
Color Atlas of Biochemistry

J. Koolman K. H. Roehm

Flexibook

Second edition, revised and enlarged

Color Atlas of Biochemistry

Second edition, revised and enlarged

Jan Koolman

Professor Philipps University Marburg Institute of Physiologic Chemistry Marburg, Germany

Klaus-Heinrich Roehm

Professor Philipps University Marburg Institute of Physiologic Chemistry Marburg, Germany

215 color plates by Juergen Wirth

Thieme Stuttgart · New York

Koolman, Color Atlas of Biochemistry, 2nd edition © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

This book is an authorized and updated translation of the 3rd German edition published and copyrighted 2003 by Georg Thieme Verlag, Stuttgart, Germany. Title of the German edition: Taschenatlas der Biochemie

Illustrator: Juergen Wirth, Professor of Visual Communication, University of Applied Sciences, Darmstadt, Germany

Translator: Michael Robertson, BA DPhil, Augsburg, Germany

1 st Dutch edition 2004 1 st English edition 1996 1 st French edition 1994 2 nd French edition 1999 3 rd French edition 2004 1 st German edition 1994 2 nd German edition 1997 1 st Greek edition 1999 1 st Indonesian edition 2002 1 st Italian edition 1997 1 st Japanese edition 1996 1 st Portuguese edition 2004 1 st Russian edition 2000 1 st Spanish edition 2004

© 2005 Georg Thieme Verlag Rüdigerstrasse 14, 70469 Stuttgart, Germany http://www.thieme.de Thieme New York, 333 Seventh Avenue, New York, NY 10001 USA http://www.thieme.com

Cover design: Cyclus, Stuttgart Cover drawing: CAP cAMP bound to DNA Typesetting by primustype Hurler GmbH, Notzingen Printed in Germany by Appl, Wemding

ISBN 3-13-100372-3 (GTV) ISBN 1-58890-247-1 (TNY) **Important note:** Medicine is an ever-changing science undergoing continual development. Research and clinical experience are continually expanding our knowledge, in particular our knowledge of proper treatment and drug therapy. Insofar as this book mentions any dosage or application, readers may rest assured that the authors, editors, and publishers have made every effort to ensure that such references are in accordance with the state of knowledge at the time of production of the book. Nevertheless, this does not involve, imply, or express any guarantee or responsibility on the part of the publishers in respect to any dosage instructions and forms of applications stated in the book. Every user is requested to examine carefully the manufacturers' leaflets accompanying each drug and to check, if necessary in consultation with a physician or specialist, whether the dosage schedules mentioned therein or the contraindications stated by the manufacturers differ from the statements made in the present book. Such examination is particularly important with drugs that are either rarely used or have been newly released on the market. Every dosage schedule or every form of application used is entirely at the user's own risk and responsibility. The authors and publishers request every user to report to the publishers any discrepancies or inaccuracies noticed. If errors in this work are found after publication, errata will be posted at www.thieme.com on the product description page.

Some of the product names, patents, and registered designs referred to in this book are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

This book, including all parts thereof, is legally protected by copyright. Any use, exploitation, or commercialization outside the narrow limits set by copyright legislation, without the publisher's consent, is illegal and liable to prosecution. This applies in particular to photostat reproduction, copying, mimeographing, preparation of microfilms, and electronic data processing and storage.

Koolman, Color Atlas of Biochemistry, 2nd edition © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

About the Authors

Jan Koolman (left) was born in Lübeck, Germany, and grew up with the sea wind blowing off the Baltic. The high school he attended in the Hanseatic city of Lübeck was one that focused on providing a classical education, which left its mark on him. From 1963 to 1969, he studied biochemistry at the University of Tübingen. He then took his doctorate (in the discipline of chemistry) at the University of Marburg, under the supervision of biochemist Peter Karlson. In Marburg, he began to study the biochemistry of insects and other invertebrates. He took his postdoctoral degree in 1977 in the field of human medicine, and was appointed Honorary Professor in 1984. His field of study today is biochemical endocrinology. His other interests include educational methods in biochemistry. He is currently Dean of Studies in the Department of Medicine in Marburg; he is married to an art teacher.

