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6.1 General shearing behaviour of woven fabrics

6.1.1 Introduction

Textile fabrics in practical use are subjected to a wide range of complex
deformations. The shear properties of woven fabrics are of importance in
many applications. To understand the mechanisms of fabric shear behaviour,
Dreby (1941), Go et al. (1957), Morner and Eeg-Oloffson (1957), Kawabata
(1972, 1980) and Kawabata et al. (1972) introduced their shear apparatus to
measure fabric shear properties. Later, Cusick (1961), Lindberg et al. (1961)
and Grosberg and Park (1966) found a qualitative means of describing shear
properties using a model. They indicated that the hysteresis produced during
shearing is determined wholly by the frictional restraints arising during rotation
of the yarn from the intersecting points in the fabric. In addition, the existing
literature proved that shear mechanism is one of the important properties
influencing the draping, pliability and handle qualities of woven fabrics
(Kawabata, 1980; Oloffson, 1967; Lloyd et al., 1978). Shear deformation of
woven fabrics also affects the bending and tensile properties of woven fabrics
in various directions rather than in the warp and weft directions only (Chapman,
1980; Skelton, 1976).

6.1.2 Shear stress–strain curve

Shear behaviour of woven fabrics has received wide attention. Up to now
general stress–strain curve in shear has been considered as showing the
characteristics that are illustrated in Fig. 6.1. If a fabric is deformed at low
levels of strain, the OA region, the shear stiffness is initially large, and
decreases with increasing strain. In this region, the shear behaviour is dominated
by frictional mechanisms and the decreasing incremental stiffness is generally
attributed to the sequential movement of frictional elements. As soon as the
stress is large enough to overcome the smallest of the frictional restraints

6
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that are acting at the intersection regions, the system starts to slip, and the
incremental stiffness falls – this is the AB region. At a particular amplitude
of stress, the incremental stiffness reaches a minimum level, point B, and
remains almost linear over a range of amplitudes with slopes that are thought
to be controlled by the deformation of the so-called ‘elastic elements’ in the
fabric. It is a commonly observed fact that above a relatively low level of
shear strain (5–10∞), the shear stiffness increases with increasing strain. At
amplitudes greater than a certain amount, point C, the incremental stiffness
again begins to rise, and the closed curves increase in width with increasing
amplitudes of shear angle. It seems that this is due to steric hindrance between
the two bent intersectioning yarns, leading to transverse distortion of the
yarns, or riding up of the intersection, or both.

There are two parameters used in most of the literature (three in the KES
system) which control the extent of the non-linear region and characterise
the general nature of fabric shear. These are the slope of the stress–strain
curve where it attains its minimum value, and the hysteresis. The minimum
slope of the curve represents the contribution of the so-called ‘purely elastic
elements’ of the assembly and, when this value is achieved, it is assumed
that all the frictional contact points are in motion. The decreasing stiffness
region of the curve is of interest since it is here that the hysteresis loss in the
cyclic deformation is determined.

6.1.3 Relationship between shear and bending
deformations

Some authors have reported that the shear and bending of woven fabrics
have a strong relationship. For example, it has been suggested that the shear
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6.1 Stress–strain curve of woven fabrics during shear deformation.
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energy loss is a good guide to the kind of behaviour that can be expected in
bending. Skelton thought that the shear and bending are not merely related
but essentially identical (Skelton, 1980).

In a paper by Dawes and Owen (1971), the correlation between the two
measurements of shear stiffness and bending stiffness is found to be quite
good and the overall changes in mechanical properties as the environmental
conditions change are very similar in the two modes of deformation. Thus it
was believed that they share a common origin.

Skelton further argued that, for instance, for a shear angle of a few degrees
(5∞), and a fabric with 20 threads/cm, the effective curvature in the yarn is:

5  20
57

  2 cm –1¥ ª [6.1]

This is typical of the curvature levels that have been investigated in studies
of fabric bending behaviour. Thus the magnitude and distribution of the
curvature in the yarns in the bent state are almost identical to those in the
sheared state.

6.2 Modelling of shearing behaviour of

woven fabrics

6.2.1 Theory

Several authors have attempted a structural analysis to predict shear properties,
but the conclusions reached differ in some respects and in addition the
calculations are not presented in a form that can be readily put to practical
use  (Mark and Taylor, 1956; Morner and Eeg-Olofsson, 1957; Lo, 2001; Lo
and Hu, 2002; Behre, 1961; Cusick, 1961; Postle et al., 1976; Skelton,
1976). It is recognised that the detailed mechanisms which are operating are
extremely complex and it is difficult to devise a convincing model that is
adequate to explain them. However, the shear behaviour, especially in the
initial region, is thought by some authors to be controlled by elastic and
frictional elements simultaneously. In a general sense the behaviour of an
array of elastic and frictional components has been studied by Oloffson
(1967), and by Skelton (1976) and Skelton and Schoppee (1976). As discussed
in the previous chapter, some of the existing literature put forward the belief
that the stress–strain behaviour of a series of assemblies similar to frictional–
elastic units can be reasonably represented in the initial, non-linear region of
shear by an expression of the form:

s = Ke1/2 [6.2]

where s and e are the shear stress and strain respectively and k is the material
constant. This is the simplified Oloffson formula which is the same as the
bending deformation.
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6.2.2 Relationship between shear stiffness and
hysteresis of woven fabrics

Figure 6.2 gives an example of the tested relationships between shear stiffness
G and shear hysteresis 2HG and 2HG5. It can be seen that, as in bending
deformation, their relations are linear. The correlation coefficients can be as
high as 0.9507 for G and 2HG, and 0.9683 for G and 2HG5. This may
indicate, as discussed in Chapter 5 on bending properties, that friction exists
during the whole shear process and not only in the initial region, because the
hysteresis is mainly caused by the frictional element, especially 2HG. In
addition, friction and elastic elements always exist simultaneously. Thus it
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may not be appropriate to say that there is a pure elastic region, but the
frictional effect is continuous throughout the entire shear process. The decreased
value of shear stiffness after the initial region is attributable to the value of
the dynamic friction coefficient being smaller than that of the static friction
one.

