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5
The bending properties of woven fabrics

5.1 General bending behaviour of woven fabrics

5.1.1 Introduction

The bending properties of fabrics govern many aspects of fabric performance,
such as hand and drape, and they are an essential part of the complex fabric
deformation analysis. Thus, the bending of woven fabrics has received
considerable attention in the literature. Computational models for solving
large-deflection elastic problems from theoretical models have been applied
to specific fabric engineering and apparel industry problems, for example,
the prediction of the robotic path for controlling the laying of fabric onto a
work surface (Brown et al., 1990, Clapp and Peng, 1991).

The most detailed analyses of the bending behaviour of plain-weave fabrics
were given by Abbott et al. (1973), de Jong and Postle (1977), Ghosh et al.
(1990a,b,c), Lloyd et al. (1978) and Hu et al. (1999, 2000). Modelling the
bending of a woven fabric requires knowledge of the relationship between
fabric bending rigidity, the structural features of the fabric, and the tensile/
bending properties of the constituent yarns, measured empirically or determined
through the properties of its constituent fibres and the yarn structure. It
requires a large number of parameters and is very difficult to express in a
closed form. Thus, the applicability of such models is very limited. Konopasek
(1980a) proposed a cubic-spline-interpolation technique to represent the fabric
moment–curvature relationship.

5.1.2 Moment–curvature curve of bending behaviour

Fabrics are very easy to bend. Their rigidity is usually less than 1/10 000 that
of metal materials and about 1/100 that of tensile deformation. Bending
properties of a fabric are determined by the yarn-bending behaviour, the
weave of the fabric and the finishing treatments applied. Yarn-bending
behaviour, in turn, is determined by the mechanical properties of the constituent
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fibres and the structure of the yarn. The relationships among them are highly
complex. Figure 5.1 illustrates a typical bending curve of woven fabrics.

For this curve, it is normally thought that there is a two-stage behaviour
with a hysteresis loop within low-stress deformation: (a) an initial higher
stiffness non-linear region, OA; within this region the curve shows that the
effective stiffness of the fabric decreases with increasing curvature from the
zero-motion position, as more and more of the constituent fibres are set in
motion at the contact points; (b) a close-to-linear region, AB; since all the
contact points are set in motion, the stiffness of the fabric seems to be close-
to-constant.

It should be noted that when a woven fabric is bent in the warp or weft
direction, the curvature imposed on the individual fibres in the fabric is
almost the same as the curvature imposed on the fabric as a whole. As high
curvatures meet when fabrics are wrinkled, the coercive couple or hysteresis
is affected by viscoelastic decay of stress in the fibre during the bending
cycle (Postle et al., 1988). However, in applications where the fabric is
subjected to low-curvature bending, such as in drapes, the frictional component
dominates the hysteresis. Thus, if the strain in the individual fibres is sufficiently
small that viscoelastic deformation within the fibres can be neglected, the
hysteresis in Fig. 5.1 is attributed to non-recoverable work done in overcoming
the frictional forces. The effect of the fibre’s viscoelasticity in this section
will not be considered because the bending of fabrics on the KES tester is
within low-stress regions.

5.1.3 Bending stiffness

The primary concern with the conventional research in fabric bending is the
bending stiffness. Bending stiffness is one of the main properties that control
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5.1 Typical bending curve of woven fabrics.
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fabric bending. It should be defined as the first derivative of the moment–
curvature (M–r) curve. If the structure of the bending curve is linear, M is
directly proportional to the curvature produced. Some studies have been
conducted to predict fabric bending stiffness. It has proved very difficult to
calculate bending stiffness explicitly, due to the numerous factors that affect
its value if the stiffness of the whole bending process is considered. In
reality, the bending stiffness of fabrics is usually approximated to a constant
which can be considered as steady-state-average-stiffness and the initial
non-linear region is ignored. This is a low-order approximation to the actual
non-linear bending properties present in most fabrics. Clapp and Peng (1991)
have shown that the approximation to a constant stiffness may yield inaccurate
values when calculating the fabric-buckling force in the initial buckling
stage (Brown, 1998). As we can see in Fig. 5.1, the actual experimental M–
r curves are non-linear, at least in the initial region in which the slope of the
M–r curve for small values of r is greater than that for larger values of r.
Thus, the bending-stiffness, B, should be a non-linear, continuous function
of curvature.

5.1.4 Relationship between bending stiffness and
bending hysteresis

The effect of friction on the steady-state-stiffness, known as ‘elastic stiffness’
in the literature, of fabric bending is well known to us and has been studied
by a number of workers, including Peirce, Platt, Kleine and Hamburger, and
Cooper before Liversey and Owen. But different researchers have different
views on the manner and extent of this effect. Peirce suggested that a theoretical
minimum warpway or weftway stiffness for a fabric might be calculated by
summing the bending stiffness of the yarns; this was examined more fully by
Cooper who found that friction or binding between the fibres causes the
observed stiffness to exceed this minimum. The contribution of inter-fibre
friction to the stiffness of a fabric has usually been studied by subjecting the
specimen to a bending cycle and examining the resulting hysteresis curves.
Liversey and Owen (1964) derived a mathematical formula for the minimum
fabric bending stiffness, neglecting interactions between the fibres; this formula
took account of the twist and crimp in the yarns. An instrument was described
in their classical paper titled ‘Cloth stiffness and hysteresis in bending’ to
assist in determining the nature of the interactions between fibres which
cause the observed fabric bending stiffness to exceed the theoretical minimum.

