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In writing this seventh edition of Biochemistry, we 
have balanced the desire to present up-to-the minute 

advances with the need to make biochemistry as clear 
and engaging as possible for the student approaching 
the subject for the first time. Instructors and students 
have long relied on Biochemistry for:
• Clear writing The language of biochemistry is 

made as accessible as possible. A straightforward 
and logical organization leads the reader through 
 processes and helps navigate complex pathways 
and mechanisms.

• Single-concept illustrations Illustrations in 
this book address one point at a time so that each 
illustration clearly tells the story of a mechanism, 
pathway, or process without the distraction of 
excess detail.

• Physiological relevance Biochemistry is the 
study of life on the smallest scale, and it has always 
been our goal to help students connect biochemistry 
to their own lives. Pathways and processes are 
 presented in a physiological context so that the 
 reader can see how biochemistry works in different 
parts of the body and under different environmental 
and  hormonal conditions.

• Clinical insights Wherever appropriate, pathways 
and mechanisms are applied to health and disease. 
These applications show students how  biochemistry 
is relevant to them while reinforcing the concepts that 
they have just learned. (For a full list, see p. xi.)

• Evolutionary perspective Evolution is evident 
in the structures and pathways of biochemistry and 
is woven into the narrative of the textbook. (For a 
full list, see p. x.)

New to This Edition
Researchers are making new discoveries in biochemistry 
every day. The seventh edition takes into account the 
discoveries that have changed how we think about the 
fundamental concepts in biochemistry and human health. 
New aspects of the book include:
• Metabolism integrated in a new context New 

information about the role of leptins in hunger and 
satiety has greatly influenced how we think about 
obesity and the growing epidemic of diabetes. In 
this edition, we cover the integration of metabolism 
in the context of diet and obesity.

• New chapters on gene regulation To relate 
to the rapidly growing understanding of the 
 biochemical aspect of eukaryotic gene  regulation, 

we have greatly expanded our discussion of 
regulation and have split the chapter in the 
preceding editions into two: Chapter 31, “The 
Control of Gene Expression in Prokaryotes,” and 
Chapter 32, “The Control of Gene Expression 
in Eukaryotes.” These chapters address 
recent  discoveries such as quorum sensing in 
 prokaryotes, induced pluripotent stem cells, 
and the role of microRNAs in regulating gene 
expression.

• Experimental techniques updated and 
 clarified We have revised Chapters 3 (“Exploring 
Proteins and Proteomes”), 5 (“Exploring Genes 
and Genomes”), and 6 (“Exploring Evolution and 
Bioinformatics”) to give students a practical 
understanding of the benefits and limitations 
of the techniques that they will be using in the 
laboratory. We have expanded explanations of 
mass spectrometry and x-ray crystallography, 
for instance, and made them even clearer for the 
first-time student. We explain new techniques 
such as  next-generation sequencing and real-time 
PCR in the  context of their importance to 
 modern research in  biochemistry. (For a full list, 
see p. xii.)

Chapter 27 A schematic representation illustrates a few of the 
many metabolic  pathways that must be coordinated to meet the 
demands of living.
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Recent Advances
Some of the exciting advances and new topics 
that we present in the seventh edition include:
• Osteogenesis imperfecta, or brittle bone 

disease (Chapter 2)
• Intrinsically unstructured proteins and 

metamorphic proteins (Chapter 2)
• Recent updates in protein-misfolding 

diseases (Chapter 2)
• The use of recombinant DNA technology 

in protein purification (Chapter 3)
• Expanded discussion of mass spectrometry 

and x-ray crystallography (Chapter 3)
• Next-generation sequencing methods 

(Chapter 5)
• Real-time PCR (Chapter 5)
• DNA microarrays (Chapter 5)
• Carbon monoxide poisoning (Chapter 7)
• Single-molecule studies of enzyme kinetics 

(Chapter 8)
• Myosins as a model of a catalytic strategy for ATP 

hydrolysis (Chapter 9)
• Glycobiology and glycomics (Chapter 11)
• Hurler disease (Chapter 11)
• Avian influenza H5N1 (Chapter 11)
• Lipid rafts (Chapter 12)
• Transferrin as an example of receptor-mediated 

endocytosis (Chapter 12)
• Long QT syndrome and arrhythmia caused by the 

inhibition of potassium channels (Chapter 13)
• Defects in the citric acid cycle and the development 

of cancer (Chapter 17)
• Synthesizing a more efficient rubisco (Chapter 20)
• The structure of mammalian fatty acid synthetase 

