain 

d Jb(h) Jb a dh y(x, h) dx = -j/;dx + y(b, h)b'(h)- y(a, h)a'(h) 
a(h) a 

p(3l(h) = - ~ [y(3\h)- y<3l(- h)] 
3 

Notice that F'(O) = p<2l(O) = p(3l(O) = 0. Assuming yl4l(x) continuous, the mean value theorem now 

produces 

where (} depends on h and falls between -1 and 1. We now reverse direction and recover F (h) by 
integration. It is convenient to replace h by t (making (}a function oft). Verify that 

F(h) = -! {h (h- t)2t2yl4l(et) dt 
3 Jo 

by differentiating three times relative to h to recover the above p(3l(h). Since this formula also makes 
F(O) = F'(O) = F<2l(O), it is the original F(h). Next apply the mean value theorem 

f f(t)g(t) dt = g(;) f f(t) dt 

with a<;< b, which is valid for continuous functions providedf(t) does not change sign between a and 
b. These conditions do hold here with f(t) = - t2(h- t?/3. The result is 
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This is the result mentioned in Problem 14.3. The early parts of this proof, in which we maneuver from 
F(h) to its third derivative and back again, have as their goal a representation of F(h) to which the 
mean value theorem can be applied. [Recall that f(t) did not change sign in the interval of integration.] 
This is often the central difficulty in obtaining a truncation error formula of the sort just achieved. 

14.66. Modify the argument of Problem 14.65 to obtain the formula given at the end of Problem 14.2, 

h3 
Truncation error= - U y<2l(~) 

for the n = 1 formula. 

14.67. Evaluate n e-x' dx correct to six places. 



Chapter 15 

Gaussian Integration 

CHARACTER OF A GAUSSIAN FORMULA 

The main idea behind Gaussian integration is that in the selection of a formula 

L
b n 

a y(x) dx = ~ A;y(x;) 

it may be wise not to specify that the arguments X; be equally spaced. All the formulas of the 
preceding chapter assume equal spacing, and if the values y(x;) are obtained experimentally this will 
probably be true. Many integrals, however, involve familiar analytic functions which may be 
computed for any argument and to great accuracy. In such cases it is useful to ask what choice of the 
X; and A; together will bring maximum accuracy. It proves to be convenient to discuss the slightly 
more general formula 

in which w(x) is a weighting function to be specified later. When w(x) = 1 we have the original, 
simpler formula. 

One approach to such Gaussian formulas is to ask for perfect accuracy when y(x) is one of the 
power functions 1, x, x2

, ••• , x 2
n-

1
• This provides 2n conditions for determining the 2n numbers X; 

and A;. In fact, 
A;= r w(x)L/x) dx 

a 

where L;(x) is the Lagrange multiplier function introduced in Chapter 8. The arguments x 11 •• • , xn 
are the zeros of the nth-degree polynomial Pn(x) belonging to a family having the orthogonality 
property 

form i=n 

These polynomials depend upon w(x ). The weighting function therefore influences both the A; and 
the X; but does not appear explicitly in the Gaussian formula. 

Hermite's formula for an osculating polynomial provides another approach to Gaussian 
formulas. Integrating the osculating polynomial leads to 

L
b n 

a w(x)y(x) dx = ~ [A;y(x;) + B;y'(x;)] 

but the choice of the arguments X; as the zeros of a member of an orthogonal family makes all B; = 0. 
The formula then reduces to the prescribed type. This suggests, and we proceed to verify, that a 
simple collocation polynomial at these unequally spaced arguments would lead to the same result. 

Orthogonal polynomials therefore play a central role in Gaussian integration. A study of their 
main properties forms a substantial part of this chapter. 

The truncation error of the Gaussian formula is 

rb n yezn)(;) Lb 
Ja w(x)y(x) dx- ;~ A;y(x;) = (Zn)! a w(x)[n(x)f dx 

where n(x) = (x -x1) • • • (x -x"). Since this is proportional to the (2n)th derivative of y(x), such 
formulas are exact for all polynomials of degree 2n - 1 or less. In the formulas of the previous 
chapter it is yCnl(;) which appears in this place. In a sense our present formulas are twice as accurate 
as those based on equally spaced arguments. 

136 
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PARTICULAR TYPES OF GAUSSIAN FORMULAS 
Particular types of Gaussian formulas may be obtained by choosing w(x) and the limits of 

integration in various ways. Occasionally one may also wish to impose constraints, such as specifying 
certain X; in advance. A number of particular types are presented. 

1. Gaussian-Legendre formulas occur when w(x) = 1. This is the prototype of the Gaussian 
method and we discuss it in more detail than the other types. It is customary to normalize 
the interval (a, b) to ( -1, 1). The orthogonal polynomials are then the Legendre 
polynomials 

with P0(x) = 1. The X; are the zeros of these polynomials and the coefficients are 

2(1-xf} 

n2[Pn_ 1(x;)] 2 

Tables of the X; and A; are available to be substituted directly into the Gauss-Legendre 
formula 

(b n 

Ja y(x) dx = ~ A;y(x;) 

Various properties of Legendre polynomials are required in the development of these 
results, including the following: 

fork= 0, ... , n- 1 

f1 n - 2n+\n !? 
_

1
x Pn(x) dx- (2n + 1)! 

f
1 

[Pn(xWdx=-
2

-
-1 2n + 1 

f/m(x)Pn(x)dx=O form=Fn 

Pn(x) has n real zeros in (-1, 1) 

(n + 1)Pn+1(x) = (2n + 1)xPn(x)- nPn_ 1(x) 

(t- x) i (2i + 1)~(x)~(t) = (n + 1)[Pn+l(t)Pn(x)- Pn(t)Pn+ 1(x)] 
i=O 

f
1 

Pn(x) dx = -2 
-1 x- xk (n + 1)Pn+1(xd 

(1- x2)P~(x) + nxPn(x) = nPn_ 1(x) 

Lanczos' estimate of truncation error for Gauss-Legendre formulas takes the form 

where I is the approximate integral obtained by the Gaussian n-point formula. Note that the 
I: term involves applying this same formula to the function xy'(x). This error estimate seems 
to be fairly accurate for smooth functions. 
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2. Gauss-Laguerre formulas take the form r e-xy(x) dx = ~ A;y(x;) 

the arguments X; being the zeros of the nth Laguerre polynomial 

dn 
Ln(x) =ex dxn (e-xxn) 

and the coefficients A; being 

A;= [ '( )]z X; Ln X; 

The numbers X; and A; are available in tables. 

[CHAP. 15 

The derivation of Gauss-Laguerre formulas parallels that of Gauss-Legendre very 
closely, using properties of the Laguerre polynomials. 

3. Gauss-Hermite formulas take the form 

the arguments X; being the zeros of the nth Hermite polynomial 

and the coefficients A; being 

The numbers X; and A; are available in tables. 

4. Gauss-Chebyshev formulas take the form 

f l y(x) zdx=~iy(x;) 
-1 ~ n;=l 

the arguments X; being the zeros of the nth Chebyshev polynomial Tn(x) =cos (n arccosx). 

Solved Problems 

THE GAUSSIAN METHOD 

15.1. Integrate Hermite's formula for an osculating polynomial approximation to y (x) at arguments 
x 1 to xn-

Here it is convenient to delete the argument x 0 in our osculating polynomial. This requires only 
minor changes in our formulas of Chapter 10. The Hermite formula itself becomes 

p(x) = L [1- 2L;(x;)(x- x;)][L;(xWy; + (x- x;)[L;(xWy; 
i=l 

where L;(x) = F;(x)/ F;(x;) is the Lagrange multiplier function, F;(x) being the product F;(x) = TI (x- xk). 
k¢-i 
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Integrating, we find 

{b n 

Ja w(x)p(x) dx = ~ (A;y; + B;y;) 

where A;= t w(x)[1- 2L;(x;)(x -x;)][L;(x)]2 dx 

15.2. Find the truncation error of the formula in Problem 15.1. 

Surprisingly enough, this comes more easily than for formulas obtained from simple collocation 
polynomials, because the mean value theorem applies directly. The error of Hermite's formula (Problem 
10.4), with n in place of n + 1 because we have deleted one argument, becomes 

y<2n)(;) 
y(x)- p(x) = (Zn)! [n(x)f 

Multiplying by w(x) and integrating, 

{b {b y<2n)( ;) 
Ja w(x)[y(x)- p(x)] dx = Ja w(x) (Zn)! [n(x)]

2 
dx 

Since w(x) is to be chosen a nonnegative function and [n(xW is surely positive, the mean value theorem 
at once yields 

{b Y(2n)(8) {b 
E = Ja w(x)[y(x)- p(x)] dx = (Zn)! Ja w(x)[n(xW dx 

for the truncation error. Here a< e < b, but as usual e is not otherwise known. Notice that if y(x) were 
a polynomial of degree 2n - 1 or less, this error term would be exactly 0. Our formula will be exact for 
all such polynomials. 

15.3. Show that all the coefficients Bi will be 0 if 

f w(x ).n(x )xk dx = 0 fork= 0, 1, ... , n- 1 

By Problem 8.3 (x - x;)L;(x) = n(x )/ n'(x;). Substituting this into the formula for B;, 

B; = ~( ) (b w(x )n(x )L;(x) dx 
n xi Ja 

But L;(x) is a polynomial in x of degree n - 1 and so 

1 lb n-1 1 n-1 lb 
B; = ----;---( ) w(x )n(x) 2: crkxk dx = ----;---( ) 2: crk w(x )n(x )xk dx = 0 

:>! X; a k~O :>! X; k~O a 

15.4. Define orthogonal functions and restate the result of Problem 15.3 in terms of orthogonality. 

Functionsf1(x) andMx) are called orthogonal on the interval (a, b) with weight function w(x) if 

t w(x)j;(x)Mx) dx = 0 

The coefficients B; of our formula will be zero if n(x) is orthogonal to xP for p = 0, 1, ... , n -1. By 
addition n(x) will then be orthogonal to any polynomial of degree n -1 or less, including the Lagrange 
multiplier functions L;(x ). Such orthogonality depends upon and determines our choice of the 
collocation arguments xk and is assumed for the remainder of this chapter. 

15.5. Prove that with all the Bi=O, the coefficients Ai reduce to Ai=f~w(x)[L;(x)]2 dx and are 
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therefore positive numbers. 

A,= f w(x)[L,(xW dx- 2L;(xJB, reduces to the required form when B, = 0 

15.6. Derive the simpler formula A;= f~ w(x)L,(x) dx. 

The result follows if we can show that J~ w(x)L;(x)[L,(x) -1] dx = 0. 
But L,(x) - 1 must contain (x - x,) as a factor, because L,(x,)- 1 = 1- 1 = 0. Therefore 

n(x) 
L,(x)[L,(x) -1] = '( )( _ ) [L,(x) -1] = n(x)p(x) 

1C X; X X; 

with p(x) of degree n -1 at most. Problem 15.3 then guarantees that the integral is zero. 

15.7. The integration formula of this section can now be written as 

r w(x)y(x) dx =I~ A;y(x;) 

where A;= f~ w(x )L,(x) dx and the arguments X; are to be chosen by the orthogonality 
requirements of Problem 15.3. This formula was obtained by integration of an osculating 

polynomial of degree 2n - 1 determined by theY; andy,' values at arguments X;. Show that the 
same formula is obtained by integration of the simpler collocation polynomial of degree n - 1 

determined by the Y; values alone. (This is one way of looking at Gaussian formulas; they 

extract high accuracy from polynomials of relatively low degree.) 

The collocation polynomial is p(x) = t L,(x)y(x,) so that integration produces 
i=1 

rb n 

Ja w(x)p(x) dx = ~ A,y(xJ 

as suggested. Here p(x) represents the collocation polynomial. In Problem 15.1 it stood for the more 

complicated osculating polynomial. Both lead to the same integration formula. (For a specific example 

of this, see Problem 15.25.) 

GAUSS-LEGENDRE FORMULAS 

15.8. The special case w(x) = 1 leads to Gauss-Legendre formulas. It is the custom to use the 

interval of integration ( -1, 1). As a preliminary exercise, determine the arguments xk directly 

from the conditions of Problem 15.3 

f
1 
.n(x)xk dx = 0 k = 0, 1, ... , n - 1 

for the value n = 3. 

The polynomial n(x) is then cubic, say n(x) =a + bx + cx 2 + x3
• Integrations produce 

which lead quickly to a= c = 0, b = -~. This makes 

The collocation arguments are therefore xk = - v'I, 0, VI. 
Theoretically this procedure would yield the xk for any value of n but it is quicker to use a more 

sophisticated approach. 
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15.9. The Legendre polynomial of degree n is defined by 

P()--1_.!£._(2- y n X - 2nn! dxn X 1 

with P0(x) = 1. Prove that for k = 0, 1, ... , n - 1 

f/kPn(x) dx = 0 

making Pn(x) also orthogonal to any polynomial of degree less than n. 

Apply integration by parts k times. 

1
1 xk d"n (x2 -1)" dx = [xk d"n--11 (x2 -1);]1 -11 kxk-1 d"n--11 (x2 -1)" dx 

-1 dx dx -1 -1 dx 
'-------v-----' 

=0 

1
1 dn-k 

=···=(-1)kk! d n-k(x 2 -1)"dx=O 
-1 X 

I
I 2n+l(n !)2 

15.10. Prove _
1 
xnPn(x) dx = (2n + 1)! · 

Taking k = n in the preceding problem, 

1

1 
x" d"" (x 2 -1)" dx = ( -1)"n! 1

1 
(x 2 -1)" dx 

-1 dx -1 

= 2n! f (1-x2
)" dx = 2n! L"'

2 
cos2"+ 1 tdt 

This last integral responds to the treatment 

("
12 

[ cos
2

" t sin t] "12 2n ("12 

J cos2n+1 t dt = + -- Jc cos2"-1 t dt 
o ~ 2n+1 o 

=0 

2n(2n- 2) · · · 2 1"'2 

= 0 0 0 = cos tdt 
(2n + 1)(2n -1). · · 3 0 

so that 
1

1 x"~(xz-1)"dx=2n' 2n(2n-2)···2 
_1 dx" · (2n + 1)(2n -1) · · · 3 

141 

Now multiply top and bottom by 2n (2n - 2) · · · 2 = 2"n! and recall the definition of P" (x) to obtain, as 
required, 

II 2 
15.11. Prove [Pn(xWdx =

2
-

1
. 

-1 n + 
Splitting off the highest power of x in one Pn(x) factor, 

1
1 

[Pn(xW dx = 11 [-f--t (2nt x" + · · ·]Pn(x) dx 
-1 -1 2 n. n. 

Powers below x" make no contribution, by Problem 15.9. Using the preceding problem, we have 

1

1 2 (2n)! 2n+1(n!)2 2 
_1 [Pn(x)] dx = 2"(n!?(2n + 1)! = 2n + 1 
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15.12. Prove that form* n, f~ 1 Pm(x)Pn(x) dx = 0. 

Writing out the lower-degree polynomial, we find each power in it orthogonal to the higher-degree 
polynomial. In particular with m = 0 and n =I= 0 we have the special case f~ 1 Pn(x) dx = 0. 

15.13. Prove that Pn(x) has n real zeros between -1 and 1. 

The polynomial (x 2
- 1)" is of degree 2n and has multiple zeros at ±1. Its derivative therefore has 

one interior zero, by Rolle's theorem. This first derivative is also zero at ±1, making three zeros in all. 
The second derivative is then guaranteed two interior zeros by Rolle's theorem. It also vanishes at ± 1, 
making four zeros in all. Continuing in this way we find that the nth derivative is guaranteed n interior 
zeros, by Rolle's theorem. Except for a constant factor, this derivative is the Legendre polynomial 
Pn(x). 

15.14. Show that for the weight function w(x) = 1, .n(x) = [2n(n!?/(2n)!]Pn(x). 

Let then zeros of Pn(x) be called x 1 , ••• , x". Then 

[
2"n !

2
] 

(Zn)! Pn(x) = (x -x 1) • • • (x -xn) 

The only other requirement on n(x) is that it be orthogonal to xk for k = 0, 1, ... , n -1. But this 
follows from Problem 15.9. 

15.15. Calculate the first several Legendre polynomials directly from the definition, noticing that 
only even or only odd powers can occur in any such polynomial. 

P0(x) is defined to be 1. Then we find 

1 d 
Pt(x) =2~(x 2 -1) =x 

1 d 2 1 
Pz(x) = 8 dxz (x 2

- 1? =z (3x
2 
-1) 

Similarly, 

1 
Ps(x) = 8 (63x 5 -70x3 + 15x) 

1 
P?(x) = i6 ( 429x 7 - 693x 5 + 315x3

- 35x) 

1 
P6(x) = i6 (231x6

- 315x4 + 105x2
- 5) P8(x) = 1~8 (6435x 8 -12,012x6 + 6930x4- 1260x2 + 35) 

and so on. Since (x 2
- 1)" involves only even powers of x, the result of differentiating n times will 

contain only even or only odd powers. 

15.16. Show that xn can be expressed as a combination of Legendre polynomials up through Pn(x). 
The same is then true of any polynomial of degree n. 

Solving in turn for successive powers, we find 

1 = P0(x) 
1 

x 2 = 3 [2P2(x) + P0(x)] 

1 
x4 = 35 [8P4(x) + 20P2(x) + 7P0(x)] 

and so on. The fact that each Pk(x) begins with a nonzero term in xk allows this procedure to continue 
indefinitely. 
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15.17. Prove the recursion for Legendre polynomials, 

(n + l)Pn+ 1(x) = (2n + l)xPn(x)- nPn_ 1(x) 

The polynomial xPn(x) is of degree n + 1, and so can be expressed as the combination (see Problem 
15.16) n+l 

xPn(x) = 2: e;P;(x) 
i=O 

Multiply by Pk(x) and integrate to find 

L xPk(x)Pn(x) dx = ek L Pi(x) dx 

all other terms on the right vanishing since Legendre polynomials of different degrees are orthogonal. 
But fork< n - 1 we know Pn(x) is also orthogonal to xPk(x ), since this product then has degree at most 
n -1. (See Problem 15.9.) This makes ek = 0 fork< n- 1 and 

xPn(x) = en+!pn+l(x) + enPn(x) + en-!pn-!(x) 

Noticing that, from the definition, the coefficient of xn in Pn(x) will be (2n)!/2n(n!?, we compare 
coefficients of xn+l in the above to find 

(2n)! (2n+2)! 
---e 
2n(n!)2 - n+! 2n+![(n + l)!f 

from which en+!= (n + 1)/(2n + 1) follows. Comparing the coefficients of xn, and remembering that only 
alternate powers appear in any Legendre polynomial, brings en = 0. To determine en_, we return to our 
integrals. With k = n- 1 we imagine Pk(x) written out as a sum of powers. Only the term in xn-! need 
be considered, since lower terms, even when multiplied by x, will be orthogonal to Pn(x). This leads to 

(2n - 2)! J' n ( ) J' 2 ( ) d n-l(( _ )!]2 X pn X dx =en-! pn-! X X 2 n 1 . _, _, 

and using the results of Problems 15.10 and 15.11 one easily finds en_,= n/(2n + 1). Substituting these 
coefficients into our expression for xPn(x) now brings the required recursion. As a bonus we also have 
the integral 

f' n 2 2n xPn_,(x)Pn(x) dx =----=-2 -
_1 2n + 12n - 1 4n - 1 

15.18. Illustrate the use of the recursion formula. 

Taking n = 5, we find 

and with n = 6, 
13 6 1 

P1(x) = 7 xP6(x) --::; P5(x) = i6 ( 429x 7 - 693x 5 + 315x3
- 35x) 

confirming the results obtained in Problem 15.15. The recursion process is well suited to automatic 
computation of these polynomials, while the differentiation process of Problem 15.15 is not. 

15.19. Derive Christoffel's identity, 
n 

(t -x) 2: (2i + l)~(x)~(t) = (n + l)[Pn+l(t)Pn(x)- Pn(t)Pn+l(x)] 
i~O 

The recursion formula of Problem 15.17 can be multiplied by P;(t) to obtain 

(2i + 1)xP;(x)P;(t) = (i + 1)P;+ 1(x)P;(t) + iP;_ 1(x)P;(t) 
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Writing this also with arguments x and t reversed (since it is true for any x and t) and then subtracting, 
we have 

(2i + 1)(t- x)P,(x)P,(t) = (i + 1)[P,+1(t)P,(x)- P,(t)P1+1(x )]- i[P,(t)Pi-l(x)- P,_,(t)P,(x)] 

Summing from i = 1 to i = n, and noticing the "telescoping effect" on the right, we have 

(t- x) 2: (2i + 1)P,(x)P1(t) = (n + 1)[Pn+ 1(t)Pn(x)- Pn(t)Pn+ 1(x)]- (t- x) 
i=l 

The last term may be transferred to the left side where it may be absorbed into the sum as an i = 0 term. 
This is the Christoffel identity. 

15.20. Use the Christoffel identity to evaluate the integration coefficients for the Gauss-Legendre 
0 2 

case, provmg Ak = '( ) ( ) . 
nPn xk Pn-I xk 

Let xk be a zero of Pn(x). Then the preceding problem, with t replaced by xk> makes 

-2: (2i + 1)P,(x)P,(xk) 
i=O 

Now integrate from -1 to 1. By a special case of Problem 15.12 only the i = 0 term survives on the right, 
and we have 

-2 

The recursion formula with x = xk makes (n + 1)Pn+ 1(xk) = -nPn_,(xk) which allows us the alternative 

J
1 

Pn(x) dx =--2-
_, X - xk nPn_,(xk) 

By Problems 15.6 and 15.14 we now find 

Ak = J' Lk(x) dx = J' , n(x) dx = J' , Pn(x) dx 
-I -I .7r (xk)(x - xd -I p n(xk)(x- xk) 

leading at once to the result stated. 

15.21. Prove that (1-x2)P~(x)+nxPn(x)=nPn_ 1 (x), which is useful for simplifying the result of 
Problem 15.20. 

We first notice that the combination (1- x2)P~ + nxPn is at most of degree n + 1. However, with A 
representing the leading coefficient of Pn(x), it is easy to see that xn+l comes multiplied by -nA + nA 
and so is not involved. Since Pn contains no term in xn- 1

, our combination also has no term in xn. Its 
degree is at most n -1 and by Problem 15.16 it can be expresed as 

n-1 

(1-x2)P~(x) + nxPn(x) = 2: c,P,(x) 
i=O 

Proceeding as in our development of the recursion formula, we now multiply by Pk(x) and integrate. On 
the right only the kth term survives, because of the orthogonality, and we obtain 

2 J' J' -k 
1 

ck = (1- X2)P~(x )h(x) dx + n xPn(x )Pk(x) dx 
2 + -1 --1 

Integrating the first integral by parts, the integrated piece is zero because of the factor (1- x 2
). This 

leaves 
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For k < n - 1 both integrands have P" (x) multiplied by a polynomial of degree n - 1 or less. By Problem 
15.9 all such ck will be zero. Fork= n- 1 the last integral is covered by the Problem 15.17 bonus. In the 
first integral only the leading term of P"_,(x) contributes (again because of Problem 15.9) making this 
term 

J
l d{ 2 (2n-2)! n-l} 
_/"(x)d; x 2"-'[(n _ 1)!] 2 X dx 

Using Problem 15.10, this now reduces to 

(2n- 2)! + 1 2"+ 1(n!)2
- 2n(n + 1) 

2"-'[(n- 1)!]2 (n ) (2n + 1)!- (2n + 1)(2n- 1) 

Substituting these various results, we find 

2n -1 [ 2n(n + 1) 2n
2 J 

en-! =-2- (2n + 1)(2n -1) + (2n + 1)(2n -1) = n 

which completes the proof. 

. 2(1-x~) 
15.22. Apply Problem 15.21 to obtam Ak = 2[P ( )]2 • 

n n-1 xk 

Putting x =xk, a zero of Pn(x), we find (1-xDP~(xd =nP"_,(xd. The derivative factor can now 
be replaced in our result of Problem 15.20, producing the required result. 

15.23. The Gauss-Legendre integration formula can now be expressed as 

f
l n 

_/(x) dx = ~1 A;y(x;) 

where the arguments xk are the zeros of Pn(x) and the coefficients Ak are given in Problem 
15.22. Tabulate these numbers for n = 2, 4, 6, ... , 16. 

For n = 2 we solve P2(x) = ~(3x 2 -1) = 0 to obtain xk =±VI= ±.57735027. The two coefficients 
prove to be the same. Problem 15.22 makes Ak = 2(1- D/[4(!)] = 1. 

For n = 4 we solve P4(x) = !(35x4
- 30x 2 + 3) = 0 to find xi= (15 ± 2v'30)/35, leading to the four argu

ments xk = ±[(15 ± 2v'30)/35] 112
• 

Computing these and inserting them into the formula of Problem 15.22 produces the xk, Ak pairs 
given in Table 15.1. The results for larger integers n are found in the same way, the zeros of the 
high-dt;gree polynomials being found by the familiar Newton method of successive approximations. 
(This method appears in a later chapter.) 

15.24. Apply the two-point formula to f012 sin t dt. 

The change of argument t = n(x + 1)/4 converts this to our standard interval as 

I' .n; . n(x + 1)d -sm--- x 
_,4 4 

and the Gaussian arguments xk = ±.57735027 lead to y(x,) = .32589, y(x2 ) = .94541. The two-point 
formula now generates (.n;/4)(.32589 + .94541) = .99848 which is correct to almost three places. The 
two-point Gaussian formula has produced a better result than the trapezoidal rule with seven points 
(Problem 14.17). The error is two-tenths of 1 percent! 

It is amusing to see what a one-point formula could have done. For n = 1 the Gauss-Legendre 
result is, as one may easily verify, f~, y(x) dx = 2y(O). For the sine function this becomes 

I' .n; .n;(x + 1) .n;, h 
-sin---dx =- v2= 1.11 

_,4 4 4 

which is correct to within about 10 percent. 
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Table 15.1 

n xk Ak n xk Ak 

2 ±.57735027 1.00000000 14 ±.98628381 .03511946 

4 ±.86113631 
.34785485 ±.92843488 .08015809 

±.33998104 
.65214515 ±.82720132 .12151857 

.17132449 
±.68729290 .15720317 

6 ±.93246951 ±.51524864 .18553840 
.36076157 

±.66120939 ±.31911237 .20519846 

±.23861919 
.46791393 

±.10805495 .21526385 

8 ±.96028986 
.10122854 

16 ±.98940093 .02715246 

±.79666648 
.22238103 

.31370665 
±.94457502 .06225352 

±.52553241 ±.86563120 .09515851 

±.18343464 
.36268378 

±.75540441 .12462897 

10 ±.97390653 
.06667134 ±.61787624 .14959599 

±.86506337 
.14945135 ±.45801678 .16915652 

±.67940957 
.21908636 ±.28160355 .18260342 

±.43339539 
.26926672 ±.09501251 .18945061 

±.14887434 
.29552422 

12 ±.98156063 
.04717534 

±.90411725 
.10693933 

±.76990267 
.16007833 

±.58731795 
.20316743 

±.36783150 
.23349254 

±.12533341 
.24914705 

15.25. Explain the accuracy of the extremely simple formulas used in Problem 15.24 by exhibiting 
the poynomials on which the formulas are based. 

The n = 1 formula can be obtained by integrating the collocation polynomial of degree zero, 

p(x) = y(x1) = y(O). However, it can also be obtained, and this is the idea of the Gaussian method, from 
the osculating polynomial of degree 2n -1 = 1, which by Hermite's formula is y(O) + xy'(O). Integrating 

this linear function between -1 and 1 produces the same 2y(O), the derivative term contributing zero. 
The zero-degree collocation polynomial produces the same integral as a first-degree polynomial, because 

the point of collocation was the Gaussian point (Fig. 15-1). 

~J x, = 0 

Fig. 15-1 

Similarly, the n = 2 formula can be obtained by integrating the collocation polynomial of degree 
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one, the points of collocation being the Gaussian points 

L (x_~; Y1 + x 
2
: r Y2) dx = Y1 + Y2 

where r = Vl This same formula is obtained by integrating the osculating polynomial of degree three, 
since 

1
1 

[( X+') 3 2 ( X-') 3 2 3 2 2 , _
1 

1+-,- 4(x-r)y1+ 1--,- 4(x+r)y2 +4(x -r)(x-r)y 1 

+~ (X2- r2)(x + r)y;] dx = Y1 + Y2 

The polynomial of degree one performs so well because the points of collocation were the Gaussian 
points. (Fig. 15-2). 

collocation 

osculating 

Fig. 15-2 

15.26. Apply the Gaussian four-point formula to the integral of Problem 15.24. 

4 
Using the same change of argument, the four-point formula produces I: A 1y, = 1.000000, correct to 

i=l 

six places. Comparing with the Simpson 32-point result of 1.0000003 and the Simpson 64-point result of 
.99999983, we find it superior to either. 

15.27. Adapt the truncation error estimate of Problem 15.2 to the special case of Gauss-Legendre 
approximation. 

Combining Problems 15.2, 15.11, and 15.14, we find the error to be 

_l2n)( e) [2n(n !)2]2 _2_ 22n+1(n !)4 (2n) e 
E- (2n)l (2n)l 2n + 1 (2n + 1)[(2n)!pY ( ) 

This is not an easy formula to apply if the derivatives of y(x) are hard to compute. Some further idea 
of the accuracy of Gaussian formulas is, however, available by computing the coefficient of / 2nl for 
small n. 

n = 2 E = .0074yC4l 

n = 4 E = .0000003yC8l 

n = 6 E = 1.5(10-12)/12) 

15.28. Apply the error estimates of Problem 15.27 to the integral of Problem 15.24 and compare 
with the actual errors. 

After the change of argument which brings this integral to our standard form, we find 
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For n = 2 this makes our error estimate E = (.0074)(.298) = .00220, while for n = 4 we find E = 
(.0000003)(.113) = .00000003. The actual errors were .00152 and, to six places, zero. So our estimates 
are consistent with our results. 

This example offers a favorable situation. The sine function is easy to integrate, even by 
approximate methods, because its derivatives are all bounded by the same constant, namely, 1. The 
powers of :r/4 do enter with the change of argument, but they actually help in this case. The next 
example deals with a familiar function whose derivatives do not behave so favorably. 

15.29. Apply the Gauss-Legendre formula to fg-12 log (1 + t) dt. 

The correct value of this integral is 

( 1 +~)[log ( 1 + ~) - 1 J + 1 = .856590 

to six places. The change of argument t = n(x + 1)/4 converts the integral to 

J
1 

:!.log [1 + n(x + 1)] dx 
-14 4 

The fourth derivative of the new integrand is (:r/4)5
[ -6/(1 + tt]. In the interval of integration this 

cannot exceed 6(n/4)5
, so the truncation error cannot exceed 6(n/4)5(.0074) if we use the two-point 

Gaussian formula. This is six times the corresponding estimate for the integral of the sine function. 
Similarly, the eighth derivative is (:r/4)9

[ -7!/(1 + t)8
]. This means a truncation error of at most 

(n/4f · 7! (.0000003) which is 7! times the corresponding estimate for the integral of the sine function. 
While the successive derivatives of the sine function remain bounded by 1, those of the logarithm 
function increase as factorials. The difference has an obvious impact on the truncation errors of any of 
our formulas, perhaps especially on Gaussian formulas where especially high derivatives are involved. 
Even so, these formulas perform well. Using just two points we obtain .858, while four points manage 
.856592 which is off by just two units in the last place. The six-point Gaussian formula scores a bull's-eye 
to six places, even though its truncation error term involves y<12J(x), which is approximately of size 12!. 

For contrast, Simpson's rule requires 64 points to produce this same six-place result. 
The function log (1 + t) has a singularity at t = -1. This is not on the interval of integration, but it is 

close, and even a complex singularity nearby could produce the slow kind of convergence in evidence 
here. 

15.30. How does the length of the interval of integration affect the Gaussian formulas? 

. . b-a 
For an mtegral over the mterval a;;; t;;; b, the change of argument t =a+-- (x + 1) produces 

the standard interval -1 ;;; x ;;; 1. It also makes 2 

Lb J1 
b - a [ b - a J y(t)dt= --y a+--(x+1) dx 

a -! 2 2 

The effect on truncation error is in the derivative factor, which is 

(b )
2n+! T y<2nl(t) 

In the examples just given b- a was :r/2 and this interval length actually helped to reduce error, but 
with a longer interval the potential of the powers of b - a to magnify error is clear. 

15.31. Apply the Gaussian method to (2/\(ii;) J6 e-cz dt 

The higher derivatives of this error function are not easy to estimate realistically. Proceeding with 
computations, one finds then= 4, 6, 8, 10 formulas giving these results: 

n 4 6 8 10 

Approximation .986 1.000258 1.000004 1.000000 
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For larger n the results agree with that for n = 10. This !¥Jggests accuracy to six places. We have already 
computed this integral by a patient application of Taylor's series (Problem 14.32) and found it to equal 
1, correct to six places. For comparison, the Simpson formula requires 32 points to achieve six-place 
accuracy. 

15.32. Apply the Gaussian method to f6 \h + Vi dt. 

The n = 4, 8, 12, 16 formulas give the results 

n 4 8 12 16 

Approximation 6.08045 6.07657 6.07610 6.07600 

This suggests accuracy to four places. The exact integral can be found, by a change of argument, to be 
~(2W +!),which is 6.07590 correct to five places. Observe that the accuracy obtained here is inferior to 
that of the previous problem. The explanation is that our square root integrand is not as smooth as the 
exponential function. Its higher derivatives grow very large, like factorials. Our other formulas also feel 
the influence of these large derivatives. Simpson's rule for instance produces these values: 

No. of points 16 64 256 1024 

Simpson values 6.062 6.07411 6.07567 6.07586 

Even with a thousand points it has not managed the accuracy achieved in the previous problem with just 
32 points. 

15.33. Derive the Lanczos estimate for the truncation error of Gaussian formulas. 

The relation f~ 1 [xy(x)]' dx = y(1) + y(-1) holds exactly. Let I be the approximate integral of y(x) 
obtained by the Gaussian n-point formula, and I* be the corresponding result for [xy(x)]'. Since 
[xy(x)]' = y(x) + xy'(x), 

I*= I+ 2: A1x1y'(x1) 

i=l 

so that the error in I* is E* = y(1) + y( -1)- I- 2: A 1x1y'(x1) 

Calling the error in I itself E, we know that 

E = C,yl2"l(e1) 

for suitable e1 and e2 between -1 and 1. Suppose e1 = e2 = 0. On the one hand (xy)<2
"+

1l(0)/(2n)! is the 
coefficient of x2" in the Taylor series expansion of (xy)', while on the other hand 

y<2n)(O)x2n 
y(x)=· ··+---+· .. 

(2n)! 

(2n + 1)yl2")(0)x 2
" 

[xy(x)]' = · · · + + · · · 
(2n)! 

leading directly to 

from which we deduce (xy)(Zn+l)(O) = (2n + 1)yl2")(0) 

Thus E* = (2n + 1)E approximately, making 

E=-- y(1)+y(-1)-I- 2:A1x1y'(x1) 1 [ " J 
2n + 1 1~1 

This involves applying the Gaussian formula to xy'(x) as well as to y(x) itself, but it avoids the often 
troublesome calculation of y<Zn)(x). Putting el = ez = 0 is the key move in deducing this formula. This 
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has been found to be more reasonable for smooth integrands such as that of Problem 15.31, than for 
integrands with large derivatives, which seems reasonable since y<2")(81)/y<2"l(82) should be nearly 1 
when y<2

n+l) is small. 

15.34. Apply the error estimate of the previous problem to the integral of Problem 15.31. 

For n = 8 the Lanczos estimate is .000004 and is identical with the actual error. For n = 10 and 
above, the Lanczos estimate correctly predicts a six-place error of zero. If applied to the integral of 
Problem 15.32, however, in which the integrand is very unsmooth, the Lanczos estimate proves to be 
too conservative to be useful. The limits to the usefulness of this error formula are still to be 
determined. 

OTHER GAUSSIAN FORMULAS 

15.35. What are the Gauss-Laguerre formulas? 

These formulas for approximate integration are of the form 

the arguments X; being the zeros of the nth Laguerre polynomial 

and the coefficients A; being 

A=-1-LooLn(x)e-x dx=~ 
' L~(x;) 0 X- X; X;(L~(x;)]2 

The truncation error is E = (n!? Y(2n)(8) 
(2n)! 

These results are found very much as the similar results for the Gauss-Legendre case. Here the 
weight function is w(x) =e-x. The n-point formula is exact for polynomials of degree up to 2n -1. 
Arguments and coefficients are provided in Table 15.2. 

15.36. Apply the Gauss-Laguerre one-point formula to the integration of e-x. 

Since L 1(x) = 1-x, we have a zero at x1 = 1. The coefficient is A 1 = 1/[L;(lW which is also 1. The 
one-point formula is therefore r e-xy(x) dx = y(1) 

In this case y(x) = 1 and we obtain the exact integral, which is 1. This is no surprise, since with n = 1 we 
are guaranteed exact results for any polynomial of degree one or less. In fact with y(x) =ax+ b the 
formula produces r e-x(ax +b) dx = y(1) =a+ b 

which is the correct value. 

15.37. Apply the Gauss-Laguerre method to s~ e-x sin X dx. 

The exact value of this integral is easily found to be!. The smoothness of sinx, by which is meant 
the boundedness of its derivatives, suggests that our formulas will perform well. The error estimate of 
(n!?/(2n)!, which replaces y<2

n) by its maximum of 1, reduces to 9h for n = 6 and suggests about 
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Table 15.2 

n xk Ak n xk Ak 

2 .58578644 .85355339 12 .11572212 .26473137 

3.41421356 .14644661 .61175748 .37775928 

4 .32254769 .60315410 
1.51261027 .24408201 

1.74576110 .35741869 
2.83375134 .09044922 

4.53662030 .03888791 
4.59922764 .02010238 

9.39507091 .00053929 
6.84452545 .00266397 

9.62131684 .00020323 
6 .22284660 .45896467 13.00605499 .00000837 

1.18893210 .41700083 17.11685519 .00000017 
2.99273633 .11337338 22.15109038 .00000000 
5.77514357 .01039920 28 .48796725 .00000000 
9.83746742 .00026102 37.09912104 .00000000 

15.98287398 .00000090 
14 .09974751 .23181558 

8 .17027963 .36918859 .52685765 .35378469 
.90370178 .41878678 1.30062912 .25873461 

2.25108663 .17579499 2.43080108 .11548289 
4.26670017 .03334349 3.93210282 .03319209 
7.04590540 .00279454 5.82553622 .00619287 

10.75851601 .00009077 8.14024014 .00073989 
15.74067864 .00000085 10.91649951 .00005491 
22.86313174 .00000000 14.21080501 .00000241 

10 .13779347 .30844112 18.10489222 .00000006 

.72945455 .40111993 22.72338163 .00000000 

1.80834290 .21806829 28.27298172 .00000000 

3.40143370 .06208746 35.14944366 .00000000 

5.55249614 .00950152 44.36608171 .00000000 

8.33015275 .00075301 

11.84378584 .00002826 

16.27925783 .00000042 

21.99658581 .00000000 

29 0 92069701 .00000000 

three-place accuracy. Actually substituting into ,~1 A, sinx, brings the results 

n 2 6 10 

I; .43 .50005 .5000002 

so that our error formula is somewhat pessimistic. 

15.38. Apply the Gauss-Laguerre method to f~ (e- 1 It) dt. 

The unsmoothness of y(t) = 1/t, meaning that its nth derivative 

y<"l(t) = ( -1)"n! t-(n+l) 

14 

.50000000 

151 
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increases rapidly with n, does not suggest overconfidence in approximation formulas. Making the change 
of argument t = x + 1, this integral is converted into our standard interval as 

lx -x 1 dx 
o e e(x + 1) 

and the error formula becomes 
E = [~~n[ece ~n{)'zn+l] 

which reduces to (n!?/e(e + 1?n+1
• If we replaced e by 0 to obtain the maximum derivative this would 

surely be discouraging and yet no other choice nominates itself. Actual computations with the formula 

bring these results: 

n 2 6 10 14 

Approximation .21 .21918 .21937 .21938 

Since the correct value to five places is .21938 we see that complete pessimism was unnecessary. The 
elusive argument e appears to increase with n. A comparison of the actual and theoretical errors allows 
e to be determined: 

n 2 6 10 

e 1. 75 3.91 5.95 

In this example the function y(x) has a singularity at x = -1. Even a complex singularity near the 
interval of integration can produce the slow convergence in evidence here. (Compare with Problem 
15.29.) The convergence is more rapid if we move away from the singularity. For example, integration 
of the same function by the same method over the interval from 5 to oo brings these results: 

n 2 6 10 

Approximation .001147 .0011482949 .0011482954 

The last value is correct to almost ten places. 

15.39. What are the Gauss-Hermite formulas? 

These are of the form 

the arguments x, being the zeros of the nth Hermite polynomial 

and the coefficients A, being 

The truncation error is 

Hn(x) = ( -1tex
2 :.:n (e-x

2
) 

2n+lnt·'n A- . yn 

E 

,- [H~(x;)Y 

n! yny<zn)(8) 

2n(2n)! 
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These results are found very much as in the Gauss-Legendre case. Here the weight function is 
w(x) =e-x'. The n-point formula is exact for polynomials up to degree 2n- 1. Arguments and 
coefficients are provided in Table 15.3. 

Table 15.3 

n xk Ak n xk Ak 

2 ± .70710678 .88622693 12 ± .31424038 .57013524 

4 ± .52464762 .80491409 ± .94778839 .26049231 

± 1.65068012 .08131284 
± 1. 59768264 .05160799 
±2.27950708 .00390539 

6 ± .43607741 .72462960 ±3.02063703 .00008574 
± 1.33584907 .15706732 ±3.88972490 .00000027 
±2.35060497 .00453001 

14 ± .29174551 .53640591 
8 ± .38118699 .66114701 ± .87871379 .27310561 

± 1.15719371 .20780233 ± 1.47668273 .06850553 
±1.98165676 .01707798 ±2.09518326 .00785005 
±2.93063742 .00019960 ±2.74847072 .00035509 

10 ± .34290133 .61086263 ±3.46265693 .00000472 

± 1.03661083 .24013861 ±4.30444857 .00000001 

± 1. 75668365 .03387439 
±2.53273167 .00134365 
±3.43615912 .00000764 

15.40. Apply the Gauss-Hermite two-point formula to the integral f~, e-x'x2 dx. 

An exact result can be obtained, so we first compute 

The zeros of this polynomial are xk = ±VZ/2. The coefficients A; are easily found from the formula in 
Problem 15.39 to be Vn/2. The two-point formula is therefore 

roo e-x'y(x) dx = v; [y(~) + y(- ~) J 

With y (x) = x 2 this becomes f:oo e-x\2 dx = Vn/2 which is the exact value of the integral. 

15.41. Evaluate correct to six places f'::, e-x' sin2 x dx. 

The Gauss-Hermite formula produces these results: 

n 2 4 6 8 10 

Approximation .748 .5655 .560255 .560202 .560202 

This appears to suggest six-place accuracy and the result is actually correct to six places, the exact 
integral being Vn (1 - e-1)/2 which is to eight places .56020226. 

15.42. Evaluate correct to three places f~, (e-x' /VI + x2
) dx. 
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The square root factor is not so smooth as the sine function of the preceding problem so we should 
not expect quite so rapid convergence, and do not get it. 

n 2 4 6 8 10 12 

Approximation .145 .151 .15202 .15228 .15236 .15239 

The value .152 seems to be indicated. 

15.43. What are the Gauss-Chebyshev formulas? 

These are of Gaussian form with w(x) = 1/Y1- x2
, 

II [ y(x) 2] dx =~± y(x;) 
-J ~ n;~J 

the arguments X; being the zeros of the nth Chebyshev polynomial 

Tn(x) =cos (n arccosx) 

Contrary to appearances this actually is a polynomial of degree n, and its zeros are 

[
(2i -1)n] x;=cos ---

2n 

All coefficients A; are simply n/n. The truncation error is 

E = 2ny<2nl(8) 
22n(2n)! 

15.44. Apply the Gauss-Chebyshev formula for n = 1 to verify the familiar result 

For n = 1 we find Tn(x) =cos (arccos x) = x. Since there is just one zero, our formula collapses to 
ny(O). Since the Gaussian formula with n = 1 is exact for polynomials of degree one or less, the given 
integral is exactly n · y(O) = n. 

15.45. Apply then= 3 formula to s:.l (x4/V1- x2) dx. 

Directly from the definition we find I;(x) = 4x 3
- 3x so that x 1 = 0, x2 = './3/2, x3 = -'./3/2. The 

Gauss-Chebyshev formula now yields (n/3)(0 + ft + ft) = 3n/8 which is also exact. 

Supplementary Problems 

15.46. Prove that P~(x) = xP~_ 1 (x) + nP"_1(x), beginning as follows. From the definition of Legendre 
polynomials, 

Apply the theorem on the nth derivative of a product to find 

n d [ dn-1 dn-2 J 
P~(x) = 2"n! dx 2x dx"-1 (x2 -1r-J + 2(n -1) dx"-2 (x2 -1r-J 

d 
= dx [xPn- 1(x)] + (n -1)Pn_1(x) 
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15.47. Prove that (1-x2)P~2)(x)-2xP~(x)+n(n+1)Pn(x)=O, as follows. Let z=(x2 -1t. Then z'= 
2nx(x 2 -1r-\ making (x 2 -1)z'- 2nxz = 0. Repeatedly differentiate this equation, obtaining 

(x 2 -1)z(2
)- (2n- 2)xz'- 2nz = 0 

(x 2 -1)z(3)- (2n- 4)xz(2
)- [2n + (2n- 2)]z' = 0 

(x 2
- 1)z(4

) - (2n - 6)xz(3
)- [2n + (2n - 2) + (2n - 4)]z(2

) = 0 
and ultimately 

(x 2 -1)z(n+Z)- (2n- 2n- 2)xz(n+t)- [2n + (2n- 2) + (2n- 4) + · · · + (2n- 2n )]z(n) = 0 

which simplifies to (x 2
- 1)z(n+Z) + 2.xz(n+l)- n(n + 1)z(n) = 0 

Since Pn(x) = z(n)/2nn!, the required result soon follows. 

15.48. Differentiate the result of Problem 15.21 and compare with Problem 15.47 to prove 

xP~(x)- P~_1 (x) = nPn(x) 

15.49. Use Problem 15.21 to prove that for all n, Pn(1) = 1, Pn( -1) = ( -1r. 

15.50. Use Problem 15.46 to prove P~(1) = !n(n + 1), P~(-1) = (-1y+ 1P~(1). 

15.51. Use Problem 15.46 to show that 

P~k)(x) =xP~k] 1 (x) + (n + k -1)P~k_J.1 )(x) 

Then apply the method of summing differences to verify 

p(2)(1) = (n + 2)(4) 
n (2 • 4) 

p(3)(1) = (n + 3)(6) 
n (2 • 4 • 6) 

and in general 
( k)(2k) 

p(k)(1) = _n_+ __ 
n 2kk! 

(n +k)! 
(n -k)! 2kk! 

Since Legendre polynomials are either even or odd functions, also verify that 

p~k)c -1) = c -1r+kp~k)C1) 

15.52. Use Problems 15.46 and 15.48 to prove P~+ 1 (x)- P~_ 1 (x) = (2n + 1)Pn(x). 

15.53. The leading coefficient in Pn(x) is, as we know, An= (2n)!/2n(n!?. Show that it can also be written as 
A = 1 . ~. ~. 2 ... 2n -1 = 1· 3 · 5 · · · (2n -1) 

n 2 3 4 n n! . 

15.54. Compute the Gauss-Legendre arguments and coefficients for the case n = 3, showing the arguments to 
be xk = 0, ± v1 and the coefficients to be ~ for xk = 0 and ~ for the other arguments. 

15.55. Verify these Gauss-Legendre arguments and coefficients for the case n = 5: 

xk Ak 

0 .56888889 
±.53846931 .47862867 
±.90617985 .23692689 

15.56. Apply the three-point Gaussian formula of Problem 15.54 to the integral of the sine function, 
J~'2 sin t dt. How does the result compare with that obtained by Simpson's rule using seven points 
(Problem 14.17)? 
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. f1 1 . I 15.57. Apply the Gauss-Legendre two-pomt formula (n = 2) to --2 dt and compare With the exact va ue 
.n/2 = 1.5708. -11 + t 

15.58. Diagram the linear collocation and cubic osculating polynomials which lead to the n = 2 formula, using 
the function y(t) = 1/(1 + t2

) of Problem 15.57. (See Problem 15.25.) 

15.59. How closely do our formulas verify n XX dx = . 7834 to four places? Also apply some of our formulas for 
equally spaced arguments to this integral. Which algorithms work best? Which are easiest to apply "by 
hand"? Which are easiest to program for automatic computation? 

15.60. As in Problem 15.59 apply various methods to f~12 esinx dx = 3.1044 and decide which algorithm is best 
for automatic computation. 

15.61. Compute Laguerre polynomials through n = 5 from the definition given in Problem 15.35. 

15.62. Find the zeros of L 2(x) and verify the arguments and coefficients given in Table 15.2 for n = 2. 

15.63. Use the method of Problem 15.9 to prove that Ln(x) is orthogonal to any polynomial of degree less than 
n, in the sense that 

where p(x) is any such polynomial. 

15.64. Prove that J~ e-xL~(x) dx = (n!)2 by the method of Problems 15.10 and 15.11. 

15.65. Apply the Gauss-Laguerre two-point formula to obtain these exact results: 

15.66. Find the exact arguments and coefficients for three-point Gauss-Laguerre integration. 

15.67. Use the formula of the previous problem to verify 

ioo e-xx4 dx = 4! 

15.68. Apply the n = 6 and n = 8 formulas to the "smooth" integral J~ e-x cos x dx. 

15.69. Apply then= 6 and n = 8 formulas to the "unsmooth" integral J~ e-x log (1 + x) dx. 

15.70. Show that correct to four places J~ e-<x+1tx) dx = .2797. 

15.71. Compute Hermite polynomials through n = 5 from the definition given in Problem 15.39. 

15.72. Show that the Gauss-Hermite one-point formula is f:ooe-x 2
y(x)dx=VJry(O). This is exact for 

polynomials of degree one or less. Apply it to y(x) = 1. 

15.73. Derive the exact formula for n =3 Gauss-Hermite approximation. Apply it to the case y(x)=x 4 to 
obtain an exact result. 

15.74. How closely do the four-point and eight-point formulas duplicate this result? 

f_oooo e-x2 
COS X dx = YJr e- 114 = 1.3804 
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15.75. How closely do the four- and eight-point formulas duplicate this result? 

r e-x'-llx' dx = Vn = 11994 Jo 2e 2 
• 

15.76. Show that correct to three places f:x [e-x'/(1 +x 2
)] dx = 1.343. 

15.77. Evaluate correct to three places f':x e-x\11 + x 2 dx. 

15.78. Evaluate correct to •hree places f':x e-x'log (1 + x 2
) dx. 

15.79. Apply the Gauss-Chebyshev n = 2 formula to the exact verification of 

15.80. Find the following integral correct to three places: J~, [(cos x)/V1- x 2
] dx. 

15.81. Find the following integral correct to two places: J~ 1 (V1 + x 2 /V1- x 2
) dx. 
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Chapter 16 

Singular Integrals 

It is unwise to apply the formulas of the preceding two chapters blindly. They are all based on 
the assumption that the function y(x) can be conveniently approximated by a polynomial p(x). If 
this is not true then the formulas may produce poor, if not completely deceptive, results. It would be 
comforting to be sure that the following application of Simpson's rule will never be made: 

f
2 

dx 1 [ 1] 31 --=- -1+4(4)+- =-
1 x 2

- 2 6 2 12 

but less obvious singular points have probably been temporarily missed. Not quite so serious are the 
efforts to apply polynomial-based formulas to functions having singularities in their derivatives. Since 
polynomials breed endless generations of smooth derivatives, they are not ideally suited to such 
functions, and poor results are usually obtained. 

PROCEDURES FOR SINGULAR INTEGRALS 

A variety of procedures exist for dealing with singular integrals, whether for singular integrands 
or for an infinite range of integration. The following will be illustrated: 

1. Ignoring the singularity may even be successful. Under certain circumstances it is enough to 
use more and more arguments X; until a satisfactory result is obtained. 

2. Series expansions of all or part of the integrand, followed by term-by-term integration, is a 
popular procedure provided convergence is adequately fast. 

3. Subtracting the singularity amounts to splitting the integral into a singular piece which 
responds to the classic methods of analysis and a nonsingular piece to which our 
approximate integration formulas may be applied without anxiety. 

4. Change of argument is one of the most powerful weapons of analysis. Here it may exchange 
a difficult singularity for a more cooperative one, or it may remove the singularity 
completely. 

5. Differentiation relative to a parameter involves embedding the given integral in a family of 
integrals and then exposing some basic property of the family by differentiation. 

6. Gaussian methods also deal with certain types of singularity, as reference to the previous 
chapter will show. 

7. Asymptotic series are also relevant, but this procedure is treated in the following chapter. 

Solved Problems 

16.1. Compare the results of applying Simpson's rule to the integration of Vx near 0 and away 
from 0. 

Take first the interval between 1 and 1.30 with h = .05, since we made this computation earlier 
(Problem 14.11). Simpson's rule gave a correct result to five places. Even the trapezoidal rule gave an 
error of only .00002. Applying Simpson's rule now to the interval between 0 and .30, which has the same 
length but includes a singular point of the derivative of Vx, we obtain f8· 3 Vx dx = .10864. Since the 
correct figure is .10954, our result is not quite correct to three places. The error is more than a hundred 
times greater. 
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16.2. What is the effect of ignoring the singularity in the derivative of Vx and applying Simpson's 
rule with successively smaller intervals h? 

Poly a has proved (Math. Z., 1933) that for functions of this type (continuous with singularities in 
derivatives) Simpson's rule and others of similar type should converge to the correct integral. 
Computations show these results: 

1/h 8 32 128 512 

fvxdx .663 .6654 .66651 .666646 

The convergence to ~ is slow but does appear to be occurring. 

16.3. Determine the effect of ignoring the singularity and applying Simpson's rule to the following 
integral: f6 (1/Vx) dx = 2. 

Here the integrand itself has a discontinuity, and an infinite one, but Davis and Rabinowitz have 
proved (SIAM Journal, 1965) that convergence should occur. They also found Simpson's rule producing 
these results, which show that ignoring the singularity is sometimes successful: 

1/h 64 128 256 512 1024 2048 

Approx. integral 1.84 1.89 1.92 1.94 1.96 1.97 

The convergence is again slow but does appear to be occurring. At current computing speeds slow 
convergence may not be enough to rule out a computing algorithm. There is, however, the usual 
question of how much roundoff error will affect a lengthy computation. For this same integral the 
trapezoidal rule with h = ~96 managed 1.98, while application of the Gauss 48-point formula to quarters 
of the interval (192 points in all) produced 1.99. 

16.4. Determine the result of ignoring the singularity and applying the Simpson and Gauss rules to . 111 . 1 the following mtegral: - sm- dx =. 6347. 
oX X 

Here the integrand has an infinite discontinuity and is also highly oscillatory. The combination can 
be expected to produce difficulty in numerical computation. Davis and Rabinowitz (see preceding 
problem) found Simpson's rule failing. 

1/h 64 128 256 512 1024 2048 

Approx. integral 2.31 1.69 -.60 1.21 .72 .32 

and the Gauss 48-point formula doing no better. So the singularity cannot always be ignored. 

16.5. Evaluate to three places the singular integral f6 (ex /Vx) dx. 

Direct use of the Taylor series leads to 

_ dx = -+xl/2 +-x3'2+-xs'2+ ... dx Ll ( ex ) 11 

( 1 1 1 ) 
0 Vx 0 Vx 2 6 

= 2 +~+!+..!_+__!__+__!__ +-1-+-1-+ ... =2.925 
3 5 21 108 660 4680 37,800 



160 SINGULAR INTEGRALS [CHAP. 16 

After the first few terms the series converges rapidly and higher accuracy is easily achieved if needed. 
Note that the singularity 1/Vx has been handled as the first term of the series. (See also the next 
problem.) 

16.6. Apply the method of "subtracting the singularity" to the integral of Problem 16.5. 

Calling the integral I, we have 

( 1 ( 1 ex -1 
I = Jo Vx dx + Jo Vx dx 

The first integral is elementary and the second has no singularity. However, since (ex -1)/Vx behaves 
like Vx near zero, it does have a singularity in its first derivative. This is enough, as we saw in Problem 
16.1, to make approximation integration inaccurate. 

The subtraction idea can be extended to push the singularity into a higher derivative. For example, 
our integral can also be written as 

1
1 1 + X 11 ex - 1 -X I= --dx+ ---dx 

0 Vx 0 Vx 
Further terms of the series for the exponential function may be subtracted if needed. The first integral 
here is t and the second could be handled by our formulas, though the series method still seems 
preferable in this case. 

16.7. Evaluate the integral of Problem 16.5 by a change of argument. 

The change of argument, or substitution, may be the most powerful device in integration. Here we 
let t = Vx and find I= 2 f6 e'2 dt which has no singularity of any kind, even in its derivatives. This 
integral may be evaluated by any of our formulas or by a series development. 

16.8. Evaluate correct to six decimal places f6 (cos x )(log x) d.x. 

Here a procedure like that of Problem 16.5 is adopted. Using the series for cos x, the integral 
becomes 

11 ( xz x4 x 6 
) 

1--+---+ · · · logxdx 
0 2! 4! 6! 

Using the elementary integral 

11 . x'+1 ( 1 ) 11 1 x' log x dx = -- log x - -- = - ---
o i + 1 i + 1 0 (i + w 

the integral is replaced by the series 

-1 +-1 ___ 1_+_1 ___ 1_+ 0 0 0 

32 2! 52 4! 72 6! 92 8! 

which reduces to - .946083. 

f
oc 1 1 

16.9. Evaluate 2 sin 2 dt by a change of variable which converts the infinite interval of 
1 f f 

integration into a finite interval. 

Let x = 1/t. Then the integral becomes f6 sin (x 2
) dx which can be computed by various approximate 

methods. Choosing a Taylor series expansion leads to 

(
1 

0 2 1 1 1 1 
)

0 
sm (x ) dx = 3-42 + 1320-75,600 + ... 

which is .310268 to six places, only four terms contributing. 
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. . fx sin t 16.10. Show that the change of vanable used m Problem 16.9 converts - dt into a badly 
1 t 

singular integral, so that reducing the interval of integration to finite length may not always be 
a useful step. 

II 1 1 
With x = 1/t we obtain the integral -sin- dx encountered in Problem 16.4, which oscillates badly 

oX X 

near zero, making numerical integration nearly impossible. The integral of this problem may best be 
handled by asymptotic methods to be discussed in the next chapter. 

f
x 1 

16.11. Compute 5 sin nx dx by direct evaluation between the zeros of sin x, thus developing part 
1 X 

of an alternating series. 

Applying the Gauss 8-point formula to each of the successive intervals (1, 2), (2, 3), and so on, 
these results are found: 

Interval Integral Interval Integral 

(1, 2) -.117242 (2, 3) .007321 
(3, 4) -.001285 (4, 5) .000357 
(5, 6) -.000130 (6, 7) .000056 
(7, 8) -.000027 (8, 9) .000014 
(9, 10) -.000008 

The total is -.11094, which is correct to five places. 
This method of direct evaluation for an interval of finite length resembles in spirit the method of 

ignoring a singularity. The upper limit is actually replaced by a finite substitute, in this case ten, beyond 
which the contribution to the integral may be considered zero to the accuracy required. 

16.12. Compute f~ e-x
2

-
11

x
2 
dx by differentiation relative to a parameter. 

This problem illustrates still another approach to the problem of integration. We begin by 
imbedding the problem in a family of similar problems. Fort positive, let 

F(t) =LX e-xLr2fx2 dx 

Since the rapid convergence of this singular integral permits differentiation under the integral sign, we 
next find 

Now introduce the change of argument y = t/x, which allows the attractive simplification 

F'(t) = -2 r e-yLtZfy
2 dy = - 2F(t) 

Thus F(t) = ce-2
' and the constant C may be evaluated from the known result 

F(O) = Ioo e-x2 dx =Vii: 
0 2 

The result is = e-xLr2fx2 dx =-Vii: e-2t 1
00 1 

0 2 

For the special case t = 1, this produces .119938 correct to six digits. 
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Supplementary Problems 

16.13. Compare the results of applying Simpson's rule with h = ! to g x dx and g x log x dx. 

16.14. Use successively smaller h intervals for the second integral of Problem 16.13 and notice the convergence 
toward the exact value of - ~. 

16.15. Evaluate to three places by series development: g (sinx)/x 312 dx. 

16.16. Apply the method of subtracting the singularity to the integral of Problem 16.15, obtaining an 
elementary integral and an integral which involves no singularity until the second derivative. 

16.17. Ignore the singularity in the integral of Problem 16.15 and apply the Simpson and Gauss formulas, 
continually using more points. Do the results converge toward the value computed in Problem 16.15? 
(Define the integrand at zero as you wish.) 

16.18. Evaluate n e-x log X dx correct to three places by using the series for the exponential function. 

16.19. Compute the integral of the preceding problem by ignoring the singularity and applying the Simpson and 
Gauss formulas. Do the results converge toward the value computed in Problem 16.18? (Define the 
integrand at zero as you wish.) 

16.20. Use series to show that 

-lt log x dx = - ~ 
o 1-x 6 

16.21. Verify that to four places f~ [e-x2
/(1 + x2

)] dx = .6716. 

16.22. Verify that to four places f~ e-x Iogx dx = -.5772. 

16.23. Verify that to four places f~ e-x-llx dx = .2797. 

16.24. Verify that to four places f~ e-xvx dx = .8862. 

16.25. Verify that to four places g (1/V -log x) dx = 1. 772. 

16.26. Verify that to four places f~12 (sinx)(Iog sinx) dx = -.3069. 



Chapter 17 

Sums and Series 

REPRESENTATION OF NUMBERS AND FUNCTIONS AS SUMS 
The representation of numbers and functions as finite or infinite sums has proved to be very 

useful in applied mathematics. Numerical analysis exploits such representations in many ways 
including the following: 

1. The telescoping method makes it possible to replace long sums by short ones, with obvious 
advantage to the computer. The classic example is 

_1_+_1_+_1_+ 0 0 0 +--1-= (1-~) + (~-~) + 0 0 0 + (! __ 1_) = 1--1-1 · 2 2 · 3 3 · 4 n(n + 1) 2 2 3 n n + 1 n + 1 

in which the central idea of the method can be seen. Each term is replaced by a difference. 
2. Rapidly convergent infinite series play one of the leading roles in numerical analysis. Typical 

examples are the series for the sine and cosine functions. Each such series amounts to a 
superb algorithm for generating approximations to the functions represented. 

3. Acceleration methods have been developed for more slowly converging series. If too many 
terms must be used for the accuracy desired, then roundoffs and other troubles associated 
with long computations may prevent the attainment of this accuracy. Acceleration methods 
alter the course of the computation, or in other words, they change the algorithm, in order 
to make the overall job shorter. 

The Euler transformation is a frequently used acceleration method. This transformation 
was derived in an earlier chapter. It replaces a given series by another which often is more 
rapidly convergent. 

The comparison method is another acceleration device. Essentially the same as the 
method of subtracting singularities, it splits a series into a similar, but known, series and 
another which converges more rapidly than the original. 

Special methods may be devised to accelerate the series representations of certain 
functions. The logarithm and arctan functions will be used as illustrations. 

4. The Bernoulli polynomials are given by 

with coefficients B; determined by 

B0 = 1 k-l(k) L . B; =0 
i=O l 

tor k = 2, 3, etc. Properties of Bernoulli polynomials include the following: 

B!(x) = iB;_ 1(x) 

B;(x + 1) - B;(x) = ixi-l 

f B;(x) dx =0 

B;(1) = B;(O) 
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fori >0 

fori> 1 
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The Bernoulli numbers b; are defined by 

b; = ( -1)i+ 1B2; 

for i = 1, 2, etc. 

Sums of integer powers are related to the Bernoulli polynomials and numbers. Two such 
relationships are 

Bp+ 1(n + 1)- Bp+ 1(0) 
p + 1 

and 

5. The Euler-Maclaurin formula may be derived carefully and an error estimate obtained 
through the use of Bernoulli polynomials. It may be used as an acceleration method. Euler's 
constant 

0 ( 1 1 1 ) C = hm 1 +- +- + · · · +-- log n 
2 3 n 

can be evaluated using the Euler-Maclaurin formula. Six terms are enough to produce 
almost ten-decimal-place accuracy. 

6. Wallis' product for :rr is 
:rr 2·2·4·4·6·6···2k·2k -=lim--------------
2 1 . 3. 3. 5. 5. 7 ° 0 0 (2k- 1)(2k + 1) 

and is used to obtain Stirling's series for large factorials, which takes the form 

n! en bl b2 b3 ( -1)k+lbk 
log v'2ii: nn+l/2 2n- 3. 4n 3 + 5. 6n 5 -

0 0 0 

+ (2k)(2k- 1)n2k-l 

the b; still being Bernoulli numbers. The simpler factorial approximation 

n! = v'2ii: nn+112e-n 

is the result of using just one term of the Stirling series. 
7. Asymptotic series may be viewed as still another form of acceleration method. Though 

usually divergent, their partial sums have a property which makes them useful. The classic 
situation involves sums of the form 

which diverge for all x as n tends to infinity, but such that 

limxn[f(x)- Sn(x)] = 0 

for x tending to infinity. The error in using Sn(x) as an approximation to f(x) for large 
arguments x can then be estimated very easily, simply by looking at the first omitted term of 
the series. Stirling's series is a famous example of such an asymptotic series. This same 
general idea can also be extended to other types of sum. 

Integration by parts converts many common integrals into asymptotic series. For large x 
this may be the best way for evaluating these integrals. 

Solved Problems 

THE TELESCOPING METHOD 
n i -1 

17.1. Evaluate I: log-.-. 
i=2 l 
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This is another telescoping sum. We easily find 

n i -1 n 

2:: log-. = 2:: [log(i -1) -log i] = -logn 
i=2 l i=2 
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The telescoping method is of course the summation of differences as discussed in Chapter 5. The sum 
b b 

I: Y; can be easily evaluated if Y; can be expressed as a difference, for then ,~/; = '~" LlY, = Yb+I- Y,,. 

17.2. Evaluate the power sum f i 4
• 

i=l 

Since powers can be expressed in terms of factorial polynomials, which in turn can be expressed as 
differences (see Chapter 4), any such power sum can be telescoped. In the present example 

2:: i4 = 2:: [i(l) + 7i(Z) + 6i(3) + i(4)] = 2:: Ll - i(Z) +- i(3) +- i(4) +- i(S) n n n [1 7 6 1 ] 
i=l i=l i=l 2 3 4 5 

Other power sums are treated in similar fashion. 

17.3. Evaluate f (i2 + 3i + 2). 
i=l 

Since power sums may be evaluated by summing differences, sums of polynomial values are easy 
bonuses. For example, 

n 1 
17 .4. Evaluate ~ '(. )(. )' 

i=Il l + 1 l + 2 

This can also be written as a sum of differences. Recalling the factorial polynomials with negative 
1 1 1 

exponent, of Chapter 4, we find 2i(i + 1)- 2(i + 1)(i + 2) i(i + 1)(i + 2) and it follows that the given 

1 1 
sum telescopes to 4 2(n + 1)(n + 2)' 

In this example the infinite series is convergent and f 1 
-
4

. 
i=l i(i + 1)(i + 2) 

n 3 
17.5. Evaluate ~ -:--------(. 

3
). 

i=lll + 

Simple rational functions such as this (and in Problem 17.4) are easily summed. Here 

n 3 n (1 1 ) 1 1 1 1 1 2::--=2:: --- =1+-+------
i=l i(i + 3) i=I i i + 3 2 3 n + 1 n + 2 n + 3 

00 3 11 
The infinite series converges to£ i(i + 

3
) = 6· 
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RAPIDLY CONVERGENT SERIES 

17 .6. How many terms of the Taylor series for sin x in powers of x are needed to provide 
eight-place accuracy for all arguments between 0 and n/2? 

Since the series sinx = ~ ( -1)ix2
i+

1/(2i + 1)! is alternating with steadily decreasing terms, the 
i=O 

truncation error made by using only n terms will not exceed the (n + 1)th term. This important property 
of such series makes truncation error estimation relatively easy. Here we find (n/2) 15/15! = 8 ·10- 10 so 
that seven terms of the sine series are adequate for eight-place accuracy over the entire interval. 

This is an example of a rapidly convergent series. Since other arguments may be handled by the 
periodicity feature of this function, all arguments are covered. Notice, however, that a serious loss of 
significant digits can occur in argument reduction. For instance, with x = 31.4 we find 

sin x =sin 31.4 =sin (31.4- 10n) =sin (31.4- 31.416) =sin (- .016) = - .016 

In the same way sin 31.3 = -.116 while sin 31.5 = .084. This means that although the input data 31.4 is 
known to three significant figures the output is not certain even to one significant figure. Essentially it is 
the number of digits to the right of the decimal point in the argument x which determines the accuracy 
obtainable in sin x. 

17.7. How many terms of the Taylor series for ex in powers of x are needed to provide eight-place 
accuracy for all arguments between 0 and 1? 

The series is the familiar ex = :E xi /i!. Since this is not an alternating series, the truncation error 
i=O 

may not be less than the first omitted term. Here we resort to a simple comparison test. Suppose we 
truncate the series after the x" term. Then the error is 

oo xi xn+l [ x xz J 2: -=-- 1+-+ +· .. 
i~n+l i! (n + 1)! n + 2 (n + 2)(n + 3) 

and since x < 1 this error will not exceed 

xn+i 1 xn+i n + 2 

(n + 1)! 1 -1/(n + 2) (n + 1)! n + 1 

so that it barely exceeds the first omitted term. For n = 11 this error bound becomes about 2 · 10-9 so 
that a polynomial of degree eleven is indicated. For example, at x = 1 the successive terms are as 
follows: 

1.00000000 

1.00000000 

.50000000 

.16666667 

.04166667 

.00833333 

.00138889 

.00019841 

.00002480 

.00000276 

.00000028 

.00000003 

and their total is 2. 71828184. This is wrong by one unit in the last place because of roundoff errors. 
The error could also have been estimated using Lagrange's form (Problem 11.4), which gives 

E = __ 1_ e<xn+i 

(n + 1)! 
with 0<5<x 

17.8. Compute e- 10 to six significant digits. 

This problem illustrates an important difference. For six places we could proceed as in Problem 
17.7, with x = -10. The series would however converge very slowly and there is trouble of another sort. 
In obtaining this small number as a difference of larger numbers we lose digits. Working to eight places 
we would obtain e- 10 = .00004540 which has only four significant digits. Such loss is frequent with 
alternating series. Occasionally double-precision arithmetic (working to twice as many places) 
overcomes the trouble. Here, however, we simply compute e10 and then take the reciprocal. The result 
is e- 10 = .0000453999 which is correct to the last digit. 
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17.9. In Problem 14.34 the integral (2/Vii:) JO e_,z dt was calculated by the Taylor series method for 
x = 1. Suppose the series is used for larger x, but to avoid roundoff error growth no more than 
twenty terms are to be summed. How large can x be made, consistent with four-place 
accuracy? 

The nth term of the integrated series is 2x2
"-

1/Vn(2n -1)(n -1)! apart from the sign. Since this 
series alternates, with steadily decreasing terms, the truncation error will not exceed the first omitted 
term. 

Using 20 terms we require that (2/Vn)x41 /41· 20! < 5 ·10-5
. This leads to x < 2.5 approximately. 

For such arguments the series converges rapidly enough to meet our stipulations. For larger arguments it 
does not. 

ACCELERATION METHODS 

17 .10. Not all series converge as rapidly as those of the previous problems. From the binomial series 

_1_ = 1 - x2 + x4 - x6 + ... 
1 +x 2 

one finds by integrating between 0 and x that 

arctan x = x - ! x 3 + ! x 5 
- ! x 7 + ... 

3 5 7 

At x = 1 this gives the Leibnitz series 

:rr 1 1 1 
-= 1--+---+ ... 
4 3 5 7 

How many terms of this series would be needed to yield four-place accuracy? 

Since the series is alternating with steadily decreasing terms, the truncation error cannot exceed the 
first term omitted. If this term is to be .00005 or less, we must use terms out to about 1/20,000. This 
comes to 10,000 terms. In summing so large a number of terms we can expect roundoff errors to 
accumulate to 100 times the maximum individual roundoff. But the accumulation could grow to 10,000 
times that maximum if we were unbelievably unlucky. At any rate this series does not lead to a pleasant 
algorithm for computing n/4. 

17.11. Apply the Euler transformation of Chapter 11 to the series of the preceding problem to 
obtain four-place accuracy. 

The best procedure is to sum the early terms and apply the transformation to the rest. For example, 
to five places, 

The next few reciprocals and their differences are as follows: 

.04762 
-414 

.04348 66 
-348 -14 

.04000 52 3 
-296 -11 

.03704 41 
-255 

.03448 
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The Euler transformation is 

and applied to our table produces 

.02381 + .00104 + .00008 + .00001 = .02494 

Finally we have 

JT 1 1 1 4 = 1 - 3 + 5 - 7 + ... = . 76046 + . 02494 = . 78540 

which is correct to five places. In all, 15 terms of the original series have seen action rather than 10,000. 

The Euler transformation often produces superb acceleration like this, but it can also fail. 

17.12. Compute :rr/4 from the formula 

working to eight digits. 

:rr 1 1 1 
4 = 2 arctan S + arctan ? + 2 arctan S 

This illustrates how special properties of the function involved may be used to bring accelerated 
convergence. The series 

converges quickly for the arguments now involved. We find using no more than five terms of the series: 

1 
2 arctan 5 = .39479112 

1 
arctan?= .14189705 

1 
2 arctan S = .24870998 

with a total of .78539815. The last digit should be a 6. 

X 1 
17.13. How many terms of L -.2-- would be needed to evaluate the series correct to three places? 

i~ll + 1 

Terms beginning with i = 45 are all smaller than .0005, so that none of these individually affects the 
third decimal place. Since all terms are positive, however, it is clear that collectively the terms from 
i = 45 onward will affect the third place, perhaps even the second. Stegun and Abramowitz (Journal of 
SIAM, 1956) showed that 5745 terms are actually required for three-place accuracy. This is a good 
example of a slowly convergent series of positive terms. 

17 .14. Evaluate the series of Problem 17.13 by the "comparison method," correct to three places. 
(This method is analogous to the evaluation of singular integrals by subtracting out the 
singularity.) 

The comparison method involves introducing a known series of the same rate of convergence. For 
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example, 

We will prove later that the first series on the right is n 2/6. The second converges more rapidly than the 
others, and we find 

X 1 11111 1 1 
~f(i2 + 1) = 2 + 20 + 90 + 272 + 650 + 1332 + 2450 + 

0 0 0 

= ·56798 

with just ten terms being used. Subtracting from n 2/6 = 1.64493 makes a final result of 1.07695, which 
can be rounded to 1.077. 

17.15. Verify that the result obtained in Problem 17.14 is correct to at least three places. 

The truncation error of our series computation is 

X 1 00 1 00 1 JO 1 
E=:l:--<:l:-=:l:--:l:-,~~~i2(i2+1) l~lli4 1~1i4 1~1i4 

The first series on the right will later be proved to be n 4/90, and the second comes to at least 1.08200. 
This makes E < 1.08234-1.08200 = .00034. Roundoff errors cannot exceed 11 · 5 · 10-6 since 11 
numbers of five-place accuracy have been summed. The combined error therefore does not exceed 
.0004, making our result correct to three places. 

X 1 
17.16. Apply the comparison method to i~l i2(i 2 + 

1
)' 

This series was summed directly in the preceding problem. To illustrate how the comparison 
method may be reapplied, however, notice that 

00 1 00 1 00 1 
:Z: ·2c·2 + 1) = :Z: ~- :Z: ·4c·2 + 1) 1~11 I 1 ~11 l~11 I 

0 0 0 0 1 1 1 1 1 
Duect evaluatiOn of the last senes bnngs - +-+- + -- + --+ · · · which comes to .51403. 
Subtracting from n 4/90 we find 2 80 810 4352 16,250 

00 1 :z: ~c·2 
1
) = 1.08234- .51403 = .56831 

1~11 I + 

which agrees nicely with the results of the previous two problems, in which this same sum was computed 
to be .56798 with an estimated error of .00034. The error estimate was almost perfect. 

X 1 
17.17. Evaluate ~ -:'j to four places. 

i=ll 

The series converges a little too slowly for comfort. Applying the comparison method, 

00 1 
:Z::z--c·3 .) 1~2 1 I -1 

The first series on the right is telescoping and was found in Problem 17.4 to be exactly i. The last may be 
summed directly, 

1 1 1 1 1 1 
-+-+-+--+--+--+ ... 
24 216 960 3000 7560 16,464 

and comes to .04787. Subtracting from 1.25, we have finally f 11e = 1.20213 which is correct to four 
places. See Problem 17.39 for a more accurate result. 1 ~ 1 
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THE BERNOULLI POLYNOMIALS 

17.18. The Bernoulli polynomials B;(x) are defined by 

t oc ti 
ex'-,--= 2: -:r B;(x) 

e - 1 ;~o l. 

Let B;(O) = B; and develop a recursion for these B; numbers. 

Replacing x by 0, we have 

with ck = :~~ i! (/~ i)!' This makes k! ck = :~~ (~)B;. Comparing the coefficients oft in the series 

equation above, we find that 

B0 = 1 
k-1 (k) 2: . B, =0 
i=O l 

fork= 2, 3, ... 

Written out, this set of equations shows how the B, may be determined one by one without difficulty: 

etc. The first several B, are therefore 

Bo= 1 

Ba+2B1 =0 

Ba+3B1 +3Bz=O 

Bo + 4B1 + 6B2 + 4B3 = 0 

B5 =0 

and so on. The set of equations used can also be described in the form 

fork= 2, 3, ... 

where it is understood that after applying the binomial theorem each "power" B; is replaced by B,. 

17.19. Find an explicit formula for the Bernoulli polynomials. 

From the defining equation and the special case x = 0 treated above, 

Comparing the coefficients of tk on both sides makes k_!_ Bk(x) = ± Bk_1-. -
1
-.-x; or 

! ;~o z!(k-z)! 

The first several Bernoulli polynomials are 

Ba(x) = 1 

2 1 
B2(x) =X -X + (j 

3 1 
B3(x) =x3 -2x2 +2x 

B (x) = x4
- 2x3 + x2

- _!_ 4 30 

5 5 4 5 3 1 
B5(x)=x -2x +3x -(/ 
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etc. The formula can be summarized as Bk(x) = (x + B)k where once again it is to be understood that the 
binomial theorem is applied and then each "power" B,. is replaced by B,.. 

17.20. Prove that BI(x) = iB;_ 1(x). 

The defining equation can be written as 

text x t;B(x) 
~=1+2:-:,-e 1 ;~t t. 

Differentiating relative to x and dividing through by t, 

text oo [B'(x)] ~=2: -'.- ti-l(i-1)! 
e 1 ;~t 1 

But the defining equations can also be written as 

e:~t1 = ~ [B,._t(x)][(i ~-~)!] 
and comparing coefficients on the right, B;(x) = iB,._1(x) for i = 1, 2, .... Notice also that the same 
result can be obtained instantly by formal differentiation of B,.(x) = (x + B)'". 

17.21. Prove B;(x + 1)- B;(x) = ixi-1. 

Proceeding formally (even though a rigorous proof would not be too difficult from (B + 1)k = B\ 

we find ± ( i)(B + 1)kxi-k = ± ( i)Bkxi-k or 
k~2 k k~2 k 

(B + 1 +x)'"- i(B + 1)xi-1 = (B +x)'"- iBxi-1 

From the abbreviated formula for Bernoulli polynomials (Problem 17.19), this converts immediately to 
B,.(x + 1)- B,.(x) = ixi-1. 

17.22. Prove B;(1) = B,.(O) fori> 1. 

This follows at once from the preceding problem with x replaced by zero. 

17.23. Prove that f6 B,.(x) dx = 0 fori= 1, 2, .... 

By the previous problems 

L B,.(x) dx 
B,.+t(1)- B,.+t(O) 

i+1 
0 

17.24. The conditions of Problems 17.20 and 17.23 also determine the Bernoulli polynomials, given 
B0(x) = 1. Determine B1(x) and B2(x) in this way. 

From B~(x) = B0(x) it follows that B1(x) = x + C1 where C1 is a constant. For the integral of B1(x) to 
be zero, C1 must be -~.Then from B~(x) = 2B1(x) = 2x -1 it follows that B2(x) = x 2

- x + C2 • For the 
integral of Bz(x) to be zero, the constant C2 must be i. In this way each B,.(x) may be determined in its 
turn. 

17.25. Prove B2;-1 = 0 fori= 2, 3, ... 

Notice that 
t t t et + 1 X B/ 

f(t) = -,-+- =- · -,- = Bo + L --=1 e - 1 2 2 e - 1 ;~ 2 1. 
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is an even function, that is, f(t) = f( -t). All odd powers oft must have zero coefficients, making B; zero 
for odd i except i = 1. 

17.26. Define the Bernoulli numbers bi. 

These are defined as b; = ( -1Y+ 1 B2, for i = 1, 2, .... Thus 

1 1 7 
b! =6 b.=30 b7=6 

1 5 3617 
b2 =36 bs=66 b8 =Sl0 

1 
b3=42 

691 
b6 = 2730 

43,867 
bg=~ 

as is easily verified after computing the corresponding numbers B; by the recursion formula of Problem 
17.18. 

17.27. Evaluate the sum of pth powers in terms of Bernoulli polynomials. 

Since, by Problem 17.21, LlB;(x) = B,(x + 1)- B;(x) = ixH, the Bernoulli polynomials provide 
"finite integrals" of the power functions. This makes it possible to telescope the power sum. 

Bp+ 1(n + 1)- Bp+ 1(0) 
p + 1 

17.28. Evaluate the sums of the form ~ 11ei in terms of Bernoulli numbers. 
k=l 

It will be proved later (see chapter on trigonometric approximation) that the function 

Fn(x) = Bn(x) 

Fn(x±m)=Fn(x) 

O~x<1 

for m an integer 

known as a Bernoulli function, having period 1, can be represented as 

Fn(x)=(- 1 )"12 + 1 ·n!·~· _f cos2::kx 
(2n) k=! k 

for even n, and as Fn(x)=(-1)(n+l)l2,n! ·~· i sin2~kx 
(2n) k=! k 

when n is odd. For even n, say n = 2i, we put x = 0 and have 

_f ~= (- 1)'+ 1 K(0)(2n?' 
k=l k2' 2(2i)! 

But F;;(O) = B2,(0) = B2; = ( -1)'+ 1b; and so ~ 11e = b;(2n?;/2(2i)!. 
k=! 

In particular,~ 1/k2 =n2 /6, ~ 1/k4 =n4 /90, etc. 
k=l k=! 

17.29. Show that all the Bernoulli numbers are positive and that they become arbitrarily large as i 
increases. 
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Noting that 1 < ~ 1/ k 21 ~ ~ 1/ k2 = n 2 /6 < 2, we see that 
k~l k~1 

In particular all the b1 are positive and they grow limitlessly with increasing i. 

(2.n)2i 
17.30. Show that as i increases, lim 

2
(
2

i)! b; = 1. 

This also follows quickly from the series of Problem 17.28. All terms except the k = 1 term 
approach zero for increasing i, and because 1/xP is a decreasing function of x, 

1 lk 1 -< -dx 
kP k-l Xp 

so that, if p > 1, 

Asp increases (in our case p = 2i) this entire series has limit zero, which establishes the required result. 
Since all terms of this series are positive, it also follows that b, > 2(2i)!/(2n)21

• 

THE EULER-MACLAURIN FORMULA 
17.31. Use the Bernoulli polynomials to derive the Euler-Maclaurin formula with an error estimate. 

(This formula was obtained in Chapter 11 by an operator computation, but without an error 
estimate.) 

We begin with an integration by parts, using the facts that B;(t) = B0(t) = 1 and B1(1) =-B1(0) = ~. 

(1 (1 1 ( 
Jo y(t)dt= Jo y(t)B;(t)dt=2(y0 +y1)- Jo y'(t)B1(t)dt 

Again integrate by parts using B~(t) = 2B1(t) from Problem 17.20 and B2(1) = B2(0) = b 1 to find 

1
1 1 1 111 y(t) dt = -

2 
(Yo+ Y1)-- b1(y;- y~) +- y<2l(t)B2(t) dt 

0 2 2 0 

The next integration by parts brings 

-
2

1 
(

1 

y<2\t)B2(t) dt =! l 2\t)B3(t) /
1

-! ( y(3\t)B3(t) dt 
Jo 6 o 6 Jo 

But since B3(1) = B3(0) = 0, the integrated term vanishes and we proceed to 

1 1 ( 
= 24 bz(Y\3

l- Yb3
l) + 24 Jo l 4\t)B4(t) dt 

since B4(1) = B4 (0) = B4 = - b2 . Continuing in this way, we develop the result 

( 1 k (-1)'b 
Jo y(t) dt = z (Yo+ Y1) + ~ (2i)! '(y\zi-tl- Yh2i-tl) + Rk 

where Rk = (2~)! f l 2
kl(t)B2k(t) dt 

Integrating Rk by parts the integrated part again vanishes, leaving 

-1 11 

R = --- y<2
k+

1l(t)B (t) dt 
k (2k + 1)! 0 2k+l 
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Corresponding results hold for the intervals between other consecutive integers. Summing, we find 
substantial telescoping and obtain 

with an error of 

n ln 1 k ( -1Yb L Y; = y(t) dt +-(Yo+ Yn)- L --. 
1
-' (y~Zi-l)- Y~Zi-l)) 

;~a a 2 ;~1 (2t). 

E -1 ln (2k+l)( )F () d 
k = (2k + 1)! 0 y t 2k+l t t 

where F;k(t) is the Bernoulli function of Problem 17.28, the periodic extension of the Bernoulli 
polynomial B2k(t). The same argument may be used between integer arguments a and b rather than 0 
and n. We may also allow b to become infinite, provided that the series and the integral we encounter 
are convergent. In this case we assume that y(t) and its derivatives all become zero at infinity, so that 
the formula becomes 

00 100 1 k ( -l)jb L Y; = y(t) dt +- Ya + L --. -, j Y~Zi-l) 
;~a a 2 ;~1 (2t). 

17 .32. Evaluate the power sum t i 4 by use of the Euler-Maclaurin formula. 
i=O 

In this case the function y(t) = t4
, so that with k = 2 the series of the preceding problem terminates. 

Moreover, the error Ek becomes zero since y<5l(t) is zero. The result is 

~ •4 1 5 1 4 1 3 1 1 t:o l = sn + 2 n +12 (4n ) -720 (24n) =30 n(n + 1)(2n + 1)(3n2 + 3n -1) 

as in Problem 17.2. This is an example in which increasing kin the Euler-Maclaurin formula leads to a 
finite sum. (The method of Problem 17.27 could also have been applied to this sum.) 

. ( 1 1 1 l ) . (S 17.33. Compute Euler's constant C = hm 1 +- +- + · · · +-- og n assummg convergence. ee 
also Problem 17.77.) 2 3 n 

00 (1 i-1) Using Problem 17.1, this can be rewritten as C = 1 + L -; + log-.- . 
i~2 l l 

The Euler-Maclaurin formula may now be applied with y(t) = 1/t -log t +log (t -1). Actually it is 
more convenievt to sum the first few terms directly and then apply the Euler-Maclaurin formula to the 
rest of the series. To eight places, 

9 (1 . 1) 1+6 i+logT =.63174368 

Using 10 and oo as limits, we first compute 

1
00 

[!-log t +log (t -1)] dt = (1- t) log~ 1

00 

10 t t 1 10 

= -1 + 9 log 10- 9log 9 =- .05175536 

the first term coming from the upper limit by evaluation of the "indeterminate form." Next 

1 

2Y10 = -.oo268026 _!__y(J) = 00000020 
720 10 • 

all values at infinity being zero. Summing the five terms just computed, we have C = .57721567. 
Carrying ten places and computing only one more term would lead to the better approximation 
C = .5772156650 which is itself one unit too large in the tenth place. 

In this example the accuracy obtainable by the Euler-Maclaurin formula is limited. After a point, 
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using more terms (increasing k) leads to poorer approximations to Euler's constant rather than better. 
In other words, we have used a few terms of a divergent series to obtain our results. To see this we need 

only note that the ith term of the series is (~0t1;+~b{) c~;?- 92~_ 1 ) and that by Problem 17.29 the b; 
exceed 2(2i)!/(2n?; which guarantees the unlimited growth of this term. Divergence is more typical than 
convergence for the Euler-Maclaurin series. 

17.34. A truck can travel a distance of one "leg" on the maximum load of fuel it is capable of 
carrying. Show that if an unlimited supply of fuel is available at the edge of a desert, then the 
truck can cross the desert no matter what its width. Estimate how much fuel would be needed 
to cross a desert 10 "legs" wide. 

On just one load of fuel the truck could cross a desert one leg wide. With two loads available this 
strategy could be followed: Loading up, the truck is driven out into the desert to a distance of one-third 
leg. One-third load of fuel is left in a cache and the truck returns to the fuel depot just as its fuel 
vanishes. On the second load it drives out to the cache, which is then used to fill up. With a full load the 
truck can then be driven one more leg, thereby cross a desert of width (1 + n legs, as shown in Fig. 17-1. 
With three loads of fuel available at the depot two trips can be made to establish a cache of~ loads at a 
distance of k leg out into the desert. The third load then brings the truck to the cache with (~ + ~) loads 
available. Repeating the previous strategy then allows a journey of 1 + l +!legs, as shown in Fig. 17-2. 

0~ 
Depot I ? Cache 

f-- 1/:l -....:'----

Second trip 0 
I First 

~ Third trip 
Depot 

L ? Cache 

1.'5 ; 

Fig. 17-1 Fig. 17-2 

A similar strategy allows a desert of width (1 + ~ + ~ + .. · + -
1
-) to be crossed using n loads of 

3 5 2n-1 
fuel. Since this sum grows arbitrarily large with increasing n, a desert of any width can be crossed if 
sufficient fuel is available at the depot. 

To estimate how much fuel is needed to cross a desert ten legs wide, we write 

1 + ~ + ... + -
1
- = (1 + ~ + ~ + ... + _.!._) - ~ (1 + ~ + ~ + ... + ~) 

3 2n - 1 2 3 2n 2 2 3 n 

and apply the approximation of Problem 17.33: 

1 1 1 
1 + 3 + · · · + 

2
n _ 

1 
=log (2n) + C- z (log n +C) 

=~log n +log 2 + ~ C =~log n +. 98 
2 2 2 

This reaches ten for n equal to almost 100 million loads of fuel. 

WALLIS' INFINITE PRODUCT 

17.35. Obtain Wallis' product for n. 

Repeated applications of the recursion formula 

l
rrlz n - 1 l"Jz 

sin" x dx = -- sin"-2 x dx 
o n o 

for n > 1 
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available in integral tables, easily brings the results 

sin2
k xdx =--·--· · ·-· dx In:/

2 2k - 1 2k - 3 1 f" 12 

0 2k 2k- 2 2 0 

ln:IZ 0 2k+l 2k 2k- 2 2 1"12 
0 

sm xdx=--·--· · ·-· smxdx 
0 2k + 1 2k - 1 3 0 

Evaluating the remaining integrals and dividing one result by the other, 

(

0

"

12 

sin2k X dx 
2•2•4•4•6•6···2k•2k Jn 

2 1 0 3 0 3 0 50 5° 7 ° 0 0 (2k -1)(2k + 1) .ln;/2 
sin2

k+l x dx 
0 

The quotient of the two integrals converges to 1 as k increases. This can be proved as follows. Since 
O<sinx < 1, 

rn:/2 rn:/2 rn:/2 

0 < Jo sin2
k+l x dx ~ Jo sin2

k x dx ~ Jo sin2
k-l x dx 

Dividing by the first integral and using the original recursion formula, 

l
n:/2 

sin2k x dx 
1 < 0 <2k + 1 

J
n;/2 2k 

0 

sin2k+l x dx 

so that the quotient does have limit 1. Thus 

n 2·2·4·4·6·6···2k·2k 
-=lim-------------
2 1 ° 3 ° 3 ° 5° 50 7 ° 0 0 (2k -1)(2k + 1) 

which is Wallis' infinite product. 

