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7.1 Introduction

Drape can be generally classified into two categories, namely two-dimensional
drape and three-dimensional drape. A two-dimensional drape means that a
fabric bends under its own weight in one plane while three-dimensional
drape allows a fabric to be deformed into folds in more than one plane under
its own weight. The study of three-dimensional drape was begun by Chu et
al. (1950) when they established a measuring method for fabric drape using
the F.R.L. Drapemeter. Chu quantified the drapeability of a fabric into a
dimensionless value termed the drape coefficient which is defined as the
percentage of the area from an angular ring of fabric covered by a vertical
projection of the draped fabric. The apparatus was further studied by Kaswell
(1953) and later revised by Chu et al. (1960, 1962). Finally, Cusick (1968)
re-investigated the experimental method by using a parallel light source
which reflects the drape shadow of a circular specimen from a hanging disc
onto a paper ring (Fig. 7.1). He also modified the calibration of Chu’s drape
coefficient in terms of paper-weighing method. In recent years, the emphasis
has been on improving the efficiency and accuracy of Cusick’s drapemeter
by using digital readout of the drape shadow from photovoltaic cells (Collier,

7
Fabric complex deformation

analysis and simulation

Paper ring (W1)
(non-draped area)

Fabric shadow (W2)
(projected area)

7.1 Measurement of the drape coefficient using image analysis.
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1991), as well as computerised image analysis (Vangheluwe and Kiekens,
1993).

Both subjective and objective evaluations can be found in the literature on
fabric drape study. Objective evaluation of fabric drape involves the
measurement of the drapeability in terms of drape coefficient, drape profile
and node analysis from Cusick’s drapemeter (1962, 1965, 1968), and simulating
fabric drape by various mechanical methods such as finite-element analysis
(1962, 1965, 1968). On the other hand, fabric drape is also affected by
psychological factors which relate to human perceptions and fashion. Subjective
evaluation of the drape of a fabric involves the rating of drapeability on a
garment such as a skirt, and image analysis on circular fabrics (Dowlen,
1976). Generally, subjective evaluation of fabric drape can provide
understanding which relates to person, place, custom and fashion trends.
Thus, subjective evaluation of fabric drape is an investigation aimed at
understanding the human perception of drape of fabrics.

Basically, fabric drape is not an independent fabric property. It relates to
fabric bending, shear, tensile, fabric thickness and fabric weight (Niwa and
Seto, 1986; Collier, 1991; Hu and Chan, 1998). A fabric bends under its own
weight during draping. Fabrics bend differently according to different fabric
directions. Peirce (1930) also termed fabric bending under its own weight as
drape stiffness. Since drape behaviour in two dimensions can be evaluated
by a cantilever test in which bending length and bending rigidity are the
measurable objective values for describing the two-dimensional drapeability
of fabrics, the use of bending length and bending rigidity as the indices to
trace the drape properties is important.

7.2 Drape categories and fabric cantilever

7.2.1 Three-dimensional drape

7.2.1.1 Objective measurement

Chu et al. (1950) had quantified the drapeability of a fabric into a dimensionless
value termed the drape coefficient (DC%). The apparatus was further studied
by Kaswell (1953) and later revised by Chu et al. (1960, 1962). At last,
Cusick (1965, 1968) investigated again the experimental method by using a
parallel light source which reflects the drape shadow of a circular specimen
from a hanging disc onto a paper ring. In Cusick’s modified formula, the
drape coefficient is defined as the ratio of the paper weight from the drape
shadow W2 to the paper weight of the full specimen W1. The formula is
shown in dimensionless quantities in equation 7.1. The quantitative value of
DC% can represent the drapeability of fabrics in three dimensions. DC% is
high on stiff fabrics but DC% is low on limp fabrics.
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Cusick’s experimental method consists of hanging a 15 cm radius fabric
specimen over a 9 cm radius supporting disc, a parallel light source inside
the drapemeter will then form a shadow from the draping specimen on a
piece of paper. The shadow pattern on the paper can be traced out and
(DC%) can then be calculated. Alternative specimen sizes can be adopted
according to different fabric properties. An 18 cm radius specimen may be
used for a stiff fabric if its DC% on a 15 cm radius specimen is greater than
85 %. In another case, a 12 cm specimen may be used for a very limp fabric
if its DC% on a 15 cm radius specimen is smaller than 30 %.

