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9.1 Introduction

The key to developing CAD (computer-aided design) systems for clothing
products is the establishment of physically-based numerical models which
can efficiently and accurately simulate the drape and other complex
deformations of fabrics (Hu and Teng, 1996), in particular woven fabrics
which are the commonly used fabric material. Woven fabrics are complex
mechanisms made up of intersecting threads or yarns. Although they may be
treated as continuous sheet materials, when undergoing overall deformations
like draping, the complex and discrete microstructure and their very small
thickness lend these fabrics many special properties that differ from those of
other conventional sheet materials such as steel and glass. Fabrics have a
very small bending stiffness compared to their membrane stiffness and have
different mechanical properties in the warp and weft directions. They are
easily deformable, suffering large deflections and rotations even under their
own weight and in daily use. The maximum deflection involved in fabric
deformations may be of the order of hundreds of times the thickness, and the
final deformed shape may be extremely complicated, with many doubly-
curved folds. The deformations are large although the strains are generally
small. Analysis of complex fabric deformations is therefore a difficult task
and one that was impossible, except for a few very simple cases, before the
computer era.

Over the last two decades computer technology has made great advances.
These advances have made it possible to model complex fabric deformations
such as fabric draping using computer simulation techniques. There have
been many successes and considerable progress in this area during the period
(Hu and Teng, 1996; Ng and Grimsdale, 1996). Most early works (Weil,
1986; Dhande et al., 1993) in the area are geometrically based, with an
emphasis on reproducing the cloth-like appearance of a fabric sheet on a
computer. These models cannot simulate fabric behaviour physically since
no mechanical properties are included in them. Many other workers,
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however, have adopted various physically-based models (Hu and Teng,
1996).

Feynman (1986) proposed an energy-based physical model for simulating
the appearance of cloth. The simulations included hanging cloth and cloth
draped over a sphere. The total energy function of the model contains tensile
strain, bending strain and gravity terms, but shear deformations are not
considered. Terzopoulos et al. (1987) introduced an elastically deformable
model for generalised flexible objects including fabrics. Since the model
was developed for general use in computer graphics, it is not capable of
directly incorporating standard engineering parameters such as Young’s
modulus. The solution procedure for the equations arising from the model is
also computationally intensive. Many other works (Thalmann and Yang,
1991; Thalmann and Thalmann, 1991; Carignan et al., 1992) were
reported using and extending Terzopoulos et al.’s deformable model. These
works were focused on the computer visualisation and animation of
garments.

Breen et al. developed a particle-based model to simulate the draping
behaviour of woven cloth (Breen 1993; Breen et al. 1991, 1992, 1994). In
their model, the cloth is treated as a collection of particles that conceptually
represent the crossing points of warp and weft threads in a plain-woven
fabric. Separate empirical energy functions were proposed for yarn repelling,
stretching, bending and trellising deformations. These functions were tuned
using the KES, Kawabata Evaluation System (Kawabata, 1975), test data
empirically in their later works (Breen et al., 1992; Breen, 1993). The final
position of the draped fabric was determined based on the minimisation of
the total potential energy which is the sum of the deformation energy terms
mentioned above and the potential energy of the self weight. While the
model was conceptually based on the microstructure of cloth, continuum-
based macrostructure properties were used in the simulation. The particle
grid of 51 ¥ 51 used for a 1 m ¥ 1 m cloth in the numerical examples is also
far from that necessary for a microstructural or thread level model. In addition,
the solution procedure employing a stochastic searching process was reported
to be very time-consuming. Recently Eberhardt et al. (1996) extended Breen’s
particle-based model by using a different, faster technique to compute the
exact particle trajectories. Some promising simulations including cloth draped
over a square table, a circular table and a sphere were presented.

Stylios et al. (1995, 1996) presented a physically-based approach using
the deformable node-bar model (Schnobrich and Pecknold, 1973) to predict
complex deformations of fabrics. In their approach, the fabric sheet is assumed
to be a continuum shell with homogeneous, orthotropic and linearly elastic
properties. Their drape simulation was compared with results from a fabric
drape testing system. The modelling of a skirt attached to a synthetic lady
was also described.
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Several other researchers employed the finite-element method for the
simulation of fabric draping behaviour. Lloyd (1980) was probably the first
to apply the finite-element method to model fabrics and dealt only with in-
plane deformations. Collier (1991) developed a large deflection/small strain
analysis employing a 4-noded orthotropic flat shell element to predict the
drape coefficient of cotton fabrics. Their results were reported to be in
reasonably good agreement with experimental results. Gan et al. (1995)
produced a similar analysis employing a curved shell element and presented
simulation results for fabric sheets draped over square and circular pedestals.
Kim (1991) described drape simulations using a geometrically exact shell
theory proposed by Simo et al. (1989, 1990). Simo and Fox (1989), Deng
(1994) and Eischen et al. (1996) extended the work of Kim to buckling,
contact and materially non-linear problems.

Chen and Govindaraj (1995) predicted the draping of fabrics using a
shear flexible shell theory. The predicted results of a square fabric sheet
draped over a flat square surface and an animation sequence were presented.
Yu et al.(1993) and Kang and Yu (1995) also developed a non-linear finite-
element code to simulate the draping of woven fabrics. In their study, a flat
shell element model based on a convected co-ordinate system (Simo and
Fox, 1989; Simo et al., 1989, 1990; Bathe, 1982) was used. The fabric was
again assumed to be an elastic and orthotropic material. The predicted draped
shapes were shown to agree reasonably well with those obtained experimentally.

