Abbreviated Solutions to Problems

Fuller solutions to all chapter problems are published in the Absolute Ultimate Study Guide to Accompany Principles of Biochemistry. For all numerical problems, answers are expressed with the correct number of significant figures.

Chapter 1

1. (a) Diameter of magnified cell $=500 \mathrm{~mm}$ (b) 2.7×10^{12} actin molecules (c) 36,000 mitochondria (d) 3.9×10^{10} glucose molecules (e) 50 glucose molecules per hexokinase molecule
2. (a) $1 \times 10^{-12} \mathrm{~g}=1 \mathrm{pg}$ (b) 10% (c) 5%
3. (a) 1.6 mm ; 800 times longer than the cell; DNA must be tightly coiled. (b) 4,000 proteins
4. (a) Metabolic rate is limited by diffusion, which is limited by surface area. (b) $12 \mu \mathrm{~m}^{-1}$ for the bacterium; $0.04 \mu \mathrm{~m}^{-1}$ for the amoeba; surface-to-volume ratio 300 times higher in the bacterium.
5. $2 \times 10^{6} \mathrm{~s}$ (about 23 days)
6. The vitamin molecules from the two sources are identical; the body cannot distinguish the source; only associated impurities might vary with the source.
7.

(a)

(b)

(c)

(d)
Amino

(e)

The two enantiomers have different interactions with a chiral biological "receptor" (a protein).
9. (a) Only the amino acids have amino groups; separation could be based on the charge or binding affinity of these groups. Fatty acids are less soluble in water than amino acids, and the two types of
molecules also differ in size and shape-either of these property differences could be the basis for separation. (b) Glucose is a smaller molecule than a nucleotide; separation could be based on size. The nitrogenous base and/or the phosphate group also endows nucleotides with characteristics (solubility, charge) that could be used for separation from glucose.
10. It is improbable that silicon could serve as the central organizing element for life, especially in an O_{2}-containing atmosphere such as that of Earth. Long chains of silicon atoms are not readily synthesized; the polymeric macromolecules necessary for more complex functions would not readily form. Oxygen disrupts bonds between silicon atoms, and silicon-oxygen bonds are extremely stable and difficult to break, preventing the breaking and making of bonds that is essential to life processes.
11. Only one enantiomer of the drug was physiologically active. Dexedrine consisted of the single enantiomer; Benzedrine consisted of a racemic mixture.
12. (a) 3 Phosphoric acid groups; α-D-ribose; guanine (b) Choline; phosphoric acid; glycerol; oleic acid; palmitic acid (c) Tyrosine; 2 glycines; phenylalanine; methionine
13. (a) $\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(b)

1

4

2

3

5

6

7

8

9

10

11

12
(c) X contains a chiral center; eliminates all but $\mathbf{6}$ and 8 . (d) X contains an acidic functional group; eliminates $\mathbf{8}$; structure $\mathbf{6}$ is consistent with all data. (e) Structure 6; we cannot distinguish between the two possible enantiomers.
14. The compound shown is (R)-propranolol; the carbon bearing the hydroxyl group is the chiral carbon. (S)-Propranolol has the structure:

15. The compound shown is (S, S)-methylphenidate. (R, R) methylphenidate has the structure:

The chiral carbons are indicated with asterisks
16. (a) A more negative ΔG° corresponds to a larger $K_{\text {eq }}$ for the binding reaction, so the equilibrium is shifted more toward products and tighter binding-and thus greater sweetness and higher MRS. (b) Animal-based sweetness assays are timeconsuming. A computer program to predict sweetness, even if not always completely accurate, would allow chemists to design effective sweeteners much faster. Candidate molecules could then be tested in the conventional assay. (c) The range 0.25 to 0.4 nm corresponds to about 1.5 to 2.5 single-bond lengths. The figure below can be used to construct an approximate ruler; any atoms in the light red rectangle are between 0.25 and 0.4 nm from the origin of the ruler.

There are many possible AH-B groups in the molecules; a few are shown here.

(d) First, each molecule has multiple AH-B groups, so it is difficult to know which is the important one. Second, because the AH-B motif is very simple, many nonsweet molecules will have this group. (e) Sucrose and deoxysucrose. Deoxysucrose lacks one of the AH-B groups present in sucrose and has a slightly lower MRS than sucrose-as is expected if the AH-B groups are important for sweetness. (f) There are many such examples; here are a few: (1) D-Tryptophan and 6-chloro-Dtryptophan have the same AH-B group but very different MRS values. (2) Aspartame and neotame have the same AH-B groups but very different MRS values. (3) Neotame has two AH-B groups and alitame has three, yet neotame is more than five times sweeter than alitame. (4) Bromine is less electronegative than oxygen and thus is expected to weaken an AH-B group, yet tetrabromosucrose is much sweeter than sucrose. (g) Given enough "tweaking" of parameters, any model can be made to fit a defined dataset. Because the objective was to create a model to predict ΔG° for molecules not tested in vivo, the researchers needed to show that the model worked well for molecules it had not been trained on. The degree of inaccuracy with the test set could give researchers an idea of how the model would behave for novel molecules. (h) MRS is related to $K_{\text {eq }}$, which is related exponentially to ΔG°, so adding a constant amount to ΔG° multiplies the MRS by a constant amount. Based on the values given with the structures, a change in ΔG° of $1.3 \mathrm{kcal} / \mathrm{mol}$ corresponds to a 10 -fold change in MRS.

Chapter 2

1. Ethanol is polar; ethane is not. The ethanol - OH group can hydrogen-bond with water.
2. (a) 4.76 (b) 9.19 (c) 4.0 (d) 4.82
3. (a) $1.51 \times 10^{-4} \mathrm{M}$ (b) $3.02 \times 10^{-7} \mathrm{M}$ (c) $7.76 \times 10^{-12} \mathrm{M}$
4. 1.1
5. $\mathbf{(a)} \mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-}$(b) 3.3 (c) $\mathrm{NaOH} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}$ (d) 9.8
6. 1.1
7. $1.7 \times 10^{-9} \mathrm{~mol}$ of acetylcholine
8. 0.1 m HCl
9. (a) greater (b) higher (c) lower
10. 3.3 mL
11. (a) RCOO^{-}(b) RNH_{2} (c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(d) HCO_{3}^{-}
12. (a) 5.06 (b) 4.28 (c) 5.46 (d) 4.76 (e) 3.76
13. (a) 0.1 m HCl (b) 0.1 m NaOH (c) 0.1 m NaOH
14. (d) Bicarbonate, a weak base, titrates -OH to $-\mathrm{O}^{-}$, making the compound more polar and more water-soluble.
15. Stomach; the neutral form of aspirin present at the lower pH is less polar and passes through the membrane more easily.
16. 9
17. 7.4
18. (a) pH 8.6 to 10.6 (b) $4 / 5$ (c) 10 mL (d) $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-2$
19. 8.9
20. 2.4
21. 6.9
22. 1.4
23. $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 5.8 \mathrm{~g} / \mathrm{L} ; \mathrm{Na}_{2} \mathrm{HPO}_{4}, 8.2 \mathrm{~g} / \mathrm{L}$
24. $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]=0.10$
25. Mix 150 mL of 0.10 m sodium acetate and 850 mL of 0.10 m acetic acid.
26. Acetic acid; its $\mathrm{p} K_{\mathrm{a}}$ is closest to the desired pH .
27. (a) 4.6 (b) 0.1 pH unit (c) 4 pH units
28. 4.3
29. 0.13 m acetate and 0.07 m acetic acid
30. 1.7
31. 7
32. (a)

Fully protonated
(b) fully protonated (c) zwitterion (d) zwitterion (e) fully deprotonated
33. (a) Blood pH is controlled by the carbon dioxide-bicarbonate buffer system, $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$. During hypoventilation, $\left[\mathrm{CO}_{2}\right]$ increases in the lungs and arterial blood, driving the equilibrium to the right, raising $\left[\mathrm{H}^{+}\right]$and lowering pH . (b) During hyperventilation, $\left[\mathrm{CO}_{2}\right]$ decreases in the lungs and arterial blood, reducing $\left[\mathrm{H}^{+}\right]$and increasing pH above the normal 7.4 value. (c) Lactate is a moderately strong acid, completely dissociating under physiological conditions and thus lowering the pH of blood and muscle tissue. Hyperventilation removes H^{+}, raising the pH of blood and tissues in anticipation of the acid buildup.
34. 7.4
35. Dissolving more CO_{2} in the blood increases $\left[\mathrm{H}^{+}\right]$in blood and extracellular fluids, lowering $\mathrm{pH}: \mathrm{CO}_{2}(\mathrm{~d})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
36. (a) Use the substance in its surfactant form to emulsify the spilled oil, collect the emulsified oil, then switch to the nonsurfactant form. The oil and water will separate and the oil can be collected for further use. (b) The equilibrium lies strongly to the right. The stronger acid (lower $\mathrm{p} K_{\mathrm{a}}$), $\mathrm{H}_{2} \mathrm{CO}_{3}$, donates a proton to the conjugate base of the weaker acid (higher $\mathrm{p} K_{\mathrm{a}}$), amidine. (c) The strength of a surfactant depends on the hydrophilicity of its head groups: the more hydrophilic, the more powerful the surfactant. The amidinium form of s-surf is much more hydrophilic than the amidine form, so it is a more powerful surfactant. (d) Point A: amidinium; the CO_{2} has had plenty of time to react with the amidine to produce the amidinium form. Point B : amidine; Ar has removed CO_{2} from the solution, leaving the amidine form. (e) The conductivity rises as uncharged amidine reacts with CO_{2} to produce the charged amidinium form. (f) The conductivity falls as Ar removes CO_{2}, shifting the equilibrium to the uncharged amidine form.
(g) Treat s-surf with CO_{2} to produce the surfactant amidinium form and use this to emulsify the spill. Treat the emulsion with Ar to remove the CO_{2} and produce the nonsurfactant amidine form. The oil will separate from the water and can be recovered.

Chapter 3

1. L; determine the absolute configuration at the α carbon and compare it with D- and L-glyceraldehyde.
2. (a) I (b) II (c) IV (d) II (e) IV (f) II and IV (g) III (h) III (i) $V(\mathbf{j}) \mathrm{III}(\mathbf{k}) \mathrm{V}(\mathbf{1}) \mathrm{II}(\mathbf{m}) \mathrm{III}(\mathbf{n}) \mathrm{V}(\mathbf{o}) \mathrm{I}, \mathrm{III}$, and V
3. (a) $\mathrm{pI}>\mathrm{p} K_{\mathrm{a}}$ of the α-carboxyl group and $\mathrm{pI}<\mathrm{p} K_{\mathrm{a}}$ of the α-amino group, so both groups are charged (ionized). (b) 1 in 2.19×10^{7}. The pI of alanine is 6.01 . From Table $3-1$ and the Henderson-Hasselbalch equation, $1 / 4,680$ carboxyl groups and $1 / 4,680$ amino groups are uncharged. The fraction of alanine molecules with both groups uncharged is the product of these fractions.
4. (a)-(c)

2

4

$\mathbf{p H}$	Structure	Net charge	Migrates toward
1	$\mathbf{1}$	+2	Cathode
4	$\mathbf{2}$	+1	Cathode
8	$\mathbf{3}$	0	Does not migrate
12	$\mathbf{4}$	-1	Anode

5. (a) Asp (b) Met (c) Glu (d) Gly (e) Ser
6. (a) 2 (b) 4 (c)

7. (a) Structure at $\mathrm{pH} 7:$

(b) Electrostatic interaction between the carboxylate anion and the protonated amino group of the alanine zwitterion favorably affects the ionization of the carboxyl group. This favorable electrostatic interaction decreases as the length of the poly(Ala) increases, resulting in an increase in $\mathrm{p} K_{1}$. (c) Ionization of the protonated amino group destroys the favorable electrostatic interaction noted in (b). With increasing distance between the charged groups, removal of the proton from the amino group in poly(Ala) becomes easier and thus $\mathrm{p} K_{2}$ is lower. The intramolecular effects of the amide (peptide bond) linkages keep $\mathrm{p} K_{\mathrm{a}}$ values lower than they would be for an alkyl-substituted amine.
8. 75,000
9. (a) 32,000 . The elements of water are lost when a peptide bond forms, so the molecular weight of a Trp residue is not the same as the molecular weight of free tryptophan. (b) 2
10. The protein has four subunits, with molecular masses of 160,90 90 , and 60 kDa . The two 90 kDa subunits (possibly identical) are linked by one or more disulfide bonds.
11. (a) at $\mathrm{pH} 3,+2$; at $\mathrm{pH} 8,0$; at $\mathrm{pH} 11,-1$ (b) $\mathrm{pI}=7.8$
12. $\mathrm{pI} \approx 1$; carboxylate groups; Asp and Glu
13. Lys, His, Arg; negatively charged phosphate groups in DNA interact with positively charged side groups in histones.
14. (a) (Glu) $)_{20}$ (b) $(\mathrm{Lys}-\mathrm{Ala})_{3}$ (c) $(\mathrm{Asn}-\mathrm{Ser}-\mathrm{His})_{5}$
(d) (Asn-Ser-His) 5
15. (a) Specific activity after step 1 is 200 units/mg; step 2,600 units/mg; step 3, 250 units/mg; step 4, 4,000 units/mg; step 5, 15,000 units/mg; step 6, 15,000 units/mg (b) Step 4 (c) Step 3
(d) Yes. Specific activity did not increase in step 6; SDS polyacrylamide gel electrophoresis
16. (a) $[\mathrm{NaCl}]=0.5 \mathrm{~mm}$ (b) $[\mathrm{NaCl}]=0.05 \mathrm{~mm}$.
17. C elutes first, B second, A last.
18. Tyr-Gly-Gly-Phe-Leu
19.

The arrows correspond to the orientation of the peptide bonds, $-\mathrm{CO} \rightarrow \mathrm{NH}-$.
20. $88 \%, 97 \%$. The percentage (x) of correct amino acid residues released in cycle n is x_{n} / x. All residues released in the first cycle are correct, even though the efficiency of cleavage is not perfect.
21. (a) Y (1), F (7), and R (9) (b) Positions 4 and 9; K (Lys) is more common at $4, \mathrm{R}$ (Arg) is invariant at 9 (c) Positions 5 and 10; E (Glu) is more common at both positions (d) Position 2; S (Ser)
22. (a) peptide 2 (b) peptide 1 (c) peptide 2 (d) peptide 3
23. (a) Any linear polypeptide chain has only two kinds of free amino groups: a single α-amino group at the amino terminus, and an ε-amino group on each Lys residue present. These amino groups react with FDNB to form a DNP-amino acid derivative. Insulin gave two different α-amino-DNP derivatives, suggesting that it has two amino termini and thus two polypeptide chains-one with an amino-terminal Gly and the other with an amino-terminal Phe. Because the DNP-lysine product is $\boldsymbol{\varepsilon}$-DNP-lysine, the Lys is not at an amino terminus. (b) Yes. The A chain has amino-terminal Gly; the B chain has amino-terminal Phe; and (nonterminal) residue 29 in the B chain is Lys. (c) Phe-Val-Asp-Glu-. Peptide B1 shows that the amino-terminal residue is Phe. Peptide B2 also includes Val, but since no DNP-Val is formed, Val is not at the amino terminus; it must be on the carboxyl side of Phe. Thus the sequence of B2 is DNP-Phe-Val. Similarly, the sequence of B3 must be DNP-Phe-Val-Asp, and the sequence of the A chain must begin Phe-Val-Asp-Glu-. (d) No. The known amino-terminal sequence of the A chain is Phe-Val-Asn-Gln-. The Asn and Gln appear in Sanger's analysis as Asp and Glu because the vigorous hydrolysis in step 7 hydrolyzed the amide bonds in Asn and Gln (as well as the peptide bonds), forming Asp and Glu. Sanger et al. could not distinguish Asp from Asn or Glu from Gln at this stage in their analysis. (e) The sequence exactly matches that in Fig. 3-24. Each peptide in the table gives specific information about which Asx residues are Asn or Asp and which Glx residues are Glu or Gln.
Ac1: residues 20-21. This is the only Cys-Asx sequence in the A chain; there is ~ 1 amido group in this peptide, so it must be Cys-Asn:

N-Gly-Ile-Val-Glx-Glx-Cys-Cys-Ala-Ser-Val-		
1	5	10
Cys-Ser-Leu-Tyr-Glx-Leu-Glx-Asx-Tyr-Cys-Asn-C		
15		20

Ap15: residues $14-15-16$. This is the only Tyr-Glx-Leu in the A chain; there is ~ 1 amido group, so the peptide must be Tyr-GlnLeu:

\[

\]

Ap14: residues 14-15-16-17. It has ~ 1 amido group, and we already know that residue 15 is Gln, so residue 17 must be Glu:

\[

\]

Ap3: residues 18-19-20-21. It has ~ 2 amido groups, and we know that residue 21 is Asn, so residue 18 must be Asn:

\[

\]

Ap1: residues 17-18-19-20-21, which is consistent with residues 18 and 21 being Asn.
Ap5pa1: residues 1-2-3-4. It has ~ 0 amido group, so residue 4 must be Glu:

\[

\]

Ap5: residues 1 through 13. It has ~ 1 amido group, and we know that residue 4 is Glu, so residue 5 must be Gln:

$$
\begin{gathered}
\text { N-Gly-Ile-Val-Glu-Gln-Cys-Cys-Ala-Ser-Val- } \\
1 \\
5
\end{gathered} 10
$$

Chapter 4

1. (a) Shorter bonds have a higher bond order (are multiple rather than single) and are stronger. The peptide $\mathrm{C}-\mathrm{N}$ bond is stronger than a single bond and is midway between a single and a double bond in character. (b) Rotation about the peptide bond is difficult at physiological temperatures because of its partial double-bond character.
2. (a) The principal structural units in the wool fiber polypeptide (α-keratin) are successive turns of the α helix, at $5.4 \AA$ intervals; coiled coils produce the $5.2 \AA$ spacing. Steaming and stretching the fiber yields an extended polypeptide chain with the β conformation, with a distance between adjacent R groups of about $7.0 \AA$. As the polypeptide reassumes an α-helical structure, the fiber shortens. (b) Processed wool shrinks when polypeptide chains are converted from an extended β conformation to the native α-helical conformation in the presence of moist heat. The structure of silk- β sheets, with their small, closely packed amino acid side chains-is more stable than that of wool.
3. ~ 42 peptide bonds per second
4. At $\mathrm{pH}>6$, the carboxyl groups of poly(Glu) are deprotonated; repulsion among negatively charged carboxylate groups leads to unfolding. Similarly, at pH 7, the amino groups of poly(Lys) are protonated; repulsion among these positively charged groups also leads to unfolding.
5. (a) Disulfide bonds are covalent bonds, which are much stronger than the noncovalent interactions that stabilize most proteins. They cross-link protein chains, increasing their stiffness, mechanical strength, and hardness. (b) Cystine residues (disulfide bonds) prevent the complete unfolding of the protein.
6. $\phi=(\mathrm{f})$ and $\psi=(\mathrm{e})$.
7. (a) Bends are most likely at residues 7 and 19; Pro residues in the cis configuration accommodate turns well. (b) The Cys residues at positions 13 and 24 can form disulfide bonds. (c) External surface: polar and charged residues (Asp, Gln, Lys); interior: nonpolar and aliphatic residues (Ala, Ile); Thr, though polar, has a hydropathy index near zero and thus can be found either on the external surface or in the interior of the protein.
8. 30 amino acid residues; 0.87
9. Myoglobin is all three. The folded structure, the "globin fold," is a motif found in all globins. The polypeptide folds into a single domain, which for this protein represents the entire threedimensional structure.
10. Protein (a), a β barrel, is described by Ramachandran plot (c), which shows most of the allowable conformations in the upper left quadrant where the bond angles characteristic of the β conformation are concentrated; (b), a series of α helices, is described by plot (d), where most of the allowable conformations are in the lower left quadrant.
11. The bacterial enzyme is a collagenase; it destroys the connective tissue barrier of the host, allowing the bacterium to invade the tissues. Bacteria do not contain collagen.
12. (a) The number of moles of DNP-valine formed per mole of protein equals the number of amino termini and thus the number of polypeptide chains. (b) 4 (c) Different chains would probably run as discrete bands on an SDS polyacrylamide gel.
13. (a); it has more amino acid residues that favor α-helical structure (see Table 4-1).
14. (a) Aromatic residues seem to play an important role in stabilizing amyloid fibrils. Thus, molecules with aromatic substituents may inhibit amyloid formation by interfering with the stacking or association of the aromatic side chains.
(b) Amyloid is formed in the pancreas in association with type 2 diabetes, as it is in the brain in Alzheimer disease. Although the amyloid fibrils in the two diseases involve different proteins, the fundamental structure of the amyloid is similar and similarly stabilized in both, and so they are potential targets for similar drugs designed to disrupt this structure.
15. (a) $\mathrm{NF} \boldsymbol{\kappa} \mathrm{B}$ transcription factor, also called RelA transforming factor. (b) No. You will obtain similar results, but with additional related proteins listed. (c) The protein has two subunits. There are multiple variants of the subunits, with the best characterized being 50,52 , or 65 kDa . These pair with each other to form a variety of homodimers and heterodimers. The structures of a number of different variants can be found in the PDB. (d) The NF $\boldsymbol{\kappa}$ B transcription factor is a dimeric protein that binds specific DNA sequences, enhancing transcription of nearby genes. One such gene is the immunoglobulin κ light chain, from which the transcription factor gets its name.
16. (a) Aba is a suitable replacement because Aba and Cys have side chains of approximately the same size and are similarly hydrophobic. However, Aba cannot form disulfide bonds, so it will not be a suitable replacement if these are required.
(b) There are many important differences between the synthesized protein and HIV protease produced by a human cell, any of which could result in an inactive synthetic enzyme: (1) Although Aba and Cys have similar size and hydrophobicity, Aba may not be similar enough for the protein to fold properly. (2) HIV protease may require disulfide bonds for proper functioning. (3) Many proteins synthesized by ribosomes fold as they are produced; the protein in this study folded only after the chain was complete. (4) Proteins synthesized by ribosomes may interact with the ribosomes as they fold; this is not possible for the protein in the study. (5) Cytosol is a more complex solution than the buffer used in the study; some proteins may require specific, unknown proteins for proper folding. (6) Proteins synthesized in cells
often require chaperones for proper folding; these are not present in the study buffer. (7) In cells, HIV protease is synthesized as part of a larger chain that is then proteolytically processed; the protein in the study was synthesized as a single molecule. (c) Because the enzyme is functional with Aba substituted for Cys, disulfide bonds do not play an important role in the structure of HIV protease. (d) Model 1: It would fold like the L-protease. Argument for: The covalent structure is the same (except for chirality), so it should fold like the L-protease. Argument against: Chirality is not a trivial detail; three-dimensional shape is a key feature of biological molecules. The synthetic enzyme will not fold like the L-protease. Model 2: It would fold to the mirror image of the L-protease. For: Because the individual components are mirror images of those in the biological protein, it will fold in the mirror-image shape. Against: The interactions involved in protein folding are very complex, so the synthetic protein will most likely fold in another form. Model 3: It would fold to something else. For: The interactions involved in protein folding are very complex, so the synthetic protein will most likely fold in another form. Against: Because the individual components are mirror images of those in the biological protein, it will fold in the mirror-image shape. (e) Model 1. The enzyme is active, but with the enantiomeric form of the biological substrate, and it is inhibited by the enantiomeric form of the biological inhibitor. This is consistent with the D-protease being the mirror image of the L-protease. (f) Evans blue is achiral; it binds to both forms of the enzyme. (g) No. Because proteases contain only l-amino acids and recognize only L-peptides, chymotrypsin would not digest the D-protease. (h) Not necessarily. Depending on the individual enzyme, any of the problems listed in (b) could result in an inactive enzyme.

Chapter 5

1. Protein B has a higher affinity for ligand X; it will be halfsaturated at a much lower concentration of X than will protein A. Protein A has $K_{\mathrm{a}}=10^{6} \mathrm{M}^{-1}$; protein B has $K_{\mathrm{a}}=10^{9} \mathrm{~m}^{-1}$.
2. (a), (b), and (c) all have $n_{\mathrm{H}}<1.0$. Apparent negative cooperativity in ligand binding can be caused by the presence of two or more types of ligand-binding sites with different affinities for the ligand on the same or different proteins in the same solution. Apparent negative cooperativity is also commonly observed in heterogeneous protein preparations. There are few well-documented cases of true negative cooperativity.
3. (a) decreases (b) increases (c) decreases (d) increases
4. $k_{\mathrm{d}}=8.9 \times 10^{-5} \mathrm{~s}^{-1}$.
5. (a) 0.5 nm (shortcut: the K_{d} is equivalent to the ligand concentration where $\theta=0.5$). (b) Protein 2 has the highest affinity, as it has the lowest K_{d}.
6. The cooperative behavior of hemoglobin arises from subunit interactions.
7. (a) The observation that hemoglobin A (HbA ; maternal) is about 60% saturated when the pO_{2} is 4 kPa , whereas hemoglobin F (HbF; fetal) is more than 90% saturated under the same physiological conditions, indicates that HbF has a higher O_{2} affinity than HbA . (b) The higher O_{2} affinity of HbF ensures that oxygen will flow from maternal blood to fetal blood in the placenta. Fetal blood approaches full saturation where the O_{2} affinity of HbA is low. (c) The observation that the O_{2}-saturation curve of HbA undergoes a larger shift on BPG binding than that of HbF suggests that HbA binds BPG more tightly than does HbF. Differential binding of BPG to the two hemoglobins may determine the difference in their O_{2} affinities.
8. (a) Hb Memphis (b) $\mathrm{HbS}, \mathrm{Hb}$ Milwaukee, Hb Providence, possibly Hb Cowtown (c) Hb Providence
9. More tightly. An inability to form tetramers would limit the cooperativity of these variants, and the binding curve would become more hyperbolic. Also, the BPG-binding site would be
disrupted. Oxygen binding would probably be tighter, because the default state in the absence of bound BPG is the tightbinding R state.
10. (a) $1 \times 10^{-8} \mathrm{M}$ (b) $5 \times 10^{-8} \mathrm{M}$ (c) $8 \times 10^{-8} \mathrm{M}$ (d) $2 \times 10^{-7} \mathrm{M}$. Note that a rearrangement of Eqn 5-8 gives $[\mathrm{L}]=\theta K_{\mathrm{d}} /(1-\theta)$.
11. The epitope is likely to be a structure that is buried when G-actin polymerizes to F-actin.
12. Many pathogens, including HIV, have mechanisms by which they can repeatedly alter the surface proteins to which immune system components initially bind. Thus the host organism regularly faces new antigens and requires time to mount an immune response to each one. As the immune system responds to one variant, new variants are created.
13. Binding of ATP to myosin triggers dissociation of myosin from the actin thin filament. In the absence of ATP, actin and myosin bind tightly to each other.

14.

(a)

(b)

(c)

(d)
15. (a) Chain L is the light chain and chain H is the heavy chain of the Fab fragment of this antibody molecule. Chain Y is lysozyme. (b) β structures are predominant in the variable and constant regions of the fragment. (c) Fab heavy-chain fragment, 218 amino acid residues; light-chain fragment, 214; lysozyme, 129. Less than 15% of the lysozyme molecule is in contact with the Fab fragment. (d) In the H chain, residues that seem to be in contact with lysozyme include $\mathrm{Gly}^{31}, \mathrm{Tyr}^{32}$, $\mathrm{Arg}^{99}, \mathrm{Asp}^{100}$, and Tyr^{101}. In the L chain the residues that seem to be in contact with lysozyme include $\mathrm{Tyr}^{32}, \mathrm{Tyr}^{49}, \mathrm{Tyr}^{50}$, and Trp ${ }^{92}$. In lysozyme, residues Asn ${ }^{19}$, $\mathrm{Gly}^{22}, \mathrm{Tyr}^{23}, \mathrm{Ser}^{24}, \mathrm{Lys}^{116}$, Gly ${ }^{117}$, Thr ${ }^{118}$, Asp ${ }^{119}$, Gln ${ }^{121}$, and Arg ${ }^{125}$ seem to be situated at the antigen-antibody interface. Not all these residues are adjacent in the primary structure. Folding of the polypeptide chain into higher levels of structure brings the nonconsecutive residues together to form the antigen-binding site.
16. (a) The protein with a K_{d} of $5 \mu \mathrm{~m}$ will have the highest affinity for ligand L . When the K_{d} is $10 \mu \mathrm{M}$, doubling [L] from 0.2 to $0.4 \mu \mathrm{M}$ (values well below the K_{d}) will nearly double θ (the actual increase factor is 1.96). This is a property of the hyperbolic curve; at low ligand concentrations, θ is an almost linear function of [L]. On the other hand, doubling [L] from 40 to $80 \mu \mathrm{~m}$ (well above the K_{d}, where the binding curve is approaching its asymptotic limit) will increase θ by a factor of only 1.1. The increase factors are identical for the curves generated from Eqn $5-11$. (b) $\theta=0.998$. (c) A variety of answers will be obtained, depending on the values entered for the different parameters.
17. (a)

The drawing is not to scale; any given cell would have many more myosin molecules on its surface. (b) ATP is needed to provide the chemical energy to drive the motion (see Chapter 13). (c) An antibody that bound to the myosin tail, the actin-binding site,
would block actin binding and prevent movement. An antibody that bound to actin would also prevent actin-myosin interaction and thus movement. (d) There are two possible explanations: (1) Trypsin cleaves only at Lys and Arg residues (see Table 3-6) so would not cleave at many sites in the protein. (2) Not all Arg or Lys residues are equally accessible to trypsin; the most-exposed sites would be cleaved first. (e) The S1 model. The hinge model predicts that bead-antibody-HMM complexes (with the hinge) would move, but bead-antibody-SHMM complexes (no hinge) would not. The S1 model predicts that because both complexes include S1, both would move. The finding that the beads move with SHMM (no hinge) is consistent only with the S1 model. (f) With fewer myosin molecules bound, the beads could temporarily fall off the actin as a myosin let go of it. The beads would then move more slowly, as time is required for a second myosin to bind. At higher myosin density, as one myosin lets go, another quickly binds, leading to faster motion. (g) Above a certain density, what limits the rate of movement is the intrinsic speed with which myosin molecules move the beads. The myosin molecules are moving at a maximum rate and adding more will not increase speed.
(h) Because the force is produced in the S1 head, damaging the S1 head would probably inactivate the resulting molecule, and SHMM would be incapable of producing movement. (i) The S1 head must be held together by noncovalent interactions that are strong enough to retain the active shape of the molecule.

Chapter 6

1. The activity of the enzyme that converts sugar to starch is destroyed by heat denaturation.
2. $2.4 \times 10^{-6} \mathrm{M}$
3. 9.5×10^{8} years
4. The enzyme-substrate complex is more stable than the enzyme alone.
5. (a) $190 \AA$ (b) Three-dimensional folding of the enzyme brings the amino acid residues into proximity.
6. The reaction rate can be measured by following the decrease in absorption by NADH (at 340 nm) as the reaction proceeds. Determine the K_{m} value; using substrate concentrations well above the K_{m}, measure initial rate (rate of NADH disappearance with time, measured spectrophotometrically) at several known enzyme concentrations, and make a plot of initial rate versus concentration of enzyme. The plot should be linear, with a slope that provides a measure of LDH concentration.
7. (b), (e), (g)
8. (a) $1.7 \times 10^{-3} \mathrm{~m}$ (b) $0.33 ; 0.67 ; 0.91$ (c) The upper curve corresponds to enzyme $\mathrm{B}\left([\mathrm{X}]>K_{\mathrm{m}}\right.$ for this enzyme); the lower curve, enzyme A.
9. (a) $400 \mathrm{~s}^{-1}$ (b) $10 \mu \mathrm{M}$ (c) $\alpha=2, \alpha^{\prime}=3$ (d) Mixed inhibitor
10. (a) 24 nm (b) $4 \mu \mathrm{~m}\left(V_{0}\right.$ is exactly half $V_{\max }$, so $\left.[\mathrm{A}]=K_{\mathrm{m}}\right)$ (c) $40 \mu \mathrm{M}\left(V_{0}\right.$ is exactly half $V_{\max }$, so $[\mathrm{A}]=10$ times K_{m} in the presence of inhibitor) (d) No. $k_{\text {cat }} / K_{\mathrm{m}}=\left(0.33 \mathrm{~s}^{-1}\right) /\left(4 \times 10^{-6} \mathrm{~m}\right)$ $=8.25 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, well below the diffusion-controlled limit.
11. $V_{\max } \approx 140 \mu \mathrm{M} / \mathrm{min} ; K_{\mathrm{m}} \approx 1 \times 10^{-5} \mathrm{M}$
12. (a) $V_{\max }=51.5 \mathrm{~mm} / \mathrm{min} ; K_{\mathrm{m}}=0.59 \mathrm{~mm}$ (b) Competitive inhibition
13. $K_{\mathrm{m}}=2.2 \mathrm{~mm} ; V_{\max }=0.50 \mu \mathrm{~mol} / \mathrm{min}$
14. Curve A
15. $k_{\text {cat }}=2.0 \times 10^{7} \mathrm{~min}^{-1}$
16. The basic assumptions of the Michaelis-Menten equation still hold. The reaction is at steady state, and the rate is determined by $V_{0}=k_{2}[\mathrm{ES}]$. The equations needed to solve for [ES] are

$$
\left[\mathrm{E}_{\mathrm{t}}\right]=[\mathrm{E}]+[\mathrm{ES}]+[\mathrm{EI}] \quad \text { and } \quad[\mathrm{EI}]=\frac{[\mathrm{E}][\mathrm{I}]}{K_{\mathrm{I}}}
$$

[E] can be obtained by rearranging Eqn 6-19. The rest follows the pattern of the Michaelis-Menten equation derivation in the text.
17. Minimum $M_{\mathrm{r}}=29,000$
18. Activity of the prostate enzyme equals total phosphatase activity in a blood sample minus phosphatase activity in the presence of enough tartrate to completely inhibit the prostate enzyme.
19. The inhibition is mixed. Because K_{m} seems not to change appreciably, this could be the special case of mixed inhibition called noncompetitive.
20. The [S] at which $V_{0}=V_{\max } / 2 \alpha^{\prime}$ is obtained when all terms except $V_{\max }$ on the right side of Eqn 6-30-that is, $[\mathrm{S}] /\left(\alpha K_{\mathrm{m}}+\alpha^{\prime}[\mathrm{S}]\right)$ equal $1 / 2 \alpha^{\prime}$. Begin with $[\mathrm{S}] /\left(\alpha K_{\mathrm{m}}+\alpha^{\prime}[\mathrm{S}]\right)=1 / 2 \alpha^{\prime}$ and solve for $[\mathrm{S}]$.
21. The optimum activity occurs when Glu^{35} is protonated and Asp^{52} is unprotonated.
22. (a) Increase factor $=1.96 ; V_{0}=50 \mu \mathrm{M} \mathrm{s}^{-1}$; increase factor $=1.048$ (b) When $\alpha=2.0$, the curve is shifted to the right as the K_{m} is increased by a factor of 2 . When $\alpha^{\prime}=3.0$, the asymptote of the curve (the $V_{\max }$) declines by a factor of 3 . When $\alpha=2.0$ and $\alpha^{\prime}=3.0$, the curve briefly rises above the curve where both α and $\alpha^{\prime}=1.0$, due to a decline in K_{m}. However, the asymptote is lower, because $V_{\max }$ declines by a factor of 3. (c) When $\alpha=2.0$, the x intercept moves to the right. When $\alpha=2.0$ and $\alpha^{\prime}=3.0$, the x intercept moves to the left.
23. (a) In the wild-type enzyme, the substrate is held in place by a hydrogen bond and an ion-dipole interaction between the charged side chain of Arg^{109} and the polar carbonyl of pyruvate. During catalysis, the charged Arg^{109} side chain also stabilizes the polarized carbonyl transition state. In the mutant, the binding is reduced to just a hydrogen bond, substrate binding is weaker, and ionic stabilization of the transition state is lost, reducing catalytic activity. (b) Because Lys and Arg are roughly the same size and have a similar positive charge, they probably have very similar properties. Furthermore, because pyruvate binds to Arg ${ }^{171}$ by (presumably) an ionic interaction, an Arg to Lys mutation would probably have little effect on substrate binding (c) The "forked" arrangement aligns two positively charged groups of Arg residues with the negatively charged oxygens of pyruvate and facilitates two combined hydrogen-bond and iondipole interactions. When Lys is present, only one such combined hydrogen-bond and ion-dipole interaction is possible, thus reducing the strength of the interaction. The positioning of the substrate is less precise. (d) Ile^{250} interacts hydrophobically with the ring of NADH. This type of interaction is not possible with the hydrophilic side chain of Gln. (e) The structure is shown below. (f) The mutant enzyme rejects pyruvate because pyruvate's hydrophobic methyl group will not interact with the highly hydrophilic guanidinium group of Arg^{102}. The mutant binds oxaloacetate because of the strong ionic interaction between the Arg ${ }^{102}$ side chain and the carboxyl of oxaloacetate. (g) The protein must be flexible enough to accommodate the added bulk of the side chain and the larger substrate.

Chapter 7

1. With reduction of the carbonyl oxygen to a hydroxyl group, the chemistry at C-1 and C-3 is the same; the glycerol molecule is not chiral.
2. Epimers differ by the configuration about only one carbon.
(a) D-altrose (C-2), D-glucose (C-3), D-gulose (C-4)
(b) D-idose (C-2), D-galactose (C-3), D-allose (C-4)
(c) D-arabinose (C-2), D-xylose (C-3)
3. Osazone formation destroys the configuration around C-2 of aldoses, so aldoses differing only at the C-2 configuration give the same derivative, with the same melting point.
4. To convert α-D-glucose to β-D-glucose, the bond between C-1 and the hydroxyl on C-5 (as in Fig. 7-6). To convert D-glucose to D-mannose, either the - H or the - OH on C-2. Conversion between chair conformations does not require bond breakage; this is the critical distinction between configuration and conformation
5. No; glucose and galactose differ at C-4.
6. (a) Both are polymers of D-glucose, but they differ in the glycosidic linkage: $(\beta 1 \rightarrow 4)$ for cellulose, $(\alpha 1 \rightarrow 4)$ for glycogen.
(b) Both are hexoses, but glucose is an aldohexose, fructose a ketohexose. (c) Both are disaccharides, but maltose has two ($\alpha 1 \rightarrow 4$)-linked D-glucose units; sucrose has $(\alpha 1 \leftrightarrow 2 \beta)$-linked D-glucose and D-fructose
7.

8. A hemiacetal is formed when an aldose or ketose condenses with an alcohol; a glycoside is formed when a hemiacetal condenses with an alcohol (see Fig. 7-5).
9. Fructose cyclizes to either the pyranose or the furanose structure. Increasing the temperature shifts the equilibrium in the direction of the furanose, the less sweet form.
10. The rate of mutarotation is sufficiently high that, as the enzyme consumes β-D-glucose, more α-D-glucose is converted to the β form and, eventually, all the glucose is oxidized. Glucose oxidase is specific for glucose and does not detect other reducing sugars (such as galactose) that react with Fehling's reagent.
11. (a) Measure the change in optical rotation with time. (b) The optical rotation of the mixture is negative (inverted) relative to that of the sucrose solution. (c) -2.0°
12. Prepare a slurry of sucrose and water for the core; add a small amount of sucrase (invertase); immediately coat with chocolate.
13. Sucrose has no free anomeric carbon to undergo mutarotation.
14.

Yes; yes
15. N-Acetyl- β-D-glucosamine is a reducing sugar; its C-1 can be oxidized (see p. 252). D-Gluconate is not a reducing sugar; its C-1 is already at the oxidation state of a carboxylic acid GlcN $(\alpha 1 \leftrightarrow 1 \alpha)$ Glc is not a reducing sugar; the anomeric carbons of both monosaccharides are involved in the glycosidic bond.
16. Humans lack cellulase in the gut and cannot break down cellulose.
17. Native cellulose consists of glucose units linked by $(\beta 1 \rightarrow 4)$ glycosidic bonds, which force the polymer chain into an extended conformation. Parallel series of these extended chains form intermolecular hydrogen bonds, aggregating into long, tough, insoluble fibers. Glycogen consists of glucose units linked by $(\alpha 1 \rightarrow 4)$ glycosidic bonds, which cause bends in the chain and prevent formation of long fibers. In addition, glycogen is highly branched and, because many of its hydroxyl groups are exposed to water, is highly hydrated and disperses in water.

Cellulose is a structural material in plants, consistent with its side-by-side aggregation into insoluble fibers. Glycogen is a storage fuel in animals. Highly hydrated glycogen granules with their many nonreducing ends are rapidly hydrolyzed by glycogen phosphorylase to release glucose 1-phosphate.
18. Cellulose is several times longer; it assumes an extended conformation, whereas amylose has a helical structure.
19. 6,000 residues/s
20. 11 s
21. The ball-and-stick model of the disaccharide in Fig. 7-18b shows no steric interactions, but a space-filling model, showing atoms with their real relative sizes, would show several strong steric hindrances in the $-170^{\circ},-170^{\circ}$ conformer that are not present in the $30^{\circ},-40^{\circ}$ conformer
22. The negative charges on chondroitin sulfate repel each other and force the molecule into an extended conformation. The polar molecule attracts many water molecules, increasing the molecular volume. In the dehydrated solid, each negative charge is counterbalanced by a positive ion, and the molecule condenses.
23. Positively charged amino acid residues would bind the highly negatively charged groups on heparin. In fact, Lys residues of antithrombin III interact with heparin.
24. 8 possible sequences, 144 possible linkages, and 64 stereochemical possibilities, for a total of 73,728 permutations!
25.

26. Oligosaccharides; their subunits can be combined in more ways than the amino acid subunits of oligopeptides. Each hydroxyl group can participate in glycosidic bonds, and the configuration of each glycosidic bond can be either α or β. The polymer can be linear or branched
27. (a) Branch-point residues yield 2,3-di-O-methylglucose; the unbranched residues yield 2,3,6-tri-O-methylglucose. (b) 3.75\%
28. Chains of $(1 \rightarrow 6)$-linked D-glucose residues with occasional $(1 \rightarrow 3)$-linked branches, with about one branch every 20 residues
29. (a) The tests involve trying to dissolve only part of the sample in a variety of solvents, then analyzing both dissolved and undissolved materials to see whether their compositions differ. (b) For a pure substance, all molecules are the same and any dissolved fraction will have the same composition as any undissolved fraction. An impure substance is a mixture of more than one compound. When treated with a particular solvent, more of one component may dissolve, leaving more of the other component(s) behind. As a result, the dissolved and undissolved fractions have different compositions. (c) A quantitative assay allows researchers to be sure that none of the activity has been lost through degradation. When determining the structure of a molecule, it is important that the sample under analysis consist only of intact (undegraded) molecules. If the sample is contaminated with degraded material,
this will give confusing and perhaps uninterpretable structural results. A qualitative assay would detect the presence of activity even if it had become significantly degraded. (d) Results 1 and 2. Result 1 is consistent with the known structure, because type B antigen has three molecules of galactose; types A and O each have only two. Result 2 is also consistent, because type A has two amino sugars (N-acetylgalactosamine and N-acetylglucosamine); types B and O have only one (N-acetylglucosamine). Result 3 is not consistent with the known structure: for type A, the glucosamine: galactosamine ratio is $1: 1$; for type B , it is $1: 0$. (e) The samples were probably impure and/or partly degraded. The first two results were correct possibly because the method was only roughly quantitative and thus not as sensitive to inaccuracies in measurement. The third result is more quantitative and thus more likely to differ from predicted values because of impure or degraded samples. (f) An exoglycosidase. If it were an endoglycosidase, one of the products of its action on O antigen would include galactose, N-acetylglucosamine, or N -acetylgalactosamine, and at least one of those sugars would be able to inhibit the degradation. Given that the enzyme is not inhibited by any of these sugars, it must be an exoglycosidase, removing only the terminal sugar from the chain. The terminal sugar of O antigen is fucose, so fucose is the only sugar that could inhibit the degradation of O antigen. (g) The exoglycosidase removes N -acetylgalactosamine from A antigen and galactose from B antigen. Because fucose is not a product of either reaction, it will not prevent removal of these sugars, and the resulting substances will no longer be active as A or B antigen. However, the products should be active as O antigen, because degradation stops at fucose. (h) All the results are consistent with Fig. 10-15. (1) D-Fucose and L-galactose, which would protect against degradation, are not present in any of the antigens. (2) The terminal sugar of A antigen is N-acetylgalactosamine, and this sugar alone protects this antigen from degradation. (3) The terminal sugar of B antigen is galactose, which is the only sugar capable of protecting this antigen.

Chapter 8

1. $\mathrm{N}-3$ and $\mathrm{N}-7$
2. (5')GCGCAATATTTTGAGAAATATTGCGC(3'); it contains a palindrome. The individual strands can form hairpin structures; the two strands can form a cruciform.
3. $9.4 \times 10^{-4} \mathrm{~g}$
4. (a) 40° (b) 0°
5. The RNA helix is in the A conformation; the DNA helix is generally in the B conformation
6. In eukaryotic DNA, about 5\% of C residues are methylated. 5-Methylcytosine can spontaneously deaminate to form thymine; the resulting G-T pair is one of the most common mismatches in eukaryotic cells.
7. Higher
8. Without the base, the ribose ring can be opened to generate the noncyclic aldehyde form. This, and the loss of base-stacking interactions, could contribute significant flexibility to the DNA backbone.

9. CGCGCGTGCGCGCGCG

10. Base stacking in nucleic acids tends to reduce the absorption of UV light. Denaturation involves loss of base stacking, and UV absorption increases.
11. $0.35 \mathrm{mg} / \mathrm{mL}$
12.

Deoxyribose

Guanine

Phosphate

Solubilities: phosphate $>$ deoxyribose $>$ guanine. The highly polar phosphate groups and sugar moieties are on the outside of the double helix, exposed to water; the hydrophobic bases are in the interior of the helix.
13. If dCTP is omitted, when the first G residue is encountered in the template, ddCTP will be added, and polymerization will halt. Only one band will be seen in the sequencing gel.
14.

15. $\left(5^{\prime}\right) \mathrm{P}-\mathrm{GCGCCAUUGC}\left(3^{\prime}\right)-\mathrm{OH}$
(5^{\prime})P—GCGCCAUUG(3')—OH
$\left(5^{\prime}\right) \mathrm{P}-\operatorname{GCGCCAUU}\left(3^{\prime}\right)-\mathrm{OH}$
(5^{\prime}) P—GCGCCAU(3')-OH
(5^{\prime})P—GCGCCA(3')—OH
($\left.5^{\prime}\right) \mathrm{P}-\mathrm{GCGCC}\left(3^{\prime}\right)-\mathrm{OH}$
(5')P—GCGC(3')-OH
($\left.5^{\prime}\right) \mathrm{P}-\mathrm{GCG}\left(3^{\prime}\right)-\mathrm{OH}$
($\left.5^{\prime}\right) \mathrm{P}-\mathrm{GC}\left(3^{\prime}\right)-\mathrm{OH}$
and the nucleoside 5^{\prime}-phosphates
16. (a) Water is a participant in most biological reactions, including those that cause mutations. The low water content in endospores reduces the activity of mutation-causing enzymes and slows the rate of nonenzymatic depurination reactions, which are hydrolysis reactions. (b) UV light induces formation of cyclobutane pyrimidine dimers. Because B. subtilis is a soil organism, spores can be lofted to the top of the soil or into the air, where they may be subject to prolonged UV exposure.
17. DMT is a blocking group that prevents reaction of the incoming base with itself.
18. (a) Right-handed. The base at one 5^{\prime} end is adenine; at the other 5' end, cytidine. (b) Left-handed (c) If you cannot see the structures in stereo, see additional tips in the expanded solutions manual, or use a search engine to find tips online.
19. (a) It would not be easy! The data for different samples from the same organism show significant variation, and the recovery is never 100%. The numbers for C and T show much more consistency than those for A and G, so for C and T it is much easier to make the case that samples from the same organism have the same composition. But even with the less consistent values for A and G, (1) the range of values for different tissues does overlap substantially; (2) the difference between different preparations of the same tissue is about the same as the difference between samples from different tissues; and (3) in samples for which recovery is high, the numbers are more consistent. (b) This technique would not be sensitive enough to detect a difference between normal and cancerous cells. Cancer is caused by mutations, but these changes in DNA-a few base pairs out of several billion-would be too small to detect with these techniques. (c) The ratios of $\mathrm{A}: \mathrm{G}$ and $\mathrm{T}: \mathrm{C}$ vary widely among different species. For example, in the bacterium Serratia marcescens, both ratios are 0.4 , meaning that the DNA contains mostly G and C. In Haemophilus influenzae, by contrast, the ratios are 1.74 and 1.54 , meaning that the DNA is mostly A and T. (d) Conclusion 4 has three requirements. $A=T$: The table shows an A:T ratio very close to 1 in all cases. Certainly, the variation in this ratio is substantially less than the variation in
the $\mathrm{A}: \mathrm{G}$ and $\mathrm{T}: \mathrm{C}$ ratios. $\mathrm{G}=\mathrm{C}$: Again, the $\mathrm{G}: \mathrm{C}$ ratio is very close to 1 , and the other ratios vary widely. $(\mathrm{A}+\mathrm{G})=(\mathrm{T}+\mathrm{C})$: This is the purine:pyrimidine ratio, which also is very close to 1 .
(e) The different "core" fractions represent different regions of the wheat germ DNA. If the DNA were a monotonous repeating sequence, the base composition of all regions would be the same. Because different core regions have different sequences, the DNA sequence must be more complex.

Chapter 9

```
1. (a) \(\left(5^{\prime}\right)---\mathrm{G}\left(3^{\prime}\right)\) and (5')AATTC \(---\left(3^{\prime}\right)\)
    \(\left(3^{\prime}\right)---\operatorname{CTTAA}\left(5^{\prime}\right) \quad\left(3^{\prime}\right) \mathrm{G}---\left(5^{\prime}\right)\)
(b) \(\left(5^{\prime}\right)---\operatorname{GAATT}\left(3^{\prime}\right)\) and \(\left(5^{\prime}\right)\) AATTC \(---\left(3^{\prime}\right)\)
    \(\left(3^{\prime}\right)---\operatorname{CTTAA}\left(5^{\prime}\right) \quad\left(3^{\prime}\right)\) TTAAG \(---\left(5^{\prime}\right)\)
(c) \(\left(5^{\prime}\right)---\) GAATTAATTC \(---\left(3^{\prime}\right)\)
    \(\left(3^{\prime}\right)--\) CTTAATTAAG \(---\left(5^{\prime}\right)\)
(d) \(\left(5^{\prime}\right)---\mathrm{G}\left(3^{\prime}\right)\) and \(\left(5^{\prime}\right) \mathrm{C}---\left(3^{\prime}\right)\)
    \(\left(3^{\prime}\right)---\mathrm{C}\left(5^{\prime}\right) \quad\left(3^{\prime}\right) \mathrm{G}---\left(5^{\prime}\right)\)
(e) \(\left(5^{\prime}\right)---\) GAATTC \(---\left(3^{\prime}\right)\)
    \(\left(3^{\prime}\right)\) - - - CTTAAG - - - \(\left(5^{\prime}\right)\)
(f) \(\left(5^{\prime}\right)---\operatorname{CAG}\left(3^{\prime}\right)\) and \(\left(5^{\prime}\right) \mathrm{CTG}---\left(3^{\prime}\right)\)
    \(\left(3^{\prime}\right)--\operatorname{GTC}\left(5^{\prime}\right) \quad\left(3^{\prime}\right) \mathrm{GAC}---\left(5^{\prime}\right)\)
(g) (5') - - - CAGAATTC - - - (3')
(3') - - - GTCTTAAG - - - (5')
```

(h) Method 1: Cut the DNA with EcoRI as in (a). At this point, one could treat the DNA as in (b) or (d), then ligate a synthetic DNA fragment with the BamHI recognition sequence between the two resulting blunt ends. Method 2 (more efficient):
Synthesize a DNA fragment with the structure
(5^{\prime})AATTGGATCC(3^{\prime})
(3')CCTAGGTTAA(5')
This would ligate efficiently to the sticky ends generated by EcoRI cleavage, would introduce a BamHI site, but would not regenerate the EcoRI site. (i) The four fragments (with $\mathrm{N}=$ any nucleotide), in order of discussion in the problem, are
(5')AATTCNNNNCTGCA(3') (3')GNNNNG(5')
(5^{\prime})AATTCNNNNGTGCA(3^{\prime}) (3')GNNNNC(5')
(5^{\prime})AATTGNNNNCTGCA(3') (3')CNNNNG(5')
(5')AATTGNNNNGTGCA(3') (3')CNNNNC(5')
2. λ phage DNA can be packaged into infectious phage particles only if it is between 40,000 and $53,000 \mathrm{bp}$ in length. Since bacteriophage vectors generally include about $30,000 \mathrm{bp}$ (in two pieces), they will not be packaged into phage particles unless they contain a sufficient length of inserted DNA (10,000 to $23,000 \mathrm{bp}$).
3. (a) Plasmids in which the original pBR322 was regenerated without insertion of a foreign DNA fragment; these would retain resistance to ampicillin. Also, two or more molecules of pBR322 might be ligated together with or without insertion of foreign DNA. (b) The clones in lanes 1 and 2 each have one DNA fragment inserted in different orientations. The clone in lane 3 has two DNA fragments, ligated such that the EcoRI proximal ends are joined.
4. (5')GAAAGTCCGCGTTATAGGCATG(3') (3')ACGTCTTTCAGGCGCAATATCCGTACTTAA(5')
5. Your test would require DNA primers, a heat-stable DNA polymerase, deoxynucleoside triphosphates, and a PCR machine (thermal cycler). The primers would be designed to amplify a DNA segment encompassing the CAG repeat. The DNA strand shown is the coding strand, oriented $5^{\prime} \rightarrow 3^{\prime}$ left to right. The primer targeted to DNA to the left of the repeat would be identical to any 25-nucleotide sequence shown in the region to the left of the CAG repeat. The primer on the right
side must be complementary and antiparallel to a 25-nucleotide sequence to the right of the CAG repeat. Using the primers, DNA including the CAG repeat would be amplified by PCR, and its size would be determined by comparison to size markers after electrophoresis. The length of the DNA would reflect the length of the CAG repeat, providing a simple test for the disease.
6. Design PCR primers that are complementary to the DNA in the deleted segment but that would direct DNA synthesis away from each other. No PCR product will be generated unless the ends of the deleted segment are joined to create a circle
7. The plant expressing firefly luciferase must take up luciferin, the substrate of luciferase, before it can "glow" (albeit weakly). The plant expressing green fluorescent protein glows without requiring any other compound.
8. Primer 1: CCTCGAGTCAATCGATGCTG

Primer 2: CGCGCACATCAGACGAACCA
Recall that all DNA sequences are always written in the 5^{\prime} to 3^{\prime} direction, left to right; that the two strands of a DNA molecule are antiparallel; and that both PCR primers must target the end sequences so that their 3^{\prime} ends are oriented toward the segment to be amplified. In a lab, writing a sequence in the wrong orientation on an order form when ordering a synthetic oligonucleotide primer can be a very expensive mistake.

10. The production of labeled antibodies is difficult and expensive. The labeling of every antibody to every protein target would be impractical. By labeling one antibody preparation for binding to all antibodies of a particular class, the same labeled antibody preparation can be used in many different immunofluorescence experiments.
11. Express the protein in yeast strain 1 as a fusion protein with one of the domains of Gal4p-say, the DNA-binding domain. Using yeast strain 2 , make a library in which essentially every protein of the fungus is expressed as a fusion protein with the interaction domain of Gal4p. Mate strain 1 with the strain 2 library, and look for colonies that are colored due to expression of the reporter gene. These colonies will generally arise from mated cells containing a fusion protein that interacts with your target protein.
12. Cover spot 4 , add solution containing activated T, irradiate, wash.

1. $\mathrm{A}-\mathrm{T}$
2. G-T
3. $\mathrm{A}-\mathrm{T}$
4. G-C

Cover spots 2 and 4, add solution containing activated G, irradiate, wash.

1. $\mathrm{A}-\mathrm{T}-\mathrm{G}$
2. G-T
3. A-T-G
4. G-C

Cover spot 3, add solution containing activated C, irradiate, wash.

1. A-T-G-C
2. G-T-C
3. A-T-G
4. G-C-C

Cover spots 1,3 , and 4 , add solution containing activated C, irradiate, wash.

1. A-T-G-C 2. G-T-C-C
2. $\mathrm{A}-\mathrm{T}-\mathrm{G}$
3. G-C-C

Cover spots 1 and 2, add solution containing activated G, irradiate, wash.

1. A-T-G-C 2. G-T-C-C 3. A-T-G-C 4. G-C-C-C
2. The primers can be used to probe libraries containing long genomic clones to identify contig ends that lie close to each other. If the contigs flanking the gap are close enough, the primers can be used in PCR to directly amplify the intervening DNA separating the contigs, which can then be cloned and sequenced.
3. ATSAAGWDEWEGGKVLIHLDGKLQNRGALLELDIGAV
4. The same disease condition can be caused by defects in two or more genes, which are on different chromosomes.
5. (a) DNA solutions are highly viscous because the very long molecules are tangled in solution. Shorter molecules tend to tangle less and form a less viscous solution, so decreased viscosity corresponds to shortening of the polymers-as caused by nuclease activity. (b) An endonuclease. An exonuclease removes single nucleotides from the 5^{\prime} or 3^{\prime} end and would produce TCA-soluble ${ }^{32} \mathrm{P}$-labeled nucleotides. An endonuclease cuts DNA into oligonucleotide fragments and produces little or no TCA-soluble ${ }^{32} \mathrm{P}$-labeled material. (c) The 5^{\prime} end. If the phosphate were left on the 3^{\prime} end, the kinase would incorporate significant ${ }^{32} \mathrm{P}$ as it added phosphate to the 5^{\prime} end; treatment with the phosphatase would have no effect on this. In this case, samples A and B would incorporate significant amounts of ${ }^{32} \mathrm{P}$. When the phosphate is left on the 5^{\prime} end, the kinase does not incorporate any ${ }^{32} \mathrm{P}$: it cannot add a phosphate if one is already present. Treatment with the phosphatase removes 5^{\prime} phosphate, and the kinase then incorporates significant amounts of ${ }^{32} \mathrm{P}$. Sample A will have little or no ${ }^{32} \mathrm{P}$, and B will show substantial ${ }^{32} \mathrm{P}$ incorporation-as was observed.
(d) Random breaks would produce a distribution of fragments of random size. The production of specific fragments indicates that the enzyme is site-specific. (e) Cleavage at the site of recognition. This produces a specific sequence at the 5^{\prime} end of the fragments. If cleavage occurred near but not within the recognition site, the sequence at the 5^{\prime} end of the fragments would be random. (f) The results are consistent with two recognition sequences, as shown below, cleaved where shown by the arrows,

which gives the (5^{\prime}) pApApC and ($\left.3^{\prime}\right) \mathrm{TpTp}$ fragments, and

which gives the (5^{\prime})pGpApC and (3^{\prime}) CpTp fragments

Chapter 10

1. The term "lipid" does not specify a particular chemical structure. Compounds are categorized as lipids based on their greater solubility in organic solvents than in water.
2. (a) The number of cis double bonds. Each cis double bond causes a bend in the hydrocarbon chain, lowering the melting temperature. (b) Six different triacylglycerols can be constructed, in order of increasing melting points:

$$
\mathrm{OOO}<\mathrm{OOP}=\mathrm{OPO}<\mathrm{PPO}=\mathrm{POP}<\mathrm{PPP}
$$

where $\mathrm{O}=$ oleic and $\mathrm{P}=$ palmitic acid. The greater the content of saturated fatty acid, the higher is the melting point.
(c) Branched-chain fatty acids increase the fluidity of membranes because they decrease the extent of membrane lipid packing.
3. Lecithin, an amphipathic compound, is an emulsifying agent, facilitating the solubilization of butter

5. Spearmint is (R)-carvone; caraway is (S)-carvone.
6.

(R)-2-Aminopropanoic acid
(S)-2-Aminopropanoic acid

(R)-2-Hydroxypropanoic acid
7. Hydrophobic units: (a) 2 fatty acids; (b), (c), and (d) 1 fatty acid and the hydrocarbon chain of sphingosine; (e) steroid nucleus and acyl side chain. Hydrophilic units: (a) phosphoethanolamine;
(b) phosphocholine; (c) D-galactose; (d) several sugar molecules; (e) alcohol group (OH)
8. O

9. It reduces double bonds, which increases the melting point of lipids containing the fatty acids.
10. The triacylglycerols of animal fats (grease) are hydrolyzed by NaOH (saponified) to form soaps, which are much more soluble in water than are triacylglycerols.
11. It could only be a sphingolipid (sphingomyelin).
12.

13. Long, saturated acyl chains, nearly solid at air temperature, form a hydrophobic layer in which a polar compound such as $\mathrm{H}_{2} \mathrm{O}$ cannot dissolve or diffuse.
14. (a) The free -OH group on C-2 and the phosphocholine head group on C-3 are hydrophilic; the fatty acid on C-1 of lysolecithin is hydrophobic. (b) Certain steroids such as prednisone inhibit the action of phospholipase A_{2}, inhibiting the release of arachidonic acid from C-2. Arachidonic acid is converted to a variety of eicosanoids, some of which cause inflammation and pain. (c) Phospholipase A_{2} releases arachidonic acid, a precursor of other eicosanoids with vital protective functions in the body; it also breaks down dietary glycerophospholipids.
15. The part of the membrane lipid that determines blood type is the oligosaccharide in the head group of the membrane sphingolipids (see Fig. 10-15). This same oligosaccharide is attached to certain membrane glycoproteins, which also serve as points of recognition by the antibodies that distinguish blood groups.
16. Diacylglycerol is hydrophobic and remains in the membrane. Inositol $1,4,5$-trisphosphate is highly polar, very soluble in water, and more readily diffusible in the cytosol. Both are second messengers.
17. Water-soluble vitamins are more rapidly excreted in the urine and are not stored effectively. Fat-soluble vitamins have very low solubility in water and are stored in body lipids.
18. (a) Glycerol and the sodium salts of palmitic and stearic acids. (b) D-Glycerol 3-phosphocholine and the sodium salts of palmitic and oleic acids.
19. Solubilities in water: monoacylglycerol $>$ diacylglycerol $>$ triacylglycerol.
20. First eluted to last eluted: cholesteryl palmitate and triacylglycerol; cholesterol and n-tetradecanol; phosphatidylcholine and phosphatidylethanolamine; sphingomyelin; phosphatidylserine and palmitate.
21. (a) Subject acid hydrolysates of each compound to chromatography (GLC or silica gel TLC) and compare the result with known standards. Sphingomyelin hydrolysate: sphingosine, fatty acids, phosphocholine, choline, and phosphate; cerebroside hydrolysate: sphingosine, fatty acids, sugars, but no phosphate. (b) Strong alkaline hydrolysis of sphingomyelin yields sphingosine; phosphatidylcholine yields glycerol. Detect hydrolysate components on thin-layer chromatograms by comparing with standards or by their differential reaction with FDNB (only sphingosine reacts to form a colored product). Treatment with phospholipase A_{1} or A_{2} releases free fatty acids from phosphatidylcholine, but not from sphingomyelin.
22. Phosphatidylethanolamine and phosphatidylserine.
23. (a) GM1 and globoside. Both glucose and galactose are hexoses, so "hexose" in the molar ratio refers to glucose + galactose. The ratios for the four gangliosides are: GM1, 1:3:1:1; GM2, 1:2:1:1; GM3, 1:2:0:1; globoside, 1:3:1:0. (b) Yes. The ratio matches GM2, the ganglioside expected to build up in Tay-Sachs disease (see Box 10-1, Fig. 1). (c) This analysis is similar to that used by Sanger to determine the amino acid sequence of insulin. The analysis of each fragment reveals only its composition, not its sequence, but because each fragment is formed by sequential removal of one sugar, we can draw conclusions about sequence. The structure of the normal asialoganglioside is ceramide-glucose-galactose-galactosamine-galactose, consistent with Box 10-1 (excluding Neu5Ac, removed before hydrolysis). (d) The Tay-Sachs asialoganglioside is ceramide-glucose-galactosegalactosamine, consistent with Box 10-1. (e) The structure of the normal asialoganglioside, GM1, is: ceramide-glucose ($2-\mathrm{OH}$ involved in glycosidic links; $1-\mathrm{OH}$ involved in ring structure; $3-\mathrm{OH}(2,3,6)$ free for methylation)-galactose ($2-\mathrm{OH}$ in links; $1-\mathrm{OH}$ in ring; $3-\mathrm{OH}(2,4,6$) free for methylation)-galactosamine ($2-\mathrm{OH}$ in links; $1-\mathrm{OH}$ in ring; $1-\mathrm{NH}_{2}$ instead of an $-\mathrm{OH} ; 2-\mathrm{OH}(4,6)$ free for methylation)-galactose ($1-\mathrm{OH}$ in link; $1-\mathrm{OH}$ in ring; 4 - OH (2,3,4,6) free for methylation). (f) Two key pieces of information are missing: What are the linkages between the sugars? Where is Neu5Ac attached?

