Biochemistry

Jeremy M. Berg John L. Tymoczko Lubert Stryer

SEVENTH EDITION

Biochemistry

Jeremy M. Berg

John L. Tymoczko

Lubert Stryer

with Gregory J. Gatto, Jr.

Publisher: Kate Ahr Parker Developmental Editor: Lisa Samols Senior Project Editor: Georgia Lee Hadler Manuscript Editors: Patricia Zimmerman and Nancy Brooks Design Manager: Vicki Tomaselli Page Make Up: Patrice Sheridan Illustrations: Jeremy Berg with Network Graphics Illustration Coordinator: Janice Donnola Photo Editor: Christine Buese Photo Researcher: Jacalyn Wong Production Coordinator: Paul Rohloff Media Editors: Andrea Gawrylewski, Patrick Shriner, Rohit Phillip, and Marnie Rolfes Supplements Editor: Amanda Dunning Associate Director of Marketing: Debbie Clare Composition: Aptara[®], Inc. Printing and Binding: RR Donnelley

Library of Congress Control Number: 2010937856

Gregory J. Gatto, Jr., is an employee of GlaxoSmithKline (GSK), which has not supported or funded this work in any way. Any views expressed herein do not necessarily represent the views of GSK.

ISBN 13: 9781429229364 ISBN 10: 1429229365

©2012, 2007, 2002 by W. H. Freeman and Company; © 1995, 1988, 1981, 1975 by Lubert Stryer

All rights reserved

Printed in the United States of America

First printing

W. H. Freeman and Company 41 Madison Avenue New York, NY 10010

www.whfreeman.com

To our teachers and our students

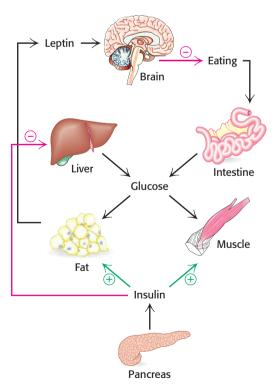
JEREMY M. BERG received his B.S. and M.S. degrees in Chemistry from Stanford (where he did research with Keith Hodgson and Lubert Stryer) and his Ph.D. in Chemistry from Harvard with Richard Holm. He then completed a postdoctoral fellowship with Carl Pabo in Biophysics at Johns Hopkins University School of Medicine. He was an Assistant Professor in the Department of Chemistry at Johns Hopkins from 1986 to 1990. He then moved to Johns Hopkins University School of Medicine as Professor and Director of the Department of Biophysics and Biophysical Chemistry, where he remained until 2003. He then became Director of the National Institute of General Medical Sciences at the National Institutes of Health. He is an elected Fellow of the American Association for the Advancement of Science and an elected member of the Institute of Medicine of the National Academy of Sciences. He received the American Chemical Society Award in Pure Chemistry (1994) and the Eli Lilly Award for Fundamental Research in Biological Chemistry (1995), was named Maryland Outstanding Young Scientist of the Year (1995), received the Harrison Howe Award (1997), the Distinguished Service Award from the Biophysical Society (2009), and the Howard K. Schachman Public Service Award from the American Society for Biochemistry and Molecular Biology (2011). He also received numerous teaching awards, including the W. Barry Wood Teaching Award (selected by medical students), the Graduate Student Teaching Award, and the Professor's Teaching Award for the Preclinical Sciences. He is coauthor, with Stephen J. Lippard, of the textbook Principles of Bioinorganic Chemistry.

JOHN L. TYMOCZKO is Towsley Professor of Biology at Carleton College, where he has taught since 1976. He currently teaches Biochemistry, Biochemistry Laboratory, Oncogenes and the Molecular Biology of Cancer, and Exercise Biochemistry and coteaches an introductory course, Energy Flow in Biological Systems. Professor Tymoczko received his B.A. from the University of Chicago in 1970 and his Ph.D. in Biochemistry from the University of Chicago with Shutsung Liao at the Ben May Institute for Cancer Research. He then had a postdoctoral position with Hewson Swift of the Department of Biology at the University of Chicago. The focus of his research has been on steroid receptors, ribonucleoprotein particles, and proteolytic processing enzymes.

LUBERT STRYER is Winzer Professor of Cell Biology, Emeritus, in the School of Medicine and Professor of Neurobiology, Emeritus, at Stanford University, where he has been on the faculty since 1976. He received his M.D. from Harvard Medical School. Professor Stryer has received many awards for his research on the interplay of light and life, including the Eli Lilly Award for Fundamental Research in Biological Chemistry, the Distinguished Inventors Award of the Intellectual Property Owners' Association, and election to the National Academy of Sciences and the American Philosophical Society. He was awarded the National Medal of Science in 2006. The publication of his first edition of *Biochemistry* in 1975 transformed the teaching of biochemistry.

GREGORY J. GATTO, JR., received his A.B. degree in Chemistry from Princeton University, where he worked with Martin F. Semmelhack and was awarded the Everett S. Wallis Prize in Organic Chemistry. In 2003, he received his M.D. and Ph.D. degrees from the Johns Hopkins University School of Medicine, where he studied the structural biology of peroxisomal targeting signal recognition with Jeremy M. Berg and received the Michael A. Shanoff Young Investigator Research Award. He then completed a postdoctoral fellowship in 2006 with Christopher T. Walsh at Harvard Medical School, where he studied the biosynthesis of the macrolide immunosuppressants. He is currently an Investigator in the Heart Failure Discovery Performance Unit at GlaxoSmithKline Pharmaceuticals. n writing this seventh edition of *Biochemistry*, we have balanced the desire to present up-to-the minute advances with the need to make biochemistry as clear and engaging as possible for the student approaching the subject for the first time. Instructors and students have long relied on *Biochemistry* for:

- **Clear writing** The language of biochemistry is made as accessible as possible. A straightforward and logical organization leads the reader through processes and helps navigate complex pathways and mechanisms.
- Single-concept illustrations Illustrations in this book address one point at a time so that each illustration clearly tells the story of a mechanism, pathway, or process without the distraction of excess detail.
- **Physiological relevance** Biochemistry is the study of life on the smallest scale, and it has always been our goal to help students connect biochemistry to their own lives. Pathways and processes are presented in a physiological context so that the reader can see how biochemistry works in different parts of the body and under different environmental and hormonal conditions.
- Clinical insights Wherever appropriate, pathways and mechanisms are applied to health and disease. These applications show students how biochemistry is relevant to them while reinforcing the concepts that they have just learned. (For a full list, see p. xi.)
- **Evolutionary perspective** Evolution is evident in the structures and pathways of biochemistry and is woven into the narrative of the textbook. (For a full list, see p. x.)


New to This Edition

Researchers are making new discoveries in biochemistry every day. The seventh edition takes into account the discoveries that have changed how we think about the fundamental concepts in biochemistry and human health. New aspects of the book include:

- Metabolism integrated in a new context New information about the role of leptins in hunger and satiety has greatly influenced how we think about obesity and the growing epidemic of diabetes. In this edition, we cover the integration of metabolism in the context of diet and obesity.
- New chapters on gene regulation To relate to the rapidly growing understanding of the biochemical aspect of eukaryotic gene regulation,

we have greatly expanded our discussion of regulation and have split the chapter in the preceding editions into two: Chapter 31, "The Control of Gene Expression in Prokaryotes," and Chapter 32, "The Control of Gene Expression in Eukaryotes." These chapters address recent discoveries such as quorum sensing in prokaryotes, induced pluripotent stem cells, and the role of microRNAs in regulating gene expression.

• Experimental techniques updated and clarified We have revised Chapters 3 ("Exploring Proteins and Proteomes"), 5 ("Exploring Genes and Genomes"), and 6 ("Exploring Evolution and Bioinformatics") to give students a practical understanding of the benefits and limitations of the techniques that they will be using in the laboratory. We have expanded explanations of mass spectrometry and x-ray crystallography, for instance, and made them even clearer for the first-time student. We explain new techniques such as next-generation sequencing and real-time PCR in the context of their importance to modern research in biochemistry. (For a full list, see p. xii.)

Chapter 27 A schematic representation illustrates a few of the many metabolic pathways that must be coordinated to meet the demands of living.

Recent Advances

Some of the exciting advances and new topics that we present in the seventh edition include:

- Osteogenesis imperfecta, or brittle bone disease (Chapter 2)
- Intrinsically unstructured proteins and metamorphic proteins (Chapter 2)
- Recent updates in protein-misfolding diseases (Chapter 2)
- The use of recombinant DNA technology in protein purification (Chapter 3)
- Expanded discussion of mass spectrometry and x-ray crystallography (Chapter 3)
- Next-generation sequencing methods (Chapter 5)
- Real-time PCR (Chapter 5)
- DNA microarrays (Chapter 5)
- Carbon monoxide poisoning (Chapter 7)
- Single-molecule studies of enzyme kinetics (Chapter 8)
- Myosins as a model of a catalytic strategy for ATP hydrolysis (Chapter 9)
- Glycobiology and glycomics (Chapter 11)
- Hurler disease (Chapter 11)
- Avian influenza H5N1 (Chapter 11)
- Lipid rafts (Chapter 12)
- Transferrin as an example of receptor-mediated endocytosis (Chapter 12)
- Long QT syndrome and arrhythmia caused by the inhibition of potassium channels (Chapter 13)
- Defects in the citric acid cycle and the development of cancer (Chapter 17)
- Synthesizing a more efficient rubisco (Chapter 20)
- The structure of mammalian fatty acid synthetase (Chapter 22)
- Pyrimidine salvage pathways (Chapter 25)
- Physical association of enzymes in metabolic pathways (Chapter 25)
- Phosphatidic acid phosphatase in the regulation of lipid metabolism (Chapter 26)
- The regulation of SCAP-SREBP movement in cholesterol metabolism (Chapter 26)
- Mutations in the LDL receptor (Chapter 26)
- The role of HDL in protecting against arteriosclerosis (Chapter 26)

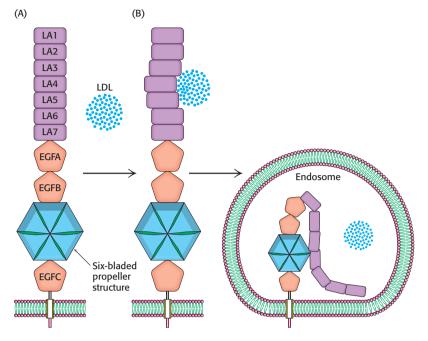


Figure 26.24 LDL receptor releases LDL in the endosomes. [After I. D. Campbell, *Biochem. Soc. Trans.* 31:1107–1114, 2003, Fig 1A.]

- Aromatase inhibitors in the treatment of breast and ovarian cancer (Chapter 26)
- The role of leptin in long-term caloric homeostasis (Chapter 27)
- Obesity and diabetes (Chapter 27)
- Exercise and its effects on cellular biochemistry (Chapter 27)
- Updated detailed mechanism of helicase's action (Chapter 28)
- Updated detailed mechanism of topoisomerase's action (Chapter 28)
- Riboswitches (Chapter 29)
- The production of small regulatory RNAs (Chapter 29)
- Vanishing white matter disease (Chapter 30)
- Quorum sensing (Chapter 31)
- Biofilms (Chapter 31)
- Induced pluripotent stem cells (Chapter 32)
- The role of microRNAs in gene regulation (Chapter 32)
- How vaccines work (Chapter 34)
- The structure of myosin head domains (Chapter 35)

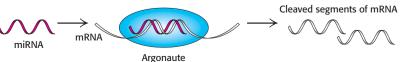
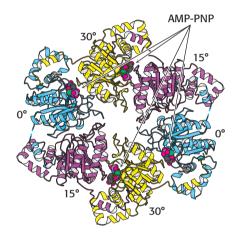


Figure 32.27 MicroRNA action.

New End-of-Chapter Problems

Biochemistry is best learned by practicing it and, to help students practice biochemistry, we have increased the number of end-of-chapter problems by 50%. In addition to many traditional problems that test biochemical knowledge and the ability to use this knowledge, we have three categories of problems to address specific problem-solving skills.

- Mechanism problems ask students to suggest or elaborate a chemical mechanism.
- Data interpretation problems ask questions about a set of data provided in tabulated or graphic form. These problems give students a sense of how scientific conclusions are reached.
- Chapter integration problems require students to use information from several chapters to reach a solution. These problems reinforce a student's awareness of the interconnectedness of the different aspects of biochemistry.


Brief solutions to these problems are presented at the end of the book; expanded solutions are available in the accompanying *Student Companion*.

Visualizing Molecular Structure

All molecular structures have been selected and rendered by Jeremy Berg and Gregory Gatto. To help students read and understand these structures, we include the following tools:

• A molecular-model "primer" explains the different types of protein models and examines their strengths and weaknesses (see appendices to Chapters 1 and 2).

- **Figure legends** direct students explicitly to the key features of a model.
- A great variety of types of molecular structures are represented, including clearer renderings of membrane proteins.
- For most molecular models, the **PDB number** at the end of the figure legend gives the reader easy access to the file used in generating the structure from the Protein Data Bank Web site (www.pdb. org). At this site, a variety of tools for visualizing and analyzing the structure are available.
- Living figures for most molecular structures now appear on the Web site in Jmol to allow students to rotate three-dimensional molecules and view alternative renderings online.

Figure 28.12 Helicase asymmetry. *Notice* that only four of the subunits, those shown in blue and yellow, bind AMP-PNP. [Drawn from 1EOK.pdb.]