Ascough et al.. (1996) adopted a rather simple beam element model in
their cloth drape simulations and the simulation results for a piece of fabric
draped over a table corner do not appear to be close in shape to that seen in
a corresponding photo. They also presented simulation results of the falling
of a skirt from its initial position into contact with a human body. Their
simulations were carried out as a dynamic analysis using Newmark’s method.

As reviewed above, there exist basically two main approaches in the
existing modelling approaches of fabric drape deformations: (a) the finite-
element approach employing a shell element; (b) a more empirical approach
developed specifically for fabric deformation analysis, among which the
particle-based model of Breen et al. is representative and the most widely
quoted (Breen 1993; Breen et al. 1991, 1992, 1994).

The studies of Stylios et al. (1995; 1996) and Ascough et al. (1996) do not
fall neatly into either of the above two approaches, but both are closely
related to the first approach.

The finite-element approach employing a shell element has been used by
a number of researchers. It has a rigorous mechanical basis and can be easily
understood and further developed by the computational mechanics community.
As the method was not developed making use of the special characteristics
of fabric drape deformations, it has a number of disadvantages. First, the
method entails a high computational cost as high-order shape functions are
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used and very large displacements have to be followed in a step-by-step
manner. Second, when the popular degenerated shell elements are used, the
bending stiffness and the membrane stiffness of the shell surface will be
coupled, and this subsequently leads to difficulty in modelling fabric sheets
due to their independent membrane and bending stiffness. Thirdly, the method
is theoretically complex, making it more difficult to be readily accepted and
understood by its users.

On the other hand, the widely cited particle-based model of Breen and its
extension (Breen et al., 1991, 1992; Breen, 1993; Breen et al., 1994; Eberhardt
et al., 1996) contains much empiricism in the establishment of the energy
functions and uses definitions of deformations which do not follow a rigorous
mechanics approach. The computational cost may also be very high.

9.2 Finite-volume formulation

9.2.1 Discretisation scheme

Fabric drape deformations involve very large deflections, but the associated
strains are small. This is because fabric sheets are very thin and flexible, so
most of the gross deformations come from bending; the amount of in-plane
stretching is very small in comparison. This means that an initial patch of a
fabric sheet would retain its original surface area and volume after drape
deformations.

Based on this knowledge, the finite-volume method is adopted for simulating
the complex deformations of fabrics. In this method, an initially flat fabric
is first subdivided into a finite number of structured small patches finite
volumes (or control volumes). One control volume contains one grid node.
The deformations of a typical volume can be defined using the global co-
ordinates of its grid node and several neighbouring grid nodes surrounding
it. The strains and curvatures, and hence the in-plane membrane and out-of-
plane bending strain energies, of the whole fabric sheet are then calculated
very easily over all control volumes which retain their original surface areas
and thicknesses. The equilibrium equations of the fabric sheet are derived
employing the principle of stationary total potential energy. Geometric non-
linearity and linear elastic orthotropic material properties of the fabric are
considered in the formulation. This leads to a simple but rigorous way of
formulating the equilibrium equations of a grossly deformed fabric sheet.

The concept of finite volume or control volume was originally used for
the discretisation of differential equations, particularly in computational fluid
dynamics (Patankar, 1980; Versteeg and Malalasekera, 1995). Using this
discretisation approach, the calculation domain is first divided into many
non-overlapping control volumes such that there is one volume surrounding
each grid node. The differential equations are then integrated over each
control volume, resulting in discretisation equations containing variables for
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a group of grid nodes. The most attractive feature of the finite-volume
formulation is that the integral conservation of physical quantities such as
mass, momentum, and energy is exactly satisfied over any group of control
volumes (including the limiting case of a single finite volume) and, of course,
over the whole calculation domain (Patankar, 1980).

In recent years, the finite-volume method has also been applied to solid
and structural mechanics problems (Fryer et al., 1991; Demirdzic and
Martinovic, 1993; Demirdzic and Muzaferija, 1994; Onate et al., 1994; Bailey
and Cross, 1995; Wheel, 1996, 1997), particularly for solid body stress
analysis (Demirdzic and Martinovic, 1993; Demirdzic and Muzaferija, 1994;
Onate et al., 1994; Bailey and Cross, 1995; Wheel, 1996).

Here we attempt to extend the finite-volume method to model fabric
deformation, a highly non-linear problem of orthotropic sheet materials with
unique features. The deformations and energies are calculated over all control
volumes based on simple but reasonable assumptions. The discretised equations
containing the global co-ordinates of grid nodes as unknowns are derived
using the principle of stationary total potential energy. The proposed formulation
gives the finite-volume method an explicit physical interpretation in fabric
deformation modelling and extends the horizon for the application of the
finite-volume method.

There is another major difference between the analysis of fabric drape
deformation and a non-linear load-resisting structure. In fabric deformation
analysis, attention is given to the final shape of the deformed fabric sheet
under self weight with or without additional applied load, while in the analysis
of a non-linear load-bearing structure, the maximum load that the structure
can carry and the load-deflection response are of more interest. In addition,
both the displacements and the internal forces need to be carefully determined
in the analysis of load-bearing structures while, in fabric deformation analysis,
the final displacements are the only focus. These aspects are exploited here
in developing an efficient solution method.

