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4
The tensile properties of woven fabrics

4.1 General tensile behaviour of woven fabrics

4.1.1 Introduction

Tensile properties are one of the most important characteristics governing
fabric performance in use. Their study involves many difficulties due to the
great degree of bulkiness in fabric structure and the strain variation during
deformation. In particular, each piece of fabric consists of a large quantity of
constituent fibres and yarns and hence any slight deformation of the fabric
will give rise subsequently to a chain of complex movements of these. This
makes the situation more complicated since both fibres and yarns behave in
a non-Hookean way during deformation and present hysteresis with time
effect (Konopasek, 1970).

4.1.2 Tensile stress–strain curve of woven fabrics

Figure 4.1 illustrates a typical tensile stress–strain curve of a woven fabric
derived on the KES-F apparatus. For this curve, the initial region demonstrates
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4.1 Tensile stress–strain curves.
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4.2 Loading and unloading cycle in the tensile stress–strain curve.
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a low slope due to decrimping and crimp-interchange. After that, the slope of
the stress–strain curve rises steeply until its summit is reached, an effect
which can be assumed to stem from the induced fibre extension. In addition,
the magnitude of the summit of the stress–strain curve is governed by the
level of yarn crimp and the relative ease of distortion of the yarn per se.

If what the fabric undergoes is a cyclic loading process, i.e. the fabric was
first stretched from zero stress to a maximum and then the stress was fully
released, then an unloading process will follow the loading process. As a
result, a residual strain, e0, will be observed since textile materials are
viscoelastic in nature. Due to the existence of residual strain, the recovery
curve will never return to the origin, as shown in Fig. 4.2. This is the hysteresis
effect, which denotes the energy lost during the loading and unloading cycle.
Due to the existence of hysteresis, a deformed fabric cannot resume its
original geometrical state. In Fig. 4.2, the shift to the right from the origin of
the unloading curve depicts the magnitude of the hysteresis effect and indicates
the amount of permanent set resulting from the loading history.

4.1.3 Extension in the principal directions

Usually, when a plain woven fabric is extended in either of the principal
directions, a straightening of the crimped yarns will also occur in the direction
of force. The interaction between the two sets of yarns must therefore be
considered. A drop in the yarn amplitude and the weave angle will thus be
found when the contact of two sets of yarns in the warp and weft directions
grows. During tensioning, these yarns appear to become less flattened due to
their consolidation into a rounder or more circular cross-section (Hearle et
al., 1969). In addition, the crimp-interchange will take place at the crossover
point, i.e. one set of yarns increases in crimp level, while the other decreases.
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When the fabric is further extended by an applied force, yarn and fibre
extensions will occur, but the yarn extension only accounts for a small portion
of the total extension as compared with the effect of decrimping. Individual
fibre movement within the yarns also occurs at the contact point of two sets
of yarns. This movement allows the fibre to avoid the high strains that might
be induced by extension. Energy loss will also take place during tensioning
due to the restriction of fibre movement posed by inter-fibre strains.

Regarding the uniaxial tensile properties of plain woven fabrics, De Jong
and Postle (1977a,b) stated that there are six independent dimensionless
parameters to be considered in the case of a balanced woven fabric (produced
from identical warp and weft yarns). The six parameters include: (a) the ratio
of warp to weft yarn length per crossing yarn; (b) the ratio of yarn diameter
to yarn modular length; (c) the ratio of yarn compression rigidity to bending
rigidity; (d) the yarn compression index; (e) the ratio of yarn extension
rigidity to bending rigidity; and (f) the degree of set. They also stated that the
effect of the ratio of yarn compression rigidity to bending rigidity on the
relative fabric extension can be accounted for by the yarn extension. Thus,
a large part of the fabric extension can be explained by yarn extension when
this ratio is lower. In addition, the average of Poisson’s ratios can be explained
in the selected range where the inter-yarn distance can increase to allow the
yarns to turn into a rounder or more circular cross-section during tensioning.

4.1.4 Extension in bias directions

When a plain woven fabric is extended to its final state in bias direction, it
can be seen from Fig. 4.3 that the warp yarn will rotate which brings the
maximum elongation close to the direction of force (F). There is a deviation

4.3 Fabric extension in bias directions (arrow within square
indicating the warp direction): (a) initial position before extension;
(b) final position after extension.
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in the direction (q1 > q2) at the final position. If a force is applied, the fabric
will suffer a strain to reach its final position. The magnitude of the strain is
governed by the deviation of the angle to the warp direction, and the diagonal
direction (± 45∞) presents the maximum changes in length. As a result, the
maximum elongation will occur at one diagonal and the other diagonal direction
demonstrates the maximum contraction. Thus the characteristics of the Poisson
effect should be identified by the changes in length parallel and perpendicular
to the direction of force.

If stress is applied at an angle to the warp or weft direction, the mode of
deformation will become rather complicated, presented as a combination of
extension and shear. If the unit cell of the plain woven fabric is regarded as
a trellis, it will be extended by rotating the numbers of the trellis relative to
each other in bias directions (Weissenberg, 1949).

During KES-F tensile and shear testing, if a fabric is prepared in bias
directions, for some yarns, only one or neither of their ends will be clamped.
As a result, three cases need to be considered in this event:

(1) both ends of the yarns are held between two clamps for the extension
of the warp or weft direction;

(2) only one end of the yarns is held for the extension from ± 15∞ to ± 75∞
(bias directions) to the warp direction;

(3) both ends of yarns are free for the extension of 0∞ or 90∞ to the warp
direction corresponding to the warp or weft direction.

When deformation takes place in bias directions, little tension will exist in
the yarns. However, due the existence of the frictional restraint between the
interlaced yarns at their contact points, there is still some tension in the yarns
between two neighbouring crossovers and a bending couple in deforming
the crossed yarns (Spivak and Treloar, 1968). In addition, shear properties
will lead to an increase in the tension of individual yarns between the contact
points.

Due to the above reasons, a higher magnitude of tensile properties will be
recorded in the bias directions than in the warp and weft directions. As
higher crimp is usually obtained in the warp yarns, the values of tensile
properties in the warp direction are comparatively higher than those in the
weft direction. All these observations are discussed with reference to the
experimental findings in the following sections.