Chapter 11

1. The area per molecule would be calculated from the known amount (number of molecules) of lipid used and the area occupied by a monolayer when it begins to resist compression (when the required force increases dramatically, as shown in the plot of force vs. area).
2. The data support a bilayer of lipid in the dog erythrocytes: a single cell, with surface area $98 \mu \mathrm{~m}^{2}$, has a lipid monolayer area of $200 \mu \mathrm{~m}^{2}$. In the case of sheep and human erythrocytes, the data suggest a monolayer, not a bilayer. In fact, significant
experimental errors occurred in these early experiments; recent, more accurate measurements support a bilayer in all cases.
3. 63 SDS molecules per micelle
4. (a) Lipids that form bilayers are amphipathic molecules: they contain a hydrophilic and a hydrophobic region. To minimize the hydrophobic area exposed to the water surface, these lipids form two-dimensional sheets, with the hydrophilic regions exposed to water and the hydrophobic regions buried in the interior of the sheet. Furthermore, to avoid exposing the hydrophobic edges of the sheet to water, lipid bilayers close on themselves. (b) These sheets form the closed membrane surfaces that envelop cells and compartments within cells (organelles).
5. 2 nm . Two palmitates placed end to end span about 4 nm , approximately the thickness of a typical bilayer.
6. Decrease. Movement of individual lipids in bilayers occurs much faster at $37^{\circ} \mathrm{C}$, when the lipids are in the "fluid" phase, than at $10^{\circ} \mathrm{C}$, when they are in the "solid" phase.
7. $35 \mathrm{~kJ} / \mathrm{mol}$, neglecting the effects of transmembrane electrical potential; 0.60 mol .
8. $13 \mathrm{~kJ} / \mathrm{mol}$.
9. Most of the O_{2} consumed by a tissue is for oxidative phosphorylation, the source of most of the ATP. Therefore, about two-thirds of the ATP synthesized by the kidney is used for pumping K^{+}and Na^{+}.
10. No. The symporter may carry more than one equivalent of Na^{+} for each mole of glucose transported.
11. Salt extraction indicates a peripheral location, and inaccessibility to protease in intact cells indicates an internal location. X seems to be a peripheral protein on the cytosolic face of the membrane.
12. The hydrophobic interactions among membrane lipids are noncovalent and reversible, allowing membranes to spontaneously reseal.
13. The temperature of body tissues at the extremities is lower than that of tissues closer to the center of the body. If lipid is to remain fluid at this lower temperature, it must contain a higher proportion of unsaturated fatty acids; unsaturated fatty acids lower the melting point of lipid mixtures.
14. The energetic cost of moving the highly polar, sometimes charged, head group through the hydrophobic interior of the bilayer is prohibitive.
15. At pH 7 , tryptophan bears a positive and a negative charge, but indole is uncharged. The movement of the less polar indole through the hydrophobic core of the bilayer is energetically more favorable.
16. $3 \times 10^{-2} \mathrm{~S}$
17. Treat a suspension of cells with unlabeled NEM in the presence of excess lactose, remove the lactose, then add radiolabeled NEM. Use SDS-PAGE to determine the M_{r} of the radiolabeled band (the transporter).
18. Construct a hydropathy plot; hydrophobic regions of 20 or more residues suggest transmembrane segments. Determine whether the protein in intact erythrocytes reacts with a membraneimpermeant reagent specific for primary amines; if so, the transporter is of type I.
19. The leucine transporter is specific for the L isomer, but the binding site can accommodate either L -leucine or L -valine. Reduction of $V_{\text {max }}$ in the absence of Na^{+}indicates that leucine (or valine) is transported by symport with Na^{+}.
20. $V_{\text {max }}$ reduced; K_{t} unaffected.
21. $\sim 1 \%$; estimated by calculating the surface area of the cell and of 10,000 transporter molecules (using the dimensions of hemoglobin (5.5 nm diameter, p. 163) as a model globular protein).
22.

The amino acids with the greatest hydropathy index (V, L, F, and C) are clustered on one side of the helix. This amphipathic helix is likely to dip into the lipid bilayer along its hydrophobic surface while exposing the other surface to the aqueous phase. Alternatively, a group of helices may cluster with their polar surfaces in contact with one another and their hydrophobic surfaces facing the lipid bilayer.
23. ~ 22. To estimate the fraction of membrane surface covered by phospholipids, you would need to know (or estimate) the average cross-sectional area of a phospholipid molecule in a bilayer (e.g., from an experiment such as that diagrammed in problem 1 in this chapter) and the average cross-sectional area of a 50 kDa protein.
24. (a) The rise-per-residue for an α helix (Chapter 4) is about 1.5 $\AA=0.15 \mathrm{~nm}$. To span a 4 nm bilayer, an α helix must contain about 27 residues; thus for seven spans, about 190 residues are required. A protein of $M_{\mathrm{r}} 64,000$ has about 580 residues. (b) A hydropathy plot is used to locate transmembrane regions. (c) Because about half of this portion of the epinephrine receptor consists of charged residues, it probably represents an intracellular loop that connects two adjacent membrane-spanning regions of the protein. (d) Because this helix is composed mostly of hydrophobic residues, this portion of the receptor is probably one of the membrane-spanning regions of the protein.
25. (a) Model A : supported. The two dark lines are either the protein layers or the phospholipid heads, and the clear space is either the bilayer or the hydrophobic core, respectively. Model B: not supported. This model requires a more-or-less uniformly stained band surrounding the cell. Model C: supported, with one reservation. The two dark lines are the phospholipid heads; the clear zone is the tails. This assumes that the membrane proteins are not visible, because they do not stain with osmium or do not happen to be in the sections viewed. (b) Model A: supported. A "naked" bilayer (4.5 nm) + two layers of protein (2 nm) sums to 6.5 nm , which is within the observed range of thickness. Model B : neither. This model makes no predictions about membrane thickness. Model C: unclear. The result is hard to reconcile with this model, which predicts a membrane as thick as, or slightly thicker than (due to the projecting ends of embedded proteins), a "naked" bilayer. The model is supported only if the smallest values for membrane thickness are correct or if a substantial amount of protein projects from the bilayer. (c) Model A : unclear. The result is hard to reconcile with this model. If the proteins are bound to the membrane by ionic interactions, the model predicts that the proteins contain a high proportion of charged amino acids, in contrast to what was observed. Also, because the protein layer must be very thin (see (b)), there would not be much room for a hydrophobic protein core, so hydrophobic residues would be exposed to the solvent. Model B: supported. The proteins have a mixture of hydrophobic residues (interacting with lipids) and charged residues (interacting with
water). Model C : supported. The proteins have a mixture of hydrophobic residues (anchoring in the membrane) and charged residues (interacting with water). (d) Model A: unclear. The result is hard to reconcile with this model, which predicts a ratio of exactly 2.0 ; this would be hard to achieve under physiologically relevant pressures. Model B: neither. This model makes no predictions about amount of lipid in the membrane. Model C : supported. Some membrane surface area is taken up with proteins, so the ratio would be less than 2.0, as was observed under more physiologically relevant conditions. (e) Model A : unclear. The model predicts proteins in extended conformations rather than globular, so supported only if one assumes that proteins layered on the surfaces include helical segments. Model B: supported. The model predicts mostly globular proteins (containing some helical segments). Model C : supported. The model predicts mostly globular proteins. (f) Model A: unclear. The phosphorylamine head groups are protected by the protein layer, but only if the proteins completely cover the surface will the phospholipids be completely protected from phospholipase. Model B: supported. Most head groups are accessible to phospholipase. Model C: supported. All head groups are accessible to phospholipase. (g) Model A: not supported. Proteins are entirely accessible to trypsin digestion and virtually all will undergo multiple cleavage, with no protected hydrophobic segments. Model B: not supported. Virtually all proteins are in the bilayer and inaccessible to trypsin. Model C: supported. Segments of protein that penetrate or span the bilayer are protected from trypsin; those exposed at the surfaces will be cleaved. The trypsin-resistant portions have a high proportion of hydrophobic residues.

Chapter 12

1. X is cAMP; its production is stimulated by epinephrine.
(a) Centrifugation sediments adenylyl cyclase (which catalyzes cAMP formation) in the particulate fraction. (b) Added cAMP stimulates glycogen phosphorylase. (c) cAMP is heat stable; it can be prepared by treating ATP with barium hydroxide.
2. Unlike cAMP, dibutyryl cAMP passes readily through the plasma membrane.
3. (a) It increases [cAMP]. (b) cAMP regulates Na^{+}permeability. (c) Replace lost body fluids and electrolytes.
4. (a) The mutation makes R unable to bind and inhibit C, so C is constantly active. (b) The mutation prevents cAMP binding to R , leaving C inhibited by bound R.
5. Albuterol raises [cAMP], leading to relaxation and dilation of the bronchi and bronchioles. Because β-adrenergic receptors control many other processes, this drug would have undesirable side effects. To minimize them, find an agonist specific for the subtype of β-adrenergic receptors found in the bronchial smooth muscle.
6. Hormone degradation; hydrolysis of GTP bound to a G protein; degradation, metabolism, or sequestration of second messenger; receptor desensitization; removal of receptor from the cell surface.
7. Fuse CFP to β-arrestin and YFP to the cytoplasmic domain of the β-adrenergic receptor, or vice versa. In either case, illuminate at 433 nm and observe at both 476 and 527 nm . If the interaction occurs, emitted light intensity will decrease at 476 nm and increase at 527 nm on addition of epinephrine to cells expressing the fusion proteins. If the interaction does not occur, the wavelength of emitted light will remain at 476 nm . Some reasons why this might fail: The fusion proteins (1) are inactive or otherwise unable to interact, (2) are not translocated to their normal subcellular location, or (3) are not stable to proteolytic breakdown.
8. Vasopressin acts by elevating cytosolic $\left[\mathrm{Ca}^{2+}\right]$ to $10^{-6} \mathrm{~m}$, activating protein kinase C. EGTA injection blocks vasopressin action but should not affect the response to glucagon, which uses cAMP, not Ca^{2+}, as second messenger.
9. Amplification results as one molecule of a catalyst activates many molecules of another catalyst, in an amplification cascade involving, in order, insulin receptor, IRS-1, Raf, MEK, ERK; ERK activates a transcription factor, which stimulates mRNA production.
10. A mutation in ras that inactivates the Ras GTPase activity creates a protein that, once activated by the binding of GTP, continues to give, through Raf, the insulin-response signal.
11. Shared properties of Ras and G_{s} : Both bind either GDP or GTP; both are activated by GTP; both, when active, activate a downstream enzyme; both have intrinsic GTPase activity that shuts them off after a short period of activation. Differences between Ras and G_{s} : Ras is a small, monomeric protein; G_{s} is heterotrimeric. Functional difference between G_{s} and $G_{i}: \mathrm{G}_{\mathrm{s}}$ activates adenylyl cyclase, G_{i} inhibits it.
12. Kinase (factor in parentheses): PKA (cAMP); PKG (cGMP); PKC (Ca ${ }^{2+}$, DAG); $\mathrm{Ca}^{2+} / \mathrm{CaM}$ kinase $\left(\mathrm{Ca}^{2+}, \mathrm{CaM}\right)$; cyclindependent kinase (cyclin); protein Tyr kinase (ligand for the receptor, such as insulin); MAPK (Raf); Raf (Ras); glycogen phosphorylase kinase (PKA).
13. G_{s} remains in its activated form when the nonhydrolyzable analog is bound. The analog therefore prolongs the effect of epinephrine on the injected cell.
14. (a) Use the α-bungarotoxin-bound beads for affinity purification (see Fig. 3-17c) of AChR. Extract proteins from the electric organs and pass the mixture through the chromatography column; the AChR binds selectively to the beads. Elute the AChR with a solute that weakens its interaction with α-bungarotoxin.
(b) Use binding of $\left[{ }^{155} \mathrm{I}\right] \alpha$-bungarotoxin as a quantitative assay for AChR during purification by various techniques. At each step, assay AChR by measuring $\left[{ }^{125} \mathrm{I}\right] \alpha$-bungarotoxin binding to the proteins in the sample. Optimize purification for the highest specific activity of AChR (counts/min of bound $\left[{ }^{125} \mathrm{I}\right] \alpha$-bungarotoxin per mg of protein) in the final material.
15. (a) No. If V_{m} were set by permeability to (primarily) K^{+}, the Nernst equation would predict a V_{m} of -90 mV , not the observed -95 mV , so some other conductance must contribute to V_{m}. (b) Chloride ion is probably the determinant of V_{m}; the predicted $E_{\mathrm{Cl}^{-}}$is -94 mV .
16. (a) V_{m} of the oocyte membrane changes from -60 mV to -10 mV -that is, the membrane is depolarized. (b) The effect of KCl depends on influx of Ca^{2+} from the extracellular medium.
17. Hyperpolarization results in the closing of voltage-dependent Ca^{2+} channels in the presynaptic region of the rod cell. The resulting decrease in $\left[\mathrm{Ca}^{2+}\right]_{\text {in }}$ diminishes release of an inhibitory neurotransmitter that suppresses activity in the next neuron of the visual circuit. When this inhibition is removed in response to a light stimulus, the circuit becomes active and visual centers in the brain are excited.
18. (a) This would prevent influx of Na^{+}and Ca^{2+} into the cells in response to light; the cone cells would fail to signal the brain that light had been received. Because rod cells are unaffected, the individuals would be able to see but would not have color vision. (b) This would prevent efflux of K^{+}, which would lead to depolarization of the β-cell membrane and constitutive release of insulin into the blood. (c) ATP is responsible for closing this channel, so the channels will remain open, preventing depolarization of the β-cell membrane and release of insulin.
19. Individuals with Oguchi disease might have a defect in rhodopsin kinase or in arrestin.
20. Rod cells would no longer show any change in membrane potential in response to light. This experiment has been done. Illumination did activate PDE, but the enzyme could not significantly reduce the 8-Br-cGMP level, which remained well above that needed to keep the gated ion channels open. Thus, light had no impact on membrane potential.
21. (a) On exposure to heat, TRPV1 channels open, causing an influx of Na^{+}and Ca^{2+} into the sensory neuron. This depolarizes the neuron, triggering an action potential. When the action potential reaches the axon terminus, neurotransmitter is released, signaling the nervous system that heat has been sensed. (b) Capsaicin mimics the effects of heat by opening TRPV1 at low temperature, leading to the false sensation of heat The extremely low EC_{50} indicates that even very small amounts of capsaicin will have dramatic sensory effects. (c) At low levels, menthol should open the TRPM8 channel, leading to a sensation of cool; at high levels, both TRPM8 and TRPV3 will open, leading to a mixed sensation of cool and heat, such as you may have experienced with very strong peppermints.
22. (a) These mutations might lead to permanent activation of the PGE_{2} receptor, leading to unregulated cell division and tumor formation. (b) The viral gene might encode a constitutively active form of the receptor, causing a constant signal for cell division and thus tumor formation. (c) E1A protein might bind to pRb and prevent E2F from binding, so E2F is constantly active and cells divide uncontrollably. (d) Lung cells do not normally respond to PGE_{2} because they do not express the PGE_{2} receptor; mutations resulting in a constitutively active PGE_{2} receptor do not affect lung cells
23. A normal tumor suppressor gene encodes a protein that restrains cell division. A mutant form of the protein fails to suppress cell division, but if either of the two alleles encodes normal protein, normal function will continue. A normal oncogene encodes a regulator protein that triggers cell division, but only when an appropriate signal (growth factor) is present. The mutant version of the oncogene product constantly sends the signal to divide, whether or not growth factors are present.
24. In a child who develops multiple tumors in both eyes, every retinal cell had a defective copy of the $R b$ gene at birth. Early in the child's life, several cells independently underwent a second mutation that damaged the one good $R b$ allele, producing a tumor. A child who develops a single tumor had, at birth, two good copies of the $R b$ gene in every cell; mutation in both $R b$ alleles in one cell (extremely rare) caused a single tumor.
25. Two cells expressing the same surface receptor may have different complements of target proteins for protein phosphorylation.
26. (a) The cell-based model, which predicts different receptors present on different cells. (b) This experiment addresses the issue of the independence of different taste sensations. Even though the receptors for sweet and/or umami are missing, the animals' other taste sensations are normal; thus, pleasant and unpleasant taste sensations are independent. (c) Yes. Loss of either T1R1 or T1R3 subunits abolishes umami taste sensation. (d) Both models. With either model, removing one receptor would abolish that taste sensation. (e) Yes. Loss of either the T1R2 or T1R3 subunits almost completely abolishes the sweet taste sensation; complete elimination of sweet taste requires deletion of both subunits. (f) At very high sucrose concentrations, T1R2 and, to a lesser extent, T1R3 receptors, as homodimers, can detect sweet taste. (g) The results are consistent with either model of taste encoding, but do strengthen the researchers' conclusions. Ligand binding can be completely separated from taste sensation. If the ligand for the receptor in "sweet-tasting cells" binds a molecule, mice prefer that molecule as a sweet compound.

Chapter 13

1. Consider the developing chick as the system; the nutrients, egg shell, and outside world are the surroundings. Transformation of the single cell into a chick drastically reduces the entropy of the system. Initially, the parts of the egg outside the embryo
(the surroundings) contain complex fuel molecules (a lowentropy condition). During incubation, some of these complex molecules are converted to large numbers of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ molecules (high entropy). This increase in the entropy of the surroundings is larger than the decrease in entropy of the chick (the system)
2. (a) $-4.8 \mathrm{~kJ} / \mathrm{mol}$ (b) $7.56 \mathrm{~kJ} / \mathrm{mol}$ (c) $-13.7 \mathrm{~kJ} / \mathrm{mol}$
3. (a) 262 (b) 608 (c) 0.30
4. $K_{\mathrm{eq}}^{\prime}=21 ; \Delta G^{\prime \circ}=-7.6 \mathrm{~kJ} / \mathrm{mol}$
5. $-31 \mathrm{~kJ} / \mathrm{mol}$
6. (a) $-1.68 \mathrm{~kJ} / \mathrm{mol}$ (b) $-4.4 \mathrm{~kJ} / \mathrm{mol}$ (c) At a given temperature, the value of ΔG° for any reaction is fixed and is defined for standard conditions (here, both fructose 6-phosphate and glucose 6-phosphate at 1 m). In contrast, ΔG is a variable that can be calculated for any set of reactant and product concentrations.
7. $K_{\mathrm{eq}}^{\prime} \approx 1 ; \Delta G^{\prime \circ} \approx 0$
8. Less. The overall equation for ATP hydrolysis can be approximated as

$$
\mathrm{ATP}^{4-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ADP}^{3-}+\mathrm{HPO}_{4}^{2-}+\mathrm{H}^{+}
$$

(This is only an approximation, because the ionized species shown here are the major, but not the only, forms present.) Under standard conditions (i.e., $[\mathrm{ATP}]=[\mathrm{ADP}]=\left[\mathrm{P}_{\mathrm{i}}\right]=1 \mathrm{~m}$), the concentration of water is 55 m and does not change during the reaction. Because H^{+}ions are produced in the reaction, at a higher $\left[\mathrm{H}^{+}\right]$(pH 5.0) the equilibrium would be shifted to the left and less free energy would be released.
9. 10
10.

ΔG for ATP hydrolysis is lower when [ATP]/[ADP] is low $(\ll 1)$ than when $[\mathrm{ATP}] /[\mathrm{ADP}]$ is high. The energy available to the cell from a given [ATP] is lower when the [ATP]/[ADP] ratio falls and greater when it rises.
11. (a) $3.85 \times 10^{-3} \mathrm{M}^{-1}$; [glucose 6-phosphate] $=8.9 \times 10^{-8} \mathrm{M}$; no. (b) 14 m ; because the maximum solubility of glucose is less than 1 m , this is not a reasonable step. (c) $837\left(\Delta G^{\circ \circ}=-16.7 \mathrm{~kJ} / \mathrm{mol}\right)$; [glucose] $=1.2 \times 10^{-7} \mathrm{~m}$; yes. (d) No. This would require such high $\left[\mathrm{P}_{\mathrm{i}}\right]$ that the phosphate salts of divalent cations would precipitate. (e) By directly transferring the phosphoryl group from ATP to glucose, the phosphoryl group transfer potential ("tendency" or "pressure") of ATP is utilized without generating high concentrations of intermediates. The essential part of this transfer is, of course, the enzymatic catalysis.
12. (a) $-12.5 \mathrm{~kJ} / \mathrm{mol}$ (b) $-14.6 \mathrm{~kJ} / \mathrm{mol}$
13. (a) 3×10^{-4} (b) 68.7 (c) 7.4×10^{4}
14. $-13 \mathrm{~kJ} / \mathrm{mol}$
15. $46.7 \mathrm{~kJ} / \mathrm{mol}$
16. Isomerization moves the carbonyl group from C-1 to C-2, setting up a carbon-carbon bond cleavage between C-3 and C-4. Without isomerization, bond cleavage would occur between C-2 and C-3, generating one two-carbon and one four-carbon compound.
17. The mechanism is the same as that of the alcohol dehydrogenase reaction (see Fig. 14-14).
18. The first step is the reverse of an aldol condensation (see the aldolase mechanism, Fig. 14-6); the second step is an aldol condensation (see Fig. 13-4).
19. (a) $46 \mathrm{~kJ} / \mathrm{mol}$ (b) $46 \mathrm{~kg} ; 68 \%$ (c) ATP is synthesized as it is needed, then broken down to ADP and P_{i}; its concentration is maintained in a steady state.
20. The ATP system is in a dynamic steady state; [ATP] remains constant because the rate of ATP consumption equals its rate of synthesis. ATP consumption involves release of the terminal (γ) phosphoryl group; synthesis of ATP from ADP involves replacement of this phosphoryl group. Hence the terminal phosphate undergoes rapid turnover. In contrast, the central (β) phosphate undergoes only relatively slow turnover.
21. (a) $1.7 \mathrm{~kJ} / \mathrm{mol}$ (b) Inorganic pyrophosphatase catalyzes the hydrolysis of pyrophosphate and drives the net reaction toward the synthesis of acetyl-CoA.
22. $36 \mathrm{~kJ} / \mathrm{mol}$
23. (a) $\mathrm{NAD}^{+} / \mathrm{NADH}$ (b) Pyruvate/lactate (c) Lactate formation (d) $-26.1 \mathrm{~kJ} / \mathrm{mol}$ (e) 3.63×10^{4}
24. (a) 1.14 V (b) $-220 \mathrm{~kJ} / \mathrm{mol}$ (c) ~ 4
25. (a) -0.35 V (b) -0.320 V (c) -0.29 V
26. In order of increasing tendency: (a), (d), (b), (c)
27. (c) and (d)
28. (a) The lowest-energy, highest-entropy state occurs when the dye concentration is the same in both cells. If a "fish trap" gap junction allowed unidirectional transport, more of the dye would end up in the oligodendrocyte and less in the astrocyte. This would be a higher-energy, lower-entropy state than the starting state, violating the second law of thermodynamics. The model proposed by Robinson et al. requires an impossible spontaneous decrease in entropy. In terms of energy, the model entails a spontaneous change from a lower-energy to a higher-energy state without an energy input-again, thermodynamically impossible. (b) Molecules, unlike fish, do not exhibit directed behavior; they move randomly by Brownian motion. Diffusion results in net movement of molecules from a region of higher concentration to a region of lower concentration simply because it is more likely that a molecule on the high-concentration side will enter the connecting channel. Look at this as a pathway with a rate-limiting step: the narrow end of the channel. The narrower end limits the rate at which molecules pass through because random motion of the molecules is less likely to move them through the smaller cross section. The wide end of the channel does not act like a funnel for molecules, although it may for fish, because molecules are not "crowded" by the sides of the narrowing funnel as fish would be. The narrow end limits the rate of movement equally in both directions. When the concentrations on both sides are equal, the rates of movement in both directions are equal and there will be no change in concentration. (c) Fish exhibit nonrandom behavior, adjusting their actions in response to the environment. Fish that enter the large opening of the channel tend to move forward because fish have behavior that tends to make them prefer forward movement, and they experience "crowding" as they move through the narrowing channel. It is easy for fish to enter the large opening, but they don't move out of the trap as readily because they are less likely to enter the small opening.
(d) There are many possible explanations, some of which were proposed by the letter-writers who criticized the article. Here are two: (1) The dye could bind to a molecule in the oligodendrocyte. Binding effectively removes the dye from the bulk solvent, so it doesn't "count" as a solute for thermodynamic considerations yet remains visible in the fluorescence microscope. (2) The dye could be sequestered in a
subcellular organelle of the oligodendrocyte, either actively pumped at the expense of ATP or drawn in by its attraction to other molecules in that organelle.

Chapter 14

1. Net equation: Glucose +2 ATP $\rightarrow 2$ glyceraldehyde 3-phosphate + $2 \mathrm{ADP}+2 \mathrm{H}^{+} ; \Delta G^{\prime \circ}=2.1 \mathrm{~kJ} / \mathrm{mol}$
2. Net equation: 2 Glyceraldehyde 3-phosphate $+4 \mathrm{ADP}+2 \mathrm{P}_{\mathrm{i}} \rightarrow$ 2 lactate $+2 \mathrm{NAD}^{+} ; \Delta G^{\circ}=-114 \mathrm{~kJ} / \mathrm{mol}$
3. GLUT2 (and GLUT1) is found in liver and is always present in the plasma membrane of hepatocytes. GLUT3 is always present in the plasma membrane of certain brain cells. GLUT4 is normally sequestered in vesicles in cells of muscle and adipose tissue and enters the plasma membrane only in response to insulin. Thus, liver and brain can take up glucose from blood regardless of insulin level, but muscle and adipose tissue take up glucose only when insulin levels are elevated in response to high blood glucose.
4. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{NADH}+\mathrm{H}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NAD}^{+} ; K_{\text {eq }}^{\prime}=1.45 \times 10^{4}$
5. $-8.6 \mathrm{~kJ} / \mathrm{mol}$
6. (a) ${ }^{14} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (b) $\left[3-{ }_{-}^{14} \mathrm{C}\right]$ glucose or $\left[4-{ }^{14} \mathrm{C}\right]$ glucose
7. Fermentation releases energy, some conserved in the form of ATP but much of it dissipated as heat. Unless the fermenter contents are cooled, the temperature would become high enough to kill the microorganisms.
8. Soybeans and wheat contain starch, a polymer of glucose. The microorganisms break down starch to glucose, glucose to pyruvate via glycolysis, and-because the process is carried out in the absence of O_{2} (i.e., it is a fermentation)—pyruvate to lactic acid and ethanol. If O_{2} were present, pyruvate would be oxidized to acetyl-CoA, then to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Some of the acetyl-CoA, however, would also be hydrolyzed to acetic acid (vinegar) in the presence of oxygen.
9. C-1. This experiment demonstrates the reversibility of the aldolase reaction. The C-1 of glyceraldehyde 3-phosphate is equivalent to C-4 of fructose 1,6-bisphosphate (see Fig. 14-7). The starting glyceraldehyde 3-phosphate must have been labeled at C-1. The C-3 of dihydroxyacetone phosphate becomes labeled through the triose phosphate isomerase reaction, thus giving rise to fructose 1,6-bisphosphate labeled at C-3.
10. No. There would be no anaerobic production of ATP; aerobic ATP production would be diminished only slightly.
11. No. Lactate dehydrogenase is required to recycle NAD^{+}from the NADH formed during the oxidation of glyceraldehyde 3-phosphate.
12. The transformation of glucose to lactate occurs when myocytes are low in oxygen, and it provides a means of generating ATP under O_{2}-deficient conditions. Because lactate can be oxidized to pyruvate, glucose is not wasted; pyruvate is oxidized by aerobic reactions when O_{2} becomes plentiful. This metabolic flexibility gives the organism a greater capacity to adapt to its environment.
13. It rapidly removes the 1,3 -bisphosphoglycerate in a favorable subsequent step, catalyzed by phosphoglycerate kinase.
14. (a) 3-Phosphoglycerate is the product. (b) In the presence of arsenate there is no net ATP synthesis under anaerobic conditions.
15. (a) Ethanol fermentation requires 2 mol of P_{i} per mole of glucose. (b) Ethanol is the reduced product formed during reoxidation of NADH to NAD^{+}, and CO_{2} is the byproduct of the conversion of pyruvate to ethanol. Yes; pyruvate must be converted to ethanol, to produce a continuous supply of NAD^{+}for the oxidation of glyceraldehyde 3-phosphate. Fructose 1,6-bisphosphate accumulates; it is formed as an intermediate in glycolysis. (c) Arsenate replaces P_{i} in the glyceraldehyde 3-phosphate dehydrogenase reaction to yield an acyl arsenate, which spontaneously hydrolyzes. This
prevents formation of ATP, but 3-phosphoglycerate continues through the pathway.
16. Dietary niacin is used to synthesize NAD^{+}. Oxidations carried out by NAD^{+}are part of cyclic processes, with NAD^{+}as electron carrier (reducing agent); one molecule of NAD^{+}can oxidize many thousands of molecules of glucose, and thus the dietary requirement for the precursor vitamin (niacin) is relatively small
17. Dihydroxyacetone phosphate $+\mathrm{NADH}+\mathrm{H}^{+} \rightarrow$ glycerol 3 -phosphate $+\mathrm{NAD}^{+}$(catalyzed by a dehydrogenase)
18. Galactokinase deficiency: galactose (less toxic); UDP-glucose: galactose 1-phosphate uridylyl deficiency: galactose 1-phosphate (more toxic).
19. The proteins are degraded to amino acids and used for gluconeogenesis.
20. (a) In the pyruvate carboxylase reaction, ${ }^{14} \mathrm{CO}_{2}$ is added to pyruvate, but PEP carboxykinase removes the same CO_{2} in the next step. Thus, ${ }^{14} \mathrm{C}$ is not (initially) incorporated into glucose.

Fructose 1,6-bisphosphate
21. 4 ATP equivalents per glucose molecule
22. Gluconeogenesis would be highly endergonic, and it would be impossible to separately regulate gluconeogenesis and glycolysis.
23. The cell "spends" 1 ATP and 1 GTP in converting pyruvate to PEP.
24. (a), (b), (d) are glucogenic; (c) (e) are not.
25. Consumption of alcohol forces competition for NAD^{+}between ethanol metabolism and gluconeogenesis. The problem is compounded by strenuous exercise and lack of food, because at these times the level of blood glucose is already low.
26. (a) The rapid increase in glycolysis; the rise in pyruvate and NADH results in a rise in lactate. (b) Lactate is transformed to
glucose via pyruvate; this is a slower process, because formation of pyruvate is limited by NAD^{+}availability, the LDH equilibrium is in favor of lactate, and conversion of pyruvate to glucose is energy-requiring. (c) The equilibrium for the LDH reaction is in favor of lactate formation.
27. Lactate is transformed to glucose in the liver by gluconeogenesis (see Figs 14-16, 14-17). A defect in FBPase-1 would prevent entry of lactate into the gluconeogenic pathway in hepatocytes, causing lactate to accumulate in the blood.
28. Succinate is transformed to oxaloacetate, which passes into the cytosol and is converted to PEP by PEP carboxykinase. Two moles of PEP are then required to produce a mole of glucose by the route outlined in Fig. 14-17
29. If the catabolic and anabolic pathways of glucose metabolism are operating simultaneously, futile cycling of ATP occurs, with extra O_{2} consumption.
30. At the very least, accumulation of ribose 5 -phosphate would tend to force this reaction in the reverse direction by mass action (see Eqn 13-4). It might also affect other metabolic reactions that involve ribose 5-phosphate as a substrate or product-such as the pathways of nucleotide synthesis.
31. (a) Ethanol tolerance is likely to involve many more genes, and thus the engineering would be a much more involved project. (b) L-Arabinose isomerase (the araA enzyme) converts an aldose to a ketose by moving the carbonyl of a nonphosphorylated sugar from C-1 to C-2. No analogous enzyme is discussed in this chapter; all the enzymes described here act on phosphorylated sugars. An enzyme that carries out a similar transformation with phosphorylated sugars is phosphohexose isomerase. L-Ribulokinase ($a r a B$) phosphorylates a sugar at C-5 by transferring the γ phosphate from ATP. Many such reactions are described in this chapter, including the hexokinase reaction. L-Ribulose 5-phosphate epimerase (araD) switches the - H and -OH groups on a chiral carbon of a sugar. No analogous reaction is described in the chapter, but it is described in Chapter 20 (see Fig. 20-13). (c) The three ara enzymes would convert arabinose to xylulose 5 -phosphate by the following pathway: Arabinose $\xrightarrow{\text { L-arabinose isomerase }}$ L-ribulose $\xrightarrow{\text { L-ribulokinase }}$ L-ribulose 5 -phosphate $\xrightarrow{\text { epimerase }}$ xylulose 5-phosphate. (d) The arabinose is converted to xylulose 5 -phosphate as in (c), which enters the pathway in Fig. 14-23; the glucose 6-phosphate product is then fermented to ethanol and CO_{2}. (e) 6 molecules of arabinose +6 molecules of ATP are converted to 6 molecules of xylulose 5 -phosphate, which feed into the pathway in Fig. $14-23$ to yield 5 molecules of glucose 6-phosphate, each of which is fermented to yield 3 ATP (they enter as glucose 6 -phosphate, not glucose)-15 ATP in all. Overall, you would expect a yield of 15 ATP -6 ATP $=9$ ATP from the 6 arabinose molecules. The other products are 10 molecules of ethanol and 10 molecules of CO_{2}. (f) Given the lower ATP yield, for an amount of growth (i.e., of available ATP) equivalent to growth without the added genes, the engineered Z. mobilis must ferment more arabinose, and thus it produces more ethanol (g) One way to allow the use of xylose would be to add the genes for two enzymes: an analog of the araD enzyme that converts xylose to ribose by switching the -H and -OH on C-3, and an analog of the araB enzyme that phosphorylates ribose at C-5. The resulting ribose 5 -phosphate would feed into the existing pathway

Chapter 15

1. (a) 0.0293 (b) 308 (c) No. Q is much lower than $K_{\text {eq }}^{\prime}$, indicating that the PFK-1 reaction is far from equilibrium in cells; this reaction is slower than the subsequent reactions in glycolysis. Flux through the glycolytic pathway is largely determined by the activity of PFK-1
2. (a) $1.4 \times 10^{-9} \mathrm{~m}(b)$ The physiological concentration (0.023 mm) is 16,000 times the equilibrium concentration; this
reaction does not reach equilibrium in the cell. Many reactions in the cell are not at equilibrium.
3. In the absence of O_{2}, the ATP needs are met by anaerobic glucose metabolism (fermentation to lactate). Because aerobic oxidation of glucose produces far more ATP than does fermentation, less glucose is needed to produce the same amount of ATP.
4. (a) There are two binding sites for ATP: a catalytic site and a regulatory site. Binding of ATP to a regulatory site inhibits PFK-1, by reducing $V_{\max }$ or increasing K_{m} for ATP at the catalytic site. (b) Glycolytic flux is reduced when ATP is plentiful. (c) The graph indicates that increased [ADP] suppresses the inhibition by ATP. Because the adenine nucleotide pool is fairly constant, consumption of ATP leads to an increase in [ADP]. The data show that the activity of PFK-1 may be regulated by the [ATP]/[ADP] ratio.
5. The phosphate group of glucose 6 -phosphate is completely ionized at pH 7 , giving the molecule an overall negative charge. Because membranes are generally impermeable to electrically charged molecules, glucose 6-phosphate cannot pass from the bloodstream into cells and hence cannot enter the glycolytic pathway and generate ATP. (This is why glucose, once phosphorylated, cannot escape from the cell.)
6. (a) In muscle: Glycogen breakdown supplies energy (ATP) via glycolysis. Glycogen phosphorylase catalyzes the conversion of stored glycogen to glucose 1-phosphate, which is converted to glucose 6-phosphate, an intermediate in glycolysis. During strenuous activity, skeletal muscle requires large quantities of glucose 6-phosphate. In the liver: Glycogen breakdown maintains a steady level of blood glucose between meals (glucose 6 -phosphate is converted to free glucose). (b) In actively working muscle, ATP flux requirements are very high and glucose 1-phosphate must be produced rapidly, requiring a high $V_{\max }$.
7. (a) $\left[\mathrm{P}_{\mathrm{i}}\right] /[$ glucose 1-phosphate $]=3.3 / 1$ (b), (c) The value of this ratio in the cell ($>100: 1$) indicates that [glucose 1-phosphate] is far below the equilibrium value. The rate at which glucose 1-phosphate is removed (through entry into glycolysis) is greater than its rate of production (by the glycogen phosphorylase reaction), so metabolite flow is from glycogen to glucose 1-phosphate. The glycogen phosphorylase reaction is probably the regulatory step in glycogen breakdown.
8. (a) increases (b) decreases (c) increases
9. Resting: [ATP] high; [AMP] low; [acetyl-CoA] and [citrate] intermediate. Running: [ATP] intermediate; [AMP] high; [acetyl-CoA] and [citrate] low. Glucose flux through glycolysis increases during the anaerobic sprint because (1) the ATP inhibition of glycogen phosphorylase and PFK-1 is partially relieved, (2) AMP stimulates both enzymes, and (3) lower citrate and acetyl-CoA levels relieve their inhibitory effects on PFK-1 and pyruvate kinase, respectively.
10. The migrating bird relies on the highly efficient aerobic oxidation of fats, rather than the anaerobic metabolism of glucose used by a sprinting rabbit. The bird reserves its muscle glycogen for short bursts of energy during emergencies.
11. Case A: (f), (3); Case B: (c), (3); Case C: (h), (4); Case D: (d), (6)
12. (a) (1) Adipose: fatty acid synthesis slower. (2) Muscle: glycolysis, fatty acid synthesis, and glycogen synthesis slower. (3) Liver: glycolysis faster; gluconeogenesis, glycogen synthesis, and fatty acid synthesis slower; pentose phosphate pathway unchanged. (b) (1) Adipose and (3) liver: fatty acid synthesis slower because lack of insulin results in inactive acetyl-CoA carboxylase, the first enzyme of fatty acid synthesis. Glycogen synthesis inhibited by cAMP-dependent phosphorylation (thus activation) of glycogen synthase. (2) Muscle: glycolysis slower because GLUT4 is inactive, so glucose uptake is inhibited. (3) Liver: glycolysis slower because the bifunctional PFK-2/ FBPase-2 is converted to the form with active FBPase-2,
decreasing [fructose 2,6-bisphosphate], which allosterically stimulates phosphofructokinase and inhibits FBPase-1; this also accounts for the stimulation of gluconeogenesis.
13. (a) elevated (b) elevated (c) elevated
14. (a) PKA cannot be activated in response to glucagon or epinephrine, and glycogen phosphorylase is not activated. (b) PP1 remains active, allowing it to dephosphorylate glycogen synthase (activating it) and glycogen phosphorylase (inhibiting it). (c) Phosphorylase remains phosphorylated (active), increasing the breakdown of glycogen. (d) Gluconeogenesis cannot be stimulated when blood glucose is low, leading to dangerously low blood glucose during periods of fasting.
15. The drop in blood glucose triggers release of glucagon by the pancreas. In the liver, glucagon activates glycogen phosphorylase by stimulating its cAMP-dependent phosphorylation and stimulates gluconeogenesis by lowering [fructose 2,6-bisphosphate], thus stimulating FBPase-1.
16. (a) Reduced capacity to mobilize glycogen; lowered blood glucose between meals (b) Reduced capacity to lower blood glucose after a carbohydrate meal; elevated blood glucose (c) Reduced fructose 2,6-bisphosphate (F26BP) in liver, stimulating glycolysis and inhibiting gluconeogenesis
(d) Reduced F26BP, stimulating gluconeogenesis and inhibiting glycolysis (e) Increased uptake of fatty acids and glucose; increased oxidation of both (f) Increased conversion of pyruvate to acetyl-CoA; increased fatty acid synthesis.
17. (a) Given that each particle contains about 55,000 glucose residues, the equivalent free glucose concentration would be $55,000 \times 0.01 \mu \mathrm{M}=550 \mathrm{~mm}$, or 0.55 M . This would present a serious osmotic challenge for the cell! (Body fluids have a substantially lower osmolarity.) (b) The lower the number of branches, the lower the number of free ends available for glycogen phosphorylase activity, and the slower the rate of glucose release. With no branches, there would be just one site for phosphorylase to act. (c) The outer tier of the particle would be too crowded with glucose residues for the enzyme to gain access to cleave bonds and release glucose. (d) The number of chains doubles in each succeeding tier: tier 1 has one chain $\left(2^{0}\right)$, tier 2 has two $\left(2^{1}\right)$, tier 3 has four $\left(2^{2}\right)$, and so on. Thus, for t tiers, the number of chains in the outermost tier, C_{A}, is 2^{t-1}. (e) The total number of chains is $2^{0}+2^{1}+2^{2}+\ldots$ $2^{t-1}=2^{t}-1$. Each chain contains g_{c} glucose molecules, so the total number of glucose molecules, G_{T}, is $g_{\mathrm{c}}(2 t-1)$. (f) Glycogen phosphorylase can release all but four of the glucose residues in a chain of length g_{c}. Therefore, from each chain in the outer tier it can release $\left(g_{c}-4\right)$ glucose molecules. Given that there are 2^{t-1} chains in the outer tier, the number of glucose molecules the enzyme can release, G_{PT}, is $\left(g_{\mathrm{c}}-4\right)\left(2^{t-1}\right)$. (g) The volume of a sphere is $4 / 3 \pi r^{3}$. In this case, r is the thickness of one tier times the number of tiers, or $\left(0.12 g_{\mathrm{c}}+0.35\right) t \mathrm{~nm}$. Thus $V_{\mathrm{s}}=4 / 3 \pi t^{3}\left(0.12 g_{\mathrm{c}}+0.35\right)^{3} \mathrm{~nm}^{3}$. (h) You can show algebraically that the value of g_{c} that maximizes f is independent of t. Choosing $t=3$:

$g_{\mathbf{c}}$	$C_{\mathbf{A}}$	$G_{\mathbf{T}}$	$G_{\mathbf{P T}}$	$V_{\mathbf{s}}$	f
5	4	35	4	11	5.8
6	4	42	8	19	9.7
7	4	49	12	24	12
8	4	56	16	28	14
9	4	63	20	32	15
10	4	70	24	34	16
11	4	77	28	36	16
12	4	84	32	38	17
13	4	91	36	40	17
14	4	98	40	41	17
15	4	100	44	42	16
16	4	110	48	43	16

The optimum value of g_{c} (i.e., at maximum f) is 13 . In nature, g_{c} varies from 12 to 14 , which corresponds to f values very close to the optimum. If you choose another value for t, the numbers will differ but the optimal g_{c} will still be 13 .

Chapter 16

1. (a)
(1) Citrate synthase:

Acetyl-CoA + oxaloacetate $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ citrate +CoA
(2) Aconitase:

Citrate \rightarrow isocitrate
(3) Isocitrate dehydrogenase:

Isocitrate $+\mathrm{NAD}^{+} \rightarrow \alpha$-ketoglutarate $+\mathrm{CO}_{2}+\mathrm{NADH}$
(4) α-Ketoglutarate dehydrogenase:
α-Ketoglutarate $+\mathrm{NAD}^{+}+\mathrm{CoA} \rightarrow$ succinyl-CoA $+\mathrm{CO}_{2}+\mathrm{NADH}$
(5) Succinyl-CoA synthetase:

Succinyl-CoA $+\mathrm{P}_{\mathrm{i}}+$ GDP \rightarrow succinate + CoA + GTP
(6) Succinate dehydrogenase:

Succinate $+\mathrm{FAD} \rightarrow$ fumarate $+\mathrm{FADH}_{2}$
(7) Fumarase:

Fumarate $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ malate
(8) Malate dehydrogenase:

Malate $+\mathrm{NAD}^{+} \rightarrow$ oxaloacetate $+\mathrm{NADH}+\mathrm{H}^{+}$
(b), (c) 1 CoA, condensation; 2 none, isomerization; (3) NAD^{+}, oxidative decarboxylation; (4) $\mathrm{NAD}^{+}, \mathrm{CoA}$, and thiamine pyrophosphate, oxidative decarboxylation; (5 CoA, substrate-level phosphorylation; (6) FAD, oxidation; (7) none, hydration; $8 \mathrm{NAD}^{+}$, oxidation
(d) Acetyl-CoA $+3 \mathrm{NAD}^{+}+\mathrm{FAD}+\mathrm{GDP}+\mathrm{P}_{\mathrm{i}}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$ $2 \mathrm{CO}_{2}+\mathrm{CoA}+3 \mathrm{NADH}+\mathrm{FADH}_{2}+\mathrm{GTP}+2 \mathrm{H}^{+}$
2. Glucose $+4 \mathrm{ADP}+4 \mathrm{P}_{\mathrm{i}}+10 \mathrm{NAD}^{+}+2 \mathrm{FAD} \rightarrow$

$$
4 \mathrm{ATP}+10 \mathrm{NADH}+2 \mathrm{FADH}_{2}+6 \mathrm{CO}_{2}
$$

3. (a) Oxidation; methanol \rightarrow formaldehyde $+[\mathrm{H}-\mathrm{H}]$
(b) Oxidation; formaldehyde \rightarrow formate $+[\mathrm{H}-\mathrm{H}]$
(c) Reduction; $\mathrm{CO}_{2}+[\mathrm{H}-\mathrm{H}] \rightarrow$ formate $+\mathrm{H}^{+}$
(d) Reduction; glycerate $+\mathrm{H}^{+}+[\mathrm{H}-\mathrm{H}] \rightarrow$

$$
\text { glyceraldehyde }+\mathrm{H}_{2} \mathrm{O}
$$

(e) Oxidation; glycerol \rightarrow dihydroxyacetone $+[\mathrm{H}-\mathrm{H}]$
(f) Oxidation; $2 \mathrm{H}_{2} \mathrm{O}+$ toluene \rightarrow benzoate $+\mathrm{H}^{+}+3[\mathrm{H}-\mathrm{H}]$
(g) Oxidation; succinate \rightarrow fumarate $+[\mathrm{H}-\mathrm{H}]$
(h) Oxidation; pyruvate $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ acetate $+\mathrm{CO}_{2}+[\mathrm{H}-\mathrm{H}]$
4. From the structural formulas, we see that the carbon-bound H / C ratio of hexanoic acid (11/6) is higher than that of glucose (7/6). Hexanoic acid is more reduced and yields more energy on complete combustion to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
5. (a) Oxidized; ethanol $+\mathrm{NAD}^{+} \rightarrow$ acetaldehyde $+\mathrm{NADH}+\mathrm{H}^{+}$
(b) Reduced; 1,3-bisphosphoglycerate $+\mathrm{NADH}+\mathrm{H}^{+} \rightarrow$ glyceraldehyde 3-phosphate $+\mathrm{NAD}^{+}+\mathrm{HPO}_{4}^{2-}$
(c) Unchanged; pyruvate $+\mathrm{H}^{+} \rightarrow$ acetaldehyde $+\mathrm{CO}_{2}$
(d) Oxidized; pyruvate $+\mathrm{NAD}^{+} \rightarrow$
acetate $+\mathrm{CO}_{2}+\mathrm{NADH}+\mathrm{H}^{+}$
(e) Reduced; oxaloacetate $+\mathrm{NADH}+\mathrm{H}^{+} \rightarrow$ malate $+\mathrm{NAD}^{+}$
(f) Unchanged; acetoacetate $+\mathrm{H}^{+} \rightarrow$ acetone $+\mathrm{CO}_{2}$
6. TPP: thiazolium ring adds to α carbon of pyruvate, then stabilizes the resulting carbanion by acting as an electron sink. Lipoic acid: oxidizes pyruvate to level of acetate (acetylCoA), and activates acetate as a thioester. $\mathrm{CoA}-\mathrm{SH}$: activates acetate as thioester. $F A D$: oxidizes lipoic acid. $N A D^{+}$: oxidizes FAD.
7. Lack of TPP inhibits pyruvate dehydrogenase; pyruvate accumulates.
8. Oxidative decarboxylation; NAD^{+}or $\mathrm{NADP}^{+} ; \alpha$-ketoglutarate dehydrogenase
9. Oxygen consumption is a measure of the activity of the first two stages of cellular respiration: glycolysis and the
citric acid cycle. The addition of oxaloacetate or malate stimulates the citric acid cycle and thus stimulates respiration. The added oxaloacetate or malate serves a catalytic role, because it is regenerated in the latter part of the citric acid cycle.
10. (a) 5.6×10^{-6} (b) $1.1 \times 10^{-8} \mathrm{M}$ (c) 28 molecules
11. ADP (or GDP), $\mathrm{P}_{\mathrm{i}}, \mathrm{CoA}-\mathrm{SH}, \mathrm{TPP}, \mathrm{NAD}^{+}$; not lipoic acid, which is covalently attached to the isolated enzymes that use it
12. The flavin nucleotides, FMN and FAD, would not be synthesized. Because FAD is required in the citric acid cycle, flavin deficiency would strongly inhibit the cycle.
13. Oxaloacetate might be withdrawn for aspartate synthesis or for gluconeogenesis. Oxaloacetate is replenished by the anaplerotic reactions catalyzed by PEP carboxykinase, PEP carboxylase, malic enzyme, or pyruvate carboxylase (see Fig. 16-16).
14. The terminal phosphoryl group in GTP can be transferred to ADP in a reaction catalyzed by nucleoside diphosphate kinase, with an equilibrium constant of 1.0:

$$
\mathrm{GTP}+\mathrm{ADP} \rightarrow \mathrm{GDP}+\mathrm{ATP}
$$

15. (a) ${ }^{-} \mathrm{OOC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COO}^{-}$(succinate) (b) Malonate is a competitive inhibitor of succinate dehydrogenase. (c) A block in the citric acid cycle stops NADH formation, which stops electron transfer, which stops respiration. (d) A large excess of succinate (substrate) overcomes the competitive inhibition.
16. (a) Add uniformly labeled $\left.{ }^{[14} \mathrm{C}\right]$ glucose and check for the release of ${ }^{14} \mathrm{CO}_{2}$. (b) Equally distributed in C-2 and C-3 of oxaloacetate; an infinite number
17. Oxaloacetate equilibrates with succinate, in which C-1 and C-4 are equivalent. Oxaloacetate derived from succinate is labeled at C-1 and C-4, and the PEP derived from it has label at C-1, which gives rise to C-3 and C-4 of glucose.
18. (a) C-1 (b) C-3 (c) C-3 (d) C-2 (methyl group) (e) C-4 (f) C-4 (g) equally distributed in C-2 and C-3
19. Thiamine is required for the synthesis of TPP, a prosthetic group in the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes. A thiamine deficiency reduces the activity of these enzyme complexes and causes the observed accumulation of precursors.
20. No. For every two carbons that enter as acetate, two leave the cycle as CO_{2}; thus there is no net synthesis of oxaloacetate. Net synthesis of oxaloacetate occurs by the carboxylation of pyruvate, an anaplerotic reaction.
21. Yes, the citric acid cycle would be inhibited. Oxaloacetate is present at relatively low concentrations in mitochondria, and removing it for gluconeogenesis would tend to shift the equilibrium for the citrate synthase reaction toward oxaloacetate.
22. (a) Inhibition of aconitase (b) Fluorocitrate; competes with citrate; by a large excess of citrate (c) Citrate and fluorocitrate are inhibitors of PFK-1. (d) All catabolic processes necessary for ATP production are shut down.
23. Glycolysis:

Glucose $+2 \mathrm{P}_{\mathrm{i}}+2 \mathrm{ADP}+2 \mathrm{NAD}^{+} \rightarrow$
2 pyruvate $+2 \mathrm{ATP}+2 \mathrm{NADH}+2 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O}$
Pyruvate carboxylase reaction:
2 Pyruvate $+2 \mathrm{CO}_{2}+2 \mathrm{ATP}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$

$$
2 \text { oxaloacetate }+2 \mathrm{ADP}+2 \mathrm{P}_{\mathrm{i}}+4 \mathrm{H}^{+}
$$

Malate dehydrogenase reaction:
2 Oxaloacetate $+2 \mathrm{NADH}+2 \mathrm{H}^{+} \rightarrow 2$ L-malate $+2 \mathrm{NAD}^{+}$
This recycles nicotinamide coenzymes under anaerobic conditions. The overall reaction is

$$
\text { Glucose }+2 \mathrm{CO}_{2} \rightarrow 2 \text { L-malate }+4 \mathrm{H}^{+}
$$

This produces four H^{+}per glucose, increasing the acidity and thus the tartness of the wine.
24. Net reaction: 2 Pyruvate $+\mathrm{ATP}+2 \mathrm{NAD}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$

$$
\alpha \text {-ketoglutarate }+\mathrm{CO}_{2}+\mathrm{ADP}+\mathrm{P}_{\mathrm{i}}+2 \mathrm{NADH}+3 \mathrm{H}^{+}
$$

25. The cycle participates in catabolic and anabolic processes. For example, it generates ATP by substrate oxidation, but also provides precursors for amino acid synthesis (see Fig. 16-16)
26. (a) decreases (b) increases (c) decreases
27. (a) Citrate is produced through the action of citrate synthase on oxaloacetate and acetyl-CoA. Citrate synthase can be used for net synthesis of citrate when (1) there is a continuous influx of new oxaloacetate and acetyl-CoA and (2) isocitrate synthesis is restricted, as in a medium low in Fe^{3+}. Aconitase requires Fe^{3+}, so an Fe^{3+}-restricted medium restricts the synthesis of aconitase.
(b) Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ glucose + fructose

Glucose $+2 \mathrm{P}_{\mathrm{i}}+2 \mathrm{ADP}+2 \mathrm{NAD}^{+} \rightarrow$
2 pyruvate $+2 \mathrm{ATP}+2 \mathrm{NADH}+2 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O}$
Fructose $+2 \mathrm{P}_{\mathrm{i}}+2 \mathrm{ADP}+2 \mathrm{NAD}^{+} \rightarrow$
2 pyruvate $+2 \mathrm{ATP}+2 \mathrm{NADH}+2 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O}$
2 Pyruvate $+2 \mathrm{NAD}^{+}+2 \mathrm{CoA} \rightarrow$
2 acetyl-CoA $+2 \mathrm{NADH}+2 \mathrm{H}^{+}+2 \mathrm{CO}_{2}$
2 Pyruvate $+2 \mathrm{CO}_{2}+2 \mathrm{ATP}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$
2 oxaloacetate $+2 \mathrm{ADP}+2 \mathrm{P}_{\mathrm{i}}+4 \mathrm{H}^{+}$
2 Acetyl-CoA +2 oxaloacetate $+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2$ citrate +2 CoA
The overall reaction is
Sucrose $+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{P}_{\mathrm{i}}+2 \mathrm{ADP}+6 \mathrm{NAD}^{+} \rightarrow$

$$
2 \text { citrate }+2 \mathrm{ATP}+6 \mathrm{NADH}+10 \mathrm{H}^{+}
$$

(c) The overall reaction consumes NAD^{+}. Because the cellular pool of this oxidized coenzyme is limited, it must be recycled by the electron-transfer chain with consumption of O_{2}
Consequently, the overall conversion of sucrose to citric acid is an aerobic process and requires molecular oxygen.
28. Succinyl-CoA is an intermediate of the citric acid cycle; its accumulation signals reduced flux through the cycle, calling for reduced entry of acetyl-CoA into the cycle. Citrate synthase, by regulating the primary oxidative pathway of the cell, regulates the supply of NADH and thus the flow of electrons from NADH to O_{2}.
29. Fatty acid catabolism increases [acetyl-CoA], which stimulates pyruvate carboxylase. The resulting increase in [oxaloacetate] stimulates acetyl-CoA consumption by the citric acid cycle, and [citrate] rises, inhibiting glycolysis at the level of PFK-1. In addition, increased [acetyl-CoA] inhibits the pyruvate dehydrogenase complex, slowing the utilization of pyruvate from glycolysis.
30. Oxygen is needed to recycle NAD^{+}from the NADH produced by the oxidative reactions of the citric acid cycle. Reoxidation of NADH occurs during mitochondrial oxidative phosphorylation.
31. Increased $[\mathrm{NADH}] /\left[\mathrm{NAD}^{+}\right.$] inhibits the citric acid cycle by mass action at the three NAD^{+}-reducing steps; high [NADH] shifts equilibrium toward NAD^{+}.
32. Toward citrate; ΔG for the citrate synthase reaction under these conditions is about $-8 \mathrm{~kJ} / \mathrm{mol}$.
33. Steps (4) and 5 are essential in the reoxidation of the enzyme's reduced lipoamide cofactor.
34. The citric acid cycle is so central to metabolism that a serious defect in any cycle enzyme would probably be lethal to the embryo.
35. The first enzyme in each path is under reciprocal allosteric regulation. Inhibition of one path shunts isocitrate into the other path.
36. (a) The only reaction in muscle tissue that consumes significant amounts of oxygen is cellular respiration, so O_{2} consumption is a good proxy for respiration. (b) Freshly prepared muscle tissue contains some residual glucose; O_{2} consumption is due to oxidation of this glucose. (c) Yes. Because the amount of O_{2} consumed increased when citrate or 1-phosphoglycerol was added, both can serve as substrate
for cellular respiration in this system. (d) Experiment I : Citrate is causing much more O_{2} consumption than would be expected from its complete oxidation. Each molecule of Citrate seems to be acting as though it were more than one molecule. The only possible explanation is that each molecule of citrate functions more than once in the reaction-which is how a catalyst operates. Experiment II: The key is to calculate the excess O_{2} consumed by each sample compared with the control (sample 1).

Sample	Substrate(s) added	$\mu \mathrm{L} \mathrm{O}_{2}$ absorbed	Excess $\mu \mathrm{L}$ O_{2} consumed
1	No extra	342	0
2	0.3 mL 0.2 m		
	1-phosphoglycerol	757	415
3	0.15 mL 0.02 m citrate	431	89
4	0.3 mL 0.2 m		
	1-phosphoglycerol		
	+ 0.15 mL 0.02 m citrate	1,385	1,043

If both citrate and 1-phosphoglycerol were simply substrates for the reaction, you would expect the excess O_{2} consumption by sample 4 to be the sum of the individual excess consumptions by samples 2 and $3(415 \mu \mathrm{~L}+89 \mu \mathrm{~L}=504 \mu \mathrm{~L})$. However, the excess consumption when both substrates are present is roughly twice this amount $(1,043 \mu \mathrm{~L})$. Thus citrate increases the ability of the tissue to metabolize 1-phosphoglycerol. This behavior is typical of a catalyst. Both experiments (I and II) are required to make this case convincing. Based on experiment I only, citrate is somehow accelerating the reaction, but it is not clear whether it acts by helping substrate metabolism or by some other mechanism. Based on experiment II only, it is not clear which molecule is the catalyst, citrate or 1-phosphoglycerol. Together, the experiments show that citrate is acting as a "catalyst" for the oxidation of 1-phosphoglycerol. (e) Given that the pathway can consume citrate (see sample 3), if citrate is to act as a catalyst it must be regenerated. If the set of reactions first consumes then regenerates citrate, it must be a circular rather than a linear pathway. (f) When the pathway is blocked at α-ketoglutarate dehydrogenase, citrate is converted to α-ketoglutarate but the pathway goes no further. Oxygen is consumed by reoxidation of the NADH produced by isocitrate dehydrogenase.

This differs from Fig. 16-7 in that it does not include cisaconitate and isocitrate (between citrate and α-ketoglutarate), or succinyl-CoA, or acetyl-CoA. (h) Establishing a quantitative conversion was essential to rule out a branched or other, more complex pathway.

Chapter 17

1. The fatty acid portion; the carbons in fatty acids are more reduced than those in glycerol.
2. (a) $4.0 \times 10^{5} \mathrm{~kJ}\left(9.6 \times 10^{4} \mathrm{kcal}\right)$ (b) 48 days (c) $0.48 \mathrm{lb} /$ day
3. The first step in fatty acid oxidation is analogous to the conversion of succinate to fumarate; the second step, to the conversion of fumarate to malate; the third step, to the conversion of malate to oxaloacetate.
4. 8 cycles; the last releases 2 acetyl-CoA.
5. (a) $\mathrm{R}-\mathrm{COO}^{-}+\mathrm{ATP} \rightarrow$ acyl-AMP $+\mathrm{PP}_{i}$

Acyl-AMP + CoA \rightarrow acyl-CoA + AMP
(b) Irreversible hydrolysis of PP_{i} to $2 \mathrm{P}_{\mathrm{i}}$ by cellular inorganic pyrophosphatase
6. cis- Δ^{3}-Dodecanoyl-CoA; it is converted to cis- Δ^{2}-dodecanoylCoA, then β-hydroxydodecanoyl-CoA.