9.2.2 Finite-volume discretisation

Before deformations, the fabric sheet is assumed to be flat. The whole fabric
surface is taken to be the computational domain of the problem, over which
an appropriate discretisation grid needs to be established.

9.2.2.1 General control-volume discretisation

Consider an initially flat fabric sheet, which consists of two orthogonal sets
of threads, warp and weft yarns. Figure 9.1 illustrates the domain discretisation
scheme of such a fabric sheet. The dashed lines in the two orthogonal directions
(warp and weft or x- and y-) divide the whole fabric area into a finite number
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of structured sub-domains, called finite volumes (or control volumes). The
solid lines are located midway between neighbouring dashed lines.
Consequently, the crossings of solid lines, which are called grid nodes, lie
exactly at the geometric centres of the control volumes, while the crossings
of dashed lines and solid lines, which are called face nodes, lie at the mid-
points of the respective finite-volume boundaries or faces.

A system of notation for each control volume is now established as shown
in Fig. 9.1 for a typical internal volume. It contains one grid node which is
identified by P and four face nodes which are identified by w, e, n and s,
denoting the west, east, north and south side faces, respectively. The same
letter P is also used to identify this typical volume. Four neighbouring grid
nodes, identified by W, E, N and S respectively, are connected directly with
the node P. Here nodes W and E are x direction neighbours of P, while N and
S are the y direction neighbours. The two axes are assumed to be aligned
with the two orthogonal directions of a woven fabric composed of warp and
weft yarns. For simplicity of presentation here, the x-axis is assumed to be
in the warp direction and the y-axis to be in the weft direction.

If the grid intervals (or finite-volume sizes) are non-uniform, the four face
nodes will not lie midway between the grid node P and its four neighbouring
grid nodes W, E, N and S, respectively. The positions of the four face nodes
are, however, simply determined by a linear interpolation between the adjacent
grid nodes. In particular, if a two-dimensional fabric drape problem is
considered, the initial grid will be one-dimensional. This discretisation scheme
is given in Fig. 9.2.
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9.1 Two-dimensional non-uniform grid.
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9.3 A typical control volume P: (a) before and (b) after deformation.

9.2.2.2 Assumptions about deformation

Deformation will lead to a subsequent change in the location and the overall
shape of each control volume. For a typical control volume P (Fig. 9.3), this
means that the grid node P and the face nodes w, e, n and s will move from
their initial positions to their new positions. Since the fabric undergoes large
displacements and rotations but small strains during the process of deformations,
it may be reasonable to make the following assumptions in the analysis of
fabric deformations:

(1) The fabric is an elastic and orthotropic material whose two principal
directions of anisotropy coincide with the warp and weft directions of
the yarns, respectively. Although the displacements may be very large,
considering the small strains involved, the two directions of the warp
and weft yarns are assumed to remain orthogonal throughout the
deformation process.

(2) For a typical control volume, only uncoupled out-of-plane bending and
in-plane tension or compression and shearing are produced during the
deformation process. The contribution of twisting deformation to the
strain energy is ignored.

(3) The surface area and thickness of the fabric sheet, and hence those of
a control volume, do not change significantly during deformations.

(4) The strains and curvatures of a typical control volume can be determined
using the positions of its grid node and four face nodes.

(5) The deformed position of each face node can be determined using a
linear interpolation between its two adjacent grid nodes as in the
undeformed state. For example, the deformed position of the face node
e in Fig. 9.1 can be found by linear interpolation of the deformed
positions of nodes P and E.

(6) Each grid node has three degrees of freedom: three global coordinates
x, y and z.
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Under the above assumptions, the deformations of an internal control volume
will only depend on five grid nodes: the grid node of the volume itself and
its four neighbours surrounding it.

In assumption 2, the twisting shear strain energy is assumed to be negligible.
This assumption in fact has been involved in all fabric deformation models
based on approach b, although it has never been discussed or even mentioned
in these studies. Physically, the assumption may be justified by noting that
the warp and weft yarns of a woven fabric structure can slide against each
other under twisting shear stresses, a situation which also makes the in-plane
shear stiffness much smaller than the tensile stiffness. The assumption of
ignoring the resistance offered by twisting shear deformations is also supported
by numerical comparisons later (Press et al., 1992).

9.2.2.3 Boundary control volumes

So far, no discussion has been given on the control volumes that lie along the
edges or at the corners of the computational domain. Since boundary conditions
are usually imposed only on the grid nodes, the solid grid lines are placed
along the domain edges, leading to half volumes along edges and quarter
volumes at corners. That is, the typical edge volume P1 (Fig. 9.1) may be
viewed as a ‘half’ of an internal control volume and the corner volume P2

(Fig. 9.1) a ‘quarter’ of an internal volume. Therefore, the deformations of
the edge control volume P1 will depend on four grid nodes instead of five,
one of itself and three neighbours, and those of the corner control volume P2

depend only on three grid nodes.

9.2.3 Strain energy

The out-of-plane bending and in-plane membrane strain energies of a typical
control volume are considered in this section. The total strain energy of a
control volume is the summation of these two types of strain energy. The
total strain energy of the fabric sheet can be found by adding together the
contributions from all control volumes.