4.2 Modelling of tensile behaviour of woven

fabrics

4.2.1 Introduction

The pioneer in the investigation of tensile deformation of woven fabrics is
Peirce (1937). His model assumed that the cross-section of the yarns in the
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fabrics is circular, but this assumption of circular yarn cross-section in the
fabric is highly theoretical. Therefore, many researchers modified his
geometrical model to analyse tensile behaviour. Based on Peirce’s rigid
thread model (1937), Grosberg and Kedia (1966) analysed the small strain
within the initial load–extension curve. Three approaches are reported by
Leaf (1980) in order to analyse the tensile behaviour of plain woven fabrics.
His first approach is based on Gastigliano’s theorem for small deformation
only. A force equilibrium method and an energy approach are used for the
analysis of large deformation.

In an attempt to define theoretically the planar stress–strain relationships
of woven fabric, Weissenberg (1949) introduced the trellis model. He treated
the yarns as rods which are inextensible and inflexible. The yarns are pinpointed
at their nodal points with lines of zero elongation in the pattern by offering
no resistance to the allowed changes in the orientation of the lines. With
these assumptions, the theory of strain, stress and the relationship between
them is clearly defined. He also stated that the Poisson effect and evading
action are observed when external forces are applied. Textile material in its
nature and applied state is anisotropic, and the orientation of the framework
of the trellis to the direction of the pull would vary with the direction of pull
in the material. The Poisson’s ratio could be found from a given lengthwise
extension and a given widthwise contraction. He indicated that the experiments
made on the model would predict a modified Poisson effect with maximum
elongations and contractions occurring not parallel and perpendicular to the
direction of the pull but along the bisectrices. In addition, there would be a
rotation of the directions of maximum elongation and contraction, which
would bring, in the terminal position, the direction of maximum elongation
nearer to that of the pull. He described the material as taking an ‘evading
action’ by rotating round and having its maximum extension in a direction
different from that of the pull.

Chadwick et al. (1949) investigated the bias deformation of a woven
fabric with the application of the trellis model under a simple pull. They
showed that the warp and weft yarns underwent changes not only in length
and spacing under bias extension, but also in their orientation to one another
and to the direction of pull. In their experimental work, rectangular specimens
are cut out in various directions. Each specimen is subjected to a series of
simple pulls of increasing amount in a direction lengthwise to the rectangle.
In the experiments, the behaviour of the model showed directly the various
characteristics of the strains from the initial to the terminal position. They
found good agreement between the mode of deformation of the trellis model
and the fabrics in bias directions.

Cooper (1963) investigated the relationship between bias extension and
bias shear. Kilby (1963) examined the planar stress–strain relationships of a
simple trellis which is different from that discussed by Weissenberg (1949).
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He suggested that a fabric might be regarded as being equivalent to an
anisotropic lamina which shows the Poisson effect and has two planes of
symmetry at right angles to one another. Kilby was the first to derive the
fabric tensile modulus in any direction other than the warp and weft directions.
He indicated that the bias extension involved the shear modulus.

Later, an analysis of the geometrically similar tests of bias extension and
simple shear for plain woven fabrics was carried out by Spivak and Treloar
(1968). They showed that the bias extension test involved a reduction in area
and hence did not correspond to pure shear; on the contrary, simple shear had
a constant-area deformation. They concluded that it is impossible to predict
the complete stress–strain properties of a fabric in simple shear from
measurements of bias extension.

De Jong and Postle applied an energy analysis to the woven fabric structure
to investigate deformation (De Jong and Postle, 1977a,b). The independence
of the fabric construction is advantageous in using energy analysis of fabric
behaviour. They observed that there are some difficulties encountered when
applying a generalised force analysis to fabric structure. Thus, when using
force analysis, it is found necessary to divide the unit cell of the structure
into segments, at the ends of which forces and/or couples might act. The
length of each segment had to be varied because the point of action of the
internal forces is not fixed. In their study, the fabric load–extension curves
and yarn-decrimping curves for the plain-weave construction are computed
for a realistic range of input parameters. They tested the tensile properties of
plain woven fabrics in both the grey and the finished state, and the computed
results are employed to explain the behaviour of yarns during fabric extension.

Skelton (1971) compared the mechanical properties of triaxial and
orthogonal fabrics. He found that the tensile strength of the triaxial fabric is
dependent upon the amount of shear distortion sustained by the fabric at
rupture, but it seemed probable that the variation of strength with direction
would be less than the variation found in orthogonal fabrics. More recently,
Anandjiwala and Leaf (1991a,b) studied large-scale tensile deformation of
plain woven fabrics. Their investigation used the approximation of non-
linear yarn bending behaviour for both the undeformed fabric state and the
stress analysis. They found that the agreement between experiment and theory
is sometimes reasonable, but it is better during extension than during recovery.

Anandijawala and Leaf mainly concentrated on the tensile and shear modulus
of plain woven fabrics. No numerical models are found to predict the anisotropy
of fabric tensile properties, such as tensile work (WT), tensile elongation
(EMT), tensile linearity (LT) and tensile resilience (RT), measured using
Kawabata’s system (KES-F).

The majority of previous research into the tensile behaviour of woven
fabrics concentrated on predictive modelling, which always involved very
complicated mathematical relations between stresses and strains (Grosberg
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and Kedia, 1966; Shanahan et al., 1978; Anandjiwala and Leaf, 1991a,b). In
addition, the predictability of these models is not always satisfactory.

In particular, Kawabata and Bassett used numerical modelling methods
for fitting the tested tensile curves. Kawabata et al. reported a linearisation
method to model the biaxial tensile stress–strain relation of fabrics, and
verified its validity in a paper by Kageyama et al. (1988).

In Bassett’s Ph.D thesis (1988), the determination of constitutive laws of
fabrics and the use of these properties in calculating stress–strain in fabric in
garment-like systems were studied. For this purpose, the least squares method
was used to fit multivariate polynomial curves to experimental data from
woven worsted fabrics.