7. 4 acetyl-CoA and 1 propionyl-CoA

8. Yes. Some of the tritium is removed from palmitate during the dehydrogenation reactions of β oxidation. The removed tritium appears as tritiated water.
9. Fatty acyl groups condensed with CoA in the cytosol are first transferred to carnitine, releasing CoA, then transported into the mitochondrion, where they are again condensed with CoA. The cytosolic and mitochondrial pools of CoA are thus kept separate, and no radioactive CoA from the cytosolic pool enters the mitochondrion.
10. (a) In the pigeon, β oxidation predominates; in the pheasant, anaerobic glycolysis of glycogen predominates. (b) Pigeon muscle would consume more O_{2}. (c) Fat contains more energy per gram than glycogen does. In addition, the anaerobic breakdown of glycogen is limited by the tissue's tolerance to lactate buildup. Thus the pigeon, operating on the oxidative catabolism of fats, is the long-distance flyer. (d) These enzymes are the regulatory enzymes of their respective pathways and thus limit ATP production rates.
11. Malonyl-CoA would no longer inhibit fatty acid entry into the mitochondrion and β oxidation, so there might be a futile cycle of simultaneous fatty acid synthesis in the cytosol and fatty acid breakdown in mitochondria.
12. (a) The carnitine-mediated entry of fatty acids into mitochondria is the rate-limiting step in fatty acid oxidation. Carnitine deficiency slows fatty acid oxidation; added carnitine increases the rate. (b) All increase the metabolic need for fatty acid oxidation. (c) Carnitine deficiency might result from a deficiency of lysine, its precursor, or from a defect in one of the enzymes in the biosynthesis of carnitine.
13. Oxidation of fats releases metabolic water; 1.4 L of water per kg of tripalmitoylglycerol (ignores the small contribution of glycerol to the mass).
14. The bacteria can be used to completely oxidize hydrocarbons to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. However, contact between hydrocarbons and bacterial enzymes may be difficult to achieve. Bacterial nutrients such as nitrogen and phosphorus may be limiting and inhibit growth.
15. (a) $M_{\mathrm{r}} 136$; phenylacetic acid (b) Even
16. Because the mitochondrial pool of CoA is small, CoA must be recycled from acetyl-CoA via the formation of ketone bodies. This allows the operation of the β-oxidation pathway, necessary for energy production.
17. (a) Glucose yields pyruvate via glycolysis, and pyruvate is the main source of oxaloacetate. Without glucose in the diet, [oxaloacetate] drops and the citric acid cycle slows. (b) Oddnumbered; propionate conversion to succinyl-CoA provides intermediates for the citric acid cycle and four-carbon precursors for gluconeogenesis.
18. For the odd-chain heptanoic acid, β oxidation produces propionyl-CoA, which can be converted in several steps to oxaloacetate, a starting material for gluconeogenesis. The evenchain fatty acid cannot support gluconeogenesis, because it is entirely oxidized to acetyl-CoA.
19. β Oxidation of ω-fluorooleate forms fluoroacetyl-CoA, which enters the citric acid cycle and produces fluorocitrate, a powerful inhibitor of aconitase. Inhibition of aconitase shuts down the citric acid cycle. Without reducing equivalents from the citric acid cycle, oxidative phosphorylation (ATP synthesis) is fatally slowed.
20. Ser to Ala: blocks β oxidation in mitochondria. Ser to Asp: blocks fatty acid synthesis, stimulates β oxidation.
21. Response to glucagon or epinephrine would be prolonged, giving a greater mobilization of fatty acids in adipocytes.
22. Enz-FAD, having a more positive standard reduction potential, is a better electron acceptor than NAD^{+}, and the reaction is driven in the direction of fatty acyl-CoA oxidation. This more favorable equilibrium is obtained at the cost of 1 ATP; only 1.5 ATP are produced per FADH_{2} oxidized in the respiratory chain (vs. 2.5 per NADH).
23. 9 turns; arachidic acid, a 20-carbon saturated fatty acid, yields 10 molecules of acetyl-CoA, the last two formed in the ninth turn.
24. See Fig. $17-12 .\left[3-{ }^{14} \mathrm{C}\right]$ Succinyl-CoA is formed, which gives rise to oxaloacetate labeled at C-2 and C-3.
25. Phytanic acid \rightarrow pristanic acid \rightarrow propionyl-CoA $\rightarrow \rightarrow$ succinylCoA \rightarrow succinate \rightarrow fumarate \rightarrow malate. All malate carbons would be labeled, but C-1 and C-4 would have only half as much label as C-2 and C-3.
26. ATP hydrolysis in the energy-requiring reactions of a cell takes up water in the reaction ATP $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ADP}+\mathrm{P}_{\mathrm{i}}$; thus, in the steady state, there is no net production of $\mathrm{H}_{2} \mathrm{O}$.
27. Methylmalonyl-CoA mutase requires the cobalt-containing cofactor formed from vitamin B_{12}.
28. Mass lost per day is about 0.66 kg , or about 140 kg in 7 months. Ketosis could be avoided by degradation of nonessential body proteins to supply amino acid skeletons for gluconeogenesis.
29. (a) Fatty acids are converted to their CoA derivatives by enzymes in the cytoplasm; the acyl-CoAs are then imported into mitochondria for oxidation. Given that the researchers were using isolated mitochondria, they had to use CoA derivatives. (b) Stearoyl-CoA was rapidly converted to 9 acetylCoA by the β-oxidation pathway. All intermediates reacted rapidly and none were detectable at significant levels. (c) Two rounds. Each round removes two carbon atoms, thus two rounds convert an 18 -carbon to a 14 -carbon fatty acid and 2 acetyl-CoA. (d) The K_{m} is higher for the trans isomer than for the cis, so a higher concentration of trans isomer is required for the same rate of breakdown. Roughly speaking, the trans isomer binds less well than the cis, probably because differences in shape, even though not at the target site for the enzyme, affect substrate binding to the enzyme. (e) The substrate for LCAD/VLCAD builds up differently, depending on the particular substrate; this is expected for the rate-limiting step in a pathway. (f) The kinetic parameters show that the trans isomer is a poorer substrate than the cis for LCAD, but there is little difference for VLCAD. Because it is a poorer substrate, the trans isomer accumulates to higher levels than the cis. (g) One possible pathway is shown below (indicating "inside" and "outside" mitochondria).

(h) It is correct insofar as trans fats are broken down less efficiently than cis fats, and thus trans fats may "leak" out of mitochondria. It is incorrect to say that trans fats are not broken down by cells; they are broken down, but at a slower rate than cis fats.

Chapter 18

1.

(a)

Oxaloacetate
(b)

α-Ketoglutarate
(c)

Pyruvate
(d)

Phenylpyruvate

2. This is a coupled-reaction assay. The product of the slow transamination (pyruvate) is rapidly consumed in the subsequent "indicator reaction" catalyzed by lactate dehydrogenase, which consumes NADH. Thus the rate of disappearance of NADH is a measure of the rate of the aminotransferase reaction. The indicator reaction is monitored by observing the decrease in absorption of NADH at 340 nm with a spectrophotometer.
3. Alanine and glutamine play special roles in the transport of amino groups from muscle and from other nonhepatic tissues, respectively, to the liver.
4. No. The nitrogen in alanine can be transferred to oxaloacetate via transamination, to form aspartate.
5. 15 mol of ATP per mole of lactate; 13 mol of ATP per mole of alanine, when nitrogen removal is included
6. (a) Fasting resulted in low blood glucose; subsequent administration of the experimental diet led to rapid catabolism of glucogenic amino acids. (b) Oxidative deamination caused the rise in NH_{3} levels; the absence of arginine (an intermediate in the urea cycle) prevented conversion of NH_{3} to urea; arginine is not synthesized in sufficient quantities in the cat to meet the needs imposed by the stress of the experiment. This suggests that arginine is an essential amino acid in the cat's diet. (c) Ornithine is converted to arginine by the urea cycle.
7. $\mathrm{H}_{2} \mathrm{O}+$ glutamate $+\mathrm{NAD}^{+} \rightarrow$

$$
\alpha \text {-ketoglutarate }+\mathrm{NH}_{4}^{+}+\mathrm{NADH}+\mathrm{H}^{+}
$$

$\mathrm{NH}_{4}^{+}+2 \mathrm{ATP}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow$
carbamoyl phosphate $+2 \mathrm{ADP}+\mathrm{P}_{\mathrm{i}}+3 \mathrm{H}^{+}$
Carbamoyl phosphate + ornithine \rightarrow citrulline $+\mathrm{P}_{\mathrm{i}}+\mathrm{H}^{+}$
Citrulline + aspartate + ATP \rightarrow

$$
\operatorname{argininosuccinate}+\mathrm{AMP}+\mathrm{PP}_{\mathrm{i}}+\mathrm{H}^{+}
$$

Argininosuccinate \rightarrow arginine + fumarate
Fumarate $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ malate
Malate $+\mathrm{NAD}^{+} \rightarrow$ oxaloacetate $+\mathrm{NADH}+\mathrm{H}^{+}$
Oxaloacetate + glutamate \rightarrow aspartate $+\alpha$-ketoglutarate Arginine $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ urea + ornithine

$$
2 \text { Glutamate }+\mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NAD}^{+}+3 \mathrm{ATP} \rightarrow
$$

$$
\begin{array}{r}
2 \alpha \text {-ketoglutarate }+2 \mathrm{NADH}+7 \mathrm{H}^{+}+\text {urea }+2 \mathrm{ADP}+ \\
\mathrm{AMP}+\mathrm{PP}_{\mathrm{i}}+2 \mathrm{P}_{\mathrm{i}}
\end{array}
$$

Additional reactions that need to be considered:
$\mathrm{AMP}+\mathrm{ATP} \rightarrow 2 \mathrm{ADP}$

$$
\begin{equation*}
\mathrm{O}_{2}+8 \mathrm{H}^{+}+2 \mathrm{NADH}+6 \mathrm{ADP}+6 \mathrm{P}_{\mathrm{i}} \rightarrow \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
2 \mathrm{NAD}^{+}+6 \mathrm{ATP}+8 \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{equation*}
$$

$\mathrm{H}_{2} \mathrm{O}+\mathrm{PP}_{\mathrm{i}} \rightarrow 2 \mathrm{P}_{\mathrm{i}}+\mathrm{H}^{+}$
Summing equations (1) through (4),

$$
\begin{aligned}
2 \text { Glutamate }+\mathrm{CO}_{2}+ & \mathrm{O}_{2}+2 \mathrm{ADP}+2 \mathrm{P}_{\mathrm{i}} \rightarrow \\
& 2 \alpha \text {-ketoglutarate }+ \text { urea }+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{ATP}
\end{aligned}
$$

8. The second amino group introduced into urea is transferred from aspartate, which is generated during the transamination of glutamate to oxaloacetate, a reaction catalyzed by aspartate
aminotransferase. Approximately one-half of all the amino groups excreted as urea must pass through the aspartate aminotransferase reaction, making this the most highly active aminotransferase.
9. (a) A person on a diet consisting only of protein must use amino acids as the principal source of metabolic fuel. Because the catabolism of amino acids requires the removal of nitrogen as urea, the process consumes abnormally large quantities of water to dilute and excrete the urea in the urine. Furthermore, electrolytes in the "liquid protein" must be diluted with water and excreted. If the daily water loss through the kidney is not balanced by a sufficient water intake, a net loss of body water results. (b) When considering the nutritional benefits of protein, one must keep in mind the total amount of amino acids needed for protein synthesis and the distribution of amino acids in the dietary protein. Gelatin contains a nutritionally unbalanced distribution of amino acids. As large amounts of gelatin are ingested and the excess amino acids are catabolized, the capacity of the urea cycle may be exceeded, leading to ammonia toxicity. This is further complicated by the dehydration that may result from excretion of large quantities of urea. A combination of these two factors could produce coma and death.
10. Lysine and leucine
11. (a) Phenylalanine hydroxylase; a low-phenylalanine diet (b) The normal route of phenylalanine metabolism via hydroxylation to tyrosine is blocked, and phenyalanine accumulates. (c) Phenylalanine is transformed to phenylpyruvate by transamination, and then to phenyllactate by reduction. The transamination reaction has an equilibrium constant of 1.0 , and phenylpyruvate is formed in significant amounts when phenylalanine accumulates. (d) Because of the deficiency in production of tyrosine, which is a precursor of melanin, the pigment normally present in hair.
12. Catabolism of the carbon skeletons of valine, methionine, and isoleucine is impaired because a functional methylmalonyl-CoA mutase (a coenzyme B_{12} enzyme) is absent. The physiological effects of loss of this enzyme are described in Table 18-2 and Box 18-2.
13. The vegan diet lacks vitamin B_{12}, leading to the increase in homocysteine and methylmalonate (reflecting the deficiencies in methionine synthase and methylmalonic acid mutase, respectively) in individuals on the diet for several years. Dairy products provide some vitamin B_{12} in the lactovegetarian diet.
14. The genetic forms of pernicious anemia generally arise as a result of defects in the pathway that mediates absorption of dietary vitamin B_{12} (see Box 17-2). Because dietary supplements are not absorbed in the intestine, these conditions are treated by injecting supplementary B_{12} directly into the bloodstream.
15. The mechanism is identical to that for serine dehydratase (see Fig. 18-20a) except that the extra methyl group of threonine is retained, yielding α-ketobutyrate instead of pyruvate.
16. (a) ${ }^{15} \mathrm{NH}_{2}-\mathrm{CO}-{ }^{15} \mathrm{NH}_{2}$
(b)

(c)

(d)

(e) No label
(f)

17. (a) Isoleucine $\xrightarrow{\mathbf{1}} \mathrm{II} \xrightarrow{\mathbf{2}} \mathrm{IV} \xrightarrow{\mathbf{3}} \mathrm{I} \xrightarrow{4} \mathrm{~V} \xrightarrow{\mathbf{5}} \mathrm{III} \xrightarrow{\mathbf{6}}$ acetyl-CoA + propionyl-CoA (b) Step 1 transamination, no analogous reaction, PLP; 2 oxidative decarboxylation, analogous to the pyruvate dehydrogenase reaction, $\mathrm{NAD}^{+}, \mathrm{TPP}$, lipoate, FAD; 3 oxidation, analogous to the succinate dehydrogenase reaction, $\mathrm{FAD} ; 4$ hydration, analogous to the fumarase reaction, no cofactor; (5 oxidation, analogous to the malate dehydrogenase reaction, $\mathrm{NAD}^{+} ;$© thiolysis (reverse aldol condensation), analogous to the thiolase reaction, CoA.
18. A likely mechanism is:

The formaldehyde (HCHO) produced in the second step reacts rapidly with tetrahydrofolate at the enzyme active site to produce N^{5}, N^{10}-methylenetetrahydrofolate (see Fig. 18-17).
19. (a) Transamination; no analogies; PLP. (b) Oxidative decarboxylation; analogous to oxidative decarboxylation of pyruvate to acetyl-CoA prior to entry into the citric acid cycle, and of α-ketoglutarate to succinyl-CoA in the citric acid cycle; $\mathrm{NAD}^{+}, \mathrm{FAD}$, lipoate, and TPP. (c) Dehydrogenation (oxidation); analogous to dehydrogenation of succinate to fumarate in the citric acid cycle, and of fatty acyl-CoA to enoyl-CoA in β oxidation; FAD. (d) Carboxylation; no analogies in citric acid cycle or β oxidation; ATP and biotin.
(e) Hydration; analogous to hydration of fumarate to malate in the citric acid cycle, and of enoyl-CoA to 3-hydroxyacyl-CoA in β oxidation; no cofactors. (f) Reverse aldol reaction; analogous
to reverse of citrate synthase reaction in the citric acid cycle; no cofactors
20. (a) Leucine; valine; isoleucine (b) Cysteine (derived from cystine). If cysteine were decarboxylated as shown in Fig. 18-6, it would yield $\mathrm{H}_{3} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SH}$, which could be oxidized to taurine. (c) The January 1957 blood shows significantly elevated levels of isoleucine, leucine, methionine, and valine; the January 1957 urine, significantly elevated isoleucine, leucine, taurine, and valine. (d) All patients had high levels of isoleucine, leucine, and valine in both blood and urine, suggesting a defect in the breakdown of these amino acids Given that the urine also contained high levels of the keto forms of these three amino acids, the block in the pathway must occur after deamination but before dehydrogenation (as shown in Fig. 18-28). (e) The model does not explain the high levels of methionine in blood and taurine in urine. The high taurine levels may be due to the death of brain cells during the end stage of the disease. However, the reason for high levels of methionine in blood are unclear; the pathway of methionine degradation is not linked with the degradation of branched-chain amino acids. Increased methionine could be a secondary effect of buildup of the other amino acids. It is important to keep in mind that the January 1957 samples were from an individual who was dying, so comparing blood and urine results with those of a healthy individual may not be appropriate. (f) The following information is needed (and was eventually obtained by other workers): (1) The dehydrogenase activity is significantly reduced or missing in individuals with maple syrup urine disease. (2) The disease is inherited as a single-gene defect. (3) The defect occurs in a gene encoding all or part of the dehydrogenase. (4) The genetic defect leads to production of inactive enzyme.

Chapter 19

1. Reaction (1): (a), (d) NADH; (b), (e) E-FMN; (c) NAD ${ }^{+} / \mathrm{NADH}$ and E-FMN/FMNH 2
Reaction (2): (a), (d) E-FMNH $;$; (b), (e) Fe^{3+}; (c) E-FMN/ FMNH_{2} and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$
Reaction (3): (a), (d) Fe^{2+}; (b), (e) Q; (c) $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ and $\mathrm{Q} / \mathrm{QH}_{2}$
2. The side chain makes ubiquinone soluble in lipids and allows it to diffuse in the semifluid membrane.
3. From the difference in standard reduction potential $\left(\Delta E^{\prime \circ}\right)$ for each pair of half-reactions, one can calculate $\Delta G^{\prime \circ}$. The oxidation of succinate by FAD is favored by the negative standard free-energy change ($\Delta G^{\prime \circ}=-3.7 \mathrm{~kJ} / \mathrm{mol}$). Oxidation by NAD^{+}would require a large, positive, standard free-energy change $\left(\Delta G^{\circ}=68 \mathrm{~kJ} / \mathrm{mol}\right)$.
4. (a) All carriers reduced; CN^{-}blocks the reduction of O_{2} catalyzed by cytochrome oxidase. (b) All carriers reduced; in the absence of O_{2}, the reduced carriers are not reoxidized
(c) All carriers oxidized. (d) Early carriers more reduced; later carriers more oxidized.
5. (a) Inhibition of NADH dehydrogenase by rotenone decreases the rate of electron flow through the respiratory chain, which in turn decreases the rate of ATP production. If this reduced rate is unable to meet the organism's ATP requirements, the organism dies. (b) Antimycin A strongly inhibits the oxidation of Q in the respiratory chain, reducing the rate of electron transfer and leading to the consequences described in (a).
(c) Because antimycin A blocks all electron flow to oxygen, it is a more potent poison than rotenone, which blocks electron flow from NADH but not from FADH_{2}.
6. (a) The rate of electron transfer necessary to meet the ATP demand increases, and thus the P/O ratio decreases. (b) High concentrations of uncoupler produce P/O ratios near zero. The P/O ratio decreases, and more fuel must be oxidized to generate the same amount of ATP. The extra heat released by this oxidation raises the body temperature. (c) Increased activity of
the respiratory chain in the presence of an uncoupler requires the degradation of additional fuel. By oxidizing more fuel (including fat reserves) to produce the same amount of ATP, the body loses weight. When the P/O ratio approaches zero, the lack of ATP results in death.
7. Valinomycin acts as an uncoupler. It combines with K^{+}to form a complex that passes through the inner mitochondrial membrane, dissipating the membrane potential. ATP synthesis decreases, which causes the rate of electron transfer to increase. This results in an increase in the H^{+}gradient, O_{2} consumption, and amount of heat released.
8. (a) The formation of ATP is inhibited. (b) The formation of ATP is tightly coupled to electron transfer: 2,4-dinitrophenol is an uncoupler of oxidative phosphorylation. (c) Oligomycin
9. Cytosolic malate dehydrogenase plays a key role in the transport of reducing equivalents across the inner mitochondrial membrane via the malate-aspartate shuttle.
10. (a) Glycolysis becomes anaerobic. (b) Oxygen consumption ceases. (c) Lactate formation increases. (d) ATP synthesis decreases to 2 ATP/glucose.
11. The steady-state concentration of P_{i} in the cell is much higher than that of ADP. The P_{i} released by ATP hydrolysis changes total $\left[\mathrm{P}_{\mathrm{i}}\right]$ very little.
12. The response to (a) increased [ADP] is faster because the response to (b) reduced pO_{2} requires protein synthesis.
13. (a) NADH is reoxidized via electron transfer instead of lactic acid fermentation. (b) Oxidative phosphorylation is more efficient. (c) The high mass-action ratio of the ATP system inhibits phosphofructokinase-1.
14. Fermentation to ethanol could be accomplished in the presence of O_{2}, which is an advantage because strict anaerobic conditions are difficult to maintain. The Pasteur effect is not observed, since the citric acid cycle and electron-transfer chain are inactive.
15. More-efficient electron transfer between complexes.
16. (a) External medium: $4.0 \times 10^{-8} \mathrm{M}$; matrix: $2.0 \times 10^{-8} \mathrm{M}$ (b) $\left[\mathrm{H}^{+}\right]$gradient contributes $1.7 \mathrm{~kJ} / \mathrm{mol}$ toward ATP synthesis (c) 21 (d) No (e) From the overall transmembrane potential
17. (a) $0.91 \mu \mathrm{~mol} / \mathrm{s} \cdot \mathrm{g}$ (b) 5.5 s ; to provide a constant level of ATP, regulation of ATP production must be tight and rapid.
18. $53 \mu \mathrm{~mol} / \mathrm{s} \cdot \mathrm{g}$. With a steady state [ATP] of $7.0 \mu \mathrm{~mol} / \mathrm{g}$, this is equivalent to 10 turnovers of the ATP pool per second; the reservoir would last about 0.13 s .
19. Reactive oxygen species react with macromolecules, including DNA. If a mitochondrial defect leads to increased production of ROS, the nuclear genes that encode proto-oncogenes can be damaged, producing oncogenes and leading to unregulated cell division and cancer (see Section 12.12).
20. Different extents of heteroplasmy for the defective gene produce different degrees of defective mitochondrial function.
21. The inner mitochondrial membrane is impermeable to NADH, but the reducing equivalents of NADH are transferred (shuttled) through the membrane indirectly: they are transferred to oxaloacetate in the cytosol, the resulting malate is transported into the matrix, and mitochondrial NAD^{+}is reduced to NADH .
22. The citric acid cycle is stalled for lack of an acceptor of electrons from NADH. Pyruvate produced by glycolysis cannot enter the cycle as acetyl-CoA; accumulated pyruvate is transaminated to alanine and exported to the liver.
23. Pyruvate dehydrogenase is located in mitochondria, glyceraldehyde 3-phosphate dehydrogenase in the cytosol. The NAD pools are separated by the inner mitochondrial membrane.
24. Complete lack of glucokinase (two defective alleles) makes it impossible to carry out glycolysis at a sufficient rate to raise [ATP] to the threshold required for insulin secretion.
25. Defects in Complex II result in increased production of ROS, damage to DNA, and mutations that lead to unregulated cell division (cancer; see Section 12.12). It is not clear why the cancer tends to occur in the midgut.
26. For the maximum photosynthetic rate, PSI (which absorbs light of 700 nm) and PSII (which absorbs light of 680 nm) must be operating simultaneously.
27. The extra weight comes from the water consumed in the overall reaction.
28. Purple sulfur bacteria use $\mathrm{H}_{2} \mathrm{~S}$ as the hydrogen donor in photosynthesis. No O_{2} is evolved, because the single photosystem lacks the manganese-containing water-splitting complex.
29. 0.44
30. (a) Stops (b) Slows; some electron flow continues by the cyclic pathway.
31. During illumination, a proton gradient is established. When ADP and P_{i} are added, ATP synthesis is driven by the gradient, which becomes exhausted in the absence of light.
32. DCMU blocks electron transfer between PSII and the first site of ATP production.
33. In the presence of venturicidin, proton movement through the $\mathrm{CF}_{\mathrm{o}} \mathrm{CF}_{1}$ complex is blocked, and electron flow (oxygen evolution) continues only until the free-energy cost of pumping protons against the rising proton gradient equals the free energy available in a photon. DNP, by dissipating the proton gradient, restores electron flow and oxygen evolution.
34. (a) $56 \mathrm{~kJ} / \mathrm{mol}$ (b) 0.29 V
35. From the difference in reduction potentials, one can calculate that $\Delta G^{\prime \circ}=15 \mathrm{~kJ} / \mathrm{mol}$ for the redox reaction. Fig. 19-48 shows that the energy of photons in any region of the visible spectrum is more than sufficient to drive this endergonic reaction.
36. 1.35×10^{-77}; the reaction is highly unfavorable! In chloroplasts, the input of light energy overcomes this barrier.
37. $-920 \mathrm{~kJ} / \mathrm{mol}$
38. No. The electrons from $\mathrm{H}_{2} \mathrm{O}$ flow to the artificial electron acceptor Fe^{3+}, not to NADP ${ }^{+}$.
39. About once every $0.1 \mathrm{~s} ; 1$ in 10^{8} is excited.
40. Light of 700 nm excites PSI but not PSII; electrons flow from P700 to NADP^{+}, but no electrons flow from P680 to replace them. When light of 680 nm excites PSII, electrons tend to flow to PSI, but the electron carriers between the two photosystems quickly become completely reduced.
41. No. The excited electron from P700 returns to refill the electron "hole" created by illumination. PSII is not needed to supply electrons, and no O_{2} is evolved from $\mathrm{H}_{2} \mathrm{O}$. NADPH is not formed, because the excited electron returns to P700.
42. (a) (1) The presence of Mg^{2+} supports the hypothesis that chlorophyll is directly involved in catalysis of the phosphorylation reaction: ADP $+\mathrm{P}_{\mathrm{i}} \rightarrow$ ATP. (2) Many enzymes (or other proteins) that contain Mg^{2+} are not phosphorylating enzymes, so the presence of Mg^{2+} in chlorophyll does not prove its role in phosphorylation reactions. (3) The presence of Mg^{2+} is essential to chlorophyll's photochemical properties: light absorption and electron transfer. (b) (1) Enzymes catalyze reversible reactions, so an isolated enzyme that can, under certain laboratory conditions, catalyze removal of a phosphoryl group could probably, under different conditions (such as in cells), catalyze addition of a phosphoryl group. So it is plausible that chlorophyll could be involved in the phosphorylation of ADP. (2) There are two possible explanations: the chlorophyll protein is a phosphatase only and does not catalyze ADP phosphorylation under cellular conditions, or the crude preparation contains a contaminating phosphatase activity that is unconnected to the photosynthetic reactions. (3) It is likely that the preparation was contaminated with a nonphotosynthetic
phosphatase activity. (c) (1) This light inhibition is what one would expect if the chlorophyll protein catalyzed the reaction ADP $+\mathrm{P}_{\mathrm{i}}+$ light \rightarrow ATP. Without light, the reverse reaction, a dephosphorylation, would be favored. In the presence of light, energy is provided and the equilibrium would shift to the right, reducing the phosphatase activity. (2) This inhibition must be an artifact of the isolation or assay methods. (3) It is unlikely that the crude preparation methods in use at the time preserved intact chloroplast membranes, so the inhibition must be an artifact. (d) (1) In the presence of light, ATP is synthesized and other phosphorylated intermediates are consumed. (2) In the presence of light, glucose is produced and is metabolized by cellular respiration to produce ATP, with changes in the levels of phosphorylated intermediates. (3) In the presence of light, ATP is produced and other phosphorylated intermediates are consumed. (e) Light energy is used to produce ATP (as in the Emerson model) and is used to produce reducing power (as in the Rabinowitch model). (f) The approximate stoichiometry for photophosphorylation (Chapter 19) is that 8 photons yield 2 NADPH and about 3 ATP. Two NADPH and 3 ATP are required to reduce $1 \mathrm{CO}_{2}$ (Chapter 20). Thus, at a minimum, 8 photons are required per CO_{2} molecule reduced. This is in good agreement with Rabinowitch's value. (g) Because the energy of light is used to produce both ATP and NADPH, each photon absorbed contributes more than just 1 ATP for photosynthesis. The process of energy extraction from light is more efficient than Rabinowitch supposed, and plenty of energy is available for this process-even with red light.

Chapter 20

1. Within subcellular organelles, concentrations of specific enzymes and metabolites are elevated; separate pools of cofactors and intermediates are maintained; regulatory mechanisms affect only one set of enzymes and pools.
2. This observation suggests that ATP and NADPH are generated in the light and are essential for CO_{2} fixation; conversion stops as the supply of ATP and NADPH becomes exhausted. Furthermore, some enzymes are switched off in the dark.
3. X is 3-phosphoglycerate; Y is ribulose 1,5-bisphosphate.
4. Ribulose 5 -phosphate kinase, fructose 1,6-bisphosphatase, sedoheptulose 1,7-bisphosphatase, and glyceraldehyde 3-phosphate dehydrogenase; all are activated by reduction of a critical disulfide bond to a pair of sulfhydryls; iodoacetate reacts irreversibly with free sulfhydryls.
5. To carry out the disulfide exchange reaction that activates the Calvin cycle enzymes, thioredoxin needs both of its sulfhydryl groups.
6. Reductive pentose phosphate pathway regenerates ribulose 1,5-bisphosphate from triose phosphates produced during photosynthesis. Oxidative pentose phosphate pathway provides NADPH for reductive biosynthesis and pentose phosphates for nucleotide synthesis.
7. Both types of "respiration" occur in plants, consume O_{2}, and produce CO_{2}. (Mitochondrial respiration also occurs in animals.) Mitochondrial respiration occurs continuously; electrons derived from various fuels are passed through a chain of carriers in the inner mitochondrial membrane to O_{2}. Photorespiration occurs in chloroplasts, peroxisomes, and mitochondria. Photorespiration occurs during the daytime, when photosynthetic carbon fixation is occurring; mitochondrial respiration occurs primarily at night, or during cloudy days. The path of electron flow in photorespiration is shown in Fig. 20-21; that for mitochondrial respiration, in Fig. 19-19.
8. This hypothesis assumes directed evolution, or evolution with a purpose-ideas not generally accepted by evolutionary biologists. Other processes, such as burning fossil fuels and global deforestation, affect the global atmospheric composition.
C_{4} plants, by fixing CO_{2} under conditions when rubisco prefers O_{2} as substrate, also contributes to setting atmospheric $\mathrm{CO}_{2} / \mathrm{O}_{2}$ ratios.
9. (a) Without production of NADPH by the pentose phosphate pathway, cells would be unable to synthesize lipids and other reduced products. (b) Without generation of ribulose 1,5 -bisphosphate, the Calvin cycle is effectively blocked.
10. In maize, CO_{2} is fixed by the C_{4} pathway elucidated by Hatch and Slack, in which PEP is carboxylated rapidly to oxaloacetate (some of which undergoes transamination to aspartate) and reduced to malate. Only after subsequent decarboxylation does the CO_{2} enter the Calvin cycle.
11. Measure the rate of fixation of ${ }^{14} \mathrm{C}$ carbon dioxide in the light (daytime) and the dark. Greater fixation in the dark identifies the CAM plant. One could also determine the titratable acidity; acids stored in the vacuole during the night can be quantified in this way.
12. Isocitrate dehydrogenase reaction
13. Storage consumes 1 mol of ATP per mole of glucose 6-phosphate; this represents 3.3% of the total ATP available from glucose 6-phosphate metabolism (i.e., the efficiency of storage is 96.7\%).
14. $\left[\mathrm{PP}_{\mathrm{i}}\right]$ is high in the cytosol because the cytosol lacks inorganic pyrophosphatase.
15. (a) Low $\left[P_{i}\right]$ in the cytosol and high [triose phosphate] in the chloroplast (b) High [triose phosphate] in the cytosol
16. 3-Phosphoglycerate is the primary product of photosynthesis; $\left[\mathrm{P}_{\mathrm{i}}\right]$ rises when light-driven synthesis of ATP from ADP and P_{i} slows.
17. (a) Sucrose + (glucose $_{n} \rightarrow$ (glucose $_{n+1}+$ fructose (b) Fructose generated in the synthesis of dextran is readily imported and metabolized by the bacteria.
18. Species 1 is C_{4}; species $2, C_{3}$.
19. (a) In peripheral chloroplasts (b), (c) In central sphere
20. (a) By analogy to the oxygenic photosynthesis carried out by plants $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow\right.$ glucose $\left.+\mathrm{O}_{2}\right)$, the reaction would be $\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2}+\mathrm{CO}_{2} \rightarrow$ glucose $+\mathrm{H}_{2} \mathrm{O}+\mathrm{S}$. This is the sum of the reduction of CO_{2} by $\mathrm{H}_{2} \mathrm{~S}\left(\mathrm{H}_{2} \mathrm{~S}+\mathrm{CO}_{2} \rightarrow\right.$ glucose +S$)$ and the energy input $\left(\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}\right)$. (b) The $\mathrm{H}_{2} \mathrm{~S}$ and CO_{2} are produced chemically in deep-sea sediments, but the O_{2}, like the vast majority of O_{2} on Earth, is produced by photosynthesis, which is driven by light energy. (c) In the assay used by Robinson et al., ${ }^{3} \mathrm{H}$ labels the $\mathrm{C}-1$ of ribulose 1,5 -bisphosphate, so reaction with CO_{2} yields one molecule of $\left[{ }^{3} \mathrm{H}\right] 3$ phosphoglycerate and one molecule of unlabeled 3-phosphoglycerate; reaction with O_{2} produces one molecule of $\left[{ }^{3} \mathrm{H}\right] 2$-phosphoglycolate and one molecule of unlabeled 3-phosphoglycerate. Thus the ratio of $\left[{ }^{3} \mathrm{H}\right] 3$-phosphoglycerate to [$\left.{ }^{3} \mathrm{H}\right] 2$-phosphoglycolate equals the ratio of carboxylation to oxygenation. (d) If the ${ }^{3} \mathrm{H}$ labeled $\mathrm{C}-5$, both oxygenation and carboxylation would yield $\left[{ }^{3} \mathrm{H}\right] 3$-phosphoglycerate and it would be impossible to distinguish which reaction had produced the labeled product; the reaction could not be used to measure Ω.
(e) Substituting $\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{O}_{2}\right]}=\frac{0.00038}{0.2}=0.0019$ into

$$
\begin{aligned}
& \frac{V_{\text {carboxylation }}}{V_{\text {oxygenation }}}=\Omega \frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{O}_{2}\right]} \text { gives } \\
& \frac{V_{\text {carboxylation }}}{V_{\text {oxygenation }}}=(8.6)(0.0019)=0.016
\end{aligned}
$$

Therefore, the rate of oxygenation would be roughly 60 times the rate of carboxylation! (f) If terrestrial plants had $\Omega=8.6$, carboxylation would occur at a much lower rate than oxygenation. This would be extremely inefficient, so one would expect the rubisco of terrestrial plants to have an Ω substantially higher than 8.6 . In fact, Ω values for land plants vary between 10 and 250 . Even with these values, the expected rate of the oxygenation reaction is still very high. (g) The rubisco reaction occurs with CO_{2} as a gas. At the same
temperature, ${ }^{13} \mathrm{CO}_{2}$ molecules diffuse more slowly than the lighter ${ }^{12} \mathrm{CO}_{2}$ molecules, and thus ${ }^{13} \mathrm{CO}_{2}$ will enter the active site (and become incorporated into substrate) more slowly than ${ }^{12} \mathrm{CO}_{2}$. (h) For the relationship to be truly symbiotic, the tube worms must be getting a substantial amount of their carbon from the bacteria. The presence of rubisco in the endosymbionts simply shows that they are capable of chemosynthesis, not that they are supplying the host with a significant fraction of its carbon. On the other hand, showing that the ${ }^{13} \mathrm{C}:{ }^{12} \mathrm{C}$ ratio in the host is more similar to that in the endosymbiont than that in other marine animals strongly suggests that the tube worms are getting the majority of their carbon from the bacteria.

Chapter 21

1. (a) The 16 carbons of palmitate are derived from 8 acetyl groups of 8 acetyl-CoA molecules. The ${ }^{14} \mathrm{C}$-labeled acetyl-CoA gives rise to malonyl-CoA labeled at C-1 and C-2. (b) The metabolic pool of malonyl-CoA, the source of all palmitate carbons except C-16 and C-15, does not become labeled with small amounts of ${ }^{14} \mathrm{C}$-labeled acetyl-CoA. Hence, only $\left[15,16-{ }^{14} \mathrm{C}\right]$ palmitate is formed.
2. Both glucose and fructose are degraded to pyruvate in glycolysis. Pyruvate is converted to acetyl-CoA by the pyruvate dehydrogenase complex. Some of this acetyl-CoA enters the citric acid cycle, which produces reducing equivalents (NADH and NADPH). Mitochondrial electron transfer to O_{2} yields ATP.
3. 8 Acetyl-CoA $+15 \mathrm{ATP}+14 \mathrm{NADPH}+9 \mathrm{H}_{2} \mathrm{O} \rightarrow$ palmitate $+8 \mathrm{CoA}+15 \mathrm{ADP}+15 \mathrm{P}_{\mathrm{i}}+14 \mathrm{NADP}^{+}+2 \mathrm{H}^{+}$
4. (a) 3 deuteriums per palmitate; all located on C-16; all other two-carbon units are derived from unlabeled malonyl-CoA.
(b) 7 deuteriums per palmitate; located on all even-numbered carbons except C-16.
5. By using the three-carbon unit malonyl-CoA, the activated form of acetyl-CoA (recall that malonyl-CoA synthesis requires ATP), metabolism is driven in the direction of fatty acid synthesis by the exergonic release of CO_{2}.
6. The rate-limiting step in fatty acid synthesis is carboxylation of acetyl-CoA, catalyzed by acetyl-CoA carboxylase. High [citrate] and [isocitrate] indicate that conditions are favorable for fatty acid synthesis: an active citric acid cycle is providing a plentiful supply of ATP, reduced pyridine nucleotides, and acetyl-CoA. Citrate stimulates (increases the $V_{\max }$ of) acetylCoA carboxylase (a). Because citrate binds more tightly to the filamentous form of the enzyme (the active form), high [citrate] drives the protomer \rightleftharpoons filament equilibrium in the direction of the active form (b). In contrast, palmitoyl-CoA (the end product of fatty acid synthesis) drives the equilibrium in the direction of the inactive (protomer) form. Hence, when the end product of fatty acid synthesis accumulates, the biosynthetic path slows.
7. (a) Acetyl-CoA (mit) $^{\text {(atP }}+\mathrm{CoA}_{(\text {cyt })} \rightarrow$ acetyl- $\mathrm{CoA}_{(\text {cyt })}+\mathrm{ADP}+$ $\mathrm{P}_{\mathrm{i}}+\mathrm{CoA}_{\text {(mit) }}$ (b) 1 ATP per acetyl group (c) Yes
8. The double bond in palmitoleate is introduced by an oxidation catalyzed by fatty acyl-CoA desaturase, a mixed-function oxidase that requires O_{2} as a cosubstrate.
9. 3 Palmitate + glycerol $+7 \mathrm{ATP}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow$

$$
\text { tripalmitin }+7 \mathrm{ADP}+7 \mathrm{P}_{\mathrm{i}}+7 \mathrm{H}^{+}
$$

10. In adult rats, stored triacylglycerols are maintained at a steadystate level through a balance of the rates of degradation and biosynthesis. Hence, the triacylglycerols of adipose (fat) tissue are constantly turned over, which explains the incorporation of ${ }^{14} \mathrm{C}$ label from dietary glucose.
11. Net reaction:

Dihydroxyacetone phosphate $+\mathrm{NADH}+$ palmitate + oleate + $3 \mathrm{ATP}+\mathrm{CTP}+$ choline $+4 \mathrm{H}_{2} \mathrm{O} \rightarrow$ phosphatidylcholine $+\mathrm{NAD}^{+}+2 \mathrm{AMP}+\mathrm{ADP}+\mathrm{H}^{+}+\mathrm{CMP}+5 \mathrm{P}_{\mathrm{i}}$ 7ATP per molecule of phosphatidylcholine
12. Methionine deficiency reduces the level of adoMet, which is required for the de novo synthesis of phosphatidylcholine. The salvage pathway does not employ adoMet, but uses available choline. Thus phosphatidylcholine can be synthesized even when the diet is deficient in methionine, as long as choline is available.
13. ${ }^{14} \mathrm{C}$ label appears in three places in the activated isoprene:

14. (a) ATP (b) UDP-glucose (c) CDP-ethanolamine (d) UDPgalactose (e) fatty acyl-CoA (f) S-adenosylmethionine (g) malonyl-CoA (h) Δ^{3}-isopentenyl pyrophosphate
15. Linoleate is required in the synthesis of prostaglandins. Animals are unable to transform oleate to linoleate, so linoleate is an essential fatty acid. Plants can transform oleate to linoleate, and they provide animals with the required linoleate (see Fig. 21-12).
16. The rate-determining step in the biosynthesis of cholesterol is the synthesis of mevalonate, catalyzed by hydroxymethylglutaryl-CoA reductase. This enzyme is allosterically regulated by mevalonate and cholesterol derivatives. High intracellular [cholesterol] also reduces transcription of the gene encoding HMG-CoA reductase.
17. When cholesterol levels decline because of treatment with a statin, cells attempt to compensate by increasing expression of the gene encoding HMG-CoA reductase. The statins are good competitive inhibitors of HMG-CoA reductase activity nonetheless and reduce overall production of cholesterol.
18. Note: There are several plausible alternatives that a student might propose in the absence of a detailed knowledge of the literature on this enzyme. Thiolase reaction: Begins with nucleophilic attack of an active-site Cys residue on the first acetyl-CoA substrate, displacing -S-CoA and forming a covalent thioester link between Cys and the acetyl group. A base on the enzyme then extracts a proton from the methyl group of the second acetyl-CoA, leaving a carbanion that attacks the carbonyl carbon of the thioester formed in the first step. The sulfhydryl of the Cys residue is displaced, creating the product acetoacetyl-CoA. $H M G-C o A$ synthase reaction: Begins in the same way, with a covalent thioester link formed between the enzyme's Cys residue and the acetyl group of acetyl-CoA, with displacement of the -S-CoA. The -S-CoA dissociates as CoA-SH, and acetoacetyl-CoA binds to the enzyme. A proton is abstracted from the methyl group of the enzyme-linked acetyl, forming a carbanion that attacks the ketone carbonyl of the acetoacetyl-CoA substrate. The carbonyl is converted to a hydroxyl ion in this reaction, and this is protonated to create -OH . The thioester link with the enzyme is then cleaved hydrolytically to generate the HMG-CoA product. $H M G-C o A$ reductase reaction: Two successive hydride ions derived from NADPH first displace the -S-CoA, and then reduce the aldehyde to a hydroxyl group.
19. Statins inhibit HMG-CoA reductase, an enzyme in the pathway to the synthesis of activated isoprenes, which are precursors of cholesterol and a wide range of isoprenoids, including coenzyme Q (ubiquinone). Hence, statins might reduce the levels of coenzyme Q available for mitochondrial respiration. Ubiquinone is obtained in the diet as well as by direct biosynthesis, but it is not yet clear how much is required and how well dietary sources can substitute for reduced synthesis. Reductions in the levels of particular isoprenoids may account for some side effects of statins.

Astaxanthin
(b) Head-to-head. There are two ways to look at this. First, the "tail" of geranylgeranyl pyrophosphate has a branched dimethyl structure, as do both ends of phytoene. Second, no free -OH is formed by the release of PP_{i}, indicating that the two —O- (P)—P "heads" are linked to form phytoene. (c) Four rounds of dehydrogenation convert four single bonds to double bonds. (d) No. A count of single and double bonds in the reaction below shows that one double bond is replaced by two single bonds-so, there is no net oxidation or reduction:

(e) Steps 1 through (3. The enzyme can convert IPP and DMAP to geranylgeranyl pyrophosphate, but catalyzes no further reactions in the pathway, as confirmed by results with the other substrates. (f) Strains 1 through 4 lack $c r t E$ and have much lower astaxanthin production than strains 5 through 8, all of which overexpress $c r t E$. Thus, overexpression of $c r t E$ leads to a substantial increase in astaxanthin production. Wild-type E. coli has some step 3 activity, but this conversion of farnesyl pyrophosphate to geranylgeranyl pyrophosphate is strongly ratelimiting. (g) IPP isomerase. Comparing strains 5 and 6 shows that adding $i s p A$, which catalyzes steps 1 and 2, has little effect on astaxanthin production, so these steps are not rate-limiting. However, comparing strains 5 and 7 shows that adding $i d i$ substantially increases astaxanthin production, so IPP isomerase must be the rate-limiting step when $c r t E$ is overexpressed. (h) A low $(+)$ level, comparable to that of strains 5,6 , and 9 . Without overexpression of $i d i$, production of astaxanthin is limited by low IPP isomerase activity and the resulting limited supply of IPP.

Chapter 22

1. In their symbiotic relationship with the plant, bacteria supply ammonium ion by reducing atmospheric nitrogen, which requires large quantities of ATP.
2. The transfer of nitrogen from NH_{3} to carbon skeletons can be catalyzed by (1) glutamine synthetase and (2) glutamate dehydrogenase. The latter enzyme produces glutamate, the amino group donor in all transamination reactions, necessary to the formation of amino acids for protein synthesis.
3. A link between enzyme-bound PLP and the phosphohomoserine substrate is first formed, with rearrangement to generate the ketimine at the α carbon of the substrate. This activates the β carbon for proton abstraction, leading to displacement of the
phosphate and formation of a double bond between the β and γ carbons. A rearrangement (beginning with proton abstraction at the pyridoxal carbon adjacent to the substrate amino nitrogen) moves the double bond between the α and β carbons, and converts the ketimine to the aldimine form of PLP. Attack of water at the β carbon is then facilitated by the linked pyridoxal, followed by hydrolysis of the imine link between PLP and the product, to generate threonine.
4. In the mammalian route, toxic ammonium ions are transformed to glutamine, reducing toxic effects on the brain.
5. Glucose $+2 \mathrm{CO}_{2}+2 \mathrm{NH}_{3} \rightarrow 2$ aspartate $+2 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O}$
6. The amino-terminal glutaminase domain is quite similar in all glutamine amidotransferases. A drug that targeted this active site would probably inhibit many enzymes and thus be prone to producing many more side effects than a more specific inhibitor targeting the unique carboxyl-terminal synthetase active site.
7. If phenylalanine hydroxylase is defective, the biosynthetic route to tyrosine is blocked and tyrosine must be obtained from the diet.
8. In adoMet synthesis, triphosphate is released from ATP. Hydrolysis of the triphosphate renders the reaction thermodynamically more favorable.
9. If the inhibition of glutamine synthase were not concerted, saturating concentrations of histidine would shut down the enzyme and cut off production of glutamine, which the bacterium needs to synthesize other products.
10. Folic acid is a precursor of tetrahydrofolate (see Fig. 18-16), required in the biosynthesis of glycine (see Fig. 22-14), a precursor of porphyrins. A folic acid deficiency therefore impairs hemoglobin synthesis.
11. For glycine auxotrophs: adenine and guanine; for glutamine auxotrophs: adenine, guanine, and cytosine; for aspartate auxotrophs: adenine, guanine, cytosine, and uridine.
12. (a) See Fig. 18-6, step 2, for the reaction mechanism of amino acid racemization. The F atom of fluoroalanine is an excellent leaving group. Fluoroalanine causes irreversible (covalent) inhibition of alanine racemase. One plausible mechanism is (Nuc denotes any nucleophilic amino acid side chain in the enzyme active site):

(b) Azaserine (see Fig. 22-51) is an analog of glutamine. The diazoacetyl group is highly reactive and forms covalent bonds with nucleophiles at the active site of a glutamine amidotransferase.
13. (a) As shown in Fig. 18-16, p-aminobenzoate is a component of N^{5}, N^{10}-methylenetetrahydrofolate, the cofactor involved in the transfer of one-carbon units. (b) In the presence of sulfanilamide, a structural analog of p-aminobenzoate, bacteria are unable to synthesize tetrahydrofolate, a cofactor necessary for converting AICAR to FAICAR; thus AICAR accumulates.
(c) The competitive inhibition by sulfanilamide of the enzyme involved in tetrahydrofolate biosynthesis is overcome by the addition of excess substrate (p-aminobenzoate).
14. The ${ }^{14} \mathrm{C}$-labeled orotate arises from the following pathway (the first three steps are part of the citric acid cycle):

15. Organisms do not store nucleotides to be used as fuel, and they do not completely degrade them, but rather hydrolyze them to release the bases, which can be recovered in salvage pathways. The low C:N ratio of nucleotides makes them poor sources of energy.
16. Treatment with allopurinol has two consequences. (1) It inhibits conversion of hypoxanthine to uric acid, causing accumulation of hypoxanthine, which is more soluble and more readily excreted; this alleviates the clinical problems associated with AMP degradation. (2) It inhibits conversion of guanine to uric acid, causing accumulation of xanthine, which is less soluble than uric acid; this is the source of xanthine stones. Because the amount of GMP degradation is low relative to AMP degradation, the kidney damage caused by xanthine stones is less than that caused by untreated gout.
17. 5-Phosphoribosyl-1-pyrophosphate; this is the first NH_{3} acceptor in the purine biosynthetic pathway.
18. (a) The α-carboxyl group is removed and an -OH is added to the γ carbon. (b) BtrI has sequence homology with acyl carrier proteins. The molecular weight of BtrI increases when incubated under conditions in which CoA could be added to the protein. Adding CoA to a Ser residue would replace an - OH (formula weight (FW) 17) with a 4^{\prime}-phosphopantetheine group (see Fig. 21-5). This group has the formula $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PS}$ (FW 356).
Thus, $11,182-17+356=12,151$, which is very close to the observed M_{r} of 12,153 . (c) The thioester could form with the α-carboxyl group. (d) In the most common reaction for removing the α-carboxyl group of an amino acid (see Fig. 18-6c), the carboxyl group must be free. Furthermore, it is difficult to imagine a decarboxylation reaction starting with a carboxyl group in its thioester form. (e) $12,240-12,281=41$, close to the M_{r} of CO_{2} (44). Given that BtrK is probably a decarboxylase, its most likely structure is the decarboxylated form:

(f) $12,370-12,240=130$. Glutamic acid $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4} ; M_{\mathrm{r}} 147\right)$, minus the - OH (FW 17) removed in the glutamylation reaction, leaves a glutamyl group of FW 130; thus, γ-glutamylating the molecule above would add 130 to its M_{r}. BtrJ is capable of γ-glutamylating other substrates, so it may γ-glutamylate the structure above. The most likely site for this is the free amino group, giving the following structure:

(g)

Chapter 23

1. They are recognized by two different receptors, typically found in different cell types, and are coupled to different downstream effects.
2. Steady-state levels of ATP are maintained by phosphoryl group transfer to ADP from phosphocreatine. 1-Fluoro-2,4dinitrobenzene inhibits creatine kinase.
3. Ammonia is very toxic to nervous tissue, especially the brain. Excess NH_{3} is removed by transformation of glutamate to glutamine, which travels to the liver and is subsequently transformed to urea. The additional glutamine arises from the transformation of glucose to α-ketoglutarate, transamination of α-ketoglutarate to glutamate, and conversion of glutamate to glutamine.
4. Glucogenic amino acids are used to make glucose for the brain; others are oxidized in mitochondria via the citric acid cycle.
5. From glucose, by the following route: Glucose \rightarrow dihydroxyacetone phosphate (in glycolysis); dihydroxyacetone phosphate $+\mathrm{NADH}+$ $\mathrm{H}^{+} \rightarrow$ glycerol 3-phosphate $+\mathrm{NAD}^{+}$(glycerol 3-phosphate dehydrogenase reaction)
6. (a) Increased muscular activity increases the demand for ATP, which is met by increased O_{2} consumption. (b) After the sprint, lactate produced by anaerobic glycolysis is converted to glucose and glycogen, which requires ATP and therefore O_{2}.
7. Glucose is the primary fuel of the brain. TPP-dependent oxidative decarboxylation of pyruvate to acetyl-CoA is essential to complete glucose metabolism.
8. 190 m
9. (a) Inactivation provides a rapid means to change hormone concentrations. (b) Insulin level is maintained by equal rates of synthesis and degradation. (c) Changes in the rate of release from storage, rate of transport, and rate of conversion from prohormone to active hormone.
10. Water-soluble hormones bind to receptors on the outer surface of the cell, triggering the formation of a second messenger (e.g., cAMP) inside the cell. Lipid-soluble hormones can pass through the plasma membrane to act on target molecules or receptors directly.
11. (a) Heart and skeletal muscle lack glucose 6-phosphatase. Any glucose 6-phosphate produced enters the glycolytic pathway, and under O_{2}-deficient conditions is converted to lactate via pyruvate. (b) In a "fight or flight" situation, the concentration of glycolytic precursors must be high in preparation for muscular
activity. Phosphorylated intermediates cannot escape from the cell, because the membrane is not permeable to charged species, and glucose 6-phosphate is not exported on the glucose transporter. The liver, by contrast, must release the glucose necessary to maintain blood glucose level; glucose is formed from glucose 6-phosphate and enters the bloodstream.
12. (a) Excessive uptake and use of blood glucose by the liver, leading to hypoglycemia; shutdown of amino acid and fatty acid catabolism (b) Little circulating fuel is available for ATP requirements. Brain damage results because glucose is the main source of fuel for the brain.
13. Thyroxine acts as an uncoupler of oxidative phosphorylation. Uncouplers lower the P/O ratio, and the tissue must increase respiration to meet the normal ATP demands. Thermogenesis could also be due to the increased rate of ATP utilization by the thyroid-stimulated tissue, as increased ATP demands are met by increased oxidative phosphorylation and thus respiration.
14. Because prohormones are inactive, they can be stored in quantity in secretory granules. Rapid activation is achieved by enzymatic cleavage in response to an appropriate signal
15. In animals, glucose can be synthesized from many precursors (see Fig. 14-16). In humans, the principal precursors are glycerol from triacylglycerols and glucogenic amino acids from protein
16. The ob/ob mouse, which is initially obese, will lose weight. The $O B / O B$ mouse will retain its normal body weight
17. $\mathrm{BMI}=39.3$. For BMI of 25 , weight must be 75 kg ; must lose $43 \mathrm{~kg}=95 \mathrm{lbs}$.
18. Reduced insulin secretion. Valinomycin has the same effect as opening the K^{+}channel, allowing K^{+}exit and consequent hyperpolarization.
19. The liver does not receive the insulin message and therefore continues to have high levels of glucose 6-phosphatase and gluconeogenesis, increasing blood glucose both during a fast and after a glucose-containing meal. The elevated blood glucose triggers insulin release from pancreatic β cells, hence the high level of insulin in the blood.
20. Some things to consider: What is the frequency of heart attack attributable to the drug? How does this frequency compare with the number of individuals spared the long-term consequences of type 2 diabetes? Are other, equally effective treatment options with fewer adverse effects available?
21. Without intestinal glucosidase activity, absorption of glucose from dietary glycogen and starch is reduced, blunting the usual rise in blood glucose after the meal. The undigested oligosaccharides are fermented by bacteria in the large intestine, and the gases released cause intestinal discomfort.
22. (a) Closing the ATP-gated K^{+}channel would depolarize the membrane, leading to increased insulin release. (b) Type 2 diabetes results from decreased sensitivity to insulin, not a deficit of insulin production; increasing circulating insulin levels will reduce the symptoms associated with this disease.
(c) Individuals with type 1 diabetes have deficient pancreatic β cells, so glyburide will have no beneficial effect. (d) Iodine, like chlorine (the atom it replaces in the labeled glyburide), is a halogen, but it is a larger atom and has slightly different chemical properties. It is possible that the iodinated glyburide would not bind to SUR. If it bound to another molecule instead, the experiment would result in cloning of the gene for this other, incorrect protein. (e) Although a protein has been "purified," the "purified" preparation might be a mixture of several proteins that co-purify under those experimental conditions. In this case, the amino acid sequence could be that of a protein that co-purifies with SUR. Using antibody binding to show that the peptide sequences are present in SUR excludes this possibility
(f) Although the cloned gene does encode the 25 amino acid sequence found in SUR, it could be a gene that, coincidentally, encodes the same sequence in another protein. In this case, this
other gene would most likely be expressed in different cells than the SUR gene. The mRNA hybridization results are consistent with the putative $S U R$ cDNA actually encoding SUR. (g) The excess unlabeled glyburide competes with labeled glyburide for the binding site on SUR. As a result, there is significantly less binding of labeled glyburide, so little or no radioactivity is detected in the 140 kDa protein. (h) In the absence of excess unlabeled glyburide, labeled 140 kDa protein is found only in the presence of the putative $S U R$ cDNA. Excess unlabeled glyburide competes with the labeled glyburide, and no ${ }^{125}$ I-labeled 140 kDa protein is detected. This shows that the cDNA produces a glyburide-binding protein of the same molecular weight as SURstrong evidence that the cloned gene encodes the SUR protein. (i) Several additional steps are possible, such as: (1) Express the putative SUR cDNA in CHO (Chinese hamster ovary) cells and show that the transformed cells have ATP-gated K^{+}channel activity. (2) Show that HIT cells with mutations in the putative $S U R$ gene lack ATP-gated K^{+}channel activity. (3) Show that experimental animals or human patients with mutations in the putative $S U R$ gene are unable to secrete insulin.

Chapter 24

1. $6.1 \times 10^{4} \mathrm{~nm} ; 290$ times longer than the T 2 phage head
2. The number of A residues does not equal the number of T residues, nor does the number of G equal the number of C , so the DNA is not a base-paired double helix; the M13 DNA is single-stranded.
3. $M_{\mathrm{r}}=3.8 \times 10^{8}$; length $=200 \mu \mathrm{~m} ; L k_{0}=55,200 ; L k=51,900$
4. The exons contain $3 \mathrm{bp} /$ amino acid $\times 192$ amino acids $=576 \mathrm{bp}$. The remaining 864 bp are in introns, possibly in a leader or signal sequence, and/or in other noncoding DNA.
5. 5,000 bp. (a) Doesn't change; $L k$ cannot change without breaking and re-forming the covalent backbone of the DNA. (b) Becomes undefined; a circular DNA with a break in one strand has, by definition, no $L k$. (c) Decreases; in the presence of ATP, gyrase underwinds DNA. (d) Doesn't change; this assumes that neither of the DNA strands is broken in the heating process.
6. For $L k$ to remain unchanged, the topoisomerase must introduce the same number of positive and negative supercoils.
7. $\sigma=-0.067 ;>70 \%$ probability
8. (a) Undefined; the strands of a nicked DNA could be separated and thus have no $L k$. (b) 476 (c) 476 ; the DNA is already relaxed, so the topoisomerase does not cause a net change. (d) 460; gyrase plus ATP reduces the $L k$ in increments of 2. (e) 464; eukaryotic type I topoisomerases increase the $L k$ of underwound or negatively supercoiled DNA in increments of 1 . (f) 460; nucleosome binding does not break any DNA strands and thus cannot change $L k$.
9. A fundamental structural unit in chromatin repeats about every 200 bp ; the DNA is accessible to the nuclease only at 200 bp intervals. The brief treatment was insufficient to cleave the DNA at every accessible point, so a ladder of DNA bands is created in which the DNA fragments are multiples of 200 bp . The thickness of the DNA bands suggests that the distance between cleavage sites varies somewhat. For instance, not all the fragments in the lowest band are exactly 200 bp long.
10. A right-handed helix has a positive $L k$; a left-handed helix (such as Z-DNA) has a negative $L k$. Decreasing the $L k$ of a closed circular B-DNA by underwinding it facilitates formation of regions of Z-DNA within certain sequences. (See Chapter 8, p. 291, for a description of sequences that permit the formation of Z-DNA.)
11. (a) Both strands must be covalently closed, and the molecule must be either circular or constrained at both ends. (b) Formation of cruciforms, left-handed Z-DNA, plectonemic or solenoidal supercoils, and unwinding of the DNA are favored. (c) E. coli DNA topoisomerase II or DNA gyrase. (d) It binds the DNA at a point where it crosses on itself, cleaves both strands of one of the crossing segments, passes the other segment through the break, then reseals the break. The result is a change in $L k$ of -2 .
12. Centromere, telomeres, and an autonomous replicating sequence or replication origin
13. The bacterial nucleoid is organized into domains approximately 10,000 bp long. Cleavage by a restriction enzyme relaxes the DNA within a domain, but not outside the domain. Any gene in the cleaved domain for which expression is affected by DNA topology will be affected by the cleavage; genes outside the domain will not.
14. (a) The lower, faster-migrating band is negatively supercoiled plasmid DNA. The upper band is nicked, relaxed DNA. (b) DNA topoisomerase I relaxes the supercoiled DNA. The lower band will disappear, and all of the DNA will converge on the upper band. (c) DNA ligase produces little change in the pattern. Some minor additional bands may appear near the upper band, due to the trapping of topoisomers not quite perfectly relaxed by the ligation reaction. (d) The upper band will disappear, and all of the DNA will be in the lower band. The supercoiled DNA in the lower band may become even more supercoiled and migrate somewhat faster.
15. (a) When DNA ends are sealed to create a relaxed, closed circle, some DNA species are completely relaxed but others are trapped in slightly under- or overwound states. This gives rise to a distribution of topoisomers centered on the most relaxed species. (b) Positively supercoiled. (c) The DNA that is relaxed despite the addition of dye is DNA with one or both strands broken. DNA isolation procedures inevitably introduce small numbers of strand breaks in some of the closed-circular molecules. (d) Approximately -0.05 . This is determined by simply comparing native DNA with samples of known σ. In both gels, the native DNA migrates most closely with the sample of $\sigma=-0.049$.
16. 62 million (the genome refers to the haploid genetic content of the cell; the cell is actually diploid, so the number of nucleosomes is doubled). The number comes from 3.1 billion base pairs divided by 200 base pairs per nucleosome (giving 15.5 million nucleosomes), multiplied by two copies of H2A per nucleosome and again multiplied by 2 to account for the diploid state of the cell. The 62 million would double upon replication.
17. (a) In nondisjunction, one daughter cell and all of its descendants get two copies of the synthetic chromosome and are white; the other daughter cell and all of its descendants get no copies of the synthetic chromosome and are red. This gives rise to a half-white, half-red colony. (b) In chromosome loss, one daughter cell and all of its descendants get one copy of the synthetic chromosome and are pink; the other daughter and all its descendants get no copies of the synthetic chromosome and are red. This gives rise to a half-pink, half-red colony. (c) The minimum functional centromere must be smaller than 0.63 kbp , since all fragments of this size or larger confer relative mitotic stability. (d) Telomeres are required to fully replicate only linear DNA; a circular molecule can replicate without them. (e) The larger the chromosome, the more faithfully it is segregated. The data show neither a minimum size below which the synthetic chromosome is completely unstable, nor a maximum size above which stability no longer changes.
(f)

As shown in the graph, even if the synthetic chromosomes were as long as the normal yeast chromosomes, they would not be as
stable. This suggests that other, as yet undiscovered, elements are required for stability.

Chapter 25

1. In random, dispersive replication, in the second generation, all the DNAs would have the same density and would appear as a single band, not the two bands observed in the Meselson-Stahl experiment.
2. In this extension of the Meselson-Stahl experiment, after three generations the molar ratio of ${ }^{15} \mathrm{~N}-{ }^{14} \mathrm{~N}$ DNA to ${ }^{14} \mathrm{~N}-{ }^{14} \mathrm{~N}$ DNA is $2 / 6=0.33$.
3. (a) 4.42×10^{5} turns; (b) 40 min . In cells dividing every 20 min , a replicative cycle is initiated every 20 min , each cycle beginning before the prior one is complete. (c) 2,000 to 5,000 Okazaki fragments. The fragments are 1,000 to 2,000 nucleotides long and are firmly bound to the template strand by base pairing. Each fragment is quickly joined to the lagging strand, thus preserving the correct order of the fragments.
4. A 28.7%; G 21.3%; C 21.3%; T 28.7%. The DNA strand made from the template strand: A 32.7\%; G 18.5\%; C 24.1\%; T 24.7\%; the DNA strand made from the complementary template strand: A 24.7%; G 24.1%; C 18.5%; T 32.7%. It is assumed that the two template strands are replicated completely.
5. (a) No. Incorporation of ${ }^{32} \mathrm{P}$ into DNA results from the synthesis of new DNA, which requires the presence of all four nucleotide precursors. (b) Yes. Although all four nucleotide precursors must be present for DNA synthesis, only one of them has to be radioactive in order for radioactivity to appear in the new DNA. (c) No. Radioactivity is incorporated only if the ${ }^{32} \mathrm{P}$ label is in the α phosphate; DNA polymerase cleaves off pyrophosphate-i.e., the β - and γ-phosphate groups.
6. Mechanism 1: 3'-OH of an incoming dNTP attacks the α phosphate of the triphosphate at the 5^{\prime} end of the growing DNA strand, displacing pyrophosphate. This mechanism uses normal dNTPs, and the growing end of the DNA always has a triphosphate on the 5^{\prime} end.

Mechanism 2. This uses a new type of precursor, nucleotide 3'triphosphates. The growing end of the DNA strand has a $5^{\prime}-\mathrm{OH}$, which attacks the α phosphate of an incoming deoxynucleotide

3'-triphosphate, displacing pyrophosphate. Note that this mechanism would require the evolution of new metabolic pathways to supply the needed deoxynucleotide 3 '-triphosphates.