9.2.3.1 Out-of-plane bending

The bending deformations of a typical control volume P are in general
produced simultaneously in two directions: warp (or x) and weft (or y).
Figure 9.4a illustrates the x-direction bending. Although the draped shape of
a fabric sheet is in general a complicated curved surface, the radii of curvature
in both the warp and weft directions of a small surface area are still much
greater than its thickness. Therefore, if the control volume is sufficiently
small, it is not difficult to derive the equivalent bending curvatures in the
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two directions from the two bending angles formed by its grid node and the
four neighbours. For example, the radius of curvature of the deformed surface
in the warp direction is found as the radius of a circular arc which has two
end tangents coinciding with the deformed lines P¢w¢ and P¢e¢ for the control
volume P (Fig. 9.4a). Therefore, the curvatures of the control volume P in
the two directions are

k q k q
P

P
P P

P
Pl l1

1
1 2

2
2 = 2ctg

2
/    and    = 2ctg

2
/ [9.1]

where kP1 and kP2 are the bending curvatures in the warp and weft directions,
qP1 and qP2 are the corresponding bending angles (see Fig. 9.4a), lP1 and lP2

are the finite-volume sizes in the two directions, respectively. Based on
assumptions 1–6 as given in the previous section, the bending strain energy
is given as

U D D D AP P P P P Pb 1 1
2

12 1 2 2 2
2 = 1

2
(  + 2  + )  k k k k ◊ [9.2]

where D1 and D2 are the bending rigidities in the warp and weft directions,
respectively, D12 is the bending rigidity reflecting the Poisson’s effect, and
AP is the in-plane surface area of volume P which is assumed to remain
constant during deformations.

Based on the classical continuum bending theory which assumes that the
tensile and compressive Young’s moduli are the same and that they are also
the same regardless of the nature of deformations, these bending rigidities
can be related to the elastic moduli obtained from uniaxial tensile tests. For
a woven fabric, however, the situation is quite different in that the measured
bending rigidities are much smaller than those calculated using the conventional
continuum mechanics approach. That is, a fabric has independent bending
stiffness and stretching stiffness. Therefore, equation 9.2 is used directly
with measured bending rigidities.

9.4 Deformations of a typical control volume P: (a) out-of plane
bending in x-direction; (b) in-plane tension and shearing.
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9.2.3.2 In-plane tension and shearing

The in-plane (or membrane) deformations of a control volume include tension/
compression in the two principal directions and membrane shearing. In general,
the surface of a control volume is not plane after deformations, so subdivision
of the volume into smaller sections is desirable for a more accurate evaluation
of the in-plane strain energy. Referring to the typical volume P as shown in
Figs 9.1 and 9.3, the two lines ew and ns subdivide the whole volume into
four sections, nPe, nPw, sPe and sPw. The in-plane deformations of the
quarter section nPe are illustrated in Fig. 9.4b. The membrane strains of the
section can then be evaluated as
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where lPE, dPE and lPN, dPN are the distances between grid nodes P and E, and
P and N, before and after deformations, respectively; jnPe is the angle formed
by lines Pe and Pn after deformations (Fig. 9.4b).

As the fabric is assumed to be an orthotropic elastic material, the
corresponding stress resultants (force per unit length) in the section can be
easily obtained as
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where G is the shear rigidity and E1, E2, E12 are given by
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Here, Ewarp and Eweft are the membrane rigidities of the fabric sheet in the
warp and weft directions respectively determined from tensile tests, and
nwarp and nweft are the corresponding Poisson’s ratios. The in-plane strain
energy of section nPe is therefore given by
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where AnPe is the area of quarter section nPe.
The in-plane strain energy UnPw, UsPw and UsPe of the other three quarter sec-

tions can be found in a similar manner. The in-plane (or membrane) strain energy
of the whole control volume is the sum of the above four sections given by

UPm = UnPe + UnPw + UsPw + UsPe [9.7]

The total strain energy of the control volume P is the sum of bending and
membrane strain energies, i.e.

UP = UPb + UPm [9.8]

Consequently, the total strain energy of the whole fabric sheet consisting of
r control volumes Udf is

U Ud f P

r

P =  
=1

S [9.9]

9.2.4 Governing equations

Under its own weight and given boundary conditions, a fabric sheet always
deforms into a final stable equilibrium state and forms a complicated surface,
the process of which is called fabric draping. Complex deformations may
also occur under additional applied loads. The final equilibrium state of the
fabric can be determined by using the principle of stationary total potential
energy. The total potential energy P is the summation of the total strain
energy as given by equation 9.9 and the potential energy of gravitational
forces and other applied loads
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where Ug and Uex are the potential energies of gravitational forces and other
applied loads respectively, mP is the mass of the finite volume P, g is the
gravitational acceleration, and zP is the vertical co-ordinate. The equilibrium
equations can be obtained using the variational principle that the total potential
energy P must be stationary;
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where xPi (i = 1, 2, 3) stands for the three global co-ordinates xP, yP and zP of
the position of node P at any point of time during deformation. Equation
9.12 leads to a set of non-linear algebraic equations with the global coordinates
of all grid nodes as unknowns, which can be cast in the following form
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where X = [LxW1 xW2 xW3 LxP1 xP2 xP3 L]T is the global nodal co-ordinate
vector, F is the global nodal internal force vector and R is the global nodal
load vector due to gravity and applied loads.