17.36. Obtain Wallis' infinite product for VJi;. 

Since lim 2k/(2k + 1) = 1, the result of the previous problem can be written as 

n. 22 ·42 ···(2k-2? 
2 = hm 3z • sz ... (2k - 1 )z 2k 

Taking the square root and then filling in missing integers, we find 

(1i =lim 2. 4 ... (2k- 2) V2k =lim zzk(k!? 
'V2 3 ° 5° 0 0 (2k -1) (2k)! V2k 

from which Wallis' product follows at once in the form 

0 22k(k!)2 
Vn= hm (2k)! y'k 

This will be needed in the next problem. 

STIRLING'S SERIES FOR LARGE FACTORIALS 

17.37. Derive Stirling's series for large factorials. 

In the Euler-Maclaurin formula let y(t) =log t and use the limits 1 and n. Then 

1 k ( -1Yb ( 1 ) f" F (t) log 1 +log 2 + · · · + log n = n log n - n +-log n + 2: ' 1 - 2'""1" - Zk+l Zk dt 
2 ;~1 (2i)(2i -1) n ,_ I (2k + 1)f +I 
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This can be rearranged into 

( 
1) k (-1)'b; fx F2k+l(t) 

Iogn!= n+z Iogn-n+c-~(2i)(2i-1)n2' 1+ "(2k+1)t2k+tdt 

where 
k (-1)'b; fx F2k+1(t) 

c = 2: dt 
i~1 (2i)(2i- 1) 1 (2k + 1)t2k+ 1 

To evaluate c let n ~ oo in the previous equation. The finite sum has limit zero. The integral, since F2k+ 1 

is periodic and hence bounded, behaves as 1/n2k and so also has limit zero. Thus 

n' e" 
c =lim log nn.+l/2 =lim log a'n 

. . . . . . 2 (n!?e2" (2n)! e2" 
A Simple artifice now evaluates this hm1t. Smce a"= n2"+1 , a'2n = (

2
n?"+ 112 we find 

. . a-~ . [ (n !)222n J 
hm a'n = hm-= hm Yz. '- ( )' = vZn a'zn vn 2n . 

by Wallis' product for Vn. Thus c =log vZn. Our result can now be written as the Stirling series 

1 g n! e" b1 b2 +~- ... + (-1)k+lbk 
0 V2ii: nn+l!Z 2n 3. 4n3 5. 6n 5 (2k)(2k -1)n2k 

b · E r Fzk+l(t) d I h' h h I . h . k' the error emg "= J" (
2

k + 
1
)t2k+1 t. For argent IS means t at t e ogant m IS near zero, rna mg 

n! =vZnnn+112e-". 

17.38. Approximate 20! by Stirling's series. 

. . 1 1 
For n = 20 the senes Itself becomes ---

88
--+ · · · = .00417 to five places, only one term 

being used. We now have 240 2, 0,000 

log 20! = .00417-20 +log v2n + 20.51og 20 = 42.33558 

20! = 2.43281 . 1018 

This is correct to almost five digits. More terms of the Stirling series could be used for even greater 
accuracy, but it is important to realize that this series is not convergent. As k is increased beyond a 
certain point, for fixed n, the terms increase and the error E grows larger. This follows from the fact 
(see Problem 17.29) that bk > 2(2k)!/(2.rr)2

k. As will be proved shortly, the Stirling series is an example 
of an asymptotic series. 

17.39. Compute I: l/i3 to seven places. 
i=I 

Sum the first nine terms directly to find f 1/i3 = 1.19653199. With f(t) = 1/t3 the Euler-Maclaurin 
formula now involves '~ 1 

foo ~= 005 
3 • 

wX 
~ /(10) = .0005 -~ /'(10) = .000025 7~0 jPl(10) = .00000008 

and the total is 1.2020569. This improves the result of Problem 17.17. 

ASYMPTOTIC SERIES 

17.40. Define an asymptotic series. 

Let S"(x) = ~ a1x'. If for x ~ 0, lim [f(x)- Sn(x)]/x" = 0 for any fixed positive integer n, then 
i=O 
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f(x) is said to be asymptotic to ~ a1x
1 at zero. This is represented by the symbol 

i=O 

f(x) = L a1x
1 

i=O 

[CHAP. 17 

With x replaced by x- x0 the same definition applies, the series being asymptotic to f(x) at x0 • 

Perhaps the most useful case of all is the asymptotic expansion at infinity. If for x-Hxl, 

limx"[f(x)- Sn(x)] = 0 

where now Sn(x) = ~ a)x1
, then f(x) has an asymptotic series at infinity, and we write 

i=O 

f(x)= f~ 
i=OX 

The idea can be further generalized. If, for example, 

f(x)- g(x) f ~ 
h(x) t~oX 

then we also say that f(x) has the following asymptotic representation: 

f(x) = g(x) + h(x) f ~ 
t~oX 

Note that none of these series is assumed to converge. 

17.41. Obtain an asymptotic series for J; (e-'/t) dt. 

Successive integrations by parts bring 

and so on. Ultimately one finds 

l~e-' -x[1 1 2! 3! )"+ 1 (n-1)!] f(x)= -dt=e ---+--4+· · ·+(-1 -- +Rn 
x t x x 2 x 3 x x" 

where Rn = ( -1)"n! f t~:: dt. Since IRnl <n! e-x;x"+\ we have 

I [ 
"(-1)'+

1
(i-1)!JI n! x" exf(x)- L 1 <-

1~t X X 

so that as x ~ oo this does have limit 0. This makes exf(x) asymptotic to the series and by our generalized 
definition 

(
1 1 2! 3! ) f(x)=e-x ---+--4+ · · · 
x x 2 x 3 x 

Notice that the series diverges for every value of x. 

17.42. Show that the truncation error involved in using the series of the preceding problem does not 
exceed the first omitted term. 

The truncation error is precisely Rn. The first omitted term is ( -l)"+2e-xn !/x"+1 which is identical 
with the estimate of Rn occurring in Problem 17.41. 

17.43. Use the asymptotic series of Problem 17.41 to compute f(5). 
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We find 

e5f(5) = .2- .04 + .016- .0096 + .00746- .00746 + · · · 

after which terms increase. Since the error does not exceed the first term we omit, only four terms need 
be used, with the result 

f(5) = e-5(.166) = .00112 

with the last digit doubtful. The point is, the series cannot produce f(5) more accurately than this. For 
larger x arguments the accuracy attainable improves substantially but is still limited. 

17.44. Use the series of Problem 17.41 to compute f(lO). 

We find, carrying six places, 

e10f(10) = .1- .01 + .002- .0006 + .00024- .000120 + .000072 

- . 000050 + . 000040 - . 000036 + . 000036 - ... 

after which the terms increase. Summing the first nine terms, we have 

[(10) = e-10(.091582) = .0000041579 

with the last digit doubtful. In the previous problem two-place accuracy was attainable. Here we have 
managed four places. The essential idea of asymptotic series is that for increasing x arguments the error 
tends to zero. 

17.45. Prove that the Stirling series is asymptotic. 

With n playing the role of x and the logarithm the role of f(x) (see Problem 17.37), we must show 
that 

r 2k-1E _ r 2k-t ix F2k+t(t) d _ O 
Im n n- Im n n (2k + 1)t2k+l t-

Since F2k+ 1(t) repeats, with period 1, the behavior of B2k+ 1(t) in the interval (0, 1) it is bounded, say 
IFI <M. Then 

and with increasing n this becomes arbitrarily small. 

17.46. Find an asymptotic series for f.; e-''12 dt. 

The method of successive integrations by parts is again successful. First 

ix -r'/2 d ix 1 ( -r'/2) d 1 -x'/2 ix 1 -r'/2 d x e t = x - t - te t = ~ e - x (i e t 

and continuing in this way we find 

ix e-'';2 dt = e-x'/2[! _ _!_+ ~- ... + (-1)"-~1· 3 ... (2n- 3)] + R 
X X x3 xs x2n-1 n 

where R" = 1 · 3 · 5 · · · (2n - 1) f e-''12 ~ dt. The remainder can be rewritten as 

1 • 3 • 5 · · · (2n - 1) -xz12 
R" = x2n+t e - Rn+l 

Since both remainders are positive, it follows that 

1 • 3 • 5 · · · (2n - 1) -xz12 
R" < x2n+l e 



180 SUMS AND SERIES [CHAP. 17 

This achieves a double purpose. It shows that the truncation error does not exceed the first omitted 
term. And since it also makes lim ex212x 2

"-
1Rn = 0, it proves the series asymptotic. 

17.47. Compute V2fii f~ e-'212 dt by the series of Problem 17.46. 

With x = 4 we find 

~ e-8[.25- .015625 + .002930- .000916 + .000401- .000226 

+ .000155- .000126 + .000118- .000125 + 0 0 
·] 

to the point where terms begin to increase. The result of stopping before the smallest term is 

.f!r r e _,Z;z dt = 0 0000633266 

with the 2 digit in doubt. This agrees nicely with our results of Problem 14.32. Independent 
computations which confirm one another are very reassuring. Note the difference in methods in these 
two problems, and the simplicity of the present computation. 

17.48. Find an asymptotic series for the sine integral. 

Once again integration by parts proves useful. First 

. ( ) _ fx sin t d _ COS X fx COS t d 
S! X - X t t- -X-- X T t 

after which similar steps generate the series 

fx sin t dt = COS X+ sin X _ 2! COS X_ 3! sin X + ... 
x t x x 2 x 3 x 4 

which can be proved asymptotic as in previous problems. 

17.49. Compute Si (10). 

Putting x = 10 in the previous problem, 

Si (10) = -.083908- .005440 + .001678 + .000326- .000201 

- .000065 + .000060 + .000027- .000034- .000019 

after which both the cosine and sine terms start to grow larger. The total of these ten terms rounds to 
-.0876, which is correct to four places. 

Supplementary Problems 

17.50. Express as a sum of differences and so evaluate ~ W- 3i + 2). 
i=l 

17.51. Express as a sum of differences and so evaluate ~ i 5 

i=l 

n 1 
17.52. Express as a sum of differences and so evaluate ;~1 i(i + 

2
)' 
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17.53. Evaluate the sum in Problem 17.51 by the Euler-Maclaurin formula. 

17.54. Evaluate the sum in Problem 17.50 by the Euler-Maclaurin formula. 

17.55. How many terms of the cosine series are needed to provide eight-place accuracy for arguments from 0 to 
n/2? 

17.56. Show that 

1 1 ( D 2D ) 
Yo-:- Y1 + Yz- · · · = 1 + EYo = D eD _ 1 - e2D _ 1 Yo 

(
1 4-1 16-1 64-1 ) 

= 2-Bz---z!D+B44!D3-~D5 +··· Yo 

where the B; are Bernoulli numbers. Apply this to the Leibnitz series for n/4 to obtain the six-place 
result .785398. 

1 1 1 
17.57. Apply the Euler transformation to evaluate 1- V2 + yl3- V4 + · · · to four places. 

17.58. Use the Euler transformation to evaluate 1 -! + _!_- _!_ + · · · to eight places, confirming the result 
.91596559. 9 25 49 

1 1 1 
17.59. Use the Euler transformation to show that 1---+-----+ ···to four places equals .0757. 

log 2 log 3 log 4 

17.60. Apply the Euler transformation to log 2 = 1 -! + ~- ~ + ~- · · · . 

17.61. For how large an argument x will twenty terms of the series 

log (1 + x) = x -! x 2 +! x3 -! x4 + ... 
2 3 4 

produce four-place accuracy? 

17.62. How many terms of the cosine series cos x = 1 -! x 2 + _!_ x4
- • • • are needed to guarantee eight-place 

accuracy for the interval from 0 to n/2? 2 4! 

17.63. For how large an argument x will twenty terms of the series 

produce six-place accuracy? 

arctan x = x - ! x3 + ! x5 
- ! x 7 + · .. 

3 5 7 

x3 x 5 
X

7 

17.64. For the series sinhx = x + 3! + 5! + 7! + · · · estimate the truncation error in terms of the first term 

omitted. (See Problem 17.7 for a possible method.) For how large an argument x will twenty terms be 
enough for eight-place accuracy? 

17.65. Apply the comparison method of Problem 17.14 to compute f 1/(i2 + i + 1) to three places. [Use 
i=l 

~ 1/(i + 1)i = 1 as the comparison series.] 
i=l 

17.66. Compute f 1/(i3 + 1) to three places by the comparison method using the result of Problem 17.17. 
i=l 

17.67. Compute f 1/(i2 + 2i + 2) to three places by the comparison method. 
i=l 
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17.68. Compute ~ i2/(i4 + 1) to three places by the comparison method. 
i=l 

17.69. Determine the first ten b, numbers from the recursion of Problem 17.18. 

17.70. Write out B6(x) through B10(x) from the formula of Problem 17.19. 

17.71. Prove J;+t B;(x)dx =x'. 

17.72. Determine B3(x) and B4(x) as in Problem 17.24. 

17. 73. What polynomials are determined by the conditions 

Q;(x) = iQ,_ 1(x) Q,(O) =0 

starting with Q0(x) = 1? 

[CHAP. 17 

17.74. Use Problem 17.28 to evaluate ~ 1/kP for p = 6, 8, and 10, verifying the results n 6/945, n 8/9450, and 
Jr10 /93,555. k~l 

17.75. Use the Euler-Maclaurin formula to prove t i3 = n 2 (n + 1?/4. 
i=O 

17.76. Use the Euler-Maclaurin formula to evaluate t (i2 + 3i + 2). Compare with Problem 17.3. 
i=l 

17.77. Use the Euler-Maclaurin formula to show that 

s" = 2: -:--log n = c +- + - 2- dt 
n 1 1 loo F;(t) 

;~1 l 2n n t 

where Cis Euler's constant and F;(t) is the periodic extension of B1(t). This proves the convergence of 
sn and also allows estimation of the difference between sn and c for large n. 

17.78. By applying the Euler-Maclaurin formula, show that 

1 1 k (-1)i+!b (2i+1 ) 
C=-log2+-+ 2:( ")(. ') - 2,--1 +error term 

2 4 ;~ 1 2z 2z - 1 2 

and use this to evaluate Euler's constant C. Show that as k increases, the sum on the right becomes a 
divergent series. At what point do the terms of this series begin to grow larger? 

17.79. Referring to Problem 17.34, show that a desert of width five legs requires more than 3000 loads of fuel. 

17.80. Compute ~ 1/k512 to six places. 
k~l 

17.81. Compute ~ 1/(2k- 1)2 to three places. 
k~l 

17.82. Evaluate t - ~ + ~- -k +-is- · · · exactly. 

17.83. Evaluate the sum of Problem 17.81 exactly. 

17.84. Show that the Euler transformation converts ~ (- Dk into a more rapidly convergent series. 
k~O 

17.85. Show that the Euler transformation converts ~ ( -Dk into a more slowly convergent series. 
k~O 
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17.86. How accurately does the Stirling series produce 2! and at what point do the terms of the series start to 
increase? 

17.87. Derive the asymptotic series 

r sin t2 dt =cos x2(_!_-~ + 
3 0 5 0 7

- 0 0 
·) +sin x2(_!__-~ + 

3 0 5 0 7 0 9
- 0 0 ·) Jx 2x 23xs 2sx9 2zx3 24x7 26xll 

and use it when x = 10, obtaining as much accuracy as you can. 



Chapter 18 

Difference Equations 

DEFINITIONS 

The term difference equation might be expected to refer to an equation involving differences. 
However, an example such as 

,:::,_zYk + 2~yk + Yk = 0 

which quickly collapses to Yk+z = 0, shows that combinations of differences are not always 
convenient, may even obscure information. As a result, difference equations are usually written 
directly in terms of the Yk values. As an example take 

Yk+l = akyk + bk 

where ak and bk are given functions of the integer argument k. This could be rewritten as 
~Yk = (ak -1)yk + bk but this is not normally found to be useful. In summary, a difference equation 
is a relation between the values Yk of a function defined on a discrete set of arguments xk. Assuming 
the arguments equally spaced, the usual change of argument xk = x 0 + kh leaves us with an integer 
argument k. 

A solution of a difference equation will be a sequence of Yk values for which the equation is true, 
for some set of consecutive integers k. The nature of a difference equation allows solution sequences 
to be computed recursively. In the above example, for instance, Yk+l may be computed very simply if 
Yk is known. One known value thus triggers the computation of the entire sequence. 

The order of a difference equation is the difference between the largest and smallest arguments k 
appearing in it. The last example above has order one. 

ANALOGY TO DIFFERENTIAL EQUATIONS 

A strong analogy exists between the theory of difference equations and the theory of differential 
equations. For example, a first-order equation normally has exactly one solution satisfying the initial 
condition y0 =A. And a second-order equation normally has exactly one solution satisfying two 
initial conditions y0 =A, y1 =B. Several further aspects of this analogy will be emphasized, such as 
the following: 

1. Procedures for finding solutions are similar in the two subjects. First-order linear equations 
are solved in terms of sums, as the corresponding differential equations are solved in terms 
of integrals. For example, the equation Yk+l = xyk + ck+l with Yo= c 0 has the polynomial 
solution 

Computation of this polynomial recursively, from the difference equation itself, is known as 
Horner's method for evaluating the polynomial. It is more economical than the standard 
evaluation by powers. 

2. The digamma function is defined as 

"' X 
'1/J(x)=L-:---(.+ )-c 

i=ll l X 

where C is Euler's constant. It is one summation form of the solution of the first-order 
difference equation 

1 
~'1/J(x)=-1 

x+ 

184 



CHAP. 18] DIFFERENCE EQUATIONS 185 

This also gives it the character of a finite integral of 1/(x + 1). For integer arguments n, it 
follows that 

n 1 
1/J(n) = 2:-- C 

k-1 k 

This function plays a role in difference calculus somewhat analogous to that of the logarithm 
function in differential calculus. Compare, for instance, these two formulas: 

1Jl(b) -1jJ(a) 
b-a 

r d 
J1 (x +a )~x +b) 

log (b + 1) -log (a+ 1) 
b-a 

Various sums may be expressed in terms of the digamma function and its derivatives. 
The above is one example. Another is 

~ 2k + 1 f 

k~l k(k + 1? = 1/'(1)- 1/J(O)- 1/J (1) 

which also proves to be :rr2/6. 
~The gamma function is related to the digamma function by 

r'(x+1) () 
r(x + 1) = 1/J x 

3. The linear homogeneous second-order equation 

Yk+Z + alYk+l + azyk = 0 

has the solution family 

where uk and vk are themselves solutions and Cu c2 are arbitrary constants. As in the theory 
of differential equations, this is called the principle of superposition. Any solution of the 
equation can be expressed as such a superposition of uk and vb by proper choice of c1 and 
c2 , provided the Wronskian determinant 

is not zero. 

4. The case of constant coefficients, where a 1 and a2 are constants, allows easy determination 
of the solutions uk and vk. With r1 and r2 the roots of the characteristic equation 

these solutions are 

uk = r~ 
uk = rk 

uk = Rk sin k8 

r2 + a1r + a2 = 0 

vk = r~ 

vk = krk 

vk = Rk cos k8 

when ai>4a2 

when ai = 4a2 , r1 = r2 = r 
when ai < 4a2 , r1 , r2 = R(cos 8 ± i sin 8) 

The analogy with differential equations is apparent. The Wronskian determinants of these 
uk, vk pairs are not zero, and so by superposition we may obtain all possible solutions of the 
difference equation. 

The Fibonacci numbers are solution values of 

Yk+z = Yk+l + Yk 

and by case 1 above may be represented by real power functions. They have some 
applications in information theory. 
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5. The nonhomogeneous equation 

has the solution family 

Yk+2 + atYk+l + azYk = bk 

Yk = CtUk + CzVk + Yk 

[CHAP. 18 

where uk> vk are as above and Yic is one solution of the given equation. This is also 
analogous to a result of differential equations. For certain elementary functions bk it is 
possible to deduce the corresponding solution Yk very simply. 

IMPORTANCE OF DIFFERENCE EQUATIONS 

Our interest in difference equations is twofold. First, they do occur in applications. And second, 
numerous methods for the approximate solution of differential equations involve replacing them by 
difference equations as substitutes. 

Solved Problems 

FIRST-ORDER EQUATIONS 

18.1. Solve the first-order equation Yk+l = kyk + k 2 recursively, given the initial condition y0 = 1. 

This problem illustrates the appeal of difference equations in computation. Successive yk values are 
found simply by doing the indicated additions and multiplications, 

Y2 = 1 y4=27 y5 = 124 

and so on. Initial-value problems of difference equations may always be solved in this simple recursive 
fashion. Often, however, one wishes to know the character of the solution function, making an analytic 
representation of the solution desirable. Only in certain cases have such representations been found. 

18.2. Given the functions ak and bk> what is the character of the solution of the linear first-order 
equation Yk+l = akyk + bk with initial condition y0 =A? 

Proceeding as in the previous problem, we find 

y1 = a0A + b0 

Yz = a1Y1 + b1 = a0a1A + a1bo + b1 

Y3 = azYz + hz = aoa1a2A + a1a2bo + a2b1 + hz 

etc. With Pn denoting the product Pn = a0a1 · ··an~!' the indicated result appears to be 

( 
bo b! bn~!) Yn = Pn A+-+-+ . .. +-
P1 Pz Pn 

This could be verified formally by substitution. As in the case of linear first-order differential equations, 
this result is only partially satisfactory. With differential equations the solution can be expressed in terms 
of an integral. Here we have a sum. In certain cases, however, further progress is possible. It is 
important to notice that there is exactly one solution which satisfies the difference equation and assumes 
the prescribed initial value Yo= A. 

18.3. What is the character of the solution function in the special case ak = r, bk = 0? 

Here the result of Problem 18.2 simplifies to the power function Yn = Ar". Such power functions 
play an important role in the solution of other equations also. 

18.4. What is the character of the solution function when ak = r and bk = 1, with y0 =A = 1? 
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Now the result of Problem 18.2 simplifies to 

rn+1 -1 
y =r"+r"-1+·· ·+1=---
" r-1 

18.5. What is the character of the solution function of Yk+ 1 = xyk + ck+ 1 with Yo= A = c0? 

187 

This problem serves as a good illustration of how simple functions are sometimes best evaluated by 
difference equation procedures. Here the result of Problem 18.2 becomes 

Yn =CoX" + c1xn-1 + ... +en 

The solution takes the form of a polynomial. Horner's method for evaluating this polynomial at 
argument x involves computing y1 , y2 , ••• , Yn successively. This amounts to n multiplications and n 
additions, and is equivalent to rearranging the polynomial into 

Yn = Cn + x(cn-1 + · · · + x(c3 + x(c2 + x(c1 + XCo)))) 

It is more efficient than building up the powers of x one by one and then evaluating by the standard 
polynomial form. 

. f . k+1 'h' .. 18.6. What IS the character o the solutiOn of Yk+I = --yk + 1 Wit Imtial value y0 = 1? 
X 

Here the Pn of Problem 18.2 becomes Pn = n!/x", while all bk = 1. The solution is therefore 
expressible as 

~ = x"yn = 1 +x +!x2+ · · · +_!_x" 
Pn n! 2 n! 

so that for increasing n, limx"yn/n! =ex. 

18.7. What is the character of the solution of Yk+I = [1- x 2/(k + 1)2]yk with y0 = 1? 

Here all the bk of Problem 18.2 are zero and A= 1, making 

This product vanishes for x = ± 1, ±2, ... , ±n. For increasing n we encounter the infinite product 

limy"= ft [ 1- (k :

2

1)2 J 
which can be shown to represent (sin :rcx)/:rcx. 

THE DIGAMMA FUNCTION 
18.8. The method of summing by "telescoping" depends upon being able to express a sum as a sum 

of differences, 
n n 

L bk = L Llyk = Yn+1- Yo 
k=O k=O 

That is, it requires solving the first-order difference equation 

Llyk = Yk+1- Yk = bk 

Apply this method when bk = 1/(k + 1), solving the difference equation and evaluating the 
sum. 

~ X , 
Start by defining the digamma function as 1JI(x) = ,~1 i(i +x)- C where C is Euler's constant. 
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Directly we find for any x * -i, 

x [ x+1 J L\'lJI(x)='lJI(x+ 1 )-'lJI(x)=~ i(i+x+1) i(i:x) 

X ( 1 1 ) 1 
=~ i+x-i+x+1 =~ 

When x takes integer values, say x = k, this provides a new form for the sum of integer reciprocals, since 
n-1 1 n-1 

2: -= 2: L\'!J.'(k) = '!JI(n)- '!J.'(O) ='!JI(n) + C 
k~ok + 1 k~o 

We may also rewrite this as 

so that the digamma function for integer arguments is a familiar quantity. Its behavior is shown in Fig. 
18-1, and the logarithmic character for large positive x is no surprise when one recalls the definition of 
Euler's constant. In a sense '!JI(x) generalizes from '!JI(n) much as the gamma function generalizes 
factorials. 

Fig. 18-1 

18.9. Evaluate the sum ~ 1/(k + t) for arbitrary t. 
k=l 

From Problem 18.8, for any x, '!JI(x + 1)- '!JI(x) = 1/(x + 1). Replace x by k + t -1 to obtain 

'!JI(k + t)- '!JI(k +t -1) =-
1
-

k+t 

Now we have the ingredients of a telescoping sum and find 

n 1 n 6:
1 
k + t = 6:

1 
['!J.'(k + t)- '!JI(k + t -1)] = '!JI(n + t)- '!J.'(t) 

18.10. Evaluate the series ~ 1/(k +a )(k +b) in terms of the digamma function. 
k=l 

Using partial fractions, we find 

-2:---1 n ( 1 1 ) 
b- a k~ 1 k +a k + b 

Now applying the previous problem, this becomes 

1 
sn = b _a ['!JI(n +a)- '!JI(a)- '!JI(n +b)+ '!JI(b)] 
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From the series definition in Problem 18.8 it follows after a brief calculation that 

X 1 
1/!(n +a) -1/J(n +b)= (a- b)~~ (i + n + a)(i + n +b) 

so that for n ~en this difference has limit zero. Finally, 

X 1 
{;t .,...(k_+_a-)(,--k_+_b,..,..) 

limsn = 1/!(b) -1/J(a) 
b-a 

18.11. Find formulas for 'ljJ'(x), 'ljJ<2l(x), etc., in series form. 
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Differentiating the series of Problem 18.8 produces 1/J'(x) = ~ 1/(k +xf Since this converges 
k~! 

uniformly in x on any interval not including a negative integer, the computation is valid. Repeating, 

(2) X -2! 
1/1 (x)={;t(k+x? 

(3) -X _3_!_ 
1/1 (x)-{;!(k+xt etc. 

In particular, for integer arguments, Problem 17.28 makes 1/1'(0) = ~ 1/k2 = n 2/6 after which we lose 
one term at a time to obtain k~l 

• X 2k+1 
18.12. Evaluate the senes L -( --)2• 

k=l k k + 1 

and in general 

This further illustrates how sums and series involving rational terms in k may be evaluated in terms 
of the digamma function. Again introducing partial fractions, 

X 2k + 1 X [1 1 1 J 2:--=2: ---+-
k~tk(k + 1)2 k~l k k + 1 (k + 1)2 

The first two terms cannot be handled separately since the series would diverge. They can, however, be 
handled together as in Problem 18.10. The result is 

Other sums of rational terms may be treated in similar fashion. 

X 1 
18.13. Evaluate the series ~ 2 22 

2· 
k=l1 + + 0 0 0 + k 

Summing the squares as in Problem 5.2 we may replace this by 

00 6 

{;tk(k + 1)(2k + 1) 

00 

(6 6 24 ) 2: -+----
k~l k k + 1 2k + 1 

Since no one of these three series is individually convergent, we do not treat each separately. Extending 
the device used in the problem just solved we may, however, rewrite the combination as 
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where Problem 18.10 has been used twice in the last step. Finally, 

~ 12+ 22+
1···+e l2'l/JG)-6+12c 

[CHAP. 18 

18.14. Show that 9'(x) = f'(x + 1)/f(x + 1) also has the property ~9'(x) = 1/(x + 1), where f(x) is 

the gamma function. 

The gamma function is defined for positive x by 

f(x) = r e-tr-i dt 

Integration by parts exposes the familiar feature 

r(x + 1) =xf(x) 

and then differentiation brings f'(x + 1) = xf'(x) + r(x), or 

f'(x + 1) _ f'(x) _ 
f(x + 1) f(x) x 

from which the required result follows upon replacing x by x + 1. 
Since 'l/J(x + 1)- 'l/J(x) = 1/(x + 1), we find that 

f'(x + 1) _ ( ) _ 
r(x + 1) 'l/J x -A 

where A is a constant, and where x is restricted to a discrete set with unit spacing. The same result can 

be proved for all x except negative integers, the constant A being zero. 

LINEAR SECOND-ORDER EQUATION, HOMOGENEOUS CASE 

18.15. The difference equation Yk+z + a1Yk+I + a2 yk = 0 in which a 1 and a2 may depend upon k is 

called linear and homogeneous. Prove that if uk and vk are solutions, then so are c1 uk + c2vk 

for arbitrary constants c1 and c2 . (It is this feature that identifies a linear homogeneous 

equation. The equation is homogeneous because yk = 0 is a solution.) 

Since uk+Z + a 1uk+i + a2uk = 0 and vk+z + a 1 vk+l + a2vk = 0, it follows at once by multiplying the 

first equation by c1 , the second equation by c2 , and adding that 

C1Uk+2 + CzVk+2 + ai(ciuk+l + CzVk+i) + az(ciuk + CzVd = 0 

which was to be proved. 

18.16. Show that for a 1 and a2 constant, two real solutions can be found in terms of elementary 
functions. 

First suppose ai > 4a2. Then we may take 

where r1 and r2 are the distinct real roots of the quadratic equation r2 + a1r + a2 = 0. To prove this we 

verify directly that 

where r is either root. The quadratic equation involved here is known as the characteristic equation. 

Next suppose ai = 4a2. Then the characteristic equation has only one root, say r, and can be 

rewritten as 
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Two real solutions are now available in 

The solution uk may be verified exactly as above. As for vk, 

(k + 2)rk+Z + a1(k + 1)rk+t + a2 krk = rk[k(r2 + a1r + a2 ) + (2r + a1)r] = 0 

since both parentheses are zero. 

191 

Finally suppose ai < 4a 2 • Then the characteristic equation has complex conjugate roots Re±;e. 
Substituting, we find 

R 2e±;ze + a1Re±;e + a2 = R2 (cos 28 ± i sin 28) + atR(cos 8 ± i sin 8) + az 

= (R2 cos 28 + a1R cos 8 + a2 ) ± i(R2 sin 28 + a1R sin 8) = 0 

This requires that both parentheses vanish: 

We now verify that two real solutions of the difference equation are 

For example, 

uk+2 + a1uk+t + a2uk = Rk+Z sin (k + 2)8 + a1Rk+t sin (k + 1)8 + a2Rk sin k8 

= Rk(sin k8)(R2 cos 28 + a1R cos 8 + a2 ) + Rk(cos k8)(R2 sin 28 + a1R sin 8) = 0 

since both parentheses vanish. The proof for vk is almost identical. 
It now follows that for a1 and a2 constant, the equation Yk+z + a1 yk+1 + a2yk = 0 always has a family 

of elementary solutions Yk = c1uk + c2vk. 

18.17. Solve the difference equation Yk+z- 2Ayk+l + yk = 0 in terms of power functions, assuming 
A>l. 

Let yk = rk and substitute to find that r2- 2Ar + 1 = 0 is necessary. 
This leads to r =A± VA2 -1 = r1, r2 and Yk = c1r~ + c2r~ = c1uk + c2 vk. 
One of these power functions grows arbitrarily large with k, and the other tends to zero, since r1 > 1 

but O<r2 <1. [The fact that r2 =A-VA2 -1<1 follows from (A-1f=A2 +1-2A<A2 -1 after 
taking square roots and transposing terms.] 

18.18. Solve the equation Yk+z- 2Yk+I + Yk = 0. 

Here we have ai = 4a2 = 4. The only root of r2- 2r + 1 = 0 is r = 1. This means that uk = 1, vk = k 
are solutions and that yk = c1 + c2 k is a family of solutions. This is hardly surprising in view of the fact 
that this difference equation may be written as ~ 2yk = 0. 

18.19. Solve Yk+z- 2Ayk+l + Yk = 0 where A< 1. 

Now ai < 4a 2 • The roots of the characteristic equation become 

Re±;e =A± iV1- A 2 =cos 8 ± i sin 8 

where A= cos 8 and R = 1. Thus uk =sin k8, vk =cos k8 and the family of solutions 

yk = Ct sin k8 + C2 cos k8 

is available. 
The vk functions, when expressed as polynomials in A, are known as Chebyshev polynomials. For 

example, 

Vo= 1 

The difference equation of this problem is the recursion for the Chebyshev polynomials. 
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18.20. Show that if two solutions of yk+2 + a1yk+ 1 + a2 yk = 0 agree in value at two consecutive 
integers k, then they must agree for all integers k. (Assume a2 =t- 0.) 

Let uk and vk be solutions which agree in value at k equal to m and m + 1. Then their difference 
dk = uk- vk is a solution (by Problem 18.15) for which dm = dm+ 1 = 0. But then 

from which it follows that dm+z = 0 and dm_1 = 0. In the same way we may prove dk to be zero for 
k > m + 2 and for k < m- 1, taking each integer in its tum. Thus dk is identically zero and uk = vk. (The 
assumption a2 =I= 0 merely guarantees that we do have a second-order difference equation.) 

18.21. Show that any solution of yk+2 + a1 yk+ 1 + a2 yk = 0 may be expressed as a combination of two 
particular solutions uk and vb 

Yk = ciuk + c2vk 

provided that the Wronskian determinant 

We know that c1uk + c2vk is a solution. By the previous problem it will be identical with the 
solution yk if it agrees with yk for two consecutive integer values of k. In order to obtain such agreement 
we choose k = 0 and k = 1 (any other consecutive integers would do) and determine the coefficients C1 

and c2 by the equations 

18.22. Show that if the Wronskian determinant is zero for one value of k, it must be identically zero, 
assuming ub vk to be solutions of the equation of Problem 18.20. Apply this to the particular 
case of Problem 18.16 to prove wk =t- 0. 

We compute the difference 

Awk = (uk+ 1vk- vk+1ud- (ukvk-1- vkuk-1) 

= vk( -a1uk- a2 uk_1)- uk( -a1vk- azvk-1)- ukvk-1 + vkuk-1 

= (a2 -1)wk = wk+ 1- wk 

from which it soon follows that wk = a~w0 • Since a2 =I= 0, the only way for wk to be zero is to have w0 = 0. 
But then wk is identically zero. 

When wk is identically zero, it follows that uk/vk is the same as uk_1/vk_ 1 for all k, that is, 
uk/vk =constant. Since this is definitely not true for the uk> vk of Problem 18.16, wk cannot be zero 
there. 

18.23. Solve by direct computation the second-order initial-value problem 

Yk+2 = Yk+I + Yk Yo= 0 YI = 1 

Taking k = 0, 1, 2, ... we easily find the successive yk values 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 
which are known as Fibonacci numbers. The computation clearly shows a growing solution but does not 
bring out its exact character. 

18.24. Determine the character of the solution of the previous problem. 

Following the historical path mapped in Problems 18.15, 18.16, etc., we consider the characteristic 
equation r 2 

- r - 1 = 0. 
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Since ai > 4a 2 , there are two real roots, namely r1, r2 = (1 ± VS)/2. All solutions can therefore be 
expressed in the form 

(
1+VS) (1-vs) To satisfy the initial conditions, we need c1 + c2 = 0 and C 1 -

2
- + c2 -

2
- = 1. This makes 

1 1 [(1 + -vs)k (1- vs)k] c~=-cz=...;sandyk=ys -
2
- - -

2
- . 

18.25. Show that for the Fibonacci numbers, lim (Yk+ 1/yk) = (1 + V'S)/2. 

For such results it is convenient to know the character of the solution function. Using the previous 
problem we find, after a brief calculation, 

Yk+I 1 + V5 1- [(1- VS)/(1 + VS)Y+I 
y; = -2-. 1- [(1 - VS)/(1 + VS)Y 

and (1- VS)/(1 + VS) has absolute value less than 1, so that the required result follows. 

18.26. The Fibonacci numbers occur in certain problems involving the transfer of information along 
a communications channel. The capacity C of a channel is defined as C =lim (logYk)lk, the 
logarithm being to base 2. Evaluate this limit. 

Again the analytic character of the solution yk is needed. But it is available, and we find 

1 [(1+VS)k (1-vs)k] iogyk=iogys+iog -
2
- - -

2
-

1 (1 + vs)k [ (1 vs)k] =log VS + log -
2
- + log 1 -

1 
+ VS 

making c _ r {log (1/VS) 1 1 + VS 1 1 [ 1 (1- VS)k]} _ 1 1 + ys - Im k + og-2-+k og - 1+VS - og-2-

THE NONHOMOGENEOUS CASE 

18.27. The equation Yk+z + a1 Yk+I + a2 Yk = bk is linear and nonhomogeneous. Show that if uk and vk 
are solutions of the associated homogeneous equation (with bk replaced by 0) with 
nonvanishing Wronskian and if Yk is one particular solution of the equation as it stands, then 
every solution can be expressed as Yk = c1uk + c2vk + Yk where c1 and c2 are suitable 
constants. 

With yk denoting any solution of the nonhomogeneous equation, and Yk the particular solution, 

Yk+z + aiyk+I + azyk = bk 

Yk+Z + ai Yk+I + azYk = bk 

and subtracting, 

where dk = yk- Yk. But this makes dk a solution of the homogeneous equation, so that dk = c 1uk + c2vk. 
Finally, yk = C1Uk + c2vk + Yk which is the required result. 

18.28. By the previous problem, to find all solutions of a nonhomogeneous equation we may find 
just one such particular solution and attach it to the solution of the associated homogeneous 
problem. Follow this procedure for Yk+z- h+I- Yk = Axk. 
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When the term bk is a power function, a solution can usually be found which is itself a power 
function. Here we try to determine the constant C so that Yk = Cxk. 

Substitution leads to Cxk(x 2
- x -1) = Axk, making C = A/(x2

- x -1). All solutions are therefore 
expressible as 

_ (1 + Vs)k (1- Vs)k Axk 
yk-cl -2- +cz -2- + xz-x-1 

Should x2
- x - 1 = 0, this effort fails. 

18.29. For the preceding problem, how can a particular solution Yk be found in the case where 
x2 -x -1 = 0? 

Try to determine C so that Yk = Ckxk. 
Substitution leads to Cxk[(k + 2)x2

- (k + 1)x- k] = Axk from which C = A/(2x2
- x). This makes 

Yk = Akxk /(2x 2
- x). 

18.30. For what sort of bk term may an elementary solution Yk be found? 

Whenever bk is a power function or a sine or cosine function, the solution Yk has similar character. 
Table 18.1 makes this somewhat more precise. If the 1: suggested in Table 18.1 includes a solution of 
the associated homogeneous equation, then this Yk should be multiplied by k until no such solutions are 
included. Further examples of the effectiveness of this procedure will be given. 

Table 18.1 

bk yk 

Axk Cxk 

kn Co+ C1k + Czk2 + · · · + Cnkn 

sinAk or cosAk C1 sin Ak + C2 cos Ak 
knxk xk(C0 + C1k + Cze + · · · + Cnkn) 

xk sinAk or xk cosAk xk(C1 sinAk + C2 cosAk) 

Supplementary Problems 

18.31. Given yk+ 1 = ryk + k and y0 =A, compute y1 , •••• ,y4 directly. Then discover the character of the 
solution function. 

18.32. Given yk+, = -yk + 4 and Yo= 1, compute y,, ... , Y4 directly. What is the character of the solution 
function? Can you discover the solution character for arbitrary y0? 

18.33. If a debt is amortized by regular payments of size R, and is subject to interest rate i, the unpaid balance 

is Pk where Pk+t = (1 + i)Pk- R. The initial debt being P0 =A, show that Pk = A(1 + i)k- R (
1 

+ i~k- 1
. 

I 

Also show that to reduce Pk to zero in exactly n payments (Pn = 0) we must takeR= Ai/[1- (1 + i)-n]. 

18.34. Show that the difference equation yk+ 1 = (k + 1)h + (k + 1)! with initial condition Yo= 2 has the solution 

yk=k!(k+2). 

18.35. Solve yk+ 1 = kyk + 2kk! with Yo= 0. 
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18.36. Apply Horner's method of Problem 18.5 to evaluate p (x) = 1 + x + x2 + · · · + x6 at x = ~. 

18.37. Adapt Horner's method to p(x) = x- x3/3! + x5 /5!- x7 /7! + x9 /9!. 

18.38. Show that fork> 0, (k + 1)Yk+l + kyk = 2k- 3 has the solution yk = 1- 2/k. 

18.39. Show that the nonlinear equation yk+ 1 = yk/(1 + yk) has the solutions yk = C/(1 + Ck). 

18.40. Solve the equation Llyk = (1/k -1)yk with initial condition Y1 = 1. 

18.41. Compute 1jl<3l(O), 1jl<3l(1), and 1j1<3l(2) from the results in Problem 18.11. What general result is indicated 
for integer arguments? 

18.42. Evaluate I; 1/k(k + 2) in terms of the 1/' function. 
k~! 

18.43. Evaluate f 1/e(k + 2?, using Problem 18.41. 
k~! 

18.44. Compute 1JI(!} to three places from the series definition, using an acceleration device. Then compute 
1/'m and 1/'( -~)from Ll1JI(x) = 1/(x + 1). 

18.45. What is the behavior of 1JI(x) as x approaches -1 from above? 

18.46. Evaluate I; 1/P3(x) where P3(x) is the Legendre polynomial of degree three. 
x=l 

18.47. Evaluate f 1/:I;(x) where T3(x) = 4x 3
- 3x and is the Chebyshev polynomial of degree three. 

x=l 

18.48. Evaluate I; 1/P4(x) where P4(x) is the Legendre polynomial of degree four. 
x=l 

18.49. Given yk+2 + 3yk+! + 2yk = 0 with initial conditions Yo= 2, y1 = 1, compute y2 , ••• , y10 directly. 

18.50. Solve the preceding problem by the method of Problem 18.16. 

18.51. Show that the solutions of Yk+z- 4yk+l + 4yk = 0 are yk = 2k(c1 + c2 k), where c1, c2 are arbitrary 
constants. 

18.52. Find the solution family of Yk+z- yk = 0. Also find the solution satisfying the initial conditions Yo= 0, 
Y! = 1. 

18.53. Solve yk+ 2 - 7yk+l + 12yk =cos k with Yo= 0, y1 = 0. 

18.54. Solve 4yk+z + 4yk+! + yk = e with Yo= 0, y1 = 0. 

18.55. Show that the solutions of Yk+z- 2yk+l + 2yk = 0 are 

18.56. Solve 2yk+z- 5yk+ 1 + 2yk = 0 with initial conditions Yo= 0, Y1 = 1. 

18.57. Solve Yk+z + 6yk+l + 25yk = 2k with Yo= 0, Y1 = 0. 

18.58. Solve yk+2 - 4yk+l + 4yk = sink + 2k with initial conditions Yo= Y1 = 0. 
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18.59. For what values of a are the solutions of Yk+z- 2Yk+ 1 + (1- a)yk = 0 oscillatory in character? 

18.60. Solve h+z- 2yk+l- 3yk = P2(k) where Pz(k) is the second-degree Legendre polynomial and Yo= y1 = 0. 

18.61. What is the character of the solutions of yk+2- 2ayk+l + ayk = 0 for 0 <a< 1? For a = 1? For a> 1? 

18.62. Show that the nonlinear equation Qk+l =a- b/Qk can be converted to the linear equation 
Yk+2- ayk+l + byk = 0 by the change of argument Qk = Yk+ 1/Yk· 

18.63. Show that for N even there is no solution of Yk+z - Yk = 0 satisfying the boundary conditions Yo= 0, 
YN = 1. 

18.64. Show that there are infinitely many solutions of the equation of the preceding problem satisfying 
Yo =yN=O. 

18.65. Show that there is exactly one solution of Yk+z- Yk = 0 satisfying the boundary conditions Yo= 0, YN = 1 
if N is odd. Find this solution. Also show that there is exactly one solution satisfying Yo= YN = 0, namely 
Yk = 0. 



Chapter 19 

Differential Equations 

THE CLASSICAL PROBLEM 

Solving differential equations is one of the major problems of numerical analysis. This is because 
such a wide variety of applications lead to differential equations, and so few can be solved 
analytically. The classical initial value problem is to find a function y(x) which satisfies the first-order 
differential equation y' = f(x, y) and takes the initial value y(x0 ) =Yo· A broad variety of methods 
have been devised for the approximate solution of this problem, most of which have then been 
generalized for treating higher-order problems as well. The present chapter is focused on solution 
methods for this one problem. 

1. The method of isoclines is presented first. Based upon the geometrical interpretation of 
y '(x) as the slope of the solution curve, it gives a qualitative view of the entire solution 
family. The function f(x, y) defines the prescribed slope at each point. This "direction field" 
determines the character of the solution curves. 

2. The historical method of Euler involves computing a discrete set of Yk values, for arguments 
xk, using the difference equation 

Yk+l = Yk + hf(xk> Yd 

where h = xk+l- xk. This is an obvious and no too accurate approximation of y' = f(x, y). 
3. More efficient algorithms for computing solutions are then developed. Polynomial ap

proximation is the basis of the most popular algorithms. Except for certain series methods, 
what is actually computed is a sequence of values Yk corresponding to a discrete set of 
arguments xk> as in the Euler method. Most methods are equivalent to the replacement of 
the given differential equation by a difference equation. The particular difference equation 
obtained depends upon the choice of polynomial approximation. 

4. The Taylor series is heavily used. If f(x, y) is an analytic function the successive derivatives 
of y(x) may be obtained and the series for y(x) written out in standard Taylor format. 
Sometimes a single series will serve for all arguments of interest. In other problems a single 
series may converge too slowly to produce the required accuracy for all arguments of 
interest and several Taylor series with different points of expansion may be used. The 
eventual truncation of any such series means that the solution is being approximated by a 
Taylor polynomial. 

5. Runge-Kutta methods were developed to avoid the computation of high-order derivatives 
which the Taylor method may involve. In place of these derivatives extra values of the given 
function f(x, y) are used, in a way which duplicates the accuracy of a Taylor polynomial. 
The most common formulas are 

k 1 = hf(x, y) 

k 2 =hf(x +~h, y + ~k1) 

k3 = hf( X+ ~h, y + ~ kz) 
k4 = hf(x + h, y + k3) 

y(x +h)= y(x) + ~ (k1 + 2k2 + 2k3 + k 4 ) 

but there are numerous variations. 

197 
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6. Predictor-corrector methods involve the use of one formula to make a prediction of the 
next Yk value, followed by the application of a more accurate corrector formula which then 
provides successive improvements. Though slightly complex, such methods have the 
advantage that from successive approximations to each Yk value an estimate of the error may 
be made. A simple predictor-corrector pair is 

Yk+1 = Yk + hy~ 

1 ( 1 1 ) Yk+1 = Yk + l h Y k + Y k+1 

the predictor being Euler's formula and the corrector being known as the modified Euler 
formula. Since y~ = f(xk> yk) and Y~+1 = f(xk+1' Yk+1) the predictor first estimates Yk+l· This 
estimate then leads to a y ~+1 value and then to a corrected Yk+ 1. Further corrections of y ~+ 1 
and yk+ 1 successively can be made until a satisfactory result is achieved. 

7. The Milne method uses the predictor-corrector pair 

4h (2 1 1 2 1) Yk+1=Yk-3+3 Yk-2-Yk-1+ Yk 

h( 1 1 I ) Yk+1=Yk-1 +3 Yk+1 +4yk+Yk-1 

in which Simpson's rule is easily recognized. It requires four previous values 
(yk> Yk- 1, yk_2, yk_3) to prime it. These must be obtained by a different method, often the 
Taylor series. 

8. The Adams method uses the predictor-corrector pair 

Yk+1 = Yk + ~ (55y~- 59y~-1 + 37y~-2- 9y~_3) 

Yk+1 = Yk + ~ (9y~+1 + 19y~- 5y~-1 + Y~-2) 
and like the Milne method requires four previous values. 

ERROR 

Truncation error is made when a partial sum is used to approximate the value of an infinite 
series and this is perhaps the original use of the term, which is now used more loosely. When a 
differential equation is replaced by a difference equation, a local truncation error is made with each 
forward step from k to k + 1. These local errors then blend together in some obscure way to produce 
the cumulative or global truncation error. It is rarely possible to follow error development through a 
differentialequations algorithm with any realism but some rough estimates are possible. 

A convergent method is one which, when continually refined (more and more terms of a series 
being used, or smaller and smaller intervals between successive arguments), yields a sequence of 
approximate solutions converging to the exact solution. The Taylor, Runge-Kutta, and some 
predictor-corrector methods will be proved convergent under appropriate circumstances. Conver
gence proofs deal with truncation error only, ignoring the problem of roundoffs. 

Roundoff error is, needless to say, present in all these methods, sometimes in an important way. 
It is more elusive than truncation error and very limited success has rewarded the efforts made to 
analyze it. 

The relative error of an approximation, the ratio of error to exact solution, is usually of greater 
interest than the error itself, since if the solution grows larger, then a larger error can probably be 
tolerated. Even more important, if the exact solution diminishes, then error must do the same or it 
will overwhelm the solution and computed results will be meaningless. The simple problemy 1 = Ay, 
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y(O) = 1, for which the exact solution is y = eAx, often serves as a test case for tracing relative error 
behavior in our various methods. One hopes that information obtained in this way will have some 
relevance for the use of the same methods on the generai equation y' = f(x, y ). This may seem 
optimistic, but the study of error has its limitations. 

A stable method is one for which relative error remains bounded, hopefully by its initial value. 
This is a strong requirement and one that may be hard to verify. Also, a method may be stable for 
some equations and unstable for others. Only partial results can be offered, in particular for the 
equation y' =Ay. 

Error monitoring refers to a step-by-step effort to measure local truncation error and to use this 
information for determining whether or not the current step size is suitable. With predictor
corrector methods, a practical error estimate can be made using the predicted and corrected values. 
With Runge-Kutta methods, a parallel computation using double step size leads to an error estimate 
much as in adaptive in:tegration. Here, as there, the objective is to attain a final result of specified 
accuracy with minimum effort. 

Solved Problems 

THE METHOD OF ISOCLINES 

19.1. Use the method of isoclines to determine the qualitative behavior of the solutions of 
y'(x) =xy 113

• 

This equation can of course be solved by elementary methods but we shall use it as a test case for 
various approximation methods. The method of isoclines is based on the family of curves y'(x) = 
constant which are not themselves solutions but are helpful in determining the character of solutions. In 
this example the isoclines are the family xy 113 = M where M is the constant value of y '(x ). Some of these 
curves are sketched (dashed) in Fig. 19-1, with M values indicated. Where a solution of the differential 
equation crosses one of these isoclines it must have for its slope the M number of that isocline. A few 
solution curves are also included (solid) in Fig. 19-1. Others can be sketched in, at least roughly. 

Accuracy is not the goal of the isocline method but rather the general character of the solution 
family. For example, there is symmetry about both axes. One solution through (0, 0) and those above it 
have a U shape. Solutions below this are more unusual. Along y = 0 different solutions can come 
together. A solution can even include a piece of the x axis. One such solution might enter (0, 0) on a 
descending arc, follow the x axis to (2, 0) and then start upwards again as shown in Fig. 19-2. The 
possible combinations of line and arc are countless. Information of this sort is often a useful guide when 
efforts to compute accurate solutions are made . 

• 11 = 

Fig. 19-1 Fig. 19-2 
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THE EULER METHOD 

19.2. Illustrate the simplest Euler method for computing a solution of 

y' = f(x, y) =xy 113 y(1) = 1 

This is perhaps the original device for converting the method of isoclines into a computational 

scheme. It uses the formula 

which amounts to considering y' constant between xk and xk+l· It also amounts to the linear part of a 

Taylor series, so that if yk andy~ were known exactly the error in Yk+l would be !h2yl2l(~). This is called 

the local truncation error, since it is made in this step from xk to xk+l· Since it is fairly large, it follows 

that rather small increments h would be needed for high accuracy. 
The formula is seldom used in practice but serves to indicate the nature of the task ahead and some 

of the difficulties to be faced. With x0 , Yo= 1 three applications of this Euler formula, using h = .01, 

bring 

Y1 = 1 + (.01)(1) = 1.0100 

y2 = 1.0100 + (.01)(1.01)(1.0033) = 1.0201 

y3 = 1.0201 + (.01)(1.02)(1.0067) = 1.0304 

Near x = 1 we have yl2
l = y 113 + hy - 21\xy 113

) = ~, which makes the truncation error in each step about 

.00007. After three such errors, the fourth decimal place is already open to suspicion. A smaller 

increment his necessary if we hope for greater accuracy. The accumulation of truncation error is further 

illustrated in Fig. 19-3 where the computed points have been joined to suggest a solution curve. Our 

approximation amounts to following successively the tangent lines to various solutions of the equation. 

As a result the approximation tends to follow the convex side of the solution curve. Notice also that 

Euler's formula is a nonlinear difference equation of order one: Yk+t = yk + hxky!13 . 

Fig. 19-3 

19.3. Illustrate the concept of convergence by comparing the results of applying Euler's method 

with h = .10, .05, and .01 with the correct solution y = [(x2 + 2)/3]
312

• 

Convergence refers to the improvement of approximations as the interval h tends to zero. A 

method which does not converge is of doubtful value as an approximation scheme. Convergence for the 

various schemes to be introduced will be proved later, but as circumstantial evidence the data of Table 

19.1, obtained by Euler's method, are suggestive. Only values for integer x arguments are included, all 

others being suppressed for brevity. 
Notice that across each row there is a reassuring trend toward the exact value. Using smaller 

intervals means more computing. The value 25.96 in the bottom row, for instance, was obtained in 50 

steps whereas the value 26.89 required 500 steps. The extra labor has brought an improvement, which 

seems only fair. As h tends to zero the computation grows even longer and we hope that the results 
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Table 19.1 

X h=.10 h=.OS h=.01 Exact 

1 1.00 1.00 1.00 1.00 

2 2.72 2.78 2.82 2.83 
3 6.71 6.87 6.99 7.02 
4 14.08 14.39 14.63 14.70 
5 25.96 26.48 26.89 27.00 

approach the exact values as limits. This is the convergence concept. Needless to say, roundoff errors 
will limit the accuracy attainable but they are not a part of the convergence issue. 

THE TAYLOR METHOD 

19.4. Apply the local Taylor series method to obtain a solution of y' =xy 113
, y(1) = 1 correct to 

three places for arguments up to x = 5. 

Generally speaking the method involves using p(x +h) in place of y(x +h), where p(x) is the 
Taylor polynomial for argument x. We may write directly 

1 1 1 
y(x +h)= y(x) + hy'(x) + 2hV2l(x) + 6hV3\x) +24 hV4\x) 

accepting a local truncation error of amount E = h 5yl5l(g)/120. 
The higher derivatives of y(x) are computed from the differential equation: 

The initial condition y(l) = 1 has been prescribed, so with x = 1 and h = .1 we find 

2 4 1 
y(l + .1) = 1 + .1 + 3 (.1? + 27 (.1)3 +54 (.It= 1.10682 

Next apply the Taylor formula at x = 1.1 and find 

y(l.l + .1) = 1.22788 y(l.l- .1) = 1.00000 

The second of these serves as an accuracy check since it reproduces our first result to five-place 
accuracy. (This is the same procedure used in Chapter 14 for the error function integral.) Continuing in 
this way, the results presented in Table 19.2 are obtained. The exact solution is again included for 
comparison. Though h = .1 was used, only values for x = 1(.5)5 are listed. Notice that the errors are 
much smaller than those made in the Euler method with h = .01. The Taylor method is a more rapidly 
convergent algorithm. 

Table 19.2 

X Taylor result Exact result Error 

1.0 1.00000 1.00000 

1.5 1.68618 1.68617 -1 

2.0 2.82846 2.82843 -3 

2.5 4.56042 4.56036 -6 

3.0 7.02123 7.02113 -10 

3.5 10.35252 10.35238 -14 

4.0 14.69710 14.69694 -16 

4.5 20.19842 20.19822 -20 

5.0 27.00022 27.00000 -22 
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19.5. Apply the Taylor method toy'= -xy2 to obtain the solution satisfying y(O) = 2. 

The procedure of the preceding problem could be applied. Instead, however, an alternative will be 
illustrated, essentially a method of undetermined coefficients. Assuming convergence at the outset, we 

write the Taylor series y(x) = I: a,x'. Then 
i=O 

y'(x) = 2: ia,x'- 1 
i=l 

Substituting into the differential equation and making minor changes in the indices of summation, 

~ (j + 1)aj+1Xj = - ~ (~ a,aj-1-}j 

Comparing coefficients of x' makes a1 = 0 and 

(j + 1)aj+1 = - j£ a,aj-1-i 
i=O 

for j = 1, 2, ... 

The initial condition forces a0 = 2 and then we find recursively 

1 2) a6= -6(2aoa4+2a1a3+az =-2 

1 
a3 = -3 (2aoa 1) = 0 

1 
a7 = -7 (2aoas + 2a 1a4 + 2a2 a3) = 0 

1 2 
a4 = - 4 (2a 0 a2 + a 1) = 2 

1 
as= -8 (2aoa6 + 2a1as + 2aza4 +aD= 2 

1 
as= -5 (2aoa3 + 2a1az) = 0 

and so on. The recursion can be programmed so that coefficients could be computed automatically as far 

as desired. The indicated series is 

y(x) = 2(1- x 2 + x 4
- x6 + x 8

- ••• ) 

Since the exact solution is easily found to be y(x) = 2/(1 + x 2
), the series obtained is no surprise. 

This method sees frequent application. The principal assumption involved is that the solution does 
actually have a series representation. In this case the series converges only for -1 < x < 1. For 

-~ < x <~only six terms are needed to give three-place accuracy. In the previous problem a new Taylor 
polynomial was used for each value computed. Here just one such polynomial is enough. The issue is 
one of range and accuracy required. To proceed up to x = 5, for example, the earlier method can be 
used. In further contrast we may also note that in Problem 19.4 polynomials of fixed degree are used 
and the convergence issue does not arise explicitly. Here in Problem 19.5 we introduce the entire series 
into the differential equation, assuming y(x) analytic in the interval of interest. 

RUNGE-KUTTAMETHODS 
19.6. Find coefficients a, b, c, d, m, n, and pin order that the Runge-Kutta formulas 

k 1 = hf(x, y) 

k 2 = hf(x + mh, y + mk1) 

k 3 = hf(x + nh, y + nk2) 

k 4 = hf(x +ph, y + pk3) 

y(x +h)- y(x) = ak 1 + bk2 + ck3 + dk 4 

duplicate the Taylor series through the term in h 4
• Note that the last formula, though not a 

polynomial approximation, is then near the Taylor polynomial of degree four. 
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We begin by expressing the Taylor series in a form which facilitates comparisons. Let 

Fz = fxx + 2ffxy + Ff,;y 

Then differentiating the equation y' = f(x, y), we find 

y(Z) = fx + [yy' = fx + f,;f = F; 

Y(3) = fxx + 2ffxy + f 2hy + /y(fx + Jh) = F; + /yF; 

y<4
l = fxxx + 3ffxxy + 3Ffxyy + Pf,;yy + Mfxx + 2ffxy + Ff,;y) + 3(fx + ff,;)(fxy + Jhy) + t;ctx + fh) 

= F; + f,;F2 + 3F;(fxy + Jhy) + J;F; 

which allows the Taylor series to be written as 

) 
12 13 14 2 

y(x + h - y(x) = hf + 2 h F1 + 6h (F; + f,;F;) + 24 h [F; + f,;F; + 3(fxy + Jhy)F; + [yF;] + · · · 

Turning now to the various k values, similar computations produce 

kr=hf 

k2 =h[f + mhF; + ~m2h2F; +~mWF; + · · ·] 

[ 
1 2( 2 1 3 3 2 2 J k3=h f+nhF;+2h n F;+2mnf,;F;)+6h (n F;+3m nf,;F;+6mn (fxy+Jhy)F;)+··· 
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[ 
1 2( 2 1 3 3 2 2 2 J k4 = h f + phF; + 2 h p F; + 2npf,;F;) + 6 h (p F3 + 3n pf,;F; + 6np (fxY + fhY )F; + 6mnpf YF;) + · · · 

Combining these as suggested by the final Runge-Kutta formula, 

1 
y(x +h)- y(x) =(a+ b + e + d)hf + (bm +en+ dp)h 2F1 + 2 (bm 2 + en 2 + dp 2 )h3F; 

1 1 
+ 6 (bm 3 + en3 + dp 3)h4F; + (emn + dnp )h3f,;F; + 2 (em 2n + dn 2p )h4f,;F; 

+ (emn 2 + dnp 2 )h4(fxy + Jhy)F1 + dmnph4f;F; + · · · 

Comparison with the Taylor series now suggests the eight conditions 

a+b+e+d=1 

1 
bm +en +dp = 2 

bm 2 + en 2 + dp 2 =~ 
3 

1 
emn +dnp =6 

1 
emn 2 + dnp 2 = S 

1 
dmnp =24 

These eight equations in seven unknowns are actually somewhat redundant. The classical solution set is 

p = 1 

leading to the Runge-Kutta formulas 

b=e=~ 
3 

kr=hf(x,y) kz=hf(x+~h,y+~kr) k3=hf(x+~h,y+~kz) 
1 

k4 =hf(x +h, y + k3) y(x +h)= y(x) +6 (k1 + 2kz + 2k3 + k4) 
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It is of some interest to notice that for f(x, y) independent of y this reduces to Simpson's rule applied to 

y'(x) = f(x). 

19.7. What is the advantage of Runge-Kutta formulas over the Taylor method? 

Though approximately the same as the Taylor polynomial of degree four, these formulas do not 

require prior calculation of the higher derivatives of y(x), as the Taylor method does. Since the 
differential equations arising in applications are often complicated, the calculation of derivatives can be 

onerous. The Runge-Kutta formulas involve computation of f(x, y) at various positions instead and this 
function occurs in the given equation. The method is very extensively used. 

19.8. Apply the Runge-Kutta formula toy'= f(x, y) = xy 113
, y(l) = 1. 

With x0 = 1 and h = .1 we find 

kl=(.1)f(1, 1)=.1 

k2 = (.1)[(1.05, 1.05) = .10672 

k3 = (.1)[(1.05, 1.05336) = .10684 

k4 = (.1)f(l.l, 1.10684) = .11378 

from which we compute 

1 
h = 1 +6(.1 + .21344+ .21368+ .11378) = 1.10682 

This completes one step and we begin another with x 1 and YJ in place of x0 and y0 , and continue in this 
way. Since the method duplicates the Taylor series through h4

, it is natural to expect results similar to 

those found by the Taylor method. Table 19.3 makes a few comparisons and we do find differences in 
the last two places. These are partly explained by the fact that the local truncation errors of the two 

methods are not identical. Both are of the form Ch 5
, but the factor Cis not the same. Also, roundoff 

errors usually differ even between algorithms which are algebraically identical, which these are not. 
Here the advantage is clearly with the Runge-Kutta formulas. 

Table 19.3 

X Taylor Runge-Kutta Exact 

1 1.00000 1.00000 1.00000 

2 2.82846 2.82843 2.82843 

3 7.02123 7.02113 7.02113 

4 14.69710 14.69693 14.69694 

5 27.00022 26.99998 27.00000 

19.9. Illustrate variations of the Runge-Kutta formulas. 

It is not hard to verify that 

y(x +h)= y(x) + hf(x + ~h, y +~hf(x, h)) 

in which y denotes y(x), duplicates the Taylor series through terms of second degree. (See Problem 

19.63). It is, therefore, known as a Runge-Kutta method of order two. Similarly, 

k1 = hf(x, y) 

kz = hf(x +~h, y +~k~) 
k3 = hf(x + h, y - k1 + 2kz) 

1 
y(x +h)= y(x) + 6 (k 1 + 4k2 + k 3 ) 
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has order three. Other methods of order two and three also exist. The set 

k 1 = hf(x, y) 

kz=hf(x +~h,y +~k1) 

( 
1 1 1 ) 

k3=hf x+2h,y+4k1+4kz 

k4 = hf(x + h, y- kz + 2k3) 

1 
y(x +h)= y(x) + 6 (k1 + 4k3 + k4) 

is an alternate method of order four, while the more exotic 

k1=J(x,y) 

kz=hf(x +~h,y +~k~) 

( 
1 1 1 ) 

k 3 =hf x+2h,y+4k1+4kz 

k4 = hf(x + h, y- kz + 2k3) 

( 
2 7 10 1 ) 

k 5 = hf X+ 3 h, y + 27 k1 + 27 kz + 27 k4 

( 
1 28 1 546 54 378 ) 

k 6 = hf x + 5 h, y + 
625 

k1- 5 kz + 
625 

k3 + 
625 

k4-
625 

ks 

1 5 27 125 
y(x +h)= y(x) +24k1 +4s k4 +56ks + 

336 
k6 

has order five. The higher the order, the greater is the diversity of possible methods, and the lower the 
truncation error. A method of order n duplicates the Taylor series through terms of nth degree, and so 
has truncation error 

which means that for a smooth function y(x) the computation can proceed with a relatively large hand 
progress more rapidly. The development of high-order methods involves some strenuous algebra, and it 
has been feasible only with the aid of computer programs for doing the manipulations. 

CONVERGENCE OF THE TAYLOR METHOD 

19.10. The equation y' = y with y(O) = 1 has the exact solution y(x) =ex. Show that the approximate 
values Yk obtained by the Taylor method converge to this exact solution for h tending to zero 
and p fixed. (The more familiar convergence concept keeps h fixed and lets p tend to infinity.) 

The Taylor method involves approximating each correct value yk+ 1 by 

y; =Y. +hY'+!h2Y(2)+···+_!_hPY(P) k+! k k 2 k p! k 

For the present problem all the derivatives are the same, making 

Yk+l = (1 +h +!h2 + · · · +_!_hP)Yk = rYk 
2 p! 

When p = 1 this reduces to the Euler method. In any case it is a difference equation of order one. Its 
solution with Y0 = 1 is 

k ( 1 2 1 )k Y. = r = 1 + h + - h + · · · +- hP 
k 2 p! 
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But by Taylor's polynomial formula, 

1 1 hp+1 
eh = 1 + h +- h2 + · · · +- hP + --- e•h 

2 p! (p + 1)! 

with ; between 0 and 1. Now recalling the identity 

ak- rk =(a- r)(ak-1 + ak-2r + ... + ark-2 + rk-1) 

we find for the case a > r > 0, 

Choosing a = eh and r as above, this last inequality becomes 

hp+1 khp+1 
O<ekh_y: <---e"hke(k-1)h<---ekh 

k (p + 1)! (p + 1)! 

the last step being a consequence of 0 < ; < 1. The question of convergence concerns the behavior of 
values computed for a fixed argument x as h tends to zero. Accordingly we put xk = kh and rewrite our 
last result as 

Now choose a sequence of step sizes h, in such a way that xk recurs endlessly in the finite argument set 
of each computation. (The simplest way is to continually halve h.) By the above inequality the sequence 
of Yk values obtained at the fixed xk argument converges to the exact exk as hP. The practical implication 
is, of course, that the smaller h is chosen the closer the computed result draws to the exact solution. 
Naturally roundoff errors, which have not been considered in this problem, will limit the accuracy 
attainable. 

19.11. How does the error of the Taylor approximation, as developed in the previous problem, 
behave for a fixed step size as k increases, in other words as the computation is continued to 
larger and larger amounts? 

Note that this is not a convergence question, since h is fixed. It is a question of how the error, due 
to truncation of the Taylor series at the term hP, accumulates as the computation continues. By the last 
inequality we see that the error contains the true solution as a factor. Actually it is the relative error 
which may be more significant, since it is related to the number of significant digits in our computed 
values. We find 

I 
exk- Y:l hP 

Relative error= ___ k < -( --) 
1 
xk 

exk p + 1 . 

which, for fixed h, grows linearly with xk. 

19.U. Prove the convergence of the Taylor method for the general first-order equation y' = f(x, y) 
with initial condition y(x0) = y0 under appropriate assumptions on f(x, y ). 

This generalizes the result of Problem 19.10. Continuing to use capital Y for the approximate 
solution, the Taylor method makes 

Y. = Y. + hY' +! h2Y(2) + · · · + _!_hPY(P) k+1 k k 2 k p! k 

where all entries Y¥) are computed from the differential equation. For example, 

and suppressing arguments for brevity, 

Yi3) = fxx + 2fxyf + /yyF + (fx + [yf)[y = f"(xk> Yk) 

it being understood that f and its derivatives are evaluated at xk> Yk and that Yk denotes the computed 
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value at arguments xk. The other Y~l are obtained from similar, but more involved, formulas. If we use 
y(x) to represent the exact solution of the differential problem, then Taylor's formula offers a similar 
expression for y(xk+ 1), 

provided the exact solution actually has such derivatives. As usual sis between xk and xk+I· In view of 
y'(x) = f(x, y(x)), we have 

and differentiating, 

In the same way 

y<2>(xk) = fx(xk, y(xk)) + /y(xk> y(xk))f(xk> y(xk)) = f'(xk> y(xk)) 

y<3>(xk) = f"(xk, y(xk)) 

and so on. Subtraction now brings 

y(xk+t)- Yk+t = y(xk)- Yk + h[y'(xk)- Y~] + ~ h2[y<2>(xk)- Yi2>] 

1 hp+l 
+ ... + Pt hP[y(p>(xk)- Y£t'>J + (p + 1)/p+I>(s) 

Now notice that if f(x, y) satisfies a Lipschitz condition, 

ly'(xk)- Y~l = lf(xk, y(xk))- f(xk> Yk)l ;§: L ly(xk)- Ykl 

We will further assume that f(x, y) is such that 

lyu>(xk)- y~>l = IJ<i-1>(xk> y(xk))- r-t>(xk> Yk)l ;§: L ly(xk)- Ykl 

This can be proved to be true, for instance, fori= 1, ... , p iff(x, y) has continuous derivatives through 
order p + 1. This same condition also guarantees that the exact solution y(x) has continuous derivatives 
through order p + 1, a fact assumed above. Under these assumptions on f(x, y) we now let 
dk = y(xk)- Yk and have 

( 
1 1 ) hp+! 

ldk+tl ;§: ldkl 1 +hL +-h2L+ · · · +---,hPL +-( --11 B 
2 p. p+1,. 

where B is a bound on 1Yp+1(x)l. For brevity, this can be rewritten as 

where 

We now prove that 

The numbers a and f3 are positive. Since the exact and approximate solutions both satisfy the initial 
condition, d0 = 0 and the last inequality holds for k = 0. To prove it by induction we assume it for some 
nonnegative integer k and find 

(1 + a)eka- 1 e<k+l)"- 1 
-'------'---[3 < --- f3 

a a 

the last step following since 1 + a < e ". The induction is therefore valid and the inequality holds for 
nonnegative integers k. Since a= Lh + Eh < Mh where E tends to zero with h, we can replace L by the 
slightly larger M and obtain 

with the usual change of argument xk = x 0 + kh, so that convergence is again like hP. 
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19.13. What does the result of Problem 19.12 tell about the error for fixed h as the computation 

continues to larger arguments xk? 

The result is adequate for proving convergence, but since the exact solution is unknown it does not 

lead at once to an estimate of the relative error. Further error analysis and an extrapolation to the limit 

process have been explored. 

19.14. Are Runge-Kutta methods also convergent? 

Since these methods duplicate the Taylor series up to a point (in our example up to the term in h4
), 

the proof of convergence is similar to that just offered for the Taylor method itself. The details are more 

complicated and will be omitted. 

THE PREDICTOR-CORRECTOR METHOD 

19.15. Derive the modified Euler formula Yk+l = Yk + !h(y~ + y~+ 1 ) and its local truncation error. 

The formula can be produced by applying the trapezoidal rule to the integration of y 1 as follows: 

By Problem 14.66, the error in this application of the trapezoidal rule to yl will be -h3y<3l(;)/12, 

and this is the local truncation error. (Recall that local truncation error refers to error introduced by the 

approximation made in the step from xk to xk+1, that is, in the integration process. Effectively we 

pretend that yk and earlier values are known correctly.) Comparing our present result with that for the 

simpler Euler method, we of course find the present error substantially smaller. This may be viewed as 

the natural reward for using the trapezoidal rule rather than a still more primitive integation rule. It is 

also interesting to note that instead of treating Y 1 as constant between xk and xk+1, so that y(x) is 

supposed linear, we now treat yl as linear in this interval, so that y(x) is supposed quadratic. 

19.16. Apply the modified Euler formula to the problem y I = xy 113
, y (1) = 1. 

Though this method is seldom used for serious computing, it serves to illustrate the nature of the 

predictor-corrector method. Assuming yk andy£ already in hand, the two equations 

Yk+l = Yk + ~ h(y£ + Y£+1) 

are used to determine Yk+l and Y£n An iterative algorithm much like those to be presented in Chapter 

25 for determining roots of equations will be used. Applied successively, beginning with k = 0, this 

algorithm generates sequences of values yk and y £. It is also interesting to recall a remark made in the 

solution of the previous problem, that we are treating y(x) as though it were quadratic between the xk 

values. Our overall approximation to y(x) may thus be viewed as a chain of parabolic segments. Both 

y(x) and y 1(x) will be continuous, while y"(x) will have jumps at the "corner points" (xkl yk). 

To trigger each forward step of our computation, the simpler Euler formula will be used as a 

predictor. It provides a first estimate of yk+l· Here, with x0 = 1 and h = .05 it offers 

y(1.05) = 1 + (.05)(1) = 1.05 

The differential equation then presents us with 

Y1(1.05) = (1.05)(1.016) = 1.0661 

Now the modified Euler formula serves as a corrector, yielding 

y(l.05) = 1 + (.025)(1 + 1.0661) = 1.05165 

With this new value the differential equation corrects y 1 (1.05) to 1.0678, after which the corrector is 

reapplied and produces 

y(l.05) = 1 + (.025)(1 + 1.0678) = 1.0517 
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Another cycle reproduces these four-place values, so we stop. This iterative use of the corrector 
formula, together with the differential equation, is the core of the predictor-corrector method. One 
iterates until convergence occurs, assuming it will. (See Problem 19.29 for a proof.) It is then time for 
the next step forward, again beginning with a single application of the predictor formula. Since more 
powerful predictor-corrector formulas are now to be obtained, we shall not continue the present 
computation further. Notice, however, that the one result we have is only two units too small in the last 
place, verifying that our corrector formula is more accurate than the simpler Euler predictor, which was 
barely yielding four-place accuracy with h = .01. More powerful predictor-corrector combinations will 
now be developed. 

19.17. Derive the "predictor" formula Yk+I = Yk-3 + jh(2Y~-2 - Y~-I + 2y~). 
Earlier (Chapter 14) we integrated a collocation polynomial over the entire interval of collocation 

(Cotes formulas) and also over just a part of that interval (formulas with end corrections). The second 
procedure leads to more accurate, if more troublesome, results. Now we integrate a collocation 
polynomial over more than its interval of collocation. Not too surprisingly, the resulting formula will 
have somewhat diminished accuracy but it has an important role to play nevertheless. The polynomial 

= '+ky;-y'_!+k2y;-2yb+y'_! 
Pk Yo 

2 2 

satisfies Pk = y~ fork= -1, 0, 1. It is a collocation polynomial for y'(x) in the form of Stirling's formula 
of degree two, a parabola. Integrating from k = -2 to k = 2, we obtain 

1
2 

dk 4' 
8 c ' 2' ') 

4 c ' ' ' _/k = Yo+3 Y1- Yo+Y-! =3 2y!-yo+2y_1) 
With the usual change of argument x = x0 + kh this becomes 

{' p(x)dx=~h(2y;-yb+2y'_ 1 ) x_, 
Since we are thinking of p(x) as an approximation to y'(x), 

l
x2 4 

y'(x) dx = Y2- Y-2 =3h(2y;- yb + 2y'_ 1) 
x_z 

Since the same argument applies on other intervals, the indices may all be increased by k - 1 to obtain 
the required predictor formula. It is so called because it allows the y2 to be predicted from data for 
smaller arguments. 

19.18. What is the local truncation error of this predictor? 

It may be estimated by the Taylor series method. Using zero as a temporary reference point, 

1 1 1 1 
Yk =Yo+ (kh )yb + z (kh ?Y~2J + 6 (kh )3y~3J + 24 (kh )4y~4J + 

120 
(kh ) 5y~5J + · · · 

it follows that Y - Y- = 4hy' + ~ h3y(3J + __§_ hsy<sJ + ... 
2 2 0 3 0 15 0 

Differentiation also brings 
1 1 1 

y~= yb+ (kh)y&2l + z(kh?y~3J +6 (kh)3Yb4J +24 (kh)4y~l + · · · 

1 2y;- yb + 2y'_! = 3yb + 2h2y&3) + 6 h4y~5) + ... from which we find 

The local truncation error is therefore 
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of which the first term will be used as an estimate. For our shifted interval this becomes 

19.19. Compare the predictor error with that of the "corrector" formula 

This corrector is actually Simpson's rule applied to y 1(x). The local truncation error is therefore 

by Problem 14.65. Thus EP = -28Ec where the difference in the arguments of is) has been ignored. 

19.20. Show that the error of the corrector formula of Problem 19.19 can be estimated in terms of 
the difference between predictor and corrector values. 

Considering just the local truncation errors made in the step from xk to xk+ 1, we have 

Yk+l = P + Ep = C + Ec 

with P and C denoting the predictor and corrector values. Then 

and 

P-C= Ec- Ep = 29Ec 

P-C 
Ec=zg 

more or less. It is not uncommon to apply this estimate as a further correction, yielding 

P-C 
Yk+1=C+-zg 

and this formula does have truncation error of order h6
• Under some conditions, however, the use of 

such "mop-up" terms can make a computation unstable. 

19.21. The Milne method uses the formula 

4 h( I I I) 
Yk+1=Yk-3+3 2Yk-2-Yk-1-2Yk 

as a predictor, together with 

1 h( 1 1 1 

Yk+1 = Yk-1 + 3 Yk+1 + 4Yk + Yk-1) 

as a corrector. Apply this method using h = .2 to the problem Y 1 = -xy2
, y(O) = 2. 

The predictor requires four previous values, which it blends into Yk+t· The initial value y(O) = 2 is 
one of these. The others must be obtained. Since the entire computation will be based on these starting 
values, it is worth an extra effort to get them reasonably accurate. The Taylor method or Runge-Kutta 
method may be used to obtain 

y(.2) = Yt = 1.92308 y(.4) = Yz = 1.72414 y(.6) = Y3 = 1.47059 

correct to five places. The differential equation then yields 

Y 1(0)=yb=O Y1(.2) = y; =- .73964 Y 1(.4) = y~= -1.18906 Y1(.6) = y~ = -1.29758 
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correct to five places. The Milne predictor then manages 

4 
Y4 =Yo+ 3 (.2)(2y~- y~ + 2y;) = 1.23056 

In the differential equation we now find our first estimate of y;, 
y;= -(.8)(1.23056)2 = -1.21142 

The Milne corrector then provides the new approximation, 

211 

Recomputing y' from the differential equation brings the new estimate y; = -1.18698. Reapplying the 
corrector, we next have 

y4= Y2 + ~(.2)(-1.18698 + 4y~ + YD = 1.21971 

Once again applying the differential equation, we find 

y~= -1.19015 

and returning to the corrector, 

1 
Y4 = Y2 + 3 (.2)( -1.19015 + 4y~ + YD = 1.21950 

The next two rounds produce 

y~= -1.18974 Y4 = 1.21953 y~ = -1.18980 Y4 = 1.21953 

and since our last two estimates of y4 agree, we can stop. The iterative use of the corrector formula and 
differential equation has proved to be a convergent process, and the resulting y4 value is actually correct 
to four places. In this case four applications of the corrector have brought convergence. If h is chosen 
too large in a process of this sort, an excessive number of iterative cycles may be needed for 
convergence or the algorithm may not converge at all. Large differences between predictor and 
corrector outputs suggest reduction of the interval. On the other hand, insignificant differences between 
predictor and corrector outputs suggest increasing h and perhaps speeding up the computation. The 
computation of y5 andy~ may now be made in the same way. Results up to x = 10 are provided in Table 
19.4. Though h = .2 was used, only values for integer arguments are printed in the interest of brevity. 
The exact values are included for comparison. 

Table 19.4 

X y (correct) y (predictor) Error y (corrector) Error 

0 2.00000 
1 1.00000 1.00037 -37 1.00012 -12 
2 .40000 .39970 30 .39996 4 
3 .20000 .20027 -27 .20011 -11 
4 .11765 .11737 28 .11750 15 
5 .07692 .07727 -35 .07712 -20 
6 .05405 .05364 41 .05381 14 
7 .04000 .04048 -48 .04030 -30 
8 .03077 .03022 55 .03041 36 
9 .02439 .02500 -61 .02481 -42 

10 .01980 .01911 69 .01931 49 
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19.22. Discuss the error of the previous computation. 

Since the exact solution is known for this test case, it is easy to see some things which would usually 
be quite obscure. The fifth derivative of y(x) = 2/(1 + x2

) has the general behavior shown in Fig. 19.4. 

100 

Fig. 19-4 

The large fluctuations between 0 and 1 would usually make it difficult to use our truncation error 
formulas. For example, the local error of the predictor is 14h 5yC5

J /45 and in our first step (to x = .8) we 
actually find the predictor in error by -.011. This corresponds to yes>= -100. The local corrector error 
is -h5y<5

J /90 and in the same first step the error was actually -.00002. This corresponds to y<sJ = 6. This 
change of sign in y<5

J annuls the anticipated change in sign of error between the predictor and corrector 
results. It also means that an attempt to use the extrapolation to the limit idea would lead to worse 
results rather than better, in this case. The oscillating sign of the error as the computation continues will 
be discussed later. 

19.23. Derive the Adams predictor formula 

( 

1 1 1 5 \72 I 3 \73 I ) 

Yk+l = Yk + h Yk + 2 Y'Yk + U Yk + S Yk 

= Yk + ~ h(55y~- 59y~-1 + 37y~-2- 9y~-3) 
As in Problem 19.17, we obtain this predictor by integrating a collocation polynomial beyond the 

interval of collocation. The Newton backward formula of degree three, applied to Y 1(x), is 

where as usual xk = x0 + kh. Integrating from k = 0 to k = 1 (though the points of collocation are 
k = 0, -1, -2, -3), we obtain 

L
J 1 1 1 5 2 I 3 '<73 I 

0 
Pk dk =Yo+ z Vyo + lZ V Yo+ S v Yo 

In terms of the argument x and using p(x) = y 1(x), this becomes 

Since the same reasoning may be applied between xk and xk+1, we may raise all indices by k to obtain 
the first result required. The second then follows by writing out the differences in terms of the y values. 
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19.24. What is the local truncation error of the Adams predictor? 

The usual Taylor series approach leads toE= 251h 5yl5l/720. 

19.25. Derive other predictors of the form 

Yk+1 = aoYk + a1Yk-1 + a2Yk-2 + h(boy~ + b1Y~-1 + b2Y~-2 + b3y;,-3) 

Varying the approach, we shall make this formula exact for polynomials through degree four. The 
convenient choices are y(x) = 1, (x -xk), (x -xk)2

, (x -xk)3
, and (x -xkt· This leads to the five 

conditions 

1 = a0 + a1 + a2 

1 = -a 1 - 2a 2 + b0 + b1 + b2 + b3 
1 = a 1 + 4a 2 - 2b 1 - 4b 2 - 6b 3 

which may be solved in the form 

1 
bo = 24 (55+ 9a 1 + 8a2) 

1 
b1 = 24 (-59+ 19a 1 + 32a2) 

1 = -a 1 - 8a 2 + 3b 1 + 12b2 + 27b3 
1 = a1 + 16a2 - 4b 1 - 32b2 - 108b3 

1 
bz = 24 (37- 5a 1 + 8a2) 

1 
b3 =24 (-9 + a1) 

with a 1 and a2 arbitrary. The choice a1 = a2 = 0 leads us back to the previous problem. Two other simple 
and popular choices are a 1 =!, a2 = 0 which leads to 

with local truncation error 161h5yl5l I 480 and a1 = t a2 = ~ which leads to 

Yk+1 = ~ (2yk-t + Yk-z) + ~ h(191y£- 107y~-~ + 109y~-z- 25y£_3) 

with local truncation error 707h 5y<5l/2160. 
Clearly, one could use these two free parameters to further reduce truncation error, even to order 

h 7, but another factor to be considered shortly suggests that truncation error is not our only problem. It 
is also clear that other types of predictor, perhaps using a Yk- 3 term, are possible, but we shall limit 
ourselves to the abundance we already have. 

19.26. Illustrate the possibilities for other corrector formulas. 

The possibilities are endless, but suppose we seek a corrector of the form 

for which the local truncation error is of the order h5
• Asking that the corrector be exact for y(x) = 1, 

(x- xk), ... , (x- xk)4 leads to the five conditions 

ao + a1 + a2 = 1 

a1 +24c= 9 

13a1 + 8a2 - 24bo = -19 

13at + 32a2 - 24b 1 = 5 

a1 - 8a 2 + 24b 2 = 1 

involving seven unknown constants. It would be possible to make this corrector exact for even more 
powers of x, thus lowering the local truncation error still further. However, the two degrees of freedom 
will be used to bring other desirable features instead to the resulting algorithm. With a0 = 0 and a1 = 1 
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the remaining constants prove to be those of the Milne corrector: 

1 
c=-

3 

Another choice, which matches to some extent the Adams predictor, involves making a,= a2 = 0, 
which produces the formula 

If a 1 = ~, a2 = 1, then we have a formula which resembles another predictor just illustrated: 

yk+, = ~ (2Yk-! + Yk-2) + ~ h(25y ~+' + 91y ~ + 43y ~-' + 9y ~-2) 

Still another formula has a0 = a, = t making 

1 ( ) 1 ( ' ' ' ' ) yk+,=2 Yk+Yk-! +4sh 17yk+,+51yk+3yk_,+yk-2 

The various choices differ somewhat in their truncation errors. 

19.27. Compare the local truncation errors of the predictor and corrector formulas just illustrated. 

The Taylor series method can be applied as usual to produce the following error estimates: 

1 ' ' ' ' 251h5y(S) 
Predictor: yk+, = Yk + 2.4 h(55Jk- 59yk_, + 37yk-2- 9yk-3) +---no-

Corrector: 
1 ' ' ' ' 19h5y(S) 

yk+, = Yk +2_4h(9yk+l + 19yk- 5yk_, + Yk-2) ----:no 

Predictor: 
1 1 , , , , 161hV5

) 

yk+, = 2 (yk + yk_,) + 4s h(119y k- 99y k-1 + 69y k-2- 17y k-3) + ~ 

Corrector: 
1 1 ' ' ' ' 9h5y(S) 

yk+, =2 (yk + yk_,) +4sh(17yk+l + 51yk + 3yk_, + Yk-2) -48() 

Predictor: 
1 1 ' ' ' ' 707h 5y(S) 

yk+, =3 (2Yk-! + Yk-2) +7zh(191yk -107yk_, + 109yk-2- 25yk-3) +216Q 

Corrector: 
1 1 ' ' ' ' 43h 5y (S) 

yk+, = 3 (2Yk-l + Yk-2) +7z h(25yk+, + 91yk + 43yk_, + 9yk-2)- 216o 

In each case the corrector error is considerably less than that of its predictor mate. It is also of 
opposite sign, which can be helpful information in a computation. The lower corrector error can be 
explained by its pedigree. It uses information concerning Y~+' while the predictor must take the leap 
forward from Yk· This also explains why the burden of the computation falls on the corrector, the 
predictor being used only as a primer. 

For each pair of formulas a mop-up term may be deduced. Take the Adams predictor and the 
corrector below it, the first pair above. Proceeding in the usual way, considering local truncation errors 
only and remaining aware that results so obtained must be viewed with some skepticism, we find 

I=P+E,=C+E2 

where I is the exact value. Since 19£1 = -251£2 , we have £ 2 = f?o(P- C). This is the mop-up term and 
I= C + f?o(P- C) is the corresponding extrapolation to the limit. Once again it must be remembered 
that y<5

l does not really mean the same thing in both formulas, so that there is still a possibility of sizable 
error in this extrapolation. 

19.28. Apply the Adams method toy'= -xy2 with y(O) = 2, using h = .2. 
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The method is now familiar, each step involving a prediction and then an iterative use of the 
corrector formula. The Adams method uses the first pair of formulas of Problem 19.27 and leads to the 
results in Table 19.5. 

Table 19.5 

X y (correct) y (predicted) Error y (corrected) Error 

0 2.000000 

1 1.000000 1.000798 -789 1.000133 -133 

2 .400000 .400203 -203 .400158 -158 

3 .200000 .200140 -140 .200028 -28 

4 .117647 .117679 -32 .117653 -6 
5 .076923 .076933 -10 .076925 -2 

6 .054054 .054058 -4 .054055 -1 

7 .040000 .040002 -2 .040000 

8 .030769 .030770 -1 .030769 

9 .024390 .024391 -1 .024390 

10 .019802 .019802 .019802 

The error behavior suggests that h = .2 is adequate for six-place accuracy for large x, but that a smaller 
h (say .1) might be wise at the start. The diminishing error is related to the fact (see Problem 19.36) that 
for this method the "relative error" remains bounded. 

19.29. Prove that, for h sufficiently small, iterative use of a corrector formula does produce a 
convergent sequence, and that the limit of this sequence is the unique value Yk+l satisfying 
the corrector formula. 

We are seeking a number Yk+ 1 with the property 

Yk+1 = hcf(xk+1' Yk+1) + · · · 

the dots indicating terms containing only previously computed results, and so independent of Yk+J· 
Assume as usual that f(x, y) satisfies a Lipschitz condition on y in some region R. Now define a 
sequence 

y<OJ' y(lJ' y(2) 

subscripts k + 1 being suppressed for simplicity, by the iteration 

y<'> = hcf(xk+1' yU-1J) + ... 

and assume all points (xk+ 1, Y(il) are in R. Subtracting, we find 

yu+1J- y(IJ = hc[f(xk+1' y(IJ)- f(xk+1' y(i-ll)] 

Repeated use of the Lipschitz condition then brings 

IY<'+1J- y<'JI ;;2 hcK IY<'J- y(I-1JI ;;2 ... ;;2 (hcK)' IY(1J- y<oJI 

Now choose h small enough to make lhcKI = r < 1, and consider the sum 

y<nJ _ y<oJ = (Y(1J _ y<oJ) + ... + (Y(n) _ y<n-1)) 

For n tending to infinity the series produced on the right is dominated (apart from a factor) by the 
geometric series 1 + r + r2 + · · · and so converges. This proves that y<nJ has a limit. Call this limit Yk+J· 

Now, because of the Lipschitz condition, 

lf(xk+1' y<n))- f(xk+1' Yk+1)1 ;;2 K IY(n)- Yk+11 
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and it follows that 1imf(xk+1 , ylnl) = f(xk+ 1, Yk+ 1). We may thus let n tend to infinity in the iteration 

y<n) = hcf(xk+l, yln-l)) + · · · 

and obtain at once, as required, 

Yk+l = hcf(xk+u Yk+l) + · · · 
To prove uniqueness, suppose Zk+l were another value satisfying the corrector formula at xk+l· 

Then much as before, 

IYk+l- zk+d ~ hcK IYk+l- zk+ll ~ ... ~ (hcK)(i) IYk+l- zk+d 

for arbitrary i. Since lhcKI = r < 1, this forces Yk+l = Zk+l· Notice that this uniqueness result proves the 
correct Yk+l to be independent of ylol, that is, independent of the choice of predictor formula, at least 

for small h. The choice of predictor is therefore quite free. It seems reasonable to use a predictor of 
comparable accuracy; from the local truncation error point of view, with a given corrector. This leads to 
an attractive "mop-up" argument as well. The pairings in Problem 19.27 keep these factors, and some 
simple esthetic factors, in mind. 