7. The DNA polymerase contains a $3^{\prime} \rightarrow 5^{\prime}$ exonuclease activity that degrades DNA to produce $\left[{ }^{32} \mathrm{P}\right]$ dNMPs. The activity is not a $5^{\prime} \rightarrow 3^{\prime}$ exonuclease, because the addition of unlabeled dNTPs inhibits the production of $\left[{ }^{32} \mathrm{P}\right]$ dNMPs (polymerization activity would suppress a proofreading exonuclease but not an exonuclease operating downstream of the polymerase). Addition of pyrophosphate would generate $\left[{ }^{32} \mathrm{P}\right]$ dNTPs through reversal of the polymerase reaction.
8. Leading strand: Precursors: dATP, dGTP, dCTP, dTTP (also needs a template DNA strand and DNA primer); enzymes and other proteins: DNA gyrase, helicase, single-stranded DNAbinding protein, DNA polymerase III, topoisomerases, and pyrophosphatase. Lagging strand: Precursors: ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, dTTP (also needs an RNA primer); enzymes and other proteins: DNA gyrase, helicase, single-stranded DNA-binding protein, primase, DNA polymerase III, DNA polymerase I, DNA ligase, topoisomerases, and pyrophosphatase. NAD^{+}is also required as a cofactor for DNA ligase.
9. Mutants with defective DNA ligase produce a DNA duplex in which one of the strands remains in pieces (as Okazaki fragments). When this duplex is denatured, sedimentation results in one fraction containing the intact single strand (the high molecular weight band) and one fraction containing the unspliced fragments (the low molecular weight band).
10. Watson-Crick base pairing between template and leading strand; proofreading and removal of wrongly inserted nucleotides by the 3'-exonuclease activity of DNA polymerase III. Yes-perhaps. Because the factors ensuring fidelity of replication are operative in both the leading and the lagging strands, the lagging strand would probably be made with the same fidelity. However, the greater number of distinct chemical operations involved in making the lagging strand might provide a greater opportunity for errors to arise.
11. $\sim 1,200 \mathrm{bp}$ (600 in each direction)
12. A small fraction (13 of 10^{9} cells) of the histidine-requiring mutants spontaneously undergo back-mutation and regain their capacity to synthesize histidine. 2-Aminoanthracene increases
the rate of back-mutations about 1,800-fold and is therefore mutagenic. Since most carcinogens are mutagenic, 2 -aminoanthracene is probably carcinogenic.
13. Spontaneous deamination of 5-methylcytosine (see Fig. 8-30) produces thymine, and thus a G-T mismatched pair. These are among the most common mismatches in the DNA of eukaryotes. The specialized repair system restores the $G \equiv C$ pair.
14. (a) Ultraviolet irradiation produces pyrimidine dimers; in normal fibroblasts these are excised by cleavage of the damaged strand by a special excinuclease. Thus the denatured singlestranded DNA contains the many fragments caused by the cleavage, and the average molecular weight is lowered. These fragments of single-stranded DNA are absent from the XPG samples, as indicated by the unchanged average molecular weight. (b) The absence of fragments in the single-stranded DNA from the XPG cells after irradiation suggests the special excinuclease is defective or missing.
15. During homologous genetic recombination, a Holliday intermediate may be formed almost anywhere within the two paired, homologous chromosomes; the branch point of the intermediate can move extensively by branch migration. In sitespecific recombination, the Holliday intermediate is formed between two specific sites, and branch migration is generally restricted by heterologous sequences on either side of the recombination sites.
16. (a) Points Y. (b) Points X.
17. Once replication has proceeded from the origin to a point where one recombination site has been replicated but the other has not, site-specific recombination not only inverts the DNA between the recombination sites but also changes the direction of one replication fork relative to the other. The forks will chase each other around the DNA circle, generating many tandem copies of the plasmid. The multimeric circle can be resolved to monomers by additional site-specific recombination events.

18. (a) Even in the absence of an added mutagen, background mutations occur due to radiation, cellular chemical reactions, and so forth. (b) If the DNA is sufficiently damaged, a substantial fraction of gene products are nonfunctional and the cell is nonviable. (c) Cells with reduced DNA repair capability are more sensitive to mutagens. Because they less readily repair lesions caused by R7000, uvr $^{-}$bacteria have an increased mutation rate and increased chance of lethal effects. (d) In the uvr^{+}strain, the excision-repair system removes DNA bases with attached $\left[{ }^{3} \mathrm{H}\right] R 7000$, decreasing the ${ }^{3} \mathrm{H}$ in these cells over time.

In the uvr^{-}strain, the DNA is not repaired and the ${ }^{3} \mathrm{H}$ level increases as $\left[{ }^{3} \mathrm{H}\right] R 7000$ continues to react with the DNA. (e) All mutations listed in the table except $\mathrm{A}=\mathrm{T}$ to $\mathrm{G} \equiv \mathrm{C}$ show significant increases over background. Each type of mutation results from a different type of interaction between R7000 and DNA. Because different types of interactions are not equally likely (due to differences in reactivity, steric constraints, etc.), the resulting mutations occur with different frequencies. (f) No. Only those that start with a $\mathrm{G} \equiv \mathrm{C}$ base pair are explained by this model. Thus $\mathrm{A}=\mathrm{T}$ to $\mathrm{C} \equiv \mathrm{G}$ and $\mathrm{A}=\mathrm{T}$ to $\mathrm{T}=\mathrm{A}$ must be due to R7000 attaching to an A or a T. (g) R7000-G pairs with A. First, R7000 adds to $\mathrm{G} \equiv \mathrm{C}$ to give R7000-G $\equiv \mathrm{C}$. (Compare this with what happens with the CH_{3}-G in Fig. 25-27b.) If this is not repaired, one strand is replicated as $\mathrm{R} 7000-\mathrm{G}=\mathrm{A}$, which is repaired to $\mathrm{T}=\mathrm{A}$. The other strand is wild-type. If the replication produces $\mathrm{R} 7000-\mathrm{G}=\mathrm{T}$, a similar pathway leads to an $A=T$ base pair. (h) No. Compare data in the two tables, and keep in mind that different mutations occur at different frequencies.
$A=T$ to $C \equiv G$: moderate in both strains; but better repair in the uvr $^{+}$strain
$\mathrm{G} \equiv \mathrm{C}$ to $\mathrm{A}=\mathrm{T}$: moderate in both; no real difference
$\mathrm{G} \equiv \mathrm{C}$ to $\mathrm{C}=\mathrm{G}$: higher in uvr ${ }^{+}$; certainly less repair!
$\mathrm{G} \equiv \mathrm{C}$ to $\mathrm{T}=\mathrm{A}$: high in both; no real difference
$\mathrm{A}=\mathrm{T}$ to $\mathrm{T}=\mathrm{A}$: high in both; no real difference
$\mathrm{A}=\mathrm{T}$ to $\mathrm{G} \equiv \mathrm{C}$: low in both; no real difference
Certain adducts may be more readily recognized by the repair apparatus than others and thus are repaired more rapidly and result in fewer mutations.

Chapter 26

1. (a) 60 to 100 s ; (b) 500 to 900 nucleotides
2. A single base error in DNA replication, if not corrected, would cause one of the two daughter cells, and all its progeny, to have a mutated chromosome. A single base error in RNA transcription would not affect the chromosome; it would lead to formation of some defective copies of one protein, but because mRNAs turn over rapidly, most copies of the protein would not be defective. The progeny of this cell would be normal.
3. Normal posttranscriptional processing at the 3^{\prime} end (cleavage and polyadenylation) would be inhibited or blocked.
4. Because the template-strand RNA does not encode the enzymes needed to initiate viral infection, it would probably be inert or simply degraded by cellular ribonucleases. Replication of the template-strand RNA and propagation of the virus could occur only if intact RNA replicase (RNA-dependent RNA polymerase) were introduced into the cell along with the template strand.

5. AUGACCAUGAUUACG

6. (1) Use of a template strand of nucleic acid; (2) synthesis in the $5^{\prime} \rightarrow 3^{\prime}$ direction; (3) use of nucleoside triphosphate substrates, with formation of a phosphodiester bond and displacement of PP_{i}. Polynucleotide phosphorylase forms phosphodiester bonds but differs in all other listed properties.
7. Generally two: one to cleave the phosphodiester bond at one intron-exon junction, the other to link the resulting free exon end to the exon at the other end of the intron. If the nucleophile in the first step were water, this step would be a hydrolytic event and only one transesterification step would be required to complete the splicing process.
8. Many snoRNAs, required for rRNA modification reactions, are encoded in introns. If splicing does not occur, snoRNAs are not produced.
9. These enzymes lack a $3^{\prime} \rightarrow 5^{\prime}$ proofreading exonuclease and have a high error rate; the likelihood of a replication error that would inactivate the virus is much less in a small genome than in a large one.
10. (a) $4^{32}=1.8 \times 10^{19}$ (b) 0.006% (c) For the "unnatural selection" step, use a chromatographic resin with a bound molecule that is a transition-state analog of the ester hydrolysis reaction.
11. Though RNA synthesis is quickly halted by α-amanitin toxin, it takes several days for the critical mRNAs and the proteins in the liver to degrade, causing liver dysfunction and death.
12. (a) After lysis of the cells and partial purification of the contents, the protein extract could be subjected to isoelectric focusing. The β subunit could be detected by an antibody-based assay. The difference in amino acid residues between the normal β subunit and the mutated form (i.e., the different charges on the amino acids) would alter the electrophoretic mobility of the mutant protein in an isoelectric focusing gel, relative to the protein from a nonresistant strain. (b) Direct DNA sequencing (by the Sanger method).
13. (a) 384 nucleotide pairs (b) 1,620 nucleotide pairs (c) Most of the nucleotides are untranslated regions at the 3^{\prime} and 5^{\prime} ends of the mRNA. Also, most mRNAs code for a signal sequence (Chapter 27) in their protein products, which is eventually cleaved off to produce the mature and functional protein.
14. (a) cDNA is produced by reverse transcription of mRNA; thus, the mRNA sequence is probably CGG. Because the genomic DNA transcribed to make the mRNA has the sequence CAG, the primary transcript most likely has CAG, which is posttranscriptionally modified to CGG. (b) The unedited mRNA sequence is the same as that of the DNA (except for U replacing T). Unedited mRNA has the sequence (* indicates site of editing)
(5^{\prime}) - - - GUCUCUGGUUUUCCUUGGGUGCCUUUAUGCÁGCAAGGAUGCGAUAUUUCGCCAAG - - - (3')
In step 1 , primer 1 anneals as shown:
(5^{\prime}) - - - GUCUCUGGUUUUCCUUGGGUGCCUUUAUGCAGCAAGGAUGCGAUAUUUCGCCAAG--- (3')
| |||||||||||||||||||||
Primer 1: (3')CGTTCCTACGCTATAAAGCGGTTC (5')
cDNA (underlined) is synthesized from right to left:
(5^{\prime}) - - - GUCUCUGGUUUUCCUUGGGUGCCUUUAUGCA*GCAAGGAUGCGAUAUUUCGCCAAG - - - (3')

(3^{\prime}) - - CAGAGACCAAAAGGAACCCACGGAAATACGTCGTTCCTACGCTATAAAGCGGTTC(5^{\prime})
Then step 2 yields just the cDNA:
(3^{\prime}) - - - CAGAGACCAAAAGGAACCCACGGAAATACGTCGTTCCTACGCTATAAAGCGGTTC(5')
In step 3, primer 2 anneals to the cDNA:
Primer 2: (5')CCTTGGGTGCCTTTA(3')
| ||||||||||||
(3^{\prime}) - - - CAGAGACCAAAAGGAACCCACGGAAATACGTCGTTCCTACGCTATAAAGCGGTTC (5')
DNA polymerase adds nucleotides to the 3^{\prime} end of this primer. Moving from left to right, it inserts T, G, C, and A. However, because the A from ddATP lacks the $3^{\prime}-\mathrm{OH}$ needed to attach the next nucleotide, the chain is not elongated past this point. This A is shown in italic; the new DNA is underlined:

Primer 2: (5')CCTTGGGTGCCTTTATGCA
|।|।|।|।|।|।|||||
(3^{\prime}) - - - CAGAGACCAAAAGGAACCCACGGAAATACGTCGTTCCTACGCTATAAAGCGGTTC(5')
*
This yields a 19 nucleotide fragment for the unedited transcript. In the edited transcript, the *A is changed to G; in the cDNA this corresponds to C. At the start of step 3:

Primer 2: (5^{\prime})CCTTGGGTGCCTTTA(3')
|||||||||||||
(3') -- - CAGAGACCAAAAGGAACCCACGGAAATACGCCGTTCCTACGCTATAAAGCGGTTC(5')
In this case, DNA polymerase can elongate past the edited base and will stop at the next T in the cDNA. The dideoxy A is italic; the new DNA is underlined:

Primer 2: (5^{\prime})CCTTGGGTGCCTTTATGCGGCA
| | | | | | | | | | | | | ||||||||
(3^{\prime}) - - - CAGAGACCAAAAGGAACCCACGGAAATACGCCGTTCCTACGCTATAAAGCGGTTC(5')

This gives the 22 nucleotide product. (c) Treatments (proteases, heat) known to disrupt protein function inhibit the editing activity, whereas treatments (nuclease) that do not affect proteins have little or no effect on editing. A key weakness of this argument is that the protein-disrupting treatments do not completely abolish editing. There could be some background editing or degradation of the mRNA even without the enzyme, or some of the enzyme might survive the treatments. (d) Only the α phosphate of NTPs is incorporated into polynucleotides. If the researchers had used the other
types of $\left[{ }^{32} \mathrm{P}\right]$ NTPs, none of the products would have been labeled. (e) Because only an A is being edited, only the fate of any A in the sequence is of interest. (f) Given that only ATP was labeled, if the entire nucleotide were removed, all radioactivity would have been removed from the mRNA, so only unmodified [${ }^{32} \mathrm{P}$]AMP would be present on the chromatography plate. (g) If the base were removed and replaced, one would expect to see only $\left[{ }^{3} \mathrm{H}\right]$ AMP. The presence of $\left[{ }^{3} \mathrm{H}\right]$ IMP indicates that the A to I change occurs without removal of H at positions 2 and 8 . The most likely mechanism
is chemical modification of A to I by hydrolytic deamination (see Fig. 22-36). (h) CAG is changed to CIG. This codon is read as CGG.

Chapter 27

1. (a) Gly-Gln-Ser-Leu-Leu-Ile (b) Leu-Asp-Ala-Pro (c) His-Asp-Ala-Cys-Cys-Tyr (d) Met-Asp-Glu in eukaryotes; fMet-Asp-Glu in bacteria
2. UUAAUGUAU, UUGAUGUAU, CUUAUGUAU, CUCAUGUAU, CUAAUGUAU, CUGAUGUAU, UUAAUGUAC, UUGAUGUAC, CUUAUGUAC, CUCAUGUAC, CUAAUGUAC, CUGAUGUAC
3. No. Because nearly all the amino acids have more than one codon (e.g., Leu has six), any given polypeptide can be coded for by a number of different base sequences. However, some amino acids are encoded by only one codon and those with multiple codons often share the same nucleotide at two of the three positions, so certain parts of the mRNA sequence encoding a protein of known amino acid sequence can be predicted with high certainty.
4. (a) (5^{\prime})CGACGGCGCGAAGUCAGGGGUGUUAAG(3')
(b) Arg-Arg-Arg-Glu-Val-Arg-Gly-Val-Lys
(c) No. The complementary antiparallel strands in doublehelical DNA do not have the same base sequence in the $5^{\prime} \rightarrow 3^{\prime}$ direction. RNA is transcribed from only one specific strand of duplex DNA. The RNA polymerase must therefore recognize and bind to the correct strand.
5. There are two tRNAs for methionine: $\mathrm{tRNA}^{\mathrm{fMet}}$, which is the initiating tRNA, and tRNA ${ }^{\text {Met }}$, which can insert a Met residue in interior positions in a polypeptide. Only fMet-tRNA ${ }^{\text {fMet }}$ is recognized by the initiation factor IF-2 and is aligned with the initiating AUG positioned at the ribosomal P site in the initiation complex. AUG codons in the interior of the mRNA can bind and incorporate only Met-tRNA ${ }^{\text {Met }}$.
6. Allow polynucleotide phosphorylase to act on a mixture of UDP and CDP in which UDP has, say, five times the concentration of CDP. The result would be a synthetic RNA polymer with many UUU triplets (coding for Phe), a smaller number of UUC (Phe), UCU (Ser), and CUU (Leu), a much smaller number of UCC (Ser), CUC (Leu), and CCU (Pro), and the smallest number of CCC (Pro).
7. A minimum of 583 ATP equivalents (based on 4 per amino acid residue added, except that there are only 145 translocation steps). Correction of each error requires 2 ATP equivalents. For glycogen synthesis, 292 ATP equivalents. The extra energy cost for β-globin synthesis reflects the cost of the information content of the protein. At least 20 activating enzymes, 70 ribosomal proteins, 4 rRNAs, 32 or more tRNAs, an mRNA, and 10 or more auxiliary enzymes must be made by the eukaryotic cell in order to synthesize a protein from amino acids. The synthesis of an $(\alpha 1 \rightarrow 4)$ chain of glycogen from glucose requires only 4 or 5 enzymes (Chapter 15).
8.

Glycine codons	Anticodons
$\left(5^{\prime}\right) \mathrm{GGU}$	$\left(5^{\prime}\right) \mathrm{ACC}, \mathrm{GCC}$, ICC
$\left(5^{\prime}\right) \mathrm{GGC}$	$\left(5^{\prime}\right) \mathrm{GCC}$, ICC
$\left(5^{\prime}\right) \mathrm{GGA}$	$\left(5^{\prime}\right) \mathrm{UCC}$, ICC
$\left(5^{\prime}\right)$ GGG	$\left(5^{\prime}\right) \mathrm{CCC}$, UCC

(a) The 3^{\prime} and middle position (b) Pairings with anticodons (5')GCC, ICC, and UCC (c) Pairings with anticodons (5')ACC and CCC
9. (a), (c), (e), and (g) only; (b), (d), and (f) cannot be the result of single-base mutations: (b) and (f) would require substitutions of two bases, and (d) would require substitutions of all three bases.
10. (5')AUGAUAUUGCUAUCUUGGACU

Changes:	CC	AU	U	C
	U	C	A	A
		G	G	G

14 of 63 possible one-base changes would result in no coding change.
11. The two DNA codons for Glu are GAA and GAG, and the four DNA codons for Val are GTT, GTC, GTA, and GTG. A single base change in GAA to form GTA or in GAG to form GTG could account for the Glu \rightarrow Val replacement in sickle-cell hemoglobin. Much less likely are two-base changes, from GAA to GTG, GTT, or GTC; and from GAG to GTA, GTT, or GTC.
12. Isoleucine is similar in structure to several other amino acids, particularly valine. Distinguishing between valine and isoleucine in the aminoacylation process requires the second filter of a proofreading function. Histidine has a structure unlike that of any other amino acid, and this structure provides opportunities for binding specificity adequate to ensure accurate aminoacylation of the cognate tRNA.
13. (a) The Ala-tRNA synthetase recognizes the $G^{3}-U^{70}$ base pair in the amino acid arm of tRNA ${ }^{\text {Ala }}$. (b) The mutant tRNA ${ }^{\text {Ala }}$ would insert Ala residues at codons encoding Pro. (c) A mutation that might have similar effects is an alteration in tRNA ${ }^{\text {Pro }}$ that allowed it to be recognized and aminoacylated by Ala-tRNA synthetase. (d) Most of the proteins in the cell would be inactivated, so these would be lethal mutations and hence never observed. This represents a powerful selective pressure for maintaining the genetic code.
14. $I F-2$: The 70 S ribosome would form, but initiation factors would not be released and elongation could not start. EF-Tu: The second aminoacyl-tRNA would bind to the ribosomal A site, but no peptide bond would form. $E F-G$: The first peptide bond would form, but the ribosome would not move along the mRNA to vacate the A site for binding of a new EF-Tu-tRNA.
15. The amino acid most recently added to a growing polypeptide chain is the only one covalently attached to a tRNA and thus is the only link between the polypeptide and the mRNA encoding it. A proofreading activity would sever this link, halting synthesis of the polypeptide and releasing it from the mRNA.
16. The protein would be directed into the ER, and from there the targeting would depend on additional signals. SRP binds the amino-terminal signal early in protein synthesis and directs the nascent polypeptide and ribosome to receptors in the ER. Because the protein is translocated into the lumen of the ER as it is synthesized, the NLS is never accessible to the proteins involved in nuclear targeting.
17. Trigger factor is a molecular chaperone that stabilizes an unfolded and translocation-competent conformation of ProOmpA.
18. DNA with a minimum of $5,784 \mathrm{bp}$; some of the coding sequences must be nested or overlapping.
19. (a) The helices associate through hydrophobic and van der Waals interactions. (b) R groups 3, 6, 7, and 10 extend to the left; $1,2,4,5,8$, and 9 extend to the right. (c) One possible sequence is

1	2	3	4	5	6	7	8	9	10
N-Phe-Ile-Glu-Val-Met-Asn-Ser-Ala-Phe-Gln-C									

(d) One possible DNA sequence for the amino acid sequence in (c) is

Nontemplate strand
(5^{\prime})TTTATTGAAGTAATGAATAGTGCATTCC AG(3')
| (3')AAATAACTTCATTACTTATCACGTAAGGTC(5')
Template strand
(e) Phe, Leu, Ile, Met, and Val. All are hydrophobic, but the set does not include all the hydrophobic amino acids; Trp, Pro, Ala, and Gly are missing. (f) Tyr, His, Gln, Asn, Lys, Asp, and Glu. All of these are hydrophilic, although Tyr is less hydrophilic than the others. The set does not include all the hydrophilic amino acids; Ser, Thr, and Arg are missing. (g) Omitting T from the mixture excludes codons starting or ending with T-thus excluding Tyr, which is not very hydrophilic, and, more importantly, excluding the two possible stop codons (TAA and TAG). No other amino acids in the NAN set are excluded by omitting T. (h) Misfolded proteins are often degraded in the cell. Therefore, if a synthetic gene has produced a protein that forms a band on the SDS gel, it is likely that this protein is folded properly. (i) Protein folding depends on more than hydrophobic and van der Waals interactions. There are many reasons why a synthesized randomsequence protein might not fold into the four-helix structure. For example, hydrogen bonds between hydrophilic side chains could disrupt the structure. Also, not all sequences have an equal propensity to form an α helix.

Chapter 28

1. (a) Tryptophan synthase levels remain high in spite of the presence of tryptophan. (b) Levels again remain high.
(c) Levels rapidly decrease, preventing wasteful synthesis of tryptophan.
2. The E. coli cells will produce β-galactosidase when they are subjected to high levels of a DNA-damaging agent, such as UV light. Under such conditions, RecA binds to single-stranded chromosomal DNA and facilitates the autocatalytic cleavage of the LexA repressor, releasing LexA from its binding site and allowing transcription of downstream genes.
3. (a) Constitutive, low-level expression of the operon; most mutations in the operator would make the repressor less likely to bind. (b) Either constitutive expression, as in (a), or constant repression, if the mutation destroyed the capability to bind to lactose and related compounds and hence the response to inducers. (c) Either increased or decreased expression of the operon (under conditions in which it is induced), depending on whether the mutation made the promoter more or less similar, respectively, to the consensus E. coli promoter.
4. 7,000 copies
5. $8 \times 10^{-9} \mathrm{M}$, about 10^{5} times greater than the dissociation constant. With 10 copies of active repressor in the cell, the operator site is always bound by the repressor molecule.
6. (a)-(e) Each condition decreases expression of lac operon genes.
7. (a) Less attenuation of transcription. The ribosome completing the translation of sequence 1 would no longer overlap and block sequence 2 ; sequence 2 would always be available to pair with sequence 3 , preventing formation of the attenuator structure.
(b) More attenuation of transcription. Sequence 2 would pair less efficiently with sequence 3 ; the attenuator structure would be formed more often, even when sequence 2 was not blocked by a ribosome. (c) No attenuation of transcription. The only regulation would be that afforded by the Trp repressor. (d) Attenuation loses its sensitivity to Trp tRNA. It might become sensitive to His tRNA. (e) Attenuation would rarely, if ever, occur. Sequences 2 and 3 always block formation of the attenuator. (f) Constant attenuation of transcription. Attenuator always forms, regardless of the availability of tryptophan.
8. Induction of the SOS response could not occur, making the cells more sensitive to high levels of DNA damage.
9. Each Salmonella cell would have flagella made up of both types of flagellar protein, and the cell would be vulnerable to antibodies generated in response to either protein.
10. A dissociable factor necessary for activity (e.g., a specificity factor similar to the σ subunit of the E. coli enzyme) may have been lost during purification of the polymerase.
11.

Gal4 protein

Gal4 DNA-binding domain	Gal4 activator domain

Engineered protein

Lac repressor DNA-binding domain	Gal4 activator domain

The engineered protein cannot bind to the Gal4 binding site in the $G A L$ gene $\left(\mathrm{UAS}_{\mathrm{G}}\right)$ because it lacks the Gal4 DNA-binding domain. Modify the Gal4p DNA binding site to give it the nucleotide sequence to which the Lac repressor normally binds (using methods described in Chapter 9).
12. Methylamine. The reaction proceeds with attack of water on the guanidinium carbon of the modified arginine.
13. The bcd mRNA needed for development is contributed to the egg by the mother. The egg develops normally even if its genotype is $b c d^{-} / b c d^{-}$, as long as the mother has one normal $b c d$ gene and the $b c d^{-}$allele is recessive. However, the adult $b c d^{-} / b c d^{-}$female will be sterile because she has no normal $b c d$ mRNA to contribute to her own eggs.
14. (a) For 10% expression (90% repression), 10% of the repressor has bound inducer and 90% is free and available to bind the operator. The calculation uses Eqn 5-8 (p. 161), with $\theta=0.1$ and $K_{\mathrm{d}}=10^{-4} \mathrm{M}$.
$\theta=\frac{[\text { IPTG }]}{[\mathrm{IPTG}]+K_{\mathrm{d}}}=\frac{[\mathrm{IPTG}]}{[\mathrm{IPTG}]+10^{-4} \mathrm{M}}$
$0.1=\frac{[\text { IPTG }]}{[\text { IPTG }]+10^{-4} \mathrm{M}}$ so $0.9[$ IPTG $]=10^{-5}$ or $[$ IPTG $]=1.1 \times 10^{-5} \mathrm{M}$
For 90% expression, 90% of the repressor has bound inducer, so $\theta=0.9$. Entering the values for θ and K_{d} in Eqn $5-8$ gives [IPTG] $=9 \times 10^{-4} \mathrm{M}$. Thus, gene expression varies 10 -fold over a roughly 10 -fold [IPTG] range. (b) You would expect the protein levels to be low before induction, rise during induction, and then decay as synthesis stops and the proteins are degraded. (c) As shown in (a), the lac operon has more levels of expression than just on or off; thus it does not have characteristic A. As shown in (b), expression of the lac operon subsides once the inducer is removed; thus it lacks characteristic B. (d) GFP-on: rep ${ }^{\text {ts }}$ and GFP are expressed at high levels; rep ${ }^{\text {ts }}$ represses OP_{λ}, so no LacI protein is produced. GFP-off: LacI is expressed at a high level; LacI represses $\mathrm{OP}_{\mathrm{lac}}$, so rep ${ }^{\text {ts }}$ and GFP are not produced.
(e) IPTG treatment switches the system from GFP-off to GFP-on. IPTG has an effect only when LacI is present, so affects only the GFP-off state. Adding IPTG relieves the repression of $\mathrm{OP}_{\text {lac }}$, allowing high-level expression of rep ${ }^{\text {ts }}$, which turns off expression of LacI, and high-level expression of GFP. (f) Heat treatment switches the system from GFP-on to GFP-off. Heat has an effect only when rep ${ }^{\text {ts }}$ is present, so affects only the GFP-on state. Heat inactivates rep ${ }^{\text {ts }}$ and relieves the repression of OP_{λ}, allowing highlevel expression of LacI. LacI then acts at $\mathrm{OP}_{\text {lac }}$ to repress synthesis of rep ${ }^{\text {ts }}$ and GFP. (g) Characteristic A : The system is not stable in the intermediate state. At some point, one repressor will act more strongly than the other due to chance fluctuations in expression; this shuts off expression of the other repressor and locks the system in one state. Characteristic B: Once one repressor is expressed, it prevents the synthesis of the other; thus the system remains in one state even after the switching stimulus has been removed. (h) At no time does any cell express an intermediate level of GFP-this is a confirmation of characteristic A. At the intermediate concentration (X) of inducer, some cells have switched to GFP-on while others have not yet made the switch and remain in the GFP-off state; none are in between. The bimodal distribution of expression levels at [IPTG] $=\mathrm{X}$ is caused by the mixed population of GFP-on and GFP-off cells.

a

ABC transporters: Plasma membrane proteins with sequences that make up ATPbinding cassettes; serve to transport a large variety of substrates, including inorganic ions, lipids, and nonpolar drugs, out of the cell, using ATP as the energy source.
absolute configuration: The configuration of four different substituent groups around an asymmetric carbon atom, in relation to D- and L-glyceraldehyde.
absorption: Transport of the products of digestion from the intestinal tract into the blood
acceptor control: Regulation of the rate of respiration by the availability of ADP as phosphate group acceptor.
accessory pigments: Visible light-absorbing pigments (carotenoids, xanthophylls, and phycobilins) in plants and photosynthetic bacteria that complement chlorophylls in trapping energy from sunlight.
acid dissociation constant: The dissociation constant (K_{a}) of an acid, describing its dissociation into its conjugate base and a proton.
acidosis: A metabolic condition in which the capacity of the body to buffer H^{+}is diminished; usually accompanied by decreased blood pH .
actin: A protein that makes up the thin filaments of muscle; also an important component of the cytoskeleton of many eukaryotic cells.
action spectrum: A plot of the efficiency of light at promoting a light-dependent process such as photosynthesis as a function of wavelength.
activation energy ($\Delta \boldsymbol{G}^{\ddagger}$): The amount of energy (in joules) required to convert all the molecules in 1 mol of a reacting substance from the ground state to the transition state activator: (1) A DNA-binding protein that positively regulates the expression of one or more genes; that is, transcription rates increase when an activator is bound to the DNA. (2) A positive modulator of an allosteric enzyme.
active site: The region of an enzyme surface that binds the substrate molecule and catalytically transforms it; also known as the catalytic site.
active transport: Energy-requiring transport of a solute across a membrane in the direction of increasing concentration.
activity: The true thermodynamic activity or potential of a substance, as distinct from its molar concentration.
acyl phosphate: Any molecule with the general chemical form $\mathrm{R}-\mathrm{C}-\mathrm{O}-\mathrm{OPO}_{3}^{2-}$.
adaptor proteins: Signaling proteins, generally without their own enzymatic activities,
that have binding sites for two or more cellular components and serve to bring those components together.
adenosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate: See cyclic AMP.
S-adenosylmethionine (adoMet): An enzymatic cofactor involved in methyl group transfers.
adipocyte: An animal cell specialized for the storage of fats (triacylglycerols).
adipose tissue: Connective tissue specialized for the storage of large amounts of triacylglycerols. See also brown adipose tissue; white adipose tissue.
ADP (adenosine diphosphate): A ribonucleoside 5'-diphosphate serving as phosphate group acceptor in the cell energy cycle.
aerobe: An organism that lives in air and uses oxygen as the terminal electron acceptor in respiration.
aerobic: Requiring or occurring in the presence of oxygen.
agonist: A compound, typically a hormone or neurotransmitter, that elicits a physiological response when it binds to its specific receptor.
alcohol fermentation: See ethanol fermentation.
aldose: A simple sugar in which the carbonyl carbon atom is an aldehyde; that is, the carbonyl carbon is at one end of the carbon chain.
alkalosis: A metabolic condition in which the capacity of the body to buffer OH^{-}is diminished; usually accompanied by an increase in blood pH .
allosteric enzyme: A regulatory enzyme with catalytic activity modulated by the noncovalent binding of a specific metabolite at a site other than the active site.
allosteric protein: A protein (generally with multiple subunits) with multiple ligand-binding sites, such that ligand binding at one site affects ligand binding at another.
allosteric site: The specific site on the surface of an allosteric enzyme molecule to which the modulator or effector molecule is bound.
$\boldsymbol{\alpha}$ helix: A helical conformation of a polypeptide chain, usually right-handed, with maximal intrachain hydrogen bonding; one of the most common secondary structures in proteins.
$\boldsymbol{\alpha}$ oxidation: An alternative path for the oxidation of β-methyl fatty acids in peroxisomes.
Ames test: A simple bacterial test for carcinogenicity, based on the assumption that carcinogens are mutagens.
amino acid activation: ATP-dependent enzymatic esterification of the carboxyl group of an amino acid to the 3^{\prime}-hydroxyl group of its corresponding tRNA.
amino acids: α-Amino-substituted carboxylic acids, the building blocks of proteins.
aminoacyl-tRNA: An aminoacyl ester of a tRNA.
aminoacyl-tRNA synthetases: Enzymes that catalyze synthesis of an aminoacyl-tRNA at the expense of ATP energy.
amino-terminal residue: The only amino acid residue in a polypeptide chain with a free α-amino group; defines the amino terminus of the polypeptide.
aminotransferases: Enzymes that catalyze the transfer of amino groups from α-amino to α-keto acids; also called transaminases.
ammonotelic: Excreting excess nitrogen in the form of ammonia.
AMP-activated protein kinase (AMPK): A protein kinase activated by 5 '-adenosine monophosphate (AMP). AMPK action generally shifts metabolism away from biosynthesis toward energy production.
amphibolic pathway: A metabolic pathway used in both catabolism and anabolism.
amphipathic: Containing both polar and nonpolar domains.
amphitropic proteins: Proteins that associate reversibly with the membrane and thus can be found in the cytosol, in the membrane, or in both places.
ampholyte: A substance that can act as either a base or an acid.
amphoteric: Capable of donating and accepting protons, thus able to serve as an acid or a base.
AMPK: See AMP-activated protein kinase. amyloidoses: A variety of progressive conditions characterized by abnormal deposits of misfolded proteins in one or more organs or tissues.
anabolism: The phase of intermediary metabolism concerned with the energy-requiring biosynthesis of cell components from smaller precursors.
anaerobe: An organism that lives without oxygen. Obligate anaerobes die when exposed to oxygen.
anaerobic: Occurring in the absence of air or oxygen.
analyte: A molecule to be analyzed by mass spectrometry.
anammox: Anaerobic oxidation of ammonia to N_{2}, using nitrite as electron acceptor; carried out by specialized chemolithotrophic bacteria.
anaplerotic reaction: An enzyme-catalyzed reaction that can replenish the supply of intermediates in the citric acid cycle.
$\operatorname{angstrom}(\AA)$: A unit of length $\left(10^{-8} \mathrm{~cm}\right)$ used to indicate molecular dimensions.
anhydride: The product of the condensation of two carboxyl or phosphate groups in which the elements of water are eliminated to form a compound with the general structure $\mathrm{R}-\mathrm{X}-\mathrm{O}-\mathrm{X}-\mathrm{R}$, where X is either carbon or phosphorus.
anion-exchange resin: A polymeric resin with fixed cationic groups, used in the chromatographic separation of anions
anomeric carbon: The carbon atom in a sugar at the new stereocenter formed when a sugar cyclizes to form a hemiacetal. This is the carbonyl carbon of aldehydes and ketones.
anomers: Two stereoisomers of a given sugar that differ only in the configuration about the carbonyl (anomeric) carbon atom.
antagonist: A compound that interferes with the physiological action of another substance (the agonist), usually at a hormone or neurotransmitter receptor.
antibiotic: One of many different organic compounds that are formed and secreted by various species of microorganisms and plants, are toxic to other species, and presumably have a defensive function.
antibody: A defense protein synthesized by the immune system of vertebrates. See also immunoglobulin.
anticodon: A specific sequence of three nucleotides in a tRNA, complementary to a codon for an amino acid in an mRNA
antigen: A molecule capable of eliciting the synthesis of a specific antibody in vertebrates.
antiparallel: Describes two linear polymers that are opposite in polarity or orientation.
antiport: Cotransport of two solutes across a membrane in opposite directions
apoenzyme: The protein portion of an enzyme, exclusive of any organic or inorganic cofactors or prosthetic groups that might be required for catalytic activity.
apolipoprotein: The protein component of a lipoprotein.
apoprotein: The protein portion of a protein, exclusive of any organic or inorganic cofactors or prosthetic groups that might be required for activity.
apoptosis: (app'-a-toe'-sis) Programmed cell death in which a cell brings about its own death and lysis, in response to a signal from outside or programmed in its genes, by systematically degrading its own macromolecules. aptamer: Oligonucleotide that binds specifically to one molecular target, usually selected by an iterative cycle of affinity-based enrichment (SELEX)
aquaporin (AQP): A member of a family of integral membrane proteins that mediate the flow of water across membranes.
Archaea: One of the five kingdoms of living organisms; includes many species that thrive in extreme environments of high ionic strength, high temperature, or low pH .
asymmetric carbon atom: A carbon atom that is covalently bonded to four different
groups and thus may exist in two different tetrahedral configurations
ATP (adenosine triphosphate): A ribonucleoside 5'-triphosphate functioning as a phosphate group donor in the cellular energy cycle carries chemical energy between metabolic pathways by serving as a shared intermediate coupling endergonic and exergonic reactions.
ATPase: An enzyme that hydrolyzes ATP to yield ADP and phosphate, usually coupled to a process requiring energy.
ATP synthase: An enzyme complex that forms ATP from ADP and phosphate during oxidative phosphorylation in the inner mitochondrial membrane or the bacterial plasma membrane, and during photophosphorylation in chloroplasts.
attenuator: An RNA sequence involved in regulating the expression of certain genes; functions as a transcription terminator.
autophagy: Catabolic lysosomal degradation of cellular proteins and other components. autophosphorylation: Strictly, the phosphorylation of an amino acid residue in a protein that is catalyzed by the same protein molecule; often extended to include phosphorylation of one subunit of a homodimer by the other subunit.
autotroph: An organism that can synthesize its own complex molecules from very simple carbon and nitrogen sources, such as carbon dioxide and ammonia.
auxin: A plant growth hormone.
auxotrophic mutant (auxotroph): A mutant organism defective in the synthesis of a particular biomolecule, which must therefore be supplied for the organism's growth.
Avogadro's number (\boldsymbol{N}): The number of molecules in a gram molecular weight (a mole) of any compound $\left(6.02 \times 10^{23}\right)$.

b

Bacteria: One of the five kingdoms of living organisms; bacteria have a plasma membrane but no internal organelles or nucleus.
bacteriophage: A virus capable of replicating in a bacterial cell; also called phage.
baculovirus: Any of a group of double-stranded DNA viruses that infect invertebrates, particularly insects, and are widely used for purposes of protein expression in biotechnology.
basal metabolic rate: An animal's rate of oxygen consumption when at complete rest, long after a meal.
base pair: Two nucleotides in nucleic acid chains that are paired by hydrogen bonding of their bases; for example, A with T or U , and G with C.

BAT: See brown adipose tissue.
B cell: See B lymphocyte.
$\boldsymbol{\beta}$ conformation: An extended, zigzag
arrangement of a polypeptide chain; a common secondary structure in proteins.
$\boldsymbol{\beta}$ oxidation: Oxidative degradation of fatty acids into acetyl-CoA by successive oxida-
tions at the β-carbon atom; as distinct from ω oxidation.
$\boldsymbol{\beta}$ turn: A type of protein secondary structure consisting of four amino acid residues arranged in a tight turn so that the polypeptide turns back on itself.
bilayer: A double layer of oriented amphipathic lipid molecules, forming the basic structure of biological membranes. The hydrocarbon tails face inward to form a continuous nonpolar phase.
bile acids: Polar derivatives of cholesterol, secreted by the liver into the intestine, that serve to emulsify dietary fats, facilitating lipase action on them.
bile salts: Amphipathic steroid derivatives with detergent properties, participating in digestion and absorption of lipids.
binding energy: The energy derived from noncovalent interactions between enzyme and substrate or receptor and ligand
binding site: The crevice or pocket on a protein in which a ligand binds.
bioassay: A method for measuring the amount of a biologically active substance (such as a hormone) in a sample by quantifying the biological response to aliquots of that sample.
bioinformatics: The computerized analysis of biological data, using methods derived from statistics, linguistics, mathematics, chemistry, biochemistry, and physics. The data are often nucleic acid or protein sequence or structural data, but can also involve experimental data from many sources, patient statistics, and materials in the scientific literature. Bioinformatics research focuses on methods for data storage, retrieval, and analysis.
biosphere: All the living matter on or in the earth, the seas, and the atmosphere.
biotin: A vitamin; an enzymatic cofactor involved in carboxylation reactions.
B lymphocyte (B cell): One of a class of blood cells (lymphocytes), responsible for the production of circulating antibodies.
bond energy: The energy required to break a bond.
branch migration: Movement of the branch point in a branched DNA formed from two
DNA molecules with identical sequences. See also Holliday intermediate.
brown adipose tissue (BAT): Thermo-
genic adipose tissue rich in mitochondria that contain the uncoupling protein thermogenin, which uncouples electron transfer through the respiratory chain from ATP synthesis. Compare white adipose tissue.
buffer: A system capable of resisting changes in pH , consisting of a conjugate acid-base pair in which the ratio of proton acceptor to proton donor is near unity.

C

calorie: The amount of heat required to raise the temperature of 1.0 g of water from 14.5 to $15.5^{\circ} \mathrm{C}$. One calorie (cal) equals 4.18 joules (J).

Calvin cycle: The cyclic pathway in plants that fixes carbon dioxide and produces triose phosphates.
CAM plants: Succulent plants of hot, dry climates, in which CO_{2} is fixed into oxaloacetate in the dark, then fixed by rubisco in the light when stomata close to exclude O_{2}.
cAMP: See cyclic AMP.
cAMP receptor protein (CRP): In bacteria, a specific regulatory protein that controls initiation of transcription of the genes that produce the enzymes required for the cell to use some other nutrient when glucose is lacking; also called catabolite gene activator protein (CAP).
CAP: See cAMP receptor protein.
capsid: The protein coat of a virion or virus particle.
carbanion: A negatively charged carbon atom.
carbocation: A positively charged carbon atom; also called a carbonium ion.
carbohydrate: A polyhydroxy aldehyde or ketone, or substance that yields such a compound on hydrolysis. Many carbohydrates have the empirical formula $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}$; some also contain nitrogen, phosphorus, or sulfur.
carbon-assimilation reactions: Reaction sequence in which atmospheric CO_{2} is converted into organic compounds.
carbon-fixation reactions: The reactions, catalyzed by rubisco during photosynthesis or by other carboxylases, in which atmospheric CO_{2} is initially incorporated (fixed) into an organic compound.
carbonium ion: See carbocation.
carboxyl-terminal residue: The only amino acid residue in a polypeptide chain with a free α-carboxyl group; defines the carboxyl terminus of the polypeptide.
cardiolipin: A membrane phospholipid in which two phosphatidic acid moieties share a single glycerol head group.
carnitine shuttle: Mechanism for moving fatty acids from the cytosol to the mitochondrial matrix as fatty esters of carnitine.
carotenoids: Lipid-soluble photosynthetic pigments made up of isoprene units.
cascade: See enzyme cascade.
catabolism: The phase of intermediary metabolism concerned with the energyyielding degradation of nutrient molecules.
catabolite gene activator protein (CAP): See cAMP receptor protein.
catalytic site: See active site.
catecholamines: Hormones, such as epinephrine, that are amino derivatives of catechol.
catenane: Two or more circular polymeric molecules interlinked by one or more noncovalent topological links, resembling the links of a chain.
cation-exchange resin: An insoluble polymer with fixed negative charges, used in the chromatographic separation of cationic substances. cDNA: See complementary DNA.
cDNA library: A collection of cloned DNA fragments derived entirely from the complement of mRNA being expressed in a particular organism or cell type under a defined set of conditions.
cellular differentiation: The process in which a precursor cell becomes specialized to carry out a particular function, by acquiring a new complement of proteins and RNA.
central dogma: The organizing principle of molecular biology: genetic information flows from DNA to RNA to protein.
centromere: A specialized site in a chromosome, serving as the attachment point for the mitotic or meiotic spindle.
cerebroside: Sphingolipid containing one sugar residue as a head group.
channeling: The direct transfer of a reaction product (common intermediate) from the active site of an enzyme to the active site of the enzyme catalyzing the next step in a pathway.
chaperone: Any of several classes of proteins or protein complexes that catalyze the accurate folding of proteins in all cells.
chaperonin: One of two major classes of chaperones found in virtually all organisms; a complex of proteins that functions in protein folding, either GroES/GroEL in bacteria or Hsp60 in eukaryotes.
chemiosmotic coupling: Coupling of ATP synthesis to electron transfer via a transmembrane difference in charge and pH .
chemiosmotic theory: The theory that energy derived from electron transfer reactions is temporarily stored as a transmembrane difference in charge and pH , which subsequently drives the formation of ATP in oxidative phosphorylation and photophosphorylation.
chemotaxis: A cell's sensing of and movement toward or away from a specific chemical agent.
chemotroph: An organism that obtains energy by metabolizing organic compounds derived from other organisms.
chiral center: An atom with substituents arranged so that the molecule is not superposable on its mirror image.
chiral compound: A compound that contains an asymmetric center (chiral atom or chiral center) and thus can occur in two nonsuperposable mirror-image forms (enantiomers).
chlorophylls: A family of green pigments that function as receptors of light energy in photosynthesis; magnesium-porphyrin complexes.
chloroplast: Chlorophyll-containing photosynthetic organelle in some eukaryotic cells.
chondroitin sulfate: One of a family of sulfated glycosaminoglycans, a major component of the extracellular matrix.
chromatin: A filamentous complex of DNA, histones, and other proteins, constituting the eukaryotic chromosome.
chromatography: A process in which complex mixtures of molecules are separated by many repeated partitionings between a flowing (mobile) phase and a stationary phase.
chromatophore: A compound or moiety (natural or synthetic) that absorbs visible or ultraviolet light.
chromosome: A single large DNA molecule and its associated proteins, containing many genes; stores and transmits genetic information.
chylomicron: A plasma lipoprotein consisting of a large droplet of triacylglycerols stabilized by a coat of protein and phospholipid; carries lipids from the intestine to the tissues.
circular dichroism spectroscopy: A method used to characterize the degree of folding in a protein, based on differences in the absorption of right-handed versus left-handed circularly polarized light.
cis and trans isomers: See geometric isomers. cistron: A unit of DNA or RNA corresponding to one gene.
citric acid cycle: A cyclic pathway for the oxidation of acetyl residues to carbon dioxide, in which formation of citrate is the first step; also known as the Krebs cycle or tricarboxylic acid cycle.
clones: The descendants of a single cell.
cloning: The production of large numbers of identical DNA molecules, cells, or organisms from a single ancestral DNA molecule, cell, or organism.
closed system: A system that exchanges neither matter nor energy with the surroundings. See also system.
cobalamin: See coenzyme B_{12}.
coding strand: In DNA transcription, the DNA strand identical in base sequence to the RNA transcribed from it, with U in the RNA in place of T in the DNA; as distinct from the template strand. Also called the nontemplate strand.
codon: A sequence of three adjacent nucleotides in a nucleic acid that codes for a specific amino acid.
coenzyme: An organic cofactor required for the action of certain enzymes; often has a vitamin component.
coenzyme A: A pantothenic acid-containing coenzyme that serves as an acyl group carrier in certain enzymatic reactions.
coenzyme \mathbf{B}_{12} : An enzymatic cofactor derived from the vitamin cobalamin, involved in certain types of carbon skeletal rearrangements.
cofactor: An inorganic ion or a coenzyme required for enzyme activity.
cognate: Describes two biomolecules that normally interact; for example, an enzyme and its usual substrate, or a receptor and its usual ligand.
cohesive ends: See sticky ends.
cointegrate: An intermediate in the migration of certain DNA transposons in which the donor DNA and target DNA are covalently attached.
colligative properties: Properties of a solution that depend on the number of solute particles per unit volume; for example, freezingpoint depression.
combinatorial control: Use of combinations of a limited repertoire of regulatory proteins
to provide gene-specific regulation of many individual genes.
competitive inhibition: A type of enzyme inhibition reversed by increasing the substrate concentration; a competitive inhibitor generally competes with the normal substrate or ligand for a protein's binding site.
complementary: Having a molecular surface with chemical groups arranged to interact specifically with chemical groups on another molecule.
complementary DNA (cDNA): A DNA complementary to a specific mRNA, used in DNA cloning; usually made by reverse transcriptase. condensation: A reaction type in which two compounds are joined with the elimination of water.
configuration: The spatial arrangement of an organic molecule that is conferred by the presence of either (1) double bonds, about which there is no freedom of rotation, or (2) chiral centers, around which substituent groups are arranged in a specific sequence. Configurational isomers cannot be interconverted without breaking one or more covalent bonds.
conformation: A spatial arrangement of substituent groups that are free to assume different positions in space, without breaking any bonds, because of the freedom of bond rotation
conjugate acid-base pair: A proton donor and its corresponding deprotonated species; for example, acetic acid (donor) and acetate (acceptor)
conjugated protein: A protein containing one or more prosthetic groups.
conjugate redox pair: An electron donor and its corresponding electron acceptor form; for example, Cu^{+}(donor) and Cu^{2+} (acceptor), or NADH (donor) and NAD ${ }^{+}$(acceptor).
consensus sequence: A DNA or amino acid sequence consisting of the residues that most commonly occur at each position in a set of similar sequences.
conservative substitution: Replacement of an amino acid residue in a polypeptide by another residue with similar properties; for example, substitution of Glu by Asp.
constitutive enzymes: Enzymes required at all times by a cell and present at some constant level; for example, many enzymes of the central metabolic pathways. Sometimes called housekeeping enzymes.
contig: A series of overlapping clones or a continuous sequence defining an uninterrupted section of a chromosome.
contour length: The length of a helical polymeric molecule as measured along its helical axis.
cooperativity: The characteristic of an enzyme or other protein in which binding of the first molecule of a ligand changes the affinity for the second molecule. In positive cooperativity, the affinity for the second ligand molecule increases; in negative cooperativity, it decreases. cotransport: The simultaneous transport, by a single transporter, of two solutes across a membrane. See also antiport; symport.
coupled reactions: Two chemical reactions that have a common intermediate and thus a means of energy transfer from one to the other covalent bond: A chemical bond that involves sharing of electron pairs
$\mathbf{C}_{\mathbf{4}}$ plants: Plants (generally tropical) in which CO_{2} is first fixed into a four-carbon compound (oxaloacetate or malate) before entering the Calvin cycle via rubisco.
cristae: Infoldings of the inner mitochondrial membrane.

CRP: See cAMP receptor protein.
cruciform: Secondary structure in doublestranded RNA or DNA in which the double helix is denatured at palindromic repeat sequences in each strand, and each separated strand is paired internally to form opposing hairpin structures. See also hairpin.
cyclic AMP (cAMP, adenosine $\mathbf{3}^{\prime}$, 5^{\prime}-cyclic monophosphate): A second messenger; its formation in a cell by adenylyl cyclase is stimu lated by certain hormones or other molecular signals.
cyclic electron flow: In chloroplasts, the light-induced flow of electrons originating from and returning to photosystem I.
cyclic photophosphorylation: ATP synthesis driven by cyclic electron flow through photosystem I.
cyclin: One of a family of proteins that activate cyclin-dependent protein kinases and thereby regulate the cell cycle
cytochrome P-450: A family of hemecontaining enzymes, with a characteristic absorption band at 450 nm , that participate in biological hydroxylations with O_{2}.
cytochromes: Heme proteins serving as electron carriers in respiration, photosynthesis, and other oxidation-reduction reactions.
cytokine: One of a family of small secreted proteins (such as interleukins or interferons) that activate cell division or differentiation by binding to plasma membrane receptors in target cells.
cytokinesis: The final separation of daughter cells following mitosis.
cytoplasm: The portion of a cell's contents outside the nucleus but within the plasma membrane; includes organelles such as mitochondria
cytoskeleton: The filamentous network that provides structure and organization to the cytoplasm; includes actin filaments, microtubules, and intermediate filaments.
cytosol: The continuous aqueous phase of the cytoplasm, with its dissolved solutes; excludes the organelles such as mitochondria.

d

dalton: Unit of atomic or molecular weight; 1 dalton (Da) is the weight of a hydrogen atom ($1.66 \times 10^{-24} \mathrm{~g}$).
dark reactions: See carbon-assimilation reactions.
deamination: The enzymatic removal of amino groups from biomolecules such as amino acids or nucleotides.
degenerate code: A code in which a single element in one language is specified by more than one element in a second language.
dehydrogenases: Enzymes that catalyze the removal of pairs of hydrogen atoms from substrates.
deletion mutation: A mutation resulting from the deletion of one or more nucleotides from a gene or chromosome.
$\boldsymbol{\Delta} \boldsymbol{G}$: See free-energy change.
$\boldsymbol{\Delta} \boldsymbol{G}^{\ddagger}$: See activation energy.
$\boldsymbol{\Delta} \boldsymbol{G}^{\prime 0}$: See standard free-energy change.
denaturation: Partial or complete unfolding of the specific native conformation of a polypeptide chain, protein, or nucleic acid such that the function of the molecule is lost.
denatured protein: A protein that has lost enough of its native conformation by exposure to a destabilizing agent such as heat or detergent that its function is lost.
de novo pathway: Pathway for the synthesis of a biomolecule, such as a nucleotide, from simple precursors; as distinct from a salvage pathway.
deoxyribonucleic acid: See DNA.
deoxyribonucleotides: Nucleotides containing 2-deoxy-d-ribose as the pentose component.
desaturases: Enzymes that catalyze the introduction of double bonds into the hydrocarbon portion of fatty acids
desensitization: Universal process by which sensory mechanisms cease to respond after prolonged exposure to the specific stimulus they detect.
desolvation: In aqueous solution, the release of bound water surrounding a solute.
diabetes mellitus: A group of metabolic diseases with symptoms that result from a deficiency in insulin production or utilization; characterized by a failure in glucose transport from the blood into cells at normal glucose concentrations.
dialysis: Removal of small molecules from a solution of a macromolecule by their diffusion through a semipermeable membrane into a suitably buffered solution.
differential centrifugation: Separation of cell organelles or other particles of different size by their different rates of sedimentation in a centrifugal field.
differentiation: Specialization of cell structure and function during growth and development
diffusion: The net movement of molecules in the direction of lower concentration
digestion: Enzymatic hydrolysis of major nutrients in the gastrointestinal system to yield their simpler components.
diploid: Having two sets of genetic information; describes a cell with two chromosomes of each type. Compare haploid.
disaccharide: A carbohydrate consisting of two covalently joined monosaccharide units.
dissociation constant: An equilibrium constant (K_{d}) for the dissociation of a complex of two or more biomolecules into its components;
for example, dissociation of a substrate from an enzyme.
disulfide bond: A covalent bond involving the oxidative linkage of two Cys residues, from the same or different polypeptide chains, forming a cystine residue.
DNA (deoxyribonucleic acid): A polynucleotide with a specific sequence of deoxyribonucleotide units covalently joined through $3^{\prime}, 5^{\prime}$-phosphodiester bonds; serves as the carrier of genetic information.
DNA chimera: DNA containing genetic information derived from two different species.
DNA chip: Informal term for a DNA microarray, referring to the small size of typical microarrays.
DNA cloning: See cloning.
DNA library: A collection of cloned DNA fragments.
DNA ligases: Enzymes that creates a phosphodiester bond between the 3^{\prime} end of one DNA segment and the 5^{\prime} end of another.
DNA looping: The interaction of proteins bound at distant sites on a DNA molecule so that the intervening DNA forms a loop.
DNA microarray: A collection of DNA sequences immobilized on a solid surface, with individual sequences laid out in patterned arrays that can be probed by hybridization.
DNA polymerase: An enzyme that catalyzes template-dependent synthesis of DNA from its deoxyribonucleoside 5 '-triphosphate precursors.
DNA supercoiling: The coiling of DNA upon itself, generally as a result of bending, underwinding, or overwinding of the DNA helix.
DNA transposition: See transposition.
domain: A distinct structural unit of a polypeptide; domains may have separate functions and may fold as independent, compact units.
double helix: The natural coiled conformation of two complementary, antiparallel DNA chains.
double-reciprocal plot: A plot of $1 / V_{0}$ versus 1/[S], which allows a more accurate determination of $V_{\max }$ and K_{m} than a plot of V_{0} versus [S]; also called the Lineweaver-Burk plot.
e
$\boldsymbol{E}^{\prime \circ}$: See standard reduction potential.
ECM: See extracellular matrix.
electrochemical gradient: The resultant of the gradients of concentration and of electric charge of an ion across a membrane; the driving force for oxidative phosphorylation and photophosphorylation.
electrochemical potential: The energy required to maintain a separation of charge and of concentration across a membrane.
electrogenic: Contributing to an electrical potential across a membrane.
electron acceptor: A substance that receives electrons in an oxidation-reduction reaction. electron carrier: A protein, such as a flavoprotein or a cytochrome, that can reversibly gain and lose electrons; functions in the transfer of electrons from organic nutrients to oxygen or some other terminal acceptor.
electron donor: A substance that donates electrons in an oxidation-reduction reaction.
electron transfer: Movement of electrons from electron donor to electron acceptor; especially, from substrates to oxygen via the carriers of the respiratory (electron-transfer) chain.
electrophile: An electron-deficient group with a strong tendency to accept electrons from an electron-rich group (nucleophile).
electrophoresis: Movement of charged solutes in response to an electrical field; often used to separate mixtures of ions, proteins, or nucleic acids.
elongation factors: (1) Proteins that function in the elongation phase of eukaryotic transcription. (2) Specific proteins required in the elongation of polypeptide chains by ribosomes.
eluate: The effluent from a chromatographic column.
enantiomers: Stereoisomers that are nonsuperposable mirror images of each other.
endergonic reaction: A chemical reaction
that consumes energy (that is, for which ΔG is positive).
endocrine: Pertaining to cellular secretions that enter the bloodstream and have their effects on distant tissues.
endocytosis: The uptake of extracellular material by its inclusion in a vesicle
(endosome) formed by invagination of the plasma membrane.
endonucleases: Enzymes that hydrolyze the interior phosphodiester bonds of a nucleic acid-that is, act at bonds other than the terminal bonds.
endoplasmic reticulum: An extensive system of double membranes in the cytoplasm of eukaryotic cells; it encloses secretory channels and is often studded with ribosomes (rough endoplasmic reticulum).
endothermic reaction: A chemical reaction that takes up heat (that is, for which ΔH is positive).
end-product inhibition: See feedback inhibition.
enhancers: DNA sequences that facilitate the expression of a given gene; may be located a few hundred, or even thousand, base pairs away from the gene.
enthalpy (\boldsymbol{H}): The heat content of a system. enthalpy change $(\boldsymbol{\Delta} \boldsymbol{H})$: For a reaction, approximately equal to the difference between the energy used to break bonds and the energy gained by the formation of new ones. entropy (\boldsymbol{S}): The extent of randomness or disorder in a system.
enzyme: A biomolecule, either protein or RNA, that catalyzes a specific chemical reaction. It does not affect the equilibrium of the catalyzed reaction; it enhances the rate of the reaction by providing a reaction path with a lower activation energy.
enzyme cascade: A series of reactions, often involved in regulatory events, in which one
enzyme activates another (often by phosphorylation), which activates a third, and so on.
The effect of a catalyst activating a catalyst is a large amplification of the signal that initiated the cascade.
epigenetic: Describes any inherited characteristic of a living organism that is acquired by means that do not involve the nucleotide sequence of the parental chromosomes; for example, covalent modifications of histones.
epimerases: Enzymes that catalyze the reversible interconversion of two epimers.
epimers: Two stereoisomers differing in configuration at one asymmetric center in a compound having two or more asymmetric centers.
epithelial cell: Any cell that forms part of the outer covering of an organism or organ.
epitope: An antigenic determinant; the particular chemical group or groups in a macromolecule (antigen) to which a given antibody binds.
epitope tag: A protein sequence or domain bound by some well-characterized antibody.
equilibrium: The state of a system in which no further net change is occurring; the free energy is at a minimum.
equilibrium constant ($\boldsymbol{K}_{\text {eq }}$): A constant, characteristic for each chemical reaction, that relates the specific concentrations of all reactants and products at equilibrium at a given temperature and pressure.
erythrocyte: A cell containing large amounts of hemoglobin and specialized for oxygen transport; a red blood cell.
essential amino acids: Amino acids that cannot be synthesized by humans (and other vertebrates) and must be obtained from the diet.
essential fatty acids: The group of polyunsaturated fatty acids produced by plants, but not by humans; required in the human diet.
ethanol fermentation: The anaerobic conversion of glucose to ethanol via glycolysis; also called alcohol fermentation. See also fermentation.
euchromatin: The regions of interphase chromosomes that stain diffusely, as opposed to the more condensed, heavily staining, heterochromatin. These are often regions in which genes are being actively expressed.
eukaryote: A unicellular or multicellular organism with cells having a membranebounded nucleus, multiple chromosomes, and internal organelles.
excited state: An energy-rich state of an atom or molecule, produced by the absorption of light energy; as distinct from ground state.
exergonic reaction: A chemical reaction that proceeds with the release of free energy (that is, for which ΔG is negative).
exocytosis: The fusion of an intracellular vesicle with the plasma membrane, releasing the vesicle contents to the extracellular space. exon: The segment of a eukaryotic gene that encodes a portion of the final product of the gene; a segment of RNA that remains after posttranscriptional processing and is
transcribed into a protein or incorporated into the structure of an RNA. See also intron.
exonucleases: Enzymes that hydrolyze only those phosphodiester bonds that are in the terminal positions of a nucleic acid.
exothermic reaction: A chemical reaction that releases heat (that is, for which ΔH is negative).
expression vector: See vector.
extracellular matrix (ECM): An interwoven combination of glycosaminoglycans, proteoglycans, and proteins, just outside the plasma membrane, that provides cell anchorage, positional recognition, and traction during cell migration.
extrahepatic: Describes all tissues outside the liver; implies the centrality of the liver in metabolism.

f

facilitated diffusion: See passive transport.
FAD (flavin adenine dinucleotide):
The coenzyme of some oxidation-reduction enzymes; contains riboflavin.
\mathbf{F}_{1} ATPase: The multiprotein subunit of ATP synthase that has the ATP-synthesizing catalytic sites. It interacts with the F_{o} subunit of ATP synthase, coupling proton movement to ATP synthesis.
fatty acid: A long-chain aliphatic carboxylic acid found in natural fats and oils; also a component of membrane phospholipids and glycolipids.
feedback inhibition: Inhibition of an allosteric enzyme at the beginning of a metabolic sequence by the end product of the sequence; also known as end-product inhibition.
fermentation: Energy-yielding anaerobic breakdown of a nutrient molecule, such as glucose, without net oxidation; yields lactate, ethanol, or some other simple product.
fibrin: A protein factor that forms the crosslinked fibers in blood clots.
fibrinogen: The inactive precursor protein of fibrin.
fibroblast: A cell of the connective tissue that secretes connective tissue proteins such as collagen.
fibrous proteins: Insoluble proteins that serve a protective or structural role; contain polypeptide chains that generally share a common secondary structure.
first law of thermodynamics: The law stating that, in all processes, the total energy of the universe remains constant.
Fischer projection formulas: A method for representing molecules that shows the configuration of groups around chiral centers; also known as projection formulas.
5^{\prime} end: The end of a nucleic acid that lacks a nucleotide bound at the 5^{\prime} position of the terminal residue.
flagellum: A cell appendage used in propulsion. Bacterial flagella have a much simpler structure than eukaryotic flagella, which are similar to cilia.
flavin-linked dehydrogenases: Dehydrogenases requiring one of the riboflavin coenzymes, FMN or FAD.
flavin nucleotides: Nucleotide coenzymes (FMN and FAD) containing riboflavin.
flavoprotein: An enzyme containing a flavin nucleotide as a tightly bound prosthetic group.
flippases: Membrane proteins in the ABC transporter family that catalyze the movement of phospholipids from the extracellular leaflet to the cytosolic leaflet of a membrane bilayer.
floppases: Membrane proteins in the ABC transporter family that catalyze movement of phospholipids from the cytosolic leaflet to the extracellular leaflet of a membrane bilayer.
fluid mosaic model: A model describing biological membranes as a fluid lipid bilayer with embedded proteins; the bilayer exhibits both structural and functional asymmetry.
fluorescence: Emission of light by excited molecules as they revert to the ground state.
fluorescence recovery after photobleaching: See FRAP.
fluorescence resonance energy transfer: See FRET.
FMN (flavin mononucleotide): Riboflavin phosphate, a coenzyme of certain oxidationreduction enzymes.
fold: See motif.
footprinting: A technique for identifying the nucleic acid sequence bound by a DNA- or RNA-binding protein.
fraction: A portion of a biological sample that has been subjected to a procedure designed to separate macromolecules based on a property such as solubility, net charge, molecular weight, or function.
fractionation: The process of separating the proteins or other components of a complex molecular mixture into fractions based on differences in properties such as solubility, net charge, molecular weight, or function.
frame shift: A mutation caused by insertion or deletion of one or more paired nucleotides, changing the reading frame of codons during protein synthesis; the polypeptide product has a garbled amino acid sequence beginning at the mutated codon.
FRAP (fluorescence recovery after photobleaching): A technique used to quantify the diffusion of membrane components (lipids or proteins) in the plane of the bilayer.
free energy (\boldsymbol{G}): The component of the total energy of a system that can do work at constant temperature and pressure.
free energy of activation ($\boldsymbol{\Delta} \boldsymbol{G}^{\ddagger}$): See activation energy.
free-energy change $(\boldsymbol{\Delta} \boldsymbol{G})$: The amount of free energy released (negative ΔG) or absorbed (positive ΔG) in a reaction at constant temperature and pressure.
free radical: See radical.
FRET (fluorescence resonance energy transfer): A technique for estimating the distance between two proteins or two domains of a protein by measuring the nonradiative
transfer of energy between reporter chromophores when one is excited and the fluorescence emitted from the other is quantified.
functional group: The specific atom or group of atoms that confers a particular chemical property on a biomolecule.
fusion protein: (1) One of a family of proteins that facilitate membrane fusion. (2) The protein product of a gene created by the fusion of two distinct genes or portions of genes.
futile cycle: A cycle of enzyme-catalyzed reactions that results in release of thermal energy by the hydrolysis of ATP.

g

$\mathbf{G}_{\mathbf{i}}$: See inhibitory G protein.
$\mathbf{G}_{\mathbf{s}}$: See stimulatory G protein.
gametes: Reproductive cells with a haploid gene content; sperm or egg cells.
ganglioside: Sphingolipid containing a complex oligosaccharide as a head group; especially common in nervous tissue.
GEFs: See guanosine nucleotide-exchange factors.
gel filtration: See size-exclusion chromatography.
gene: A chromosomal segment that codes for a single functional polypeptide chain or RNA molecule.
gene expression: Transcription, and in the case of proteins, translation, to yield the product of a gene; a gene is expressed when its biological product is present and active.
gene fusion: The enzymatic attachment of one gene, or part of a gene, to another.
general acid-base catalysis: Catalysis involving proton transfer(s) to or from a molecule other than water.
genetic code: The set of triplet code words in DNA (or mRNA) coding for the amino acids of proteins.
genetic engineering: Any process by which genetic material, particularly DNA, is altered by a molecular biologist.
genetic map: A diagram showing the relative sequence and position of specific genes along a chromosome.
genome: All the genetic information encoded in a cell or virus.
genomic library: A DNA library containing
DNA segments that represent all (or most) of the sequences in an organism's genome.
genomics: A science devoted broadly to the understanding of cellular and organism genomes.
genotype: The genetic constitution of an organism, as distinct from its physical characteristics, or phenotype.
geometric isomers: Isomers related by rotation about a double bond; also called cis and trans isomers.
germ-line cell: A type of animal cell that is formed early in embryogenesis and may multiply by mitosis or produce by meiosis cells that develop into gametes (egg or sperm cells).
GFP: See green fluorescent protein.
globular proteins: Soluble proteins with a globular (somewhat rounded) shape.
glucogenic: Capable of being converted into glucose or glycogen by the process of gluconeogenesis.
gluconeogenesis: The biosynthesis of a carbohydrate from simpler, noncarbohydrate precursors such as oxaloacetate or pyruvate.
GLUT: Designation for a family of membrane proteins that transport glucose.
glycan: A polymer of monosaccharide units joined by glycosidic bonds; polysaccharide.
glyceroneogenesis: The synthesis in adipocytes of glycerol 3-phosphate from pyruvate for use in triacylglycerol synthesis.
glycerophospholipid: An amphipathic lipid with a glycerol backbone; fatty acids are esterlinked to C-1 and C-2 of glycerol, and a polar alcohol is attached through a phosphodiester linkage to C-3.
glycoconjugate: A compound containing a carbohydrate component bound covalently to a protein or lipid, forming a glycoprotein or glycolipid.
glycogenesis: The process of converting glucose to glycogen.
glycogenin: The protein that both primes the synthesis of new glycogen chains and catalyzes the polymerization of the first few sugar residues of each chain before glycogen synthase continues the extension.
glycogenolysis: The enzymatic breakdown of stored (not dietary) glycogen.
glycolate pathway: The metabolic pathway in photosynthetic organisms that converts glycolate produced during photorespiration into 3-phosphoglycerate.
glycolipid: A lipid containing a carbohydrate group.
glycolysis: The catabolic pathway by which a molecule of glucose is broken down into two molecules of pyruvate.
glycome: The full complement of carbohydrates and carbohydrate-containing molecules of a cell or tissue under a particular set of conditions.
glycomics: The systematic characterization of the glycome.
glycoprotein: A protein containing a carbohydrate group.
glycosaminoglycan: A heteropolysaccharide of two alternating units: one is either N -acetylglucosamine or N -acetylgalactosamine; the other is a uronic acid (usually glucuronic acid). Formerly called a mucopolysaccharide.
glycosidic bonds: See O-glyosidic bonds.
glycosphingolipid: An amphipathic lipid with a sphingosine backbone to which are attached a long-chain fatty acid and a polar alcohol.
glyoxylate cycle: A variant of the citric acid cycle, for the net conversion of acetate into succinate and, eventually, new carbohydrate; present in bacteria and some plant cells.
glyoxysome: A specialized peroxisome containing the enzymes of the glyoxylate cycle; found in cells of germinating seeds.