Media and Supplements

A full package of media resources and supplements provides instructors and students with innovative tools to support a variety of teaching and learning approaches.

eBook http://ebooks.bfwpub.com/berg7e

This online version of the textbook combines the contents of the printed book, electronic study tools, and a full complement of student media specifically created to support the text. Problems and resources from the printed textbook are incorporated throughout the eBook, to ensure that students can easily review specific concepts. The eBook enables students to:

- Access the complete book and its electronic study tools from any internet-connected computer by using a standard Web browser;
- Navigate quickly to any section or subsection of the book or any page number of the printed book;
- Add their own bookmarks, notes, and highlighting;
- Access all the fully integrated media resources associated with the book;
- Review quizzes and personal notes to help prepare for exams; and
- Search the entire eBook instantly, including the index and spoken glossary.

Instructors teaching from the eBook can assign either the entire textbook or a **custom version** that includes only the chapters that correspond to their syllabi. They can choose to add notes to any page of the eBook and share these notes with their students. These notes may include text, Web links, animations, or photographs.

BIOCHEMPORTAL

http://courses.bfwpub.com/berg7e

BiochemPortal is a dynamic, fully integrated learning environment that brings together all of our teaching and learning resources in one place. It features easyto-use assessment tracking and grading tools that enable instructors to assign problems for practice, as homework, quizzes, or tests. A personalized calendar, an announcement center, and communication tools help instructors manage the course. In addition to all the resources found on the Companion Web site, BiochemPortal includes several other features:

- The **interactive eBook** integrates the complete text with all relevant media resources.
- Hundreds of **self-graded practice problems** allow students to test their understanding of concepts explained in the text, with immediate feedback.
- The metabolic map helps students understand the principles and applications of the core metabolic pathways. Students can work through guided tutorials with embedded assessment questions, or explore the Metabolic Map on their own using the dragging and zooming functionality of the map.
- Jmol tutorials by Jeffrey Cohlberg, California State University at Long Beach, teach students how to create models of proteins in Jmol based on data from the Protein Database. By working through the tutorial

and answering assessment questions at the end of each exercise, students learn to use this important database and fully realize the relationship between structure and function of enzymes.

- Animated techniques illustrate laboratory techniques described in the text.
- **Concept tutorials** walk students through complex ideas in enzyme kinetics and metabolism.

BiochemPortal.

Companion Web Site www.whfreeman.com/berg7e

For students

- Living figures allow students to explore protein structure in 3-D. Students can zoom and rotate the "live" structures to get a better understanding of their three-dimensional nature and can experiment with different display styles (space-filling, ball-and-stick, ribbon, backbone) by means of a user-friendly interface.
- **Concept-based tutorials** by Neil D. Clarke help students build an intuitive understanding of some of the more difficult concepts covered in the textbook.
- Animated techniques help students grasp experimental techniques used for exploring genes and proteins.
- The **self-assessment tool** helps students evaluate their progress. Students can test their understanding by taking an online multiple-choice quiz provided for each chapter, as well as a general chemistry review.
- The glossary of key terms.
- Web links connect students with the world of biochemistry beyond the classroom.

For Instructors

All of the student resources plus:

- All **illustrations and tables** from the textbook, in jpeg and PowerPoint formats optimized for classroom projection.
- The Assessment Bank offers more than 1500 questions in editable Microsoft Word format.

Instructor's Resource DVD

[1-4292-8411-0]

The CD includes all the instructor's resources from the Web site.

Overhead Transparencies

[1-4292-8412-9]

200 full-color illustrations from the textbook, optimized for classroom projection

Student Companion

[1-4292-3115-7]

For each chapter of the textbook, the *Student Companion* includes:

- Chapter Learning Objectives and Summary
- Self-Assessment Problems, including multiplechoice, short-answer, matching questions, and challenge problems, and their answers
- Expanded Solutions to end-of-chapter problems in the textbook

Molecular Evolution

This icon signals the start of the many discussions that highlight protein commonalities or other molecular evolutionary insights.

Only L amino acids make up proteins (p. 27) Why this set of 20 amino acids? (p. 33) Additional human globin genes (p. 211) Fetal hemoglobin (p. 213) Catalytic triads in hydrolytic enzymes (p. 260) Major classes of peptide-cleaving enzymes (p. 263) Zinc-based active sites in carbonic anhydrases (p. 271) Common catalytic core in type II restriction enzymes (p. 278) P-loop NTPase domains (p. 283) Conserved catalytic core in protein kinases (p. 302) Why might human blood types differ? (p. 335) Archaeal membranes (p. 350) Ion pumps (p. 374) P-type ATPases (p. 378) ATP-binding cassettes (p. 378) Sequence comparisons of Na^+ and Ca^+ channels (p. 386) Small G proteins (p. 410) Metabolism in the RNA world (p. 447) Why is glucose a prominent fuel? (p. 455) NAD^+ binding sites in dehydrogenases (p. 469) The major facilitator superfamily of transporters (p. 477) Isozymic forms of lactate dehydrogenase (p. 490) Evolution of glycolysis and gluconeogenesis (p. 491) The α -ketoglutarate dehydrogenase complex (p. 507) Domains of succinyl CoA synthase (p. 509) Evolution of the citric acid cycle (p. 518) Mitochondria evolution (p. 527) Conserved structure of cytochrome *c* (p. 543) Common features of ATP synthase and G proteins (p. 550) Related uncoupling proteins (p. 557) Chloroplast evolution (p. 568) Evolutionary origins of photosynthesis (p. 584) Evolution of the C_4 pathway (p. 600) The coordination of the Calvin cycle and the pentose phosphate pathway (p. 609) Evolution of glycogen phosphorylase (p. 627)

Increasing sophistication of glycogen phosphorylase regulation (p. 628) The α -amylase family (p. 629) A recurring motif in the activation of carboxyl groups (p. 645) Prokarvotic counterparts of the ubiquitin pathway and the proteasome (p. 677)A family of pyridoxal-dependent enzymes (p. 684) Evolution of the urea cycle (p. 688) The P-loop NTPase domain in nitrogenase (p. 708) Similar transaminases determine amino acid chirality (p. 713) Feedback inhibition (p. 724) Recurring steps in purine ring synthesis (p. 741) Ribonucleotide reductases (p. 747) Increase in urate levels during primate evolution (p. 754) The cytochrome P450 superfamily (p. 783) DNA polymerases (p. 821) Thymine and the fidelity of the genetic message (p. 841) Sigma factors in bacterial transcription (p. 858) Similarities in transcription between archaea and eukaryotes (p. 869) Evolution of spliceosome-catalyzed splicing (p. 881) Classes of aminoacyl-tRNA synthetases (p. 897) Composition of the primordial ribosome (p. 900) Homologous G proteins (p. 903) A family of proteins with common ligand-binding domains (p. 926) The independent evolution of DNA-binding sites of regulatory proteins (p. 927) Regulation by attenuator sites (p. 932) CpG islands (p. 946) Iron-response elements (p. 952) miRNAs in gene evolution (p. 954) The odorant-receptor family (p. 959) Photoreceptor evolution (p. 969) The immunoglobulin fold (p. 984) Relationship of actin to hexokinase and prokaryotic proteins (p. 1019)

Clinical Applications

38

This icon signals the start of a clinical application in the text. Additional, briefer clinical correlations appear in the text as appropriate.

Osteogenesis imperfecta (p. 45) Protein-misfolding diseases (p. 55) Protein modification and scurvy (p. 55) Antigen detection with ELISA (p. 88) Synthetic peptides as drugs (p. 96) Gene therapy (p. 167) Functional magnetic resonance imaging (p. 197) Carbon monoxide poisoning (p. 213) Sickle-cell anemia (p. 209) Thalessemia (p. 210) Aldehyde dehydrogenase deficiency (p. 232) Action of penicillin (p. 244) Protease inhibitors (p. 264) Carbonic anhydrase and osteoporosis (p. 266) Isozymes as a sign of tissue damage (p. 297) Emphysema (p. 306) Vitamin K (p. 310) Hemophilia (p. 311) Tissue-type plasminogen activator (p. 312) Monitoring changes in glycosylated hemoglobin (p. 325) Erythropoietin (p. 330) Hurler disease (p. 331) Blood groups (p. 335) I-cell disease (p. 336) Influenza virus binding (p. 339) Clinical applications of liposomes (p. 354) Aspirin and ibuprofen (p. 358) Digitalis and congenital heart failure (p. 377) Multidrug resistance (p. 378) Long QT syndrome (p. 392) Signal-transduction pathways and cancer (p. 420) Monoclonal antibodies as anticancer drugs (p. 421) Protein kinase inhibitors as anticancer drugs (p. 421) Vitamins (p. 441) Lactose intolerance (p. 471) Galactosemia (p. 472) Exercise and cancer (p. 478) Phosphatase deficiency (p. 514) Defects in the citric acid cycle and the development of cancer (p. 515) Beriberi and mercury poisoning (p. 517) Mitochondrial diseases (p. 558) Hemolytic anemia (p. 609) Glucose 6-phosphate deficiency (p. 611) Glycogen-storage diseases (p. 634) Carnitine deficiency (p. 646) Zellweger syndrome (p. 652) Diabetic ketosis (p. 655) The use of fatty acid synthase inhibitors as drugs (p. 663) Effects of aspirin on signaling pathways (p. 665)

Diseases resulting from defects in E3 proteins (p. 676) Diseases of altered ubiquitination (p. 678) Using proteasome inhibitors to treat tuberculosis (p. 679) Inherited defects of the urea cycle (hyperammonemia) (p. 688) Alcaptonuria, maple syrup urine disease, and phenylketonuria (p. 697) High homocysteine levels and vascular disease (p. 719) Inherited disorders of porphyrin metabolism (p. 730) Anticancer drugs that block the synthesis of thymidylate (p. 749) Adenosine deaminase and severe combined immunodeficiency (p. 752) Gout (p. 753) Lesch–Nyhan syndrome (p. 754) Folic acid and spina bifida (p. 755) Second messengers derived from sphingolipids and diabetes (p. 765) Respiratory distress syndrome and Tay-Sachs disease (p. 765) Diagnostic use of blood-cholesterol levels (p. 774) Hypercholesterolemia and atherosclerosis (p. 776) Mutations in the LDL receptor (p. 777) The role of HDL in protecting against arteriosclerosis (p. 778) Clinical management of cholesterol levels (p. 779) Aromatase inhibitors in the treatment of breast and ovarian cancer (p. 785) Rickets and vitamin D (p. 786) Antibiotics that target DNA gyrase (p. 831) Blocking telomerase to treat cancer (p. 837) Huntington disease (p. 842) Defective repair of DNA and cancer (p. 842) Detection of carcinogens (Ames test) (p. 843) Antibiotic inhibitors of transcription (p. 861) Burkitt lymphoma and B-cell leukemia (p. 869) Diseases of defective RNA splicing (p. 877) Vanishing white matter disease (p. 908) Antibiotics that inhibit protein synthesis (p. 909) Diphtheria (p. 910) Ricin, a lethal protein-synthesis inhibitor (p. 911) Induced pluripotent stem cells (p. 944) Anabolic steroids (p. 948) Color blindness (p. 970) The use of capsaicin in pain management (p. 974) Immune-system suppressants (p. 990) MHC and transplantation rejection (p. 998) AIDS vaccine (p. 999) Autoimmune diseases (p. 1001) Immune system and cancer (p. 1001) Vaccines (p. 1002) Charcot-Marie-Tooth disease (p. 1016) Taxol (p. 1019)

Tools and Techniques

The seventh edition of *Biochemistry* offers three chapters that present the tools and techniques of biochemistry: "Exploring Proteins and Proteomes" (Chapter 3), "Exploring Genes and Genomes" (Chapter 5), and "Exploring Evolution and Bioinformatics" (Chapter 6). Additional experimental techniques are presented throughout the book, as appropriate.