More recently Collier et al. (1991) designed a digital drapemeter to evaluate
drape coefficient by using photovoltaic cells. Cusick’s experimental drapemeter
was used but photovoltaic cells were applied to the bottom surface of the
Cusick paper to determine the amount of light blocked by a fabric specimen
draped on a pedestal. A digital display gives the amount of light being
absorbed by the photovoltaic cells, which is related to the amount of drape
of the fabric specimen. The method is more convenient and accurate than the
paper tracing method.

Vangheluwe and Kiekens (1993) measured the drape coefficient using
image analysis. A charge coupled device (CCD) camera was mounted centrally
above the drapemeter. This camera sent the image to a monitor and a frame
grabber in a personal computer, and the frame grabber digitised the
image. Calibration of the drape coefficient was preceded by recording the
image from the drape tester in terms of area. The image analysis system
saves both time and paper. The drape coefficient can be evaluated accurately
within a few seconds. Because the measuring system is more time-efficient,
change of drape can be measured and comparisons made within a short
time.

Stylios et al. (1996) developed a new generation of drapemeter which
measured the drape of any fabric both statically and dynamically in three
dimensions by using a CCD camera as a vision sensor. This system, called
the Marlin Monroe Meter (M3), was used to measure the drape behaviour of
fabric without being restricted to small circular fabric specimens, and to
verify the theoretical prediction model. The draped profile of the specimen
was taken and presented on a computer. In addition to this, evaluation of
three-dimensional drape on a real garment can also be carried out using the
Moiré Camera System (Iwasaki and Niwa, 1983; Niwa and Suda, 1984). The
system can convert images into digital data; for example the three-dimensional
drape image of a flared skirt can be successfully predicted and presented on
paper.
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7.2.1.2 Subjective measurement

The numerical value from the drape coefficient is not sufficient to represent
drape behaviour. Drape is differentiated even when fabrics have the same
value of DC%. In practice, using only the numerical value of DC% drape
appearance cannot be fully described. Thus, Cusick’s drape study involves
not only objective measurement through a numerical value of drape coefficient,
but also subjective evaluation. Rating of drape profile is a very typical example
of subjective measurement of fabric drape; the rating result depends on
person, place, custom, fashion trends, etc. The node analysis will usually
involve the counting of node number, the measurement of the node length,
as well as the observation of drape behaviour (Hearle, 1969).

Cusick (1962) mounted semi-circular fabrics with various cottons and
rayons in the shape of a skirt on a model. The model was rated to see which
skirt could drape most. The results indicated that a good drape as assessed by
objective measurement almost matches one assessed by subjective selection.
The subjective rating of fabric drape is rather inconsistent. However, the
fabric with the most drape may not be the preferred one. The subjective
study pointed out that the drape of fabric is also a psychological phenomenon
which is related to human perceptions and fashion trends.

Collier (1991) reported that subjective drape is affected by the length of
draping fabric on the pedestal. He carried out experiments comparing the
subjective rating of drape as ‘not preferred’ with the objective experimental
results. He found that results can be accurately predicted by garment
professionals; however, he also pointed out that subjective measurement is
closely related to the fashion trends in certain time periods.

Ayada and Niwa (1991) found that fabric mechanical properties are highly
related to fabric drape. They made 24 skirts for subjective evaluation of total
quality and visual beauty of skirts. It was found that bending, shear and
fabric weight are the important factors influencing the garment appearance.
In addition, dynamic drape of fabrics is also related to the mechanical properties.
Subjective evaluation of dynamic drape (Izumi and Niwa, 1985; Mamiya
and Kanayama, 1985; Niwa and Seto, 1986) is found to be highly correlated
with dynamic bending and shear properties, as well as the hand feel. The
results of the investigation are important in targeting and responding to
customer demand.