CONVERGENCE OF PREDICTOR-CORRECTOR METHODS 

19.30. Show that the modified Euler method is convergent. 

In this method the simple Euler formula is used to make a first prediction of each yk+ 1 value, but 
then the actual approximation is found by the modified formula 

yk+l = yk + ~ h(Y£+1 + YD 

The exact solution satisfies a similar relation with a truncation error term. Calling the exact solution y(x) 
as before, we have 

the truncation error term having been evaluated in Problem 19.15. Subtracting and using dk for 
y(xk)- YkJ we have 

provided we assume the Lipschitz condition, which makes 

ly'(xk)- Y£1 = lf(xkJ y(xd)- f(xk, Yk)l ~ L ldkl 

with a similar result at argument k + 1. The number B is a bound for l/3l(x)l, which we also assume to 
exist. Our inequality can also be written as 

Suppose no initial error (do= 0) and consider also the solution of 

( 1-~hL )Dk+l = ( 1 + ~hL )Dk +~h3B 
with initial value D0 = 0. For purposes of induction we assume ldkl ~ Dk and find as a consequence 

so that ldk+d ~ Dk+l· Since d0 = D0 the induction is complete and guarantees ldkl ~ Dk for positive 
integers k. To find Dk we solve the difference equation and find the solution family 

_ (1 + ~hL)k h
2
B 

Dk - C 1 - ~hL 12L 
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with Can arbitrary constant. To satisfy the initial condition D0 = 0, we must have C = (h 2B/12L) so that 

To prove convergence at a fixed argument xk = x 0 + kh we must investigate the second factor, since as h 
tends to zero k will increase indefinitely. But since 

__ 2_ = k 0 ~ ----= eL(xk-xo) 
(

1+ 1hL)k [1+L(x -x)/2k]k eL<xk-xo)/
2 

1- ~hL 1- L(xk- Xo)/2k e-L(xk-xo)/
2 

we have y(xk)- Yk = O(h 2
) 

Thus ash tends to zero, lim Yk = y(xk), which is the meaning of convergence. Our result also provides a 
measure of the way truncation errors propagate through the computation. 

19.31. Prove the convergence of Milne's method. 

The Milne corrector formula is essentially Simpson's rule and provides the approximate values 

Yk+1 = Yk-1 + ~ h(Y~+1 + 4Y~ + Y~-1) 

The exact solution y(x) satisfies a similar relation, but with a truncation error term 

- 1 h( ' 4 ' ' ) 1 h5 (5)(") Yk+1-Yk-1+3 Yk+t+ Yk+Yk-1 -9() Y ;, 

with ; between xk_1 and xk+1. Subtracting and using dk = y(xk)- Yk, 

idk+1l ~ ldk-1l + ~ hL(Idk+11 + 41dkl + ldk-11) +~ h5B 

with the Lipschitz condition again involved and B a bound on y<5l(x). Rewriting the inequality as 

we compare it with the difference equation 

Suppose initial errors of d0 and d1 • We will seek a solution Dk such that d0 ~ D0 and d 1 ~ D1• Such a 
solution will dominate ldkl, that is, it will have the property ldkl ~ Dk for nonnegative integers k. This 
can be proved by induction much as in the previous problem, for if we assume ldk-d ~ Dk-I and 
ldkl ~ Dk we at once find that ldk+tl ~ Dk+1 also, and the induction is already complete. To find the 
required solution the characteristic equation 

( 1 - ~ hL) r
2 

- ~ hLr - ( 1 + ~ hL) = 0 

may be solved. It is easy to discover that one root is slightly greater than 1, say r1, and another in the 
vicinity of -1, say r2 • More specifically, 

The associated homogeneous equation is solved by a combination of the kth powers of these roots. The 
nonhomogeneous equation itself has the constant solution -h 4B/180L. And so we have 

k k h4B 
Dk = c1r1 + c2r2-

180
L 
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will be a solution with the required initial features. It has Do= E, and since 1 < r1 it grows steadily 
larger. Thus 

If we make no initial error, then d0 = 0. If also as h is made smaller we improve our value Y1 (which 
must be obtained by some other method such as the Taylor series) so that d 1 = O(h ), then we have 
E = O(h) and ash tends to zero so does dk. This proves the convergence of the Milne method. 

19.32. Generalizing the previous ·problems, prove the convergence of methods based on the 
corrector formula 

Yk+l = aoYk + a1 Yk-l + azYk-2 + h(cY~+l +boY~+ b1 Y~-1 + bzY~_z) 

We have chosen the available coefficients to make the truncation error of order h 5
• Assuming this to 

be the case, the difference dk = y(xk)- Yk is found by the same procedure just employed for the Milne 
corrector to satisfy 

2 

(1-lcl hL) ldk+tl ~ L (Ia; I+ hL lbd) ldk-d + T 
i=O 

where Tis the truncation error term. This corrector requires three starting values, perhaps found by the 
Taylor series. Call the maximum error of these values E, so that ldkl ~ E for k = 0, 1, 2. Consider also 
the difference equation 

2 

(1-lcl hL)Dk+t = L (Ia; I+ hL lbd)Dk-i + T 
i=O 

We will seek a solution satisfying E ~ Dk for k = 0, 1, 2. Such a solution will dominate ldkl· For, 
assuming ldk-d ~ Dk-i for i = 0, 1, 2 we at once have ldk+ 1 1 ~ Dk+t· This completes an induction and 
proves ldkl ~ Dk for nonnegative integers k. To find the required solution we note that the characteristic 
equation 

2 

(1-lcl hL)r3
- 2: (Ia; I+ hL lb;l)r2 -i = 0 

i=O 

has a real root greater than one. This follows since at r = 1 the left side becomes 

2 

A= 1- lei hL- L (Ia; I+ hL lb;l) 
i=O 

which is surely negative since a0 + a1 + a2 = 1, while for large r the left side is surely positive if we 
choose h small enough to keep 1-lcl hL positive. Call the root in question r1 • Then a solution with the 
required features is 

( T) k T 
Dk = E -A r1 +A 

since at k = 0 this becomes E and as k increases it grows still larger. Thus 

Ash tends to zero the truncation error T tends to zero. If we also arrange that the initial errors tend to 
zero, then limy(xk) = Yk and convergence is proved. 

ERROR AND STABILITY 

19.33. What is meant by a stable method for solving differential equations? 

The idea of stability has been described in many ways. Very loosely, a computation is stable if it 
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doesn't "blow up," but this would hardly be appropriate as a formal definition. In the introduction to 
this chapter stability was defined as boundedness of the relative error and without question this would be 
a desirable feature for an algorithm. Gradual deterioration of the relative error means gradual loss of 
significant digits, which is hardly something to look forward to. The trouble is, over the long run relative 
error often does deteriorate. An easy example may be useful to gain insight. Consider the modified 
Euler method. 

Apply it to the trivial problem y'=Ay y(O) = 1 

for which the exact solution is y = eAx. The Euler formula becomes 

which is a difference equation of order one with solution 

= rk = ( 1 + !Ah )k 
Yk 1- !Ah 

For small h this is close to ( 
e<JI2)Ah )k 

e-<vz)Ah = eAkh = eAx 

giving us an intuitive proof of convergence. But our goal here lies in another direction. The exact 
solution satisfies 

where T is the truncation error -h3A 3y(s)/12. Subtracting, and using dk = y(xd- yk, we find the 
similar equation 

for the error dk. Now divide by (1- ~Ah)Yk+J and assume Ah small to obtain 

1 3 3 
Rk+1=Rk-Uh A 

for the relative error Rk = yk/y(xk). Solving 

suggesting that the relative error grows like xk, or linearly, as the computation proceeds. This may be far 
from a blow-up, but neither is it a case of relative error remaining bounded. 

Taking another view, we will watch the progress of a single error as it penetrates through the 
solution process, say an initial error d0 • Assuming no other errors committed, we omit T and have 

d =d (1+~Ah)k =d eAkh 
k o 1- ~Ah o 

which makes the relative error Rk = dk/eAkh = d0 • So the long-range effect of any single error is an 
imitation of the behavior of the solution itself. If A is positive, the error and the solution grow in the 
same proportion, while if A is negative, they decay in the same proportion. In both cases the relative 
error holds firm. That this view is slightly optimistic is suggested by the linear growth predicted above, 
but at least no blow-up is forecast. By some definitions this is enough to consider the Euler algorithm 
stable. This informal, relaxed usage of the term can be convenient. 

There remains the question of how small Ah should be to justify the approximations made in these argu
ments. Since the true solution is monotone, it seems advisable to keep the value of (1 + ~Ah)/(1- ~Ah) 
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positive This is true only for Ah between -2 and 2. Prudence suggests keeping one's distance from both 
of these extremes. 

19.34. Analyze error behavior in the Milne corrector formula. 

h ( 1 1 1 ) 
Yk+I=Yk-1+3 Yk+I+4yk+Yk-I 

Again choosing the special equation y' = Ay, the error dk is easily found to satisfy the difference 
equation of order two 

for which the characteristic equation is (see Chapter 18) 

( 1- ~ Ah )r
2

- ~ Ahr- ( 1 + ~ Ah) = 0 

The roots are 

which makes 

dk =c1(1 + Ah)k + c2 ( -1 +~Ah r 
= cleAhk +(do- cJ)( -1)ke-Ahkl3 

Now it is possible to see the long-range effect of the initial error d0 • If A is positive, then dk behaves very 
much like the correct solution eAhk' since the second term tends to zero. In fact, the relative error can be 
estimated as 

which approaches a constant. If A is negative, however, the second term does not disappear. Indeed it 
soon becomes the dominant term. The relative error becomes an unbounded oscillation and the 
computation degenerates into nonsense beyond a certain point. 

The Milne method is said to be stable for A positive and unstable for A negative. In this second 
case the computed "solution" truly blows up. 

19.35. Do the computations made earlier confirm these theoretical predictions? 

Referring once again to Table 19.4 the following relative errors may be computed. Though the 
equation y 1 = -xy 2 is not linear its solution is decreasing, as that of the linear equation does for negative 
A. The oscillation in the above data is apparent. The substantial growth of relative error is also 
apparent. 

xk 1 2 3 4 5 6 7 8 9 10 

dk/yk -.0001 .0001 -.0005 .0013 -.0026 .0026 -.0075 .0117 -.0172 .0247 

19.36. Analyze error behavior for the Adams corrector 

Yk+I = Yk + ~ h(9Y~+I + 19Y~- SY~- 1 + Y~_2) 
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The usual process in this case leads to 

( 
9 ) ( 19 ) 5 1 1-24 Ah dk+t = 1 + 24 Ah dk- 24 Ahdk-t + 24 Ahdk-2 + T 

Ignoring T we attempt to discover how a solitary error would propagate, in particular what its influence 
on relative error would be over the long run. The first step is once again to consider the roots of the 
characteristic equation. 

1 -- Ah r - 1 +-Ah r +-Ahr --Ah = 0 ( 
9 ) 3 ( 19 ) 2 5 1 

24 24 24 24 

This has one root near 1, which may be verified to be r1 = 1 + Ah. If this root is removed, the quadratic 
factor 

(24- 9Ah)r2
- 4Ahr + Ah = 0 

remains. If Ah were zero this quadratic would have a double root at zero. For Ah nonzero but small the 
roots, call them r2 and r3 , will still be near zero. Actually for small positive Ah they are complex with 
moduli lrl = VAh/24, while for small negative Ah they are real and approximately ±V -6Ah/12. Either 
way we have 

lrzl, lr31 < 1 + Ah = eAh 

for small Ah. The solution of the difference equation can now be written as 

dk = c1(1 + Ah)k + 0(1Ahlk12
) = c 1eAkh + O(eAkh) 

The constant c1 depends upon the solitary error which has been assumed. Dividing by the exact solution, 
we find that relative error remains bounded. The Adams corrector is therefore stable for both positive 
and negative A. A single error will not ruin the computation. 

19.37. Do the computations made earlier confirm these theoretical predictions? 

Referring once again to Table 19.5, the following relative errors may be computed: 

xk 1 2 3 4 5 6 7 to 10 

dk/yk -.00013 -.00040 -.00014 -.00005 -.00003 -.00002 zero 

As predicted the errors are diminishing, even the relative error. Once again results obtained for a linear 
problem prove to be informative about the behavior of computations for a nonlinear problem. 

19.38. What are parasitic solutions and what is their connection with the idea of computational 
stability which underlies the preceding problems? 

The methods in question involve substituting a difference equation for the differential equation, and 
for the case y' = Ay it is a difference equation which is linear with constant coefficients. Its solution is, 
therefore, a combination of terms of the form r~ with the r; the roots of the characteristic equation. One 
of these roots will be r1 = 1 + Ah, apart from terms of higher degree in h, and r~ will then be close to 
eAhk = eAx when h is small. This is the solution we want, the one that converges to the differential 
solution. Other components, corresponding to the other r;, are called parasitic solutions. They are the 
price paid for the lower truncation error that methods such as Milne and Adams bring. 

If the parasitic terms are dominated by the r1 term, then their contribution will be negligible and the 
relative error will remain acceptable. If, on the other hand, a parasitic solution becomes dominant, it 
will ruin the computation. In Problem 19.33, for the modified Euler method, the relevant difference 
equation had only the root 

1 + Ah/2 z 
r, = 

1 
_ Ah/

2 
= 1 + Ah + O(h ) 
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There were no parasitic solutions. In Problem 19.34, the Milne method offered us 

r1 = 1 +Ah r2 = -1 +!Ah 
3 

up to the terms in h2
• For A> 0 it is r1 that dominates, but for A< 0 it is r2 that takes over and the 

desired solution is buried. In Problem 19.36, apart from the usual r1 = 1 + Ah, we found two parasitic 
solution terms, both of size about Ah. Both are dominated by the r1 term, whether A is positive or 
negative. The Adams method means stable computing in either case. 

We are drawn to the conclusion that to avoid a computational blow-up any parasitic term should be 
dominated by the principal term, that is, we want 

Jr;l;;;:; rl 

fori=/= 1. Any method for which these conditions are violated is called unstable. In fact, it is best if the 
inequalities are satisfied by a wide margin. 

19.39. Apply the second-order Runge-Kutta method 

Yk+I = Yk + hf(xk + ~ h, Yk + ~ hf(xb Yk)) 

toy' =Ay. What does this reveal about the stability of this formula? 

Substituting Ay for f(x, y) brings 

Yk+l = ( 1 + Ah + ~ A 2
h

2
)yk 

making yk=(1+Ah+~A2h2r 
which is close to the true solution yk = ekh = exk if Ah is small. But how small should Ah be? Figure 19-5 
provides a view of the quadratic r = 1 + Ah + ~A2h2 . When A is positive, r will be greater than one, so 
both rk and ekh will be increasing. The qualitative behavior of rk is, therefore, correct. But when A is 
negative, we want a decreasing solution, and this will occur only if Ah is between -2 and 0. Below this 
interval the approximate solution rk will be increasing and will bear no resemblance whatsoever to ekh. 
Here there are no parasitic solutions, since Runge-Kutta methods do not reach back beyond yk to do 
their work. The blow-up of relative error has a different origin, in the nature of the root r1 itself. 

-2 -1 All 

Fig. 19-5 

19.40. Apply the fourth-order Runge-Kutta formulas of Problem 19.12 toy'= Ay. For what range 
of Ah values is it stable? 
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With a little care we find 

Y = (1 + Ah +! A 2h 2 +! A 3h3 + _!_ A 4h4 )y 
k+l 2 6 24 k 

in which the approximation to eAh is prominent. Denoting it by r, our approximate solution is again 
yk = rk. A plot of r against Ah appears as Fig. 19-6 and, as with the second-order method, suggests that 
for positive A the true and the approximate solutions will have the same character, both increasing 
steadily. But for negative A, just as in the preceding problem, there is a lower bound below which the rk 
values will not follow the decreasing trend of the true solution. Here that bound is near -2.78. For Ah 
smaller than this, we find r greater than one and an exploding computation. 

-2.78 -2 -1 Ah 

Fig. 19-6 

19.41. How can an analysis based upon the equation y' =Ay tell us anything useful about the 
general problemy'= f(x, y)? 

There are certainly no guarantees, but the general equation is too difficult for such analysis so the 
issue is really one of doing what is possible. One link that can be established between the two problems 
is the identification of our constant A with the partial derivative [y, evaluated originally in the vicinity of 
the initial point (x0 , y0), and later at other regions of the plane to which the solution has penetrated. If [y 
changes sign along the way, we would expect the stability of Milne's method to react quickly and that of 
Runge-Kutta methods to show some sensitivity as well. 

19.42. Apply the fourth-order Runge-Kutta method to the nonlinear equation y' = -l00xy2 with 
y(O) = 2. The exact solution is y = 2/(1 + 100x2

). Test the stability for different step sizes. 

Since [y = -200xy = -400x/(1 + 100x2
), which is zero initially but climbs quickly to -20 at x = .1, 

we recall the stability condition 

-2.78~Ah = -20h 

and decide to test h values around .14. With h = .10 the computed solution decays nicely to .0197 at 
x = 1 and to .0050 at x = 2. With h = .12, a similar descent is observed. But with h = .13, three steps 
bring us to the very unsatisfactory -29.11, followed by overflow. This definite blow-up speaks well for 
efforts to transfer our linear stability criteria to the nonlinear scene. 

19.43. What can be done to control roundoff error? 

In a long solution process, roundoff can become a serious factor. If double precision arithmetic is 
available, it should probably be used, in spite of the additional expense. It may be the only recourse. 
There is an intermediate step which may be helpful if the use of higher precision throughout the entire 
computation is deemed too time consuming. To illustrate, many of our formulas for solving differential 
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equations amount to 

Yk+l = Yk + h Ayk 

with the term Ayk small compared with yk itself. To perform the addition on the right, this small 
correction term has to be shifted (to line up the binary points) and this is where many roundoffs occur. 
To avoid them, the yk are stored in double precision and this addition is done in double precision. The 
job of computing Ayb usually the heaviest work, is still done in single precision because this term is 
expected to be small anyway. In this way double precision is used only where it is needed most. 

ADAPTIVE METHODS, VARIABLE STEP SIZE 

19.44. How can the idea of adaptive integration, introduced in Problem 14.27, be extended to treat 
differential equations? 

Suppose the goal is to solve y' = f(x, y) approximately from an initial point x =a to a terminal 
point x = b, arriving with an error no greater than e. Assume that the error will accumulate linearly, so 
that over a step of length h we can allow an error of size eh/(b- a). This is precisely the idea of 
adaptive integration used earlier. Let T be an estimate of the truncation error made in taking the step of 
length h. Then if T does not exceed eh/(b- a), this step is accepted and we move on to the next. 
Otherwise, the step size h is reduced (to .5h or a suitable alternative) and the step repeated. With a 
convergent method the requirements will eventually be met, provided the step size h does not become 
so small that roundoff becomes the dominant error source. 

If the Milne predictor-corrector method is being used, then Problem 19.20 provides the needed 
truncation error estimate (P- C)/29 and the condition for acceptance is 

IP _ Cl ~ 29eh 
b-a 

which is easily computed from ingredients already in hand. If the Adams method is being used, then 
Problem 19.27 leads to the similar condition of acceptance 

z?oeh 
IP- Cl ~ 19 

b-a 

In either case, rejection will require reactivating the supplementary start-up procedure. 

19.45. To make Runge-Kutta methods adaptive, a practical way of estimating local truncation error 
is needed. Develop such an estimate, one that does not involve the higher derivatives of y(x). 

The now familiar idea of comparing errors for step sizes h and 2h will be used. Take the classical 
fourth-order method and make a step of size 2h from the current position xk. The local error is about 

T2h = C(2h )5 = 32Ch5 

Now cover the same interval in two steps of size h. The combined error is about 

2T, = 2Ch 5 

leading to these two estimates of the true value Yk+z: 

Yk+z = Azh + 32Ch
5 = Ah + 2Ch

5 

The subscripts 2h and h indicate the step sizes used in getting the two approximations. Subtraction now 
yields the value of C and the error estimate 

T, = Chs = Ah - Azh 
30 

which may be doubled for the full forward run. This estimate assumes that Ch 5 is an appropriate error 
measure and that C (with the higher derivatives imbedded) does not change much over the interval. 
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19.46. Use the error estimate of the preceding problem to make the Runge-Kutta method adaptive. 

For the interval (a, b) let the allowable error be e. For this to be distributed proportionately, we ask 
that between xk and xk+z the local error not exceed 2eh/(b- a). If 2~ as just estimated does not exceed 
this, that is, if 

the value Ah can be accepted at xk+z and one moves on. Otherwise a smaller step size h* is needed such 
that the new truncation error Th. will be suitable. Returning to basics, we assume 

T, h*5 
~.=Ch*5 =y 

with the latter not to exceed h*e/(b- a) in magnitude. Putting the pieces together, the new step size is 
determined. 

[ 
ehs JI/4 

h*= ---
(b- a)~ 

In view of the various assumptions made in deriving this formula, it is suggested that it not be pushed to 
the limit. An insurance factor of .8 is usually introduced. Moreover, if h is already quite small, and ~ 
small with it, the computation of h* may even cause an overflow. The formula should be used with 
discretion. 

19.47. Which methods are better for adaptive computing, the predictor-corrector pairs or 
Runge-Kutta? 

Predictor-corrector methods have the advantage that ingredients for estimating local error are 
already in hand when needed. With Runge-Kutta a separate application of the formulas must be made, 
as just outlined. This almost doubles the number of times thatf(x, y) has to be evaluated, and since this 
is where the major computing effort is involved, running time may be almost doubled. On the other 
hand, and as said before, whenever the step size is changed it will be necessary to assist a 
predictor-corrector method in making a restart. This means extra programming, and if frequent changes 
are anticipated, it may be just as well to use Runge-Kutta throughout. 

19.48. Try varying the step in the classical Runge-Kutta method as it solves the problem 

y' = -xy2 y(O) = 2 

for which we have the exact solution y = 2/(1 + x 2
). 

The solution starts with a relatively sharp downward turn, then gradually levels off and becomes 
rather flat. So we anticipate the need for a small step size at the start and a gradual relaxation as things 
move along. It is interesting to watch these expectations develop in a run to x = 27 . 

X . 15 1 2 3 4 9 12 17 27 

h .07 .05 .1 .2 .3 .9 1.4 2.7 4.3 

19.49. What are variable order methods? 

Varying the order of the formulas used in integrating a differential equation is another way of trying 
to achieve a given level of accuracy with a minimum of computing. Starting with a low-order formula to 
make the process self-starting, and a small step size to keep it accurate, both are adjusted as 
computation proceeds. The idea is to find an optimal order and step size for the current step. A variety 
of professional programs are available for doing this, all somewhat complex, but the underlying strategy 
is similar to that in Problems 19.44 to 19.46. 
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STIFF EQUATIONS 

19.50. What is a stiff differential equation? 

The term is usually associated with a system of equations, but can be illustrated in principle at a 
simpler level. Take the equation 

Y 1 = -100y + 99e-x 

which has the solution 

satisfying the initial condition y(O) = 0. Both terms of this solution tend to zero, but the point is, the 
second decays much faster than the first. At x = .1, this term is already zero to four decimal places. It is 
truly a transient term compared with the first, which could almost be called the "steady state." Systems 
in which different components operate on quite different time scales are called stiff systems and offer 
more than normal resistance to numerical solution. 

19.51. In view of the rapid decay of the above transient term, one might expect a step size of h = .1 
to generate values of the remaining term e-x. What does the classic Runge-Kutta method 
actually produce? 

Much as in Problem 19.42, we have J;, = -100 and associate this with the A of our stability criterion, 
which becomes 

-2.78~Ah = -100h 

and suggests that we keep the step size h less than .0278. This is something of a surprise because it seems 
to imply that the transient term, negligible in size after x = .1, can still influence the computation in an 
important, underground way. Putting theory to the test, a run was made with h = .03. The predicted 
blow-up did occur, values of y quickly descending to the vicinity of -1014

• But using h = .025 led to a 
successful run, producing .04980 at x = 3. This is just one unit high in the fifth place. 

19.52. Develop the Gear formula 

1 2 1 3 I 

V'Yn+l + l V' Yn+l + 3 V' Yn+l = hyn+l 

where V is the backward difference operator. Show that it is equivalent to 

18 9 2 6h 1 

Yn+l =llYn -ll Yn-1 + ll Yn-2 + ll Yn+l 

where 

Starting with the Newton backward formula 

k(k + 1) 2 k(k + 1)(k + 2) 3 

Pk = Yn+l + k Vyn+l + --
2
-- V Yn+l + 

6 
V Yn+l 

(see Problem 7 .9) in which x- Xn+l = kh and Pk is a polynomial of degree three ink collocating withy at 
k = 0, -1, -2, -3, we differentiate and set k = 0 

dp I dp 1 I 1 ( 1 2 1 3 ) 
-;J;; k~o=dkh k~o=h Vyn+1+2VYn+1+3Vyn+l 

Adopting this as an approximation to Y~+ 1 , we already have the first Gear formula. The second follows 
easily by replacing the backward differences with their equivalents in terms of the y;. 

These formulas can also be found by the method of undetermined coefficients, requiring exactness 
for polynomials of degree up to three. Corresponding formulas of higher order are available by 
extension. For example, if the Newton formula is extended back to k = -4, by introducing the fourth 
difference term, then ~ V4Yn+l is added to the left side above. 
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19.53. Why are the formulas of Gear preferred for solving stiff equations? 

They prove to be stable for considerably larger values of h than our other formulas. Take once 
again the equation of Problem 19.50. We have found the Runge-Kutta method unstable for h = .03. In 
contrast, the Gear formula now reduces to 

Yn+l 
18yn - 9Yn-1 + 2Yn-2 + 594he-(xn+h) 

11 + 600h 

upon inserting y' from the equation and then solving for Yn+t· With h = .1, this generated (using three 
correct starting values) 

X 2 4 6 

y .135336 .018316 .002479 

the first of which is one unit high in the final place. Even h = .5 can be considered a modest success. 

X 2 4 6 

y .1350 .01833 .002480 

The larger h brings more truncation error but there is no cause to complain about the stability. 

19.54. The Gear formulas are usually nonlinear in Yn+l· Develop the Newton iteration as it applies 
to the extraction of this unknown. 

In the above example f(x, y) was linear in y, permitting a direct solution for Yn+J· Generally, 
however, we must view the Gear formula as 

6h 
F(y) =y -uf(xn+l, y) -s =0 

where Yn+t has been abbreviated to y and S stands for the sum of three terms not involving Yn+J· 
Newton's iteration is then 

(k+tl _ tkl _ F(ylkl) 
y - y F'(ylkl) 

where F'(y) = 1-~ J;,(xn+l' y) 

Supplementary Problems 

19.55. By considering the direction field of the equation y' = x 2
- y 2

, deduce the qualitative behavior of its 
solutions. Where will the solutions have maxima and minima? Where will they have zero curvature? 
Show that for large positive x we must have y (x) < x. 

19.56. For the equation of the preceding problem try to estimate graphically where the solution through 
( -1, 1) will be for x = 0. 

19.57. By considering the direction field of the equation y' = -2xy, deduce the qualitative behavior of its 
solutions. 



228 DIFFERENTIAL EQUATIONS [CHAP. 19 

19.58. Apply the simple Euler method toy'= -xy 2
, y(O) = 2, computing up to x = 1 with a few h intervals such 

as .5, .2, .1, .01. Do the results appear to converge toward the exact value y(1) = 1? 

19.59. Apply the "midpoint formula" yk+ 1 = Yk-l + 2hf(xkl yd to y' = -xy2
, y(O) = 2, using h = .1 and 

verifying the result y (1) =. 9962. 

19.60. Apply the modified Euler method toy'= -xy 2
, y(O) = 2 and compare the predictions of y(1) obtained 

in the last three problems. Which of these very simple methods is performing best for the same h 
interval? Can you explain why? 

19.61. Apply the local Taylor series method to the solution of y' = -xy2
, y(O) = 2, using h = .2. Compare your 

results with those in the solved problems. 

19.62. Apply a Runge-Kutta method to the above problem and again compare your results. 

19.63. Verify the first statement in Problem 19.9. 

19.64. Apply the Milne predictor-corrector method toy' =xy 113
, y(1) = 1, using h = .1. Compare results with 

those in the solved problems. 

19.65. Apply the Adams predictor-corrector method to the above problem and again compare results. 

19.66. Apply two or three other predictor-corrector combinations to Problem 19.64. Are there any substantial 
differences in the results? 

19.67. Apply various methods toy'= x 2
- y 2

, y( -1) = 1. What is y(O) and how close was your estimate made 
in Problem 19.56? 

19.68. Apply various methods to y' = -2xy, y(O) = 1. How do the results compare with the exact solution 
y = e-x2? 

19.69. Show that Milne's method applied toy'= y with y(O) = 1, using h = .3 and carrying four decimal places, 
leads to the following relative errors: 

X 1.5 3.0 4.5 6.0 

Rei. error .00016 .00013 .00019 .00026 

This means that the computation has steadily produced almost four significant digits. 

19.70. Show that Milne's method applied to y' = -y with y(O) = 1, using h = .3 and carrying five decimal 
places, leads to the following relative errors: 

I X 1.5 3.0 4.5 6.0 

l Rei. error 0 -.0006 .0027 -.0248 

Though four almost correct decimal places are produced, the relative error has begun its growing 
oscillation. 

19.71. Prove the instability of the midpoint method, 

Yk+! = Yk-1 + 2hf(xkl Yd 
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Show that this formula has a lower truncation error than the Euler method, the exact solution satisfying 

Yk+t = Yk-1 + 2hf(xk> yk) + ~ hY3)(~) 

For the special case f(x, y) = Ay, show that 

dk+I = dk-1 + 2hAdk 

ignoring the truncation error term in order to focus once again on the long-range effect of a single error 
d0 . Solve this difference equation by proving the roots of r2

- 2hAr- 1 = 0 to be 

r = hA ± Yh 2A 2 + 1 = hA ± 1 + O(h 2
) 

For small hA these are near e"A and -e-hA and the solution is 

dk = Ct(1 + Ah )k + c2 ( -1)k(1- Ah )k = c1eAhk + c2( -1)ke-Ahk 

Setting k = 0, show that d0 = c1 + c2 • Dividng by yk> the relative error becomes 

rk = Ct +(do- c 1)( -1)ke-zAhk 

Show that for positive A this remains bounded, but that for negative A it grows without bound as k 
increases. The method is therefore unstable in this case. 

19.72. The results in Table 19.6 were obtained by applying the midpoint method to the equation y' = -xy 2 with 
y(O) = 2. The interval h = .1 was used but only values for x = .5(.5)5 are printed. This equation is not 
linear, but calculate the relative error of each value and discover the rapidly increasing oscillation 
forecast by the analysis of the previous linear problem. 

Table 19.6 

xk Computed Yk Exact Yk xk Computed Yk Exact Yk 

.5 1.5958 1.6000 3.0 .1799 .2000 
1.0 .9962 1.0000 3.5 .1850 .1509 
1.5 .6167 .6154 4.0 .0566 .1176 
2.0 .3950 .4000 4.5 .1689 .0941 
2.5 .2865 .2759 5.0 -.0713 .0769 

19.73. Analyze relative error for the other corrector formulas listed in Problem 19.27. 

19.74. Show that the formula 

has truncation error h 5y<5l(~)/720, while the similar predictor 

1 h( ' 3 I ) 1 h2( " " ) Yk+t = Yk + 2 -yk + Yk-t + U 17yk + 7yk-t 

has truncation error 31h 5y<5l(~)/6!. These formulas use values of the second derivative to reduce 
truncation error. 

19.75. Apply the formulas of the preceding problem toy'= -xy 2
, y(O) = 2, using h = .2. One extra starting 

value is required and may be taken from an earlier solution of this same equation, say the Taylor series. 

19.76. As a test case compute y(:rc/2), given y' = 1/i--=-y-z, y(O) = 0, using any of our approximation methods. 
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19.77. Use any of our approximation methods to find y(2), given y' = x- y, y(O) = 2. 

y(1-xY) 
19. 78. Solve by any of our approximation methods y' ( 2 4), y(1) = 1 up to x = 2. 

x 1 +x y 

. . 2xy + eY 
19.79. Solve by any of our approximatiOn methods y' = - x2 + xeY, y(1) = 0 up to x = 2. 

19.80. Solve by any of our approximation methods y' = - 2x + y, y (1) = 0 up to x = 2. 
2y -x 

19.81. An object falling toward the earth progresses, under the Newtonian theory with only the gravitational 
attraction of the earth considered, according to the equation (also see Problem 20.16) 

c!l_ = - VfiR2 VH -y 
dt Hy 

where y =distance from the earth's center, g = 32, R = 4000(5280), and H =initial distance from the 
earth's center. The exact solution of this equation can be shown to be 

t = ~;
2 

[ v~- (~Y +~arccos (~-1) J 
the initial speed being zero. But apply one of our approximation methods to the differential equation 
itself with initial condition y(O) = H = 237,000(5280). At what time do you find that y = R? This result 
may be interpreted as the time required for the moon to fall to earth if it were stopped in its course and 
the earth remained stationary. 

19.82. A raindrop of mass m has speed v after falling for time t. Suppose the equation of motion to be 

dv CV
2 

dt=32 ---;;; 

where c is a measure of air resistance. It can then be proved that the speed approaches a limiting value. 
Confirm this result by directly applying one of our approximate methods to the differential equation 
itself for the case c/m = 2. Use any initial speed. 

19.83. A shot is fired upwards against air resistance of cv 2
. Assume the equation of motion to be 

dv CV
2 

dt= -32 ---;;; 

If c/m = 2 and v(O) = 1, apply one of our methods to find the time required for the shot to reach 
maximum height. 

y 

(0,1) 

--------~--------------------------------X 

Fig. 19-7 
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19.84. One end of a rope of length L is carried along a straight line. The path of a weight attached to the other 
end is determined by (see Fig. 19-7) 

, y 
y=-ve-yz 

The exact solution may be found. However, use one of our approximation methods to compute the path 
of the weight, starting from (0, L). Take L = 1. 



Chapter 20 

Differential Problems of Higher Order 

THE BASIC PROBLEM 

A system of first-order differential equations such as 

i = 1, ... , n 

for determining then functions y;(x), with given initial conditions y;(x0) =a;, is the basic problem to 
be considered in this chapter. It arises in a wide variety of applications. That it is a direct 
generalization of the initial value problem treated in Chapter 19 is made especially plain by writing it 
in the vector form 

Y'(x) = F(x, Y) Y(x0 ) =A 

where Y, F, and A have components Yu /;, and a;, respectively. 
An equation of higher order can be replaced by such a system of first-order equations and this is 

the standard method of treatment. As the simplest example, the second-order equation 

y" = f(x, y, y') 

becomesthesystem y'=p p'=f(x,y,p) 

for the two functions y and p. The accompanying initial conditions y(x0) =a, y'(x0) =bare replaced 
by y(x0) =a and p(x0) =b. The basic problem above is then in hand. With a third-order equation, 
the definitions y' = p and y" = q quickly lead to a system of three first-order equations, and so on. 
Systems of higher-order equations are handled by treating each as just described. The option is thus 
available to reduce any higher-order problem to a system of first-order equations. 

SOLUTION METHODS 

The methods of the preceding chapter are easily extended to systems of first-order equations. 
Taylor series are frequently appropriate, their application being quite direct. 

Runge-Kutta methods also apply, each equation of the system being treated almost exactly as in 
Chapter 19. The same is true of predictor-corrector methods. Examples of such extensions will be 
provided in the solved problems. 

Solved Problems 

20.1. Illustrate the Taylor series procedure for simultaneous equations by solving the system 

x' = -x -y 

y' = X- y 

for the two functions x(t) and y(t) satisfying initial conditions x(O) = 1, y(O) = 0. 

We substitute directly into the two series 

1 
x(t) =x(O) + tx'(O) + 2t 2x"(O) + ... 

1 
y(t) = y(O) + ty'(O) + ztY(O) + ... 

232 
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obtaining the needed ingredients from the given system. First x 1 (0) = -1 and y 1 (0) = 1. Then from 
x" = -x 1

- Y 1 andy" =x 1
- Y 1 come x"(O) = 0, y"(O) = -2. Higher derivatives follow in the same way. 

The series begin as follows: 

with 

2 1 3 
y(t)=t-t +3t +· .. 

The given system is not only linear but also has constant coefficients. Writing it in the form 

X 1(t)=AX(t) 

X= C) and A=[-1 -1] 
1 -1 

the exact solution can be found by trying 

Substituting into the system leads to an eigenvalue problem for the matrix A. For the present A we have 

( -1 - A )a - b = 0 

a+ ( -1 -A )b = 0 

yielding A = - 1 ± i and after a slight effort 

x(t) = e-' cost y(t) = e-' sin t 

The Taylor series begun above is, of course, the series for these functions. 
The process as illustrated is easily extended to larger systems of equations. 

20.2. Write out the Runge-Kutta formulas for two simultaneous first-order equations using the 
classical fourth-order set. 

Let the given equations be 

yl = j;(x, y, p) PI= fz(x, y, p) 

with initial conditions y(x 0 ) = y0 , p(x 0 ) = p 0 • The formulas 

k1 = hj;(xn, Yn, Pn) 

11 = hf2(Xn, Yn, Pn) 

k2 = hj;(Xn + !h, Yn + !k1, Pn + !11) 

12 = hf2(Xn + !h, Yn + ik1, Pn + !11) 

k3 = hj;(xn + !h, Yn + !k2, Pn + !12) 

13 = hf2(Xn + !h, Yn + !k2, Pn + !l2) 

k4 = hj;(xn + h, Yn + k3, Pn + 13) 

14 = hfz(xn + h, Yn + k3, Pn + 13) 

Yn+1 = Yn + i{k1 + 2k2 + 2k3 + k4) 

Pn+1 = Pn + W1 + 212 + 213 + 14) 

may be shown to duplicate the Taylor series for both functions up through terms of order four. The 
details are identical with those for a single equation and will be omitted. For more than two 
simultaneous equations, say n, the extension of the Runge-Kutta method parallels the above, with n 
sets of formulas instead of two. For an example of such formulas in use see Problem 20.7. 

20.3. Write out the Adams type predictor-corrector formula for the simultaneous equations of the 
preceding problem. 

Assume that four starting values of each function are available, say Yo, Yv Y2, y3 and Po, P1, P2, P3· 
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Then the predictor formulas 

1 
Yk+t = Yk + 24 h(55y~- 59y~- 1 + 37y~-z- 9y~_3) 

Pk+t = Pk + ~ h(55p~- 59p~-t + 37p~-z- 9p~-3) 

may be applied with 

The results may be used to prime the corrector formulas 

Yk+t = Yk +~ h(9y~+t + 19y~- 5y~-t + Y~-z) 

which are then iterated until consecutive outputs agree to a specified tolerance. The process hardly 
differs from that for a single equation. Extension to more equations or to other predictor-corrector 
combinations is similar. 

HIGHER-ORDER EQUATIONS AS SYSTEMS 

20.4. Show that a second-order differential equation may be replaced by a system of two first-order 
equations. 

Let the second-order equation bey"= f(x, y, y'). Then introducing p = y' we have at once y' = p, 
p' = f(x, y, p ). As a result of this standard procedure a second-order equation may be treated by system 
methods if this seems desirable. 

20.5. Show that the general nth-order equation 

yen)= f(x, y, y', yez>, ... 'yen-!)) 

may also be replaced by a system of first-order equations. 

For convenience we assign y(x) the alias y1(x) and introduce the additional functions yz(x ), ... , Yn(x) 
by 

Y~-t = Yn 

Then the original nth-order equation becomes 

Y~ =f(x, Yt, Yz, ·. ·, Yn) 

These n equations are of first order and may be solved by system methods. 

20.6. Replace the following equations for the motion of a particle in three dimensions: 

x"=[I(t, x, y, z, x', y', z') y" = fz(t, x, y, z, x', y', z') z" = f:,(t, x, y, z, x', y', z') 

by an equivalent system of first-order equations. 

Let x' = u, y' = v, z' = w be the velocity components. Then 

u' = j;(t, x, y, z, u, v, w) v' = fz(t, x, y, z, u, v, w) w' = f3(t, x, y, z, u, v, w) 

These six equations are the required first-order system. Other systems of higher-order equations may be 
treated in the same way. 

20.7. Compute the solution of van der Pol's equation 

y"- (.1)(1- y2)y' + y = 0 



CHAP. 20] DIFFERENTIAL PROBLEMS OF HIGHER ORDER 235 

with initial values y(O) = 1, y'(O) = 0 up to the third zero of y(t). Use the Runge-Kutta 
formulas for two first-order equations. 

An equivalent first-order system is 

y'=p=/J(t,y,p) 

p'= -y+(.1)(1-y2 )p=fz(t,y,p) 

The Runge-Kutta formulas for this system are 

k, = hpn II = h[ -yn + (.1)(1- Y~)Pn] 

kz = h(pn + ~~~) 12 = h{- (Yn + ~k~) + (.1)[ 1- (Yn + ~k~rJ(Pn + ~~~)} 

k3 = h(Pn +~12) 13 = h{ -(Yn + ~kz) + (.1)[ 1- (Yn + ~kzrJ[Pn + ~~z)} 
k4 = h(pn + 13) 14 = h{ -(Yn + k3) + (.1)[1- (Yn + k3f](pn + 13)} 

and 

Choosing h = .2, computations produce the following results to three places: 

kl = (.2)(0) = 0 

k2 = (.2)( -.1) = -.02 

k3 = (.2)( -.1) = -.02 

k4= (.2)(-.198) = -.04 

These values now combine into 

II= (.2)[ -1 + (.1)(1-1)(0)] = -.2 

12 = (.2)[ -1 + (.1)(1-1)( -.1)] = -.2 

13 = (.2)[-.99 + (.1)(.02)(-.1)] = -.198 

14 = (.2)[ -(.98) + (.1)(.04)( -.198)] = -.196 

1 
Y1 = 1 + 6 (-. 04 - . 04 - . 04) = . 98 

1 
pI = 0 + 6 (-· 2 - . 4 - . 396 - .196) = -.199 

The second step now follows with n = 1 and the computation is continued in this way. Results up to 
t = 6.4 when the curve has crossed below they axis again are illustrated in Fig. 20-1, in which y and p 
values serve as coordinates. This "phase plane" is often used in the study of oscillatory systems. Here 
the oscillation (shown solid) is growing and will approach the periodic oscillation (shown dashed) as x 
tends to infinity. This is proved in the theory of nonlinear oscillations. 
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HIGHER-ORDER EQUATIONS SOLVED BY SERIES 

20.8. Obtain a series solution of the linear equation y" + (1 + x 2 )y =ex in the neighborhood of 
x=O. 

Let the series be y(x) = ~ a1x
1 and substitute to obtain 

i=O 

:f a;i(i- 1)x1
-

2 + (1 + x2
) :f a1x

1 = :f ~ 
i=2 i=O i=O l. 

which can be converted by changes of indices to 

(ao + 2a2) + (a 1 + 6a3)x + ~2 [(k + 2)(k + 1)ak+2 + ak + ak-2Jxk = ~0 ~ 
Comparing coefficients of the powers of x brings a2 = (1- a0)/2, a3 = (1- a 1)/6, and then the recursion 

1 
(k + 2)(k + 1)ak+2 = -ak- ak-2 + k! 

which yields successively a4 = -a0/24, a5 = -a1/24, a6 = (13a0- 11)/720, and so on. The numbers a0 and 
a1 would be determined by initial conditions. 

A similar series could be developed near any other argument x, since the ingredients of our 
differential equation are analytic functions. Such series may be adequate for computation of the solution 
over the interval required, or if not, serve to generate starting values for other methods. 

20.9. Obtain a series solution of the nonlinear equation y" = 1 + y2 in the neighborhood of x = 0, 
with y(O) = y'(O) = 0. 

The method of the preceding problem could be used, but the alternative of computing the higher 
derivatives directly will be illustrated once again. We easily compute 

y(3
) = 2yy' y(4

) = 2y(1 + y2) + 2(y')2 Y(S) = 10y2y' + 6y' y(6
) = 20y(y')2 + (1 + y2)(10y2 + 6) 

and so on. With the initial conditions given these are all zero except for y<6l, and by Taylor's theorem 
y = h2 + -dox6 + .... 

20.10. Apply the Gear method of Problem 19.52 to the stiff system 

y'=p 

p' = -lOOy -101p 

with initial conditions y(O) = 1 and p(O) = -1. This system is equivalent to the second-order 
equation 

y" + 101y' + lOOy = 0 

with y = 1 and y' = -1 initially. The exact solution is y (x) = e-x. 

Runge-Kutta methods could handle this system, but the classic fourth-order set would require a 
step size less than .0278 for a stable computation. Writing out the Gear formula for both y and p we 
have 

1 6h 
Yn+i = U (18yn - 9Yn-i + 2Yn-2) + U Pn+i 

1 6h 
Pn+i = U (18pn- 9Pn-l + 2Pn-2) + U ( -100yn+i- 101pn+J) 
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which can be rewritten as a linear system for Yn+t and Pn+t: 

6h 1 
Yn+l- U Pn+l = U (18yn- 9Yn-1 + 2Yn-z) 

600h ( 606h) 1 U Yn+l + 1 + U Pn+l = U (18pn - 9Pn-1 + 2Pn-z) 

Since the system is linear, there is no need to use the Newton iteration for its solution. Results for two 
choices of step size h appear below, both much larger than what is needed for Runge-Kutta. The true 
values are also listed for comparison. 

X y=e-x h=.l h=.2 

2 .1353 .1354 .1359 

4 .01832 .01833 .0185 

6 .002479 .002483 .00251 

8 .0003355 .0003362 .000342 

10 .0000454 .0000455 .0000465 

20.11. A dog, out in a field, sees his master walking along the road and runs toward him. Assuming 
that the dog always aims directly at his master, and that the road is straight, the equation 
governing the dog's path is (see Fig. 20-2) 

xy" = cVl + (y'? 

with c the ratio of the man's speed to the dog's. A well-known line of attack leads to the exact 
solution 

for c less than one. As x approaches zero, the dog catches his master at position 
y = c/(1- c2

). Solve this problem by an approximate method for the case c = !. The chase 
should end at y = ~-

"1 
master 

' ' ' 
(0. 0) (I 0) 

Fig. 20-2 

The second-order equation is first replaced by the system 

y' =p 

, cv'1 + p 2 

p =--
X 

and the initial conditions by y(1) = 0, p(1) = 0. The Runge-Kutta formulas of Problem 20.2 can again 
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be used, this time with a negative h. The only difficulty here is that as x nears zero the slope p grows 
very large. An adaptive method, with h decreasing in size, seems to be indicated. A primitive strategy 
was attempted, with h = -.1 down to x = .1, then h = -.01 down to x = .01, and so on. The results 
appear as Table 20.1. The last two x entries appear to contain roundoff error. Values of pare not listed 
but rose to nearly 1000 in size. 

Table 20.1 

X y 

.1 .3608 

.01 .5669 

.001 .6350 

.0001 .6567 

.00001 .6636 

.0000006 .6659 
-.0000003 .6668 

20.12. The equations 

II 9 2 r =---
r3 rz 

8' =]__ 
rz 

in which primes refer to differentiation relative to time t, describe the Newtonian orbit of a 
particle in an inverse square gravitational field, after suitable choices of some physical 
constants. If t = 0 at the position of minimum r (Fig. 20-3) and 

r(O) = 3 8(0) = 0 r'(O) = 0 

then the orbit proves to be the ellipse r = 9/(2 +cos 8). Use one of our approximation 
methods and compare with this exact result. 

1=0 

Fig. 20-3 

The application is quite straightforward. The familiar reduction to a first-order system comes first, 

r' =p 
3 e·=rz 

followed by the programming of three sets of Runge-Kutta formulas, still following the model of 
Problem 20.2. Integration continued until the angle e exceeded 2n. A selected fragment of the output is 
provided as Table 20.2 (step size h = .1 was used) and it clearly has the desired orbital quality. As a 
further check, theory offers the period T = 12nV3, or about 65.3, and this fits in very nicely. 
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20.13. The equations 

DIFFERENTIAL PROBLEMS OF HIGHER ORDER 

Table 20.2 

t r 6 p 

0 3.00 .00 .00 

6 4.37 1.51 .33 
7 4.71 1.66 .33 

32 9.00 3.12 .01 

33 9.00 3.15 -.004 

59 4.47 4.73 -.33 

65 3.00 6.18 -.03 

66 3.03 6.52 .08 

Supplementary Problems 

x'(t)=-~ 
Vxz+yz 

' 2y 
y (t) = 1-v 0 2 x-+ y 

239 

describe the path of a duck attempting to swim across a river by aiming steadily at the target position T. 
The speed of the river is 1 and the duck's speed is 2. The duck starts at S, so that x(O) = 1 and y(O) = 0. 
(See Fig. 20-4.) Apply the Runge-Kutta formulas for two simultaneous equations to compute the duck's 
path. Compare with the exact trajectory y = ~(x 112 - x 312

). How long does it take the duck to reach the 
target? 

y 

------~T+-----~----+8~-------x 

Fig. 20-4 

20.14. Solve the preceding problem by the Adams predictor-corrector method. 

20.15. Apply the Milne method to Problem 20.13. 

20.16. The classical inverse square law for an object falling toward an attracting gravitational mass (say the 
earth) is 

y"(t) = _gRz 
y2 

where g is a constant and R is the earth's radius. This has the well-known and somewhat surprising 
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solution 

t= ~;
2 

[~~-(~)\~arccos (~-1) J 
where H is the initial altitude and the initial speed is zero. Introducing the equivalent system 

y'=p 
' gRz 

p =-y 
apply the Runge-Kutta formulas to compute the velocity p(t) and position y(t). When does the falling 
object reach the earth's surface? Compare with the exact result. (If miles and seconds are used as units, 
then g = 5~~0 , R = 4000, and take H to be 200,000 which is the moon's distance from earth. The problem 
illustrates some of the difficulties of computing space trajectories.) 

20.17. Apply the Adams method to Problem 20.16. 

20.18. Show that the solution of yy" + 3(y'? = 0 with y(O) = 1 and y'(O) =~can be expressed as 

x 3x2 7x 3 77x 4 

y (x) = 1 + 4- 32 + 128 - 2048 + · · . 

20.19. Show that xV'- 2x2y' + 0 + x 2)y = 0 has a solution of the form 

y(x) = Vx(ao + a1x + a2x 2 + · · ·) 

d · h ffi · 'f h d. · 1· y(x) 1 · · d f h' and etermme t e coe c1ents 1 t e con Itlon 1m Vx = IS require or x approac mg zero. 

20.20. Apply the Runge-Kutta formulas to 

y' = -12y + 9z z' = lly -10z 

which have the exact solution 

y = 9e-x + se-21x z = lle-x- se-21x 

using y(1) = 9e-\ z(1) = lle- 1 as initial conditions. Work to three or four decimal places with h = .2 
and carry the computation at least to x = 3. Notice that lly /9z, which should remain close to one, 
begins to oscillate badly. Explain this by comparing the fourth-degree Taylor approximation to e-zlx 
(which the Runge-Kutta method essentially uses) with the exact exponential. 



Chapter 21 

Least-Squares Polynomial Approximation 

THE LEAST-SQUARES PRINCIPLE 

The basic idea of choosing a polynomial approximation p(x) to a given function y(x) in a way 
which minimizes the squares of the errors (in some sense) was developed first by Gauss. There are 
several variations, depending on the set of arguments involved and the error measure to be used. 

First of all, when the data are discrete we may minimize the sum 
N 

s = 2: (y;- ao- alxi- ... - amxi)2 

i=O 

for given data X;, y;, and m < N. The condition m < N makes it unlikely that the polynomial 

p(x) = ao + alx + azX2 + · · · + amXm 

can collocate at all N data points. So S probably cannot be made zero. The idea of Gauss is to make 
S as small as we can. Standard techniques of calculus then lead to the normal equations, which 
determine the coefficients aj. These equations are 

N N 

s0a0 + s 1a 1 + · · · + smam =to 

s1a0 + s2a 1 + · · · + Sm+lam = t1 

where sk = I: xf, tk = I: y;xf. This system of linear equations does determine the a; uniquely, and 
i=O i=O 

the resulting aj do actually produce the minimum possible value of S. For the case of a linear 
polynomial 

p(x)=Mx+B 

the normal equations are easily solved and yield 

M 
s0t1 - s1 to 

s0s2 - si 

In order to provide a unifying treatment of the various least-squares methods to be presented, 
including this first method just described, a general problem of minimization in a vector space is 
considered. The solution is easily found by an algebraic argument, using the idea of orthogonal 
projection. Naturally the general problem reproduces our p(x) and normal equations. It will be 
reinterpreted to solve other variations of the least-squares principle as we proceed. In most cases a 
duplicate argument for the special case in hand will also be provided. 

Except for very low degree polynomials, the above system of normal equations proves to be 
ill-conditioned. This means that, although it does define the coefficients aj uniquely, in practice it 
may prove to be impossible to extricate these aj. Standard methods for solving linear systems (to be 
presented in Chapter 26) may either produce no solution at all, or else badly magnify data errors. As 
a result, orthogonal polynomials are introduced. (This amounts to choosing an orthogonal basis for 
the abstract vector space.) For the case of discrete data these are polynomials P m,N(t) of degree 
m = 0, 1, 2, ... with the property 

N 

2: Pm,N(t)Pn,N(t) = 0 
t=O 

241 
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This is the orthogonality property. The explicit representation 

m .(m)(m + i) t(i) 
Pm,N(t) = L (-1)' . . N(i) 

t=O l l 

will be obtained, in which binomial coefficients and factorial polynomials are prominent. 
An alternate form of our least-squares polynomial now becomes convenient, namely 

m 

p(t) = L akPk,N(t) 
k=O 

with new coefficients ak. The equations determining these ak prove to be extremely easy to solve. In 
fact, 

N 

E y,Pk,N(t) 
t=O 

N 

E P~.N(t) 
t=O 

These ak do minimize the error sum S, the minimum being 
N m 

Smin = L y?- L Wka~ 
t=O k=O 

where wk is the denominator sum in the expression for ak. 

APPLICATIONS 

There are two major applications of least-squares polynomials for discrete data. 

1. Data smoothing. By accepting the polynomial 

in place of the given y(x), we obtain a smooth line, parabola, or other curve in place of the 
original, probably irregular, data function. What degree p(x) should have depends on the 
circumstances. Frequently a five-point least-squares parabola is used, corresponding to 
points (x;, y;) with i = k- 2, k- 1, ... , k + 2. It leads to the smoothing formula 

3 
y(xk) = p(xk) = Yk- 35 04Yk 

This formula blends together the five values yk_2, ... , yk+2 to provide a new estimate to the 
unknown exact value y(xk). Near the ends of a finite data supply, minor modifications are 
required. 

The root-mean-square error of a set of approximations A; to corresponding true values 
T; is defined as 

RMS error= [f (T;- A;)
2

]

112 

i=O N 

In various test cases, where the T; are known, we shall use this error measure to estimate the 
effectiveness of least-squares smoothing. 

2. Approximate dilferentiation. As we saw earlier, fitting a collocation polynomial to irregular 
data leads to very poor estimates of derivatives. Even small errors in the data are magnified 
to troublesome size. But a least-squares polynomial does not collocate. It passes between 
the data values and provides smoothing. This smoother function usually brings better 
estimates of derivatives, namely, the values of p '(x ). The five-point parabola just mentioned 
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leads to the formula 

1 
y'(xd = p'(xk) = 

10
h ( -2Yk-z- Yk-1 + Yk+1 + 2yk+z) 

Near the ends of a finite data supply this also requires modification. The formula usually 
produces results much superior to those obtained by differentiating collocation polynomials. 
However, reapplying it to the p '(xk) values in an effort to estimate y"(xk) again leads to 
questionable accuracy. 

CONTINUOUS DATA 

For continuous data y(x) we may minimize the integral 

I= f
1 
[y(x)- aoPo(x)- · · ·- amPm(x)]2 dx 

the lj(x) being Legendre polynomials. [We must assume y(x) integrable.] This means that we have 
chosen to represent our least-squares polynomial p(x) from the start in terms of orthogonal 
polynomials, in the form 

The coefficients prove to be 

2k + 1 f1 

ak = -
2
- _

1 
y(x)Pk(x) dx 

For convenience in using the Legendre polynomials, the interval over which the data y(x) are given 
is first normalized to (-1, 1). Occasionally it is more convenient to use the interval (0, 1). In this 
case the Legendre polynomials must also be subjected to a change of argument. The new 
polynomials are called shifted Legendre polynomials. 

Some type of discretization is usually necessary when y(x) is of complicated structure. Either the 
integrals which give the coefficients must be computed by approximation methods, or the continuous 
argument set must be discretized at the outset and a sum minimized rather than an integral. Plainly 
there are several alternate approaches and the computer must decide which to use for a particular 
problem. 

Smoothing and approximate differentiation of the given continuous data function y (x) are again 
the foremost applications of our least-squares polynomial p(x). We simply accept p(x) and p'(x) as 
substitutes for the more irregular y(x) and y'(x). 

A generalization of the least-squares principle involves minimizing the integral 

I= f w(x)[y(x)- aoQo(x)- · · ·- amQm(xW dx 

where w(x) is a nonnegative weight function. The Qk(x) are orthogonal polynomials in the 
generalized sense 

f w(x)Q/x)Qk(x) dx = 0 

for j * k. The details parallel those for the case w(x) = 1 already mentioned, the coefficients ak being 
given by 

f w(x)y(x)Qk(x) dx 
ak = f w(x)Q~(x) dx 
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The minimum value of I can be expressed as 

lmin = f w(x)y 2(x) dx- ~0 Wkat 

where Wk is the denominator integral in the expression for ak. This leads to Bessel's inequality 

~0 Wkat~ f w(x)y 2(x) dx 

and to the fact that for m tending to infinity the series ~ Wkat is convergent. If the orthogonal 
k=O 

family involved has a property known as completeness and if y(x) is sufficiently smooth, then the 
series actually converges to the integral which appears in /min· This means that the error of 
approximation tends to zero as the degree of p(x) is increased. 

CHEBYSHEV POLYNOMIALS 

Approximation using Chebyshev polynomials is the important special case w(x) = 1 /V1 - x 2 of 
the generalized least-squares method, the interval of integration being normalized to ( -1, 1). In this 
case the orthogonal polynomials Qk(x) are the Chebyshev polynomials 

Tk(x) = cos (k arccos x) 

The first few prove to be T0(x) = 1 T1 (x) = x Ti(x) = 2x 2 
- 1 T3(x) = 4x3 - 3x 

Properties of the Chebyshev polynomials include 

Tn+l(x) = 2xTn(x)- Tn-l(x) 

{ 

0 ifm =Fn f
1 
T~)dx= n~2 ifm=n=FO 

"'• if m = n =0 

Tn(x) = 0 

Tn(x)=(-1/ 

for x =cos [(2i + 1)n/2n], i = 0, 1, ... , n- 1 

for x =cos (in/n), i = 0, 1, ... , n 

An especially attractive property is the equal-error property, which refers to the oscillation of the 
Chebyshev polynomials between extreme values of ± 1, reaching these extremes at n + 1 arguments 
inside the interval ( -1, 1). As a consequence of this property the error y(x)- p(x) is frequently 
found to oscillate between maxima and minima of approximately ±E. Such an almost-equal-error is 
desirable since it implies that our approximation has almost uniform accuracy across the entire 
interval. For an exact equal-error property see the next chapter. 

The powers of x may be expressed in terms of Chebyshev polynomials by simple manipulations. 
For example, 

1 =To 

This has suggested a process known as economization of polynomials, by which each power of x in a 
polynomial is replaced by the corresponding combination of Chebyshev polynomials. It is often 
found that a number of the higher-degree Chebyshev polynomials may then be dropped, the terms 
retained then constituting a least-squares approximation to the original polynomial, of sufficient 
accuracy for many purposes. The result obtained will have the almost-equal-error property. This 
process of economization may be used as an approximate substitute for direct evaluation of the 
coefficient integrals of an approximation by Chebyshev polynomials. The unpleasant weight factor 
w(x) makes these integrals formidable for most y (x ). 
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Another variation of the least-squares principle is to minimize the sum 
N-1 

L [y(x;)- a0 To( X;)-· · ·-am Tm(x;)f 
i=O 

the arguments being X;= cos [(2i + l)JT/2N]. These arguments may be recognized as the zeros of 
TN(x ). The coefficients are easily determined using a second orthogonality property of the 
Chebyshev polynomials, 

and prove to be 
1 N-1 

a0 =- L y(x;) 
N i=O 

The approximating polynomial is then, of course, 

if m*n 
if m =n *0 

if m =n = 0 

p(x) = a0 T0(x) + · · · + amTm(x) 

This polynomial also has an almost-equal-error. 

THE L 2 NORM 

The underlying theme of this chapter is to minimize the norm 

where y represents the given data and p the approximating polynomial. 

Solved Problems 

DISCRETE DATA, THE LEAST-SQUARES LINE 
N 

21.1. Find the straight line p(x) = Mx + B for which I: (y; - Mx; - B)2 is a minimum, the data 
(xi> y;) being given. i=o 

Calling the sumS, we follow a standard minimum-finding course and set derivatives to zero. 

as N 

aM
= - 2 L x, · (y,- Mx,- B)= 0 

i=O 

Rewriting we have 

(N + 1)B + (2:x,)M= LY; 

which are the "normal equations." Introducing the symbols 

So= N + 1 

these equations may be solved in the form 

M = S 0 f 1 - S 1fo 

SoS2- si 
B = s2to- s1t1 

SoS2- si 
To show that SoS2- si is not zero, we may first notice that squaring and adding terms such as (x0 - x 1? 
leads to 

0 < 2: (x, - xj) 2 = N · L x;- 2 L x,xj 
~j ~j 
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But also (L:x,)2 = L:xT+2L:x,xj 
i<j 

so that s0 s2 - si becomes 

(N + 1) L x;- (L x,)2 =N · L x; -2 L x,xj >0 
i<j 

Here we have assumed that the x, are not all the same, which is surely reasonable. This last inequality 
also helps to prove that the M and B chosen actually produce a minimum. Calculating second 
derivatives, we find 

Since the first two are positive and since 

(2s1?- 2(N + 1)(2s2) = 4(si- SoSz) < 0 

the second derivative test for a minimum of a function of two arguments B and M is satisfied. The fact 
that the first derivatives can vanish together only once shows that our minimum is an absolute minimum. 

21.2. The average scores reported by golfers of various handicaps on a difficult par-three hole are as 
follows: 

Handicap 6 8 10 12 14 16 18 20 22 24 

Average 3.8 3.7 4.0 3.9 4.3 4.2 4.2 4.4 4.5 4.5 

Find the least-squares linear function for this data by the formulas of Problem 21.1. 

Let h repr~sent handicap and x = (h- 6)/2. Then the x, are the integers 0, ... , 9. Let y represent 
average score. Then s0 = 10, S1 = 45, Sz = 285, to= 41.5, t1 = 194.1 and so 

M=(10)(194.1)-(45)(41.5) 
089 

(10)(285)- ( 45)2 0 

B = (285)(41.5)- (45)(194.1) 
(10)(285)- (45? 

3
"
76 

This makes y =p(x) where p(x) = .09x + 3.76 = .045h + 3.49. 

21.3. Use the least-squares line of the previous problem to smooth the reported data. 

The effort to smooth data proceeds on the assumption that the reported data contain inaccuracies of 
a size to warrant correction. In this case the data seem to fall roughly along a straight line, but there are 
large fluctuations, due perhaps to the natural fluctuations in a golfer's game. (See Fig. 21-1 below.) The 

average score 

4.6 

4.4 

4.2 

4.0 

3.8 

• handicap 
3.6 

10 12 14 16 18 20 22 24 

Fig. 21-1 
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least-squares line may be assumed to be a better representation of the true relationship between the 
handicap and the average scores than the original data are. It yields the following smoo_thed values: 

Handicap 6 8 10 12 14 16 18 20 22 24 

Smoothed y 3.76 3.85 3. 94 4.03 4.12 4.21 4.30 4.39 4.48 4.57 

21.4. Estimate the rate at which the average score increases per unit handicap. 

From the least-squares line of Problem 21.2 we obtain the estimate .045 stroke per unit handicap. 

21.5. Obtain a formula of the type P(x) = AeMx from the following data: 

2 

11 17 

Let y =log P, B =log A. Then taking logarithms, log P =log A+ Mx which is equivalent to 
y(x) = Mx +B. 

We now decide to make this the least-squares line for the (x;, y;) data points. 

X; 1 2 3 4 

Y; 1.95 2.40 2.83 3.30 

Since s0 = 4, s1 = 10, s2 = 30, t0 = 10.48, t 1 = 28.44, the formulas of Problem 21.1 make M = .45 and 
B = 1.5. The resulting formula is P = 4.48e45

x. 

It should be noted that in this procedure we do not minimize I: [P(x;)- ?;]2
, but instead choose the 

simpler task of minimizing I: [y(x;)- y;f This is a very common decision in such problems. 

DISCRETE DATA, THE LEAST-SQUARES POLYNOMIAL 

21.6. Generalizing Problem 21.1, find the polynomial p(x) = a0 + a1x + · · · + amxm for which 
N 

S = L (y; - ao- a1x; - · · · - amx'!'? is a minimum, the data (x;, y;) being given, and m < N. 
i=O 

We proceed as in the simpler case of the straight line. Setting the derivatives relative to 
ao, a1, ... , am to zero produces them+ 1 equations 

as N 

~ = - 2 L x~(Y; - ao- a1X; - · · · - amx;") = 0 
oak i=O 

N N 
where k = 0, ... , m. Introducing the symbols sk = I: x~, tk = I: y;x~, these equations may be rewritten 
as i=O i=O 

Soao+slal + .. ·+ Smam=fo 

s1ao + s2a1 + · · · + sm_1am = f1 

and are called normal equations. Solving for the coefficients a;, we obtain the least-squares polynomial. 
We will show that there is just one solution and that it does minimize S. For smaller integers m, these 
normal equations may be solved without difficulty. For larger m the system is badly ill-conditioned and 
an alternative procedure will be suggested. 
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21.7. Show how the least-squares idea, as just presented in Problem 21.6 and earlier in Problem 
21.1, may be generalized to arbitrary vector spaces. What is the relationship with orthogonal 
projection? 

This more general approach will also serve as a model for other variations of the least-squares idea 
to be presented later in this chapter and focuses attention on the common features which all these 
variations share. First recall that in Euclidean plane geometry, given a pointy and a lineS, the point on 
S closest to y is the unique point p such that py is orthogonal to S, p being the orthogonal projection 
point of y onto S. Similarly in Euclidean solid geometry, given a pointy and a plane S, the point on S 
closest to y is the unique point p such that py is orthogonal to all vectors in S. Again p is the orthogonal 
projection of y. This idea is now extended to a more general vector space. 

We are given a vector y in a vector space E and are to find a vector p in a given subspace S such 
that 

where q is any other vector in S and the norm of a vector v is 

llvll = Y(v, v) 

parentheses denoting the scalar product associated with the vector space. We begin by showing that 
there is a unique vector p for which y - p is orthogonal to every vector in S. This p is called the 
orthogonal projection of y. 

Let e0 , ••• , em be an orthogonal basis for S and consider the vector 

P = (y, ea)eo + (y, et)et + · · · + (y, em)em 

Direct calculation shows that (p, ek) = (y, ek) and therefore (p- y, ed = 0 for k = 0, ... , m. It then 
follows that (p - y, q) = 0 for any q in S, simply by expressing q in terms of the orthogonal basis. If 
another vector p 1 also had this property (p 1 

- y, q) = 0, then it would follow that for any q in S 
(p -pI' q) - 0. Smce p -pI IS Itself Ill s' thiS forces (p -pI' p -pI) = 0 which by required properties of 
any scalar product implies p = p 1

• The orthogonal projection p is thus unique. 
But now, if q is a vector other than p in S, 

IIY- quz = ll(y- p) + (p- q)ll 2 

= IIY -pll 2 + liP -qll 2 +2(y -p,p -q) 

Since the last term is zero, p- q being inS, we deduce that IIY- Pll < IIY- qll as required. 

21.8. If u0 , u11 ••• , Um is an arbitrary basis for S, determine the vector p of the preceding problem 
in terms of the uk. 

We must have (y- p, uk) = 0 or (p, uk) = (y, uk) for k = 0, ... , m. Since p has the unique 
representation p = a0 u0 + a1 u1 + · · · + amum, substitution leads directly to 

(u 0 , uda0 + (u 1 , uk)a 1 +···+(urn, uk)am = (y, ud 

for k = 0, ... , m. These are the normal equations for the given problem and are to be solved for the 
coefficients a0 , • •• , am. A unique solution is guaranteed by the previous problem. Note that in the 
special case where the u0 , u 1 , ••• , urn are orthonormal, these normal equations reduce to a;= (y, u;) as 
in the proof given in Problem 21.7. 

Note also the following important corollary. If y itself is represented in terms of an orthogonal basis 
in E which includes u0 , ••• , urn, say 

then the orthogonal projection p, which is the least-squares approximation, is available by simple 
truncation of the representation after the amum term: 

21.9. How is the specific case treated in Problem 21.6 related to the generalization given in 
Problems 21.7 and 21.8? 
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The following identifications must be made: 

E: 

S: 

y: 

p: 

(y, uk): 

The space of discrete real-valued functions on the set of arguments x0, ... , xN 

The subset of E involving polynomials of degree m or less 

The data function having values y0 , ••• , YN 

The scalar product ~ V 1(x;)vz(x;) 
i=O 

The norm ~ [v(x;)]2 
i=O 

The function with values x7 

The polynomial with values p; = a0 + a1x; + · · · + amx'!' 

The sum S = ~ (y; - p;)2 

i=O 

N 

tk = I: y;x7 
i=O 

With these identifications we also learn that the polynomial p of Problem 21.6 is unique and actually 
does provide the minimum sum. The general result of Problems 21.7 and 21.8 establishes this. 

21.10. Determine the least-squares quadratic function for the data of Problem 21.2. 

The sums s0 , s 1 , s2 , t0 , and t1 have already been computed. We also need s3 = 2025, s4 = 15,333, 
and t2 = 1292.9 which allow the normal equations to be written 

10a0 + 45a 1 + 285a2 = 41.5 45a 0 + 285a 1 + 2025a 2 = 194.1 285a0 + 2025a 1 + 15,333a2 = 1248 

After some labor these yield a0 = 3.73, a1 = .11, and a2 = -.0023 so that our quadratic function is 
p(x) = 3.73 + .llx- .0023x 2

• 

21.11. Apply the quadratic function of the preceding problem to smooth the reported data. 

Assuming that the data should have been values of our quadratic function, we obtain these values: 

Handicap 6 8 10 12 14 16 18 20 22 24 

Smoothed y 3.73 3.84 3.94 4.04 4.13 4.22 4.31 4.39 4.46 4.53 

These hardly differ from the predictions of the straight-line hypothesis, and the parabola corresponding 
to our quadratic function would not differ noticeably from the straight line of Fig. 21-1. The fact that a2 

is so small already shows that the quadratic hypothesis may be unnecessary in the golfing problem. 

SMOOTHING AND DIFFERENTIATION 

21.12. Derive the formula for a least-squares parabola for five points (xi, Yi) where i = k- 2, k- 1, 
k, k + 1, k + 2. 

Let the parabola be p(t) = a0 + a1t + a2t2 where t = (x- xk}/h, the arguments X; being assumed 
equally spaced at interval h. The five points involved now have arguments t = -2, -1, 0, 1, 2. For this 
symmetric arrangement the normal equations simplify to 

5a0 + 10az = L Y; 
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and are easily solved. We find first 

70a 0 = 34 L y; - 10 2: tfy; 

= -6yk~2 + 24yk~l + 34yk + 24yk+l- 6yk+2 

= 70yk- 6(Yk~z- 4yk~l + 6yk- 4yk+l + Yk+z) 

from which 
3 4 

ao = Yk - 3s D Yk 

Substituting back we also obtain 

And directly from the middle equation 

21.13. With y(xk) representing the exact value of which Yk is an approximation, derive the smoothing 
formula y(xk) = Yk- -is 0 4Yk· 

The least-squares parabola for the five points (xk~z, Yk~z) to (xk+z, Yk+z) is 

At the center argument t = 0 this becomes p(xk) = a0 = yk- /s D4yk by Problem 21.12. Using this formula 
amounts to accepting the value of p on the parabola as better than the data value Yk· 

21.14. The square roots of the integers from 1 to 10 were rounded to two decimal places and a 
random error of -.05, -.04, ... , .05 added to each (determined by drawing cards from a 
pack of 11 cards so labeled). The results form the top row of Table 21.1. Smooth these values 
using the formula of the preceding problem. 

Table 21.1 

xk 1 2 3 4 5 6 7 8 9 10 

Yk 1.04 1.37 1.70 2.00 2.26 2.42 2.70 2.78 3.00 3.14 

ely 33 33 30 26 16 28 8 22 14 

62y 0 -3 -4 -10 12 -20 14 -8 

63y -3 -1 -6 22 -32 34 -22 

64y 2 -5 28 -54 66 -56 

/s64y 0 0 2 -5 6 -5 

p(xk) 1.70 2.00 2.24 2.47 2.64 2.83 

Differences through the fourth also appear in Table 21.1, as well as /sb 4y. Finally the bottom row 
contains the smoothed values. 

21.15. The smoothing formula of Problem 21.13 requires two data values on each side of xk for 
producing the smoothed value p(xk)· It cannot therefore be applied to the two first and last 
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entries of a data table. Derive the formulas 

2 3 1 4 
y(xN-I) = YN-I + 5 V' YN -7 V' YN 

1 3 3 4 
y(xN)=yN-5V' YN+35V' YN 

for smoothing end values. 

If we lett= (x -x2)/h, then the quadratic function of Problem 21.12 is the least-squares quadratic 
for the first five points. We shall use the values of this function at x0 and x 1 as smoothed values of y. 
First 

and inserting our expressions for the a;, with k replaced by 2, 

1 
p(xo) = 70 (62yo + 18y1 - 6y2- 10y3 + 6y4 ) 

1 
=Yo+ 70 [( -14yo + 42y1 - 42y2 + 14y3) + (6y0 - 24y1 + 36y2- 24y3 + 6y4)] 

which reduce to the above formula for y(x0 ). For p(x 1) we have 

and insertion of our expressions for the a; again leads to the required formula. At the other end of our 
data supply the change of argument t = (x- xN_2)/h applies, the details being similar. 

21.16. Apply the formulas of the preceding problem to complete the smoothing of the y values in 
Table 21.1. 

We find these changes to two places 

1 3 
y(x0 ) = 1.04 + 5 ( -.03) + 35 (.02) = 1.03 

2 1 
y(xN_ 1) = 3.00 + 5 ( -.22) -7 (-.56)= 2.99 

2 1 
y(x 1 ) = 1.37-5 ( -.03) -7 (.02) = 1.38 

1 3 
y(xN) = 3.14-5 ( -.22) + 35 (-.56)= 3.14 

21.17. Compute the RMS error of both the original data and the smoothed values. 

The root-mean-square error of a set of approximations A; corresponding to exact values T; is 
defined by 

[ 

N (7:- AYJI/2 
RMS error= ~ ~ 

In this example we have the following values: 

T; 1.00 1.41 1. 73 2.00 2.24 2.45 2.65 2.83 3.00 3.16 

Y; 1.04 1.37 1.70 2.00 2.26 2.42 2.70 2.78 3.00 3.14 

p(x;) 1.03 1.38 1.70 2.00 2.24 2.47 2.64 2.83 2.99 3.14 
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The exact roots are given by two places. By the above formula, 

(
.0108)

112 

RMS error of y1 = 1i) = . 033 

(
.0037)

112 

RMS error of p(x;) = 1i) = .019 

so that the error is less by nearly half. The improvement over the center portion is greater. If the two 
values at each end are ignored we find RMS errors of .035 and .015, respectively, for a reduction of 
more than half. The formula of Problem 21.13 appears more effective than those of Problem 21.15. 

21.18. Use the five-point parabola to obtain the formula 

, 1 
Y (xk) = lOh (- 2yk-z- Yk-1 + Yk+l + 2yk+z) 

for approximate differentiation. 

With the symbols of Problem 21.13 we shall use y'(xd, which is the derivative of our five-point 
parabola, as an approximation to the exact derivative at xk. This again amounts to assuming that our 
data values y1 are approximate values of an exact but unknown function, but that the five-point parabola 
will be a better approximation, especially in the vicinity of the center point. On the parabola 

p = ao + a1t + azt2 

and according to plan, we calculate p'(t) at t = 0 to be a 1 • To convert this to a derivative relative to x 

involves merely division by h, and so, recovering the value a1 found in Problem 21.12 and taking p'(x) 
as an approximation to y'(x), we come to the required formula. 

21.19. Apply the preceding formula to estimate y '(x) from the Yk values given in Table 21.1. 

At x 2 = 3 we find 

and at x3 = 4, 

1 
y'(3) = iO ( -2.08- 1.37 + 2.00 + 4.52) = .307 

y'(4) = _!_ ( -2.74 -1.70 + 2.26 + 4.84) = .266 
10 

The other entries in the top row shown are found in the same way. The second row was computed using 
the approximation 

found earlier from Stirling's five-point collocation polynomial. Notice the superiority of the present 
formula. Errors in data were found earlier to be considerably magnified by approximate differentiation 
formulas. Preliminary smoothing can lead to better results, by reducing such data errors . 

y '(x) by least squares .31 .27 .24 .20 .18 . 17 

y'(x) by collocation .31 .29 .20 .23 .18 .14 

Correct y '(x) .29 .25 .22 .20 .19 .18 

21.20. The formula of Problem 21.18 does not apply near the ends of the data supply. Use a 
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four-point parabola at each end to obtain the formulas 

Y '(xo) = 2~h ( -21yo + 13y1 + 17y2 - 9y3) 

Y '(xi)= 2~h ( -llyo + 3yi + 7yz + y3) 

I 1 
Y (xN-I) = 

20
h (llyN- 3YN-I- 7YN-z- YN-3) 

y'(xN) = 2~h (21yN -13YN-I -17YN-2 + 9yN-3) 

Four points will be used rather than five, with the thought that a fifth point may be rather far from 
the position x0 or xN where a derivative is required. Depending on the size of h, the smoothness of the 
data, and perhaps other factors, one could use formulas based on five points or more. Proceeding to the 
four-point parabola we let t = (x- x 1)/ h so that the first four points have arguments t = - 1, 0, 1, 2. The 
normal equations become 

4ao + 2at + 6az =Yo + Yt + Yz + Y3 2a0 + 6a1 + 8az = -Yo+ Yz + 2y3 

6a0 + 8a1 + 18az =Yo+ Yz + 4y3 

and may be solved for 

20a0 = 3yo + llyt + 9yz- 3y3 4az =Yo - Yt - Yz + Y3 

With these and y'(x0 ) = (a 1 - 2a2 )/h, y'(x1) = a1/h the required results follow. Details at the other end 
of the data supply are almost identical. 

21.21. Apply the formulas of the preceding problem to the data of Table 21.1. 

We find 

y'(1) =~ [ -21(1.04) + 13(1.37) + 17(1.70)- 9(2.00)] = .35 

1 
y'(2) = 20 [ -11(1.04) + 3(1.37) + 7(1.70) + 2.001 = .33 

Similarly y'(9) = .16 and y'(10) = .19. The correct values are .50, .35, .17, and .16. The poor results 
obtained at the endpoints are further evidence of the difficulties of numerical differentiation. Newton's 
original formula 

produces from this data the value .32, which is worse than our .35. At the other extreme the 
corresponding backward difference formula manages .25 which is much worse than our .19. 

21.22. Apply the formulas for approximate derivatives a second time to estimate y"(x), using the 
data of Table 21.1. 

We have already obtained estimates of the first derivative, of roughly two-place accuracy. They are 
as follows: 

X 1 2 3 4 5 6 7 8 9 10 

y'(x) .35 .33 .31 .27 .24 .20 .18 .17 .16 .19 
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Now applying the same formulas to the y'(x) values will produce estimates of y"(x). For example, at 
X =5, 

y"(5) =fcl [ -2(.31)- (.27) + (.20) + 2(.18)] = -.033 

which is half again as large as the correct -.022. Complete results from our formulas and correct values 
are as follows: 

-y" (computed) .011 .021 .028 .033 .033 .026 .019 .004 .012 -0.32 

-y" (correct) .250 .088 .048 .031 .022 .017 .013 .011 .009 .008 

Near the center we have an occasional ray of hope but at the ends the disaster is evident. 

21.23. The least-squares parabola for seven points leads to the smoothing formula 

3 4 2 6 
y(xk) = Yk -7 <5 Yk -:21 <5 Yk 

(The derivation is requested as a supplementary problem.) Apply this to the data of Table 
21.1. Does it yield better values than the five-point smoothing formula? 

A row of sixth differences may be added to Table 21.1: 

40 -115 202 -242 

Then the formula yields 
3 2 

y(4) = 2.00-7 (-.05) -21 (.40) = 1.98 

3 2 
y(5) = 2.26 -7 (.28)- 21 ( -1.15) = 2.25 

and similarly y(6) = 2.46, y(7) = 2.65. These are a slight improvement over the results from the 
five-point formula, except for y(4) which is slightly worse. 

ORTHOGONAL POLYNOMIALS, DISCRETE CASE 

21.24. For large Nand m the set of normal equations may be badly ill-conditioned. To see this show 
that for equally spaced xi from 0 to 1 the matrix of coefficients is approximately 

1 

2 3 m+ 1 
1 1 1 

2 3 4 m+2 

m+1 m+2 m+3 2m+ 1 

if a factor of N is deleted from each term. This matrix is the Hilbert matrix of order m + 1. 

For large N the area under y (x) = x" between 0 and 1 will be approximately the sum of N 
rectangular areas. (See Fig. 21-2.) Since the exact area is given by an integral, we have 

_!_ fx7=J
1

xkdx=-1-
N i~O 0 k + 1 

Thus sk = N /(k + 1), and deleting the N we have at once the Hilbert matrix. This matrix will later be 
shown to be extremely troublesome for large N. 
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Fig. 21-2 

21.25. How can the Hilbert matrices be avoided? 

The preceding problem shows that the normal equations which arise with the basis 1, x, ... , xm and 
equally spaced arguments involve an approximately Hilbert matrix, which is troublesome. It is 
computationally more efficient to find an orthogonal basis so that the corresponding normal equations 
become trivial. A convenient orthogonal basis is constructed in the next problem. It is interesting to 
note that in developing this basis we will deal directly with the Hilbert matrix itself, not with 
approximations to it, and that the system of equations encountered will be solved exactly, thus avoiding 
the pitfalls of computing with ill-conditioned systems. (See also Chapter 26.) 

21.26. Construct a set of polynomials P m,N(t) of degrees m = 0, 1, 2, . , . such that 
N 

L Pm,N(t)Pn,N(t) = 0 form >n 
t=O 

Such polynomials are called orthogonal over the set of arguments t. 

Let the polynomial be 

Pm,N(t) = 1 +cit+ c2t(
2

) + ... + Cmt(m) 

where t<il is the factorial t(t -1) · · · (t- i + 1). We first make the polynomial orthogonal to (t + s)<sl for 
s = 0, 1, ... , m - 1, which means that we require 

N 

2: (t + S )(s) P m,N(t) = 0 
t=O 

Since 

summing over the arguments t and using Problem 4.10 brings 

N (N + S + 1)(s+l) (N + S + l)(s+2) (N + S + 1)(s+m+l) 
2:(t+s)(s)Pm,N(t)= 

1 
+c1 +···+cm-'----'-----

t=O s + s + 2 s + m + 1 

which is to be zero. Removing the factor (N + s + 1)(s+ll, the sum becomes 

_1_ + Nc 1 + N(
2

)C2 + ... + N(m)Cm = O 
s+1 s+2 s+3 s+m+1 

and setting NUlc; = a; this simplifies to 

_1_+~+~+·. ·+~=0 
s+1 s+2 s+3 s+m 

for s = 0, 1, ... , m - 1. The Hilbert matrix again appears in this set of equations, but solving the system 
exactly will still lead us to a useful algorithm. If the last sum were merged into a single quotient it would 
take the form Q(s)/(s +m·+ 1)(m+ll with Q(s) a polynomial of degree at most m. Since Q(s) must be 
zero at them arguments s = 0, 1, ... , m -1, we must have Q(s) = Cs<ml where Cis independent of s. 
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To determine C we multiply both the sum and the equivalent quotient by (s + 1) and have 

( 
a a ) Cs(ml 

1 + (s + 1) _I_+ ... + __ m_ = .,--.,-----,----
s + 2 s + m + 1 (s + 2) · · · (s + m + 1) 

which must be true for all s except zeros of denominators. Setting s = -1, we see that C = 
m!/[(-1)(-2) · · · (-m)J = (-1)m. We now have 

_1_+~+ ... +--a_m_= (-1)ms(m) 
s + 1 s + 2 s + m + 1 (s + m + 1)lm+ll 

The device which produced C now produces the a,. Multiply by (s + m + 1)(m+tl and then sets= -i -1 
to find for i = 1, ... , m 

( -1)'i! (m- i)! a,= ( -1)m( -i- 1)(m) = (m + i)(m) 

and then solve for ,(m + i)(ml '(m)(m + i) 
a,=(-1)-( _.) 1 •

1
=(-1) . . 

m z .z. z z 

Recalling that a,= c,Nril, the required polynomials may be written as 

m .(m)(m + i) t(i) 
Pm.N(t)=L(-1)' . . N('l 

i~O l l 

What we have proved is that each Pm.N(t) is orthogonal to the functions 

t+1 (t+2)(t+ 1) (t + m -1)(m-l) 

but in Problem 4.18, we saw that the powers 1, t, t2
, ••• , tm-t may be expressed as combinations of 

these, so that P m,N(t) is orthogonal to each of these powers as well. Finally, since Pn.N(t) is a 
combination of these powers we find P m,N(t) and Pn.N(t) to be themselves orthogonal. The first five of 
these polynomials are 

Po,N = 1 

2t 
P1,N= 1-N 

6t 6t(t -1) 
Pz,N= 1-N+ N(N -1) 

12t 30t(t- 1) 20t(t- 1)(t- 2) 
P3,N= 1 -N+ N(N -1)- N(N -1)(N- 2) 

20t 90t(t -1) 140t(t -1)(t- 2) 70t(t -1)(t- 2)(t- 3) 
P4,N= 1 -N+ N(N -1) N(N -1)(N- 2) + N(N -1)(N -2)(N -3) 

21.27. Determine the coefficients ak so that 

p(x) = aoPo,N(t) + a,P1 ,N(t) + · · · + amPm,N(t) 

[with t = (x- x0)/h] will be the least-squares polynomial of degree m for the data (x" y,), 

t=O, 1, ... , N. 

We are to minimize 
N 

S = L [y,- aoPo,N(t)- · · ·- amPm,N(tW 
t=O 

Setting derivatives relative to the ak equal to zero, we have 
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fork= 0, 1, ... , m. But by the orthogonality property most terms here are zero, only two contributing. 

N 

2: [y,- akPk,N(t)]Pk,N(t) = 0 
t=O 

Solving for ak, we find 

This is one advantage of the orthogonal functions. The coefficients ak are uncoupled, each appearing in a 
single normal equation. Substituting the ak into p(x), we have the least-squares polynomial. 

The same result follows directly from the general theorem of Problems 21.7 and 21.8. Identifying E, 
S, y, (v 1 , v2), and llvll exactly as before, we now take uk =Pk,N(t) so that the orthogonal projection is 
still p = a0 u0 + · · · + amum. The kth normal equation is (uk, uk)ak = (y, uk) and leads to the expression 
for ak already found. Our general theory now also guarantees that we have actually minimized S, and 
that our p(x) is the unique solution. An argument using second derivatives could also establish this but 
is now not necessary. 

N N 

21.28. Show that the minimum value of S takes the form I: y?- I: Wka~ where Wk = I: P~,N(t). 
t~O k~O t~O 

Expansion of the sum brings 

N N m N m 

S = 2: y;- 2 2: y, 2: akPk,N(t) + 2: 2: ajak~,N(t)Pk,N(t) 
t=O t=O k=O t=O j,k=O 

The second term on the right equals -2 ~ ak(Wkak) = -2 ~ Wka~. The last term vanishes by the 
k~O k~O 

orthogonality except when j = k, in which case it becomes ~ Wka~. Putting the pieces back together, 
k~O 

N m 

Smin = 2: y;- 2: Wka~ 
t~O k~O 

Notice what happens to the minimum of S as the degree m of the approximating polynomial is 
increased. Since S is nonnegative, the first sum in Smin clearly dominates the second. But the second 
increases with m, steadily diminishing the error. When m = n we know by our earlier work that a 
collocation polynomial exists, equal toy, at each argument t = 0, 1, ... , N. This reduces S to zero. 

21.29. Apply the orthogonal functions algorithm to find a least-squares polynomial of degree three 

for the following data: 

xi 0 1 2 3 4 5 6 7 8 9 10 

Yi 1.22 1.41 1.38 1.42 1.48 1.58 1.84 1. 79 2.03 2.04 2.17 

xi 11 12 13 14 15 16 17 18 19 20 

Yi 2.36 2.30 2.57 2.52 2.85 2.93 3.03 3.07 3.31 3.48 

The coefficients aj are computed directly by the formula of the preceding problem. For hand 
computing, tables of the Wk and Pk,N(t) exist and should be used. Although we have "inside 
information" that degree three is called for, it is instructive to go slightly further. Up through m = 5 we 
find a0 = 2.2276, a1 = -1.1099, a2 = .1133, a3 = .0119, a4 = .0283, a5 = -.0038; and with x = t, 

p(x) = 2.2276 -1.1099?1, 20 + .1133P2, 2o + .0119P3, 2o + .0283P4, 2o- .0038?5, 20 
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By the nature of orthogonal function expansions we obtain least-squares approximations of various 
degrees by truncation of this result. The values of such polynomials from degree one to degree five are 
given in Table 21.2 below, along with the original data. The final column lists the values of 
y(x) = (x + 50)3/105 from which the data were obtained by adding random errors of size up to .10. Our 
goal has been to recover this cubic, eliminating as much error as we can by least-squares smoothing. 
Without prior knowledge that a cubic polynomial was our target, there would be some difficulty in 
choosing our approximation. Fortunately the results do not disagree violently after the linear 
approximation. A computation of the RMS error shows that the quadratic has, in this case, 
outperformed the cubic approximation. 

Degree 1 2 3 4 5 
Raw 
data 

RMS .060 .014 .016 .023 .023 .069 

Table 21.2 

Given Correct 
X data 1 2 3 4 5 results 

0 1.22 1.12 1.231 1.243 1.27 1.27 1.250 

1 1.41 1.23 1.308 1.313 1.31 1.31 1.327 

2 1.38 1.34 1.389 1.388 1.37 1.38 1.406 

3 1.42 1.45 1.473 1.469 1.45 1.45 1.489 

4 1.48 1.56 1.561 1.554 1.54 1.54 1.575 

5 1.58 1.67 1.652 1.645 1.63 1.63 1.663 

6 1.84 1.78 1.747 1.740 1.74 1.73 1.756 

7 1.79 1.89 1.845 1.839 1.84 1.84 1.852 

8 2.03 2.01 1.947 1.943 1.95 1.95 1.951 

9 2.04 2.12 2.053 2.051 2.07 2.07 2.054 

10 2.17 2.23 2.162 2.162 2.18 2.18 2.160 

11 2.36 2.34 2.275 2.277 2.29 2.29 2.270 

12 2.30 2.45 2.391 2.395 2.41 2.41 2.383 

13 2.57 2.56 2.511 2.517 2.52 2.52 2.500 

14 2.52 2.67 2.635 2.642 2.64 2.64 2.621 

15 2.85 2.78 2.762 2.769 2.76 2.76 2.746 

16 2.93 2.89 2.892 2.899 2.88 2.88 2.875 

17 3.03 3.00 3.027 3.031 3.01 3.01 3.008 

18 3.07 3.12 3.164 3.165 3.15 3.15 3.144 

19 3.31 3.23 3.306 3.301 3.30 3.30 3.285 

20 3.48 3.34 3.451 3.439 3.47 3.47 3.430 

CONTINUOUS DATA, THE LEAST-SQUARES POLYNOMIAL 

21.30. Determine the coefficients a; so that 

I= f
1 
[y(x)- aoPo(x)- a1P1(x)- · · ·- amPm(x)]2 dx 

will be a minimum, the function Pk(x) being the kth Legendre polynomial. 
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Here it is not a sum of squares which is to be minimized but an integral, and the data are no longer 
discrete values yi but a function y (x) of the continuous argument x. The use of the Legendre polynomials 
is very convenient. As in the previous section it will reduce the normal equations, which determine the 
ak, to a very simple set. And since any polynomial can be expressed as a combination of Legendre 
polynomials, we are actually solving the problem of least-squares polynomial approximation for 
continuous data. Setting the usual derivatives to zero, we have 

ai Jl - = -2 [y(x)- a0 P0(x)- · · ·- amPm(x)]PAx) dx = 0 
aak -! 

fork= 0, 1, ... , m. By the orthogonality of these polynomials, these equations simplify at once to 

( [y(x)- akPAx)]Pk(x) dx = 0 

Each equation involves only one of the ak so that 

( y(x)Pk(x) dx 2k + 1 J1 

f/~(x) dx 2 -1 

y(x)Pk(x) dx 

Here again it is true that our problem is a special case of Problems 21.7 and 21.8, with these 
identifications: 

E: 

S: 

y: 

The space of real-valued functions on -1 ~ x ~ 1 

Polynomials of degree m or less 

The data function y (x) 

The scalar product f
1 

v 1(x)v 2 (x) dx 

llvll: 

p: 

The norm ( [ v(x W dx 

Pk(x) 

akPo(x) + · · · + amPm(x) 

(y, ud/(uk> uk) 

These problems therefore guarantee that our solution p(x) is unique and does minimize the integral I. 