6.2.3 Fitting of shear curves using non-linear regression

Since the friction and elastic elements exist simultaneously in the whole
shear process before the steric hindrance occurs or in the earlier stage of
shear, the stress–strain curves are assumed to be controlled by the combination
of friction and elastic elements. As we saw Chapter 5, the application of the
Oloffson model, in which the friction and elastic elements are considered
simultaneously, is quite successful. In addition, in shear as in bending, it is
also observed that shear stiffness and shear hysteresis are very closely related.
This leads to the present attempt to extend the stress–strain relationship
described in equation 6.2 to the following for shear deformation before steric
hindrance occurs:

s = a e b [6.3]

where a and b are non-linear regression constants. The non-linear regression
method is again used for estimating the constants in the equation.

Some of the shear stress–strain curves tested on the KES system, which
are thought to be within the friction and elastic operating region or not
involved in steric hindrance, are chosen for fitting the model; their fitted
curves are given in Fig. 6.3, which shows that the tested and the calculated
data are in reasonably good agreement with each other. A typical plot of
tested stress and calculated stress is shown in Fig. 6.4, which indicates
clearly a straight line between them.

The correlation coefficients are close to 1; but it should be noted that
residuals from them are still larger than those we observed in the modelling
of bending curves. Equation 6.3 is good enough to model the initial part of
the shear curve of woven fabrics. In addition, shear angle also plays a part in
the modelling effect of equation 6.3. For example, equation 6.3 is better used
to model a KES shear curve with a maximum shear angle of 1∞ than 8∞.

However, in practice, in many cases, this initial region is so short that it
may be unnecessary to give an exact mathematical description. Thus, from
the above, the modelling of shear curves using equation 6.3 cannot be described
as a success. As a result, different methods for modelling a shear curve
should be adopted to meet different needs. For example, if an analysis is
confined to the small strain range, say, < 8∞, i.e. the tested shear curve of a
fabric within this is generally in the initial non-linear region or the maximum
stress is smaller than or close to the minimum stiffness point, it can be
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modelled using equation 6.3; if the shear stress–strain curve is much beyond
this minimum stiffness point, the curve cannot be modelled in this way, but
a numerical method such as cubic-spline-interpolation may be more applicable;
if the curve has a long close-to-linear range and the initial non-linear range
is difficult to define or the maximum shear angle for minimum stiffness
point is close to 0, it may be convenient to use the constant G provided by
the KES system in which a straight line can be found.

6.2.4 Shear stiffness

In view of the complexity of the observed shear behaviour it is perhaps
unreasonable to speak of shear stiffness as a single entity. We are concerned
rather with the overall stress–strain characteristic of the fabric, and with an
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understanding of the mechanisms operating when a fabric undergoes shear
deformation. However, for a fabric like sample 18, if the shear condition is
limited within 8∞ strain, the stress–strain curve may be modelled using the
power function proposed by Oloffson, equation 6.3. Thus the shear stiffness
may be found by differentiating the stress–strain function with respect to
strain as shown in Fig. 6.5. It should be noted that the stiffness calculated is
usually larger than that of the tested G. Therefore if the application needs
high accuracy and continuous shear stiffness, it may be reasonable to use
other numerical methods such as cubic-spline-interpolation to model it. In
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some cases, if a continuous stiffness is not strictly required, it may be convenient
to use the KES constant shear stiffness G.

Generally speaking, the initial part of the shear curve can be modelled
with a power function like equation 6.3. If continuous shear stiffness is
required in some cases in the initial region, the equation is still accurate
enough to be used for finding shear stiffness.

6.2.5 Comparison of warp and weft direction properties

The warp values of the shear properties, G, 2HG and 2HG5, can be compared
with those in the weft. The results indicate that the values of the warp and
weft 2HG and 2HG5 have no obvious differences if the warp and weft
direction have similar yarns and similar cover factors, but G has marginally
larger warp values. At the same time, the results also show that the larger the
cover factor the larger the values of G, 2HG and 2HG5. Unlike the situation
in bending, the hardening in the warp direction of woven fabrics seems to
have little effect on the shear properties. This contradicts the argument that
shear behaviour is identical in nature to bending properties. Perhaps a reasonable
explanation may be jamming in the warp direction for high-density fabrics.
That is, the larger values of G, 2HG and 2HG5 in the warp direction for the
high-cover-factor fabrics are caused by the jamming effect. However, this
jamming effect is not so prominent in fabrics with low-cover-factor or similar
cover factors in the two principal directions. This suggests that the jamming
effect may happen at a much earlier stage than the usually stated shear angle
of 5–8∞. The friction in shear exists mainly at the interface of the two systems
of yarns, but inter-fibre friction within a yarn occurs in bending. This can be
seen from the relationship between shear properties and cover factor.

6.2.6 Relationship between cover factor and
shear properties

Figure 6.6 shows the general relationship between cover factor and the shear
parameters G, 2HG and 2HG5, which is obtained from Fig. 6.7. According
to this figure, we may find that when the ratio of warp and weft cover factor
is smaller than 1.4, the increase in the ratio of cover factor causes an increase
in the ratio of shear hysteresis 2HG; when the ratio of cover factor is greater
than 1.5, the ratio of 2HG is almost certain to remain constant. This is
because when the actual cover factor is larger than 100 %, further increase
of the cover factor in most cases does not increase the actual contact area
between the two systems of yarns. Another factor is that the relation of G and
2HG to the cover factor is similar to that of 2HG.
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6.2.7 Relationship between bending and shear
behaviour

Figure 6.8 illustrates the plots of bending properties against shear properties
for cotton fabrics. It is clear that the dots have some trends, but these trends
seem rather obscure. All this may indicate that they do have some relationship
in some cases but not in all.