Klaus-Heinrich Röhm (right) comes from Stuttgart, Germany. After graduating from the School of Protestant Theology in Urach —another institution specializing in classical studies—and following a period working in the field of physics, he took a diploma in biochemistry at the University of Tübingen, where the two authors first met. Since 1970, he has also worked in the Department of Medicine at the University of Marburg. He

took his doctorate under the supervision of Friedhelm Schneider, and his postdoctoral degree in 1980 was in the Department of Chemistry. He has been an Honorary Professor since 1986. His research group is concerned with the structure and function of enzymes involved in amino acid metabolism. He is married to a biologist and has two children. Jürgen Wirth (center) studied in Berlin and at the College of Design in Offenbach, Germany. His studies focused on free graphics and illustration, and his diploma topic was "The development and function of scientific illustration." From 1963 to 1977, Jürgen Wirth was involved in designing the exhibition space in the Senckenberg Museum of Natural History in Frankfurt am Main, while at the same time working as a freelance associate with several publishing companies, providing illustrations for schoolbooks, non-fiction titles, and scientific publications. He has received several awards for book illustration and design. In 1978, he was appointed to a professorship at the College of Design in Schwäbisch Gmünd, Germany, and in 1986 he became Professor of Design at the Academy of Design in Darmstadt, Germany. His specialist fields include scientific graphics/information graphics and illustration methods. He is married and has three children.

Koolman, Color Atlas of Biochemistry, 2nd edition © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

Preface

Biochemistry is a dynamic, rapidly growing field, and the goal of this color atlas is to illustrate this fact visually. The precise boundaries between biochemistry and related fields, such as cell biology, anatomy, physiology, genetics, and pharmacology, are dif cult to define and, in many cases, arbitrary. This overlap is not coincidental. The object being studied is often the same—a nerve cell or a mitochondrion, for example—and only the point of view differs.

For a considerable period of its history, biochemistry was strongly influenced by chemistry and concentrated on investigating metabolic conversions and energy transfers. Explaining the composition, structure, and metabolism of biologically important molecules has always been in the foreground. However, new aspects inherited from biochemistry's other parent, the biological sciences, are now increasingly being added: the relationship between chemical structure and biological function, the pathways of information transfer, observance of the ways in which biomolecules are spatially and temporally distributed in cells and organisms, and an awareness of evolution as a biochemical process. These new aspects of biochemistry are bound to become more and more important.

Owing to space limitations, we have concentrated here on the biochemistry of humans and mammals, although the biochemistry of other animals, plants, and microorganisms is no less interesting. In selecting the material for this book, we have put the emphasis on subjects relevant to students of human medicine. The main purpose of the atlas is to serve as an overview and to provide visual information quickly and ef ciently. Referring to textbooks can easily fill any gaps. For readers encountering biochemistry for the first time, some of the plates may look rather complex. It must be emphasized, therefore, that the atlas is not intended as a substitute for a comprehensive textbook of biochemistry.

As the subject matter is often dif cult to visualize, symbols, models, and other graphic elements had to be found that make complicated phenomena appear tangible. The graphics were designed conservatively, the aim being to avoid illustrations that might look too spectacular or exaggerated. Our goal was to achieve a visual and aesthetic way of representing scientific facts that would be simple and at the same time effective for teaching purposes. Use of graphics software helped to maintain consistency in the use of shapes, colors, dimensions, and labels, in particular. Formulae and other repetitive elements and structures could be handled easily and precisely with the assistance of the computer.

Color-coding has been used throughout to aid the reader, and the key to this is given in two special color plates on the front and rear inside covers. For example, in molecular models each of the more important atoms has a particular color: gray for carbon, white for hydrogen, blue for nitrogen, red for oxygen, and so on. The different classes of biomolecules are also distinguished by color: proteins are always shown in brown tones, carbohydrates in violet, lipids in yellow, DNA in blue, and RNA in green. In addition, specific symbols are used for the important coenzymes, such as ATP and NAD⁺. The compartments in which biochemical processes take place are colorcoded as well. For example, the cytoplasm is shown in yellow, while the extracellular space is shaded in blue. Arrows indicating a chemical reaction are always black and those representing a transport process are gray.