7.2.2 Two-dimensional drape

7.2.2.1 Evaluation methods of fabric cantilever

Peirce (1937) initiated the study of fabric drape using the fabric cantilever in
1930. In this section, fabric drape can be evaluated using the cantilever test
in which bending length, a numerical term in equation 7.2 for evaluating
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fabric stiffness and drape of the cantilever, can be obtained. Bending property
can also be quantified into a series of mathematical functions such as flexural
rigidity and bending modulus in equations 7.3 and 7.4. In theory, the easier
the fabric is to drape, the shorter is the bending length. Thus, Peirce termed
the bending length drape stiffness. Peirce’s mathematical expressions of
bending length could not be solved analytically; thus Peirce used Hummel
and Morton’s (1927) approximation method to evaluate bending length. In
Peirce’s study, evaluation methods can be adopted for fabrics in the two
extreme categories – very stiff and very limp. For very stiff fabrics, a weight
can be added to the free-end of the specimen; the evaluation of bending
length for stiff fabric can be modified into equation 7.5. For very limp
fabrics, bending length can be obtained from equation 7.6 from a heart loop
test. Pierce assumed a general fabric cantilever, which deformed under its
own distributed weight, and a stiff fabric cantilever deformed by the
concentrated weight at the tip end.

Postle and Postle (1992) also provided a very detailed explanation for the
weight effect on drape of a fabric cantilever. They used bending length in the
drape study, and taking advantage of the wide availability of computers,
solved the differential equation by the finite-difference method.

Grosberg and Swani found that drape of a fabric cantilever is the combined
effect of both the distributed and concentrated weight (Grosberg, 1966;
Grosberg and Swani, 1966). A draped cantilever is divided into two sections.
The first section near the hanging edge bends under its own distributed
weight and a concentrated weight from the second section. They assumed
that the second section of the fabric cantilever is straight and will not bend
during draping. Also, fabric weight of the second section exists as a concentrated
point load at the centre of this section. The total deflection of the fabric
cantilever is the combined deflections of these two sections. The point O is
the junction of these two sections at which bending moment is equal to Mo.
If an applied moment M is greater than Mo, the fabric will bend. If an applied
moment M is smaller than Mo, the fabric will remain straight. The analytical
solution is obtained by Bickey’s approximated methods (1936). His frictional
couple theory is one of the non-linear models which can explain the bending
property in terms of bending rigidity, frictional couple and curvature of
cloth. The model can specify the real situation existing on the cantilever.

However, Peirce’s beam theory assumed a linear bending behaviour for
fabrics and is known as the classical linear model. In fact, most fabrics bend
in a non-linear way. Besides, Peirce’s evaluation method only provides an
average value for the fabric drape and bending behaviour. Therefore, other
non-linear models, including bilinear bending theory, indirect measurement
of moment–curvature and large deformation (Clapp et al., 1990; Grosberg
and Swani, 1966; Huang, 1979; Leaf and Anandjiwala, 1985; Potluri et al.,
1996), have been developed. They are all non-linear studies of bending
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behaviour. Equations for bending length C, bending rigidity B and bending
modulus q are given by:

c l =  
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8 tan 
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Ê
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where l is fabric length, q is bending angle, t is fabric thickness and W is
distributed weight. Hence
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and
c = 0.1337L · f2(q) [7.6]
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and b is the width of the fabric strip, L is the length of the beam and f2

denotes a function of q.

7.2.2.2 Theories of fabric cantilever with different weight distributions

Classical beam theory
Potluri et al. (1996) conducted differential equations to describe the drape
profile of the fabric cantilevers having distributed weight and concentrated
weight at the tip. They reported that Peirce’s cantilever study is based on the
concept of the classical beam theory from which fabric beam is assumed to
satisfy the Bernolli–Euler law. The Euler law states that the bending moment
of a beam is proportional to the radius of curvature of the beam R caused by
that moment, as shown in equation 7.7. Two assumptions are made when the
theory is applied to a cantilever. It is assumed that the curvature is evaluated
by the approximate equation and change in length of moment arm during
beam deflection is ignored. Since 1/R � d2y/dx2

M B
y

x
 = 

d

d

2

2 [7.7]

By simple mechanical theory, the applied bending moment of the beam is
also equal to the product of the applied load on the cantilever to the
perpendicular distance of the line of action x. Two cases of applied loading
are studied: one with weight and one with distributed weight.
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7.2 Cantilever beam with concentrated load W.