(Chapter 22)
• Pyrimidine salvage pathways (Chapter 25)
• Physical association of enzymes in metabolic 

pathways (Chapter 25)
• Phosphatidic acid phosphatase in the  regulation of 

lipid metabolism (Chapter 26)
• The regulation of SCAP-SREBP movement 

in cholesterol metabolism (Chapter 26)
• Mutations in the LDL receptor (Chapter 26)
• The role of HDL in protecting against 

arteriosclerosis (Chapter 26)

• Aromatase inhibitors in the treatment of breast and 
ovarian cancer (Chapter 26)

• The role of leptin in long-term caloric homeostasis 
(Chapter 27)

• Obesity and diabetes (Chapter 27)
•  Exercise and its effects on cellular biochemistry 

(Chapter 27)
•  Updated detailed mechanism of helicase’s action 

(Chapter 28)
•  Updated detailed mechanism of topoisomerase’s 

action (Chapter 28)
• Riboswitches (Chapter 29)
•  The production of small regulatory RNAs (Chapter 29)
• Vanishing white matter disease (Chapter 30)
• Quorum sensing (Chapter 31)
• Biofilms (Chapter 31)
• Induced pluripotent stem cells (Chapter 32)
•  The role of microRNAs in gene regulation 

(Chapter 32)
• How vaccines work (Chapter 34)
• The structure of myosin head domains (Chapter 35)

v i  Preface

Figure 26.24 LDL receptor releases LDL in the endosomes. [After I. D. Campbell, 
Biochem. Soc. Trans. 31:1107 —1114, 2003, Fig 1A.]
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New End-of-Chapter Problems
Biochemistry is best learned by practicing it and, to 
help students practice biochemistry, we have increased 
the number of end-of-chapter problems by 50%. In 
addition to many traditional problems that test bio-
chemical knowledge and the ability to use this knowl-
edge, we have three categories of problems to address 
specific problem-solving skills.
• Mechanism problems ask students to suggest or 

elaborate a chemical mechanism.
• Data interpretation problems ask questions about 

a set of data provided in tabulated or graphic form. 
These problems give students a sense of how 
 scientific conclusions are reached.

• Chapter integration problems require students 
to use information from several chapters to reach 
a solution. These problems reinforce a student’s 
awareness of the interconnectedness of the different 
aspects of biochemistry.

Brief solutions to these problems are presented at the 
end of the book; expanded solutions are available in the 
accompanying Student Companion.

Visualizing Molecular Structure
All molecular structures have been selected and ren-
dered by Jeremy Berg and Gregory Gatto. To help stu-
dents read and understand these structures, we include 
the following tools:
• A molecular-model “primer” explains the different 

types of protein models and examines their strengths 
and weaknesses (see appendices to Chapters 1 and 2).

• Figure legends direct students explicitly to the key 
features of a model.

• A great variety of types of molecular structures 
are represented, including clearer renderings of 
membrane proteins.

• For most molecular models, the PDB number at 
the end of the figure legend gives the reader easy 
access to the file used in  generating the structure 
from the Protein Data Bank Web site (www.pdb.
org). At this site, a variety of tools for visualizing 
and analyzing the structure are available.

• Living figures for most molecular structures now 
appear on the Web site in Jmol to allow students 
to rotate three-dimensional molecules and view 
alternative renderings online.

Figure 28.12 Helicase asymmetry. Notice that only four of the 
subunits, those shown in blue and yellow, bind AMP-PNP. [Drawn from 
1E0K.pdb.]

0°

0°

30°

30°

15°

15°

AMP-PNP



v i i i

eBook
http://ebooks.bfwpub.com/berg7e

This online version of the textbook combines the con-
tents of the printed book, electronic study tools, and 
a full complement of student media specifically cre-
ated to support the text. Problems and resources from 
the printed textbook are incorporated throughout the 
eBook, to ensure that students can easily review specific 
concepts. The eBook enables students to:
• Access the complete book and its electronic study 

tools from any internet-connected computer by 
using a standard Web browser;

• Navigate quickly to any section or subsection of the 
book or any page number of the printed book;

• Add their own bookmarks, notes, and highlighting;
• Access all the fully integrated media resources asso-

ciated with the book;
• Review quizzes and personal notes to help prepare 

for exams; and
• Search the entire eBook instantly, including the 

index and spoken glossary.

