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3.1 Theories of woven fabric structure

3.1.1 Introduction

The geometry of fabrics has considerable effects on their behaviour. For
example, the weft dimension decreases and weft crimp increases when the
cloth is stretched in the warp direction; cloth shrinks when the fibres swell
on wetting. Therefore, studies of fabric geometry have played an important
role in the following areas:

(1) prediction of the maximum sett of fabric which should be woven, and
fabric dimensional properties;

(2) derivation of relationship between geometrical parameters, such as
crimp and weave angle;

(3) prediction of mechanical properties by combining fabric geometry with
yarn properties such as Young’s modulus, bending rigidity and torsional
rigidity;

(4) help in understanding fabric performance, such as in handle and surface
effects.

3.1.2 Geometry theories

3.1.2.1 Yarn configuration in plain-weave fabrics

As we know, fabrics are not regular structures capable of description in
mathematical forms based on geometry; but many believe that we can idealise
the general characters of the materials into simple geometrical forms and
physical parameters in order to arrive at mathematical deductions. To represent
the configuration of threads in woven fabrics, many different forms of geometry
have been put forward by textile researchers.

In conventional approaches, the general character of fabrics was idealised
into simple geometrical forms. These studies were often based on the
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assumption of arbitrary geometrical models for the weave crimp and yarn
cross-sectional shapes. They treated the micromechanics of fabrics on the
basis of the unit-cell approach, i.e. fabrics are considered as a repeating
network of identical unit cells in the form of crimp waves and constant yarn
cross-section in the woven structure. By combining this kind of geometry
with or without physical parameters, mathematical deductions could be
obtained. The yarn configuration in fabric is mainly determined by the form
of crimp waves and the cross-sectional shape of yarns in a given position.
The cross-sectional shape of yarns in four existing models is reviewed below.

For convenience, the symbols used throughout are listed as follows:

d – free circular-thread diameter
D – sum of circular diameters (d1 + d2)
a – major diameter of flattened thread
b – minor diameter of flattened thread
e – thread flattening coefficient (a/b)
h – height of crimp wave
T – fabric thickness (h1 + b1 or h2 + b2, whichever is greater)
p – average thread spacing for the fabric as a whole
n – average number of threads per unit length (n = 1/p)
c – thread crimp
K – cover factor
q  – maximum angle of the thread axis to plane of cloth in radius
l – length of thread axis between planes containing the axes of consecutive

cross threads
lc – contact length of yarn
N – cotton count of yarn

Subscripts 1 and 2 are used to denote warp and weft. If in any relation no
subscript is used it is to be understood that either 1 or 2 may be inserted
throughout.

The systematic study of woven fabric geometry was started in 1937 when
Peirce’s paper (Peirce, 1937) was published. Notable examples of geometrical
models include Peirce’s model of plain-weave fabrics (Peirce, 1937) as shown
in Fig. 3.1.

In this model, a two-dimensional unit cell (or repeat) of fabric was built
up by superimposing linear and circular yarn segments to produce the desired
shape. His model of plain-weave fabrics could be obtained if the yarns were
assumed to be circular in cross-section and highly incompressible, but at the
same time perfectly flexible so that each set of yarns had a uniform curvature
imposed upon it by the circular cross-sectional shape of the interlacing yarns.
Derivation of the relationships between the geometrical parameters and such
parameters as thread-spacing, weave crimp, weave angle and fabric thickness
forms the basis of the analysis. This model is convenient for calculation, and
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has been found useful in the ordering and interpretation of observation; it is
especially valid in very open structures. But the assumptions of circular
cross-section, uniform structure along the longitudinal direction, perfect
flexibility, and incompressibility are all unrealistic, which leads to the limitations
on the application of this model.

In more tightly woven fabrics, however, the inter-thread pressures set up
during weaving cause considerable thread flattening normal to the plane of
the cloth. Peirce recognised this and proposed an elliptic section theory as
shown in Fig. 3.2. Because such geometry would be too complex and laborious
in operation, he adopted an approximate treatment, which involved merely
replacing the circular thread diameter in his circular-thread geometry with
the minor diameter of the appropriate elliptic section as shown in Fig. 3.3.
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3.1 Peirce’s circular cross-section geometry of plain-weave fabrics.
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3.2 Peirce’s elliptic cross-section geometry of plain-weave fabrics.
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3.3 Peirce’s approximate treatment of flattened yarn geometry of
plain-weave fabrics.
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This treatment was adequate for reasonably open fabrics, but it still does
not permit of application to jammed structure. To overcome this difficulty,
Kemp (1958) proposed a racetrack section as shown in Fig. 3.4 to modify
cross-sectional shape; this consisted of a rectangle enclosed by two semi-
circular ends and had the considerable advantage that it allowed the relatively
simple relations of circular-thread geometry, already worked out and tabulated
by Peirce, to be applied to a comprehensive treatment of flattened threads. In
the paper on ‘An energy method for calculations in fabric mechanics’, a
lenticular geometry was proposed by Hearle and Shanahan (1978) as shown
in Fig. 3.5.
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3.4 Kemp’s racetrack section geometry of plain-weave fabrics.
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3.5 Hearle’s lenticular section geometry of plain-weave fabrics.
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3.1.2.2 Mathematical description of the models

Among the four models mentioned above, it was found by the author that
lenticular geometry developed by Hearle et al. and illustrated in Fig. 3.5 is
the most general model mathematically. We can establish equations for this
model and derive equations for other ones.