In Grosberg’s conclusion (1980), however, there is no friction present in
the region of the close-to-linear portion of the bending curves; friction only
affects the coercive moment. Postle el al. (1988) also thought that the internal
friction has no effect on elastic bending or shear stiffness but did not mention
whether friction exists during this period of deformation. Skelton (1974 and
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1976) thought internal friction is always present during deformation but is
independent of elastic stiffness. They all agreed that hysteresis is a measure
of internal friction.

5.2 Modelling the bending behaviour of

woven fabrics

5.2.1 Modelling the bending curves using non-linear
regression

The modelling of the bending (moment–curvature) curve of woven fabrics
started with the work of Peirce (1930). The theoretical modelling can be
divided into three categories: predictive modelling, descriptive modelling
and numerical modelling. The majority of the existing research work has
been in the area of predictive modelling, in which the analytical relationship
between fabric bending properties, yarn-bending behaviour and constituent-
fibre behaviour, on the assumption of a given geometrical disposition of
fibres or yarns in the fabric, is obtained. This kind of model was very difficult
to solve in a closed form and thus very difficult to apply. A review of the
research in this field was carried out by Ghosh et al. (1990a,b,c). It is not
intended to re-review here due to its limited relevance.

Many numerical modelling methods are used in mechanical engineering,
and they are useful for the stress–strain analysis of a structure. Konopasek
(1980) proposed the use of the cubic-spline-interpolation technique to represent
the stress–strain relationship of fabric bending. The cubic-spline-interpolation
technique is useful when the mathematical relationship between moment
and curvature is not available, but it is rather cumbersome in computation
and application. When the relationship of moment–curvature of fabric bending
is available, a non-linear regression method may be used to estimate constants
in the equation. The following introduces the descriptive model established
by Oloffson (1967). It is expected that this model can be fitted using the non-
linear regression technique.

There are examples scattered through the literature of rheological studies,
or descriptive modelling, including sliding elements that are in accordance
with Oloffson’s study, in which a simple non-viscous combination consists
of a sliding element (fN) in parallel with an elastic element (EN) in Fig. 5.2
or a block connected by a spring to a wall.

If the initial strain is equal to zero and s ≥ sN, the conditions exist for the
displacement eN| as a function of the external stress s. If a series of coupled
elements of the type is considered arranged in the sequence:

sf 1 < s f 2 < sf 3 < . . . < s f N < . . . [5.1]

the force on all the elements is then the same:
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s1 = s2 = s3 . . . sN = s [5.2]

and the total deformation can be found by summing:

e1 + e2 + e3 + . . . eN + . . . = e [5.3]
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If a continuous model considered by changing the step function

sf 1 < s f 2s f 3 < . . . < s f N < . . . [5.5]

corresponding to finite elements of Fig. 5.2 into a continuous function s
which increase with F (differential elements), then a continuous function for
EN can we expressed as a function of s:

1  = d
E

k
N

ms s [5.6]

where the infinitesimal range ds is introduced and b is the curvature of the
fabric. The equation can thus be obtained:
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where m is the conditional coefficient.
For an assembly of identical or nearly identical elements m = 0, hence a

stress–strain relationship of the form:

e = As 2 [5.10]

or

s e = B
1
2 [5.11]

Frictional element

Elastic element

5.2 Assembly of frictional and elastic elements.
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where A and B are two arbitrary constants. Equation (5.11) has been used in
several cases for bending and shear initial behaviour. From the derivation
conditions, this equation could be valid for the whole range of the deformation.
But in practice, we can see that only the initial part was thought to obey this
law. The principal range of m for fabric bending was reported to be
– 0.1 > m > – 0.9.

In conventional studies, the Oloffson’s model has only been applied when
m = 0 and been used in the initial region of the moment–curvature curve; the
latter stage has been considered as a linear relationship and even independent
of the frictional element. The present work makes an attempt to modify
equation 5.11 into a two-parameter function and to extend it to fit to the
whole curve of experimental results using a non-linear regression method.
The modified function including two constants a and b is as follows:

M = arb [5.12]

where M is the bending moment and r the curvature.

5.2.2 Bending stiffness

Considering bending stiffness as a constant, the bending curve of fabrics can
be described using equation 5.12. If the B–K (bending stiffness, B, versus
curvature, K) curve is defined as the first derivative of the M–K curve,

B = abr(b–1) [5.13]

the simulated bending stiffness now is a continuous, non-linear function of
the curvature.

5.2.3 Estimation of two constants

Similar to the methods in Chapter 4, there are several ways to estimate the
two constants a and b, but the most reliable one should be the non-linear
regression method. The second choice may be the application of a general
least squares method using more than two points. Suppose there are n sets of
data from a bending curve of a woven fabric (r1, M1), (r2, M2), . . . , (rn, Mn),
then we have:

Mi i = arb [5.14]

So the sum of the squares of deviation from the true line is

S M
i

n

i i =  (  –  )
=1

2S arb [5.15]

By mathematical operation using the least squares principle, the following
two equations can be obtained:
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5.3 Modelling the bending properties of woven

fabrics using viscoelasticity

5.3.1 Introduction

The bending performance of fabrics is characterised through parameters
such as bending rigidity and hysteresis. However, the problem of how to
separate the viscoelastic and frictional components in hysteresis remains
unsolved. A detailed investigation of the bending of woven fabrics that
determines the frictional couple through the cyclic bending curve of the
fabric is needed. Hence, a theoretical model composed of a standard-solid
model in parallel with a sliding element is proposed. The bending properties
of woven fabrics are quantitatively studied.