Fabric cantilever with concentrated weight
In this case the applied load W is acting on the free tip end of the cantilever
as shown in Fig. 7.2, and equation 7.8 is developed:

M B
y

x
Wx = 

d

d
 = –

2

2 [7.8]

By double integrating equation 7.8 and applying the boundary condition,
equation 7.9 is obtained where bending rigidity of the beam can be found
from the deflection angle.

tan  = 
3

2
q Wl

B
[7.9]

Peirce developed an empirical relation from his experimental results by
multiplying the right side of equation 7.9 by a factor of cos 0.93q. As a
result, the Peirce bending equation for a concentrated weight at the tip end
of the cantilever is formed in equation 7.10.

B
Wl 2  = cos 0.93

3 tan 
q

q [7.10]

Fabric cantilever with distributed weight
The deflection of a cantilever due to the distributed load from its own weight
can be seen in Fig. 7.3. A uniformly distributed weight w is applied along the
length of the cantilever and thus equation 7.9 can be rewritten to form
equation 7.11.
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Again, by double integrating equation 7.11 and applying the boundary
conditions, equation 7.12 is obtained where bending rigidity of the beam can
be found from the deflection angle.

tan  = 
8

3
q wl

B
[7.12]

Peirce developed an empirical relation from his experimental studies by
multiplying the right-hand side of equation 7.12 by a factor of cos 0.5q. As
a result, Peirce’s bending equation for the distributed weight is formed in
equation 7.13.

B
wl 3  = cos 0.5

8 tan 
q
q [7.13]

In Peirce’s paper (1930), he defined the term B/w as equal to the cube of the
bending length c where bending length is a quantitative value to measure a
strip’s drapeability in two dimensions. Equation 7.13 can be rewritten as
equation 7.14 from which bending length can be evaluated from the extended
fabric length l that bends to an angle q under its own weight. Peirce’s cantilever
formula as shown in equation 7.14 is extensively adopted to describe the
characteristics of fabric stiffness and fabric drape in two dimensions.

Since  c3 = B/w

c l3 3 =  cos 0.5
8 tan

q
q [7.14]

7.2.2.3 Testing methods of fabric cantilever

In Peirce’s theory, bending length c of the fabric cantilever can be evaluated
either by measuring the extended fabric length (l) under a fixed angle or by
measuring an angle from the extension of a fixed length l. The Flexometer
shown in Fig. 7.4 can be used as a testing instrument for measuring the

7.3 Cantilever beam with uniformly distributed load w.

l

q

ymax

w/unit length
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7.4 Flexometer.

bending angle q of a draped cantilever with a constant length l. Bending
length c can be evaluated from this bending angle by the mathematical
formula shown in equation 7.14.

A bending tester from the Shirley Institute (Booth, 1968; Feather, 1970)
is specially designed for measuring an extended length l with a fixed angle.
The extended fabric bends under its own weight until the free end intercepts
a plane at an angle of 41.5o from the horizon. Figure 7.5 shows the concept of
Shirley’s bending tester. With this fixed angle, the expression (cos 0.5q/8
tan q)1/3 in equation 7.14 will be equal to 0.5. Thus, the bending length is
calculated by a simple formula from equation 7.15. If q = 41.5∞,

c = 0.5l [7.15]

In recent years, the experimental process has been simplified more. The
Fabric Assurance by Simple Testing (FAST) system consists of cantilever
bending meter. The FAST-2 Bending meter can be used to measure the
bending length using the same concept as the Shirley Stiffness Tester. A
photocell detector for detecting the free end is used. The extended fabric l
bends under its own weight until the free end intercepts at an angle of 41.5∞

41.5∞

Fabric

7.5 Concept of Shirley’s and FAST bending meters.
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from the horizon. Then, a photocell detector inside the measuring cavity
detects the length of l. Experimental results are recorded directly in the
computer. Bending length evaluated from equation 7.15 can be displayed
digitally.

Clapp et al. (1990) developed an indirect method of measuring the moment–
curvature relationship for fabrics. At the same time, they developed a method
to measure the draped profile of the fabric cantilever. Deformed co-ordinates
were recorded as a fabric sample was cantilevered under its own weight
from a fixed support. The advantage of this method is that fabric non-linear
bending behaviour, inherent in most fabrics, is readily obtained, unlike in the
traditional cantilever beam test. The draped image obtained by using a laser
sensor can be used to verify the numerical simulation results.