The equations for lenticular geometry established by Hearle et al. are:

pi = (lj – Djqj) cos qj + Dj sin qj

hii = (li – Diqi) sin qi(1 – cos qi)

Di = 2Rj + bi

aii = 2Rj sin qi

bii = 2Ti cos qi [3.1]

ei = ai/bi

sin  = 2 /(1 + )2fi i ie e

h1 + h2 = b1 + b2

lcj = Diqi

where Rj, is the lenticular radius and qi is the lenticular angle.

By substituting f  = 90∞, ai = bi = 2Ri = di, D1 = D2 = d1 + d2 = D into the
above equations, the Peirce’s geometry as shown in Fig. 3.1 can be obtained.
The equations are as follows:

p1 = (l2 – Dq2) cos q2 + D sin q2

p2 = (l1 – Dq1) cos q1 + D sin q1

h1 = (l1 – Dq1) sin q1 + D(1 – cos q1)

h2 = (l2 – Dq2) sin q2 + D(1 – cos q2) [3.2]

h1 + h2 = d1 + d2 = D

lc2 = D1q1 £ l1

lcl =  D2q2 £ l2

Therefore, Peirce’s geometry can be regarded as a special case of Hearle’s
lenticular one. And race-track geometry as shown in Fig. 3.4 as a modification
of this model, gives the following equations:

p a b l D Di i i j j j =  –   + (  –   +  sin )¢ q q
h l D Di i i i i = (  –  ) sin  + (1 –  cos )¢ q q q

¢l l a bi i i i =  –   + 
[3.3]

h1 + h2 = b1 + b2 = D

lcj = Diqi + ai – bi

ei = ai/bi
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3.6 Bowshaped geometry of plain-weave fabrics.

Including elliptic geometry, the four kinds of geometry are symmetrical
ones.

As can be seen in Fig. 3.6, a horizontally asymmetrical geometry which
is called bowshaped geometry is also observed frequently. Its geometrical
parameters can also be formulated according to the principles of lenticular
geometry (Newton and Hu, 1992; Hu and Newton 1993; Hu, 1994) as shown
in equation 3.4. The basic equations are identical to those in lenticular geometry
except for the two in the square brackets.

pi = (lj – Djqj) cos qj + Dj sin qj

hi = (li – Diqi) sin qi (1 – cos qi)
Di = 2Rj + bi

ai = 2Ri sin fi

[bi = Ri cos fi] [3.4]
ei = a i /bi

[sin  = 4 /(4 + )]2fi i ie e
h1 + h2 = b1 + b2

lcj = Diqi

3.2 Structural parameters of woven fabrics

From the previous research on the geometric theories introduced above,
several parameters could be extracted to characterise the fabric geometry. In
this section, a general description of every parameter will be given. Some of
them need not be calculated but can only be measured.
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3.2.1 Yarn diameter

According to the Peirce’s (1937) circular yarn section, 1/d, and the number
of diameters per inch in the cotton system:

1  = 
29  3

d
N

v
◊

[3.5]

1  = 28
d

N [3.6]

and

d
N N N N

 = 1
28

 = 0.0357 (inch) = 36  (mils) = 0.91 (mm) [3.7]

where v, the specific volume, is the ratio of the volume occupied by a material
to that of the same weight of water under compression. Of the woven structure,
v = 1.1 for cotton yarn.

3.2.2 Thickness

Fabric thickness is given by t1 or t2 whichever is greater, where t1 = h1 + d1,
t2 = h2 + d2. When yarn diameters are assumed to be circular:

t = max (t1, t2) [3.8]

For flattening section yarns, fabric thickness

t1 = h1 + b1      t2 = h2 + b2 [3.9]

The condition that the two threads project equally produces a smooth surface
and gives the minimum thickness, tmin

t h d h d h h d d Dmin 1 1 2 2 1 2 1 2 =  +  =  +  = 1
2

(  +  +  + ) = [3.10]

where h1 = D – d1. So the minimum thickness is the sum of the thread
diameters.

The maximum thickness is attained when one or other of the threads is
straightened as far as possible. In an open cloth, where either may be
straightened to zero crimp, this thickness should be

tmax = D + dmax [3.11]

dmax is the diameter of the thicker thread, and it is attained by straightening
the thinner threads. If d1 = d2 = d:

tmin = 2d = D

tmax = 3d [3.12]
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3.2.3 Cover factor

Fabric cover is defined by Hamilton (1964) geometrically as the proportion
of fabric area covered by actual yarns. In practice, cover factors are normally
calculated for warp and weft independently. For example, a fabric having 50
warp threads per centimetre, each 0.01 cm in major diameter, would have a
warp cover factor (K1) of 0.5 or 50 %. In the case of circular section threads,
warp and weft cover factors are given by

K1 = n1d1      K2 = n2d2 [3.13]

For flattened threads, warp and cover factors for plain weave are thus given
by

K1 = n1a1      K2 = n2a2 [3.14]

And overall cover factor K is calculated from K1 and K2 as follows:

K = K1 + K2 – K1K2 [3.15]

The cover factor thus indicates the degree of closing or cover. Increasing the
projection of the area covered by threads through using yarn with greater
‘ooziness’, or by flattening in finishing and more regularity will improve the
cover of cloth.