21.31. Find the least-squares approximation to y(t) = t2 on the interval (0, 1) by a straight line. 

Here we are approximating a parabolic arc by a line segment. First let t = (x + 1)/2 to obtain the 
interval (-1, 1) in the argument x. This makes y = (x + 1?/4. Since P0(x) = 1 and P1(x) =x, the 
coefficients a0 and a 1 are 

1 Jl 1 1 a0 =- - (x + 1? dx =-
2 -14 3 

3 Jl 1 1 a 1 =- -(x+1?xdx=-
2 -14 2 

and the least-squares line is y = ~P0(x) + !P1(x) = ~ + h = t- ~-
Both the parabolic arc and the line are shown in Fig. 21-3. The difference between y values on the 

line and the parabola is t2
- t + t and this takes extreme values at t = 0, !, and 1 of amounts t -{z, and 

i. The error made in substituting the line for the parabola is therefore slightly greater at the ends than at 
the center of the interval. This error can be expressed as 

and the shape of P2(x) corroborates this error behavior. 
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Fig. 21-3 

21.32. Find the least-squares approximation to y(t) =sinton the interval (0, n) by a parabola. 

Lett= n(x + 1)/2 to obtain the interval ( -1, 1) in the argument x. Then y =sin [n(x + 1)/2]. The 

coefficients are 

aa =!J 1 

sin [n(x + 
1
)] dx =~ 

2 _1 2 n 

3 J1 

[n(x + 1)] a1 =- sin --- x dx =0 
2 -1 2 

5J 1 

[n(x+1)]1 2 10( 12) a2 =- sin --- -(3x -1)dx=- 1--
2 - 1 2 2 n n 2 

so that the parabola is 

The parabola and sine curve are shown in Fig. 21-4, with slight distortions to better emphasize the over 

and under nature of the approximation. 

y 

6 

I. 
/, 

I. 

a 
/. 

Fig. 21-4 

21.33. What are the "shifted Legendre polynomials"? 

These result from a change of argument which converts the interval ( -1, 1) into (0, 1). Let 

t = (1 - x )/2 to effect this change. The familiar Legendre polynomials in the argument x then become 

Po= 1 
1 

P2 = 2 (3x 2 -1) = 1- 6t + 6t2 

P1 =x = 1-2t 
1 

g = 2 (5x 3
- 3x) = 1-12t + 30t2

- 20t3 
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and so on. These polynomials are orthogonal over (0, 1) and we could have used them as the basis of 
our least-squares analysis of continuous data in place of the standard Legendre polynomials. With this 
change of argument the integrals involved in our formulas for coefficients become 

ak = (2k + 1) f y(t)Pk(t) dt 

The argument change t = (x + 1)/2 might also have been used, altering the sign of each odd-degree 
polynomial, but the device used leads to a close analogy with the orthogonal polynomials for the discrete 
case developed in Problem 21.26. 

21.34. Suppose that an experiment produces the curve shown in Fig. 21-5. It is known or suspected 
that the curve should be a straight line. Show that the least-squares line is approximately 
given by y = .21t + .11, which is shown dashed in the diagram . 

. 5 y 

.4 

.3 

.2 

.I 

.5 

Fig. 21-5 

Instead of reducing the interval to ( -1, 1) we work directly with the argument t and the shifted 
Legendre polynomials. Two coefficients are needed, 

a0 = fy(t)dt a,= 3 f y(t)(1- 2t) dt 

Since y(t) is not available in analytic form, these integrals must be evaluated by approximate methods. 
Reading from the diagram, we may estimate y values as follows: 

t 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

y .10 .17 .13 .15 .23 .25 .21 .22 .25 .29 

Applying Simpson's rule now makes a0 = .214 and a1 = - .105. The resulting line is 

y = .214- .105(1- 2t) = .21t + .11 

1.0 

.36 

and this appears in Fig. 21-5. An alternative treatment of this problem could involve applying the 
methods for discrete data to the y values read from the diagram. 

CONTINUOUS DATA, A GENERALIZED TREATMENT 

21.35. Develop the least-squares polynomial in terms of a set of orthogonal polynomials on the 
interval (a, b) with nonnegative weight function w(x ). 
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The details are very similar to those of earlier derivations. We are to minimize 

by choice of the coefficients ab where the functions Qk(x) satisfy the orthogonality condition 

f w(x)Qi(x)Qk(x) dx = 0 

for j =I= k. Without stopping for the duplicate argument involving derivatives, we appeal at once to 
Problems 21.7 and 21.8, with the scalar product 

(vi, Vz) = f w(x)v1(x)v 2(x) dx 

and other obvious identifications, and find 

f w(x)y(x)Qk(x) dx 

f w(x)Q~(x) dx 

With these ak the least-squares polynomial is p(x) = a0 Q0(x) + · · · + amQm(x). 

21.36. What is the importance of the fact that ak does not depend upon m? 

This means that the degree of the approximation polynomial does not have to be chosen at the start 
of a computation. The ak may be computed successively and the decision of how many terms to use can 
be based on the magnitudes of the computed ak. In nonorthogonal developments a change of degree will 
usually require that all coefficients be recomputed. 

21.37. Show that the minimum value of I can be expressed in the form 

f w(x)y 2(x) dx- ~o Wka~ where Wk = f w(x)Q~(x) dx 

Explicitly writing out the integral makes 

The second term on the right equals - 2 ~ ak(Wkak) = - 2 ~ Wka~. The last term vanishes by the 
k~O k~O 

orthogonality except when j = k, in which case it becomes ~ Wka~. Putting the pieces back together, 
k~O 

/min= J~ w(x)y\x) dx- ~ Wka~. 
k~O 

21.38. Prove Bessel's inequality, ~ Wka~~f~w(x)y2(x)dx. 
k=O 

Assuming w(x) ~ 0, it follows that I~ 0 so that Bessel's inequality is an immediate consequence of 
the preceding problem. 

21.39. Prove the series ~ Wka~ to be convergent. 
k=O 

It is a series of positive terms with partial sums bounded above by the integral in Bessel's inequality. 



CHAP. 21] LEAST-SQUARES POLYNOMIAL APPROXIMATION 263 

This guarantees convergence. Of course, it is assumed all along that the integrals appearing in our 
analysis exist, in other words that we are dealing with functions which are integrable on the interval 
(a, b). 

21.40. Is it true that as m tends to infinity the value of /min tends to zero? 

With the families of orthogonal functions ordinarily used, the answer is yes. The process is called 
convergence in the mean and the set of orthogonal functions is called complete. The details of proof are 
more extensive than will be attempted here. 

APPROXIMATION WITH CHEBYSHEV POLYNOMIALS 

21.41. The Chebyshev polynomials are defined for -1 ~ x ~ 1 by Tn (x) = cos ( n arccos x ). Find the 
first few such polynomials directly from this definition. 

For n = 0 and 1 we have at once Ta(x) = 1, ~(x) = x. Let A= arccos x. Then 

T;(x) = cos 2A = 2 cos2 A - 1 = 2x2 
- 1 

I;(x) =cos 3A = 4 cos3 A- 3 cos A= 4x3
- 3x, etc. 

21.42. Prove the recursion relation Tn+ 1(x) = 2xTn(x)- Tn_ 1(x). 
The trigonometric relationship cos (n + 1)A +cos (n -1)A = 2 cos A cos nA translates directly into 

T,+l(x) + Tn- 1(x) = 2xT,(x). 

21.43. Use the recursion to produce the next few Chebyshev polynomials 

Beginning with n = 3, 

~(x) = 2x(4x3
- 3x)- (2x 2 -1) = 8x 4

- 8x 2 + 1 

Ts(x) = 2x(8x4 + 1)- (4x 3
- 3x) = 16x5

- 20x3 + 5x 

4,(x) = 2x(16x 5
- 20x 3 + 5x) - (8x 4

- 8x 2 + 1) = 32x6
- 48x4 + 18x2

- 1 

0(x) = 2x(32x6
- 48x4 + 18x2

- 1)- (16x 5
- 20x 3 + 5x) = 64x 7 - l12x5 + 56x3

- 7x etc. 

21.44. Prove the orthogonality property 

fl Trn(x)Tn~) dx = {n~2 
-1 vr=xz 

j[ 

mi=n 

m=ni=O 

m=n =0 

Let x = cos A as before. The above integral becomes 

(" ( )( ) d _[sin (m + n)A sin (m- n)A]" _ 
Jo cosmA cosnA A- 2(m+n) + 2(m-n) 

0
-0 

for m =/:- n. If m = n = 0, the result n is immediate. If m = n =/:- 0, the integral is 

cos nA A = - +A =-L
" 2 d [1 (sin nA cos nA )]" n 

o 2 n o 2 

21.45. Express the powers of x in terms of Chebyshev polynomials. 

We find 

1 =To x= ~ 
2 1 

x = 2(Ta+Tz) 
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4 1 
x = 8c3Ta+4Tz+ ~) 

6 1 
x = TI (lO'fo + 157; + 6~ + 7;,) 

7 1 
X =64(35~+217;+77;+7;) 

and so on. Clearly the proces~ may be continued to any power. 

21.46. Find the least-squares polynomial which minimizes the integral 

By results of the previous section the coefficients ak are 

L w(x)y(x)Tk(x) dx 
2 J1 

y(x)Tk(x) dx 
:rr -t Y1-x2 a= L w(x)THx) dx 

except for a0 which is a0 = _!_ J1 

:(x) 
2 

dx. The least-squares polynomial is ao Ta(x) + · ··+am Tm(x). 
:rr -t 1-x 

21.47. Show that Tn(x) has n zeros inside the interval (-1, 1) and none outside. What is the "equal
ripple" property? 

Since T,(x) =cos ne, with X =cos e and - 1 ~X~ 1, we may require 0 ~ e ~ :rr without loss. 
Actually this makes the relationship between e and x more precise. Clearly T,(x) is zero for 
e = (2i + 1):rr/2n, or 

x =cos (2i + 1):rr 
' 2n ' 

i = 0, 1, ... , n - 1 

These are n distinct arguments between - 1 and 1. Since T,(x) has only n zeros, there can be none 
outside the interval. Being equal to a cosine in the interval ( -1, 1), the polynomial T,(x) cannot exceed 
one in magnitude there. It reaches this maximum size at n + 1 arguments, including the endpoints. 

T,(x)= (-1)' at 
i:rr 

x =cos
n 

i =0, 1, ... , n 

This oscillation between extreme values of equal magnitude is known as the equal-ripple property. This 
property is illustrated in Fig. 21-6 which shows 'I;(x), I;(x), ~(x), and Ts(x). 

Fig. 21-6 
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21.48. In what way does the equal-ripple property make the least-squares approximation 

y(x) = aaTa(x) + · · · + amTm(x) 

superior to similar approximations using other polynomials in place of the Tk(x )? 

265 

Suppose we assume that, for the y(x) concerned, the series obtained by letting m tend to infinity 
converges to y(x) and also that it converges quickly enough so that 

y(x)- aoTo(x)- · · ·- amTm(x) = am+!Tm+l(x) 

In other words, the error made in truncating the series is essentially the first omitted term. Since Tm+ 1(x) 
has the equal-ripple property, the error of our approximation will fluctuate between am+l and 
-am+ I across the entire interval ( -1, 1). The error will not be essentially greater over one part of the 
interval compared with another. This error uniformity may be viewed as a reward for accepting the 
unpleasant weighting factor 1/v'1 - x 2 in the integrals. 

21.49. Find the least-squares line for y(t) = t2 over the interval (0, 1) using the weight function 
11v'1- x 2

. 

The change of argument t = (x + 1)/2 converts the interval to ( -1, 1) in the argument x, and makes 
y = ~(x 2 + 2x + 1). If we note first the elementary result 

{ 

:n; 

I Xp " 0 f y' 2 dx = 1 (cos A f dA = I 
-I 1- X o :JT: 2 

0 

p=O 
p=1 
p =2 
p =3 

then the coefficient a0 becomes (see Problem 21.46) a0 = ~G + 0 + 1) = i; and since y(x)I;_(x) is 
~(x 3 + 2x 2 + x), we have a1 = ~(0 + 2 + 0) = !. The least-squares polynomial is, therefore, 

3 1 3 1 
8ro(x)+ 2TI(x)=s + 2x 

There is a second and much briefer path to this result. Using the results in Problem 21.45, 

Truncating this after the linear terms, we have at once the result just found. Moreover we see that the 
error is, in the case of this quadratic y(x), precisely the equal ripple function Tz(x)/8. This is, of course, 
a consequence of the series of Chebyshev polynomials terminating with this term. For most functions the 
error will only be approximately the first omitted term, and therefore only approximately an equal-ripple 
error. Comparing the extreme errors here(!, - t ~)with those in Problem 21.31 which were Ct - n, i), 
we see that the present approximation sacrifices some accuracy in the center for improved accuracy at 
the extremes plus the equal ripple feature. Both lines are shown in Fig. 21-7. 

Fig. 21-7 
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21.50. Find a cubic approximation in terms of Chebyshev polynomials for y(x) =sin x. 

The integrals which must be computed to obtain the coefficients of the least-squares polynomial 
with weight function w(x) = 1/Y1-x2 are too complicated in this case. Instead we will illustrate the 
process of economization of polynomials. Beginning with 

sinx =x _!x3 +_!_x5 

6 120 

we replace the powers of x by their equivalents in terms of Chebyshev polynomials, using Problem 
21.45. 

The coefficients here are not exactly the ak of Problem 21.46 since higher powers of x from the sine 
series would make further contributions to the T1 , T3 , and T5 terms. But those contributions would be 
relatively small, particularly for the early Tk terms. For example, the x 5 term has altered the ~ term by 
less than 1 percent, and the x7 term would alter it by less than .01 percent. In contrast the x 5 term has 
altered the T3 term by about 6 percent, though x7 will contribute only about .02 percent more. This 
suggests that truncating our expansion will give us a close approximation to the least-squares cubic. 
Accordingly we take for our approximation 

sin x = 
169 

T - _2__ T =. 9974x - .1562x3 

192 1 128 3 

The accuracy of this approximation may be estimated by noting that we have made two "truncation 
errors," first by using only three terms of the power series for sinx and second in dropping T,. Both 
affect the fourth decimal place. Naturally, greater accuracy is available if we seek a least-squares 
polynomial of higher degree, but even the one we have has accuracy comparable to that of the 
fifth-degree Taylor polynomial with which we began. The errors of our present cubic and the Taylor 
cubic, obtained by dropping the x 5 term, are compared in Fig. 21-8. The Taylor cubic is superior near 
zero but the almost-equal-error property of the (almost) least-squares polynomial is evident and should 
be compared with T5(x). 

Fig. 21-8 

21.51. Prove that for m and n less than N, 

m-=Fn 

m=n-=FO 

m=n=O 

where xi= cos Ai =cos [(2i + l)n/2N], i = 0, 1, ... , N- 1. 
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From the trigonometric definition of the Chebyshev polynomials, we find directly 

N-1 N-1 1 N-1 

2: Tm(x1)Tn(x;)= 2: cosmA,cosnA1 =- 2: [cos(m+n)A1 +cos(m-n)AJ 
i=O i=O 2 i=O 

Since cos ai =(!sin !a)[Ll sin a(i-!)] both cosine sums may be telescoped. It is simpler, however, to 
note that except when m + n or m - n is zero each sum vanishes by symmetry, the angles A, being 
equally spaced between 0 and n. This already proves the result for m =I= n. If m = n =I= 0 the second sum 
contributes N /2, while if m = n = 0 both sums together total N. It should be noticed that the Chebyshev 
polynomials are orthogonal under summation as well as under integration. This is often a substantial 
advantage, since sums are far easier to compute than integrals of complicated functions, particularly 
when the factor Y1 - x 2 appears in the latter but not in the former. 

21.52. What choice of coefficients ak will minimize 

L [y(x;)- aaTa(x;)- · · ·- amTm(x;)]2 

X; 

where the X; are the arguments of the preceding problem? 

With proper identification it follows directly from Problems 21.7 and 21.8 that the orthogonal 
projection p = a0 To + · · · + am Tm determined by 

~ y(x,)Tk(x,) 
i 

provides the minimum. Using Problem 21.51 the coefficients are 

k= 1, ... , m 

For m = N- 1 we have the collocation polynomial for the N points (x,, y(x,)) and the minimum sum is 
zero. 

21.53. Find the least-squares line for y(t) = t2 over (0, 1) by the method of Problem 21.52. 

We have already found a line which minimizes the integral of Problem 21.46. To minimize the sum 
of Problem 21.52, choose t = (x + 1)/2 as before. Suppose we use onl_y two points, so that N = 2. These 
points will have to be x0 =cos n/4 = 1/v'z and x1 =cos 3n/4 = - 1/V2. Then 

and the line is given by p(x) =iTo+ H-; = i +h. This is the same line as before and using a larger N 
would reproduce it again. The explanation of this is simply that y itself can be represented in the form 
y = a0 To+ a1 Tt + a2 0_ and, since the Tk are orthogonal relative to both integration and summation, the 
least-squares line in either sense is also available by truncation. (See the last paragraph of Problem 
21.8.) 

21.54. Find least-squares lines for y(x) = x3 over ( -1, 1) by minimizing the sum of Problem 21.52. 

In this problem the line we get will depend somewhat upon the number of points we use. First take 
N = 2, which means that we use x0 = - x1 = 1/v'z as before. Then 

4 4 1 
al =xo+X1 =z 
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Choosing N = 3 we find x0 = v'312, X 1 = 0, and x 2 = - Vi12. This makes 

Taking the general case of N points, we have x1 = cos A; and 

1 N-1 

a a = - L cos3 A 1 = 0 
N i~O 

by the symmetry of the A 1 in the first and second quadrants. Also, 

2 N-
1 2 N-

1 (3 1 1 ) 
a1 =-N 2: cos4 A 1 =- 2: -+-cos2A1 +-cos4A, 

;~o N ;~o 8 2 8 

[CHAP. 21 

Since the A 1 are the angles ni2N, 3ni2N, ... , (2N- 1)ni2N, the doubled angles are niN, 
3n IN, ... , (2N- 1 )n IN and these are symmetrically spaced around the entire circle. The sum of the 
cos 2A1 is therefore zero. Except when N = 2, the sum of the cos 4A1 will also be zero so that a1 = t for 
N = 2. For N tending to infinity we thus have trivial convergence to the line p(x) = 3T114 = 3xl4. 

If we adopt the minimum integral approach, then we find 

1 JI x3 
a0 =- V 2 dx = 0 

n -1 1-x 

which leads to the same line. 
The present example may serve as further elementary illustration of the Problem 21.52 algorithm, 

but the result is more easily found and understood by noting that y = x 3 = ~ T1 + ! 0 and once again 
appealing to the corollary in Problem 21.8 to obtain 3T;I4 or 3xl4 by truncation. The truncation process 
fails for N = 2 since then the polynomials T0 , T1 , T2 , T3 are not orthogonal. (See Problem 21.51.) 

21.55. Find least-squares lines for y(x) = lxl over ( -1, 1) by minimizing the sum of Problem 21.52. 

With N = 2 we quickly find a0 = 1lv'2, a1 = 0. With N = 3 the results a0 = 1lv'3, a 1 = 0 are just as 
easy. For arbitrary N, 

1 N-1 2 I 

a0 =- L lcosA11 =- L cosA, 
N ;~o N ;~o 

where I is (N- 3)12 for odd N, and (N- 2)12 for even N. This trigonometric sum may be evaluated by 
telescoping or otherwise, with the result 

that 

sin [n(/ + 1)1N] 
aa N sin (ni2N) 

It is a further consequence of symmetry that a 1 = 0 for all N. For N tending to infinity it now follows 

. . 1 2 
hm a a = hm N sin n I2N n 

As more and more points are used, the limiting line is approached. Turning to the minimum integral 
approach, we of course anticipate this same line. The computation produces 

a a=..!. f1 _lx_l - dx = 3. 
n -IV1-x2 n 

2 f1 
x lxl 

al =;:;: -I V1 - xz dx = 0 

and so we are not disappointed. The limiting line is the solid line in Fig. 21-9. 

21.56. Apply the method of the previous problems to the experimentally produced curve of Fig. 
21-5. 
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-1 

Fig. 21-9 

For such a function, of unknown analytic character, any of our methods must involve discretization 
at some point. We have already chosen one discrete set of values of the function for use in Simpson's 
rule, thus maintaining at least in spirit the idea of minimizing an integral. We could have used the same 
equidistant set of arguments and minimized a sum. With the idea of obtaining a more nearly 
equal-ripple error, however, we now choose the arguments X;= cos A;= 2t;- 1 instead. With 11 points, 
the number used earlier, the arguments, X;= cos A;= cos [(2i + 1)n/22] and corresponding t; as well as J; 
values read from the curve are as follows: 

X; .99 .91 .75 .54 .28 .00 -.28 -.54 -.75 -.91 -.99 

f; 1.00 .96 .88 .77 .64 .50 .36 .23 .12 .04 .00 

J; .36 .33 .28 .24 .21 .25 .20 .12 .17 .13 .10 

The coefficients become 

making the line p (x) = . 22 + .llx = . 22t + .11 which is almost indistinguishable from the earlier result. 
The data inaccuracies have not warranted the extra sophistication. 

Supplementary Problems 

21.57. The average scores reported by golfers of various handicaps on a par-four hole were as follows: 

Handicap 6 8 10 12 14 16 18 20 22 24 

Average 4.6 4.8 4.6 4.9 5.0 5.4 5.1 5.5 5.6 6.0 

Find the least-squares line for this data. 

21.58. Use the least-squares line of the preceding problem to smooth the reported data. 

21.59. Estimate the rate at which the average score increases per unit handicap. 

21.60. Find the least-squares parabola for the data of Problem 21.57. Does it differ noticeably from the line just 
found? 

21.61. When the X; andy; are both subject to errors of about the same size, it has been argued that the sum of 
squares of perpendicular distances to a line should be minimized, rather than the sum of squares of 
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vertical distances. Show that this requires minimizing 

1 N 

S=-M2 L (y,-Mx,-B? 
1 + i~O 

Then find the normal equations and show that M is determined by a quadratic equation. 

[CHAP. 21 

21.62. Apply the method of the preceding problem to the data of Problem 21.57. Does the new line differ very 
much from the line found in that problem? 

21.63. Find the least-squares line for the three points (x 0 , y0 ), (x 1 , y1), and (x 2 , y2 ) by the method of Problem 
21.1. What is true of the signs of the three numbers y(x,)- y,? 

21.64. Show that for the data 

x, 2.2 2.7 3.5 4.1 

P, 65 60 53 50 

the introduction of y =log P and computation of the least-squares line for the (x,, y,) data pairs leads 
eventually toP= 91.9x-.43

• 

21.65. Find a function of type P = AeMx for the data 

x, 1 2 3 4 

P, 60 30 20 15 

21.66. Show that the least-squares parabola for seven points leads to the smoothing formula 

by following the procedures of Problems 21.12 and 21.13. 

21.67. Apply the preceding formula to smooth the center four y, values of Table 21.1. Compare with the 
correct roots and note whether or not this formula yields better results than the five-point formula. 

21.68. Use the seven-point parabola to derive the approximate differentiation formula 

21.69. Apply the preceding formula to estimate y'(x) for x =4, 5, 6, and 7 from they, values of Table 21.1. 
How do the results compare with those obtained by the five-point parabola? (See Problem 21.19.) 

21.70. The following are values of y(x) =x 2 with random errors of from -.10 to .10 added. (Errors were 
obtained by drawing cards from an ordinary pack with face cards removed, black meaning plus and red 
minus.) The correct values T, are also included. 

x, 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

y, .98 1.23 1.40 1.72 1.86 2.17 2.55 2.82 3.28 3.54 3.92 

T, 1.00 1.21 1.44 1.69 1.96 2.25 2.56 2.89 3.24 3.61 4.00 
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Apply the smoothing formulas of Problem 21.13 and 21.15. Compare the RMS errors of the original and 
smoothed values. 

21.71. Apply the differentiation formula of Problem 21.18, for the center seven arguments. Also apply the 
formula obtained from Stirling's polynomial (see Problem 21.19). Which produces better approxima
tions toy '(x) = 2x? Note that in this example the "true" function is actually a parabola, so that except 
for the random errors which were introduced we would have exact results. Has the least-squares 
parabola penetrated through the errors to any extent and produced information about the true y '(x )? 

21.72. What is the least-squares parabola for the data of Problem 21.70? Compare it with y(x) =x2
• 

21.73. Use the formulas of Problem 21.20 to estimate y'(x) near the ends of the data supply given in Problem 
21.70. 

21.74. Estimate y"(x) from your computed y'(x) values. 

21.75. The following are values of sinx with random errors of -.10 to .10 added. Find the least-squares 
parabola and use it to compute smoothed values. Also apply the method of Problem 21.13 which uses a 
different least-squares parabola for each point to smooth the data. Which works best? 

X 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 

sinx -.09 .13 .44 .57 .64 .82 .97 .98 1.04 

21.76. A simple and ancient smoothing procedure, which still finds use, is the method of moving averages. In 
this method each value y1 is replaced by the average of itself and nearby neighbors. For example, if two 
neighbors on each side are used, the formula is 

where p1 is the smoothed substitute for y1• Apply this to the data of the preceding problem. Devise a 
method for smoothing the end values for which two neighbors are not available on one side. 

21.77. Apply the method of moving averages, using only one neighbor on each side, to the data of Problem 
21.75. The formula for interior arguments will be 

Devise a formula for smoothing the end values. 

21.78. Apply the formula of the preceding problem to the values y(x) = x 3 below, obtaining the p 1 values listed. 

x, 0 1 2 3 4 5 6 7 

y =x~ 0 1 8 27 64 125 216 343 

p, 3 12 33 72 135 228 

Show that these p 1 values belong to a different cubic function. Apply the moving average formula to the 
p 1 values to obtain a second generation of smoothed values. Can you tell what happens as successive 
generations are computed, assuming that the supply of y1 values is augmented at both ends indefinitely? 
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21.79. Apply the method of moving averages to smooth the oscillating data below. 

I :: I : 
2 3 4 6 7 8 

0 -1 0 0 -1 0 

What happens if higher generations of smooth values are computed endlessly? It is easy to see that 
excessive smoothing can entirely alter the character of a data supply. 

21.80. Use orthogonal polynomials to find the same least-squares line found in Problem 21.2. 

21.81. Use orthogonal polynomials to find the same least-squares parabola found in Problem 21.10. 

21.82. Use orthogonal polynomials to find the least-squares polynomial of degree four for the square root data 
of Problem 21.14. Use this single polynomial to smooth the data. Compute the RMS error of the 
smoothed values. Compare with those given in Problem 21.17. 

21.83. The following are values of ex with random errors of from -.10 to .10 added. Use orthogonal 
polynomials to find the least-squares cubic. How accurate is this cubic? 

X 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

y .92 1.15 1.22 1.44 1.44 1.66 1.79 1.98 2.32 2.51 2.81 

21.84. The following are values of the Bessel function l 0(x) with random errors of from -.010 to .010 added. 
Use orthogonal polynomials to find a least-squares approximation. Choose the degree you feel 
appropriate. Then smooth the data and compare with the correct results which are also provided. 

X 0 1 2 3 4 5 6 7 8 9 10 

y(x) .994 .761 .225 -.253 -.400 -.170 .161 .301 .177 -.094 -.240 

Correct 1.00 .765 .224 -.260 -.397 -.178 .151 .300 .172 -.090 -.246 

21.85. Find the least -squares line for y (x) = x2 on the interval ( -1, 1). 

21.86. Find the least-squares line for y (x) = x3 on the interval ( -1, 1). 

21.87. Find the least-squares parabola for y(x) = x3 on the interval ( -1, 1). 

21.88. Find approximately the least-squares parabola for the function in Fig. 21-10, evaluating the integrals by 
Simpson's rule. This curve should be imagined to be an experimental result which theory claims ought to 
have been a parabola. 

-1 1 

Fig. 21-10 
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21.89. Show that the Chebyshev series for arcsin x is 

. 4( 1 1 1 ) 
arcsm X = ~ ~ + g 7; + lS 7:, + 49 T; + · · · 

by evaluating the coefficient integrals directly. Truncate after I; to obtain the least-squares cubic for this 
function. Compute the actual error of this cubic and compare with the first omitted term (the r, term). 
Notice the (almost) equal-ripple behavior of the error. 

21.90. Find the least-squares line for y(x) = x 2 on the interval ( -1, 1) with weight function w(x) = 1/Y1- x 2
• 

Compare this line with the one found in Problem 21.85. Which one has the equal-ripple property? 

21.91. Find the least-squares parabola for y(x) = x 3 on the interval ( -1, 1) with weight function w(x) = 
1/Y1- x 2

• Compare this with the parabola found in Problem 21.87. 

21.92. Represent y(x) = e~x by terms of its power series through x7
• The error will be in the fifth decimal place 

for x near one. Rearrange the sum into Chebyshev polynomials. How many terms can then be dropped 
without seriously affecting the fourth decimal place~ Rearrange the truncated polynomial into standard 
form. (This is another example of economization of a polynomial.) 

21.93. Show that for y(x)=T;,(x)=cos(narccosx)=cosnA it follows thaty'(x)=(nsinnA)/(sinA). Then 
show that (1- x 2)y"- xy' + n2y = 0, which is the classical differential equation of the Chebyshev 
polynomials. 

21.94. Show that Sn(x) =sin (n arccos x) also satisfies the differential equation of Problem 21.93. 

21.95. Let Un(x) = S"(x)/Y1- x 2 and prove the recursion Un+ 1(x) = 2xUn(x)- Un~t(x). 

21.96. Verify that U0(x) = 0, U1(x) = 1 and then apply the recursion to verify Uix) = 2x, U3(x) = 4x2 -1, 
U4(x) = 8x3

- 4x, U5(x) = 16x4
- 12x2 + 1, U6(x) = 32x 5

- 32x3 + 6x, U?(x) = 64x6
- 80x4 + 24x 2

- 1. 

21.97. Prove Tm+n(x) + Tm~n(x) = 2Tm(x)T;,(x) and then put m = n to obtain 

I;n(x) = 2T~(x)- 1 

21.98. Use the result of Problem 21.97 to find T8 , ~6 , and 7;2 • 

21.99. Prove~ T~ = 2Tn~t + -
1

- T~~z and then deduce 
n n -2 

T;n+! = 2(2n + 1)(7;n + Tzn~2 + · · · + 7;) + 1 T;n = 2(2n)(Tzn~I + Tzn~3 + · · · + ~) 

21.100. Prove Tzn+! = x(27;"- 2Tzn~z + 2Tzn~4 + · · ·±To). 

21.101. Economize the result In (1 + x) = x - h 2 + !x 3
- h 4 + h 5 by rearranging into Chebyshev polynomials 

and then retaining only the quadratic terms. Show that the final result In (1 + x) = ~ + -\tx - ~x 2 has 
about the same accuracy as the fourth-degree part of the original approximation. 

21.102.Economize the polynomial y(x)=1+x+~x2 +~x 3 +~x4, first representing it as a combination of 
Chebyshev polynomials, then truncating to two terms. Compare the result with 1 + x + h 2

, considering 
both as approximations to ex. Which is the better approximation? In what sense? 

21.103. Show that the change of argument x = 2t- 1, which converts the interval to (0, 1) in terms of t, also 
converts the Chebyshev polynomials into the following, which may be used instead of the classical 
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polynomials if the intervals (0, 1) is felt to be more convenient: 

T;(x) = 1 Ti(x) = 2t -1 T;(x) = 8t2
- 8t + 1 Tj(x) = 32t3

- 48t2 + 18t -1 etc. 

Also prove the recursion r:+ 1(t) = (4t- 2)T:(t)- r:_ 1(t). 

21.104. Prove f T0(x) dx = T,.(x), f T,.(x) dx = ~T2(x), and, for n > 1, 

J Tn(x) dx =! [Tn+l(x) _ Tn-l(x)] 
2 n+1 n-1 

21.105. Show that the same line found with N = 2 in Problem 21.53 also appears for arbitrary N. 

21.106. Use the method of Problem 21.52 to obtain a least-squares parabola for y(x) = x 3 over ( -1, 1) choosing 
N = 3. Show that the same result is obtained for arbitrary N and also by the method of minimizing the 
integral of Problem 21.91. 

21.107.Find the least-squares parabolas for y(x) = lxl over (-1, 1) and for arbitrary N. Also show that as N 
tends to infinity this parabola approaches the minimum integral parabola. 

21.108.Apply the method of Problem 21.52 to the experimental data of Fig. 21-10. Use the result to compute 
smoothed values of y(x) at x = - 1(.2)1. 

21.109. Smooth the following experimental data by fitting a least-squares polynomial of degree five: 

t 0 5 10 15 20 25 30 35 40 45 50 

y 0 .127 .216 .286 .344 .387 .415 .437 .451 .460 .466 

21.110. The following table gives the number y of students who made a grade of x on an examination. To use 
these results as a standard norm, smooth the y numbers twice, using the smoothing formula 

It is assumed that y = 0 for unlisted x values. 

X 100 95 90 85 80 75 70 65 60 55 50 45 

y 0 13 69 147 208 195 195 126 130 118 121 85 

X 40 35 30 25 20 15 10 5 0 

y 93 75 54 42 30 34 10 8 1 

21.111. Find the least-squares polynomial of degree two for the following data. Then obtain smoothed values. 

X .78 1.56 2.34 3.12 3.81 

y 2.50 1.20 1.12 2.25 4.28 



Chapter 22 

Min-Max Polynomial Approximation 

DISCRETE DATA 

The basic idea of min-max approximation by polynomials may be illustrated for the case of a 
discrete data supply X;, Y; where i = 1, ... , N. Let p(x) be a polynomial of degree n or less and let 
the amounts by which it misses our data points be hi = p (x;) - Yi· Let H be the largest of these 
"errors." The min-max polynomial is that particular p(x) for which H is smallest. Min-max 
approximation is also called Chebyshev approximation. The principal results are as follows: 

1. The existence and uniqueness of the min-max polynomial for any given value of n may be 
proved by the exchange method described below. The details will be provided for the case 
n = 1 only. 

2. The equal-error property is the identifying feature of a min-max polynomial. Calling this 
polynomial P(x), and the maximum error 

E =max IP(x;)- y(x;)l 

we shall prove that P(x) is the only polynomial for which P(x;)- y(x;) takes the extreme 
values ±E at least n + 2 times, with alternating sign. 

3. The exchange method is an algorithm for finding P(x) through its equal-error property. 
Choosing some initial subset of n + 2 arguments X;, an equal-error polynomial for these data 
points is found. If the maximum error of this polynomial over the subset chosen is also its 
overall maximum H, then it is P(x ). If not, some point of the subset is exchanged for an 
outside point and the process is repeated. Eventual convergence to P(x) will be proved. 

CONTINUOUS DATA 

For continuous data y(x) it is almost traditional to begin by recalling a classical theorem of 
analysis, known as the Weierstrass theorem, which states that for a continuous function y (x) on an 
interval (a, b) there will be a polynomial p(x) such that 

lp(x)- y(x)l ~ E 

in (a, b) for arbitrary positive E. In other words, there exists a polynomial which approximates y(x) 
uniformly to any required accuracy. We prove this theorem using Bernstein polynomials, which have 
the form 

where y (x) is a given function and 

Our proof of the Weierstrass theorem involves showing that lim Bn(x) = y(x) uniformly for n tending 
to infinity. The rate of convergence of the Bernstein polynomials to y (x) is often disappointing. 
Accurate uniform approximations are more often found in practice by min-max methods. 

The essential facts of min-max methods somewhat parallel those for the discrete case. 

1. The min-max approximation to y(x), among all polynomials of degree nor less, minimizes 
the max ip(x)- y(x)l for the given interval (a, b). 

2. It exists and is unique. 

275 
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3. It has an equal-error property, being the only such polynomial for which p(x)- y(x) takes 
extreme values of size E, with alternating sign, at n + 2 or more arguments in (a, b). Thus 
the min-max polynomial can be identified by its equal-error property. In simple examples it 
may be displayed exactly. An example is the min-max line when y"(x) > 0. Here 

b-a 
with M 

y(b)- y(a) 

and x2 determined by 

P(x) = Mx + B 

B = y(a) + y(x2) 
2 

y(b)- y(a) 

b-a 

(a+ x2)[y(b)- y(a )] 

2(b- a) 

The three extreme points are a, x 2 , and b. Ordinarily, however, the exact result is not 
within reach and an exchange method must be used to produce a polynomial which comes 
close to the equal-error behavior. 

4. Series of Chebyshev polynomials, when truncated, often yield approximations having almost 
equal-error behavior. Such approximations are therefore almost min-max. If not entirely 
adequate by themselves, they may be used as inputs to the exchange method which then 
may be expected to converge more rapidly than it would from a more arbitrary start. 

THE INFINITY NORM 
The underlying theme of this chapter is to minimize the norm 

IIY -pllx 
where y represents the given data and p the approximating polynomial. 

Solved Problems 

DISCRETE DATA, THE MIN-MAX LINE 

22.1. Show that for any three points (x;, Y;) with the arguments X; distinct, there is exactly one 
straight line which misses all three points by equal amounts and with alternating signs. This is 
the equal-error line or Chebyshev line. 

Let y(x) = Mx + B represent an arbitrary line and let h, = y(x,)- Y; = y,- Y; be the "errors" at the 
three data points. An easy calculation shows that, since y, = Mx, + B, for any straight line at all 

(x3- Xz)YJ- (x3- x!)Yz + (xz- x1)y3 = 0 

Defining {31 = x3- x2 , {3 2 = x3 - x~> {33 = x2 - x1 , the above equation becomes 

f3,y,- f3zYz + {33y3 = 0 

We may take it that x1 <x2 <x3 so that the three f3's are positive numbers. We are to prove that there is 
one line for which 

hz= -h 

making the three errors of equal size and alternating sign. (This is what will be meant by an 
"equal-error" line.) Now, if a line having this property does exist, then 

Y1 = Yt + h Yz = Yz- h 

and substituting above, 

Solving for h, 
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{31 ~- {32 y2 + {33 Yc, 
{31 + f3z + {33 

h= 

This already proves that at most one equal-error line can exist and that it must pass through the three 
points (x 1 , ~+h), (x2 , Y2 - h), (x 3, Y3 +h) for the value h just computed. Though normally one asks a 
line to pass through only two designated points, it is easy to see that in this special case the three points 
do fall on a line. The slopes of P1P2 and P2P3 (where P1, P2, ~ are the three points taken from left to 
right) are 

and 

and using our earlier equations these are easily proved to be the same. So there is exactly one 
equal-error, or Chebyshev, line. 

22.2. Find the equal-error line for the data points (0, 0), (1, 0), and (2. 1). 

First we find {3 1 = 2-1 = 1, {32 = 2- 0 = 2, {33 = 1- 0 = 1, and then compute 

h =- (1)(0)- (2)(0) + (1)(1) 
1+2+1 4 

The line passes through (0, -~), (1, ~), and (2, %) and so has the equation y(x) = !x- ~- The line and 
points appear in Fig. 22-1. 

y 

Fig. 22-1 

22.3. Show that the equal-error line is also the min-max line for the three points (x;, Y;). 

The errors of the equal-error line are h, -h, h. Let hu h2 , h3 be the errors for any other line. Also 
let H be the largest of lhd, lh2 1, lh3 1. Then using our earlier formulas, 

h = _ {31 Y,- f3z Yz + {33 Y3 
f3! + f3z + {33 

f3l(Yl- h1)- f3z(Yz- hz) + f33(y3- h3) 
fJ1 + f3z + {33 

where y1, y2 , y3 here refer to the "any other line." This rearranges to 

(f31Y1- f3zYz + f33y3)- (f31h1- f3zhz + f33h3) 
f31 + f3z + {33 

h= 

and the first term being zero we have a relationship between the h of the equal-error line and the 
h1, hz, h3 of the other line, 

h 
{3 1h1- f3zhz + f33h3 

f3! + f3z + {33 

Since the f3's are positive, the right side of this equation will surely be increased if we replace h~> h2 , h3 
by H, -H, H, respectively. Thus lhl -;;2 H, and the maximum error size of the Chebyshev line, which is 
lhl, comes out no greater than that of any other line. 
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22.4. Show that no other line can have the same ;maximum error as the Chebyshev line, so that the 
min-max line is unique. 

Suppose equality holds in our last result, lhl =H. This means that the substitution of H, -H, H 
which produced this result has not actually increased the size of {3 1h1 - {3 2h2 + {33h3 • But this can be true 
only if h1 , h2 , h3 themselves are all of equal size Hand alternating sign, and these are the features which 
led us to the three points through which the Chebyshev line passes. Surely these are not two straight 
lines through these three points. This proves that the equality lhl = H identifies the Chebyshev line. We 
have now proved that the equal-error line and the min-max line for three points are the same. 

22.5. Illustrate the exchange method by applying it to the following data: 

0 2 6 

0 0 2 

We will prove shortly that there exists a unique min-max line for N points. The proof uses the 
exchange method, which is also an excellent algorithm for computing this line, and so this method will 
first be illustrated. It involves four steps. 

Step 1. Choose any three of the data points. (A set of three data points will be called a triple. This 
step simply selects an initial triple. It will be changed in Step 4.) 

Step 2. Find the Chebyshev line for this triple. The value h for this line will of course be computed 
in the process. 

Step 3. Compute the errors at all data points for the Chebyshev line just found. Call the largest of 
these h; values (in absolute value) H. If lh I = H the search is over. The Chebyshev line for the triple in 
hand is the min-max line for the entire set of N points. (We shall prove this shortly.) If lhl < H proceed 
to Step 4. 

Step 4. This is the exchange step. Choose a new triple as follows. Add to the old triple a data point 
at which the greatest error size H occurs. Then discard one of the former points, in such a way that the 
remaining three have errors of alternating sign. (A moment's practice will show that this is always 
possible.) Return, with the new triple, to Steps 2 and 3. 

To illustrate, suppose we choose for the initial triple 

(0, 0) (1, 0) (2, 1) 

consisting of the first three points. This is the triple of Problem 22.2, for which we have already found 
the Chebyshev line to bey= ~x-! with h = -~. This completes Steps 1 and 2. Proceeding to Step 3 we 
find the errors at all five data points to be -t t -t t ~.This makes H = h4 = ~. This Chebyshev line is 
an equal-error line on its own triple but it misses the fourth data point by a larger amount. (See the 
dashed line in Fig. 22-2.) 

y 

Fig. 22-2 
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Moving therefore to Step 4 we now include the fourth point and eliminate the first to obtain the 
new triple 

(1, 0) (2, 1) (6, 2) 

on which the errors of the old Chebyshev line do have the required alternation of sign (t -t ~). With 
this triple we return to Step 2 and find a new Chebyshev line. The computation begins with 

/3 1 = 6 - 2 = 4 /3 2 = 6 - 1 = 5 

h =- (4)(0)- (5)(1) + (1)(2) 
4+5+1 

{33 = 2-1 = 1 

3 

10 

so that the line must pass through the three points (1, -rlJ,), (2, fcJ), and (6, N). This line is found to be 
y = ~x- fa. Repeating Step 3 we find the five errors -ro, -rll, --rli, -rll, --rli; and since H = -rlJ = lhl, the job 
is done. 

The Chebyshev line for the new triple is the min-max line for the entire point set. Its maximum 
error is fa, The new line is shown solid in Fig. 22-2. Notice that the lh I value of our new line ( -rlJ) is larger 
than that of the first line (~). But over the entire point set the maximum error has been reduced from ~ 
to fcJ, and it is the min-max error. This will now be proved for the general case. 

22.6. Prove that the condition [hI = H in Step 3 of the exchange method will be satisfied eventually, 
so that the method will stop. (Conceivably we could be making exchanges forever.) 

Recall that after any particular exchange the old Chebyshev line has errors of size lhl, lhl, H on the 
new triple. Also recall that lh I < H (or we would have stopped) and that the three errors alternate in 
sign. The Chebyshev line for this new triple is then found. Call its errors on this new triple h*, -h*, h*. 
Returning to the formula for h in Problem 22.3, with the old Chebyshev line playing the role of "any 
other line," we have 

h* = f3tht- f3zhz + f33h3 
f3t + f3z+ {33 

where h1 , h2 , h3 are the numbers h, h, H with alternating sign. Because of this alternation of sign all 
three terms in the numerator of this fraction have the same sign, so that 

lh*l = f3t lhl + f3zlhl + f33H 
f3t +f3z+f33 

if we assume that the error H is at the third point, just to be specific. (It really makes no difference in 
which position it goes.) In any event, lh*l > lhl because H > lhl. The new Chebyshev line has a greater 
error size on its triple than the old one had on its triple. This result now gives excellent service. If it 
comes as a surprise, look at it this way. The old line gave excellent service (h =~in our example) on its 
own triple, but poor service (H = ~) elsewhere. The new line gave good service (h = -rlJ) on its own triple, 
and just as good service on the other points also. 

We can now prove that the exchange method must come to a stop sometime. For there are only so 
many triples. And no triple is ever chosen twice, since as just proved the h values increase steadily. At 
some stage the condition lhl = H will be satisfied. 

22.7. Prove that the last Chebyshev line computed in the exchange method is the min-max line for 
the entire set of N points. 

Let h be the equal-error value of the last Chebyshev line on its own triple. Then the maximum error 
size on the entire point set isH= lhl, or we would have proceeded by another exchange to still another 
triple and another line. Let h1 , h2 , ••• , hN be the errors for any other line. Then lhl <max lh;l where h; 
is restricted to the three points of the last triple, because no line outperforms a Chebyshev line on its 
own triple. But then certainly lhl <max lh;l for h; unrestricted, for including the rest of theN points can 
only make the right side even bigger. Thus H = lhl <max lh;l and the maximum error of the last 
Chebyshev line is the smallest maximum error of all. In summary, the min-max line for the set of N 
points is an equal-error line on a properly chosen triple. 
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22.8. Apply the exchange method to find the min-max line for the following data: 

X; 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Y; 0 1 1 2 1 3 2 2 3 5 3 4 5 4 5 6 

X; 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Y; 6 5 7 6 8 7 7 8 7 9 11 10 12 11 13 

The number of available triples is C(31, 3) = 4495, so that finding the correct one might seem 
comparable to needle-hunting in haystacks. However, the exchange method wastes very little time on 
inconsequential triples. Beginning with the very poor triple at x = (0, 1, 2) only three exchanges are 
necessary to produce the min-max line y(x) = .38x- .29 which has coefficients rounded off to two 
places. The successive triples with h and H values were as follows: 

Triple at x = (0, 1, 2) (0, 1, 24) (1, 24, 30) (9, 24, 30) 

h .250 .354 -1.759 -1.857 

H 5.250 3.896 2.448 1.857 

Note that in this example no unwanted point is ever brought into the triple. Three points are needed, 
three exchanges suffice. Note also the steady increase of lhl, as forecast. The 31 points, the min-max 
line, and the final triple (dashed vertical lines show the equal errors) appear in Fig. 22-3. 

y 

15 

10 15 20 25 30 

Fig. 22-3 

DISCRETE DATA, THE MIN-MAX POLYNOMIAL 

22.9. Extend the exchange method to find the min-max parabola for the data below. 

I :: I 
-2 -1 0 2 

2 0 2 

The data are of course drawn from the function y = lxl but this simple function will serve to 
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illustrate how all the essential ideas of the exchange method carry over from the straight-line problems 
just treated to the discovery of a min-max polynomial. The proofs of the existence, uniqueness, and 
equal-error properties of such a polynomial are extensions of our proofs for the min-max line and will 
not be given. The algorithm now begins with the choice of an "initial quadruple" and we take the first 
four points, at x = -2, -1, 0, 1. For this quadruple we seek an equal-error parabola, say 

p 1(x)=a+bx+cx 2 

This means that we require p(x1)- y1 = ±h alternately, or 

a-2b+4c-2= h 

a- b + c -1= -h 

a -0= h 

a+ b + c -1 = -h 

Solving these four equations, we find a= t b = 0, c = t h =~so that p 1(x) = i + h 2
• This completes the 

equivalent of Steps 1 and 2, and we turn to Step 3 and compute the errors of our parabola at all five data 
points. They are;\, -i, ;\, -;\, i so that the maximum error on the entire set (H = i) equals the maximum 
on our quadruple (lhl = n. The algorithm is ended and our first parabola is the min-max parabola. It is 
shown in Fig. 22-4. 

Fig. 22-4 

22.10. Find the min-max parabola for the seven points y = lxl, x = -3(1)3. 

This adds two more points at the ends of our previous data supply. Suppose we choose the same 
initial quadruple as before. Then we again have the equal-error parabola p 1(x) of the preceding 
problem. Its errors at the new data points are i so that now H = i while lhl = ~. Accordingly we 
introduce one of the new points into the quadruple and abandon x = -2. On the new quadruple the old 
parabola has the errors -t t -t i which do alternate in sign. Having made the exchange, a new 
equal-error parabola 

Pz(X) = az + b2X + C2X
2 

must be found. Proceeding as in the previous problem we soon obtain the equal error h 2 = -~ and the 
parabola p 2(x) = ~(1 + x2

). Its errors at the seven data points are L -L -t, t, -L -L ~ so that 
H = lh I = ~ and the algorithm stops. The parabola p 2(x) is the min-max parabola. The fact that all 
errors are of uniform size is a bonus, not characteristic of min-max polynomials generally, as the 
straight-line problems just solved show. 

CONTINUOUS DATA, THE WEIERSTRASS THEOREM 

22.11. Prove that ktP~1(k- nx) = 0 where p~1 = (~)xk(1- x t-k. 
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The binomial theorem for integers n and k, 

is an identity in p and q. Differentiating relative top brings 

Multiplying by p and then setting p = x, q = 1 - x, this becomes nx = t kp~xJ. Using the same p and q 
in the binomial theorem itself shows that 1 = ~ p~xJ and so finally 

k~O 

2: p~x,!(k- nx) =nx- nx = 0 
k~o 

n 

22.12. Prove also that 2: p~xJ(k -nxf=nx(1-x). 
k=O 

A second differentiation relative top brings 

n(n -1)(p + q)"-2 = ± (n)k(k- 1)pk-2qn-k 
k~O k 

Multiplying by p 2 and then setting p = x, q = 1 - x, this becomes 

n(n- 1)x2 = 2: k(k- 1)p~x,} 
k=O 

from which we find ± k2p~x] = n(n- 1)x2 + ± kp~x] = n(n- 1)x2 + nx 
k~ k~ 

Finally we compute 

L P~x](k- nx )z = L kzp~xJ- 2nx L kp~xJ + nzxz L P~x] 
k~O 

= n(n- 1)x2 + nx- 2nx(nx) + n 2x2 = nx(1- x) 

22.13. Prove that if d > 0 and 0 ~ x ~ 1, then 

"I (x)<x(1-x) 
LJ Pnk = nd2 

where I; 1 is the sum over those integers k for which I (kIn) -xI ~ d. (This is a special case of 
the famous Chebyshev inequality.) 

Breaking the sum of the preceding problem into two parts 

nx(1-x) = L 1 

p~xJ(k- nx? + 2:" p~x](k- nx? 

where ~~~includes those integers k omitted in~~. But then 

nx(1-x)~L
1 

p~x](k -nx? 

the first of these steps being possible since ~, is nonnegative and the second because in ~ 1 we find 
lk- nxl ~ nd. Dividing througl> by n2d2

, we have the required result. 

22.14. Derive these estimates for I; 1 and I;". 

"I (x)<_1_ 
LJ Pnk = 4nd2 

""p(x) 2:1- _1_ 
LJ nk- 4nd2 
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The function x(1- x) takes its maximum at x = 1 and so 0 ~ x(1- x) ~ ~ for 0 ~ x ~ 1. The result for 
~·is thus an immediate consequence of the preceding problem. But then~~~= 1- ~· ~ 1- (1/4nd2

). 

22.15. Prove that if f(x) is continuous for 0 ~ x ~ 1, then lim f p~/]f(k/n) = f(x) uniformly as n 
tends to infinity. k=O 

This will prove the Weierstrass theorem, by exhibiting a sequence of polynomials 

which converges uniformly to f(x). These polynomials are called the Bernstein polynomials for f(x). 
The proof begins with the choice of an arbitrary positive number E. Then for ix'- xi< d, 

E 
if(x')- f(x)i <2 

and dis independent of x by the uniform continuity of f(x). Then with M denoting the maximum of 
if(x)l, we have 

iBn(x)- f(x)i = ll;p~J[t(~)- f(x)] I 
~ 2:' p~J It(~) -f(x) I + 2:" p~J It(~) - f(x) I 

"'' 1 "'II ~2M LJ p~J +2E LJ p~J 

with k/n in the~~~ part playing the role of x'. The definition of~~~ guarantees ix' -xi <d. Then 

for n sufficiently large. This is the required result. Another interval than (0, 1) can be accommodated by 
a simple change of argument. 

22.16. Show that in the case of f(x) = x2
, Bn(x) = x 2 + x(l- x )In so that Bernstein polynomials are 

not the best approximations of given degree to f(x ). [Surely the best quadratic approximation 
to f(x) = x2 is x2 itself.] 

Since the sum ~ ep~J was found in Problem 22.2, 

as required. The uniform convergence for n tending to infinity is apparent, but clearly Bn(x) does not 
duplicate x 2

• We now turn to a better class of uniform approximation polynomials. 

CONTINUOUS DATA, THE CHEBYSHEV THEORY 

22.17. Prove that if y (x) is continuous for a ~ x ~ b, then there is a polynomial P(x) of degree n or 
less such that max IP(x)- y(x )I on the interval (a, b) is a minimum. In other words, no other 
polynomial of this type produces a smaller maximum. 

Let p(x) = a0 + a1x + · · · + anx" by any polynomial of degree nor less. Then 

M(a) =max ip(x)- y(x)i 
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depends on the polynomial p(x) chosen, that is, it depends upon the coefficient set (a 0 , a1, ... , an) 
which we shall call ii as indicated. Since M(ii) is a continuous function of ii and nonnegative, it has a 
greatest lower bound. Call this bound L. What has to be proved is that for some particular coefficient set 
A, the coefficients of P(x), the lower bound L is actually attained, that is, M(A) = L. By way of 
contrast, the function f(t) = l/t for positive t has greatest lower bound zero, but there is no argument t 
for whichf(t) actually attains this bound. The infinite range oft is of course the factor which allows this 
situation to occur. In our problem the coefficient set ii also has unlimited range, but we now show that 
M(A) = L never£heless. To begin, let a;= eb; for i = 0, 1, ... , n in such a way that L: b? = 1. We may 
also write ii = eb. Consider a second function 

m(b) =max lbo + b1x + · · · + bnx"l 

where max refers as usual to the maximum of the polynomial on the interval (a, b). This is a continuous 
function on the unit sphere L: b? = 1. On such a set (closed and bounded) a continuous function does 
assume its minimum value. Call this minimum ll· Plainly ll ~ 0. But the zero value is impossible since 
only p(x) = 0 can produce this minimum and the condition on the b; temporarily excludes this 
polynomial. Thus ll > 0. But then 

m(ii) =max lao+ a1x + · · · + anx"l =max lp(x)l = em(b) ~ell 

Now returning to M(ii) =max lp(x)- y(x)l, and using the fact that the absolute value of a difference 
exceeds the difference of absolute values, we find 

M(ii) ~ m(ii)- max ly(x)l 

~ell- max ly(x)l 

If we choose e>(L+l+maxly(x)l)lll=R, then at once M(ii)~L+l. Recalling that Lis the 
greatest lower bound of M(ii), we see that M(ii) is relatively large for e > R and that its greatest lower 
bound under the constraint e ~ R will be this same number L. But this constraint is equivalent to 
L: a?~ R, so that now it is again a matter of a continuous function M(ii) on a closed and bounded set (a 
solid sphere, or ball). On such a set the greatest lower bound is actually assumed, say at ii =A. Thus 
M(A) is L, and P(x) is a min-max polynomial. 

22.18. Let P(x) be a min-max polynomial approximation to y(x) on the interval (a, b), among all 
polynomials of degree n or less. Let E =max iy(x)- P(x)i, and assume y(x) is not itself a 
polynomial of degree n or less, so that E > 0. Show that there must be at least one argument 
for which y(x)- P(x) = E, and similarly for -E. [We continue to assume y(x) continuous.] 

Since y(x)- P(x) is continuous for a ~x ~ b, it must attain either ±E somewhere. We are to prove 

Fig. 22-5 
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that it must achieve both. Suppose that it did not equal E anywhere in (a, b). Then 

max [y(x)- P(x)] =E-d 

where d is positive, and so - E :2i y (x) - P(x) :2i E - d 

But this can be written as 1 [ 1 ] 1 -E+-d:::::y(x)- P(x)--d :2iE--d 
2 - 2 2 

285 

which flatly claims that P(x)- !d approximates y(x) with a maximum error of E- ~d. This contradicts 
the original assumption that P(x) itself is a min-max polynomial, with maximum error of E. Thus 
y(x)- P(x) must equal E somewhere in (a, b). A very similar proof shows it must also equal -E. 
Figure 22.5 illustrates the simple idea of this proof. The error y(x)- P(x) for the min-max polynomial 
cannot behave as shown solid, because raising the curve by !d then brings a new error curve (shown 
dashed) with a smaller maximum absolute value of E- ~d, and this is a contradiction. 

22.19. Continuing the previous problem, show that, for n = 1, approximation by linear polynomials, 
there must be a third point at which the error ly(x)- P(x)l of a min-max P(x) assumes its 
maximum value E. 

Let y(x)- P(x) = E(x) and divide (a, b) into subintervals small enough so that for x 1 , x 2 within any 
subinterval, 

Since E(x) is continuous for a :2ix :2i b, this can surely be done. In one subinterval, call it J,, we know 
the error reaches E, say at x = x+. It follows that throughout this subinterval, 

IE(x)- E(x+)l = IE(x)- El :2i ~E 

making E(x)~!E. Similarly, in one subinterval, call it /2 , we find E(x_)=-E, and therefore 
IE(x)l :2i -!E. These two subintervals cannot therefore be adjacent and so we can choose a point u, 
between them. Suppose that / 1 is to the left of 12 • (The argument is almost identical for the reverse 
situation.) Then u, -x has the same sign as E(x) in each of the two subintervals discussed. Let 
R =max lu 1 -xl in (a, b). 

Now suppose that there is no third point at which the error is ±E. Then in all but the two 
subintervals just discussed we must have 

max IE(x)l < E 

and since there are finitely many subintervals, 

max [max IE(x)l] = E* < E 

Naturally E* ~ !E since these subintervals extend to the endpoints of / 1 and /2 where IE(x)l ~~E. 
Consider the following alteration of P(x), still a linear polynomial: 

P*(x) = P(x) + E(u, -x) 

If we choose E small enough so that ER < E- E* :2i ~E, then P*(x) becomes a better approximation 
than P(x). For, 

ly(x)- P*(x) = IE(x)- E(u,- x)l 

so that in / 1 the error is reduced but is still positive while in /2 it is increased but remains negative; in 
both subintervals the error size has been reduced. Elsewhere, though the error size may grow, it cannot 
exceed E* + ER < E, and so P*(x) has a smaller maximum error than P(x). This contradiction shows 
that a third point with error ±E must exist. Figure 22-6 illustrates the simple idea behind this proof. The 
error curve E(x) cannot behave like the solid curve (only two ±E points) because adding the linear 
correction term E(u1 - x) to P(x) then diminishes the error by this same amount, leading to a new error 
curve (shown dashed) with smaller maximum absolute value. 



286 MIN-MAX POLYNOMIAL APPROXIMATION [CHAP. 22 

Fig. 22-6 

22.20. Show that for the P(x) of the previous problem there must be three points at which errors of 
size E and with alternating sign occur. 

The proof of the previous problem is already sufficient. If, for example, the signs were +, +, -, 
then choosing u 1 between the adjacent + and - our P*(x) is again better than P(x). The pattern 
+, -, - is covered by exactly the same remark. Only the alternation of signs can avoid the 
contradiction. 

22.21. Show that in the general case of the min-max polynomial of degree n or less, there must be 
n + 2 points of maximum error size with alternating sign. 

The proof is illustrated by treating the case n = 2. Let P(x) be a min-max polynomial of degree two 
or less. By Problem 22.18 it must have at least two points of maximum error. The argument of Problems 
22.19 and 22.20, with P(x) now quadratic instead of linear but with no other changes, then shows that a 
third such point must exist and signs must alternate, say +, -, + just to be definite. Now suppose that 
no fourth position of maximum error occurs. We repeat the argument of Problem 22.19, choosing two 
points u1 and u2 between the subintervals /1 , / 2 , and /3 in which the errors ±E occur, and using the 
correction term E(u 1 - x)(u2 -- x), which agrees in sign with E(x) in these subintervals. No other 
changes are necessary. The quadratic P*(x) will have a smaller maximum error than P(x), and this 
contradiction proves that the fourth ±E point must exist. The alternation of sign is established by the 
same argument used in Problem 22.20, and the extension to higher values of n is entirely similar. 

22.22. Prove that there is just one min-max polynomial for each n. 

Suppose there were two, P1(x) and P2(x). Then 

-E ~y(x)- P1(x) ~ E 

Let P3(x) = 1(P1 + P2). Then 

-E ~y(x)- Pz(x) ~ E 

-E ~y(x)- P,(x) ~ E 

and P3 is also a min-max polynomial. By Problem 22.21 there must be a sequence of n + 2 points at 
which y(x)- P3(x) is alternately ±E. Let P3(x+) =E. Then at x+ we have y- P3 = E, or 

(y - P1) + (y - P2) = 2E 

Since neither term on the left can exceed E, each must equal E. Thus P1(x+) = P2(L). Similarly 
P1(x_) = P2(x_). The polynomials P1 and P2 therefore coincide at then+ 2 points and so are identical. 
This proves the uniqueness of the min-max polynomial for each n. 

22.23. Prove that a polynomial p(x) of degree n or less, for which the error y(x)- p(x) takes 
alternate extreme values of ±e on a set of n + 2 points, must be the min-max polynomial. 
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This will show that only the min-max polynomial can have this equal-error feature, and it is useful 
in finding and identifying such polynomials. We have 

max ly(x)- p(x)l = e ~ E =max ly(x)- P(x)l 

P(x) being the unique min-max polynomial. Suppose e >E. Then since 

P-p=(y-p)+(P-y) 

we see that, at the n + 2 extreme points of y - p, the quantities P- p and y - p have the same sign. 
(The first term on the right equals eat these points and so dominates the second.) But the sign of y- p 
alternates on this set, so the sign of P- p does likewise. This is n + 1 alternations in all and means n + 1 
zeros for P- p. Since P- p is of degree n or less it must be identically zero, making p = P and E =e. 
This contradicts our supposition of e > E and leaves us with the only alternative, namely e =E. The 
polynomial p(x) is thus the (unique) min-max polynomial P(x). 

CONTINUOUS DATA, EXAMPLES OF MIN-MAX POLYNOMIALS 

22.24. Show that on the interval ( -1, 1) the min-max polynomial of degree nor less for y(x) = xn+I 

can be found by expressing xn+l as a sum of Chebyshev polynomials and dropping the 
Tn+l (x) term. 

Let 

Then the error is 

E(x) =x"+'- p(x) = a,.+ 1T,.+ 1(x) 

and we see that this error has alternate extremes of ±a,.+1 at then+ 2 points where T,.+, = ±1. These 
points are xk =cos [kn/(n + 1)], with k = 0, 1, ... , n + 1. Comparing coefficients of x"+' on both sides 
above, we also find that a,.+ 1 = T". [The leading coefficient of T,.+ 1(x) is 2". See Problems 21.42 and 
21.43.] The result of Problem 22.23 now applies and shows that p(x) is the min-max polynomial, with 
E = T". As illustrations the sums in Problem 21.45 may be truncated to obtain 

n=1 X
2 =!To Error =!i 

2 2 

n=2 x3 =~ T, 
4 

'T:J Error= 4 

n=3 
4 1 

X = S (3 To+ 4 7;) 
4 

Error=s 

n=4 
5 1 

X =16 (lOT,+ 5'T:J) 
Ts Error = 16 

and so on. Note that in each case the min-max polynomial (of degree n or less) is actually of degree 
n-1. 

22.25. Show that in any series of Chebyshev polynomials ~ ai T;(x) each partial sum Sn is the 
i=O 

min-max polynomial of degree nor less for the next sum Sn+t· [The interval is again taken to 
be ( -1, 1).] 

Just as in the previous problem, but with y(x) = S,.+ 1(x) and p(x) = S,.(x), we have 

E(x) = S,.+ 1(x)- S,.(x) = a,.+ 1 T,.+ 1(x) 

The result of Problem 22.23 again applies. Note also, however, that S,.~ 1 (x) may not be the min-max 
polynomial of degree n- 1 or _less, since a,. T, + a,.+ 1T,.+ 1 is not necessarily an equal-ripple function. (It 
was in the previous problem, however, since a, was zero.) 
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22.26. Use the result of Problem 22.24 to economize the polynomial y(x) = x - ~x 3 + 1 ~0x5 to a cubic 
polynomial, for the interval ( -1, 1). 

This was actually accomplished in Problem 21.50, but we may now view the result in a new light. 
Since 

the truncation of the T5 term leaves us with the min-max polynomial of degree four or less for y(x), 
namely 

169 5 
P(x) = 192 x- 128 (4x3- 3x) 

This is still only approximately the min-max polynomial of the same degree for sin x. Further 
truncation, of the 'T:J term, would not produce a min-max polynomial for y(x), not exactly anyway. 

22.27. Find the min-max polynomial of degree one or less, on the interval (a, b), for a function y(x) 
with y"(x) > 0. 

Let the polynomial be P(x) = Mx +B. We must find three points x 1 < x2 < x 3 in (a, b) for which 
E(x) = y(x)- P(x) attains its extreme values with alternate signs. This puts x2 in the interior of (a, b) 
and requires E'(x 2 ) to be zero, or y'(x2 ) = M. Since y" > 0, y' is strictly increasing and can equal M only 
once, which means that x2 can be the only interior extreme point. Thus x 1 =a and x 3 =b. Finally, by the 
equal-ripple property, 

Solving, we have 

y(a)- P(a) = -[y(x2 )- P(x2 )] = y(b)- P(b) 

M y(b)- y(a) 
b-a 

B=y(a)+y(xz) 
2 

(a +x2 )[y(b)- y(a)] 
2(b -a) 

with x 2 determined by y'(x2 ) = [y(b)- y(a)]l(b- a). 

22.28. Apply the previous problem to y(x) = -sinx on the interval (0, :rr/2). 

We find M = -2/:rr first; and then from y'(x2) = M, x2 =arccos (2/:rr). Finally, 

B = - ~ ) 1 - _i_ + ..!. arccos 3. 
2 :rr2 :rr :rr 

and from P(x) = Mx + B we find 

. 2x 1R 1 2 sm x =-+ - 1 - - +- arccos-
:rr 2 :rr2 :rr :rr 

the approximation being the min-max line. 

22.29. Show that P(x) = x 2 +! is the min-max cubic (or less) approximation to y(x) = Jxl over the 
interval ( -1, 1). 

The error is E(x) = lxl- x 2
- i and takes the extreme values -i, L -L L -i at x = -1, -t 0, t 1. 

These alternating errors of maximal size E = i at n + 2 = 5 points guarantee (by Problem 22.23) that 
P(x) is the min-max polynomial of degree n = 3 or less. 

22.30. Use the function y (x) = ex on the interval ( -1, 1) to illustrate the exchange method for finding 
a min-max line. 

The method of Problem 22.27 would produce the min-max line, but for a simple first illustration, 
we momentarily ignore that method and proceed by exchange, imitating the procedure of Problem 22.5. 
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Since we are after a line, we need n + 2 = 3 points of maximum error ±E. Try x = -1, 0, 1 for an initial 
triple. The corresponding values of y(x) are about .368, 1, and 2.718. The equal-error line for this triple 
is easily found to be 

Pt(x) = 1.175x + 1.272 

with errors h = ±.272 on the triple. Off the triple, a computation of the error at intervals of .1 discovers a 
maximum error of size H = .286 (and negative) at x = .2. Accordingly we form a new triple, exchanging 
the old argument x = 0 for the new x = .2. This retains the alternation of error signs called for in Step 4 
of the exchange method as presented earlier, and which we are now imitating. On the new triple y(x) 
takes the values .368, 1.221, and 2.718 approximately. The equal-error line is found to be 

Pz(x) = 1.175x + 1. 264 

with errors h = ±.278 on the triple. Off the triple, anticipating maximum errors near x = .2, we check 
this neighborhood at intervals of .01 and find an error of .279 at x = .16. Since we are carrying only 
three places, this is the best we can expect. A shift to the triplex= -1, .16, 1 would actually reproduce 
Pz(x). 

Let us now see what the method of Problem 22.27 manages. With a= -1 and b = 1 it at once 
produces M=(2.718-.368)/2=1.175. Then the equation y'(x2)=ex2 =1.175 leads to x2 =.16, after 
which the result B = 1.264 is direct. The line is shown in Fig. 22-7 below, with the vertical scale 
compressed. 

-I .2 

Fig. 22-7 

22.31. Use the exchange method to find the min-max quadratic polynomial for y(x) =ex over 
(-1, 1). 

Recalling that truncation of a series of Chebyshev polynomials often leads to nearly equal ripple 
errors resembling the first omitted term, we take as our initial quadruple the four extreme points of 
7;(x), which are x = ±1, ±!. The parabola which misses the four points 

X -1 I 1 1 -2 2 

ex .3679 .6065 1.6487 2.7183 

alternately by ±h proves to have its maximum error at x =.56. The new quadruple (-1, -.5, .56, 1) 
then leads to a second parabola with maximum error at x = -.44. The next quadruple is (-1, -.44, 
.56, 1) and proves to be our last. Its equal-ripple parabola is, to five decimal places, 

p (x) = . 55404x2 + 1.13018x + . 98904 

and its maximum error both inside and outside the quadruple isH= .04502. 
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Supplementary Problems 

DISCRETE DATA 
22.32. Show that the least-squares line for the three data points of Problem 22.2 is y(x) = !x- ~. Show that its 

errors at the data arguments are t -}, ~. The Chebyshev line was found to be y(x) = h- ~with errors 
of-t t -~. Verify that the Chebyshev line does have the smaller maximum error and the least-squares 
line the smaller sum of errors squared. 

22.33. Apply the exchange method to the average golf scores in Problem 21.2, producing the min-max line. 
Use this line to compute smoothed average scores. How do the results compare with those obtained by 
least squares? 

22.34. Apply the exchange method to the data of Problem 21.5, obtaining the min-max line and then the 
corresponding exponential function P(x) = AeMx. 

22.35. Obtain a formula y(x) = Mx + B for the Chebyshev line of an arbitrary triple (x 1 , y1), (x 2 , y2), (x 3 , y3). 

Such a formula could be useful in programming the exchange method for machine computation. 

22.36. Show that if the arguments X; are not distinct, then the min-max line may not be uniquely determined. 
For example, consider the three points (0, 0), (0, 1), and (1, 0) and show that all lines between y =!and 
y = ~- x have H = !. (See Fig. 22-8.) 

IY 

(0, 1) 

----------y=t 
" " ' ~~----~--~~----------X 

(0, 0) " (1, 0) 

' "y=f-x 
Fig. 22-8 

· 22.37. Find the equal-error parabola for the four points (0, 0), (:n:/6, !), (:n:/3, v'3/2), and (:n:/2, 1) of the curve 
y = sinx. 

22.38. Find the min-max parabola for the five points y = x 3
, x = 00)1. 

22.39. Use the exchange method to obtain the min-max parabola for the seven points y = cosx, x = 
O(:n:/12):n:/2. What is the maximum error lhl of this parabola? Compare its accuracy with that of the 
Taylor parabola 1 - h 2

. 

22.40. Extend the exchange method to obtain the min-max cubic polynomial for the seven points y =sin x, 
x = O(:n:/12):n:/2. What is the maximum error lhl of this cubic? Compare its accuracy with that of the 
Taylor cubic x - h 3

• 

CONTINUOUS DATA 

22.41. Find the min-max polynomial of degree five or less for y(x) =x6 on the interval (-1, 1). What is the 
error? 

22.42. What is the min-max polynomial of degree two or less for y(x) =To+ I;+ I;+ I; and what is its error? 
Show that To+ I; is not, however, the min-max line for y(x), by showing that the error of this 
approximation is not equal-ripple. 

22.43. Find the min-max polynomial of degree five or less for y(x) = 1- !x2 + i4x 4
- ~x6 and what is its error? 

[The interval is (-1, 1).] 
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22.44. Apply Problem 22.27 to find the min-max line over (0, n/2) for y(x) = -cosx. 

22.45. Does the method of Problem 22.27 work for y(x) = lxl over ( -1, 1), or does the discontinuity in y'(x) 
make the method inapplicable? 

22.46. Use the exchange method to find the min-max line for y(x) = cosx over (0, n/2). Work to three 
decimal places and compare with that found by another method in Problem 22.44. 

22.47. Use the exchange method to find the min-max parabola for y(x) = cosx over (0, n/2). (You may want 
to use the extreme points of 13(x), converted by a change of argument to the interval (0, n/2), as an 
initial quadruple.] 

22.48. Find a polynomial of minimum degree which approximates y(x) = cosx over (0, n/2) with maximum 
error .005. Naturally, roundoff error will limit the precision to which the polynomial can be determined. 

22.49. Prove that the min-max polynomial approximation to f(x) = 0, among all polynomials of degree n with 
leading coefficient 1, is 2 1 ~"7;.(x). The interval of approximation is taken to be (-1, 1). This is covered 
by Problems 22.17 to 22.23, but carry out the details of the following historical argument. Let 

p(x) = x" + a,xn~J + ... +an 

be any polynomial of the type described. Since T,(x) =cos (n arccosx), we have 

max 12'~"7;.(x)l = 2l~n 

Notice that this polynomial takes its extreme values of ±2 1 ~" alternately at the arguments xk =cos kn/n, 
where k = 0, 1, ... , n. Suppose that some polynomial p(x) were such that 

max lp(x)l < 2i~n 
and let P(x) = p(x)- 2 1 ~"7;.(x) 

Then P(x) is of degree n - 1 or less and it does not vanish identically since this would require 
max lp(x)l = 2 1 ~". Consider the values P(xk). Since p(x) is dominated by 21-"T,(x) at these points, we 
see that the P(xk) have alternating signs. Being continuous, P(x) must therefore have n zeros between 
the consecutive xk. But this is impossible for a polynomial of degree n - 1 or less which does not vanish 
identically. This proves that max lp(x)l;:;;: 21

-". 

22.50. Values of y(x) = e<'+ 2
)
14 are given in the table below. Find the min-max parabola for this data. What is 

the min-max error? 

X -2 -1 0 1 2 

y(x) 1.0000 1.2840 1.6487 2.1170 2. 7183 

22.51. What is the minimum degree of a polynomial approximation to ex on the interval ( -1, 1) with maximum 
error .005 or less? 

22.52. The Taylor series for In (1 + x) converges so slowly that hundreds of terms would be needed for 
five-place accuracy over the interval (0, 1). What is the maximum error of 

p(x) = .999902x- .497875x2 + .317650x3
- .193761x4 + .085569x5

- .018339x6 

on this same interval? 

22.53. Approximate y(x) = 1 -x + x2
- x 3 + x4

- x 5 + x6 by a polynomial of minimum degree, with error not 
exceeding .005 in (0, 1). 

22.54. Continue the previous problem to produce a minimum degree approximation with error at most .1. 



Chapter 23 

Approximation by Rational Functions 

COLLOCATION 

Rational functions are quotients of polynomials and so constitute a much richer class of functions 
than polynomials. This greater supply increases the prospects for accurate approximation. Functions 
with poles, for instance, can hardly be expected to respond well to efforts at polynomial 
approximation, since polynomials do not have singularities. Such functions are a principal target of 
rational approximation. But even with nonsingular functions there are occasions when rational 
approximations may be preferred. 

Two types of approximations will be discussed, the procedures resembling those used for 
polynomial approximation. Collocation at prescribed arguments is one basis for selecting a rational 
approximation, as it is for polynomials. Continued fractions and reciprocal differences are the main 
tools used. The continued fractions involved take the form 

y(x) = Yl + _____ x_-_x....:l ____ _ 
x -xz P1 + _____ __::..__ __ _ 

x -x3 
Pz- Y1 + -----=---

x -x4 P3-pl+--
P4- Pz 

which may be continued further if required. It is not too hard to see that this particular fraction 
could be rearranged into the quotient of two quadratic polynomials, in other words, a rational 
function. The p coefficients are called reciprocal differences, and are to be chosen in such a way that 
collocation is achieved. For the present example we shall find that 

x2 -xl 
Pl=--

Yz- Y1 

x3 -xz Pz- Y1 = __ ....::..__::..__ 
x3 -x 1 Xz-x 1 -------
Y3- Y1 Yz- Y1 

with similar expressions for p 3 and p 4 • The term reciprocal difference is not unnatural. 

MIN-MAX 

Min-max rational approximations are also gammg an important place in applications. Their 
theory, including the equal-error property and an exchange algorithm, parallels that of the 
polynomial case. For example, a rational function 

1 
R(x)=-b

a + x 
can be found which misses three specified data points (x;, y;) alternately by ±h. This R(x) will be the 
min-max rational function for the given points, in the sense that 

max IR(x;) - y;l = h 

will be smaller than the corresponding maxima when R(x) is replaced by other rational functions of 
the same form. If more than three points are specified, then an exchange algorithm identifies the 
min-max R(x). The analogy with the problem of the min-max polynomial is apparent. 

PADE APPROXIMATIONS 

These take the form 
R ( )=Pm(x) 

mn X Qn(x) 

292 
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with Pm and Qn polynomials of degree m and n, respectively. The normalization Qn(O) = 1 is 
customary. To approximate a given function y(x), Pade suggested making y and Rmn agree in value 
at some specified point, together with their first N derivatives, where N = m + n. This provides N + 1 
conditions for determining the remaining N + 1 coefficients of Pm and Qn. The point in question is 
usually taken to be x = 0, by a suitable translation of argument if necessary. The parallel with the 
Taylor polynomial of y(x) at x = 0 is evident and in fact the Taylor polynomial is RNa· As it turns 
out, more accuracy is achieved for a given N by choosing m = n + 1 or m = n, that is, by numerator 
and denominator polynomials of more or less equal degree. 

Solved Problems 

THE COLLOCATION RATIONAL FUNCTION 

23.1. Find the rational function y(x) = 1/(a + bx) given that y(1) = 1 and y(3) = !. 
Substitution requires a + b = 1 and a + 3b = 2, which force a = b = ~- The required function is 

y(x) = 2/(1 + x ). This simple problem illustrates the fact that finding a rational function by collocation is 
equivalent to solving a set of linear equations for the unknown coefficients. 

23.2. Also find rational functions y2(x) = Mx + B and y3(x) = c + d/x which have y(1) = 1 and 
y(3) = !. 

The linear function y2(x) = (5- x)/4 may be found by inspection. For the other we need to satisfy 
the coefficient equations c + d = 1, 3c + d = ~ and this means that c = t d = t making y3(x) = 
(x + 3)/4x. We now have three rational functions which pass through the three given points. Certainly 
there are others, but in a sense these are the simplest. At x = 2 the three functions offer us the 
interpolated values~, t and~- Inside the interval (1, 3) all three resemble each other to some extent. 
Outside they differ violently. (See Fig. 23-1.) The diversity of rational functions exceeds that of 
polynomials and it is very helpful to have knowledge of the type of rational function required. 

\ 
Fig. 23-1 
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23.3. Suppose it is known that y(x) is of the form y(x) =(a+ bx2)/(c + dx 2
). Determine y(x) by the 

requirements y(O) = 1, y(1) = ~, y(2) = ~. 
Substitution brings the linear system 

a =c 

Since only the ratio of the two polynomials is involved one coefficient may be taken to be 1, unless it 
later proves to be 0. Try d = 1. Then one discovers that a= b = c = t and y(x) = (1 + x2)/(1 + 2x2

). 

Note that the rational function y2(x) = 10/(10 + 6x- x 2
) also includes these three points, and so does 

y3(x) = (x + 3)/[3(x + 1)). 

CONTINUED FRACTIONS AND RECIPROCAL DIFFERENCES 

23.4. Evaluate the continued fraction 

X 
y = 1 + --x---1 at x = 0, 1, and 2 

-3+-2-
-3 

Direct computation shows y(O) = 1, y(1) = ~, and y(2) = ~. These are again the values of the 
previous problem. The point here is that the structure of a continued fraction of this sort makes these 
values equal to the successive "convergents" of the fraction, that is, the parts obtained by truncating the 
fraction before the x and x -1 terms and, of course, at the end. One finds easily that the fraction also 
rearranges into our y3(x). 

23.5. Develop the connection between rational functions and continued fractions in the case 

( ) 
a0 + a1x + a2x

2 

y X = 
b0 + b1x + b2x2 

We follow another historical path. Let the five data points (x,, y;) for i = 1, ... , 5 be given. For 
collocation at these points, 

ao- boY + a1x- b1xy + a2x 2
- b2x2y = 0 

for each x,, y, pair. The determinant equation 

y X xy xz xzy 

Y1 X1 X1Y1 xi xiy1 

Yz Xz XzYz X~ X~Yz 
=0 

Y3 X3 X3Y3 X~ X~Y3 

Y4 X4 X4Y4 X~ X~Y4 

Ys Xs XsYs x; x;ys 

clearly has the required features. The second row is now reduced to 1, 0, 0, 0, 0, 0 by these operations: 

Multiply column 1 by y1 and subtract from column 2. 

Multiply column 3 by y1 and subtract from column 4. 

Multiply column 5 by y1 and subtract from column 6. 

Multiply column 3 by x 1 and subtract from column 5. 

Multiply column 1 by x 1 and subtract from column 3. 
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At this point the determinant has been replaced by the following substitute: 

y -y! x -x1 x(y -y~) 

0 0 0 

Yz- Y1 Xz-X1 Xz(Yz- Y1) 

YJ- Y1 x3-x1 x3(y3-y1) 

Y4- Y1 X4 -x1 x4(Y4- Y1) 

Ys-Y! Xs-X1 Xs(Ys- Y1) 

Expand this determinant by its second row and then 

Divide row 1 by y - Y1· 

Divide row i by y1 - y1 , for i = 2, 3, 4, 5. 

x(x -x1) X2(Y- Y1) 

0 0 

Xz(Xz- x1) x~(Yz- Y1) 

xJ(x3- x1) x~(YJ- Y1) 

x4(x4- x1) x~(Y4- Y1) 

Xs(X5 -x1) x;(Ys- Y1) 

Introducing the symbol p1(xx 1) = x- x 1
, the equation may now be written as 

y -y! 

p!(xx1) X xp1(xx 1) xz 

p1(XzX 1) Xz Xzp!(XzX!) X~ 

p!(x3x1) XJ x3p!(x3x1) X~ =0 

PJ(x4x!) X4 X4P1(x4x1) X~ 

Pl(XsX1) Xs XsP!(XsX1) X~ 

The operation is now repeated, to make the second row 1, 0, 0, 0, 0: 

Multiply column 1 by p 1(x 2x 1) and subtract from column 2. 

Multiply column 3 by p 1(x 2x 1) and subtract from column 4. 

Multiply column 3 by x2 and subtract from column 5. 

Multiply column 1 by x2 and subtract from column 3. 

The determinant then has this form: 

p1(xx1)- p 1(x2x1) x -xz x[p1(xxJ)- PJ(xzxJ)] x(x -xz) 

0 

PJ(xJxJ)- P1(xzx1) 

P1(X4X 1)- pJ(xzxJ) 

P1(XsX1)- P1(XzX1) 

Expand by the second row, and then 

Divide row 1 by PJ(xx1)- PJ(xzxJ). 

0 0 

X3 -xz x[p1(x3x1)- PJ(xzxJ)] 

X4 -xz x[pJ(x4xJ)- PJ(xzxJ)] 

Xs -Xz x[pJ(xsxJ)- PJ(XzXJ)] 

Divide row i by p 1(x1+ 1x1)- p1(x2x1), fori= 2, 3, 4. 

0 

x3(x3 -xz) 

X4(X4- Xz) 

Xs(Xs-Xz) 
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An additional step is traditional at this point in order to assure a symmetry property of the p quantities 
to be defined. (See Problem 23.6.) 

Multiply column 1 by y1 and add to column 2. 

Multiply column 3 by y1 and add to column 4. 
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x -xz 
Introducing the symbol p2(xx 1x2) = ( ) ( ) + y1, the equation has now been reduced to 

P1 XX1 - P1 XzX1 

Pz(xxlxz) X xpz(xx1xz) 

Pz(X3XJXz) X3 X3pz(X3X1Xz) 
=0 

Pz(x4xlxz) X4 X4pz(X4X1Xz) 

pz(xsX1Xz) Xs XsPz(XsXIXz) 

Another similar reduction produces 

where 

Finally, the last reduction manages 

1
1
1 

pixx1XzX3X4) I= 0 
P4(XsX1XzX3X4) 

where x - x4 + pz(x 1XzX3) 
p3(xx1xzx3)- p3(x4xzx3x1) 

We deduce that p4(xx 1x2x3x4) = p4(x 5x 1x2x3x4). The various p;'s just introduced are called reciprocal 
differences of order i, and the equality of these fourth-order reciprocal differences is equivalent to the 
determinant equation with which we began and which identifies the rational function we are seeking. 

The definitions of reciprocal differences now lead in a natural way to a continued fraction. We find 
successively 

x -x~ 
=yi+--------------------~----------------

PI (xzx 1) + ______________ x __ -_x-'2'-------------
x -x3 

Pz(X3XJXz)- Y1 + --,---------,-----..::..._--,---..,-
P3(xxlxzx3)- P1(x1xz) 

x -x~ 
=yl+----------------------------------''-----------------------------

p 1 (xzx 1) + __________________________ x __ -_x--=-2 -----------------------
Pz(x3xJxz)- Y1 + ___________________ x_-__ x..:.3 ________________ _ 

x -x4 

where, in the last denominator, the equality of certain fourth differences, which was the culmination of 
our extensive determinant reduction, has finally been used. This is what makes the above continued 
fraction the required rational function. (Behind all these computations there has been the assumption 
that the data points do actually belong to such a rational function, and that the algebraic procedure will 
not break down at some point. See the problems for exceptional examples.) 

23.6. Prove that reciprocal differences are symmetric. 

For first-order differences it is at once clear that p1(x 1x2) = p1(x 2x 1). For second-order differences 
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one verifies first that 

x3-xz __ ....:;__:..__ + Y1 
X3-x1 xz-xl -----

__ x..::.3_-_x~1 __ + Yz 
x3-xz x1-xz 
-----
Y3- Yz Y1- Yz 

Xz -xl __ ....:;__:;...__+ Y3 
Xz-x3 x1-X3 -----
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from which it follows that in p2(x 1x2x3) the X; may be permuted in any way. For higher-order differences 
the proof is similar. 

Z3.7. Apply reciprocal differences to recover the function y(x) = 1/(1 + x 2
) from the x, y data in the 

first two columns of Table 23.1. 

Various reciprocal differences also appear in this table. For example, the entry 40 is obtained from 
the looped entries as follows: 

4-1 
( -fs)- (--fa)+ ( -10) = 40 

Xs- Xz + P1(x3x.) 
Pz(X3X4Xs)- Pz(XzX3x4) 

From the definition given in Problem 23.5 this third difference should be 

Xz- Xs + P1(x3x.) 
Pz(XzX3x4)- Pz(XsX3x4) 

but by the symmetry property this is the same as what we have. The other differences are found in the 
same way. 

Table 23.1 

X y 

0 1 
-2 

CD 1 -1 2 
10 0 -3 

@ 2 1 
3 

8 40 
3 1 @ TO 

170 140 -7 

@ I I 
17 -46 

442 ---g 

5 1 
26 

The continued fraction is constructed from the top diagonal 

x-0 
y = 1 + -------x---1----

-2+-------------~--
x-2 

-1 - 1 + -----------
X -3 

0-(-2)+0-(-1) 

0 

0 

and easily rearranges to the original y (x) = 1/ (1 + x 2
). This test case merely illustrates the continued 

fractions algorithm. 
By substituting successively the arguments x = 0, 1, 2, 3, 4 into this continued fraction it is easy to 

see that as the fraction becomes longer it absorbs the (x, y) data pairs one by one. This further implies 
that truncating the fraction will produce a rational collocation function for an initial segment of the data. 
The same remarks hold for the general case of Problem 23.5. It should also be pointed out that the zeros 



298 APPROXIMATION BY RATIONAL FUNCTIONS [CHAP. 23 

in the last column of the table cause the fraction to terminate without an x - x 4 term, but that the 
fraction in hand absorbs the (x 5 , x5 ) data pair anyway. 

23.8. Use a rational approximation to interpolate for tan 1.565 from the data provided in Table 
23.2. 

The table also includes reciprocal differences through fourth order. 

Table 23.2 

X tanx 

1.53 24.498 
.0012558 

1.54 32.461 -.033 
.0006403 2.7279 

1.55 48.078 -.022 
.0002245 1.7145 

1.56 92.631 -.0045 
.0000086 

1.57 1255.8 

The interpolation then proceeds as follows: 

tan 1.565 = 24.498 + ______ 1._5-65---::-:1.-53-----,----
1.565 -1.54 

.0012558 + 1 565 -1 55 
-24.531 + . . 

2. 7266 + 1.565 - 1.56 
-.3837 

-.4167 

which works out to 172.552. This result is almost perfect, which is remarkable considering how terribly 
close we are to the pole of the tangent function at x = n/2. Newton's backward formula, using the same 
data, produces the value 433, so it is easy to see that our rational approximation is an easy winner. It is 
interesting to notice the results obtained by stopping at the earlier differences, truncating the fraction at 
its successive "convergents." Those results are 

52.37 172.36 172.552 

so that stopping at third and fourth differences we find identical values. This convergence is reassuring, 
suggesting implicitly that more data pairs and continuation of the fraction are unnecessary and that even 
the final data pair has served only as a check or safeguard. 

23.9. It is possible that more than one rational function of the form in Problem 23.5 may include 
the given points. Which one will the continued fraction algorithm produce? 

As the continued fraction grows it represents successively functions of the forms 

ao + a1x + a2x2 

bo + b1x 

ao + a1x + a2x2 

bo + b1x + b2x2 

Our algorithm chooses the simplest form (left to right) consistent with the data. See Problems 23.4, 
23.18, and 23.19 for examples. 

23.10. Given that y(x) has a simple pole at x = 0 and is of the form used in Problem 23.5, determine 
it from these (x, y) points: (1, 30), (2, 10), (3, 5), (4, 3). 
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Such a function may be sought directly starting with 

y(x) 
1 + a1x +a2x 2 

b1x + b2x2 

299 

It may also be found by this slight variation of the continued fractions algorithm. The table of reciprocal 
differences 

X y 

1 30 
I 

-20 

2 10 10 
-3 

I 8 
-5 5 

3 5 5 0 -3 
I 1 -2 

4 3 -3 
0 

0 00 

leads to the continued fraction 

x-1 
y = 30 + --1----x---2--

--+-------
20 100 X- 3 

--+---
3 33 X- 4 

w+T 
which collapses to y(x) = 60/[x(x + 1)]. 

MIN-MAX RATIONAL FUNCTIONS 

23.11. How can a rational function R(x) = 1/(a + bx) which misses the three points (x 1 , y1), (x2 , Yz), 
and (x 3 , y3) alternately by ±h be found? 

The three conditions 

can be rewritten as 

1 
Y;- a+ bx; = h, -h, h fori= 1, 2, 3 

a(YJ- h)+ b(YJ- h)x 1 -1 = 0 

a(y2 +h)+ b(y2 + h)x2 -1 =0 

a(y3 - h)+ b(Y3- h)x3 -1 = 0 

Eliminating a and b, we find that h is determined by the quadratic equation 

I

YJ-h (YJ-h)x 1 -1~ 
Yz+h (yz+h)x 2 -1 =0 

y3-h (Y3-h)x3 -1 

Choosing the root with smaller absolute value, we substitute back and obtain a and b. (It is not hard to 
show that real roots will always exist.) 

23.12. Apply the procedure of Problem 23.11 to these three points: (0, .83), (1, 1.06), (2, 1.25). 

The quadratic equation becomes 4h 2 
- 4.12h - .130 = 0 and the required root is h = -. 03. The 

coefficients a and b then satisfy .86a- 1 = 0, 1.03a + 1.03b -1 = 0 and are a= 1.16, b = - .19. 
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23.13. Extending the previous problem, apply an exchange method to find a min-max rational 
function of the form R = 1/(a + bx) for these points: (0, .83), (1, 1.06), (2, 1.25), (4, 4.15). 