Exploring Proteins and Proteomes (Chapter 3)

Protein purification (p. 66) Differential centrifugation (p. 67) Salting out (p. 68) Dialysis (p. 69) Gel-filtration chromatography (p. 69) Ion-exchange chromatography (p. 69) Affinity chromatography (p. 70) High-pressure liquid chromatography (p. 71) Gel electrophoresis (p. 71) Isoelectric focusing (p. 73) Two-dimensional electrophoresis (p. 74) Qualitative and quantitative evaluation of protein purification (p. 75) Ultracentrifugation (p. 76) Edman degradation (p. 80) Protein sequencing (p. 82) Production of polyclonal antibodies (p. 86) Production of monoclonal antibodies (p. 86) Enzyme-linked immunoabsorbent assay (ELISA) (p. 88) Western blotting (p. 89) Fluorescence microscopy (p. 89) Green fluorescent protein as a marker (p. 89) Immunoelectron microscopy (p. 91) MALDI-TOF mass spectrometry (p. 91) Tandem mass spectrometry (p. 93) Proteomic analysis by mass spectrometry (p. 94) Automated solid-phase peptide synthesis (p. 95) X-ray crystallography (p. 98) Nuclear magnetic resonance spectroscopy (p. 101) NOESY spectroscopy (p. 102)

Exploring Proteins (other chapters)

Basis of fluorescence in green fluorescent protein (p. 58) Using irreversible inhibitors to map the active site (p. 241) Enzyme studies with catalytic antibodies (p. 243) Single-molecule studies (p. 246)

Exploring Genes and Genomes (Chapter 5)

Restriction-enzyme analysis (p. 141) Southern and northern blotting techniques (p. 142) Sanger dideoxy method of DNA sequencing (p. 143) Solid-phase synthesis of nucleic acids (p. 144) Polymerase chain reaction (PCR) (p. 145) Recombinant DNA technology (p. 148) DNA cloning in bacteria (p. 149) Creating cDNA libraries (p. 154) Mutagenesis techniques (p. 156) Next-generation sequencing (p. 160) Quantitative PCR (p. 161) Examining expression levels (DNA microarrays) (p. 162) Introducing genes into eukaryotes (p. 163) Transgenic animals (p. 164) Gene disruption (p. 164) Gene disruption by RNA interference (p. 165) Tumor-inducing plasmids (p. 166)

Exploring Genes (other chapters)

Density-gradient equilibrium sedimentation (p. 119) Chromatin immunoprecipitation (ChIP) (p. 945)

Exploring Evolution and Bioinformatics (Chapter 6)

Sequence-comparison methods (p. 174)
Sequence-alignment methods (p. 176)
Estimating the statistical significance of alignments (by shuffling) (p. 177)
Substitution matrices (p. 178)
Performing a BLAST database search (p. 181)
Sequence templates (p. 184)
Detecting repeated motifs (p. 184)
Mapping secondary structures through RNA sequence comparisons (p. 186)
Construction of evolutionary trees (p. 187)
Combinatorial chemistry (p. 188)
Molecular evolution in the laboratory (p. 189)

Other Techniques

Functional magnetic resonance imaging (fMRI) (p. 197)
Sequencing of carbohydrates by using MALDI-TOF mass spectroscopy (p. 336)
The use of liposomes to investigate membrane permeability (p. 353)
The use of hydropathy plots to locate transmembrane helices (p. 360)
Fluorescence recovery after photobleaching (FRAP) for measuring lateral diffusion in membranes (p. 361)
Patch-clamp technique for measuring channel activity (p. 383)
Measurement of redox potential (p. 528)

Animated Techniques

Animated explanations of experimental techniques used for exploring genes and proteins are available at www.whfreeman.com/berg7e.

Acknowledgments

Thanks go first and foremost to our students. Not a word was written or an illustration constructed without the knowledge that bright, engaged students would immediately detect vagueness and ambiguity. We also thank our colleagues who supported, advised, instructed, and simply bore with us during this arduous task. We are also grateful to our colleagues throughout the world who patiently answered our questions and shared their insights into recent developments.

Fareed Aboul-Ela Louisiana State University Paul Adams University of Arkansas, Fayetteville Kevin Ahern Oregon State University Edward Behrman Ohio State University Donald Beitz Iowa State University Sanford Bernstein San Diego State University Martin Brock Eastern Kentucky University W. Malcom Byrnes Howard University College of Medicine C. Britt Carlson Brookdale Community College Graham Carpenter Vanderbilt University Jun Chung Louisiana State University Michael Cusanovich University of Arizona David Daleke Indiana University Margaret Daugherty Colorado College Dan Davis University of Arkansas, Fayetteville Mary Farwell East Carolina University Brent Feske Armstrong Atlantic University Wilson Francisco Arizona State University Masava Fujita University of Houston, University Park Peter Gegenheimer University of Kansas John Goers California Polytechnic University, San Luis Obispo Neena Grover Colorado College

Paul Hager East Carolina University Frans Huijing University of Miami Nitin Jain University of Tennessee Gerwald Jogl Brown University Kelly Johanson Xavier University of Louisiana Todd Johnson Weber State University Michael Kalafatis Cleveland State University Mark Kearly Florida State University Sung-Kun Kim **Baylor** University Roger Koeppe University of Arkansas, Fayetteville Dmitry Kolpashchikov University of Central Florida John Koontz University of Tennessee Glen Legge University of Houston, University Park John Stephen Lodmell University of Montana Timothy Logan Florida State University Michael Massiah Oklahoma State University Diana McGill Northern Kentucky University Michael Mendenhall University of Kentucky David Merkler University of South Florida Gary Merrill Oregon State University Debra Moriarity University of Alabama, Huntsville Patricia Moroney Louisiana State University

We thank Susan J. Baserga and Erica A. Champion of the Yale University School of Medicine for their outstanding contributions in the sixth edition's revision of Chapter 29. We also especially thank those who served as reviewers for this new edition. Their thoughtful comments, suggestions, and encouragement have been of immense help to us in maintaining the excellence of the preceding editions. These reviewers are:

> M. Kazem Mostafapour University of Michigan, Dearborn Duarte Mota de Freitas Loyola University of Chicago Stephen Munroe Marquette University Xiaping Pan East Carolina University Scott Pattison Ball State University Stefan Paula Northern Kentucky University David Pendergrass University of Kansas **Reuben** Peters Iowa State University Wendy Pogozelski State University of New York, Geneseo Geraldine Prody Western Washington University Greg Raner University of North Carolina, Greensboro Ioshua Rausch Elmhurst College Tanea Reed Eastern Kentucky University Lori Robins California Polytechnic University, San Luis Obispo Douglas Root University of North Texas Theresa Salerno Minnesota State University, Mankato Scott Samuels University of Montana, Missoula Benjamin Sandler Oklahoma State University **Joel Schildbach** Johns Hopkins University Hua Shi State University of New York, University at Albanv Kerry Smith Clemson University Robert Stach University of Michigan, Flint

Scott Stagg Florida State University Wesley Stites University of Arkansas, Fayetteville Paul Straight Texas A&M University Gerald Stubbs Vanderbilt University Takita Felder Sumter Winthrop University Jeremy Thorner University of California, Berkeley Liang Tong Columbia University Kenneth Traxler Bemidji State University Peter Van Der Geer San Diego State University Nagarajan Vasumathi Jacksonville State University Stefan Vetter Florida Atlantic University Edward Walker Weber State University

Three of us have had the pleasure of working with the folks at W. H. Freeman and Company on a number of projects, whereas one of us is new to the Freeman family. Our experiences have always been delightful and rewarding. Writing and producing the seventh edition of Biochemistry was no exception. The Freeman team has a knack for undertaking stressful, but exhilarating, projects and reducing the stress without reducing the exhilaration and a remarkable ability to coax without ever nagging. We have many people to thank for this experience. First, we would like to acknowledge the encouragement, patience, excellent advice, and good humor of Kate Ahr Parker, Publisher. Her enthusiasm is source of energy for all of us. Lisa Samols is our wonderful developmental editor. Her insight, patience, and understanding contributed immensely to the success of this project. Beth Howe and Erica Champion assisted Lisa by developing several chapters, and we are grateful to them for their help. Georgia Lee Hadler, Senior Project Editor, managed the flow of the entire project, from copyediting through bound book, with her usual admirable efficiency. Patricia Zimmerman and Nancy Brooks, our manuscript editors, enhanced the literary consistency and clarity of the text. Vicki Tomaselli, Design Manager, produced a design and layout that makes the book exciting and eye-catching while maintaining the link to past editions. Photo Editor Christine Beuse and Photo Researcher Jacalyn Wong found the photographs that we hope make the text more inviting. Janice Donnola, Illustration

Xuemin Wang University of Missouri, St. Louis Kevin Williams Western Kentucky University Warren Williams University of British Columbia Shiyong Wu Ohio University Laura Zapanta University of Pittsburgh

Coordinator, deftly directed the rendering of new illustrations. Paul Rohloff. Production Coordinator, made sure that the significant difficulties of scheduling, composition, and manufacturing were smoothly overcome. Andrea Gawrylewski, Patrick Shriner, Marni Rolfes, and Rohit Phillip did a wonderful job in their management of the media program. Amanda Dunning ably coordinated the print supplements plan. Special thanks also to editorial assistant Anna Bristow. Debbie Clare, Associate Director of Marketing, enthusiastically introduced this newest edition of Biochemistry to the academic world. We are deeply appreciative of the sales staff for their enthusiastic support. Without them, all of our excitement and enthusiasm would ultimately come to naught. Finally, we owe a deep debt of gratitude to Elizabeth Widdicombe, President of W. H. Freeman and Company. Her vision for science textbooks and her skill at gathering exceptional personnel make working with W. H. Freeman and Company a true pleasure.

Thanks also to our many colleagues at our own institutions as well as throughout the country who patiently answered our questions and encouraged us on our quest. Finally, we owe a debt of gratitude to our families our wives, Wendie Berg, Alison Unger, and Megan Williams, and our children, Alex, Corey, and Monica Berg, Janina and Nicholas Tymoczko, and Timothy and Mark Gatto. Without their support, comfort, and understanding, this endeavor could never have been undertaken, let alone successfully completed.

BRIEF CONTENTS

Part I THE MOLECULAR DESIGN OF LIFE

- 1 Biochemistry: An Evolving Science 1
- 2 Protein Composition and Structure 25
- 3 Exploring Proteins and Proteomes 65
- 4 DNA, RNA, and the Flow of Genetic Information 109
- 5 Exploring Genes and Genomes 139
- 6 Exploring Evolution and Bioinformatics 173
- 7 Hemoglobin: Portrait of a Protein in Action 195
- 8 Enzymes: Basic Concepts and Kinetics 219
- 9 Catalytic Strategies 253
- 10 Regulatory Strategies 289
- 11 Carbohydrates 319
- 12 Lipids and Cell Membranes 345
- 13 Membrane Channels and Pumps 371
- 14 Signal-Transduction Pathways 401

Part II TRANSDUCING AND STORING ENERGY

- 15 Metabolism: Basic Concepts and Design 427
- 16 Glycolysis and Gluconeogenesis 453
- 17 The Citric Acid Cycle 497
- 18 Oxidative Phosphorylation 525
- 19 The Light Reactions of Photosynthesis 565
- 20 The Calvin Cycle and the Pentose Phosphate Pathway 589
- 21 Glycogen Metabolism 615
- 22 Fatty Acid Metabolism 639
- 23 Protein Turnover and Amino Acid Catabolism 673

Part III SYNTHESIZING THE MOLECULES OF LIFE

- 24 The Biosynthesis of Amino Acids 705
- 25 Nucleotide Biosynthesis 735
- 26 The Biosynthesis of Membrane Lipids and Steroids 759
- 27 The Integration of Metabolism 791
- 28 DNA Replication, Repair, and Recombination 819
- 29 RNA Synthesis and Processing 851
- 30 Protein Synthesis 887
- 31 The Control of Gene Expression in Prokaryotes 921
- 32 The Control of Gene Expression in Eukaryotes 937

Part IV RESPONDING TO ENVIRONMENTAL CHANGES

- 33 Sensory Systems 957
- 34 The Immune System 977
- 35 Molecular Motors 1007
- 36 Drug Development 1029

CONTENTS

Preface

	v
Part I THE MOLECULAR DESIGN OF LIF	E
Chapter 1 Biochemistry: An Evolving Science	1
1.1 Biochemical Unity Underlies Biological Diversity	1
1.2 DNA Illustrates the Interplay Between Form and Function	4
DNA is constructed from four building blocks Two single strands of DNA combine to form a	4
double helix DNA structure explains heredity and the storage of information	5 5
1.3 Concepts from Chemistry Explain the Properties of Biological Molecules	6
The double helix can form from its component strands Covalent and noncovalent bonds are important for the	6
structure and stability of biological molecules The double helix is an expression of the rules of chemistry	7 10
The laws of thermodynamics govern the behavior of biochemical systems	10
Heat is released in the formation of the double helix Acid–base reactions are central in many biochemical	12
processes Acid–base reactions can disrupt the double helix	13 14
Buffers regulate pH in organisms and in the laboratory 1.4 The Genomic Revolution Is Transforming	15
Biochemistry and Medicine The sequencing of the human genome is a landmark	17
in human history Genome sequences encode proteins and patterns of	17
expression Individuality depends on the interplay between genes	18
and environment APPENDIX: Visualizing Molecular Structures I:	19
Small Molecules	21

Chapter 2 Protein Composition and Structure 25

2.1 Proteins Are Built from a Repertoire of	
20 Amino Acids	27
2.2 Primary Structure: Amino Acids Are Linked by	

Peptide Bonds to Form Polypeptide Chains 33

35

36

Proteins have unique amino acid sequences specified by genes

Polypeptide chains are flexible yet conformationally restricted

Part

2.3 Secondary Structure: Polypeptide Chains Can Fold into Regular Structures Such As the Alpha Helix, the Beta Sheet, and Turns and Loops

Helix, the Beta Sheet, and Turns and Loops	38
The alpha helix is a coiled structure stabilized	
by intrachain hydrogen bonds	38
Beta sheets are stabilized by hydrogen bonding between	
polypeptide strands	40
Polypeptide chains can change direction by	
making reverse turns and loops	42
Fibrous proteins provide structural support for	
cells and tissues	43
2.4 Tertiary Structure: Water-Soluble Proteins	
Fold into Compact Structures with	
Nonpolar Cores	45
2.5 Quaternary Structure: Polypeptide Chains	
Can Assemble into Multisubunit Structures	48
2.6 The Amino Acid Sequence of a Protein	
Determines Its Three-Dimensional Structure	49
Amino acids have different propensities for	
forming alpha helices, beta sheets, and beta turns	50
Protein folding is a highly cooperative process	52
Proteins fold by progressive stabilization of	
intermediates rather than by random search	52
Prediction of three-dimensional structure from	
sequence remains a great challenge	54
Some proteins are inherently unstructured and	
can exist in multiple conformations	54
Protein misfolding and aggregation are associated	
with some neurological diseases	55
Protein modification and cleavage confer	
new capabilities	57
APPENDIX: Visualizing Molecular Structures II: Proteins	60