From the work of both Kawabata and Bassett it is clear that very complicated
procedures were still involved for obtaining the constants and strain
transformation. Thus, to date, there exists no practical explicit function between
stress and strain for tensile deformation of woven fabrics. Therefore, better
models for tensile stress–strain relations are needed in terms of both accuracy
and practicality.

What is presented here is an attempt to establish an equation for the
tensile stress–strain relationship for woven fabrics. An exponential function
with two parameters was selected to describe tensile stress–strain curves. A
non-linear regression technique was first used to estimate the unknown
parameters in the proposed function. Using the proposed function, the predicted
results of tensile stress–strain relationships show excellent agreement with
experimental data. In addition, several methods which may be used to estimate
the unknown parameters in the proposed function are suggested.

4.2.2 Modelling of tensile loading curves

To obtain a satisfactory model for the tensile stress–strain relationship of a
fabric, some principles must be followed:

(1) The proposed function should belong to the correct function group, for
example exponential or power function.

(2) It should have a format which is easy to compute or interpret. Usually
a function with more than four parameters can rarely be evaluated
satisfactorily using the non-linear regression method.

(3) It should satisfy the initial conditions of a physical process, e.g. when
force equals zero, strain equals zero.

(4) Hopefully, the parameters in the selected function will be related,
especially to the yarn physical properties and fabric structure for the
intended purpose.

An exponential function with two parameters is chosen to depict the tensile
curve of a woven fabric:
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f er = e – 1 + 
ae

b [4.1]

where f is stress and e strain, a and b are unknown parameters, er the error
term.

The SPSS non-linear regression programme can be used to fit the tested
tensile curve with the proposed model, in which f and e can be read off
tensile stress–strain curves tested on the KES system while a and b are
unknowns to be estimated.

4.2.3 Estimates of the two constants

The two unknown parameters in the chosen function can be estimated in a
non-linear regression technique using data read off the tested curves of woven
fabrics on the KES tensile tester. The determined values are very useful for
the estimation of initial values. Another three methods of estimating the two
parameters follow.

4.2.3.1 Estimation of a and b using WT and EMT

From tensile testing of a fabric on the KES tensile tester, there are two
parameters extracted from the chart which are WT – work done during tension
– and EMT – strain when stress is equal to 500 gf/cm. We can use these to
construct two equations which can be solved for a and b:

500 = e – 1a

b
◊EMT

[4.2]

and

WT f EMT
EMT EMT

 = 1
100

 d  = e  –  1 –    
1000Ú

◊ ◊e a
a b

a
[4.3]

4.2.3.2 Estimation of a and b taking two points

If the error term in equation (4.1) is ignored and two sets of test data can be
obtained, say (e1, f1) and (e2, f2), the following simultaneous system of
equations can be solved for a and b:

f1 = e – 11ae

b [4.4]

and

f2  = e – 12ae

b [4.5]
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4.2.3.3 Estimation of a and b by the least squares method
(more points method)

Another method for the estimation of a and b is the more points method.
This is in fact the least squares as in linear regression. Suppose we have n
sets of data from a tensile curve of a fabric (e1, f1), (e2, f2), . . . (en, fn), then
we can write

f ei ri
i

 = e – 1 + 
ae

b [4.6]

so that the sum of squares of deviation from the true line is
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We can differentiate the above equation first with respect to a and then b,
setting the results equal to zero, and hence we get two normal equations:
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The solution of a and b can thus be given by:
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If n = 2, the results are equal to the two equations used in the two-point
method. Theoretically, more data would provide more accurate estimates.
However, this is not always true because it may cause a big residual due to
the difficulty of reading data off a curve, in which case more data can result
in a more biased subjective measurement. Therefore, n is not necessarily
very big. It is found that n = 13 is big enough for good results; n = 4 or 5 may
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result in accurate estimates of parameters. When n is not very big, say 5, it
can be calculated on a package like TK Solver as long as initial guesses are
not far beyond the expected results.

4.2.4 Interpretation of the selected function

4.2.4.1 Young’s modulus

A particularly important part of the stress–strain curve is the initial portion;
starting at zero stress in most cases it could be seen that the first portion of
the curve is fairly straight, indicating a linear relationship between the stress
and the strain. The tangent of the angle between the initial part of the curve
and the horizontal axis is the stress/strain ratio, which is termed initial Young’s
modulus E0. It describes the initial resistance to extension of a textile material.
From equation 4.1, the derivative of f with respect to e yields the modulus
curve of tensile deformation:

E
f

 = 
d
d

 =  ee
a
b

ae [4.12]

when e = 0, E = E0 = a /b. Thus a /b is the initial Young’s modulus. The
above equation can be written as follows:

E = E0 · eae [4.13]

Because the tangent of the angle between the initial part of the curve and the
horizontal axis is the stress/strain ratio, E carries a unit of gf/cm in the case
of the KES system. Again from equation 4.1, b carries a unit of cm/gf while
a is a dimensionless quantity. We can use the Maclaurin expansion formula:
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where Rne is the remainder.
If e is infinitesimal,

f ( ) = e a
b e [4.15]

which is a straight line with residual of

R1(e) = a2eaqe(1 – q)e2    (0 < q < 1) [4.16]

This indicates that the initial portion of the stress–strain curve starting at
zero stress is close to a linear line. Besides, if we further differentiate E with
respect to e, the following equation can be obtained:

d
d

 =    or   d  = dE E E
Ee a a e [4.17]
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From this equation, it appears that a is a reinforcing factor for the increase
of Young’s modulus E. This relation is frequently found in many physical
phenomena.

The initial region of very low slope for the fabric tensile stress–strain
curves represents the region of decrimping and crimp-interchange in woven
fabrics for which only very small fibre stresses are developed within the
fabric when the weave crimp has been fully extended. This means that further
extension of the fabric is possible by extension of fibres with the interlaced
yarns.

4.2.4.2 Relationship of a with crimp

According to equation 4.1, it may be assumed that there exist two different
groups of factors which affect the stress–strain relation. One group affects a
while the other influences b.