Golgi complex: A complex membranous organelle of eukaryotic cells; functions in the posttranslational modification of proteins and their secretion from the cell or incorporation into the plasma membrane or organellar membranes.
GPCRs: See G protein-coupled receptors.
GPI-anchored protein: A protein held to the outer monolayer of the plasma membrane by its covalent attachment through a short oligosaccharide chain to a phosphatidylinositol molecule in the membrane.
G protein-coupled receptor kinases
(GRKs): A family of protein kinases that phosphorylate Ser and Thr residues near the carboxyl terminus of G protein-coupled receptors, initiating their internalization.
G protein-coupled receptors (GPCRs):
A large family of membrane receptor proteins with seven transmembrane helical segments, often associating with G proteins to transduce an extracellular signal into a change in cellular metabolism; also called heptahelical receptors.
G proteins: A large family of GTP-binding proteins that act in intracellular signaling pathways and in membrane trafficking. Active when GTP is bound, they self-inactivate by converting GTP to GDP. Also called guanosine nucleotide-binding proteins.
gram molecular weight: For a compound, the weight in grams that is numerically equal to its molecular weight; the weight of one mole.
grana: Stacks of thylakoids, flattened membranous sacs or disks, in chloroplasts.
green fluorescent protein (GFP): A small protein from a marine organism that produces a bright fluorescence in the green region of the visible spectrum. Fusion proteins with GFP are commonly used to determine the subcellular location of the fused protein by fluorescence microscopy.
ground state: The normal, stable form of an atom or molecule; as distinct from the excited state.
group transfer potential: A measure of the ability of a compound to donate an activated group (such as a phosphate or acyl group); generally expressed as the standard free energy of hydrolysis.
growth factors: Proteins or other molecules that act from outside a cell to stimulate cell growth and division.
GTPase activator proteins (GAPs): Regulatory proteins that bind activated G proteins and stimulate their intrinsic GTPase activity, speeding their self-inactivation.
guanosine nucleotide-binding proteins: See G proteins.
guanosine nucleotide-exchange factors
(GEFs): Regulatory proteins that bind to and activate G proteins by stimulating the exchange of bound GDP for GTP.

h

hairpin: Secondary structure in single-stranded RNA or DNA, in which complementary parts of a palindromic repeat fold back and are paired
to form an antiparallel duplex helix that is closed at one end.
half-life: The time required for the disappearance or decay of one-half of a given component in a system.
haploid: Having a single set of genetic information; describes a cell with one chromosome of each type. Compare diploid.
haplotype: A combination of alleles of different genes located sufficiently close together on a chromosome that they tend to be inherited together.
hapten: A small molecule that, when linked to a larger molecule, elicits an immune response.
Haworth perspective formulas: A method for representing cyclic chemical structures so as to define the configuration of each substituent group; commonly used for representing sugars.
helicases: Enzymes that catalyze the separation of strands in a DNA molecule before replication.
heme: The iron-porphyrin prosthetic group of heme proteins.
heme protein: A protein containing a heme as a prosthetic group.
hemoglobin: A heme protein in erythrocytes; functions in oxygen transport.
Henderson-Hasselbalch equation: An equation relating the pH , the $\mathrm{p} K_{\mathrm{a}}$, and the ratio of the concentrations of proton-acceptor (A^{-}) and proton-donor (HA) species in a solution:
$\mathrm{pH}=\mathrm{p} \boldsymbol{K}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$.
heparan sulfate: A sulfated polymer of alternating N-acetylglucosamine and a uronic acid, either glucuronic or iduronic acid; typically found in the extracellular matrix.
hepatocyte: The major cell type of liver tissue.
heptahelical receptors: See G proteincoupled receptors.
heteropolysaccharide: A polysaccharide containing more than one type of sugar.
heterotroph: An organism that requires complex nutrient molecules, such as glucose, as a source of energy and carbon.
heterotropic: Describes an allosteric modulator that is distinct from the normal ligand.
heterotropic enzyme: An allosteric enzyme requiring a modulator other than its substrate.
hexose: A simple sugar with a backbone containing six carbon atoms.
hexose monophosphate pathway: See pentose phosphate pathway.

high-performance liquid chromatography

(HPLC): Chromatographic procedure, often conducted at relatively high pressures using automated equipment, which permits refined and highly reproducible profiles.
Hill coefficient: A measure of cooperative interaction between protein subunits.
Hill reaction: The evolution of oxygen and photoreduction of an artificial electron acceptor by a chloroplast preparation in the absence of carbon dioxide.
histones: The family of basic proteins that associate tightly with DNA in the chromosomes of all eukaryotic cells.
Holliday intermediate: An intermediate in genetic recombination in which two doublestranded DNA molecules are joined by a reciprocal crossover involving one strand of each molecule.
holoenzyme: A catalytically active enzyme, including all necessary subunits, prosthetic groups, and cofactors.
homeobox: A conserved DNA sequence of 180 base pairs that encodes a protein domain found in many proteins that play a regulatory role in development
homeodomain: The protein domain encoded by the homeobox; a regulatory unit that determines the segmentation of a body plan
homeostasis: The maintenance of a dynamic steady state by regulatory mechanisms that compensate for changes in external circumstances
homeotic genes: Genes that regulate
development of the pattern of segments in the Drosophila body plan; similar genes are found in most vertebrates.
homologs: Genes or proteins that possess a clear sequence and functional relationship to each other.

homologous genetic recombination:

Recombination between two DNA molecules of similar sequence, occurring in all cells; occurs during meiosis and mitosis in eukaryotes.
homologous proteins: Proteins having similar sequences and functions in different species; for example, the hemoglobins.
homotropic: Describes an allosteric modulator that is identical to the normal ligand.
homotropic enzyme: An allosteric enzyme that uses its substrate as a modulator.
hormone: A chemical substance synthesized in small amounts by an endocrine tissue and carried in the blood to another tissue, where it acts as a messenger to regulate the function of the target tissue or organ.
hormone receptor: A protein in, or on the surface of, target cells that binds a specific hormone and initiates the cellular response.
hormone response element (HRE): A short
(12 to 20 bp) DNA sequence that binds receptors for steroid, retinoid, thyroid, and vitamin D hormones, altering the expression of the contiguous genes. Each hormone has a consensus sequence preferred by the cognate receptor.
HPLC: See high-performance liquid chromatography.

HRE: See hormone response element.
hyaluronan: A high molecular weight, acidic polysaccharide typically composed of the alternating disaccharide $\operatorname{GlcUA}(\beta 1 \rightarrow 3)$ GlcNAc; a major component of the extracellular matrix, forming larger complexes (proteoglycans) with proteins and other acidic polysaccharides. Also called hyaluronic acid.
hydrogen bond: A weak electrostatic attraction between one electronegative atom (such
as oxygen or nitrogen) and a hydrogen atom covalently linked to a second electronegative atom.
hydrolases: Enzymes (proteases, lipases, phosphatases, nucleases, for example) that catalyze hydrolysis reactions.
hydrolysis: Cleavage of a bond, such as an anhydride or peptide bond, by the addition of the elements of water, yielding two or more products.
hydronium ion: The hydrated hydrogen ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.
hydropathy index: A scale that expresses the relative hydrophobic and hydrophilic tendencies of a chemical group.
hydrophilic: Polar or charged; describes molecules or groups that associate with (dissolve easily in) water.
hydrophobic: Nonpolar; describes molecules or groups that are insoluble in water.
hydrophobic interactions: The association of nonpolar groups or compounds with each other in aqueous systems, driven by the tendency of the surrounding water molecules to seek their most stable (disordered) state.
hyperchromic effect: The large increase in light absorption at 260 nm occurring as a double-helical DNA unwinds (melts).
hypoxia: The metabolic condition in which the supply of oxygen is severely limited.

i

immune response: The capacity of a vertebrate to generate antibodies to an antigen, a macromolecule foreign to the organism.
immunoblotting: A technique that employs antibodies to detect the presence of a protein in a biological sample after the proteins in the sample have been separated by gel electrophoresis, transferred to a membrane and immobilized; also called Western blotting.
immunoglobulin: An antibody protein generated against, and capable of binding specifically to, an antigen.
induced fit: A change in the conformation of an enzyme in response to substrate binding that renders the enzyme catalytically active; also used to denote changes in the conformation of any macromolecule in response to ligand binding such that the binding site of the macromolecule better conforms to the shape of the ligand.
inducer: A signal molecule that, when bound to a regulatory protein, produces an increase in the expression of a given gene.
induction: An increase in the expression of a gene in response to a change in the activity of a regulatory protein.
informational macromolecules: Biomol-
ecules containing information in the form of specific sequences of different monomers; for example, many proteins, lipids, polysaccharides, and nucleic acids.
inhibitory G protein $\left(G_{i}\right)$: A trimeric
GTP-binding protein that, when activated by an associated plasma membrane receptor,
inhibits a neighboring membrane enzyme such as adenylyl cyclase. Compare stimulatory G protein $\left(\mathrm{G}_{\mathrm{s}}\right)$
initiation codon: AUG (sometimes GUG or, even more rarely, UUG in bacteria and archaea); codes for the first amino acid in a polypeptide sequence: N-formylmethionine in bacteria; methionine in archaea and eukaryotes.
initiation complex: A complex of a ribosome with an mRNA and the initiating Met-tRNA ${ }^{\text {Met }}$ or fMet-tRNA ${ }^{\text {fMet }}$, ready for the elongation steps.
inorganic pyrophosphatase: An enzyme that hydrolyzes a molecule of inorganic pyrophosphate to yield two molecules of (ortho) phosphate; also known as pyrophosphatase.
insertion mutation: A mutation caused by insertion of one or more extra bases, or a mutagen, between successive bases in DNA.
insertion sequence: Specific base sequences at either end of a transposable segment of DNA.
in situ: "In position"; that is, in its natural position or location.
integral proteins: Proteins firmly bound to a membrane by hydrophobic interactions; as distinct from peripheral proteins.
integrin: One of a large family of heterodimeric transmembrane proteins that mediate adhesion of cells to other cells or to the extracellular matrix.
intercalation: Insertion between stacked aromatic or planar rings; for example, the insertion of a planar molecule between two successive bases in a nucleic acid.
intermediary metabolism: In cells, the enzyme-catalyzed reactions that extract chemical energy from nutrient molecules and use it to synthesize and assemble cell components.
intrinsically disordered proteins: Proteins, or segments of proteins, that lack a definable three-dimensional structure in solution.
intron: A sequence of nucleotides in a gene that is transcribed but excised before the gene is translated; also called intervening sequence. See also exon
in vitro: "In glass"; that is, in the test tube.
in vivo: "In life"; that is, in the living cell or organism.
ion channel: An integral protein that provides for the regulated transport of a specific ion, or ions, across a membrane.
ion-exchange chromatography: A process for separating complex mixtures of ionic compounds by many repeated partitionings between a flowing (mobile) phase and a stationary phase consisting of a polymeric resin that contains fixed charged groups.
ionizing radiation: A type of radiation, such as x rays, that causes loss of electrons from some organic molecules, thus making them more reactive.
ionophore: A compound that binds one or more metal ions and is capable of diffusing across a membrane, carrying the bound ion.
ion product of water $\left(\boldsymbol{K}_{\mathbf{W}}\right)$: The product of the concentrations of H^{+}and OH^{-}in pure water: $K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$. iron-sulfur protein: One of a large family of electron-transfer proteins in which the electron carrier is one or more iron ions associated with two or more sulfur atoms of Cys residues or of inorganic sulfide.
isoelectric focusing: An electrophoretic method for separating macromolecules on the basis of isoelectric pH .
isoelectric $\mathbf{p H}$ (isoelectric point, $\mathbf{p I}$): The pH at which a solute has no net electric charge and thus does not move in an electric field.
isoenzymes: See isozymes.
isomerases: Enzymes that catalyze the transformation of compounds into their positional isomers.
isomers: Any two molecules with the same molecular formula but a different arrangement of molecular groups.
isoprene: The hydrocarbon 2-methyl-1,3-butadiene, a recurring structural unit of terpenoids.
isoprenoid: Any of a large number of natural products synthesized by enzymatic polymerization of two or more isoprene units; also called terpenoid.
isozymes: Multiple forms of an enzyme that catalyze the same reaction but differ in amino acid sequence, substrate affinity, $V_{\max }$, and/or regulatory properties; also called isoenzymes.

k

ketogenic: Yielding acetyl-CoA, a precursor for ketone body formation, as a breakdown product.
ketone bodies: Acetoacetate, D- β-hydroxybutyrate, and acetone; water-soluble fuels normally exported by the liver but overproduced during fasting or in untreated diabetes mellitus.
ketose: A simple monosaccharide in which the carbonyl group is a ketone.
ketosis: A condition in which the concentration of ketone bodies in the blood, tissues, and urine is abnormally high.
kinases: Enzymes that catalyze the phosphorylation of certain molecules by ATP.
kinetics: The study of reaction rates.
Krebs cycle: See citric acid cycle.
$\boldsymbol{K}_{\mathbf{t}}\left(\boldsymbol{K}_{\text {transport }}\right)$: A kinetic parameter for a membrane transporter analogous to the Michaelis constant, K_{m}, for an enzymatic reaction. The rate of substrate uptake is half-maximal when the substrate concentration equals the K_{t}.

I

lagging strand: The DNA strand that, during replication, must be synthesized in the direction opposite to that in which the replication fork moves.
law of mass action: The law stating that the rate of any given chemical reaction is proportional to the product of the activities (or concentrations) of the reactants.
leader: A short sequence near the amino terminus of a protein or the 5^{\prime} end of an RNA that has a specialized targeting or regulatory function.
leading strand: The DNA strand that, during replication, is synthesized in the same direction as the replication fork moves.
leaky mutant: A mutant gene that gives rise to a product with a detectable level of biological activity.
leaving group: The departing or displaced molecular group in a unimolecular elimination or bimolecular substitution reaction.
lectin: A protein that binds a carbohydrate, commonly an oligosaccharide, with very high affinity and specificity, mediating cell-cell interactions.
lethal mutation: A mutation that inactivates a biological function essential to the life of the cell or organism.
leucine zipper: A protein structural motif involved in protein-protein interactions in many eukaryotic regulatory proteins; consists of two interacting α helices in which Leu residues in every seventh position are a prominent feature of the interacting surfaces.
leukocyte: White blood cell; involved in the immune response in mammals.
leukotriene: Any of a class of signaling lipids derived from arachidonate in the noncyclic pathway; modulate smooth muscle activity.
ligand: A small molecule that binds specifically to a larger one; for example, a hormone is the ligand for its specific protein receptor.
ligases: Enzymes that catalyze condensation reactions in which two atoms are joined using the energy of ATP or another energy-rich compound.
light-dependent reactions: The reactions of photosynthesis that require light and cannot occur in the dark; also known as light reactions.
Lineweaver-Burk equation: An algebraic transform of the Michaelis-Menten equation, allowing determination of $V_{\text {max }}$ and K_{m} by extrapolation of [S] to infinity:
$\frac{1}{V_{0}}=\frac{K_{\mathrm{m}}}{V_{\max }[\mathrm{S}]}+\frac{1}{V_{\text {max }}}$.
linking number: The number of times one closed circular DNA strand is wound about another; the number of topological links holding the circles together.
lipases: Enzymes that catalyze the hydrolysis of triacylglycerols.
lipid: A small water-insoluble biomolecule generally containing fatty acids, sterols, or isoprenoid compounds
lipidome: The full complement of lipidcontaining molecules in a cell, organ, or tissue under a particular set of conditions.
lipidomics: The systematic characterization of the lipidome.
lipoate (lipoic acid): A vitamin for some microorganisms; an intermediate carrier of hydrogen atoms and acyl groups in α-keto acid dehydrogenases.
lipoprotein: A lipid-protein aggregate that serves to carry water-insoluble lipids in the blood. The protein component alone is an apolipoprotein.
liposome: A small, spherical vesicle composed of a phospholipid bilayer, forming spontaneously when phospholipids are suspended in an aqueous buffer.
lyases: Enzymes that catalyze the removal of a group from a molecule to form a double bond, or the addition of a group to a double bond.
lymphocytes: A subclass of leukocytes involved in the immune response. See also B lymphocytes; T lymphocytes.
lysis: Destruction of a plasma membrane or (in bacteria) cell wall, releasing the cellular contents and killing the cell.
lysosome: A membrane-bounded organelle of eukaryotic cells; it contains many hydrolytic enzymes and serves as a degrading and recycling center for unneeded components.

m

macromolecule: A molecule having a molecular weight in the range of a few thousand to many millions.
mass-action ratio (Q) : For the reaction $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$, the ratio $[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /$ $[A]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$.
matrix: The space enclosed by the inner membrane of the mitochondrion.
mechanistic target of rapamycin complex 1: See mTORC1.
meiosis: A type of cell division in which diploid cells give rise to haploid cells destined to become gametes or spores.
membrane potential $\left(\boldsymbol{V}_{\mathrm{m}}\right)$: The difference in electrical potential across a biological membrane, commonly measured by the insertion of a microelectrode. Typical membrane potentials vary from -25 mV (by convention, the negative sign indicates that the inside is negative relative to the outside) to greater than -100 mV across some plant vacuolar membranes.
membrane transport: Movement of a polar solute across a membrane via a specific membrane protein (a transporter).
messenger RNA (mRNA): A class of RNA molecules, each of which is complementary to one strand of DNA; carries the genetic message from the chromosome to the ribosomes.
metabolic control: The mechanisms by which the flux through a metabolic pathway is changed to reflect a cell's altered circumstances.
metabolic regulation: The mechanisms by which a cell resists changes in the concentration of individual metabolites that would otherwise occur when metabolic control mechanisms alter the flux through a pathway.
metabolic syndrome: A combination of medical conditions that together predispose to cardiovascular disease and type 2 diabetes. They include high blood pressure, high concentrations of LDL and triacylglycerol in the
blood, slightly elevated fasting blood glucose concentration, and obesity.
metabolism: The entire set of enzymecatalyzed transformations of organic molecules in living cells; the sum of anabolism and catabolism.
metabolite: A chemical intermediate in the enzyme-catalyzed reactions of metabolism.
metabolome: The complete set of smallmolecule metabolites (metabolic intermediates, signals, secondary metabolites) present in a given cell or tissue under specific conditions.
metabolomics: The systematic characterization of the metabolome of a cell or tissue.
metabolon: A supramolecular assembly of sequential metabolic enzymes
metalloprotein: A protein with a metal ion as its prosthetic group.
metamerism: Division of the body into segments, as in insects, for example.
micelle: An aggregate of amphipathic molecules in water, with the nonpolar portions in the interior and the polar portions at the exterior surface, exposed to water.

Michaelis constant (K_{m}): The substrate concentration at which an enzyme-catalyzed reaction proceeds at one-half its maximum velocity.
Michaelis-Menten equation: The equation describing the hyperbolic dependence of the initial reaction velocity, V_{0}, on substrate concentration, [S], in many enzyme-catalyzed reactions:
$V_{0}=\frac{V_{\max }[\mathrm{S}]}{K_{\mathrm{m}}+[\mathrm{S}]}$.
Michaelis-Menten kinetics: A kinetic pattern in which the initial rate of an enzymecatalyzed reaction exhibits a hyperbolic dependence on substrate concentration. microRNA: A class of small RNA molecules (20 to 25 nucleotides after processing is complete) involved in gene silencing by inhibiting translation and/or promoting the degradation of particular mRNAs.
microsomes: Membranous vesicles formed by fragmentation of the endoplasmic reticulum of eukaryotic cells; recovered by differential centrifugation.
miRNA: See microRNA.
mismatch: A base pair in a nucleic acid that cannot form a normal Watson-Crick pair.
mismatch repair: An enzymatic system for repairing base mismatches in DNA.
mitochondrion: Membrane-bounded organelle of eukaryotic cells; contains the enzyme systems required for the citric acid cycle, fatty acid oxidation, electron transfer, and oxidative phosphorylation.
mitosis: In eukaryotic cells, the multistep process that results in the replication of chromosomes and cell division.
mixed-function oxygenases: Enzymes (a monooxygenase, for example) that catalyze reactions in which two reductants-one of which is generally NADPH , the other the
substrate-are oxidized. One oxygen atom is incorporated into the product, the other is reduced to $\mathrm{H}_{2} \mathrm{O}$. These enzymes often use cytochrome P-450 to carry electrons from NADPH to O_{2}
mixed inhibition: The reversible inhibition pattern resulting when an inhibitor molecule can bind to either the free enzyme or the enzyme-substrate complex (not necessarily with the same affinity).
modulator: A metabolite that, when bound to the allosteric site of an enzyme, alters its kinetic characteristics.
molar solution: One mole of solute dissolved in water to give a total volume of $1,000 \mathrm{~mL}$. mole: One gram molecular weight of a compound. See also Avogadro's number.
monocistronic mRNA: An mRNA that can be translated into only one protein.
monoclonal antibodies: Antibodies produced by a cloned hybridoma cell, which therefore are identical and directed against the same epitope of the antigen. (Hybridoma cells are stable antibody-producing cell lines that grow well in tissue culture; created by fusing an antibody-producing B cell with a myeloma cell.)
monosaccharide: A carbohydrate consisting of a single sugar unit.
moonlighting enzymes: Enzymes that play two distinct roles, at least one of which is catalytic; the other may be catalytic, regulatory, or structural.
motif: Any distinct folding pattern for elements of secondary structure, observed in one or more proteins. A motif can be simple or complex, and can represent all or just a small part of a polypeptide chain. Also called a fold or supersecondary structure.
mRNA: See messenger RNA.
mTORC1 (mechanistic target of rapamycin complex 1): A multiprotein complex of mTOR (mechanistic target of rapamycin) and several regulatory subunits, which together have activity as a Ser/Thr protein kinase. Stimulated by nutrients and energy-sufficient conditions, it triggers cell growth and proliferation.
mucopolysaccharide: See glycosaminoglycan multidrug transporters: Plasma membrane transporters in the ABC transporter family that expel several commonly used antitumor drugs, thereby interfering with antitumor therapy.
multienzyme system: A group of related enzymes participating in a given metabolic pathway.
mutarotation: The change in specific rotation of a pyranose or furanose sugar or glycoside accompanying the equilibration of its α - and β-anomeric forms.
mutases: Enzymes that catalyze the transposition of functional groups.
mutation: An inheritable change in the nucleotide sequence of a chromosome.
myocyte: A muscle cell.
myofibril: A unit of thick and thin filaments of muscle fibers.
myosin: A contractile protein; the major component of the thick filaments of muscle and other actin-myosin systems.

n

NAD, NADP (nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate): Nicotinamide-containing coenzymes functioning as carriers of hydrogen atoms and electrons in some oxidation-reduction reactions
$\mathbf{N a}^{+} \mathbf{K}^{+}$ATPase: The electrogenic ATP-driven active transporter in the plasma membrane of most animal cells that pumps three Na^{+} outward for every two K^{+}moved inward.
native conformation: The biologically active conformation of a macromolecule.
ncRNA (noncoding RNA): Any RNA that does not encode instructions for a protein product.
negative cooperativity: A property of some multisubunit enzymes or proteins in which binding of a ligand or substrate to one subunit impairs binding to another subunit.
negative feedback: Regulation of a biochemical pathway in which a reaction product inhibits an earlier step in the pathway.
neuron: A cell of nervous tissue specialized for transmission of a nerve impulse.
neurotransmitter: A low molecular weight compound (usually containing nitrogen) secreted from the axon terminal of a neuron and bound by a specific receptor on the next neuron or on a myocyte; serves to transmit a nerve impulse.
nitrogenase complex: A system of enzymes capable of reducing atmospheric nitrogen to ammonia in the presence of ATP.
nitrogen cycle: The cycling of various forms of biologically available nitrogen through the plant, animal, and microbial worlds, and through the atmosphere and geosphere.
nitrogen fixation: Conversion of atmospheric nitrogen $\left(\mathrm{N}_{2}\right)$ into a reduced, biologically available form by nitrogen-fixing organisms.
NMR: See nuclear magnetic resonance spectroscopy.
noncoding RNA: See ncRNA.
noncyclic electron flow: The light-induced flow of electrons from water to NADP^{+}in oxygen-evolving photosynthesis; involves both photosystems I and II.
nonessential amino acids: Amino acids that can be made by humans and other vertebrates from simpler precursors and are thus not required in the diet
nonheme iron proteins: Proteins, usually acting in oxidation-reduction reactions, containing iron but no porphyrin groups.
nonpolar: Hydrophobic; describes molecules or groups that are poorly soluble in water.
nonsense codon: A codon that does not specify an amino acid, but signals the termination of a polypeptide chain.
nonsense mutation: A mutation that results in the premature termination of a polypeptide chain.
nonsense suppressor: A mutation, usually in the gene for a tRNA, that causes an amino acid to be inserted into a polypeptide in response to a termination codon.
nontemplate strand: See coding strand.
nuclear magnetic resonance (NMR) spec-
troscopy: A technique that utilizes certain quantum mechanical properties of atomic nuclei to study the structure and dynamics of the molecules of which they are a part.
nucleases: Enzymes that hydrolyze the internucleotide (phosphodiester) linkages of nucleic acids.
nucleic acids: Biologically occurring polynucleotides in which the nucleotide residues are linked in a specific sequence by phosphodiester bonds; DNA and RNA.
nucleoid: In bacteria, the nuclear zone that contains the chromosome but has no surrounding membrane.
nucleolus: In eukaryotic cells, a densely staining structure in the nucleus; involved in rRNA synthesis and ribosome formation.
nucleophile: An electron-rich group with a strong tendency to donate electrons to an electron-deficient nucleus (electrophile); the entering reactant in a bimolecular substitution reaction.
nucleoplasm: The portion of a eukaryotic cell's contents enclosed by the nuclear membrane.
nucleoside: A compound consisting of a purine or pyrimidine base covalently linked to a pentose.
nucleoside diphosphate kinase: An enzyme that catalyzes the transfer of the terminal phosphate of a nucleoside 5^{\prime}-triphosphate to a nucleoside 5^{\prime}-diphosphate.
nucleoside diphosphate sugar: A coenzymelike carrier of a sugar molecule, functioning in the enzymatic synthesis of polysaccharides and sugar derivatives.
nucleoside monophosphate kinase: An enzyme that catalyzes the transfer of the terminal phosphate of ATP to a nucleoside 5'-monophosphate.
nucleosome: In eukaryotes, structural unit for packaging chromatin; consists of a DNA strand wound around a histone core.
nucleotide: A nucleoside phosphorylated at one of its pentose hydroxyl groups.
nucleus: In eukaryotes, a membrane-bounded organelle that contains chromosomes.

0

\boldsymbol{O}-glycosidic bonds: Bonds between a sugar and another molecule (typically an alcohol, purine, pyrimidine, or sugar) through an intervening oxygen.
oligomer: A short polymer, usually of amino acids, sugars, or nucleotides; the definition of "short" is somewhat arbitrary, but usually fewer than 50 subunits.
oligomeric protein: A multisubunit protein having two or more identical polypeptide chains
oligonucleotide: A short polymer of nucleotides (usually fewer than 50).
oligopeptide: A few amino acids joined by peptide bonds.
oligosaccharide: Several monosaccharide groups joined by glycosidic bonds.
$\boldsymbol{\omega}$ oxidation: An alternative mode of fatty acid oxidation in which the initial oxidation is at the carbon most distant from the carboxyl carbon; as distinct from β oxidation.
oncogene: A cancer-causing gene; any of several mutant genes that cause cells to exhibit rapid, uncontrolled proliferation. See also proto-oncogene.
open reading frame (ORF): A group of contiguous nonoverlapping nucleotide codons in a DNA or RNA molecule that does not include a termination codon.
open system: A system that exchanges matter and energy with its surroundings. See also system.
operator: A region of DNA that interacts with a repressor protein to control the expression of a gene or group of genes.
operon: A unit of genetic expression consisting of one or more related genes and the operator and promoter sequences that regulate their transcription.
opsin: The protein portion of the visual pigment, which becomes rhodopsin with the addition of the chromophore retinal.
optical activity: The capacity of a substance to rotate the plane of plane-polarized light.
optimum $\mathbf{p H}$: The characteristic pH at which an enzyme has maximal catalytic activity.
orexigenic: Tending to increase appetite and food consumption.
ORF: See open reading frame.
organelles: Membrane-bounded structures found in eukaryotic cells; contain enzymes and other components required for specialized cell functions.
origin: The nucleotide sequence or site in DNA where DNA replication is initiated.
orthologs: Genes or proteins from different species that possess a clear sequence and functional relationship to each other.
osmosis: Bulk flow of water through a semipermeable membrane into another aqueous compartment containing solute at a higher concentration.
osmotic pressure: Pressure generated by the osmotic flow of water through a semipermeable membrane into an aqueous compartment containing solute at a higher concentration.
oxidases: Enzymes that catalyze oxidation reactions in which molecular oxygen serves as the electron acceptor, but neither of the oxygen atoms is incorporated into the product. Compare oxygenases.
oxidation: The loss of electrons from a compound.
oxidation-reduction reaction: A reaction in which electrons are transferred from a donor to an acceptor molecule; also called a redox reaction.
oxidative phosphorylation: The enzymatic phosphorylation of ADP to ATP coupled to electron transfer from a substrate to molecular oxygen.
oxidizing agent (oxidant): The acceptor of electrons in an oxidation-reduction reaction.
oxygenases: Enzymes that catalyze reactions in which oxygen atoms are directly incorporated into the product, forming a hydroxyl or carboxyl group. In reactions catalyzed by a monooxygenase, only one of the two O atoms is incorporated; the other is reduced to $\mathrm{H}_{2} \mathrm{O}$. In reactions catalyzed by a dioxygenase, both O atoms are incorporated into the product. Compare oxidases.
oxygenic photosynthesis: Light-driven ATP and NADPH synthesis in organisms that use water as the electron source, producing O_{2}.

p

palindrome: A segment of duplex DNA in which the base sequences of the two strands exhibit twofold rotational symmetry about an axis.
paradigm: In biochemistry, an experimental model or example.
paralogs: Genes or proteins present in the same species that possess a clear sequence and functional relationship to each other.
partition coefficient: A constant that expresses the ratio in which a given solute will be partitioned or distributed between two given immiscible liquids at equilibrium.
passive transport: Diffusion of a polar substance across a biological membrane through a protein transporter; also called facilitated diffusion.
pathogenic: Disease-causing.
PCR: See polymerase chain reaction.
PDB (Protein Data Bank): An international database (www.pdb.org) that archives the data describing the three-dimensional structure of nearly all macromolecules for which structures have been published.
pentose: A simple sugar with a backbone containing five carbon atoms.
pentose phosphate pathway: A pathway present in most organisms that serves to interconvert hexoses and pentoses and is a source of reducing equivalents (NADPH) and pentoses for biosynthetic processes; it begins with glucose 6-phosphate and includes 6 -phosphogluconate as an intermediate. Also called the phosphogluconate pathway and the hexose monophosphate pathway.
peptidases: Enzymes that hydrolyze peptide bonds.
peptide: Two or more amino acids covalently joined by peptide bonds.
peptide bond: A substituted amide linkage between the α-amino group of one amino acid and the α-carboxyl group of another, with the elimination of the elements of water.
peptidoglycan: A major component of bacterial cell walls; generally consists of parallel heteropolysaccharides cross-linked by short peptides.
peptidyl transferase: The enzyme activity that synthesizes the peptide bonds of proteins; a ribozyme, part of the rRNA of the large ribosomal subunit.
peripheral proteins: Proteins loosely or reversibly bound to a membrane by hydrogen bonds or electrostatic forces; generally water soluble once released from the membrane. Compare integral proteins.
permeases: See transporters.
peroxisome: Membrane-bounded organelle of eukaryotic cells; contains peroxide-forming and peroxide-destroying enzymes.
peroxisome proliferator-activated receptor: See PPAR.
$\mathbf{p H}$: The negative logarithm of the hydrogen ion concentration of an aqueous solution.
phage: See bacteriophage.
phenotype: The observable characteristics of an organism.
phosphatases: Enzymes that cleave phosphate esters by hydrolysis, the addition of the elements of water.
phosphodiester linkage: A chemical grouping that contains two alcohols esterified to one molecule of phosphoric acid, which thus serves as a bridge between them.
phosphogluconate pathway: See pentose phosphate pathway.
phospholipid: A lipid containing one or more phosphate groups.
phosphorolysis: Cleavage of a compound with phosphate as the attacking group; analogous to hydrolysis.
phosphorylases: Enzymes that catalyze phosphorolysis.
phosphorylation: Formation of a phosphate derivative of a biomolecule, usually by enzymatic transfer of a phosphoryl group from ATP.
phosphorylation potential ($\boldsymbol{\Delta} \boldsymbol{G}_{\mathrm{p}}$): The
actual free-energy change of ATP hydrolysis under the nonstandard conditions prevailing in a cell.
photochemical reaction center: The part of a photosynthetic complex where the energy of an absorbed photon causes charge separation, initiating electron transfer.
photon: The ultimate unit (a quantum) of light energy.
photophosphorylation: The enzymatic formation of ATP from ADP coupled to the light-dependent transfer of electrons in photosynthetic cells.
photoreduction: The light-induced reduction of an electron acceptor in photosynthetic cells.
photorespiration: Oxygen consumption occurring in illuminated temperate-zone plants, largely due to oxidation of phosphoglycolate.
photosynthesis: The use of light energy to produce carbohydrates from carbon dioxide and a reducing agent such as water. Compare oxygenic photosynthesis.

photosynthetic phosphorylation: See

 photophosphorylation.photosystem: In photosynthetic cells, a functional set of light-absorbing pigments and its reaction center, where the energy of an absorbed photon is transduced into a separation of electric charges.
phototroph: An organism that can use the energy of light to synthesize its own fuels from simple molecules such as carbon dioxide, oxygen, and water; as distinct from a chemotroph. pI: See isoelectric pH.
$\mathbf{p} \boldsymbol{K}_{\mathbf{a}}$: The negative logarithm of an equilibrium constant.
plasmalogen: A phospholipid with an alkenyl ether substituent on C-1 of glycerol.
plasma membrane: The exterior membrane surrounding the cytoplasm of a cell.
plasma proteins: The proteins present in blood plasma.
plasmid: An extrachromosomal, independently replicating, small circular DNA molecule; commonly employed in genetic engineering.
plastid: In plants, a self-replicating organelle; may differentiate into a chloroplast or amyloplast.
platelets: Small, enucleated cells that initiate blood clotting; they arise from bone marrow cells called megakaryocytes. Also known as thrombocytes.
pleated sheet: The side-by-side, hydrogenbonded arrangement of polypeptide chains in the extended β conformation.
plectonemic: Describes a structure in a molecular polymer that has a net twisting of strands about each other in some simple and regular way.
PLP: See pyridoxal phosphate
polar: Hydrophilic, or "water-loving"; describes molecules or groups that are soluble in water.
polarity: (1) In chemistry, the nonuniform distribution of electrons in a molecule; polar molecules are usually soluble in water. (2) In molecular biology, the distinction between the 5^{\prime} and 3^{\prime} ends of nucleic acids.
poly(A) tail: A length of adenosine residues added to the 3^{\prime} end of many mRNAs in eukary otes (and sometimes in bacteria).
polycistronic mRNA: A contiguous mRNA with more than two genes that can be translated into proteins.
polyclonal antibodies: A heterogeneous pool of antibodies produced in an animal by different B lymphocytes in response to an antigen. Different antibodies in the pool recognize different parts of the antigen.
polylinker: A short, often synthetic, fragment of DNA containing recognition sequences for several restriction endonucleases.
polymerase chain reaction (PCR): A repetitive laboratory procedure that results in a geometric amplification of a specific DNA sequence.
polymorphic: Describes a protein for which amino acid sequence variants exist in a population of organisms, but the variations do not destroy the protein's function.
polynucleotide: A covalently linked sequence of nucleotides in which the 3^{\prime} hydroxyl of the pentose of one nucleotide residue is joined by a phosphodiester bond to the 5^{\prime} hydroxyl of the pentose of the next residue.
polypeptide: A long chain of amino acids linked by peptide bonds; the molecular weight is generally less than 10,000 .
polyribosome: See polysome.
polysaccharide: A linear or branched polymer of monosaccharide units linked by glycosidic bonds.
polysome: A complex of an mRNA molecule and two or more ribosomes; also called polyribosome.
polyunsaturated fatty acid: See PUFA.
P/O ratio: The number of moles of ATP formed in oxidative phosphorylation per $\frac{1}{2} \mathrm{O}_{2}$ reduced (thus, per pair of electrons passed to O_{2}). Experimental values used in this text are 2.5 for passage of electrons from NADH to O_{2}, and 1.5 for passage of electrons from FADH to O_{2}.
porphyria: Inherited condition resulting from the lack of one or more enzymes required to synthesize porphyrins.
porphyrin: Complex nitrogenous compound containing four substituted pyrroles covalently joined into a ring; often complexed with a central metal atom.
positive cooperativity: A property of some multisubunit enzymes or proteins in which binding of a ligand or substrate to one subunit facilitates binding to another subunit.
positive-inside rule: General observation that most plasma membrane proteins are oriented so that most of their positively charged residues (Lys and Arg) are on the cytosolic face.
posttranscriptional processing: The enzymatic processing of the primary RNA transcript to produce functional RNAs, including mRNAs, tRNAs, rRNAs, and many other classes of RNAs.
posttranslational modification: Enzymatic processing of a polypeptide chain after translation from its mRNA.
PPAR (peroxisome proliferator-activated
receptor): A family of nuclear transcription factors, activated by lipidic ligands, that alter the expression of specific genes, including those encoding enzymes of lipid synthesis and breakdown.
primary structure: A description of the covalent backbone of a polymer (macromolecule), including the sequence of monomeric subunits and any interchain and intrachain covalent bonds.
primary transcript: The immediate RNA product of transcription before any posttranscriptional processing reactions.
primases: Enzymes that catalyze the formation of RNA oligonucleotides used as primers by DNA polymerases.
primer: A short oligomer (of sugars or nucleotides, for example) to which an enzyme adds additional monomeric subunits.
primer terminus: The end of a primer to which monomeric subunits are added.
priming: (1) In protein phosphorylation, the phosphorylation of an amino acid residue that becomes the binding site and point of reference for phosphorylation of other residues in the same protein. (2) In DNA replication, the synthesis of a short oligonucleotide to which DNA polymerases can add additional nucleotides.
primosome: An enzyme complex that synthesizes the primers required for lagging strand DNA synthesis.
processivity: For any enzyme that catalyzes the synthesis of a biological polymer, the property of adding multiple subunits to the polymer without dissociating from the substrate.
prochiral molecule: A symmetric molecule that can react asymmetrically with an enzyme having an asymmetric active site, generating a chiral product.
projection formulas: See Fischer projection formulas.
prokaryote: A term used historically to refer to any species in the kingdoms Bacteria and Archaea. The differences between bacteria (formerly referred to as "eubacteria") and archaea are sufficiently great that the inclusive term is of marginal usefulness. A tendency to use "prokaryote" when referring only to bacteria is common and misleading; "prokaryote" also implies an ancestral relationship to eukaryotes, which is incorrect. In this text, "prokaryote" and "prokaryotic" are not used. promoter: A DNA sequence at which RNA polymerase may bind, leading to initiation of transcription.
proofreading: The correction of errors in the synthesis of an information-containing biopolymer by removing incorrect monomeric subunits after they have been covalently added to the growing polymer.
prostaglandin: One of a class of polyunsaturated, cyclic lipids derived from arachidonate that act as paracrine hormones.
prosthetic group: A metal ion or an organic compound (other than an amino acid) that is covalently bound to a protein and is essential to its activity.
proteases: Enzymes that catalyze the hydrolytic cleavage of peptide bonds in proteins.
proteasome: Supramolecular assembly of enzymatic complexes that function in the degradation of damaged or unneeded cellular proteins.
protein: A macromolecule composed of one or more polypeptide chains, each with a characteristic sequence of amino acids linked by peptide bonds.

Protein Data Bank: See PDB.

protein kinases: Enzymes that transfer the terminal phosphoryl group of ATP or another nucleoside triphosphate to a Ser, Thr, Tyr, Asp, or His side chain in a target protein, thereby regulating the activity or other properties of that protein.
protein phosphatases: Enzymes that hydrolyze a phosphate ester or anhydride bond on a protein, releasing inorganic phosphate, P_{i}.
protein targeting: The process by which newly synthesized proteins are sorted and transported to their proper locations in the cell proteoglycan: A hybrid macromolecule consisting of a heteropolysaccharide joined to a polypeptide; the polysaccharide is the major component.
proteome: The full complement of proteins expressed in a given cell, or the complete complement of proteins that can be expressed by a given genome.
proteomics: Broadly, the study of the protein complement of a cell or organism.
proteostasis: The maintenance of a cellular steady-state collection of proteins that are required for cell functions under a given set of conditions.
protomer: A general term describing any repeated unit of one or more stably associated protein subunits in a larger protein structure. If a protomer has multiple subunits, the subunits may be identical or different.
proton acceptor: An anionic compound capable of accepting a proton from a proton donor; that is, a base.
proton donor: The donor of a proton in an acid-base reaction; that is, an acid.
proton-motive force: The electrochemical potential inherent in a transmembrane gradient of H^{+}concentration; used in oxidative phosphorylation and photophosphorylation to drive ATP synthesis.
proto-oncogene: A cellular gene, usually encoding a regulatory protein, that can be converted into an oncogene by mutation.

PUFA (polyunsaturated fatty acid): A

 fatty acid with more than one double bond, generally nonconjugated.purine: A nitrogenous heterocyclic base found in nucleotides and nucleic acids; contains fused pyrimidine and imidazole rings.
puromycin: An antibiotic that inhibits polypeptide synthesis by being incorporated into a growing polypeptide chain, causing its premature termination.
pyridine nucleotide: A nucleotide coenzyme containing the pyridine derivative nicotinamide; NAD or NADP.
pyridoxal phosphate (PLP): A coenzyme containing the vitamin pyridoxine (vitamin B_{6}); functions in reactions involving amino group transfer.
pyrimidine: A nitrogenous heterocyclic base found in nucleotides and nucleic acids.
pyrimidine dimer: A covalently joined dimer of two adjacent pyrimidine residues in DNA, induced by absorption of UV light; most commonly derived from two adjacent thymines (a thymine dimer).
pyrophosphatase: See inorganic
pyrophosphatase.

q

\boldsymbol{Q} : See mass-action ratio.
quantitative PCR (qPCR): A PCR procedure that allows the determination of how
much of the amplified template was in the original sample.
quantum: The ultimate unit of energy.
quaternary structure: The three-
dimensional structure of a multisubunit protein, particularly the manner in which the subunits fit together.
r
racemic mixture (racemate): An equimolar mixture of the D and L stereoisomers of an optically active compound.
radical: An atom or group of atoms possessing an unpaired electron; also called a free radical.
radioactive isotope: An isotopic form of an element with an unstable nucleus that stabilizes itself by emitting ionizing radiation.
radioimmunoassay (RIA): A sensitive, quantitative method for detecting trace amounts of a biomolecule, based on its capacity to displace a radioactive form of the molecule from combination with its specific antibody.
Ras superfamily of G proteins: Small ($M_{\mathrm{r}} \sim 20,000$), monomeric guanosine nucleotidebinding proteins that regulate signaling and membrane trafficking pathways. Inactive with GDP bound, they are activated by displacement of GDP by GTP, then inactivated by their intrinsic GTPase. Also called small G proteins.
rate constant: The proportionality constant that relates the velocity of a chemical reaction to the concentration(s) of the reactant(s).
rate-limiting step: (1) Generally, the step in an enzymatic reaction with the greatest activation energy or the transition state of highest free energy. (2) The slowest step in a metabolic pathway.
reaction intermediate: Any chemical species in a reaction pathway that has a finite chemical lifetime.
reactive oxygen species (ROS): Highly reactive products of the partial reduction of O_{2}, including hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$, superoxide (${ }^{\bullet} \mathrm{O}_{2}^{-}$), and hydroxyl free radical ${ }^{\bullet} \mathrm{OH}$, produced as minor byproducts during oxidative phosphorylation.
reading frame: A contiguous, nonoverlapping set of three-nucleotide codons in DNA or RNA.
receptor Tyr kinase (RTK): A large family of plasma membrane proteins with ligandbinding sites on the extracellular domain, a single transmembrane helix, and a cytoplasmic domain with protein Tyr kinase activity controlled by the extracellular ligand.
recombinant DNA: DNA formed by the joining of genes into new combinations.
recombination: Any enzymatic process by which the linear arrangement of nucleic acid sequences in a chromosome is altered by cleavage and rejoining.
recombinational DNA repair: Recombi-
national processes directed at the repair of DNA strand breaks or cross-links, especially at inactivated replication forks.
redox pair: An electron donor and its corresponding oxidized form; for example, NADH and NAD^{+}.
redox reaction: See oxidation-reduction reaction.
reducing agent (reductant): The electron donor in an oxidation-reduction reaction.
reducing end: The end of a polysaccharide having a terminal sugar with a free anomeric carbon; the terminal residue can act as a reducing sugar.
reducing equivalent: A general term for an electron or an electron equivalent in the form of a hydrogen atom or a hydride ion.
reducing sugar: A sugar in which the carbonyl (anomeric) carbon is not involved in a glycosidic bond and can therefore undergo oxidation.
reduction: The gain of electrons by a compound or ion
regulator of G protein signaling (RGS):
Protein structural domain that stimulates the GTPase activity of heterotrimeric G proteins.
regulatory cascade: A multistep regulatory pathway in which a signal leads to activation of a series of proteins in succession, with each protein in the succession catalytically activating the next, such that the original signal is amplified exponentially.
regulatory enzyme: An enzyme with a regulatory function, through its capacity to undergo a change in catalytic activity by allosteric mechanisms or by covalent modification.
regulatory gene: A gene that gives rise to a product involved in the regulation of the expression of another gene; for example, a gene encoding a repressor protein.
regulatory sequence: A DNA sequence involved in regulating the expression of a gene; for example, a promoter or operator.
regulon: A group of genes or operons that are coordinately regulated even though some, or all, may be spatially distant in the chromosome or genome.
relaxed DNA: Any DNA that exists in its most stable and unstrained structure, typically the B form under most cellular conditions.
release factors: Protein factors of the cytosol required for the release of a completed polypeptide chain from a ribosome; also known as termination factors.
renaturation: Refolding of an unfolded (denatured) globular protein so as to restore its native structure and function.
replication: Synthesis of daughter nucleic acid molecules identical to the parental nucleic acid.
replication fork: The Y-shaped structure generally found at the point where DNA is being synthesized.
replicative form: Any of the full-length structural forms of a viral chromosome that serve as distinct replication intermediates.
replisome: The multiprotein complex that promotes DNA synthesis at the replication fork.
repressible enzyme: In bacteria, an enzyme whose synthesis is inhibited when its reaction product is readily available to the cell.
repression: A decrease in the expression of a gene in response to a change in the activity of a regulatory protein.
repressor: The protein that binds to the regulatory sequence or operator for a gene, blocking its transcription.
residue: A single unit in a polymer; for example, an amino acid in a polypeptide chain. The term reflects the fact that sugars, nucleotides, and amino acids lose a few atoms (generally the elements of water) when incorporated in their respective polymers.
respiration: Any metabolic process that leads to the uptake of oxygen and the release of CO_{2}.
respiration-linked phosphorylation: ATP
formation from ADP and P_{i}, driven by electron flow through a series of membrane-bound carriers, with a proton gradient as the direct source of energy driving rotational catalysis by ATP synthase.
respiratory chain: The electron-transfer chain; a sequence of electron-carrying proteins that transfers electrons from substrates to molecular oxygen in aerobic cells.
response element: A region of DNA, near (upstream from) a gene, that is bound by specific proteins that influence the rate of transcription of the gene.
restriction endonucleases: Site-specific endodeoxyribonucleases that cleave both strands of DNA at points in or near the specific site recognized by the enzyme; important tools in genetic engineering.
restriction fragment: A segment of doublestranded DNA produced by the action of a restriction endonuclease on a larger DNA.
retinal: A 20-carbon isoprene aldehyde derived from carotene, which serves as the light-sensitive component of the visual pigment rhodopsin. Illumination converts 11-cis-retinal to all-trans-retinal.
retrovirus: An RNA virus containing a reverse transcriptase.
reverse transcriptase: An RNA-directed DNA polymerase in retroviruses; capable of making DNA complementary to an RNA.
reversible inhibition: Inhibition by a molecule that binds reversibly to the enzyme, such that the enzyme activity returns when the inhibitor is no longer present.
R group: (1) Formally, an abbreviation denoting any alkyl group. (2) Occasionally, used in a more general sense to denote virtually any organic substituent (the R groups of amino acids, for example).
RGS: See regulator of G protein signaling
rhodopsin: The visual pigment, composed of the protein opsin and the chromophore retinal. RIA: See radioimmunoassay.
ribonuclease: A nuclease that catalyzes the hydrolysis of certain internucleotide linkages of RNA.
ribonucleic acid: See RNA.
ribonucleotide: A nucleotide containing D-ribose as its pentose component
ribosomal RNA (rRNA): A class of RNA molecules serving as components of ribosomes.
ribosome: A supramolecular complex of rRNAs and proteins, approximately 18 to 22 nm in diameter; the site of protein synthesis.
riboswitch: A structured segment of an mRNA that binds to a specific ligand and affects the translation or processing of the mRNA
ribozymes: Ribonucleic acid molecules with catalytic activities; RNA enzymes.
ribulose 1,5-bisphosphate carboxylase/ oxygenase (rubisco): The enzyme that fixes inorganic CO_{2} into organic form (3-phosphoglycerate) in those organisms (plants and some microorganisms) capable of CO_{2} fixation.
Rieske iron-sulfur protein: A type of ironsulfur protein in which two of the ligands to the central iron ion are His side chains; act in many electron-transfer sequences, including oxidative phosphorylation and photophosphorylation.
RNA (ribonucleic acid): A polyribonucleotide of a specific sequence linked by successive $3^{\prime}, 5^{\prime}$-phosphodiester bonds.
RNA editing: Posttranscriptional modification of an mRNA that alters the meaning of one or more codons during translation.
RNA polymerase: An enzyme that catalyzes the formation of RNA from ribonucleoside 5'-triphosphates, using a strand of DNA or RNA as a template.
RNA splicing: Removal of introns and joining of exons in a primary transcript.
ROS: See reactive oxygen species.
rRNA: See ribosomal RNA.
RTK: See receptor Tyr kinase.
rubisco: See ribulose 1,5-bisphosphate carboxylase/oxygenase.

S

salvage pathway: Pathway for synthesis of a biomolecule, such as a nucleotide, from intermediates in the degradative pathway for the biomolecule; a recycling pathway, as distinct from a de novo pathway.
sarcomere: A functional and structural unit of the muscle contractile system.
satellite DNA: Highly repeated, nontranslated segments of DNA in eukaryotic chromosomes; most often associated with the centromeric region. Its function is unknown. Also called simple-sequence DNA.
saturated fatty acid: A fatty acid containing a fully saturated alkyl chain.
scaffold proteins: Noncatalytic proteins that nucleate formation of multienzyme complexes by providing two or more specific binding sites for those proteins.
scramblases: Membrane proteins that catalyze the movement of phospholipids across the membrane bilayer, leading to uniform
distribution of a lipid between the two membrane leaflets.
secondary metabolism: Pathways that lead to specialized products not found in every living cell.
secondary structure: The local spatial arrangement of the main-chain atoms in a segment of a polypeptide chain; also applied to polynucleotide structure.
second law of thermodynamics: The law stating that, in any chemical or physical process, the entropy of the universe tends to increase.
second messenger: An effector molecule synthesized in a cell in response to an external signal (first messenger) such as a hormone.
sedimentation coefficient: A physical constant specifying the rate of sedimentation of a particle in a centrifugal field under specified conditions.
selectins: A large family of membrane proteins, lectins that bind oligosaccharides on other cells tightly and specifically and serve to carry signals across the plasma membrane.
SELEX: A method for rapid experimental identification of nucleic acid sequences (usually RNA) that have particular catalytic or ligand-binding properties.
sequence polymorphisms: Any alterations in genomic sequence (base-pair changes, insertions, deletions, rearrangements) that help distinguish subsets of individuals in a population or distinguish one species from another.
serine proteases: One of four major classes of proteases, featuring a reaction mechanism in which an active-site Ser residue acts as a covalent catalyst.
Shine-Dalgarno sequence: A sequence in an mRNA that is required for binding bacterial ribosomes.
short tandem repeat (STR): A short (typically 3 to 6 bp) DNA sequence, repeated many times in tandem at a particular location in a chromosome.

SH2 domain: A protein domain that binds tightly to a phosphotyrosine residue in certain proteins such as the receptor Tyr kinases, initiating the formation of a multiprotein complex that acts in a signaling pathway.
shuttle vector: A recombinant DNA vector that can be replicated in two or more different host species. See also vector.
sickle-cell anemia: A human disease characterized by defective hemoglobin molecules in individuals homozygous for a mutant allele coding for the β chain of hemoglobin.
$\boldsymbol{\sigma}$: (1) See superhelical density. (2) A subunit of the bacterial RNA polymerase that confers specifity for certain promoters; usually designated by a superscript indicating its size (for example, σ^{70} has a molecular weight of 70,000).
signal sequence: An amino acid sequence, often at the amino terminus, that signals the cellular fate or destination of a newly synthesized protein.
signal transduction: The process by which an extracellular signal (chemical, mechanical, or electrical) is amplified and converted to a cellular response.
silent mutation: A mutation in a gene that causes no detectable change in the biological characteristics of the gene product.
simple diffusion: The movement of solute molecules across a membrane to a region of lower concentration, unassisted by a protein transporter.
simple protein: A protein yielding only amino acids on hydrolysis.
simple sequence DNA: See satellite DNA.
single nucleotide polymorphism (SNP): A genomic base-pair change that helps distinguish one species from another or one subset of individuals in a population.
site-directed mutagenesis: A set of methods used to create specific alterations in the sequence of a gene.
site-specific recombination: A type of genetic recombination that occurs only at specific sequences.
size-exclusion chromatography: A procedure for the separation of molecules by size, based on the capacity of porous polymers to exclude solutes above a certain size; also called gel filtration.
small G proteins: See Ras superfamily of G proteins.
small nuclear RNA (snRNA): A class of short RNAs, typically 100 to 200 nucleotides long, found in the nucleus and involved in the splicing of eukaryotic mRNAs.
small nucleolar RNA (snoRNA): A class of short RNAs, generally 60 to 300 nucleotides long, that guide the modification of rRNAs in the nucleolus.
SNP: See single nucleotide polymorphism.
somatic cells: All body cells except the germ line cells.

SOS response: In bacteria, a coordinated induction of a variety of genes in response to high levels of DNA damage.
Southern blot: A DNA hybridization procedure in which one or more specific DNA fragments are detected in a larger population by hybridization to a complementary, labeled nucleic acid probe.
specific acid-base catalysis: Acid or base catalysis involving the constituents of water (hydroxide or hydronium ions).
specific activity: The number of micromoles ($\mu \mathrm{mol}$) of a substrate transformed by an enzyme preparation per minute per milligram of protein at $25^{\circ} \mathrm{C}$; a measure of enzyme purity.
specificity: The ability of an enzyme or receptor to discriminate among competing substrates or ligands.
specific rotation: The rotation, in degrees, of the plane of plane-polarized light (D-line of sodium) by an optically active compound at $25^{\circ} \mathrm{C}$, with a specified concentration and light path.
sphingolipid: An amphipathic lipid with a sphingosine backbone to which are attached a long-chain fatty acid and a polar alcohol.
spliceosome: A complex of RNAs and proteins involved in the splicing of mRNAs in eukaryotic cells.
splicing: See RNA splicing.
standard free-energy change ($\boldsymbol{\Delta} \boldsymbol{G}^{\circ}$): The free-energy change for a reaction occurring under a set of standard conditions: temperature, 298 K ; pressure, 1 atm or 101.3 kPa ; and all solutes at 1 m concentration. $\Delta G^{\prime \circ}$ denotes the standard free-energy change at pH 7.0 in 55.5 m water.
standard reduction potential ($E^{\prime \circ}$): The electromotive force exhibited at an electrode by 1 m concentrations of a reducing agent and its oxidized form at $25^{\circ} \mathrm{C}$ and pH 7.0 ; a measure of the relative tendency of the reducing agent to lose electrons.
statin: Any of a class of drugs used to reduce blood cholesterol in humans; act by inhibiting the enzyme HMG-CoA reductase, an early step in sterol synthesis.
steady state: A nonequilibrium state of a system through which matter is flowing and in which all components remain at a constant concentration.
stem cells: The common, self-regenerating cells in bone marrow that give rise to differentiated blood cells such as erythrocytes and lymphocytes.
stereoisomers: Compounds that have the same composition and the same order of atomic connections but different molecular arrangements
sterol: A lipid containing the steroid nucleus.
sticky ends: Two DNA ends in the same DNA molecule, or in different molecules, with short overhanging single-stranded segments that are complementary to one another, facilitating ligation of the ends; also known as cohesive ends.
stimulatory G protein ($\mathbf{G}_{\mathbf{s}}$): A trimeric regulatory GTP-binding protein that, when activated by an associated plasma membrane receptor, stimulates a neighboring membrane enzyme such as adenylyl cyclase. Its effects oppose those of G_{i}.
stop codons: See termination codons.
STR: See short tandem repeat.
stroma: The space and aqueous solution enclosed within the inner membrane of a chloroplast, not including the contents in the thylakoid membranes.
structural gene: A gene coding for a protein or RNA molecule; as distinct from a regulatory gene.
substitution mutation: A mutation caused by the replacement of one base by another.
substrate: The specific compound acted upon by an enzyme.
substrate channeling: Movement of the chemical intermediates in a series of enzymecatalyzed reactions from the active site of one enzyme to that of the next enzyme in the
pathway, without leaving the surface of a protein complex that includes both enzymes.
substrate-level phosphorylation: Phosphorylation of ADP or some other nucleoside 5'-diphosphate coupled to the dehydrogenation of an organic substrate; independent of the electron-transfer chain.
suicide inactivator: A relatively inert molecule that is transformed by an enzyme, at its active site, into a reactive substance that irreversibly inactivates the enzyme
sulfonylurea drugs: A group of oral medications used in the treatment of type 2 diabetes; act by closing K^{+}channels in pancreatic β cells, stimulating insulin secretion.
supercoil: The twisting of a helical (coiled) molecule on itself; a coiled coil.
supercoiled DNA: DNA that twists upon itself because it is under- or overwound (and thereby strained) relative to B-form DNA.
superhelical density (σ): In a helical molecule such as DNA, the number of supercoils (superhelical turns) relative to the number of coils (turns) in the relaxed molecule.
supersecondary structure: See motif. suppressor mutation: A mutation that totally or partially restores a function lost by a primary mutation; located at a site different from the site of the primary mutation.