3.2.4 Crimp

Crimp is the percentage of excess of length of the yarn axis over the cloth
length:
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 =  –  1   100 %       =  –  1   100 %Ê
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ˆ
¯ ¥ Ê
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ˆ
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The primary geometrical parameter is the crimp magnitude. It provides a
good basis for investigating many complicated phenomena, such as stress–
strain relations, hand and creasing. And, in particular, crimp has been used
as a fundamental parameter for calculating other geometrical parameters
such as crimp height or weave angle which are not easy to measure. Therefore,
to study fabric structure or related problems, measuring yarn crimp in fabric
is essential. But the actual difficulty in measuring this parameter is not
entirely solved or recognised, perhaps, by many researchers.

3.2.5 General problems

In previous research, much effort has been devoted to the geometry of woven
fabrics and related problems under the assumption of constant yarn
configuration in fabric. For example, since Peirce, the inter-thread pressure
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set up during weaving, which causes considerable thread compression, has
been recognised as only uniform flattening normal to the fabric plane. His
elliptic cross-section model has been regarded as a little bit closer to the
actual structure than the circular cross-section due to compressibility. However,
the other factors were still not given proper consideration, especially in that
it does not permit of any variation along both lateral and longitudinal directions.
Adding other models such as Kemp’s race-track cross-section and Hearle’s
lenticular one, the principles on which all these models are based remain
unaltered. In particular, it is always assumed either explicitly or implicitly
that geometric shape is constant for each model of the unit cell, that is, the
variation of the fabric structure was considered insignificant in the analysis.
It may not be justified to look only at constant structure and ignore investigation
of variation in the structure in the study in fabric geometry.

Firstly, it is a fact that fabrics are extremely complicated materials that do
not conform even approximately to any of the ideal features normally assumed
in engineering structural analysis and mechanics. Secondly, the measurement
of geometrical parameters is not easy in practice. Nobody has measured the
full set of geometrical parameters so far, but many rely on the calculations
of some formula derived from the geometrical model, mainly from Peirce’s
model. As we know, there are problems in the model itself. So we have a
right to doubt the validity of simplified formulae derived from this model.
Therefore, the measurement techniques need to be developed.

Thirdly, a thorough and precise understanding of the effects of fabric
geometry on fabric mechanical properties is a precondition for the development
of total fabric engineering which will enable a fabric with the right combination
of performance characteristics for a particular end use to be designed and
manufactured without lengthy and costly trials. But these important effects
of fabric construction on fabric mechanical properties tested on the KES
system remain almost unexplored.

3.3 Twist redistribution of folded yarns in

woven fabrics

Figure 3.7 shows the surface images of several woven fabrics made of folded
yarns. From Fig. 3.7a, which represents a very open woven fabric, it can be
seen that the length of a folded yarn in one twist is inserted into one repeat
of plain weave fabric. Other samples shown in Figs 3.7b and c exhibit a
similar effect. For very close fabrics with few turns of twists, one turn of
twist may be inserted into one and a half or two repeats of a plain-weave
fabric. There is no literature reporting that a designer would match sett and
twists exactly in this way. The phenomenon is here called ‘twist redistribution’
in a woven fabric because twists of a folded yarn are subjected to adjustment
when a woven fabric is formed. It may suggest the contraction of folded
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yarns in the longitudinal direction and expansion in the diametrical direction
in a woven fabric in most cases. It can be explained in the following ways.

From the above figures, it is also very clear that the two folds of a yarn
become parallel with each other and to the fabric plane at the contact region
of the two yarn systems of a woven fabric in most cases. This can be explained
by the principle of minimum energy when a system reaches an equilibrium
state. Figure 3.8 shows a two-cylinder system with the constraints of walls,
in which the equilibrium state must be the (b) state.

3.7 Surface images of woven fabrics with folded yarns: (a) surface
image of an open fabric with folded yarns; (b) surface image of a
poplin fabric with folded yarns; (c) surface image of a canvas fabric
with folded yarns.

Front side Back side

(a)

Front side Back side

(b)

Front side Back side
(c)
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There may be many states between (a) and (b); whatever the state of the
two-cylinder system at the beginning, eventually they will reach the (b) state
if there is little friction present. In the case of a folded yarn in a woven
fabric, which is constrained by the twists and the adjacent yarns, the parallel
state of two folds is enforced by the compression force between warp and
weft yarns, and this will increase the twist angle of the folded yarn; thus it
contracts the folded yarns per centimetre length of fabric, and the measurement
in the diametrical direction will increase if the density of yarns remains the
same as that before weaving. Therefore more yarns are contained in 1 cm
length of fabric when folded yarns are used. We may think it is similar to the
increase of yarn twists.