Our problem will be a close parallel to earlier exchange methods. Let the triple of the previous 
problem serve as initial triple. The equal-error rational function for this triple was found to be 
R 1(x) = 1/(1.16- .19x). At the four data points its errors may be computed to be - .03, .03, - .03, 1.65 
and we see that R 1(x) is very poor at x = 4. For a new triple we choose the last three points, to retain 
alternating error signs. The new quadratic equation is 

6h 2
- 21.24h + 1.47 = 0 

making h = .07. The new equations for a and b are 

a+ b = 1.010 a+ 2b = .758 a+ 4b = .245 

making a= 1.265 and b = -.255. The errors at the four data points are now .04, .07, -.07, .07; and 
since no error exceeds the .07 of our present triple we stop, accepting 

1 
Rz(x) = 1.265- .255x 

as the min-max approximation. This is the typical development of an exchange algorithm. Our result is 
of course accurate only to a point, but the data themselves are given to only two places so a greater 
struggle seems unwarranted. It is interesting to notice that the computation is quite sensitive. Rounding 
the third-digit 5s in our R 2(x), for instance, can change R2(4) by almost half a unit. This sensitivity is due 
to the pole near x = 5. Both R 1(x) and R 2(x) are shown in Fig. 23-2. 

y 

X 

Fig. 23-2 

23.14. The data points of the preceding problem were chosen by adding random "noise" of up to 5 
percent to values of y(x) = 4/(5- x). Use R 2(x) to compute smoothed values and compare 
with the correct values and the original data. 

The required values are as follows, with entries at x = 3 added: 

Original "noisy" data .83 1.06 1.25 - 4.15 

Values of R 2(x) .79 .99 1.32 2.00 4.08 

Correct values of y(x) .80 1.00 1.33 2.00 4.00 

Only the error at x = 4 is sizable and this has been reduced by almost half. The influence of the pole 
at x = 5 is evident. Approximation by means of polynomials would be far less successful. 
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23.15. Derive conditions on the coefficients such that the Pade rational function 

with 

will satisfy 

R ( )=Pm(x) 
mn X Qn(X) 

Pm(x) = ao + a1x + a2x 2 + · · · + amxm 

Qn(x) = 1 + b1x + bzx2 + · · · + bnxn 

k = 0, 1, ... , N 

for N = m + n, assuming that y(x) has the series representation 

y(x) = c0 + c1x + c2x
2 + · · · 

We have 

(~ c;x;)(~ b;x;)- ~ a;x; 
y(x)- Rmn(x) = ___ n ___ _ 

I: b;x; 
0 
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and will have achieved the required goal if the numerator on the right has no terms of lower degree than 
xN+

1
. For this we need 

and in general 

a1 = boC1 + b1co 

a1 = ± b;c1_; j=O, 1, ... , N 
i=O 

subject to the constraints b 0 = 1 and 

a; =0 ifi>m 

b;=O if i >n 

23.16. Apply the preceding problem to y(x) =ex with m = n = 2. 

For this function we have c0 = 1, c1 = 1, c2 =!, c3 =!, c4 = 14, leading to these equations: 

Their solution is a0 = 1, a1 =!, a2 = {z, b1 = -!, and b2 = {z. Substituting back we have finally 

12+6x+x2 

R22(x) 12- 6x +x2 

for the Pade approximation. On the interval ( -1, 1) its absolute error ranges from zero at the center to 
.004 at x = 1. It is interesting to note that the approximation reflects a basic property of the exponential 
function, namely that replacing x by -x produces the reciprocal. 

23.17. For y(x) =ex it is clear that 

1 2 1 3 
R40 = 1 + X + 2 X + 6 X + · · · 

but use the method of Problem 23.15 to find R 04(x). 
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The appropriate equations include a0 = 1 and then the triangular system 

0 = 1 + b! 

1 
0=2+b1 +b 2 

1 1 
0 = 6 + 2 b1 + bz + b3 

1 1 1 
0 = 24 + 6 b1 + 2 b2 + b3 + b4 

leading to the approximation 

[CHAP. 23 

of which the denominator is a five-term approximation to the reciprocal of y(x). Presumably this could 
have been anticipated. 

Over ( -1, 1) R 04 is closer to ex on the left half and farther from it on the right, relative to R40 • It is 
inferior all the way to R22 and this is generally true of Pade approximations. Those with m and n equal 
or nearly equal are the most accurate. 

Supplementary Problems 

23.18. Find directly, as in Problem 23.1, a function y(x) = 1/(a + bx) such that y(1) = 3 and y(3) = 1. Will our 
method of continued fractions yield this function? 

23.19. Find directly a function y(x) = 1/(a + bx + cx2
) such that y(O) = 1, y(1) =!, and y(10) = ~. Will our 

method of continued fractions yield this function? 

23.20. Use the continued fractions method to find a rational function having the following values: 

X 0 

y -1 

2 

0 

4 

15 
17 

23.21. Use the continued fractions method to find a rational function having the following values: 

I : I 0 9 19 

0 8.1 18.05 

23.22. Find a rational function with these values: 

I : I 
0 

23.23. Find a rational function with these values: 

I : I 
0 2 4 

-2 ±oo 2 

(The symbol ±oo refers to a pole at which the function changes sign.) 
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23.24. Find a rational function with the values given below. Interpolate for y(1.5). Where are the "poles" of 
this function? 

23.25. Find the min-max function 

for y(x) =x 2 -1 on the interval ( -1, 1). 

0 ±1 

1 
R(x)=a+bx 

±2 

23.26. Use an exchange method to find the min-max approximation R(x) = 1/(a + bx) to y(x) =ex on the 
interval (0, 3). 

23.27. Develop an exchange method for finding the min-max approximation R(x) =(a+ bx)/(1 + dx) for a set 
of points (x;, y;) where i = 1, ... , N. Apply it to the following data: 

0 2 3 4 

.38 .30 .16 .20 .12 .10 

Use R(x) to smooth the y values. How close do you come to y(x) = 1/(x + 3) which was the parent 
function of this data, with random errors added? 

23.28. Find a rational function which includes these points: 

I : I 
-1 0 2 3 

4 2 4 7 

23.29. Find a rational function which includes these points: 

X -2 -1 0 2 

y 0 3 

23.30. Find a rational function which includes the following points. Does the function have any real poles? 

X -2 -1 

y 2 

0 2 

2 

3 

14 
TI 

23.31. Interpolate for y(1.5) in the table below, using a rational approximation function. 

X 1 2 3 4 

y 57.298677 28.653706 19.107321 14.335588 
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23.32. Find a rational function, in the form of a cubic polynomial over a quadratic, including these points: 

X 0 

y 12 

23.33. Work Problem 23.16 with m = 3, n = 1. 

23.34. Work Problem 23.16 with m = 1, n = 3. 

0 

2 4 

-4 -6 6 4 



Chapter 24 

Trigonometric Approximation 

DISCRETE DATA 

The sine and cosine functions share many of the desirable features of polynomials. They are 
easily computed, by rapidly convergent series. Their successive derivatives are again sines and 
cosines, the same then holding for integrals. They also have orthogonality properties, and of course 
periodicity, which polynomials do not have. The use of these familiar trigonometric functions in 
approximation theory is therefore understandable. 

A trigonometric sum which collocates with a given data function at 2L + 1 prescribed arguments 
may be obtained in the form 

1 L ( 2:n . 2:n ) y(x)=-a0 + .2: akcos--kx+bksm--kx 
2 k = 1 2L + 1 2L + 1 

a slightly different form being used if the number of collocation arguments is even. An orthogonality 
property of these sines and cosines, 

N 2:n 2:n { 0 .2: sin --jx sin-- kx = 
x=o N+1 N+1 (N+1)/2 

N . 2:n 2:n .2: sm--jx cos--kx=O 
x=o N + 1 N + 1 

f cos~ jx cos~ kx = {(N +O 1)/2 
x=o N + 1 N + 1 N + 1 

if j*k 

if j = k *0 

if j *k 

if j = k * 0, N + 1 

if j = k = 0, N + 1 

allows the coefficients to be easily determined as 

2 2L 2:n 
ak = 2L + 1 x~o y (x) cos 2L + 1 kx k = 0, 1, ... , L 

2 2L 2:n 
bk=-- .2: y(x)sin--kx 

2L + 1 x=O 2L + 1 
k = 1, 2, ... , L 

These coefficients provide the unique collocation function of the form specified. For an even number 
of collocation arguments, say 2L, the corresponding formula is 

y(x) = -
2

1 
a0 + ~

1 

(ak cos!!_ kx + bk sin!!_ kx) + -
2

1 
aL cos :nx 

k=1 L L 

with 
1 2L-1 7r 

ak=- .2: y(x)cos-kx 
L x=O L 

k = 0, 1, ... , L 

1 2L-1 7r 

bk=- .2: y(x)sin-kx 
L x=O L 

k = 1, ... , L -1 

Least-squares approximations for the same discrete data, using the same type of trigonometric 
sum, are obtained simply by truncation of the collocation sum. This is a famous and convenient 
result. As observed in Problem 21.8, it is true of other representations in terms of orthogonal 
functions. What is minimized here, in the case of 2L + 1 arguments, is 

2L 
S = L [y(x)- TM(x)]2 

x=O 

305 
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where TM(x) is the abbreviated sum (M being less than L) 

1 M ( 2n 2n ) 
TM(x) =

2
-Ao+ 2: Ak cos-

2
L 

1 
kx + Bk sin

2
--kx 

k=1 + L + 1 

The result just stated means that to minimize S we should choose Ak = ak> Bk = bk. The minimum 
value of S can be expressed as 

For M = L this would be zero, which is hardly a surprise since then we have once again the 
collocation sum. 

Periodicity is an obvious feature of trigonometric sums. If a data function y(x) is not basically 
periodic, it may still be useful to construct a trigonometric approximation, provided we are 
concerned only with a finite interval. The given y(x) may then be imagined extended outside this 
interval in a way which makes it periodic. 

Odd and even functions are commonly used as extensions. An odd function has the property 
y ( - x) = - y (x ). The classic example is y (x) = sin x. For an odd function of period P = 2L, the 
coefficients of our trigonometric sum simplify to 

4 L-1 2n 
bk=- 2: y(x)sin-kx 

P x=1 p 

An even function has the property y(- x) = y(x ). The classic example is y(x) =cos x. For an even 
function of period P = 2L, the coefficients become 

2 4 L- 1 2n 
ak=-[y(O)+y(L)coskn]+- 2: y(x)cos-kx 

P P x=1 p 

These simplifications explain the popularity of odd and even functions. 

CONTINUOUS DATA 

Fourier series replace finite trigonometric sums when the data supply is continuous, much of the 
detail being analogous. For y(x) defined over (0, 2n), the series has the form 

1 X 

2 a0 + ~1 (ak cos kt + f3k sin kt) 

A second orthogonality property of sines and cosines, 

{2"' {0 Jo sinjt sin kt dt = JT: 

{2"' 
Jo sinjt cos kt dt = 0 

2n {0 1 cosjt cos kt dt = n 
0 2n 

allows easy identification of the Fourier coefficients as 

ifj=Fk 

if j = k =FO 

ifj=Fk 

if j = k=FO 

if j = k = 0 

1 12"' ak =- y(t) cos kt dt 
JT: 0 

112"' f3k =- y(t) sin kt dt 
JT: 0 

Since the series has period 2n, we must limit its use to the given interval (0, 2n) unless y(x) also 
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happens to have this same period. Nonperiodic functions may be accommodated over a finite 
interval, if we imagine them extended as periodic. Again, odd and even extensions are the most 
common and in such cases the Fourier coefficients simplify much as above. 

Fourier coefficients are related to collocation coefficients. Taking the example of an odd number 
of arguments we have, for example, 

which is the trapezoidal rule approximation to 

1 (zL n 
aj = L Jo y (x) cos L jx dx 

in which a change of argument has been used to bring out the analogy. 
Least-squares approximations for the case of continuous data are obtained by truncation of the 

Fourier series. This will minimize the integral 

I= f"' [y(t)- TM(t)]2 dt 

where 
1 M 

TM(t) = 2 A 0 + k~l (Ak cos kt + Bk sin kt) 

In other words, to minimize I we should choose Ak = ak> Bk = f3k· The minimum value of I can be 
expressed as 

/min= n 2: (a~+ M) 
k=M+1 

Convergence in the mean occurs under very mild assumptions on y(t). This means that, for M 
tending to infinity, /min has limit zero. 

APPLICATIONS 

The two major applications of trigonometric approximation in numerical analysis are 

1. Data smoothing. Since least-squares approximations are so conveniently available by 
truncation, this application seems natural, the smoothing effect of the least-squares principle 
being similar to that observed for the case of polynomials. 

2. Approximate differentiation. Here too the least-squares aspect of trigonometric approxima
tion looms in the background. Sometimes the results of applying a formula such as 

1 
y(x) =w [ -2y(x- 2)- y(x -1) + y(x + 1) + 2y(x + 2)] 

derived earlier from a least-squares parabola, are further smoothed by the use of a 
trigonometric sum. The danger of oversmoothing, removing essential features of the target 
function, should be kept in mind. 

COMPLEX FORMS 

All the foregoing can also be represented in complex form. Trigonometric sums become 
I 

2: cjeijx 

j=-1 

where i is the imaginary unit. Because of the Euler formula 

e'x = cosx + i sinx 
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this is the equivalent of 

with 

TRIGONOMETRIC APPROXIMATION 

ao 1 
• • • - + 2: (aj COSJX + bj SIOJX) 

2 j~l 

aj = cj + c_j bj = i(cj- c_j) 

The coefficients aj, bj, cj may be real or complex. The Fourier series becomes 

f(x)= 2: jjeijx 
j=~x 

with the Fourier coefficients 1 12"' .. [; =- f(x)e-''x dx 
J 2.n 0 

The finite sum 

[CHAP. 24 

where xn = 2.nn/N for n = 0 toN- 1, is an obvious approximation to jj and is also the appropriate 
coefficient in the trigonometric sum which interpolates f(x) at the data points xn- · 

I 

y(x) = 2: fteijx 
j~-1 

Theft are essentially the elements of what is called a discrete Fourier transform. Given a vector V 
with components v 0 to vN-v the discrete Fourier transform of V may be defined as the vector VT 
having components 

N-1 

vJ = 2: vnwJJ 
n~o 

for j = 0 to j = N- 1 and wN an Nth root of 1. 

These various relationships will be explored in the problems. 
What this means is that it is possible to compute approximations to the Fourier coefficients jj by 

using discrete transforms. The use of Fast Fourier Transforms (FFT) has made such computations 
efficient even for rather large values of N. These coefficients are of interest in many applications, 
since they give the relative weights of the component terms in a complex periodic process. 

Solved Problems 

TRIGONOMETRIC SUMS BY COLLOCATION 

24.1. Prove the orthogonality conditions 

N 2.n 2.n { 0 2: sin--jx sin--kx = 
x=o N+1 N+1 (N+1)/2 

N 2n 2.n 2: sin --
1 

jx cos N-
1 

kx = 0 
x=O N + + 

N 2.n 2.n { 0 2: cos--jx cosNlkx= (N + 1)/2 
x~o N + 1 + N + 1 

for j + k ~N. 

if j =F k or j = k = 0 
ifj=k=FO 

ifj=Fk 

ifj=k=FO 

ifj=k=O 
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The proofs are by elementary trigonometry. As an example, 

2:rr 2:rr 1 [ 2:rr 2:rr ] 
sin N + 1 jx sin N + 1 kx = 2 cos N + 1 (j - k )x - cos N + 1 (j + k )x 

and each cosine sums to zero since the angles involved are symmetrically spaced between 0 and 2:rr, 
except when j = k -=F 0, in which case the first sum of cosines is (N + 1)/2. The other two parts are 
proved in similar fashion. 

24.2. For collocation at an odd number of arguments x = 0, 1, ... , N = 2L, the trigonometric sum 
may take the form 

1 L ( 2n 2n ) -a0 + L akcos---kx+bksin---kx 
2 k =I 2L + 1 2L + 1 

Use Problem 24.1 to determine the coefficients ak and bk. 

. . 2:rr 
To obtam aj multiply by cos 

2
L + 

1 
jx and sum. We find 

j = 0, 1, ... , L 

since all other terms on the right are zero. The factor~ in y(x) makes this result true also for j = 0. To 
2:rr 

obtain bj we multiply y(x) by sin
2

L + 
1 

jx and sum, getting 

j = 1, 2, ... , L 

Thus only one such expression can represent a given y (x ), the coefficients being uniquely determined by 
the values of y(x) at x = 0, 1, ... , 2L. Notice that this function will have period N + 1. 

24.3. Verify that, with the coefficients of Problem 24.2, the trigonometric sum does equal y(x) for 
x = 0, 1, ... , 2L. This will prove the existence of a unique sum of this type which collocates 
with y(x) for these arguments. 

Calling the sum T(x) for the moment and letting x* be any one of the 2L + 1 arguments, 
substitution of our formulas for the coefficients leads to 

2 ZL [ 1 L ( 2:rr 2:rr 2:rr 2:rr ) ] T(x*)=
2
-L 

1
2:y(x) -

2
+ 2: cos--

1
kxcos--kx*+sin--kxsin--kx* 

+ x~o k~l 2L + 2L + 1 2L + 1 2L + 1 

2 2L [ 1 L 2:rr ] 
=

2
-L 

1 
2: y(x) -

2 
+ 2: cos

2
-

1 
k(x -x*) 

+ x~o k~l L + 

in which the order of summation has been altered. The last sum is now written as 

L 2:rr 1 L 2:rr 1 ZL 2:rr 
2: cos--k(x-x*)=- 2: cos--k(x-x*)+- 2: cos--k(x-x*) 
k~l 2L + 1 2 k~ 1 2L + 1 2 k~L+l 2L + 1 

which is possible because of the symmetry property 

2:rr 2:rr 
cos

2
L+

1 
k(x-x*)=cos

2
L+

1 
(2L+1-k)(x-x*) 

of the cosine function. Filling in the k = 0 term, we now find 

1 2L [ 2L 2:rr ] 
T(x*) =

2
-

1 
2: y(x) 2: cos

2
-

1 
k(x -x*) 

L + x~o k~o L + 
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But the term in brackets is zero by the orthogonality conditions unless x = x *, when it becomes 2L + 1. 
Thus T(x*) = y(x*), which was to be proved. 

24.4. Suppose y(x) is known to have the period 3. Find a trigonometric sum which includes the 
following data points and use it to interpolate for yO) andy(~). 

2 

Using the formulas of Problem 24.2, we find 

2 4 
a0 = 3 (0 + 1 + 1) = 3 a = ~ (cos~+ cos~) = - ~ 1 3 3 3 3 

24.5. For an even number of x arguments (N + 1 = 2L) the collocation sum is 

y(x) = 2~a0 + ~
1 

(ak cos!!_ kx + bk sin !!_kx) + ~ aL cos :rrx 
k=l L L 2 

with collocation at x = 0, 1, ... , N. The coefficients are found by an argument almost 
identical with that of Problems 24.1 and 24.2 to be 

1 2L-1 1r 

aj=- 2: y(x)cos-jx j=O, 1, ... , L 
L x=O L 
1 2L-1 1r 

bj = L x~O y(x) sin L jx j = 1, ... 'L- 1 

Once again the function y (x) is seen to have the period N + 1. Apply these formulas to the 
data below, and then compute the maximum of y(x). 

2 

0 

We find L=2 and then aa=~(2)=1, a1 =V-1)= -!, a2 =V-1+1)=0, b 1 =!(1)=~. The 
trigonometric sum is therefore 

1 1 1 1 . 1 
y (x) = 2 - 2 cos 2 .nx + 2 sm 2 .nx 

The maximum of y(x) is then found by standard procedures to bey(~)= V1 + W). 

TRIGONOMETRIC SUMS BY LEAST SQUARES, DISCRETE DATA 

24.6. Determine the coefficients Ak and Bk so that the sum of squares 

2L 

S = 2: [y(x)- Tm(x)]2 =minimum 
x=O 

where Tm(x) is the trigonometric sum 

1 M ( 2:rr 2:rr ) 
Tm(x)=-

2
Ao+ L Akcos--kx+Bksin--kx 

k=l 2L + 1 2L + 1 

and M<L. 
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Since by Problem 24.3 we have 

1 L ( 2:n; . 2:n; ) 
y(x)=-

2
ao+ L akcos-

2
L 

1
kx+bksm--kx 

k~1 + 2L + 1 

the difference is 

+ ± [ak cos L
2

:n; 
1 

kx + bk sin~ kx] 
k~M+1 2 + 2L + 1 

Squaring, summing over the arguments x, and using the orthogonality conditions, 
2

L 2L + 1 2L + 1 M 2L + 1 L 

S = ~0 [y(x)- Tm(X W = -
4
- (ao- Ao? + -2-~1 [(ak- Ak? + (bk- Bk?] + -2-k~~+1 (ak + bk) 

Only the first two terms depend upon the Ak and Bb and since these terms are nonnegative the 
minimum sum can be achieved in only one way, by making these terms zero. Thus for a minimum, 

and we have the important result that truncation of the collocation sum T(x) at k = M produces the 
least-squares trigonometric sum TM(x ). (This is actually another special case of the general result found 
in Problem 21.8.) We also find 

Since an almost identical computation shows that 
2

L 2L 2L + 1 2L + 1 L 

x~o [y(x W = ~0 [T(x }P = - 4- a6 + - 2- ~1 (a~+ bk} 

this may also be expressed in the form 

~ [ 2 ] 2L + 1 2 2L + 1 ~ 2 2 
smin = x~o y(x) - -4-ao --2-(;:1 (ak + bk) 

As M increases this sum steadily decreases, reaching zero for M = L, since then the least-squares and 
collocation sums are identical. A somewhat similar result holds for the case of an even number of x 
arguments. 

24.7. Apply Problem 24.6 with M = 0 to the data of Problem 24.4. 

Truncation leads to Ta(x) = ~-

ODD OR EVEN PERIODIC FUNCTIONS 

24.8. Suppose y(x) has the period P = 2L, that is, y(x + P) = y(x) for all x. Show that the formulas 
for aj and bj in Problem 24.5 may be written as 

2 L 2n 
aj=- L y(x)cos-jx j=O, 1, ... , L 

P x=-L+l P 
2 L 2n 

bj=- L y(x)sin-jx j=1, ... ,L-1 
P x=-L+l P 

Since the sine and cosine also have period P, it makes no difference whether the arguments 
x = 0, ... , 2L -1 or the arguments -L + 1, ... , L are used. Any such set of P consecutive arguments 
will lead to the same coefficients. 

24.9. Suppose y(x) has the period P = 2L and is also an odd function, that is, y( -x) = -y(x). 
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Prove that 
4 L-1 2n 

bj =- 2: y(x) sin- jx 
p x~1 p 

By periodicity, y(O) = y(P) = y( -P). But since y(x) is an odd function, y( -P) = -y(P) also. This 
implies y(O) = 0. In the same way we find y(L) = y( -L) = -y(L) = 0. Then in the sum for aj each 
remaining term at positive x cancels its mate at negative x, so that all aj will be 0. In the sum for bj the 
terms for x and -x are identical and so we find bj by doubling the sum over positive x. 

24.10. Find a trigonometric sum T(x) for the function of Problem 24.5, assuming it extended to an 
odd function of period P = 6. 

By the previous problem all aj = 0, and since L = 3, 

2 ( . n . 2n) 2 
b1 = 3 Sill 3 +Sill 3 = yl3 

making T(x) = (2/V3) sin (nx/3). 

24.11. If y(x) has the period P = 2L and is an even function, that is, y(- x) = y(x), show that the 
formulas of Problem 24.8 become 

2 4 L-1 2n 
aj=-[y(O)+y(L)cosjn]+- 2: y(x)cos-jx j = 0, 1, ... , L 

P p x~l p 

The terms for ±x in the formula for bj cancel in pairs. In the aj formula the terms for x = 0 and 
x = L may be separated as above, after which the remaining terms come in matching pairs for ±x. 

24.12. Find a T(x) for the function of Problem 24.5 assuming it extended to an even function of 
period 6. (This will make three representations of the data by trigonometric sums, but in 
different forms. See Problems 24.5 and 24.10.) 

All bj will be zero, and with L = 3 we find a0 = 1, a1 = 0, a2 = - ~' a3 = 0 making T(x) = 
~(1 -cos 1nx ). 

CONTINUOUS DATA. THE FOURIER SERIES 

24.13. Prove the orthogonality conditions 

L2;n; ••• k d { 0 

0 
Sill jt Sill t t = Jr 

L
2n; 

0 

sin jt cos kt dt = 0 

2rr { 0 L cos jt cos kt dt = Jr 
0 

2n 

where j, k = 0, 1, ... to infinity. 

The proofs are elementary calculus. For example, 

ifji=k 

ifj = ki=O 

ifji=k 

ifj= ki=O 

ifj= k=O 

sinjt sin kt =![cos (j- k)t- cos (j + k)t] 

and each cosine integrates to zero since the interval of integration is a period of the cosine, except when 
j = k i= 0, in which case the first integral becomes !(2n). The other two parts are proved in similar 
fashion. 
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24.14. Derive the coefficient formulas 

of the Fourier series 

1 L2"' aj =- y(t) cos jt dt 
7r 0 

1 L2"' {3j =- y(t) sin jt dt 
7r 0 

1 00 

y(t) =- a0 + L (ak cos kt + f3k sin kt) 
2 k=l 

313 

These are called the Fourier coefficients. As a matter of fact all such coefficients in sums or 
series of orthogonal functions are frequently called Fourier coefficients. 

The proof follows a familiar path. Multiply y(t) by cosjt and integrate over (0, 2n). All terms but 
one on the right are zero and the formula for cxi emerges. The factor ~ in the cx0 term makes the result 
true also for j = 0. To obtain f3i we multiply by sinjt and integrate. Here we are assuming that the series 
will converge to y(t) and that term-by-term integration is valid. This is proved, under very mild 
assumptions about the smoothness of y(t), in the theory of Fourier series. Clearly y(t) must also have 
the period 2n. 

24.15. Obtain the Fourier series for y(t) = ltl, - n ~ t ~ n. 

Let y(t) be extended to an even function of period 2n. (See solid curve in Fig. 24-1.) The limits of 
integration in our coefficient formulas may be shifted to ( -n, n) and we see that all f3i = 0. Also cx0 = n; 
and for j > 0 

2L" . 2(cosjn-1) 
(Xi=- t COSjtdt = ,2 

.7t' 0 .it'] 

Thus 
.7t' 4 ( cos 3t cos 5t ) 

y(t)=z-~ cost+~+----sz+·· · 

Fig. 24-1 

24.16. Obtain the Fourier series for y(t) = t, -n < t < n. 

We extend y(t) to an odd function of period 2n. (See Fig. 24-2). Again shifting to limits ( -n, n) we 
find all cxi = 0, and 

2 L" 2( -l)i-l 
f3i=- tsinjtdt=--.-

.7t' 0 1 

Thus ( 
sin 2t sin 3t sin 4t ) 

y(t)=2 sint--
2
-+-

3
---

4
-+ .. · 

Notice that the cosine series of Problem 24.15 converges more rapidly than the sine series. This is 
related to the fact that the y(t) of that problem is continuous, while this one is not. The smoother y(t) is, 
the more rapid the convergence. Notice also that at the points of discontinuity our sine series converges 
to zero, which is the average of the left and right extreme values (nand -n) of y(t). 
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Fig. 24-2 

. . . { t( JC - t)' 0 ~ t ~ JC 
24.17. Fmd the Founer senes for y(t) = ( ) 

t rc+t, -rc~t~O 

Extending the function to an odd function of period 2n, we have the result shown in Fig. 24-3. 
Notice that this function has no corners. At t = 0 its derivative is n from both sides, while both y'(n) 
and y ' (-n) are - n so that even the extended periodic function has no corners. This extra smoothness 
will affect the Fourier coefficients. Using limits ( -n, n) we again find all cxj = 0, and 

21" . 21"n-2t 41". 4(1-cosjn) 
[3j=- t(n-t)smjtdt=- --. -cosjtdt=----:z smjtdt= .3 

.7r 0 .7r 0 1 Jr] 0 Jr] 

The series is therefore 

The coefficients diminish as reciprocal cubes, which makes for very satisfactory convergence. The extra 
smoothness of the function has proved useful. 

Fig. 24-3 

24.18. Show that for the Bernoulli function 

O<x<1 man integer 

Bn(x) being a Bernoulli polynomial, the Fourier series is 

Fn (x) = ( -l)(n/2)+1n! [~] i COS 2nrckx 
(2rc) k=l k 

when n is even, and Fn(x) = ( -1)(n+l)/2n! [~] i sin 2:kx 
(2rc) k=l k 

when n is odd. This result was used in Problem 17.28 of the chapter on sums and series. 
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Since B1 (x) = x - t the series for F; (x) may be found directly from the coefficient formulas to be 

F;(x) =- ~ cin :nx +sin 24nx +sin 36nx + .. ·) 

Integrating, and recalling that 

for n > 0 

we soon find ( ) 
2 · 2! (cos 2nx cos 4nx cos 6nx ) 

Fz X = (2n? --1-+-2-z-+-3-z-+ ... 

The next integration makes 

( ) 
2 · 3! (sin 2nx sin 4nx sin 6nx ) 

F3 x = (2n? --1-+-2-3 -+-3-3-+ ... 

and an induction may be used to complete a formal proof. (Here it is useful to know that integration of 
a Fourier series term by term always produces the Fourier series of the integrated function. The 
analogous statement for differentiation is not generally true. For details see a theoretical treatment of 
Fourier series. 

24.19. How are the collocation coefficients of Problem 24.5, or of Problem 24.2, related to the 
Fourier coefficients of Problem 24.14? 

There are many ways of making the comparisons. One of the most interesting is to notice that in 
Problem 24.5, assuming y(x) to have the period P = 2L, we may rewrite ai as 

1 [ 1 1 2L-1 .7r J 
ai=-L -

2
y(O)+-y(2L)+ :2; y(x)cos-jx 

2 x~1 L 

and this is the trapezoidal rule approximation to the Fourier coefficient 

1 L2rr 1 L2L .7r 
ai=- y(t)cosjtdt=- y(x)cos-jxdx 

n o L o L 

Similar results hold for bi and {3i and for the coefficients in Problem 24.2. Since the trapezoidal rule 
converges to the integral for L becoming infinite, we see that the collocation coefficients converge upon 
the Fourier coefficients. (Here we may fix the period at 2n for convenience.) For an analogy with 
Chebyshev polynomials see Problems 21.53 to 21.55. 

LEAST SQUARES, CONTINUOUS DATA 

~.20. Determine the coefficients Ak and Bk so that the integral 

l
2.n: 

I= 0 [y(t)- TM(t)f dt 

M 

will be a minimum where TM(t) = !Ao + I: (Ak cos kt + Bk sin kt). 
k=l 

More or less as in Problem 24.6, we first find 

1 M X 

y(t)- TM(t) =- (ao- Ao) + L [(ak- Ak) cos kt + ({3k- Bk) sin kt] + :2; (ak cos kt + {3k sin kt) 
2 k-1 k~M+1 

and then square, integrate, and use the orthogonality conditions to get 

l=~(aa-A)2 +nf [(ak-Ak)2 +({3k-BkrJ+n i (a~+f3D 
2 k-1 k~M+1 
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For a minimum we choose all Ak = ak> Bk = f3k so that 

I min = n 2: C a~ + f3D 
k~M+l 

Again we have the important result that truncation of the Fourier series at k = M produces the 
least-squares sum TM(t). (Once again this is a special case of Problem 21.8.) The minimum integral may 
be rewritten as 

As M increases, this diminishes; and it is proved in the theory of Fourier series that /min tends to zero for 
M becoming infinite. This is called convergence in the mean. 

24.21. Find the least-squares sum with M = 1 for the function y(t) of Problem 24.15. 

Truncation brings T1(t) = n/2- (4/n) cost. This function is shown dashed in Fig. 24-1. Notice that 
it smooths the corners of y(t). 

SMOOTHING BY FOURIER ANALYSIS 

24.22. What is the basis of the Fourier analysis method for smoothing data? 

If we think of given numerical data as consisting of the true values of a function with random errors 
superposed, the true functions being relatively smooth and the superposed errors quite unsmooth, then 
the examples in Problems 24.15 to 24.17 suggest a way of partially separating functions from error. Since 
the true function is smooth, its Fourier coefficients will decrease quickly. But the unsmoothness of the 
error suggests that its Fourier coefficients may decrease very slowly, if at all. The combined series will 
consist almost entirely of error, therefore, beyond a certain place. If we simply truncate the series at the 
right place, then we are discarding mostly error. There will still be error contributions in the terms 
retained. Since truncation produces a least-squares approximation, we may also view this method as 
least-squares smoothing. 

24.23. Apply the method of the previous problem to the following data: 

X 0 1 2 3 4 5 6 7 8 9 10 

y 0 4.3 8.5 10.5 16.0 19.0 21.1 24.9 25.9 26.3 27.8 

X 11 12 13 14 15 16 17 18 19 20 

y 30.0 30.4 30.6 26.8 25.7 21.8 18.4 12.7 7.1 0 

Assuming the function to be truly zero at both ends, we may suppose it extended to an odd function 
of period P = 40. Such a function will even have a continuous first derivative, which helps to speed 
convergence of Fourier series. Using the formulas of Problem 24.9, we now compute the bj. 

j 1 2 3 4 5 6 7 8 9 10 

bj 30.04 -3.58 1.35 -.13 -.14 -.43 .46 .24 -.19 .04 

j 11 12 13 14 15 16 17 18 19 20 

bj .34 .19 .20 -.12 -.36 -.18 -.05 -.37 .27 
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The rapid decrease is apparent and we may take all bj beyond the first three or four to be largely error 
effects. If four terms are used, we have the trigonometric sum 

. :rrx 2:rrx . 3:rrx . 4:rrx 
T(x) = 30.04 Sill W- 3.58 sin 

20 
+ 1.35 Sill 20-.13 Sill 20 

The values of this sum may be compared with the original data, which were actually values of 
y(x)=x(400-x2)/100 contaminated by artificially introduced random errors. (See Table 24.1). The 
RMS error of the given data was 1.06 and of the smoothed data .80. 

Table 24.1 

X Given Correct Smoothed X Given Correct Smoothed 

1 4.3 4.0 4.1 11 30.0 30.7 29.5 

2 8.5 7.9 8.1 12 30.4 30.7 29.8 

3 10.5 11.7 11.9 13 30.6 30.0 29.3 

4 16.0 15.6 15.5 14 26.8 28.6 28.0 

5 19.0 18.7 18.6 15 25.7 26.2 25.8 

6 21.1 22.7 21.4 16 21.8 23.0 22.4 

7 24.9 24.6 23.8 17 18.4 18.9 18.0 

8 25.9 26.9 25.8 18 12.7 13.7 12.6 

9 26.3 28.7 27.4 19 7.1 7.4 6.5 

10 27.8 30.0 28.7 20 

24.24. Approximate the derivative y'(x) = (400- 3x2)/100 of the function in the preceding problem 
on the basis of the same given data. 

First we shall apply the formula 

y'(x) =~ [ -2y(x- 2)- y(x -1) + y(x -1) + 2y(x + 2)] 

derived earlier from the least-squares parabola for the five arguments x - 2, ... , x + 2. With similar 
formulas for the four end arguments, the results form the second column of Table 24.2. Using this local 
least-squares parabola already amounts to local smoothing of the original x, y data. We now attempt 
further overall smoothing by the Fourier method. Since the derivative of an odd function is even, the 
formula of Problem 24.11 is appropriate. 

1 1 19 :rr 
aj =-

20 
[y'(O) + y'(20) cosj:rr] +-

1 
LY'(x) cos- jx 

0 x~l 20 

These coefficients may be computed to be 

j 0 1 2 3 4 5 6 7 8 9 10 

aj 0 4.81 -1.05 .71 -.05 .05 -.20 .33 .15 .00 .06 

j 11 12 13 14 15 16 17 18 19 20 

aj .06 .06 -.03 .11 .06 .14 -.04 .16 -.09 .10 

Again the sharp drop is noticeable. Neglecting all terms beyond j = 4, we have 

:rrx 2:rrx 3:rrx 4:rrx 
y'(x) = 4.81 cos2Q -1.05 cos

20 
+ .71 cos20- .05 cos20 
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Computing this for x = 0, ... , 20 produces the third column of Table 24.2. The last column gives the 
correct values. The RMS error in column 2, after local smoothing by a least-squares parabola, is .54, 
while the RMS error in column 3, after additional Fourier smoothing, is .39. 

Table 24.2 

X Local Fourier Correct X Local Fourier Correct 

0 5.3 4.4 4.0 11 1.1 .5 .4 

1 4.1 4.4 4.0 12 -.1 -.1 -.3 

2 3.8 4.1 3.9 13 -1.2 -.9 -1.1 

3 3.7 3.8 3.7 14 -2.2 -1.8 -1.9 

4 3.4 3.4 3.5 15 -2.9 -2.9 -2.8 

5 3.4 3.0 3.2 16 -3.6 -4.0 -3.7 

6 2.6 2.5 2.9 17 -4.6 -5.0 -4.7 

7 1.9 2.1 2.5 18 -5.5 -5.8 -5.7 

8 1.5 1.8 2.1 19 -7.1 -6.4 -6.8 

9 1.2 1.4 1.6 20 -6.4 -6.6 -8.0 

10 1.3 1.0 1.0 

COMPLEX FORMS 

24.25. Prove the following orthogonality property of the functions eijx, eikx for j and k integers. The 
overbar denotes a complex conjugate. 

1
2"'~ "kx { 0 

e'1xe• dx = 
o 2n 

if ki=j 

if k = j 

The proof is elementary, the integral reducing at once to 

12n ei(k-j) dx = __ 1_ ei(k-j)x 12"' 
0 i(k- j) 0 

for k * j. But this is equal to one at both limits, hence zero. For k = j, the left side above is 
clearly 2n. 

24.26. Derive the formula for Fourier coefficients in complex form. 

The proof takes a familiar path. The Fourier series is 

f(x) = L fJe'jx 
j=-X. 

Multiplying by e'kx and integrating brings 

and since all terms on the right vanish by orthogonality except the one for j = k, the required result is 
found. 
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24.27. Show that the functions eijx", eikx" are orthogonal in the following sense. 

N-1_ {N 2: eijxneikxn = 
n=O 0 

Here as before Xn = 2nn/N. 

We will find a geometric sum with ratio r = e1
<k-il

2
"

1
N. 

N-1 N-1 

if k = j 
if k=t=j 

L eijxneikxn = L ei(k-j)xn = ei(k-j)xo(l + r + r2 + ... + ,N-1) 

n=O n=U 
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For j = k we haver= 1 and the sum is N. Otherwise the sum of the powers of r is (1- rN)/(1- r) by a 
familiar formula. But rN is e2"1

(k-jJ which is 1, making the numerator zero and establishing the 
orthogonality. 

24.28. Show that if N = 21 + 1 then the trigonometric sum 
I 

L djeijx 

j=-1 

must have coefficients dj = ft if it is to collocate with the function f(x) at Xn = 2nn/ N. 

Assume that collocation occurs, multiply by e1kx" and sum. 

N-1 N-1 I I N-1 

2: tcx")eikx" = 2: eikx" 2: djeijx" = 2: dj 2: eikx"eijx" 
n=O n=O j=-1 j=-1 n=O 

Again all terms on the right are zero except one, for j = k, and we have 
N-1 

L f(xn)eikxn = dk(N) = J:N 

24.29. How are the coefficients ft related to discrete Fourier transforms? 

Let V be the vector with components f(x 0 ), ••• , f(xN_ 1). For N = 21 + 1 this makes V (21 + 1)
dimensional, as is the vector of coefficients ft for the trigonometric sum 

I 

L f/eijx 
j~-1 

in which 

for j = -I to j =I. Comparing with 
N-1 N-1 

vJ = L vnw1J = L f(xn)e- 11x" 
n=O n=O 

where x" = 2nn/N, and j = 0 to j = N -1, the match is conspicuous. We do have one problem: the 
ranges of validity do not coincide. But we may deduce that where the ranges overlap, from j = 0 to j =I, 

vJ =Nft j =0, ... 'I 

Now we observe that 

N-1 N-1 

vJ+N = L f(xn)e-i(j+N)xn = L f(xn)e-ijxn 
n =0 n =0 

for j + N = 0, ... , N- 1 or j = -1, ... , - N. Once again we have a match, this time for j = -1 to 
j= -1. 

Vj+N=Nf/ j = -1, ... ' -1 



320 TRIGONOMETRIC APPROXIMATION [CHAP. 24 

Apart from the factor 1/N the components vJ do, therefore, match the coefficients ft, though in a 
slightly scrambled order. Taking the v J in their natural order v[; to v~ it is easy to verify that the order 
of the coefficients will be this. 

f~, ... ,f7 

24.30. Work through the details of the preceding problem for the simple example V = (1, 0, -1). 

Here N = 3 and l = 1. 

2 2 

3ft= L f(xn)e-ifxn = L f(xn)w~" = 1- wf 
n=O n=O 

This makes 3[ri=O 3fj = 1- w~ 

and we have the three coefficients directly. Turning to the transform, 

2 

vJ = L f(xn)w~" = 1- wf 
n=O 

we find v[; =0 vi= 1- w~ 

and the correspondence discovered in Problem 24.29 is confirmed. 

24.31. What is the central idea behind the Fast Fourier Transform? 

When N is the product of integers, the numbers ft prove to be closely interdependent. This 
interdependence can be exploited to substantially reduce the amount of computing required to generate 
these numbers. 

24.32. Develop the FFT for the simplest case, when N is the product of two integers t1 and t2 • 

Let j = j1 + t1j2 and n = n2 + t2n1. Then for j1, n1 = 0 to t1- 1, and j2, n2 = 0 to t2- 1 both j and n 
run their required ranges 0 to N- 1. Now 

since t1 t2 = N and wZ = 1. The transform can then be written as a double sum 
t 2 -t t 1-1 

vT = L L v"w1/z"to/;/z+tlh"z 
nz=O n 1=0 

This can also be arranged in a two-step algorithm. 

tt-l 

F;(j1, n2) = L vnwf;,'2"1 
n 1=0 

tz-1 

vJ = F2(j1, j2) = L F;(j1, n2)wJ;."z+t,iznz 
nz=O 

24.33. What is the gain in computing efficiency if the FFT of Problem 24.32 is used? In other words, 
just how fast is the Fast Fourier Transform? 

To compute F; there are t1 terms to be processed; to compute Fz there are t2. The total is t 1 + t2. 
This must be done for each (j1, n2) and (j1,j2) pair, or N pairs. The final count is thus N(t1 + t2) terms 
processed. The original form of the transform 

N-1 

vJ = L VnW~ 
n=O 

processed N terms for each j, a total of N 2 terms. The gain in efficiency, if measured by this standard, is 



CHAP. 24] TRIGONOMETRIC APPROXIMATION 321 

thus 

and depends very much upon N. For a small data set, say N = 12 = 3 X 4, the FFT will need about -lz the 
computing time of a direct approach. This is hardly significant but points out the direction of things to 
come. 

24.34. Run the FFT of Problem 24.32 for the following vector: 

2 4 5 

0 -1 -1 0 

The small scale of the problem, N = 6, makes it easy to see all the detail. Here N = t 1 t2 = 2 X 3 so we 
first find the F; values from 

1 

F;(jJ, nz) = L VnW~1 " 1 

n1=0 

and they prove to be the following, with w = w 6 • 

F;(O, 0) = Vo + V3 = 0 

F;(O, 1)=v1 +v4 =0 

F;(O, 2) = V 2 + Vs = 0 

F;(1, 0) = Vo- V3 = 0 

F;(1, 1) = Vt- V4 = 2 

F;(1, 2) = V 2 - Vs = 2 

2 

Then vJ = F;(j 1 , j 2 ) = L F;(j1 , n2 )whnz+'th"z 
nz=O 

leading to, since j = j 1 + 2j2 

and similarly 

v'{; = Fz(O, 0) = Vo + Vt + V 2 + v 3 + V4 + Vs = 0 

v'[ = F2 (1, 0) = F;(1, 0) + F;(1, 1)w + F;(1, 2)w 2 = 2w + 2w2 = 2V'3 i 

vJ = F;(O, 1) = F;(O, 0) + F;(O, 1)w2 + F;(O, 2)w 4 = 0 

vJ = F;(1, 1) = F;(1, 0) + F;(1, 1)w3 + F;(1, 2)w 6 = 0 

vi= F;(O, 2) = 0 

vi= Fz(1, 2) = -2v3 i 

Note that Nt1 terms were involved in computing the F; values and Nt2 terms in getting F;, a total of 
12 + 18 = 30 terms. The direct computation would have used 36 and would confirm the results just 
found. Also note the order of processing j 1 , j 2 pairs. In programming language, the j 2 loop is external to 
the j 1 loop. 

24.35. Extend the FFT of Problem 24.32 to the case N = t 1t 2 t3 • 

The details will suggest the way to generalization for still longer products. Let 

j = jl + tljz + tlt2j3 

and observe that of the nine possible power terms in 

three will contain the product t1t2t3 and may be neglected since wZ = 1. The remaining six may be 
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grouped as follows in the transform, 

with n 1 appearing only in the inner sum and n 2 not appearing in the outer. As before, this triple sum can 
be expressed as an algorithm, this time having three steps. 

~I-1 

F;(ju nz, n3) = L VnW~1312" 1 

t2-I 

F;(jl, jz, n3) = L F;(j1, nz, n3)W~1 + 11 izl'3"2 

t3-1 

vJ = F;Uu jz, h)= 2: FzU1, jz, n3)w~I+'Iiz+'1 '2i3)n, 
n 3=0 

This is the required FFT. 

24.36. Estimate the saving in computing time if this algorithm is used. 

At each of the three steps the number of triples, such as (j1, n2 , n3), that must be processed is 
t1t2 t3 = N. In the sums we find the number of terms to be t1, t2 , t3 in turn. This makes a total of 
N(t1 + t2 + t3) terms altogether. The transform as defined still uses N 2 terms, so the efficiency of the FFT 
may be estimated as 

N 

If, for instance, N = 1000 = 10 x 10 x 10, then only 3 percent of the original1,000,000 terms are needed. 

24.37. Run the FFT algorithm of Problem 24.35 manually for this input vector. 

0 2 4 6 7 

1+i i -1 -1 -1-i -i 1-i 

We have N = 8 = 2 x 2 x 2, making j = j 1 + 2jz + 4j3 and n = n 3 + 2n2 + 4n1. The formula for F1 
is then 

and we have 

1 

F;(j1, nz, n3) = L VnW~1 " 1 

F;(O, 0, 0) = Vo + V4 = 0 

F;(O, 0, 1) = V1 + V 5 = 0 

F;(O, 1, 0) = Vz + v6 = 0 

F;(O, 1, 1)=v3+v?=O 

n 1=0 

F;(1, 0, 0) = v 0 + V4 W4 = 2 

F;(l, 0, 1) = V1 + V 5W
4 = 2 + 2i 

F;(1, 1, 0) = V 2 + v 6w 4 = 2i 

F;(1, 1, 1) = v 3 + v 7 w 4 = 2i- 2 

with w8 abbreviated to w. Notice the Nt 1 = 8 x 2 terms used. Next we use 

to compute 

F;(O, 0, 0) = 0 

F2 (0, 0, 1) = 0 

Fz(O, 1, 0) = 0 

F;(O, 1, 1) = 0 

1 

Fz(j1, jz, n3) = L F;(j1, nz, n3)W 2(iJ+Ziz)n2 

nz=O 

F;(1, 0, 0) = F;(1, 0, 0) + F;(1, 1, O)w2 = 4 

F;(1, 0, 1) = F;(1, 0, 1) + F;(1, 1, 1)w2 = 4 + 4i 

F;(1, 1, 0) = F;(1, 0, 0) + F;(1, 1, O)w6 = 0 

F;(1, 1, 1) = F;(1, 0, 1) + F;(1, 1, 1)w6 = 0 
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to get the transform 
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I 

v[ = F3(jJ, jz, j3) = L Fz(j1, jz, n3)wj"3 
"3=0 

v[ = F;(O, 0, 0) = F;(O, 0, 0) + F;(O, 0, 1) = 0 

v[ = F;(1, 0, 0) = F;(1, 0, 0) + F;(1, 0, 1)w = 4 + 4\12 

vi= F;(O, 1, 0) = F;(O, 1, 0) + F;(O, 1, 1)w2 = 0 

vJ = f;(1, 1, 0) = F;(1, 1, 0) + F;(1, 1, 1)w3 = 0 

vi= F;(O, 0, 1) = F;(O, 0, 0) + F;(O, 0, 1)w4 = 0 

vJ = F3(1, 0, 1) = F;(1, 0, 0) + F;(1, 0, 1)w5 = 4-4\12 

vr = F3(0, 1, 1) = F;(O, 1, 0) + F;(O, 1, 1)w6 = 0 

vJ = F;(1, 1, 1) = F;(1, 1, 0) + F;(1, 1, 1)w7 = 0 
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A total of N(t1 + t2 + t3) = 48 terms have been processed, only a slight saving from N 2 = 64 because of 
the problem's small scale. 

24.38. The inverse discrete transform may be defined by 

1 N-1 . 1 N-1 . 

uJ;T =- 2: U/u-'k =- 2: uje'kxi 
N j=O N j=O 

Show that this definition does give an inverse relationship by inserting uj = v J and discovering 
that uJ;T = vk. That is, the components of the original vector V are regained. 

It may be useful to first rewrite the result of Problem 24.31 using 

to obtain 
N-1 . {N 2: wl"w-kn = 
n~o 0 

for j, kin the interval (0, N -1). Now 

if k = j 
if k =F j 

and the last sum being zero, unless n takes the value k, we soon have the anticipated vk. 

24.39. Invert the transform found in Problem 24.37. 

The FFf could be used, but in view of the large number of zero components this is a good chance 
to proceed directly. 

7 

8u0T = 2: v[ = 8 
j~O 

8u~T = ± VrW-j = (4 + 4\12)w-l + (4- 4\12)w-5 

j=O 

=8(1 + i) 

8UzT = ± VrW-Zj = (4 + 4\12)w-2 + (4- 4\12)w-!O 
j~O 

= 8i UzT = i = V3 

The remaining components may be verified as Problem 24.63. 
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Supplementary Problems 

24.40. Apply the method of Problem 24.2 to the data below. 

I : I 
0 2 3 4 

0 2 0 

24.41. Derive the coefficient formulas of Problem 24.5. 

24.42. Apply the method of Problem 24.5 to the following data: 

I : I 
0 2 3 4 

0 2 2 0 

24.43. Use the result of Problem 24.6 to obtain least-squares sums Ta(x) and I;(x) for the data of Problem 
24.40. 

24.44. Imitate the argument of Problem 24.6 to obtain a somewhat similar result for the case of an even 
number of x arguments. 

24.45. Apply the preceding problem to the data of Problem 24.42. 

24.46. Extend the data of Problem 24.40 to an odd function of period 8. Find a sum of sines to represent this 
function. 

24.47. Extend the data of Problem 24.40 to an even function of period 8. Find a sum of cosines to represent 
this function. 

24.48. Show that the Fourier series for y(x) = JsinxJ, the "fully rectified" sine wave, is 

y (x) = i (!_cos 2x _cos 4x _cos 6x _ .. ·) 
TC 2 1·3 3·5 5·7 

24.49. Show that the Fourier series for y (x) = x2 for x between - TC and rc, and of period 2rc, is 

TC2 ~ ( -1)k- 1 COS kx 
y (x) =-- 4 2: 2 

3 k~1 k 

Use the result to evaluate the series ~ ( -1)k- 1 I k2 and ~ 1/ e. 
k~1 k~1 

24.50. Use the Fourier series of Problem 24.15 to evaluate ~ 1/(2k- 1f. 
k~1 

24.51. Use the Fourier series of Problem 24.16 to show that rc/4 = 1- t +!- ~ + · · ·. 

24.52. Use the series of Problem 24.17 to evaluate 1-1/33 + 1/53 -1/73 + · · · . 

24.53. What is the four-term least-squares trigonometric approximation to the function of Problem 24.48? 
What is the two-term least-squares approximation? 

24.54. Apply Fourier smoothing to the following data, assuming that the end values are actually zero and 
extending the function as an odd function. Also try other methods of smoothing, or combinations of 
methods. Compare results with the correct values y (x) = x (1 - x) from which the given data were 
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obtained by the addition of random errors of up to 20 percent. The arguments are x = 0(.05)1. 

.00, .06, .10, .11, .14, .22, .22, .27, .28, .21, .22, .27, .21, .20, .19, .21, .19, .12, .08, .04, 00 

24.55. Verify the coefficient relationships 

given in the introductory section, and the inverse relations 

c.= ai- ibi 
1 2 

Deduce that if the ai, bi are real, then ci and c_i must be complex conjugates. Recalling that for the 
collocation trigonometric polynomial, we have ci = ft, and assuming ai, bi, and f(x) all real, show that 

2 N-1 

ai = 2 Re(ft) =- L f(xn) cosjxn 
N n~o 

2 N-1 

bi = -2 Im(ft) =- L f(xn) sinjxn 
N n~o 

24.56. Proceed as in Problem 24.30 using V = (1, -1, 0). 

24.57. Proceed as in Problem 24.34 using this vector V: 

2 3 4 

0 0 

24.58. Proceed as in Problem 24.37 using this vector V: 

0 2 3 4 6 7 

1+i 0 1-i 0 1+i 0 1-i 

24.59. Confirm the result of Problem 24.58 by applying the original transform 
N-1 

vJ = L VnW~ 
n=O 

24.60. Using elementary calculus show that if t 1t2 = N, then the minimum of t 1 + t2 occurs for t 1 = t2 • Extend 
this result to the case t 1t2 t3 = N. What is the implication for the FFT? 

24.61. Invert the transform found in Problem 24.30. 

24.62. Apply the FFT of Problem 24.32 to invert the output of Problem 24.34. 

0 2 3 4 -2~,, 0 0 0 0 

24.63. Complete the inversion begun in Problem 24.39. 

24.64. Make the same inversion using an FFT. 



Chapter 25 

Nonlinear Algebra 

ROOTS OF EQUATIONS 

The problem treated in this chapter is the ancient problem of finding roots of equations or of 
systems of equations. The long list of available methods shows the long history of this problem and 
its continuing importance. Which method to use depends upon whether one needs all the roots of a 
particular equation or only a few, whether the roots are real or complex, simple or multiple, whether 
one has a ready first approximation or not, and so on. 

1. The iterative method solves x = F(x) by the recursion 

Xn = F(xn-1) 

and converges to a root if IF'(x )I~ L < 1. The error en = r- xn, where r is the exact root, 
has the property 

en= F'(r)en- 1 

so that each iteration reduces the error by a factor near F'(r). If F'(r) is near 1 this is slow 
convergence. 

2. The !!.2 process can accelerate convergence under some circumstances. It consists of the 
approximation 

which may be derived from the error property given above. 
3. The Newton method obtains successive approximations 

f(xn-1) 
Xn = Xn-1- f'(xn-1) 

to a root of f(x) = 0 and is unquestionably a very popular algorithm. Iff' (x) is complicated, 
the previous iterative method may be preferable, but Newton's method converges much 
more rapidly and usually gets the nod. The error en here satisfies 

f"(r) 
en= - 2f'(r) e~-1 

This is known as quadratic convergence, each error roughly proportional to the square of 
the previous error. The number of correct digits almost doubles with each iteration. 

The square root iteration 

is a special case of Newton's method, corresponding to f(x) = x2
- Q. It converges 

quadratically to the positive square root of Q, for Q > 0. 
The more general root-finding formula 

X~-1- Q 
Xn = Xn-1- px~=~ 

is also a special case of Newton's method. It produces a pth root of Q. 

4. Interpolation methods use two or more approximations, usually some too small and some 

326 
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too large, to obtain improved approximations to a root by use of collocation polynomials. 
The most ancient of these is based on linear interpolation between two previous 
approximations. It is called regula falsi and solves f(x) = 0 by the iteration 

(Xn-l- Xn-2)f(xn-J) 
Xn = Xn-l f(xn-J)- f(xn-2) 

The rate of convergence is between those of the previous two methods. A method based on 
quadratic interpolation between three previous approximations x 0 , x 1 , x2 uses the formula 

2C 

B ±VB2 -4AC 

the expressions for A, B, C being given in Problem 25.18. 

5. Bernoulli's method produces the dominant root of a real polynomial equation 

aaxn + alxn-l + ... +an = 0 

provided a singie dominant root exists, by computing a solution sequence of the difference 
equation 

and taking lim (xk+dxk). The initial values X-n+l = · · · = x_ 1 = 0, x0 = 1 are usually used. If 
a complex conjugate pair of roots is dominant, then the solution sequence is still computed, 
but the formulas 

- 2r cos cp xk+Jxk-2- xk-lxk 

x~-l- xkxk-2 

serve to determine the roots as r1 , r2 = r( cos cf> ± i sin cf> ). 

6. Deflation refers to the process of removing a known root from a polynomial equation, 
leading to a new equation of lower degree. Coupled with Bernoulli's method, this permits 
the discovery of next-dominant roots one after another. In practice it is found that continued 
deflation determines the smaller roots with diminishing accuracy. However, using the results 
obtained at each step as starting approximations for Newton's method often leads to 
accurate computation of all the roots. 

7. The quotient-difference algorithm extends Bernoulli's method and may produce all roots of 
a polynomial equation, including complex conjugate pairs, simultaneously. It involves 
computing a table of quotients and differences (resembling a difference table) from which 
the roots are then deduced. The details are somewhat complicated and may be found in 
Problems 25.25 to 25.32. 

8. Sturm sequences offer another historical approach to the real roots of an equation, again 
producing them more or less simultaneously. A Sturm sequence 

fo(x), [J(x), ... , fn(x) 

meets five conditions as listed in Problem 25.33. These conditions assure that the number 
of real zeros of f0(x) in the interval (a, b) is precisely the difference between the number of 
sign changes in the sequence f0(a), [J(a), ... , fn(a) and the corresponding number in 
f0(b ), [J(b ), ... , fn(b ). By choosing various intervals (a, b) the real zeros can therefore be 
located. When fo(x) is a polynomial, a suitable Sturm sequence may be found by using the 
Euclidean algorithm. Letting [J(x) = fb(x), the rest of the sequence is defined by 

fo(x) = [J(x)L1(x)- fz(x) 

[J(x) = f2(x)L2(x)- fz(x) 
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Like the deflation and quotient-difference methods, Sturm sequences can be used to obtain 
good starting approximations for Newton iterations, which then produce highly accurate 
roots at great speed. 

SYSTEMS OF EQUATIONS AND OPTIMIZATION PROBLEMS 

Systems of equations respond to generalizations of many of the previous methods and to other 
algorithms as well. We choose three. 

1. The iterative method, for example, solves the pair of equations 

x = F(x, y) y=G(x,y) 

by the formulas Yn = G(xn-1' Yn-1) 

assuming convergence of both the xn and Yn sequences. Newton's method solves 

f(x,y)=O 

through the sequences defined by 

g(x,y)=O 

Yn = Yn-1 + kn-1 

with hn-1 and kn- 1 determined by 

fx(xn-1' Yn-1)hn-1 + [y(xn-1' Yn-1)kn-1 = - f(xn-1' Yn-1) 

8x(Xn-1' Yn-1)hn-1 + 8y(Xn-1' Yn-1)kn-1 = - g(xn-1' Yn-1) 

More generally, the system 

F(x) = 0 

in which F, x, and 0 are vectors of n dimensions, may respond to the iteration 

x<n) = G(x<n-1)) 

obtained by a rearrangement of the original system, with a suitable initial vector x<0l. Or the 
Newton approach can be expressed in a compact vector-matrix form beginning with the 
Taylor series 

F(x<n-1) +h)= F(x<n-1)) + J(x<n-1))h + ... 

ignoring the higher-order terms and setting the left side to the zero vector. The result is a 
linear system for h 

which can even be written 

J(x<n-1))h = - F(x<n-1)) 

h = - r1(x<n-1l)F(x<n-1l) 

The matrix J is called the Jacobian of F and has the elements 

a[; 
I;j=-a 

Xj 

where [; and xj are components of F and x. With an accurate initial approximation, and a 
cooperative F, the error decreases quadratically in the sense 

but it must be pointed out that this quadratic convergence can be elusive. Finding 
sufficiently accurate first approximations is not always easy with systems of equations and 
Newton approximations sometimes wander about. In some cases it has been found that the 
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shortened step 
x<n) = x<n- 1) + kn k < 1 

does better, with k chosen to assure that the norm ofF decreases. 

IIF(x(n))ll < IIF(x<n-1))11 

In this way each step improves the situation. The device has been called the damped 
Newton method. 

2. Optimization methods are based upon the idea that the system F = 0, or J: = 0 for 
i = 1, ... , n, is solved whenever the function 

s = fi + ~~ + ... + ~~ 
is minimized, since the minimum clearly occurs when all the/; are zero. Direct methods for 
seeking this minimum, or descent methods, have been developed. For example, the 
two-dimensional problem (with a familiar change of notation) 

f(x,y)=O g(x,y)=O 

is equivalent to minimizing this sum 

S(x,y)=/2+g2 

Beginning at an initial approximation (x0 , y0 ), we select the next approximation in the form 

Y1 =Yo- tSyo 

where Sxo and Syo are the components of the gradient vector of S at (x0 , y0 ). Thus progress is 
in the direction of steepest descent and the algorithm is known as the steepest descent 
algorithm. The number t may be chosen to minimize S in this direction, though alternatives 
have been proposed. Similar steps then follow. The method is often used to provide initial 
approximations to the Newton method. 

The above equivalence is, of course, often exploited in the opposite way. To optimize a 
functionf(x 1 , ••• , xn), one looks for places where the gradient off is zero 

grad (f)= (!1, /2, ... , fn) = (0, 0, ... , 0) 

Here J: denotes the partial derivative off relative to X;. The optimization is then attempted 
through the solution of the system of n nonlinear equations. 

3. Bairstow's method produces complex roots of a real polynomial equation p(x) = 0 by 
applying the Newton method to a related system. More specifically, division of p(x) by a 
quadratic polynomial suggests the identity 

p(x) = (x 2
- ux- v)q(x) + r(x) 

where r(x) is a linear remainder 

r(x) = bn_ 1(u, v)(x- u) + bn(u, v) 

The quadratic divisor will be a factor of p(x) if we can choose u and v so that 

This is the system to which Newton's method is now applied. Once u and v are known, a 
complex pair of roots may be found by solving 

x 2
- ux- v = 0 
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Solved Problems 

THE ITERATIVE METHOD 
25.1. Prove that if r is a root of f(x) = 0 and if this equation is rewritten in the form x = F(x) in 

such a way that IF'(x)l ~ L < 1 in an interval I centered at x = r, then the sequence 
Xn = F(xn_ 1) with x0 arbitrary but in the interval I has lim Xn = r. 

First we find 

iF(x)- F(y)i = IF'(s)(x- Y)i ~ L ix- Yi 

provided both x and y are close to r. Actually it is this Lipschitz condition rather than the more 
restrictive condition on F'(x) which we need. Now 

so that, since L < 1, each approximation is at least as good as its predecessor. This guarantees that all 
our approximations are in the interval /, so that nothing interrupts the algorithm. Applying the last 
inequality n times, we have 

and since L < 1, lim Xn = r. 
The convergence is illustrated in Fig. 25-1. Note that choosing F(xn_ 1) as the next Xn amounts to 

following one of the horizontal line segments over to the line y = x. Notice also that in Fig. 25-2 the case 
IF'(x)l > 1leads to divergence. 

y =F(x) 

;::....----4----..::::..."'---y = F(J·) 
X ·'" 

Fig. 25-1 Fig. 25-2 

25.2. In the year 1225 Leonardo of Pisa studied the equation 

f(x) = x3 + 2x2 +lOx- 20 = 0 

and produced x = 1. 368,808,107. Nobody knows by what method Leonardo found this value 
but it is a remarkable result for his time. Apply the method of Problem 25.1 to obtain this 
result. 

The equation can be put into the form x = F(x) in many ways. We take x = F(x) = 20/(x2 + 2x + 10) 
which suggests the iteration 

20 
Xn X~-l + 2xn-l + 10 

With x0 = 1 we find x1 = ~ = 1.538461538. Continuing the iteration produces the sequence of Table 25.1. 
Sure enough, on the twenty-fourth round Leonardo's value appears. 
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Table 25.1 

n Xn n Xn 

1 1.538461538 13 1.36881787 4 

2 1.295019157 14 1.368803773 

3 1.401825309 15 1.368810031 

4 1.354209390 16 1.368807254 

5 1.375298092 17 1.368808486 

6 1.365929788 18 1.368807940 

7 1.370086003 19 1.368808181 

8 1.368241023 20 1.368808075 

9 1.369059812 21 1.368808122 

10 1.368696397 22 1.368808101 

11 1.368857688 23 1.368808110 

12 1.368786102 24 1.368808107 

25.3. Why is the convergence of the algorithm of the previous problem so slow? 

The rate of convergence may be estimated from the relation 

en= r- Xn = F(r)- F(xn-1) = F'(s)(r- Xn-1) = F'(s)en-1 

which compares the nth error en with the preceding error. As n increases we may take F'(r) as an 
approximation to F'(s), assuming the existence of this derivative. Then en= F'(r)en-l· In our example, 

(r2 + 2r + 10? 
F'(r)= 

40(r + 1) 
-.44 

making each error about -.44 times the one before it. This suggests that two or three iterations will be 
required for each new correct decimal place, and this is what the algorithm has actually achieved. 

25.4. Apply the idea of extrapolation to the limit to accelerate the previous algorithm. 

This idea may be used whenever information about the character of the error in an algorithm is 
available. Here we have the approximation en =F'(r)en-l· Without knowledge of F'(r) we may still 
write 

Dividing we find 

and solving for the root r:::::::: Xn+Z 

r- Xn+l = F'(r)(r- Xn) 

r- Xn+2 = F'(r)(r- Xn+l) 

r-xn+l= r-xn 
r-xn+Z r-xn+I 

(xn+2- Xn+l? 
Xn+2- 2xn+l + Xn 

This is often called the Aitken .1.2 process. 

25.5. Apply extrapolation to the limit to the computation of Problem 25.2. 

Using x 10 , x 11 , and x 12 , the formula produces 

r = 1.368786102 (.000071586? 1.368808107 
-. 000232877 

which is once again Leonardo's value. With this extrapolation, only half the iterations are needed. Using 
it earlier might have made still further economies by stimulating the convergence. 
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25.6. Using extrapolation to the limit systematically after each three iterations is what is known as 
Steffensen's method. Apply this to Leonardo's equation. 

The first three approximations x0 , x1 , and x2 may be borrowed from Problem 25.2. Aitken's 
formula is now used to produce x3 : 

(xz -x~? 
Xz-2xl +xo 

1.370813882 

The original iteration is now resumed as in Problem 25.2 to produce x4 and x5 : 

x5 = F(x4) = 1.369203162 

Aitken's formula then yields x6 : 

(xs-x4? 
Xs- 2x4 +x3 

1.368808169 

The next cycle brings the iterates 

X7 = 1.368808080 X 8 = 1.368808120 

from which Aitken's formula manages x9 = 1.368808108. 

25.7. Show that other rearrangements of Leonardo's equation may not produce convergent 
sequences. 

As an example we may take x = (20- 2x2
- x3)/10 which suggests the iteration 

20- 2x~-l- X~-1 
10 

Again starting with x0 = 1, we are led to the sequence 

x~=l.70 

X 2 = .93 

x1 = 1.83 

x8 = .72 

and so on. It seems clear that alternate approximations are headed in opposite directions. Comparing 
with Problem 25.1 we find that here F'(r)=(-4r-3r2)/10<-1, confirming the computational 
evidence. 

THE NEWTON METHOD 

25.8. Derive the Newton iterative formula Xn = xn-I- f'((xn-I) for solvingf(r) = 0. 
f Xn-I) 

Beginning with Taylor's formula 

we retain the linear part, recall that f(r) = 0, and define Xn by putting it in place of the remaining r to 
obtain 

25.9. What is the geometric interpretation of Newton's formula? 

It amounts to using the tangent line toy= f(x) at Xn-l in place of the curve. In Fig. 25-3 it can be 
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Fig. 25-3 

seen that this leads to 

which is once again Newton's formula. Similar steps follow, as suggested by the arrow. 

25.10. Apply Newton's formula to Leonardo's equation. 

With f(x) = x 3 + 2x2 +lOx- 20 we find f'(x) = 3x2 + 4x + 10, and the iterative formula becomes 

X~-l + 2x~-I + lOxn-1- 20 
3x~_ 1 + 4xn-I + 10 

Once more choosing x0 = 1, we obtain the results in Table 25.2. 

Table 25.2 

n 1 2 3 

Xn 1.411764706 1.369336471 1.368808189 

4 

1.368808108 

The speed of convergence is remarkable. In four iterations we have essentially Leonardo's value. In 
fact, computation shows that 

[(1.368808107) = -.000000016 

[(1.368808108) = -.000000005 

which suggests that the Newton result is the winner by a nose. 

25.11. Explain the rapid convergence of Newton's iteration by showing that the convergence is 
"quadratic." 

Recalling the equations of Problem 25.8 which led to the Newton formula, 

we subtract to obtain 

or, letting en= r- Xn, 

1 
f(r) = f(xn 1) + (r- Xn-t)f'(xn-1) + 2 (r- Xn-t?f"(s) 

0 = f(xn-1) + (Xn -Xn-t)f'(xn-1) 

0 = (r -xn)f'(xn-I) +~ (r -xn-t?f"(s) 

1 
0 = enf'(xn-1) + 2 e~-lf"( s) 

Assuming convergence, we replace both Xn-l and s by the root rand have 
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Each error is therefore roughly proportional to the square of the previous error. This means that the 
number of correct decimal places roughly doubles with each approximation and is what is called 
quadratic convergence. It may be compared with the slower, linear convergence in Problem 25.3, where 
each error was roughly proportional to the previous error. Since the error of our present x3 is about 
.00000008, and [f"(r)]/[2/'(r)] is about .3, we see that if we had been able to carry more decimal places 
in our computation the error of x4 might have been about two units in the fifteenth place! This superb 
speed suggests that the Newton algorithm deserves a reasonably accurate first approximation to trigger 
it, and that its natural role is the conversion of such a reasonable approximation into an excellent one. 
In fact, other algorithms to be presented are better suited than Newton's for the "global" problem of 
obtaining first approximations to all the roots. Such methods usually converge very slowly, however, and 
it seems only natural to use them only as a source of reasonable first approximations, the Newton 
method then providing the polish. Such procedures are very popular and will be mentioned again as we 
proceed. It may also be noted that occasionally, given an inadequate first approximation, the Newton 
algorithm will converge at quadratic speed, but not to the root expected! Recalling the tangent line 
geometry behind the algorithm, it is easy to diagram a curve for which this happens, simply putting the 
first approximation near a maximum or minimum point. 

25.12. Show that the formula for determining square roots, 

Xn = 2~ (xn-1 + .lL) 
Xn-1 

is a special case of Newton's iteration. 

With f(x) = x2
- Q, it is clear that making f(x) = 0 amounts to finding a square root of Q. Since 

f'(x) = 2x, the Newton formula becomes 

X~-!- Q 1 ( Q ) 
Xn =Xn-!-~=z Xn-! + Xn-l 

25.13. Apply the square root iteration with Q = 2. 

Choosing x0 = 1, we find the results in Table 25.3. Notice once again the quadratic nature of the 
convergence. Each result has roughly twice as many correct digits as the one before it. Figure 25-4 
illustrates the action. Since the first approximation was on the concave side of y = x2

- 2, the next is on 
the other side of the root. After this the sequence is monotone, remaining on the convex side of the 
curve as tangent lines usually do. 

Table 25.3 

n Xn 

1 1.5 
2 1.416 666 667 
3 1.414 215 686 
4 1.414 213 562 
5 1.414 213 562 

Fig. 25-4 
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25.14. Derive the iteration Xn = Xn-I- X~-~=~Q for finding a pth root of Q. 
PXn-1 

With f(x) = xP- Q and f'(x) = pxp- 1
, the result is at once a special case of Newton's method. 

25.15. Apply the preceding problem to find a cube root of 2. 

. . . . . 2 ( 1 ) With Q = 2 and p = 3, the IteratiOn Simplifies to Xn =- Xn-1 + - 2- • 
3 Xn-1 

Choosing x 0 = 1, we find x 1 = ~ and then 

X 2 = 1.263888889 x3 = 1.259933493 x4 = 1.259921049 X 5 = 1.259921049 

The quadratic convergence is conspicuous. 

INTERPOLATION METHODS 

25.16. This ancient method uses two previous approximations and constructs the next approximation 
by making a linear interpolation between them. Derive the regula falsi (see Fig. 25-5), 

(a- b)f(a) 

f(a)- f(b) 
c=a 

The linear function 

y = f(a) +f(a)- f(b) (x- a) 
a-b 

clearly has y = f(x) at a and b. It vanishes at the argument c given in the regula falsi. This zero serves as 
our next approximation to the root of f(x) = 0, so effectively we have replaced the curve y = f(x) by a 
linear collocation polynomial in the neighborhood of the root. It will also be noticed in Fig. 25-5 that the 
two given approximations a and b are on opposite sides of the exact root. Thus f(a) and f(b) have 
opposite signs. This opposition of signs is assumed when using regula falsi. Accordingly, having found c, 
to reapply regula falsi we use this c as either the new a or the new b, whichever choice preserves the 
opposition of signs. In Fig. 25-5, c would become the new a. In this way a sequence of approximations 
x0 , x 1 , x2 , ••• may be generated, x 0 and x 1 being the original a and b. 

Fig. 25-5 

25.17. Apply regula falsi to Leonardo's equation. 

Choosing x 0 = 1 and x 1 = 1.5, the formula produces 

- - .5(2.875)- 3 
Xz -1.5 9.875 -1. 5 

( -.15)( -.3946) 
-3.2696 = 1.368 

and so on. The rate of convergence can be shown to be better than the rate in Problem 25.2 but not so 
good as that of Newton's method. 

25.18. A natural next step is to use a quadratic interpolation polynomial rather than a linear one. 
Assuming three approximations x0 , x 1 , x2 are in hand, derive a formula for a new 
approximation x 3 which is a root of such a quadratic. 
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It is not hard to verify that the quadratic through the three points (x0 , y0), (x 1 , y1), (x2 , y2 ), where 
y = f(x), can be written as 

p(x) = Xt -xo (Ah 2 + Bh +C) 
Xz -Xo 

where h = x- x2 and A, B, Care 

Solving p (x) = 0 for h we find 

A= (xt- Xo)Yz + (xo- Xz)Yt + (xz- Xt)Yo 
(xz- Xt)(xt- xo? 

B = (xt- Xo)(2xz- Xt- Xo)Yz- (xz- Xo)2Yt + (xz- X1)
2y0 

(xz- Xt)(xt- Xo) 2 

C 
Xz-Xo 

=--y2 
Xt -xo 

2C 
h= B±VB2 -4AC 

this form of the quadratic formula being chosen to avoid loss of significant digits during subtraction. 
Here the sign which makes the denominator larger in absolute value should be chosen. Then 

X3=Xz +h 

becomes the next approximation and the process may be repeated with all subscripts advanced by one. 
The method just described is what is known as Muller's method and has been found to converge to 

both real and complex roots. For the latter it is necessary, of course, to run the algorithm in complex 
arithmetic, but even with real roots, complex arithmetic is the wiser choice since traces of imaginary 
parts occasionally enter. 

BERNOULLI'S METHOD 

25.19. Prove that if the polynomial of degree n 

has a single dominant zero, say r1 , then it may be found by computing a solution sequence for 
the difference equation of order n 

and taking lim (xk+dxk)· 

This difference equation has p(x) = 0 for its characteristic equation and its solution can therefore be 
written as 

If we choose initial values so that c1 i= 0, then 

xk+t 1 + (cz/c1)(r2/rt)k+t + · · · + (cnlct)(rnlrt)k+t 
-;; = r1 1 + (c2/c1)(r2/r1)k + · · · + (cnlct)(rnlrtt 

and since r1 is the dominant root, 

i=2, 3, ... , n 

making lim (xk+ 1/xk) = r1 as claimed. It can be shown using complex variable theory that the inltlal 
values X-n+t = · · · = x_ 1 = 0, x0 = 1 will guarantee C1 i= 0. 
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25.20. Apply the Bernoulli method to the equation x 4
- 5x3 + 9x2

- 7x + 2 = 0. 

The associated difference equation is 

xk- 5xk-t + 9xk-z -7xk-3 + 2xk-~ = 0 

and if we take the initial values x_3 = x_2 = x_ 1 = 0 and x 0 = 1, then the succeeding xk are given in Table 
25.4. The ratio xk+tlxk is also given. The convergence to r = 2 is slow, the rate of convergence of 
Bernoulli's method being linear. Frequently the method is used to generate a good starting 
approximation for Newton's or Steffensen's iteration, both of which are quadratic. 

Table 25.4 

k xk xk+l/xk k xk xk+l/xk 

1 5 3.2000 9 4,017 2.0164 

2 16 2.6250 10 8,100 2.0096 

3 42 2.3571 11 16,278 2.0056 

4 99 2.2121 12 32,647 2.0032 

5 219 2.1279 13 65,399 2.0018 

6 466 2.0773 14 130,918 2.0010 

7 968 2.0465 15 261,972 2.0006 

8 1,981 2.0278 16 524,097 

25.21. Modify the Bernoulli method for the case in which a pair of complex conjugate roots are 
dominant. 

Let r1 and r2 be complex conjugate roots. Then lr11 < lrd for i = 3, ... , n, since the r1, r2 pair is 
dominant. Using real starting values, the solution of the difference equation may be written as 

where c1 and c2 are also complex conjugate. Let r1 = re'<P = r2 , c 1 = ae18 = c2 with r > 0, a> 0, and 
0 < ¢ < n so that r1 is the root in the upper half plane. Then 

xk = 2ark cos (k¢ + 8) + c 3 r~ + · · · + cnr~ 

=2ark[ cos (k¢ + 8) +?a (~r + ... +~ (~rJ 
All terms except the first have limit zero; and so for large k, xk = 2ark cos (k¢ + 8). We now use this 
result to determine r and ¢. First we observe that 

xk+t- 2r cos ¢xk + r2xk-t = 0 

as may be seen by substituting for xk from the previous equation and using the identities for cosines of 
sums and differences. Reducing the subscripts, we also have 

xk- 2r cos¢ xk-t + r2xk-z = 0 

Now solving these two simultaneously, 

r2 x~- xk+txk-t 
xLt -xkxk-2 

- 2r cos¢ 
xk+txk-2- xk-txk 
x~-t- x~k-2 

The necessary ingredients for determining r1 and r2 are now in hand. 

25.22. Apply Bernoulli's method to Leonardo's equation. 

The associated difference equation is xk = - 2xk-t -10xk-z + 20xk_3 and the solution sequence for 



338 NONLINEAR ALGEBRA [CHAP. 25 

initial values x_2 = x_1 = 0, x 0 = 1 appears in Table 25.5. Some approximations to r2 and -2r cos cp also 
appear. The fluctuating ± signs are an indication that dominant complex roots are present. This may be 
seen by recalling the form of the xk as given in Problem 25.21, namely xk = 2ark cos (kcp + 8). As k 
increases, the value of the cosine will vary between ± 1 in a somewhat irregular way which depends on 
the value of cp. 

k xk k 

1 -2 7 
2 -6 8 
3 52 9 
4 -84 10 
5 -472 11 

6 2,824 12 

From the last approximations we find 

r cos cp = -1. 6844 

Table 25.5 

xk r -2rcos cjl 

-2,608 14.6026 3.3642 
-32,464 14.6076 3.3696 
147,488 14.6135 3.3692 

-22,496 14.6110 3.3686 

-2,079,168 14.6110 3.3688 
7,333,056 

r sin cp = ± Yr2
- (r cos cp )2 = ±3.4313 

making the dominant pair of roots r1r2 = -1.6844 ± 3.4313i. Since Leonardo's equation is cubic, these 
roots could also be found by using the real root found earlier to reduce to a quadratic equation. The 
Bernoulli method was not really needed in this case. The results found may be checked by computing 
the sum ( - 2) and product (20) of all the roots. 

DEFLATION 

25.23. Use the simple equation x 4
- 10x3 + 35x2

- 50x + 24 = 0 to illustrate the idea of deflation. 

The dominant root of this equation is exactly 4. Applying the factor theorem we remove the factor 
x- 4 by division, 

-10 

4 

-6 

35 
-24 

11 

-50 

44 
-6 

24 
-24 

0 

The quotient is the cubic x 3
- 6x 2 + 11x - 6 and we say that the original quartic polynomial has been 

deflated to this cubic. The dominant root of the cubic is exactly 3. Removing this factor, 

-6 
3 

-3 

11 

-9 
2 

-6 
6 

0 

we achieve a second deflation, to the quadratic x 2
- 3x + 2 which may then be solved for the remaining 

roots 2 and 1. Or the quadratic may be deflated to the linear function x - 1. The idea of deflation is that, 
one root having been found, the original equation may be exchanged for one of lower degree. 
Theoretically, a method for finding the dominant root of an equation, such as Bernoulli's method, 
could be used to find all the roots one after another, by successive deflations which remove each 
dominant root as it is found, and assuming no two roots are of equal size. Actually there are error 
problems which limit the use of this procedure, as the next problem suggests. 

25.24. Show that if the dominant root is not known exactly, then the method of deflation may yield 
the next root with still less accuracy, and suggest a procedure for obtaining this second root to 
the same accuracy as the first. 
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Suppose, for simplicity, that the dominant root of the previous equation has been found correct to 
only two places to be 4.005. Deflation brings 

-10 

4.005 
-5.995 

35 
-24.01 

10.99 

-50 

44.015 

-5.985 

24 
-23.97 

.03 

and the cubic x 3
- 5.995x2 + 10.99x- 5.985. The dominant zero of this cubic (correct to two places) is 

2.98. As far as the original quartic equation is concerned, this is incorrect in the last place. The natural 
procedure at this point is to use the 2.98 as the initial approximation for a Newton iteration, which 
would rapidly produce a root of the original equation correct to two places. A second deflation could 
then be made. In practice it is found that the smaller "roots" require substantial correction and that for 
polynomials of even moderate degree the result obtained by deflation may not be good enough to 
guarantee convergence of the Newton iteration to the desired root. Similar remarks hold when complex 
conjugate roots a ± bi are removed through division by the quadratic factor x 2

- 2ax + a2 + b2
• 

THE QUOTIENT-DIFFERENCE ALGORITHM 

25.25. What is a quotient-difference scheme? 

Given a polynomial a0xn + a1xn-! + · · · +an and the associated difference equation 

consider the solution sequence for which X-n+t = · · · = x_1 = 0 and x 0 = 1. Let qJ, = xk+1/xk and dZ = 0. 
Then define 

where j = 1, 2, ... , n -1 and k = 0, 1, 2, .... These various quotients (q) and differences (d) may be 
displayed as in Table 25.6. The definitions are easily remembered by observing the rhombus-shaped 
parts of the table. In a rhombus centered in a (q) column the sum of the SW pair equals the sum of the 
NE pair. In a rhombus centered in a (d) column the corresponding products are equal. These are the 
rhombus rules. 

Table 25.6 

q6 
0 d6 

q: q~ 
0 d: d~ 

q~ qi q6 
0 d~ di d6 

q~ q~ qi qci 
0 dj di di 

q! q; q~ qi 
0 d! d~ d~ 

q~ q~ q~ qi 

25.26. Compute the quotient-difference scheme for the polynomial x 2
- x - 1 associated with the 

Fibonacci sequence. 

The results appear in Table 25.7. 
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Table 25.7 

k xk dt q! d! qi di 

0 1 0 
1.0000 

1 1 0 1.0000 

2.0000 -1.0000 

2 2 0 -.5000 -.0001 

1.5000 -.5001 

3 3 0 .1667 -.0001 

1.6667 -.6669 

4 5 0 -.0667 .0005 

1.6000 -.5997 

5 8 0 .0250 .0007 

1.6250 -.6240 

6 13 0 -.0096 -.0082 

1.6154 -.6226 

7 21 0 .0037 

1.6190 

8 34 0 

25.27. What is the first convergence theorem associated with the quotient-difference scheme? 

Suppose no two zeros of the given polynomial have the same absolute value. Then 

limq~=r1 j = 1, 2, ... , n 

fork tending to infinity, where r1 , r2 , ••• , r" are in the order of diminishing absolute value. For j = 1 this 
is Bernoulli's result for the dominant root. For the other values of j the proof requires complex function 
theory and will be omitted. It has also been assumed here that none of the denominators involved in the 
scheme is zero. The convergence of the q's to the roots implies the convergence of the d's to zero. This 
may be seen as follows. By the first of the defining equations of Problem 25.25, 

The d~ therefore converge geometrically to zero. The beginning of this convergence, in the present 
problem, is evident already in Table 25.7, except in the last column which will be discussed shortly. In 
this table the (q) columns should, by the convergence theorem, be approaching the roots (1 ± Vs)/2 
which are approximately 1.61803 and -.61803. Clearly we are closer to the first than to the second. 

25.28. How can a quotient-difference scheme produce a pair of complex conjugate roots? 

The presence of such roots may be indicated by (d) columns which do not converge to zero. 
Suppose the column of d~ entries does not. Then one forms the polynomial 

p1 =x2 -A1x +B1 

where for k tending to infinity, 

A1 =lim (qL 1 + q~+ 1) 

The polynomial will have the roots r1 and r1+ 1 which will be complex conjugates. Essentially, a quadratic 
factor of the original polynomial will have been found. Here we have assumed that the columns of d~~t 
and d~+t entries do converge to zero. If they do not, then more than two roots have equal absolute value 
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and a more complicated procedure is needed. The details, and also the proofs of convergence claims just 
made, are given in National Bureau of Standards Applied Mathematics Series, val. 49. 

25.29. What is the row-by-row method of generating a quotient-difference scheme and what are its 
advantages? 

The column-by-column method first introduced in Problem 25.25 is very sensitive to roundoff error. 
This is the explanation of the fact that the final column of Table 25.7 is not converging to zero as a (d) 
column should but instead shows the typical start of an error explosion. The following row-by-row 
method is less sensitive to error. Fictitious entries are supplied to fill out the top two rows of a 
quotient-difference scheme as follows, starting with the d~ column and ending with d~. Both of these 
boundary columns are to consist of zeros for all values of k. This amounts to forcing proper behavior of 
these boundary differences in an effort to control roundoff error effects. 

0 0 0 

The rhombus rules are then applied, filling each new row in its turn. It can be shown that the same 
scheme found in Problem 25.25 will be developed by this method, assuming no errors in either 
procedure. In the presence of error the row-by-row method is more stable. Note that in this method it is 
not necessary to compute the xk. 

25.30. Apply the row-by-row method to the polynomial of the Fibonacci sequence, x 2
- x- 1. 

The top rows are filled as suggested in the previous problem. The others are computed by the 
rhombus rules. Table 25.8 exhibits the results. The improved behavior in the last (q) column is 
apparent. 

Table 25.8 

k d q d q 

1 0 
1 0 1 

2 -1 
2 0 -.5000 

1.5000 -.5000 
3 0 .1667 

1.6667 -.6667 
4 0 -.0667 

1.6000 -.6000 
5 0 .0250 

1.6250 -.6250 
6 0 -.0096 

1.6154 -.6154 
7 0 .0037 

1.6191 -.6191 
8 0 

25.31. Apply the quotient-difference algorithm to find all the roots of 

x 4
- l0x3 + 35x2

- SOx+ 24 = 0 

d 

0 

0 

0 

0 

0 

0 

0 

0 

The roots of this equation are exactly 1, 2, 3, and 4. No advance information about the roots is, 
however, required by this algorithm, so the equation serves as a simple test case. The quotient
difference scheme, generated by the method of Problem 25.29, appears as Table 25.9. Clearly the 
convergence is slow, but the expected pattern is emerging. The (d) columns seem headed for zero and 
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Table 25.9 

k d q d q d q d q d 

10 0 0 0 
1 0 -3.5000 -1.4286 -.4800 0 

6.5000 2.0714 .9486 .4800 
2 0 -1.1154 -.6542 -.2429 0 

5.3846 2.5326 1.3599 .7229 
3 0 -.5246 -.3513 -.1291 0 

4.8600 2.7059 1.5821 .8520 
4 0 -.2921 -.2054 -.0695 0 

4.5679 2.7926 1.7180 .9215 
5 0 -.1786 -.1264 -.0373 0 

4.3893 2.8448 1.8071 .9588 
6 0 -.1158 -.0803 -.0198 0 

4.2735 2.8803 1.8676 .9786 
7 0 -.0780 -.0521 -.0104 0 

4.1955 2.9062 1.9093 .9890 
8 0 -.0540 -.0342 -.0054 0 

4.1415 2.9260 1.9381 .9944 

the (q) columns for 4, 3, 2, 1 in that order. Probably it would be wise to switch at this point to Newton's 
method, which very quickly converts reasonable first approximations such as we now have into accurate 
results. The quotient-difference algorithm is often used for exactly this purpose, to prime the Newton 
iteration. 

25.32. Apply the quotient-difference algorithm to Leonardo's equation. 

Again using the row-by-row method, we generate the scheme displayed in Table 25.10. 

Table 25.10 

k d q d q d q d 

-2 0 0 
1 0 5 -2 0 

3 -7 2 

2 0 -11.6667 .5714 0 
-8.6667 5.2381 1.4286 

3 0 7.0513 .1558 0 
-1.6154 -1.6574 1.2728 

4 0 7.2346 -.1196 0 
5.6192 -9.0116 1.3924 

5 0 -11.6022 .0185 0 
-5.9830 2.6091 1.3739 

6 0 5.0596 .0097 0 
-.9234 -2.4408 1.3642 

The convergence being slow, suppose we stop here. The second (d) column hardly seems headed 
for zero, suggesting that r1 and r2 are complex, as we already know anyway. The next (d) column does 
appear to be tending to zero, suggesting a real root which we know to be near 1.369. The Newton 
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method would quickly produce an accurate root from the initial estimate of 1.3642 we now have here. 
Returning to the complex pair, we apply the procedure of Problem 25.28. From the first two (q) 
columns we compute 

5.6192-9.0116 = -3.3924 

-5.9830 + 2.6091 = -3.3739 

-.9234-2.4408 = -3.3642 

( -1.6154)( -9.0116) = 14.5573 

(5.6192)(2.6091) = 14.6611 

( -5.9830)( -2.4408) = 14.6033 

so that A 1 = -3.3642 and B1 = 14.6033. The complex roots are therefore approximately given by 
x 2 + 3.3642x + 14.6033 = 0 which makes them ru r2 = -1.682 ± 3.431i. 

Newton's method using complex arithmetic could be used to improve these values, but an 
alternative procedure known as Bairstow's method will be presented shortly. Once again in this problem 
we have used the quotient-difference algorithm to provide respectable estimates of all the roots. A 
method which can do this should not be expected to converge rapidly, and the switch to a quadratically 
convergent algorithm at some appropriate point is a natural step. 

STURM SEQUENCES 

25.33. Define a Sturm sequence. 

A sequence of functions.fo(x), ft(x), ... ,fn(x) which satisfy on an interval (a, b) of the real line the 
conditions: 

1. Each [;(x) is continuous. 

2. The sign of fn (x) is constant. 

3. If [;(r) = 0 then [;_ 1(r) and [;+t(r) * 0. 

4. If [;(r) = 0 then [;_ 1(r) and [;+ 1(r) have opposite signs. 

5. If f0(r) = 0 then for h sufficiently small 

. fo(r- h) 
sign ft(r _ h) = - 1 

is called a Sturm sequence. 

. fo(r +h) 
sign---=1 

ft(r +h) 

25.34. Prove that the number of roots of the function f0(x) on the interval (a, b) is the difference 
between the number of changes of sign in the sequences f0(a), f1(a), ... ,fn(a) and 
fo(b), ft(b), · ·. ,fn(b). 

As x increases from a to b the number of sign changes in the Sturm sequence can only be affected 
by one or more of the functions having a zero, since all are continuous. Actually only a zero of fo(x) can 
affect it. For, suppose [;(r) = 0 with i *0, n, then by properties 1, 3, and 4 the following sign patterns 
are possible for small h: 

h-1 .h h+l h-1 .h h+l 

r-h + ± - r-h - ± + 

r + 0 - r - 0 + 

r+h + ± -
or 

r+h - ± + 

In all cases there is one sign change, so that moving across such a root does not affect the number of sign 
changes. By condition 2 the function.fn(x) cannot have a zero, so we come finally to fo(x). By condition 5 
we lose one sign change, between.fo andf1, as we move across the root r. This proves the theorem. One 
sees that the five conditions have been designed with this root-counting feature in mind. 
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25.35. If f0(x) is a polynomial of degree n with no multiple roots, how can a Sturm sequence for 
enumerating its roots be constructed? 