In terms of the visual clarity of its presentation, biochemistry has still to catch up with anatomy and physiology. In this book, we sometimes use simplified ball-and-stick models instead of the classical chemical formulae. In addition, a number of compounds are represented by space-filling models. In these cases, we have tried to be as realistic as possible. The models of small molecules are based on conformations calculated by computer-based molecular modeling. In illustrating macromolecules, we used structural infor-

mation obtained by X-ray crystallography that is stored in the Protein Data Bank. In naming enzymes, we have followed the of cial nomenclature recommended by the IUBMB. For quick identification, EC numbers (in italics) are included with enzyme names. To help students assess the relevance of the material (while preparing for an examination, for example), we have included symbols on the text pages next to the section headings to indicate how important each topic is. A filled circle stands for "basic knowledge," a halffilled circle indicates "standard knowledge," and an empty circle stands for "in-depth knowledge." Of course, this classification only reflects our subjective views.

This second edition was carefully revised and a significant number of new plates were added to cover new developments. We are grateful to many readers for their comments and valuable criticisms during the preparation of this book. Of course, we would also welcome further comments and suggestions from our readers.

August 2004

Jan Koolman, Klaus-Heinrich Röhm Marburg

Jürgen Wirth Darmstadt

Contents

Introduction	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Basics

Chemistry
Periodic table
Bonds
Molecular structure
Isomerism
Biomolecules I
Biomolecules II
Chemical reactions
Physical Chemistry

Energetics	16
Equilibriums	18
Enthalpy and entropy	20
Reaction kinetics	22
Catalysis	24
Water as a solvent	26
Hydrophobic interactions	28
Acids and bases	30
Redox processes	32

Biomolecules

Carbohydrates

Overview	34
Chemistry of sugars	36
Monosaccharides and disaccharides	38
Polysaccharides: overview	40
Plant polysaccharides	42
Glycosaminoglycans and glycoproteins.	44

Lipids

Overview	46
Fatty acids and fats	48
Phospholipids and glycolipids	50
Isoprenoids	52
Steroid structure	54
Steroids: overview	56
Amino Acids	
Chemistry and properties	58
Proteinogenic amino acids	60
Non-proteinogenic amino acids	62
Peptides and Proteins	
Overview	64
Peptide bonds	66
Secondary structures	68

Structural proteins	70
Globular proteins	72
Protein folding	74
Molecular models: insulin	76
Isolation and analysis of proteins	78
Nucleotides and Nucleic Acids	
Nucleotides and Nucleic Acids Bases and nucleotides	80
	80 82
Bases and nucleotides	

Metabolism

Enzymes

Basics	88
Enzyme catalysis	90
Enzyme kinetics I	92
Enzyme kinetics II	94
Inhibitors	96
Lactate dehydrogenase: structure	98
Lactate dehydrogenase: mechanism	100
Enzymatic analysis	102
Coenzymes 1	104
Coenzymes 2	106
Coenzymes 3	108
Activated metabolites	110
Metabolic Regulation	
Intermediary metabolism	112
Regulatory mechanisms	114
Allosteric regulation	116
Transcription control	118
Hormonal control	120
Energy Metabolism	
ATP	122
Energetic coupling	124
Energy conservation at membranes	126
Photosynthesis: light reactions	128
Photosynthesis: dark reactions	130
Molecular models: membrane proteins.	132
Oxoacid dehydrogenases	134
Tricarboxylic acid cycle: reactions	136
Tricarboxylic acid cycle: functions	138
Respiratory chain	140
ATP synthesis	142
Regulation	144
Respiration and fermentation	146
Fermentations	148

Koolman, Color Atlas of Biochemistry, 2nd edition @ 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

Carbohydrate Metabolism

Glycolysis	150
Pentose phosphate pathway	
Gluconeogenesis	154
Glycogen metabolism	156
Regulation	158
Diabetes mellitus	160

Lipid Metabolism

Overview	162
Fatty acid degradation	164
Minor pathways of fatty acid	
degradation	166
Fatty acid synthesis	168
Biosynthesis of complex lipids	170
Biosynthesis of cholesterol	172