The comparison of warp and weft direction properties in Chapter 4 reveals
that strain-hardening in the warp direction in woven fabrics hardens the
bending behaviour as well; but it seems to have little significance for shear
behaviour because there are no trends showing that the warp values of G,
2HG and 2HG5 are larger than those of the weft when the cover factors and
the yarn properties are similar. This suggests that the mechanisms operating
in bending and shear may be different.

The results analysed above suggest that bending and shear may have
some relationship, but that this relationship is not always as strong as described
in some of the existing literature and that, in some cases, they are different
in nature. Mechanically speaking, the two deformation modes both involve
the friction and bending of yarns, but these two mechanisms are operating in
different ways, especially the frictional effect. The inter-fibre friction in
shear seems to be less important than it is in bending; thus the hardening of
warp yarns of woven fabrics, which affects the internal friction, has little
effect on shear behaviour.

6.3 Testing of shear properties

6.3.1 Introduction
The appearance of garments on human bodies has always been the prime
concern of both fabric and garment designers. Up to now, design of fabric
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and garments has relied heavily on past experience and trial-and-error. As
textiles and clothing products, dictated by modern fashion trends, move
through ever faster cycles of renewal, just-in-time and quick response are
becoming ever more important in the textiles and clothing industries.
Consequently, modern technologies such as computer-aided design (CAD)
are attracting increasing attention. The development of advanced CAD systems
capable of simulating complex fabric deformations on human bodies will
have great benefits for the textiles and clothing industries: faster industry
responses to market demands, higher product quality, more variety, and reduced
production costs.

While there have been a significant number of attempts to develop clothing
CAD systems (Okabe and Akami, 1984; Collier et al., 1991; Gan et al.,
1991; Kang et al., 1994), progress has been hindered by the lack of ability
to simulate the true appearance of fabrics on computers. No reliable and
efficient technique currently exists for the numerical prediction of complex
fabric deformations, which generally involve buckling and post-buckling
large deformations, large rotations, material non-linearities, and complex
interactions between the fabric and the human body. In this section, an
attempt will be reported to establish an appropriate non-linear constitutive
model for fabric materials in the analysis of fabric complex deformations, an
area in which several difficulties currently exist.

Fabrics are generally treated as orthotropic thin sheets in a numerical
model (e.g. finite-element shell model). The tensile membrane and bending
properties determined by existing test procedures, e.g. the KES system
(Kawabata, 1980), are suitable for direct use in constitutive models, but
there are difficulties in translating the shear modulus obtained from the KES
shear tester into a sensible figure for the true shear modulus.

Because fabrics are susceptible to buckling under external forces, it is
very difficult to design perfect shear test equipment. The KES shear tester is
the only commercialised one for fabrics so far, and it is widely used for
various applications, such as fabric hand and tailorability evaluation. This
existing test procedure for fabric shear modulus involves a piece of rectangular
cloth clamped along two opposite edges and free on the other two edges.
During the test, the cloth is pre-tensioned and then subjected to shear forces
on the clamped edges which undergo relative displacements as a result of the
applied shear forces as shown in Fig. 6.9. The deformations and forces in the
cloth so loaded do not correspond to a pure shear state as achieved in a
conventional shear test for other engineering materials in Fig. 6.10. Therefore,
the test result cannot lead directly to the determination of the fabric shear
modulus, particularly in the non-linear range of stress–strain relationship.

It is desirable to obtain an analytical solution for the problems advanced
above. In applied mechanics, there exists an analytical solution to the shear
stress or strain distribution on the specimen used, as shown in Fig. 6.9 for
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homogenous isotropic materials. However, no existing analytical solution
for orthotropic materials can be found in the literature. Textile fabrics are not
homogeneous isotropic materials, and no analytical solution has been presented
for the fabric specimen in the KES shear tester.

6.3.2 The KES shear test

A schematic diagram for a specimen under KES shear test has been shown
in Fig. 6.9. The size of the fabric specimen is 20 cm ¥ 20 cm and the tested
area is 20 cm ¥ 5 cm. On this specimen, a tension of 10 gf/cm is imposed
along the clamped sides of the fabric in the x direction to avoid buckling of
the fabric. During the test, the cloth is subjected to shear forces on the
clamped edges which undergo relative displacements along the y axis as a
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B¢
y
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P (Tensile force) = 200 gf
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6.9 The KES shear testing apparatus.
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6.10 Conventional test to determine the shear modulus of a stiff
material.
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result of the applied shear forces. The angle j represents the rotation of a
point on the moving edge of the tested specimen, but not the shearing strain.
The maximum angle of rotation in this test is 8∞ which corresponds to the
wearing condition of fabrics. It is possible to find the forces exerted on the
specimen, although the general loading condition and shear stress distribution
of the specimen are complicated.

According to the equilibrium conditions in the X–Y plane in Fig. 6.9, the
following equations can be obtained:

Â Xi = 0 [6.4]

Â Yi = 0 [6.5]

and

Â Mi = 0 [6.6]

where Xi represents a force in the x direction, Yi a force in the y direction and
Mi a moment in the X–Y plane. From these relations, it is clear that the
specimen is subject to a tensile force of P, a pair of shear forces Q and
moments M1 = M2 = Qw. The forces and moments exerted on the specimen
in the KES shear tester are shown in Fig. 6.11.

From the above loading condition, shear stress distribution on the specimen
is not uniform. It is obvious that the shear stresses at the points on the left
and right edges of the specimen are always zero in the whole loading process.
Thus infinitesimal element B in Fig. 6.11 has only tensile stress, but element
A has shear stress t, and tensile stress s.