Potluri et al. (1996) also developed an experimental technique to verify
their numerical method for the capability to simulate in general situations. A
laser triangulation sensor, attached to a robot arm, was used to measure the
cantilever profile of the fabric samples. A manipulating device positions the
fabric sample as a fabric cantilever of specified length. The laser scans along
the centre line of the fabric cantilever. The x co-ordinates are obtained from
the robot position and the y co-ordinates from the output signal of the
triangulation sensor.

7.2.3 Relationship between fabric drape and
mechanical properties

The drape coefficient provides an objective description of drape deformation
in three dimensions, but the study of three-dimensional fabric drape is not
independent. In general, fabric drape is closely related to fabric stiffness
(Hearle and Amirbayat, 1986a,b,c). Very stiff fabrics have drape coefficients
approaching 100 %; very limp, loose, or open-weave rayon fabrics have
DC% about 30 %. DC% is about 90 % for a starched cotton gingham. The
drape coefficient provides an objective description of drape deformation in
three dimensions, but the study of three-dimensional fabric drape is not
independent. In other words, the study of three-dimensional drape in terms
of DC% is empirically related to two-dimensional drape in terms of bending
properties.

Chu et al. (1960) found that drapeability is dependent on three basic
fabric parameters: Young’s modulus Y, the cross-sectional moment of inertia
I, and weight W. From their study, an equation was generated in which drape
coefficient is equal to f (YI/W). Later, Yamada et al. (1995) also reported that
the drape area changes positively to (EI/W)1/3 with a scale factor. When
bending rigidity per weight (EI/W) of fabric is similar to each other, DC%
and deflection angle obtain similar values.
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Cusick (1965) proved by statistical evidence the hypothesis that fabric
drape involves curvature in more than one direction, and that the deformation
is dependent on the shear angle A in addition to bending length c. He used
130 fabrics for his multiple regressions. Regression equations were formulated
for the relationship between drape coefficient, bending length and shear
angle:

DC = 35.6c – 3.61c2 – 2.59A + 0.0461A2 + 17 [7.16]

For this equation, residual sum of squares of the regression is the smallest
when c and A are both considered to be the main factors influencing the
DC%.

Mooraka and Niwa (1976) generated an equation to predict fabric drape
using data from the KES system and concluded that fabric weight and bending
rigidity were the most important factors. In their study, DC% is found to be
determined by (B/W)1/3. The correlation coefficient r between DC% and (B/
W)1/3 is 0.767 which is greater than the value of 0.686 for DC% and B only.
The use of bending rigidity from the warp, weft and bias on a regression
equation allows for better prediction of DC% than by using a mean bending
rigidity. Physical properties which contribute greatly to the DC% are bending
properties followed by weight and thickness, and then the shear properties.
When bending and shearing hysteresis is large, DC% would be large and
unstable.

Collier (1991) authored a paper in which six parameters were measured:
shear stiffness, bending hysteresis, bending stiffness, shear hysteresis at 0.5∞,
shear hysteresis at 5∞, from the KES testers, and bending rigidity from cantilever.
He found that both bending stiffness from the KES and bending rigidity
from the cantilever, as well as shear hysteresis and thickness, were significant
in the model predicting the drape coefficient. However, shear hysteresis and
bending stiffness from the KES explained most of the variation, with the
other two variables being less important. They concluded that shear hysteresis
is more important.

Niwa and Seto (1986) published a paper concerned with the relationship
between drapeability and mechanical properties of fabrics. They used
mechanical parameters (B/W)1/3, (2HB/W)1/3, (G/W)1/3 and (2HG/W)1/3 as
independent variables, where B, 2HB, W, G and 2HG are bending rigidity,
bending hysteresis, weight per unit area, shear stiffness and shear respectively.
These parameters were derived from the analysis of the bending of a cantilever
of fabric having hysteresis in bending and shear by applying the heavy
elastica theory. An equation to describe drape coefficient was then introduced.

From the above studies, three-dimensional drape in terms of DC% is
closely associated with two-dimensional drape study in terms of bending
length and bending rigidity. Nevertheless, DC% from three-dimensional drape
study is also influenced by other fabric physical properties which include
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shear and tensile properties as well as fabric weight and fabric thickness (Hu
and Chan, 1998; Hu et al., 2000; Suda et al., 1984a,b; Tanabe et al., 1975).
In addition, mechanical fabric properties also proved to be correlated to
subjective drape evaluation (Okabe and Akami, 1984; Yamakawa and Akiyama,
1996). Although two-dimensional drape study is only a partial measure of
drape behaviour, it is the most important index for predicting three-dimensional
drape behaviour. Many numerical and theoretical investigations of fabric
drape used the two-dimensional drape of a fabric cantilever to verify their
mechanics models or the accuracy of their software programs (Gan and
Steven, 1995).