Chapter 3 Exploring Proteins and Proteomes 65

The proteome is the functional representation of the genome	66
3.1 The Purification of Proteins Is an Essential First Step in Understanding Their Function	66
The assay: How do we recognize the protein	00
that we are looking for?	67
Proteins must be released from the cell to be purified	67
Proteins can be purified according to solubility, size,	
charge, and binding affinity	68
Proteins can be separated by gel electrophoresis and	
displayed	71
A protein purification scheme can be quantitatively evaluated	75
Ultracentrifugation is valuable for separating	
biomolecules and determining their masses	76
Protein purification can be made easier with the use	
of recombinant DNA technology	78

3.2 Amino Acid Sequences of Proteins Can **Be Determined Experimentally** 79 Peptide sequences can be determined by automated Edman degradation 80 Proteins can be specifically cleaved into small peptides to facilitate analysis 82 Genomic and proteomic methods are complementary 84 **3.3** Immunology Provides Important Techniques with Which to Investigate Proteins 84 Antibodies to specific proteins can be generated 84 Monoclonal antibodies with virtually any desired specificity can be readily prepared 86 Proteins can be detected and quantified by using an enzyme-linked immunosorbent assay 88 Western blotting permits the detection of proteins separated by gel electrophoresis 89 Fluorescent markers make the visualization of 90 proteins in the cell possible **3.4** Mass Spectrometry Is a Powerful Technique for the Identification of Peptides and Proteins 91 The mass of a protein can be precisely determined 91 by mass spectrometry Peptides can be sequenced by mass spectrometry 93 Individual proteins can be identified by mass spectrometry 94 **3.5** Peptides Can Be Synthesized by Automated Solid-Phase Methods 95 3.6 Three-Dimensional Protein Structure Can Be Determined by X-ray Crystallography and NMR Spectroscopy 98 X-ray crystallography reveals three-dimensional structure in atomic detail 98 Nuclear magnetic resonance spectroscopy can reveal 101 the structures of proteins in solution **Chapter 4** DNA, RNA, and the Flow of Information 109 4.1 A Nucleic Acid Consists of Four Kinds of Bases Linked to a Sugar–Phosphate Backbone 110 RNA and DNA differ in the sugar component and one of the bases 110 Nucleotides are the monomeric units of nucleic acids 111 DNA molecules are very long 113 **4.2** A Pair of Nucleic Acid Chains with **Complementary Sequences Can Form a**

Double-Helical Structure	113
The double helix is stabilized by hydrogen bonds and	
van der Waals interactions	113
DNA can assume a variety of structural forms	115
Z-DNA is a left-handed double helix in which	
backbone phosphates zigzag	116

Some DNA molecules are circular and supercoiled	117
Single-stranded nucleic acids can adopt elaborate structures	117
4.3 The Double Helix Facilitates the Accurate Transmission of Hereditary Information	118
Differences in DNA density established the validity of the semiconservative-replication hypothesis	119
The double helix can be reversibly melted	120
4.4 DNA Is Replicated by Polymerases That Take Instructions from Templates	121
DNA polymerase catalyzes phosphodiester-bridge formation	121
The genes of some viruses are made of RNA	122
4.5 Gene Expression Is the Transformation of DNA Information into Functional Molecules	123
Several kinds of RNA play key roles in gene expression	123
All cellular RNA is synthesized by RNA polymerases	124
RNA polymerases take instructions from DNA templates	126
Transcription begins near promoter sites and ends at	
terminator sites	126
Transfer RNAs are the adaptor molecules in protein synthesis	127
4.6 Amino Acids Are Encoded by Groups of	
Three Bases Starting from a Fixed Point	128
Major features of the genetic code	129
Messenger RNA contains start and stop signals for	
protein synthesis	130
The genetic code is nearly universal	131
4.7 Most Eukaryotic Genes Are Mosaics of Introns and Exons	131
RNA processing generates mature RNA	132
Many exons encode protein domains	133
Chapter 5 Exploring Genes and Genomes	139
5.1 The Exploration of Genes Relies on	1.40
Key Tools	140
Restriction enzymes split DNA into specific fragments	141
Restriction fragments can be separated by gel electrophoresis and visualized	141
DNA can be sequenced by controlled termination of	143
replication	145
DNA probes and genes can be synthesized by automated solid-phase methods	144
Selected DNA sequences can be greatly amplified by the polymerase chain reaction	145
PCR is a powerful technique in medical diagnostics,	116
forensics, and studies of molecular evolution	146
The tools for recombinant DNA technology have been used to identify disease-causing	
mutations	147

5.2 Recombinant DNA Technology Has Revolutionized All Aspects of Biology	148
Restriction enzymes and DNA ligase are key tools in	110
forming recombinant DNA molecules	148
Plasmids and lambda phage are choice vectors for	
DNA cloning in bacteria	149
Bacterial and yeast artificial chromosomes	151
Specific genes can be cloned from digests of genomic DNA	151
Complementary DNA prepared from mRNA can be expressed in host cells	154
Proteins with new functions can be created through directed changes in DNA	156
Recombinant methods enable the exploration of the functional effects of disease-causing mutations	157
5.3 Complete Genomes Have Been	
Sequenced and Analyzed	157
The genomes of organisms ranging from bacteria to multicellular eukaryotes have been sequenced	158
The sequencing of the human genome has been finished	159
Next-generation sequencing methods enable the rapid	
determination of a whole genome sequence	160
Comparative genomics has become a powerful research tool	160
5.4 Eukaryotic Genes Can Be Quantitated and	
Manipulated with Considerable Precision	161
Gene-expression levels can be comprehensively examined	161
New genes inserted into eukaryotic cells can be efficiently expressed	163
Transgenic animals harbor and express genes introduced into their germ lines	164
Gene disruption provides clues to gene function	164
RNA interference provides an additional tool for	
disrupting gene expression	165
Tumor-inducing plasmids can be used to introduce	A 7 7
new genes into plant cells	166
Human gene therapy holds great promise for medicine	167
Chapter 6 Exploring Evolution and	
Bioinformatics	173
6.1 Homologs Are Descended from a	
Common Ancestor	174
6.2 Statistical Analysis of Sequence	1
Alignments Can Detect Homology	175
The statistical significance of alignments can be estimated by shuffling	177
Distant evolutionary relationships can be detected	
through the use of substitution matrices	178
Databases can be searched to identify homologous	
sequences	181

6.3 Examination of Three-Dimensional Structure Enhances Our Understanding of **Evolutionary Relationships** 182 Tertiary structure is more conserved than primary structure 183 Knowledge of three-dimensional structures can aid in the evaluation of sequence alignments 184 Repeated motifs can be detected by aligning sequences with themselves 184 Convergent evolution illustrates common solutions to biochemical challenges 185 Comparison of RNA sequences can be a source of insight into RNA secondary structures 186 6.4 Evolutionary Trees Can Be Constructed on the Basis of Sequence Information 187 6.5 Modern Techniques Make the Experimental **Exploration of Evolution Possible** 188 Ancient DNA can sometimes be amplified 188 and sequenced Molecular evolution can be examined experimentally 189 Chapter 7 Hemoglobin: Portrait of a Protein in Action 195 7.1 Myoglobin and Hemoglobin Bind Oxygen at Iron Atoms in Heme 196 Changes in heme electronic structure upon oxygen 197 binding are the basis for functional imaging studies The structure of myoglobin prevents the release of reactive oxygen species 198 Human hemoglobin is an assembly of four myoglobin-like subunits 199 7.2 Hemoglobin Binds Oxygen Cooperatively 199 Oxygen binding markedly changes the quaternary structure of hemoglobin 201 Hemoglobin cooperativity can be potentially explained by several models 202 Structural changes at the heme groups are transmitted to the $\alpha_1\beta_1 - \alpha_2\beta_2$ interface 204 2,3-Bisphosphoglycerate in red cells is crucial in 204 determining the oxygen affinity of hemoglobin Carbon monoxide can disrupt oxygen transport by hemoglobin 205 7.3 Hydrogen Ions and Carbon Dioxide Promote the Release of Oxygen: The Bohr Effect 206 7.4 Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease 208 Sickle-cell anemia results from the aggregation of mutated deoxyhemoglobin molecules 209 Thalassemia is caused by an imbalanced production of hemoglobin chains 210 The accumulation of free alpha-hemoglobin chains is prevented 211

	Additional globins are encoded in the human genome	211
	APPENDIX: Binding Models Can Be Formulated in Quantitative Terms: the Hill Plot and the Concerted Model	213
	Chapter 8 Enzymes: Basic Concepts and Kinetics	219
	8.1 Enzymes Are Powerful and Highly	215
	Specific Catalysts	220
	Many enzymes require cofactors for activity	221
	Enzymes can transform energy from one form into another	221
	8.2 Free Energy Is a Useful Thermodynamic	
	Function for Understanding Enzymes	222
	The free-energy change provides information about	
	the spontaneity but not the rate of a reaction	222
	The standard free-energy change of a reaction is related to the equilibrium constant	223
	Enzymes alter only the reaction rate and not the	443
	reaction equilibrium	224
	8.3 Enzymes Accelerate Reactions by Facilitating	
	the Formation of the Transition State	225
,	The formation of an enzyme–substrate complex is	
	the first step in enzymatic catalysis	226
	The active sites of enzymes have some	
	common features	227
	The binding energy between enzyme and substrate is important for catalysis	229
	8.4 The Michaelis–Menten Equation Describes	
	the Kinetic Properties of Many Enzymes	229
	Kinetics is the study of reaction rates	229
	The steady-state assumption facilitates a description of enzyme kinetics	230
	Variations in $K_{\rm M}$ can have physiological consequences	230
	$K_{\rm M}$ and $V_{\rm max}$ values can be determined by	434
	several means	232
	$K_{ m M}$ and $V_{ m max}$ values are important enzyme	
,	characteristics	233
	$k_{\rm cat}/K_{ m M}$ is a measure of catalytic efficiency	234
	Most biochemical reactions include multiple substrates	235
	Allosteric enzymes do not obey Michaelis–Menten kinetics	237
	8.5 Enzymes Can Be Inhibited by Specific	
	Molecules	238
	Reversible inhibitors are kinetically distinguishable	239
	Irreversible inhibitors can be used to map the active site	241
	Transition-state analogs are potent inhibitors	
	of enzymes	243
	Catalytic antibodies demonstrate the importance of selective	
	binding of the transition state to enzymatic activity	243
	Penicillin irreversibly inactivates a key enzyme in bacterial cell-wall synthesis	244
	Dacici i di cui - wali synthesis	444

8.6 Enzymes Can Be Studied One Molecule at a Time	246
APPENDIX: Enzymes are Classified on the Basis of the Types of Reactions That They Catalyze	248
Chapter 9 Catalytic Strategies	253
A few basic catalytic principles are used by	
many enzymes	254
9.1 Proteases Facilitate a Fundamentally	
Difficult Reaction	255
Chymotrypsin possesses a highly reactive serine residue	255
Chymotrypsin action proceeds in two steps linked by a covalently bound intermediate	256
Serine is part of a catalytic triad that also includes	
histidine and aspartate	257
Catalytic triads are found in other hydrolytic enzymes	260
The catalytic triad has been dissected by site-directed mutagenesis	262
Cysteine, aspartyl, and metalloproteases are other	202
major classes of peptide-cleaving enzymes	263
Protease inhibitors are important drugs	264
9.2 Carbonic Anhydrases Make a Fast	
Reaction Faster	266
Carbonic anhydrase contains a bound zinc ion	200
essential for catalytic activity	267
Catalysis entails zinc activation of a water molecule	268
A proton shuttle facilitates rapid regeneration of	
the active form of the enzyme	269
Convergent evolution has generated zinc-based active sites in different carbonic anhydrases	271
9.3 Restriction Enzymes Catalyze Highly	
Specific DNA-Cleavage Reactions	271
Cleavage is by in-line displacement of 3'-oxygen	
from phosphorus by magnesium-activated water	272
Restriction enzymes require magnesium for	a = 1
catalytic activity	274
The complete catalytic apparatus is assembled	
only within complexes of cognate DNA molecules, ensuring specificity	275
Host-cell DNA is protected by the addition of methyl	215
groups to specific bases	277
Type II restriction enzymes have a catalytic core in	
common and are probably related by horizontal	
gene transfer	278
9.4 Myosins Harness Changes in Enzyme	
Conformation to Couple ATP Hydrolysis to	
Mechanical Work	279
ATP hydrolysis proceeds by the attack of water on	070
the gamma-phosphoryl group	279
Formation of the transition state for ATP hydrolysis	