First it was hypothesised that the larger the yarn crimp the higher the
value of b since larger b denotes larger stress induced for a given strain. The
analysis, however, reveals that parameter a is correlated with crimp reversely
and b has no obvious relation with crimp c. In fact, it is found that an
obvious linear relationship exists between a and crimp c. This linear relationship
between a and c agrees with the existing recognition that the larger the
crimp, the more extensible a fabric. Moreover, this relationship is also consistent
with the above interpretation of the selected function, in which a is a
dimensionless factor.

In addition, it is also demonstrated that the tangents of stress–strain curves
differ with the direction even for the same woven fabric. This fact indicates
that there exists an anisotropy for the tensile properties of woven fabrics, as
reported in the next section. Another focus of this chapter, the strain hardening
effect, can also provide a strong explanation.

4.3 Anisotropy of woven fabric tensile properties

4.3.1 Introduction

One of the difficulties in analysing the tensile behaviour of woven fabrics
lies in the fact that any extension occurring at an angle to the warp or weft
direction usually involves a different mechanism of deformation. For example,
in the 45∞ direction to the warp and weft, the modulus is almost completely
determined by the shear behaviour of the fabric, while if it is extended in the
warp or weft direction, the shear behaviour has no part to play (Hearle et al.,
1969). Therefore, the tensile performance of a fabric is apparently an integration
of a multi-directional effect. We term this phenomenon the ‘anisotropy’ of
tensile properties of woven fabrics and it becomes the subject of the following
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section. This topic is very meaningful in that little literature about the anisotropy
phenomenon can be found despite the fact that there is already a sea of
publications dealing with fabric tensile properties; but most of these have
concentrated on what happens to the warp and weft directions.

As the term indicates, the word ‘anisotropy’ means that there is great
variation in fabric tensile properties with changes in direction. Firstly, this is
because a woven fabric is highly anisotropic in nature. Secondly, most fabric
structures are asymmetrical, like twill and satin woven fabrics, and thus the
force needed to stretch fabrics in different directions will vary a lot from one
to another. This is basically a reflection of the different underlying deformation
mechanism. For example, when a woven fabric is under bias extension,
shear deformation will occur and thus shear property comes into play to
influence the tensile behaviour of a fabric. In this case, the tensile behaviour
of a fabric will apparently differ from what occurs when the extension happens
merely in two principal directions (Hearle and Amirbayat, 1986a,b).

The work covers all the four parameters measured on Kawabata’s system
(KES-F): tensile work (WT), tensile elongation (EMT), tensile linearity
(LT) and tensile resilience (RT) based on Kilby’s Young’s Modulus model
(1963).

4.3.2 Modelling the anisotropy of tensile properties

4.3.2.1 Tensile work (WT)

Kilby (1963) firstly introduced the Young’s modulus in any direction other
than warp and weft as follows:

1  = cos  + 1  –  
2

 sin   cos  + sin4
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where E1, E2 and Eq are the Young’s moduli to the warp, weft and q directions
respectively, G denotes the shear modulus, and spt indicates the Poisson’s
ratio relating the contraction in the weft direction to the strain in the warp
direction. In order to simplify the calculation, he rearranged the above equation
into:
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where

1  = 4  –  1  –  1
45 1 2¢G E E E
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Equation (4.19) is very useful for predicting the full form of the polar diagram
of modulus against angle, when values of the parameters in only warp, weft
and q directions are known. Rearranging equation 4.1, the following relation
is obtained:

e b
a e

a
b

ae = 
ln (  + 1)

        = d
d

 =  e
F

E Ffi [4.20]

The tensile work, WT, is thus

WT F = ( ) d
0

me
e eÚ [4.21]

where em is the strain at the upper-limit load Fm = 500 gf/cm, and F denotes
the tensile load, a function of strain. Combining equations (4.20) and (4.21),
we have
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Fm is a constant (= 500 gf/cm) which is directly obtained from the stress–
strain curve on the KES-F apparatus. a and b are variables and will have
different values in different directions. To simplify the procedure, the term
[ln (bF + 1) + 1]/a b is set to be K. Then WT may be written, and if E varies
with angle q, WT will also vary with q and the above equation becomes

WT E K =  –  2a
    fi    Eq = (WTq + K)a2 [4.23]

Putting Eq = (WTq + K)a 2 into equation (4.19) gives
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Substituting 1/G¢ = 1/a 2 (1/G≤) into equation (4.24), the tensile energy (WT)
of the tensile parameters is derived as follows:
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Principally, K varies with a and b which are different values in various
directions. K is taken as a constant, due to the linear relationship found in its
numerator and the denominator in various directions. In order to simplify the
calculation of tensile energy (WT), a and b can be recorded directly from the
warp direction. Thus, the tensile work in any direction can be obtained using
equation (4.25) when values of the tensile work at the warp, weft and 45∞
directions are known.

4.3.2.2 Tensile elongation (EMT)

EMT reflects the extensibility of a fabric. It is a measure of a fabric’s ability
to be stretched under tensile load. The larger the EMT value, the more extensible
the fabric. A similar approach to that of tensile work (WT ) is adopted in the
derivation of a tensile elongation (EMT ) model. The model for the prediction
of Young’s modulus in any direction other than the warp and weft directions
is derived by Kilby (1963), and a mathematical rearrangement is made to
form equation (4.26):
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where E1, E2 and Eq are the Young’s moduli to the warp, weft and q directions
respectively, G is the shear modulus, spt the Poisson ratio. Equation (4.26) is
useful for predicting the full form of the polar diagram of modulus against angle,
when values of the parameters in the warp, weft and 45∞ directions are known.

In general, the tensile stress–strain relationship for textile materials is
non-linear and characterised by a simple concave shape. However, in order
to simplify the analysis, the author assumed that a tensile curve is linear to
derive a model for EMT in different directions relative to its warp or weft
direction. With this assumption, EMT of a woven fabric may be derived very
conveniently from the simple relation as E = F/e.