Svedberg (S): A unit of measure of the rate at which a particle sediments in a centrifugal field.
symbionts: Two or more organisms that are mutually interdependent; usually living in physical association.
symport: Cotransport of solutes across a membrane in the same direction.
synteny: Conserved gene order along the chromosomes of different species.
synthases: Enzymes that catalyze condensation reactions in which no nucleoside triphosphate is required as an energy source
synthetases: Enzymes that catalyze condensation reactions using ATP or another nucleoside triphosphate as an energy source.
system: An isolated collection of matter; all other matter in the universe apart from the system is called the surroundings
systems biology: The study of complex biochemical systems, integrating the functions of several to all of the macromolecules in a cell (RNA, DNA, proteins)

t

tag: An extra segment of protein that is fused via modification of its gene to a protein of interest, usually for purposes of purification.
T cell: See T lymphocyte
telomere: Specialized nucleic acid structure found at the ends of linear eukaryotic chromosomes.
template: A macromolecular mold or pattern for the synthesis of an informational macromolecule.
template strand: A strand of nucleic acid used by a polymerase as a template to synthesize a complementary strand, as distinct from the coding strand.
terminal transferase: An enzyme that catalyzes the addition of nucleotide residues of a single kind to the 3 ' end of DNA chains.
termination codons: UAA, UAG, and UGA; in protein synthesis, these codons signal the termination of a polypeptide chain. Also known as stop codons.
termination factors: See release factors. termination sequence: A DNA sequence, at the end of a transcriptional unit, that signals the end of transcription.
tertiary structure: The three-dimensional conformation of a polymer in its native folded state.
tetrahydrobiopterin: The reduced coenzyme form of biopterin.
tetrahydrofolate: The reduced, active coenzyme form of the vitamin folate.
thermogenesis: The biological generation of heat by muscle activity (shivering), uncoupled oxidative phosphorylation, or the operation of futile cycles.
thermogenin: A protein of the inner mitochondrial membrane in brown adipose tissue that allows transmembrane movement of protons, short-circuiting the normal use of protons to drive ATP synthesis and dissipating the energy of substrate oxidation as heat; also called uncoupling protein 1 (UCP1).
thiamine pyrophosphate (TPP): The active coenzyme form of vitamin B_{1}; involved in aldehyde transfer reactions.
thioester: An ester of a carboxylic acid with a thiol or mercaptan.
$\mathbf{3}^{\prime}$ end: The end of a nucleic acid that lacks a nucleotide bound at the 3^{\prime} position of the terminal residue.
thrombocytes: See platelets.
thromboxane: Any of a class of molecules derived from arachidonate and involved in platelet aggregation during blood clotting.
thylakoid: Closed cisterna, or disk, formed by the pigment-bearing internal membranes of chloroplasts.
thymine dimer: See pyrimidine dimer.
tissue culture: Method by which cells derived from multicellular organisms are grown in liquid media.
titration curve: A plot of pH versus the equivalents of base added during titration of an acid.
T lymphocyte (T cell): One of a class of blood cells (lymphocytes) of thymic origin, involved in cell-mediated immune reactions.
tocopherol: Any of several forms of vitamin E
topoisomerases: Enzymes that introduce positive or negative supercoils in closed, circular duplex DNA.
topoisomers: Different forms of a covalently closed, circular DNA molecule that differ only in their linking number.
topology: The study of the properties of an object that do not change under continuous deformations such as twisting or bending.
TPP: See thiamine pyrophosphate.
trace element: A chemical element required by an organism in only trace amounts.
transaminases: See aminotransferases
transamination: Enzymatic transfer of an amino group from an α-amino acid to an α-keto acid.
transcription: The enzymatic process whereby the genetic information contained in one strand of DNA is used to specify a complementary sequence of bases in an mRNA chain.
transcriptional control: The regulation of a protein's synthesis by regulation of the formation of its mRNA.
transcription factor: In eukaryotes, a protein that affects the regulation and transcription initiation of a gene by binding to a regulatory sequence near or within the gene and interacting with RNA polymerase and/or other transcription factors.
transcriptome: The entire complement of RNA transcripts present in a given cell or tissue under specific conditions.
transducin: The trimeric G protein activated when light is absorbed by visual rhodopsin; activated transducin activates cGMP phosphodiesterase.
transduction: (1) Generally, the conversion of energy or information from one form to another. (2) The transfer of genetic information from one cell to another by means of a viral vector.
transfer RNA (tRNA): A class of RNA molecules ($M_{\mathrm{r}} 25,000$ to 30,000), each of which combines covalently with a specific amino acid as the first step in protein synthesis.
transformation: Introduction of an exogenous DNA into a cell, causing the cell to acquire a new phenotype
transgenic: Describes an organism that has genes from another organism incorporated in its genome as a result of recombinant DNA procedures.
transition state: An activated form of a molecule in which the molecule has undergone a partial chemical reaction; the highest point on the reaction coordinate.
transition-state analog: A stable molecule that resembles the transition state of a particular reaction, and therefore binds the enzyme that catalyzes the reaction more tightly than does the substrate in the ES complex.
translation: The process in which the genetic information present in an mRNA molecule specifies the sequence of amino acids during protein synthesis.
translational control: The regulation of a protein's synthesis by regulation of the rate of its translation on the ribosome.
translational frameshifting: A programmed change in the reading frame during translation of an mRNA on a ribosome, occurring by any of several mechanisms.
translational repressor: A repressor that binds to an mRNA, blocking translation.
translocase: (1) An enzyme that catalyzes membrane transport. (2) An enzyme that causes a movement such as the movement of a ribosome along an mRNA.
transpiration: Passage of water from the roots of a plant to the atmosphere via the vascular system and the stomata of the leaves.
transporters: Proteins that span a membrane and transport specific nutrients, metabolites, ions, or proteins across the membrane; sometimes called permeases.
transposition: The movement of a gene or set of genes from one site in the genome to another.
transposon (transposable element): A segment of DNA that can move from one position in the genome to another.
triacylglycerol: An ester of glycerol with three molecules of fatty acid; also called a triglyceride or neutral fat.
tricarboxylic acid cycle: See citric acid cycle.
trimeric G proteins: Members of the G protein family with three subunits, which function in a variety of signaling pathways. Inactive with GDP bound, they are activated by associated receptors as bound GDP is displaced by GTP, then inactivated by their intrinsic GTPase activity.
triose: A simple sugar with a backbone containing three carbon atoms.
tRNA: See transfer RNA.
tropic hormone (tropin): A peptide hormone that stimulates a specific target gland to secrete its hormone; for example, thyrotropin produced by the pituitary stimulates secretion of thyroxine by the thyroid.
t-SNAREs: Protein receptors in a targeted membrane (typically the plasma membrane) that bind to v-SNAREs in the membrane of a secretory vesicle and mediate fusion of the vesicle and target membranes.
tumor suppressor gene: One of a class of genes that encode proteins that normally regulate the cell cycle by suppressing cell division. Mutation of one copy of the gene is usually without effect, but when both copies are defective, the cell is allowed to continue dividing without limitation, producing a tumor.
turnover number: The number of times an enzyme molecule transforms a substrate molecule per unit time, under conditions giving maximal activity at substrate concentrations that are saturating.
two-component signaling systems: Signaltransducing systems found in bacteria and plants, composed of a receptor His kinase that phosphorylates an internal His residue when occupied by its ligand. It then catalyzes phosphoryl transfer to a second component, the
response regulator, which, when phosphorylated, alters the output of the signaling system.

U

ubiquitin: A small, highly conserved eukaryotic protein that targets an intracellular protein for degradation by proteasomes. Several ubiquitin molecules are covalently attached in tandem to a Lys residue in the target protein by a specific ubiquitinating enzyme.
ultraviolet (UV) radiation: Electromagnetic radiation in the region of 200 to 400 nm .
uncompetitive inhibition: The reversible inhibition pattern resulting when an inhibitor molecule can bind to the enzyme-substrate complex but not to the free enzyme.
uncoupling agent: A substance that uncouples phosphorylation of ADP from electron transfer; for example, 2,4-dinitrophenol.
uncoupling protein 1: See thermogenin. uniport: A transport system that carries only one solute, as distinct from cotransport.
unsaturated fatty acid: A fatty acid containing one or more double bonds.
urea cycle: A cyclic metabolic pathway in vertebrate liver, synthesizing urea from amino groups and carbon dioxide.
ureotelic: Excreting excess nitrogen in the form of urea.
uricotelic: Excreting excess nitrogen in the form of urate (uric acid).

V

$\boldsymbol{V}_{\text {max }}$: The maximum velocity of an enzymatic reaction when the binding site is saturated with substrate.
van der Waals interaction: Weak intermolecular forces between molecules as a result of each inducing polarization in the other.
vector: A DNA molecule known to replicate autonomously in a host cell, to which a segment of DNA may be spliced to allow its replication; for example, a plasmid or an artificial chromosome.
vectorial: Describes an enzymatic reaction or transport process in which the protein has a specific orientation in a biological membrane such that the substrate is moved from one side of the membrane to the other as it is converted into product.
vectorial metabolism: Metabolic transformations in which the location (not the chemical composition) of a substrate changes relative to the plasma membrane or a membrane between two cellular compartments. Transporters catalyze vectorial reactions, as do the proton pumps of oxidative phosphorylation and photophosphorylation.
vesicle: A small, spherical membranebounded particle with an internal aqueous compartment that contains components such
as hormones or neurotransmitters to be moved within or out of a cell.
viral vector: A viral DNA altered so that it can act as a vector for recombinant DNA.
virion: A virus particle.
virus: A self-replicating, infectious, nucleic acid-protein complex that requires an intact host cell for its replication; its genome is either DNA or RNA.
vitamin: An organic substance required in small quantities in the diet of some species; generally functions as a component of a coenzyme.
v-SNAREs: Protein receptors in the membrane of a secretory vesicle (typically the plasma membrane) that bind to t-SNAREs in a targeted membrane (typically the plasma membrane) of a secretory vesicle and mediate fusion of the vesicle and target membranes.

W

Western blotting: See immunoblotting. white adipose tissue (WAT): Nonthermogenic adipose tissue rich in triacylglycerols stored and mobilized in response to hormonal signals. Transfer of electrons in the mitochondrial respiratory chain is tightly coupled to ATP synthesis. Compare brown adipose tissue.
wild type: The normal (unmutated) genotype or phenotype.
wobble: The relatively loose base pairing between the base at the 3^{\prime} end of a codon and the complementary base at the 5^{\prime} end of the anticodon.

X

x-ray crystallography: The analysis of x-ray diffraction patterns of a crystalline compound, used to determine the molecule's threedimensional structure.

Z

zinc finger: A specialized protein motif involved in DNA recognition by some DNAbinding proteins; characterized by a single atom of zinc coordinated to four Cys residues or to two His and two Cys residues.
Z scheme: The path of electrons in oxygenic photosynthesis from water through photosystem II and the cytochrome $b_{6} f$ complex to photosystem I and finally to NADPH. When the sequence of electron carriers is plotted against their reduction potentials, the path of electrons looks like a sideways Z.
zwitterion: A dipolar ion with spatially separated positive and negative charges.
zymogen: An inactive precursor of an enzyme; for example, pepsinogen, the precursor of pepsin.
this page left intentionally blank

Credits

Molecular Models

MOLECULAR GRAPHICS Unless indicated, all molecular graphics were produced by H. Adam Steinberg, artforscience.com, or Jean-Yves Sgro, Ph.D., University of Wisconsin-Madison, Biotechnology Center.

ATOMIC COORDINATES Unless indicated, all atomic coordinates were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB), www.pdb.org. See Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., \& Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235-242. The RCSB PDB is a member of the worldwide PDB (wwPDB), www.wwpdb. org. See Berman, H., Henrick, K., \& Nakamura, H. (2003) Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10, 980.

Some structures were generated using PyMOL, pymol.sourceforge.net; Sybyl 6.2, Tripos Inc., www.tripos.com; Visual Molecular Dynamics, www.ks. uiuc.edu/Research/vmd/; or RasMol, rasmol.org.
CHAPTER 1 Figure 1-1a Dennis Kunkel Microscopy, Inc./Visuals Unlimited; Figure 1-1b W. Perry Conway/Corbis; Figure 1-1c Dave Pape/Wikipedia; Figure 1-2 The Bridgeman Art Library; Figure 1-4 Adapted from Woese C.R. (1987) Bacterial evolution. Microbiol. Rev. 51, 221, Fig. 4; Figure 1-6a David S. Goodsell; Figure 1-6b,c,d Adapted from Albers, S.-V. \& Meyer, B.H. (2011) The archaeal cell envelope. Nat. Rev. Microbiol. 9, 414, Fig. 2; Figure 1-8 Adapted from Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., \& Watson, J.D. (1989) Molecular Biology of the Cell, 2nd edn, Garland Publishing, Inc., New York, pp. 165-166; Figure 1-9a Courtesy of Invitrogen; Figure 1-9b Dr. Alexey Khodjakov, Wadsworth Center, New York State Department of Health; Figure 1-11 Adapted from Becker, W.M. \& Deamer, D.W. (1991) The World of the Cell, 2nd edn, Fig. 2-15, Benjamin/Cummings Publishing Company, Menlo Park, CA; Figure 1-12 © David S. Goodsell 1999; Figure 1-17 Acetyl-CoA extracted from PDB ID 1DM3, Modis, Y. \& Wierenga, R.K. (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J. Mol. Biol. 297, 1171; Figure 1-21 Adapted from Carroll, F. (1998) Perspectives on Structure and Mechanism in Organic Chemistry, Brooks/Cole Publishing Co., Pacific Grove, CA, p. 63; Box 1-2 (Pasteur) The Granger Collection; Figure 1-23 PDB ID 3B8A, Kuser, P., Cupri, F., Bleicher, L., \& Polikarpov, I. (2008) Crystal structure of yeast hexokinase PI in complex with glucose: a classical "induced fit" example revised. Proteins 72, 731; p. 23 (Gibbs) Historical Pictures Service/Stock Montage; Figure 1-30a Erich Lessing/Art Resource, New York; Figure 1-30b Dr. Gopal Murti-CNRI/Phototake New York; p. 32 Theodosius Dobzhansky (1973) Nothing in biology makes sense except in the light of evolution. The American Biology Teacher (March) 35, 125-129; Figure 1-34b Bettmann/ Corbis; Figure 1-35 P. Rona/OAR/National Undersea Research Program (NURP); NOAA; p. 36 (Margulis) Ben Barnhart/UMass Magazine.
CHAPTER 2 p. 54 Linus Pauling (1939) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca, NY; Figure 2-9 PDB ID 1A3N, Tame, J.R.H. \& Vallone, B. The structures of deoxy human haemoglobin and the mutant Hb Tyr $\alpha 42 \mathrm{His}$ at 120 K ; Figure 2-10 Adapted from Nicolls, P. (2000) Introduction: the biology of the water molecule. Cell. Mol. Life Sci. 57, 987, Fig. 6a (redrawn from information in the PDB and a Kinemage file published by Martinez, S.E., Huang, D., Ponomarev, M., Cramer, W.A., \& Smith, J.L. (1996) The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Sci. 5, 1081); Figure 2-11 Adapted from Ball, P. (2008) Water as an active constituent in cell biology. Chem. Rev. 108, 94, Fig. 16; Box 2-1 J. B. S. Haldane (1928) Possible Worlds, Harper and Brothers, New York and London, pp. 113-126.
CHAPTER 3 Figure 3-1a Runk/Schoenburger/Grant Heilman Photography; Figure 3-1b Bill Longcore/Photo Researchers; Figure 3-1c Jerry Cooke, Inc./Animals Animals; p. 76 (Dayhoff) Courtesy of Ruth E. Dayhoff; Figure 3-18b Julia Cox, University of Wisconsin-Madison, Department of Biochemistry Figure 3-21 Courtesy of Axel Mogk, from Mogk, A., Tomoyasu, T., Goloubinoff, P., Rüdiger, S., Röder, D., Lanen, H., \& Bukau, B. (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934, Fig. 7A; Figure 3-23 PDB ID 1HGA, Liddington, R., Derewenda, Z., Dodson, E., Hubbard, R., \& Dodson, G. (1992) High resolution crystal structures and comparisons of T-state deoxyhaemoglobin
and two liganded T-state haemoglobins: $\mathrm{T}(\alpha$-oxy) haemoglobin and T (met) haemoglobin. J. Mol. Biol. 228, 551; p. 98 (Sanger) UPI/Corbis-Bettmann; Figures 3-30 Adapted from Mann, M. \& Wilm, M. (1995) Electrospray mass spectrometry for protein characterization. Trends Biochem. Sci. 20, 219; Figure 3-31a Adapted from Keough, T., Youngquist, R.S., \& Lacey, M.P. (1999) A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc. Natl. Acad. Sci. USA 96, 7131, Fig. 3; p. 103 (Merrifield) Corbis/Bettmann; Box 3-2 Figure 1 Sequence data for (a) from document ID PDOC00017 and for (b) from document ID PDOC00018, www.expasy.org/prosite, Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P.S., Pagni, M., \& Sigrist, C.J.A. (2006) The PROSITE database. Nucleic Acids Res. 34, D227; WebLogo from http://weblogo.berkeley.edu, Crooks, G.E., Hon, G., Chandonia, J.M., \& Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Res. 14, 1188; Figures 3-33, 3-34, 3-35 Adapted from Gupta, R.S. (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435, Figs 2, 7, 11, respectively; Figure 3-36 Adapted from Delsuc, F., Brinkmann, H., \& Philippe, H. (2005) Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 366; p. 113, problem 21, see citation for Box 3-2 Figure 1, document ID PDOC00270; p. 113, problem 22, see citation for Box 3-2 Figure 1, document ID PDOC00017.

CHAPTER 4 Figure 4-1 PDB ID 6GCH, Brady, K., Wei, A., Ringe, D., \& Abeles, R.H. (1990) Structure of chymotrypsin-trifluoromethyl ketone inhibitor complexes: comparison of slowly and rapidly equilibrating inhibitors. Biochemistry 29, 7600; glycine coordinates from Sybyl; p. 117 (Pauling) Corbis/Bettmann; (Corey) AP/Wide World Photos; Figure 4-3 Adapted from Creighton, T.E. (1984) Proteins, p. 166. © 1984 by W. H. Freeman and Company. Reprinted by permission; Figure 4-4b,c PDB ID 4TNC, Satyshur, K.A., Rao, S.T., Pyzalska, D., Drendel, W., Greaser, M., \& Sundaralingam, M. (1988) Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-angstroms resolution. J. Biol. Chem. 263, 1628;
Figure 4-9a See citation for Figure 4-3; Figure 4-9b Courtesy of Hazel Holden, University of Wisconsin-Madison, Department of Biochemistry and Enzyme Institute; Figure 4-12 PDB ID 1CGD (modified), Bella, J., Brodsky, B., \& Berman, H.M. (1995) Hydration structure of a collagen peptide. Structure 3, 893; p. 128 Ethel Wedgwood (1906) The Memoirs of the Lord of Joinville: A New English Version, E. P. Dutton and Company, New York; (Lind) Courtesy of the Royal College of Physicians of Edinburgh; Figure 4-13 Science Source/Photo Researchers; Figure 4-14a PDB ID 1SLK (model), Fossey, S.A., Nemethy, G., Gibson, K.D., \& Scheraga, H.A. (1991) Conformational energy studies of β-sheets of model silk fibroin peptides: I. sheets of poly(Ala-Gly) chains. Biopolymers 31, 1529; Figure 4-14b Dr. Dennis Kunkel/Phototake NYC; Figure 4-16 PDB ID 1MBO, Phillips, S.E.V. (1980) Structure and refinement of oxymyoglobin at 1.6 angstroms resolution. J. Mol. Biol. 142, 531; Box 4-5 Figure 1a,b,c George N. Phillips, Jr., University of Wisconsin-Madison, Department of Biochemistry; Box 4-5 Figure 1d PDB ID 2MBW, Brucker, E.A., Olson, J.S., Phillips, G.N., Jr., Dou, Y., \& Ikeda-Saito, M. (1996) High resolution crystal structures of the deoxy-, oxy-, and aquometforms of cobalt myoglobin. J. Biol. Chem. 271, 25,419; Box 4-5 Figures 2, 3a Volkman, B.F., Alam, S.L., Satterlee, J.D., \& Markley, J.L. (1998) Solution structure and backbone dynamics of component IV-glycera dibranchiata monomeric hemoglobin-CO. Biochemistry 37, 10,906; Box 4-5 Figure 3b,c Created by Brian Volkman, National Magnetic Resonance Facility at Madison, using MOLMOL; PDB ID 1VRF (b) and 1VRE (c), see citation for Box 4-5 Figures 2, 3a; Figure 4-18b PDB ID 7AHL, Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., \& Gouaux, J.E. (1996) Structure of staphylococcal α hemolysin, a heptameric transmembrane pore. Science 274, 1859; Figure 4-19 PDB ID 4TNC, see citation for Figure 4-4b, c; Figure 4-20c PDB ID 1DNP, Park, H.W., Kim, S.T., Sancar, A., \& Deisenhofer, J. (1995) Crystal structure of DNA photolyase from Escherichia coli. Science 268, 1866; Figure 4-21 PDB ID 1PKN, Larsen, T.M., Laughlin, L.T., Holden, H.M., Rayment, I., \& Reed, G.H. (1994) Structure of rabbit muscle pyruvate kinase complexed with $\mathrm{Mn}^{23}, \mathrm{~K}^{3}$, and pyruvate. Biochemistry 33, 6301; Figure 4-22 (all $\boldsymbol{\alpha}$) PDB ID 1AO6, Sugio, S., Kashima, A., Mochizuki, S., Noda, M., \& Kobayashi, K. (1999) Crystal structure of human serum albumin at 2.5 angstrom resolution. Protein Eng. 12, 439; PDB ID 1BCF, Frolow, F., Kalb (Gilboa), A.J., \& Yariv, J. (1994) The structure of a unique, two-fold symmetric, haem-binding site. Nat. Struct. Biol.

1, 453; PDB ID 1GAI, Aleshin, A.E., Stoffer, B., Firsov, L.M., Svensson, B., \& Honzatko, R.B. (1996) Crystallographic complexes of glucoamylase with maltooligosaccharide analogs: relationship of stereochemical distortions at the nonreducing end to the catalytic mechanism. Biochemistry 35, 8319; (all $\boldsymbol{\beta}$) PDB ID 1LXA, Raetz, C.R.H. \& Roderick, S.L. (1995) A left-handed parallel β-helix in the structure of UDP N-acetylglucosamine acyltransferase. Science 270, 997; PDB ID 1PEX, Gomis-Ruth, F.X., Gohlke, U., Betz, M., Knauper, V., Murphy, G., Lopez-Otin, C., \& Bode, W. (1996) The helping hand of collagenase-3 (Mmp-13): $2.7 \AA$ crystal structure of its C-terminal haemopexinlike domain. J. Mol. Biol. 264, 556; PDB ID 1CD8, Leahy, D.J., Axel, R., \& Hendrickson, W.A. (1992) Crystal structure of a soluble form of the human T cell co-receptor Cd8 at 2.6 angstroms resolution. Cell 68, 1145; ($\boldsymbol{\alpha} / \boldsymbol{\beta}$) PDB ID 1DEH, Davis, G.J., Stone, C.J., Bosron, W.F., \& Hurley, T.D. (1996) X-ray structure of human $\beta_{3} \beta_{3}$ alcohol dehydrogenase: the contribution of ionic interactions to coenzyme binding. J. Biol. Chem. 271, 17,057; PDB ID 1DUB, Engel, C.K., Mathieu, M., Zeelen, J.P., Hiltunen, J.K., \& Wierenga, R.K. (1996) Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket. EMBO J. 15, 5135; PDB ID 1PFK, Shirakihara, Y. \& Evans, P.R. (1988) Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J. Mol. Biol. 204, 973; ($\boldsymbol{\alpha}+\boldsymbol{\beta}$) PDB ID 2PIL, Forest, K.T., Dunham, S.A., Koomey, M., \& Tainer, J.A. (1999) Crystallographic structure of phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and morphology. Mol. Microbiol. 31, 743; PDB ID 1SYN, Stout, T.J. \& Stroud, R.M. (1996) The complex of the anti-cancer therapeutic, BW1843U89, with thymidylate synthase at $2.0 \AA$ resolution: implications for a new mode of inhibition. Structure 4, 67; PDB ID 1EMA, Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., \& Remington, S.J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392; p. 141 (Perutz and Kendrew) Corbis/Hulton Deutsch Collection; Figure 4-23 PDB ID 2HHB, Fermi, G., Perutz, M.F., Shaanan, B., \& Fourme, R. (1984) The crystal structure of human deoxyhaemoglobin at 1.74 angstroms resolution. J. Mol. Biol. 175, 159; Figure 4-24 Adapted from Uversky, V.N. (2011) Intrinsically disordered proteins from A to Z. Intl. J. Biochem. Cell Biol. 43, 1090, Fig. 5; Figure 4-24a PDB ID 1XQH, Chuikov, S., Kurash, J.K., Wilson, J.R., Xiao, B., Justin, N., Ivanov, G.S., McKinney, K., Tempst, P., Prives, C., Gamblin, S.J., Barlev, N.A., \& Reinberg, D. (2004) Regulation of p53 activity through lysine methylation. Nature 432, 353; Figure 4-24c PDB ID 1H26, Lowe, E.D., Tews, I., Cheng, K.Y., Brown, N.R., Gul, S., Noble, M.E.M., Gamblin, S., \& Johnson, L.N. (2002) Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41, 15,625; PDB ID 1MA3, Avalos, J.L., Celic, I., Muhammad, S., Cosgrove, M.S., Boeke, J.D., \& Wolberger, C. (2002) Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10, 523; PDB ID 1JSP, Mujtaba, S., He, Y., Zeng, L., Yan, S., Plotnikova, O., Sachchidanand, S.R., Zeleznik-Le, N.J., Ronai, Z., \& Zhou, M.M. (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell 13, 251; PDB ID 1DT7, Rustandi, R.R., Baldisseri, D.M., \& Weber, D.J. (2000) Structure of the negative regulatory domain of p53 bound to $\operatorname{S100B}(\beta \beta)$. Nat. Struct. Biol. 7, 570; Figure 4-25 Adapted from Hartl, F.U., Bracher, A., \& Hayer-Hartl, M. (2011) Molecular chaperones in protein folding and proteostasis. Nature 475, 324, Fig. 6; Figure 4-26a Data from Sendak, R.A., Rothwarf, D.M., Wedemeyer, W.J., Houry, W.A., \& Scheraga, H.A. (1996) Kinetic and thermodynamic studies of the folding/ unfolding of a tryptophan-containing mutant of ribonuclease A. Biochemistry 35, 12,978; Nishii, I., Kataoka, M., \& Goto, Y. (1995) Thermodynamic stability of the molten globule states of apomyoglobin. J. Mol. Biol. 250, 223; Figure 4-26b Data from Houry, W.A., Rothwarf, D.M., \& Scheraga, H.A. (1996) Circular dichroism evidence for the presence of burst-phase intermediates on the conformational folding pathway of ribonuclease A. Biochemistry 35 , 10,125; Figures 4-28, 4-29 Adapted from Dill, K.A., Ozkan, S.B., Shell, M.S., \& Weiki, T.R. (2008) The protein folding problem. Annu. Rev. Biophys. 37, 289, Figs 5, 9; Figures 4-30, 4-31a See citation for Figure 4-25, Figs 2, 3; Figure 4-31b PDB ID 1AON, Xu, Z., Horwich, A.L., \& Sigler, P.B. (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741; Figure 4-32a Adapted from Selkoe, D.J. (2003) Folding proteins in fatal ways. Nature 426, 903, Fig. 1; Figure 4-32b PDB ID 1IYT, Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A.M., Temussi, P.A., \& Picone, D. (2002) Solution structure of the Alzheimer amyloid β-peptide (1-42) in an apolar microenvironment: similarity with a virus fusion domain. Eur. J. Biochem. 269, 5642; Figure 4-32c PDB ID 2BEG, Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., \& Riek, R. (2005) 3D structure of Alzheimer's amyloid- β (1-42) fibrils. Proc. Natl. Acad. Sci. USA 102, 17,342; Box 4-6 Figure 1 Stephen J. DeArmond; Box 4-6 Figure 2 PDB ID 1QLX, Zahn, R., Lieu, A., Luhrs, T., Riek, R., Von Schroetter, C., Garcia, F.L., Billeter, M., Calzolai, L., Wider, G., \& Wuthrich, K. (2000) NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 145, and models from Govaerts, C., Wille,
H., Prusiner, S.B., \& Cohen, F.E. (2004) Evidence for assembly of prions with left-handed β-helices into trimers. Proc. Natl. Acad. Sci. USA 101, 8342.
CHAPTER 5 Figure 5-1c Heme extracted from PDB ID 1CCR, Ochi, H., Hata, Y., Tanaka, N., Kakudo, M., Sakurai, T., Aihara, S., \& Morita, Y. (1983) Structure of rice ferricytochrome c at 2.0 angstroms resolution. J. Mol. Biol. 166, 407;
Figures 5-3, 5-5c, 5-6 (left) PDB ID 1MBO, Phillips, S.E.V. (1980) Structure and refinement of oxymyoglobin at 1.6 angstroms resolution. J. Mol. Biol. 142, 531; Figures 5-6 (right), 5-8, 5-9a, 5-10 (T state), 5-11 (T state) PDB ID 1HGA; Liddington, R., Derewenda, Z., Dodson, E., Hubbard, R., \& Dodson, G. (1992) High resolution crystal structures and comparisons of T state deoxyhaemoglobin and two liganded T-state haemoglobins: $\mathrm{T}(\alpha$-oxy $)$ haemoglobin and T(met) haemoglobin. J. Mol. Biol. 228, 551; Figures 5-10 (R state), 5-11 (R state) PDB ID 1BBB, Silva, M.M., Rogers, P.H., \& Arnone, A. (1992) A third quaternary structure of human hemoglobin a at 1.7-angstroms resolution. J. Biol. Chem. 267, 17,248; in Fig. 5-11, R-state was modified to represent O_{2} instead of CO; Box 5-1 Figure 1 Adapted from Coburn, R.F., Forster, R.E., \& Kane, P.B. (1965) Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J. Clin. Invest. 44, 1899; Box 5-1 Figure 2 Adapted from Roughton, F.J.W. \& Darling, R.C. (1944) The effect of carbon monoxide on the oxyhemoglobin dissociation curve. Am. J. Physiol. 141, 17; Figure 5-18a PDB ID 1B86, Richard, V., Dodson, G.G., \& Mauguen, Y. (1993) Human deoxyhaemoglobin-2,3-disphosphoglycerate complex low-salt structure at $2.5 \AA$ resolution. J. Mol. Bio. 233, 270; Figure $\mathbf{5 - 1 8 b}$ See citation for Figure 5-10 (R state); Figure 5-19a Andrew Syred/ Science Photo Library/Custom Medical Stock Photo; Figure 5-19b Custom Medical Stock Photo; Figure 5-21b PDB ID 1IGT, Harris, L.J., Larson, S.B., Hasel, K.W., \& McPherson, A. (1997) Refined structure of an intact IgG2A monoclonal antibody. Biochemistry 36, 1581; Figure 5-25a PDB ID 1GGC, Stanfield, R.L., Takimoto-Kamimura, M., Rini, J.M., Profy, A.T., \& Wilson, I.A. (1993) Major antigen-induced domain rearrangements in an antibody. Structure 1, 83; Figure 5-25b,c PDB ID 1GGI, Rini, J.M., Stanfield, R.L., Stura, E.A., Salinas, P.A., Profy, A.T., \& Wilson, I.A. (1993) Crystal structure of an human immunodeficiency virus type 1 neutralizing antibody, 50.1 , in complex with its V3 loop peptide antigen. Proc. Natl. Acad. Sci. USA 90, 6325 ; p. 178 (Kohler and Milstein) Corbis/UPI/Bettmann; Figure 5-26b State of Wisconsin Laboratory of Hygiene, Madison, WI; Figure 5-26c Son, M., Gundersen, R.E., \& Nelson, D.L. (1993) A second member of the novel Ca^{23}-dependent protein kinase family from Paramecium tetraurelia: purification and characterization. J. Biol. Chem. 268, 5940; Figure 5-27a David Shotton, University of Oxford, Department of Zoology; Figure 5-27c Courtesy of Ivan Rayment, University of Wisconsin-Madison, Enzyme Institute and Department of Biochemistry (see also PDB ID 2MYS, Rayment, I., Rypniewski, W.R., Schmidt-Base, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wesenberg, G., \& Holden, H.M. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50);
Figure 5-28a Eisaku Katayama, Institute of Medical Science, The University of Tokyo, Department of Fine Morphology; Figure 5-28b Roger Craig, University of Massachusetts Medical School; Figure 5-28c See citation for Figure 5-27c; Figure 5-29b,c James E. Dennis/Phototake NYC.
CHAPTER 6 p. 190 (Buchner) Science Photo Library/Photo Researchers; (Sumner) Courtesy of the Division of Rare and Manuscript Collections, Carl A. Kroch Library, Cornell University, Ithaca, NY; (Haldane) AP Photo/Jacob Harris; Figure 6-1 PDB ID 7GCH, Brady, K., Wei, A., Ringe, D., \& Abeles, R.H. (1990) Structure of chymotrypsin-trifluoromethyl ketone inhibitor complexes: comparison of slowly and rapidly equilibrating inhibitors. Biochemistry 29 , 7600; Figure 6-4 PDB ID 1RA2, Sawaya, M.R. \& Kraut, J. (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586; p. 201 (Michaelis) Rockefeller University Archive Center; (Menten) Courtesy of Dorothy C. Craig; Box 6-3 Figure 1 John Mansfield, University of Wisconsin-Madison, Department of Veterinary Science; Figure 6-19b,c,d PDB ID 7GCH, see citation for Figure 6-1; Figure 6-25a PDB ID 2YHX, Anderson, C.M., Stenkamp, R.E., \& Steitz, T.A. (1978) Sequencing a protein by x-ray crystallography: II. refinement of yeast hexokinase B coordinates and sequence at 2.1 angstroms. J. Mol. Biol. 123, 15; Figure 6-25b PDB ID 1HKG, Steitz, T.A., Shoham, M., \& Bennett, W.S., Jr. (1981) Structural dynamics of yeast hexokinase during catalysis. Philos. Trans. R. Soc. London Ser. B 293, 43; glucose (GLC) coordinates transformed from PDB ID 1GLK, St. Charles, R., Harrison, R.W., Bell, G.I., Pilkis, S.J., \& Weber, I.T. (1994) Molecular model of human beta-cell glucokinase built by analogy to the crystal structure of yeast hexokinase B. Diabetes 43, 784; Figure 6-26b PDB ID 1ONE, Larsen, T.M., Wedekind, J.E., Rayment, I., \& Reed, G.H. (1996) A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution. Biochemistry 35, 4349; Figure 6-27a PDB ID 1LZE, Maenaka, K., Matsushima, M., Song, H., Sunada, F.,

Watanabe, K., \& Kumagai, I. (1995) Dissection of protein-carbohydrate interactions in mutant hen egg-white lysozyme complexes and their hydrolytic activity. J. Mol. Biol. 247, 281; Figure 6-28a,b PDB ID 1H6M, Vocadlo, D.J., Davies, G.J., Laine, R., \& Withers, S.G. (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412, 835; Figure 6-33a PDB ID 1RAB, Kosman, R.P., Gouaux, J.E., \& Lipscomb, W.N. (1993) Crystal structure of CTP-ligated T state aspartate transcarbamoylase at $2.5 \AA$ resolution: implications for ATCase mutants and the mechanism of negative cooperativity. Proteins 15, 147; Figure 6-33b PDB ID 1F1B, Jin, L., Stec, B., \& Kantrowitz, E.R. (2000) A cis-proline to alanine mutant of E. coli aspartate transcarbamoylase: kinetic studies and three-dimensional crystal structures. Biochemistry 39, 8058; Figure 6-39a CNRI/Photo Researchers.

CHAPTER 7 Box 7-2 Figure 1 David Cook/blueshiftstudios/Alamy; Box 7-2 Figure 2 Adapted from Assadi-Porter, F.M., Maillet, E.L., Radek, J.T., Quijaada, J., Markley, J.L., \& Max, M. (2010) Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J. Mol. Biol. 398, 584, Fig. 1; Box 7-2 Figure 3 Adapted from www.elmhurst.edu/~chm/vchembook/549receptor html, copyright Charles E. Ophardt, Elmhurst College; Figure 7-15 Richard Howey; Figure 7-16b Leroy Somon/Visuals Unlimited; Figure 7-18 Courtesy of H.-J. Gabius and Herbert Kaltner, University of Munich, from a figure provided by C.-W. von der Lieth, Heidelberg; Figure 7-19b PDB ID 1C58, Gessler, K., Uson, I., Takaha, T., Krauss, N., Smith, S.M., Okada, S., Sheldrick, G.M., \& Saenger, W. (1999) V-Amylose at atomic resolution: x-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose) Proc. Natl. Acad. Sci. USA 96, 4246; Figure 7-22 PDB ID 1HPN, Mulloy, B., Forster, M.J., Jones, C., \& Davies, D.B. (1993) N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem. J. 293, 849; Figure 7-23 PDB ID 1E00, Pellegrini, L., Burke, D.F., von Delft, F., Mulloy, B., \& Blundell, T.L. (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029;
Figure 7-26a Adapted from Häker, U., Nybakken, K., \& Perrimon, N. (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Biol. 6, 532; Figures 7-26b, 7-27 Adapted from Turnbull, J., Powell, A., \& Guimond, S. (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75; Figure 7-28 inset Courtesy of Laurel Ng. Reprinted with permission from Ng, L., Grodzinsky, A., Patwari, P., Sandy, J., Plaas, A.H.K., \& Ortiz, C. (2003) Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143, 242-257, Fig. 7a left; Figure 7-33b PDB ID 2BAT, Varghese, J.N, McKimm-Breschkin, J.L., Caldwell, J.B., Kortt, A.A., \& Colman, P.M. (1992) The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 14, 327; Figure 7-33c PDB ID 2HU4, Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn, G.M., Hay, A.J., Gamblin, S.J., \& Skehel, J.J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45; Figure 7-33d PDB ID 3CL0, Collins, P.J., Haire, L.F., Lin, Y.P., Liu, J., Russell, R.J., Walker, P.A., Skehel, J.J., Martin, S.R., Hay, A.J., \& Gamblin, S.J. (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453, 1258; Figure 7-34 R.M. Genta and D.Y. Graham, Veterans Affairs Medical Center, Houston, TX; Figure 7-35a,b PDB ID 1M6P, Roberts, D.L., Weix, D.J., Dahms, N.M., \& Kim, J.J. (1998) Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Cell 93, 639; Figure 7-36 Adapted from a figure provided by Dr. C.-W. von der Lieth, Heidelberg, in Gabius, H.-J. (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87, 108, Fig. 6; Figure 7-37 Adapted from Sharon, N. \& Lis, H. (1993) Carbohydrates in cell recognition. Sci. Am. 268 (January), 82; Figure 7-39 Courtesy of Anne Dell. Reprinted with permission from Comelli, E.M., Head, S.R., Gilmartin, T., Whisenant, T., Haslam, S.M., North, S.J., Wong, N.-K., Kudo, T., Narimatsu, H., Esko, J.D., Drickamer, K., Dell, A., \& Paulson, J.C. (2006) A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16, 117, Fig. 3; Figure 7-40 Adapted from Seeberger, P.H. (2009) Chemical glycobiology: Why now? Nat. Chem. Biol. 5, 368, Fig. 2a.

CHAPTER 8 p. 287 (Watson and Crick) Corbis/UPI/Bettmann; Figure 8-12 Science Source/Photo Researchers; p. 288 (Franklin) Science Photo Library/ Photo Researchers; (Wilkins) Corbis/UPI/Bettmann; Figures 8-13b,c, 8-17 Coordinates generated by Sybyl; Figure 8-20b PDB ID 1BCE, Asensio, J.L., Brown, T., \& Lane, A.N. (1998) Comparison of the solution structures of intramolecular DNA triple helices containing adjacent and non-adjacent CG.C3 triplets. Nucleic Acids Res. 26, 3677; Figure 8-20d PDB ID 244D, Laughlan, G., Murchie, A.I., Norman, D.G., Moore, M.H., Moody, P.C., Lilley, D.M., \& Luisi, B. (1994) The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 265, 520; Figure 8-22 Coordinates generated by Sybyl;

Figure 8-23b Modified from PDB ID 1GID, Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., \& Doudna, J.A. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678; Figure 8-24 James, B., Olsen, G.J., Liu, J., \& Pace, N.R. (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52, 19; Figure 8-25a PDB ID 1TRA, Westhof, E. \& Sundaralingam, M. (1986) Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA: temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry 25, 4868; Figure 8-25b PDB ID 1MME, Scott, W.G., Finch, J.T., \& Klug, A. (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991; Figure 8-25c PDB ID 1GRZ, Golden, B.L., Gooding, A.R., Podell, E.R., \& Cech, T.R. (1998) A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282, 259; Figure 8-27b Adapted from Marmur, J. \& Doty, P. (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5, 109; Figure 8-28 Ross B. Inman, University of Wisconsin-Madison, Department of Molecular Biology;
Figure 8-31b PDB ID 1TTD, McAteer, K., Jing, Y., Kao, J., Taylor, J.S., \& Kennedy, M.A. (1998) Solution-state structure of a DNA dodecamer duplex containing a Cis-syn thymine cyclbutane dimer, the major UV photoproduct of DNA. J. Mol. Biol. 282, 1013; Figure 8-33c Lloyd Smith, University of Wisconsin-Madison, Department of Chemistry; Figure 8-34 Data provided by Lloyd Smith, University of Wisconsin-Madison, Department of Chemistry.

CHAPTER 9 p. 313 (Berg) Courtesy of Stanford Visual Art Services; (Boyer) Courtesy of Genentech, Inc.; (Cohen) Courtesy of Stanford Visual Art Services; Figure 9-4 Elizabeth A. Wood, University of Wisconsin-Madison, Department of Biochemistry; Figure 9-8 Courtesy of Rachel Britt, University of WisconsinMadison, Department of Biochemistry; Figure 9-9b Courtesy of Arthur McIntosh, University of Missouri-Columbia, Department of Entomology;
Figure 9-10c Elizabeth A. Wood, University of Wisconsin-Madison, Department of Biochemistry; Box 9-1 Figure 1 Courtesy of Carol Bingham, Promega Corporation; Figure 9-15 Adapted from Wolfsberg, T.G., McEntyre, J., \& Schuler, G.D. (2001) Guide to the draft human genome. Nature 409, 824, Fig. 1; Figure 9-16a PDB ID 1GFL, Yang, F., Moss, L.G., \& Phillips, G.N., Jr. (1996) The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246; Figure 9-16b Courtesy of Roger Tsien, University of California, San Diego, Department of Pharmacology and Department of Chemistry \& Biochemistry; Figure 9-16c (left) Courtesy of Penelope J. Brockie and Andres V. Maricq, University of Utah, Department of Biology; (right) Courtesy of Joseph A. Pogliano, from Pogliano, J., Ho, T.Q., Zhong, Z., \& Helinski, D.R. (2001) Multicopy plasmids are clustered and localized in Escherichia coli. Proc. Natl. Acad. Sci. USA 98, 4486, Fig. 2A; Figure 9-17b Fuss, J. \& Linn, S. (2002) Human DNA polymerase ε colocalizes with proliferating cell nuclear antigen and DNA replication late, but not early, in S phase. J. Biol. Chem. 277, 8658; Figure 9-18 Courtesy of Kevin Strange and Michael Christensen, Vanderbilt University Medical Center, Department of Pharmacology; Figure 9-24 Courtesy of Patrick O. Brown, Stanford University School of Medicine, Department of Biochemistry; p. 339 (Collins) Alex Wong/Newsmakers; (Venter) Mike Theiler/Reuters; Box 9-2 Figure 1 Data from the National Human Genome Research Institute; Figure 9-26c Courtesy of Illumina, Inc.; Figure 9-27 Courtesy of Guy Plunkett III, University of Wisconsin-Madison, Genome Center of Wisconsin; Figure 9-29a Adapted from Gregory, T.R. (2005) Synergy between sequence and size in large-scale genomics. Nat. Rev. Genet. 6, 699; Figure 9-29b Adapted from data obtained from the PANTHER Classification System website at www.pantherdb.org/; Figure 9-30 Adapted from International HapMap Consortium, The International HapMap Project (2003) Nature 426, 789; Figure 9-31a Adapted from Chen, C., Opazo, J.C., Erez, O., Uddin, M., Santolaya-Forgas, J., Goodman, M., Grossman, L.I., Romero, R., \& Wildman, D.E. (2008) The human progesterone receptor shows evidence of adaptive evolution associated with its ability to act as a transcription factor. Mol. Phylogenet. Evol. 47, 637; Figure 9-33 Adapted from MarquesBone, T., Ryder, O.A., \& Eichler, E.E. (2009) Sequencing primate genomes: what have we learned? Annu. Rev. Genomics Hum. Genet. 10, 355; Figure 9-34a,b Adapted from Schellenberg, G.D., Bird, T.D., Wijsman, E.M., Orr, H.T., Anderson, L., Nemens, E., White, J.A., Bonnycastle, L., Weber, J.L., Alonso, M.E., et al. (1992) Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258, 668; Figure 9-34c Adapted from Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754; Figure 9-35 Adapted from Stix, G. (2008) Traces of a distant past. Sci. Am. 299 (July), 56; Box 9-3 Figure 2 Adapted from Noonan, J.P., Coop, G., Kudaravalli, S., Smith, D., Krause, J. Alessi, J., Chen, F., Platt, D., Pääbo, S., Pritchard, J.K., \& Rubin, E.M. (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113.

CHAPTER 10 Figures 10-2a,b, 10-3 Coordinates from Sybyl; Figure 10-4a Dr. Alvin Telser/Visuals Unlimited, Inc.; Figure 10-4b Courtesy of Howard Goodman, Harvard Medical School, Department of Genetics; Figure 10-6b iStockphoto/Thinkstock; p. 367 (Thudichum) From Drabkin, D.L. (1958) Thudichum: Chemist of the Brain, University of Pennsylvania Press, credited to Thudichum, J.L.W. (1898) Briefe über öffentliche Gesundheitspflege: ihre bisherigen Leistungen und heutigen Aufgaben, F. Pietzcker, Tübingen; Box 10-1 Figure 2 Herbert A. Fischler, Isaac Albert Research Institute of the Kingsbrook Jewish Medical Center; p. 371 (Vane, Bergström, and Samuelsson) Ira Wyman/Sygma/Corbis; Figure 10-20b Courtesy of Media Center, University of Wisconsin-Madison, Department of Biochemistry; p. 375 (Dam) AP Photo/ John Rooney; (Doisy) AP/Wide World Photos; Figure 10-23 (cardinal) Dr. Dan Suda; (goldfinch) Richard Day/VIREO; Figure 10-26 Christie, W.W. (1996) Beginners' guide to mass spectrometry of fatty acids: 2. general purpose derivatives. Lipid Technol. 8, 64.
CHAPTER 11 Figure 11-1 Don W. Fawcett/Photo Researchers; Figure 11-5 Data from Zachowski, A. (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 294, 1;
Figure 11-6 Adapted from van Meer, G. \& de Kroon, A.I.P.M. (2011) Lipid map of the mammalian cell. J. Cell Sci. 124, 5; Figure 11-8 Adapted from Marchesi, V.T., Furthmayr, H., \& Tomita, M. (1976) The red cell membrane Annu. Rev. Biochem. 45, 667; Figure 11-10 PDB ID 2AT9, Mitsuoka, K. Hirai, T., Murata, K., Miyazawa, A., Kidera, A., Kimura, Y., \& Fujiyoshi, Y. (1999) The structure of bacteriorhodopsin at $3.0 \AA$ resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286, 861;
Figure 11-11a PDB ID 2B6O, Gonen, T., Cheng, Y., Sliz, P., Hiroaki, Y., Fujiyoshi, Y., Harrison, S.C., \& Walz, T. (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633; Figure 11-11b PDB ID 2BL2, Murata, T., Yamato, I., Kakinuma, Y., Leslie, A.G., \& Walker, J.E. (2005) Structure of the rotor of the V-type Na^{+}-ATPase from Enterococcus hirae. Science 308, 654; Figure 11-13 PDB ID 1BL8, Doyle, D.A., Morais Cabral, J., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., \& MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K^{+}conduction and selectivity. Science 280, 69 ; PDB ID 1AF6, Wang, Y.F., Dutzler, R., Rizkallah, P.J., Rosenbusch, J.P., \& Schirmer, T. (1997) Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin. J. Mol. Biol. 272, 56; PDB ID 1QD5, Snijder, H.J., Ubarretxena-Belandia, I., Blaauw, M., Kalk, K.H., Verheij, H.M., Egmond, M.R., Dekker, N., \& Dijkstra, B.W. (1999) Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401, 717; PDB ID 1QJ9, Vogt, J. \& Schulz, G.E. (1999) The structure of the outer membrane protein OmpX from Escherichia coli reveals mechanisms of virulence. Structure 7, 1301; PDB ID 1PHO, Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N., \& Rosenbusch, J.P. (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358, 727; Figure 11-14 PDB ID 1FEP, Buchanan, S.K., Smith, B.S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., van der Helm, D., \& Deisenhofer, J. (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6, 56; PDB ID 1QD5, Snijder, H.J., Ubarretxena-Belandia, I., Blaauw, M., Kalk, K.H., Verheij, H.M., Egmond, M.R., Dekker, N., \& Dijkstra, B.W. (1999) Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401, 717; PDB ID 1MAL, Schirmer, T., Keller, T.A., Wang, Y.F., \& Rosenbusch, J.P. (1995) Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267,
512; Figure 11-16 Heller, H., Schaefer, M., \& Schulten, K. (1993) Molecular dynamics simulation of a bilayer of 200 lipids, in the gel and in the liquid-crystal phases. J. Phys. Chem. 97, 8343; Figure 11-19 Courtesy of Takahiro Fujiwara, Ken Ritchie, Hideji Murakoshi, Ken Jacobson, and Akihiro Kusumi; Figure 11-21b Adapted from a micrograph courtesy of J. M. Edwardson, University of Cambridge, Department of Pharmacology; Figure 11-22a Courtesy of R. G. Parton. Reprinted with permission from Parton, R.G. \& Simons, K. (2007) The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185, Fig. 1a; Figure 11-24a,b Adapted from Qualmann, B., Koch, D., \& Manfred Kessels, M. (2011) Let's go bananas: revisiting the endocytic BAR code. EMBO J. 30, 3501, Fig. 1; Figure 11-24c Adapted from Peter, B.J., Kent, H.M, Mills, I.G., Vallis, Y., Butler, P.J.G., Evans, P.R., \& McMahon, H.T. (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495, Fig. 1A; Figure 11-25 Adapted from Chen, Y.A. \& Scheller, R.H. (2001) SNARE-mediated membrane fusion. Nature 2, 98; Figure 11-29 Adapted from Gadsby, D.C. (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat. Rev. Mol. Cell Biol. 10, 344, Fig. 1; Figure 11-30a,c Adapted from Mueckler, M. (1994) Facilitative glucose transporters. Eur. J. Biochem. 219, 713; Box 11-1 Figure 1 Adapted from Lienhard, F.E., Slot, J.W., James, D.E., \& Mueckler, M.M. (1992) How cells absorb glucose. Sci Am. 266 (January), 86; Figure 11-36a Adapted from Bublitz, M., Poulsen, H., Preben Morth, J., \& Nissen, P. (2010) In and out of the cation pumps: P-type