7.3 Modelling of fabric drape profile

7.3.1 Background

Drape profile (DP) of a fabric is a projected two-dimensional image taken
from the Cusick Drapemeter. It is characterised in terms of drape coefficient,
node locations and node numbers of the projected image of a fabric. This
section will introduce an attempt made to develop a model for the prediction
of DP of fabrics using polar co-ordinates directly measured from the drapemeter.
Drape coefficient, node locations and number of the drape profile of a fabric
can all be determined by this model. Polar diagrams of the DP model will
also be provided. The constants in the DP model can be either estimated
using the polar co-ordinate fitting technique, or directly calculated from
fabric bending and shear properties using regression analysis.

7.3.2 Modelling

A fabric drape profile can be captured in a two-dimensional image projected
from a three-dimensionally draped fabric sample on the so-called Cusick
Drapemeter by digital camera. From this image, node locations and numbers
and the detailed shape of the drape profile can be observed from the computer
screen, and the fabric drape coefficient can be accurately and automatically
calculated by Leica QWin image analysis software. Although the nodes are
not uniform, the drape profile exhibits a cyclic change in polar co-ordinates.
Some assumptions, which have to be made to establish a mathematical model
for the description/prediction of fabric drape profile measured by the above
method using polar co-ordinates, are listed as follows:

(1) the fabric freely hangs under its own weight;
(2) nodes are evenly distributed around the plate and all node shapes are

identical;
(3) the average value of node numbers of one fabric sample is a positive

integer.
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A trigonometric function is selected for the modelling,

r = p + q sin (kq + a) [7.17]

where p is the average radial length taken between the peaks and troughs of
the draped profile, q is the half depth of the draped node, r is the radius of
the projected drape profile, k is the number of nodes (peaks) in the drape
profile while a is a constant which represents an angle between the fabric
warp direction and its neighbour peak. The details are demonstrated in Fig.
7.6b. Figure 7.6a illustrates the image analysis system used for the measurement
of fabric drape profile, in which a digital camera connected to a personal
computer is used to capture the projected two-dimensional draped image
directly from the drapemeter while the printer and digitiser are used to print
out the drape profile results. Computer software, Leica QWin image analyser,
serves the function of automatically calculating the drape coefficient from
the captured image.

The constants p, q and k in the model can be either estimated by polar co-
ordinate fitting technique or determined using multiple and stepwise regression
analysis from SPSS based on the relationship between fabric mechanical
properties and fabric drape. With the values of the constants known, the
drape coefficient, node locations, node numbers and node shape of the drape
profile of a fabric can be automatically predicted by this model. In particular,
the projected area A2 under the fabric drape profile is calculated in the
following:
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Drape coefficient (DC%) is defined as the ratio of the projected area of
draped fabric to the original non-draped area A1 multiplied by 100:

DC
A
A

% =   100 %2

1
¥ [7.19]

Node location is defined as the position of a peak found in the drape profile
(polar diagram) expressed in degrees. Node number is the number of nodes
(peaks) in the drape profile while node profile is defined as the shape of each
draped node.
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7.3.3 Prediction of DP using constants from polar
co-ordinate fitting

The three constants p, q and k in equation 7.17 can be determined by the
polar co-ordinate fitting technique using a computer program written in the
MATLAB software package. The input parameters of the computer program

Digital
camera

Printer

Digitiser

Cusick’s drapemeter Personal computer

(a)

7.6 The set up for the measurement of fabric drape profile: (a) image
analysis system; (b) captured image on the drapemeter.

(b)
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are the co-ordinates (r, q) of the draped profile with q from 0–352.5∞ at every
7.5∞. The predicted graphical drape profile is presented in the form of a polar
diagram.

7.3.3.1 Drape profile

The drape profiles (DP) of plain, twill and satin woven fabrics are illustrated
in Figs 7.7a–c. It can be seen that the theoretical model gives good agreement
with the experimental data with some deviations in the node numbers and
locations in the drape profile. The deviation between the theoretical and
experimental DP of different woven fabrics is not more than 10 %.