Using the Newton–Raphson iteration scheme (Bathe, 1996; Crisfield, 1991),
equation 9.13 can be rewritten in the following iterative form
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where K is the global tangent stiffness matrix of the fabric sheet, and X{i}

denotes the i-th iterative solution of the vector X. From equation 9.9, the
global internal force vector and the global tangent stiffness matrix may be
written in the form of summations as
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Since the strain energy function UP depends only on the co-ordinates of
node P and its four neighbours W, E, N and S, only 15 components in the
vector ∂UP /∂X are non-zero. Similarly, the matrix ∂ 2UP /∂X∂X contains
only 15 ¥ 15 non-zero elements. These non-zero elements form a sub-vector
Fe and a sub-matrix Ke, which are referred to as the element internal force
vector and the element tangent stiffness matrix, respectively. Once all the
element vectors Fe and matrices Ke are obtained, they can be assembled to
form the global vector F and matrix K, the procedure of which is similar to
that in the finite-element method.
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9.2.4.1 The element internal force vector

In this section, the internal force vector for a typical internal control volume
P (referred to as element internal force vector here) is formulated. The vector
is given by
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and the corresponding element nodal co-ordinate vector is

Xe = [xWi   xNi   xPi   xSi   xEi]
T [9.17]

In equations 9.16 and 9.17, each component denotes a 3 ¥ 1 vector, for
example
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From equations 9.7 and 9.8, it is easy to see that
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where fwPe and fnPs denote the cosines of the bending angles qP1 and qP2

respectively, the strain energies UPb, UnPw, UnPe, UsPw and UwPe can be expressed
as functions of the nodal co-ordinates, that is
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where fbPa denotes the cosine of the angle formed by grid lines PA and PB
after deformations (A, B = W, E, N or S), while dPA and dPB are the distances
between grid nodes P and A, and P and B, respectively, after deformations.
In equation 9.21 above, if the control volume deforms into an anticlastic
surface, the second term on the right-hand side assumes the negative sign
and otherwise the positive sign. Using equations 9.21–9.23, the first partial
derivatives of the bending and membrane strain energy functions, namely
the components of the element internal force vector Fe, can be found as
follows:
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where
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(xj = xAi, xPi, xBi, i = 1, 2, 3) [9.26]

For simplicity, in deriving equation 9.26, the coupling of bending in the two
directions due to the Poisson’s effect has been neglected (i.e. D12 = 0) and AP

= lP1lP2 has been used. There is currently little information on the Poisson’s
ratio of fabrics and its accurate measurement is difficult (Chen and Govindaraj,
1996). The effect of the Poisson’s ratio is therefore ignored in almost all
models belonging to the second approach. In finite-element shell models,
while a non-zero Poisson’s ratio can be easily handled and is quite often
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included in numerical simulations, it has also been set to zero (Kim, 1991;
Eischen et al., 1996), a very small value (Kang and Yu, 1995) or not at all
mentioned in the material properties (Gan et al., 1995).

Collier (1991) compared the drape deformations of a circular piece of
cloth draped over a circular pedestal using two very different values for the
Poisson’s ratios, 0.12 and 0.54 respectively, and showed that they led to
some significant differences in the draped shape. A recent study by Chen and
Govindaraj (1996) has, however, shown that the Poisson’s ratio has no visible
effect on fabric drape deformations for values between 0 and 0.5. Chen and
Govindaraj (1996) also argued that Collier et al.’s results are not reliable due
to the particular modelling approach used for their circular cloth pieces. It is
also a pity that they did not include results for a Poisson’s ratio of 0.3 which
was used for other examples in their papers.

Even in the above two studies which give special attention to the effect of
the Poisson’s ratio, the definition of the Poisson’s ratios is a little loose.
Collier et al. does not even mention which of the two Poisson’s ratios he was
referring to when quoting the values, while Chen and Govindaraj define only
one Poisson’s ratio although the symmetry of the constitutive matrix is enforced.
It thus appears to be wise to set the Poisson’s ratios to zero. The theory
presented here is, however, not limited to the case of zero Poisson’s ratios,
although a more involved derivation is required if a non-zero value is used.
Numerical results given later in the section further justify the omission of the
Poisson’s effect.

In equations 9.24–9.26, the first derivatives of ePa (Pa = Pw, Pe, Pn, Ps)
and fbPa (bPa = wPe, nPs, nPw, nPe, sPw, sPe) with respect to the nodal co-
ordinates are given in the following four expressions
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By now, all components of the element internal force vector Fe have been
expressed as functions of the element nodal coordinate vector Xe. The global
internal force vector F can then be formed by placing these components at
appropriate positions according to the global grid-node numbering sequence.

9.2.4.2 The element tangent stiffness matrix

The element tangent stiffness matrix Ke is a 15 ¥ 15 symmetric matrix. For
the typical internal control volume P, the matrix is
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in which each component stands for a 3 ¥ 3 sub-matrix. For example
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Using equations 9.17 and 9.18, the second partial derivatives may be expressed
as
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The second partial derivatives of the bending strain energy UPb can be obtained
by differentiating equation 9.24 with respect to nodal co-ordinates once
more, which leads to
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The other four terms ∂2UPb /∂xPi∂xWk, ∂2UPb /∂xEi∂xWk, ∂2UPb /∂xEi∂xP k and
∂2UPb/∂xEi∂xEk can be found by appropriate permutations in the subscripts of
the nodal co-ordinates on both sides of equation 9.35. Similarly,

∂
∂ ∂

2
bU

x x
P

Ni Ni

= 
4 1

(1 – )
  + 2

(1 –  )
 2 1

2
2

2

3

D l
l f

f
x x f

f
x

f
x

P

P nPs

nPs

Ni Nk nPs

nPs

Ni

nPs

Nk

∂
∂ ∂

∂
∂

∂
∂

È
ÎÍ

˘
˚̇
[9.36]

Again, the terms ∂2UPb/∂xPi∂xNk, ∂2UPb/∂xSi∂xNk, ∂2UPb/∂xSi∂xPk and ∂2UPb /
∂xSi∂xSk can be obtained by permutations in the subscripts on both sides of
equation 9.36. The second derivatives of fbPa (bPa = wPs, nPs, nPw, nPe,
sPw, sPe) can be derived without difficulty. The second derivatives of the in-
plane strain energy function UbPa (bPa = nPw, nPe, sPw, sPe) can also be
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obtained by differentiating equation 9.25 once more with respect to the
nodal co-ordinates.