Since F is kept constant at 500 gf/cm during experiments, tensile modulus
is inversely proportional to extension when the tensile curve is assumed to
be linear. Then we can write Eq = Fq /eq in terms of q and substitute into
equation (4.26). Thus:

e e q e e e q q e qq
F F F F F F

 = 
 cos

 + 
4

 –   –   cos  sin  + 
sin1

4
45 2 2 2 2

4
1È

ÎÍ
˘
˚̇

[4.27]
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where

¢G
F

 = 1  (4e45 – e1 – e2)

e45 is the mean value of eq of ± 45∞ and G¢ is a constant. After rewriting
equation (4.27),

e e q q q e qq  =  cos  + cos  sin  + sin1
4

2 2

2
4

¢G
[4.28]

Replacing e by EMT, the tensile strain of the tensile parameters is derived as
follows:

EMT EMT
G

EMTq q q q q =  cos  + cos  sin  + sin1
4

2 2

2
4

¢ [4.29]

where

¢G
EMT EMT EMT

 = 4  –  1  –  1
45 1 2

In the previous case, E is considered to vary linearly with e and EMTq is
derived based on this linear relationship. In this case, however, a more precise
model for EMT is derived based on the non-linear relationship from Hu
(1994). Her model described the tensile stress–strain curve with an exponential
function with two parameters shown as follows.

F = e – 1ae

b [4.30]

where F is stress, e is strain, a and b are unknown parameters. The unknown
parameters a and b can be solved by using the SPSS non-linear regression
method or TK Solver. F and e are read off from tensile stress–strain curves
tested on a particular fabric on the KES-F apparatus. a and b are obtained from
the warp direction. Now, E is treated as the derivative of F with respect to e:

1  =  1
eE

b
a a e [4.31]

a and b are taken as constant regardless of the different directions so that
they are obtained from the warp direction. When E changes with angle, and
this is the case for e, then 1/Eq = (b /a)(1/ e )a eq  and substituting it into
equation (4.26) yields equation (4.32).

b
a

b
a

q q q b
a

q
a e a e a eq

 1
e

 =  cos
e

 + cos   sin   +  sin
e

4 2 2 4
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Hence
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Substituting 1/G = (b /a) (1/G≤ ) into equation (4.26) gives

1
e

 = cos
e

 + cos   sin   + sin
e

4 2 2 4

p ta e a e a eq

q q q qÊ
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ˆ
¯̃ ¢¢
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ˆ
¯G

e  = e cos  + cos   sin   + e sin– – 4
2 2

– 4p ta e a e a eq q q q q¢¢G
and

e a q q q qq
a e a e = – 1  e cos  + cos   sin   + e sin– 4
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Ê
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ˆ
¯G

[4.33]

Replacing e by EMT,

EMTq = – 1  e cos  + cos   sin   + e sin– 4
2 2

– 4p t

a q q q qa aEMT EMT

G ¢¢
Ê
Ë

ˆ
¯

[4.34]

The tensile strain (EMT) in any direction can be obtained by using the above
models (equations 4.22 and 4.24) when values of the tensile strains at warp,
weft and 45∞ directions are known. The polar diagram of EMT of different
woven fabrics can also be predicted by this model (Lo and Tsang, 1999).

4.3.2.3 Linearity (LT)

Linearity is a measure of the extent of non-linearity of the tensile stress–
strain curve. It depends on the ratio between tensile work (WT) and tensile
elongation (EMT) from the stress–strain curve. The model of tensile linearity
(LT) can thus be denoted as follows:

LT
WT

cons t EMTq
q

q
 = 

 tan * 
[4.35]

4.3.2.4 Tensile resilience (RT)

Tensile resilience (RT), which is the ratio of work recovered to the work
done in tensile deformation, is expressed as a percentage (RT = WT ¢/WT).
Work recovery (WT ¢) is the tensile force at the recovery process while tensile
energy (WT ) in tensile deformation is represented by the area under the
stress–strain curve in the loading process. And thus the existing WT model
and the proposed W T ¢ model for the loading and unloading processes
respectively can be used to predict the tensile resilience (RT) of woven
fabrics.

For the loading process of the tensile stress–strain curve, a model is
derived by Hu and Newton (1993) for the loading stress–strain curve. Their
approach is to establish a model with an exponential function, in which two
parameters are derived by using a non-linear regression method.
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As the tensile recovery curve is followed by a very rapid decrease in the
fabric stress in the unloading process, function 4.36 is thus established:

F ¢ = aebe – c [4.36]

where F ¢ is stress, e is strain, a, b and c are unknown parameters.

Work recovery model (WT¢)
The work recovery (WT ¢ ) of the tensile stress–strain curve could also be
described with the proposed exponential function with two unknown
parameters. The unknown parameters a, b and c in function 4.36 can be
solved using the SPSS non-linear regression program and F ¢ and e can be
directly recorded from tensile stress–strain curves tested on the KES system.
The derivative of F ¢ with respect to e yields tensile modulus,

¢ ¢ fi ¢
E F ab

E ab
b

b = d
d

 = e        = 
ln( / )

e ee [4.37]

Tensile recovery (WT ¢ ) as defined in the KES system is work recovery in
tensile deformation represented by the area under the stress–strain curve.
Combining equations 4.36 and 4.37, we get
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If E ¢ varies with an angle q, WT ¢ will also vary with q and the above
equation becomes

WT
E E

b
c
b

E
E

¢ ¢ ¢ ¢
¢

È
ÎÍ

˘
˚̇q

q q

q
 = 

( )  –  ( )
 –   ln 

( )
( )

m 0
2

m 0

0
[4.39]

where ( )  and ( )m 0¢ ¢E Eq q  are the Young’s moduli of the tensile recovery
curve in various directions. All can be calculated from the Kilby Young’s
modulus model (equation 4.18). As the two parameters b and c vary with
angle q, they will give different values in various directions. To simplify the
calculation of W T ¢ by statistical mean of least squares analysis, b and c take
their average in the warp, weft and ± 45∞ directions rather than the value of
their corresponding individual direction (Lo et al., 1999a,b).
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Tensile resilience model (RT)
With the work recovery model (WT ¢), tensile resilience (RT ) of woven
fabrics could be easily predicted from the work recovery (WT ¢ ) and tensile
work (W T ) models. Tensile resilience (RT) is the ratio of work recovered to
work done in tensile deformation expressed as a percentage:

RT WT
WT

 =   100 %¢ ¥ [4.40]

If RT varies with angle q, equation 4.40 becomes

RT
WT
WTq

q

q
 =   100 %

¢ ¥ [4.41]

4.3.3 Polar diagrams of the tensile model

4.3.3.1 General features

The values of tensile parameters (WT, EMT, LT and RT) usually differ in
direction; thus some points in the polar diagram have to be normalised in the
warp direction to simplify the comparison and analysis. When the value of
these parameters in the warp direction is fixed, changes in the bias directions
can be easily observed from the polar diagram. The normalised tensile
parameters can be obtained by dividing each parameter by their averaged
value.