The conventional test to determine shear modulus for stiff engineering
materials is shown in Fig. 6.10, in which a circular rod is subject to torsional
deformations. Thus, the element in the circular rod is subjected to pure shear
deformation. By contrast, the KES shear tester does not produce a pure shear
state in the tested specimen.
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6.11 Forces exerted on fabric specimen under KES shear test.
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There are two ways in which fabric mechanics researchers obtain shear
modulus. One is the average slope of the shear curve when the shear angle
is from 0.5–5∞ and the shear stress–strain relationship is simplified as linear.
The other method is to find the derivative of the stress–strain curve when the
shear stress–strain relation is considered as non-linear. Because the data
obtained from the KES test does not correspond to pure shear, the force–
rotation relationship and shear modulus derived are not applicable for numerical
computation in the analysis of fabric complex deformations.

6.3.3 Finite-element analysis

From Fig. 6.11, it is clear that the shear stress distribution on the tested
specimen is not uniform. In order to find out the general pattern of the shear
stress (therefore strain) distribution, a finite-element analysis has been applied.
To examine the typical distribution of shear stress in a KES test specimen, a
finite-element analysis using 8-nodal plane-stress elements of the LUSAS
finite-element package was carried out (Lucas, 1994). A linear elastic
orthotropic material sheet was assumed and the constitutive law of orthotropic
materials is:
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where g is shear strain, c11 and c22 are related to the tensile moduli E1 and E2

in the x and y directions respectively, c33 is the shear modulus and c12 is
related to the Poisson’s ratio. In finite element analysis, the material properties
used are E1 = 0.1096 MPa, E2 = 0.0505 MPa, shear modulus C33 = 0.38 and
Poisson’s ratio n = 0.1. The shear force applied on the specimen is 0.1
N/mm, which correspond to the properties of an ordinary fabric and loading
condition in the KES shear test. The deformed shape of the specimen is
shown in Fig. 6.12. In this figure, the coarsely meshed area simulates the
clamping of the jaw of the KES shear tester in the longer direction, while the
finer mesh area simulates the fabric specimen. The stress distribution in the
x and y directions are shown in Figs 6.13 and 6.14. It can be seen from these
figures that the stress is close to constant along the shorter direction while
assuming a symmetrical curve in the longer direction.

6.3.4 Theory

6.3.4.1 Shear deformation of the specimen

The above finite-element analysis provides the general picture for the stress
distribution in the specimen. It is desirable to obtain an analytical solution
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6.12 Deformed fabric specimen calculated by finite-element analysis.
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for the problem so that the exact relationship between test data and those for
pure shear deformation can be obtained. The present study started with the
application of the virtual work principle.

Fabric shear stress–strain relationship is usually non-linear. In order to
simplify the equations, fabric material is considered to be linear and orthotropic,
within a small incremental loading range from Qn to Qn+1, or Q. In this way,
the results are applicable for non-linear material in the whole deformation
process, during which many incremental steps for loading are taken. According
to the principle of virtual work, the governing equations for plane stresses
must satisfy the condition:

Ú ÚÚ
v

x x y y xy xy V(  +  + )ds d e s d e t dg

– (  + )d  = 0

1

ÚÚ F u F v snx ny

S

d d [6.8]

In this equation, sx, sy are the stresses in the x and y directions respectively,
and txy the shear stress. dex, dey and dgxy are virtual strains. du and dv are the
virtual displacements along the x and y directions. Fnx, and Fny are external
distributed forces on the force boundaries. The first integral in the equation
is with respect to the whole volume, while the other one for the integration
on the force boundaries, ds, is related to fabric width and length.

In the case of a non-linear material, all stresses represent the values within
an infinitesimal range of Q(Qn, Qn+1), within which the stress–strain relationship
can be considered as linear.

6.3.4.2 Shear strain distribution

In order to apply the above governing equations to obtain the stress distribution
in the test specimen, it is necessary to set up the displacement field which
should satisfy the displacement boundary conditions and agree with the
results obtained from the finite-element analysis. u and v in the following
two equations form the displacement field in the x and y directions:

u u a u
i

n

i i =  +  0 =1
S [6.9]

and

v v b v
i

n

i i =  +  0 =1
S [6.10]

where u0 and v0 are the displacements on the prescribed displacement boundary,
and qi and bi are the projection values in the x and y directions, respectively.
In the present case, on boundary A¢ B¢ in Fig. 6.9, u0 and v0 are zero because
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the fabric edge is fixed during testing. In addition, because the two edges of
the fabric are clamped, the partial derivatives of the displacements on A¢ B¢
are also zero. Thus: u0 = v0 = 0. In order to facilitate the computation, the
following series are selected for trial functions:

u = u0 +  a1u1 [6.11]

and

v = v0 + b1v1 [6.12]

where

u1 = x [6.13]

and

v x
h

y1 = cos
pÊ

Ë
ˆ
¯ [6.14]

Therefore, the corresponding strains in the x–y plane can be expressed as
equations 6.15–6.17:
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Shear strain distribution follows the pattern described in equation 6.17. That
is, the shear strain along x axis is constant, in other words, there is no strain
variation along the x axis, while a cosine relation of strain holds along the y
axis.

6.3.4.3 Shear stress distribution

According to equation 6.7, plane stresses can be obtained as the following:

s e e p p
x x yc c c a c b

h
x

h
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¯ [6.19]

and
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h
y =  =  cos 33 33 1

Ê
Ë

ˆ
¯ [6.20]
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From equation 6.20, the shear stress along the x axis is constant, or there is
no stress variation along the x axis, while a cosine relation holds along the
y axis. This agrees with the numerical results shown in Figs 6.13 and 6.14
from the above finite-element analysis.

6.3.4.4 Constants in the equation

The constants a1 and b1 in the above equations are unknown so far. They can
be obtained from the following analysis. According to the virtual displacement
principle represented in equation 6.8, the following equations can be obtained:
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Substituting equations 6.13–6.20 into equations 6.21 and 6.22, we get

a
P

c ht1
11

 = 
D

[6.23]

and

b
h Q

c th c tw1
33

3
22

2 2 = –
3

2(3  + )
p

p
D

[6.24]

where h is the width of the specimen, t the thickness of the fabric. P is the
amount of the increment of tensile force which corresponds to the pretension
applied to the specimen. Q is the shear force increment from (Qn, Qn+1), and
c11 and c22 can be tested from the KES tensile tester. However, c33, the shear
modulus cannot be determined directly from the KES shear tester, but needs
to be modified.