is associated with a substantial conformational change

280

The altered conformation of myosin persists for a substantial period of time	282
Myosins are a family of enzymes containing P-loop structures	283
Chapter 10 Regulatory Strategies	289
10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway	290
Allosterically regulated enzymes do not follow Michaelis–Menten kinetics	291
ATCase consists of separable catalytic and regulatory subunits	291
Allosteric interactions in ATCase are mediated by large changes in quaternary structure	292
Allosteric regulators modulate the T-to-R equilibrium	295
10.2 Isozymes Provide a Means of Regulation Specific to Distinct Tissues and Developmental	
Stages	296
10.3 Covalent Modification Is a Means of	
Regulating Enzyme Activity	297
Kinases and phosphatases control the extent of protein phosphorylation	298
Phosphorylation is a highly effective means of regulating the activities of target proteins	300
Cyclic AMP activates protein kinase A by altering the	000
quaternary structure	301
ATP and the target protein bind to a deep cleft in the catalytic subunit of protein kinase A	302
10.4 Many Enzymes Are Activated by Specific Proteolytic Cleavage	302
Chymotrypsinogen is activated by specific cleavage of a single peptide bond	303
Proteolytic activation of chymotrypsinogen leads to the formation of a substrate-binding site	304
The generation of trypsin from trypsinogen leads to the activation of other zymogens	305
Some proteolytic enzymes have specific inhibitors	306
Blood clotting is accomplished by a cascade of	
zymogen activations	307
Fibrinogen is converted by thrombin into a fibrin clot	308
Prothrombin is readied for activation by a vitamin K-dependent modification	310
Hemophilia revealed an early step in clotting	311
The clotting process must be precisely regulated	311
Chapter 11 Carbohydrates	319
11.1 Monosaccharides Are the Simplest	
Carbohydrates	320
Many common sugars exist in cyclic forms	322
Pyranose and furanose rings can assume different	
conformations	324

xx Contents

Glucose is a reducing sugar	325
Monosaccharides are joined to alcohols and amines through glycosidic bonds	326
Phosphorylated sugars are key intermediates in energy generation and biosyntheses	326
11.2 Monosaccharides Are Linked to Form	
Complex Carbohydrates	327
Sucrose, lactose, and maltose are the common disaccharides	327
Glycogen and starch are storage forms of glucose	328
Cellulose, a structural component of plants, is made of chains of glucose	328
11.3 Carbohydrates Can Be Linked to Proteins to Form Glycoproteins	329
Carbohydrates can be linked to proteins through	
asparagine $(N$ -linked) or through serine or	
threonine (O-linked) residues	330
The glycoprotein erythropoietin is a vital hormone	330
Proteoglycans, composed of polysaccharides and	224
protein, have important structural roles	331
Proteoglycans are important components of cartilage	332
Mucins are glycoprotein components of mucus	333
Protein glycosylation takes place in the lumen of the endoplasmic reticulum and in the Golgi complex	333
Specific enzymes are responsible for oligosaccharide	555
assembly	335
Blood groups are based on protein glycosylation	
patterns	335
Errors in glycosylation can result in pathological	
conditions	336
Oligosaccharides can be "sequenced"	336
11.4 Lectins Are Specific Carbohydrate-Binding Proteins	337
Lectins promote interactions between cells	338
Lectins are organized into different classes	338
Influenza virus binds to sialic acid residues	339
Chapter 12 Lipids and Cell Membranes	345
Many common features underlie the diversity of	
biological membranes	346
12.1 Fatty Acids Are Key Constituents of	
Lipids	346
Fatty acid names are based on their parent hydrocarbons	346
Fatty acids vary in chain length and degree of	245
unsaturation	347
12.2 There Are Three Common Types of	
Membrane Lipids	348
Phospholipids are the major class of membrane lipids	348
Membrane lipids can include carbohydrate moieties	349
Cholesterol is a lipid based on a steroid nucleus	350
Archaeal membranes are built from ether lipids with branched chains	250
DIADCOPULCUATUS	350

A membrane lipid is an amphipathic molecule containing a hydrophilic and a hydrophobic moiety	351
12.3 Phospholipids and Glycolipids Readily Form Bimolecular Sheets in Aqueous Medi	
	353
Lipid vesicles can be formed from phospholipids	353
Lipid bilayers are highly impermeable to ions and most polar molecules	354
12.4 Proteins Carry Out Most Membrane	
Processes	355
Proteins associate with the lipid bilayer in a variety of ways	355
Proteins interact with membranes in a variety of ways	356
Some proteins associate with membranes through	
covalently attached hydrophobic groups	359
Transmembrane helices can be accurately	
predicted from amino acid sequences	359
12.5 Lipids and Many Membrane Proteins Diffuse Rapidly in the Plane of the	
Membrane	361
The fluid mosaic model allows lateral movement	
but not rotation through the membrane	362
Membrane fluidity is controlled by fatty acid	
composition and cholesterol content	362
Lipid rafts are highly dynamic complexes formed	
between cholesterol and specific lipids	363
All biological membranes are asymmetric	363
12.6 Eukaryotic Cells Contain Compartmer Bounded by Internal Membranes	nts 364
Chapter 13 Membrane Channels and Pur	mps 371
The expression of transporters largely defines the	
metabolic activities of a given cell type	372
13.1 The Transport of Molecules Across a	
Membrane May Be Active or Passive	372
Many molecules require protein transporters to	
cross membranes	372
Free energy stored in concentration gradients can be	2
quantified	373
13.2 Two Families of Membrane Proteins	
Use ATP Hydrolysis to Pump lons and	
Molecules Across Membranes	374
P-type ATPases couple phosphorylation and	571
conformational changes to pump calcium ions	
conformational changes to pump calcium ions across membranes	374
across membranes	374
	374 377
across membranes Digitalis specifically inhibits the Na ⁺ –K ⁺ pump	
across membranes Digitalis specifically inhibits the Na ⁺ –K ⁺ pump by blocking its dephosphorylation	

membrane pumps with ATP-binding cassette

domains

13.3 Lactose Permease Is an Archetype of
Secondary Transporters That Use One
Concentration Gradient to Power the Formation
of Another380

13.4 Specific Channels Can Rapidly Transport	
Ions Across Membranes	
Action potentials are mediated by transient changes	

Action potentials are mediated by transient changes	200
in Na ⁺ and K ⁺ permeability	382
Patch-clamp conductance measurements reveal	
the activities of single channels	383
The structure of a potassium ion channel is an	
archetype for many ion-channel structures	383
The structure of the potassium ion channel reveals	
the basis of ion specificity	384
The structure of the potassium ion channel explains	
its rapid rate of transport	387
Voltage gating requires substantial conformational	
changes in specific ion-channel domains	387
A channel can be activated by occlusion of the pore:	
the ball-and-chain model	388
The acetylcholine receptor is an archetype for	
ligand-gated ion channels	389
Action potentials integrate the activities of several ion	
channels working in concert	391
Disruption of ion channels by mutations or	
chemicals can be potentially life threatening	392
13.5 Gap Junctions Allow Ions and Small	

Molecules to Flow Between Communicating Cells 393

13.6 Specific Channels Increase the Permeability of Some Membranes to Water 394

Chapter 14 Signal-Transduction Pathways 401

Signal transduction depends on molecular circuits	402
14.1 Heterotrimeric G Proteins Transmit Signals and Reset Themselves	403
Ligand binding to 7TM receptors leads to the	105
activation of heterotrimeric G proteins	405
Activated G proteins transmit signals by binding to other proteins	406
Cyclic AMP stimulates the phosphorylation of many target proteins by activating protein kinase A	406
G proteins spontaneously reset themselves through GTP hydrolysis	407
Some 7TM receptors activate the phosphoinositide cascade	408
Calcium ion is a widely used second messenger	409
Calcium ion often activates the regulatory protein calmodulin	410
14.2 Insulin Signaling: Phosphorylation	
Cascades Are Central to Many	
Signal-Transduction Processes	411
The insulin receptor is a dimer that closes around	
a bound insulin molecule	412

Insulin binding results in the cross-phosphorylation and activation of the insulin receptor	412
The activated insulin-receptor kinase initiates a	
kinase cascade	412
Insulin signaling is terminated by the action of phosphatases	415
14.3 EGF Signaling: Signal-Transduction Pathways Are Poised to Respond	415
EGF binding results in the dimerization of the EGF receptor	415
The EGF receptor undergoes phosphorylation of its carboxyl-terminal tail	417
EGF signaling leads to the activation of Ras, a small G protein	417
Activated Ras initiates a protein kinase cascade	418
EGF signaling is terminated by protein phosphatases and the intrinsic GTPase activity of Ras	418
14.4 Many Elements Recur with Variation in Different Signal-Transduction	
Pathways	419
14.5 Defects in Signal-Transduction Pathways Can Lead to Cancer and Other	
Diseases	420
Monoclonal antibodies can be used to inhibit signal-transduction pathways activated in tumors	420
Protein kinase inhibitors can be effective anticancer drugs	421
Cholera and whooping cough are due to altered G-protein activity	421
- r	

Part II TRANSDUCING AND STORING ENERGY

Chapter 15 Metabolism: Basic Concepts and Design	427
15.1 Metabolism Is Composed of Many	
Coupled, Interconnecting Reactions	428
Metabolism consists of energy-yielding and	
energy-requiring reactions	428
A thermodynamically unfavorable reaction can be	
driven by a favorable reaction	429
15.2 ATP Is the Universal Currency of Free	
Energy in Biological Systems	430
ATP hydrolysis is exergonic	430
ATP hydrolysis drives metabolism by shifting the	
equilibrium of coupled reactions	431
The high phosphoryl potential of ATP results	
from structural differences between ATP and its	
hydrolysis products	433
Phosphoryl-transfer potential is an important form	
of cellular energy transformation	434

15.3 The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy

13.3 The Oxidation of Carbon rules is an	
Important Source of Cellular Energy	435
Compounds with high phosphoryl-transfer potential	
can couple carbon oxidation to ATP synthesis	436
Ion gradients across membranes provide an	
important form of cellular energy that can be	
coupled to ATP synthesis	437
Energy from foodstuffs is extracted in three stages	437
15.4 Metabolic Pathways Contain Many	
Recurring Motifs	438
Activated carriers exemplify the modular design and	
economy of metabolism	438
Many activated carriers are derived from vitamins	441
Key reactions are reiterated throughout metabolism	443
Metabolic processes are regulated in three	
principal ways	445
Aspects of metabolism may have evolved from an	
RNA world	447
Chapter 16 Glycolysis and Gluconeogenesis	453
Glucose is generated from dietary carbohydrates	454
Glucose is an important fuel for most organisms	455
16.1 Glycolysis Is an Energy-Conversion	
Pathway in Many Organisms	455
Hexokinase traps glucose in the cell and begins	455
glycolysis	455
Fructose 1,6-bisphosphate is generated from glucose	155
6-phosphate	457
The six-carbon sugar is cleaved into two	107
three-carbon fragments	458
Mechanism: Triose phosphate isomerase salvages a	150
three-carbon fragment	459
The oxidation of an aldehyde to an acid powers	109
the formation of a compound with high	
phosphoryl-transfer potential	460
Mechanism: Phosphorylation is coupled to the	
oxidation of glyceraldehyde 3-phosphate by a	
thioester intermediate	462
ATP is formed by phosphoryl transfer from	
1,3-bisphosphoglycerate	463
Additional ATP is generated with the formation of	
pyruvate	464
Two ATP molecules are formed in the conversion	
of glucose into pyruvate	465
$\rm NAD^+$ is regenerated from the metabolism	
of pyruvate	466
Fermentations provide usable energy in the absence	
of oxygen	468
The binding site for NAD^+ is similar in many	
dehydrogenases	469

Fructose and galactose are converted into glycolytic intermediates

469

Many adults are intolerant of milk because they	. – .
are deficient in lactase	471
Galactose is highly toxic if the transferase is missing	472
16.2 The Glycolytic Pathway Is Tightly Controlled	472
Glycolysis in muscle is regulated to meet the need	772
for ATP	473
The regulation of glycolysis in the liver illustrates	
the biochemical versatility of the liver	474
A family of transporters enables glucose to enter and leave animal cells	477
Cancer and exercise training affect glycolysis in a similar fashion	478
16.3 Glucose Can Be Synthesized from	
Noncarbohydrate Precursors	479
Gluconeogenesis is not a reversal of glycolysis	481
The conversion of pyruvate into phosphoenolpyruvate begins with the formation of oxaloacetate	482
Oxaloacetate is shuttled into the cytoplasm and	102
converted into phosphoenolpyruvate	483
The conversion of fructose 1,6-bisphosphate into	
fructose 6-phosphate and orthophosphate is an irreversible step	484
The generation of free glucose is an important	404
control point	484
Six high-transfer-potential phosphoryl groups are	
spent in synthesizing glucose from pyruvate	485
16.4 Gluconeogenesis and Glycolysis Are Reciprocally Regulated	486
Energy charge determines whether glycolysis or	
gluconeogenesis will be most active	486
The balance between glycolysis and gluconeogenesis	487
in the liver is sensitive to blood-glucose concentration Substrate cycles amplify metabolic signals and	487
produce heat	489
Lactate and alanine formed by contracting muscle	
are used by other organs	489
Glycolysis and gluconeogenesis are evolutionarily	401
intertwined	491
Chapter 17 The Citric Acid Cycle	497
The citric acid cycle harvests high-energy electrons	498
17.1 Pyruvate Dehydrogenase Links Glycolysis to the Citric Acid Cycle	499
Mechanism: The synthesis of acetyl coenzyme a from	
pyruvate requires three enzymes and five coenzymes	500
Flexible linkages allow lipoamide to move between	FOC
different active sites	502
17.2 The Citric Acid Cycle Oxidizes	E07
Two-Carbon Units Citrate synthase forms citrate from oxaloacetate and	503
acetyl coenzyme A	504