Linear viscoelasticity is in fact applicable to many viscoelastic materials
like wool, polyester, nylon and so on. In the study of fabric rheology from
the phenomenological viewpoint, two simple rheological models consisting
of linearly elastic and frictional elements, proposed by Oloffson (1967), are
most popular in the textile literature (Grosberg 1966; Hamilton and Postle,
1974; Gibson and Postle, 1978; Hu, 1996). These models do not account for
fibre viscoelastic processes which occur during fabric deformation and recovery.
Chapman proposed a theoretical model in which the material is termed as
‘generalized linear viscoelastic’ and showed that the result fits single wool
and nylon fibres at low strains (1 %) under changing temperature and relative
humidity (Chapman, 1973; 1974a, 1975). The fabric has been shown to
behave as a GLVE sheet in bending with an internal frictional moment
(Chapman, 1974b). The frictional couple associated with each fibre in bending
is principally considered as a function of strain and absolute time (Chapman,
1974c, 1980; Grey and Leaf, 1975, 1985; Ly, 1985). One of the fundamental
ways to characterise the rheology of viscoelastic material is to bend the
sample to a designated curvature and observe its transient behaviour. The
recovery of fabrics from bending (Chapman, 1976), shear (Asvadi and Postle,
1994), creasing (Chapman, 1974d; Shi et al., 2000a,b,c) and wrinkling (Denby,
1974a,b; Denby, 1980; Postle et al., 1988) can be calculated through the
knowledge of stress relaxation.
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5.3.2 The linear viscoelasticity theory in the modelling
of bending behaviour

Deformation, stress relaxation and subsequent recovery of fabrics can be
studied quantitatively using the rheological model of linear viscoelasticity.
Linear viscoelasticity is applicable for many viscoelastic materials when
they are deformed to low strain (Postle et al., 1988). Modelling the viscoelastic
behaviour of materials may involve using simple multiple-element models
or generalised integrated forms.

In order to simplify the calculation, the fibre is assumed to be linearly
viscoelastic and its bending behaviour can be described by the standard solid
model. The fabric is considered to be a viscoelastic sheet with internal frictional
constraint. Its bending behaviour can be described by a three-element linear
viscoelastic model in parallel with a frictional element, as shown in Fig. 5.2.
The model is governed by the following equation (Chapman, 1974a):

M k M k k k M( ) = ( ) + /| |  v f
˙ ˙ ¥ [5.17]

In equation (5.17), M(k) is the bending moment of the fabric, k is the curvature
of the fabric at time t, Mf is the frictional constraint and mv is the viscoelastic
bending moment of the fabric. k̇  is the rate of change of curvature (cm/s).
The factor ˙ ˙k k/| |  is the sign of the curvature change, which means that any
curvature change of the fabric is opposed by the frictional constraint Mf. The
frictional constraint interacts with the viscoelastic behaviour of single fibres
to impose a limit on the recovery a fabric may eventually attain.

Frictional constraint restricts free movement of the fibres in fabric during
bending. It is supposed that the fabric in bending acts like a linear spring in
parallel with a frictional element and the frictional constraint is assumed to
be a constant M0 (Grosberg, 1966; Oloffson, 1967).. The couple of the frictional
sliding element is termed the ‘coercive couple’. The coercive couple for
fabrics in bending is half the distance between the cut-offs on the vertical or
moment axis of the cyclic bending curve.

The intercept has been interpreted as being entirely due to the frictional
moment and equal to 2M0 in the past (Grosberg, 1966). However, the frictional
moment, in fact, only accounts for a portion of this intercept. Another portion
of the intercept will be due to viscoelastic effects because the fibres are
viscoelastic in nature (Konopasek, 1980b). In fact, the frictional constant
varies with the maximum curvature imposed on the fabric (Ly, 1985). Since
constant frictional constraint will lead to greater error and reduce the
applicability of the model and the intercept on the bending moment axis
made by the hysteresis loop is smaller than the 2HB from the Pure Bending
Tester in Kawabata’s Evaluation System, we assume that the frictional constraint
is proportional to the curvature imposed on the fabric, as depicted in Fig. 5.3.
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If a fabric is bent at a constant rate of change of curvature r, the viscoelastic
bending moment of the fabric of unit length can be expressed as

M t B
t

v
0

( ) =  ( )dr t tÚ [5.18]

where B(t) is relaxation modulus of the fabric. For a standard solid model,
B(t) is given by

B E
E E
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where the constant T = h/(E1 + E2) is the relaxation time of the model, E1 and
E2 are elasticity moduli of the springs, h is the viscosity coefficient of the
damper. Substituting equation (5.19) into equation (5.18), the viscoelastic
bending moment of the fabric can be written as follows:
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In equation (5.20),

a
E E

E E
b

E

E E
 = 

 + 
 ,     = 

(  + )
 1 2

1 2

1
2

1 2
2r rh

When the fabric is cycled between curvature k* and – k*, a typical hysteresis
curve for bending deformation is as shown in Fig. 5.4. The cyclic bending
curve can be separated into regions where alternate positive and negative
rates of change of curvature are inserted. By applying equation (5.20) the
complete bending hysteresis cycle due to the viscoelasticity of the sample
can be calculated. Using the Boltzman superposition principle to add the
effects caused by the component strain rate for each portion of the hysteresis
curve of the viscoelastic component, we can calculate the moment at points
1, 2, 3 and 4 in Fig. 5.4. For bending at a constant rate of r and limiting
curvature k*, k = rt, t* = k*/r, the viscoelastic bending moment at time t*,
2t*, 3t* and 4t*, is respectively obtained as

k

–k*k*

Mf

M fh

M

E2

E1

Mv

5.3 A three-element-plus-frictional viscoelastic model for bending of
fabric.
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Mv1 = Mv(t*) (t = t*) [5.21]