6.3.4.5 Shear modulus

The following procedure is used to find c33. The calculation of c33 needs the
values of the displacement increment v of the specimen corresponding to the
force increment Q. According to equations 6.12 and 6.14, the displacement
of the specimen is not uniform along the y axis; it is necessary to find out the
equivalent average displacement. This requires the unit force on the specimen
edge. If the total force applied on the specimen edge is Q, it can be found that
the distribution of unit force on the edge where x = w is
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p p
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h h
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ˆ
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According to the equivalency principle, the equivalent displacement increment,
v, of the points at x = w should be determined by
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According to equation 6.12, b1w is the displacement in the middle point of
the specimen where y = 0. Thus the equivalent v is p /4 times the displacement
of the middle point along the moving edge of the specimen.

The value of v so obtained is usually smaller than the actual one, thus a
factor is required to modify it. The average value is taken between the
maximum and the minimum:

k = 
4

 + 0.5 1 –  
4

p p◊ Ê
Ë

ˆ
¯ [6.27]

so

Dv = kb1w [6.28]

Substituting equation 6.24 into 6.28, c33 can be obtained:

c
Qhwk vc tw

vth33
22

2 2

2 = 
3  –  2

6
p D D p

D
[6.29]

where v and Q can be obtained from the tested shear force–rotation relationship.
If v and Q are from the shear force–rotation curve of fabric in the warp
direction, c22 is the tensile modulus of fabric in the weft direction. Or if v and
Q are from the weft direction, c22 must be the tensile modulus of fabric in the
warp direction when stress is equal to P/20 = 10 gf/cm.

6.3.5 Numerical results

The above analysis has provided a picture of shear stress/strain distribution
in the test specimen and a close form solution for the calculation of shear
modulus of a fabric in terms of the data obtained from the KES tester. This
section will deal with numerical results calculated from this solution and the
accuracy and validity of the analytical solution will also be discussed.

6.3.5.1 Computation of c33

c33 is the main focus of this study and its relation with the KES test data has
been derived in equation 6.29. From equation 6.29, the computation of c33
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requires the value of c22 which is related to the tensile modulus. The tensile
modulus is the value when stress = 10 gf/cm in the y direction, which can be
obtained from the tensile curve. When the Poisson’s ratio is equal to zero, c22

can be found from the following relationship:

c
E
v v

E e22
2

12 21
2 = 

1 –  
 =  = a

b
a e [6.30]

and

s b
a e

 = e  –  1
[6.31]

where s is the tensile stress in gf/cm and e the tensile strain expressed as a
percentage. a and b are two constants which can be determined by the non-
linear regression technique (Hu, 1994). When s is equal to 10 gf/cm, c22 can
be obtained from the following equation;

c22  =  [(10  ) + 1](gf /cm) = 0.00098 [(10  ) + 1](MPa)a
b b a

b b¥ ¥

[6.32]

Or, alternatively, it can be measured on the tensile stress–strain curve when
stress = 10 gf/cm. In the following section, c22 is calculated from equation
6.32.

6.3.5.2 Modified shear modulus from tested shear curve

In equation 6.29, w, h and k are known. As shown in Fig. 6.9, h = 20 cm =
200 mm, w = 5 cm = 50 mm. If the material is considered as non-linear, the
modulus curve of c33 can be calculated from input data of v, Q, c22 and t
(fabric thickness). Also, in the following computation, two fabrics are used.
The values of v and Q can be obtained from the curves tested on the KES
tester. The loading process is divided into 140 steps; during each step, the
stress–strain relationship is assumed to be linear. When Q is given, f can be
read from the curve. From f, the value of v can be determined from Fig.
6.15. Figure 6.16 shows the shear force–rotation curves obtained from the
KES shear tester for one fabric in the warp and weft directions respectively.
c33 can be calculated from the tested curve for warp direction or for weft
direction. If the fabric is orthotropic as assumed, the modified moduli of
warp and weft directions should be the same.

Figure 6.17 shows the modified shear modulus curves from the calculation.
From this figure, the values from the warp and weft directions for shear
modulus vary with shear strain. When the shear strain is smaller than 0.01
rad, the values of shear moduli from the warp and weft directions are very
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6.15 Determination of Dn.
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6.17 Modified shear moduli.
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Skewed structure
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6.18 Change of orthotropic structure.

close. However, at the later stage, the difference between the warp and weft
values becomes large when the strain increases. This may be due to the fact
that the orthotropic assumption is inapplicable during this later stage, but
valid when shear strain is very small in the initial stage.

This can be explained by Fig. 6.18. When the fabric specimen is subjected
to the deformation imposed by the KES shear tester, in the initial stage, warp
and weft yarns are perpendicular to each other and their rotation relative to
each other is limited by internal friction between warp and weft. By contrast,
in the later stage, the fabric structure is changed from state (a) to state (b), at
which the warp and weft yarns are no longer perpendicular to each other.
Thus the orthotropy is not held during this stage.

Therefore, the results from the present research are more accurate in the
initial part of the shear deformation. In the later part, the difference between
warp and weft becomes increasingly large as the shear strain increases. In
view of the complexity of the later stage, it is suggested that the average c33

of the warp and weft values is used for representing the shear modulus of
fabric sheet as shown in Fig. 6.17. Table 6.1 shows the deviations (d1 and d2)
of warp and weft values from their averages for the fabric. The largest
deviation when shear strain is 8∞ is around 10 % and 18 %.