ATPase structure revisited. Curr. Opin. Struct. Biol. 20, 431, Fig. 1; Figure 11-36b PDB ID 1SU4, Toyoshima, C., Nakasako, M., Nomura, H., \& Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 angstrom resolution. Nature 405, 647; Figure 11-36c PDB ID 3KDP, Preben Morth, J., Pedersen, B.P., Toustrup-Jensen, M.S., Sorensen, T.L., Petersen J., Andersen, J.P., Vilsen, B., \& Nissen, P. (2007) Crystal structure of the sodium-potassium pump. Nature 450, 1043; PDB ID 3B8C, Pedersen, B.P., Buch-Pedersen, M.J., Preben Morth, J., Palmgren, M.G., \& Nissen, P. (2007) Crystal structure of the plasma membrane proton pump. Nature 450, 1111; derived from PDB ID 3IXZ, Abe, K., Tani, K., Nishizawa, T., \& Fujiyoshi, Y. (2009) Inter-subunit interaction of gastric $\mathrm{H}^{+}, \mathrm{K}^{+}$-ATPase prevents reverse reaction of the transport cycle. EMBO J. 28, 1637, modeled following PDB ID 3B8E, see citation for PDB ID 3KDP; p. 411 (Skou) Courtesy of Information Office, University of Aarhus, Denmark; Figure 11-37 Adapted from Kühlbrandt, W. (2004) Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 291; Figure 11-40a PDB ID 3G60, Aller, S.G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P.M., Trinh, Y.T., Zhang, Q., Urbatsch, I.L., \& Chang, G. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718; Figure 11-40b PDB ID 1L7V, Locher, K.P., Lee, A.T., \& Rees, D.C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091; Figure 11-41c Adapted from Rees, D.C., Johnson, E., \& Lewinson, O. (2009) ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10, 218, Fig. 1; Box 11-2 Figure 2 Tom Moninger, University of Iowa, Ames; Figure 11-42a PDB ID 1PV7, Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H.R., \& Iwata, S. (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610;
Figure 11-42b PDB ID 2CFQ, Mirza, O., Guan, L., Verner, G., Iwata, S., \& Kaback, H.R. (2006) Structural evidence for induced fit and a mechanism for sugar $/ \mathrm{H}^{+}$symport in LacY. EMBO J. 25, 1177; Figure 11-44 Coordinates prepared for The Virtual Museum of Minerals and Molecules, www.soils.wisc. edu/virtual_museum, by Phillip Barak, University of Wisconsin-Madison, Department of Soil Science, using data from Neupert-Laves, K. \& Dobler, M. (1975) The crystal structure of a K^{+}complex of valinomycin. Helv. Chim. Acta 58, 432; p. 418 (Agre) Courtesy of the Royal Swedish Academy of Sciences; Figure 11-45a PDB ID 2B5F, Tornroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., Neutze, R., \& Kjellbom, P. (2006) Structural mechanism of plant aquaporin gating. Nature 439, 688; Figure 11-45b Adapted from PDB ID 1J4N, Sui, H., Han, B.-G., Lee, J.K., Walian, P., \& Jap, B.K. (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872; p. 421 (Neher) Courtesy Boettcher-Gajewski/ Max Planck Institut für Biophysikalische Chemie; (Sakmann) Courtesy Max Planck Institut für Neurobiologie; Figure 11-46 Witzemann, V., Schwarz, H., Koenen, M., Berberich, C., Villarroel, A., Wernig, A., Brenner, H.R., \& Sakmann, B. (1996) Acetylcholine receptor ε-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc. Natl. Acad. Sci. USA 93, 13,286; p. 422 (MacKinnon) Courtesy of the Royal Swedish Academy of Sciences; Figure 11-47a,b PDB ID 1BL8, Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., \& Mackinnon, R. (1998) The structure of the potassium channel: molecular basis of K^{+}conduction and selectivity. Science 280, 69; Figure 11-47c Adapted from Yellen, G. (2002) The voltage-gated potassium channels and their relatives. Nature 419, 37, and PDB ID 1J95, Zhou, M., Morais-Cabral, J.H., Mann, S., \& MacKinnon, R. (2001) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657; Figure 11-48a,b,d PDB ID 2A79, Long, S.B., Campbell, E.B., \& MacKinnon, R. (2005) Crystal structure of a mammalian voltage-dependent Shaker family K ${ }^{+}$channel. Science 309, 897; Figure 11-48c Adapted from Gandhi, C.S. \& Isacoff, E.Y. (2005) Shedding light on membrane proteins. Trends Neurosci. 28, 476.
CHAPTER 12 Figure 12-6b PDB ID 1U7E, Kim, C., Xuong, N.-H., \& Taylor, S.S. (2005) Crystal structure of a complex between the catalytic and regulatory (RI α) subunits of PKA. Science 307, 690; Box 12-2 Figure 1 (Gilman) Office of News and Publications, The University of Texas Southwestern Medical Center at Dallas; (Rodbell) Courtesy of Andrew Rodbell; Box 12-2 Figure 2 PDB ID 5P21, Pai, E.F., Krengel, U., Petsko, G.A., Goody, R.S., Kabsch, W., \& Wittinghofer, A. (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at $1.35 \AA$ resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351; Box 12-2 Figure 3 Adapted from Vetter, I.R. \& Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimensions. Science 294, 1300, Fig. 3; Box 12-3 Figure 1 Chris Parks/ ImageQuest Marine; Box 12-3 Figure 2 Derived from PDB ID 1GFL, Yang, F., Moss, L.G., \& Phillips, G.N., Jr. (1996) The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246; Figure 12-11a PDB ID 1CLL, Chattopadhyaya, R., Meador, W.E., Means, A.R., \& Quiocho, F. (1992) A calmodulin structure refined at 1.7 angstroms resolution. J. Mol. Biol. 228, 1177; Figure 12-11b,c PDB ID 1CDL, Meador, W.E., Means, A.R., \& Quiocho, F.A. (1992) Target enzyme recognition by calmodulin: 2.4 angstroms structure
of a calmodulin-peptide complex. Science 257, 1251; Figure 12-12a Courtesy of Michael D. Cahalan, University of California, Irvine, Department of Physiology and Biophysics; Figure 12-12b Rooney, T.A., Sass, E.J., \& Thomas, A.P. (1989) Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J. Biol. Chem. 264, 17,131;
Figure 12-13a PDB ID 3SN6, Rasmussen, S.G.F., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al. (2011) Crystal structure of the β_{2} adrenergic receptor-Gs protein complex. Nature 477, 549; Figure 12-13b PDB ID 4DKL, Manglik, A., Kruse, A.C., Kobilka, T.S., Thian, F.S., Mathiesen, J.M., Sunahara, R.K., Pardo, L., Weis, W.I., Kobilka, B.K., \& Granier, S. (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321; Figure 12-13c PDB ID 3RZE, Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Cherezov, V., Liu, W., Han, G.W., et al. (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65; Figure 12-13d PDB ID 3EML, Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R. Ijzerman, A.P., \& Stevens, R.C. (2008) The 2.6 angstrom crystal structure of a human $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor bound to an antagonist. Science 322, 1211; PDB ID 2VT4, Warne, A., Serrano-Vega, M.J., Baker, J.G., Moukhametzianov, R., Edwards, P.C., Henderson, R., Leslie, A.G.W., Tage, C.G., \& Schertler, G.F.X. (2008) Structure of the β_{1}-adrenergic G protein-coupled receptor. Nature 454, 486; PDB ID 2RH1, Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., \& Stevens, R.C. (2007) High-resolution crystal structure of an engineered human β_{2}-adrenergic G protein-coupled receptor. Science 318, 1258; PDB ID 2Z73, Murakami, M. \& Kouama, T. (2008) Crystal structure of squid rhodopsin. Nature 453, 363; PDB ID 1U19, Okada, T., Sugihara, M., Bondar, A.N., Eistner, M., Entel, P., \& Buss, V. (2004) The retinal conformation and its environment in rhodopsin in light of a new $2.2 \AA$ crystal structure. J. Mol. Biol. 342, 571; Figure 12-14b (insulin receptor) Derived from PDB ID 2DTG, McKern, N.M., Lawrence, M.C., Streltsov, V.A., Lou, M.-Z., Adams, T.E., Lovrecz, G.O., Elleman, T.C., Richards, K.M., Bentley, J.D., Pilling, P.A., et al. (2006) Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 443, 218; (insulin) PDB ID 2CEU, Whittingham, J.L., Zhang, Y., Zakova, L., Dodson, E.J., Turkenburg, J.P., \& Dodson, G.G. (2006) I222 crystal form of despentapeptide (B26-B30) insulin provides new insights into the properties of monomeric insulin. Acta Crystallogr. D Biol. Crystallogr. 62, 505; Figure 12-14c PDB ID 1IRK, Hubbard, S.R., Wei, L., Ellis, L., \& Hendrickson, W.A. (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746; Figure 12-14d PDB ID 1IR3, Hubbard, S.R. (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572; Figure 12-21 PDB ID 1SHC, Zhou, M.M., Ravichandran, K.S., Olejniczak, E.F., Petros, A.M., Meadows, R.P., Sattler, M., Harlan, J.E., Wade, W.S., Burakoff, S.J., \& Fesik, S.W. (1995) Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584; Figure 12-23 Adapted from Pawson, T., Gish, G.D., \& Nash, P. (2001) SH2 domains, interaction modules and cellular wiring. Trends Cell Biol. 11, 504, Fig. 5; Figure 12-24 Adapted from Good, M.C., Zalatan, J.G., \& Lim, W.A. (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680, Fig. 2E; Figure 12-27a,c,d Adapted from Taylor, R. (1994) Evolutions: the voltage-gated sodium channel. J. NIH Res. 6, 112; Figure 12-27b PDB ID 3RW0, Payandeh, J., Scheuer, T., Zheng, N., \& Catterall, W.A. (2011) The crystal structure of a voltage-gated Na^{+}channel. Nature 475, 353; Figure 12-28a,b Adapted from Changeux, J.P. (1993) Chemical signaling in the brain. Sci. Am. 269 (November), 58; Figure 12-28c,e PDB ID 1UV6, Celie, P.H.N., Van Rossum-Fikkert, S.E., Van Dijk, W.J., Brejc, K., Smit, A.B., \& Sixma, T.K. (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AchBP crystal structures. Neuron 41, 907; Figure 12-29 Adapted from Shattil, S.J., Kim, C., \& Ginsberg, M.H. (2010) The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288, Box 2;
Figure 12-34 Adapted from Ouaked, F., Rozhon, W., Lecourieux, D., \& Hirt, H. (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J. 22, 1282; Figure 12-35 Adapted from Tichtinsky, G., Vanoosthuyse, V., Cock, J.M., \& Gaude, T. (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci. 8, 231, Fig. 1; Figure 12-38 PDB ID 1BAC, Chou, K.-C., Carlacci, L., Maggiora, G.M., Parodi, L.A., \& Schulz, M.W. (1992) An energybased approach to packing the 7-helix bundle of bacteriorhodopsin. Protein Sci. 1, 810; Figure 12-40 Adapted from Nathans, J. (1989) The genes for color vision. Sci. Am. 260 (February), 42; Box 12-4 Figure 1 Courtesy of Professor J. D. Mollon, Cambridge University, Department of Experimental Psychology; Figure 12-45a PDB ID 1HCK, Schulze-Gahmen, U., De Bondt, H.L., \& Kim, S.-H. (1996) High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J. Med. Chem. 39, 4540; Figure 12-45b PDB ID 1FIN, Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., \& Pavletich, N.P. (1995) Mechanism of Cdk activation revealed by the structure of a cyclin
a-Cdk2 complex. Nature 376, 313; Figure 12-45c PDB ID 1JST, Russo, A.A., Jeffrey, P.D., \& Pavletich, N.P. (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3, 696; Figure 12-46 Data from Pines, J. (1999) Four-dimensional control of the cell cycle. Nat. Cell Biol. 1, E73; Box 12-5 Figure 1 CNRI/Photo Researchers; Box 12-5 Figure 2 PDB ID 1S9I, Ohren, J.F., Chen, H., Pavlovsky, A., Whitehead, C., Zhang, E., Kuffa, P., Yan, C., McConnell, P., Spessard, C., Banotai, C., et al. (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192; Box 12-5 Figure 3a PDB ID 1IEP, Nagar, B., Bornmann, W., Pellicena, P., Schindler, T., Veach, D.R., Miller, W.T., Clarkson, B., \& Kuriyan, J. (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 62, 4236; Box 12-5 Figure 3b PDB ID 1M17, Stamos, J., Sliwkowski, M.X., \& Eigenbrot, C. (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46,265; Box 12-5 Figure 3c PDB ID 1S9I, see citation for Box 12-5 Figure 2; Box 12-5 Figure 3d PDB ID 2A4L, De Azevedo, W.F., Leclerc, S., Meijer, L., Havlicek, L., Strnad, M., \& Kim, S.H. (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem. 243, 518; Figure 12-51 Adapted from Markowitz, S.D. \& Bertagnolli, M.M. (2009) Molecular basis of colorectal cancer. N. Engl. J. Med. 361, 2449, Fig. 2.
CHAPTER 13 p. 505 (Lavoisier) INTERFOTO/Alamy; p. 506 © Sidney Harris; Figure 13-7 Adapted from Layer, G., Heinz, D.W., Hahn, D., \& Schubert, W.-D. (2004) Structure and function of radical SAM enzymes. Curr. Opin. Chem. Biol. 8, 472, Fig. 4; Box 13-1 (firefly) Cathy Keifer/Fotolia; Figure 13-25 PDB ID 3LDH, White, J.L., Hackert, M.L., Buehner, M., Adams, M.J., Ford, G.C., Lentz, P.J., Jr., Smiley, I.E., Steindel, S.J., \& Rossmann, M.G. (1976) A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. J. Mol. Biol. 102, 759; p. 535 (Strong, Elvehjem) Courtesy of University of Wisconsin-Madison, Department of Biochemistry; (Woolley) Rockefeller Archive Center.
CHAPTER 14 p. 544 (von Euler-Chelpin) Austrian Archives/Corbis; (Embden) Courtesy of Institut für Biochemie I: Molekulare Bioenergetik, Universitätsklinikum Frankfurt, ZBC; (Meyerhof) Hulton-Seutsch Collection/ Corbis; p. 548 (Harden) Hulton Archives/Getty Images; (Young) Courtesy of Medical History Museum, The University of Melbourne; p. 555 (Warburg) Hulton Archive/ Getty Images; Box 14-1 Figure 3 ISM/Phototake; Box 14-2 Fritz Prenzel/Animals Animals; Box 14-3 Figure 1 Charles O'Rear/Corbis.
CHAPTER 15 Figure 15-1 www.genome.ad.jp/kegg/pathway/map/map01100. html; Figures 15-3, 15-4 Adapted from Bennett, B.D., Kimball E.H., Gao, M., Osterhout, R., Van Dien, S., \& Rabinowitz, J.D. (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593, Figs 1 and 2; p. 596 (Buchner) The Nobel Foundation; Figure 15-9 Data from Torres, N.V., Mateo, F., Melendez-Hevia, E., \& Kacser, H. (1986) Kinetics of metabolic pathways: a system in vitro to study the control of flux. Biochem. J. 234, 169; Box 15-1 Figure 2 Fell, D. (1997) Understanding the Control of Metabolism, Portland, London, p. 103; Figure 15-16a PDB ID 1PFK, Shirakihara, Y. \& Evans, P.R. (1988) Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J. Mol. Biol. 204, 973; Figure 15-20a PDB ID 2NPP, Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., Yu, J.W., Strack, S., Jeffrey, P.D., \& Shi, Y. (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127, 1239; Figure 15-25 Adapted from Chakravarty, K., Cassuto, H., Reshef, L., \& Hanson, R.W. (2005) Crit. Rev. Biochem. Mol. Biol. 40, 133, Fig. 2; Figure 15-26 BCC Microimaging, reproduced with permission; p. 615 (Leloir) AP Photo/John Lindsay; Box 15-4 (Coris) AP; Figure 15-34 PDB ID 1LL2, Gibbons, B.J., Roach, P.J., \& Hurley, T.D. (2002) Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J. Mol. Biol. 319, 463; p. 621 (Sutherland) Case Western Reserve University School of Medicine/ National Institute of Health.
CHAPTER 16 p. 633 (Krebs) Keystone Pictures USA/Alamy; Figure 16-5a,b Courtesy of Dr. Z. Hong Zhou, University of Texas-Houston Medical School, Department of Pathology and Laboratory Medicine; Figure 16-8a PDB ID 5CSC, Liao, D.-I., Karpusas, M., \& Remington, S.J. (1991) Crystal structure of an open conformation of citrate synthase from chicken heart at $2.8-\AA$ resolution. Biochemistry 30, 6031; Figure 16-8b PDB ID 5CTS, Karpusas, M., Branchaud, B., \& Remington, S.J. (1990) Proposed mechanism for the condensation reaction of citrate synthase: 1.9- \AA structure of the ternary complex with oxaloacetate and carboxymethyl coenzyme A. Biochemistry 29 , 2213; Figure 16-9 Adapted from Remington, J.S. (1992) Mechanisms of citrate synthase and related enzymes (triose phosphate isomerase and mandelate racemase). Curr. Opin. Struct. Biol. 2, 730; Box 16-1 Figure 1 Adapted from Eisenstein, R.S. (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu. Rev. Nutr. 20, 637, Fig. 1; Box 16-1 Figure 2a PDB ID 2B3Y, Dupuy, J., Volbeda, A., Carpentier,
P., Darnault, C., Moulis, J.M., \& Fontecilla-Camps, J.C. (2006) Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 14, 129; Box 16-1 Figure 2b PDB ID 2IPY, Walden, W.E., Selezneva, A.I., Dupuy, J., Volbeda, A., Fontecilla-Camps, J.C., Theil, E.C., \& Volz, K. (2006) Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314, 1903; Figure 16-13b PDB ID 1SCU, Wolodko, W.T., Fraser, M.E., James, M.N.G., \& Bridger, W.A. (1994) The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-Å resolution. J. Biol. Chem. 269, 10,883; Figure 16-23 Richard N. Trelease, Arizona State University, Department of Botany.
CHAPTER 17 Box 17-1 Stouffer Productions/Animals Animals; Box 17-2 (Hodgkin) The Nobel Foundation.
CHAPTER 18 Figure 18-5c,d,e PDB ID 1AJS, Rhee, S., Silva, M.M., Hyde, C.C., Rogers, P.H., Metzler, C.M., Metzler, D.E., \& Arnone, A. (1997) Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate. J. Biol. Chem. 272, 17, 293.
CHAPTER 19 p. 732 (Lehninger) Alan Mason Chesney Medical Archives of The Johns Hopkins Medical Institutions; Figure 19-2b Quest/Photo Researchers; Figure 19-2c Dr. Donald Fawcett/Visuals Unlimited, Inc.; Figure 19-5d PDB ID 1FRD, Jacobson, B.L., Chae, Y.K., Markley, J.L., Rayment, I., \& Holden, H.M. (1993) Molecular structure of the oxidized, recombinant, heterocyst ($2 \mathrm{Fe}-2 \mathrm{~S}$) ferredoxin from Anabaena 7120 determined to 1.7 ångstroms resolution. Biochemistry 32, 6788; Figure 19-9 PDB ID 3M9S, Efremov, R.G., Baradaran, R., \& Sazanov, L.A. (2010) The architecture of respiratory complex I. Nature 465, 441; Figure 19-10 PDB ID 1ZOY, Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., \& Rao, Z. (2005) Crystal structure of mitochondrial respiratory membrane protein Complex II. Cell 121, 1043; Figure 19-11 PDB ID 1BGY, Iwata, S., Lee, J.W., Okada, K., Lee, J.K., Iwata, M., Rasmussen, B., Link, T.A., Ramaswamy, S., \& Jap, B.K. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome $b c_{1}$ complex. Science 281, 64; Figure 19-13 PDB ID 1OCC, Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., \& Yoshikawa, S. (1996) The whole structure of the 13 -subunit oxidized cytochrome c oxidase at $2.8 \AA$. Science 272,1136 ; Figure 19-14 Adapted from Williams, R.J.P. (1995) Nature 378, 235, a correction to Williams, R.J.P. (1995) Purpose of proton pathways. Nature 376, 643; Figure 19-15a,b Courtesy of Egbert Boekema. Reprinted with permission from Heinemeyer, J., Braun, H.-P., Boekema, E.J., \& Kour̆il, R. (2007) A structural model of the cytochrome c reductase/oxidase supercomplex from yeast mitochondria. J. Biol. Chem. 282, 12,240, Figs 4A and 5A; Figure 19-16 PDB ID 3M9S, 1ZOY, 1BGY, and 1OCC; see citations for Figures 19-9, 19-10, 19-11, and 19-13; PDB ID 1HRC, Bushnell, G.W., Louie, G.V., \& Brayer, G.D. (1990) High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585; Box 19-1 Figure 1 D. Cavagnaro/Visuals Unlimited; p. 748 (Mitchell) AP/Wide World Photos; p. 749 (Lardy) Courtesy of Department of Biochemistry, University of Wisconsin-Madison; p. 750 (Racker) Courtesy of E. Racker; Figure 19-23b PDB ID 1BMF, Abrahams, J.P., Leslie, A.G., Lutter, R., \& Walker, J.E. (1994) Structure at 2.8 Å resolution of F_{1}-ATPase from bovine heart mitochondria. Nature 370, 621; p. 752 (Walker) Courtesy of Professor John E. Walker; (Boyer) AP Photo/Lacy Atkins; Figure 19-25b PDB ID 1BMF, see citation for Figure 19-23b; PDB ID 1JNV, Hausrath, A.C., Capaldi, R.A., \& Matthews, B.W. (2001) The conformation of the ε - and γ-subunits within the Escherichia coli F_{1} ATPase. J. Biol. Chem. 276, 47,227; Figure 19-25c PDB ID 1BMF, see citation for Figure 19-23b; PDB ID 1JNV, see citation for Figure 19-23b; PDB ID 2A7U, Wilkens, S., Borchardt, D., Weber, J., \& Senior, A.E. (2005) Structural characterization of the interaction of the δ and α subunits of the Escherichia coli $\mathrm{F}_{1} \mathrm{~F}_{\mathrm{o}}$-ATP synthase by NMR spectroscopy. Biochemistry 44, 11,786; PDB ID 2CLY, Kane Dickson, V., Silvester, J.A., Fearnley, I.M., Leslie, A.G.W., \& Walker, J.E. (2006) On the structure of the stator of the mitochondrial ATP synthase. EMBO J. 25 , 2911; PDB ID 1C17, Rastogi, V.K. \& Girvin, M.E. (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402, 263; PDB ID 1B9U, Dmitriev, O., Jones, P.C., Jiang, W., \& Fillingame, R.H. (1999) Structure of the membrane domain of subunit b of the Escherichia coli $\mathrm{F}_{0} \mathrm{~F}_{1}$ ATP synthase. J. Biol. Chem. 274, 15,598; PDB ID 1YCE, Meier, T., Polzer, P., Diederichs, K., Welte, W., \& Dimroth, P. (2005) Structure of the rotor ring of F-type Na^{+}-ATPase from Ilyobacter tartaricus. Science 308, 659; Figure 19-25d PDB ID 1C17 and PDB ID 1YCE, see citations for Figure 19-25c; Figure 19-27 (left) Adapted from Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., \& Futai, M. (1999) Mechanical rotation of the c subunit oligomer in ATP synthase ($\mathrm{F}_{0} \mathrm{~F}_{1}$) : direct observation. Science 286, 1722-1724; Figure 19-27 (right) Courtesy of Ryohei Yasuda and Kazuhiko Kinosita, from Yasuda, R., Noji, H., Kinosita, K., Jr., \& Yoshida, M. (1998) F_{1}-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117; Figures 19-28, 19-29a,b,c,d, 19-33 PDB ID 1OHH, Cabezon, E., Montgomery, M.G., Leslie, A.G.W., \& Walker, J.E.
(2003) The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Nat. Struct. Biol. 10, 744; Figure 19-34 Adapted from Harris, D.A. (1995) Bioenergetics at a Glance, Blackwell Science, London, p. 36; Figure 19-37 Don W. Fawcett/Photo Researchers; Figure 19-39 Adapted from Riedl, S.J. \& Salvesen, G.S. (2007) The apoptosome: signaling platform of cell death. Nat. Rev. Mol. Cell Biol. 8, 409, Fig. 3; Figure 19-40a Morris, M.A. (1990) Mitomutations in neuro-ophthalmological diseases: a review. J. Clin. Neuroophthalmol. 10, 159; Figure 19-40b From Wallace, D., Zheng, X., Lott, M.T., Shoffner, J.M., Hodge, J.A., Kelley, R.I., Epstein, C.M., \& Hopkins, L.C. (1988) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55, 601; Figure 19-42 Michael W. Davidson, Florida State University; Figure 19-43b Courtesy of Rob Taylor. Reprinted with permission from Taylor, R.W. \& Turnbull, D.M. (2005) Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389, Fig. 2a; Figure 19-47b Biological Photo Service; Figure 19-51 PDB ID 2BHW, Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M., \& Kuhlbrandt, W. (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at $2.5 \AA$ resolution. $E M B O$ J. 24, 919; Figures 19-52, 19-56a,b, 19-62b, 19-63, 19-68 Adapted from Heldt, H.-W. (1997) Plant Biochemistry and Molecular Biology, Oxford University Press, Oxford, pp. 57, 62, 63, 100, 101, 133; Figure 19-57 PDB ID 1PRC, Deisenhofer, J., Epp, O., Sinning, I., \& Michel, H. (1995) Crystallographic refinement at 2.3 angstroms resolution and refined model of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 246, 429; Figure 19-59 Adapted from Rutherford, A.W. \& Faller, P. (2001) The heart of photosynthesis in glorious 3D. Trends Biochem. Sci. 26, 341, Fig. 1; Figure 19-60a Adapted from Kuhlbrandt, W. (2001) Structural biology: chlorophylls galore. Nature 411, 896, Fig. 1; Figure 19-60b,c PDB ID 1JBO, Nield, J., Rizkallah, P.J., Barber, J., \& Chayen, N.E. (2003) The $1.45 \AA$ three-dimensional structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J. Struct. Biol. 141, 149; Figure 19-61a,b PDB ID 1FV5, Kurisu, G., Zhang, H., Smith, J.L., \& Cramer, W.A. (2003) Structure of the cytochrome $b 6 f$ complex of oxygenic photosynthesis: tuning the cavity. Science 302, 1009; Figure 19-62a PDB ID 2AXT, Loll, B., Kern, J., Saenger, W., Zouni, A., \& Biesiadka, J. (2005) Towards complete cofactor arrangement in the $3.0 \AA$ resolution structure of photosystem II. Nature 438, 1040; PDB ID 2E74, Yamashita, E., Zhang, H., \& Cramer, W.A. (2007) Structure of the cytochrome $b 6 f$ complex: quinone analogue inhibitors as ligands of heme c_{n}. J. Mol. Biol. 370, 39; PDB ID 1A70, Binda, C., Coda, A., Aliverti, A., Zanetti, G., \& Mattevi, A. (1998) Structure of the mutant E92K of [2Fe-2S] ferredoxin I from Spinacia oleracea at $1.7 \AA$ resolution. Acta Crystallogr. D Biol. Crystallogr. 54, 1353; PDB ID 1AG6, Xue, Y., Okvist, M., Hansson, O., \& Young, S. (1998) Crystal structure of spinach plastocyanin at 1.7 Å resolution. Protein Sci. 7, 2099; PDB ID 2001, Amunts, A., Drory, O., \& Nelson, N. (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447, 58; PDB ID 1QG0, Deng, Z., Aliverti, A., Zanetti, G., Arakaki, A.K., Ottado, J., Orellano, E.G., Calcaterra, N.B., Ceccarelli, E.A., Carrillo, N., \& Karplus, P.A. (1999) A productive NADP ${ }^{+}$binding mode of ferredoxinNADP^{+}reductase revealed by protein engineering and crystallographic studies. Nat. Struct. Biol. 6, 847; PDB ID 1QO1, see citation for Figure 19-25d;
Figure 19-64b PDB ID 3ARC, Umena, Y., Kawakami, K., Shen, J.-R., \& Kamiya, N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of $1.9 \AA$. Nature 473,$55 ; \mathbf{p} .786$ (Arnon) University of California, Berkeley; (Jagendorf) Cornell University; Figure 19-67 Miller, S.R., Augustine, S., Le Olson, T., Blankenship, R.E., Selker, J., \& Wood, A.M. (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc. Natl. Acad. Sci. USA 102, 850, Fig. 2; Figure 19-69a PDB ID 1C8R, Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., \& Lanyi, J.K. (1999) Structural changes in bacteriorhodopsin during ion transport at $2 \AA$ resolution. Science 286, 255; Figure 19-69b Adapted from Gennis, R.B. \& Ebrey, T.G. (1999) Proton pump caught in the act. Science 286, 252.
CHAPTER 20 Figure 20-1 PhotoDisc; p. 800 (Calvin) Ted Spiegel/Corbis; Figure 20-2 Ken Wagner/Visuals Unlimited; Figure 20-5a PDB ID 8RUC, Andersson, I. (1996) Large structures at high resolution: the $1.6 \AA$ crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. J. Mol. Biol. 259, 160; Figure 20-5b PDB ID 9RUB, Lundqvist, T. \& Schneider, G. (1991) Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. J. Biol. Chem. 266, 12,604; Figure 20-6 PDB ID 1RCX, Taylor, T.C. \& Andersson, I. (1997) The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate. J. Mol. Biol. 265, 432; Figure 20-18 Halliwell, B. (1984) Chloroplast Metabolism: The Structure and Function of Chloroplasts in Green Leaf Cells, Clarendon Press, Oxford, p. 97; Figure 20-23a Ray Evert, University of Wisconsin-Madison, Department of Botany; Box 20-1 Figure 2 Adapted from Jansson, C., Wullschleger, S.D, Kalluri, U.C., \& Tuskan, G.A. (2010) Phytosequestration:
carbon biosequestration by plants and the prospects of genetic engineering. BioScience 60, 683, Fig. 1; Figure 20-28 (cellulose) Ken Wagner/Visuals Unlimited; art adapted from Becker, W. M. \& Deamer, D.W. (1991) The World of the Cell, 2nd edn, The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, p. 60, Fig. 3-20; Figure 20-29 inset Courtesy of Mark J. Grimson, Texas Tech University, and Candace H. Haigler, North Carolina State University; p. 830 (problem 19) Courtesy of Elena V. Voznesenskaya, Vincent R. Franceschi, Olavi Kiirats, Elena G. Artyusheva, Helmut Freitag, and Gerald E. Edwards.

CHAPTER 21 Figure 21-3a PDB ID 2CF2, Maier, T., Jenni, S., \& Ban, N (2006) Architecture of mammalian fatty acid synthase at $4.5 \AA$ resolution. Science 311, 1258; Figure 21-3b PDB IDs 2UV9, 2UVA, 2UVB, and 2UVC, Jenni, S., Leibundgut, M., Boehringer, D., Frick, C., Mikolasek, B., \& Ban, N (2007) Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316, 254; Figure 21-11b Daniel Lane, The Johns Hopkins University, School of Medicine; p. 853 (Kennedy) Harvard Medical School; Figure 21-28 Adapted from Carman, G.M. \& Han, G.-S. (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu. Rev. Biochem. 80, 859, Fig. 2; p. 863 (Bloch, Lynen, Cornforth) AP/ Wide World Photos; (Popják) Arterioscler. Thromb. Vasc. Biol. 19, 830-831, 1999, ©1999 Wolters Kluwer Health; Figure 21-39a ApoB-100 model from Johs, A., Hammel, M., Waldner, I., May, R.P., Laggner, P., \& Prassl, R. (2006) Modular structure of solubilized human apolipoprotein B-100: low resolution model revealed by small angle neutron scattering. J. Biol. Chem. 281, 19,732; Figure 21-39b Courtesy of Robert L. Hamilton and the Arteriosclerosis Specialized Center of Research, University of California, San Francisco; p. 868 (Brown and Goldstein) Courtesy of Michael Brown and Joseph Goldstein, University of Texas Southwestern Medical Center; Figure 21-44 Adapted from Raghow, R., Yellaturu, C., Deng, X., Park, E.A., \& Elam, M.B. (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol. Metab. 19, 65, Fig. 2; Figure 21-45 Adapted from Calkin, A.C. \& Tontonoz, P. (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13, 213, Fig. 1; Figure 21-46 Adapted from Maxfield, F.R. \& Tabas, I. (2005) Role of cholesterol and lipid organization in disease. Nature 438, 612, Fig. 3; Box 21-3 (Endo) Courtesy of Akira Endo, Ph.D.; (Alberts) Courtesy of Alfred W. Alberts; (Vagelos) Courtesy of P. Roy Vagelos. Figure 21-47 Adapted from Tall, A.R., Yvan-Charvet, L., Terasaka, N., Pagler, T., \& Wang, N. (2008) HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7, 365, Fig. 1.
CHAPTER 22 Box 22-1 Figures 1, 2 Adapted from van Niftrik, L.A., Fuerst, J.A., Damsté, J.S.S., Kuenen, J.G., Jetten, M.S.M., \& Strous, M. (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol. Lett. 233, 10, Figs 4 and 3; Box 22-1 Figure 3 Courtesy of John Fuerst. Reprinted with permission from Lindsay, M.R., Webb, R.I., Strous., M., Jetten, M.S., Butler, M.K., Forde, R.J., \& Fuerst, J.A. (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175, 421, Fig. 6A; Figure 22-3 PDB ID 1FP6, Jang, S.B., Seefeldt, L.C., \& Peters, J.W. (2000) Insights into nucleotide signal transduction in nitrogenase: structure of an iron protein with MgADP bound. Biochemistry 39, 14,745; PDB ID 1M1N, Einsle, O., Tezcan, F.A., Andrade, S.L., Schmid, B., Yoshida, M., Howard, J.B., \& Rees, D.C. (2002) Science 297, 1696; Figure 22-5 Adapted from Seefeldt, L.C., Hoffman, B.M., \& Dean, D.R. (2009) Mechanism of Mo-dependent nitrogenase. Annu. Rev. Biochem. 78, 701, Fig. 9; Figure 22-6a (including inset) Wally Eberhart/ Visuals Unlimited; Figure 22-6b Jeremy Burgess/Photo Researchers; Figure 22-7 PDB ID 2GLS, Yamashita, M.M., Almassy, R.J., Janson, C.A., Cascio, D., \& Eisenberg, D. (1989) Refined atomic model of glutamine synthetase at $3.5 \AA$ resolution. J. Biol. Chem. 264, 17,681; Figure 22-20b PDB ID 1KFJ, Kulik, V., Weyand, M., Seidel, R., Niks, D., Arac, D., Dunn, M.F., \& Schlichting, I. (2002) On the role of α Thr 183 in the allosteric regulation and catalytic mechanism of tryptophan synthase. J. Mol. Biol. 324, 677; p. 912 (Buchanan) Courtesy of Massachusetts Institute of Technology Museum Collection; Figure 22-39 PDB ID 1M6V, Thoden, J.B., Huang, X., Raushel, F.M., \& Holden, H.M. (2002) Carbamoyl-phosphate synthetase: creation of an escape route for ammonia. J. Biol. Chem. 277, 39,722; Jim Thoden and Hazel Holden, University of Wisconsin-Madison, Department of Biochemistry and Enzyme Institute, provided preliminary data for the channel path; Figure 22-42a Thelander, L. \& Reichard, P. (1979) Reduction of ribonucleotides. Annu. Rev. Biochem. 48, 133; Figures 22-42b,c, 22-45 PDB ID 3UUS, Ando, N., Brignole, E.J., Zimanyi, C.M., Funk, M.A., Yokoyama, K., Asturias, F.J., Stubbe, J., \& Drennan, C.L. (2001) Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase. Proc. Natl. Acad. Sci. USA 108, 21,046; p. 923 (Elion and Hitchings) Courtesy of Kathy Bendo Hitchings.
CHAPTER 23 Box 23-1 Figure 1 Allen, F.N. \& Sherrill, J.W. (1922) Clinical observations with insulin. 1. The use of insulin in diabetic treatment. J. Metabol.

Res. II, 804. Photo courtesy of Ebling Library, University of Wisconsin-Madison; Figure 23-15c,d Dr. Fred Hossler/Visuals Unlimited, Inc.; Figure 23-16b Christensen, C.R., Clark, P.B., \& Morton, K.A. (2006) Reversal of hypermetabolic brown adipose tissue in F-18 FDG PET imaging. Clin. Nucl. Med. 31, 193, Fig. 2. © Wolters Kluwer Health; Box 23-2 Figure 1 Adapted from Schlattner, U., Tokarska-Schlattner, M., \& Wallimann, T. (2006) Mitochondrial creatine kinase in human health and disease. Biochim. Biophys. Acta 1762, 164, Fig. 1; Box 23-2 Figure 3 Photodisc/Getty Images; Figure 23-18 Reprinted with permission from Blei, M.L., Conley, K.E., \& Kushmerick, M.J. (1993) Separate measures of ATP utilization and recovery in human skeletal muscle. J. Physiol. 465, 210, Fig. 4; Figure 23-20 D. W. Fawcett/Photo Researchers; Figure 23-22 Courtesy of M. L. Thomas, H. C. Sing, G. Belenky, Walter Reed Army Institute of Research, U.S. Army Medical Research Materiel Command, Division of Neuropsychiatry; Figure 23-28b Coordinates courtesy of Frances M. Ashcroft, Oxford University, used with permission of S. Haider and M. S. P. Sansom to re-create a model published in Antcliff, J.F., Haider, S., Proks. P., Sansom, M.S.P., \& Ashcroft, F.M. (2005) Functional analysis of a structural model of the ATP-binding site of the $\mathrm{K}_{\text {ATP }}$ channel Kir6.2 subunit. EMBO J. 24, 229; Figure 23-31 Adapted from Cahill, G.F., Jr. (2006) Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1, Fig. 2; Figure 23-33 John Sholtis, The Rockefeller University, New York; Figure 23-34 Adapted from Ezzell, C. (1995) Fat times for obesity research: tons of new information, but how does it all fit together? J. NIH Res. 7, 39; Figure 23-36 Adapted from Auwerx, J. \& Staels, B. (1998) Leptin. Lancet 351, 737; Figure 23-39 Adapted from http://web. indstate.edu/theme/mwking/ampk.html and Steinberg, G.R. \& Kemp, B.E. (2007) Adiponectin: starving for attention. Cell Metab. 6, 4, Fig. 1; Figure 23-40 Adapted from Yecies, J.L. \& Manning, B.D. (2011) mTOR links oncogenic signaling to tumor cell metabolism. J. Mol. Med. 89, 221, Fig. 2; Figure 23-41 Adapted from Evans, R.M., Barish, G.D., \& Wang, Y.-X. (2004) PPARs and the complex journey to obesity. Nat. Med. 10, 355, Fig. 3; Figure 23-43a,c Adapted from Cummings, D.E., Purnell, J.Q., Frayo, R.S., Schmidova, K., Wisse, B.E., \& Weigle, D.S. (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714, Fig. 1; Figure 23-43b Adapted from Feher, M.D. \& Bailey, C.J. (2004) Reclassifying insulins. Br. J. Diabet. Vasc. Dis. 4, 39; Figure 23-44 Adapted from Guilherme, A., Virbasius, J.V., Puri, V., \& Czech, M.P. (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Mol. Cell Biol. 9, 367, Fig. 1.
CHAPTER 24 Figure 24-1 From Kleinschmidt, A.K., Land, D., Jackerts, D., \& Zahn, R.K. (1962) Darstellung und Längenmessungen des gesamten Desoxyribonucleinsäure-Inhalter von T2-Bakteriophagen. Biochim. Biophys. Acta 61, 857; p. 980 (Beadle) Archive Photos; (Tatum) Corbis/UPI/Bettmann; Figure 24-4 Huntington Potter and David Dressler, Harvard Medical School, Department of Neurobiology; Figure 24-5a G. F. Bahr/Biological Photo Service; Figure 24-5b Michael M. Cox; Figure 24-6 D. W. Fawcett/Photo Researchers; Figure 24-10 Adapted from Cozzarelli, N.R., Boles, T.C., \& White, J.H. (1990) Primer on the topology and geometry of DNA supercoiling. In DNA Topology and Its Biological Effects (Cozzarelli, N.R. \& Wang, J.C., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 139-184; Figure 24-11a Adapted from Saenger, W. (1984) Principles of Nucleic Acid Structure, Springer-Verlag, New York, p. 452; Figure 24-12 Laurien Polder, from Kornberg, A. (1980) DNA Replication, W. H. Freeman \& Company, New York, p. 29; Figures 24-13, 24-14 See citation for Figure 24-10; Figure 24-19 Keller, W. (1975) Characterization of purified DNArelaxing enzyme from human tissue culture cells. Proc. Natl. Acad. Sci. USA 72, 2553; Figures 24-20, 24-21 Adapted from Champoux, J.J. (2001) DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369, Figs 3, 11; Figure 24-22a James H. White, T. Christian Boles, and N. R. Cozzarelli, University of California, Berkeley, Department of Molecular and Cell Biology; Figure 24-25b Ada L. Olins and Donald E. Olins, Oak Ridge National Laboratory; Figure 24-26 PDB ID 1AOI, Luger, K., Maeder, A.W., Richmond, R.K., Sargent, D.F., \& Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at $2.8 \AA$ resolution. Nature 389,251 ; Box 24-2 Figure 1 Adapted from Sarma, K. \& Reinberg, D. (2005) Histone variants meet their match. Nat. Rev. Mol. Cell Biol. 6, 140; Box 24-2 Figure 2b Data courtesy of Steve Henikoff. Reprinted with permission from Mito, Y., Henikoff, J.G., \& Henikoff, S. (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1092; Figure 24-28 See citation for Figure 24-26; Figure 24-29a Barbara Hamkalo, University of California, Irvine, Department of Molecular Biology and Biochemistry; Figure 24-30a G. F. Bahr/Biological Photo Service; Figure 24-30b D. W. Fawcett/Visuals Unlimited; Figure 24-30c Laemmli, U.K., Cheng, S.M., Adolph, K.W., Paulson, J.R., Brown, J.A., \& Baumbach, W.R. (1978) Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harb. Symp. Quant. Biol. 42, 351. © Cold Spring Harbor Laboratory Press.; Figure 24-31 Photo from G. F. Bahr/Biological Photo Service; Figures 24-32, 24-33 Adapted from Hirano, T. (2006) Nat. Rev. Mol. Cell. Biol. 7, 311, Figs 1, 6; Figure 24-32d Courtesy of Harold P. Erickson, Johns Hopkins University, Department of Cell Biology; Figure 24-34

Adapted from Bazett-Jones, D.P., Kimura, K., \& Hirano, T. (2002) Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol. Cell 9, 1183, Fig. 5; p. 1006 (problem 9) Roger Kornberg, MRC Laboratory of Molecular Biology; p. 1007 (problem 12) Courtesy of Elizabeth A. Wood, University of Wisconsin-Madison, Department of Biochemistry; (problem 15) Bowater, R.P. (2005) Supercoiled DNA: structure. In Encyclopedia of Life Sciences, doi: 10.1038/npg.els.0006002, John Wiley \& Sons, Inc./Wiley InterScience, www.els.net.

CHAPTER 25 Figure 25-3b Courtesy of Bernard Hirt, Institut Suisse de Recherches Experimentales sur le Cancer; p. 1013 (Kornberg) AP/Wide World Photos; Figure 25-5c PDB ID 4KTQ, Li, Y., Korolev, S., \& Waksman G. (1998) Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 17, 7514; Figure 25-9a Adapted from Yao, N. \& O'Donnell, M. (2008) Replisome dynamics and use of DNA trombone loops to bypass replication blocks. Mol. BioSyst. 4, 1075; Figure 25-9b PDB ID 2POL, Kong, X.-P., Onrust, R., O'Donnell, M., \& Kuriyan, J. (1992) Three-dimensional structure of the β subunit of Escherichia coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425; Figure 25-11 Adapted from figures in Erzberger, J.P., Mott, M.L., \& Berger, J.M. (2006) Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat. Struct. Mol. Biol. 13, 676; Figure 25-13 Adapted from an animation kindly provided by Mike O'Donnell, The Rockefeller University; Figure 25-17 Peters, J.E. \& Craig, N.L. (2000) Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol. Cell 6, 573, Fig. 1; Figure 25-19 Adapted from the figure in Sivaprasad, U., Dutta, A., \& Bell, S.P. (2006) Assembly of pre-replication complexes. In DNA Replication and Human Disease (DePamphilis, M.L., ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 141-152; Figure 25-20 Bruce N. Ames, University of California, Berkeley, Department of Biochemistry and Molecular Biology; Figure 25-22 Adapted from a figure provided by Paul Modrich; Figure 25-23 Adapted from Grilley, M., Griffith, J., \& Modrich, P. (1993) Bidirectional excision in methyl-directed mismatch repair. J. Biol. Chem. 268, 11,830; Figure 25-24 Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., \& Weiner, A.M. (1987) Molecular Biology of the Gene, 4th edn, The Benjamin/ Cummings Publishing Company, Menlo Park, CA, p. 350; Figure 25-25 Adapted from a figure provided by Aziz Sancar; p. 1038 (McClintock) AP/Wide World Photos; Figure 25-30 PDB ID 1W36, Singleton, M.R., Dillingham, M.S., Gaudier, M., Kowalczykowski, S.C., \& Wigley, D.B. (2004) Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432, 187; Figure 25-32b By permission of the Estate of Ross Inman. Special thanks to Kim Voss; Figure 25-32c Derived from PDB ID 3CMX, Chen, Z., Yang, H., \& Pavletich, N.P. (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489; Figure 25-35 John, B. (1990) Meiosis, Cambridge University Press, Figs 2.1a, 2.2a, 2.2b, and 2.3a. Reprinted with the permission of Cambridge University Press; Box 25-2 Figure 1 Adapted from Hassold, T. \& Hunt P. (2001) Nat. Rev. Genet. 2, 280, Fig. 6; Figure 25-37b PDB ID 3CRX, Gopaul, D.N., Guo, F., \& Van Duyne, G.D. (1998) Structure of the Holliday junction intermediate in Cre-Loxp site-specific recombination. EMBO J. 17, 4175.

CHAPTER 26 Figure 26-4 Ribbon structure adapted from a model in Zhang, G., Campbell, E.A., Minakhin, L., Richter, C., Severinov, K., \& Darst, S.A. (1999) Crystal structure of Thermus aquaticus core RNA polymerase at $3.3 \AA$ resolution. Cell 98, 811, based on PDB ID 1HQM, Minakhin, L., Bhagat, S., Brunning, A., Campbell, E.A., Darst, S.A., Ebright, R.H., \& Severinov, K. (2001) Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl. Acad. Sci. USA 98, 892; Box 26-1 Figure 2 Carol Gross, University of California, San Francisco, Department of Stomatology; Figure 26-9b PDB ID 1TGH, Juo, Z.S., Chiu, T.K., Leiberman, P.M., Baikalov, I., Berk, A.J., \& Dickerson, R.E. (1996) How proteins recognize the TATA box. J. Mol. Biol. 261, 239; Figure 26-9c Adapted from Klug, A. (2001) A marvelous machine for making messages. Science 292, 1844; Figure 26-10b PDB ID 1DSC, Lian, C., Robinson, H., \& Wang, A.H.-J. (1996) Structure of actinomycin D bound with (GAAGCTTC) 2 and (GATGCTTC) 2 and its binding to the (CAG)N:(CTG)N triplet sequence by NMR analysis. J. Am. Chem. Soc. 118, 8791; Figure 26-12a Pierre Chambon, Laboratorie de Génétique Moléculaire des Eucaryotes, Faculté de Médecine (CNRS); Figure 26-12b,c Chambon, P. (1981) Split genes. Sci. Am. 244 (May), 60; p. 1072 (Cech) Corbis/UPI/Bettmann; Figure 26-15 Cech, T.R. (1986) RNA as an enzyme. Sci. Am. 255 (November), 64; Figure 26-16a Kramer, A. (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367; Figure 26-21 Adapted from Blencowe, B.J. (2006) Alternative splicing: new insights from global analyses. Cell 126, 38, Fig. 2; Figure 26-25 Adapted from Kiss, T. (2002) Small nucleolar RNAs: an
abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 146; Figure 26-27 Adapted from Wienholds, E. \& Plasterk, R.H.A. (2005) MicroRNA function in animal development. FEBS Lett. 579, 5914; and Kim, V.N., Han, J., \& Siomi, M.C. (2009) Nat. Rev. Mol. Cell Biol. 10, 126, Figs 2-4; Figure 26-28b PDB ID 1MME, see citation for Figure 8-25b; Figure 26-29b PDB ID 1GID, Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., \& Doudna, J.A. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678; Figure 26-29c PDB ID 1U6B, Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J., \& Strobel S.A. (2004) Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45; Figure 26-30 Cech, T.R. (1986) RNA as an enzyme. Sci. Am. 255 (November), 64; p. 1085 (Grunberg-Manago) Courtesy of Marianne Grunberg-Manago; (Ochoa) AP/Wide World Photos; p. 1087 (Temin) Corbis/UPI/Bettmann; (Baltimore) AP/Wide World Photos; Figure 26-35 Haseltine, W.A. \& Wong-Staal, F. (1988) The molecular biology of the AIDS virus. Sci. Am. 259 (October), 52; Figure 26-36 Kingsman, A.J. \& Kingsman, S.M. (1988) Ty: a retroelement moving forward. Cell 53,$333 ;$ p. 1090 (Greider) Courtesy of Carol Greider, Johns Hopkins University, Department of Molecular Biology and Genetics; (Blackburn) Elisabeth Fall/Fallfoto.com; Figure 26-38c Jack Griffith, University of North Carolina at Chapel Hill, Comprehensive Cancer Center; p. 1092 (Woese, Crick) AP/Wide World Photos; (Orgel) Courtesy of The Salk Institute for Biological Studies; Figure 26-40 Adapted from Lincoln, T.A. \& Joyce, G.F. (2009) Self-sustained replication of an RNA enzyme. Science 323, 1229; Box 26-3 Figure $\mathbf{3}$ PDB ID 1RAW, Dieckmann, T., Suzuki, E., Nakamura, G.K., \& Feigon, J. (1996) Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA 2, 628.

CHAPTER 27 p. 1103 (Noller) Courtesy of Harry Noller, University of California, Santa Cruz, Center for the Molecular Biology of RNA; p. 1104 (Zamecnik) News Office, Massachusetts General Hospital; Figure 27-1 D. W. Fawcett/Visuals Unlimited; p. 1105 (Nirenberg) AP/Wide World Photos; p. 1106 (Khorana) Courtesy of Archives, University of Wisconsin-Madison; p. 1115 (Nomura) Courtesy of Masayasu Nomura; p. 1116 (Ramakrishnan, Steitz, Yonath) REUTERS/Scanpix; Figure 27-14a PDB ID $20 W 8$ and PDB ID 1VSA, Korostelev, A., Trakhanov, S., Laurberg, M., \& Noller, H.F. (2006) Crystal structure of a 70 S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065; Figure 27-14b PDB ID 3058 and PDB ID 302Z, Ben-Shem, A., Jenner, L., Yusupova, G., \& Yusupov, M. (2010) Crystal structure of the eukaryotic ribosome. Science 330, 1203; Box 27-2 Figure 1 PDB ID 1Q7Y, Hansen, J.L., Schmeing, T.M., Moore, P.B., \& Steitz, T.A. (2002) Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99, 11,670; Figure 27-15 Adapted from data at http://www.rna.icmb.utexas.edu/; p. 1118 (Holley) Corbis/UPI/Bettmann; Figure 27-18b PDB ID 4TRA, Westhof, E., Dumas, P., \& Moras, D. (1988) Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr. A 44, 112; Figure 27-21b PDB ID 1EHZ, Shi, H. \& Moore, P.B. (2000) The crystal structure of yeast phenylalanine tRNA at $1.93 \AA$ resolution: a classic structure revisited. RNA 6, 1091; Figure 27-22a PDB ID 1QRT, Arnez, J.G. \& Steitz, T.A. (1996) Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP. Biochemistry 35, 14,725; Figure 27-22b PDB ID 1ASZ, Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M., Mitschler, A., Martin, F., Gangloff, J., Thierry, J.C., \& Moras, D. (1994) The active site of yeast aspartyltRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13, 327; Box 27-3 Figure 2 Adapted from Xie, J.M. \& Schultz, P.G. (2006) Innovation: a chemical toolkit for proteins-an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 778; Figure 27-31b (left) PDB ID 1B23, Nissen, P., Thirup, S., Kjeldgaard, M., \& Nyborg, J. (1999) The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Struct. Fold. Des. 7, 143; (right) PDB ID 1DAR, al-Karadaghi, S., Aevarsson, A., Garber, M., Zheltonosova, J., \& Liljas, A. (1996) The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4, 555; Figure 27-33a Miller, O.L., Jr., Hamkalo, B.A., \& Thomas, C.A. (1970) Visualization of bacterial genes in action. Science 169, 392, Fig. 3, © 1970 American Association for the Advancement of Science; p. 1140 (Blobel) Courtesy of Günter Blobel, The Rockefeller University, (Palade) AP/Wide World Photos; Figure 27-42a Adapted from Strambio-De-Castillia, C., Niepel, M., \& Rout, M.P. (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490, Fig. 1; Figure 27-42b D. W. Fawcett/Photo Researchers; Figure 27-45 Adapted from Mayor, S. \& Pagano, R.E. (2007) Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 604; Figure 27-46c John Heuser, Washington University Medical School, Department of Biochemistry; Figure 27-48 PDB ID 3L5Q, Sadre-Bazzaz, K., Whitby, F.G., Robinson, H., Formosa, T., \& Hill, C.P. (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37, 728.

CHAPTER 28 p. 1159 (Jacob, Monod) Corbis/Bettmann; Figure 28-8c PDB ID 2PE5, Daber, R., Stayrook, S., Rosenberg, A., \& Lewis, M. (2007) Structural analysis of lac repressor bound to allosteric effectors. J. Mol. Biol. 370, 609; Figure 28-9 Adapted from Huret, J.L. (2006) DNA: molecular structure. Atlas Genet. Cytogenet. Oncol. Haematol., http://atlasgeneticsoncology.org/Educ/ DNAEngID30001ES.html; Figure 28-11 PDB ID 2PE5, see citation for Figure 28-8c; Figure 28-12 PDB ID 1ZAA, Pavletich, N.P. \& Pabo, C.O. (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at $2.1 \AA$. Science 252, 809; Figure 28-13 PDB ID 1FJL, Wilson, D.S., Guenther, B., Desplan, C., \& Kuriyan, J. (1995) High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 82, 709; Figure 28-14a McKnight, S.L. (1991) Molecular zippers in gene regulation. Sci. Am. 264 (April), 54-64; Figure 28-14b PDB ID 1YSA, Ellenberger, T.E., Brandl, C.J., Struhl, K., \& Harrison, S.C. (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein-DNA complex. Cell 71, 1223; Figure 28-15 PDB ID 1HLO, Brownlie, P., Ceska, T.A., Lamers, M., Romier, C., Theo, H., \& Suck, D. (1997) The crystal structure of an intact human max-DNA complex: new insights into mechanisms of transcriptional control. Structure 5, 509; Figure 28-16 PDB ID 1RUN, Parkinson, G., Gunasekera, A., Vojtechovsky, J., Zhang, X., Kunkel, T.A., Berman, H., \& Ebright, R.H. (1996) Aromatic hydrogen bond in sequencespecific protein-DNA recognition. Nat. Struct. Biol. 3, 837; Figure 28-19a Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., \& Weiner, A.M. (1987) Molecular Biology of the Gene, 4th edn, The Benjamin/Cummings Publishing Company, Menlo Park, CA, p. 487; Figure 28-21 Adapted from Nomura, M., Gourse, R., \& Baughman, G. (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem. 53, 75; Figure 28-23 Adapted from Szymański, M. \& Barciszewski, J. (2002) Beyond the proteome: non-coding regulatory RNAs. Genome Biol. 3, 6; Figure 28-24 Adapted from

Winkler, W.C. \& Breaker, R.R. (2005) Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 493; Figure 28-25 Eye of Science; Figure 28-28c PDB ID 1QRV, Murphy IV, F.V., Sweet, R.M., \& Churchill, M.E. (1999) The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequencespecific DNA recognition. EMBO J. 18, 6610; Figure 28-29 Adapted from D'Alessio, J.A., Wright, K.J., \& Tjian, R. (2009) Shifting players and paradigms in cell-specific transcription. Mol. Cell 36, 924; Figure 28-33 Schwabe, J.W.R. \& Rhodes, D. (1991) Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem. Sci. 16, 291; p. 1185 (Mello) Courtesy of Craig Mello; (Fire) Linda A. Cicero/Stanford News Service; Figure 28-36 Courtesy of F. R. Turner, Department of Biology, University of Indiana, Bloomington (late embryo), and Prof. Dr. Christian Klambt, Westfälische Wilhelms-Universität Münster, Institut für Neuro- und Verhaltensbiologie (other photos); p. 1187 (Nüsslein-Volhard) Courtesy of Christiane Nüsslein-Volhard/Micheline Pelletier; p. 1188 (Lewis) CalTech Archives; (Wieschaus) Courtesy of Eric F. Wieschaus; Figure 28-38 Wolfgang Driever and Christiane Nüsslein-Volhard, Max-Planck-Institut; Figure 28-40a Courtesy of Stephen J. Small, Department of Biology, New York University; Figure 28-40b Courtesy of Phillip Ingham, Imperial Cancer Research Fund, Oxford University; Figure 28-41a Photo from F. R. Turner, University of Indiana, Bloomington, Department of Biology; Figure 28-42a,b Photo from F. R. Turner, University of Indiana, Bloomington, Department of Biology;

Figure 28-42c,d E. B. Lewis, California Institute of Technology, Division of Biology; p. 1193 (Thomson) Courtesy of James Thomson; Box 28-1 Figure 1 Adapted from Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R., \& Tabin, C.J. (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442, 565, Fig. 4.

Index

key: $\mathrm{b}=$ boxed material; $\mathrm{f}=$ figures; $\mathrm{s}=$ structural formulas; $\mathrm{t}=$ tables; boldface $=$ boldfaced terms in text

A

A bands, 181, 181f
A (aminoacyl) binding site, ribosomal, 1128
A-DNA, 291, 291f
A kinase anchoring proteins (AKAPs), 447
AAA+ ATPase, 1019-1020
abasic site, in base-excision repair,
1030-1031, 1032 f
ABC excinuclease, 1032
ABC transporter, 413, 414f
ABCA1 protein, 874
abiotic synthesis, 33-34, 33 f
absolute configuration, $\mathbf{7 8}$
absolute temperature, units of, 507t
absorbance (A), 80b
absorption
of fat, in small intestine, 668-669
of light, 771-776. See also light, absorption of
absorption spectra
of cytochrome $c, 736 f$
of nucleotides, 286, 286f
of opsins, $480,481 \mathrm{f}$
ACAT (acyl-CoA-cholesterol acyl transferase), $\mathbf{8 6 4}$
acceptor control, $\mathbf{7 6 0}$
acceptor control ratio, $\mathbf{7 6 0}$
accessory pigments, 772f, 773-774, 774f
acetaldehyde, 529 s
acetals, 245-246, 245 f
acetate, 521 s
activated. See acetyl-CoA
in citric acid cycle, 637 f
in cholesterol synthesis, 859-860, 860f
in fatty acid synthesis, $840,841 \mathrm{f}$
oxidation of, 649-651
as source of phosphoenolpyruvate, 656-657
transport of, 840, 841f
acetic acid, $521 \mathrm{~s}, 529 \mathrm{~s}$
$\mathrm{p} K_{\mathrm{a}}$ of, 83-84, 84f
titration curve for, $62,62 \mathrm{f}$
acetic acid-acetate buffer system, 64, 64f
acetoacetate, 686, 959s
acetoacetate decarboxylase, $\mathbf{6 8 6}$
acetoacetyl-ACP, 837f, $\mathbf{8 3 8}$
acetoacetyl-CoA, 307
acetone, $529 \mathrm{~s}, \mathbf{6 8 6}, 959 \mathrm{~s}$
in diabetic ketoacidosis, 959
N-acetyl- β-d-glucosamine, 249 s
acetyl-CoA, 14s
amino acid degradation to, 717-719, 718f, 719f
AMPK and, 963
β oxidation yielding, 673 f
in cholesterol synthesis, 860-864, 860f
decarboxylation of pyruvate to, 636-637, 637f
in fatty acid synthesis, 833-834, 834f, 835f, 838-839, 951-953
in glucose metabolism, 951-952, 952f, 957f, 958
hepatic metabolism of, 942
hydrolysis of, $521,521 \mathrm{~s}, 521 \mathrm{t}$
oxidation of, in citric acid cycle, 675-677, 676t
oxidation of pyruvate to, $634,634 \mathrm{f}$
oxidation yielding, 674-675
in plant gluconeogenesis, 825-826
production of, 840
in citric acid cycle, 633-638, 634f-637f, 650f
by pyruvate dehydrogenase complex, 654-655, 654f
acetyl-CoA acetyl transferase, $\mathbf{8 6 0}$
acetyl-CoA-ACP transacetylase, 837f acetyl-CoA carboxylase
in bacteria, 840-841
in fatty acid synthesis, $\mathbf{8 3 3}, 834 \mathrm{f}, 835 \mathrm{f}$, 840-841, 842f
in plants, 841
acetyl-coenzyme A. See acetyl-CoA
acetyl groups
in fatty acid synthesis, $840,841 \mathrm{f}$
transport of, 840, 841f
acetylation, enzyme, 229
acetylcholine, 468s
acetylcholine receptor, $\mathbf{4 2 4}$
defective, 426 t
open/closed conformation of, 468, 469f
in signaling, 467-468, 469f
structure of, 467-468, 469f
synaptic aggregation of, 398
acetylene, 529s
N -acetylgalactosamine, in glycosaminoglycans, 260, 261f
N-acetylglucosamine (GlcNAc), 249f, 250
in bacterial cell walls, 259-260
in glycosaminoglycans, 260, 261f
in peptidoglycan synthesis, 823-824, 824f
N -acetylglutamate, $\mathbf{7 0 8}$
N -acetylglutamate synthase, 708
N -acetylmuramic acid (Mur2Ac), 249f
in peptidoglycan synthesis, 823-824, 824f
N -acetylneuraminic acid (Neu5Ac), 249s, 250 269-270, 270s, 366s
in gangliosides, 366,366
acetylsalicylate, 845-846
acetylsalicylic acid, 846s
achiral molecules, 17 f
acid(s). See also specific acids, e.g., acetic acid
amino acids as, 84-85
as buffers, 63-69, 65 f
definition of, 61
dissociation constant (K_{a}) of, 61f-63f, 62-63
fatty. See fatty acid(s)
relative strength of. See $\mathrm{p} K_{\mathrm{a}}$
strong, 61-62
titration curve for, 62-63, 62f, 63f
Henderson-Hasselbalch equation for, 64-65, 84
weak, 61-63
acid anhydride, standard free-energy changes of, 509t
acid-base catalysis
general, 199, 199 f
specific, 199
acid-base pairs, conjugate, $\mathbf{6 1}$, 61f
as buffer systems, 63-69
acid-base titration, 62-63, 62f, 63f, 83-84, 83f
acid dissociation constant (K_{a}), 61f-63f, 62-63 acidemia
argininosuccinic, 717t
methylmalonic, 717t, 724b-725b
acidic activation domain, $\mathbf{1 1 8 1}$
acidic sugars, 249s
acidosis, $\mathbf{6 1}, 67-68,68 \mathrm{~b}, \mathbf{6 8 8}$
diabetic, 67, 688, 960
acivicin, 923, 952
aconitase, 641, 642b-643b, 642 f
cis-aconitate, 641, 641s
isocitrate formation via, 641, 641f
aconitate hydratase, 641
ACP (acyl carrier protein), 837f
acquired immunodeficiency syndrome (AIDS), 218-219, 1088, 1089b
acridine, 1068, 1069 f
actin, 8, 8f, 181-183, 183f
in ATP hydrolysis, 181, 182, 183, 183f
in muscle contraction, 182-183, 183f
structure of, 181-182
in thin filaments, 182-183, 183f
actin-myosin complex
ATP in, 525-526
phosphorylation of, 487-488
actin-myosin interactions, 182-183, 183f
α-actinin, 181
actinomycin D, 1068, 1069f
action spectrum, $\mathbf{7 7 4}, 774 \mathrm{f}$
activated acetate. See acetyl-CoA
activation barrier, $27,27 \mathrm{f}$
activation energy, 27, 27f, 193
of enzymatic reactions, 193
in membrane transport, 403-404, 404f
rate constant and, 194
activators, $\mathbf{1 1 5 7}$, 1158 f
active site, 158, 192, 192 f
active transport, 405, 409
ATP in, 525-526, 757
primary, 405, $\mathbf{4 0 9}$
secondary, 405, 409
transporters in, $\mathbf{4 0 4}$
activity, 95
Actos (pioglitazone), 852, 852s, 964-965, 970t
acute lymphoblastic leukemia, 895-897
acute pancreatitis, 699
acyclovir, 1026-1027
acyl-carnitine/carnitine transporter, $\mathbf{6 7 1}$
acyl carrier protein (ACP), 836, 836f, 837f
acyl-CoA, fatty, 670-671
conversion of fatty acids into, 670-671, 671f
acyl-CoA acetyltransferase, $\mathbf{6 7 4}$
acyl-CoA-cholesterol acyl transferase (ACAT), $\mathbf{8 6 4}$
acyl-CoA dehydrogenase, $\mathbf{6 7 4}, 740$
medium-chain, 682
acyl-CoA synthetases, 670, 849-850
in triacylglycerol synthesis, 848f, 849-850
acyl-enzyme intermediate, in chymotrypsin mechanism, 214-218, 215f, 216f, 217
acyl phosphate, 552
N -acylsphinganine, 857, 895f
N -acylsphingosine, 857, 859f
adaptor hypothesis, 1104, 1104f
adaptor proteins, in signaling, 446, 460-464
ADARs, 1112-1113
adenine, 10s, 282, 282t, 533s. See also purine bases
deamination of, 299, 300f
evolutionary significance of, 1093
adenine nucleotide(s)
biosynthesis of, regulatory mechanisms in, 914-915, 915 f
cellular, 518t
in metabolic regulation, 594-595
adenine nucleotide translocase, $\mathbf{7 5 7}$
adenosine, 283s
anti form of, 290, 290f
as enzyme cofactor, 306-308, 307f
evolutionary significance of, 307-308
methylation of, 302
syn form of, 290, 290f
adenosine $2^{\prime}, 3^{\prime}$-cyclic monophosphate, 284 s
adenosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate. See cAMP (adenosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate)
adenosine 2^{\prime}-monophosphate, 284s
adenosine 3^{\prime}-monophosphate, 284s
adenosine 5 '-monophosphate, 284s. See also AMP (adenosine monophosphate)
adenosine deaminase, $\mathbf{9 2 0}$
adenosine deaminase deficiency, $\mathbf{9 2 2}$
adenosine diphosphate (ADP). See ADP (adenosine diphosphate)
adenosine monophosphate (AMP). See AMP (adenosine monophosphate)
adenosine phosphoribosyltransferase, 922
adenosine triphosphate (ATP). See ATP (adenosine triphosphate)
S-adenosylhomocysteine, $\mathbf{7 1 2}$
S-adenosylmethionine (adoMet), 712, 712s
as mutagen, 301f, 302
synthesis of, 714f
adenylate, $282 \mathrm{t}, 283 \mathrm{~s}$
adenylate kinase, $\mathbf{5 2 6}, \mathbf{5 9 4}, 916$
adenylyl cyclase, $\mathbf{4 3 8}$
activation of, 439f, 446
adenylyl group, ATP and, 524
adenylylation, 229f, $\mathbf{5 2 4}$
adenylyltransferase, $\mathbf{8 8 9}$
adhesion receptors, in signaling, 436f, 437
adipocytes, 360-361, 360f, 943, 943f
NADPH synthesis in, 839, 840f
adipokines, $\mathbf{9 6 0}$
adiponectin, $\mathbf{9 6 4}-965,965 f$
adipose tissue
brown, 762-763, 944, 945 f
heat generated by, in oxidative
phosphorylation regulation, 762-763, 763f
mitochondria in, 762-763
endocrine functions of, 936f, 943-944
in fasting/starvation, 957f, 958f
fatty acid release from, 849-850, 851f, 943-944
fatty acid synthesis in, 943-944. See also fatty acid synthesis
glucagon and, 956, 956t
glyceroneogenesis in, $\mathbf{8 5 0}-852$, 851f
leptin synthesis in, 961, 961f
metabolic functions of, 936f, 943-944
triacylglycerol mobilization in, 668f, 670f
triacylglycerol recycling in, $\mathbf{8 5 0}, 850$ f
white, $\mathbf{9 4 3}, 943$ f
Adler, Julius, 473, 473f
adoMet. See S-adenosylmethionine
ADP (adenosine diphosphate)
ATP stabilized relative to, on F_{1} component, 751 f
in fatty acid synthesis, 837f, 838
phosphoryl transfer to
from 1,3-bisphosphoglycerate, 552-554
from phosphoenolpyruvate, 554-555
in photosynthesis, 809
synthesis of, 26
ADP-glucose, $\mathbf{8 1 9}$
in glycogen synthesis, 818-819
in starch synthesis, 818-819
ADP-glucose pyrophosphorylase, in starch synthesis, $\mathbf{8 2 1}, 821$ f
ADP-ribosylation, enzyme, 229, $229 f$
adrenal, 936 f
adrenaline. See epinephrine
adrenergic receptors, 438-446
adrenocortical hormones, 933t, 935
adrenoleukodystrophy, X-linked, 683
Adriamycin (doxorubicin), 993b, 993s
adsorption chromatography, 377f, 378
adult stem cells, 1192
AE (anion exchange) protein, $\mathbf{4 0 7}$
Aequorea victoria, fluorescent proteins in, 448b-449b
aerobic metabolism, of small vertebrates, 564 b
aerobic organisms, evolution of, 35-36, 36f
affinity, receptor-ligand, 433-434, 434f
affinity chromatography, 91f, 92, 93t, 325-327
tags in, 325-327, 325t
African sleeping sickness, 211b-212b
agar, 260
agarose, 260, 260f, 262t
agarose gels, in electrophoresis, 260
aggrecan, 266
aging, mitochondrial DNA damage and, 732, 766
agonists, receptor, $\mathbf{4 3 8}$
Agre, Peter, 418, 418 f
AIDS, 218-219, 1088, 1089b
AKAPs (A kinase anchoring proteins), $\mathbf{4 4 7}$
alanine, 10s, 79, 79s, 696, 715, $\mathbf{8 9 5}$
degradation of to pyruvate, $715,715 \mathrm{f}$
properties of, 77 t , 79
stereoisomers of, 76-77, 76f
in transport of ammonia to liver, 703
alanine aminotransferase (ALT), $\mathbf{7 0 3}$
measurement of, 708b
alanylglutamylglycyllysine, 86 s
Alberts, Alfred, 873b
albinism, 717 t
albumin, serum, $\mathbf{6 6 9}, 943$
alcohol(s), 529s
fermentation of, $\mathbf{5 4 4}, 548 \mathrm{f}, 565,565 \mathrm{f}$
hemiacetals and, $\mathbf{2 4 5}, 247 \mathrm{f}$
hemiketals and, 245, 247f
in lipid extraction, 377-378, 377f
alcohol dehydrogenase, 534 t , $\mathbf{5 6 5}, \mathbf{6 8 5}$
reaction mechanism of, 565 f
aldehyde(s), 12
hemiacetals and, $\mathbf{2 4 5}, 247 \mathrm{f}$
hemiketals and, $\mathbf{2 4 5}, 247 \mathrm{f}$
aldehyde dehydrogenase, 685
aldohexoses, 245, 246f
aldol condensation, 513
aldolase, 593t, 809
in Calvin cycle, $\mathbf{8 0 5}$
aldolase reaction mechanism, class I, 551f
aldonic acids, $\mathbf{2 5 0}$
aldopentoses, 244
structure of, 244f, 248f, 249f
aldoses, $\mathbf{2 4 4}, 244 \mathrm{f}$
D isomers of, 245
L isomers of, 245, 246f
structure of, 245, 246f
aldosterone, $372,372 \mathrm{~s}$
algae, cell walls of, heteropolysaccharides in 259-260, 260f
alkaline phosphatase, 315 t
alkalosis, 61, 68 b
alkaptonuria, 717t, 721
AlkB protein, in DNA repair, 1033, 1035 f alkene, 529 s
alkylating agents, as mutagens, 301f, 302
all α protein structure, $\mathbf{1 3 8}, 139 \mathrm{f}$
all β protein structure, 138, 139 f
all-trans-retinal, 477
allantoin, 921
alleles, 172
alligator, movement of, 564b
allopurinol, 923
xanthine oxidase inhibition by, 923 , 923 f
allose, 246s
allosteric effectors, $\mathbf{2 2 6}$
allosteric enzymes, 226-228, 227f, 228f
conformational changes in, 226-227, 227f
kinetics of, 227-228, 228 f
allosteric modulators, 226
allosteric proteins, 166
ligand binding of, 166, 166f. See also protein-ligand interactions
allosteric regulation
of acetyl-CoA production, 654-655, 654f
of amino acid biosynthesis, 899-902, 904f of aspartate transcarbamoylase, $916,916 \mathrm{f}$
of carbohydrate metabolism, 624-626, 626f lipid metabolic integration with, 626
of fat metabolism, 626
of glutamine synthetase, 889
of glycogen phosphorylase, 621-622, 621f
of phosphofructokinase-1, 604, 604f
of pyruvate kinase, 606-608, 607f
Alper, Tikvah, 150b
α-amino groups, transfer to α-ketoglutarate, 699-700, 699f, 701f
$\alpha+\beta$ protein structure, $\mathbf{1 3 8}, 139 \mathrm{f}$
α / β barrel, 138, 138 f
α / β protein structure, $\mathbf{1 3 8}, 139 \mathrm{f}$
α cells, pancreatic, 953,953 f
α chains, in collagen, 127-130, 127 f
α helix, 120-122, 120f, 122f, 123-124, 124f, 125f, 126t
amino acids in, 121-122, 122t
in glucose transporter, 405f
in keratin, 126, 126f
in membrane proteins, 391, 392
in myoglobin, 132, 133
in polysaccharides, 258-259, 260f
in protein folding, 137-138, 151b
protein folding and, 137
right- vs. left-handed, 120, 121b
in small globular proteins, 133t
α oxidation, 685-686. See also oxidation
in endoplasmic reticulum, 685 f
in peroxisomes, 685-686, 685f
ALT. See alanine aminotransferase (ALT)
Altman, Sidney, 1083
altrose, 246 s
Alzheimer disease
amyloid deposits in, 150, 349
apolipoprotein in, 866b
linkage analysis for, 347-349, 348f
protein misfolding in, 150
α-amanitin, 1068
Amaryl (glyburide), 970t
Ames, Bruce, 1027
Ames test, 1027-1028, 1028f
amide, standard free-energy changes of, 509 t amines, 12
as products of amino acid decarboxylation, 908-909, 910f
amino $\operatorname{acid}(\mathrm{s}), 8 \mathrm{f}, 76-85$. See also protein(s); specific amino acids
abbreviations for, 77 t
acid-base properties of, 84-85
activation of, in protein synthesis, 1119-1123, 1120f-1122f
addition of, in protein synthesis. See protein synthesis
in α helix, 121-122, 122f, 122t
ammonium assimilation into, 888-889
as ampholytes, $\mathbf{8 1}$
aromatic, as precursors of plant substances, $908,909 \mathrm{f}$
in bacteria, 907
in β sheet, $123,123 \mathrm{f}, 124 \mathrm{f}, 125 \mathrm{f}$
in β turns, 123, 124f
biosynthesis of, 891-902, 891f
allosteric regulation of, 899-902, 904f
chorismate in, 897-898, 900f-903f
glutamine amidotransferases in, 890-891, 890f
histidine in, 898-899, 903f
interlocking regulatory mechanisms in, 899-902, 904f
α-ketoglutarate in, 891f, 892, 893f, 894f
metabolic precursors in, $892,892 \mathrm{t}$
oxaloacetate and pyruvate in, 895-898
3-phosphoglycerate in, 892-894, 894f, 895f
branched-chain
catabolic pathways for, $674,675 \mathrm{f}, 718 \mathrm{f}$, 722f, 723f
not degraded in liver, 723, 723f
as buffers, 84, 84f
carbon designations for, 77-78
codons for, 1105. See also codons
conversion of
to α-ketoglutarate, $721-722,721 \mathrm{f}$
to glucose and ketone bodies, 711, 711f
to succinyl-CoA, 722, 722 f
degradation of
to acetyl-CoA, 717-719, 718f, 719f
to pyruvate, $715-717,715 \mathrm{f}, 717 \mathrm{t}$
discovery of, 76
electric charge of, 84
essential, 709, 709t, $\mathbf{8 9 2}$
biosynthesis of, 895-898, 896f, 897f
in expanded genetic code, $1124 \mathrm{~b}-1126 \mathrm{~b}$
in general acid-base catalysis, 199, 199f
glucogenic, 574, 574t, $\mathbf{7 1 1}$
hepatic metabolism of, 941-942, 941f
ketogenic, $\mathbf{7 1 1}$
light absorption by, 80b, 80f
molecular weight of, 87
molecules derived from, 902-910
nonessential, 709t, 892
biosynthesis of, 895
number of, 87 t , $88,88 \mathrm{t}$
in peptide synthesis, 102-104, 103f
$\mathrm{p} K_{\mathrm{a}}$ of, 83-84, 83f-85f
in plant gluconeogenesis, 825-826
polarity of, 79
polymers of. See peptide(s); protein(s)
as precursors of creatine and glutathione, 906-907, 908f
R groups of, 76, 77t, 78-81
relative amounts of, $88,88 \mathrm{t}$
stereoisomerism in, 76f, 97-77
structure of, 76-78, 76f, 83f
symbols for, 77 t
titration curves of, 83-84, 83f, 85 f
uncommon, 81
zwitterionic form of, $\mathbf{8 1}, 83,83 f$
amino acid arm, of tRNA, $\mathbf{1 1 1 8}$
amino acid catabolism, 695-704. See also amino acid oxidation
acetyl-CoA in, 717-719, 718f, 719f
ammonia in, 703-704
alanine transport of, 703, 703f
glutamate release of, 700-702, 703f
glutamine transport of, 702-703, 703f
asparagine in, $724,724 \mathrm{f}$
aspartate in, $724,724 \mathrm{f}$
enzyme cofactors in, 712-715, 712f-714f
enzyme degradation of protein in, 696-699, 715f
genetic defects in, 717t, 718-721, 720f
glucose and ketone bodies in, 711, 711f
α-ketoglutarate in, 721-722, 721f
overview of, 696, 697f, 710-711, 711f
oxaloacetate in, $724,724 \mathrm{f}$
pathways of, 695, 710-725, 719f, 942t
pyruvate in, 715-717, 715f, 717t
succinyl-CoA in, 722, 722 f
transfer of α-amino groups to α-ketoglutarate in, 699f, 701f, 722
amino acid metabolism, 588f, 942 t
amino acid oxidation, 696-704. See also amino acid catabolism
fates of amino groups in, 696-704
nitrogen excretion and urea cycle in, 704-710
pathways of degradation in, 710-725
amino acid residues, $\mathbf{7 6}, 81,81$ s
amino-terminal, $\mathbf{8 6}$
carboxyl-terminal, $\mathbf{8 6}$
carboxylation of, $1136,1137 f$
in consensus sequences, 230-231, 231 t
farnesylation of, 1136, 1137f
isoprenylation of, 1137, 1137f
methylation of, $1136,1137 \mathrm{f}$
number of, 87, 87t, 88t
phosphorylation of, 229-231, 229f
amino acid sequences, $31,31 \mathrm{f}, 96-108$, 96f, 97f
α helix and, 120-122, 122f, 123-124
determination of, 97-102. See also amino acid sequencing
evolutionary significance of, 104-108
in genetic code, 1105-1106. See also codons
homologous, 106-107, 106f, 107f
hydrophobicity of, 391-392
membrane protein topology and, 390f, 391
nucleic acid sequences and, 980, 980f
protein function and, 97
protein structure and, 104
signature, 107, 107f
amino acid sequencing, 97-102
bond cleavage in, 98-100, 99f, 100t
computerized, 106-107
Edman degradation in, 98-100, 98f
in evolutionary analysis, 104-108, 106f-108f
historical perspective on, 97-98
for homologs, 106-107, 106f, 107f
for large polypeptides, 99-100
mass spectrometry in, 100-102, 101f, 102f
peptide cleavage in, 99-100, 99f, 100t reagents for, $98-100,98 \mathrm{f}-100 \mathrm{f}, 98 \mathrm{~s}$ steps in, 98 f
amino acid substitutions, 106
in homologs, 106, 107f
amino groups, transfer to α-ketoglutarate, 699-700, 699f, 701f
amino sugars, 249s
amino-terminal residues, 86
protein half-life and, $1147,1148 \mathrm{t}$
aminoacyl (A) binding site, ribosomal, 1128
aminoacyl-tRNA, $\mathbf{1 1 0 4}$
binding of, 1130, 1131f
sites of, 1128, 1128f
formation of, 1119-1123, 1120f-1122f
aminoacyl-tRNA synthetases, $\mathbf{1 1 0 4}$
in protein synthesis, 1119-1123, 1120f-1122f
reaction mechanism of, 1120 f
γ-aminobutyric acid (GABA), 909
receptor for, as ion channel, 424
aminolevulinate, biosynthesis of, 905 f
aminopeptidase, 699
aminopterin, 925
aminotransferase, $\mathbf{6 9 9}$
prosthetic group of, 699, 718 f