Instructors teaching from the eBook can assign either 
the entire textbook or a custom version that includes 
only the chapters that correspond to their syllabi. They 
can choose to add notes to any page of the eBook and 
share these notes with their students. These notes may 
include text, Web links, animations, or photographs.

http://courses.bfwpub.com/berg7e
BiochemPortal is a dynamic, fully  integrated learning 
environment that brings together all of our teaching 
and learning resources in one place. It  features easy-
to-use assessment tracking and grading tools that 
enable instructors to assign problems for  practice, as 
homework, quizzes, or tests. A personalized  calendar, 
an announcement center, and communication tools 
help instructors manage the course. In addition to 
all the resources found on the Companion Web site, 
BiochemPortal includes several other features:
• The interactive eBook integrates the complete text 

with all relevant media resources.

• Hundreds of self-graded practice problems 
allow students to test their understanding of 
 concepts explained in the text, with immediate 
feedback.

• The metabolic map helps students understand 
the principles and applications of the core metabolic 
pathways. Students can work through guided 
tutorials with embedded assessment questions, or 
explore the Metabolic Map on their own using the 
dragging and zooming functionality of the map.

• Jmol tutorials by Jeffrey Cohlberg, California State 
University at Long Beach, teach students how to 
create models of proteins in Jmol based on data from 
the Protein Database. By working through the tutorial 

and answering assessment  questions at 
the end of each exercise, students learn 
to use this important  database and 
fully realize the  relationship between 
structure and function of enzymes.

•  Animated techniques illustrate 
 laboratory  techniques described in 
the text.

•  Concept tutorials walk students 
through complex ideas in enzyme 
 kinetics and metabolism.

Media and Supplements

A full package of media resources and supplements provides instructors and students 
with innovative tools to support a variety of teaching and learning approaches.  

BiochemPortal.



Companion Web Site 
www.whfreeman.com/berg7e
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For students
• Living figures allow students to explore 

 protein structure in 3-D. Students can zoom 
and rotate the “live” structures to get a better 
 understanding of their three-dimensional nature 
and can  experiment with different display styles 
 (space-filling, ball-and-stick, ribbon, backbone) 
by means of a user-friendly interface.

• Concept-based tutorials by Neil D. Clarke help 
students build an intuitive understanding of some of 
the more difficult concepts covered in the textbook.

• Animated techniques help students grasp 
experimental techniques used for exploring genes 
and proteins.

• The self-assessment tool helps students evaluate 
their progress. Students can test their understanding 
by taking an online multiple-choice quiz provided 
for each chapter, as well as a general chemistry 
review.

• The glossary of key terms.
• Web links connect students with the world of 

 biochemistry beyond the classroom.

For Instructors

All of the student resources plus:
• All illustrations and tables from the textbook, 

in jpeg and PowerPoint formats optimized for 
 classroom projection.

• The Assessment Bank offers more than 1500 
questions in editable Microsoft Word  format.

Instructor’s Resource DVD
[1-4292-8411-0]

The CD includes all the instructor’s resources from the 
Web site.

Overhead Transparencies
[1-4292-8412-9]

200 full-color illustrations from the textbook, optimized 
for classroom projection

Student Companion
[1-4292-3115-7]

For each chapter of the textbook, the Student Companion 
includes:
• Chapter Learning Objectives and Summary
• Self-Assessment Problems, including multiple-

choice, short-answer, matching questions, and 
challenge problems, and their answers

• Expanded Solutions to end-of-chapter problems in 
the textbook
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Only L amino acids make up proteins (p. 27)
Why this set of 20 amino acids? (p. 33)
Additional human globin genes (p. 211)
Fetal hemoglobin (p. 213)
Catalytic triads in hydrolytic enzymes (p. 260)
Major classes of peptide-cleaving enzymes (p. 263)
Zinc-based active sites in carbonic anhydrases (p. 271)
Common catalytic core in type II restriction 