7.7 Theoretical and experimental results of drape profile of woven
fabrics: (a) plain weave; (b) twill weave; (c) satin weave.
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R 2 = 0.9928
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7.8 Relationship between theoretical and experimental DC%.

7.3.3.2 Drape coefficient

The validity of the model described above for the prediction of fabric drape
profile can be further verified using excellent agreement between the theoretical
and experimental results for drape coefficient (DC%) of 35 different types of
fabrics exemplified in Fig. 7.8. That is, the experimental and the theoretical
DC% have high coefficient of determination (R2 = 0.9928). This means that
over 99 % of experimental DC% can be explained by the theoretical DC%.
The deviation between the theoretical DC% predicted from the DP model
and the experimental DC% is smaller than 8.3 %.

7.3.3.3 Node number and location

As can be seen from Fig. 7.8, the theoretical model gives good agreement
with some of the experimental data with some deviations in the node numbers
and locations in the drape profile. This section shows that the model is
applicable in average terms. This is because, although node numbers and
their locations may vary from time to time, perhaps, on average a certain
fabric should have a certain number of nodes and node locations. Some
evidence is presented below.

The repetitions of the node numbers of one draped fabric sample under
different drape tests are shown in Figs 7.9a and b. The results obtained from
Fig. 7.9a imply that the drape node numbers of one fabric sample are 6, 7
and 8. The repetitions of 6, 7 and 8 nodes within 12 trials are 1, 9 and 2
respectively while 7 nodes give the majority in this sample. Therefore, in
this case, the mean value of node number calculated from 12 trials is equal
to 7.08. As the number of nodes in the fabric drape test must be a positive
integer, we round off the mean value of the node number to get 7 nodes for
this fabric sample. This result is very close to the mean value of node number,
7.08, with deviation 1.14 % and proves that the mean value obtained from
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constant k in the DP model is acceptable in the prediction of draped node
numbers.

If the same test is extended to a total of 35 woven fabrics, it is found that
8 nodes is the most frequent number to appear in the 35 woven fabrics, as
shown in Fig. 7.9b. Selecting those fabrics having 5–10 nodes for analysis,
a comparison is presented in Table 7.1 of their theoretical and experimental
node locations, where the peaks are found in the polar diagram, which indicates
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7.9 The repetitions of the node numbers within (a) one fabric sample
and (b) 35 woven fabrics.

Table 7.1 Correlation coefficient between each constant in DP model and all selected
fabric mechanical properties

Average of mechanical Average of mechanical

Mechanical property in the property in the warp,

properties warp and weft directions weft and ±45∞ directions

p q k p q k

B 0.497* 0.474* 0.556* 0.617* 0.604* 0.652*
2HB 0.542* 0.529* 0.551* 0.682* 0.632* 0.672*
G 0.672* 0.679* 0.678* 0.723* 0.723* 0.612*
2HG 0.715* 0.724* 0.625* 0.740* 0.724* 0.676*
2HG5 0.730* 0.721* 0.690* 0.780* 0.750* 0.682*
LT 0.451* 0.407 0.456* 0.408* 0.343 0.450*
WT 0.429* 0.482* 0.291* 0.388 0.444* 0.225
RT 0.206 0.239 0.159 0.258 0.298 0.172
EMT 0.040 0.107 0.085 0.085 0.159 0.067
W 0.415* 0.344 0.435* 0.415* 0.344 0.435*
T 0.265 0.321 0.236 0.265 0.321 0.236

    B W/3 0.370 0.290 0.481 0.444* 0.376 0.539*

    2 /HB W 0.600* 0.540* 0.615* 0.634* 0.582* 0.638*

    G W/3 0.487* 0.435* 0.470* 0.627* 0.583* 0.600*

    2 /H W 0.523* 0.474* 0.471* 0.663* 0.664* 0.511*

    2 5/HG W 0.636* 0.555* 0.616* 0.684* 0.636* 0.651*
Stepwise 0.684 0.664 0.700 0.847 0.750 0.782
regression

*Significant value at p < 0.005
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7.10 Node locations of 8 nodes in various directions.

a close relationship with deviation as low as 0.9∞. Figure 7.10 illustrates the
node location of each respective node for a fabric with 8 nodes, which
indicates clearly that the probability of node repetition is comparatively high
at 0∞, 45∞, 90∞, 135∞, 180∞, 225∞, 270∞ and 315∞ for 8 node numbers.
Undoubtedly, the above facts also indicate that constant k in the DP model
is not applicable only in predicting the node numbers, but also in determining
the node locations.