Mechanism: The mechanism of citrate synthase	
prevents undesirable reactions	504
Citrate is isomerized into isocitrate	506
Isocitrate is oxidized and decarboxylated to	
alpha-ketoglutarate	506
Succinyl coenzyme A is formed by the oxidative	
decarboxylation of alpha-ketoglutarate	507
A compound with high phosphoryl-transfer potential	
is generated from succinyl coenzyme A	507
Mechanism: Succinyl coenzyme A synthetase transforms types of biochemical energy	508
Oxaloacetate is regenerated by the oxidation	
of succinate	509
The citric acid cycle produces high-transfer-potential electrons, ATP, and CO ₂	510
17.3 Entry to the Citric Acid Cycle and	
Metabolism Through It Are Controlled	512
The pyruvate dehydrogenase complex is regulated	
allosterically and by reversible phosphorylation	513
The citric acid cycle is controlled at several points	514
Defects in the citric acid cycle contribute to the	
development of cancer	515
17.4 The Citric Acid Cycle Is a Source of	
Biosynthetic Precursors	516
The citric acid cycle must be capable of being	510
rapidly replenished	516
	010
The disruption of pyruvate metabolism is the cause	
The disruption of pyruvate metabolism is the cause of beriberi and poisoning by mercury and arsenic	517
of beriberi and poisoning by mercury and arsenic	517
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from	517 518
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways	
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants	518
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways	
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants	518
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation	518 518
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation	518 518
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation	518 518 525
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria	518 518 525 526
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane	518 518 525 526
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on	518 518 525 526 526 527
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer	518 518 525 526 526
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is	518 518 525 526 526 527 528
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential	518 518 525 526 526 527
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential A 1.14-volt potential difference between NADH and	518 518 525 526 526 527 528
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential A 1.14-volt potential difference between NADH and molecular oxygen drives electron transport through	518 518 525 526 526 527 528
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential A 1.14-volt potential difference between NADH and	518 518 525 526 526 527 528
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential A 1.14-volt potential difference between NADH and molecular oxygen drives electron transport through the chain and favors the formation of a proton gradient	518 518 525 526 526 527 528 528
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential A 1.14-volt potential difference between NADH and molecular oxygen drives electron transport through the chain and favors the formation of a proton gradient 18.3 The Respiratory Chain Consists of	518 518 525 526 526 527 528 528
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential A 1.14-volt potential difference between NADH and molecular oxygen drives electron transport through the chain and favors the formation of a proton gradient 18.3 The Respiratory Chain Consists of Four Complexes: Three Proton Pumps and	518 518 525 526 526 527 528 528 528 530
of beriberi and poisoning by mercury and arsenic The citric acid cycle may have evolved from preexisting pathways 17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate Chapter 18 Oxidative Phosphorylation 18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria Mitochondria are bounded by a double membrane Mitochondria are the result of an endosymbiotic event 18.2 Oxidative Phosphorylation Depends on Electron Transfer The electron-transfer potential of an electron is measured as redox potential A 1.14-volt potential difference between NADH and molecular oxygen drives electron transport through the chain and favors the formation of a proton gradient 18.3 The Respiratory Chain Consists of	518 518 525 526 526 527 528 528

Ubiquinol is the entry point for electrons from $FADH_2$ of flavoproteins	535
Electrons flow from ubiquinol to cytochrome <i>c</i> through Q-cytochrome <i>c</i> oxidoreductase	535
The Q cycle funnels electrons from a two-electron	
carrier to a one-electron carrier and pumps protons	536
Cytochrome <i>c</i> oxidase catalyzes the reduction of	
molecular oxygen to water	537
Toxic derivatives of molecular oxygen such as superoxide radical are scavenged by protective enzymes Electrons can be transferred between groups that are	540
not in contact.	542
The conformation of cytochrome <i>c</i> has remained	012
essentially constant for more than a billion years	543
18.4 A Proton Gradient Powers the	
Synthesis of ATP	543
ATP synthase is composed of a proton-conducting unit and a catalytic unit	545
Proton flow through ATP synthase leads to the release of tightly bound ATP: The binding-change mechanism	546
	540 547
Rotational catalysis is the world's smallest molecular motor	
Proton flow around the \mathbf{c} ring powers ATP synthesis	548
ATP synthase and G proteins have several common features	550
18.5 Many Shuttles Allow Movement Across	
Mitochondrial Membranes	550
Electrons from cytoplasmic NADH enter mitochondria by shuttles	551
The entry of ADP into mitochondria is coupled to the exit of ATP by ATP-ADP translocase	552
Mitochondrial transporters for metabolites have a common tripartite structure	553
18.6 The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP	554
The complete oxidation of glucose yields about	551
30 molecules of ATP	554
The rate of oxidative phosphorylation is determined	001
by the need for ATP	555
Regulated uncoupling leads to the generation of heat	556
Oxidative phosphorylation can be inhibited at many stages	558
Mitochondrial diseases are being discovered	558
Mitochondria play a key role in apoptosis	559
Power transmission by proton gradients is a central motif of bioenergetics	559
Chapter 19 The Light Reactions of	
Photosynthesis	565
Photosynthesis converts light energy into chemical energy	566
19.1 Photosynthesis Takes Place in Chloroplasts	567
The primary events of photosynthesis take place in	
thylakoid membranes	567
Chloroplasts arose from an endosymbiotic event	568

19.2 Light Absorption by Chlorophyll Induces Electron Transfer

A special pair of chlorophylls initiate charge separation Cyclic electron flow reduces the cytochrome of the	569
reaction center	572
19.3 Two Photosystems Generate a Proton Gradient and NADPH in Oxygenic	
Photosynthesis	572
Photosystem II transfers electrons from water to	
plastoquinone and generates a proton gradient	572
Cytochrome bf links photosystem II to photosystem I	575
Photosystem I uses light energy to generate reduced ferredoxin, a powerful reductant	575
Ferredoxin–NADP ⁺ reductase converts NADP ⁺	
into NADPH	576
19.4 A Proton Gradient Across the Thylakoid	
Membrane Drives ATP Synthesis	577
The ATP synthase of chloroplasts closely resembles	
those of mitochondria and prokaryotes	578
Cyclic electron flow through photosystem I leads to the production of ATP instead of NADPH	579
The absorption of eight photons yields one O_2 , two NADPH, and three ATP molecules	580
19.5 Accessory Pigments Funnel Energy into Reaction Centers	581
	201
Resonance energy transfer allows energy to move from the site of initial absorbance to the reaction	
center	581
Light-harvesting complexes contain additional	501
chlorophylls and carotinoids	582
The components of photosynthesis are highly organized	583
Many herbicides inhibit the light reactions of	
photosynthesis	584
19.6 The Ability to Convert Light into Chemical	
Energy Is Ancient	584
<u>.</u>	

Chapter 20 The Calvin Cycle and Pentose Phosphate Pathway

20.1 The Calvin Cycle Synthesizes Hexoses	
from Carbon Dioxide and Water	590
Carbon dioxide reacts with ribulose 1,5-bisphosphate to form two molecules of 3-phosphoglycerate	591
Rubisco activity depends on magnesium and carbamate	592
Rubisco also catalyzes a wasteful oxygenase reaction: Catalytic imperfection	593
Hexose phosphates are made from phosphoglycerate, and ribulose 1,5-bisphosphate is regenerated	594
Three ATP and two NADPH molecules are used to bring carbon dioxide to the level of a hexose	597
Starch and sucrose are the major carbohydrate stores in plants	597

20.2 The Activity of the Calvin Cycle Depends on Environmental Conditions

on Environmental Conditions	597
Rubisco is activated by light-driven changes in proton and magnesium ion concentrations	598
Thioredoxin plays a key role in regulating the Calvin cycle	598
The C_4 pathway of tropical plants accelerates	570
photosynthesis by concentrating carbon dioxide	599
Crassulacean acid metabolism permits growth in arid ecosystems	600
20.3 The Pentose Phosphate Pathway Generates NADPH and Synthesizes Five-Carbon Sugars	601
Two molecules of NADPH are generated in the conversion of glucose 6-phosphate into ribulose	601
5-phosphate	001
The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase	601
Mechanism: Transketolase and transaldolase stabilize carbanionic intermediates by different mechanisms	604
20.4 The Metabolism of Glucose 6-phosphate	
by the Pentose Phosphate Pathway Is	
Coordinated with Glycolysis	606
The rate of the pentose phosphate pathway is controlled by the level of NADP^+	606
The flow of glucose 6-phosphate depends on the need for NADPH, ribose 5-phosphate, and ATP	607
Through the looking-glass: The Calvin cycle and the pentose phosphate pathway are mirror images	609
20.5 Glucose 6-phosphate Dehydrogenase Plays a Key Role in Protection Against Reactive	
Oxygen Species	609
Glucose 6-phosphate dehydrogenase deficiency causes a drug-induced hemolytic anemia	609
A deficiency of glucose 6-phosphate dehydrogenase confers an evolutionary advantage in some	
circumstances	611
Chapter 21 Glycogen Metabolism	615
Glycogen metabolism is the regulated release and storage of glucose	616
21.1 Glycogen Breakdown Requires the Interplay of Several Enzymes	617
Phosphorylase catalyzes the phosphorolytic cleavage	• • • •
of glycogen to release glucose 1-phosphate	617
Mechanism: Pyridoxal phosphate participates in the phosphorolytic cleavage of glycogen	618
A debranching enzyme also is needed for the	619
breakdown of glycogen Phosphoglucomutase converts glucose 1-phosphate	019
into glucose 6-phosphate	620
The liver contains glucose 6-phosphatase, a hydrolytic enzyme absent from muscle	621

21.2 Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation

621

Muscle phosphorylase is regulated by the intracellular	() (
energy charge	621
Liver phosphorylase produces glucose for use by other	(02
tissues	623
Phosphorylase kinase is activated by phosphorylation and calcium ions	623
21.3 Epinephrine and Glucagon Signal the Need for Glycogen Breakdown	624
G proteins transmit the signal for the initiation of	(04
glycogen breakdown	624
Glycogen breakdown must be rapidly turned off when necessary	626
The regulation of glycogen phosphorylase became	020
more sophisticated as the enzyme evolved	627
21.4 Glycogen Is Synthesized and Degraded	
by Different Pathways	627
UDP-glucose is an activated form of glucose	627
Glycogen synthase catalyzes the transfer of glucose	027
from UDP-glucose to a growing chain	628
A branching enzyme forms α -1,6 linkages	629
Glycogen synthase is the key regulatory enzyme in	04,
glycogen synthesis	629
Glycogen is an efficient storage form of glucose	629
21.5 Glycogen Breakdown and Synthesis Are	
Reciprocally Regulated	630
Protein phosphatase 1 reverses the regulatory effects	
of kinases on glycogen metabolism	631
.	001
Insulin stimulates glycogen synthesis by inactivating glycogen synthase kinase	632
glycogen synthase kinase	
glycogen synthase kinase Glycogen metabolism in the liver regulates the	632
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level	632
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible	632 633 634
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage	632 633
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism	632 633 634
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible	632 633 634
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions	632 633 634 639
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated	632 633 634 639
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions	632 633 634 639 640
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases	 632 633 634 639 640 641
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons	 632 633 634 639 640 641 641
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires	 632 633 634 639 640 641 641
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires Three Stages of Processing	632 633 634 639 640 641 641 642
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires	632 633 634 639 640 641 641 642
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires Three Stages of Processing Triacylglycerols are hydrolyzed by hormone-stimulated	 632 633 634 639 640 641 641 642 643
 glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires Three Stages of Processing Triacylglycerols are hydrolyzed by hormone-stimulated lipases 	 632 633 634 639 640 641 641 642 643
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires Three Stages of Processing Triacylglycerols are hydrolyzed by hormone-stimulated lipases Fatty acids are linked to coenzyme A before they are oxidized Carnitine carries long-chain activated fatty acids	 632 633 634 639 640 641 641 642 643 643
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires Three Stages of Processing Triacylglycerols are hydrolyzed by hormone-stimulated lipases Fatty acids are linked to coenzyme A before they are oxidized Carnitine carries long-chain activated fatty acids into the mitochondrial matrix	 632 633 634 639 640 641 641 642 643 643
glycogen synthase kinase Glycogen metabolism in the liver regulates the blood-glucose level A biochemical understanding of glycogen-storage diseases is possible Chapter 22 Fatty Acid Metabolism Fatty acid degradation and synthesis mirror each other in their chemical reactions 22.1 Triacylglycerols Are Highly Concentrated Energy Stores Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons 22.2 The Use of Fatty Acids As Fuel Requires Three Stages of Processing Triacylglycerols are hydrolyzed by hormone-stimulated lipases Fatty acids are linked to coenzyme A before they are oxidized Carnitine carries long-chain activated fatty acids	 632 633 634 639 640 641 641 642 643 644