Mv2 = Mv(2t*) – 2Mv(t*) (t = 2t*) [5.22]

Mv3 = Mv(3t*) – 2Mv(2t*) (t = 3t*) [5.23]

Mv4 = Mv(4t*) – 2Mv(3t*) + 2Mv(t*) (t = 4t*) [5.24]

where Mv1, Mv2, Mv3 and Mv4 are viscoelastic components of the bending
moment at points 1, 2, 3 and 4 in Fig. 5.4. Substituting equation (5.22) into
equation (5.23), the viscoelastic moments at time t*, 2t*, 3t* and 4t* can be
expressed as, respectively

Mv1 = at* + b(1 – g) (t = t*) [5.25]

Mv2 = –b(1 – g)2 (t = 2t*) [5.26]

Mv3 = –at* – b(1 – 2g 2 + g 3) = –M v1 + gM v2 (t = 3t*) [5.27]

Mv4 = b(1 – g 2)(1 – g )2 (t = 4t*) [5.28]

where
g h = e  = e– */ –( + ) */1 2t T E E t [5.29]

For cyclic bending between curvature k* and – k*, as depicted in Fig. 5.4,
the frictional constraint at points 1, 2, 3 and 4 varies and the total moments
at each point can be defined in the following manner:

M1 = Mv + mk* = at* + b(1 – g) + mk* (t = t*) [5.30]

M2 = Mv2 = – b(1 – g)2 (t = 2t*) [5.31]

M3 = Mv3 – mk* = – Mv1 + gMv2 – mk* (t = 3t*) [5.32]

M4 = Mv4 = b(1 – g 2)(1 – g )2 (t = 4t*) [5.33]

However, there are only three independent equations in equations (5.30–
5.33). Another equation must be established in order to find the solution to

Bending moment
M

–k*

2

3
2HB –

2HB +

Curvature  k

k*

1

4

5.4 An idealised hysteresis loop for fabric bending.
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the other two unknown variables. One of the parameters used to characterise the
bending properties of the fabric in the KES-FB-2 Bending Tester is 2HB, as
depicted in Fig. 5.4, which is independent of equation (5.33) and is given by:

2HB+ = M+(k) – M–(k) = Mv+(k) – Mv–(k) + 2Mf(k)

= 2 –  e  –  2e  + e  + 2
*– 2 *–

b k
k
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k k
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k k
Tr r r mÊ
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ˆ
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[5.34a]

and

2HB– = M+(–k) – M–(–k) = Mv+(–k) – Mv–(–k) + 2Mf (– k)
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where, the subscript + means the fabric is bent forward and the subscript –

means the fabric is bent backwards. 2HB+ and 2HB– are the width of the
hysteresis loop at a specific curvature ± k. In the KES-FB Pure Bending
Tester, it is defined at curvature ± 1 cm–1. Their average can be obtained as

2HB = (2HB+ + 2HB–)/2 = bQ + 2mk [5.35a]

where
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Equation (5.33) can be merged as
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Solving simultaneous equations (5.35) and (5.36), the parameters are given by
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Then, three parameters of the standard solid model can be obtained as follows:
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Thus, the proposed bending model for a fabric can be established through
three points in the moment–curvature curve and a hysteresis parameter.

5.4 Modelling the wrinkling properties with

viscoelasticity theory

5.4.1 Introduction

When a fabric is creased and then released, the residual forces in the fibres
enable the fabric to unfold or recover. Wrinkle recovery is thus defined as
the property of a fabric that enables it to recover from folding deformations.
The most common method of testing crease recovery (ISO 2313, IWTO
Drift TM 42) and wrinkle recovery (AATCC 66-1990) is to bend a strip of
fabric by heavy loading at controlled time and air conditions and measure
the angle of recovery after releasing the load.

During wrinkling deformation, all fabrics show a varying degree of
inelasticity, such as viscoelasticity and inter-fibre friction, because of the
viscoelastic nature of the constituent fibres and the rearrangement within the
fibre assembly. Their responses to applied loads are rate- or time-dependent.
At any time, the state of stress within a fabric depends on the entire loading
history. The viscoelastic nature of the constituent fibre is responsible for the
phenomenon of stress relaxation, and the inter-fibre friction provides the
fabric frictional stress during deformation and is responsible for the irreversible
deformation. Studying these inelastic effects in fabrics enables us to understand
and eventually predict important performance characteristics.

In this section the modelling of wrinkling, wrinkle recovery and set of
fabrics are established using the rheological model of linear viscoelasticity
based on the bending model developed in Section 5.3. The recovery of the
fabrics after release from wrinkling is analysed and the wrinkle recovery
angle of the fabrics is calculated using the model parameters derived from
pure bending test.
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5.4.2 Modelling the wrinkle recovery angle of
woven fabrics

Assume that a woven fabric is simply folded in the warp or weft direction
and pressed together by a uniform pressure normal to the surface of the
fabric, as shown diagrammatically in Fig. 5.5.