Figure 3.9 shows the dimensional changes of folded yarns in a certain
section of a woven fabric: (a) represents the length of folded yarns before
weaving, in which g is the twist angle of the two folds; (b) represents the
length of yarns within a fabric with the assumption that no twist redistribution
happens, in which case the twist angle and the width of yarns remain the
same as before weaving; (c) describes the actual length of a folded yarn due
to the twist redistribution, in which the length of the folded yarn becomes
shorter and thicker than before weaving because twist angle g is increased
by s.

(a) (b)

3.8 Equilibrium condition of two cylinder system.

g

g g + d

(c)(b)(a)

3.9 Dimensional changes of folded yarn in a woven fabric with twist
redistribution.
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In addition, the twist redistribution might affect the sett of a woven fabric,
or make the spacing smaller than designed. But the tested geometrical and
mechanical data listed later suggest that while this possibility may exist, it is
not very large. In addition, the rule of twist redistribution described above is
the general trend; it is not necessarily always exactly true in any segment of
yarn because the actual twists may not be exactly matched with the sett even
after twist redistribution. This finding, with the other phenomena discussed
in other sections, may be useful for understanding the geometrical, mechanical
and quality differences between two fabrics, for example two poplin fabrics
of which one is made of folded yarns and the other of single yarns, other
industrial specifications being similar.

3.4 Relationship between fabric structure and

surface properties

3.4.1 Introduction

The properties of a fabric surface are very important in terms of both
psychological and physical effects on the human being’s appreciation of that
fabric. For example, the sensations perceived from the contact of clothing
with the skin can greatly influence our overall feeling of comfort. The KES
system has a testing machine especially designed for assessing fabric surface
properties.

The KES instrument measures the height of a surface of a fabric over a
2 cm length (forwards and backwards) along principal directions. This gives
two values for geometrical roughness, SMD1 and SMD2. The geometrical
roughness (SMD) is a measure of the surface contour of the fabric, an increase
in SMD suggests an increase in surface variation of a fabric. Figure 3.10
shows the principles of the measurement process.

Interest in studying the geometry of fabric surfaces by objective means
goes back to 1955, when Butler et al. (1955) reported the design and
implementation of their instrument known as the cloth profile recorder. The
main objective of the design was the assessment of fabric faults such as
repping and the differences in pick spacing along the warp direction. Since
this early work, there has been no reported work that describes the objective
measurement of surface roughness until the KES system was introduced by
Kawabata (1980). Later in 1985, an instrument was introduced which moves
the fabric by means of a turnable in order to measure the heights around a
360∞ rotation. At the same time, a multi-purpose tester was designed by
Amirbayat which, in addition to measuring the drape or bending stiffness of
fabrics, measures the surface properties and their variation during wear (Hearle
and Amirbayat, 1988, Amirbayat and Cooke, 1989). Having realised that
there is a force imposed when testing, which affects the measurement of the
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roughness in the KES surface tester, Ramgulam reported a non-contact method
of surface assessment using laser triangulation techniques in 1990 (Ramgulam
et al., 1993).

The friction coefficient (MIU) is another property measured by the KES
surface tester; it is accompanied by its deviation (MMD). Kawabata and
Mooroka (Barker et al., 1985–1987) separated the coefficient of surface
friction into two parts: the first part is associated with the friction between
the fabric and the surface of a rigid body. The second component comes
from other sources. It is assumed to be related to energy losses caused by
inter-fibre friction from compressional deformations occurring when a fabric
is subjected to rubbing, denting and crushing. The relative importance of
these two terms varies with the type of the surface contact and with the
applied load. The deviation of the coefficient of friction (MMD) is a measure
of slip stick behaviour. The principles involved are shown in Figs 3.10a and
b. As the probe sticks and binds on the irregular fabric surface the frictional
force changes, giving deviations from the mean friction value.

Except for some qualitative explanations as above, existing research on
surface properties is generally concerned with the three parameters related
with fabric hand or tailorability (Kawabata, 1980; Barker et al., 1985–1987).
To the best of the author’s knowledge, there exists little investigation of the
charts from the KES surface testing and the quantitative relationship between
surface properties and fabric geometry.

3.10 (a) Principles for the measurement of geometrical roughness
SMD; (b) principles for the measurement of fabric friction coefficient
MIU.
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An investigation will be presented of the characteristics of the geometrical
roughness and friction properties of woven fabrics tested by the KES surface
tester together with theoretical explanations for these phenomena. A brief
discussion will also be provided about the effects of the warp yarn hardening,
indicated in Chapter 4, on the surface properties through the comparison of
the warp and the weft direction values. Models for the prediction of geometrical
roughness and friction properties of woven fabrics will also be developed.