9.2.5 Boundary control volumes

In the previous sections, the element internal force vector Fe and the element
tangent stiffness matrix Ke for internal control volumes are established. The
corresponding matrices for boundary control volumes, such as the edge
volume P1 and the corner volume P2 as shown in Fig. 9.1, are now derived.
For an edge control volume such as the typical volume P1 in Fig. 9.1, the
strain energy UP1 only depends on four grid nodes. Therefore, the element
internal force vector Fe is a 12 ¥ 1 vector and the element tangent stiffness
matrix Ke is a 12 ¥ 12 matrix. They are expressed as follows
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Similarly, for a corner control volume, such as the typical volume P2 shown
in Fig. 9.1, the strain energy UP2 depends only on three grid nodes, so Fe is
a 9 ¥ 1 vector and Ke a 9 ¥ 9 matrix. These are given by
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The procedure of derivation for all components in equations 9.37–9.40 is the
same as that for internal control volumes as presented in the previous
sections.

9.2.6 Solution method for the non-linear equations

9.2.6.1 Existing solution procedures in fabric deformation analysis

A variety of algorithms have been employed for the solution of the non-
linear algebraic equations arising from a discretised fabric model. In Breen
et al.’s work (Breen, 1993; Breen et al., 1994) the deformed shapes of square
pieces of woven cloth draped over rectangular tables were simulated using
a particle-system model. They used a three-phase solution procedure. The
first phase accounts for the effect of gravity and the collisions between the
cloth and the interacting object. The second phase is an energy minimisation
phase in which a stochastic technique is used to reach a local minimum. In
the third phase, a stochastic perturbation technique is used to produce a more
natural final shape.

Eberhardt et al. (1996) used a Runge-Kutta method with adaptive step-
size control and the Bulirsch-Stoer method (Press et al., 1992) as a numerical
solver for the differential equations resulting from the particle-system model.
The simulation examples presented include cloth sheets draped over a square
table, a circular table and a sphere. Other researchers (Kim, 1991; Chen and
Govindaraj, 1995; Gan et al., 1995; Kang and Yu, 1995) employed the
incremental Newton–Raphson iteration method to solve the non-linear
equilibrium equations derived from a finite-element formulation. Their
simulation examples include the two-dimensional draping of fabric cantilevers,
square cloth sheets draped over cubic objects or circular tables. Deng (1994)
and Eischen et al. (1996) employed an adaptive arc-length algorithm (Riks,
1979; Schweizerhof and Wriggers, 1986) with an acceleration factor to deal
with non-linear effects including material non-linearity and contact. The
predicted results of fabric pieces draped over a block, hanging over a round
rod, draped over intersecting cylinders were presented.

In the existing literature, little discussion has been found on an appropriate
solution procedure for fabric deformation analysis which takes into account
the special characteristics of these problems. This issue is considered first
below, leading to the choice of the Newton–Raphson method (Crisfield,
1991; Bathe, 1996) in conjunction with the use of the line search technique
(Crisfield, 1991). The effectiveness and efficiency of the solution
procedure is then investigated, through comparison with the conventional
step-by-step incremental iterative Newton–Raphson procedure in a numerical
example.



Structure and mechanics of woven fabrics260

9.2.6.2 Special characteristics of fabric deformation analysis

Fabric deformations generally involve very large displacements, often of the
order of hundreds of times the thickness of the fabric sheet. This kind of
gross deformation is not encountered in the analysis of load-bearing structures.
The only obvious example in non-linear structural mechanics which is closely
related to this class of deformations is the elastica problem. There are also
some other major differences between a fabric drape deformation analysis
and a non-linear analysis of load-bearing structures. First, the aim of a fabric
deformation analysis is to determine the final deformed shape under self
weight with or without additional applied loading, while in the non-linear
analysis of load-bearing structures, the maximum load-carrying capacity and
the load-deflection response are of interest. Second, both the displacements
and the internal forces need to be carefully determined in the analysis of
load-bearing structures, while in a fabric deformation analysis, the final
displacements are the only item of interest.

It is easy to see that a step-by-step incremental iterative approach is well
suited for the analysis of load-bearing structures, as the load-deflection response
can be traced and internal forces and displacements can be computed at
different levels of loading. For a fabric deformation analysis, a more direct
and efficient approach is clearly desirable as the only information of interest
is the final displacements of the cloth sheet.