6.3.5.3 Comparison of modified and tested shear moduli

From the force–rotation curve, the tangent modulus can also be derived by
differentiation of force with respect to rotation angle using spline fitting.
This is regarded as the tested shear modulus and represented by G, which is
frequently adapted in many computations. As discussed for modified shear
moduli from the warp and weft directions, tangent shear moduli directly
from tested curves for the warp and weft directions are also different, thus
the average values of warp and weft are used for comparison. c33 and G are
the averages of the warp and weft directions in Fig. 6.19. The differences
between the modified and tested shear moduli are listed in Table 6.2.
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From these two figures, the modified modulus c33 is consistently larger
than the one derived from the tested data which corresponds to the conventional
shear stiffness G. In other words, from Fig. 6.19, the shear modulus derived
from the test is always smaller than the modified ones. More than 25 % and
up to 32 % of error can be found in the later stage. Thus the error of the
tested shear modulus is very significant.

Table 6.1 Shear moduli of woven fabric (MPa)

ggggg, (rad) c33, weft c33, warp c33, average d1, % d2, %

–.0010 .4572 .4462 .4517 1.2 1.2
–.0060 .3750 .3629 .3689 1.63 1.63
–.0010 .2794 .2678 .2736 2.13 2.13
–.0160 .2335 .2214 .2274 2.68 2.68
–.0210 .2193 .2044 .2119 3.50 3.50
–.0260 .2128 .1970 .2049 3.87 3.87
–.0310 .2068 .1939 .2004 3.21 3.21
–.0360 .2026 .1942 .1984 2.11 2.11
–.0410 .1985 .1980 .1982 0.12 0.12
–.0460 .1952 .2033 .1992 2.03 2.03
–.0510 .1923 .2082 .2003 3.97 3.97
–.0560 .1904 .2130 .2017 5.61 5.61
–.0610 .1889 .2173 .2031 7.01 7.01
–.0660 .1882 .2211 .2046 8.05 8.05
–.0710 .1877 .2243 .2060 8.89 8.89
–.0760 .1882 .2272 .2077 9.41 9.41
–.0810 .1889 .2293 .2091 9.65 9.65
–.0860 .1900 .2319 .2109 9.94 9.94
–.0910 .1907 .2350 .2128 10.41 10.41
–.0960 .1913 .2387 .2150 11.02 11.02

c33 Average corrected shear modulus
G Average tested  shear modulus
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6.19 Comparison of simple and modified shear moduli.
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6.3.5.4 Modified shear modulus calculated from the tested parameter G

From the KES shear test, a single value of G is given for the shear stiffness,
which is the slope between shear angle of 0.5–5∞ as shown in Fig. 6.20. This
is equivalent to considering that the shear deformation of the fabric is linear

Table 6.2 Comparison of shear moduli for woven fabric

c33 G,

average average Difference, %

ggggg  (rad) (MPa) (MPa) (G – c33)/c33

.0010 .4517 .3361 –25.8

.0060 .3689 .2625 –28.8

.0110 .2736 .1932 –29.4

.0160 .2274 .1673 –26.5

.0210 .2119 .1600 –24.5

.0260 .2049 .1557 –24.0

.0310 .2004 .1536 –23.3

.0360 .1984 .1535 –22.6

.0410 .1982 .1543 –22.2

.0460 .1992 .1552 –22.1

.0510 .2003 .1562 –22.0

.0560 .2017 .1574 –22.0

.0610 .2031 .1585 –22.0

.0660 .2046 .1597 –22.0

.0710 .2060 .1609 –21.9

.0760 .2077 .1622 –21.9

.0810 .2091 .1637 –21.7

.0860 .2109 .1654 –21.6

.0910 .2128 .1674 –21.3

.0960 .2150 .1697 –21.1
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6.20 Determination of G on the KES shear tester.
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Table 6.3 c33 calculated from G and related parameters

Sample Direction aaaaa bbbbb 0.2 ¥¥¥¥¥ c22 G t c33 (0.2 ¥¥¥¥¥ c22)/ c33/G

c33

2 weft 0.258 0.006 0.009 0.253 0.222 0.314 2.89 1.24
warp 0.451 0.034 0.003 0.223 0.296 1.18 1.33

3 weft 0.304 0.011 0.006 0.212 0.233 0.272 2.16 1.28
warp 0.526 0.040 0.004 0.195 0.258 1.40 1.32

4 weft 0.366 0.013 0.006 0.154 0.240 0.190 3.32 1.23
warp 0.435 0.027 0.004 0.136 0.173 2.28 1.28

5 weft 0.271 0.008 0.007 0.220 0.230 0.277 2.55 1.26
warp 0.474 0.035 0.004 0.200 0.265 1.35 1.32

6 weft 0.302 0.003 0.024 0.571 0.249 0.204 3.38 1.23
warp 0.715 0.006 0.026 0.580 0.708 3.66 1.22

7 weft 0.227 0.004 0.011 0.247 0.218 0.297 3.64 1.20
warp 0.450 0.030 0.004 0.227 0.300 1.27 1.32

9 weft 0.288 0.007 0.009 0.280 0.205 0.346 2.66 1.24
warp 0.404 0.038 0.003 0.277 0.373 0.76 1.35

10 weft 0.290 0.006 0.009 0.210 0.179 0.242 3.92 1.15
warp 0.556 0.033 0.004 0.185 0.235 1.87 1.37

11 weft 0.338 0.008 0.009 0.256 0.171 0.306 2.97 1.19
warp 0.485 0.033 0.004 0.217 0.281 1.37 1.30

12 weft 0.313 0.008 0.009 0.235 0.170 0.278 3.10 1.18
warp 0.483 0.026 0.005 0.218 0.278 1.64 1.28

13 weft 0.232 0.006 0.008 0.245 0.204 0.302 2.76 1.23
warp 0.604 0.077 0.003 0.220 0.295 0.92 1.34

14 weft 0.296 0.006 0.011 0.208 0.240 0.247 4.32 1.19
warp 0.509 0.047 0.003 0.192 0.255 1.22

after the initial stage. For simplification, in many applications, the value of
G is used for shear stiffness in place of c33.