3.4.2 Characteristics of surface geometrical roughness
curves

Figure 3.11 is an example of the charts from the KES surface roughness
testing. In this figure, the troughs represent the lowest places on the fabric
surface, and the peaks the crowns of the yarns in a fabric. The waves on the
chart are not very regular, but it was found that the number of the waves
generally equals the sett of fabric in the cross direction. The definition of the
geometrical roughness in the KES system is included in equation 3.17 and
shown in Fig. 3.12.
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3.11 Surface roughness chart measured by the KES system.
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3.12 The definition of geometrical roughness (SMD).
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3.4.3 Modelling of fabric geometrical roughness

One of the cross-sectional images of fabric containing two consecutive yarns
can be seen from Fig. 3.13. The fabric roughness depends on yarn spacings,
irregularity, fabric design and other fabric geometrical factors. If the irregularity
of yarns and hairiness are not considered, the geometrical roughness of a
woven fabric can be simplified into what is shown in Fig. 3.14, where y is
the distance between the lowest places and the highest places on the fabric
surface on the tested side. The average thickness of the fabric is located at
the centre of y; the geometrical roughness is a measure of the variation of
fabric thickness around the central point of y. From the definition of the KES
parameter, SMD, it is obvious that the roughness measured is the average
height of the area constructed by the average line and the zigzag curves.

If the same principle is used, and the simplified regular roughness change
is introduced as in Fig. 3.15, the relationship between fabric roughness and
geometrical parameters is as in equations 3.18 and 3.19, where the symbols
are the same as in Fig. 3.15; Rt is the theoretical roughness. The average
height of the isosceles triangle is:

3.13 Cross-section image of plain-weave fabric containing two
consecutive yarns.
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3.14 Geometrical roughness of woven fabrics.
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where i = 1 and 2.

3.4.4 Theoretical and measured fabric
geometrical roughness

The data obtained from the KES surface testing is called measured roughness
to distinguish it from the theoretical roughness as described in equation 3.19.
It is found that the theoretical values are always smaller than the measured
values and the difference is quite large in some cases. An explanation for this
phenomenon is given as follows:

(1) the simplification of the model is the main reason leading to the smaller
calculated values – as can be seen from Figs 3.14 and 3.15, the straight
line B¢A simply includes a smaller area than the curved line B¢A;

(2) lack of knowledge of the hairiness of yarns and the variation of the
fabric structure;
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3.15 Simplified geometrical roughness cycle of woven fabrics.
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(3) difficulty in measuring the geometrical parameters may also be
responsible for this difference.

3.4.5 Friction properties of woven fabrics

It is interesting to note that, for many fabrics, their friction property charts
are closely related to their roughness charts. It can be clearly seen as shown
in Fig. 3.16 that they consist of waves, whose number is equal to the sett of
the cross-section. Furthermore, the correlation coefficient for the deviation
of friction coefficient (MMD) and the measured geometrical roughness (SMD)
is always high. This may suggest that the geometrical roughness contributes
to the measured fabric frictional coefficient. We may make use of Fig. 3.14
again to give a description of this relationship.

In Fig. 3.17, we assume the slip stick of the KES surface tester is at
different places at different times. B¢, O¢, A, O, B are several representative
positions. Figure 3.18 is the force analysis which takes the position of O¢ as
an example to derive the relationship between the fabric friction properties
and the positions.

The coefficient of the friction between fabric surface and the slip stick is
defined as the ratio of the sliding force to the compressional load. The
mathematical definition of the MMD is as follows:

MMD
X

X
x

 = 1  |  –   | d
0Ú m m [3.20]

where X is the testing difference and m  the average function coefficient.

The equilibrium conditions in the x and y axes give the following equations:
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where P is a predetermined constant pressure, F the sliding force along the
fabric plane, which can be sensed as friction force in the KES surface tester,
N reacting perpendicular to the actual fabric surface, my is the friction coefficient
of yarns with the solid stick or the fabric friction coefficient when the
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geometrical roughness is assumed to be zero; and f is the friction force along
the actual fabric surface, a the angle of actual fabric surface with the horizontal
plane at the position O¢ in Fig. 3.17. mf is the fabric friction coefficient which
is equivalent to MIU measured on the KES system. If a < 0, the slip stick is
in the AOB section, mf increases with the increase of |a |; if a > 0, the stick
in the B¢O¢A section, mf decreases with the increase of a; if a = 0, the
stick is at the crown of the yarn wave, the friction coefficient is equal to
my (mf = my).

Table 3.1 shows an example of the application of equation 3.23. It is
assumed that my = 0.2, the maximum value of a is 8∞. From this table we can
find that the average fabric friction coefficient mf is 0.201448, which is
equivalent to definition of MIU measured on the KES system, the deviation
of mf is 0.073029, which may be regarded as MMD. In addition, Fig. 3.19
indicates that the variation of the friction coefficient is a periodic function.
It needs to be noticed that the values of a are very small in this example,

Second warp

First warp Central plane

h 1

B

O
A

O¢

B¢

h 2

3.17 Positions of friction stick on the fabric surface.

P = 50g

F

a

y

xN

f

a

Parallel to the fabric plane

3.18 Force analysis of slip stick.
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only 8∞. If we increase a, the calculated results are usually larger than the
measured ones. Meanwhile, if the average value of my is small, say 0.15, the
calculated fabric friction variation tends to be larger than the measured one,
as shown in Table 3.2. In a word, the calculated MMD will be far larger than
the measured one when the value of MIU is around 0.15 since the usual