9.2.6.3 The Newton–Raphson method

Based on the above rationale, the full Newton–Raphson iterative method
(Crisfield, 1991; Bathe, 1996) is adopted for the solution of the non-linear
equations of the fabric sheet with all the loading applied in a single step,
instead of an incremental iterative approach. The solution process using the
Newton–Raphson iterative method (Crisfield, 1991; Bathe, 1996) in a single
step is described by the following two equations

K X R F

X X X

D

D

 =  –  

 =  + new old

¸
˝
˛

[9.41]

where X is the global nodal co-ordinate vector, K is the global tangent
stiffness matrix, F is the global nodal internal force vector and R is the
global nodal load vector due to gravity and other applied loads if any. Details
of the computational steps will be given later.

9.2.6.4 The line search technique

To accelerate the convergence of the Newton–Raphson iterative solution
process, the line search technique (Crisfield, 1991) is included in the iterative
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solution process. In this technique, the incremental co-ordinate vector DX
obtained from the first part of equation 9.41 is now defined as an iterative
direction for the actual co-ordinate increment. The co-ordinate vector is then
updated using

Xupdate = Xold + hDX [9.42]

in which the scalar h is the iterative step length and the only variable for the
line-search process. The scalar h can be determined using the linear
interpolation method until the defined inner product

s(h) = DXT(F – R) [9.43]

is small, i.e. until the following expression is satisfied

|s(h) | < bls | s(h = 0) | [9.44]

where bls is the line-search tolerance. In the numerical simulations to be
presented later, the line-search technique was employed in the solution process
for all-three dimensional cases and was found to be effective. For the two-
dimensional draping analysis of fabric cantilevers, this technique was not
used as it was not found to be useful.

9.2.6.5 Convergence criterion

A rational and realistic convergence criterion is an essential ingredient of an
effective iterative solution procedure. As stated by Bathe (1996), ‘if the
convergence tolerances are too loose, inaccurate results are obtained, and if
the tolerances are too tight, much computational effort is spent to obtain
needless accuracy’. A number of convergence criteria have been used in
non-linear analysis of load-bearing structures (Bathe, 1996), which may be
either displacement-based or load-based. Bearing in mind that the concern in
fabric drape deformation analysis is the final deformed shape, the convergence
criterion adopted is the iterative change of the position vector at a grid node
which is given by

b D D
D

b

D D

 = |  –  |  

 = (  +  + ) ,  = (  +  + )

new old

new d

new 2 2 2 new old 2 2 2 old

£ ¸

˝
Ô

˛
Ôx y z x y z

[9.45]

where bd is the displacement convergence tolerance, x, y and z are the three
co-ordinates of the grid node. This criterion has to be satisfied by each grid
node before convergence is deemed to have been reached. A value of 10–5

has been used and found to be satisfactory in all the numerical simulations
presented below.



Structure and mechanics of woven fabrics262

9.3 References

Ascough J, Bez H E and Bricis A M (1996), A simple finite element model for cloth drape
simulation, Int J Clothing Sci and Tech, 8(3), 59–74.

Bailey C and Cross M (1995), A finite volume procedure to solve elastic solid mechanics
problems in three dimensions on an unstructured mesh, Int J Numer Methods Eng, 38,
1757–1776.

Bathe K J (1982), Finite Element Procedures in Engineering Analysis, New Jersey,
Prentice Hall.

Bathe K J (1996), Finite Element Procedures, New Jersey, Prentice Hall.
Breen D E (1993), A Particle-based Model for Simulating the Draping Behaviour of

Woven Cloth (Doctoral dissertation, Rensselaer Polytechnic Inst., New York).
Breen D E, House D H and Getto P H (1991), A particle-based computational model of

cloth draping behaviour, in Scientific Visualization of Physical Phenomena, Patrikalakis
N M (ed), New York, Springer Verlag, 113–134.

Breen D E, House D H and Getto P H (1992), A particle-based particle model of woven
cloth, The Visual Computer, 8(5–6), 264–277.

Breen D E, House D H and Wozny M J (1994), A particle-based model for simulating the
draping behaviour of woven cloth, Text. Res J, 64(11), 663–685.

Carignan M, Yang Y, Thalmann N M and Thalmann D (1992), Dressing animated synthetic
actors with complex deformable clothes, Computer Graphics (Proc. siggraph), 26(2),
99–104.

Chen B and Govindaraj M (1995), A physical based model of fabric drape using flexible
shell theory, Text Res J, 65(6), 324–330.

Chen B and Govindaraj M (1996), A parametric study of fabric drape, Text Res J, 66(1),
17–24.

Collier B J (1991), Measurement of fabric drape and its relation to fabric mechanical
properties and subjective evaluation, Clothing & Text Res J, 10(1), 46–52.

Crisfield M A (1991), Non-linear Finite Element Analysis of Solids and Structures, vol.1:
Essentials, Chichester, John Wiley & Sons.

Demirdzic I and Martinovic D (1993), Finite volume method for thermo-elasto-plastic
stress analysis, Comput Methods Appl Mech Eng, 109, 331–349.

Demirdzic I and Muzaferija S (1994), Finite volume method for stress analysis in complex
domain, Int J Numer Methods Eng, 37, 3751–3766.

Deng S (1994), Nonlinear Fabric Mechanics Including Material Nonlinearity, Contact,
and an Adaptive Global Solution Algorithm Doctoral Dissertation, (North Carolina
State University, Raleigh NC).

Dhande S G, Rao P V M and Moore C L (1993), Geometric modelling of draped fabric
surfaces, Graphics, design and visualization (Proc Int Conf on Computer Graphics),
Mudur S P and Pattanaik S N (eds), Bombay, Jaico Publishing House, 173–180.