As mentioned earlier, this is not the correct value for pure shear deformation.
It is desirable that an analytical solution can be used for calculating the shear
modulus from the value of G. According to the definition of G from KES
testing, equation 6.29 becomes:

c
f f

t
c G

t
c33

2 1

2 1
22 22 = 1.4

 –  
 –  

  1 –  0.2  = 1.4  –  0.2j j ◊ [6.33]

Data for G from 24 fabrics were used for the calculation of c33. The results
are shown in Table 6.3.

It can be seen from this table that the difference between tested and
modified moduli is also very large, about 25–30 %. The effect of c22 is not
very significant. From this table and equation 6.33, the error caused by
ignoring c22 is about 2 %. If the term containing c22 is ignored, the ratio of
the modified and tested shear moduli is equal to 1.4 which is also applicable
for continuous non-linear shear stiffness.
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6.21 Modified shear stress–strain curve.
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6.3.5.5 Stress–strain relationship

Because the shear force–rotation curve from the KES tester does not correspond
to the pure shear state, it needs to be modified. The modified version can be
obtained from the analytical solution for c33. Within the small range of force
increment, the shear stress and strain relationship is linear. Two fabrics were
examined as above. The whole loading process is also divided into 140
steps, thus non-linear stress–strain curves are obtained. The shear stress–
strain curves are shown in Fig. 6.21.

6.4 Shear properties of woven fabrics in

various directions

6.4.1 Introduction

Shear behaviour of woven fabrics in both principal directions has received
wide attention as it affects many types of fabric behaviour, but little attention
is paid to the shear properties in other directions, which is no less important
than that in the principal directions since garments in practical use deform in
various directions. Therefore, a quantitative knowledge of the shear properties
in bias directions becomes a must for garment design and new fabric
development, and this is the main topic of this section.

As we all know, the shear behaviour of a woven fabric can be characterised
by two shear parameters, i.e. shear rigidity (G) and shear hysteresis (2HG
and 2HG5). Shear rigidity is the resistance of a fabric to shear while shear
hysteresis is the energy loss within a shear deformation cycle. Existing literature
has suggested a strong relationship between shear rigidity and shear hysteresis
(Collier, 1991; Hu and Newton 1993; Hu, 1994; Jeong and Phillips, 1998).
The results obtained from Collier, Jeong and Phillips and Hu indicated that
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the correlation coefficients of shear rigidity and shear hysteresis can be as
high as 0.90 or more. Based on the assumption that shear rigidity and shear
hysteresis share a similar mechanism, a G-predicting model can be developed
through the KES data collected from a wide range of woven fabrics.
Furthermore, the proposed model can be further applied to predict shear
hysteresis. The validity of the model for shear hysteresis, which has been
visualised in the form of polar diagrams, will be confirmed, and the results
also indicate a linear relationship between shear rigidity and shear hysteresis
which not only holds in the principal directions, but is also present in bias
directions.

6.4.2 Modelling of the anisotropy of shear properties

The classical elasticity theory is developed by Kilby (1961, 1963) based on
the assumption that a fabric is an anisotropic lamina possessing a Poisson
effect and with two planes of symmetry at right angles to one another.
According to the elasticity theory (Hu, 1994), the behaviour of tensile and
shear properties from the theoretical transformation of various compliances
in the principal and bias directions can be used to yield the following equations:
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where ¢ ¢ ¢E E GX Y XY,  and  denote the tensile modulus in the X¢ and Y ¢ axes and
shear rigidity between both principal directions respectively with an angle q.

With equation 6.32, the shear rigidity in the X¢ and Y ¢ axes can be obtained
directly from experimental tensile modulus, while v12 cannot. The theoretical
treatment suggests that measurements of modulus in two directions are
insufficient to define a fabric’s shear rigidity, since variations with direction
are still possible for fabrics with similar E1 and E2. An investigation of the
third direction is therefore necessary, and the most convenient direction is
the 45∞. Thus, the sum (1/E1 + 1/E2 + 2v12/E1) may be deduced from
measurements in three directions by considering specimens cut along the
warp, weft and 45∞ directions. Therefore, when considering q = 45∞ values,
equation 6.32 gives
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and
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Substituting equation 6.37 into equation 6.32, we get
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Thus fabric shear rigidity in various directions can be predicted from
equation 6.39 when its values in the warp and ± 45∞ directions are measured.
As shear rigidity provides a measure of the resistance to the rotational
movements between the warp and weft yarns at the intersecting points when
the fabric is subjected to a small shear deformation, its relationship between
both principal directions should be determined. That is, a strong linear
relationship is obtained in the two principal directions by Mahar et al. (1989,
1990) and it is elucidated that the measurement on fabric shear properties
can be simplified and is necessary in only one principal direction. It is
further proved from equation 6.39 that the shear rigidity in either the warp or
weft direction with ± 45∞ directions gives a very satisfactory result in various
directions. However, if the differences in the values of shear rigidity between
the warp and weft directions are large, the average value will be taken in
both principal directions in the calculation of shear rigidity in various directions
given in equation 6.39.

Shear hysteresis of the fabric can be defined as the energy loss within the
shear cycle when the fabric is deformed and allowed to recover to its original
position. Since strong linear relationship between shear rigidity (G) and
shear hysteresis (2HG and 2HG5) has been proved by several researchers
(Collier, 1991; Hu, 1994; Jeong and Phillips, 1998), the proposed G-predicting
model in different directions can be applied to shear hysteresis (2HG and
2HG5) of different fabrics.

6.4.3 Polar diagrams of the shear model

6.4.3.1 General features

As shown by Figs 6.22 and 6.23, the shear parameters, i.e. shear rigidity G
and shear hystereses, 2HG and 2HG5, exhibit great similarities. First, the
shapes of their polar diagrams are all symmetrical to the warp and weft
directions. Second, the values of these parameters change with the angle
with their maxima exactly at ± 45∞ to the warp or weft direction. Therefore,
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6.22 Typical polar diagram of shear rigidity (G).
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6.23 Typical polar diagram of shear hysteresis (2HG, 2HG5).
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the shape of these polar diagrams is mainly governed by their values at
± 45∞. Presumably, the anisotropy of the shear rigidity should be due to some
inherent difference in their physical behaviour, the types of finishes undergone
and the stiffness of the constituent yarns or fibres, the contact area at the
intersecting points of two sets of yarns, the fibre packing density in the
yarns, and so on. As a result, any combination of these factors can confer
different shear characteristics in woven fabrics even when produced in the
same material.