enzymes (p. 278)
P-loop NTPase domains (p. 283)
Conserved catalytic core in protein kinases (p. 302)
Why might human blood types differ? (p. 335)
Archaeal membranes (p. 350)
Ion pumps (p. 374)
P-type ATPases (p. 378)
ATP-binding cassettes (p. 378)
Sequence comparisons of Na1 and Ca1 channels (p. 386)
Small G proteins (p. 410)
Metabolism in the RNA world (p. 447)
Why is glucose a prominent fuel? (p. 455)
NAD1 binding sites in dehydrogenases (p. 469)
The major facilitator superfamily of transporters (p. 477)
Isozymic forms of lactate dehydrogenase (p. 490)
Evolution of glycolysis and gluconeogenesis (p. 491)
The a-ketoglutarate dehydrogenase complex (p. 507)
Domains of succinyl CoA synthase (p. 509)
Evolution of the citric acid cycle (p. 518)
Mitochondria evolution (p. 527)
Conserved structure of cytochrome c (p. 543)
Common features of ATP synthase and G proteins (p. 550)
Related uncoupling proteins (p. 557)
Chloroplast evolution (p. 568)
Evolutionary origins of photosynthesis (p. 584)
Evolution of the C4 pathway (p. 600)
The coordination of the Calvin cycle and the pentose 

phosphate pathway (p. 609)
Evolution of glycogen phosphorylase (p. 627)

Increasing sophistication of glycogen phosphorylase 
regulation (p. 628)

The a-amylase family (p. 629)
A recurring motif in the activation of carboxyl groups (p. 645)
Prokaryotic counterparts of the ubiquitin pathway 

and the  proteasome (p. 677)
A family of pyridoxal-dependent enzymes (p. 684)
Evolution of the urea cycle (p. 688)
The P-loop NTPase domain in nitrogenase (p. 708)
Similar transaminases determine amino acid chirality (p. 713)
Feedback inhibition (p. 724)
Recurring steps in purine ring synthesis (p. 741)
Ribonucleotide reductases (p. 747)
Increase in urate levels during primate evolution (p. 754)
The cytochrome P450 superfamily (p. 783)
DNA polymerases (p. 821)
Thymine and the fidelity of the genetic message (p. 841)
Sigma factors in bacterial transcription (p. 858)
Similarities in transcription between archaea and 

eukaryotes (p. 869)
Evolution of spliceosome-catalyzed splicing (p. 881)
Classes of aminoacyl-tRNA synthetases (p. 897)
Composition of the primordial ribosome (p. 900)
Homologous G proteins (p. 903)
A family of proteins with common ligand-binding 

domains (p. 926)
The independent evolution of DNA-binding sites of 

regulatory proteins (p. 927)
Regulation by attenuator sites (p. 932)
CpG islands (p. 946)
Iron-response elements (p. 952)
miRNAs in gene evolution (p. 954)
The odorant-receptor family (p. 959)
Photoreceptor evolution (p. 969)
The immunoglobulin fold (p. 984)
Relationship of actin to hexokinase and prokaryotic 

proteins (p. 1019)

This icon signals the start of the many discussions that highlight protein 
commonalities or other molecular evolutionary insights.

Molecular Evolution
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Osteogenesis imperfecta (p. 45)
Protein-misfolding diseases (p. 55)
Protein modification and scurvy (p. 55)
Antigen detection with ELISA (p. 88)
Synthetic peptides as drugs (p. 96)
Gene therapy (p. 167)
Functional magnetic resonance imaging (p. 197)
Carbon monoxide poisoning (p. 213)
Sickle-cell anemia (p. 209)
Thalessemia (p. 210)
Aldehyde dehydrogenase deficiency (p. 232)
Action of penicillin (p. 244)
Protease inhibitors (p. 264)
Carbonic anhydrase and osteoporosis (p. 266)
Isozymes as a sign of tissue damage (p. 297)
Emphysema (p. 306)
Vitamin K (p. 310)
Hemophilia (p. 311)
Tissue-type plasminogen activator (p. 312)
Monitoring changes in glycosylated hemoglobin (p. 325)
Erythropoietin (p. 330)
Hurler disease (p. 331)
Blood groups (p. 335)
I-cell disease (p. 336)
Influenza virus binding (p. 339)
Clinical applications of liposomes (p. 354)
Aspirin and ibuprofen (p. 358)
Digitalis and congenital heart failure (p. 377)
Multidrug resistance (p. 378)
Long QT syndrome (p. 392)
Signal-transduction pathways and cancer (p. 420)
Monoclonal antibodies as anticancer drugs (p. 421)
Protein kinase inhibitors as anticancer drugs (p. 421)
Vitamins (p. 441)
Lactose intolerance (p. 471)
Galactosemia (p. 472)
Exercise and cancer (p. 478)
Phosphatase deficiency (p. 514)
Defects in the citric acid cycle and the development 

of cancer (p. 515)
Beriberi and mercury poisoning (p. 517)
Mitochondrial diseases (p. 558)
Hemolytic anemia (p. 609)
Glucose 6-phosphate deficiency (p. 611)
Glycogen-storage diseases (p. 634)
Carnitine deficiency (p. 646)
Zellweger syndrome (p. 652)
Diabetic ketosis (p. 655)
The use of fatty acid synthase inhibitors as 

drugs (p. 663)
Effects of aspirin on signaling pathways (p. 665)