Eberhardt B, Weber A and Strasser W (1996), A fast, flexible particle-system model for
cloth draping, IEEE Computer Graphics and Applications, 16(5), 51–59.

Eischen J W, Deng S and Clapp T G (1996), Finite-element modelling and control of
flexible fabric parts, IEEE Computer Graphics and Applications, 16(5), 71–80.

Feynman C (1986), Modelling the Appearance of Cloth, Master’s dissertation, Massachusetts
Institute of Technology, Cambridge).

Fryer Y D, Bailey C, Cross M and Lai C H (1991), A control volume procedure for
solving the elastic stress-strain equations on an unstructured mesh, Appl Math Modelling,
15(11–12), 639–645.



Modelling drape deformation – theory 263

Gan L, Ly N G and Steven G P (1995), A study of fabric deformation using nonlinear
finite elements, Text Res J, 65(11), 660–668.

Hu J L and Teng J G (1996), ‘Computational fabric mechanics-present status and future
trends’, Finite Element in Analysis and Design, 21, 225–237.

Kang T J and Yu W R (1995), Drape simulation of woven fabric by using the finite-
element method, J Text Inst, 86(4), 635–648.

Kawabata S (1975), The Standardization and Analysis of Hand Evaluation, Osaka, Hand
evaluation and standardization committee of the Textile Machinery Society of Japan.

Kim J (1991), Fabric Mechanics Analysis Using Large Deformation Orthotropic Shell
Theory, Doctoral Dissertation, North Carolina State University, Raleigh, N C).

Lloyd D W (1980), The analysis of complex fabric deformations, in Mechanics of Flexible
Fibre Assemblies (NATO Advanced Study Institute Series; E Appplied Sciences No.
38), Hearle J W S, Thwaites J J and Amirbayat J (eds), The Netherlands Alpen aan den
Rijn, Sijthoff & Noordhoff, 311–342.

Ng H N and Grimsdale R L (1996), Computer graphics techniques for modelling cloth,
IEEE Computer Graphics and Applications, 16, 28–41.

Onate E, Cervera M and Zienkiewicz O C (1994), Finite volume format for structural
mechanics, Int J Numer Methods Eng, 37(2), 181–201.

Patankar S V (1980), Numerical Heat Transfer and Fluid Flow, New York, Hemisphere
Publishing Corporation.

Press W H, Flannery B P, Teukolsky S A and Vetterling W T (1992), Numerical Recipes
in C: The Art of Scientific Computing, 2nd edition, New York, Cambridge University
Press.

Riks E (1979), An acceleration approach to the solution of snapping and buckling problem,
Int J Solids Struc, 15, 524–551.

Schnobrich W C and Pecknold D A (1973), The lumped-parameter or bar-node model
approach to thin shell analysis, numerical and computer methods, in Structural
Mechanics, Perrone F and Schnobrich R (eds), London, Academic Press, 337–402.

Schweizerhof K H and Wriggers P (1986), Consistent linearization of path following
methods in nonlinear FE analysis, Comput Methods Appl Mech Eng, 72, 267–304.

Simo J C and Fox D D (1989), On a stress resultant geometrically exact shell model part
I: formulation and parameterization, Comp Methods Appl Mech Eng, 72, 267–304.

Simo J C and Fox D D and Rifai M S (1989), On a stress resultant geometrically exact
shell model part II: the linear theory; computational aspects, Comp Methods Appl
Mech Eng, 73, 53–92.

Simo J C, Fox D D and Rifai M S (1990), On a stress resultant geometrically exact shell
model, Part III, Aspects of nonlinear theory, Comp Methods Appl Mech Eng, 79, 21–
70.

Stylios G K, Wan T R and Powell N J (1995), Modelling the dynamic drape of fabrics on
synthetic humans, a physical, lumped-parameter model, Int J Clothing Sci and Tech,
7(5), 10–25.

Stylios G K, Wan T R and Powell N J (1996), Modelling the dynamic drape of garments
on synthetic humans in a virtual fashion show, Int J Clothing Sci and Tech, 8(3), 95–
112.

Terzopoulos D, Platt J, Barr A and Fleischer K (1987), Elastically deformable models,
Computer Graphics, 21(4), 205–214.

Thalmann N M and Thalmann D (1991), Cloth animation with self-collision detection, in
Modelling in Computer Graphics, Kunii T L (ed), Berlin, Springer-Verlag, 179–187.



Structure and mechanics of woven fabrics264

Thalmann N M and Yang Y (1991), Techniques for cloth animation, in New Trends in
Animation and Visualization, Thalmann N M and Thalmann D  (eds), Chichester, John
Wiley & Sons, 243–256.

Versteeg H K and Malalasekera W (1995), An Introduction to Computational Fluid
Dynamics, the Finite Volume Method, Harlow, Longman Scientific & Technical.

Weil J (1986), The synthesis of cloth object, Computer Graphics (Proc Siggraph), 20(4),
49–54.

Wheel M A (1996), Finite volume approach to the stress analysis of pressurized axisymmetric
structures, Int J Pressure Vessels Piping, 68(3), 311–317.

Wheel M A (1997), A finite volume method for analyzing the bending deformation of
thick and thin plates, Comp Methods Appl Mech Eng, 147, 199–208.

Yu W R, Kang T J and Lee J K (1993), Drape properties of woven fabrics, Proc 2nd Asian
Textile Conf, 1, South Korea, 20 Oct, 455–459.