When a fabric is held at a fixed curvature k0 for a period of time t, and if
the fabric is considered as viscoelastic sheets with internal constraints, which
follow the three-element model in parallel with a sliding element and the
frictional constraint is considered to be proportional to the curvature of the
fabric as shown in Figs 5.1 and 5.2, the relaxation stress for the standard
solid model may expressed as (Creus, 1986; Yan, 1990)

M t E k
E E

E E
kt T t T

v 1 0
– / 1 2

1 2
0

– /( ) = e + 
 + 

 (1 –  e ) [5.39]

It can be found that the relaxation moment decreases progressively when the
fabric is held at a constant curvature. That is to say, the residual moment in
the fibre drops with time or the moment needed to maintain the fabric at a
constant curvature reduces gradually as indicated in Fig. 5.6(a).

The fabric is creased for a length of time w and then released against a
restraining couple Mf. Based on the Boltzmann superimposition principle,
removing the applied force that maintains constant curvature k0 is equivalent
to a –Mr being exerted in the opposite direction on the fabric, that is, Mr(t)
(t > w) equal to Mv(t) (t > w) in magnitude, but opposite in direction, as
shown in Fig. 5.6(b). Mr acts on the fabric and makes it recover from wrinkling
or creasing deformation. Mr can be divided into two portions. One portion,
Mrv acts on the standard solid element. Another portion, Mrf is assumed in
the frictional element. The frictional constraining couple is directly proportional
to the curvature of the fabric according to the assumption above. If the fabric
has a curvature kr from curvature k0 under the action of Mr, then the frictional
constraining couple is equal to mk r.

h

H

h

5.5 Wrinkling of a fabric for testing of wrinkle recovery angle.
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At instant t after the fabric is released, the moment can be expressed as

Mr(w + t) = ¢Mv(t) + mkr [5.40]

where kr is the curvature of the fabric produced by Mr. To calculate wrinkle
recovery of the fabric after release from a fixed curvature, we consider now
the curvature change of the fabric under a stress –Mr. The constitutive equations
for the standard solid element can be established as follows:
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Substituting equation (5.40) into and rearranging equation (5.41) gives
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Solving equation (5.42), the recovery deformation of the fabric is given by
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The remnant curvature of the fabric at moment t after the applied force is
removed can be expressed as

5.6 Stress and strain relation of the model during insertion of
wrinkles and wrinkle recovery (a) step curvature applied during
insertion of wrinkles and stress relaxation; (b) residual stress and
curvature recovery of the fabric after releasing.
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k(t) = k0 – kr(t) [5.44]

We assume that the bent portion of the fabric takes a semi-circular profile
during the insertion of wrinkles and a circular arc profile during recovery
from wrinkles, as shown in Fig. 5.7. If the length of the circular arc is
constant and equal to that of the semi-circle, that is

p p a
k k0

 =  –  [5.45]

then, the wrinkle recovery angle of the fabric can be expressed as
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The instantaneous wrinkle recovery angle a0 and the maximum wrinkle
recovery angle a• at time t = 0 and t = • can be derived respectively as
follows:
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It can be seen that the wrinkle recovery angle is completely determined once
we know the values of k0, w, t and the parameters of the elements in the
model. Thus, the wrinkle recovery angle of the fabric can be predicted using
the model parameters derived from the pure bending test.

5.5 Anisotropy of woven fabric bending properties

5.5.1 Introduction

Bending behaviour of a woven fabric can be characterised by bending rigidity
(B) and bending hysteresis (2HB). Bending rigidity is the resistance of a

5.7 The proposed model for the wrinkle recovery angle of a fabric.

b

a



Structure and mechanics of woven fabrics138

fabric to bending, which can be defined as the first derivative of the moment–
curvature curve. Bending hysteresis is the energy loss within a bending cycle
when a fabric is deformed and allowed to recover, denoting the difference in
bending moment between the loading and the unloading curves when the
bending curvature is fixed.

Postle et al. and Hu have proved the close relationship between bending
rigidity and bending hysteresis. In particular, Postle et al. reported very good
correlation between the bending and the hysteresis parameters measured
from fabric bending deformation recovery curves (1988). Moreover, the
research done by Chung and co-workers (Chung et al., 1990; Chung and Hu,
2000) indicates that the correlation coefficient of bending stiffness and bending
hysteresis is quite high, 0.9333 for cotton fabric. For worsted and Schengen
woven fabrics, B and 2HB are also very high, 0.7872 and 0.7596 respectively.
This implies that bending stiffness and bending hysteresis are not independent,
but have a linear relationship (Hu, 1994).

There may be some differences in the mechanism operating in bending
rigidity and bending hysteresis of woven fabrics but, based on the above
findings, it is assumed that they have similar mechanisms. Thus this section
discusses an attempt to apply the existing models for bending rigidity to
bending hysteresis of plain woven fabrics. Also presented is an attempt to
examine which of the existing models is the best for predicting bending
hysteresis.

5.5.2 Directionality of fabric bending rigidity

Peirce (1930) produced a formula for calculating the stiffness of a fabric in
any direction in terms of the stiffness in the warp and weft direction. This
was derived from the theory for homogenous elastic material and it was
found to be empirically satisfactory. It is suggested that the reason for this is
that most of the fabrics which Peirce tested were made from cotton. In
addition, he also reported a formula to predict the bending stiffness in various
directions, in which the values in the warp and weft directions were known.