As shown by Figs 4.4–4.7, many similarities can be found in the polar
diagrams of different tensile parameters:

(1) The pattern is symmetrical to the warp and weft directions.
(2) The value of each parameter differs with the angle and the maximum

happens exactly at either the warp (WT of satin, LT ) or weft directions

4.4 Typical polar diagram of tensile work (WT).
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4.5 Typical polar diagram of tensile extension (EMT).

4.6 Typical polar diagram of tensile linearity (LT ).

4.7 Typical polar diagram of the tensile resilience model (RT ).
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Table 4.1 Classification of polar diagrams of tensile parameters

Types Conditions Shape of polar diagram

1 WT1 ª WT2 ª WTq Circular shape (isotropic)
(WT1 ª WT2) > WTq Butterfly or Hexagonal Shape
(WT1 ª WT2) < WTq Rhombus shape

2 WT1 > WTq > WT2 Gourd or elliptic shape (maximum
value in warp direction)

WT1 < WTq < WT2 Gourd or elliptic shape (maximum
value in weft direction)

or at ± 45∞ angle (WT, EMT) corresponding to the warp and weft
directions.

(3) For some tensile parameters, the polar diagram generated from satin
woven fabrics might differ somewhat from that of plain and twill woven
fabrics due to its long floats, examples of which include the WT polar
diagram.

(4) The polar diagrams of each parameter can be classified into two types
on the basis of their general shapes. If the value of the parameter
between the warp and weft directions is similar, the polar diagram will
display a circular, rhombus or butterfly shape. We name this pattern
Type 1. Type 2 refers to those featuring a gourd shape with their maximum
value either in the warp or in the weft direction, as shown in Table 4.1.

4.3.3.2 Factors influencing tensile parameters

Influence of fabric weaves on WT
Twill and satin woven fabrics usually demonstrate lower tensile work (WT )
as compared with plain woven fabrics, due to the presence of floats, but no
apparent difference can be observed in the WT values of plain, 2/2 twill and
3/3 twill woven fabrics in the warp direction if their warp densities are kept
constant. In addition, the value of WT will increase with the rise in weft
densities, indicating that more work is needed to extend the fabric with high
weft density.

Due to the frictional force between the contact points of the warp and weft
yarns, several factors will contribute to the amount of energy loss, including
the ratio of the yarn counts in the warp and weft yarns, the ratio of the yarn
spacing, the average yarn spacing, the type of weaves, the direction of force
applied to the fabrics, etc. The experimental data of WT indicates that the
tensile work of plain woven fabrics is generally higher than that of the twill
and satin woven fabrics. As the ratio of yarn spacing and the average yarn
spacing of plain woven fabrics are comparatively smaller than those of twill
and satin woven fabrics, greater energy is needed to overcome the frictional
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restraint existing at the interlacing points of the warp and weft yarns. As
neighbouring yarns cross over interlacing points, the yarns are prevented
from moving, especially when extension occurs in bias directions. In such a
case, the yarns are extended by rotating the unit cell in the direction of the
pull. Thus, larger energy consumption results in the extension of plain woven
fabric in bias directions.

In contrast with this, lower yarn crimp is exhibited in the looser weave
construction of twill and satin woven fabrics, especially in the weft direction.
Consequently, yarn extension is no longer the main factor affecting fabric
deformation, viz. fibre extension also comes into play. As a result, an increase
in the work in bias directions occurs due to the addition of fibre extension.
This also explains why the tensile work in the weft direction is found to be
higher than that in the warp direction.

Influence of weft density on EMT
Weft density is an important factor governing EMT values. With the increase
in weft density for any fabric type, a rise in the magnitude of EMT in all
directions will be observed. A direct image of this is an outward spreading
along any direction for all woven fabrics. As the width of a fabric is usually
fixed, the yarns will jam and come into contact when the weft density has
reached its limit. Hence, an increase in the inter-yarn friction will be found
when the weft yarns are closely packed together.

For a unit cell of a plain woven fabric, the warp and weft yarns interlace
with each other in a format of one up and the other down. Thus, when a
fabric is under tension, the yarn bending rigidity in this lattice structure will
restrict yarn movement by producing frictional force. Generally, this restriction
will increase with the rise in the weave density. In addition, the yarn crimp
will also grow with the increase in weave density and, in the meantime, a
reduction in the modular length will be found. Therefore, more energy is
needed to extend a fabric with high density.

A twill woven fabric usually exhibits larger elongation than plain woven
fabrics due to its loose structure, despite its low yarn crimp. In addition, the
extension of a loose-structured fabric usually involves yarn slippage or even
fibre extension when large tension is applied. Thus, a broadening effect can
also be found in the contour of its polar diagram when the weft density is
increased.

Influence of Poisson’s ratio on EMT
When a fabric is extended lengthwise in one direction, widthwise contraction
will be found in the other as revealed by our experiments, made on the KES-
F apparatus using all specimens. Poisson’s ratio is such a measure of the
relative changes in length in the directions of the pull to that in a direction
perpendicular to it (Chadwick et al., 1949). Therefore, it can be predicted
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that a relationship exists between the Poisson effect and the anisotropy of
tensile elongation (EMT) and tensile work (WT ) of woven fabrics.