Diseases resulting from defects in E3 proteins (p. 676)
Diseases of altered ubiquitination (p. 678)
Using proteasome inhibitors to treat tuberculosis (p. 679)
Inherited defects of the urea cycle (hyperammonemia) (p. 688)
Alcaptonuria, maple syrup urine disease, and 

phenylketonuria (p. 697)
High homocysteine levels and vascular disease (p. 719)
Inherited disorders of porphyrin metabolism (p. 730)
Anticancer drugs that block the synthesis of thymidylate (p. 749)
Adenosine deaminase and severe combined 

immunodeficiency (p. 752)
Gout (p. 753)
Lesch–Nyhan syndrome (p. 754)
Folic acid and spina bifida (p. 755)
Second messengers derived from sphingolipids and 

diabetes (p. 765)
Respiratory distress syndrome and Tay–Sachs 

disease (p. 765)
Diagnostic use of blood-cholesterol levels (p. 774)
Hypercholesterolemia and atherosclerosis (p. 776)
Mutations in the LDL receptor (p. 777)
The role of HDL in protecting against 

arteriosclerosis (p. 778)
Clinical management of cholesterol levels (p. 779)
Aromatase inhibitors in the treatment of breast 

and ovarian cancer (p. 785)
Rickets and vitamin D (p. 786)
Antibiotics that target DNA gyrase (p. 831)
Blocking telomerase to treat cancer (p. 837)
Huntington disease (p. 842)
Defective repair of DNA and cancer (p. 842)
Detection of carcinogens (Ames test) (p. 843)
Antibiotic inhibitors of transcription (p. 861)
Burkitt lymphoma and B-cell leukemia (p. 869)
Diseases of defective RNA splicing (p. 877)
Vanishing white matter disease (p. 908)
Antibiotics that inhibit protein synthesis (p. 909)
Diphtheria (p. 910)
Ricin, a lethal protein-synthesis inhibitor (p. 911)
Induced pluripotent stem cells (p. 944)
Anabolic steroids (p. 948)
Color blindness (p. 970)
The use of capsaicin in pain management (p. 974)
Immune-system suppressants (p. 990)
MHC and transplantation rejection (p. 998)
AIDS vaccine (p. 999)
Autoimmune diseases (p. 1001)
Immune system and cancer (p. 1001)
Vaccines (p. 1002)
Charcot-Marie-Tooth disease (p. 1016)
Taxol (p. 1019)

This icon signals the start of a clinical application in the text. Additional, briefer 
clinical correlations appear in the text as appropriate.

Clinical Applications
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Exploring Proteins and Proteomes (Chapter 3)
Protein purification (p. 66)
Differential centrifugation (p. 67)
Salting out (p. 68)
Dialysis (p. 69)
Gel-filtration chromatography (p. 69)
Ion-exchange chromatography (p. 69)
Affinity chromatography (p. 70)
High-pressure liquid chromatography (p. 71)
Gel electrophoresis (p. 71)
Isoelectric focusing (p. 73)
Two-dimensional electrophoresis (p. 74)
Qualitative and quantitative evaluation of protein 

purification (p. 75)
Ultracentrifugation (p. 76)
Edman degradation (p. 80)
Protein sequencing (p. 82)
Production of polyclonal antibodies (p. 86)
Production of monoclonal antibodies (p. 86)
Enzyme-linked immunoabsorbent assay (ELISA) (p. 88)
Western blotting (p. 89)
Fluorescence microscopy (p. 89)
Green fluorescent protein as a marker (p. 89)
Immunoelectron microscopy (p. 91)
MALDI-TOF mass spectrometry (p. 91)
Tandem mass spectrometry (p. 93)
Proteomic analysis by mass spectrometry (p. 94)
Automated solid-phase peptide synthesis (p. 95)
X-ray crystallography (p. 98)
Nuclear magnetic resonance spectroscopy (p. 101)
NOESY spectroscopy (p. 102)