Let [J(x) = fb(x) and then apply the Euclidean algorithm to construct the rest of the sequence as 
follows: 

fo(x) = [J(x)L 1(x)- fz(x) 

/1 (x) = fz(x )Lz(x) - [J(x) 

fn-z(x) = fn-!(x)Ln-!(x)- fn(x) 

where j;(x) is of degree n - i and the L;(x) are linear. 
The sequence fo(x),[J(x), ... ,fn(x) will be a Sturm sequence. To prove this we note first that all 

j;(x) are continuous, since fo and [ 1 surely are. Condition 2 follows since fn is a constant. Two consecutive 
j;(x) cannot vanish simultaneously since then all would vanish including fo and [ 1 and this would imply a 
multiple root. This proves condition 3. Condition 4 is a direct consequence of our defining equations and 
5 is satisfied since /1 = fb. 

If the method were applied to a polynomial having multiple roots, then the simultaneous vanishing 
of all the j;(x) would give evidence of them. Deflation of the polynomial to remove multiplicities allows 
the method to be applied to find the simple roots. 

25.36. Apply the method of Sturm sequences to locate all real roots of 

x 4
- 2.4x3 + 1.03x2 + .6x- .32 = 0 

Denoting this polynomial fo(x), we first compute its derivative. Since we are concerned only with 
the signs of the various j;(x ), it is often convenient to use a positive multiplier to normalize the leading 
coefficient. Accordingly we multiply fb(x) by~ and take 

[J(x) = x3 
- 1. 8x2 + . 515x + .15 

The next step is to divide fo by [ 1 • One finds the linear quotient L 1 (x) = x - . 6 which is of no immediate 
interest, and a remainder of - .565x 2 + . 759x- .23. A common error at this point is to forget that we 
want the negative of this remainder. Also normalizing, we have 

fz(x) = x 2 -1.3434x + .4071 

Dividing [ 1 by [2 brings a linear quotient Lz(x) = x - .4566 and a remainder whose negative, after 
normalizing, is 

[J(x) = x - .6645 

Finally, dividing [2 by f3 we find the remainder to be -.0440. Taking the negative and normalizing, we 
may choose 

[4(x) = 1 

We now have our Sturm sequence and are ready to search out the roots. It is a simple matter to confirm 
the signs displayed in Table 25.11. They show that there is one root in the interval ( -1, 0), one in (1, 2), 

Table 25.11 

!o Ji .h .h -"' Changes 

-oo + - + - + 4 
-1 + - + - + 4 

0 - + + - + 3 
1 - - + + + 1 

2 + + + + + 0 
00 + + + + + 0 
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and two roots in (0, 1). Choosing more points within these intervals, all roots may be more precisely 
pinpointed. As with the quotient-difference algorithm, however, it is wise to shift at a certain point to a 
more rapidly convergent process such as Newton's. A method which provides first estimates of the 
locations of all real roots, as the Sturm method does, is uneconomical for the precise determination of 
any one root. In this example the roots prove to be -.5, .5, .8, and 1.6. 

25.37. Show that Newton's method will produce all the roots of the equation in the previous problem 
provided sufficiently good initial approximations are obtained. 

Figure 25-6 below exhibits the qualitative behavior of this polynomial. Clearly any first 
approximation x 0 < -.5 will lead to a sequence which converges upon this root, since such an x 0 is 
already on the convex side of the curve. Similarly any x0 > 1.6 will bring convergence to the largest root. 
Roots that are close together ordinarily require accurate starting approximations. The simplicity of the 
roots in this example may be ignored in order to see how a more obscure pair might be separated. From 
the diagram it is apparent that an x 0 slightly below .5 will bring convergence to .5, while an x 0 slightly 
above .8 will bring convergence to .8, since in both cases we start on the convex side. Notice that 
starting with x0 = .65, which is midway between two roots, means following an almost horizontal tangent 
line. Actually it leads to x 1 = 5, after which convergence to the root at 1.6 would occur. This sort of 
thing can occur in a Newton iteration. 

-1 

-.5 

Fig. 25-6 

SYSTEMS OF EQUATIONS, NEWTON'S METHOD 

25.38. Derive the formulas for solving f(x, y) = 0, g(x, y) = 0, 

Yn = Yn-1 + kn-1 
where h and k satisfy 

[x(Xn-1> Yn-1)hn-1 + [y(Xn-1> Yn-1)kn-1 = - [(Xn-1> Yn-1) 

gx(Xn-1> Yn-1)hn-1 + gy(Xn-1> Yn-1)kn-1 = - g(Xn-1> Yn-1) 

These formulas are known as the Newton method for solving two simultaneous equations. 

Approximate f and g by the linear parts of their Taylor series for the neighborhood of (xn_ 1, Yn- 1): 

f(x, Y) = f(xn-1> Yn-1) + (x- Xn-1).fx(xn-1> Yn-1) + (y - Yn-1),{y(xn-1> Yn-1) 

g(x, Y) = g(Xn-1> Yn-1) + (x- Xn-1)gx(xn-1> Yn-1) + (y - Yn-1)gy(xn-1> Yn-1) 

This assumes that the derivatives involved exist. With (x, y) denoting an exact solution, both left sides 
vanish. Defining x = x" andy= Yn as the numbers which make the right sides vanish, we have at once the 
equations required. This idea of replacing a Taylor series by its linear part is what led to the Newton 
method for solving a single equation in Problem 25.8. 
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25.39. Find the intersection points of the circle x2 + y2 = 2 with the hyperbola x2
- y2 = 1. 

This particular problem can easily be solved by elimination. Addition brings 2x2 = 3 and 
x = ± 1.2247. Subtraction brings 2l = 1 andy= ± .7071. Knowing the correct intersections makes the 
problem a simple test case for Newton's method. Take x0 = 1, Yo= 1. The formulas for determining h 
and k are 

2xn-!hn-! + 2Yn-!kn-! = 2- X~-!- Y~-1 

2xn-!hn-!- 2Yn-lkn-! = 1- X~-!+ Y~-1 

and with n = 1 become 2h0 + 2k0 = 0, 2h0 - 2k0 = 1. Then h0 = - k0 = t making 

X1 = Xo + ho = 1.25 y1 =Yo + ko = . 75 

The next iteration brings 2.5h 1 + 1.5k1 = - .125, 2.5h 1 - 1.5k1 = 0 making h 1 = - .025, k 1 = - .04167 
and 

X 2 = X 1 + h1 = 1.2250 Yz = Y1 + k1 = . 7083 

A third iteration manages 2.45h2 + 1.4167k2 = - .0024, 2.45h2 -1.4167k2 = .0011 making h2 = - .0003, 
k2 = - .0012 and 

X3 = X 2 + h2 = 1.2247 y3 = y2 + kz = . 7071 

The convergence to the correct results is evident. It can be proved that for sufficiently good initial 
approximations the convergence of Newton's method is quadratic. The idea of the method can easily be 
extended to any number of simultaneous equations. 

25.40. Other iterative methods may also be generalized for simultaneous equations. For example, if 
our basic equations f(x, y) = 0, g(x, y) = 0 are rewritten as 

x = F(x, y) y=G(x,y) 

then under suitable assumptions on F and G, the iteration 

will converge for sufficiently accurate initial approximations. Apply this method to the 
equations x =sin (x + y), y =cos (x- y). 

These equations are already in the required form. Starting with the uninspired initial approxima
tions x0 =Yo= 0, we obtain the results given below. Convergence for such poor starting approximations 
is by no means the rule. Often one must labor long to find a convergent rearrangement of given 
equations and good first approximations. 

n 0 1 2 3 4 5 6 7 

Xn 0 0 .84 .984 .932 .936 .935 .935 

Yn 0 1 .55 .958 1.000 .998 .998 .998 

DESCENT METHODS AND OPTIMIZATION 

25.41. What is the idea of a steepest descent algorithm? 

A variety of minimization methods involves a function S(x, y) defined in such a way that its 
minimum value occurs precisely where f(x, y) = 0 and g(x, y) = 0. The problem of solving these two 
equations simultaneously may then be replaced by the problem of minimizing S(x, y ). For example, 

S(x, y) = [f(x, y)]2 + [g(x, YW 
surely achieves its minimum of zero wherever f = g = 0. This is one popular choice of S(x, y ). The 
question of how to find such a minimum remains. The method of steepest descent begins with an initial 
approximation (x 0 , y0 ). At this point the function S(x, y) decreases most rapidly in the direction of the 
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vector 
-gradient S(x, y)lxoYo = 1- Sx, -Sy]lx0y0 

Denoting this by -grad S0 = [- Sxo, -Syo] for short, a new approximation (xt> y1) is now obtained in the 
form 

Yt =Yo- tSyo 

with t chosen so that S(xv y1) is a minimum. In other words, we proceed from (x0 , Yo) in the direction 
-grad S0 until S starts to increase again. This completes one step and another is begun at (xt> y1) in the 
new direction -grad S1 • The process contmues until, hopefully, the minimum point is found. 

The process has been compared to a skier's return from a mountain to the bottom of the valley in a 
heavy fog. Unable to see his goal, he starts down in the direction of steepest descent and proceeds until 
his path begins to climb again. Then choosing a new direction of steepest descent, he makes a second 
run of the same sort. In a bowl-shaped valley ringed by mountains it is clear that this method will bring 
him gradually nearer and nearer to home. Figure 25-7 illustrates the action. The dashed lines are 
contour or level lines, on which S(x, y) is constant. The gradient direction is orthogonal to the contour 
direction at each point, so we always leave a contour line at right angles. Proceeding to the minimum of 
S(x, y) along this line means going to a point of tangency with a lower contour line. Actually it requires 
infinitely many steps of this sort to reach the minimum and a somewhat uneconomical zigzag path is 
followed. 

Fig. 25-7 

25.42. Apply a method of steepest descent to solve the equation of Problem 25.40: 

x = sin (x + y) y = cos (x - y) 

Here we have 

S = F + g 2 = [x -sin (x + y W + [y -cos (x - y )]2 

making 

1 zsx = [x- sin (x + y)][1- cos (x + y)] + [y- cos (x- y)][sin (x- y)] 

1 2 Sy = [x- sin (x + y)][- cos (x + y)] + [y- cos (x- y)][1- sin (x- y)] 

Suppose we choose x 0 =Yo= .5. Then -grad S0 = [.3, .6]. Since a multiplicative constant can be 
absorbed in the parameter t, we may take 

y1 = .5 +2t 

The minimum of S(.5 + t, .5 + 2t) is now to be found. Either by direct search or by setting S'(t) to zero, 
we soon discover the minimum near t = .3, making x1 = .8 and y1 = 1.1. The value of S(x 1 , y1) is about 
.04, so we proceed to a second step. Since -grad S1 = [.5, - .25], we make our first right angle turn, 
choose 

X 2 = .8 + 2t Yz = 1.1- t 
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and seek the mm1mum of S(x 2 , y2). This proves to be near t = .07, making x 2 = .94 and y2 = 1.03. 
Continuing in this way we obtain the successive approximations listed below. The slow convergence 
toward the result of Problem 25.40 may be noted. Slow convergence is typical of this method, which is 
often used to provide good starting approximations for the Newton algorithm . 

Xn .5 .8 . 94 .928 .936 .934 

Yn .5 1.1 1.03 1.006 1.002 .998 

Sn .36 .04 .0017 .00013 .000025 .000002 

The progress of the descent is suggested by path A in Fig. 25-8. 

Fig. 25-8 

25.43. Show that a steepest descent method may not converge to the required results. 

Using the equations of the previous problem, suppose we choose the initial approximations 
x0 =Yo= 0. Then -grad S0 = [0, 2], so we take x 1 = 0 and y1 = t. The minimum of S(O, t) proves to be at 
t =.55= y 1 with S(xu y1) = .73. Computing the new gradient, we find -grad S1 = [- .2, 0]. This points 
us westward, away from the anticipated solution near x = y = 1. Succeeding steps find us traveling the 
path labeled B in Fig. 25-8. Our difficulty here is typical of minimization methods. There is a secondary 
valley near x = -. 75, y = .25. Our first step has left us just to the west of the pass or saddle point 
between these two valleys. The direction of descent at (0, .55) is therefore westward and the descent 
into the secondary valley continues. Often a considerable amount of experimentation is necessary before 
a successful trail is found. 

25.44. Generalize the idea of descent methods for the solution of optimization problems or of 
nonlinear systems. 

The two principal questions are in what direction to proceed and how far to go. The formula 

X(n) = x<n-!) +tUn-! 

keeps all options open, with x<n-IJ the current approximation, Un-l a unit vector in the next direction of 
search, and t the measure of how far to go. For steepest descent, Un-l is the negative gradient vector. A 
wide variety of options have been proposed. Ideally perhaps one ought to follow a curve which is an 
orthogonal trajectory of the contour surfaces, on which f is constant, where f is the function being 
optimized. However, this leads to differential equations. Using steepest descent steps of equal length is 
equivalent to applying Euler's method for solving the differential equations. Even Newton's method 
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might be viewed as a descent method, with tun_ 1 equal to -r1(x<n- 1))F(x<n-1)) in the notation used in 
the introduction. 

QUADRATIC FACTORS. BAIRSTOW'S METHOD 

25.45. Develop a recursion for the coefficients bk in 

q(x) = boxn-2 + · · · + bn-2 r(x) = bn-I(x- u) + bn 

when q(x) and r(x) are defined by 

p(x) = a0xn +···+an= (x2
- ux- v)q(x) + r(x) 

Multiplying out on the right and comparing the powers of x, we have 

bo = ao 

b1 = a1 + ubo 

k=2, ... , n 

If we artificially set b_ 1 = b_2 = 0, the last recursion holds for k = 0, 1, ... n. The bk depend of course 
upon the numbers u and v. 

25.46. How may the recursion of the previous problem be used to calculate p(x) for a complex 
argument x =a+ bi? (Assume the ak are real.) 

With u = 2a and v = - a2
- b2

, we have x 2
- ux - v = 0 so that 

The advantage of this procedure is that the bk are found by real arithmetic, so that no complex 
arithmetic occurs until the final step. In particular, if bn_1 = bn = 0 then we have p(x) = 0. The complex 
conjugates a± bi are then zeros of p(x). 

25.47. Develop Bairstow's method for using the Newton iteration to solve the simultaneous 
equations bn_ 1(u, v) = 0, bn(u, v) = 0. 

To use Newton's iteration, as described in Problem 25.38, we need the partial derivatives of bn_ 1 

and bn relative to u and v. First taking derivatives relative to u, and letting ck = abk+1/ au, we find 
c_z = C-1 = 0, Co= ba, C1 = b1 + uca, and then 

The last result is actually valid for k = 0, 1, ... , n - 1. Thus the ck are computed from the bk just as the 
bk were obtained from the ak. The two results we need are 

Similarly taking derivatives relative to v and letting dk = abk+zl av we find d_ 2 = d_ 1 = 0, then 
d1 = b1 + uda, after which 

dk = bk + udk-1 + vdk-z 

The latter holds fork= 0, 1, ... , n- 2. Since the ck and dk therefore satisfy the same recursion with the 
same initial conditions, we have proved ck = dk fork= 0, 1, ... , n- 2. In particular, 

and we are ready for Newton's iteration. 
Suppose we have approximate roots a ± bi of p(x) = 0, and the associated quadratic factor 

x 2
- ux- v of p(x). This means we have approximate roots of bn_ 1 = bn = 0 and are seeking improved 
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approximations u + h, v + k. The corrections h and k are determined by 

Cn-2h + Cn-3k = - bn-1 

Cn-1h + Cn-2k = - b" 

These are the central equations of Newton's iteration. Solving for h and k, 

h 
bnCn-3- bn-1 Cn-2 

C~-2- Cn-tCn-3 
k 

bn-1Cn-1- bnCn-2 

C~-2- Cn-1Cn-3 

[CHAP. 25 

25.48. Apply Bairstow's method to determine the complex roots of Leonardo's equation correct to 
nine places. 

We have already found excellent initial approximations by the quotient-difference algorithm (see 
Problem 25.32): u0 = -3.3642, v 0 = -14.6033. Our recursion now produces the following bk and ck: 

k 0 1 2 3 

ak 1 2 10 -20 

bk 1 -1.3642 -.01386 -.03155 

ck 1 -4.7284 1.2901 

The formulas of Problem 25.47 then produce h = - .004608, k = - .007930 making 

U1 = Uo + h = -3.368808 

Repeating the process, we next find new bk and ck: 

k 0 1 

V 1 = V 0 + k = -14.611230 

2 3 

ak 1 2 10 -20 

bk 1 

ck 1 

These bring 

-1.368808 

-4.737616 

h = -.000000108 

u2 = -3.368808108 

.000021341 - .000103380 

1.348910341 

k = - .000021852 

V 2 = -14.611251852 

Repeating the cycle once more finds b2 = b3 = h = k = 0 to nine places. The required roots are now 

These may be further checked by computing the sum and product of all three roots and comparing with 
the coefficients of 2 and 20 in Leonardo's equation. 

Supplementary Problems 

25.49. Apply the method of Problem 25.1 to the equation x =e-x to find a root near x = .5. Show that starting 
with x0 = .5, the approximations x 10 and x 11 agree to three places at .567. 

25.50. Apply the Aitken acceleration to earlier approximations computed in the previous problem. When does 
it produce three-place accuracy? 
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25.51. Rewrite the equation x 3 = x 2 + x + 1 as x = 1 + 1/x + 1/x2 and then use an iteration of the sort in 
Problem 25.1 to find a positive root. 

25.52. Apply Newton's method to the equation of Problem 25.49. How many iterations are needed for 
three-place accuracy? For six-place accuracy? 

25.53. Apply Newton's method to the equation of Problem 25.51. 

25.54. Find the square root of 3 to six places. 

25.55. Find the fifth root of 3 to six places. 

25.56. Show that Newton's method applied to f(x) = 1/x - Q = 0 leads to the iteration x" = x"_ 1(2- Qx"_ 1) for 
producing reciprocals without division. Apply this iteration with Q = e = 2. 7182818, starting with x0 = . 3 
and again starting with x0 = 1. One of these initial approximations is not close enough to the correct 
result to produce a convergent sequence. 

25.57. Apply regula falsi to the equation of Problem 25.49, starting with the approximations 0 and 1. 

25.58. Apply the method of Problem 25.18 (quadratic interpolation) to the equation of Problem 25.49. 

25.59. Apply the quadratic interpolation method to Leonardo's equation. 

25.60. Use Bernoulli's method to find the dominant (real) root of the Fibonacci equation x 2
- x - 1 = 0. 

25.61. Apply Bernoulli's method to the equation of Problem 25.31. 

25.62. Apply Bernoulli's method to find a dominant pair of complex conjugate roots of 

4x4 +4x 3 +3x 2 -x -1 =0 

25.63. Use the quotient-difference method to find all the roots of the equation of Problem 25.36. 

25.64. Use the quotient-difference method to locate all the roots of the equation of Problem 25.62. 

25.65. Use a Sturm sequence to show that 36x6 + 36x5 + 23x4
- 13x3 

- 12x2 + x + 1 = 0 has only four real roots 
and to locate these four. Then apply Newton's method to pinpoint them. 

25.66. Use a Sturm sequence to show that 288x5
- 720x 4 + 694x 3

- 321x 2 + 7lx - 6 = 0 has five closely packed 
real roots. Apply Newton's method to determine these roots to six places. 

25.67. Use the iterative method to find a solution of 

near (.5, .5). 
x = . 7 sin x + . 2 cosy y = . 7 cos x - . 2 sin y 

25.68. Apply Newton's method to the system of the preceding problem. 

25.69. Apply Newton's method to the system x =x 2 + y 2
, y = x 2

- y 2 to find a solution near (.8, .4). 

25.70. Apply the method of steepest descent to the system of the previous problem. 

25.71. Apply the method of steepest descent to the system of Problem 25.67. 

25.72. Given that 1 is an exact root of x 3
- 2x2

- 5x + 6 = 0, find the other two roots by deflation to a quadratic 
equation. 
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25.73. Find all the roots of x4 + 2x 3 + 7x 2
- 11 = 0 correct to six places using a deflation method supported by 

the Newton and Bairstow iterations. 

25.74. Apply the Bairstow method to x4
- 3x3 + 20x2 + 44x +54= 0 to find a quadratic factor close to 

x 2 +2x +2. 

25.75. Find the largest root of x4
- 2.0379x3 -15.4245x2 + 15.6696x + 35.4936 = 0. 

25.76. Find two roots near x = 1 of 2x 4 + 16x3 + x2 -74x +56= 0. 

25.77. Find any real roots of x3 = x + 4. 

25.78. Find a small positive root of x 18632 = 5.2171x- 2.1167. 

25.79. Find a root near x = 2 of x = 2 sinx. 

25.80. Find a complex pair of roots with negative real part for x4- 3x3 + 20x2 + 44x + 54= 0. 

25.81. Find a solution of the system 

x = sinx coshy y = cosx sinhy 

near x = 7, y = 3. 

25.82. Solve the system x4 + y4
- 67 = 0, x3- 3xy2 + 35 = 0 near x = 2, y = 3. 

25.83. Find the minimum for positive x of y = (tanx)/x2. 

25.84. Where does the curve y =e-x logx have an inflection point? 

xz x3 x4 
25.85. Find the smallest positive root of 1 - x + ----- + --- · · · = 0 

(2!f (3!)2 ( 4!)2 . 

25.86. Find the maximum value of y(x) near x = 1, given that sin (xy) = y- x. 

25.87. Find to twelve digits a root near 2 of x4
- x = 10. 

25.88. Find the smallest real root of e-x= sinx. 

25.89. Split the fourth-degree polynomial x4 + 5x3 + 3x 2
- 5x - 9 into quadratic factors. 

25.90. Find a root near 1.5 of x = ~ + sin x. 

25.91. Find all the roots of 2x 3
- 13x2

- 22x + 3 = 0. 

25.92. Find a root near 1.5 of x6 = x4 + x3 + 1. 

25.93. Find two roots near x = 2 of x4 - 5x3- 12x2 + 76x - 79 = 0. 

25.94. Show that the second-degree term is removed from the general cubic equation 

x3 + ax 2 + bx + c = 0 

by the translation x = y- a/3. See also the following problem. 
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25.95. In 1545 Cardano published this formula for solving the cubic equation x 3 + bx + c = 0. (Note the 
absence of a second-degree term.) 

Apply it to find at least the real root x = 1 of 

x 3 +3x -4= 0 

Can it also manage the real root x = 4 of x 3 
- 15x - 4 = 0? 



Chapter 26 

Linear Systems 

SOLUTION OF LINEAR SYSTEMS 

This may very well be the principal problem of numerical analysis. Much of applied mathematics 
reduces to a set of linear equations, or a linear system, 

Ax=b 

with the matrix A and vector b given and the vector x to be determined. An extensive set of 
algorithms have been developed for doing this, several of which will be presented. The variety of 
algorithms available indicates that the apparently elementary character of the problem is deceptive. 
There are numerous pitfalls. 

Gaussian elimination is one of the oldest algorithms and still one of the most popular. It involves 
replacing equations by combinations of equations in such a way that a triangular system is obtained. 

UnXl + U12X2 + ... + UlnXn = Cl 

UzzXz + · · · + UznXn = Cz 

After this, the components of the vector x are easily found, one after the other, by a process called 
back-substitution. The last equation determines xn, which is then substituted in the next-to-last 
equation to get xn_ 1, and so on. 

The Gauss algorithm also yields a factorization of the matrix A, in the form A= LU, where U is 
the upper triangular matrix shown above and L is a lower triangle with ls on the diagonal. The 
algorithm can be used to prove the fundamental theorem of algebra, which deals with the question of 
whether or not a solution exists. The theorem guarantees a unique solution of Ax = b precisely when 
the corresponding homogeneous system Ax = 0 has only the solution x = 0. Both systems, as well as 
the coefficient matrix A, are then called nonsingular. When Ax= 0 has solutions other than x = 0, 
both systems and the matrix A are singular. In this case Ax = b will have either no solution at all or 
else an infinity of solutions. Singular systems occur in eigenvalue problems. If the methods of this 
chapter are applied inadvertently to a singular system, there is the curious possibility that 
unavoidable roundoff errors will alter it to an "almost identical" nonsingular system. A computed 
"solution" may then be produced where none actually exists. 

Factorization methods convert A into products of the form LU or LDU, where Lis zero above 
the main diagonal, U is zero below it, and D has only diagonal elements different from zero. The 
matrix L is called lower triangular and U is upper triangular. If L or U has all diagonal elements 
equal to 1, it is called unit triangular. The methods of Doolittle, Crout, Cholesky, and, as already 
mentioned, Gauss produce factorizations. When A has been factored in this way, the solution is 
easily accessible. Since 

Ax= LUx= L(Ux) = Ly = b 

we first solve Ly = b for y and then Ux = y for x. The first of these triangular systems responds to 
forward-substitution, and the second to back-substitution. 

Iterative methods generate sequences of successive approximations to the solution vector x. The 
classic of this type is the Gauss-Seidel method, which reshapes the system Ax = b in the form 

Xz = ... 

Xn = ... 

354 
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by solving the ith equation for X;. An initial approximation to all the X; allows each component to be 
corrected in its turn and when the cycle is complete to begin another cycle. A number of 
convergence theorems have been proved. The method is often used for sparse matrices A, in which 
many elements are zero. 

Iterative refinement of an approximate solution x<1l using the residual vector r, defined by 

r = b -Ax(l) 

is often a useful algorithm. Let e be the error 

e=x-x<1l 

and observe that Ae =Ax- Ax(l) = b- (b- r) = r 

Solving Ae = r yields an approximation to e, say e(ll, from which 

x<2l = x<1l + e(ll 

manages a new approximation to the true solution x. The routine can be continued as long as it 
seems productive. 

There are a wide variety of more elaborate iterative methods. 
The error in a computed solution x<c) occurs for a combination of reasons. The input information 

may be imperfect, that is, the elements of A and b may contain error. There will almost surely be 
roundoff errors made during the course of the solution algorithm, probably millions of them in a 
large-scale problem. When a convergent iterative process is terminated, it is unlikely that the 
approximation in hand is the true solution. Estimates of the eventual error due to such sources can 
be made, and they are important, though often rather conservative. Backward error analysis is a 
useful tool in investigating the internal roundoff problem. 

The character of the coefficient matrix A strongly influences error behavior. Nearly singular 
systems are extremely sensitive to even small errors in A and b and to internal roundoffs. The 
condition of A can be described numerically using the idea of a matrix norm, a high condition 
number meaning a nearly singular matrix and relatively poor error control. Such matrices are also 
called ill-conditioned. Sometimes poor condition will make itself known by erratic behavior of the 
algorithm. Unfortunately, this is not always true. 

MATRIX INVERSION 

Knowing the inverse of A would, of course, allow the system Ax= b to be solved as a 
by-product, since 

but this is usually an uneconomical route to the solution of a linear system. Complete knowledge of 
the elements of A -l is required only in a few types of applications, notably statistical analysis. The 
methods just discussed for solving Ax= b can be adapted to find inverses. Elimination, factorization, 
iteration, and an exchange method will be illustrated in the problems. 

EIGENVALUE PROBLEMS 

Eigenvalue problems require that we determine numbers A such that the linear system Ax =Ax 
will have solutions other than x = 0. These numbers are called eigenvalues. The corresponding 
solutions, or eigenvectors, are also of interest. Three general methods of approach will be presented. 

1. The characteristic polynomial of a matrix A has as its zeros the eigenvalues of A. A direct 
procedure, resembling Gaussian elimination, for finding this polynomial will be included. To 
find its zeros, the methods of Chapter 25 may be used. With an eigenvalue in hand, 
substitution into Ax =Ax yields a singular system. The value of some component of x may 
be specified and the reduced system solved by our methods for linear systems. 
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2. The power method generates the vectors 

x<Pl=A(P)V 

with V a somewhat arbitrary initial vector, and produces the dominant eigenvalue with its 
eigenvector. For large values of pit proves that x<Pl is close to an eigenvector corresponding 

to x<PJT Ax<Pl 
.A= x<PlTx<Pl 

a formula known as the Rayleigh quotient. Modifications lead to the absolutely smallest and 
certain next-dominant eigenvectors. 

An interesting variation uses the idea of shifting the eigenvalues to speed up the 
convergence of the power method. The inverse power method and inverse iteration are 
developments of this idea. 

3. Reduction to canonical forms (simplified forms such as diagonal, triple diagonal, triangular, 
Hessenberg) is possible in many ways. When done by similarity transformations, the 
eigenvalues are not changed. The Jacobi method subjects a real, symmetric matrix to 
rotations based upon the submatrix 

[
cos cp -sin cp] 
sin cp cos cp 

and leads to an almost diagonal form. The Givens method uses similar rotations and 
achieves a triple diagonal form in a finite number of steps. The QR method produces, under 
certain circumstances, a triangular matrix. The underlying idea of all these procedures is 
that eigenvalues of the canonical forms are found more easily. 

COMPLEX SYSTEMS 

Many of the methods used for real systems can be taken over for complex if a computer capable 
of complex arithmetic is available. If not, complex systems may be exchanged for equivalent, and 
larger, real systems. Thus, comparing real and imaginary parts of 

(A + iB)(x + iy) =a + ib 

leads to 

to which our real algorithms apply. The inversion problem 

(A+iB)(C+iD)=I 

responds to similar treatment. Eigenvalues can also be approached in this way. 

Solved Problems 

GAUSSIAN ELIMINATION 

26.1. Solve by Gaussian elimination. 

1 1 1 
2x1 +3x2 +4x3 = 0 

1 1 1 
3x1 +4x2+5x3=0 
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We begin by seeking the absolutely largest coefficient in column 1. Here it is in the top place. If this 
were not so, an interchange of rows would be made to arrange it. This largest element is called the first 
pivot. Now define 

l _a21_! 
21 - all -2 

l _a3I_! 

31- aii- 3 

and reduce the two lower coefficients in column 1 to zero in a familiar way, subtracting from the ith 
equation the product of li! by the first. Here is the result: 

This is the first modified system. The same procedure is now applied to the smaller system consisting of 
the two lower equations. Again the absolutely largest coefficient is already at the top of the leading 
column, so no interchange of rows is needed. We find 

aCt) 

/32 = ~~) = 1 
azz 

and so subtract from the third equation the product of /32 and the second equation. [The superscript (1) 
refers to the first modified system.] We then have 

1 1 1 
uxz+ i2x3= -2 

1 1 
180X3 = 6 

and the triangular system is evident. The solution process is then completed by back-subsitution, which 
finds the components X; from the bottom up, and in reverse order: 

26.2. Why is pivoting important? 

Consider this extreme example: 

Xz= -36 

10-5
xi + Xz = 1 

Xt+Xz=2 

The very small coefficient makes it clear that the solution ought to be quite close to x 1 = x2 = 1. Suppose 
we solve without pivoting and with the assumption that only four decimal places can be carried. Exact 
subtraction would yield the equation 

(1 - 105)x2 = 2- 105 

but with the restriction on decimal places we must settle for 

105xz = 105 

which still presents us with x2 = 1. However, continuing the back-substitution we then face 

10-5
xl + 1 = 1 

making x 1 = 0 instead of the anticipated 1. 
But now interchange the two equations, bringing the largest coefficient of column 1 into the pivot 
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position: 

Exact subtraction would now bring 

LINEAR SYSTEMS 

X1 +xz=2 

10-5x 1 + Xz = 1 

which the same restrictions would round to x2 = 1. This time the back-substitution manages 

x 1 + 1 = 2 

[CHAP. 26 

and x 1 = 1. Pivoting has made the difference between nonsense and a perfect result. Experience with 
many less dramatic systems has shown that pivoting is an important part of the elimination algorithm. 
The technique described is called partial pivoting, since the search for largest coefficient is limited to the 
immediate column. The value of a broader search, into other columns, and leading to column 
interchanges, is a matter of debate. 

The example in hand may be used to illustrate a further point. Multiply the first equation by 105 to 
obtain 

X1 + 105
xz = 105 

X1 + Xz = 2 

and make pivoting unnecessary. The usual subtraction manages 

(1 - 105)x2 = 2- 105 

when done exactly, but becomes 

after rounding. So x2 = 1. But then 

-105x 2 = -105 

x 1 = 105
- 105 = 0 

and we have the earlier "solution." The point is, even pivoting may not help when very large coefficients 
occur elsewhere. One way out of the difficulty might be to interchange columns, but an alternative is to 
normalize each equation, making the absolutely largest coefficient in each about the same. A popular 
way to do this is dividing each equation by its coefficient of greatest size. The "norm" of each equation 
will then be 1. In our example we would, of course, return to the original system. The lesson appears to 
be that the combination of normalization and partial pivoting has a good chance of yielding a good 
result. 

26.3. Summarize the Gauss algorithm for the general n by n linear system. 

Suppose that k steps of the type described in Problem 26.1 have been made, bringing the system to 
this form: 

UuX1 + U12Xz + · · · + U1kXk + u1,k+1xk+1 + · · · + U1,Xn = b; 

UzzXz + · · · + UzkXk + Uz,k+1Xk+1 + · · · + UznXn = b~ 

ukkxk + uk,k+1xk+1 + · · · + uknXn = b~ 
a~k11,k+1Xk+1 + ... + a~k11,nXn = b~k11 

The top k equations are in their final form, with u 11 , ••• , ukk the first k pivots. In the remaining n- k 
equations the coefficients bear the superscript (k) of this modified system. We next seek the (k + 1)th 
pivot among the coefficients of xk+l in the lower n- k equations. It will be the absolutely largest and its 
equation will be interchanged with equation k + 1. With this new pivot in place, now called uk+l,k+~> a 
new set of multipliers is found 

l _ a~,';1+1 
i,k+l- i = k + 2, ... , n 

uk+l,k+l 
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and zeros are arranged under the new pivot by subtracting equations. Coefficient changes are governed 
by 

a~/+ 1 ) = a&k) -l;,k+1a~kJ1.i 
b~k+ 1 ) = b~k) -l;,k+1b~k) 

k =0, ... , n -2 

j =k + 2, ... , n 
i =k +2, ... , n 

with k = 0 referring to the original system. The back-substitution part of the algorithm is represented by 

i =n, ... , 1 

26.4. What is the Gauss-Jordan variation? 

Here zeros are generated both below and above each pivot, by further subtractions. The final 
matrix is thus diagonal rather than triangular and back-substitution is eliminated. The idea is attractive, 
but it involves more computing than the original algorithm and so is little used. 

26.5. Estimate the amount of computing needed to carry out the Gauss algorithm for an n by n 
system. 

Consider the reduction of the coefficient matrix A to triangular form. This is where the lion's share 
of the effort occurs. At the first step, (n -1? modified coefficients are obtained. We further limit our 
attention to a count of such coefficients. In successive steps this number is reduced and the grand total 
will be 

(n- 1? + (n- 2? + · · · + 1 

coefficients. By a well-known result of algebra this is equal to (2n 3
- 3n2 + n)/6, from which the 

principal term n 3/3 is extracted as a simple measure of the computation's size. If n = 100, this number 
runs to six figures. 

26.6. Apply Gaussian elimination to this system, assuming that a computer capable of carrying only 
two floating-point digits is to do the calculations. 

x 1 + .67x2 + .33x3 = 2 

.45x1 + x2 + .55x3 = 2 

.67x1 + .33x2 + x 3 = 2 

With /21 = .45 and /31 = .67, the array below left summarizes the first stage of the process, and then 
with /32 = -.17 the array at the right shows the final triangularization . 

0 
.67 .33 
. 70 .40 

0 -.12 .78 

Back-substitution now begins with 

2.0 
1.1 

.7 

. 67 .33 
0 .70 .40 

0 0 .85 

x3 = '
89 

= 1.047 
.85 

2.0 
1.1 

.89 

if we assume a double precision accumulator, but rounding to 1.0 in any event. Then 

X 2 = (~ )(1.1- .4) = 1.0 

x 1 =2-.67-.33=1.0 

and the exact (1, 1, 1) solution has been found in spite of the severe limitations of the computer. This is 
because we have a very cooperative matrix. (See also Problem 26.20.) 
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26.7. What is the connection between Gaussian elimination and factors of the coefficient matrix? 

Form matrices Land U as follows, using results of Problem 26.1: 

L+, 
0 

:}[; 
0 

:] 
/31 /32 

[1 
1 

2 3 
[ Uu 

U12 :: ]= 0 1 l U= 0 Uzz 

0 0 
12 12 

U33 

0 0 1~0 

LU{: 
2 

!}A Then 
1 
3 
1 
4 

For a general proof of this factorization see the following problem. 

26.8. Show that if L is a lower triangular matrix with elements l;j and l;; = 1, and if U is an upper 
triangular matrix with elements u;j, then LU =A. 

The proof involves some easy exercise with triangular matrices. Returning briefly to the opening 
example, define 

and observe that the product S1A effects Step 1 of the Gauss algorithm, as it applies to the left sides of 
the equations, while S2S1A then effects Step 2. This means that 

with L = S~ 1S21 • Also note that 

so that inversions are achieved by changing the signs of the l;i entries. 
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For the general problem assume at first that no interchanges will be needed. Define matrices 

L, = [1 .. ·-/,.._, 1] 
-["·' 

i = 1, ... , n -1 

with all other elements zero. As in the example, each of these effects one step of the elimination 
process, making 

This means that 

Since the product of lower triangles with diagonal 1s is itself of the same type we have our factorization. 
In addition, since each inversion is achieved by changing the signs of the l;i entries, these are readily in 
hand and may be multiplied to rediscover 

Now suppose that some interchanges are to be made. Introduce the interchange matrices 

0 1 

0 

col col 

rowi 

row j 

The product l;iA will have rows i and j of A interchanged, while Al;i has the corresponding columns 
interchanged. The elimination algorithm now uses a chain of l;i interchanges and L; operations, leading 
to this representation: 

Ln-J]n-l.rn-ILn-2]n-2,rn_2 • • • LJLJ,r1A = U 

where the r; are the rows containing the selected pivots. This can be rearranged as 

(Ln-!Ln-2 • • • LJ)(/n-J,rn-l • • • J!,r)A = U 

or C 1PA=U PA=LU 

with P the permutation matrix including the n -1 interchanges. Assuming A nonsingular, this means 
that there is a permutation of rows such that PA has an LU factorization. The uniqueness of this 
factorization will be evident from Problem 26.14. 

26.9. Solve the system Ax = b assuming an LU factorization has been done. 

We have, since L, U, and Pare in hand, 

Ax= LUx =PAx= Pb 
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and letting y = Ux, first solve Ly = Pb for y. This is easily done by forward-substitution. Then Ux = y is 
solved by back-substitution. More specifically, and with p; denoting an element of Pb, the system 
Ly = Pb is 

l11y! 

l21Y1 + l22Y2 

=p! 

=p2 

with alllu = 1. The solution by forward-substitution is clearly y1 = p 1, Y2 = p 2 -/21 y1, or more generally, 

for r = 1, ... , n. The backward-substitution is then achieved by the formula of Problem 26.3, modified 
only by the replacement of the vector b' by y: 

with i = n, ... , 1. The combination of factoring and forward-backward substitution is particularly useful 
if the system must be solved for more than one vector b. 

26.10. What is a compact algorithm? 

When Gaussian elimination was done by hand, many elements of A were copied many times. In a 
computer this would be equivalent to making liberal use of storage space. With large-scale systems it is 
advisable to be economical both of storage space and computer time. For this reason, compact 
algorithms have been devised. For example, as elimination proceeds, the lower triangle of matrix A is 
replaced by zeros. These storage locations may better be used to record successively the values l;j, for 
j < i. At the end of the run the upper triangle of A will then have been replaced by U, and the lower 
triangle by L without its unit diagonal. And there is no need to store all the interchange matrices l;j· It is 
enough to define initially a vector v with elements (1, 2, 3, ... , n) and at each step to simply 
interchange the appropriate elements. If, for instance, the first pivot is in row 3, then (3, 2, 1, 4, ... , n) 
records this. It is not necessary to physically interchange the rows, thus saving the time that would have 
been used for this maneuver. From the final v the permutation matrix P can be constructed if desired, or 
v itself used to permute the elements of vector b. 

26.11. Apply the procedure of Problem 26.10 to this matrix 

The essential computations are displayed in Fig. 26-1. In three steps the original matrix is replaced 
by a four by four array containing all the information needed, except for the vector v which traces the 
interchanges. 

At this point matrix A has been replaced by a triangular matrix in the LV factorization of PA. The 
vector v tells us that the triangle will be evident if we look at rows 2, 3, 4, 1 in that order. Indeed the 
unstarred elements are the factor U. The factor L can also be read by taking the starred elements in the 
same row order. As for the permutation matrix P, it is constructed by placing 1s in columns 2, 3, 4, 1 of 
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0* 

3 

2* 

3 
1 * 
3 

0* 

3 

2* 

3 

1 * 
3 

0* 

® 
2* 

3 
1 * 

3 

11 2 3 

0 2 

3 
2 1 

3 3 

8 2 
2 3 3 

1* 

~ 3 9 

0 1 2 

® 
2 1 

3 3 

~*I ~ -~ 
3 9 9 

1 * 5* ll 3 7 
0 2 

3 
2 1 

3 3 

~*® 4 

3 9 9 

LINEAR SYSTEMS 

The given matrix A 

v = (1, 2, 3, 4) 

Identify the first pivot, 3. 

Bring its row number to the first position in v. v = (2, 1, 3, 4). 
Compute and store the ln (starred). 
Compute the nine new entries by subtractions (right of the solid 
line). 

Identify the second pivot (column 2 and right of the solid line). 
Bring its row number to second position in v (2, 3, 1, 4). 
Compute the /12 and store them (starred). 
Compute the four new entries. 

Identify the last pivot (column 3 and right of the solid line). Bring 
its row number to third position in v (2, 3, 4, 1). 
Compute the /13 and store them. 
Compute the one new entry. 

Fig. 26-1 

an otherwise zero matrix, as follows: 

P~ [f 
0 

!J 
0 

0 0 

0 0 

PA~LU~[j 
0 1 

jj One may now calculate 
3 0 

2 3 
2 

and so verify all steps taken. 

363 

26.U. Using the results of the preceding problem and given the vector b with components 
(0, 1, 2, 3), solve Ax= b. 

We use the suggestion in Problem 26.9. First either Pb or the vector v rearranges the components 
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of b in the order (1, 2, 3, 0). Although it is not necessary, suppose we display the system Ly = Pb 
directly. 

0 0 Y1 

2 
0 0 2 3 Yz 

1 2 
3 3 0 Y3 

3 

1 5 
0 0 7 Y4 

3 

Forward-substitution then manages y = (1, t ~. -lfY. Turning to Ux = y we face 

3 0 2 x1 

0 
2 1 4 

3 
3 3 

Xz 3 

0 
28 4 16 

0 9 9 
X3 9 

0 0 
24 12 

0 7 X4 
7 

from which comes x = (!, !, !, -!)T, which may be verified directly in Ax= b. 

26.13. Prove the fundamental theorem of linear algebra. 

We use the Gauss algorithm. If it can be continued to the end, producing a triangular system, then 
back-substitution will yield the unique solution. If all the b; are zero, this solution has all zero 
components. This is already a principal part of the theorem. But suppose the algorithm cannot be 
continued to the anticipated triangular end. This happens only when at some point all coefficients below 
a certain level are zero. To be definite, say the algorithm has reached this point. 

u11x1 + · · · 
u22x2 + · · · 

=b; 

=b~ 

ukkxk + · · · = b~ 
o=bn 

Then in the homogeneous case, where all the b's are zero, we may choose xk+l to Xn as we please and 
then determine the other X;. But in the general case, unless b~k2 1 to b~kl are all zero, no solution is 
possible. If these b's do happen to be zero, then again we may choose xk+l to Xn freely, after which the 
other X; are determined. This is the content of the fundamental theorem. 

FACTORIZATIONS 

26.14. Determine the elements of matrices L and U such that A= LU by a direct comparison of 
corresponding elements. 

Assume that no interchanges will be necessary. Then we are to equate corresponding elements from 
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the two sides of 

which amounts to n 2 equations in the n2 unknowns lij and u;j· The determination runs as follows. First 
multiply the top row of L by all columns of U to get 

j = 1, ... , n 

Next multiply the rows of L (omit the first) by column 1 of U, finding lilu11 =ail, from which the lil 
follow. 

l 
_ail 

i1- i=2, ... , n 
u11 

It is next the turn of the second row of L to multiply the columns of U (omit the first). The second row 
of U is then 

j =2, ... , n 

Now multiply the rows of L (omit the first two) by column 2 of U. All elements involved except the l;2 

are in hand, so we solve for these. 

l 
_ a;z -lilu12 

i2-
Uzz 

i =3, ... , n 

Continuing in this recursive way, we alternately find the rows of U to be 
r-1 

Urj = a,j - 2: [,kUkj 
k~1 

each row followed by the corresponding column of L. 

r-1 

a;, - ~ f;kUkr 
k~1 

This procedure is called the Doolittle algorithm. 

26.15. What is the Crout algorithm? 

j = r, ... , n 

i = r + 1, ... , n 

The Crout algorithm also produces a factorization of A, in the form L'U', with U' having the 
diagonal of 1s and L' the general diagonal. Formulas for the elements of the factors may be found very 
much as in Problem 26.14, but it is of interest to note that, with D denoting the matrix of diagonal 
elements of our earlier U and zeros elsewhere, 

A= LU = L(DD- 1)U = (LD)(D- 1U) = L' U' 

so the two factorizations are closely related. 

26.16. Develop the Choleski method for factoring a real, symmetric, positive definite matrix. 

Here we will find factors of the form 

the T denoting the transpose. The procedure is almost identical with that of Problem 26.14, with 
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symmetry allowing us to consider only the lower triangle of A. The Hilbert matrix of order three can 
once again serve as a small-scale introduction. 

[

[11 0 

l21 l22 

[31 [32 

The elements of L will be found from top to bottom and left to right. 

[11 [ 11 = 1 [ 11 = 1 

1 
[21 =! z21z11 = 2 2 

2 2 1 
l21 + l22 = 3 

1 
l22 = v'i2 

1 
[31[11 = 3 

1 
[31=3 

1 
[32=-

1
-[31[21 + [32[22 = 4 v'i2 

2 2 2 1 
[33=-

1
-z31 + z32+ z33 = 5 Vi80 

The computation is again recursive, each line having only one unknown. 
Because of the way the algorithm develops, should we now wish to extend our effort to the Hilbert 

matrix of order four, it is only necessary to border L with a new bottom row and fourth column. 

LLT= 

We then find 

0 0 

1 

2 v'I2 0 

1 1 1 

3 v'I2 VI80 

[41 [42 [43 

1 
[41[21 + [42[22 = 5 

and so on to 143 = VS/20 and 144 = 0/140. 

0 

0 

0 

1 -
2 

1 
-

3 LT= 2 

1 1 

3 4 
1 

4 -

1 
[41 =4 

3V3 
l42=2o 

The algorithm can be summarized in the equations 
i-1 

L l,ilii + l,;l;; = a,; 
j~1 

r-1 

2: z;j + z;, = a,, 
j~1 

to be used for r = 1, ... , n in turn. 

i = 1, ... , r -1 

1 1 

3 4 
1 

4 5 

6 

1 
- 7 6 
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ERRORS AND NORMS 

26.17. What is a condition number of a matrix A? 

It is a measure of how trustworthy the matrix is in computations. For a given norm, we define the 
condition number as 

C(A)= IIAII·IIA-1 11 
and observe, using Problem 1.34, that C(/) = 1, where I is the identity matrix. Moreover, using Problem 
1.38, 

C(A) = IIAII·IIA-1 11 ~ IIIII = 1 

so the identity matrix has the lowest condition number. 

26.18. Suppose the vector b of the system Ax = b contains input errors. Estimate the influence of 
such errors on the solution vector x. 

Rewrite the system as 
Axe =b + e 

and combine with Ax = b to obtain 

A(xe-x)=e 

from which it follows that, using Problem 1.60, 

Xe-x=A- 1e 

llx -xell ~ IIA-1II·IIell 
To convert this to a relative error estimate, we have, from Ax= b, 

IIAII·IIxll~llhll 

and finally 

llxll~~ 
IIAII 

in which the condition number of A appears. 
Similarly from 

we find 

II ell~ I lA II· llxe- xll and 

_l_le_ll_<llxe-xll 
C(A) lib II= llxll 

giving us both a lower and an upper bound for the relative error. 

26.19. Suppose the matrix A of the system Ax = b contains input errors. Estimate the influence of 
such errors on the solution vector x. 

Write the system as 

and combine with Ax = b to obtain 

(A +E)xe =b 

A(xe -x) = -Exe 

leading to llxe -xll ~ IIA-1II·IIEII·IIxell 

llxe -xll ~ IIA- 1 II·IIAII·l!.~JL C(A)~ 
llxell IIAII IIAII 

which estimates the error relative to the solution Xe. Here again the condition number of A appears. 
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Here and in the preceding problem it measures how much the input errors are inflated. 
An estimate relative to the solution x can also be found. One such estimate is this: 

llxe -xll < C(A)(IIEII/IIAII) 
llxll 1- C(A)(IIEII/IIAII) 

26.20. Rework the opening example (Problem 26.1) under the assumption that a computer carrying 
only two floating-point digits is to do the computations. 

The system now takes the form 

l.Ox1 + .50xz + .33x3 = 1.0 

.SOx1 + .33x2 + .25x3 = 0 

.33x1 + .25x2 + .20x3 = 0 

and with 121 = .5 and 131 = .33 is soon converted to 

.08x2 + .09x3 =-.50 

.09x2 + .09x3 = -.33 

with the first equation retained as is. Here we may as well complete the triangularization by simply 
subtracting what we have. 

.01x2 = .17 

Now back-substitution manages x 2 =17, x 3 =-21, x 1=-.6, and a "solution" vector (-.6,17,-21). 
Comparing with the correct (9, -36, 30) we see no resemblance whatsoever. The point is, the matrix of 
this system is a junior member of a notorious family, the Hilbert matrices. Coupling this with the severe 
limitations of our computer has led to a grotesque result. 

In Problem 26.42 the inverse matrix will be found to be 

[ 

9 -36 30] 
-36 192 -180 

30 -180 180 

in which the large elements should be noted. The maximum norm is 36 + 192 + 180 = 408, making a 
condition number of 

C(A)= IIAII·IIA-1 11 =¥(408)=748 

By Problem 26.19 we now have the estimate 

llxe- X II~ 748 (.005) = 2.04 
llxell Jt 

suggesting a relative error of 200 percent. Clearly the computation was naive. At least four digits are 
needed. 

By way of contrast, recall the cooperative matrix of Problem 26.6 which permitted an exact solution 
to be found even by a two-digit computer. For that matrix the maximum norm is 2 and the inverse also 
has norm near 2. The condition number is then near 4 and we estimate 

llxe- xll ~ 4(.005) = .02 
llxell 1 

or a maximum error of 2 percent. 

26.21. What is the "nearest singular matrix" theorem? 

Suppose A is nonsingular and B singular. Then, by the fundamental theorem of linear algebra, 
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there exists a vector x =/= 0 satisfying Bx = 0. For this x 

IIAxll = IIAx- Bxll = II(A- B)xll ~ IIA- Bll·llxll 

and since x =A-1Ax, we also have 

Since A is nonsingular, we cancel the factor IIAxll and have 

which is the required theorem. 
Its message is that the size of the inverse matrix of A is at least the reciprocal of the "distance" of A 

from the nearest singular matrix B. If A is nearly singular, then A-1 will have a large norm. If A is 
normalized, in the sense IIAII = 1, the condition number will also be large. 

As a corollary we have the following intuitive result. If B is "close enough" to the nonsingular A, in 
the sense that 1/IIA- Bll is larger than IIA-1 11, then B is nonsingular also. 

26.22. Use the theorem of Problem 26.21 to estimate the condition of the matrix of this system, 
presented earlier in Problem 1.13. 

x1 +x2 = 1 

1.1x 1 +x2 = 2 

The point is that A- 1
, required for the condition number, is not always easy to find with accuracy. 

Though this is not true here, we observe that the matrix of coefficients is close to the singular matrix 

B = [~ ~] 
and find, using maximum norms, IIA II = 2.1, IIA- B II = .1, so that 

IIA- 111;;;;_!_=10 C(A);;;;(2.1)(10)=21 
.1 

26.23. Estimate the error caused by using 1.01x2 in place of x2 in the second equation in Problem 
26.22. 

. . [ 0 0 J . . The error matnx IS E = 
0 

_
01 

with maximum norm .01. Thus 

llxe -xll ~ C(A)~~ 21 (.01) = .1 
llxell IIAII 2.1 

which is our estimate. For an input error of 1 percent we anticipate an output error of 10 percent. This 
inflation is due to the ill-condition of A, as measured by C(A). 

Solving the system directly, we find x = (10, -9) and xe = (11, -10). This makes llxe- x II = 1 and 
llxell = 11, for a relative error of .09. So the 10 percent inflation is just about realized. 

26.24. The many intermediate computations that are made in solving a linear system make roundoff 
error an important factor. How can this error be estimated? 

Backward error analysis has produced the only real successes in this difficult area. It shows that the 
cumulative effect of roundoffs can be estimated by considering the substitute system (A+ E)x = b, 
where E is a perturbation of A. It then finds bounds for the elements of E. The error in x can then be 
estimated by the formula of Problem 26.19. The details are far from trivial but have been carried 
through for most of the solution algorithms. The full story must be sought in the literature, but a 
simplified approach leading to the partially satisfactory bound 

max leiil ~ nA[max laiil + (3 + nA) max lbiil] 
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is offered in Problems 26.113 to 26.117. Here ~ depends upon the unit roundoff and the b;j upon the 
computed factors L and U of the given matrix A. 

The somewhat deeper estimate 

liE II~ (1.06 max lu;jl)(3n 2 + n3 )TP 

may be easier to apply. For example, if A has order ten (n = 10), and the equivalent of eight decimal 
places are carried (TP = 10-8

), and we make the crude guess of ten for the first factor, then we find 

liE II~ (1.3)10-4 

suggesting that perhaps half the digits being carried may no longer be significant. The estimate is, of 
course, conservative, since it ignores the fact that errors often cancel one another to some extent. 

26.25. How does the condition of the coefficient matrix A enter into the roundoff error estimation 
process? 

Recalling Problem 26.19, the relative error of the solution is bounded by 

where E is now the perturbation of A due to internal roundoffs. For a normalized A, the relative error 
in Xe is thus the product of two factors, the condition of A and the norm of E. 

26.26. If double precision arithmetic is available, how much does it improve the roundoff situation? 

By the formula in Problem 26.24, if the factor TP can be reduced from 10-8 to 10-16
, eight 

additional decimal figures will be gained, surely a significant improvement. But there is a side effect. A 
large-scale system uses a lot of computer storage space, even at single precision. Doubling the precision 
may just burst the seams. There is a compromise, similar to the one described in Problem 19.48, where 
the motivation was computing time rather than storage space. Instead of doing and storing everything in 
double precision, limit this higher level of activity to the numerous inner product evaluations which 
permeate these algorithms. Once calculated, their values can be stored in single precision, making just 
one roundoff where there might have been n. Only a modest programming effort is needed to 
incorporate this feature, and the reward can be dramatic. 

26.27. The residual of an approximate solution Xe is defined as the vector 

r = b -Axe 

and gives the amount by which each equation of the linear system fails to be satisfied. How is 
the residual related to the error of Xe? 

Since Ax= b for the exact solution x, we have 

and, using Problem 1.37, 

From Ax = b we have similarly 

r=A(x -xe) 

~:~llll ~ llx- Xell ~ IIA-1 11 · llrll 

IIA-1II·IIbll ~II II~~ 
X IIAII 

so dividing corresponding elements leads to the required result. 
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The relative error of Xe is bounded above and below by multiples of the relative residual, the multipliers 
involving the condition number of A. If C(A) is near 1, then the relative error is close to the relative 
residual, which is, of course, readily available. If, however, C(A) is large, there may be good reason to 
suspect inaccuracy in Xe even though r may be small. In other words, if A is ill-conditioned, the system 
may be nearly satisfied by an Xe containing large error. On the optimistic side, and looking primarily at 
the left half of the above inequality, when C(A) is large, even a large residual still allows the error x - Xe 

to be small, though the probability of this happening is likely to be rather small too. 

26.28. What is the method of iterative refinement? 

Let h = x- Xe and rewrite the equation A(x- Xe) = r of the preceding problem as 

Ah =r 

This system has the same coefficient matrix as the original. If A has been factored, or the steps of 
Gaussian elimination retained in some way, it is solved with relatively little cost. With h in hand, one 
computes 

X =xe +h 

and has a new, and presumably better, approximation to the true solution. New residuals may now be 
calculated and the process repeated as long as seems fruitful. This is the idea of iterative refinement. If 
double precision arithmetic is available, this is an excellent opportunity to use it. 

ITERATIVE METHODS 

26.29. Illustrate the Gauss-Seidel iteration for solving linear systems using the following well-known 
example. A dog is lost in a square maze of corridors (Fig. 26-2). At each intersection it 
chooses a direction at random and proceeds to the next intersection, where it again chooses at 
random and so on. What is the probability that a dog starting at intersection i will eventually 
emerge on the south side? 

1 2 3 

4 5 6 

7 8 9 

Fig. 26-2 

Suppose there are just nine interior intersections, as shown. Let P1 stand for the probability that a 
dog starting at intersection 1 will eventually emerge on the south side. Let P2 , ••• , P9 be similarly 
defined. Assuming that at each intersection he reaches, a dog is as likely to choose one direction as 
another, and that having reached any exit his walk is over, probability theory then offers the following 
nine equations for the Pk: 

1 
P1 = 4 (0 + 0 + P2 + P4) 

1 
Pz = 4 (0 + P1 + P3 + P5) 

1 
P3 = 4 (0 + Pz + 0 + P6) 

1 
P4=4(P1+0+P5 +P7 ) 

1 
Ps =4(Pz + P4 + P6+ Ps) 

1 
P6 = 4 (P3 + Ps + 0 + P9) 

1 
P7=4(P4 +0+P8 +1) 

1 
Ps=4(Ps+P7 +P9+1) 

1 
P9=4(P6+P8 +0+ 1) 

Leaving the equations in this form, we choose initial approximations to the Pk. It would be possible to 
make intelligent guesses here, but suppose we choose the uninspired initial values Pk = 0 for all k. 
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Taking the equations in the order listed we compute second approximations, one by one. First P1 comes 
out zero. And so do P2 , P3 , ••• , P6 • But then we find 

and the second approximation to each Pk is in hand. Notice that in computing P8 and P9 , the newest 
approximations to P7 and P8 respectively have been used. There seems little point in using more antique 
approximations. This procedure leads to the correct results more rapidly. Succeeding approximations 
are now found in the same way, and the iteration continues until no further changes occur in the 
required decimal places. Working to three places, the results of Table 26.1 are obtained. Note that P5 

comes out .250, which means that one-fourth of the dogs starting at the center should emerge on the 
south side. From the symmetry this makes sense. All nine values may be substituted back into the 
original equations as a further check, to see if the residuals are small. 

Table 26.1 

Iteration PI ~ I':J p4 Ps p6 P, Ps p9 

0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 .250 .312 .328 
2 0 0 0 .062 .078 .082 .328 .394 .328 
3 .016 .024 .027 .106 .152 .127 .375 .464 .398 
4 .032 .053 .045 .140 .196 .160 .401 .499 .415 
5 .048 .072 .058 .161 .223 .174 .415 .513 .422 
6 .058 .085 .065 .174 .236 .181 .422 .520 .425 
7 .065 .092 .068 .181 .244 .184 .425 .524 .427 
8 .068 .095 .070 .184 .247 .186 .427 .525 .428 
9 .070 .097 .071 .186 .249 .187 .428 .526 .428 

10 .071 .098 .071 .187 .250 .187 .428 .526 .428 

In this example of the Gauss-Seidel method each of the nine equations comes to us in the form 

P; = 0 0 0 

and is used to update the approximation to P; using the most recent values of the other components. It is 
worth noting that in each equation the unknown on the left side has the dominant coefficient. 

26.30. Develop the Gauss-Seidel method for a general linear system. 

The algorithm is applied most often to systems Ax = b for which the diagonal elements of A are 
dominant. In any event, one should arrange by row and column interchanges that larger elements fall 
along the diagonal, to the extent that this is possible. The ith equation of the system is then solved for X; 
in terms of the other unknowns. If we use the symbol x}kJ to represent the kth approximation to X;, then 
the algorithm proceeds as in the example. 

b1- a1zX~0)- • • ·- a 1nX~0) 

a11 

bz- az1X\
1
) - az3X~0)- • • • - a2nX~0) 

azz 

b3- a31X\
1J- a32X~1J- a34X~0J - · • • - a3nX~0J 

a33 

the superscript (0) denoting an initial approximation. More generally we have for the kth approximation 
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to X; 

au 
in which the first sum uses kth approximations to x1 having j < i, while the second uses (k -1)th 
approximations to x1 with j > i. Here i = 1, ... , n and k = 1, .... 

26.31. Express the Gauss-Seidel algorithm in matrix form. 

First the matrix A is split into 

A=L+D+U 

where L and U are lower and upper triangles with zero elements on the diagonal. The general formula 
for Problem 26.30 can then be written as 

x<kl = D-\b- Lx<kl- ux<k-1l) 

which can be solved for x<kl. First 

which leads to 

or 

(I+ D-1L)x<kl = D-1b- D-1ux<k-1) 

x<kl = (/ + n-1L)-1(D-1b- n-1ux<k-1l) 

x<kl = -(D + L)-1Ux<k- 1l + (D + L)-1b 

26.32. What is a stationary matrix iteration? 

A matrix iteration of the form 

x<kl = Mkx<k- 1) + Ckb 

is called stationary if Mk and Ck are independent of k. The iteration then becomes 

x<kl = Mx<k- 1) + Cb 

The Gauss-Seidel method is stationary, with this M and C. 

C= (D + L)-1 

26.33. Discuss the convergence of matrix iterations. 

First we ask that the exact solution of Ax = b be a fixed point of the iteration. That is, we substitute 
x =A-lb for both the input and output approximations in 

x<kl = Mkx<k- 1) + Ckb 

and have 

This is to hold for all vectors b, so we equate coefficients. 

A - 1 = MkA - 1 + Ck 

l=Mk+ CkA 

Now define e<kl as the error of the kth approximation. 

Then e<kl = x - Mkx<k- 1)- Ckb 

= Mk(x - x<k- 1)) = Mke<k- 1) 



374 LINEAR SYSTEMS [CHAP. 26 

which shows that it is the matrices Mk that control error behavior. Using this result repeatedly, 

e<kl = MkMk-t · · · Mte<ol 

where e<0l is the initial error. For a stationary iteration this becomes 

e<kl = Mke(o) 

26.34. Prove that the Gauss-Seidel iteration converges for an arbitrary initial vector x<0l, if the 
matrix A is positive definite, symmetric. 

Because of the symmetry, A = L + D + L T' which makes 

M=-(D+L)- 1C 

If A and v are an eigenvalue and eigenvector of M, then 

(D + L)-1LTv = -Av 

Cv = -A(D + L)v 

Premultiplying by the conjugate transpose of v (denoted v*) 

v*LTv = -v*A(D + L)v 

and then adding v*(D + L)v to both sides 

v*Av = (1- A)v*(D + L)v 

since A= L + D +LT. But the conjugate transpose of v*Av is v*Av, so the same must be true for the 
right side of this last equation. Thus, with f. denoting the conjugate of A, 

(1- f.)v*(D + L)Tv = (1- A)v*(D + L)v 

= (1- A)(v*Dv + v*Lv) 

= (1- A)(v*Dv- f.v*(D + L)Tv) 

Combining terms 
(1-IAI 2)v*(D + Lrv = (1- A)v* Dv 

multiplying both sides by (1- f.), and doing a little algebra we have finally 

(1-IAI 2)v*Av = 11- Al 2v*Dv 

But both v*Av and v*Dv are nonnegative and A cannot equal1 (since this would lead back to Av =0), 
so 

IAI 2 < 1 

placing all eigenvalues within the unit circle and guaranteeing that lim Mk = 0. Thus e<kl has limit zero 
for any e<0l. 

26.35. How can an acceleration method be applied to the Gauss-Seidel iteration? 

Since e<kl = Me<k-1), we anticipate that errors may diminish in a constant ratio, much as in Problem 
25.4. The extrapolation to the limit idea then suggests itself. Here it would take the form 

- (k+Z) ~)k+l) 
X;-X; - ~ZX)k) 

fori= 1, ... , n. The superscripts denote three successive approximations. 
For example, using the center column of Table 26-1, in which we know the correct value to be .250, 

the errors in rows 4 to 8 are 54, 27, 14, 6, and 3 in the third decimal place. This is very close to a steady 
reduction by one-half. Suppose we try extrapolation to the limit using the three entries below, together 
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with the corresponding differences as given . 

. 196 

.027 
.223 -.014 

.013 
.236 

We find 
(.013? 

P5 = .236- __ 
014 

= .248 

which is in the right direction if not especially dramatic. 

26.36. What are relaxation and overrelaxation methods? 

The central idea is to use residuals as indicators of how to correct approximations already in hand. 
For example, the iteration 

x<kJ = x<k-1) + (b - Ax<k-1)) 

has the character of a relaxation method. It has been found that giving extra weight to the residual can 
speed convergence, leading to overrelaxation formulas such as 

x<kJ = x<k-1) + w(b- Ax<k-1)) 

with w > 1. Other variations of the idea have also been used. 

26.37. Adapt the overrelaxation method to accelerate the convergence of Gauss-Seidel. 

The natural adaptation is 

x<kJ = x<k-1) + w[b - Lx(k)- (D + U)x<k-1)] 

with A= L + D + U as before. We take w = 1.2, x<0
l = 0, and try once more the problem of the dog in 

the maze. We find zeros generated as earlier until 

p(l) = p(O) + 1 2( 250 +! p(l) - p(O) +! p(O)) = 300 7 7 .. 44 7 48. 

p(l) = p(O) + 1 2( 250 +! p(l) +! p(l)- p(O) +! p(O)) = 390 8 8 .. 45 47 8 49. 

p(l) = p(O) + 1 2( 250 +! p(l) +! p(l)- p(O)) = 418 9 9 .. 46 48 9. 

Succeeding approximations are found in the same way and are listed in Table 26.2. Notice that about 
half as many iterations are now needed. 

Table 26.2 

Iteration Pt p2 p3 p4 Ps p6 P, Ps p9 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 .300 .390 .418 

2 0 0 0 .090 .144 .169 .384 .506 .419 

3 .028 .052 .066 .149 .234 .182 .420 .520 .427 

4 .054 .096 .071 .183 .247 .187 .427 .526 .428 

5 .073 .098 .071 .188 .251 .187 .428 .527 .428 

6 .071 .098 .071 .187 .250 .187 .428 .526 .428 



376 LINEAR SYSTEMS [CHAP. 26 

MATRIX INVERSION 

26.38. Extend the Gauss elimination algorithm to produce the inverse of the coefficient matrix A, 
that is, the A -l such that AA -l =I. 

Taking once again the system of Problem 26.1, we simply treat three b vectors simultaneously. The 
starting point is the array 

1 

2 3 0 0 

1 1 
0 0 2 3 4 

1 1 1 

3 5 0 0 1 
4 

the left half of which is A and the right half I. The first Gaussian step now leads to this new array. 

1 
0 2 3 0 

0 
12 12 2 

0 

0 
4 1 

0 
12 45 3 

Here the method is modified slightly by reducing the next pivot to 1, a multiplication by 12 performing 
this service. 

1 
0 

2 3 0 

0 -6 12 0 

0 0 
1 

180 

1 

6 -1 

The second step has also been performed to triangularize the system. At this point back-substitution 
could be used to solve three separate systems, each involving one of the last three column vectors. 
Instead, however, we extend the second Gaussian step. Continuing with the second row as pivotal row, 

-we subtract half of it from row 1 to create one more zero: 

1 

6 
4 -6 0 

0 -6 12 0 

1 
0 

180 

1 

6 -1 

The third Gaussian step then follows, after reducing the last pivot to 1. The purpose of this step is to 
create zeros above the new pivot. The final array then appears. 

1 

0 

0 

0 

1 

0 

0 

0 

9 

-36 

30 

-36 30 

192 -180 

-180 180 
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Since we have actually solved three linear systems of the form Ax= b, with vectors br = (1, 0, 0), 
(0, 1, 0), and (0, 0, 1) in turn, it is clear that the last three columns now contain A - 1

. The original array 
was (A, I). The final array is (/,A - 1

). The same process can be applied to other matrices A, row or 
column interchanges being made if required. If such interchanges are made, they must be restored at the 
completion of the algorithm. 

26.39. Assuming that the matrix A has been factored as A= LU, how can A -I be found from the 
factors? 

Since A - 1 = u- 1L - 1
, the question is one of inverting triangular matrices. Consider L and seek an 

inverse in the same form. 

The validity of the assumption will be clear as we proceed. Now match the elements of the two sides, 
much as in the Choleski factorization algorithm, top to bottom and left to right. We find 

/21 + C21 = 0 

/31 + /32C21 + C31 = 0 

/32 + C32 = 0 

/41 + /42C21 + /43C31 + C41 = 0 

/42 + /43C32 + C42 = 0 

/43 + C43 = 0 

C21 = -/21 

C31 = -(/31 + /32c21) 

C32 = -/32 

C41 = -(141 + /42C21 + /43C31) 

C42 = -(/42 + /43C32) 

C43 = -/43 

The elements are determined recursively, the general formula being 

All diagonal elements are 1. 

i-1 

ci1 = -2: likckf 
k~j 

i =2, ... , n 

j = 1, 0 0 0 'i -1 

The inversion of U is similar. Assuming the inverse to be an upper triangle, with elements di1, we 
proceed from bottom to top and right to left, finding 

and 

1 
dii=

Uu 
i =n, ... , 1 

i =n, ... , 1 

j = n, ... , i + 1 

26.40. Apply the method of the preceding problem to the matrix of Problem 26.11. 

In that problem the factorization 

0 0 0 0 2 

2 
- 1 0 0 0 

2 

PA=LU= 2 28 4 

3 - 1 0 0 0 
9 9 

0 
5 

0 0 0 
24 

3 
-
7 7 
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was made. Applying the above recursions, we now have 

[ 

63 0 

-1- 1 -42 63 
L -63 7 -42 

9 9 

from which there comes eventually 

0 

0 

63 
-45 

-1 1 0 

[

56 

u = 168 ~ 

(PA)- 1 = u- 1L -I=....!_[-~ 7 -~~J 
24 1 -5 7 

1 -5 

[CHAP. 26 

To produce the ultimate A -I, we use A -I= (PA)- 1P and recall that postmultiplication by a permutation 
matrix P rearranges the columns. Referring back to the earlier problem, it is found that the above 
columns should be taken in the order 4, 1, 2, 3. 

26.41 Derive the formula for making an exchange step in a linear system. 

Let the linear system be Ax = b, or 

L a;kxk =b; 
k-1 

i = 1, ... , n 

The essential ingredients may be displayed as in this array for n = 3. 

XI Xz X3 

b] a II a12 a13 

hz az1 azz az3 

b3 a31 a3z a33 

We proceed to exchange one of the "dependent" variables (say b 2) with one of the independent 
variables (say x3). Solving the second equation for x3, x3 = (b 2- a21x 1 - a22x2)/a23 . This requires that the 
pivot coefficient a23 not be zero. Substituting the expression for x 3 in the remaining two equations brings 

b 
a13(bz- az1X1- azzXz) 

1 = a
11

x
1 

+ a12x 2 +.-:..:co....:::....___::.:......:._....::::.-= 
az3 

The array for the new system, after the exchange, is as follows. 

Xz hz 

a13azz a13 a1z ___ 
az3 a23 

_ azz 

az3 a23 

a33a22 a33 a32 ___ 
a23 az3 

This may be summarized in four rules: 

1. The pivot coefficient is replaced by its reciprocal. 

2. The rest of the pivot column is divided by the pivot coefficient. 
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3. The rest of the pivot row is divided by the pivot coefficient with a change of sign. 

4. Any other coefficient (say a1m) is replaced by a1m- a,kaim where a,k is the pivot coefficient. 
a,k 

26.42. Illustrate the exchange method for finding the inverse matrix. 

Once again we take the matrix of Problem 26.1. 

X! Xz X3 

1 
bl 2 3 

1 
bz 2 3 4 

b3 
1 
3 4 

379 

For error control it is the practice to choose the largest coefficient for the pivot, in this case 1. 

Exchanging b 1 and x~> we have this new array: 

bl Xz X3 

1 
X! 

2 3 

bz 
2 12 12 

b3 
1 4 

3 12 45 

Two similar exchanges of b3 and x 3, then of b2 and x2 , lead to the two arrays shown below. In each case 

the largest coefficient in a b row and an x column is used as pivot. 

b1 Xz b3 b1 bz b3 

9 3 15 
X! 

4 16 4 
X! 9 -36 30 

bz 
3 15 

16 192 16 
Xz -36 192 -180 

15 15 45 
X3 

4 16 4 
Xz 30 -180 180 

Since what we have done is to exchange the system b =Ax for the system x =A - 1b, the last matrix is 
A-l. 

26.43. Derive the formula A-t=(/+ R + R 2 + · · ·)B where R =I- BA. 

The idea here is that B is an approximate inverse of A, so that the residual R has small elements. A 

few terms of the series involved may therefore be enough to produce a much better approximation to 

A - 1
• To derive the formula note first that (I- R)(I + R + R2 + · · ·)=I provided the matrix series is 

convergent. Then I+ R + R2 +···=(I- R)- 1 and so 

(I+ R + R2 + · · ·)B =(I- Rt1B = (BA)- 1B =A-1B-1B 

which reduces to A - 1
• 
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26.44. Apply the formula of the preceding problem to the matrix 

10 1] 
0 1 
3 2 

assuming only a three-digit computer is available. Since any computer carries only a limited 
number of digits, this will again illustrate the power of a method of successive corrections. 

First we apply Gaussian elimination to obtain a first approximation to the inverse. The three steps, 
using the largest pivot available in each case, appear below along with the approximate inverse B which 
results from two interchanges of rows, bringing the bottom row to the top . 

. 1 .1 .1 0 0 0 .037 .111 0 -.0371 
2.0 0 1.0 0 0 0 0 -.260 .222 -.742 
2.7 0 1.7 -.3 0 0 .630 -.111 0 .371 

Step 1 Step 2 

0 0 .143 .143 -.143 
[ .427 

2.43 
-143 J 

0 0 -.854 -3.85 2.85 .143 .143 -.143 
0 0 .427 2.43 -1.43 -.854 -3.85 2.85 

Step 3 The Matrix B 

[ 003 
.020 

~'] Next we easily compute R=l-BA= 0 -.001 

.004 -.010 .004 

after which RB, B + RB, R 2B = R(RB), and B + RB + R 2B are found in that order. (Notice that because 
the elements in R 2B are so small, a factor of 10,000 has been introduced for simplicity in presentation.) 

[ .001580 -.001400 .001400] [ .428579 2.428600 -1428600] 
-.000143 -.000143 .000143 .142857 .142857 -.142857 
-.003140 -.007110 .007110 . -.857138 -3.857110 2.857110 

RB B+RB 

[ -.07540 -.28400 2MOO] [ .4285715 2.4285716 -I. 4285716] 
.00143 .00143 -.00143 .1428571 .1428571 -.1428571 

-.04810 -.32600 .32600 -.8571428 -3.8571426 2.8571426 

104 
• R(RB) B+RB+R2B 

Notice that except in the additive processes, only three significant digits have been carried. Since the 
exact inverse is 

it can be verified that B + RB + R 2B is at fault only in the seventh decimal place. More terms of the 
series formula would bring still further accuracy. This method can often be used to improve the result of 
inversion by Gaussian elimination, since that algorithm is far more sensitive to roundoff error 
accumulation. 
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DETERMINANTS 

26.45. Determinants are no longer used extensively in the solution of linear systems, but continue to 
have application in other ways. Direct evaluation of a determinant of order n would require 
the computation of n! terms, which is prohibitive except for small n. What is the alternative? 

From the properties of determinants, no step in a Gaussian elimination alters the determinant of 
the coefficient matrix except normalization and interchanges. If these were not performed, the 
determinant is available by multiplication of the diagonal elements after triangularization. For the 
matrix of Problem 26.1 the determinant is, therefore, a quick ( {z)( ~) = 2l60 • This small value is another 
indication of the troublesome character of the matrix. 

Determinants can also be found from the factorization PA = LU. Since A= p-'LU we have 

det (A)= det (P- 1
) det (L) det (U) = ( -1Y' det (U) 

where pis the number of interchanges represented by the permutation matrix P, or p-'. For the matrix 
of Problem 26.11 

det (U) = 3(3)(~)(~) = 96 

while det (P) is easily found to be -1. (Or recall that three interchanges were made during factorization, 
making p = 3.) Thus 

det (A)= -96 

EIGENVALUE PROBLEMS, mE CHARACTERISTIC POLYNOMIAL 

26.46. What are eigenvalues and eigenvectors of a matrix A? 

A number A for which the system Ax = Ax or (A - A!)x = 0 has a nonzero solution vector x is called 
an eigenvalue of the system. Any corresponding nonzero solution vector x is called an eigenvector. 
Clearly, if x is an eigenvector then so is Cx for any number C. 

26.47. Find the eigenvalues and eigenvectors of the system 

(2- A.)x1- =0 

-xl+(2-A.)x2- X3=0 

-x2+(2-A.)x3=0 

which arises in various physical settings, including the vibration of a system of three masses 
connected by springs. 

We illustrate the method of finding the characteristic polynomial directly and then obtaining the 
eigenvalues as roots of this polynomial. The eigenvectors are then found last. The first step is to take 
linear combinations of equations much as in Gaussian elimination, until only the x3 column of 
coefficients involves A. For example, if£,, £ 2 , and £ 3 denote the three equations, then -Ez + A£3 is 
the equation 

x, - 2x2 + (1 + 2A -A 2 )x3 = 0 

Calling this £ 4 , the combination E,- 2£2 + A£4 becomes 

4x,- 5xz + (2 +A+ 2A2
- A3)x3 = 0 

These last two equations together with £ 3 now involve A in only the x3 coefficients. 
The second step of the process is to triangularize this system by the Gauss elimination algorithm or 

its equivalent. With this small system we may take a few liberties as to pivots, retain 

x,- 2x2 + (1 + 2A- A 2)x3 = 0 

-x2 + (2-A)x3=0 
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as our first two equations and soon achieve 

(4 -lOA+ 6.A2
- .A3)x3 = 0 

to complete the triangularization. To satisfy the last equation we must avoid making x 3 = 0, because this 
at once forces x2 = Xt = 0 and we do not have a nonzero solution vector. Accordingly we must require 

4 - lOA. + 6.A 2 
- .A 3 = 0 

This cubic is the characteristic polynomial, and the eigenvalues must be its zeros since in no other way 
can we obtain a nonzero solution vector. By methods of an earlier chapter we find those eigenvalues to 
be At = 2 - VZ, A2 = 2, .A3 = 2 + V2 in increasing order. 

The last step is to find the eigenvectors, but with the system already triangularized this involves no 
more than back-substitution. Taking At first, and recalling that eigenvectors are determined only to an 
arbitrary multiplier so that we may choose x 3 = 1, we find x2 = V2 and then Xt = 1. The other 
eigenvectors are found in the same way, using .A2 and .A3 • The final results are 

J.. X1 x2 X3 

2-Vi 1 V2 1 

2 -1 0 1 

2+0 1 -Vi 1 

In this case the original system of three equations has three distinct eigenvalues, to each of which there 
corresponds one independent eigenvector. This is the simplest, but not the only, possible outcome of an 
eigenvalue problem. It should be noted that the present matrix is both real and symmetric. For a real, 
symmetric n X n matrix an important theorem of algebra states that 

(a) All eigenvalues are real, though perhaps not distinct. 

(b) n independent eigenvectors always exist. 

This is not true of all matrices. It is fortunate that many of the matrix problems which computers 
currently face are real and symmetric. 

26.48. To make the algorithm for direct computation of the characteristic polynomial more clear, 
apply it to this larger system: 

EI: 

£2: 

£3: 

£4: 

(1-.A.)x 1 + x2 + x3 + x4 =0 

x 1 + (2 - A )x2 + 3x3 + 4x4 =0 

xi+ 3x2 + (6- .A.)x3 + 10x4 = 0 

xi+ 4x2 + 10x3 + (20- .A.)x4 = 0 

Calling these equations Et, E 2 , E3 , E4 , the combination Et + 4£2 + 10£3 + .AE4 is 

15xt + 39x2 + 73x 3 + (117 + 20.A- A2)x4 = 0 

and is our second equation in which all but the x4 term are free of .A. We at once begin triangularization 
by subtracting 15£4 to obtain 

The combination -21£2 - 77 E3 + .AE5 becomes 

-98xt- 273x2 - 525x3 + ( -854- 183.A + 35.A2
- .A3 )x4 = 0 

and is our third equation in which all but the x 4 term are free of .A. The triangularization continues by 
blending this last equation with £ 4 and £ 5 to obtain 



CHAP. 26] LINEAR SYSTEMS 383 

Now the combination 392£3 + AE6 is formed, 

392x1 + 1176x2 + 2352x3 + (3920 + 1449A -1736A2 + 616A3
- 21A4)x4 = 0 

and the triangularization is completed by blending this equation with £ 4 , E 5 , and £ 6 to obtain 

The system £ 4 , E5 , E6 , E7 is now the triangular system we have been aiming for. To avoid the zero 
solution vector, A must be a zero of 1-29A+72A2 -29A3 +A4 which is the characteristic polynomial. 
Finding these zeros and the corresponding eigenvectors will be left as a problem. The routine just used 
can be generalized for larger systems. 

26.49. Illustrate the use of the Cayley-Hamilton theorem for finding the characteristic equation of a 
matrix. 

Writing the equation as 
f(A) =A"+ el}""-

1 + · · · + en-1A +en= 0 

the Cayley-Hamilton theorem states that the matrix A itself satisfies this equation. That is, 

f(A) =A"+ e1A"-1 + 0 0 0 + en-1A +en[= 0 

where the right side is now the zero matrix. This comes to n2 equations for the n coefficients ei so there is 
substantial redundance. 

k f 0 0 0 [ 1 1] 0 2 [2 1] Ta e, or example, the Fibonacci matnx F = 
1 0 

. Smce F = 
1 1 

, we have 

or 2 + e1 + e2 = 0 

1 + e1 = 0 1 + e2 = 0 

with the second of these repeated. The familiar equation A2 =A+ 1 is again in hand. (See Problems 
18.24 and 26.128.) 

Or consider the permutation matrix P with 

[0 0 n P'~G !] P'~[i 
0 

~] P= 1 0 0 

0 1 0 0 

which leads quickly to the set 

1 + e3 =0 e1 =0 e2 = 0 

repeated twice. The characteristic equation is A3
- 1 = 0. 

Several devices have been suggested for selecting a suitable subset of the available n 2 equations. 
One such device calls for computing 

f(A)v =0 

for an appropriate vector v, and solving this system. 

26.50. Prove Gerschgorin's theorem, which states that every eigenvalue of a matrix A falls within 
one of the complex circles having centers at aii and radii 

with i = 1, ... , n. 

Ri=LaiJ 
f*i 
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Let X; be the component of largest magnitude of one of the eigenvectors of A. From the ith 
equation of the system (A - AI)x = 0, we have 

which is the theorem. 

(au- A)X; =-2: a;jXj 
j=:l=i 

26.51. What does the Gerschgorin theorem tell us about the eigenvalues of a permutation matrix 
which has a single 1 in each row and column, with zeros elsewhere? 

The circles either have center at 0 with radius 1, or center at 1 with radius 0. All eigenvalues lie 
within a unit of the origin. For example, the eigenvalues of 

are the cube roots of 1. In particular, the eigenvalues of the identity matrix must be within the circle 
having center at 1 and radius 0. 

26.52. The Gerschgorin theorem is especially useful for matrices having a dominant diagonal. Apply 
it to this matrix. 

[
_: 
-1 

0 

-1 

4 
-1 

-1 

-1 

-1 

4 
-1 

-~] -1 

4 

All the eigenvalues must fall inside the circle with center at 4 and radius 3. By the symmetry, they 
must also be real. 

THE POWER METHOD 

26.53. What is the power method for producing the dominant eigenvalue and eigenvector of a 
matrix? 

Assume that the matrix A is of size n X n with n independent eigenvectors VI, v2, 0 0 0 ' vn and a 
truly dominant eigenvalue A1 : IA11 > IA21 ~ · · · ~ IAnl· Then an arbitrary vector V can be expressed as a 
combination of eigenvectors, 

It follows that 

Continuing to multiply by A we arrive at 

NV= a 1A)~ + a2AW2 + · · · + a"AI;:V" =A)[ a1 V1 + a 2(~r V2 + · · · + a"(~r V" J 

provided a 1 =I= 0. Since A1 is dominant, all terms inside the brackets have limit zero except the first term. 
If we take the ratio of any corresponding components of Ap+!v and APV, this ratio should therefore 
have limit A1 • Moreover, A1P APV will converge to the eigenvector a 1 ~-
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26.54. Apply the power method to find the dominant eigenvalue and eigenvector of the matrix used 
in Problem 26.47. 

Choose the initial vector V = (1, 1, 1). Then AV = (1, 0, 1) and A 2V = (2, -2, 2). It is convenient 
here to divide by 2, and in the future we continue to divide by some suitable factor to keep the numbers 
reasonable. In this way we find 

A 7V = c(99, -140, 99) A 8V = c(338, -478,338) 

where c is some factor. The ratios of components are 

338 
= 3.41414 

99 

478 
= 3.41429 

140 

and we are already close to the correct At= 2 + Vz = 3.414214. Dividing our last output vector by 338, it 
becomes (1, -1.41420, 1) approximately and this is close to the correct (1, -Vz, 1) found in Problem 
26.47. 

26.55. What is the Rayleigh quotient and how may it be used to find the dominant eigenvalue? 

The Rayleigh quotient is x TAx I x T x, where T denotes the transpose. If Ax = J.x this collapses to A. 
If Ax = J.x then it is conceivable that the Rayleigh quotient is approximately A. Under certain 
circumstances the Rayleigh quotients for the successive vectors generated by the power method 
converge to At· For example, let x be the last output vector of the preceding problem, (1, -1.41420, 1). 
Then 

Ax= (3.41420, -4.82840, 3.41420) x TAx = 13.65672 

and the Rayleigh quotient is 3.414214 approximately. This is correct to six decimal places, suggesting 
that the convergence to At here is more rapid than for ratios of components. 

26.56. Assuming all eigenvalues are real, how may the other extreme eigenvalue be found? 

If Ax = J.x, then (A - ql)x = (A - q )x. This means that A - q is an eigenvalue of A - ql. By 
choosing q properly, perhaps q = A~o we make the other extreme eigenvalue dominant and the power 
method can be applied. For the matrix of Problem 26.55 we may choose q = 4 and consider 

[-2 -1 OJ 
A -41= -1 -2 -1 

0 -1 -2 

Again taking V = (1, 1, 1) we soon find the Rayleigh quotient -3.414214 for the vector (1, 1.41421, 1} 
which is essentially (A - 4/)8V. Adding 4 we have .585786 which is the other extreme eigenvalue 2 - Y2 
correct to six places. The vector is also close to (1, Vz, 1), the correct eigenvector. 

26.57. How may the absolutely smallest eigenvalue be found by the power method? 

If Ax= J.x, then A -tx =A -tx. This means that the absolutely smallest eigenvalue of A can be found 
as the reciprocal of the dominant A of A - 1

• For the matrix of Problem 26.55 we first find 

[
3 2 1] 

A- 1 =~ 2 4 2 

1 2 3 
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Again choosing V = (1, 1, 1) but now using A-t instead of A, we soon find the Rayleigh quotient 
1.707107 for the vector (1, 1.41418, 1). The reciprocal quotient is .585786 so that we again have this 
eigenvalue and vector already found in Problems 26.47 and 26.56. Finding A-t is ordinarily no simple 
task, but this method is sometimes the best approach to the absolutely smallest eigenvalue. 

26.58. How may a next dominant eigenvalue be found by a suitable choice of starting vector V? 

Various algorithms have been proposed, with varying degrees of success. The difficulty is to 
sidetrack the dominant eigenvalue itself and to keep it sidetracked. Roundoff errors have spoiled several 
theoretically sound methods by returning the dominant eigenvalue to the main line of the computation 
and obscuring the next dominant, or limiting the accuracy to which this runnerup can be determined. 
For example, suppose that in the argument of Problem 26.53 it could be arranged that the starting 
vector Vis such that at is zero. Then At and Vt never actually appear, and if A2 dominates the remaining 
eigenvalues it assumes the role formerly played by At and the same reasoning proves convergence to A2 

and V2 • With our matrix of Problem 26.54 this can be nicely illustrated. Being real and symmetric, this 
matrix has the property that its eigenvectors are orthogonal. (Problem 26.47 allows a quick verification 
of this.) This means that V[V =at V[Vt so that at will be zero if Vis orthogonal to Vt. Suppose we take 
V = ( -1, 0, 1). This is orthogonal to Vt. At once we find AV = ( -2, 0, 2) = 2V, so that we have the 
exact A2 = 2 and liz= ( -1, 0, 1). However, our choice of starting vector here was fortunate. 

It is almost entertaining to watch what happens with a reasonable but not so fortunate V, 
say V = (0, 1, 1.4142) which is also orthogonal to Vt as required. Then we soon find A 3V = 
4.8( -1, .04, 1.20) which is something like liz and from which the Rayleigh quotient yields the 
satisfactory A2 = 1. 996. After this, however, the computation deteriorates and eventually we come to 
A 20V = c(1, -1.419, 1.007) which offers us good approximations once again to At and Vt. Roundoff 
errors have brought the dominant eigenvalue back into action. By taking the trouble to alter each vector 
APV slightly, to make it orthogonal to Vt, a better result can be achieved. Other devices also have been 
attempted using several starting vectors. 

26.59. Develop the inverse power method. 

This is an extension of the eigenvalue shift used in Problem 26.56. If A has eigenvalues A;, then 
A- tl and (A- tl)-t have eigenvalues A;- t and (A;- t)-t, respectively. Applying the power method as 
in Problem 26.53, but using (A- tl)-t in place of A, we have 

(A- tiPV = at(At- t)-pvt + · · · + an(An- t)-pv, 

If tis near an eigenvalue Ab then the term ak(Ak- t)-pvk will dominate the sum, assuming that ak * 0 
and Ak is an isolated eigenvalue. The powers being computed will then lead to an eigenvalue of A, 
because all these matrices have the same eigenvectors. This is the basis of the inverse power method. 

An interesting variation of this idea uses a sequence of values tj. Given an initial approximation to 
an eigenvector, say X(O)' COmpute SUCCeSSiVely 

xUlTAx<il 
t;+t = x<ilTx<il 

the t;+t being Rayleigh quotient estimates to Ak and the xU+t) approximations to Vk. Convergence has 
been proved under various hypotheses. The factor ci+t is chosen to make llx(i+t)ll = 1 for some norm. 

It is not actually necessary to compute the inverse matrix. What is needed is the vector wU+t) 
defined by 

so it is more economical to get it by solving the system 

(A - t;+tl)wU+t) = x<il 

for this vector. Then x(i+t) = ci+tw(i+tl. As the sequence develops, the matrices A- t;+tl will approach 
singularity, suggesting that the method may have a perilous character, but with attention to 
normalization and pivoting, accurate results can be obtained. 
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26.60. What is inverse iteration? 

Given an accurate approximation to an eigenvalue of A, inverse iteration is a fast way to obtain the 
corresponding eigenvector. Lett be an approximation to A, obtained from the characteristic polynomial 
or other method which produces eigenvalues only. Then A- tl is near singular, but still has a 
factorization 

P(A -tl) =LU A -tl= p- 1LU 

as in Problem 26.8. Just as in the preceding problem, we begin an iteration with 

(A- tl)x<1l = p- 1LUx<1l =x<0l 

using an x<0l with a nonzero component in the direction of x, the eigenvector corresponding to A. The 
choice x<0

l = p- 1L(1, 1, ... , 1r has sometimes been suitable, or what is the same thing, 

ux<l) = (1, 1, ... , 1r 

26.61. Apply inverse iteration to the matrix of Problem 26.47, using .586 as an approximation to the 
eigenvalue 2- v'z. Since the eigenvector x = (1, v'z, 1) has already been found, this will serve 
as a small-scale illustration of the method's potential. 