The digestion of dietary proteins begins in the	
23.1 Proteins Are Degraded to Amino Acids	673 674
Chapter 23 Protein Turnover and Amino Acid Catabolism	67
Acetyl CoA carboxylase is regulated by a variety of hormones	66
the cell	66
in Controlling Fatty Acid Metabolism Acetyl CoA carboxylase is regulated by conditions in	66
22.6 Acetyl CoA Carboxylase Plays a Key Role	
Eicosanoid hormones are derived from polyunsaturated fatty acids	66
Membrane-bound enzymes generate unsaturated fatty acid	ls 66
Enzyme Systems	66
22.5 The Elongation and Unsaturation of Fatty Acids Are Accomplished by Accessory	
Fatty acid synthase inhibitors may be useful drugs	66
Several sources supply NADPH for fatty acid synthesis	66
Citrate carries acetyl groups from mitochondria to the cytoplasm for fatty acid synthesis	66
The synthesis of palmitate requires 8 molecules of acetyl CoA, 14 molecules of NADPH, and 7 molecules of ATP	66
enzyme complex in animals	65
reduction, dehydration, and reduction reactions Fatty acids are synthesized by a multifunctional	65
an acyl carrier protein Fatty acid synthesis consists of a series of condensation,	65
in fatty acid synthesis Intermediates in fatty acid synthesis are attached to	65
pathways The formation of malonyl CoA is the committed step	05
Fatty acids are synthesized and degraded by different	65
Acid Synthase	65
22.4 Fatty Acids Are Synthesized by Fatty	05
Ketone bodies are a major fuel in some tissues Animals cannot convert fatty acids into glucose	65 65
fat breakdown predominates	65
Ketone bodies are formed from acetyl CoA when	00
rearrangement to form succinyl CoA Fatty acids are also oxidized in peroxisomes	65 65
Mechanism: Methylmalonyl CoA mutase catalyzes a	
Vitamin B_{12} contains a corrin ring and a cobalt atom	65
the oxidation of unsaturated fatty acids Odd-chain fatty acids yield propionyl CoA in the final thiolysis step	64 64
An isomerase and a reductase are required for	
Require Additional Steps for Degradation	64
22.3 Unsaturated and Odd-Chain Fatty Acids	

Cellular proteins are degraded at different rates

675

xxvi Contents

23.2 Protein Turnover Is Tightly Regulated Ubiquitin tags proteins for destruction	675 675	Part III SYNTHESIZING THE MOLECUL OF LIFE	ES
The proteasome digests the ubiquitin-tagged proteins	677	Chapter 24 The Biosynthesis of Amino Acids	705
The ubiquitin pathway and the proteasome have prokaryotic counterparts	677	Amino acid synthesis requires solutions to three key biochemical problems	706
Protein degradation can be used to regulate biological function	678	24.1 Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce	
23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen	680	Atmospheric Nitrogen to Ammonia The iron–molybdenum cofactor of nitrogenase binds	706
Alpha-amino groups are converted into amonium ions by the oxidative deamination		and reduces atmospheric nitrogen Ammonium ion is assimilated into an amino acid	707
of glutamate Mechanism: Pyridoxal phosphate forms Schiff-base	680	through glutamate and glutamine	709
intermediates in aminotransferases Aspartate aminotransferase is an archetypal	681	24.2 Amino Acids Are Made from Intermediate of the Citric Acid Cycle and Other Major	S
pyridoxal-dependent transaminase Pyridoxal phosphate enzymes catalyze a wide array	682	Pathways Human beings can synthesize some amino acids but	711
of reactions Serine and threonine can be directly	683	must obtain others from the diet	711
deaminated	684	Aspartate, alanine, and glutamate are formed by the addition of an amino group to an alpha-ketoacid	712
Peripheral tissues transport nitrogen to the liver	684	A common step determines the chirality of all amino acids	713
23.4 Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates	685	The formation of asparagine from aspartate requires an adenylated intermediate	713
The urea cycle begins with the formation of carbamoyl phosphate	685	Glutamate is the precursor of glutamine, proline, and arginine	714
The urea cycle is linked to gluconeogenesis Urea-cycle enzymes are evolutionarily related to	687	3-Phosphoglycerate is the precursor of serine, cysteine, and glycine	714
enzymes in other metabolic pathways	688	Tetrahydrofolate carries activated one-carbon units at several oxidation levels	715
Inherited defects of the urea cycle cause hyperammonemia and can lead to brain damage	688	S-Adenosylmethionine is the major donor of methyl groups	716
Urea is not the only means of disposing of excess nitrogen	689	Cysteine is synthesized from serine and	
23.5 Carbon Atoms of Degraded Amino Acids Emerge As Major Metabolic		homocysteine High homocysteine levels correlate with	718
Intermediates	690	vascular disease Shikimate and chorismate are intermediates in the	719
Pyruvate is an entry point into metabolism for a number of amino acids	691	biosynthesis of aromatic amino acids Tryptophan synthase illustrates substrate channeling	719
Oxaloacetate is an entry point into metabolism for aspartate and asparagine	692	in enzymatic catalysis	722
Alpha-ketoglutarate is an entry point into metabolism for five-carbon amino acids	692	24.3 Feedback Inhibition Regulates Amino Acid Biosynthesis	723
Succinyl coenzyme A is a point of entry for several nonpolar amino acids	693	Branched pathways require sophisticated regulation	723
Methionine degradation requires the formation of a key methyl donor, S-adenosylmethionine	693	An enzymatic cascade modulates the activity of glutamine synthetase	725
The branched-chain amino acids yield acetyl CoA, acetoacetate, or propionyl CoA	693	24.4 Amino Acids Are Precursors of Many Biomolecules	726
Oxygenases are required for the degradation of aromatic amino acids	695	Glutathione, a gamma-glutamyl peptide, serves as	727
23.6 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation	697	a sulfhydryl buffer and an antioxidant Nitric oxide, a short-lived signal molecule, is formed from arginine	727
	097	nom argninie	141

Porphyrins are synthesized from glycine and succinyl coenzyme A	728
Porphyrins accumulate in some inherited disorders of porphyrin metabolism	730
Chapter 25 Nucleotide Biosynthesis	735
Nucleotides can be synthesized by de novo or salvage pathways	736
25.1 The Pyrimidine Ring Is Assembled de Novo or Recovered by Salvage Pathways	737
Bicarbonate and other oxygenated carbon compounds are activated by phosphorylation	737
The side chain of glutamine can be hydrolyzed to generate ammonia	737
Intermediates can move between active sites by channeling	737
Orotate acquires a ribose ring from PRPP to form a pyrimidine nucleotide and is converted	
into uridylate Nucleotide mono-, di-, and triphosphates are	738
interconvertible	739
CTP is formed by amination of UTP	739
Salvage pathways recycle pyrimidine bases	740
25.2 Purine Bases Can Be Synthesized de Novo or Recycled by Salvage Pathways	740
The purine ring system is assembled on ribose phosphate	740
The purine ring is assembled by successive steps of activation by phosphorylation followed by	740
displacement	741
AMP and GMP are formed from IMP	743
Enzymes of the purine synthesis pathway associate	
with one another in vivo	744
Salvage pathways economize intracellular energy expenditure	744
25.3 Deoxyribonucleotides Are Synthesized	
by the Reduction of Ribonucleotides Through a Radical Mechanism	745
Mechanism: A tyrosyl radical is critical to the action of ribonucleotide reductase	745
Stable radicals other than tyrosyl radical are employed by other ribonucleotide reductases	747
Thymidylate is formed by the methylation of deoxyuridylate	748
Dihydrofolate reductase catalyzes the regeneration	
of tetrahydrofolate, a one-carbon carrier	749
Several valuable anticancer drugs block the synthesis of thymidylate	749
25.4 Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition	750
Pyrimidine biosynthesis is regulated by aspartate transcarbamoylase	751

The synthesis of purine nucleotides is controlled by feedback inhibition at several sites The synthesis of deoxyribonucleotides is	751
controlled by the regulation of ribonucleotide reductase	752
25.5 Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions	752
The loss of adenosine deaminase activity results in severe combined immunodeficiency	752
Gout is induced by high serum levels of urate	753
Lesch–Nyhan syndrome is a dramatic consequence of mutations in a salvage-pathway enzyme	754
Folic acid deficiency promotes birth defects such as spina bifida	755
Chapter 26 The Biosynthesis of Membrane Lipids and Steroids	759
26.1 Phosphatidate Is a Common Intermedia	te
in the Synthesis of Phospholipids and	
Triacylglycerols The synthesis of phospholipids requires an activated	760
intermediate	761
Sphingolipids are synthesized from ceramide Gangliosides are carbohydrate-rich sphingolipids	763
that contain acidic sugars Sphingolipids confer diversity on lipid structure and	764
function	765
Respiratory distress syndrome and Tay–Sachs disease result from the disruption of lipid metabolism	765
Phosphatiditic acid phosphatase is a key regulatory enzyme in lipid metabolism	766
26.2 Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages	767
The synthesis of mevalonate, which is activated as isopentenyl pyrophosphate, initiates the synthesis of	
cholesterol	767
Squalene (C_{30}) is synthesized from six molecules of	
isopentenyl pyrophosphate (C_5)	768
Squalene cyclizes to form cholesterol	769
26.3 The Complex Regulation of Cholesterol Biosynthesis Takes Place at	
Several Levels	770
Lipoproteins transport cholesterol and triacylglycerols throughout the organism	773
The blood levels of certain lipoproteins can serve diagnostic purposes	774
Low-density lipoproteins play a central role in cholesterol metabolism	775
The absence of the LDL receptor leads to	
hypercholesterolemia and atherosclerosis	776
Mutations in the LDL receptor prevent LDL release and result in receptor destruction	777

xxviii Contents

HDL appears to protect against arteriosclerosis The clinical management of cholesterol levels can be	778
understood at a biochemical level	779
26.4 Important Derivatives of Cholesterol	
Include Bile Salts and Steroid Hormones	779
Letters identify the steroid rings and numbers identify the carbon atoms	781
Steroids are hydroxylated by cytochrome P450	
monooxygenases that use NADPH and O_2	781
The cytochrome P450 system is widespread and performs a protective function	782
Pregnenolone, a precursor of many other steroids, is formed from cholesterol by cleavage of its side chain	783
Progesterone and corticosteroids are synthesized from	
pregnenolone	783
Androgens and estrogens are synthesized from	
pregnenolone	784
Vitamin D is derived from cholesterol by the	705
ring-splitting activity of light	785
Chapter 27 The Integration of Metabolism	791
27.1 Caloric Homeostasis Is a Means of	
Regulating Body Weight	792
27.2 The Brain Plays a Key Role in Caloric	
Homeostasis	794
Signals from the gastrointestinal tract induce feelings	
of satiety	794
Leptin and insulin regulate long-term control	705
over caloric homeostasis	795
Leptin is one of several hormones secreted by adipose tissue	796
Leptin resistance may be a contributing factor	
to obesity	797
Dieting is used to combat obesity	797
27.3 Diabetes Is a Common Metabolic Disease	
Often Resulting from Obesity	798
Insulin initiates a complex signal-transduction	
pathway in muscle	798
Metabolic syndrome often precedes type 2 diabetes	800
Excess fatty acids in muscle modify metabolism	800
Insulin resistance in muscle facilitates pancreatic failure	801
Metabolic derangements in type 1 diabetes result from insulin insufficiency and glucagon excess	802
27.4 Exercise Beneficially Alters the	
Biochemistry of Cells	803
Mitochondrial biogenesis is stimulated by muscular activity	804
Fuel choice during exercise is determined by the	
intensity and duration of activity	805
27.5 Food Intake and Starvation Induce	
Metabolic Changes	806
The starved–fed cycle is the physiological response	
to a fast	807

Metabolic adaptations in prolonged starvation minimize protein degradation	808
27.6 Ethanol Alters Energy Metabolism in	
the Liver	810
Ethanol metabolism leads to an excess of NADH Excess ethanol consumption disrupts vitamin	810
metabolism	812
Chapter 28 DNA Replication, Repair, and Recombination	010
	819
28.1 DNA Replication Proceeds by the	
Polymerization of Deoxyribonucleoside	000
Triphosphates Along a Template	820
DNA polymerases require a template and a primer All DNA polymerases have structural features in	820
common	821
Two bound metal ions participate in the	
polymerase reaction	821
The specificity of replication is dictated by	000
complementarity of shape between bases	822
An RNA primer synthesized by primase enables DNA synthesis to begin	823
One strand of DNA is made continuously, whereas	
the other strand is synthesized in fragments	823
DNA ligase joins ends of DNA in duplex regions	824
The separation of DNA strands requires specific helicases and ATP hydrolysis	824
28.2 DNA Unwinding and Supercoiling Are	
Controlled by Topoisomerases	825
The linking number of DNA, a topological property,	
determines the degree of supercoiling	826
Topoisomerases prepare the double helix for	
unwinding	828
Type I topoisomerases relax supercoiled structures Type II topoisomerases can introduce negative	828
supercoils through coupling to ATP hydrolysis	829
28.3 DNA Replication Is Highly Coordinated	831
DNA replication requires highly processive polymerases The leading and lagging strands are synthesized	831
in a coordinated fashion	832
DNA replication in Escherichia coli begins at a	
unique site	834
DNA synthesis in eukaryotes is initiated at multiple sites Telomeres are unique structures at the ends of	835
linear chromosomes	836
Telomeres are replicated by telomerase, a specialized polymerase that carries its own RNA template	837
	007
28.4 Many Types of DNA Damage Can Be	077
Repaired	837
Errors can arise in DNA replication	837
Bases can be damaged by oxidizing agents, alkylating agents, and light	838
useries, und insite	000