Protein Metabolism

Protein metabolism: overview	174
Proteolysis	176
Transamination and deamination	178
Amino acid degradation	180
Urea cycle	182
Amino acid biosynthesis	184

Nucleotide Metabolism

Nucleotide degradation	186
Purine and pyrimidine biosynthesis	188
Nucleotide biosynthesis	190

Porphyrin Metabolism

Heme	biosyntl	nesis	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	192
Heme	degrada	tion	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	194

Organelles

Basics

Structure of cells	196
Cell fractionation	198
Centrifugation	
Cell components and cytoplasm	202
Cytoskeleton	
Components	204
Structure and functions	206
Nucleus	208
Mitochondria	
Structure and functions	210
Transport systems	212
Biological Membranes	
Structure and components	214
Functions and composition	216
Transport processes	218
Transport proteins	220
Ion channels	222

Membrane receptors 224

Endoplasmic Reticulum and Golgi Apparatus

Lysosomes	234
Protein maturation	232
Protein synthesis and maturation	230
Protein sorting	228
ER: structure and function	226

Molecular Genetics

Overview	236
Genome	238
Replication	240
Transcription	242
Transcriptional control	244
RNA maturation	246
Amino acid activation	248
Translation I: initiation	250
Translation II: elongation and	
termination	252
Antibiotics	254
Mutation and repair	256
Genetic engineering	
DNA cloning	258
DNA sequencing	260
PCR and protein expression	262
Genetic engineering in medicine	264

Tissues and organs

Digestion

Overview	266
Digestive secretions	268
Digestive processes	270
Resorption	272
Blood	
Composition and functions	274
Plasma proteins	276
Lipoproteins	278
Hemoglobin	280
Gas transport	282
Erythrocyte metabolism	284
Iron metabolism	286
Acid-base balance	288
Blood clotting	290
Fibrinolysis, blood groups	292
Immune system	
Immune response	294
T-cell activation	296
Complement system	298
Antibodies	300
Antibody biosynthesis	302
Monoclonal antibodies, immunoassay.	304

Koolman, Color Atlas of Biochemistry, 2nd edition © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

Liver

306
308
310
312
314
316
318
320

Kidney

Functions	322
Urine	324
Functions in the acid-base balance	326
Electrolyte and water recycling	328
Renal hormones	330

Muscle

Muscle contraction	332
Control of muscle contraction	334
Muscle metabolism I	336
Muscle metabolism II	338

Connective tissue

Bone and teeth	340
Calcium metabolism	342
Collagens	344
Extracellular matrix	346

Brain and Sensory Organs

Signal transmission in the CNS	348
Resting potential and action potential	350
Neurotransmitters	352
Receptors for neurotransmitters	354
Metabolism	356
Sight	358

Nutrition

Nutrients

Organic substances	
Vitamins	
Lipid-soluble vitamins	364
Water-soluble vitamins I	366
Water-soluble vitamins II	368

Hormones

Hormonal system Basics

Basics	
Plasma levels and hormone hierarchy	372
Lipophilic hormones	374
Metabolism of steroid hormones	376
Mechanism of action	378

Hydrophilic hormones	380
Metabolism of peptide hormones	382
Mechanisms of action	384
Second messengers	386
Signal cascades	388
Other signaling substances	
Eicosanoids	390
Cytokines	392

Growth and development

Cell proliferation

Cell cycle	394
Apoptosis	396
Oncogenes	398
Tumors	400
Cytostatic drugs	402
Viruses	404
Metabolic charts	406
Calvin cycle	407
Carbohydrate metabolism	408
Biosynthesis of fats and	
membrane liquids	409
Synthesis of ketone bodies and steroids	410
Degradation of fats and phospholipids .	411
Biosynthesis of the essential	
amino acids	412
Biosynthesis of the non-essential	
amino acids	413
Amino acid degradation I	414
Amino acid degradation II	415
Ammonia metabolism	416
Biosynthesis of purine nucleotides	417
Biosynthesis of the pyrimidine nucleotid	
and C_1 metabolism	418
Nucleotide degradation	419
Annotated enzyme list	420
Abbreviations	431
Quantities and units	433
Further reading	434
Source credits	435
Index	437

Key to color-coding:

see front and rear inside covers