To start, we need the factors L and U, which prove to be the following: 

[ 

1 0 
L = - .70721 1 

0 -1.4148 
[

1.414 -1 0 ] 
U= 0 .7068 -1 

0 0 - .0008 

In this example P =I. The solution of ux<1
l = (1, 1, ... , 1r, found by back-substitution, is x<ll = 

(1250, 1767, -12sor, after which 

LUx<2l = x<1l 

yields x<2l = (31,319, 44,273, 31,265r to five figures. Normalizing then brings the approximate eigen
vector (1, 1.414, .998r. 

REDUCTION TO CANONICAL FORMS 
26.62. A basic theorem of linear algebra states that a real symmetric matrix A has only real 

eigenvalues and that there exists a real orthogonal matrix Q such that Q- 1AQ is diagonal. 
The diagonal elements are then the eigenvalues and the columns of Q are the eigenvectors. 
Derive the Jacobi formulas for producing this orthogonal matrix Q. 

In the Jacobi method Q is obtained as an infinite product of "rotation" matrices of the form 

all other elements being identical with those of the unit matrix I. If the four entries shown are in 
positions (i, i), (i, k), (k, i), and (k, k), then the corresponding elements of Q~ 1AQ1 may easily be 
computed to be 

bu =au cos2 ¢ + 2a;k sin ¢ cos ¢ + akk sin2 ¢ 

bki = b;k = (akk- au) sin¢ cos¢+ a;k(cos2 ¢- sin2 ¢) 

bkk =au sin2 ¢- 2a;k sin¢ cos¢+ akk cos2 ¢ 

Choosing ¢ such that tan 2¢ = 2a;k/(au- akk) then makes b;k = bk; = 0. Each step of the Jacobi 
algorithm therefore makes a pair of off-diagonal elements zero. Unfortunately the next step, while it 
creates a new pair of zeros, introduces nonzero contributions to formerly zero positions. Nevertheless, 
successive matrices of the form Q2 1 Q~ 1AQ 1 Q2 , and so on, approach the required diagonal form and 
Q=QtQz·". 
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26.63. Apply Jacobi's method to A~ [ -~ ~: -n 
With i = 1, k = 2 we have tan 2¢ = -2/0 which we interpret to mean 2¢ = :r/2. 

sin cp = 1/VZ and 
Then cos¢= 

[ I 

1 

:J~: ]~ 
1 

l ~2~ l V2 V2 
-1 

-: ~ 
-Y'l 0 

-1 1 1 1 
0 A,~Q, AQ,~-; V2 

2 
V2 

3 

0 
1 1 

-1 0 -Y'l -Y'l 

Next we take i = 1, k = 3 making tan 2¢ = -V'l!( -1) = yz. Then sin¢= .45969, cos¢= .88808 and 
we compute 

[ 

.88808 0 .45969] [ .88808 
A2 = Q2 1A1 Qz = 0 1 0 A1 0 

-.45969 0 . 88808 . 45969 

0 ~.45969] 
0 .88808 

[ 

.63398 -.32505 0 ] 
= -.32505 3 -.62797 

0 -. 62797 2. 36603 

The convergence of the off-diagonal elements toward zero is not startling, but at least the decrease has 
begun. After nine rotations of this sort we achieve 

[ 

.58578 .000000 .000000] 
A 9 = .00000 2.00000 .00000 

.00000 .00000 3.41421 

in which the eigenvalues found earlier have reappeared. We also have 

[

. 50000 . 70710 . 50000] 
Q=Q1 Q2 ···Q9 = .70710 .00000 -.70710 

.50000 -.70710 .50000 

in which the eigenvectors are also conspicuous. 

26.64. What are the three main parts of Givens' variation of the Jacobi rotation algorithm for a real 
symmetric matrix? 

In the first part of the algorithm rotations are used to reduce the matrix to triple-diagonal form, 
only the main diagonal and its two neighbors being different from zero. The first rotation is in the (2, 3) 
plane, involving the elements az2 , a23 , a32 , and a33 . It is easy to verify that such a rotation, with ¢ 
determined by tan¢= a13/a 12 , will replace the a13 (and a31 ) elements by 0. Succeeding rotations in the 
(2, i) planes then replace the elements ali and a11 by zero, for i = 4, ... , n. The ¢ values are determined 
by tan¢= a1;/a;2, where a;2 denotes the current occupant of row 1, column 2. Next it is the turn of the 
elements a24 , ••• , a2n which are replaced by zeros by rotations in the (3, 4), ... , (3, n) planes. 
Continuing in this way a matrix of triple-diagonal form will be achieved, since no zero that we have 
worked to create will be lost in a later rotation. This may be proved by a direct computation and makes 
the Givens' reduction finite whereas the Jacobi diagonalization is an infinite process. 
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The second step involves forming the sequence 

fo(A) = 1 

where the a's and (3's are the elements of our new matrix 

B = [ ~: . ;: . :: .. · .· .· .. I] 
0 0 0 f3n-1 ct'n 

and {3 0 = 0. These j;(A) prove to be the determinants of the principal minors of the matrix AI- B, as may 
be seen from 

0 

-(31 A- £X2 -(32 

j;(A) = 0 -(32 A- a3 

by expanding along the last column, 

where D has only the element -(31_ 1 in its bottom row and so equals D = -(31_tf1_ 2(A). For i = n we 
therefore have in fn(A) the characteristic polynomial of B. Since our rotations do not alter the 
polynomial, it is also the characteristic polynomial of A. 

Now, if some (31 are zero, the determinant splits into two smaller determinants which may be treated 
separately. If no {31 is zero, the sequence of functions j;(A) proves to be a Sturm sequence (with the 
numbering reversed from the order given in Problem 25 .33). Consequently the number of eigenvalues in 
a given interval may be determined by counting variations of sign. 

Finally, the third step involves finding the eigenvectors. Here the diagonal nature of B makes 
Gaussian elimination a reasonable process for obtaining its eigenvectors ~ directly (deleting one 
equation and assigning some component the arbitrary value of 1). The corresponding eigenvectors of A 
are then Yj = Q~ where Q is once again the product of our rotation matrices. 

26.65. Apply the Givens method to the Hilbert matrix of order three. 

1 1 

2 3 

1 1 
H= - -

2 3 4 

1 
3 4 5 

For this small matrix only one rotation is needed. With tan ¢ = ~' we have cos¢= 3/vD and 
sin rp = 2/vD. Then 

[~ 
0 

-:l 
[ 1 

vl3 
0 

6 

Q=vh 0 
1 vl3 34 

B=Q- HQ= : 65 260 

2 
0 2 

260 195 
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and we have our triple diagonal matrix. The Sturm sequence consists of 

fo(A) = 1 j;(A)=A-1 ( 
34) 13 f(A)= A-- (A-1)--

2 65 16 

which lead to the ± signs shown in Table 26.3. There are two roots between 0 and 1 and a third between 
1 and 1.5. Iterations then locate these more precisely at .002688, .122327, and 1.408319. The eigenvalue 
so close to zero is another indication of the near singularity of this matrix. 

Table 26.3 

fo h. .h .h Changes 

0 + - + - 3 

1 + 0 - - 1 

1.5 + + + + 0 

To find the eigenvector for A1 , we solve BU1 = A1 U1 and soon discover u1 = 1, u2 = -1.6596, 
u3 = 7.5906 to be one possibility. Finally 

~=QUI= (1, -5.591, 5.395)T 

which can be normalized as desired. Eigenvectors for the other two eigenvalues respond to the same 
process. 

26.66. A similarity transformation of A is defined by M- 1AM, for any nonsingular matrix M. Show 
that such a transformation leaves the eigenvalues unchanged. 

Since Ax = Ax implies 

MAM- 1(Mx) = A(Mx) 

we have at once that A is an eigenvalue of MAM- 1 with corresponding eigenvector Mx. The orthogonal 
transformations used in the Jacobi and Givens methods are special cases of similarity transformations. 

26.67. Show that a matrix having ali distinct eigenvalues, and corresponding independent eigenvec
tors, can be reduced to diagonal form by a similarity transformation. 

Form the matrix M by using the eigenvectors of A as columns. It follows that 

AM=MD 

where D is diagonal and has the eigenvalues along its diagonal. Because the eigenvectors are linearly 
independent, M-1 exists and 

as required. This classic theorem on the reduction of matrices to special, or canonical, form has 
questionable computational value, since to find M appears to presuppose the solution of the entire 
problem. 

26.68. What is a Hessenberg matrix? 

It is a matrix in which either the upper or the lower triangle is zero except for the elements adjacent 
to the main diagonal. If the upper triangle has the zeros, the matrix is a lower Hessenberg, and vice 
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versa. Here are two small Hessenbergs, the second being also triple diagonal since it is symmetric: 

26.69. Show that a matrix A can be reduced to Hessenberg form by Gaussian elimination and a 
similarity transformation. 

Suppose we take an upper Hessenberg as our goal. The required zeros in the lower triangle can be 
generated column by column in n- 2 stages. Assume k -1 such stages finished, and denote the new 
elements by a;i. The zeros for column k are then arranged as follows: 

(a) From the elements a~+l,k> ... , a~k find the absolutely largest and interchange its row with row 
k + 1. This is the partial pivoting step and can be achieved by premultiplying the current 
matrix A' by an interchange matrix I,,k+l as introduced in Problem 26.8. 

(b) Calculate the multipliers 

j =k +2, ... , n 

(the double prime referring to elements after the interchange). Add cik times row k + 1 to row 
j. This can be done for all the j simultaneously by premultiplying the current matrix A" by a 
matrix Gk similar to the L; of Problem 26.8. 

Gk =[I . . ·-,..,, ... 

1

] row k + 2 

-cnk 

col. k + 1 

This is the Gaussian step. 

(c) Postmultiply the current matrix by the inverses of Ir,k+l and Gk. This is the similarity step. Of 
course, Ir,k+l is its own inverse, while that of Gk is found by changing the signs of the c 
elements. This completes the kth stage of the reduction, which can be summarized by 

with A' the input from the preceding stage, or A itself if k = 1. 

The steps a, b, and c are carried out fork= 1, ... , n- 2 and it is easy to discover that the target 
zeros of any stage are retained. 

26.70. Apply the algorithm of the preceding problem to this matrix: 

All the essentials appear in Fig. 26-3, the two stages side by side. Remember that as a premultiplier, 
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3 0 2 3 0 
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3 0 2 3 3 0 2 
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0 2 3 0 
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3 3 3 

0 
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0 2 3 0 
11 
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GJ23A/23 
-2 -1 
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34 -2 

0 3 0 2 
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0 
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3 2 0 0 
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0 
11 

0 
11 113 

3 3 3 34 

3 3 0 2 3 3 2 0 
G1/23A/23G!1 

(=A') 11 -1 
G2/34A'/34Gz1 

34 -1 
0 3 0 2 

9 3 9 51 

0 
34 -2 

0 
186 40 

2 0 
9 3 289 17 

1 0 0 0 1 0 0 0 

0 0 1 0 0 1 0 0 
/23 

0 0 0 
/34 

0 0 0 1 1 

0 0 o_ 0 0 0 

1 0 0 0 1 0 0 0 

0 0 0 0 0 0 

G1 0 
-2 

3 
0 G2 0 0 0 

0 
-1 

0 
-11 

3 
0 0 

34 

Fig. 26-3 
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Ir.k+ 1 swaps rows but as its own inverse and postmultiplier it swaps columns. The given matrix A is not 
symmetric so the result is Hessenberg but not triple diagonal. The matrix M of the similarity 
transformation MAM- 1 is Gz/34G1/ 23. 

26.71. What is the QR method of finding eigenvalues? 

Suppose we have an upper Hessenberg matrix H and can factor it as 

H=QR 

with Q orthogonal and R an upper (or right?) triangle. In the algorithm to come what we actually find 
first is 

by reducing H to triangular form through successive rotations. Define 

H 121 = RQ = QTHQ 

and note that H 121 will have the same eigenvalues asH, because of the theorem in Problem 26.66. (Since 
Q is orthogonal, QT = Q- 1

.) It turns out that H 12l is also Hessenberg, so the process can be repeated to 
generate H 1k+

1
l from H 1kl, with H serving as H 1' 1 and k = 1, .... The convergence picture is fairly 

complicated, but under various hypotheses the diagonal elements approach the eigenvalues while the 
lower triangle approaches zero. (Of course, the R factor at each stage is upper triangular, but in forming 
the product RQ, to recover the original eigenvalues, subdiagonal elements become nonzero again.) This 
is the essential idea of the QR method, the eventual annihilation of the lower triangle. 

26.72. How can the matrix Q(k), required for the kth stage of the QR method, be found? That is, 
find Q(k) such that 

fork= 1, .... 

One way of doing this uses rotations, very much as in the Givens method presented in Problem 
26.64. Since we are assuming that H is upper Hessenberg, it is only the elements h;+ 1.; that need our 
attention, fori= 1, ... , n- 1. But h;+ 1.; can be replaced by zero using the rotation 

sr ~ [
1 

cos cp sin cp l ww; -sin cp cos cp 

1 

wwd1 

col. col. 
i + 1 

and calculating STH, provided tan cp = h;+ 1 )h;.;- (It is easier to let sin cp = chHu• cos cp = ch;.; and 
choose c to make the sum of squares 1.) Then the product of these rotations 

QT = S~-1"". S[ 

is what we need. The same argument applies for any stage, so the superscript (k) has been suppressed 
here. 

26.73. How has the idea of eigenvalue shifting, presented in Problem 26.56, been applied to 
accelerate the convergence of the QR algorithm? 
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Instead of factoring the matrix H, we try instead the reduction 

for some suitable value of p. The factorization H -pi= QR is thus implied. Then 

Qr(H- pi)Q = RQ = H<2l- pi 

exhibits the reversed product which is central to the method and also defines H<2l. But then 

so H<2 l again has the same eigenvalues as H. With H<2l in hand, we are ready to begin the next iteration. 
It would be nice to choose p near an eigenvalue, but in the absence of such inside information, the 
following alternative is recommended. Find the eigenvalues of the 2 by 2 submatrix in the lower right 
corner of the current Hand set p equal to the one closest to h""' assuming these eigenvalues real. If they 
are complex, set p to their common real part. 

26.74. Given the midget Hessenberg matrix 

find the eigenvalues by the QR method. 

It is easy to discover that the eigenvalues are the diagonal elements 4, 1, 3. But it is also interesting 
to watch the QR method perform the triangularization. Choosing a shift of 3, we compute 

[

1 2 
H -3I= 0 -2 

0 2 

which will need just one rotation to reach triangular form. 

Postmultiplication by S then completes the similarity transformation. 

Finally we add 3I and have 

Sr(H-3I)S=![~ -~ -3~] 
2 

0 0 0 

Vi 
2 

1 

0 

_3~] 
-2 

3 

the triangular form having been preserved. Ordinarily this will not happen, and several stages such as 
the above will be needed. 
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26.75. Apply the QR method to the Hessenberg matrix 

for which the exact eigenvalues are 6, 4, 3, and 3. 

A substantial number of rotation cycles eventually reduced this matrix to the following triangle: 

[599~7 1.50750 -.17830 
3.99997 -.44270 

3.00098 

.29457] 

.22152 
-.60302 

2.99895 

in which the eigenvalues are evident along the diagonal. For larger jobs a saving in computing time 
would be realized by a reduction of the order when one of the subdiagonal elements becomes zero. Here 
it was entertaining simply to watch the lower triangle slowly vanish. Using the above approximate 
eigenvalues, the corresponding vectors were found directly and matched the correct (3, 3, 2, 1), 
( -1, -1, 0, 1), and (0, 0, -1, 1) to three decimal places more or less. There is no fourth eigenvector. 

26. 76. Apply the QR method to the triple diagonal matrix 

and then use the results obtained to "guess" the correct eigenvalues. 

Once again the rotation cycles were allowed to run their course, with this result. Off-diagonal 
elements were essentially zero. 

[5.618031 
4.618065 J 

3.381945 

2.381942 

Since the given matrix was symmetric, both the lower and upper triangles have become zero, leaving the 
eigenvalues quite conspicuous. Taking the largest, a direct calculation of the eigenvector managed 

(1.00002, 1.61806, 1.61806, 1) 

the fourth component having been fixed in advance. Guessing that this ought to have been (1,x, x, 1) 
leads quickly to the equations 

A=x+4 x 2 -x -1 = 0 

the second of which is familiar by its connection with Fibonacci numbers. The root x = (1 + VS)/2 is 
now paired with A= (9 + VS)/2, while x = (1 - VS)/2 is paired with A= (9- VS)/2 giving us two of the 
exact solutions. The other two are found similarly. 
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COMPLEX SYSTEMS 

26.77. How can the problem of solving a system of complex equations be replaced by that of solving 
a real system? 

This is almost automatic, since complex numbers are equal precisely when their real and imaginary 
parts are equal. The equation 

(A+ iB)(x + iy) =a+ ib 

is at once equivalent to Ax-By=a Ay +Ex =b 

and this may be written in matrix form as 

A complex n x n system has been replaced by a real 2n x 2n system, and any of our methods for real 
systems may now be used. It is also possible to replace this real system by two systems 

(B- 1A +A- 1B)x =B- 1a +A- 1b 

(B- 1A +A- 1B)y = B- 1b -A- 1a 

of size n x n with identical coefficient matrices. This follows from 

(B- 1A +A-! B)x = B- 1(Ax- By)+ A - 1(Bx + Ay) = B- 1a +A -!b 

(B- 1A +A-1B)y = B- 1(Ay + Bx) +A- 1(By -Ax)= B- 1b -A- 1a 

Using these smaller systems slightly shortens the overall computation. 

26.78. Reduce the problem of inverting a complex matrix to that of inverting real matrices. 

Let the given matrix be A+ iB and its inverse C + iD. We are to find C and D such that 
(A+ iB)(C + iD) =I. Suppose A is nonsingular so that A- 1 exists. Then 

C= (A+ BA- 1B)-1 D = -A- 1B(A +BA- 1B)- 1 

as may be verified by direct substitution. If B is nonsingular, then 

as may be verified by substitution. If both A and B are nonsingular, the two results are of course 
identical. In case both A and B are singular, but (A+ iB) is not, then a more complicated procedure 
seems necessary. First a real number t is determined such that the matrix E = A + tB is nonsingular. 
Then, with F = B - tA, we find E +iF= (1- it)(A + iB) and so 

(A+ iB)- 1 = (1- it)(E + iF)- 1 

This can be computed by the first method since E is nonsingular. 

26.79. Extend Jacobi's method for finding eigenvalues and vectors to the case of a Hermitian matrix. 

We use the fact that a Hermitian matrix H becomes diagonalized under a unitary transformation, 
that is, u-1HU is a diagonal matrix. The matrices Hand U have the properties fiT= Hand (F = u- 1

• 

The matrix U is to be obtained as an infinite product of matrices of the form 

u! = [ cos cp -sin cp e-ie] 
sin ¢ e' e cos ¢ 

all other elements agreeing with those of I. The four elements shown are in positions (i, i), (i, k), (k, i), 
and (k, k). If the corresponding elements of Hare 

H = [ a b- ic] 
b +ic d 
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then the (i, k) and (k, i) elements of u- 1HU will have real and imaginary parts equal to zero, 

(d- a) cos cp sin cp cos(}+ b cos2 cp- b sin2 cp cos 2(}- c sin2 cp sin 2(} = 0 

(a- d) cos cp sin cp sin(}- c cos2 cp + b sin2 cp sin 2(}- c sin2 cp cos 2(} = 0 

if cp and (} are chosen so that 

2( b cos (} + c sin e) 
tan2cjJ = a_ d 

397 

This type of rotation is applied iteratively as in Problem 26.62 until all off-diagonal elements have been 
made satisfactorily small. The (real) eigenvalues are then approximated by the resulting diagonal 
elements, and the eigenvectors by the columns of u = u! u2 u3 .... 

26.80. How may the eigenvalues and vectors of a general complex matrix be found? Assume all 
eigenvalues are distinct. 

As a first step we obtain a unitary matrix U such that u- 1AU = T where Tis an upper triangular 
matrix, all elements below the main diagonal being zero. Once again U is to be obtained as an infinite 
product of rotation matrices of the form U1 shown in the preceding problem, which we now write as 

The element in position (k, i) of U~ 1AU1 is then 

ak;X2 + (akk- a;;)xy- a;ky2 

To make this zero we let y = Cx, x = 1/Vl+jCj2 which automatically assures us that U1 will be unitary, 
and then determine C by the condition a;kC 2 + (a;;- akk)C- ak; = 0 which makes 

Either sign may be used, preferably the one that makes ICI smaller. Rotations of this sort are made in 
succession until all elements below the main diagonal are essentially zero. The resulting matrix is 

where u = u! u2 ... UN. The eigenvalues of both T and A are the diagonal elements f;;. 

We next obtain the eigenvectors ofT, as the columns of 

The first column is already an eigenvector belonging to t11 . To make the second column an eigenvector 
belonging to t22 we require t11 W12 + t12 = t 22W12 or w12 = t 12!(t22- t11) assuming t 11 =I= t 22 • Similarly, to make 
the third column an eigenvector we need 

t12 W23 + t13 

(33-(11 
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In general the W;k are found from the recursion 

with i = k- 1, k- 2, ... , 1 successively. Finally the eigenvectors of A itself are available as the columns 
of UW. 

Supplementary Problems 

26.81. Apply the Gauss elimination algorithm to find the solution vector of this system: 

w + 2x - 12y + 8z = 27 

5w + 4x + 7y - 2z = 4 

-3w + 7x + 9y + 5z = 11 

6w - 12x - 8y + 3z = 49 

26.82. Apply the method of Problem 26.10 to find the solution vector of this system: 

33x 1 + 16xz + 72x3 = 359 

-24x 1 -lOxz- 57x3 = 281 

-8xi- 4xz -17x3 = 85 

26.83. Suppose it has been found that the system 

1.7x1 +2.3xz-1.5x3 = 2.35 

l.lx1 + 1.6xz -1.9x3 = -.94 

2. 7xi- 2.2xz + 1.5x3 = 2. 70 

has a solution near (1, 2, 3). Apply the method of Problem 26.28 to obtain an improved approximation. 

26.84. Apply Gaussian elimination to the system which follows, computing in rational form so that no roundoff 
errors are introduced, and so getting an exact solution. The coefficient matrix is the Hilbert matrix of 
order four. 

26.85. Repeat the preceding problem with all coefficients replaced by decimals having three significant digits. 
Retain only three significant digits throughout the computation. How close do your results come to the 
exact solution of the preceding problem? (The Hilbert matrices of higher order are extremely 
troublesome even when many decimal digits can be carried.) 
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26.86. Apply the Gauss-Seidel iteration to the following system: 

-2x1+ Xz =-1 

X1- 2xz + X3 0 

Xz- 2x3 + X4 = 0 

X3 -2x4= 0 

Start with the approximation xk = 0 for all k, rewriting the system with each equation solved for its 
diagonal unknown. After making several iterations can you guess the correct solution vector? This 
problem may be interpreted in terms of a random walker, who takes each step to left or right at random 
along the line of Fig. 26-4. When he reaches an end he stops. Each xk value represents his probability of 
reaching the left end from position k. We may define x0 = 1 and x5 = 0, in which case each equation has 
the form xk-1- 2xk + xk+1 = 0, k = 1, ... , 4. 

step length 

Fig. 26-4 

26.87. Does overrelaxation speed convergence toward the exact solution of Problem 26.86? 

26.88. Apply the Gauss-Seidel method to the system 

3 1 
xk = 4 xk-1 + 4 xk+1 k = 1, ... ' 19 

Xo = 1 

which may be interpreted as representing a random walker who moves to the left three times as often as 
to the right, on a line with positions numbered 0 to 20. 

26.89. The previous problem is a boundary value problem for a difference equation. Show that its exact 
solution is xk = 1- (3k -1)/(320 -1). Compute these values fork= 0(1)20 and compare with the results 
found by the iterative algorithm. 

26.90. Apply overrelaxation to the same system. Experiment with values of w. Does underrelaxation (w < 1) 
look promising for this system? 

26.91. Apply any of our methods to the following system: 

X1 + X2 + x, + X4 + x 5 = 1 

X1 + 2xz + 3x3 + 4x4 + 5xs = 0 

X1 + 3xz + 6x3 + 10x4 + 15xs = 0 

X1 + 4xz + 10x3 + 20x4 + 35xs = 0 

X1 + 5xz + 15x3 + 35x4 + 70x 5 = 0 

26.92. Invert the coefficient matrix of Problem 26.81 by the elimination algorithm of Problem 26.38. 

26.93. Invert the same matrix by the exchange method. 

26.94. Invert the coefficient matrix of Problem 26.86 by any of our methods. 
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26.95. Try to invert the Hilbert matrix of order four using three-digit arithmetic. 

26.96. Try to invert Wilson's matrix. Invert the inverse. How close do you come to the original? 

l10 7 8 7J 
7 5 6 5 

8 6 10 9 
7 5 9 10 

[CHAP. 26 

26.97. Apply the method of Problem 26.43 to the matrix of Problem 26.82. Does it appear to converge toward 
the exact inverse? 

1 [-58 -16 -192] 
A- 1 =6 48 15 153 

16 4 54 

26.98. Evaluate the determinant of the coefficient matrix of Problem 26.81. 

26.99. Evaluate the determinant of the coefficient matrix of Problem 26.82. 

26.100. What is the determinant of the Hilbert matrix of order four? 

26.101. Apply the method of Problem 26.48 to find the eigenvalues and eigenvectors of Ax = A.x where A is the 
Hilbert matrix of order three. Use rational arithmetic and obtain the exact characteristic polynomial. 

26.102. Referring to Problem 26.101, apply the same method to 

(2-.A.)x~- =0 

=0 

=0 

Xs=O 

-x4 + (2- .A.)x5 = 0 

26.103. Use the power method to find the dominant eigenvalue and eigenvector of the matrix 

l -~ -~ -~ ~J 
A= ~ -~ -~ -~ 

26.104. Use the power method to find the dominant eigenvalue and eigenvector of the Hilbert matrix of order 
three. 

26.105. Apply Jacobi's method to the Hilbert matrix of order three. 

26.106. Apply Jacobi's method to the matrix of Problem 26.103. 

26.107. Apply Givens' method to the matrix of Problem 26.103. 

26.108. Apply Givens' method to the Hilbert matrix of order four. 
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26.109. Solve the system 
x 1 + ix2 = 1 

-ix1 + x2 + ix3 = 0 

-ix2 + x 3 = 0 

by the method of Problem 26.77. 

26.110. Apply the method of Problem 26.78 to invert the coefficient matrix in Problem 26.109. 

26.111. Apply Jacobi's method, as outlined in Problem 26.79, to find the eigenvalues and vectors for the 
coefficient matrix of Problem 26.109. 

26.112. Apply the algorithm of Problem 26.80 to the matrix A= [ ~ - ~]. 
-1 1 

26.113. Assuming that a matrix A has an LU factorization, we have the formulas of Problem 26.14 for 
determining the factor elements. 

Urj = a,i -f,1u 1i -{,2U2i- · · · -fr.r-IUr-l.j j ~ r 

Urr[ir =air -[i1Utr -[i2u2r- . .. -fi,r-1Ur-1,r i > r 

Suppose these are computed from left to right. With primes denoting computed values, subject to 
roundoff error, the calculation of u;i then begins like this. (See Problems 1.22 and 1.23.) 

a,i(1 +E) -t;lu;p + E)<2
> 

Each E represents a roundoff error, probably a different error at each appearance, and the superscript is 
not a power but only a count of the number of different (1 +E) factors. This device will shorten some 
otherwise lengthy expressions. Continuing, 

a,i(1 + E)<2> -t;lu;l1 + E)<3
> -t;2u~i(1 + E)<2

> 

until ultimately we obtain the computed u;/ 

u;i = a,i(1 + E)<r- 1) -l;1u;l1 + E)(r)- · · · -t;_,_1u;_1_l1 + E)(2
) 

Show that the corresponding expression for the computed t;, is as follows: 

u;)!,(1 +E)= a;,(1 + E)(r- 1) -l;1u;r(1 + E)(r)- · · · -l!_,_1u;_1j1 + E)(2
) 

26.114. Define Ll2 by 

(1 + E 1)(1 + E2 ) = 1 + 2il2 

and note that lil2l =I~ (E1 + E2 + E 1E 2 ) I~ u + ~ U2 

with u the maximum roundoff error. Show similarly that with il3 defined by (1 + E 1)(1 + E 2)(1 + E3 ) = 
1 + 3il3 the bound u + u2 + !u3 exists, and that more generally we may write 

(1 + E)<n> = 1 + niln 

with Lln bounded by [(1 + uy -1]/n. 

26.115. Combine the results of the preceding two problems to obtain (with Ll an appropriate ilk) 

t;ku~i- a,i = a,i(j -1)il-lilu1dll- · · · -l;iuiiil r > j 
= a,/r -1)il-lnu1irll- · · · -l,,u,ill r ~j 

and note that this is equivalent in matrix form to 

L'U'=A+F 
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with the elements ofF as shown on the right-hand side above. This shows that the factorization L' U' is 
exact for the perturbed matrix A + F. 

26.116. Show that the elements of the matrix F of the preceding problem do not exceed in absolute value n I:!. 
times the combined terms of A and L' U'. That is, 

lkl ~ ni:!..(Ja;il + bii) 

where I:!. bounds all the l:!..k involved and b;i is computed from the absolute elements of the ith row of L' 
and the jth column of U'. This estimate of the effect of internal roundoffs depends strongly upon the b;i· 

These may be computed after the factorization has been made. Here n is the order of the original matrix 
A. In a way we may deduce that the overall error is a modest multiple of the maximum roundoff, 
provided that n is not too large and the b;i cooperative. 

26.117. The formulas for forward- and back-substitution, derived in Problem 26.9 

Yr = b, -[r1Y1- · · · -[r-l,r-lYr-1 

have the same form as those just analyzed for roundoff error propagation. Reasoning much as in the 
preceding problem, one may obtain this equation for the computed y' 

(L' + G)y' = b 

(U' + H)x' = y' 

for the computed solution itself. Here Jh;il ~ nl:!.. Ju;il· 
By combining these results with that of the preceding problem, show that 

(A+E)x'=b 

with E a blend ofF, G, H, L, and U. Further deduce the estimate 

with b;i as defined earlier. 

26.118. Apply the algorithm of Problem 26.80 to the real but nonsymmetric matrix 

26.119. Solve the system 

[
1 2 3] 

A= 1 3 5 
1 4 7 

6.4375x 1 + 2.1849x2 - 3. 7474x3 + 1.8822x4 = 4.6351 

2.1356x1 + 5.210lx2 + 1.5220x3 -1.1234x4 = 5.2131 

-3.7362x1 + 1.4998x2 + 7.6421x3 + 1.2324x4 = 5.8665 

1. 8666x1 - 1.1104x2 + 1.2460x3 + 8.3312x4 = 4.1322 

26.120. Find all the eigenvalues of this system: 

4x + 2y + z =Ax 

2x + 4y + 2z = A.y 

x + 2y + 4z = A.z 

26.121. Find all the eigenvalues and eigenvectors of this system: 
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26.122. Invert Pascal's matrix. 

26.123. Invert the following matrix: 

26.124. Invert the following matrix: 

26.125. Find the largest eigenvalue of 

to three places. 

26.126. Find the largest eigenvalue of 

and the corresponding eigenvector. 

LINEAR SYSTEMS 

[! 

1 1 1 

1:] 
2 3 4 

3 6 10 

4 10 20 35 

15 35 70 

[i 
1 

1] 
3 
1 

5 
1 
7 

[ 
5+i 4+2i] 

10 + 3i 8 + 6i 

[ 

25 
-41 

10 
-6 

-41 10 

68 -17 
-17 5 

10 -3 

-6] 10 
-3 

2 

26.128. Show that the characteristic polynomial for the matrix 

[~ ~] 

403 

is } . .Z- A - 1 and note the relationship with Fibonacci numbers as encountered in Problem 18.23 and 
elsewhere. What is the characteristic polynomial for the more general "Fibonacci" matrix of order n? 
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Find its eigenvalues by any of our methods. 

0 0 0 0 

0 0 0 

0 0 

000···10 

Given some initial vector x, what are the vectors F~x for p = 2, ... ? 

26.129. Apply the QR method to this Hessenberg matrix: 

[L; fJ 
26.130. Apply the QR method to this triple diagonal matrix: 

[ 

2.5 -2.0 0 

-2.0 3.5 1.5 

0 1.5 2.5 

0 0 -1.0 
-~OJ 

1.5 

[CHAP. 26 

26.131. Rotating a square a quarter turn clockwise can be simulated by applying the permutation matrix R to the 
vector (1, 2, 3, 4)T. (See Fig. 26-5.) Reflection in the vertical (dashed) line can be simulated using the 
matrix V. The eigenvalues of Rare easily found to be 1, i, -1, -i, while those of V are 1, 1, -1, -1. 
Both matrices are of Hessenberg type. Will the QR algorithm of Problem 26.73 be convergent in either 
case? 

1 2 2 

r:-~m 
LJ w 

4 3 4 

Fig. 26-5 



Chapter 27 

Linear Programming 

THE BASIC PROBLEM 

A linear programming problem requires that a linear function 

H = clxl + 0 0 0 + CnXn 

be minimized (or maximized) subject to constraints of the form 

where i = 1, ... , m and j = 1, ... , n. In vector form the problem may be written as 

H(x)=cTx=minimum Ax~b, O~x 

An important theorem of linear programming states that the required m1mmum (or maximum) 
occurs at an extreme feasible point. A point (x 1, ••• , Xn) is called feasible if its coordinates satisfy all 
n + m constraints, and an extreme feasible point is one where at least n of the constraints actually 
become equalities. The introduction of slack variables Xn+l> ... , Xn+m converts the constraints to the 
form 

for i = 1, ... , m. It allows an extreme feasible point to be identified as one at which n or more 
variables (including slack variables) are zero. This is a great convenience. In special cases more than 
one extreme feasible point may yield the required minimum, in which case other feasible points also 
serve the purpose. A minimum point of His called a solution point. 

The simplex method is an algorithm for starting at some extreme feasible point and, by a 
sequence of exchanges, proceeding systematically to other such points until a solution point is found. 
This is done in a way which steadily reduces the value of H. The exchange process involved is 
essentially the same as that presented in the previous chapter for matrix inversion. 

The duality theorem is a relationship between the solutions of the two problems 

c T x = minimum 

y Tb = maximum 

O~x 

O~y 

which are known as dual problems, and which involve the same aij> bu and cj numbers. The 
corresponding minimum and maximum values prove to be the same, and application of the simplex 

method to either problem (presumably to the easier of the two) allows the solutions of both 
problems to be extracted from the results. This is obviously a great convenience. 

TWO RELATED PROBLEMS 

1. Two-person games require that R choose a row and C choose a column of the following 
"payoff" matrix: 

[ ::: .. ::: .. : .... :~ ] 
aml am2 0 0 0 amn 

The element aij where the selected row and column cross, determines the amount which R 
must then pay to C. Naturally C wishes to maximize his expected winnings while R wishes to 
minimize his expected losses. These conflicting viewpoints lead to dual linear programs 

405 
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which may be solved by the simplex method. The solutions are called optimal strategies for 
the two players. 

2. Overdetermined systems of linear equations, in which there are more equations than 
unknowns and no vector x can satisfy the entire system, may be treated as linear 
programming problems in which we seek the vector x which in some sense has minimum 
error. The details appear in Chapter 28. 

Solved Problems 

THE SIMPLEX METHOD 

27.1. Find x1 and x2 satisfying the inequalities 

O~x2 

and such that the function F = x2 - x1 is maximized. 

Since only two variables are involved it is convenient to interpret the entire problem geometrically. 
In an Xv x2 plane the five inequalities constrain the point (xv x2) to fall within the shaded region of Fig. 
27-1. In each case the equality sign corresponds to (xv x2) being on one of the five linear boundary 
segments. Maximizing F subject to these constraints is equivalent to finding that line of slope 1 having 
the largest y intercept and still intersecting the shaded region. It seems clear that the required line L 1 is 
1 = x2- x1 and the intersection point (0, 1). Thus, for a maximum, x1 = 0, x2 = 1, F = 1. 

/. ><-'!fl>'>'l'!o 

//~' 
(0, 1) 

------------{-0,-0)+---------.--------,---------+(~3,~0)~------Xl 

Fig. 27-1 

27.2. With the same inequality constraints as in Problem 27.1, find (xv x2) such that G = 2x1 + x2 is 
a maximum. 

We now seek the line of slope -2 and having the largest y intercept while still intersecting the 
shaded region. This line L2 is 7 = 2x 1 + x2 and the required point has x1 = 3, x2 = 1. (See Fig. 27-1.) 

27.3. Find Yv y2 , y3 satisfying the constraints 

O~yz 

and minimizing H = 2y1 + 4y2 + 3y3 • 

Interpreting the entire problem geometrically, we find that the five inequalities constrain the point 
(Yv Yz, y3 ) to fall within the region pictured in Fig. 27-2. This region is unbounded in the positive y1 , Yz, 
y3 directions, but is otherwise bounded by portions of five planes, shown shaded. These planes 
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Fig. 27-2 

correspond to equality holding in our five constraints. Minimizing H subject to these constraints is / 
equivalent to finding a plane with normal vector (2, 4, 3) having smallest intercepts and still intersecting 
the given region. It is easy to discover that this plane is 1 = 2y1 + 4y2 + 3y3 and the intersection point is 
{!,0,0). 

27 .4. List three principal features of linear programming problems and their solutions which are 
illustrated by the previous problems. 

Let the problem be to find a point x with coordinates (x 1 , x2 , ••• , xn) subject to the constraints 
O~x, Ax~b and minimizing a function H(x)=cTx=l.c;X;. Calling a point which meets all the 
constraints a feasible point (if any such exists), then: 

1. The set of feasible points is convex, that is, the line segment joining two feasible points consists 
entirely of feasible points. This is due to the fact that each constraint defines a half-space and the set 
of feasible points is the intersection of these half-spaces. 

2. There are certain extreme feasible points, the vertices of the convex set, identified by the fact that at 
least n of the constraints become equalities at these points. In the two-dimensional examples, exactly 
n = 2 boundary segments meet at such vertices. In the three-dimensional example, exactly three 
boundary planes meet at each such vertex. For n ~ 3 it is possible, however, that more planes (or 
hyperplanes) come together at a vertex. 

3. The solution point is always an extreme feasible point. This is due to the linearity of the function 
H(x) being minimized. (It is possible that two extreme points are solutions, in which case the entire 
edge joining them consists of solutions, etc.) 

These three features of linear programming problems will not be proved here. They are also true if 
H(x) is to be maximized, or if the constraints read Ax ~b. 

27.5. What is the general idea behind the simplex method for solving linear programs? 

Since the solution occurs at an extreme feasible point, we may begin at some such point and 
compute the value of H. We then exchange this extreme point for its mate at the other end of an edge, 
in such a way that a smaller (in the case of a minimum problem) H value is obtained. The process of 
exchange and edge-following continues until H can no longer be decreased. This exchange algorithm is 
known as the simplex method. The details are provided in the following problem. 

27 .6. Develop the simplex method. 

Let the problem be 

O~x H(x) = cTx =minimum 
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We first introduce slack variables Xn+t' ... , Xn+m to make 

auXt + a12X2 + · · . + atnXn + Xn+t = b1 

aztXt + a22X2 + · · . + aznXn + Xn+2 = b2 

[CHAP. 27 

Notice that these slack variables, like the other X;, must be nonnegative. The use of slack variables 
allows us to identify an extreme feasible point in another way. Since equality in Ax~ b now corresponds 
to a slack variable being zero, an extreme point becomes one where at least n of the variables 
x1, ... , Xn+m are zero. Or said differently, at an extreme feasible point at most m of these variables are 
nonzero. The matrix of coefficients has become 

[::: .. :: .. ·.· .· .. :: . : . : ..... :] 
am1 am2 . . . amn 0 0 . . . 1 

the last m columns corresponding to the slack variables. Let the columns of this matrix be called 
v 1, v2, ... , vn+m· The linear system can then be written as 

Now suppose that we know an extreme feasible point. For simplicity we will take it that 
Xm+t, ... , Xm+n are all zero at this point so that x1, ... , Xm are the (at most m) nonzero variables. Then 

(1) 

and the corresponding H value is 

(2) 

Assuming the vectors v1, ... , vm linearly independent, all n + m vectors may be expressed in terms of 
this basis: 

j= 1, ... , n +m 

Also define j = 1, ... , n +m 

(3) 

(4) 

Now, suppose we try to reduce H1 by including a piece pxb fork> m and p positive. To preserve the 
constraint we multiply (3) for j = k by p, which is still to be determined, and subtract from (1) to find 

(x1- pv1k)v1 + (x2 - pv2k)v2 + · · · + (xm - pvmk)vm + pvk = b 

Similarly from (2) and ( 4) the new value of H will be 

(x 1- pv1k)C1 + (xz- pvzk)Cz + · · · + (xm - pvmk)cm + pck = H1 - phk 

The change will be profitable only if hk > 0. In this case it is optimal to make p as large as possible 
without a coefficient X;- pv;k becoming negative. This suggests the choice 

the minimum being taken over terms with positive V;k only. With this choice of p the coefficient of c1 
becomes zero, the others are nonnegative, and we have a new extreme feasible point with H value 

H;=Ht-phk 

which is definitely smaller than H1 • We also have a new basis, having exchanged the basis vector v1 for 
the new vk. The process is now repeated until all hj are negative, or until for some positive hk no V;k is 
positive. In the former case the present extreme point is as good as any adjacent extreme point, and it 
can further be shown that it is as good as any other adjacent or not. In the latter case p may be 
arbitrarily large and there is no minimum for H. 
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Before another exchange can be made all vectors must be represented in terms of the new basis. 
Such exchanges have already been made in our section on matrix inversion but the details will be 
repeated. The vector v1 is to be replaced by the vector vk. From 

we solve for v1 and substitute into (3) to obtain the new representation 

for i-=l=l 

where 
fori= l 

Also, substituting for v1 in (1) brings 

where 
{ 

Xt 
X;-- Vtk 

I Vtk 
X;= 

X; 

Vtk 

for i-=l=l 

fori= l 

Furthermore, a short calculation proves 

and we already have 

This entire set of equations may be summarized compactly by displaying the various ingredients as 
follows: 

[ 
:: .. ::: . :: .... · .·. :::::] 
Xm Vml Vm2 . . • Vm,n+m 

Hl hl h2 hn+m 

Calling Vtk the pivot, all entries in the pivot row are divided by the pivot, the pivot column becomes zero 
except for a 1 in the pivot position, and all other entries are subjected to what was formerly called the 
rectangle rule. This will now be illustrated in a variety of examples. 

27.7. Solve Problem 27.1 by the simplex method. 

After introducing slack variables, the constraints are 

-x1+2x2+X3 =2 

x1 + x2 +x4 =4 

+xs=3 

with all five variables required to be nonnegative. Instead of maximizing x2 - x1 we will minimize 
x1 - x2 • Such a switch between minimum and maximum problems is always available to us. Since the 
origin is an extreme feasible point, we may choose x1 = x2 = 0, x3 = 2, X4 = 4, x5 = 3 to start. This is very 
convenient since it amounts to choosing v3 , v 4 , and v 5 as our first basis which makes all V;i = ati· The 
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starting display is therefore the following: 

Basis b 

v3 2 

v4 4 

Vs 3 

0 

-1 

-1 

Vz 

(6) 

1 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

[CHAP. 27 

Comparing with the format in Problem 27.6, one finds the six vectors b and v 1, ••• , v 5 forming the 
top three rows, and the numbers H, h 1, ••• , h5 in the bottom row. Only h2 is positive. This determines 
the pivot column. In this column there are two positive v12 numbers, but 2/2 is less than 4/1 and so the 
pivot is v 12 = 2. This number has been circled. The formulas of the previous problem now apply to 
produce a new display. The top row is simply divided by 2, and all other entries are subjected to the 
rectangle rule: 

Basis b v, Vz v3 V4 Vs 

Vz 
2 2 

0 0 

3 
0 0 2 2 

Vs 3 0 0 0 

-1 
2 

0 
2 

0 0 

The basis vector v 3 has been exchanged for v2 and all vectors are now represented in terms of this 
new basis. But more important for this example, no hi is now positive so the algorithm stops. The 
minimum of x 1 -x2 is -1 (making the maximum of x2 -x1 equal to 1 as before). This minimum is 
achieved for x2 = 1, x4 = 3, x5 = 3 as the first column shows. The constraints then make x 1 = 0, x3 = 0 
which we anticipate since the xi not corresponding to basis vectors should always be zero. The results 
x1 = 0, x2 = 1 correspond to our earlier geometrical conclusions. Notice that the simplex algorithm has 
taken us from the extreme point (0, 0) of the set of feasible points to the extreme point (0, 1) which 
proves to be the solution point. (See Fig. 27-1.) 

27 .8. Solve Problem 27.2 by the simplex method. 

Slack variables and constraints are the same as in the previous problem. We shall minimize 
H = -2x1 - x2 • The origin being an extreme point, we may start with this display: 

Basis b v, Vz v3 v4 Vs 

v3 2 -1 2 1 0 0 

v4 4 1 0 0 

Vs 3 Q) 0 0 0 

0 2 0 0 0 

Both h1 and h2 are positive, so we have a choice. Selecting h1 = 2 makes v 13 the pivot, since 3/1 is 
less than 4/1. This pivot has been circled. Exchanging v 5 for v 1 we have a new basis, a new extreme 
point, and a new display. 

v3 5 0 2 1 0 

v4 1 0 Q) 0 1 -1 

v, 3 0 0 0 

-6 0 0 0 -2 
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Now we have no choices. The new pivot has been circled and means that we exchange v 4 for v 2 with 
the following result: 

v3 3 0 0 1 -2 3 

Vz 0 1 0 1 -1 

V1 3 0 0 0 

-7 0 0 0 -1 -1 

Now no hj is positive, so we stop. The minimum is -7, which agrees with the maximum of 7 for 
2x 1 + x 2 found in Problem 27.2. The solution point is at x 1 = 3, x 2 = 1 which also agrees with the result 
found in Problem 27.2. The simplex method has led us from (0, 0) to (3, 0) to (3, 1). The other choice 
available to us at the first exchange would have led us around the feasible set in the other direction. 

27.9. Solve Problem 27.3 by the simplex method. 

With slack variables the constraints become 

Y1 - Yz- Y3 + Y4 

-2yl-y2 +ys=-1 

all five variables being required to be positive or zero. This time, however, the origin (y1 = y2 = y3 = 0) is 
not a feasible point, as Fig. 27-2 shows and as the enforced negative value y5 = -1 corroborates. We 
cannot therefore follow the starting procedure of the previous two examples based on a display such as 
this: 

Basis b 

Vs -1 -2 

Vz 

-1 

-1 

-1 

0 

1 

0 

Vs 

0 

The negative value y5 = -1 in the b column cannot be allowed. Essentially our problem is that we do 
not have an extreme feasible point to start from. A standard procedure for finding such a point, even for 
a much larger problem than this, is to introduce an artificial basis. Here it will be enough to alter the 
second constraint, which contains the negative b component, to 

- 2yl - Yz + Ys - Y6 = -1 

One new column may now be attached to our earlier display. 

Basis b V1 Vz V3 v4 Vs v6 

v4 -1 -1 1 0 0 

Vs -1 -2 -1 0 0 -1 

But an extreme feasible point now corresponds to y4 = y6 = 1, all other yj being zero. This makes it 
natural to exchange v5 for v6 in the basis. Only a few sign changes across the v 6 row are required. 

Basis b V1 Vz v3 v4 Vs v6 

V4 1 -1 -1 1 0 0 

v6 @ 0 0 -1 

w 2W-2 W-4 -3 0 -w 0 

The last row of this starting display will now be explained. 
Introducing the artificial basis has altered our original problem, unless we can be sure that y6 will 

eventually turn out to be zero. Fortunately this can be arranged, by changing the function to be 
minimized from H = 2y1 + 4y2 + 3y3 as it was in Problem 27.2 to 

H* = 2yl + 4yz + 3y3 + Wy6 
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where W is such a large positive number that for a minimum we will surely have to make y6 equal to 
zero. With these alterations we have a starting H value of W. The numbers hj may also be computed and 
the last row of the starting display is as shown. 

We now proceed in normal simplex style. Since W is large and positive we have a choice of two 
positive hj values. Choosing h1 leads to the circled pivot. Exchanging v6 for v 1 brings a new display from 
which the last column has been dropped since v 6 is of no further interest: 

V4 
2 

0 
3 
2 

-1 
2 

Vt 2 2 0 0 
2 

0 -3 -3 0 -1 

Since no hj is positive we are already at the end. The minimum is 1, which agrees with our geometrical 
conclusion of Problem 27.3. Moreover, from the first column we find y1 = t y4 =!with all other yj equal 
to zero. This yields the minimum point G, 0, 0) also found in Problem 27.3. 

27.10. Minimize the function H = 2y1 + 4Yz + 3y3 subject to the constraints y1 - Yz- y3 ~ -2, 
- 2yl - Yz ~ -1, all Yi being positive or zero. 

Slack variables and an artificial basis convert the constraints to 

Yt-yz-y3+y4 -y6 =-2 

- 2yt - Yz + Ys - Y1 = -1 

and much as in the preceding problem we soon have this starting display: 

Basis b Vt Vz V3 V4 Vs v6 V1 

v6 2 -1 1 1 -1 0 1 0 

V1 2 CD 0 0 -1 0 

3W W-2 2W-4 W-3 -w -w 0 0 

The function to be minimized is 

H* = 2y1 + 4yz + 3y3 + Wy6 + WJ7 

and this determines the last row. There are various choices for pivot and we choose the one circled. This 
leads to a new display by exchanging v7 for v2 and dropping the V7 column. 

v6 -3 0 CD -1 1 

Vz 2 0 0 -1 0 

W+4 -3W+6 0 W-3 -w W-4 0 

A new pivot has been circled and the final display follows: 

V3 

I 
-3 0 1 -1 

Vz 2 0 0 -1 

7 -3 0 0 -3 -1 

The minimum of H* and His 7, and it occurs at (0, 1, 1). 
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THE DUALITY THEOREM 

27 .11. What is the duality theorem of linear programming? 

Consider these two linear programming problems: 

Problem A 

cTx =minimum 

x~O 

Ax~b 

Problem B 

y Tb = maximum 

y~O 

yTA~cT 
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They are called dual problems because of the many relationships between them, such as the following: 

1. If either problem has a solution then the other does also and the minimum of cTx equals the 
maximum of yTb. 

2. For either problem the solution vector is found in the usual way. The solution vector of the dual 
problem may then be obtained by taking the slack variables in order, assigning those in the final basis 
the value zero, and giving each of the others the corresponding value of -hj. 

These results will not be proved here but will be illustrated using our earlier examples. The duality 
makes it possible to obtain the solution of both Problems A and B by solving either one. 

27.12. Show that Problems 27.1 and 27.3 are dual problems and verify the two relationships claimed 
in Problem 27.11. 

A few minor alterations are involved. To match Problems 27.1 and A we minimize x 1 -x2 instead 
of maximizing x2 - x 1 • The vector cT is then (1, -1 ). The constraints are rewritten as 

which makes [ 1 -2] [-2J A= -1 -1 b = -4 
-1 0 -3 

For Problem B we then have 

which are the constraints of Problem 27.3. The condition yTb =maximum is also equivalent to 

so that Problems 27.3 and B have also been matched. The extreme values for both problems proved to be 
1, which verifies relationship 1 of Problem 27.11. From the final simplex display in Problem 27.7 we 
obtain xT = (0, 1) and yT = (L 0, 0) while from the computations of Problem 27.9 we find yT = (L 0, 0) 
and xT = (0, 1), verifying relationship 2. 

27.13. Verify that Problems 27.2 and 27.10 are duals. 

The matrix A and vector b are the same as in Problem 27.12. However, we now have 
cT = (-2, -1). This matches Problem 27.2 with Problem A and Problem 27.10 with Problem B. The 
final display of Problem 27.8 yields xT = (3, 1) and yT = (0, 1, 1) and the same results come from 
Problem 27.10. The common minimum of cTx and maximum of yTb is -7. 
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SOLUTION OF TWO-PERSON GAMES 

27.14. Show how a two-person game may be made equivalent to a linear program. 

Let the payoff matrix, consisting of positive numbers a;i, be 

[

all a12 a13] 
A = azt azz az3 

a3t a32 a33 

by which we mean that when player R has chosen row i of this matrix and player C has (independently) 
chosen column j, a payoff of amount a;i is then made from R to C. This constitutes one play of the game. 
The problem is to determine the best strategy for each player in the selection of rows or columns. To be 
more specific, let C choose the three columns with probabilities p 1 , p 2 , p 3 , respectively. Then 

and Pt + Pz +p3= 1 

Depending on R's choice of row, C now has one of the following three quantities for his expected 
winnings: 

P1 = a11P1 + a12Pz + a13p3 

Pz = aztPt + azzPz + az3P3 

P3 = a31P1 + a32Pz + a33P3 

Let P be the least of these three numbers. Then, no matter how R plays, C will have expected winnings 
of at least P on each play and therefore asks himself how this amount P can be maximized. Since all the 
numbers involved are positive, so is P; and we obtain an equivalent problem by letting 

and minimizing 

The various constraints may be expressed as x 1 , x2 , x3 iE:; 0 and 

a11x1 + a 12x 2 + a 13x3 iE:; 1 

aztX1 + azzXz + az3X3 iE:; 1 

a31X1 + a3zXz + a33X3 iE:; 1 

This is the type A problem of our duality theorem with cT = bT = (1, 1, 1). 
Now look at things from R's point of view. Suppose he chooses the three rows with probabilities q1 , 

q2 , q3 , respectively. Depending on C's choice of column he has one of the following quantities as his 
expected loss: 

q1a11 + qzazt + q3a31 ~ Q 
q1a12 + qzazz + q3a32 ~ Q 
qta13 + qza23 + q3a33 ~ Q 

where Q is the largest of the three. Then, no matter how C plays, R will have expected loss of no more 
than Q on each play. Accordingly he asks how this amount Q can be minimized. Since Q > 0, we let 

and consider the equivalent problem of maximizing 

1 
G = Yt + Yz + Y3 = Q 
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The constraints are Yt, Yz, YJ~O and 
Ytall + Yzazt + y3a31 ~ 1 

Y1a12 + Yzazz + y3a3z ~ 1 

Yt a13 + Yza23 + y3a33 ~ 1 

415 

This is the type B problem of our duality theorem with cr = br = (1, 1, 1). We have discovered that R's 
problem and C's problem are duals. This means that the maximum P and minimum Q values will be the 
same, so that both players will agree on the average payment which is optimal. It also means that the 
optimal strategies for both players may be found by solving just one of the dual programs. We choose 
R's problem since it avoids the introduction of an artificial basis. 

The same arguments apply for payoff matrices of other sizes. Moreover, the requirement that all a;i 
be positive can easily be removed since, if all a;i are replaced by a;i +a, then P and Q are replaced by 
P +a and Q + a. Thus only the value of the game is changed, not the optimal strategies. Examples will 
now be offered. 

27 .15. Find optimal strategies for both players and the optimal payoff for the game with matrix 

A~[: ~ n 
Instead we minimize the function -G = -y1 - y2 - y3 subject to the constraints 

Yz + Y3 + Y4 = 1 
+2y3 + Ys = 1 

+ y6= 1 

all Yi including the slack variables y4, y5, y6 being nonnegative. Since the origin is an extreme feasible 
point, we have this starting display: 

Basis b Vt Vz V3 V4 Vs v6 

V4 0 0 0 

Vs 1 0 2 0 0 

v6 (6) 0 0 0 

0 0 0 0 

Using the indicated pivots we make three exchanges as follows: 

V4 0 0 0 

Vs 2 0 
2 

(6) 0 
2 

Vt 
2 

0 0 0 
2 2 

2 
0 

2 
0 0 

2 

3 
V4 4 0 

4 
0 

2 4 
1 1 1 1 

V3 0 0 
4 4 2 4 
1 1 

Vt 2 2 0 0 0 
1 
2 

3 3 
4 

0 4 0 0 
2 4 
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::I.___! ______ _ 
6 

0 0 0 
2 

From the final display we deduce that the optimal payoff, or value of the game, is ~. the optimal strategy 
for R can be found directly by normalizing the solution y1 =!, Y2 = t y3 = ~. The probabilities q 1, q2 , q3 

must be proportional to these yj but must sum to 1. Accordingly, 

To obtain the optimal strategy for C we note that there are no slack variables in the final basis so that 
putting the -hj in place of the (nonbasis) slack variables, 

3 1 2 
xl=s Xz =s x3=s 

Normalizing brings 
3 1 2 

P1=6 Pz=6 p3=6 

If either player uses the optimal strategy for mixing his choices the average payoff will be~. To make the 
game fair, all payoffs could be reduced by this amount, or C could be asked to pay this amount before 
each play is made. 

27 .16. Find the optimal strategy for each player and the optimal payoff for the game with matrix 

[
0 3 4] 

A= 1 2 1 

4 3 0 

Notice that the center element is both the maximum in its row and the minimum in its column. It is 
also the smallest row maximum and the largest column minimum. Such a saddle point identifies a game 
with pure strategies. The simplex method leads directly to this result using the saddle point as pivot. The 
starting display is as follows: 

Basis 

One exchange is sufficient: 

1 
V4 2 

1 
Vz 2 

1 
v6 2 

1 

2 

b 

0 

1 

2 

0 

3 
4 

0 

1 

(6) 
4 

3 
0 

1 

2 

0 

0 

0 

0 

0 

0 

0 

1 

2 

0 

0 

0 

0 
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The optimal payoff is the negative reciprocal of - t that is, the pivot element 2. The optimal strategy for 
R is found directly. Since y1 = 0, y2 =!, y3 = 0, we normalize to obtain the pure strategy 

Only the second row should ever be used. The strategy for Cis found through the slack variables. Since 
v 4 and v 6 are in the final basis we have x 1 = x3 = 0, and finally x2 = -h 5 = !. Normalizing, we have 
another pure strategy 

Pz = 1 

Supplementary Problems 

27.17. Make a diagram showing all points which satisfy the following constraints simultaneously: 

27.18. What are the five extreme feasible points for the previous problem? At which extreme point does 
F = x 1 - 2x2 take its minimum value and what is that minimum? At which extreme point does this 
function take its maximum value? 

27.19. Find the minimum ofF= x 1 - 2x2 subject to the constraints of Problem 27.17 by applying the simplex 
method. Do you obtain the same value and the same extreme feasible point as by the geometrical 
method? 

27.20. What is the dual of Problem 27.19? Show by using the final simplex display obtained in that problem 
that the solution of the dual is the vector y1 = t Yz = t y3 = 0. 

27.21. Find the maximum ofF= x 1 - 2x2 subject to the constraints of Problem 27.17 by applying the simplex 
method. (Minimize -F.) Do you obtain the same results as by the geometrical method? 

27 .22. What is the dual of Problem 27.21? Find its solution from the final simplex display of that problem. 

27.23. Solve the dual of Problem 27.19 directly by the simplex method, using one extra variable for an artificial 
basis. The constraints should then read 

-y~ + Yz - Y3 + Y4 
-2yi-y2-y3 +ys-y6=-2 

with y4 and y5 the slack variables. The function H = 4y1 + y2 + 3y3 is to be minimized. From the final 
display recover both the solution of the dual and of Problem 27.19 itself. 

27.24. Minimize F = 2x 1 + x2 subject to the constraints 

all X; being nonnegative. (The solution finds x 1 = ~, x2 = ~.) 

27 .25. Show geometrically that for a minimum of F = x 1 - x2 subject to the constraints of Problem 27.17 there 
will be infinitely many solution points. Where are they? Show that the simplex method produces one 
extreme solution point directly and that it also produces another if a final exchange of v3 and v 1 is made 
even though the corresponding h; value is zero. The set of solution points is the segment joining these 
extreme points. 
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27.26. Minimize F = x1 + x4 subject to the constraints 

2xt + 2xz + X3 ~ 7 

2xt+ Xz+2x3~4 
Xz + X4?; 1 

Xz + X3+ X4 = 3 

[CHAP. 27 

all xi being nonnegative. (The minimum is zero and it occurs for more than one feasible point.) 

27.27. Find optimal strategies and payoff for the game 

A=[~ ~] 
using the simplex method. [The payoff is 2.5, the strategy for R being(!, D and that for C being (t ~).] 

27 .28. Solve the game with matrix 

A= [ ~ 0 -:] 
-4 0 

showing the optimal payoff to be¥, the optimal strategy for R to be (f4, ~, f4), and that for C to be the 
same. 

27.29. Solve the following game by the simplex method: 

A=[ : 
-2 

0 -2 -~] 
-2 -2 

3 -2 3 

27.30. Find the min-max cubic polynomial for the following function. What is the min-max error and where is 
it attained? 

-1.5 -1 -.5 0 .5 1.5 2 

4 2 7 10 12 

27.31. Find the min-max quadratic polynomial for 

y(x) 
1 + (4.1163x)2 X= 0(.01)1 

as well as the min-max error and the arguments at which it is attained. 

27.32. What is the result of seeking a cubic approximation to the function of the preceding problem? How can 
this be forecast from the results of that problem? 

27.33. Maximize x 1 - x2 + 2x3 subject to 

and all xk?; 0. 

Xt+Xz+3x3+ X4~5 

Xt + x3-4x4~2 

27.34. Solve the dual of the preceding problem. 
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27 .35. Maximize 2x 1 + x2 subject to 

and all xk ~ 0. Treat the cases A= 0, 3, 6, 9, 12. 

27.36. Use linear programming to find optimum strategies for both players in the following game: 

[-6 4] 
4 -2 

27.37. Solve as a linear program the game with payoff matrix 

[3 1] 
2 3 . 



Chapter 28 

Overdetermined Systems 

NATURE OF THE PROBLEM 
An overdetermined system of linear equations takes the form 

Ax=b 

the matrix A having more rows than columns. Ordinarily no solution vector x will exist, so that the 
equation as written is meaningless. The system is also called inconsistent. Overdetermined systems 
arise in experimental or computational work whenever more results are generated than would be 
required if precision were attainable. In a sense, a mass of inexact, conflicting information becomes a 
substitute for a few perfect results and one hopes that good approximations to the exact results can 
somehow be squeezed from the conflict. 

TWO METHODS OF APPROACH 

The two principal methods involve the residual vector 

R =Ax -b 

Since R cannot ordinarily be reduced to the zero vector, an effort is made to choose x in such a way 
that r is minimized in some sense. 

1. The least-squares solution of an overdetermined system is the vector x which makes the sum 
of the squares of the components of the residual vector a minimum. In vector language we 
want 

RTR = minimum 

For m equations and n unknowns, with m > n, the type of argument used in Chapter 21 
leads to the normal equations 

(al, al)Xl + · · · + (al, an)Xn = (al, b) 

(an, al)xl + ... +(an, an)xn =(an, b) 

which determine the components of x. Here 

is the scalar product of two column vectors of A. 
2. The Chebyshev or min-max solution is the vector x for which the absolutely largest 

component of the residual vector is a minimum. That is, we try to minimize 

r =max (lrii, ... , lrml) 
where the ri are the components of R. For m = 3, n = 2 this translates into the set of 
constraints 

a11x 1 + a 12x 2 - b1 ~ r 

a21x 1 + a22x 2 - b2 ~ r 

a31 x 1 + a32x 2 - b3 ~ r 

- a11x 1 - a12x 1 + b1 ~ r 

- azlxl- anxz + hz ~ r 

- a3lxl- a3zXz + b3 ~ r 

with r to be minimized. This now transforms easily into a linear programming problem. 
Similar linear programs solve the case of arbitrary m and n. 

420 
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Solved Problems 

LEAST-SQUARES SOLUTION 

28.1. Derive the normal equations for finding the least-squares solution of an overdetermined 
system of linear equations. 

Let the given system be 

auxl + a12Xz = b1 

az1X1 + azzXz = bz 

a31X1 + a3zX2 = b3 

This involves only the two unknowns x 1 and x2 and is only slightly overdetermined, but the details for 
larger systems are almost identical. Ordinarily we will not be able to satisfy all three of our equations. 
The problem as it stands probably has no solution. Accordingly we rewrite it as 

auxl + a1zXz- b1 = r1 

az1X1 + azzXz- bz = rz 

a31X1 + a32xz- b3 = r3 

the numbers r1 , r2, r3 being called residuals, and look for the numbers x 1 , x2 which make ri + r~ + ri 
minimal. Since 

ri + r~ + r~ = (ai1 + a~1 + a~~)xi + (aiz + a~z + aiz)x~ + 2(auaJz + az1a2z + a31a32)x1xz 

- 2(aubl + az1b2 + a31b3)x1- 2(al2bl + azzbz + a32b3)Xz + (bi + b~ + bD 

the result of setting derivatives relative to x1 and x2 equal to zero is the pair of normal equations 

(a1, a1)x1 +(a~> a2)x2 = (a1, b) 

(az, a1)x1 + (az, az)Xz = (az, b) 

in which the parentheses denote 

and so on. These are the scalar products of the various columns of coefficients in the original system, so 
that the normal equations may be written directly. For the general problem of m equations in n 
unknowns (m > n), 

a!!X! + · · · +alnXn =b1 

a21X1 + · · · + aznXn = bz 

an almost identical argument leads to the normal equations 

(a!, a!)Xl +(a!, az)Xz +···+(a!, an)Xn =(a!> b) 

(az, a!)Xl + (az, az)Xz + · · · + (az, an)Xn = (az, b) 

This is a symmetric, positive definite system of equations. 
It is also worth noticing that the present problem again fits the model of our general least-squares 

approach in Problems 21.7 and 21.8. The results just obtained follow at once as a special case, with the 
vector space E consisting of m-dimensional vectors such as, for instance, the column vectors of the 
matrix A which we denote by a 1 , a2 , ••• , a" and the column of numbers b1 which we denote by b. The 
subspace Sis the range of the matrix A, that is, the set of vectors Ax. We are looking for a vector pinS 
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which minimizes 

liP- bW = IIAx- bll 2 = 2: ri 
and this vector is the orthogonal projection of b onto S, determined by (p- b, uk) = 0, where the uk are 
some basis for S. Choosing for this basis uk = ak, k = 1, ... , n, we have the usual representation 
p =x1a1 + · · · +x"a" (the notation being somewhat altered from that of our general model) and 
substitution leads to the normal equations. 

28.2. Find the least-squares solution of this system: 

x1 -x2 =2 

x1 +x2 =4 

2xl+xz=8 

Forming the required scalar products, we have 

6x 1 + 2x2 = 22 

for the normal equations. This makes x 1 = lf and x 2 = ~. The residuals corresponding to this x 1 and x 2 are 
r1 = ~, r2 = ~, and r3 = - ~, and the sum of their squares is ~. The root-mean-square error is therefore 
p = '-/lr.. This is smaller than for any other choice of x 1 and x2 • 

28.3. Suppose three more equations are added to the already overdetermined system of Problem 
28.2: 

xl +2xz=4 

2xl -x2 = 5 

xl-2x2=2 

Find the least-squares solution of the set of six equations. 

Again forming scalar products we obtain 12x 1 = 38, 12x2 = 9 for the normal equations, making 
x 1 = lj, x2 = ~. The six residuals are 5, -1, -11, 8, 7, and -4, all divided by 12. The RMS error is 
p = \l¥z. 

28.4. In the case of a large system, how may the set of normal equations be solved? 

Since the set of normal equations is symmetric and positive definite, several methods perform very 
well. The Gauss elimination method may be applied, and if its pivots are chosen by descending the main 
diagonal then the problem remains symmetric to the end. Almost half the computation can therefore be 
saved. 

CHEBYSHEV SOLUTION 

28.5. Show how the Chebyshev solution of an overdetermined system of linear equations may be 
found by the method of linear programming. 

Once again we treat the small system of Problem 28.1, the details for larger systems being almost 
identical. Let r be the maximum of the absolute values of the residuals, so that lr11;;;;; r, lr2 1;;;;; r, lr31;;;;; r. 
This means that r1 ;;;;; rand -r1 ;;;;; r, with similar requirements on r2 and r3 • Recalling the definitions of the 
residuals we now have six inequalities: 

a11x1 + a12xz- b1;;;;; r 

a21X1 + azzXz- bz ;:::i r 

a31X1 + a32Xz- b3 ;:::i r 

- a11x1- a12x2 + b1 ;:::i r 

- aztXt- azzXz + bz ;:::i r 

- a31X1- a3zXz + b3 ;:::i r 
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If we also suppose that X 1 and x2 must be nonnegative, and recall that the Chebyshev solution is defined 
to be that choice of x 1 , x 2 which makes r minimal, then it is evident that we have a linear programming 
problem. It is convenient to modify it slightly. Dividing through by r and letting x 1/r = y1 , x2 /r = y2 , 

1/r = y3 , the constraints become 

OuY1 + 012Y2- b1y3 ~ 1 

Oz1Y1 + OzzYz- bzY3 ~ 1 

a31Y1 + a3zYz- b3y3 ~ 1 

- OuY1- 012Y2 + b1y3 ~ 1 

- 021Y1- OzzYz + bzY3 ~ 1 

- a31Y1- a3zYz + b3y3 ~ 1 

and we must maximize y3 or, what is the same thing, make F = - y3 =minimum. This linear program 
can be formed directly from the original overdetermined system. The generalization for larger systems is 
almost obvious. The condition that the xi be positive is often met in practice, these numbers representing 
lengths or other physical measurements. If it is not met, then a translation zi =xi+ c may be made, or a 
modification of the linear programming algorithm may be used. 

28.6. Apply the linear programming method to find the Chebyshev solution of the system of 
Problem 28.2. 

Adding one slack variable to each constraint, we have 

Y1 - Yz- 2y3 + Y4 

Y1 + Yz- 4y3 

2y1 + Yz- 8y3 

-y1 + Yz + 2y3 

-y1- Yz+ 4y3 

-2y1- Yz + 8y3 

=1 

=1 

=1 

=1 

=1 

+ y9= 1 

with F = - y3 to be minimized and all Yi to be nonnegative. The starting display and three exchanges 
following the simplex algorithm are shown in Fig. 28-1. The six columns corresponding to the slack 

Basis b V1 Vz v3 Basis b vi Vz V3 

V4 -1 -2 V4 CD 5 0 -4 

V5 -4 V5 0 0 

v6 2 -8 v6 2 0 0 0 

V1 -1 2 V1 
1 0 -2 

Vg -1 -1 4 Vg 0 1 0 -2 

v9 -2 -1 ® 1 1 
V3 -4 -8 

0 0 0 I 0 -8 

Basis b VI Vz v3 Basis b VI Vz V3 

V1 5 0 vi 10 0 0 -2 

v5 0 CD 0 Vz 3 0 0 

v6 2 0 0 0 v6 2 0 0 0 

V1 2 0 0 0 V1 2 0 0 0 

Vg 0 I 0 Vg 2 0 0 0 -2 

V3 0 3 V3 3 0 0 -4 

3 0 0 -3 0 0 0 -4 

Fig. 28-1 
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variables are omitted since they actually contain no vital information. From the final display we find 
y1 = 10 and y2 = y3 = 3. This makes r = 1/y3 =~and then x 1 = .\f, x2 = 1. The three residuals are t t - ~ 
so that the familiar Chebyshev feature of equal error sizes is again present. 

28.7. Apply the linear programming method to find the Chebyshev solution of the overdetermined 
system of Problem 28.3. 

The six additional constraints bring six more slack variables, y10 , . .. , y15 . The details are very much 
as in Problem 28.6. Once again the columns for slack variables are omitted from Fig. 28-2, which 
summarizes three exchanges of the simplex algorithm. After the last exchange we find y1 = ¥-, y2 = 1, 
y3 = 1. So r =~and x 1 = .!}, x2 = ~- The six residuals are 2, 0, -3, 3, 3, and -1, all divided by 4. Once 
again three residuals equal the min-max residual r, the others now being smaller. In the general 
problem n + 1 equal residuals, the others being smaller, identify the Chebyshev solution, n being the 
number of unknowns. 

Basis b V1 V2 V3 Basis b V1 V2 V3 

V4 -1 -2 V4 
5 0 -4 

Vs -4 Vs 0 0 
v6 2 -8 v6 2 0 0 0 
v1 -1 2 V1 

I 0 --z 
Vg -1 -1 4 Vg 0 1 0 -z 
V9 -2 -1 ® V3 

1 1 -8 

Vw 2 -4 Vw 0 0 
v11 2 -1 -5 V11 

13 CD 13 0 8 -8 

V12 -2 -2 V12 
1 9 0 2 -4 

V13 -1 -2 4 V13 0 3 0 --z 
V14 -2 5 V14 

3 13 0 -4 8 

V1s -1 2 2 V1s 
1 0 -z 

0 0 0 1 0 -8 

Basis b V1 V2 V3 Basis b V1 V2 V3 

V4 0 1 0 0 0 0 -6 V4 

Vs 0 0 Vs 0 0 0 
v6 2 0 0 0 v6 2 0 0 0 
v1 

11 0 0 0 0 0 6 v1 

Vg 0 1 0 0 0 0 --z Vg 

V3 0 2 
0 0 -3 V3 

Vw 0 Q) 0 V2 0 0 
V1 

13 13 0 V1 
13 0 0 6 -6 3 

V12 0 7 0 V12 0 0 0 -6 

v!3 0 3 0 2 0 0 0 --z V13 

V14 2 0 0 0 V14 2 0 0 0 
V1s 

11 0 0 0 0 0 6 V1s 

2 0 0 4 0 0 0 -3 -3 

Fig. 28-2 

28.8. Compare the residuals of least-squares and Chebyshev solutions. 

For an arbitrary set of numbers Xt. . .. , x. let lrlmax be the largest residual in absolute value. Then 
ri + · · · + r~ ~ m lrl;;, •• so that the root-mean-square error surely does not exceed lrlmax· But the 
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least-squares solution has the smallest RMS error of all, so that, denoting this error by p, P-~ lrlmax· In 
particular this is true when the xj are the Chebyshev solution, in which case lrlmax is what we have been 
calling r. But the Chebyshev solution also has the property that its maximum error is smallest, so if 
IPimax denotes the absolutely largest residual of the least-squares solution, lrlmax ~ IPimax· Putting the two 
inequalities together, p ~ r ~ IP I max and we have the Chebyshev error bounded on both sides. Since the 
least-squares solution is often easier to find, this last result may be used to decide if it is worth 
continuing on to obtain the further reduction of maximum residual which the Chebyshev solution brings. 

28.9. Apply the previous problem to the systems of Problem 28.2. 

We have already found p = Yfr_, r = t and IPimax = ~ which do steadily increase as Problem 28.8 
suggests. The fact that one of the least-squares residuals is three times as large as another already 
recommends the search for a Chebyshev solution. 

28.10. Apply Problem 28.8 to the system of Problem 28.3. 

We have found p = Wz, r = t and IPimax =H. The spread does support a search for the Chebyshev 
solution. 

Supplementary Problems 

28.11. Find the least-squares solution of this system: 

x 1-xz=-1 

X1 +xz=8 

Compute the RMS error of this solution. 

2xl-xz=2 

2xl +xz = 14 

28.12. Compare IPimax with p for the solution found in Problem 28.11. 

28.13. Find the Chebyshev solution of the system in Problem 28.11 and compare its r value with p and IPimax· 

28.14. Find both the least-squares and Chebyshev solutions for this system: 

X 1 + X 2 -X3 = 5 

2xl-3xz+x3= -4 

X1 + 2xz- 2x3 = 1 

4xl- Xz- X3 = 6 

28.15. Suppose it is known that -1 ~ xj. Find the Chebyshev solution of the following system by first letting 
zj = xj + 1 which guarantees 0 ~ zj. Also find the least-squares solution. 

2xl-2xz+ x3+2x4=l 

X1 + Xz + 2x3 + 4x4 = 1 

x 1-3x2 + x 3+2x4=2 

28.16. Find the least-squares solution of this system: 

What is the RMS error? 

X1 =0 

x2 = 0 

-2xl- 2xz + 3x3 + 3x4 = 4 

-x~-3xz-3x3 + x4=3 

2x1+4xz+ x3+5x4=0 

x 1 + x 2 =-1 

.1x1 + .1x2 = .1 

28.17. Find the Chebyshev solution of the system in Problem 28.16. 
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28.18. Four altitudes x 1 , x2 , x3 , x4 are measured, together with the six differences in altitude, as follows. Find 
the least-squares values. 

X 1 = 3.47 X2 = 2.01 X3 = 1.58 X4 = .43 

Xt-Xz=l.42 Xt-X3=1.92 x 1 -x4 = 3.06 Xz -x3 = .44 

Xz-x4=1.53 X3 -x4 = 1.20 

28.19. A quantity xis measured N times, the results being a1, a2 , ••• , aN. Solve the overdetermined system 

x =a1 i=l, ... ,N 

by the least-squares method. What value of x appears? 

28.20. Two quantities x andy are measured, together with their difference x- y and sum x + y. 

x=A y=B x-y=C x+y=D 

Solve the overdetermined system by least-squares. 

28.21. The three angles of a triangle are measured to be A 1 , A2 , A 3 • If x 1 , x2 , x3 denote the correct values, we 
are led to the overdetermined system 

Solve by the method of least-squares. 

28.22. The two legs of a right triangle are measured to be A and B, and the hypotenuse to be C. Let L 1 , L2 , 

and H denote the exact values, and let x 1 = L~, x 2 = L~. Consider the overdetermined system 

and obtain the least-squares estimates of x 1 and x2 • From these estimate L 1 , L 2 , and H. 

28.23. Verify that the normal equations for the least-squares solution of Ax = b are equivalent to AT A= ATb. 



Chapter 29 

Boundary Value Problems 

NATURE OF THE PROBLEM 

This is a subject that runs wide and deep. Volumes could be filled with its variations and 
algorithms. This chapter can offer only a sampling of the many ideas that have been brought to bear 
on it. This means that the coverage is, of necessity, superficial, but the alternative of omission 
seemed totally unacceptable. 

A boundary value problem requires the solution of a differential equation, or system of 
equations, in a region R, subject to additional conditions on the boundary of R. Applications 
generate a broad variety of such problems. The classical two-point boundary value problem of 
ordinary differential equations involves a second-order equation, an initial condition, and a terminal 
condition. 

y" = f(x, y, y') y(a)=A y(b) = B 

Here the region R is the interval (a, b) and the boundary consists of the two endpoints. A typical 
problem of partial differential equations is the Dirichlet problem, which asks that the Laplace 
equation 

Uxx + Uyy = 0 

be satisfied inside a region R of the xy plane and that U(x, y) take specified values on the boundary 
of R. These examples suggest two important classes of boundary value problems. 

SOLUTION METHODS 

1. The superposition principle is useful for linear problems. For example, to solve 

y" = q(x)y y(a) =A y(b) = B 

one could use the methods of Chapter 19 to solve the two initial value problems 

after which 

y~ = q(x)yl 

y~=q(x)Yz 

Y1(a) = 1 

y2(a) = 0 

Y1(b) = 0 

rz(b) = 1 

2. Replacement by a matrix problem is also an option when the problem is linear. For 
example, replacing y"(xk) by a second difference converts the equation y" = q(x)y into the 
difference equation 

Yk-1 - (2 + h2qk)Yk + Yk+l = 0 

which is required to hold fork= 1, ... , n corresponding to the arguments x 1 , ••• , Xn- With 
Yo= A and Yn+l = B; we then have a linear system of order n, producing approximate y 
values at the listed arguments. 

Similarly, the Laplace equation Uxx + Uyy = 0 converts to the difference equation 

1 
U(x, y) = 4 [U(x- h, y) + U(x + h, y) + U(x, y- h)+ U(x, y +h)] 

which makes each value the average of its four neighbors in the square lattice of points 
xm = x0 + mh, Yn = y0 + nh. Writing this equation for each interior lattice point produces a 
linear system of order N, where N is the number of such points. The idea can be adapted to 
other equations, to regions with curved boundaries, and to more dimensions. Convergence 
to the correct solution can be proved under fairly broad circumstances. 

427 
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The classic diffusion problem 

T(O, t) = T(1, t) = 0 T(x, 0) = f(x) 

also responds to the finite difference treatment. The equation is to be satisfied inside the 
semi-infinite strip 0 ~ x ~ 1, 0 ~ t. On the boundaries of the strip, Tis prescribed. There is a 
well-known solution by Fourier series, but finite differences are useful for various 
modifications. Replacing derivatives by simple differences, the above equation becomes 

Tm,n+l = J,.Tm-l,n + (1- 2A)Tm,n + J,.Tm+l,n 

with xm = mh, tn = nk, and A= k/h 2
• A rectangular lattice of points thus replaces the strip. 

In the form given, the difference equation allows each T value to be computed directly from 
values at the previous time step, with the given initial values f(xm) triggering the process. 
For proper choices of h and k, tending to zero, the method converges to the true solution. 
However, for small k the computation is strenuous and numerous variations have been 
proposed for reducing the size of the job. 

3. The garden hose method offers an intuitive approach to the classic two-point boundary value 
problem. We first solve the initial value problem 

y" = f(x, y, y') y(a)=A y'(a) =M 

for some choice of M. The terminal value obtained will depend upon the choice of M. Call it 
F(M). Then what we want is that F(M) =B. This is a problem similar to the root-finding 
problems of Chapter 25 and can be solved by similar methods. Successive approximations to 
Mare found, each one bringing a new initial value problem. As with root finding, there are 
several ways for choosing the corrections toM, including a Newton-type method. 

M _ M _ F(M1) - B 
2

-
1 F'(M1) 

4. The calculus of variations establishes the equivalence of certain boundary value problems 
with problems of optimization. To find the function y(x) which has y(a) =A and y(b) = B 
and also makes 

f F(x, y, y') dx 

a minimum (or maximum), one may solve the Euler equation 

d 
E'y = dx E'y· 

subject to the same boundary conditions. There are also direct methods, such as the Ritz 
method, for minimizing the integral, which may, therefore, be considered as methods for 
solving the Euler equation with its boundary conditions. 

For the Laplace equation a corresponding minimization problem is 

f f cu; + VD dx dy =minimum 

with the double integral being taken over the region R of the boundary value problem. 
For the Poisson equation Uxx + Uyy = K, the appropriate optimization problem is 

J J [~cu; + VD + KU J dx dy =minimum 

5. The finite element method is a powerful procedure for direct solution of optimization 
problems. The region R is subdivided into basic pieces (triangles, squares, etc. for a 
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two-dimensional R) and a solution element is associated with each piece. For instance, over 
a set of basic triangles one might choose a set of plane triangular elements, joined to form a 
continuous surface. The vertical coordinates of the corners of these elements become the 
independent variables of the optimization. Partial derivatives relative to these variables are 
developed and equated to zero. The resulting system of equations must then be solved. 

6. Infinite series provide solutions for many classic problems. They are a development of the 
superposition principle. Fourier series and their various generalizations are prominent. 

Solved Problems 

LINEAR ORDINARY DIFFERENTIAL EQUATIONS 
29.1. Find a solution of the second-order equation 

L(y) = y"(x)- p(x)y'(x)- q(x)y(x) = r(x) 

satisfying the two boundary conditions 

cny(a) + c12 y(b) + c13 y'(a) + c14y '(b)= A 

c21y(a) + C22y(b) + c23y'(a) + C24y'(b) = B 

With linear equations, we may rely upon the superposition principle which is used in solving 
elementary examples by analytic methods. Assuming that elementary solutions cannot be found for the 
above equation, the numerical algorithms of an earlier chapter (Runge-Kutta, Adams, etc.) may be 
used to compute approximate solutions of these three initial value problems for a~ x ~b. 

L(yt)=O 

Yt(a) = 1 

y;(a) =0 

L(y2)=0 

Yz(a)=O 

y;(a) = 1 

The required solution is then available by superposition, 

L(Y) =r(x) 

Y(a)=O 

Y'(a)=O 

where to satisfy the boundary conditions we determine cl and c2 from the equations 

[ell+ C12Y1(b) + C14y;(b)]C1 + [c13 + C1zYib) + c14y;(b)]Cz =A- c12Y(b)- C14Y'(b) 

(c21 + C22Y1(b) + Cz4Y;(b)]C1 + [c23 + C22Yz(b) + C24y;(b)]Cz = B- C22 Y(b)- Cz4Y'(b) 

In this way the linear boundary value problem is solved by our algorithms for initial value problems. The 
method is easily extended to higher-order equations or to linear systems. We assume that the given 
problem has a unique solution and that the functions YJ, y2 , etc., can be found with reasonable accuracy. 
The equations determining C 1 , C2 , etc., will then also have a unique solution. 

29.2. Show how a linear boundary value problem may be solved approximately by reducing it to a 
linear algebraic system. 

Choose equally spaced arguments xj =a+ jh with x0 =a and xN+ 1 =b. We now seek to determine 
the corresponding values yj = y(xj). Replacing y"(xj) by the approximation 

"( ·) Yj+1- 2yj + Yj-1 
y Xl hz 
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the differential equation L(y) = r(x) of Problem 29.1 becomes, after slight rearrangement, 

( 1- ~hpj )Yj-t + ( -2 + h2qj)yj + ( 1 +~hpj )Yj+t = h2rj ~· 

[CHAP. 29 

If we require this to hold at the interior points j = 1, ... , N, then we haveN linear equations in theN 
unknowns y1, ... , yN, assuming the two boundary values to be specified as Yo= y(a) =A, YN+t = y(b) = 
B. In this case the linear system takes the following form: 

f3tYt + YtYz 

a2Y1 + f32Yz + Y2Y3 

where 

=h 2r1 - a1A 

=h2r2 

The band matrix of this system is typical of linear systems obtained by discretizing differential boundary 
value problems. Only a few diagonals are nonzero. Such matrices are easier to handle than others which 
are not so sparse. If Gaussian elimination is used, with the pivots descending the main diagonal, the 
band nature will not be disturbed. This fact can be used to abbreviate the computation. The iterative 
Gauss-Seidel algorithm is also effective. If the more general boundary conditions of Problem 29.1 occur 
these may also be discretized, perhaps using 

y'(a) =Yt- Yo 
h 

y'(b)=YN+t-YN 
h 

This brings a system of N + 2 equations in the unknowns y0 , ••• , YN+t· 
In this and the previous problem we have alternative approaches to the same goal. In both cases the 

output is a finite set of numbers Yj· If either method is reapplied with smaller h, then hopefully the larger 
output will represent the true solution y(x) more accurately. This is the question of convergence. 

29.3. Show that for the special case 

y"+ y =0 y(O) = 0 y(l) = 1 

the method of Problem 29.2 is convergent. 

The exact solution function is y(x) = (sinx)(sin 1). The approximating difference equation is 

Yj-t + (- 2 + h2)yj + Yj+t = 0 

and this has the exact solution 
sin (axj/h) 
sin (a/h) 

for the same boundary conditions Yo= 0, YN+t = 1. Here xj = jh and cos a= 1- !h2
• These facts may be 

verified directly or deduced by the methods of our section on difference equations. Since lim (a/h) is 1 
for h tending to zero, we now see that limyj = y(xj), that is, solutions of the difference problem for 
decreasing h converge to the solution of the differential problem. In this example both problems may be 
solved analytically and their solutions compared. The proof of convergence for more general problems 
must proceed by other methods. 

29.4. Illustrate the reduction of a linear differential eigenvalue problem to an approximating 
algebraic system. 

Consider the problem 

y" +A.y = 0 y(O) = y(1) = 0 
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This has the exact solutions y(.x) = C sin nnx, for n = 1, 2, .... The corresponding eigenvalues are 
An = n2n 2

• Simply to illustrate a procedure applicable to other problems for which exact solutions are 
not so easily found, we replace this differential equation by the difference equation 

Yj-t + (- 2 + A.h 2)Yj + Yj+t = 0 

Requiring this to hold at the interior points j = 1, ... , N, we have an algebraic eigenvalue problem 
Ay = A.h2y with the band matrix 

A=[~~ ~L~~J 
.................. 1 

1 -2 

all other elements being zero, and yT = (y1 , ••• , YN). The exact solution of this problem may be found 
to be 

with 

Plainly, ash tends to zero these results converge to those of the target differential problem. 

NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 
29.5. What is the garden-hose method? 

Given the equation y" = f(x, y, y'), we are to find a solution which satisfies the boundary conditions 
y(a) =A, y(b) =B. 

One simple procedure is to compute solutions of the initial value problem 

y" = f(x, y, y') y(a)=A y'(a)=M 

for various values of M until two solutions, one with y(b) < B and the other with y(b) > B, have been 
found. If these solutions correspond to initial slopes of M1 and M2 , then interpolation will suggest a new 
M value between these and a better approximation may then be computed (see Fig. 29-1). Continuing 
this process leads to successively better approximations and is essentially the regula falsi algorithm used 
for nonlinear algebraic problems. Here our computed terminal value is a function of M, say F(M), and 
we do have to solve the equation F(M) =B. However, for each choice of M the calculation of F(M) is 
no longer the evaluation of an algebraic expression but involves the solution of an initial value problem 
of the differential equation. 

Fig. 29-1 

29.6. How may the garden-hose method be refined? 

Instead of using the equivalent of regula falsi, we may adapt Newton's method to the present 
problem, presumably obtaining improved convergence to the correct M value. To do this we need to 
know F'(M). Let y(x, M) denote the solution of 

y" = f(x, y, y') y(a) =A y'(a)=M 
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and for brevity let z(x, M) be its partial derivative relative to M. Differentiating relative to M brings 

z" = /y(x, y, y ')z + t;,.(x, y, y ')z' (1) 

if we freely reverse the orders of the various derivatives. Also differentiating the initial conditions, we 
have 

z(a, M) =0 z'(a, M) = 1 

Let M 1 be a first approximation to M and solve the original problem for the approximate solution 
y(x, M1). This may then be substituted for y in equation (1) and the function z(x, M1) computed. Then 
F'(M) = z(b, M1 ). With this quantity available the Newton method for solving F(M)- B = 0 now offers 
us the next approximation to M: 

M =M _ F(M1) -B 
2 

I F'(Ml) 

With this M2 a new approximation y(x, M2) may be computed and the process repeated. The method 
may be extended to higher-order equations or to systems, the central idea being the derivation of an 
equation similar to (1), which is called the variational equation. 

OPTIMIZATION 
29.7. Reduce the problem of maximizing or minimizing J~ F(x, y, y') dx to a boundary value 

problem. 

This is the classical problem of the calculus of variations. If the solution function y (x) exists and has 
adequate smoothness, then it is required to satisfy the Euler differential equation Fy = (d/ dx )Fy .. If 
boundary conditions such as y(a) =A, y(b) = B are specified in the original optimization problem, then 
we already have a second-order boundary value problem. If either of these conditions is omitted, then 
the variational argument shows that F;.· = 0 must hold at that end of the interval. This is called the 
natural bfJundary condition. 

29.8. Minimize H (y 2 + y' 2
) dx subject to y(O) = 1. 

The Euler equation is 2y = 2y" and the natural boundary condition is y'(1) = 0. The solution is now 
easily found to bey = cosh x -tanh 1 sinh x and it makes the integral equal to tanh 1, which is about . 76. 
In general the Euler equation will be nonlinear and the garden-hose method may be used to find y(x). 

29.9. Illustrate the Ritz method of solving a boundary value problem. 

The idea of the Ritz method is to solve an equivalent minimization problem instead. Consider 

y(O) = y(1) = 0 

sometimes called a Poisson problem in one variable, but in fact requiring only two integrations to 
discover the solution 

y(x) =x(1-x
3

) 

12 

Methods are available for finding an equivalent minimization problem for a given boundary problem, 
but here one is well known. 

J(y) = f [~ (y') 2
- x 2y J dx =minimum 

The Euler equation for this integral proves to be our original differential equation. 
To approximate the solution by the Ritz method, we need a family of functions satisfying the 

boundary conditions. Suppose we choose 

rp(x) = cx(1- x) 

which is probably the simplest such family for this problem. Substituting rp for y in the integral, an easy 
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calculation yields 

which we minimize by setting f'(c) = 0. The resulting c = ?o gives us the approximation 

3 
¢(x) =wx(l-x) 

which is compared with the true solution in Fig. 29-2. More accurate approximations are available 
through the use of a broader family of approximating functions, perhaps 

cj>(x) =x(l-x)(co + C1X + CzX
2 +' · · + CnXn) 

leading to a linear system for determining the coefficients c;. The central idea of the Ritz method is the 
search for the optimum function among members of a restricted family ¢(x), rather than among all y(x) 
for which the given integral exists . 