Another conclusion which can be reached is that the higher the value of
DC%, the lower the number of nodes: for stiffer or heavy fabrics with a
DC% value larger than 85 %, 2–5 node numbers are recorded; for those
medium fabrics whose DC% values fall in the range 50–85 %, they exhibit
6–8 node numbers; while for loose or light woven fabrics with a DC% value
between 30 % and 50%, 9 or 10 node numbers can be observed. These facts
confirm the findings of Cusick (1962) that the number of nodes is governed
by the fabric stiffness.

7.3.3.4 Node profile

Since a woven fabric is anisotropic and exhibits different values of mechanical
properties in different directions, each draped node may exhibit different
shape. However, it is found that the agreement between the theoretical and
experimental node profile has only minor deviations as demonstrated in Fig.
7.8. This may reveal that all node shapes in the drape profile can be assumed
to be similar to each other and the mean value of node profile assumed in the
DP model is acceptable in predicting the fabric drape profile.

7.3.4 Prediction of DP using fabric mechanical
properties from regression analysis

In addition to polar co-ordinate fitting, the fabric drape profile can also be
predicted from fabric mechanical properties using regression analysis. In
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addition, stepwise regression can be adopted to determine which combination
of mechanical properties gives the best description in predicting the fabric
drape profile.

7.3.4.1 Drape profile

Sixteen mechanical properties are used in regression analysis, including
bending (B and 2HB), shear (G, 2HG and 2HG5) and tensile (WT, EMT, LT
and RT) properties, fabric weight (W) and fabric thickness (T ). Among the
selected mechanical properties, bending and shear properties give significant
correlations with the constants p, q and k in the drape profile (DP) model
while bending hysteresis and shear hysteresis have higher correlation
coefficient, r, than their rigidities. In addition, the results indicate that the
values of mechanical properties taken in the warp, weft and ± 45∞ directions
have higher r than those taken only in the warp and weft directions. With all
correlation coefficients between the constants in the DP model and the
mechanical properties, the best combination in predicting the fabric profile
can be found by using stepwise regression. The criterion of stepwise regression
for entering a parameter was p = 0.05 and that for removal was 0.1.

After the removal of all variables that correlated with each other and were
within the same mechanical property group, the most important properties
are entered into the final equations given below:

p = 10.795 + 7.458(2HBT) + 0.1087(2HG5T) [7.20]

q = 0.5116 + 1.861(2HBT) – 0.122(2HGT) [7.21]

and

k = 2.753 + 0.8153(2HBT) – 0.469(2HG5T) [7.22]

where 2HB, 2HG and 2HG5 are the bending hysteresis, shear hysteresis at
0.5∞ and shear hysteresis at 5∞ respectively. Suffix T is the mean value of its
property obtained in the warp, weft and ± 45∞ directions. Equations 7.20–
7.22 show that these constants can be directly calculated from the bending
hysteresis and shear hysteresis along different directions.

As indicated by Fig. 7.11a–c, the constants p, q and k in the DP model can
be determined from bending hysteresis and shear hysteresis in various
directions. This indicates that draped nodes and locations of a fabric are
affected by these properties not only in the warp and weft directions but also
in other directions.

7.3.4.2 Drape coefficient

Substituting the experimental data of bending and shear hysteresis into
equations 7.20–22, constants p, q and k can be identified and thus the drape
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7.11 Theoretical and experimental results of drape profile of woven
fabrics: (a) plain weave; (b) twill weave; (c) satin weave.
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profile and drape coefficient can be predicted from the DP model. Figure
7.12 illustrates a comparison between the theoretical output of the DP model
and the experimental drape coefficient (DC%), which indicates a high
correlation between them (R2 = 0.9591). It further implies that the DP models
are applicable for the prediction of fabric drape profile from the values of
fabric bending and shear hysteresis in various directions using the regression
method.
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