Table 3.1 Predicted friction variation when my = 0.2

Position � (degree) � (radian) �f �f –   �

B¢ 0 0 0.2 0.001448
1 0.017444 0.181919 0.019529
2 0.034889 0.163952 0.037496
3 0.052333 0.146088 0.055360
4 0.069778 0.128315 0.073133
5 0.087222 0.110621 0.090827
6 0.104667 0.092996 0.108452
7 0.122111 0.075427 0.126021

Both sides of A 8 0.139556 0.057905 0.143543
–8 –0.139556 0.350310 0.148862
–7 –0.12211 0.330842 0.129394
–6 –0.10467 0.311597 0.110149
–5 –0.08722 0.292561 0.091113
–4 –0.06978 0.273717 0.072269
–3 –0.05233 0.255053 0.053605
–2 –0.03489 0.236554 0.035106
–1 –0.01744 0.218208 0.016760

B 0 0 0.2 0.001448

Averages 0.201448 0.073029
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3.19 Predicted friction variation when my = 0.2.
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values of MMD are generally less than 0.02. In addition, if we increase the
value of a, the values of mf are even less than zero. Of course this will never
be reflected in the actual charts. The reasons for this discrepancy may be
caused by the fact that the width of the slip stick is larger (0.5 mm) than we
assumed (< 1/2p = 0.1 mm–0.15 mm), which means that the slip stick need
not go through every point as we described in Fig. 3.17.

Table 3.2 Predicted friction variation when my = 0.15

Position � (degree) � (radian) �f �f –   �

B’ 0 0 0.15 0.001068
1 0.017444 0.132208 0.018860
2 0.034889 0.114498 0.036570
3 0.052333 0.096858 0.054210
4 0.069778 0.079278 0.071790
5 0.087222 0.061746 0.089322
6 0.104667 0.044252 0.106816
7 0.122111 0.026785 0.124283

Both sides of A 8 0.139556 0.009335 0.141733
–8 –0.139556 0.296721 0.145653
–7 –0.12211 0.277836 0.126768
–6 –0.10467 0.259134 0.108066
–5 –0.08722 0.240600 0.089532
–4 –0.06978 0.222221 0.071153
–3 –0.05233 0.203984 0.052916
–2 –0.03489 0.185876 0.034808
–1 –0.01744 0.167886 0.016818

B 0 0 0.15 0.001068

Averages 0.151068 0.071746

3.4.6 Comparison between warp and weft surface
properties

The comparison between the warp and weft direction surface properties
suggests that the warp values of the measured geometrical roughness are
likely to be larger than the weft ones; and the warp values of measured
friction coefficient, MIU, seem to be smaller than those of the weft ones.
This may indicate that the strain hardening of the warp direction affects the
surface properties of a woven fabric. It can be explained as follows.

The surface test on the KES system involves a compression load; the
work-hardened warp yarns may have higher resistance to compression than
the non-hardened weft yarns. Thus, the measured geometrical roughness in
the warp direction is likely to be higher than in the weft one. As for the
difference in MIU, the plastic strain of warp yarns in the longitudinal direction
increases the orientation of fibres in a yarn; thus it reduces the denting and
crushing effect when friction occurs.
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3.5 Relationship between compression behaviour

and fabric structure

The low-load compression behaviour of woven fabrics is very important in
terms of hand and comfort. It is also useful for fabric handling during garment
manufacturing. In addition, it is found that the analysis of the pressure–
thickness relationship may shed light on the structure of fabrics, which may
be useful for automatic inspection and image analysis of woven fabrics.

3.5.1 Compression behaviour of fibrous assemblies

Before we deal with fabrics, it is necessary to have a look at the compression
behaviour of fibrous assemblies. If a loose sample of wool fibres is compressed,
the pressure P exerted on the sample is generally inversely proportional to
the cube of the volume v of the sample:

P
v

 = 3
l [3.24]

where l is a constant of proportionality (Postle et al., 1988).
Research on the mechanics of the compression of fibre assemblies was

initiated by Van Wyk (1946) and reviewed by Carnaby (1980). The compression
curve of pressure versus specific volume was derived in his review paper,
and the exact relationship describing the compression behaviour of the fibrous
mass is

P
v v

 = 
1

 –  
1

3
0
3l

Ê
ËÁ

ˆ
¯̃

[3.25]

where v is the volume of the mass, and v0 is the value of v when pressure
P = 0.

In addition to the above relationship for the load–compression of fibrous
assemblies, Van Wyk (1946) also suggested a correction to it for assemblies
which have been compressed to a volume small enough for the incompressible
volume of the fibres to become significant, and for assemblies at zero pressure.
The corrected relationship is described in equation 3.26:

P
v v v v

 = 
1

(  –  )
 –  

1
(  –  )3

0
3l

¢ ¢
Ê
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ˆ
¯̃

[3.26]

where v¢ represents its limiting volume at large pressure. For very loose
structure, v¢ may be negligible and the equation taken the form of equation
3.25.