. 04 

.03 

. 02 

.01 

• 

I 
2 

True solution 

• • • Ritz 
- - - - Finite element 

Fig. 29-2 

29.10. Use the same boundary value problem solved in Problem 29.9 to illustrate a finite element 
solution method. 

The basic idea is the same. It is the nature of the approximating family that identifies a finite 
/ element method. Suppose we divide our interval (0, 1) into halves and use two line segments 

¢z(x) = 2A(l-x) 

meeting at point G,A) to approximate y(x). In fact, we have a family of such approximations, with 
parameter A to be selected. The two line segments are called finite elements, and the approximating 
function is formed by piecing them together. As before we substitute into the integral, and we easily 
compute 

Il/2 II 7 
1(¢)= ¢ 1 dx+ ¢ 2 dx=2A2

--
4 

A=f(A) 
0 1/2 8 

which we minimize by setting f'(A) = 0. This makes A= 4. A quick calculation shows that this is 
actually the correct value of the solution at x = ~. (See Fig. 29-2.) It has been shown that if line segments 
are used as finite elements (in a one-dimensional problem, of course) correct values are systematically 
produced at the joins. 

29.11. Extend the procedure of the preceding problem to include more finite elements. 
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Divide the interval (0, 1) into n parts, with endpoints at 0 = x0 , x1, x2, ... , xn = 1. Let y1, ... , Yn- 1 
be corresponding and arbitrary ordinates, with Yo= Yn = 0. Define linear finite elements ¢ 1 , ••• , <Pn in 
the obvious way. (See Fig. 29-3.) Then 

</J;(x) = Y;-1 ~ + y; x - X;-1 
xi- xi-t xi- xi-t 

x;-x x-x;_1 
=y;_1-h-+y;--h-

Fig. 29-3 

the second equality holding if the X; are equally spaced. We also have 

¢~(x) =y;- Y;-1 =y;- Y;-1 
' X; -x;-1 h 

Now consider the integral 

n r; [ 1 J n 
J(¢) = ~ Jxi-1 Z (¢;? -x2</J; dx = ~ 1; 

= f(Y~> · · · , Yn-1) 

To minimize this, we could obtain f explicitly in terms of they; and then compute the partial derivatives, 
setting them to zero and solving the resulting system of equations. This is what was just done in the 
simpler case. Here suppose we take derivatives first, integrate second, and then form the ultimate 
system. The dependence off upon a particular ordinate yk is through only two of the component terms Jk 
and Jk+1. Accordingly, fork= 1, ... , n- 1, 

at= rk [Yk- Yk-1 (!) - x2 X - Xk-1] dx + rk+1 
[Yk+1- Yk ( -1) - x2 xk+1- X] dx 

ayk t-1 h h h Jxk h h h 

and the integrals being elementary we soon have the system 

1414141 31 3 
- Yk-1 +2yk- Yk+1 =uxk-1 +-zxk +i2xk+1- 3xk-1xk -3xk+1xk 

for k = 1, ... , n - 1. 

With n = 2 and k = 1, this quickly reproduces the y1 = 4 found before. With n = 3, the system 
becomes 

7 
2y1- Yz = 486 

25 
-y1 + 2yz = 486 

from which come y1 =-£ and y2 = -£, both of which agree with the true solution values for these 
positions. 

THE DIFFUSION EQUATION 
29.12. Replace the diffusion problem involving the equation 

oT = a(ozT\ + b(o!"\ + cT 
at ax2 J ai J 
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and the conditions T(O, t) = f(t), T(l, t) = g(t), T(x, 0) = F(x) by a finite difference 
approximation. 

Let Xm = mh and t" = nk, where xM+l = l. Denoting the value T(x, t) by the alternate symbol Tm,m 
the approximations 

aT Tm,n+l- Tm,n aT Tm+l,n- Tm-l,n 
at k ax 2h 

a2 T Tm+l,n- 2Tm,n + Tm-l,n 
ax 2 h2 

convert the diffusion equation to 

Tm,n+l =;,(a-~ bh) Tm-l,n + [1- A(2a + ch
2 )]Tm,n +;,(a+~ bh) Tm+l,n 

where }, = k/h 2
, m = 1, 2, ... , M and n = 1, 2, .... Using the same initial and boundary conditions 

above, in the form To,n = f(t"), T M+l,n = g(t") and Tm,o = F(xm), this difference equation provides an 
approximation to each interior Tm,n+l value in terms of its three nearest neighbors at the previous time 
step. The computation therefore begins at the (given) values for t = 0 and proceeds first to t = k, then to 
t = 2k, and so on. (See the next problem for an illustration.) 

29.13. Apply the procedure of the preceding problem to the case a = 1, b = c = 0, f(t) = g(t) = 0, 
F(x)=l, andl=l. 

Suppose we choose h = ~ aild k = -fz. Then }, = ! and the difference equation simplifies to 

A few lines of computation are summarized in Table 29.1(a). The bottom line and the side columns are 
simply the initial and boundary conditions. The interior values are computed from the difference 
equation line by line, beginning with the looped CD which comes from averaging its two lower neighbors, 
also looped. A slow trend toward the ultimate "steady state" in which all T values are zero may be 
noticed, but not too much accuracy need be expected of so brief a calculation. 

For a second try we choose h = l, k =Its, keeping},=!. The results appear in Table 29.1(b ). The 
top line of this table corresponds to the second line in Table 29.1(a) and is in fact a better approximation 
to T(x, -lz). This aJounts to a primitive suggestion that the process is starting to converge to the correct 
T(x, t) values. 

In Table 29.1 c) we have the results if h = l, k = f6 are chosen, making }, = 1. The difference 
equation for this choice is 

Table 29.1 

0 -12 17 -12 0 

0 5 -7 5 0 
0 0 0 0 0 - 2 3 -2 0 
0 0 0 0 0 -1 0 
0 0 0 0 0 0 0 0 

o CD 1 0 0 0 0 0 

CD1CD 1 1 1 
(a) (b) (c) 
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The start of an explosive oscillation can be seen. This does not at all conform to the correct solution, 
which is known to decay exponentially. Later we shall see that unless A~! such an explosive and 
unrealistic oscillation may occur. This is a form of numerical instability. 

29.14. What is the truncation error of this method? 

As earlier we apply Taylor's theorem to the difference equation, and find that our approximation 
has introduced error terms depending on h and k. These terms are the truncation error 

subscripts denoting partial derivatives. In the important special case a= 1, b = 0, we have Ta = 'Lxxx so 
that the choice k = h2 /6 (or A=~) seems especially desirable from this point of view, the truncation 
error then being O(h 4

). 

29.15. Show that the method of Problem 29.12 is convergent in the particular case 

aT a2T 
at T(O, t) = T(n, t) = 0 rex, 0) = sinpx 

where p is a positive integer. 

The exact solution may be verified to be T(x, t) = e-P
2
' sin px. The corresponding difference 

equation is 
Tm,n+i- Tm,n = A(Tm+l,n- 2Tm,n + Tm-i,n) 

and the remaining conditions may be written 

T . mpn 
m,o= Sill M + 1 

To,n = TM+i,n = 0 

This finite difference problem can be solved by "separation of the variables." Let Tm,n = umvn to 
obtain 

which defines C. But comparing C with the extreme left member we find it independent of m, and 
comparing it with the middle member we find it also independent of n. It is therefore a constant and we 
obtain separate equations for um and v" in the form 

Um+i- (2- C)um + Um-1 = 0 

These are easily solved by our difference equation methods. The second has no solution with 
u 0 = uM+l = 0 (except um identically zero) unless 0 < C < 4, in which case 

um =A cos lXm + B sin lXm 

where A and Bare constants, and cos a-= 1- !C. To satisfy the boundary conditions, we must now have 
A= 0 and a-(M + 1) = jn, j being an integer. Thus 

B 
. mjn 

Um = Sill M + 1 

Turning toward v", we first find that C = 2(1- cos a-)= 4 sin2{jn/[2(M + 1)]} after which 

[ 
jn ]" 

vn = 1- 4A sin
2 

2(M + 1) Vo 

It is now easy to see that choosing B = v 0 = 1 and j = p we obtain a function 

T [1 4A . z pn ]" . mpn 
m,n = UmVn = - Sill 2(M + 1) Sill M + 1 
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which has all the required features. For comparison with the differential solution we return to the 
symbols Xm = mh, tn = nk. 

Tm.n = ( 1- 4i\. sin2 ~r/Ah
2 

sinpxm 

Ash now tends to zero, assuming i\. = k/h 2 is kept fixed, the coefficient of sinpxm has limit e-P
2'n so that 

convergence is proved. Here we must arrange that the point (xm, tn) also remain fixed, which involves 
increasing m and n as h and k diminish, in order that the Tm.n values be successive approximations to the 
same T(x, t). 

29.16. Use the previous problem to show that for the special case considered an explosive oscillation 
may occur unless A.~!. 

The question now is not what happens as h tends to zero, but what happens for fixed h as the 
computation is continued to larger n arguments. Examining the coefficient of sinpxm we see that the 
quantity in brackets may be less than -1 for some values of i\., p, and h. This would lead to an explosive 
oscillation with increasing t"" The explosion may be avoided by requiring that i\. be no greater than !. 
Since this makes k ~ h 2 /2 the computation will proceed very slowly, and if results for large t arguments 
are wanted it may be useful to use a different approach. (See the next problem.) 

29.17. Solve Problem 29.12 by means of a Fourier series. 

This is the classical procedure when a is constant and b = c = 0. We first look for solutions of the 
diffusion equation having the product form U(x)V(t). Substitution brings V' /V = U"/ U = - a 2 where a 
is constant. (The negative sign will help us satisfy the boundary conditions.) This makes 

U = B cos ax + C sin ax 

To make T(O, t) = 0, we choose B = 0. To make T(l, t) = 0, we choose a = nn where n is a positive 
integer. Putting C = 1 arbitrarily and changing the symbol A to An, we have the functions 

n = 1, 2, 3, ... 

each of which meets all our requirements except for the initial condition. The series 

T(x, t) = L Ane-n
2

"
2
' sin nnx 

n=l 

if it converges properly will also meet these requirements, and the initial condition may also be satisfied 
by suitable choice of the An. For F(x) = 1 we need 

T(x, 0) = F(x) = L An sin nnx 
n=l 

and this is achieved by using the Fourier coefficients for F(x), 

An =2 f F(x)sinnnxdx 

The partial sums of our series now serve as approximate solutions of the diffusion problem. The exact 
solution used in Problem 29.15 may be viewed as a one-term Fourier series. 

THE LAPLACE EQUATION 
29.18. Replace the Laplace equation 

ciT EPT 
axz + ayz = 0 

by a finite difference approximation. If the boundary values of T(x, y) are assigned on all four 
sides of the square, show how a linear algebraic system is encountered. 
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The natural approximations are 

a2 T T(x- h, y)- 2T(x, y) + T(x + h, y) 
ax2 = h2 

a2 T T(x, y- h)- 2T(x, y) + T(x, y +h) 
ayz = h2 

and they lead at once to the difference equation 

1 
T(x, y) =4[T(x -h, y) + T(x +h, y) + T(x, y -h)+ T(x, y +h)] 

which requires each T value to be the average of its four nearest neighbors. Here we focus our attention 
on a square lattice of points with horizontal and vertical separation h. Our difference equation can be 
abbreviated to 

with points labeled as in Fig. 29-4. Writing such an equation for each interior point Z (where T is 
unknown), we have a linear system in which each equation involves five unknowns, except when a 
known bmmdary value reduces this number. 

Fig. 29-4 

29.19. Apply the method of the previous problem when T(x, 0) = 1, the other boundary values being 0. 

For simplicity we choose h so that there are only nine interior points, as in Fig. 29-4. Numbering 
these points from left to right, top row first, our nine equations are these: 

1 
T., = 4 (0 + Tz + ~ + 0) 

1 
Tz = 4 (0 + 7; + Ts + T.,) 

1 
7; = 4 (0 + 0 + 7;, + Tz) 

1 
~=4(T., + Ts+ 7;+0) 

1 
Ts = 4 (Tz + 7;, + Ts + ~) 

1 
7;,=4(7;+0+ 'fg+ Ts) 

1 
7;=4(~+Ts+1+0) 

1 
Ts = 4 (I;+ Tg + 1 + 7;) 

1 
Tg = 4 (I;,+ 0 + 1 + Ts) 

The system could be rearranged for Gaussian elimination, but as it stands the Gauss-Seidel iteration 
seems natural. Starting from the very poor initial approximation of zero for each interior T; the 
successive results given in Table 29.2 are obtained. Ten iterations bring three-place accuracy for this 
linear system. (For a discussion of convergence of the Gauss-Seidel iteration see Problem 26.34.) 
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Table 29.2 

Iteration 1;_ 1;. T3 4 1's 1;; T, Ts ~ 

0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 .250 .312 .328 
2 0 0 0 .062 .078 .082 .328 .394 .328 
3 .016 .024 .027 .106 .152 .127 .375 .464 .398 
4 .032 .053 .045 .140 .196 .160 .401 .499 .415 
5 .048 .072 .058 .161 .223 .174 .415 .513 .422 
6 .058 .085 .065 .174 .236 .181 .422 .520 .425 

7 .065 .092 .068 .181 .244 .184 .425 .524 .427 

8 .068 .095 .070 .184 .247 .186 .427 .525 .428 

9 .070 .097 .071 .186 .249 .187 .428 .526 .428 
10 .071 .098 .071 .187 .250 .187 .428 .526 .428 

A CONVERGENCE PROOF 
29.20. Prove that the linear system encountered in Problem 29.18 will always have a unique solution. 

The point is that, since we base our approximation on this system, it is important that it be 
nonsingular. Denoting the unknown interior values 1;_, ... , TN, we may rewrite the system in the form 

N 

2: a;kTk = b; 
k~l 

(1) 

where the b; depend upon the boundary values. If all boundary values were zero, then all b; would be 
zero also: 

(2) 

By the fundamental theorem of linear algebra the system (1) will have a unique solution provided that 
(2) has only the zero solution. Accordingly, we suppose all boundary values are zero. If the maximum 
Tk value occurred at an interior point Z, then because of Tz = t(TA + T8 + Tc +Tv) it would also have to 
occur at A, B, C, and D, the neighbors of Z. Similarly this maximum would occur at the neighboring 
points of A, B, C, and D themselves. By continuing this argument we find that the maximum Tk value 
must also occur at a boundary point and so must be zero. An identical argument proves that the 
minimum Tk value must occur on the boundary and so must be zero. Thus all Tk in system (2) are zero 
and the fundamental theorem applies. Notice that our proof includes a bonus theorem. The maximum 
and minimum Tk values for both (1) and (2) occur at boundary points. 

29.21. Prove that the solution of system (1) of Problem 29.20 converges to the corresponding 
solution of Laplace's equation as h tends to zero. 

Denote the solution of (1) by T(x, y, h) and that of Laplace's equation by T(x, y), boundary values 
of both being identical. We are to prove that at each point (x, y) ash tends to zero 

lim T(x, y, h)= T(x, y) 

For convenience we introduce the symbol 

L[F] = F(x + h, y) + F(x- h, y) + F(x, y +h)+ F(x, y- h)- 4F(x, y) 

By applying Taylor's theorem on the right we easily discover that for F = T(x, y), IL[T(x, y)]l ~ Mh 4/6 
where M is an upper bound of l'fxxxxl and I'I;,ml· Moreover, L[T(x, y, h)]= 0 by the definition of 
T(x, y, h). Now suppose the origin of x, y coordinates to be at the lower left corner of our square. This 
can always be arranged by a coordinate shift, which does not alter the Laplace equation. Introduce the 
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function 

A 2 2 2 A S(x,y,h)=T(x,y,h)-T(x,y)-
2

D 2 (D -x -y )-2 

where A is an arbitrary positive number and D is the diagonal length of the square. A direct 
computation now shows 

so that for h sufficiently small, L[S] > 0. This implies that S cannot take its maximum value at an interior 
point of the square. Thus the maximum occurs on the boundary. But on the boundary T(x, y, h)= 
T(x, y) and we see that S is surely negative. This makes S everywhere negative and we easily deduce 
that T(x, y, h)- T(x, y) <A. A similar argument using the function 

R(x, y, h)= T(x, y)- T(x, y, h)- 2~2 (D2
- x 2

- y2
)- ~ 

proves that T(x, y)- T(x, y, h)< A. The two results together imply IT(x, y, h)- T(x, y)l <A for 
arbitrarily small A, when his sufficiently small. This is what convergence means. 

29.22. Prove that the Gauss-Seidel method, as applied in Problem 29.19, converges to the exact 
solution T(x, y, h) of system (1), Problem 29.20. 

This is, of course, an altogether separate matter from the convergence result just obtained. Here we 
are concerned with the actual computation of T(x, y, h) and have selected a method of successive 
approximations. Suppose we number the interior points of our square lattice from 1 to N as follows. 
First we take the points in the top row from left to right, then those in the next row from left to right, 
and so on. Assign arbitrary initial approximations T? at all interior points, i = 1, ... , N. Let the 
succeeding approximations be called T7. We are to prove 

lim T7 = T; = T(x, y, h) 

as n tends to infinity. Let S7 = T7- T;. Now it is our aim to prove lim S7 = 0. The proof is based on the 
fact that each S; is the average of its four neighbors, which is true since both T7 and T; have this 
property. (At boundary points we putS equal to zero.) Let M be the maximum IS?I. Then, since the first 
point is adjacent to at least one boundary point, 

1 3 
IS;I~4(M +M +M+0)=4M 

And since each succeeding point is adjacent to at least one earlier point, 

Assuming for induction purposes that IS:I ~ [1- cni]M we have at once 

3 1 [ (1);] [ (1)i+l] 1s;+d~4M+4 1- 4 M= 1- 4 M 

The induction is already complete and we have IS :VI~ [1- (~)N]M = crM which further implies 

i=1, ... ,N 

Repetitions of this process then show that IS71 ~ex" M, and since ex< 1 we have lim S7 = 0 as required. 
Though this proves convergence for arbitrary initial T?, surely good approximations T7 will be obtained 
more rapidly if accurate starting values can be found. 

29.23. Develop the basic formulas for a finite element method using triangular elements and the 
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Poisson equation 
(K a constant) 

The region over which this equation is to hold must first be divided up into triangular pieces, 
making approximations where necessary. Let (x;, y;), (x1, y1), (xk> yk) be the vertices of one such 
triangle. The solution surface above this triangle is to be approximated by a plane element cp<el(x, y), 
the superscript referring to the element in question. If Z;, z1, zk are the distances up to this plane at the 
triangle corners, or nodes, then 

cp<e) = L~e)Z; + L}"lzi + LLe)Zk 

where L~e) is equal to 1 at node i and 0 at the other two nodes, with corresponding properties for L}"l 
and L~el. Let Lle be the area of the base triangle, formed by the three nodes. Then 

2Lle = 1 ~ :, ~: 1 

1 xk h 

which leads quickly to the following representations: 

If we also write (e) 1 ( b ) L; = 2Lle a;+ ;X+ C;Y 

then from the determinants 

with these parallel formulas coming from Lj"l and LLel. 

bi=Jk -yi 

bk = Y;- Y1 

All these a, b, c coefficients should have the superscript (e) but for simplicity it has been suppressed. 
It is now time to consider the minimization problem equivalent to the Poisson equation. It is 

J(U) = J J [~(U; + u;) + KU] dxdy =minimum 

with the double integral to be evaluated over the given region R of the boundary value problem. We are 
approximating U by a function ¢, a composite of plane triangular elements each defined over a 
triangular portion of R. So we consider the substitute problem of minimizing 

with each term of the sum evaluated over its own base triangle. We want to set the appropriate 
derivatives of J( cp) to zero and to this end require the derivatives of the le components. Note that 

so that, suppressing the superscript, 
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The differentiations are straightforward. For example, 

q _ JJ { J?i_ .3.!___ L) dx d _ _!__ (b~ + c~ b1bj + c1cj b,bk + c,ck ) ~A 
Z; - ¢x 2Ae + cpy 2Ae + K ' y - Ae 4 Z; + 4 Zj + 4 zk + 3 e 

with very similar results for at /zj and at /zk. The three can be grouped neatly in matrix form: 

[
at /z1 ] [ b~ + c~ b,bj + c,cj b,bk + c1ck] [ z,] [ 1] 
at /zj = 4~e b,bj + C;Cj bj + cf bjb; + c;ck Zj + ~ Ae 1 
at /zk b,bk + C;Ck bjbk + CjCk bk + Ck Zk 1 

The fact that K has been assumed constant makes the integrations needed to achieve this result easy 
enough. Note also that the integral of each L function is ~, by elementary calculus. 

The above matrix equation contains the ingredients needed to assemble the partial derivatives of 
J ( ¢ ). It remains, in a particular application, to do the assembling properly. Specifically, for each 
element cp<el the active nodes i, j, k must be noted and contributions recorded for derivatives relative to 
the corresponding variables among the z1, z2 , z3 , •••• 

29.24. Apply the finite element method of the preceding problem given that the region R is the unit 
square of Fig. 29-5, with the boundary values indicated. The exact solution is easily seen to be 
U(x, y) = x 2 + y 2

, since this satisfies Uxx + Uyy = 4. 

[Boundary values correspond 
to U(x,y)=x 2 +y2

.] 

Fig. 29-5 

By symmetry only the lower right half of the square needs to be considered, and this has 
been split into two triangles. The nodes are numbered 1 to 4, and the two triangles are 
identified by the node numbers involved. 

Node X 

1 2 

2 0 

3 1 

4 1 

y 

I 
2 

0 

0 

1 

Elements (by node numbers) 

1 2 3 (e = 1) 
1 3 4 (e = 2) 

From this basic input information we first compute the a, b, c coefficients. Each column below 
corresponds to a node (i, j, k). 

e=l e=2 

a 0 0 0 
b 0 -1 

I 0 I 
-2 -2 
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It is useful to verify that columns do provide the desired L)el functions. For instance, the first column 
gives 

LPl = 2[0 + (O)x + (1)y] 

where the leading 2 is the 1/211e. At node 1 this does produce the value 1, while at nodes 2 and 3 it 
manages 0. The other columns verify in similar fashion. 

For clarity the process of assembling the partial derivatives of J( ¢) = f(z1 , z2 , z3 , z4 ) will now be 
presented in more detail than is probably needed. The matrix equation of the preceding problem 
contains the contributions to these derivatives from each of our two elements. From element 1 comes 

Zt Z2 Z3 

3f/z1 1 1 I I -2 -:z 3 

3f/zz 1 I 0 1 -2 2 3 

3f/z3 I 0 I I -:z 2 3 

the last column containing constants. Element 2 provides these pieces. 

Zt Z3 Z4 

3f/zl 1 I 1 -2 -2 

3f/z3 I I 0 -2 2 

3f/z4 I 0 I -2 2 

Assembling the two matrices we have this finished product: 

Zt Z2 Z3 Z4 

3f/z1 2 1 -1 I -2 -2 

3f/zz - 1 I 0 0 2 2 

3f/z3 -1 0 1 0 
3f/z4 - I 0 0 I 

2 2 

Having thus illustrated the process of assembling elements, it must now be confessed that for the 
present case only the top row is really needed. The values of z2 , z3 , z4 are boundary values and given as 
0, 1, 2. They are not independent variables, and the function f depends only upon z1 • Setting this one 
derivative to zero and inserting the boundary vahies, we have 

1 1 2 
2z1 - 2 (0)- (1)- 2 (2) + 3 = 0 

making z1 = ~. The correct value is, of course, ~. 

29.25. Rework the preceding problem using the finer network of triangles shown in Fig. 29-6. 

We have these input ingredients: first, the nodes 1 to 4 where the coordinates (x, y) are G, !), (t n, (t ~), and (t ~) with corresponding z coordinates to be determined; second, the nodes 5 to 9 at which 
boundary values are assigned making (x, y, z) coordinates (1, 1, 2), (1, t ~), (1, 0, 1), (!, 0, ~), and 
(0, 0, 0); and third, the eight basic triangles designated by node numbers: 

2 9 8 2 8 1 1 8 3 3 8 7 3 7 6 1 3 6 1 6 4 4 6 5 

A computer program to run the finite element algorithm as described would need this input information. 
Suppose we begin a manual run, carrying it through only one of the eight elements, the first. The a, 
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b, c coefficients prove to be as follows: 

a 

b 

8 

Fig. 29-6 

0 

0 

0 

1 
-4 

1 1 -4 -4 

[CHAP. 29 

This may be checked as in the preceding problem, the columns representing the three nodes in the given 
order. The area of each basic triangle is -16. Since partial derivatives will be needed only relative to z1 to 
z4 , we can shorten our manual effort by finding only the terms contributing to these. For this element, 
we have 

which, after multiplication by 1/411e = 4, we enter into columns 2, 8, and 9 of the partial derivative 
matrix. The constant 4.:1e/3 = iz is also recorded, all entries in row 2 which pertains to of I z2 • 

Zt Zz Z3 Z4 Zs Z6 z, Zs Z9 

oj/z1 1 1 0 2 -:z 

of/zz 1 1 1 1 -:z -:z TI 

of/z3 
of/z4 

It remains to find the similar contributions of the other seven elements and to assemble them 
into the above matrix. It is useful to verify that the second element introduces the terms 
shown in row 1 and to find its further contributions to row 2. The rest of the assembly process 
will be left to the computer as will the substitution of boundary values and solution of the 
resulting fourth-order linear system. The following output was obtained: 

Node Computed True 

1 .500000 

2 .166667 

3 .666667 

4 1.166667 

The bull's-eye at node 1 is interesting. 
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29.26. Apply the same finite element method to the problem of a quarter circle, using just a single 
element as shown in Fig. 29-7. The Poisson equation is again to be used, as are the boundary 
values x 2 + y 2 = 1. The true solution is thus the same x 2 + y2

• 

Fig. 29-7 

The problem illustrates the approximation of a curved boundary by a straight-line 
segment. In general, many such segments would be used. The three nodes have these 
coordinates: 

Node X y z 

1 0 0 -
2 1 0 1 
3 0 1 1 

The value of z1 is the independent variable of the optimization. The a, b, c coefficients are 

Node 1 Node 2 Node 3 

a 1 0 0 
b -1 1 0 
c -1 0 1 

and lead to !![=z _!z _!z +~=0 
~ I 2 2 2 3 3 

from which z1 = l follows at once. The true value is, of course, zero. By symmetry the same result would 
be found for the full circle by using four such triangles. 

-:--
I 
I 
I 
I 
I 
I 
I 
I 

...... 
..... 

' 

Fig. 29-8 Fig. 29-9 
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29.27. Illustrate the concept of convergence, as it applies to finite element methods, by comparing 
the crude approximation just found with results from two-triangle and four-triangle efforts 
based upon the arrangements shown in Figs. 29-8 and 29-9. 

Needless to say, all these efforts are relatively crude, but it is interesting to observe the results. 

Node (0, 0) (~, 0) 

Fig. 29-7 .33 -

Fig. 29-8 -.08 .35 

Fig. 29-9 -.03 .26 

True 0 .25 

Things have begun to move in a good direction. Finite element methods have been shown to be 

convergent provided the process of element refinement is carried out in a reasonable way. 

THE WAVE EQUATION 
29.28. Apply finite difference methods to the equation 

cPU o2U 
afZ- axz = F[t, x, U, U,, Ux] - oo <X < oo, 0 ~ t 

with initial conditions U(x, 0) = f(x), U,(x, 0) = g(x). 

Introduce a rectangular lattice of points Xm = mh, t" = nk. At t = n = 0 the U values are given by the 
initial conditions. Using 

au U(x, t + k)- U(x, t) 

at k 

at t = 0 we have U(x, k) = f(x) + kg(x). To proceed to higher t levels we need the differential equation, 
perhaps approximated by 

U(x, t + k)- 2U(x, t) + U(x, t- k) U(x + h, t)- 2U(x, t) + U(x- h, t) 
k2 h2 

= F[t U U(x, t)- U(x, t- k) U(x + h, t)- U(x- h, t)] 
'X, ' k ' 2h 

which may be solved for U(x, t + k). Applied successively with t = k, k + 1, ... , this generates U values 
to any t level and for all Xm. 

29.29. Illustrate the above method in the simple case F = 0, f(x) = x2
, g(x) = 1. 

The basic difference equation may be written (see Fig. 29-10) 

UA = 2(1- A2)Uc + A2(UB + Uv)- UE 

B h 

A 

h 

E 

c 

Fig. 29-10 

D 
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where A= k/h. For A= 1 this is especially simple, and results of computation with h = k = .2 are given in 
Table 29.3. Note that the initial values for x = 0 to 1 determine the U values in a roughly triangular 
region. This is also true of the differential equation, the value U(x, t) being determined by initial values 
between (x- t, 0) and (x + t, 0). (See Problem 29.30.) 

Table 29.3 

.6 1.00 1.20 

.4 .52 .64 .84 1.12 

.2 .20 .24 .36 .56 .84 1.20 
0 .00 .04 .16 .36 .64 1.00 

t/x 0 .2 .4 .6 .8 1.0 

29.30. Show that the exact solution value U(x, t) of Uu = Uw U(x, 0) = f(x), U1(X, 0) = g(x) 
depends upon initial values between (x - t, 0) and (x + t, 0). 

For this old familiar problem, which is serving us here as a test case, the exact solution is easily 
verified to be 

U(x, t) =f(x + t) + f(x- t) +! r+' g(~) d~ 
2 2L, 

and the required result follows at once. A similar result holds for more general problems. 

29.31. Illustrate the idea of convergence for the present example. 

Keeping A= 1, we reduce h and k in steps. To begin, a few results for h = k = .1 appear in Table 
29.4. One looped entry is a second approximation to U(.2, .2) so that .26 is presumably more accurate 
than .24. Using h = k = .05 would lead to the value .27 for this position. Since the exact solution of the 
differential problem may be verified to be 

U(x, t)=x2 +t2 +t 

we see that U(.2, .2) = .28 and that for diminishing hand k our computations seem to be headed toward 
this exact value. This illustrates, but by no means proves, convergence. Similarly, another looped entry 
is a second approximation to U(.4, .4) and is better than our earlier .64 because the correct value is .72. 

Table 29.4 

.4 .61 @ 

.3 .40 .45 .52 .61 

.2 .23 @ .31 .38 .47 .58 

.1 .10 .11 .14 .19 .26 .35 .46 .59 
0 .00 .01 .04 .09 .16 .25 .36 .49 

t/x 0 .1 .2 .3 .4 .5 .6 .7 

29.32. Why is a choice of A= k/h > 1 not recommended, even though this proceeds more rapidly in 
the t direction? 

The exact value of U(x, t) depends upon initial values between (x- t, 0) and (x + t, 0). If A> 1 the 
computed value at (x, t) will depend only upon initial values in subset AB of this interval. (See Fig. 
29-11.) Initial values outside AB could be altered, affecting the true solution, but not affecting our 
computed value at (x, t). This is unrealistic. 
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Supplementary Problems 

[CHAP. 29 

29.33. Solve the equation y" + y' +xy = 0 with y(O) = 1 and y(1) = 0 by the method of Problem 29.1. 

29.34. Solve the previous problem by the method of Problem 29.2. Which approach do you find more 
convenient? 

29.35. Solve y" + Vx y' + y =ex with y(O) = 0 and y(1) = 0. 

29.36. Apply the method of Problem 29.4 toy"+ ).y = 0 with y(O) = y and y'(1) = 0. Prove convergence to the 
exact solution y =sin (2n + 1)(nx/2), )." = [(2n + 1)(n/2)f 

29.37. Apply the method of Problem 29.4 to obtain the largest eigenvalue of y" + .l.xy = 0 with y(O) = y(1) = 0. 

29.38. Apply the method of Problem 29.5 toy"= y2 + (y') 2
, y(O) = 0, y(1) = 1. 

29.39. An object climbs from ground level to height 100 feet in 1 second. Assuming an atmospheric drag which 
makes the equation of motion y" = - 32 - .1 W, what was the initial velocity? 

29.40. An object climbs from (0, 0) to (2000, 1000) in 1 second, distances being in feet. If the equations of 
motion are 

x"(t) = - .l"Vv cos a y"(t) = -32- .1Vv sin a 

where v 2 = (x'? + (y'? and a= arctan (y'/x'), find the initial velocity. 

29.41. Find the function y(x) which minimizes n [xy 2 + (y')2
] dx and satisfies y(O) = 0, y(1) = 1. Use the 

method of Problem 29.7. 

29.42. Apply the method of Problem 29.12 to the case a = c = 1, b = 0, l = 1, f(t) = g(t) = 0, F(x) = x(1- x). 
Diminish h, obtaining successive approximations until you feel you have results correct to two decimal 
places. Use ). = !. 

29.43. Repeat the previous problem with ). = ~. Are satisfactory results obtained more economically or not? 
Try).= 1. 

29.44. Show that replacement of derivatives by simple finite differences converts the two-dimensional diffusion 
equation T, = 'Lx + Tyy into 

Tt,m,n+l = (1- 4.J.)Tt,m,n + A(Tt+l,m,n + Tt-l,m,n + Tl,m+l,n + Tt,m-l,n) 

and obtain a similar approximation to the three-dimensional diffusion equation T, = 'Lx + Tyy + ~z· 
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29.45. Find an approximate solution to Laplace's equation in the region O~x, O~y, y ~ 1-x2 with 
T(O, y) = 1- y, T(x, 0) = 1- x and the other boundary values zero. Use the simplest method for 
handling curved boundaries, merely transferring boundary values to nearby lattice points. Try h = i and 
h = k. How accurate do you think your results are? 

29.46. Repeat the procedure of Problem 29.9 using the Ritz approximation ¢(x) = x(1- x )(c0 + c1x). Plot the 
corresponding curve and compare with the true solution. 

29.47. Write out the linear system of Problem 29.11 for the case n = 4. Solve it and verify that exact values are 
found. 

29.48. Verify the partial derivatives off relative to Z;, z1, zk as given in Problem 29.23. 

29.49. Complete the verifications of the a, b, c coefficients, as suggested in Problem 29.24. 

29.50. Verify the contributions of the second finite element, as suggested in Problem 29.25. 

29.51. Verify the results given in Problem 29.27 for the two-triangle and four-triangle configurations. 

29.52. Apply the finite element method to the Laplace equation (set K = 0 instead of 4) on the triangle with 
vertices (0, 0), (1, 1), ( -1, 1) with boundary values given by y 2

- x 2
• Note that this makes U(x, y) = 

y 2
- x 2 the true solution. From the symmetry it will be enough to work with the right half of the triangle. 

Use two interior nodes, at (0, n and (0, n, joining these to (1, 1) to form three basic triangles. The true 
values of U at the two interior nodes are, of course, ~ and ~. What values do these three elements 
produce? 

29.53. Suggest a simple finite difference approximation to T.x + Tyy + Tzz = 0. 

29.54. The boundary value problem y" = n(n -1)y /(x -1)2
, y(O) = 1, y(1) = 0 has an elementary solution. 

Ignore this fact and solve by the garden-hose method, using n = 2. 

29.55. Try the previous problem with n = 20. What is the troublesome feature? 

29.56. The boundary value problemy"- n 2y = - n 2/(1- e-n), y(O) = 0, y(1) = 1 has an elementary solution. 
Ignore this fact and solve by one of our approximation methods, using n = 1. 

29.57. Try the previous problem with n = 100. What is the troublesome feature? 

29.58. The boundary value problem 

u" + uxxxx = o O<x O<t U(x, 0) = U,(x, 0) = Uxx(O, t) = 0 U(O, t) = 1 

represents the vibration of a beam, initially at rest on the x axis, and given a displacement at x = 0. This 
problem can be solved using Laplace transforms, the result appearing as a Fresnel integral which must 
then be computed by numerical integration. Proceed, however, by one of our finite difference methods. 



Chapter 30 

Monte Carlo Methods 

RANDOM NUMBERS 

For our purposes, random numbers are not numbers generated by a random process such as the 
flip of a coin or the spin of a wheel. Instead they are numbers generated by a completely 
deterministic arithmetical process, the resulting set of numbers having various statistical properties 
which together are called randomness. A typical mechanism is 

Xn+l = rxn(mod N) 

-with r and N specified, and x 0 the "seed" of the sequence of "random" numbers Xn- Such modular 
multiplicative methods are commonly used as random number generators. With decimal computers 

Xn+l = 79xn(mod lOS) x0 = 1 

has been used, and with binary computers 

Xn+l = (8t- 3)xn(mod 25
) x 0 = 1 

with t some large number. Some generators include an additive element in this way: 

Xn+l = (rxn +s)(modN) 

A simple example suitable for practice problems is 

Xn+l = (25,173xn + 13,849)(mod65,536) 

which produces a well-scrambled arrangement of the integers from 0 to 65,535. 
To be considered random, the sequence of xn numbers must pass a set of statistical tests. They 

must be evenly distributed over the interval (0, N), must have the expected number of upward and 
downward double runs (13, 69, 97, for example), triple runs (09, 17, 21, 73), and so on. Sometimes a 
successful sequence is said to consist of pseudorandom numbers, presumably to reserve the word 
random for the output of truly random devices (roulette wheels?). In this chapter randomness will 
refer to the qualities of the output, not to the nature of the generator. This will cover the apparent 
contradiction in terms, which has a thoroughly deterministic mechanism producing random output. 

Many programming languages (Fortran, for instance) have a built-in random number generator 
subject to call. Very likely it is constructed to a modular multiplicative design. 

APPLICATIONS 

Monte Carlo methods solve certain types of problems through the use of random numbers. 
Although in theory the methods ultimately converge to the exact results, in practice only modest 
accuracy is attainable. This is due to the extremely slow rates of convergence. Sometimes Monte 
Carlo methods are used to obtain good starting approximations for speedier refinement algorithms. 
Two types of applications are offered. 

1. Simulation refers to methods of providing arithmetical imitations of "real" phenomena. In a 
broad sense this describes the general idea of applied mathematics. A differential equation 
may, for example, simulate the flight of a missile. Here, however, the term simulation refers 
to the imitation of random processes by Monte Carlo methods. The classic example is the 
simulation of a neutron's motion into a reactor wall, its zigzag path being imitated by an 
arithmetical random walk. (See Problems 30.2 and 30.4.) 

2. Sampling refers to methods of deducing properties of a large set of elements by studying 
only a small, random subset. Thus the average value of f(x) over an interval may be 

450 
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estimated from its average over a finite, random subset of points in the interval. Since the 
average of f(x) is actually an integral, this amounts to a Monte Carlo method for 
approximate integration. As a second example, the location of the center of gravity of a set 
of N random points on the unit circle may be studied by using a few hundred or a few 
thousand such sets as a sample. (See Problem 30.5.) 

Solved Problems 

30.1. What are random numbers and how may they be produced? 

For a simple but informative first example begin with the number 01. Multiply by 13 to obtain 13. 
Again multiply by 13, but discard the hundred, to obtain 69. Now continue in this way, multiplying 
continually by 13 modulo 100, to produce the following sequence of two-digit numbers. 

01, 13, 69, 97, 61, 93, 09, 17, 21, 73, 49, 37, 81, 53, 89, 57, 41, 33, 29, 77 

After 77 the sequence begins again at 01. 
There is nothing random about the way these numbers have been generated, and yet they are 

typical of what are known as random numbers. If we plot them on a scale from 00 to 99 they show a 
rather uniform distribution, no obvious preference for any part of the scale. Taking them consecutively 
from 01 and back again, we find ten increases and ten decreases. Taking them in triples, we find double 
increases (such as 01, 13, 69) together with double decreases occurring about half the time, as 
probability theory suggests they should. The term random numbers is applied to sequences which pass a 
reasonable number of such probability tests of randomness. Our sequence is, of course, too short to 
stand up to tests of any sophistication. If we count triple increases (runs such as 01, 13, 69, 97) together 
with triple decreases, we find them more numerous than they should be. So we must not expect too 
much. As primitive as it is, the sequence is better than what we would get by using 5 as multiplier 
(01, 05, 25, 25, 25, ... which are in no sense random numbers). A small multiplier such as 3 leads to 
01, 03, 09, 27, 81, ... and this long upward run is hardly a good omen. It appears that a well-chosen 
large multiplier may be best. 

30.2. Use the random numbers of the preceding problem in a simulation of the movement of 
neutrons through the lead wall of an atomic reactor. 

For simplicity we assume that each neutron entering the wall travels a distance D before colliding 
with an atom of lead, that the neutron then rebounds in a random direction and travels distance D once 
again to its next collision, and so on. Also suppose the thickness of the wall is 3D, though this is far too 
flimsy for adequate shielding. Finally suppose that ten collisions are all a neutron can stand. What 
proportion of entering neutrons will be able to escape through this lead wall? If our random numbers 
are interpreted as directions (Fig. 30-1) then they may serve to predict the random directions of 
rebound. Starting with 01, for example, the path shown by the broken line in Fig. 30-2 would be 
followed. This neutron gets through, after four collisions. A second neutron follows the solid path in 
Fig. 30-2, and after ten collisions stops inside the wall. It is now plain that we do not have enough 
random numbers for a realistic effort, but see Problem 30.3. 

30.3. How may a more extensive supply of random numbers be produced? 

There are quite a few methods now available, but most of the best use the modular multiplication 
idea of Problem 30.1. For example, the recursion 

Xo= 1 

generates a sequence of length 5·10'-3 having quite satisfactory statistical behavior. It is suitable for 



452 MONTE CARLO METHODS [CHAP. 30 

85 15 

Ca 

65 35 

60 40 

Fig. 30-1 Fig. 30-2 

decimal machines. The recursion 

Xn+i = (8t- 3)xn(mod 2s) Xo = 1 

generates a permutation of the sequence 1, 5, 9, ... , 2s- 3, again with adequate statistical behavior. It 
is suitable for binary machines. The number t is arbitrary but should be chosen large to avoid long 
upward runs. In both these methods s represents the standard word length of the computer involved, 
perhaps s = 10 in a decimal machine and s = 32 in a binary machine. 

30.4. Continue Problem 30.2 using a good supply of random numbers. 

Using the first sequence of Problem 30.3 on a ten-digit machine (s = 10), the results given below 
were obtained. These results are typical of Monte Carlo methods, convergence toward a precision 
answer being very slow. It appears that about 28 percent of the neutrons will get through, so that a much 
thicker wall is definitely in order. 

Number of trials 5,000 10,000 15,000 20,000 

Percent penetration 28.6 28.2 28.3 28.4 

30.5. Suppose N points are selected at random on the rim of the unit circle. Where may we expect 
their center of gravity to fall? 

By symmetry the angular coordinate of the center of gravity should be uniformly distributed, that 
is, one angular position is as likely as another. The radial coordinate is more interesting and we 
approach it by a sampling technique. Each random number of the Problem 30.3 sequences may be 
preceded by a decimal (or binary) point and multiplied by 2n:. The result is a random angle 81 between 0 
and 2n:, which we use to specify one random point on the unit circle. Taking N such random points 
together, their center of gravity will be at 

1 N 

X=- 2: cos e, 
N1~1 

1 N 
Y=- L sin 81 

N1~1 

and the radial coordinate will be r = YX2 + Y2
. Dividing the range 0 ~ r ~ 1 into subintervals of length 

fz, we next discover into which subinterval this particular r value falls. A new sample of N random 
points is then taken and the process repeated. In this way we obtain a discrete approximation to the 
distribution of the radial coordinate. Results of over 6000 samples for the cases N = 2, 3, and 4 are given 
in Table 30.1. The columns headed Freq give the actual frequency with which the center of gravity 
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Table 30.1 

n=2 n=3 n=4 

Freq Cum Exact Freq Cum Freq Cum 

1 121 .0197 .0199 7 .001 36 .005 
2 133 .0413 .0398 37 .007 87 .018 

3 126 .0618 .0598 58 .017 128 .038 
4 124 .0820 .0798 67 .028 169 .063 

5 129 .1030 .0999 95 .043 209 .094 

6 111 .1211 .1201 113 .061 192 .123 

7 123 .1411 .1404 141 .084 266 .163 

8 115 .1598 .1609 172 .112 289 .207 

9 129 .1808 .1816 224 .149 238 .242 

10 142 .2039 .2023 336 .203 316 .290 
11 123 .2240 .2234 466 .279 335 .340 

12 138 .2464 .2447 344 .335 360 .394 

13 126 .2669 .2663 291 .383 357 .448 

14 157 .2925 .2883 285 .429 365 .503 
15 126 .3130 .3106 269 .473 365 .558 
16 125 .3333 .3333 255 .514 405 .618 

17 150 .3577 .3565 223 .551 353 .672 
18 158 .3835 .3803 189 .581 255 .710 
19 135 .4054 .4047 208 .615 275 .751 
20 148 .4295 .4298 185 .645 262 .790 
21 157 .4551 .4558 215 .680 182 .818 
22 158 .4808 .4826 197 .712 159 .842 
23 173 .5090 .5106 183 .742 163 .866 
24 190 .5399 .5399 201 .775 168 .892 

25 191 .5710 .5708 188 .805 167 .917 
26 211 .6053 .6038 183 .835 131 .936 
27 197 .6374 .6393 163 .862 102 .952 
28 247 .6776 .6783 176 .890 87 .965 
29 262 .7202 .7221 170 .918 87 .978 
30 308 .7703 .7737 162 .944 76 .989 
31 424 .8394 .8407 163 .971 45 .996 
32 987 1.0000 1.0000 178 1.000 27 1.000 

appeared in each subinterval, from the center outward. Columns headed Cum give the cumulative 
proportions. For the case N = 2 this cumulative result also happens to be exactly (2/.n) arcsin (r/2) 
which serves as an accuracy check. Note that we seem to have about three-place accuracy. 

30.6. Solve the boundary value problem 

Txx + Tyy = 0 T(O, y) = T(1, y) = T(x, 1) = 0 T(x, 0) = 1 

by a sampling method which uses random walks. 
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This is an example of a problem, with no obvious statistical flavor, which can be converted to a 
form suitable for Monte Carlo methods. The familiar finite difference approximations lead to a discrete 
set of points (say the nine in Fig. 30-3), and at each of these points an equation such as 

makes each T value the average of its four neighbors. This same set of nine equations was encountered 
in Problem 26.29, each unknown standing for the probability that a lost dog will eventually emerge on 
the south side of our diagram, reinterpreted as a maze of corridors! Though a sampling approach is 
hardly the most economical here, it is interesting to see what it manages. Starting a fictitious dog at 
position 1, for example, we generate a random number. Depending on which of the four subintervals 
(0, n, ct !), (!, ~), or ct 1) this random number occupies, our dog moves north, east, south, or west to 
the next intersection. We check to see if this brings him outside the maze. If it does not, another random 
number is generated and a second move follows. When the dog finally emerges somewhere, we record 
whether it was at the south side or not. Then we start a new fictitious dog at position 1 and repeat the 
action. The result of 10,000 such computer samples was 695 successful appearances at a south exit. This 
makes the probability of success .0695 and should be compared with the result .071 found by the 
Gauss-Seidel iteration. The latter is more accurate, but the possibility of solving differential boundary 
value problems by sampling methods may be useful in more complicated circumstances. 

1 2 3 

4 5 6 

7 8 9 

Fig. 30-3 

30.7. Illustrate approximate integration by Monte Carlo methods. 

Perhaps the simplest procedure is the approximation of the integral by an average, 

t 1 N 

J. f(x) dx =N~f(x;) 

where the X; are selected at random in (a, b). For example, if we use just the first five random numbers 
of Problem 30.1, all preceded by a decimal point, then we have 

L
l 1 

0 
X dx = S (2.41) = .48 

where the correct result is !, and we also find f~ x 2 dx =. 36 where the correct result is ~. For the same 
integrals, with N = 100 and using the longer sequences of Problem 30.3, the results .523 and .316 are 
obtained, the errors being about 5 percent. This is not great accuracy, but in the case of integration in 
several dimensions the same accuracy holds and Monte Carlo methods compete well with other 
integration algorithms. 

Supplementary Problems 

30.8. Generate a sequence of 20 random numbers using Xn+t = rxn(mod 100), selecting your own multiplier r. 
Use these numbers to simulate three or four neutron paths as in Problem 30.2. 
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30.9. Using a sequence of the sort in Problem 30.3, simulate 1000 neutron paths as in Problem 30.4. Repeat 
for lead walls of thickness 5D, 10D, and 20D. How does the shielding efficiency seem to grow? 

30.10. Simulate 1000 random walks in a plane, each walk being 25 steps long, steps having equal lengths. Let 
each walk start at (0, 0) and each step be in a random direction. Compute the average distance from 
(0, 0) after 4, 9, 16, and 25 steps. 

30.11. Approximate this integral using random numbers: J~ sin x dx. 

30.U. Approximate this integral using random numbers: 

1
11111111111 

dA dBdCdDdEdF 
o o o o o o 1+A+B+C+D+E+F 

30.13. Golfers A and B have the following records: 

Score 80 81 82 83 84 85 86 87 88 89 

A 5 5 60 20 10 

B 5 5 10 40 20 10 10 

The numbers in the A and B rows indicate how many times each man has shot the given score. 
Assuming they continue this quality of play and that A allows B four strokes per round (meaning that B 
can subtract four strokes from his scores), simulate 1000 matches between these men. How often does A 
defeat B? How often do they tie? 

30.14. A, B, and C each has an ordinary pack of cards. They shuffle the packs and each exposes one card, at 
random. The three cards showing may include 1, 2, or 3 different suits. The winner is decided as follows: 

Number of suits showing 1 2 3 

Winner is A B c 

The exposed cards are replaced and this completes one play. If many such plays are made, how often 
should each man win? The answer can be found by elementary probability, but simulate the actual play 
by generating three random numbers at a time, determining suits according to this scheme: 

x falls inside interval (0, ~) o.n G.n (t 1) 

Suit is s H D c 

30.15. A baseball batter with average .300 comes to bat four times in a game. What are his chances of getting 
0, 1, 2, 3, and 4 hits, respectively? The answer can be found by elementary probability, but proceed by 
simulation. 

30.16. In the "first man back to zero" game two players take turns moving the same marker back and forth 
across the board. 

l1o /9/8/7 / 6/5/4/3/2/1 / o /1 / 2 J 3/ 4/ 5/ 6/7/8/9/10 I 
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The marker is started at 0. Player A starts and always moves to the right and B to the left, the number 
of squares moved being determined by the throw of one die. The first man to stop on zero exactly is the 
winner. If the marker goes off either end of the board the game is a tie, the marker is returned to 0 and 
a new game is started by player A. What are the chances of A winning? The answer is not so easy to find 
by probability theory. Proceed by simulation. 

30.17. The integers 1 to N are arranged in a random order. What are the chances that no integer is in its 
natural place? This is the famous "probleme des rencontres" and is solved by probability theory. But 
choose some value of N and proceed by simulation. 

30.18. Generate three random numbers. Arrange them in increasing order x1 < x2 < x 3 • Repeat many times and 
compute the average x1 , average x2 , and average x 3 • 

30.19. Suppose that random numbers y with nonuniform distribution are required, the density to be f(y ). Such 
numbers can be generated from a uniform distribution of random numbers x by equating the cumulative 
distributions, that is, 

f 1· dx =I: f(y) dy 

For the special case f(y) = e-y, show how y may be computed from x. 

30.20. For the normal distribution f(y) = e-y
2/V2Ji the procedure of the preceding problem is troublesome. A 

popular alternative is to generate 12 random numbers x, from a uniform distribution over (0, 1), to sum 
these and, since a mean value of zero is often preferred for the normal distribution, to subtract 6. This 
process depends upon the fact that the sum of several uniformly distributed random numbers is close to 
normally distributed. Use it to generate 100 or 1000 numbers 

Then check the distribution of the y numbers generated. What fraction of them are in the intervals 
(0, 1), (1, 2), (2, 3), and (3, 4)? The corresponding negative intervals should have similar shares. 



Answers to Supplementary Problems 

CHAPTER 1 

1.39. 1 + .018, only two terms being needed. 

1.40. -.009 

1.41. N = 100, N = 10,000 

1.42. .114904, .019565, .002486, .000323, .000744, .008605 

1.43. . 008605 

1.44. Computed 18 = .119726. 
1.48. .1494 approx. 

1.49. Above .!j there is overflow; below t underflow. 

1.56. Pi in binary, approx. 

1.57. L 1 for taxicabs, Loo for the king. 

CHAPTER 2 

2.11. (x -1)(x 2 + 1) 

2.12. 3, -3, 3, -3, 3 

2.13. p (x) = 2x - x 2 

2.15. Est. max. error= .242; actual error= .043. 

2.16. y' = 1.11, p' = 1 

2.17. y" = -1.75, p" = -2 

2.18. 4/n, 1 
2.19. y = x + 7x(x -1) + 6x(x -1)(x- 2) 

2.20. n(x) = x(x -1)(x- 2)(x- 3) 

2.21. 

CHAPTER 3 

3.13. Fourth differences are all 24. 

3.14. 

3.15. 

3.16. Fifth differences are 5, 0, -5. 

3.17. Change y2 to 0. 

3.22. 1, 3, 7, 14, 25, 41 

3.23. Llyk = 0, 1, 5, 18, 36, 60; Yk = 0, 0, 1, 6, 24, 60, 120 

3.24. Ll 2yk = 24, 30, 36; Llyk = 60, 90, 126; yk = 120, 210, 336 

3.25. Change 113 to 131. 

3.26. Ll2Yt = Y3- 2yz + Yt; Ll2Yz = Y4- 2y3 + Yz 

3.27. 3k 

3.28. 4k, ( -2t 
3.29. ~w- ( -2tJ 
3.30. Apply the identity for the sine of a difference. 

3.31. Apply the identity for the cosine of a difference. 

457 
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CHAPTER 4 

4.23. 120, 720, 0, - ~. ~' - ~ 
4.24. 1 1 1 3 9 27 

-;, 56, 504, 4, zs, 280 

4.25. 20,1,0, -tit, -f.& 
4.26. Fourth differences are all 24. 
4.27. 4k(3>, 12k(2), 24k, 24 

4.28. 5k(4 >, 20k(3)' 60k(2), 120k, 120 

4.29. 2k3 - 7 k 2 + 9k - 7 

4.30. k 6
- 15k5 + sse- 224e + 211e- nsk + 1 

4.31. ~k(4 ) + 4k(3) + 2k(2) - 2k(1) + 1 

4.32. 3k(S)- 25k(3) + 75k(2) + 53k(1) 

4.33. llyk =53 + 135k + goe- goe + 1se 

CHAPTER 5 
5.9. ![(n + 1)<2>- 1<2>] 

5.10. n\n + 1f/4 
5.11. Use the fact that A;= !l[A;/(A -1)]. 
5.12. Use the fact that(£)= i<k>jk! = !l[i<k+ 1>J(k + 1)!]. 
5.13. 
5.14. 

5.15. (R 3 + 4R 2 + R)/(1- Rt 
5.16. 26 

5.17. -! 
5.18. log (n + 1) 

5.19. t {st>[(N + 1)u+1>]J(j + 1)} 
j~1 

5.20. ~ (1 + ~ + ~ + ... + ~) 
n 2 3 n 

4.34. ll2yk = 1so- 3ok- 1soe + 6oe 

4.35. 31, 129, 351 

4.36. 10, 45, 126 

4.37. 2 

4.38. 4 

4.39. k(3)/3 

4.40. k(4)/4 

4.41. !k(3) + ~k(2) 

4.42. !k(2) + k(3) + ~k(4) 

4.43. - 1/(k + 1) 

5.21. Denote the sum by Sn(R). Then Sn+ 1(R) = RS~(R) which may be used to compute each sum in its turn. 

522 Y =1+~+~+···+-1-•• k 2 3 k-1 

5.23. Yk = log 2 + log 3 + · · · + log ( k - 1) 

CHAPTER 6 
6.8. [(x- 2)(x - 4)/64][8- 4(x- 6) + (x - 6)(x- 8)] 
6.9. 1 +x +h(x -1) 

6.10. 6 + 18(x - 3) + 9(x - 3)(x - 4) + (x - 3)(x - 4)(x- 5) 
6.11. Degree four suffices, x(x- 1)[!- !(x- 2) + rz(x- 2)(x- 3)]. 
6.12. 1 +x + h(x -1) + h(x -1)(x- 2) 
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6.14. 7x 2 
- 6x 

6.15. h 3
- 2x2 + h; collocation at x = 4, but not at x = 5. 

6.16. No, degree three. 

6.17. No, degree one. 

6.18. (7x2
- x 4)/6; greater in ( -2, -1) and (1, 2). 

6.19. (7x- x 2 )/6; arguments are not equally spaced. 

6.20. Yk = ik(k -1)/(k- 2) 

CHAPTER 7 

7.33. 1 + 2k + 2k(k + 1) + 1k(k + 1)(k + 2) + ~k(k + 1)(k + 2)(k + 3) 

7.34. 120 + 60k + 12k(k + 1) + k(k + 1)(k + 2) 

7.36. 2x - 3x 2 + x 3 

7.37. 1- k- k(k- 1) + !(k + 1)k(k -1) + !(k + 1)k(k -1)(k- 2) 

7.38. 1 + k- (k + 1)k- !(k + 1)k(k -1) + 1(k + 2)(k + 1)k(k -1) 

7.39. 24 + 36k + 9k(k- 1) + (k + 1)k(k- 1) 

7.40. 1- !k(k -1) + -b(k + 1)k(k -1)(k- 2) 

7.42. 1-e + Hk + 1)e(k - 1) 

7.43. With k = 0 at x = 1, y = 2 + ~k + !e. 
7.44. 60k- 24(k -1) + 4(k + 1)k(k -1)- 3k(k -1)(k- 2) 

7.45. 1- Wk + 1)k(k -1)- k(k -1)(k- 2)1 + ~[ce- 4)(e -1)k- ce- 1)k(k- 2)(k- 3)1 

7.46. 4k- 2(k -1) +we -1)k- k(k -1)(k- 2)1 

7.47. 42 + 36(k- !) + "fk(k -1) + (k- !}k(k -1) 

7.48. 1- !k(k -1) + -b(k + 1)k(k -1)(k- 2) 

CHAPTER 8 
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(x -1)(x- 4)(x- 6) x(x- 4)(x- 6) x(x- 1)(x- 6) x(x -1)(x- 4). ( _ _ ( _ ( ) _ 
8.15. -24 15 + -24 60 ,y2)- 1,y3)-0,y5 -1 

8.16. 4x(x- 2)(x3- 4)(x- 5) + 4x(x -1)(x- 4)(x- 5) -11 x(x -1)(x; 2)(x- 5); y(3) = 84 

8.18. ao = t a1 = -15, az = ¥ 
2 4 41 73 

8.19. ~+~-~+~ 
x+1 x-1 x-4 x-6 

8.22. 

8.23. First order, -2, ~, -1; second order, L -!;third order,-!. 

8.24. 1- 2x + ~x(x -1)- !x(x -1)(x- 4) 

8.25. First order,~, 0, -!;second order, - l, t third order, -!. 

8.26. -1 

8.27. 16x + 8x(x -1)- 3x(x -1)(x- 2)- x(x -1)(x- 2)(x- 4); y(3) = 84 

CHAPTER 9 

9.22. C0 =C4 =0, C1 =C3=.!f, Cz= -~ 

9.23. S2 (x) = (2 -x)3 /6 -7(x -1)3/12- (2 -x)/6 + 19(x -1)/12; 

S3(x) = -7(3- x?/12 + (x- 2)3/6 + 19(3- x)/12- (x- 2)/6 
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9.24. The d; are all zero. 

9.25. The d; are six times the second divided difference of y, which is a constant. All equations except the end 

conditions reduce to 3C = d;. 

CHAPTER 10 
10.8. 2x2

- x 3 

10.9. x4
- 4x3 + 4x 2 

10.10. 3x 5
- 8x4 + 6x3 

10.11. P1(x) = h 2
, Pz(x) = 2- H4- x? 

CHAPTER 11 

10.12. P1(x) = x\4- x)/16, pz(x) = 2- (4- x?x/16 

10.15. x4
- 2x 2 + 1 

10.16. 2x 4 
- X + 1 

10.17. x 3
- x2 + 1 

11.20. sinx =x -x3 /3! +x 5/5! -x7/7! +···to odd degree n; 

cosx = 1-x2/2! +x4/4! -x6/6! +···to even degree n. 

11.21. ±sin;. xn+
1 /(n + 1)! for both functions. 

11.22. n = 7 

11.23. n = 8, n = 12 

11.24. I: D; /i! 
i=1 

CHAPTER 12 

12.31. 1.0060, 1.0085, no 12.48. About h = .15 for x > 1. 

12.32. 1.0291 12.49. 

12.33. 1.01489 12.51. 15.150 

12.34. 1.12250 12.52. .841552021 

12.35. 1.05830 12.54. 1.16190, 1.18327, 1.20419, 

12.36. . 12451559 the last being 3 units off . 

12.37. . 1295 12.55 . 1.20419, 1.22390, 

12.38. 1.4975 both being somewhat in error. 

12.39. 1.4975 12.56. Error= x 4 -7x2 + 6x; 

12.40. . 1714, .1295, .0941 ; = 0 explains the zero error . 

12.41. . 02 12.57 . Fortunate value of ;. 

12.42. . 006 12.58 . 0 

12.43. .25, .12 12.59. 24 

12.45. About 1 12.60. 0 and 1 

CHAPTER 13 
, 1 2 6e - 6k + 1 3 4e - 6e - 2k + 2 4 5e - we + 5k - 1 s 

13.22. hp = OY112 + (k - z)/1-0 Y112 + 
12 

0 Yv2 + 
24 

/1-0 Y112 + 
120 

0 Y112 

2 (2) _ 2 c 1 3 12e - 12k - 2 4 4e - 6e + 1 5 h p - /1-0 Yv2 + k- z)O Yv2 + 
24 

/1-0 Yv2 + 
24 

0 Yv2 

h\p)(3
J = 03

Y112 + (k- !)!-l0 4
Yv2 + !(e- k)fl 5

y112 

h4p(4
J = /-l0 4Y112 + (k- !)05Yv2 h 5p(sJ = 05Yv2 

13.23. .4714, -.208, .32 

13.24. Predicted error approx. 10-9
; actual error .000038. 

13.25. Max. r.o. error is about 2.5£/h; for Table 13.1 this becomes .00025. 



ANSWERS TO SUPPLEMENTARY PROBLEMS 

13.28. Exact result is x = :n:/2, y = 1. 
13.29. 1.57 

13.31. h 5 = 3E/8A; h = .11 

CHAPTER 14 

14.41. h = V3/100 

14.42. A 2 = .69564, A 1 = .69377, (4A 1 - A 2)/3 = .69315 

14.43. .69315 

14.44. .6931, no corrections needed. 

14.45. h = .14 

14.46. V3/104 trapezoidal, .014 Simpson. 

14.52. Exact value is :n:/4 = .7853982. 

14.53. Correct value is 1.4675. 

14.58. .36422193 

14.60. 9.68848 

14.62. a_ 1 = a 1 =is, Go=~' bo = 0, b_ 1 = - b 1 = Ts 
14.67. . 807511 

CHAPTER 15 

15.56. 1.0000081 

15.57. 1.5 

15.61. L0 =1, L 1 =1-x, L 2 =2-4x+x2
, L 3 =6-18x+9x2 -x3

, 

L 4 = 24- 96x + 72x 2
- 16x3 + x 4

, L 5 = 120- 600x + 600x 2
- 200x 3 + 25x 4

- x 5 

15.68. Exact value is .5. 

15.69. Correct value to five places is .59634. 

15.71. Ho = 1, H1 = 2x, Hz= 4x 2
- 2, H3 = 8x 3

- 12x, H4 = 16x4
- 48x 2 + 12, H5 = 32x5 -160x 3 + 120x 

15.73. (Vn/6)(y(- \-1) + y(\-1) + 4y(O)]; 3Vn/4 

15. 77. 2.128 

15.78. .587 

15.80 2.404 

15.81. 3.82 

CHAPTER 16 

16.13. .5 and - .23, compared with the exact values .5 and - .25 

16.15. 1.935 

16.18. -. 797 

CHAPTER 17 

17.50. n(n -1)(n- 2)/3 17.62. At most eight. 

17.51. (n + 1)2n2 (2n 2 + 2n- 1)/12 17.63. About x = .7. 

3 2n +3 x 2
n+l (2n + 2? 

17.52. 4 2(n + 1)(n + 2) 
17.64. (2n + 1)!. (2n + 2)z- xz; about x = 10. 

11 1( 1 1 1 ) 17.65. .798 
17.55. 18-3 ;+I+ n+2+ n+3 17.66 . .687 
17.57. . 6049 17.67. .577 
17.61. About x = .7. 17.68. 1.1285 
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17.73. Q; =X; 

17.78. After four terms; this method yields C = .5769. 

17.86. After seven terms. 

CHAPTER 18 

18.31. Yk = [A+ (1 ~ r) 2 ]rk + 1 : r- (1 ~ r)2 , except when r = 1. 

18.32. 1, 3, 1, 3, et£.; 2- ( -1)k; (y0 - 2)(- 1)k + 2 

18.35. Let yk = (k -1)! A(k) to obtain yk = (k -1)! (2k- 1) fork> 0. 

18.36. ¥I-

18.37. (((( 
x

2 

) x
2 

) xz ) xz ) --1 -+1 --1 -+1 X 
9·8 7·6 5·4 3·2 

18.40. 1/(k -1)! 

18.41. 1JIC3l(O) = 3! :rc4/90, 1JIC3l(n) = 3! [~- ± ~] 
90 k~l k 

18.42. 

18.43. :rc
2/l2- * 

18.44. 1f'CD=.0365, 1f'CD=.7032, 1JIC-D=L9635 

18.45. It takes arbitrarily large negative values. 

18.46. ~1JI(O)- ~1JICY1) -11JI(- y'f) 
18.47. ~1f'(O)- ~1JI(v1)- ~1JI(- v1) 
18.50. 5( -1)k- 3(- 2)k 

18.52. A+ B( -l)k 

18.53. A4k + B3k +(a cos k + b sin k)/(a 2 + b 2
), 

where a =cos 2 -7 cos 1 + 12, b =sin 2 -7 sin 1 

A= (3a -a cos 1- b sin 1)/(a2 + b 2
) 

B= ( -4a +a cos 1 + b sin 1)/(a2 +b 2
) 

18.54. [- 4( -Dk + 2k( -Dk + 3k2
- 8k + 4]127 

18.56. H2k - mk1 
18.57. we -cos kf}- ~sin k8) + 2k]/41, cos f} = -t sin f} = ~ 
18.59. a <0 
18.60. l(3k)- -he -1)k- ~k2 - f6 
18.61. Oscillatory, linear, exponential. 

18.65. HI- c -1)k1 

CHAPTER 19 

19.76. Exact value is 1. 

19.77. 1.4060059 

19.78. Exact solution is x 3y 4 + 2y = 3x. 

19.79. Exact solution is x2y + xeY = 1. 

19.80. Exact solution is log (x 2 + y 2
) =arctan y /x. 

19.81. 4 days, 18 hours, 10 minutes 

19.82. 4 

19.83. Exact value is l arctan~. 

19.84. Exact solution is x = - v'1- y 2 +log (1 + v'1- y 2 )/y. 



ANSWERS TO SUPPLEMENTARY PROBLEMS 

CHAPTER 20 

20.16. See Problem 19.87. 
20.19. ao = a 1 = 1, k 2

ak- (2k- 1)ak-I + ak-z = 0 for k > 1 
20.20. Fourth-degree Taylor approximation to e-Zih is 6.2374 compared with the correct .014996. 

CHAPTER 21 

21.57. y = .07h + 4.07 

21.58. 4.49, 4.63, 4.77, 4.91, 5.05, 5.19, 5.33, 5.47, 5.61, 5.75 

21.59. .07. 

21.60. No. 

21.62. Very little. 

21.63. They alternate. 

21.65. A= 84.8, M = -.456 

21.67. Five-point formula does better here. 

21.69. Results are almost the same as from five-point formula. 

21.85. p(x) =! 
21.86. p(x) = 3x/5 

21.87. p(x) = 3x/5 

21.88. p(x) = .37 + .01x- .225(3x2 -1)/2 

21.90. p(x) = ~ 
21.91. p(x) = 3x/4 

21.92. Drop two terms and have 1.2660'fo -1.13037; + .27157;- .04447; + .00554- .00057;;. 
21.102. (81 +72x)/64; over (-1, 1) this is only slightly worse than the quadratic. 
21.106. 3x/4 

2 4 
21.107. Min. integral parabola is p = ~ + 

3
.7r (2x2 -1). 

21.109 . . 001, .125, .217, .288, .346, .385, .416, .438, .451, .459, .466 
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21.110. -.8, 19.4, 74.4, 143.9, 196.6, 203.9, 108.2, 143.4, 126.7, 118.4, 112.3, 97.3, 87.0, 73.3, 56.5, 41.8, 33.4, 
26.5, 15.3, 6.6, 1.2 

21.111. 5.045- 4.043x + 1.009x2 

CHAPTER 22 

22.34. P = 4.44e 45
x 

22 37 p = 5 
- 30 + ~ (0- !)x + _2_ · 1 

- 0 x 2 

. . 16 .7r 2 Jr2 2 

22.38. p = (1 - 18x + 48x2)/32; h = iz 
22.41. (10'fo + 157; + 64)/32; iz 
22.42. To+ I; + 7;; 1 

22.43. m~ ro- {ff16 rz + 3~~0 4; 1/23,o4o 
22.44. p = 2x/n -1.10525 

22.45. Method fails, x2 becoming the point of discontinuity. 

22.46. p = - 2x/n + 1.105 

22.50. 1.6476 + .4252x + .0529x2
; .0087 

22.51. Degree four. 

22.52. Not more than .000005. 

22.53. Degree four. 

22.54. Degree two. 
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CHAPTER 23 

23.18. 3/x; no, the method produces 4- x. 

23.19. 90/(90 + 97x -7x2
); no, the method produces (20 + 7x )/(20 + 34x ). 

23.20. (x 2 -1)/(x 2 + 1) 

23.21. x2 /(1 +x) 

23.22. (x + 1)/(x + 2) 

23.24. 1/(2- x 2
) 

23.25. -! 
23.28. 4(1-x +x2)/(1 +x) 

23.29. 12(x+1)/(4-x2
) 

23.30. (x 2 + x + 2)/(x2 + x + 1) 

23.31. 1/(sin 1°30') = 38.201547 

23.32. (1680- 2478x + 897x2
- 99x 3)/(140 + 24x -17x2

) 

23.33. (24 + 18x + 6x 2 + x3
)/ (24- 6x) 

23.34. (24 + 6x )/(24- 18x + 6x 2
- x3

) 

CHAPTER 24 

24.40. a0 = 1.6, a1 = - .8472, a2 = .0472, b1 = .6155, b2 = - .1454 

24.42. a0 = 2, at= - 1, a2 = a3 = 0, b 1 = '13/3, b2 = 0 

24.43. .8; .8-.8472 cos (2nx/5) + .6155 sin (2nx/5) 

24.45. To(x) = 1; I;.(x) = 1- cos (nx/3) + (\f3/3) sin (nx/3) = y(x) 

24.46. [(v'2 + 2)/2] sin (nx/4) + [(v'2- 2)/2] sin (3nx/4) 

24.47. 1- cos (nx/2) 

24.49. n 2/12 and n 2 /6 
24.50. n 2 /8 
24.52. n 3 /32 

24.56. 1 - a/, 0, 1 - w 

24.57. vr = (3, -2, 0, -1, 0, -2) 

24.58. VT = (5, 1, 5, 1, -3, 1, -3, 1) 

CHAPTER 25 

25.51. About 1.839. 

25.52. Two; three; .567143 

25.53. 1.83929 

25.54. 1.732051 

25.55. 1.245731 

25.60. 1.618034 

25.69. X= .772, y = .420 

25.72. 3 and -2. 

25.74. x 2 + 1. 9413x + 1. 9538 

25.75. 4.3275 

25.76. 1.123106 and 1.121320 

25.77. 1.79632 

25.78. .44880 

25.79. 1.895494267 

25.80. -.9706 ± 1.0058i 

25.81. X= 7.4977, y = 2.7687 

25.82. X= 1.8836, y = 2.7159 

25.83. .94775 

25.84. X= 2.55245 

25.85. 1.4458 

25.86. X= 1.086, y = 1.944 

25.87. 1. 85558452522 

25.88. .58853274 

25.89. (x 2 + 2.90295x- 4.91774)(x2 + 2.09705x + 1.83011) 

25.90. 1.497300 

25.91. 7.87298, -1.5, .12702 

25.92. 1.403602 

25.93. 1.7684 and 2.2410 
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CHAPTER 26 

26.86. Exact solution is .8, .6, .4, .2. 

26.88. Exact solution is given in Problem 26.55. 

26.91. Exact solution is 5, -10, 10, -5, 1. 

r-~: 
-10 

30 
26.92. Exact inverse is 10 -35 

-5 19 
1 -4 

[25 
-41 

26.96. Exact inverse is 
-41 68 

10 -17 
-6 10 

26.101. 2160}.3
- 3312A2 + 38U -1 = 0 

26.109. (0, - i, i) 

26.11~ [-: =: n 

10 
-35 

46 
-27 

6 

10 
-17 

5 
-3 

26.119. 2.18518, -.56031, 2.00532, -.36819 

26.120. 1.62772, 3, 7.37228 

-5 

-:] 19 
-27 

17 -4 
-4 1 

-6] 10 
-3 

2 
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26.121. 8.3874, C(.8077, .7720, 1); 4.4867, C(.2170, 1, -.9473); 2.1260, C(1, -.5673, -.3698); C being any 
constant. 

26.122. [-1~ -~~ -~~ ~~ 
10 -35 46 -27 
-5 19 -27 17 

1 -4 6 -4 

-:] 
-4 

1 

26.123. 
15 [ 15 -70 63] 
64 -70 588 -630 

63 -630 735 

1 [ 6 - 8i -2 + 4i] 26
"
124

" 6 -3 + 10i 1- 5i 

26.125. 98.522 

26.126. 12.054; [1, .5522i, .0995(3 + 2i)] 

26.127. 19.29, -7.08 

26.129. .625, 1.261, 1.977, 4.136 

26.130. .227 =smallest A 

26.131. No 

CHAPTER 27 

27.18. (0, 0), (0, 1), a, n, (2, 1), (3, 0); min. of-~ at (t ~);max. of 3 at (3, 0). 

27.19. See Problem 27.18. 

27.20.- 4yt- Y2- 3y3 =max.; Yt' J2, YJ nonnegative; -yt + Y2- y3;§; 1, -2yt- Y2- y3;§; -2. 

27.2L See Problem 27 .18. 
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27.22. 4yl + Yz + 3y3 =min.; Y1• Yz, y3 nonnegative; YJ- Yz + y3 ~ 1, 2yl + Y2 + Y3 ~- 2; 
solution at (0, 0, 1). 

27.23. See Problems 27.18 and 27.20. 

27.24. X 1 = t X 2 = ~ 

27.25. Extreme solution points are (0, 1) and (t ~). 
27.27. Payoff is 2.5; R(!, D. C(t ~). 

27.30. ~ + Hx + ¥x 2 + f:zx 3
; 1.3125; -2, -1, 0, 1, 2 

27.31. 1.04508- 2.47210x + 1.52784x2
; .04508; 0, .08, .31, . 73, 1 

27.32. Same result; five positions of maximum error. 

27.33. Max.= 4.4 for x = (4.4, 0, 0, .6). 

27.34. Min. (5y1 + 2y2) = 4.4. 

A 0 3 6 9 12 
27.35. 

Max. 0 2 2 10 10 

27.36. t ~ 
27.37. RG, ~). C(~. ~) 

CHAPTER 28 

28.11. x 1 = 3.90, x2 = 5.25, error= .814 

28,12, p = .814, IPimax = 1.15 

28.16. x 1 = -.3278=x2 , error=.3004 

28.17. X1 =- ~ =xz 

28.18. 3.472, 2.010; 1.582; .426 

CHAPTER 29 

29.46. Co= fs, C1 = t 
29.52. .2, .5 

28.19. The average (I: a,)/N. 

28.20. X= (A+ c + D)/3, y = (B- c + D)/3 

28.21. x, =A,+ Hn- A 1 - A 2 - A3) 

28.22. Li = A 2
- D, L~ = B2

- D, H 2 = C2 + D 

where D = ~(A2 + B 2
- C2

) 

29.53. T(x, y, z) = i[T(x + h, y, z) + T(x- h, y, z) + T(x, y + h, z) +etc.] 

29.54. y = (x- It 
29.55. A near-singularity at x = 0. 

29.56. y = (1- e-=)/(1- e-n) 

29.57. A near-singularity at x = 0. 

l
x!Vt 

29.58. Exact solution is 1- V2/ii: 
0 

[cos (u 2
) +sin (u 2

)] du. 

CHAPTER 30 

30.10. Theoretical values are 2, 3, 4, and 5 step lengths. 

30.11. Exact value is 2. 

30.14. Theoretical values are if,, 1\;, f,. 
30.15. Theoretical values are .2401, .4116, .2646, .0756, .0081. 

30.17. For N~XJ the theoretical value is 1/e. 

30.18. Theoretical values are L t ~. 

30.19. y = - log (1 - x) or equally well y = - log x. 

30.20. Theoretical values are .3413, .1359, .0215, .0013. 
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Acceleration of convergence, 115, 126, 163, 
167-169, 326, 350, 374-377 

Adams method, 198, 212, 213, 220-223, 228 
Adaptive methods: 

for differential equations, 224-225, 238 
for integration, 119, 128, 129 

Aitken's D2 process, 332, 333, 350 
Algorithm, 1 
Analytic function, 90 
Approximation: 

collocation, 17-21, 43-47, 62-65, 120 
continued fractions, 292-299 
least-squares, 241-274, 420-422, 305-316 
min-max, 275-291, 299, 300 
osculating, 80-85, 138-140 
polynomial, 17, 64-70 
rational, 292-304 
Taylor, 86-93 
trigonometric, 305-325 

Asymptotic series, 158, 164, 178-180 

Back substitution, 354 
Backward error analysis, 11, 12, 362, 369-

370, 401-402 
Bairstow's method, 329, 343, 349, 350 
Bernoulli numbers, 87, 91, 92, 163, 172, 181 
Bernoulli polynomials, 163, 170-173 
Bernoulli's method, 327 
Bernstein polynomials, 50, 54, 275, 283 
Bessel functions, 272 
Bessel's formula, 51, 61, 70, 94, 99, 105, 106, 

117 
Bessel's inequality, 244, 262 
Binomial coefficients, 22, 23, 25, 30, 32, 33, 

37, 57 
Binomial series, 86, 91, 93, 167 
Binomial theorem, 52, 170, 282 
Blow-up, 219, 222 
Boundary value problems: 

for difference equations, 196 
for differential equations, 427-449 

Calculus of variations, 428, 432 
Canonical forms, 356, 387-395 
Cardano, 353 
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Cauchy inequality, 12 
Characteristic equation, 190, 193, 336 
Characteristic polynomial, 355, 381-383 
Chebyshev: 

formulas, 138, 154 
Gauss quadrature, 138, 154, 157 
inequality, 282 
line, 276-280 
polynomials, 138, 154, 191, 244, 245, 263-

269, 273-276, 287, 288 
series, 273, 287 

Christoffel identity, 143-144 
Coin-tossing problem, 41 
Collocation, 17-21, 43-47, 62-65, 293, 305, 

308 
Completeness, 244 
Composite formulas, 118 
Condition, 7, 367 
Continued fractions, 292, 294-299, 302 
Convergence: 

of collocation polynomials, 20 
in the mean, 307 
methods for differential equations, 198, 

200-208, 215-218 
of quadrature formulas, 120, 125, 152 
of root-finding algorithms, 326, 330-335, 

337-338, 340-342 
Cotes formulas, 121 

Data smoothing (see Smoothing) 
Deflation, 327 
Desert-crossing problem, 175 
Determinant, 62, 65, 294-296, 299, 381, 400 
Difference: 

backward, 50, 52 
central, 50, 54 
divided, 62-70 
equations, 184-196, 336, 337 
formulas, 22, 23, 28-32 
forward, 22-29 
of polynomials, 31, 36, 37 
table, 22-28, 63 

Differential equations, ordinary: 
boundary value problems, 427 
Euler method, 200, 201, 216 
initial value problems, 199-202, 225-226 
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Differential equations, ordinary (Cont.): 
method of isoclines, 197, 199 
predictor-corrector methods, 198, 208-218 
Runge-Kutta methods, 197, 201-208, 210, 

222-225, 232-235, 238 
stiff, 226-227, 236-237 
systems, 232-240 

Differential equations, partial, 434-438 
Differentiation, approximate: 

by difference methods, 108-114 
by Fourier methods, 307, 317-318 
with smoothing, 242-243, 252-254 
using splines, 114 

Diffusion equation, 434 
Digamma function, 184, 187-190, 195 
Divergent series (see Asymptotic series) 
Division algorithm, 17, 18 
Dual problems, 405, 413 
Duck-river problem, 239 

Economization, 244, 266, 273 
Eigenvalue problems: 

Cayley-Hamilton theorem, 383 
characteristic polynomial, 381 
Gerschgorin theorem, 383 
Givens method, 388, 400 
inverse iteration, 387 
inverse power method, 386 
Jacobi method, 387, 396, 400 
power method, 384, 400 
QR method, 393 
Rayleigh quotient, 384 

Elliptic integral, 133 
Equal-error property, 244, 264-265, 273-280 
Equations, roots of (see Roots) 
Equidistant data, 22 
Error, 1-2, 5 

algorithm, 94, 126 
of collocation polynomial, 17-21, 64 
detection of isolated, 27, 28 
input, 1, 94-97, 102, 112, 123, 246 
least-squares, 242, 251, 252, 258 
magnification, 102, 103, 108, 368 
monitoring, 199, 224 
and norms, 367-371 
of osculating polynomial, 82 
probable, 6, 14 
relative, 5, 7, 9-11, 15, 198-199, 215, 

219-222, 229, 367, 371 
roundoff, 1, 2, 6, 7, 10, 14, 26, 94, 103, 

112-114, 117, 120, 126, 198, 201, 212-
213, 221-225, 228-229 

INDEX 

Error (Cont.): 
of Taylor polynomials, 86-90 
truncation, 6, 20, 94, 100-101, 104, 106, 

111-115, 117-124, 127, 128, 132-136, 
139, 147, 152, 166, 178, 198, 208, 210, 
219-222, 436 

Error function, 130 
Euclidean algorithm, 327 
Euler method (see Differential equations) 
Euler transformation, 87, 91, 163, 167, 181, 

187 
Euler's constant, 174-175, 182, 184, 187 
Euler-Maclaurin formula, 87, 92, 129, 164, 

173-177, 181, 182 
Everett's formula, 51, 58, 61, 94, 97-99, 101, 

102, 105-106, 117 
Exchange method, 275, 278-281, 288, 289, 

292, 303, 378-379, 408 
Extrapolation to the limit, 115-116, 331 

Factorial polynomials, 30-38, 40 
Factor theorem, 17, 19, 338 
False position (see Regula falsi) 
Feasible point, 405-407 
Fibonacci matrix, 403 
Fibonacci. numbers, 185, 193, 339, 341, 383, 

395, 403 
Finite differences (see Differences) 
Finite elements, 428, 433-434, 440-446 
Finite integration, 39, 40, 42 
Floating-point, 2, 3, 8-12, 15 
Forward error analysis, 11, 362 
Forward substitution, 354, 362, 364 
Fourier analysis: 

coefficients, 306, 315, 318, 325 
complex forms, 307-308, 318-323, 325 
differentiation, 307, 317-318 
fast Fourier transforms, 308, 319-325 
series, 312-315 
smoothing, 307, 316-318, 324, 325 

Fundamental theorem of linear algebra, 364, 
368 

Game theory, 405, 414-417, 419 
Gamma function, 185, 190 
Garden hose method, 428, 431-432 
Gauss: 

elimination method (see Linear systems) 
formulas, 50, 51, 55-58, 60-61 
quadrature methods, 137-157, 159, 162 
Seidel iteration (see Linear systems) 



Gear's method, 226-227, 236-237 
Geometric sum, 41, 42 
Givens method, 388, 400 
Gradient methods, 329, 346-349 
Gregory's formula, 119, 129 

Hermite formula, 80-85, 117, 136, 138-139 
Hermite polynomials, 138, 152, 156 
Hermite-Gauss quadrature, 138, 152, 156 
Hermitian matrices, 396-397 
Hessenberg matrix, 390-395, 404 
Hilbert matrix, 254, 255, 366, 368, 389, 398, 

400 
Horner's method, 187, 195 

Ignoring the singularity, 158-159 
Ill-conditioning, 241, 247, 255, 355 
Indefinite summation, 87 
Infinite product, 17 5-17 6 
Information, 1 
Initial value problems: 

for difference equations, 186, 192, 194-195 
for differential equations, 199-202, 225-

226 
Inner product, 15 
Integration, approximate, 118-162 

by Gaussian methods, 136-157 
by Monte Carlo methods, 450-455 
of singular integrals, 158-162 

Interpolation, 94-107 
historical place, 94 
inverse, 99 

Inversion of matrices, 368, 376-380, 396 
Iterative methods, 326, 371-375 
Iterative refinement, 371 

Jacobi's method, 387, 396, 400 

Knot, 71 

Lagrange multipliers, 62, 64, 80-82, 136, 
139-140 

Lagrange's formula, 62, 64-65, 68-69, 94, 
98-99, 102-106, 117 

Laguerre polynomials, 138, 156 
Laguerre-Gauss quadrature, 138, 150-152, 

156 
Lanczos error estimate, 137, 149 

INDEX 

Laplace equation, 437 
Least-squares: 
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polynomial approximation, 241, 274 
solution of overdetermined systems, 420-

422 
trigonometric approximation, 305, 307, 310, 

315-316 
Legendre polynomials, 141-145, 154-155, 

195, 196, 258, 259 
shifted, 243, 260-261 

Legendre-Gauss quadrature, 137-150 
Leibnitz series, 167 
Leonardo of Pisa, 330 
Linear programming, 405-419, 422-424 
Linear systems: 

Choleski method, 365, 377 
complex, 396-397 
Crout method, 365 
Doolittle method, 365 
eigenvalues (see Eigenvalue problems) 
errors and norms, 367-371 
factorizations, 354, 360-366 
Gauss-Jordan, 359 
Gauss-Seidel, 354, 371-374, 399, 438, 440 
Gaussian elimination, 354, 356-364, 376, 

380, 398, 422 
iterative methods, 354, 371-375 
relaxation methods, 375, 399 

Lipschitz condition, 207, 215, 216, 218 
Loss of significant digits, 4 

Mean value theorem, 86 
Midpoint formula, 84, 228-229 
Milne's method, 198, 210-212, 217-218, 224, 

228 
Min-max: 

polynomial approximation, 276-291 
rational approximation, 292, 299-300 
solution of overdetermined systems, 420-

425 
Modular multiplication, 450-454 
Monte Carlo methods, 450-456 

Nearly-singular (see Ill-conditioning) 
Newton: 

collocation formulas, 43-60, 67-68, 94-97, 
104, 108-111, 118, 120, 212, 226, 298 

Cotes, 121 
iteration, 227, 326-329, 332-335, 345, 349-

350, 431 
method, damped, 329 
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Node, 71 
Nonlinear equations, roots of, 326-353 
Norm, 3, 4, 12-16 
Normal equations, 241, 247-248, 255, 259, 

421-422 
Normalized, 8, 358 
Nuclear reactor problem, 451-452 

Operators, 48-61, 86-87, 89-93 
Optimization, 328, 329, 432-434 
Orthogonal functions, 139, 305, 308, 315, 319 
Orthogonal polynomials, 142, 241-242, 245, 

254-260 
Orthogonal projection, 241, 248, 267, 422 
Osculating polynomial, 94, 138-140 
Overdetermined systems, 406, 420-426 
Overflow, 8, 15 
Over-relaxation, 375 
Oversmoothing, 272 

Pade approximations, 292, 301-302 
Parasitic solutions, 221 
Partial differential equations, 434-448 
Partial fractions, 69, 189 
Pascal matrix, 403 
Perturbation matrix, 361-363, 378, 383 
Phase plane, 235 
Pivot, 357-358, 363, 376, 409-412 
Pole, 298-303 
Polynomial: 

collocation, 17-21 
factorial, 30-38 
osculating, 80-85 
Taylor, 86-93 

Positive definite matrix, 374 
Power method, 356, 384-387 
Prediction, 104-105 
Predictor-corrector methods, 198, 208-218 
Probable error, 6, 14 
Pseudo-random numbers, 450 

Quadratic convergence, 326, 333 
Quadrature (see Integration) 
Quotient-difference algorithm, 327, 339-343 

Random numbers, 450-454 
Random walk, 450, 453-454 
Rational approximation, 292-304 

INDEX 

Rayleigh quotient, 356 
Reciprocal differences, 292, 294-299 
Recurrence relations, 30, 31, 143, 144, 202, 

263 
Regula falsi, 335, 431 
Relative error (see Error) 
Relaxation methods, 375, 389 
Remainder theorem, 17, 18 
Representation of numbers: 

binary, 2-16 
conversion, 2 
floating-point, 2, 3, 8-15 
normalized, 8, 10, 15 

Rolle's theorem, 19, 82 
Romberg's method, 119, 126-127 
Roots of equations, methods: 

Bairstow, 349 
Bernoulli, 336 
deflation, 338 
descent, 346 
interpolation, 335 
iterative, 330, 346 
Muller's, 336 
Newton's 332, 345 
QD, 339 
Regula falsi, 335 
Steffensen's, 332 
Sturm sequences, 343 

Roundoff error (see Error) 
Runge-Kutta methods (see Differential 

equations) 

Saddle point, 348 
Sampling, 450, 452 
Series: 

accelerating convergence of, 6-7, 167-169 
asymptotic, 177-180 
rapidly convergent, 163, 166-167 
telescoping, 164-165, 188-189 
(See also Taylor series) 

Significant digits, 1 
Simplex method, 405, 407-412, 415-418 
Simpson's rule, 71, 118-119, 123-128, 131-

132, 158-159, 162, 210, 272 
Simulation, 450-451 
Simultaneous equations: 

differential, 232 
linear algebraic, 354 
nonlinear algebraic, 328, 345 

Singular integrals, 158-162 
Smooth and unsmooth functions, 148, 156, 

313-316 
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Smoothing: 
by differences, 27 
by Fourier methods, 307, 316-318, 324-325 
by least-squares polynomials, 119, 242, 246, 

249-254, 274 
by min-max methods, 300 
by moving averages, 271 

Speed of computation, 1, 5, 7 
Splines, 71-79, 114 
Square circles, 16 
Square root, 1, 334 
Stability, 7, 199, 218-223, 228, 436 
Steepest descent, 329 
Steffensen's method, 332 
Stiff equations, 226-227, 236-237 
Stirling's formula, 51, 57, 61, 70, 94, 105-106, 

108, 110-111 
Stirling's numbers, 30, 31, 34-36, 40, 42, 109 
Stirling's series, 164, 176-177, 179, 183 
Sturm sequence, 327, 389 
Successive approximations (see Iterative 

methods) 
Summation, 30-33, 39-42, 156, 158, 163-165, 

167, 172-173, 180, 181, 187 
Superposition principle, 185 
Supporting theory, 2, 14 
Symmetric functions, 67 
Symmetry of divided differences, 63-67 
Synthetic division, 17, 18, 21 

Taylor polynomial, 86-94, 197, 202 
Taylor series, 86, 87, 90, 91, 93, 103-104, 107, 

118, 127, 129-130, 132-133, 149, 166-
167, 197, 203, 228, 345 

Taylor's theorem, 119 
Telescoping sums, 39, 144, 165, 172, 180 
Trapezoidal rule, 71, 118, 122-123, 125, 132, 

315 

Triangle inequality, 3, 12 
Triangular matrix, 360-366, 382 
Trigonometric approximation, 305-325 
Triple diagonal matrix, 73, 76, 395 
Truncation error (see Error) 
Tschebycheff (see Chebyshev) 
Two-person games, 405, 414-417, 419 

Underflow, 8, 15 
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Undetermined coefficients, 80, 83, 131, 134 
Unequally-spaced arguments, 62 
Uniform approximation, 244, 275 
Unit error function, 23-27 

Vander Pol equation, 234-235 
Variable order, 225 
Variable step size, 224 
Variational equation, 432 
Variations, calculus of, 428, 432 
Vector space, 241, 248-249, 257, 259, 262, 

267, 421 

Wallis' product, 164, 175-176 
Wave equation, 446 
Weddle's rule, 134 
Weierstrass approximation theorem, 275, 

281-283 
Weight function, 243-244, 261-262, 265 
Wilson's matrix, 400 
Wronskian determinant, 192, 193 

Zeros of polynomials: 
methods for finding (see Roots of 

equations) 
number of, 17, 19, 142, 291 
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