Go et al. (1958) measured the bending stiffness of fabrics using the heart
loop method. They indicated that the bending stiffness of the fabric is dependent
on the bending model of the test piece. The bending stiffness of fabric
having long floats on its surface was smaller in face-to-face bending than
back-to-back. The effect of the crimp of the component yarn of fabric on the
fabric bending stiffness was generally small. Later, Go and Shinohara (1962)
reported that on the polar diagram of bending stiffness there was minimum
presented at 45∞ to the warp when the fabric was bent. Their formula neglected
the restriction at the interaction of the warp and weft directions. They concluded
that the stiffness of textile fabrics depended upon their bending directions
and that, in general, the stiffness in bias directions was relatively small.
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Cooper (1960) used cantilever methods to determine fabric stiffness and
stated that there was no evidence to suggest that there was any appreciable
shearing of the fabric caused by its own weight. He concluded that the
stiffness of a fabric may vary with direction of bending in different ways, but
for most practical purposes measurement along warp, weft and one other
direction was sufficient to describe it.

Cooper conducted a detailed study of the stiffness of fabrics in various
directions and has produced polar diagrams of bending stiffness. He found
that some fabrics had a distinct minimum value at an angle between the warp
and weft direction while others had similar values between the warp and
weft. In general, viscose rayon fabrics provided an example of the former
and cotton fabrics an example of the latter.

These effect were explained in terms of the fabric bending stiffness in the
warp and weft direction and the resistance offered by the yarns to the torsional
effects which are inseparable from bending at an angle to warp and weft
(Cooper, 1960). He concluded that the resistance offered by the yarns to the
torsional deformation is low when the interaction between the yarns is low
and vice versa.

Shinohara et al. (1980) derived an equation empirically which is similar
to the equation introduced by Peirce and analysed the problems using three-
dimensional elasticas. They assumed the constituent yarns of woven fabrics
to be perfectly elastic, isotropic, uncrimped and circular in cross-section,
and to behave in a manner free from inter-fibre friction. In addition, they
also presented another equation containing a parameter n which was related
to V introduced by Cooper (1960) in order to predict the shape of a polar
diagram.

5.5.3 Theoretical study of fabric bending properties

Peirce first introduced the bending rigidity of a fabric by applying an equation
in his classical paper as follows:

B = wc3 [5.49]

where B is the bending rigidity, w is the weight of the fabric in grams per
square cm and c is the bending length. He also introduced another equation
for bending rigidity in various directions. This formula enabled the value for
any direction to be obtained when the values in the warp and weft directions
were known:
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where B1, B2 and Bq are bending rigidities in warp, weft and q directions,
respectively.
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A similar equation could also be considered empirically by Shinohara et
al. (1980):

B B Bq q q = (  cos  +  sin )1
2

2
2 2 [5.51]

Go et al. also reported an equation which was theoretically derived by neglecting
twist and frictional effects from equation (5.50):

Bq = B1 cos4 q + B2 sin4 q [5.52]

(Go et al. 1958; Go and Shinohara 1962).
Later, Cooper (1960) presented an equation including twist effect. The

results of the twisting effect were found to be valuable in practical applications
and so equation (5.53) was derived:

Bq = B1 cos4 q + B2 sin4 q + (J1 + J2) cos2 q sin2 q [5.53]

where J1 and J2 are constants due to torsional moment.
Chapman and Hearle (1972) also derived a similar equation by energy

analysis of helical yarns as follows:

BT = n1v1 sin2 q (B sin2 q + Jy cos2 q)

  + n2v2 cos2 q (B cos2 q + Jy sin2 q) [5.54]

BT = n1q + h cos2 q + n2v2 cos2 q (B cos2 q + J)

where BT is an expression for the bending rigidity per unit width of a thin
fibre web of linearly elastic fibres and there are n1 yarns per unit length in
the warp direction, each containing v1 number of fibres, and n2 yarns per unit
length in the weft direction, each containing v2 number of fibres. They
assume that they have a two-dimensional assembly of very long straight
fibres of the same type, with bending rigidity B and torsional rigidity Jy.
Their approach utilises energy considerations instead of the ‘force method’.
Chapman and Hearle’s model involves many variables which will complicate
the mathematical calculation. Their approach is, in fact, very similar to
Cooper’s so Cooper’s model is chosen for the study.

From equation (5.53), B1 and B2 may be obtained directly by experimental
work while J1 and J2 cannot. The theoretical treatment suggests that
measurements of stiffness in two directions are insufficient to define a fabric’s
bending properties, since different types of variation with direction are still
possible for fabrics with similar B1 and B2. An investigation into a third
direction is therefore necessary, and the most convenient in practice is at bias
direction (45∞). In this direction, twisting effects are small provided that B1

and B2 are similar in magnitude. Nevertheless, the sum (J1 + J2) may be
deduced from measurements in three different directions by considering
specimens cut along the warp, weft and 45∞ directions. Therefore, when
considering q = 45∞,
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B45 = B1 cos4 45∞ + B2 sin4 45∞ + (J1 + J2) cos2 45∞ sin2 45∞
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= 1
4

(B1 + B2 + J1 + J2)

where

J1 + J2 = 4B45 – (B1 + B2)

The term (J1 + J2) is replaced by the stiffness value at the warp, weft and 45∞
directions. We may use this result to calculate other bending rigidities over
all possible directions as in equation (5.56):

Bq = B1 cos4 q + B2 sin4 q + [4B45 – (B1 + B2)] cos2 q sin2 q [5.56]

In Cooper’s paper, he argued that the shape of polar diagrams of bending
rigidity B may show three types of variation between fabrics. The ratio (J1 +
J2)/(B1 + B2) = V is introduced to predict the trends in polar diagrams. When
the term (J1 + J2) is replaced by the stiffness values of warp, weft and 45∞
directions, the equation for the ratio V will change as follows:

V
B B B

B B
 = 

4  –  (  + )
 + 

45 1 2

1 2
[5.57]

Cooper’s model for calculation of ratio V is dependent on bending rigidity
(B1 and B2) and torsional rigidity (J1 and J2). This leads to different shaped
polar diagrams. Furthermore, different ratios of bending rigidity in warp and
weft directions can also contribute different shapes of polar diagrams. When
the torsional rigidity is replaced by the bending rigidity of warp, weft and
45∞ directions, the calculation of ratio V is simplified.