For a woven fabric, it seems that its Poisson’s ratio differs considerably
from one direction to another. In addition, the maximum elongation can be
experimentally proven at ± 45∞ directions as discussed in the previous section.
It is also evident that maximum widthwise contraction and evading action
happen at ± 45∞ directions. These maxima at ± 45∞ might be attributable to
the increased internal friction in the perpendicular direction and maximum
pressure existing at the warp and weft interlacing points. Also observed in
tensile testing is a necking effect, which might stem from yarn migration
towards both ends of the clamps.

For a clear picture of the Poisson effect on widthwise contraction, the
lengthwise extension is kept constant. Consequently, in common with the
situation with EMT and WT, a similar effect is found in the Poisson’s ratio of
woven fabrics. For woven fabrics, their Poisson’s ratios in the two principal
directions are very close to each other. However, an apparent difference
exists in the Poisson’s ratios of twill and satin woven fabrics. This indicates
that a lower crimp interchange effect appears in loose fabric structures.

During uniaxial extension, only one set of yarns is firmly held at both
ends, while both ends of the other set of yarn are free of tension; this leads
to the great similarity in its Poisson’s ratios in the two principal directions.
However, in the bias directions, only one end of the yarns will be clipped
during extension. The yarns can thus easily move along each other, especially
in a loose structure such as in twill and satin weaves. These yarns also
present a tendency to move towards the clamps due to the lack of pinpointing
effect. Also proved is a higher ratio of lengthwise elongation to widthwise
contraction in bias directions.

Figure 4.8 shows the unit cell of a uniaxially stretched plain woven fabric.
It is quite clear that the lengthwise extension in ± 45∞ direction (length y¢ in
Fig. 4.8b) is larger than that in either of the two principal directions (length
y in Fig. 4.8a). If the lengthwise extension is kept constant, a higher widthwise
contraction of woven fabric will also be observed in the ± 45∞ direction as
indicated by x¢.

Although the above results were developed on apparel fabrics, it has been
experimentally confirmed that their validity can also be extended to industrial
woven fabrics.

4.4 Strain-hardening of warp yarns in woven

fabrics

4.4.1 Introduction

From intuition, it would be expected that a square plain woven fabric should
exhibit similar extensibility in its two principal directions. For poplin fabrics,
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a fabric type with prominent larger crimp level in warp yarns, the extensibility
of warp yarn should be far superior to that of weft yarns. However, KES
testing reveals that against our expectation, the square fabric possesses greater
variation in extension in its two principal directions than the poplin. In
addition, tensile resilience, RT, seems to have a larger value in the warp
direction than that in the weft for many fabrics while WT, the tensile energy,
always exhibits a lower value in the warp. These facts reveal that a woven
fabric is more extensible in the weft direction. A direct image of this
phenomenon is that the shape of the tensile stress–strain curve of a woven
fabric is usually steeper in the warp direction than that in the weft, as shown
in Fig. 4.9. This phenomenon is apparently due to the repeated loading and
unloading a woven fabric experiences during manufacturing and processing.
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4.8 Unit cell of plain woven fabric after uniaxial tension: (a)
Extension in the warp or weft direction; (b) Extension in 45∞
direction.
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4.9 Comparison of the tensile stress–strain curves in principle
directions of woven fabrics.
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4.10 Cyclic tensile stress–strain curves of textile materials.

4.4.2 Theory of plasticity

4.4.2.1 Work-hardening

Figure 4.10 shows the cyclic tensile stress–strain curves of textile materials.
It is obvious that when an inelastic material like a yarn or a fabric is subjected
to cyclic loading, the loops will get narrower and narrower as cyclic loading
and unloading goes on. As a result, the energy needed to stretch the material
gets less and less while the strain becomes smaller and smaller at the same
maximum strain.

In Fig. 4.11, the tensile curve of a general engineering material is presented.
If at any point between the elastic limit B and the maximum load point C the
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4.11 Stress–strain curve for a conventional engineering material.
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tensile stress in the material is removed, unloading will take place along a
line parallel to the elastic line, as shown in the figure by B¢C¢. Part of the
strain is thus recovered and part remains permanently. Upon reloading, the
unloading line B¢C¢ is retracted with very minor deviations. Actually a very
thin hysteresis loop is formed, which is usually neglected. Plastic flow does
not start again until the point B¢ is reached. With further loading, the stress–
strain curve is continued along B¢C¢ as if no unloading had occurred. Point
B¢ can thus be considered as a new yield point for this material. From this.
fact, it appears that the Young’s modulus in this second cycle would be equal
to or larger than that of the first cycle. Three conclusions follow from this,
Firstly we can infer that the modulus at any point is the smallest in the first
loading cycle. The modulus of a later cycle is generally larger than that of
the immediately previous cycle, or the extension of the material in the first
cycle is the largest among all cycles for a given cyclic stress. For example,
the Young’s modulus of the third cycle is larger than that of the second cycle;
in turn, the modulus of the fifth cycle may be larger than that of the fourth
cycle … Secondly, when a constant stress is given for two cycles, for example
at B¢, we can see that the energy to extend the material during the first cycle
is much larger than that in the second cycle, which is only a part of that in
the first cycle; in turn, energy in the first cycle will be larger than that in the
second one. Thirdly, if we release the loading at B¢ it is obvious that the
tensile resilience of the second cycle is 100 %, but the first cycle has only a
fraction of it; that is, the tensile resilience of the second cycle will be larger
than that of the first cycle and consequently the energy resilience in the later
cycle may be larger than in all the previous ones. This is caused by plastic
strain in the previous steps. The effect of this strain is called work–hardening
or strain-hardening.

In plasticity theory, when a real material is deformed plastically, it ‘work-
hardens’. That is, as the material deforms, its resistance to further deformation
increases. The degree of hardening is a function of the total plastic work and
is otherwise independent of the strain path. This is sometimes known as the
equivalence of plastic work. In other words, the resistance to further distortion
depends on the amount of the work. The effect of different discontinuous
processing procedures of woven fabrics, namely the extension stresses in the
warp direction, can be simulated at irregular cyclic loading. They produce
accumulated plastic strains in yarns of woven fabrics. The effect of plasticity
is a permanent deformation. Even though a fabric is fully relaxed, the
deformation caused by processing cannot be removed entirely.