Exploring Proteins (other chapters)
Basis of fluorescence in green fluorescent protein (p. 58)
Using irreversible inhibitors to map the active site (p. 241)
Enzyme studies with catalytic antibodies (p. 243)
Single-molecule studies (p. 246)

Exploring Genes and Genomes (Chapter 5)
Restriction-enzyme analysis (p. 141)
Southern and northern blotting techniques (p. 142)
Sanger dideoxy method of DNA sequencing (p. 143)
Solid-phase synthesis of nucleic acids (p. 144)
Polymerase chain reaction (PCR) (p. 145)
Recombinant DNA technology (p. 148)
DNA cloning in bacteria (p. 149)
Creating cDNA libraries (p. 154)

Mutagenesis techniques (p. 156)
Next-generation sequencing (p. 160)
Quantitative PCR (p. 161)
Examining expression levels (DNA microarrays) (p. 162)
Introducing genes into eukaryotes (p. 163)
Transgenic animals (p. 164)
Gene disruption (p. 164)
Gene disruption by RNA interference (p. 165)
Tumor-inducing plasmids (p. 166)

Exploring Genes (other chapters)
Density-gradient equilibrium sedimentation (p. 119)
Chromatin immunoprecipitation (ChIP) (p. 945)

Exploring Evolution and Bioinformatics 
(Chapter 6)
Sequence-comparison methods (p. 174)
Sequence-alignment methods (p. 176)
Estimating the statistical significance of alignments 

(by shuffling) (p. 177)
Substitution matrices (p. 178)
Performing a BLAST database search (p. 181)
Sequence templates (p. 184)
Detecting repeated motifs (p. 184)
Mapping secondary structures through RNA sequence 

 comparisons (p. 186)
Construction of evolutionary trees (p. 187)
Combinatorial chemistry (p. 188)
Molecular evolution in the laboratory (p. 189)

Other Techniques
Functional magnetic resonance imaging (fMRI) (p. 197)
Sequencing of carbohydrates by using MALDI-TOF mass 

 spectroscopy (p. 336)
The use of liposomes to investigate membrane 

permeability (p. 353)
The use of hydropathy plots to locate transmembrane 

helices (p. 360)
Fluorescence recovery after photobleaching (FRAP) for measuring 

lateral diffusion in membranes (p. 361)
Patch-clamp technique for measuring channel activity (p. 383)
Measurement of redox potential (p. 528)

Animated Techniques
Animated explanations of experimental techniques used for exploring 
genes and proteins are available at www.whfreeman.com/berg7e.

The seventh edition of Biochemistry offers three chapters that present the tools 
and  techniques of biochemistry: “Exploring Proteins and Proteomes” (Chapter 3), 
“Exploring Genes and Genomes” (Chapter 5), and “Exploring Evolution and 
Bioinformatics” (Chapter 6). Additional experimental techniques are presented 
throughout the book, as appropriate.

Tools and Techniques
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Bases can be damaged by oxidizing agents, alkylating 
agents, and light 838
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DNA damage can be detected and repaired by a 
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RNA polymerase I produces three ribosomal RNAs 869
RNA polymerase III produces transfer RNA 870
The product of RNA polymerase II, the pre-mRNA 
transcript, acquires a 59 cap and a 39 poly(A) tail 870
Small regulatory RNAs are cleaved from larger 
precursors 872
RNA editing changes the proteins encoded by mRNA 872
Sequences at the ends of introns specify splice sites 
in mRNA precursors 873
Splicing consists of two sequential transesterification 
reactions 874
Small nuclear RNAs in spliceosomes catalyze the 
splicing of mRNA precursors 875
Transcription and processing of mRNA are coupled 877
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frequency 888
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Synthetases recognize various features of transfer RNA 
molecules 896
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Synthesis 897
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the 30s and 50s subunits 900
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The start signal is usually AUG preceded by several 
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in Prokaryotes 921
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Many prokaryotic cells release chemical signals that 
regulate gene expression in other cells 929
Biofilms are complex communities of prokaryotes 930
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Part IV RESPONDING TO 
ENVIRONMENTAL CHANGES

Chapter 33 Sensory Systems 957

33.1 A Wide Variety of Organic Compounds 
Are Detected by Olfaction 958
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x x x i i  Contents

ATP binding and hydrolysis induce changes in the 
 conformation and binding affinity of motor proteins 1010
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