From the results provided by Cooper (1960), it may be seen that the range
of ratio V is between 0 and 1. He found that some fabrics with very open
structure had a distinct minimum value at an angle between warp and weft
direction when V = 0. In this case, the model is identical to that derived by
Go et al. (1958). When V = 1, these minima are absent and the model is
qualitatively similar to that described by Peirce (1937) and Shinohara et al.
(1980).

In Cooper’s model (1960), the coefficient of cos2q sin2q was related to the
torsional rigidities of the yarn. It was found that the polar diagram of fabric
bending rigidity fitted reasonably with other models. However, there is a
limitation, which relates to ratio V (equation 5.57) introduced by Cooper
(1960). Since fibres display marked non-linear viscoelasticity, and this is
superimposed on a complicated yarn and fabric geometry, this also gives rise
to frictional restraints between fibres and between yarns. If the fabric is bent
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in the bias direction, high inter-yarn friction arises due to the relative movement
of the yarns (Chapman et al., 1972); it is, therefore, impossible to obtain
V = 0.

On Cooper’s theoretical polar diagram (1960), distinct minima are presented
in the polar diagram of fabric bending rigidity between the two principal
directions when a very open plain fabric is examined. Go et al.’s (1958)
model may be applicable to a very open structure fabric as the twist and
frictional effect in this type of fabric is small. However, their model cannot
be applied in the prediction of fabric bending rigidity of other types of
fabrics.

Since observed values do not always agree with the theoretical model
(equation 5.51) derived by Shinohara et al. (1972), they presented another
model containing a parameter n which relates to V introduced by Cooper
(1960) as follows:

Bq = B1 cos4 q + B2 sin4 q + 2 1 2n B B  cos2 q sin2 q [5.58]

and

V
n

B B
B B

 = 
2

 + 
1 2

1 2
[5.59]

where V/n is a ratio of geometrical mean to arithmetical mean of B1 and B2.
From experimental results on commercially available fabrics, Shinohara et
al. found that the values of n are in the range from 0 to 1 and minimum
values exist in 45∞ directions for certain types of fabrics. The term n presented
by Shinohara et al. (1980) is also used to predict the trends in polar diagrams,
and similar trends are observed in Cooper’s ratio V. They reported that tight
fabrics generally have larger values of n, and sleazy fabrics have a smaller
value of n.

5.5.4 Polar diagrams of the bending model

5.5.4.1 General features of the polar diagrams

Similar polar diagrams are observed from three of the existing models (Peirce’s
model, Shinohara et al.’s model, and Cooper’s model). These polar diagrams
and the diagram produced from Go et al.’s model can be classified generally
into two types according to their shape. The polar diagrams of various values
of B1/B2 in Types 1 and 2 models are shown in Fig. 5.8, which demonstrates
the theoretical polar diagrams of fabric bending rigidity in various directions.

It can easily be observed from Fig. 5.8 that the anisotropy of Type 2 omits
the resistance at the intersection of warp and weft. Therefore, distinct minima
are present between the warp and weft directions. However, a circular shaped
polar diagram is obtained when B1 equals B2 in anisotropy of Type 1. If the
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difference between the bending rigidity B1 and B2 becomes larger, an
ellipse or gourd shape is illustrated in the polar diagram of fabric bending
rigidity.

5.5.4.2 Comparison of four models

In this section, the predictability of the four models (Go et al., Peirce, Shinohara
et al. and Cooper) discussed above will be compared. Additionally, the effect
of ratio V on plain woven fabrics in different weave densities will be investigated
as will the shapes of the polar diagrams of bending hysteresis from different
values of ratio V on cotton plain woven fabrics.

For ease of comparison it is convenient to fix the bending hysteresis in the
warp direction so that changes occurring along any other directions can be
easily observed from the polar diagrams. This fixed bending hysteresis can
be obtained by averaging all results recorded in the warp direction, and then
multiplying or dividing the bending hysteresis of each fabric by this average
value. In this way, the points in the warp direction can be fixed and any
differences other than warp direction can be seen in the polar diagrams of
different fabrics. Trends in the ratio V can also be observed with different
types of plain woven fabrics.

Figure 5.9 illustrates the bending hysteresis of lighter (loose) and heavier
(tight) plain fabrics produced from the outputs of four models against the
experimental result. As Go et al.’s model neglects the twist and frictional
effect, the polar diagram of this model exhibits a cross shape with minima
around the 45∞ direction. Peirce’s, Shinohara et al.’s and Cooper’s models
show elliptic shapes.
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All experimental results on plain woven fabrics are close to values calculated
from Peirce’s, Shinohara et al.’s and Cooper’s models. It is also found that
the average deviation between Go et al.’s model and the experimental result
is the largest when compared with other models, which indicates that Go et
al.’s model cannot be applied to the prediction of polar diagrams of bending
hysteresis. Therefore, the twisting and frictional effects play significant roles
in the calculation of bending properties.