From fabric geometry, there is a normal pressure acting at each intersecting
point of two sets of yarns in the unset fabric. As the shear force is applied to
the fabric and usually has a larger magnitude than the frictional restraint at
the intersecting point of yarns, the fabric will deform with hysteresis effect.
In this case, the fabrics woven with natural fibres will have larger value of
shear hysteresis than those with synthetic fibres due to the relatively low
contact area of synthetic fibres at each yarn intersecting point.

The values of shear properties will be decreased after the finishing process.
It is a fact that the residual bending stress existing in the yarns is released
with the drop of the normal reaction acting on the crossing over regions.
Thus commercially available woven fabrics usually have lower values of
shear properties than laboratory-produced woven fabrics.

As the shear deformation depends upon the frictional and elastic forces
within a fabric, elastic force will be built up rapidly if tightly woven fabric
is sheared where limited sliding of yarns over each other is allowed in their
crossing over points. On the contrary, the frictional forces will be very low
if the fabric is loosely constructed and produced in weaves such as twill and
satin.

6.4.3.2 Effect of weave density on fabric shear

In this section, our discussion is based on the analysis of plain and twill
fabrics. Because the warp densities of these fabrics are kept constant, any
changes in the trends of polar diagrams of shear properties can be considered
to be due to the different weft densities of these fabrics. The polar diagrams
of shear rigidity and shear hysteresis with different weft densities are plotted
in Fig. 6.24.

The highest shear rigidity and shear hysteresis are observed from the
plain fabrics while the lowest is found from the 3/3 twill fabrics shown in
Fig. 6.23. For different weft densities, the results obtained from Fig. 6.24
show that the values of shear rigidity and shear hysteresis increase with the
increase in the weft density of woven fabrics. From all experimental results,
the shape of the polar diagrams moves inward to outward when the fabric
weave density increases. This is because a loose structure has lower inter-
yarn friction and allows the relative movement of warp and weft yarns. As
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a result, loose fabrics have the lowest shear rigidity and shear hysteresis. On
the other hand, a tight structure avoids yarn movement, thus increasing the
shear hysteresis of the fabrics. Therefore, a larger value of shear rigidity and
shear hysteresis leads to an increase in the size of the polar diagram.

6.4.4 Relationship between shear rigidity and
hysteresis in various directions

Existing literature shows a strong relationship between shear rigidity and
shear hysteresis (Collier, 1991; Hu, 1994; Jeong and Phillips, 1998). The
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6.24 Effect of weft density on the polar diagrams of shear
parameters: (a) G; (b) 2HG; (c) 2HG5.
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6.25 Relationship between shear rigidity and hysteresis in various
directions: (a) 2HG and G; (b) 2HG5 and G; and (c) 2HG5 and 2HG.
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relationships between shear rigidity (G) and shear hysteresis (2HG and 2HG5)
of a fabric sample in various directions are illustrated in Fig. 6.25 parts (a)–
(c) respectively. It can be seen that a strong linear relationship exists between
shear properties in different directions. The coefficient of determination R2

for 2HG and G in various directions is 0.9727, for 2HG5 and G in various
directions is 0.9920 and for 2HG5 and 2HG in various directions is 0.9579.
These strong linear relationships between shear rigidity and shear hysteresis
at two angles, R2 > 0.90, are also held in many other types of woven fabrics.

From these facts, it can be assumed that a similar mechanism operates for
shear rigidity and hysteresis between both principal directions and bias
directions. As shear rigidity of a fabric is mainly caused by the frictional
forces existing in the yarns, shear hysteresis is also governed by its
corresponding frictional force and the occurrence of the frictional force is
continuous in the whole shear cycle. Higher values of shear rigidity appear
in the bias directions and larger magnitudes of shear hysteresis can be found
in these directions too.

6.5 Summary

Whenever bending occurs in more than one direction, so that the fabric is
subject to double curvature, shear deformations of the fabric are involved. It
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is thus not strange to find a strong relationship between the shear property
and the bending property. Shear deformation is very common during the
wearing process since the fabric needs to be stretched or sheared to a greater
or lesser degree as the body moves. This chapter provides a comprehensive
knowledge of the shear properties of woven fabrics and the conclusions
reached include:

(1) The statement that bending and shear have identical nature is doubtful.
The hardening of warp yarns has little effect on shear properties, but
cover factor has a definite influence. Generally, large cover factor will
produce large shear stiffness and shear hysteresis before the jammed
condition is reached. After that, this effect is not apparent. The relation
between bending and shear is not as strong as some literature has stated
and, for some fabric types, like shengosen fabrics, they are totally
different. This is because the two deformation modes operate in different
ways although they both involve friction and yarn bending.

(2) The shear modulus and curves obtained on the KES shear tester are
significantly different from those under the pure shear state, but they
are still a good reflection of the shear properties of woven fabrics.
Finite-element analysis can be successfully used to analyse the distribution
of shear stresses and strains determined on the KES tester. The exact
shear stress–strain relationship and actual shear modulus need
modification for complex fabric deformation.

(3) A model derived from Kilby’s work can be successfully used to predict
the shear rigidity in all directions and extended to predict the shear
hysteresis due to a strong linear relationship between them, which
exists not only in the warp and weft directions but also in the bias
directions. The shape of polar diagram of fabric shear properties is
symmetrical to the warp and weft directions and has a crest given the
maximum values in ± 45∞ directions. Moreover, the polar diagrams of
shear rigidity and shear hysteresis will move outwards with the increase
in weave density.
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