DNA damage can be detected and repaired by a variety of systems	839
The presence of thymine instead of uracil in DNA permits the repair of deaminated cytosine	841
Some genetic diseases are caused by the expansion of repeats of three nucleotides	842
Many cancers are caused by the defective repair of DNA	842
Many potential carcinogens can be detected by their mutagenic action on bacteria	843
28.5 DNA Recombination Plays Important Roles in Replication, Repair, and Other Processes	844
RecA can initiate recombination by promoting strand invasion	844
Some recombination reactions proceed through Holliday-junction intermediates	845
Chapter 29 RNA Synthesis and Processing	851
RNA synthesis comprises three stages: Initiation, elongation, and termination	852
29.1 RNA Polymerases Catalyze Transcription	853
RNA chains are formed de novo and grow in the 5'-to-3' direction	854
RNA polymerases backtrack and correct errors	856
RNA polymerase binds to promoter sites on the DNA	000
template to initiate transcription	856
Sigma subunits of RNA polymerase recognize	857
promoter sites	00/
RNA polymerases must unwind the template double helix for transcription to take place	858
Elongation takes place at transcription bubbles	0.50
that move along the DNA template	858
Sequences within the newly transcribed RNA signal	
termination	859
Some messenger RNAs directly sense metabolite	
concentrations	860
The <i>rho</i> protein helps to terminate the transcription	040
of some genes	860 861
Some antibiotics inhibit transcription	801
Precursors of transfer and ribosomal RNA are cleaved and chemically modified after transcription	
in prokaryotes	863
29.2 Transcription in Eukaryotes Is Highly	
Regulated	864
Three types of RNA polymerase synthesize RNA in	001
eukaryotic cells	865
Three common elements can be found in the RNA	
polymerase II promoter region	866
The TFIID protein complex initiates the assembly of	
the active transcription complex	867
Multiple transcription factors interact with eukaryotic	0.40
promoters	868

Enhancer sequences can stimulate transcription at start sites thousands of bases away	868
29.3 The Transcription Products of Eukaryotic	
Polymerases Are Processed	869
RNA polymerase I produces three ribosomal RNAs	869
RNA polymerase III produces transfer RNA	870
The product of RNA polymerase II, the pre-mRNA transcript, acquires a 5' cap and a 3' poly(A) tail	870
Small regulatory RNAs are cleaved from larger	
precursors	872
RNA editing changes the proteins encoded by mRNA	872
Sequences at the ends of introns specify splice sites	072
in mRNA precursors	873
Splicing consists of two sequential transesterification reactions	874
Small nuclear RNAs in spliceosomes catalyze the	
splicing of mRNA precursors	875
Transcription and processing of mRNA are coupled	877
Mutations that affect pre-mRNA splicing cause disease	877
Most human pre-mRNAS can be spliced in alternative	
ways to yield different proteins	878
29.4 The Discovery of Catalytic RNA Was Revealing in Regard to Both Mechanism and	
Evolution	879

Chapter 30 Protein Synthesis	887
30.1 Protein Synthesis Requires the Translation of Nucleotide Sequences into Amino Acid	
Sequences	888
The synthesis of long proteins requires a low error	
frequency	888
Transfer RNA molecules have a common design	889
Some transfer RNA molecules recognize more than one codon because of wobble in base-pairing	891
30.2 Aminoacyl Transfer RNA Synthetases Read the Genetic Code	893
Amino acids are first activated by adenylation	893
Aminoacyl-tRNA synthetases have highly discriminating amino acid activation sites	894
Proofreading by aminoacyl-tRNA synthetases increases the fidelity of protein synthesis	895
Synthetases recognize various features of transfer RNA molecules	896
Aminoacyl-tRNA synthetases can be divided into two classes	897
30.3 The Ribosome Is the Site of Protein Synthesis	897
Ribosomal RNAs (5S, 16S, and 23S rRNA) play a central role in protein synthesis	898
Ribosomes have three tRNA-binding sites that bridge the 30s and 50s subunits	900

XXX Contents

The start signal is usually AUG preceded by several bases that pair with 16S rRNA	900
Bacterial protein synthesis is initiated by	0.01
formylmethionyl transfer RNA Formylmethionyl-tRNA _f is placed in the P site of	901
the ribosome in the formation of the $70S$	
initiation complex	902
Elongation factors deliver aminoacyl-tRNA to the ribosome	902
Peptidyl transferase catalyzes peptide-bond	102
synthesis	903
The formation of a peptide bond is followed by the GTP-driven translocation of tRNAs and mRNA	904
Protein synthesis is terminated by release factors	0.07
that read stop codons	906
30.4 Eukaryotic Protein Synthesis Differs from Prokaryotic Protein Synthesis Primarily	
in Translation Initiation	907
Mutations in initiation factor 2 cause a curious	
pathological condition	908
30.5 A Variety of Antibiotics and Toxins Can	
Inhibit Protein Synthesis Some antibiotics inhibit protein synthesis	909 909
Diphtheria toxin blocks protein synthesis in eukaryotes	909
by inhibiting translocation	910
Ricin fatally modifies 28S ribosomal RNA	911
30.6 Ribosomes Bound to the Endoplasmic Reticulum Manufacture Secretory and	
Membrane Proteins	911
Signal sequences mark proteins for translocation across the endoplasmic reticulum membrane	911
Transport vesicles carry cargo proteins to their final destination	913
	715
Chapter 31 The Control of Gene Expression	
in Prokaryotes	921
31.1 Many DNA-Binding Proteins Recognize	
Specific DNA Sequences	922
The helix-turn-helix motif is common to many prokaryotic DNA-binding proteins	923
31.2 Prokaryotic DNA-Binding Proteins Bind	
Specifically to Regulatory Sites in Operons	923
An operon consists of regulatory elements and protein-encoding genes	924
The <i>lac</i> repressor protein in the absence of lactose	, , , ,
binds to the operator and blocks transcription	925
Ligand binding can induce structural changes in	926
regulatory proteins The operon is a common regulatory unit in	940
prokaryotes	926
Transcription can be stimulated by proteins that	
contact RNA polymerase	927

31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression	928
Lambda repressor regulates its own expression	92
A circuit based on lambda repressor and Cro form a genetic switch	92
Many prokaryotic cells release chemical signals that regulate gene expression in other cells	92
Biofilms are complex communities of prokaryotes	93
31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels	93
Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent	
RNA secondary structure	93
Chapter 32 The Control of Gene Expression in Eukaryotes	93 ⁻
32.1 Eukaryotic DNA Is Organized into	
Chromatin	93
Nucleosomes are complexes of DNA and histones DNA wraps around histone octamers to form nucleosomes	93 93
32.2 Transcription Factors Bind DNA and	93
Regulate Transcription Initiation	94
A range of DNA-binding structures are employed	0.1
by eukaryotic DNA-binding proteins Activation domains interact with other proteins	94 94
Multiple transcription factors interact with other proteins	27
regulatory regions	94
Enhancers can stimulate transcription in specific cell types	94
Induced pluripotent stem cells can be generated by introducing four transcription factors into	
differentiated cells	94
32.3 The Control of Gene Expression Can Require Chromatin Remodeling	94
The methylation of DNA can alter patterns of gene	51
expression	94
Steroids and related hydrophobic molecules pass through membranes and bind to DNA-binding receptors	94
Nuclear hormone receptors regulate transcription by recruiting coactivators to the transcription complex	94
Steroid-hormone receptors are targets for drugs	94
Chromatin structure is modulated through covalent modifications of histone tails	94
Histone deacetylases contribute to transcriptional repression	95
32.4 Eukaryotic Gene Expression Can Be Controlled at Posttranscriptional Levels	95
Genes associated with iron metabolism are translationally regulated in animals	95
Small RNAs regulate the expression of many eukaryotic genes	95

Part IV RESPONDING TO ENVIRONMENTAL CHANGES

Chapter 33 Sensory Systems	957
33.1 A Wide Variety of Organic Compounds Are Detected by Olfaction	958
Olfaction is mediated by an enormous family of seven-transmembrane-helix receptors	958
Odorants are decoded by a combinatorial mechanism	960
33.2 Taste Is a Combination of Senses That Function by Different Mechanisms	962
Sequencing of the human genome led to the discovery of a large family of 7TM bitter receptors A heterodimeric 7TM receptor responds to sweet	963
compounds	964
Umami, the taste of glutamate and aspartate, is mediated by a heterodimeric receptor related to the sweet receptor	965
Salty tastes are detected primarily by the passage of sodium ions through channels	965
Sour tastes arise from the effects of hydrogen ions (acids) on channels	965
33.3 Photoreceptor Molecules in the Eye Detect Visible Light	966
Rhodopsin, a specialized 7TM receptor, absorbs visible light	966
Light absorption induces a specific isomerization of bound 11- <i>cis</i> -retinal	967
Light-induced lowering of the calcium level coordinates recovery	968
Color vision is mediated by three cone receptors that are homologs of rhodopsin Rearrangements in the genes for the green and	969
red pigments lead to "color blindness"	970
33.4 Hearing Depends on the Speedy Detection of Mechanical Stimuli	971
Hair cells use a connected bundle of stereocilia to detect tiny motions Mechanosensory channels have been identified in	971
Drosophila and vertebrates	972
33.5 Touch Includes the Sensing of Pressure, Temperature, and Other Factors	973
Studies of capsaicin reveal a receptor for sensing high temperatures and other painful stimuli	973
More sensory systems remain to be studied	974
Chapter 34 The Immune System	977
Innate immunity is an evolutionarily ancient defense system	978
The adaptive immune system responds by using the principles of evolution	979

34.1 Antibodies Possess Distinct Antigen-Binding and Effector Units	981
34.2 Antibodies Bind Specific Molecules	0.07
Through Hypervariable Loops	983
The immunoglobulin fold consists of a beta-sandwich framework with hypervariable loops	984
X-ray analyses have revealed how antibodies bind antigens	984
Large antigens bind antibodies with numerous interactions	986
34.3 Diversity Is Generated by Gene Rearrangements	987
J (joining) genes and D (diversity) genes increase antibody diversity	987
More than 10 ⁸ antibodies can be formed by	
combinatorial association and somatic mutation	988
The oligomerization of antibodies expressed on the	
surfaces of immature B cells triggers antibody secretion	989
Different classes of antibodies are formed by	
the hopping of V_H genes	990
34.4 Major-Histocompatibility-Complex	
Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors	991
Peptides presented by MHC proteins occupy a deep groove flanked by alpha helices	992
T-cell receptors are antibody-like proteins containing variable and constant regions	994
CD8 on cytotoxic T cells acts in concert with T-cell receptors	994
Helper T cells stimulate cells that display foreign peptides bound to class II MHC proteins	996
Helper T cells rely on the T-cell receptor and CD4 to	007
recognize foreign peptides on antigen-presenting cells	996
MHC proteins are highly diverse	998
Human immunodeficiency viruses subvert the immune system by destroying helper T cells	999
34.5 The Immune System Contributes to the	
Prevention and the Development of Human	1000
Diseases	1000
T cells are subjected to positive and negative selection in the thymus	1000
Autoimmune diseases result from the generation	4.0.0.1
of immune responses against self-antigens	1001
The immune system plays a role in cancer prevention	1001
Vaccines are a powerful means to prevent and eradicate disease	1002
Chapter 35 Molecular Motors	1007
35.1 Most Molecular-Motor Proteins Are	
Members of the P-Loop NTPase Superfamily Molecular motors are generally oligomeric proteins	1008
with an ATPase core and an extended structure	1008

xxxii Contents

ATP binding and hydrolysis induce changes in the	
conformation and binding affinity of motor proteins	1010
35.2 Myosins Move Along Actin Filaments	1012
Actin is a polar, self-assembling, dynamic polymer	1012
Myosin head domains bind to actin filaments	1014
Motions of single motor proteins can be directly	
observed	1014
Phosphate release triggers the myosin power stroke	1015
Muscle is a complex of myosin and actin	1015
The length of the lever arm determines motor	
velocity	1018
35.3 Kinesin and Dynein Move Along	
Microtubules	1018
Microtubules are hollow cylindrical polymers	1018
Kinesin motion is highly processive	1020
35.4 A Rotary Motor Drives Bacterial Motion	1022
Bacteria swim by rotating their flagella	1022
Proton flow drives bacterial flagellar rotation	1022
Bacterial chemotaxis depends on reversal of the	
direction of flagellar rotation	1024
Chapter 36 Drug Development	1029
36.1 The Development of Drugs Presents	
Huge Challenges	1030
Drug candidates must be potent modulators of	
their targets	1030
Drugs must have suitable properties to reach their	
targets	1031
Toxicity can limit drug effectiveness	1036

36.2 Drug Candidates Can Be Discovered	
by Serendipity, Screening, or Design	1037
Serendipitous observations can drive drug	
development	1037
Screening libraries of compounds can yield drugs or drug leads	1039
Drugs can be designed on the basis of	
three-dimensional structural information	
about their targets	1042
36.3 Analyses of Genomes Hold Great	
Promise for Drug Discovery	1045
Potential targets can be identified in the human	
proteome	1045
Animal models can be developed to test the validity of potential drug targets	1046
Potential targets can be identified in the genomes	1040
of pathogens	1046
Genetic differences influence individual responses	
to drugs	1047
36.4 The Development of Drugs Proceeds	
Through Several Stages	1048
Clinical trials are time consuming and expensive	1048
The evolution of drug resistance can limit	
the utility of drugs for infectious agents	
and cancer	1050
Answers to Problems	A1
Selected Readings	B 1
Index	C1
IIIUCA	CI