From Cooper’s theoretical polar diagram (Cooper, 1960), there are distinct
minima in the polar diagram of bending rigidity between warp and weft
directions when a very open plain light woven fabric is examined. Go et al.’s
model may also be applicable to loose fabrics as the twist and frictional
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effect in a very open plain fabric is small. In contrast, these minima are
absent in the polar diagrams of bending hysteresis. Bending hysteresis is a
measurement of inter-yarn friction. When the fabric is bent on the bias,
relative movement of the yarns occurs and is maintained by high inter-yarn
friction. Therefore, there are no minima present on the bias directions. In
Fig. 5.9(a), it is found that Peirce’s, Shinohara et al.’s and Cooper’s models
are well fitted to the polar diagrams of bending hysteresis of loose fabrics.
However, Go et al.’s model should not be applied to the prediction of the
shape of a polar diagram of bending hysteresis in loose fabric.

Another fact is that each model produces larger deviation on heavy fabrics
than on light fabrics. Besides, it is not difficult to see from Fig. 5.9(b) that
the highest value of the bending hysteresis of heavy fabrics is observed
around 15∞ to the warp. It also reveals that the component around this angle
contributes the highest bending hysteresis. However, beyond 15∞, the bending
hysteresis of these fabrics decreases with the increase in angle.

In addition, although Peirce’s, Shinohara et al.’s and Cooper’s models can
all be applied to the prediction of polar diagrams of bending hysteresis for
loose to tight plain woven fabrics, of the three, Cooper’s model presents the
lowest deviation from the experimental results. Therefore, it can be seen that
the twist and frictional effects in Cooper’s model play an important role in
the prediction of bending hysteresis on either loose or tight plain woven
fabrics. Moreover, when comparing the bending hysteresis of loose and tight
plain woven fabrics, the deviation in loose plain fabric is smaller than that in
tight plain fabric.

From the above analysis, we may conclude that Cooper’s model is the
most reliable in the prediction of bending hysteresis in both loose and tight
plain woven fabrics.

5.5.4.3 Effect of ratio V on bending hysteresis

Figure 5.10 illustrates the HB polar diagrams of eight different types of plain
cotton fabrics, from which we can see that the trends are spreading outwards
along the weft direction with the increase in ratio V. If the ratio V is larger
than 1.10, the maximum value of bending hysteresis will be observed at
around 15∞ to the warp.

The loose structure allows the movement of yarns along the warp and
weft directions. The floating yarns present in this structure may lead to lower
inter-yarn friction. As a result, the lowest bending hysteresis is obtained
from the loose fabrics. On the contrary, the tight structure avoids yarn movement
and this will increase the bending hysteresis of the fabrics. Therefore, larger
bending hysteresis leads to the expansion of the polar diagram along the weft
direction. The predicted shapes of the polar diagrams of bending hysteresis
from ratio V of cotton plain woven fabrics are given in Fig. 5.11.
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5.5.4.4 Effect of weft density on polar diagram

Similar to the effect of ratio V, with the increase in weft density, the HB
polar diagrams also exhibit a tendency to spread outwards, as shown in
Fig. 5.12.
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5.6 Summary

This chapter presents a comprehensive study of the bending properties of
woven fabrics. After an explanation of the general concept of bending
properties, two different methods, non-linear regression technique and
viscoelasticity theory, are introduced to model the bending behaviour of
woven fabrics. Finally, as in Chapter 4, a study of the anisotropy of the
bending properties of woven fabrics is also provided. We may draw the
following conclusions from this chapter:

(1) Non-linear regression techniques can be successfully used to model
the bending curves of woven fabrics based on Oloffson’s rheological
model. The estimates obtained using non-linear regression seem to be
different from those used in the existing research. In addition, bending
stiffness is thought to be continuous and can be obtained by the
differentiation of the moment–curvature curve with respect to curvature.

(2) The inelastic bending behaviour of woven fabrics can be quantitatively
analysed using linear viscoelasticity theory. With the rheological model
developed, it is found that the bending properties of the fabric under
low curvature can be characterised using a standard solid element in
parallel with a frictional element. Element parameters of the model can
be determined through three points in the bending curve and the bending
hysterisis. The difference between 2HB+ and 2HB– and the intercept
of the curve at moment axis should be attributed to friction between the
fibres.

(3) Based on Chapman’s assumption of a semi-circular form for a fabric

5.12 Effect of weft density of plain woven fabrics. Ranking of
weft density: E < F < G < H.
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bend, a simple rheological model consisting of a linearly elastic element
and a frictional element is successfully used to study creasing of the
fabric strips and the compression of the fabric loops. The relationship
between the creasing behaviour and deformation is established and
solutions are given for a linearly elastic material with constant internal
frictional constraint. In addition, the formula deduced by the authors
can provide a better fit than the formula given by Chapman.

(4) An extensive study of the existing bending hysteresis models reveals
that Peirce’s, Shinohara et al.’s and Cooper’s models can be applied to
predict the bending hysteresis anisotropy of various apparel woven
fabrics, but Go et al.’s model can be applied only to fabrics with very
open structure. This finding confirms the statement that the twisting
and frictional effects have a significant role in bending properties.
Moreover, all the four models are better used to predict light fabrics. In
particular, Cooper’s model is found to be the best one to predict the
anisotropy of bending rigidity and it is also the only one that can be
extended to industrial woven fabrics.
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