Thus when a final product, a fabric, is tested on a tensile tester in a
laboratory, this causes the EMT difference between warp direction and weft
direction, even though the other conditions are the same for warp and weft
yarns; WT in the weft direction is larger than that in the warp direction; the
recovered energy is larger in the warp direction; and it can be observed that
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the warp yarns in a woven fabric are harder to extend than those in the weft
direction.

4.4.2.2 Plastic strains

From the above section, plastic strain in woven fabrics before tensile testing
is recognised by the comparison of the warp and weft tensile properties of a
woven fabric and it is suggested by comparing cross-sectional areas of warp
and weft yarns.

If it is assumed that yarn density remains unchanged before and after
fabric manufacturing and processing, the difference in the yarn areas between
warp and weft directions in a fabric can be attributed as a warp yarn extension
along its axis direction.

The value of warp yarn extension may be calculated using a plastic
deformation principle, assuming that plastic strain involves no volume change,
thus:

exp + eyp + ezp = 0 [4.42]

where exp, eyp, ezp are logarithmic plastic strain changes in the x, y, z direction
respectively.

The logarithmic strain is defined as:

e l
l

 = ln 
0

[4.43]

In the case of the KES system, we use engineering strain e ¥ 100 %:

e = 
 –  0

0

l l
l

[4.44]

These two strains have the following relation:

e = ln (l + e) [4.45]

The definition of logarithmic strain was suggested by Ludwik. For small
extensions, the engineering strain, e (first defined by Cauchy), is approximately
equal to the logarithmic strain e.

Under the condition of volume constancy, the relationship of three principal
engineering strains can be expressed:

(1 + ex)(1 + ey)(1 + ez) = 1 [4.46]

For infinitesimal strains, we may neglect the products of the strains and
equation 4.46 reduces to

ex + ey + ez = 0 [4.47]

In the case of yarns in woven fabrics, for elliptic yarn cross-section, the z
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axis represents yarn axial direction, the x axis the major diameter direction
and the y axis the minor diameter direction. Then equation 4.42 can be
written as:

ln  + ln  +  = 0
0 0
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d
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¯
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Ë

ˆ
¯ [4.48]

where a and b are major and minor diameters of yarn in a woven fabric, d0

is the original diameter of the yarn.
If the cross-sections of yarn are regarded as circular and the equivalent

diameter, d, is calculated using measured yarn area, the relation can be
expressed:
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One piece of evidence of the effects of the plastic strain on different directions
of a woven fabric is that the cross-sectional areas of warp yarns are generally
smaller than those of weft when made of the same yarns, as shown in Fig.
4.12. Statistical calculations of the plastic strains in the longitudinal direction
of yarns in a fabric show that the warp yarns in a woven fabric have a
positive or extended plastic strain before testing and the weft yarns a negative
one, which makes warp yarns in a woven fabric harder to stretch than weft
yarns. The difference of plastic strains in warp and weft directions is shown
to have linear relationships with EMT, WT and RT.
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4.12 Comparison of yarn cross-section areas of warp and weft yarns.
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4.4.3 Relationship between plastic strain and
tensile properties

It has been shown qualitatively that the tensile properties of a woven fabric
are closely related to the strain-hardening effect. In this section, the quantitative
relations between them will be provided.

Figure 4.13 shows the relationship between the EMT difference and the
plastic strain difference of warp and weft yarns in woven fabrics. From Fig.

4.13 Relationship between DEMT and De for (a) circular cross-section
and (b) elliptic cross-section.
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4.13a, whose plastic strain is calculated using equation 4.49 for the equivalent
circular cross-sectional diameter of measured yarn area, it appears that a
good linear relationship exists. Figure 4.13b, whose calculation is based on
elliptic cross-section, shows similar trends.

Figure 4.14 plots the relationships between WT difference and plastic
strain difference of warp and weft yarns in woven fabrics. It is clear that a
good linear relationship also holds. Figure 4.15 depicts the relationships
between RT difference and plastic strain difference of warp and weft yarns
in woven fabrics. It is apparent that the larger e produces the larger RT.

4.5 Summary

This chapter introduces the author’s contribution to the study of the tensile
properties of woven fabrics. It starts with an introduction of the general
concept of tensile properties with the focus placed on the features of tensile
stress–strain curves of woven fabrics as well as the complexity of the
deformation of woven fabrics under tensile load. This is followed by modelling
the tensile behaviour of woven fabrics. Also presented is a study of the
anisotropy of the tensile properties of woven fabrics together with an in-
depth investigation of the strain-hardening effect observed from tensile stress–
strain curves. The conclusions reached include:

(1) A woven fabric’s tensile property is very difficult to study due to the
great bulkiness in fabric structure in addition to the complexity in the
structure and strain distribution of its constituent fibres and yarns and
of the fabric itself as well as the strain variation during deformation. A
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deformed fabric cannot resume its original geometrical state due to the
existence of hysteresis. This is inherent since textile material is
viscoelastic.

(2) The tensile stress–strain relationship of a woven fabric can be successfully
described by an exponential function, f = [(eae – 1)/b ] + er, in which a
is a reinforcing factor for the increase of Young’s modulus E. There is
also found an obvious linear relationship between a with the crimp
level c of the fabric.

(3) Regarding the various tensile parameters (WT, EMT, LT, RT), a great
deal of similarity is found in their polar diagrams: their shapes are all
symmetrical to the warp and weft directions; the value of each parameter
differs with the angle; and the maximum happens exactly at either the
warp (WT of satin, LT ) or weft directions or at ± 45∞ angle (WT, EMT)
corresponding to the warp and weft directions. The polar diagram of
each parameter can be classified into two similar groups depending on
the relationship of parameter values between the warp and weft directions.

(4) The strain-hardening phenomenon is found in woven fabrics. This
phenomenon has a significant effect on the tensile properties of a woven
fabric, as reflected by the variation in the Young’s modulus value between
warp and weft directions. It is believed that this phenomenon could be
associated with the repeated loading and unloading a woven fabric
experiences during manufacturing and processing.

4.15 Relationship between DRT and De.
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