For over 50 years, this relationship has been examined both experimentally
and theoretically for fibrous masses. Despite its shortcomings, Van Wyk’s
original model has not been superseded. A number of developments have
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been reported, which extend its application to assemblies in which the fibres
have particular orientations, and finally to fabrics (De Jong et al., 1986;
Postle et al., 1988).

3.5.2 Compression behaviour of woven fabrics

3.5.2.1 Application of Van Wyk’s law

The process of applying Van Wyk’s law to woven fabrics is actually the
modelling of pressure–thickness curves. In equation 3.26, if the value of P
represents the pressure on a unit area of a fabric, v is equal to the fabric
thickness t. With this fact, Postle et al. (1988) applied the relationship defined
by equation 3.26 and its simplified form to the fabric pressure–thickness
curves as a particular case of the fibrous assembly problem.

They began by using the three-parameter equation 3.26 to fit the compression
curves of wool fabrics tested on the KES-F compression tester. The fitted
curves were in many cases very close to the measured pressure–thickness
curves. The incompressible thickness of the fabrics t¢ is generally between
0.5 and 0.9 of the fabric thickness t at a pressure of 50 gf/cm2. They concluded
that, in contrast to the application of equation 3.26 to loose wool or silk, the
value of t¢ is not negligible. They also reported that the value of l(v0 – v¢)3

in equation 3.26 was small in relation to the maximum pressure P = 50 gf/cm2

employed in the test. By using this finding and neglecting the last term, they
employed a simplified equation:

P
t t

 = 
(  –  )3

l
¢

[3.27]

where the thickness t or volume per unit area of fabric is large and undefined
at zero pressure.

Furthermore, by utilising the measured thickness Tm of the fabric at a
pressure of 50 gf/cm2 and the energy WC underneath the pressure–thickness
curve between 0.5 and 50 gf/cm2; it was found that the two parameters in
equation 3.27 may be calculated:

¢t t
E

P
E
P

 =  –  
2

,    = 
8

m

3

2l [3.28]

It is assumed that the energy E absorbed by the fabric with the pressure
between 0 and 50 gf/cm2 equals WC. Thus, on substitution of the measured
values of WC for E, and the thickness at 50 gf/cm2 for tm in equation 3.27,
the limiting fabric thickness t¢ and the parameter l may be determined.

The application of this method to wool fabrics (Postle et al., 1988) showed
that the fitted values for l and t¢ are in many cases close to the measured
KES curves, with some deviation at pressures less than 20 gf/cm2. In addition,
the measured thickness of a range of fabrics at 1000 gf/cm2 and the thickness
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extrapolated from equation 3.24, fitted over the range from 0.5–50 gf/cm2,
correlating well (r = 0.99) with slope 1 and an intercept of 0.

3.5.2.2 Interpretation for fabric structure

de Jong et al. (1986) also used equation 3.27 to analyse the mechanics of
wool fabric compression in order to interpret the results obtained on wool
during finishing. In return, the feedback information could be used for the
maintenance of consistent quality in finished fabrics due to the fact that the
lateral compression properties of some fabric groups (e.g. wool fabrics) are
generally altered by the finishing procedure.

In their analysis, a model, as shown in Fig. 3.20 considers the fabric to
consist of three layers: a relatively incompressible core layer in contact with
much more compressible surface layers on either side. These two surface
layers (the face and back of the fabric) follow Van Wyk’s law. As indicated
above, the value of l for these layers is negligibly small. The value of
constant t ¢ therefore represents the thickness of the incompressible core of
the fabric.

3.5.3 Statement of the problems

Figure 3.21 shows a typical compression curve recorded on the KES system,
according to which we may find a close-to-linear relationship between pressure
and thickness at the latter part of the curve under a pressure larger than 20
gf/cm2. This section of curve is also characterised by a very steep slope
which indicates that fabrics are extremely incompressible. Thus the general
shape of the curve is largely governed by pressure in the range from 0–20
gf/cm2. The values of tm and WC provided by the KES system are not very
reliable for predicting the whole curve because they do not usually match the
data read off the curves. Therefore, the universality of the model used by De
Jong needs to be proved and its accuracy improved.

t ¢t

P

3.20 The proposed model of a woven fabric under lateral
compression.
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In the following section, equation 3.27 will be extended to cotton fabrics.
As we all know, wool fabric is very different from cotton fabric in structure.
As shown in Fig. 3.12, cotton poplin fabrics have very few protruding fibres
on their surface while wool fabrics are apparently very hairy. Therefore,
although equation 3.27 can be successfully applied to wool fabrics, its
applicability to cotton fabrics still awaits confirmation. The method we used
is again non-linear regression. Moreover, an alternative method is also
introduced to make equation 3.27 easier to use.

In addition, an analysis of equation 3.27 will be given together with a
comparison with the measured geometrical thickness. This analysis reveals
a clearer picture of fabric structure in which a five-layer structure is suggested.

3.5.4 Fitting of compression curves for cotton fabrics

Inspired by the success of tensile modelling and the comparison of the two
kinds of curves (tensile and compression), an attempt was made to use an
exponential function to model the pressure–thickness curves. The proposed
function is as follows:

P = eat–b – 1 [3.29]

where P is pressure and t thickness; two constants a and b need to be estimated.
However, the results fitted by equation 3.29 were not very successful.

Therefore, equation 3.27 used by De Jong et al. was adopted. We first used
two parameters, obtained on the KES system, namely Tm and WC, to fit the

P, (gf/cm2)
50

40

30

20

10

0
0 0.1 0.2 0.3 0.4 0.5

T (Thickness)

3.21 Typical compression (pressure–thickness) curve of woven fabrics.
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curves. Similar results to wool fabrics can be observed, i.e. good agreement
with measured results when the pressure is larger than 20 gf/cm2 with deviations
under pressure less than 20 gf/cm2. In other cases, there exist large deviations
between the predicted data and the tested results, due to the original deviations
of WC and Tm from the data read off the curves or for other unknown
reasons.

Therefore, a non-linear regression method was employed to improve the
goodness of fit of equation 3.27. Three approaches, namely exponential
function, power function with two estimations using Tm and WC, and a
power function with non-linear regression, are compared. The representative
results are shown in Fig. 3.22 together with a comparison of using WC and
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3.22 Comparison of compression curve fitted by non-linear
regression method and using WC and Tm.
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Tm. Sometimes the results fitted using WC and Tm are close to those regressed
but, in most cases, the regressed results are much better than those using WC
and Tm. Figure 3.23 shows two other examples of comparisons of the results
using the three methods, in which cases the results using WC and Tm are
comparatively good. However, even here, it is clear that the regression method
is more accurate. The residuals or deviations produced by the non-linear
regression method are very small, on average only about 1/4 and 1/5 of those
produced by using WC and Tm.

From these figures, one can see that the goodness of fit of equation 3.27
to the tested curves may be improved considerably by the non-linear regression
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3.23 Comparison of compression curve fitted by three methods.
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method. By contrast, the data predicted using WC and Tm demonstrate various
degrees of deviation from the tested results.

3.5.5 Mechanical and geometrical thickness

According to equations 3.8 and 3.9 above, the fabric thickness with no
external pressure, t, may be calculated from the measured geometrical
parameters, namely, crimp height h and minor diameter b of yarn. We call
this the geometrical thickness. At the same time, one can obtain the fabric
thickness from the KES system T0, when pressure is at 0.5 gf/cm2; and the
thickness Tm when pressure equals 50 gf/cm2; these are called mechanical
thicknesses. In addition, from equations 3.8 and 3.9, incompressible thickness
t¢ is also introduced. The comparisons of these thicknesses may be very
interesting; in fact, they provide a deeper insight into the fabric structure.

Generally, the geometrical thickness of all woven fabrics lies between T0

and Tm, or T0 and t¢. The geometrical thickness is actually much smaller than
T0. This is beyond expectation because the geometrical thickness was measured
principally under zero pressure, but T0 was measured under a pressure of 0.5
gf/cm2. Therefore, theoretically, T0 should be smaller than the geometrical
thickness t.

The underlying mechanism for this phenomenon might lie in the fact that
during geometrical measurement, crimp height h and minor diameter b were
determined by excluding protruding fibres of the yarn surface. Thus the
geometrical thickness excludes the hairs on the yarn surface and the crimp
crowns above the average thickness. However, the KES compression tester
can output everything it can sense, including the hairs and the crimp crowns
above the average height of woven fabrics. Therefore, the difference between
T0 and t results from this, and the actual structure of woven fabrics, as shown
in Fig. 3.24, is revealed. In it a five-layer structure is still valid but the two
outlayers consist of crimp crowns and not only protruding hairs.

In this structure, the furthest outlayers on either side of a fabric contain
hairy fibres and crowns above the average geometrical thickness; the secondary

3.24 Five-layer structure of woven fabrics.
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layers on either side on a fabric represent another two compressible layers
which form the firm structure of the fabric; the t¢ represents the incompressible
core of a fabric. The outlayers and secondary layers of this structure obey
Van Wyk’s law. The incompressible core layer possesses about 40 % of the
whole fabric thickness, which indicates that fabrics are highly incompressible;
the two secondary layers have more than 20 %; the first layer about 40 %,
which shows that the irregularity of the fabric surface is very large.

3.5.6 Conclusions

Generally speaking, the two-parameter function described by equation 3.27
can quite accurately describe pressure–thickness curves for cotton fabrics
provided that the estimation methods are appropriate. It is suggested that the
incompressible thickness t¢ and the parameter l in equation 3.27 be evaluated
or modified by a non-linear regression method. This improves the predictability
of the proposed model to a considerable extent. Or, alternatively, in a similar
way to what will be described in Chapter 6, they can be evaluated by solving
the following two simultaneous equations:
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In addition, the relationship between the mechanical and geometrical thickness
is found. Comparison of the fabric geometrical and mechanical thickness not
only supports the layers theory of fabrics proposed by De Jong, et al. but
also allows the derivation of a five-layer fabric structure.
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