ammonia

in amino acid catabolism alanine transport of, 703, 703f glutamate release of, 700-702, 702f glutamine transport of, 702-703, 702f
from amino acid metabolism, 941
in nitrogen metabolism, 888-889
reduction of nitrogen to, 882-883
solubility in water, $51,51 \mathrm{t}$
toxicity of, 703-704
urea production by, enzymatic steps in, 704-706, 705f, 706f
ammonium cyanide, adenine synthesis from, 1093
ammonotelic species, 704
amoxicillin, 224
AMP (adenosine monophosphate)
allosteric enzyme modification by, 235
concentration of, 594
relative changes in, 594 t
variant forms of, 284, 284s
AMP-activated protein kinase (AMPK), 594, 595 f
adiponectin and, $\mathbf{9 6 4}-965,965$ f
in regulating ATP metabolism, 964, 964f
leptin and, $\mathbf{9 6 3}$
amphibolic pathway, $\mathbf{6 5 0}$
amphipathic compounds, 50t, $\mathbf{5 2}$
solubility in water, 50t, 52-53
amphitropic proteins, $\mathbf{3 9 0}$
ampholytes, amino acids as, $\mathbf{8 1}$
amphoteric substances, amino acids as, $\mathbf{8 1}$
amplification, signal, 434, 434f, 443-444
amylase, 257, 558-559
amylo $(1 \rightarrow 4)$ to $(1 \rightarrow 6)$ transglycosylase, $\mathbf{6 1 9}, 619 f$ amyloid, 148
amyloid deposits, in Alzheimer disease, 150, 349 amyloidoses, 148-151
amylopectin, 255, 256f, 262t, 819. See also starch amyloplast, 800-801, 800f, 801f
amylose, 255, 256f, 262t. See also starch
structure of, 256f, 258-259, 258f, 259f, 260f
anabolic pathways, 799, 942 t
energy carriers in, 503f
in glycogen metabolism, 613-614
anabolism, 28, 28f, 502-503, 503f
citric acid cycle in, $650,651 \mathrm{f}$
anaerobic bacteria, 884 b-885b
incomplete citric acid cycle in, 650, 650f anaerobic metabolism, of coelacanths, 564 b analytes, $\mathbf{1 0 0}$
anammox, 882, 882f, 884b-885b
anammoxosome, $\mathbf{8 8 5 b}$
anaplerotic reaction, in citric acid cycle intermediates, 650-651, 651f, 651t
Andersen disease, 617 t
androgens, 935
synthesis of, 874, 874f
anemia
megaloblastic, $\mathbf{7 1 4}$
pernicious, 681, 713
aneuploidy, 1045b
Anfinsen, Christian, 144
angina pectoris, $\mathbf{4 6 0}$
angstrom (\AA), 120
anion-exchange (AE) protein, 407-409
anion exchanger, in ion-exchange chromatography, $\mathbf{9 0}, 91 \mathrm{f}, 93 \mathrm{t}$
ankyrin, 398 f
annealing, of DNA, 297-298, 297f
annotated genome, $\mathbf{3 8}$
annular lipids, 391, 392f
anomeric carbon, $\mathbf{2 4 6}$
anomers, 246
anorexigenic neurons, 962
antagonists, receptor, $\mathbf{4 3 8}$
antenna chlorophylls, in light-driven electron
flow, 778, 781-782, 781f
antenna molecules, $\mathbf{7 7 4}$
antennapedia, 1191
anterior pituitary, 936f, 937
antibiotics
mechanism of action of, $224,418,418 \mathrm{f}, 925$, 992b-993b
protein glycosylation inhibition by, 1141-1142
quinolone/fluoroquinolone, 992b-993b
resistance to
ABC transporters and, 413
plasmids in, 981
topoisomerase inhibitor, $992 \mathrm{~b}-993 \mathrm{~b}$
transcription inhibition by, 1068
translation inhibition by, 1138-1139
antibodies, 174. See also immunoglobulin(s)
in analytic techniques, 178-179, 179f
antigens and, 175, 176f, 177f. See also
antigen-antibody interactions
binding sites on, 175-177, 176f
binding specificity of, $175,177-178,177 \mathrm{f}$
diversity of, 175
recombination and, 1049-1051
monoclonal, 178
polyclonal, $\mathbf{1 7 8}$
anticodon(s), 1109-1110, 1110f
wobble base of, $\mathbf{1 1 1 0}$
anticodon arm, of tRNA, $\mathbf{1 1 1 8}$
antidiuretic hormone (ADH), 938f
antigen(s), $\mathbf{1 7 5}$
epitope of, $\mathbf{1 7 5}$
T-cell binding of, 175
antigen-antibody interactions, 174-179, 176f, 177f
binding affinity in, 177-178, 177f
binding sites for, 175-177, 176f
conformational changes in, 177, 177f
haptens in, 175
induced fit in, 157, 177, 177 f
specificity of, $175,177-178$
strength of, 177-178
antigenic determinant, $\mathbf{1 7 5}$
antigenic variation, 1174 t
antiporter(s), 409, 409f
$\mathrm{Na}^{+} \mathrm{K}^{+}$ATPase, 411-412, 412f, 417
in membrane polarization, 464 f
in retina, 477
for triose phosphates, 780f, 809-810
antiretroviral agents, 218-219
antithrombin III, $\mathbf{2 3 4}$
AP endonucleases, 1031
AP site, in base-excision repair, 1030, 1031, 1032 f
Apaf-1, $\mathbf{7 6 4}$
APC mutation, 492, 492 f
apoaconitase, 643b
apoB-48, gene for, RNA editing in, 1112-1113
apoB-100, 865f, 866, 868
gene for, RNA editing in, 1112-1113
APOBEC enzymes, 1112
apoE, in Alzheimer disease, 865,866 b
apoenzyme, 190
apolipoproteins, $\mathbf{6 6 9}, \mathbf{8 6 4}-865,865 f$, 866t
in Alzheimer disease, 866 b
gene for, RNA editing in, 1112-1113

apoprotein, 190

apoptosis, 492-494, 494f, $\mathbf{7 6 4}$
mitochondria in, 764-765, 764f
apoptosis protease activating factor-1

(Apaf-1), $\mathbf{7 6 4}$

apoptosome, $\mathbf{7 6 4}$
appetite, hormonal control of, 960-968
App(NH)p (β, γ-imidoadenosine 5 '-triphosphate), 752 s
aptamers, 1095b
aquaporins (AQPs), 418-420, 419t
classification of, 419t
distribution of, 419t
permeability of, 419t
aqueous environments, adaptation to, 69-70
aqueous solutions. See also water
amphipathic compounds in, 50t, 52-53
buffered, 63-69, 65 f
colligative properties of, 55, 56 f
hydrophilic compounds in, 50-52, 51f
hydrophobic compounds in, 9, 50, 50-53, 51f, 52f
hypertonic, 56-57, 56f
hypotonic, 56-57, 56f
ionic interactions in, 50
isotonic, 56-57, 56f
osmolarity of, 56-57, 56f
pH of, 59-61, 60f, 60t
weak acids/bases in, 61-63
weak interactions in, 47-58.
Arabidopsis thaliana
aquaporins in, 418-419
cellulose synthesis in, 822, 822f
signaling in, 474, 474t, 475-476
arabinose, 246s
arachidic acid, 358 t
arachidonate, 468f, 842f, 845
arachidonic acid, $358 \mathrm{t}, 371,371 \mathrm{~s}$
Arber, Werner, 314
archaea, 4, 4f, 5-6, 6 f
membrane lipids of, 365-366, 366f
architectural regulators, $\mathbf{1 1 5 8}$
arginase, 706
arginine, $79 \mathrm{~s}, \mathbf{8 1}, 721-722,892$
biosynthesis of, 892, 893f
conversion of, to α-ketoglutarate, 721-722, 721f
in nitric oxide biosynthesis, $909,911 \mathrm{f}$
properties of, 77t, 81
argininemia, 717t
argininosuccinate, $\mathbf{7 0 6}$
argininosuccinate synthetase, $\mathbf{7 0 6}$
reaction mechanism of, 706 f
argininosuccinic acidemia, 717t
Arnon, Daniel, 786, 786f
aromatic amino acids. See also amino acid(s)
as precursors of plant substances, $908,909 \mathrm{f}$
β-arrestin (β arr), 445f, 446
arrestin 1, $\mathbf{4 8 0}$
arrestin 2, 445f, 446, 446
artificial chromosomes, 321f, 985
bacterial, 319
human, 985
yeast, 320, 321f, 985
artificial sweeteners, 255b
ascorbate, 129s
ascorbic acid. See vitamin C (ascorbic acid)
asparaginase, $\mathbf{7 2 4}$
asparagine, $79 \mathrm{~s}, \mathbf{8 1}, \mathbf{7 2 4}, \mathbf{8 9 5}$
degradation of, to oxaloacetate, $724,724 \mathrm{f}$
properties of, $77 \mathrm{t}, 81$
aspartame, $87 \mathrm{~s}, 255 \mathrm{~b}$
stereoisomers of, 20f, 255b
aspartate, 10 s, $79 \mathrm{~s}, \mathbf{8 1}, 696, \mathbf{7 2 4}, \mathbf{8 9 5}$
in C_{4} pathway, $815 \mathrm{f}, 816$
degradation of, to oxaloacetate, $724,724 \mathrm{f}$
properties of, 77 t , 81
pyrimidine nucleotide synthesis from, 915-916, $915 f$
aspartate aminotransferase, 708, 708b
aspartate-argininosuccinate shunt, $\mathbf{7 0 7}$
aspartate transcarbamoylase, 226-227, 227f, 915
aspirin, 234, 845-846, 846s
association constant $\left(K_{\mathrm{a}}\right), \mathbf{1 6 0}$
in Scatchard analysis, 435b
Astbury, William, 120
asymmetry, molecular, 17, 17 f
ATCase, 226-227
atherosclerosis, 871-874, 872b-873b
trans fatty acids and, 361
atom(s)
electronegativity of, 216
hydrogen, electron transfer and, 530
atomic mass unit, 14b
ATP (adenosine triphosphate), 24s
in active transport, 525-526
in ATCase synthesis, 227, 227f
β oxidation yielding, 674-675, 676t
in Calvin cycle, 808-809, 808f-811f
cAMP synthesis from, 438, 439f, 440f
concentration of, 594
energy by group transfer and, 522-523, 522f, 523f
in glycolysis, 544-558
balance sheet for, 555
in payoff phase, 550-555, 553f, 554f
in preparatory phase, 548-550, 551f, 552f
in heart muscle, 948
hydrolysis of. See ATP hydrolysis
in hypoxia, 760
inhibition of pyruvate kinase by, 607 f
magnesium complexes of, 518, 518f
in metabolism, 26, 28 f
in muscle contraction, 525-526, 944-948, 948f
in nitrogen fixation, 886-887, 888
nucleophilic displacement reaction of, 523-524, 524f
phosphoryl group transfers and, 517-519
in photosynthesis, 808-812
synthesis of, 808-809, 809, 811f
transport of, 780f, 809-810
in proteolysis, 1146f
and regulation of oxidative phosphorylation, 759-762, 761f, 762f
relative changes in, 594t
in replication initiation, 1019-1020, 1020f
supply of, 594
synthesis. See ATP synthesis
yield of, from oxidation of glucose, 760 t
ATP-binding casette (ABC) transporter, 413, 414f
ATP-gated K^{+}channels, 954
ATP hydrolysis, 306, 306f
actin in, 182, 183, 183f
equilibrium constant for, 511
free-energy change for, 517-519, 518f, 520f
chemical basis for, 518 f
free energy of, within cells, 519
in ischemia, inhibitory proteins in, 760, 760 f
in membrane transport, 410-414, 411f, 412f
in muscle contraction, 182, 183, 183f, 944-948
myosin in, 182, 183, 183 f
as two-step process, 522-523, 522f
ATP-producing pathways, regulation of, 761-762, 762f
ATP synthase(s), $\mathbf{7 4 7}$
β subunits of, conformations of, 752
binding-change model for, 754 f
of chloroplasts, 787-788, 788f
functional domains of, 750
in membrane transport, $\mathbf{4 1 3}$
ATP synthasome, $\mathbf{7 5 7}$
ATP synthesis, 747-759
ATP synthase in
conformations of β subunits of, 752 functional domains of, 750
binding-change mechanism for, rotational catalysis in, 752-755, 754f
chemiosmotic theory of, 731, 747, 747-749, 748f
coupling of electron transfer and, 748, 749f
cytosolic NADH oxidation in, shuttle systems in, 758-759, 758f, 759f
equation for, 747
in halophilic bacteria, 789-790
O_{2} consumption and, nonintegral stoichiometries of, 755-757
by photophosphorylation, 786-788, 787f, 788f
proton gradient in, 748-749, 750f, 751-752, 751f
proton-motive force and active transport in, 757, 757f
rotational catalysis in, 752-755
stabilization of, 750-751, 751f
standard free-energy change for, 750-751
stoichiometry of, 649t
ATPase(s)
AAA + , 1019-1020
F-type, 413-414, 413f. See also ATP synthase(s)
in membrane transport, 410-413, 411f-413f, 417, 417 f
$\mathrm{Na}^{+} \mathrm{K}^{+}, 411-412,412 \mathrm{f}, 417,417 \mathrm{f}$
in membrane polarization, 464, 464f
in membrane transport, in neurons, 949
in retina, 477
P-type, 410-411
V-type, 413
atrial natriuretic factor (ANF), $\mathbf{4 5 9}$
attractants, $\mathbf{4 7 3}$
autocrine hormones, 933
Autographa californica, recombinant gene expression in, 323
autonomously replicating sequences (ARSs), 1025
autophagy, 149
autophosphorylation, 453-454. See also phosphorylation
of insulin-receptor tyrosine kinase, 454, 454f
in receptor enzyme activation, 454, 454f
in signaling, 454
in bacteria, 473, 473f
in plants, $475 \mathrm{f}, 476$
autotrophs, 4, 5f, 501
auxins, 475s, 908
Avandia (rosiglitazone), 852, 852s, 964-965, 970t
Avery, Oswald T., 288
Avery-MacLeod-McCarty experiment, 288
avian sarcoma virus, 1088, 1088 f
avidin, 653
Avogadro's number (N), 507t
azaserine, 923, 923 f
Azotobacter vinelandii, nitrogen fixation by, 883, 887
AZT, 1089b

B

B cells (lymphocytes), $\mathbf{1 7 5}$
B-DNA, 291, 291f
bacmids, 323, 324f
BACs (bacterial artificial chromosomes), 319, 320f
bacteria, 4-6, 5f. See also Escherichia coli
amino acids in, 907
anaerobic, 884b-885b
incomplete citric acid cycle in, 650, 650f
anammox, 882, 882f, 884b-885b
antibiotic-resistant, 224, 225f
ABC transporters and, 413-414
plasmids in, 981
cell structure of, 4-6, 6 f
cell walls of
heteropolysaccharides in, 259-260
synthesis of, 824 f
cellulose synthesis in, 823
DNA replication in, 1011-1025
endosymbiotic, $\mathbf{3 6}$, 37 f
chloroplasts evolved from, 788-789
in eukaryotic evolution, 36, 37f
mitochondria evolved from, 765-766, 790f
evolution of, 35-36, 36f, 788-790
fatty acid synthesis in, 834-839, 843
gene regulation in, 1165-1174
genes in, 984
genetic map of, 1010f
glycogen synthesis in, 819
gram-negative, 5,6 f
gram-positive, 5,6 f
green sulfur, photochemical reaction center in, 776, 777f
gut, obesity and, 968
halophilic, in ATP synthesis, 789-790, 791f
lectins and, 271-272, 271f, 273f
lipopolysaccharides of, 268, 268f
lithotropic, 884b
nitrifying, 884b-885b
nitrogen-fixing, symbiotic relationship with
leguminous plants, 887-888, 887f
nucleoids in, 1002, 1003 f
peptidoglycan synthesis in, 823-824, 824f
potassium channel in, 422-424, 422f, 436f purple
bacteriorhodopsin in, 391, 391f
reaction centers in, 776-777, 777f, 778f
reaction centers in, 776-778, 777f, 778f
recombinant gene expression in, 322, 322f
signaling in, 473, 473f, 474t
structure of, 4-6, 6f
in waste treatment, $884 \mathrm{~b}-885 \mathrm{~b}$
bacterial artificial chromosomes (BACs), 319, 320f
bacterial DNA, 981, 982 t
packaging of, 1002-1003, 1003f
topoisomerases and, 990
bacterial genes, 984
mapping of, 1010f
naming conventions for, 1010
bacterial genome, 981, 982t
bacterial ribosome, 1115-1117, 1116f
bacteriophage lambda vector, 315t, 317
bacteriorhodopsin, 391, $\mathbf{7 9 0}$
light-driven proton pumping by, 790, 791f
in purple bacteria, 391
structure of, 391, 391f
baculoviruses, recombinant gene expression in,
$323,324 f$
Bainbridge, Matthew, 340b
ball-and-stick model, 16, 16f
Ballard, John, 850
Baltimore, David, 1087, 1087f
Banting, Frederick G., 931b
BAR domains, 400, 401f
basal transcription factors, $\mathbf{1 1 7 8}$
base(s)
amino acids as, 74-75
in buffer systems, 63-69, 66f
nucleotide/nucleic acid, 281-287, 282f-284f,
$282 \mathrm{~s}-284 \mathrm{~s}, 282 \mathrm{t}, 283 \mathrm{~s}, 284 \mathrm{~s}$
alkylated, repair of, $1033,1035 \mathrm{f}$
anti form of, 290, 290f
Chargaff's rules for, 288
chemical properties of, 286-287
in codons, 1105-1106. See also codons
deamination of, 299-300, 300f
in DNA, 286-287, 287f, 288-289, 289f, 290f
estimation of via denaturation, 297-298, 297f
functional groups of, 286-287
in genetic code, 1105-1106. See also genetic code
hydrogen bonds of, 286-287, 287f, 288-289,
289f, 290f, 295, 296f
methylation of, 302
minor, 284, 284f
nitrous acid and, 301, 301f
pairing of. See base pairs/pairing
in replication, 1013, 1014f
in RNA, 286, 294-295, 295, 296f
structure of, 10s, 281-284, 282f-284f, 282t, 286-287
syn form of, 290, 290f
tautomeric forms of, 286, 296
variant forms of, 286, 290-291, 290f
weak interactions of, 286-287, 287f, 289, 290f
wobble, 1110
relative strength of. See $\mathrm{p} K_{\mathrm{a}}$
weak, 61
base-excision repair, 1028t, 1030-1031, 1032f
base pairs/pairing, 287, 287f, 288-290, 289f, 290f
in DNA, 288-290, 289f. See also DNA structure
in replication, 1013, 1014f, 1015, 1015f
in DNA-protein binding, 1161-1162, 1161f
in RNA, 294-295, 295f, 296f
wobble in, 1110
base stacking, 286
in DNA, 288-289, 289f
in replication, $1013,1014 \mathrm{f}$
in RNA, 286, 294-295
basic helix-loop-helix, 1163, 1164 f
Beadle, George W., 642b, 979, 980f
beads-on-a-string formation, 995, 996f
beer brewing, fermentation in, 565,566 b
Beery, Alexis, 340b
Beery, Joe, 340b
Beery, Noah, 340b
Beery, Retta, 340b
beeswax, 362, $362 f$
benzoate, 710 s
for hyperammonemia, 709
benzoyl-CoA, 709, 710s
Berg, Paul, 313, 313 f
Bergström, Sune, 371, 371f
Berson, Solomon, 930
Best, Charles, 931b
$\beta-\alpha-\beta$ loop, 137, 137f, 138 f
β-adrenergic receptor, 438-446
in rafts, 463
structure of, 438, 439f
β-adrenergic receptor kinase (β ARK), 444-445, 445f
β adrenergic response, in signaling, termination of, 444-445
β-adrenergic signaling pathway, 438-446, 439f, 440f, 444f, 445f
β barrel, 137f, 393-394, 393f
in membrane proteins, 393-394
in membrane transport, 393f
β cells, 175t
pancreatic, 953-955, 953f
recombination in, 1049-1051, 1052f
β conformation, 123-125, 123f, 124f
in small globular proteins, 133t
structural correlates of, 126 t
β conformation sheet. See β sheet
β oxidation, 667. See also oxidation
in bears, 676 b
enzymes of, 683-684, 684f
in peroxisomes, 663f, 682-683
in plants, $683,684 \mathrm{f}$
steps in, 673-675, 673f, 675 f
yielding acetyl-CoA and ATP, 673f, 674-675
β sheet, 123-125, 123f, 124f
in large globular proteins, 137-138, 138f
in protein folding, 137-138, 138f, 151b
structural correlates of, 126 t
twisted, 137-138, 138f
β sliding clamp, 1017, 1017f, 1022-1023, 1022f
β subunits, of ATP synthase, different
conformations of, 752
β turn, 123, 125f, 126t
β ARK, 445-446, 445f
β arr, 445f, 446
bicarbonate
as buffer, 61f, 63-69
formation of, 169-170
bicoid, 1188-1190
biguanides, $970,970 \mathrm{t}$
bilayer. See lipid bilayer
bile acids, $\mathbf{3 7 0}$, 370 s, $\mathbf{8 6 4}$
bile pigment, heme as source of, 904-906, 907f
bilirubin, 904
breakdown products of, 907 f
binary switches, in G protein(s), 438, 440f, 441b-443b
binding, cooperativity in, 163-169, 165f, 166f
binding-change model, 754
binding energy $\left(\Delta G_{\mathrm{B}}\right), \mathbf{1 9 5}-197$
enzyme specificity and, 197-198
binding sites, 157, 166-167. See also specific types
antibody, 175-177, 176f
characteristics of, 174
binding specificity
antibody, $175,177-178,177 \mathrm{f}$
enzyme, 197-198
biochemical reactions
bond cleavage in, 512-513
common types of, 511-517
electrophilic, $512,512 \mathrm{f}$
eliminations in, 513-514
free-radical, 514-515
group transfer, 515-516, 515f
internal rearrangements in, 513-514
isomerization in, 513-514
nucleophilic, 512, 512f
oxidation-reduction. See oxidation-reduction reactions
vs. chemical reactions, 517
biochemical standard free-energy change $\left(\Delta G^{\prime \circ}\right), \mathbf{1 9 2}, 193 \mathrm{f}$
biochemistry, fundamental principles of, 2
bioenergetics, 24-25, 506-507. See also energy
oxidation-reduction reactions and, 528-537
phosphorylation and, 517-519
thermodynamics and, 506-507
biofuels, from fermentation, 566b
bioinformatics, 104-105
biological energy transformation, in thermodynamics, 506-507, 507t
biological waxes, 362, 362 f
bioluminescence cycle, of firefly, 525b
biomass
ethanol from, 816b-817b
photosynthetic, 257
biomolecules, 1. See also under molecular
amphipathic, 50t
asymmetric, $17,17 \mathrm{f}$
average behavior of, 30
chirality of, 17, 17f
conformation of, $\mathbf{1 9}, 19 \mathrm{f}$
derived from amino acids, 902-910
functional groups of, 12-14, 13f, 14f
interactions between, 9-10
light absorption by, 80b, 80f
macromolecules, 15
molecular mass of, 14b
molecular weight of, 14 b
nonpolar, 50, 50t
origin of, 33-34, 33f. See also evolution
polar, 49-50, 50t
size of, 9
small, 14-15
stereospecificity of, $\mathbf{1 6}, 19,19 f, 20 f$
in supramolecular complexes, 31
bioorganisms
classification of, $3-4,5 \mathrm{f}, 6 \mathrm{f}$
distinguishing features of, 1-2, 2f
biosignaling. See signaling
biotin, 570, 651
deficiency of, 653
in phosphoenolpyruvate synthesis from pyruvate, 570, 571f
in pyruvate carboxylase reaction, 570, 571f, 651-653, 652f, 653f
Bishop, Michael, 1088
1,3-bisphosphoglycerate (BPG), 520s, 551
hydrolysis of, 520, 520f
phosphoryl transfer from, to ADP, 552-554
synthesis of, 805-806, 805f, 808-809
2,3-bisphosphoglycerate (BPG), in
hemoglobin-oxygen binding, 171-172, 173 f
bisulfites, as mutagens, 301
black smokers, 34,34 f
Blobel, Günter, 1140, 1140 f
Bloch, Konrad, 862, 863f
blood
buffering of, 61f, 66-67
composition of, 949-950, 950f
electrolytes of, 950
glutamine transport of ammonia in, 702-703, 702f
metabolic functions of, 949-950
normal volume of, 949
pH of, 66-67
transport functions of, 163, 949-950
blood clotting, integrins in, 471
blood groups, sphingolipids in, 368, 368f
blood plasma, 950, 950 f
blue fluorescent protein (BFP), 448b-449b
blunt ends, 316, 317 f
boat conformation, 249f
body mass. See also fat, body
regulation of, 849-850, 960-968
leptin and, 961, 961f-964f
body mass index, 960
Bohr, Christian, 170
Bohr, Niels, 170
Bohr effect, 170
boiling point
of common solvents, 48t
of water, 47, 48t
Boltzmann constant (k), 507t
bond(s). See also weak interactions
carbon, 12-14, 12f, 13f
carbon-carbon. See carbon-carbon bond
carbon-hydrogen, cleavage of, 512-513, 512f
covalent, 9
in enzymatic reactions, 195
heterolytic cleavage of, 512, 512f
homolytic cleavage of, $512,512 \mathrm{f}$
of phosphorus, 515-516, 515f
disruption of
in amino acid sequencing, 98, 99f
energy for, 116
glycosidic, 252
phosphorolysis vs. hydrolysis reactions of, 613-614
N-glycosyl, 282
in disaccharide, $\mathbf{2 5 2}$
hydrolysis of, 300, 300f
hydrogen. See hydrogen bonds
noncovalent, 9, 54-55. See also weak interactions
O-glycosidic, 252
peptide. See peptide bonds
phosphate, high-energy, 522
phosphorus-oxygen, 515-516, 515f
bond dissociation energy, 48
bovine F_{1}-ATPase, structure of, 760, 760 f
bovine spongiform encephalopathy, 150b-151b
Boyer, Herbert, 313, 313f
Boyer, Paul, 752, 752f
BPG (2,3-bisphosphoglycerate), in hemoglobin-oxygen binding, 171-172, 173f

brain

glucose supply for, 956-958, 957f
metabolism in, 948-949, 949f
brain injury, from ammonia, 703
branch migration, 1040-1041, $1042 f$
branched-chain amino acids, catabolic pathways for, $674,675 f, 718 f, 721 \mathrm{f}, 723 \mathrm{f}$
branched-chain α-keto acid dehydrogenase complex, 723
Branson, Herman, 120
brassinolide, $372,372 \mathrm{~s}$, 475 s
brassinosteroids, 475, 475s
BRCA1/2, 1038b
breast cancer, 1038b
Briggs, G. E., 202
Brown, Michael, 868, 868f, 873b
brown adipose tissue (BAT), 763, 944, 945f
heat generated by, and oxidative phosphorylation regulation, 762-763, 763f
mitochondria in, 762-763
Buchner, Eduard, 189, 190f, 544, 596
buffering region, 64
buffers, 63-69, 64, 65f
bulges, in RNA, 295, 295 f
bungarotoxin, 426
trans- $\boldsymbol{\Delta}_{2}$-butenoyl-ACP, 837f, $\mathbf{8 3 8}$
butyryl-ACP, 837f, $\mathbf{8 3 8}$
Byetta (exenatide), 970 t
bypass reactions, in gluconeogenesis
fructose 1,6-bisphosphate to fructose 6-phosphate conversion, 570t, 572-573
glucose 6-phosphate to glucose conversion, 570t, 573
pyruvate to phosphoenolpyruvate conversion as, 570-572, 570t, 571f, 572f

C

C-C bond. See carbon-carbon bond
C-H bond. See carbon-hydrogen bond
C-protein, 182
C_{2} cycle, $\mathbf{8 1 5}$
C_{3} plants, 802
photosynthesis in, 802, 815-818
C_{4} metabolism, 815-818
C_{4} pathway, 815-818
C_{4} plants, photosynthesis in, 815-818
$\mathrm{Ca}^{2+} /$ calmodulin-dependent protein kinases, 451, 451f
Ca^{2+} channels
defective, diseases caused by, 426t
in glucose metabolism, 953f, 954
in signaling, 465-466, 466f, 468
Ca^{2+} concentration, in cytosol vs. extracellular fluid, 465t
oscillation of, 451-452, 452f
Ca^{2+} ion channel, 420-421, 424
Ca^{2+} pump, 410-411, 411f
cadherins, 402
Cairns, John, 1012, 1016
calcitonin, synthesis of, 1077
calcitonin gene, alternative processing of, 1077, 1077f
calcitonin-gene-related peptide, synthesis of, 1077, 1077f
calcitriol, $372 \mathrm{~s}, 373,933 \mathrm{t}$, 935
calcium
blood levels of, 950
IP_{3} and, 447-448, 450f, 462
in muscle contraction, 183
regulation of, 935
in vision, 479, 480
calmodulin (CaM), 451, 451t
Calvin, Melvin, 800, 800 f
Calvin cycle, $\mathbf{8 0 0}$
ATP in, 808-812, 808f-811f
1,3-bisphosphoglycerate in, $804,805 \mathrm{f}$
in C_{4} plants, $815-818,815 \mathrm{f}$
in CAM plants, 818
carbon-fixation reaction in, 801-804, 801f
2-carboxyarabinitol 1-phosphate in, 803f, 804
glyceraldehyde 3 -phosphate synthesis in, 803f, 804-805
NADPH in, 801f, 804, 808-812, 808f-811f
3 -phosphoglycerate in
conversion of, to glyceraldehyde 3-phosphate, 801, 804-805
synthesis of, 801-804
rubisco in, 802-804, 802f-804f
stoichiometry of, 808f
triose phosphates in
ribulose 1,5 -bisphosphate regeneration from, 805-806, 806f, 807f
synthesis of, 805 f
CaM kinases, $\mathbf{4 5 1}$
CAM plants, 818
cAMP (adenosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate), 284, 308, 308s
degradation of, by cyclic nucleotide phosphodiesterase, 439f, 445
hormonal regulation of, 446-447
measurement of, by FRET, 448b-449b
in protein kinase A activation, 438-439, 439f, 440f
as second messenger, 308, 439f, 446-447, 446t
in β-adrenergic pathway, 438-440, 439f, 440f
structure of, 308s, 439f
synthesis of, adenylyl cyclase in, 438, 439 f
cAMP-dependent protein kinase. See protein kinase A (PKA)
cAMP receptor protein (CRP), $\mathbf{1 0 6 1}$
in gene regulation, 1165-1167
cAMP response element (CRE), 1184
cAMP response element binding protein (CREB), 446, 610
Campto (irinotecan), 992s, 993b
camptothecin, 993b
cancer
citric acid cycle mutations in, 656
DNA repair in, 1037b-1038b
glucose catabolism in, 555, 556b-557b
integrins in, 471
mutations in, 489-492, 493f, 656, 1027-1028, 1037b-1038b
oncogenes and, 489, 493f
retroviruses and, 1088, 1088f
selectins and, 270
treatment of
chemotherapeutic agents in, 923-925, 992b-993b
protein kinases in, 490b-491b
targeting enzymes in nucleotide biosynthesis in, 923-925, 923f, 924f
topoisomerase inhibitors in, 992b-993b
tumor suppressor genes and, 489-492, 493f
Warburg effect in, 555
CAP. See cAMP receptor protein (CRP)
cap-binding complex, 1070, 1104f
carbaminohemoglobin, 171s
formation of, 171
carbamoyl glutamate, 710s
carbamoyl phosphate, pyrimidine nucleotide synthesis from, 915-916, 916f
carbamoyl phosphate synthetase I, 706
activation of, 708, 709 f
deficiency of, 717 t
reaction mechanism of, 706f
carbamoyl phosphate synthetase II, 915
carbanion, 512, 808f
carbocation, 512
carbohydrate(s), 243-276
analysis of, 274, 275 f
chemical synthesis of, 274
classification of, 243
disaccharide, 243, 252-253
dolichols and, $\mathbf{3 7 5}$
Fischer projection formulas for, 244, 245f, 247-248
glycoconjugates of, $\mathbf{2 4 3}$
intermediates of, 249f, 250-251
lectin binding of, 269-273, 270f, 272 f
monosaccharide, 243-251. See also monosaccharides
nomenclature of, 243, 244, 250
oligosaccharide. See oligosaccharide(s)
overview of, 243
oxidation of, 251, 252-253
polysaccharide, 243, 254-263. See also polysaccharide(s)
size classes of, 243
carbohydrate metabolism, 588f. See also glucose metabolism
anabolic, 942t
catabolic, 942 t
in cellular respiration, 633, 634f
pathways of, 942 t
in diabetes mellitus, 559 f
enzymes of, 592, 593t
gene expression in, insulin and, 624
hepatic, 940-941, 941f
metabolic control analysis of, 598-600, 598b-599b
pathways of, 942 t
in plants, 799-812, 825-826, 825f. See also Calvin cycle
regulation of
allosteric and hormonal, 624-626, 626f
lipid metabolic integration with, 626
in liver, 624-626, 626 f
in muscle, $626,626 f$
xylulose 5-phosphate in, 606
carbohydrate response element binding protein (ChREBP), 609, 609f
carbohydrate synthesis, 568-575, 569f, 799-826. See also gluconeogenesis
C_{4} pathway in, 815-818
cellulose synthesis and, 822-823, 824f
glycolate pathway in, 813-815, 813f
integrated processes in, 825-826, 825f, 826f
pentose phosphate pathway in, $\mathbf{8 0 1}$, 810-812, 825
peptidoglycan synthesis and, 823-824, 824f
photorespiration in, 812-818
photosynthetic, 799-812. See also

photosynthesis

starch synthesis in, 818-819, 820-821
sucrose synthesis in, 819-821
carbon
anomeric, 246
asymmetric, $17,17 \mathrm{f}$
oxidation of, 512f, 516, 516f, 529f
carbon-assimilation reactions, $\mathbf{7 6 9}, \mathbf{8 0 9}$,
810-812, 811f
in C_{3} plants, $815-818,815 \mathrm{f}$
in C_{4} plants, $815-818,815 \mathrm{f}$
carbon bonds, $12-14,12 \mathrm{f}, 13 \mathrm{f}$
carbon-carbon bonds
cleavage of, 512-513, 512f
reactions of, 512-513, 520f
carbon dioxide, 529 s
climate change and, 816b-817b
cycling of, 501-502, 502f
in hemoglobin-oxygen binding, 170-171
hemoglobin transport of, 170-171
oxidation of glucose to, 532
oxidation of isocitrate to, $641-644,641 \mathrm{f}$
oxidation of α-ketoglutarate to, 644
oxidation of pyruvate to, $634,634 \mathrm{f}$
partial pressure of, $\mathbf{6 6}$
in photosynthesis. See Calvin cycle
solubility in water, $51,51 \mathrm{t}$
carbon dioxide assimilation, $\mathbf{8 0 0}$, 800f, 801-804,
801f. See also Calvin cycle
in C_{3} plants, $815-818,818$
in C_{4} plants, $815-818,815 \mathrm{f}$
in CAM plants, 818
carbon fixation, 800, 800f, 801-806, 801f. See also Calvin cycle
in C_{4} plants, $815-818$
carbon-fixation reactions, $\mathbf{7 6 9}$
carbon flux, anthropogenic, 816b
carbon-hydrogen bond, cleavage of, $512-513,512 \mathrm{f}$
carbon monoxide, 529 s
hemoglobin binding of, 159, 162, 167, 168b-169b
physiological effects of, $168 \mathrm{~b}-169 \mathrm{~b}$
carbon monoxide poisoning, 168b-169b
carbonic anhydrase, $\mathbf{1 7 0}$
carbonyl groups, 513, 513f
2-carboxyarabinitol 1-phosphate, 804s
in Calvin cycle, 803f, 804
carboxybiotinyl-enzyme, 652 s
γ-carboxyglutamate, $\mathbf{8 1}, 81$ s, $\mathbf{2 3 4}$
carboxyhemoglobin, 168b-169b
physiological effects of, 168b-169b
carboxyl-terminal residues, $\mathbf{8 6}$
posttranslational modification of, 1136
carboxylation, of amino acid residues, $1136,1137 \mathrm{f}$
carboxylic acids, 12,529 s
carboxypeptidase A, 698
carboxypeptidase B, $\mathbf{6 9 8}$
cardiac enzymes, 708b
cardiac muscle, $948,948 \mathrm{f}$
cardiolipin, 364f, 386
synthesis of, 854f, 855
caretaker genes, 492
carnauba wax, 362, 375s
carnitine, 671
carnitine acyltransferase I/II, 671
carnitine shuttle, 670
β-carotene, $374,374 \mathrm{~s}, 772 \mathrm{~s}, 773$
carotenoids, 772f, 773-774, 773f
carriers. See transporter(s)
Caruthers, Marvin, 304
carvone, stereoisomers of, 20f
casein kinase II, 623
CASP competition, 146
caspases, $\mathbf{7 6 4}$
in apoptosis, 493-494
catabolic pathways, 799, 942t
energy delivery in, 503f
in glycogen metabolism, 613-614
catabolism, 28, 28f, 502, 503 f
amino acid, 695-704, 710-725. See also amino acid catabolism
glucose, in cancerous tissue, 555, 556b-557b
protein, fat, and carbohydrate, in cellular respiration, 634 f
purine nucleotide, 920-921, 921f
pyrimidine, 920-921, 922f
catabolite repression, $\mathbf{1 1 6 5}$
catalase, 682
catalysis, 27-28, 28f, 192-200. See also
enzymatic reactions
acid-base
general, 199, 199f
specific, 199
covalent, 200
metal ion, 200, 220, 221f
regulation of, 226-235
rotational, 752-755
vs. specificity, $\mathbf{1 9 7}$
catalytic site, $\mathbf{1 5 8}$
catalytic triad, 218
catecholamines, 933t, 934-935
as hormones, 930, 933t, 934-935
as neurotransmitters, 930
catenanes, $\mathbf{1 0 2 5}$
cation-exchange chromatography, 90-92, 91f, 93t.
See also ion-exchange chromatography
caudal, 1188-1190, 1189f
caveolae, 399, 400f
caveolin, 399, 400f, 463
CCA(3^{\prime}), 1080
CCAAT-binding transcription factor 1 (CTF1), proline-rich activation domains of, $\mathbf{1 1 8 2}$
CDK9, 1068
cDNA (complementary DNA), $\mathbf{3 3 2}, \mathbf{1 0 8 7}$
cloning of, 1096b-1097b
in hybridization, 299, 300, 1087
cDNA library, 332, 332f, 1096b-1097b
specialized, $334,335 f$
CDP (cytidine diphosphate), 852
CDP-diacylglycerol, in lipid biosynthesis, 853-855, 853f, 854f
Cech, Thomas, 1071-1072, 1072f
cell(s), 2-11
bacterial, 4-6, 6f
death of. See apoptosis
energy needs of, in oxidative phosphorylation regulation, 760
fat cells in, 360-361, 360f
free-energy of ATP hydrolysis in, 519
metabolic transformations in, 511-512
origin of, 33-34. See also evolution
size of, 3
sources of free energy for, 507
structure of, 9-10, 11f
in bacteria, 4-6, 6 f
in eukaryotes, 6-8, 7f
hierarchical, 9, 11f
synthetic, 36
cell-cell interactions/adhesion, 402
cadherins in, $\mathbf{4 0 2}$
integrins in, 266, 266f, 402, 470-471, 470f
lectins in, 271-272, 272f
proteoglycans/oligosaccharides in, 264-268, 269-273
selectins in, 402
cell-cell signaling. See signaling
cell cultures, mammalian, 323
cell cycle
chromosome changes in, 994, 994f
meiosis in, 1041-1046, 1042, 1043f
in bacteria, 1039-1041
in eukaryotes, 1041-1043, 1043f
recombination in, 1041-1043, 1044f
regulation of
cyclin-dependent protein kinases in, 485f-487f
cytokines in, 486f, 487
growth factors in, 486f, $\mathbf{4 8 7}$
replication in. See DNA replication retinoblastoma protein in, 488, 488f stages of, 484, 484f
cell death, programmed, 492-494, 494f
cell envelope, $\mathbf{5}, 6 \mathrm{f}$
cell fractionation, 8, 8f, 57
cell membrane. See membrane(s)
cell wall polysaccharides, synthesis of, 823-824
in bacteria, 824 f
cellular differentiation, $\mathbf{5 8 9}$
cellular functions, of proteins, $\mathbf{3 3 2}$
cellular immune system, 174. See also immune system
cellular respiration, $\mathbf{6 3 3}$
stages in, $633,634 \mathrm{f}$
cellulase, 257, 257f
cellulose, 256-257, 262t. See also polysaccharide(s)
conformations of, 259 f
function of, 257, 259, 262 t
structure of, 256-257, 257f, 259, 259f, $262 \mathrm{t}, 821,822 \mathrm{f}$
synthesis of, 822-823
tensile strength of, 259
cellulose synthase, $\mathbf{8 2 2}$
central dogma, 977, 977f, 1086
centrifugation, differential, 8
centromere, $\mathbf{9 8 4}, 984 \mathrm{f}$
ceramide, $\mathbf{3 6 6}, 367 \mathrm{f}$
in cell regulation, 371
cerebrosides, $\mathbf{3 6 6}, 367$ f, 368f, $\mathbf{8 5 7}$, 859 f
synthesis of, 857
ceruloplasmin, 269-270
CFTR, 415b, 424
cGMP (guanosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate), 283s, 308, 308s, 459-460
in signaling, 459-460, 459f
structure of, 308 s
in vision, 477, 479-480, 480
cGMP-dependent protein kinase (protein kinase G), 459-460
cGMP PDE, 460
chair conformation, 249f
Changeux, Jean-Pierre, 167
channels. See ion channels
chaperones, 146-147, 146f, 147f, 148f, 1143, 1145 f
chaperonins, $\mathbf{1 4 6}, 147,148 f$
Chargaff, Erwin, 288
Chargaff's rules, 288
charge
of amino acids, $84,85 \mathrm{f}$
pH and, $84,85 \mathrm{f}$
Chase, Martha, 288
chemical elements
essential, 12f
trace, 12, 12f
chemical models
ball-and-stick, 16, 16 f
space-filling, $16,16 \mathrm{f}$
chemical potential energy, of proton-motive force, $\mathbf{7 4 4}$
chemical reaction(s), 20-29. See also under reaction
activation energy in, 27, 27f
direction of, 22, 25
driving force of, 27-28
dynamic steady state and, 21
endergonic, 23, 25, 28f
energy conservation in, 21, 21f
energy-coupled, 24-25, 24f
energy sources for, 24
enzymatic, 27-28, 28f, 189-237, 192-200.
See also catalysis; enzymatic reaction(s); enzyme(s)
at equilibrium, $\mathbf{2 5}$
equilibrium constant for, 25
exergonic, 24, 25, 27, 28f
in citric acid cycle, 655
in conversion of pyruvate to phosphoenolpyruvate, 570-572,
570t, 571f, 572f
chemical reaction(s) (Continued)
coupled with endergonic reactions, 24-25, 24 f
free energy in, 23, 25-26, 192-193, 193f
ground state in, 192
intermediates in, 217
mechanisms of, 216, 216f
oxidation-reduction, $\mathbf{2 2}$
rate constant for, $\mathbf{1 9 4}$
rate equation for, $\mathbf{1 9 4}$
rate-limiting steps in, $\mathbf{1 9 3}$
reaction intermediates in, 193
sequential, 510-511
standard free-energy changes of, 507, 508t
at pH 7.0 and $25^{\circ} \mathrm{C}, 509 \mathrm{t}$
transition state in, 27, 193, 195-197, 217
vs. biochemical reactions, 517
chemical synthesis, 274
of DNA, 304, 305 f
phosphoramidite method in, 304,305 f
chemical uncouplers, of oxidative phosphorylation, 749, 749f
chemicals, industrial, from fermentation, 566-568
chemiosmotic coupling, of O_{2} consumption and ATP synthesis, 755-757
chemiosmotic theory, 731, 747-749
of ATP synthesis, $\mathbf{7 4 7}$
prediction of, 749, 750f
chemistry, prebiotic, 33-34
chemotaxis, two-component signaling in, 473, 473f chemotherapy
targeting enzymes in nucleotide biosynthesis, 923-925, 923f, 924f
topoisomerase inhibitors in, 992b-993b, 992s, 993s chemotrophs, 4, 5 f
chi, 1040
chimpanzee genome, vs. human genome, 345-347, 345f
chiral center, 17, 17f, $\mathbf{7 6}$
chiral molecules, 17, 17f, 76-77
optical activity of, 18b, 77
chitin, 257, 258f, 262t
chloramphenicol, 1138, 1138s
chloride-bicarbonate exchanger, 398f, 407-409, 407f
chloride ion channels
in cystic fibrosis, 415b, 424
in signaling, 468
chloride ion concentration, in cytosol vs. extracellular fluid, 465t
chloroform, in lipid extraction, 377-378, 377f
chlorophyll(s), $\mathbf{7 7 1}$
antenna, in light-driven electron flow, 778, 781-782, 781f
in light absorption, exciton transfer and, 774-775, 775f
in photosynthesis, 771-773, 772f, 773f
chlorophyll a, 772s
chloroplast(s), 6, 7f, 800, 801f
ATP synthase in, 787-788, 788f
ATP synthesis in, 732. See also ATP synthesis
evolution of, 788-789
fatty acid synthesis in, 839, 840f
integration of photosystems I and II in, 779-781
lipid metabolism in, 839, 840f
membrane lipids of, 365,365 f
NADPH synthesis in, 839
photosynthesis in, 769-770, 770f
electron flow in, 770
protein targeting to, 1142-1143
starch synthesis in, 819
chloroplast DNA (cpDNA), 983
cholecalciferol (vitamin D_{3}), 373, 373f, 373s
cholecystokinin, 698
cholera toxin, 442b-443b
cholesterol, 368-370, 368f. See also sterol(s)
esterification of, 864, 864f
excess production of, 872b-873b
fates of, 864, 864f, 874-875
in isoprenoid synthesis, 875 f
membrane, 386f, 386t
distribution of, 389 f
microdomains of, 398-399, 399f
receptor-mediated endocytosis of, 868-869, 868f
in steroid hormone synthesis, 372,372 s, 874 , 874f, $875 f$
structure of, 368-369, 368f, 869s
synthesis of, 860-864, 860f-863f
regulation of, 869-871, 870f
trans fatty acids and, 361
transport of, 864-871, 867f
reverse, 867f, 869, 873-874, 874f
cholesterol intermediates
fates of, 874-875, 875f
synthesis of, 874-875, 875f
cholesterol-lowering drugs, 872b-873b
cholesteryl esters, $\mathbf{8 6 4}$
receptor-mediated endocytosis of, 868 f
transport of, 864-871, 867f
chondroitin sulfate, $\mathbf{2 6 1}, 261 \mathrm{~s}, 264 \mathrm{f}$
chorismate, in amino acid biosynthesis, 897-898, 900f-903f
ChREBP (carbohydrate response element binding protein), 609-610, 609f
chromatids, sister, 994, 1042-1044, 1043f
chromatin, 994, 997 f
acetylation/deacetylation of, 1175-1176
assembly of, 997 f
beads-on-a-string appearance of, 995f, 996f
chromosomal scaffolds and, 999, 1000f
condensed, 1175
euchromatin, 1175
heterochromatin, $\mathbf{1 1 7 5}$
histones and, 994, 995f, 998b-999b, 1175-1176. See also histone(s)
nucleosomes in, 996f, 997f, 1000f. See also nucleosomes
remodeling of, 1175-1176, 1176t
in 30 nm fiber, 998, 1000 f
transcription-associated changes in, 1175-1176, 1176t
transcriptionally active vs. inactive, 1175
chromatography, 178
adsorption, 377f, 378
affinity, 91f, 92, 93t, 325-327, 325t
column, 86-92, 90f
gas-liquid, 378
high-performance liquid, 92
ion-exchange, 90, 91f, 93t
in lipid analysis, 378
size-exclusion, 91f, 92
thin-layer, $377 \mathrm{f}, 378$
chromatophore, $\mathbf{7 8 6}$
chromosomal scaffold, 999, 1000f
chromosome(s), 979-985
aneuploid, 1045b
artificial, 985
bacterial artificial, 319, 320f
cell-cycle changes in, 994, 994f
condensation of, 994, 995f, 1000-1002, 1002f
daughter, 484
definition of, 994
elements of, 979-985
eukaryotic, 981-983, 983f
genes in, 979, 980. See also gene(s)
partitioning of, in bacteria, 1025
replication of, 994, 994f
segregation of, errors in, 1045b
structure of, 994-1003
yeast artificial, 320, 321f, 985
chylomicrons, 669, 865-866, 865f, 865t, 867f
molecular structure of, 669 f
chymotrypsin, 698
catalytic activity of, 200, 210f, 214-218, 215f-217f
reaction mechanism of, 216f-217f, 515
structure of, 115f, 214, 214f
synthesis of, proteolytic cleavage in, 231-232, 232f
chymotrypsinogen, 232f, $\mathbf{6 9 8}$
cimetidine (Tagamet), 909
ciprofloxacin, 992b, 992s
circular dichroism (CD) spectroscopy,
124-125, 125 f
cis configuration, of peptide bonds, $123,124 \mathrm{f}$
cis-trans isomers, $\mathbf{1 7}$
citrate, 640, 641 s
asymmetric reaction of, 648b
in fatty acid synthesis, $840,841,841 \mathrm{f}, 842 \mathrm{f}$
formation of, in citric acid cycle, $639 \mathrm{f}, 640$, 641 f
citrate lyase, $\mathbf{8 4 0}$
citrate synthase, $\mathbf{6 4 0}, 641 \mathrm{~s}, \mathbf{8 4 0}$
reaction mechanism of, 641f
structure of, 640 f
citrate transporter, 840, 841f
citric acid cycle, 633-656, 633-659
acetyl-CoA in, 633-638, 635f
activated acetate in, 652 f
as amphibolic pathway, 650
anaplerotic reaction replenishing, 650-651, 651f, 651t
citrate formation in, 639f, 640, 641f
components of, 650, 651 f
conversion of succinyl-CoA to succinate in, 644-645, 645f
energy of oxidations in, 647-649, 649t
in gluconeogenesis, 574, 957-958, 957f
in glucose metabolism, 941, 941f, 957-958, 957f
glyoxylate cycle and, 658-659, 658f, 659f
in hepatic metabolism, 941, 941f, 957-958, 957f
incomplete, in anaerobic bacteria, 650, 650f
isocitrate formation in, 641 , 641 f
in lipid metabolism, 941f, 943
oncogenic mutations in, 656
oxidation of acetate in, $650,650 \mathrm{f}$
oxidation of acetyl-CoA in, 675-677, 676t
oxidation of isocitrate to α-ketoglutarate and CO_{2} in, 641-644, 643f
oxidation of malate to oxaloacetate in, 647
oxidation of succinate to fumarate in, 646-647
products of, 649f
pyruvate carboxylase reaction in, biotin and, 651-653, 652f, 653f
reactions of, 638-653, 654f
regulation of, 653-656
allosteric and covalent mechanisms in, 654-655, 654f
exergonic steps in, 655
glyoxylate cycle in, 658-659, 658f, 659f
multienzyme complexes in, 655-656, 655f
role of, in anabolism, 650, 651f
steps in, 640-653
chemical logic of, 638-640
urea cycle links to, 706-708, 707f
citrulline, 81, 82 s
Cl^{-}. See chloride entries
Claisen ester condensation, $376,376 \mathrm{f}$, 513, 513s, 674
clathrates, 52
clathrin, 1146, 1146f
Clausius, Rudolf, 22b
clavulanic acid, 224
climate change, 816b-817b
clonal selection, 175
clone(s), $\mathbf{1 7 8}$
definition of, 314
in DNA libraries, 332 f
cloned genes, expression/alteration of,
321-325, 322f
cloning, 314-325
in bacteria, 314-325
blunt ends in, 316
cDNA in, 300f, 1087, 1096b-1097b
DNA cleavage in, 314-317, 315f, 315t, 317 f
DNA fragment size in, 316
DNA ligases in, 314, 315f, 316-317, 317f
electroporation in, $\mathbf{3 1 8}$
enzymes in, 315t
fusion proteins in, $\mathbf{3 2 5}$
gene expression and, 321-325, 322f
host organisms in, 322-323, 322f
linkers/polylinkers in, 316-317, 317f
oligonucelotide-directed mutagenesis and, 324, 325 f
polymerase chain reaction in, 327-331, 328f
procedures used in, 314, 315f
restriction endonucleases in, 314-317, 315f, 315t, 317f
site-directed mutagenesis and, 323-324
steps in, $314,315 f$
sticky ends in, 316-317, 317f
transformation in, $\mathbf{3 1 8}$
cloning vectors, 314, 315t, 317-321, 318f-322f
bacterial artificial chromosome, 319, 320f
in DNA library creation, 332
expression, 321-325
lambda phage, 315t, 317
plasmid, 317-319, 319f, 320f
shuttle, 320
yeast artificial chromosome, 319-320, $\mathbf{3 2 0}$
closed-circular DNA, 986-987, 987f
linking number for, 988-989, 988f, 996

closed system, 21

Clostridium acetobutyricum,
in fermentation, 551
Clostridium botulinum, 401-402
CMP (cytidine 5'-monophosphate), 283s, 853
CO_{2}. See carbon dioxide
CoA (coenzyme A), 307, 307f. See also specific type, e.g., succinyl-CoA
coactivators, 1178-1179
coagulation
regulatory cascade in, $\mathbf{2 3 2}$
selectins in, 402
zymogens in, 232-235, 232f, 233f
coagulation factors, 233, 234
deficiency of, 234
coated pits, 1146, 1146f
cobalamin. See vitamin B ${ }_{12}$ (cobalamin)
cobrotoxin, 426
coding strand, in transcription, 1059, 1059f
CODIS database, 330 b , 330 t
codon(s), 1104f, 1105
assignment of, 1106, 1107f variations in, 1108b-1109b
base composition of, discovery of, 1105
base sequences in, discovery of, 1105-1106
dictionary of, 1107, 1107f
initiation, 1107, 1107 f
in protein synthesis, 1127-1129, 1129f
reading frame for, 1105, 1105f, 1111
termination, 1107, 1107f, 1108b-1109b

codon bias, 1109b

coelacanth, anaerobic metabolism of, 564b
coenzyme(s), 3, 190, 191t. See also enzyme(s)
examples of, 190 t
flavin nucleotide, 536 t
NAD^{+}or NADP^{+}as, stereospecificity of dehydrogenase employing, 534t
prosthetic group, 190
in pyruvate dehydrogenase complex, 634-635, $636 f$
as universal electron carrier, 532
coenzyme A (CoA), 307, 307f. See also specific type, e.g., succinyl-CoA
coenzyme $\mathrm{B}_{12}, \mathbf{6 7 8}, 680 \mathrm{f}-681 \mathrm{f}$
coenzyme Q, $375,375 \mathrm{~s}, 735,735 \mathrm{f}, 735 \mathrm{~s}$
coenzyme reduction, stoichiometry of, 649t
cofactors, enzyme, 190, 190t
Cohen, Stanley, 313, 313f
cohesins, 1000
coiled coils
collagen as, 126f, 127
α-keratin as, $126,126 \mathrm{f}$
cointegrate, 1049
collagen
amino acids in, 127-130, 127f, 128b-129b
ascorbic acid and, 128b-129b
disorders of, 128b-129b
proteoglycans and, 266
structure of, 124f, 126t, 127-130, 127f
triple helix of, 124f, 126t, 127-130, 127f, 128b-129b
types of, 127
colligative properties, solute concentration and, 55, 56f

Collins, Francis, 339, 339f
Collip, J. B., 931b
colon cancer, 1038b
mutations in, 493f
color vision, 480, 481b
column chromatography, 86-92. See also chromatography
combinatorial control, 1158-1159, 1177, 1177f
comparative genomics, 39, 333, 345-347
competitive inhibitor, 207-208, 208f, 209f, 209t
complementary DNA. See cDNA (complementary DNA)
Complex I (NADH: ubiquinone oxidoreductase)
flow of electrons and protons through, 744f
in oxidative phosphorylation, 738, 739 f
Complex II (succinate dehydrogenase)
flow of electrons and protons through, 744f
in oxidative phosphorylation, 740, 740f
Complex III (ubiquinone: cytochrome c oxidoreductase), 741f
flow of electrons and protons through, 774f
in oxidative phosphorylation, 740-742, 741f
Complex IV (cytochrome oxidase), 742-743, 742f
flow of electrons and protons through, 744f
path of electrons through, 742f
complex transposons, 1049
concentration gradient, 402, 403f
in membrane polarization, 464-465, 464f
concerted inhibition, 900
concerted model, of protein-ligand binding, 167-168, 170f
condensation, 69, 69 f
chromosomal, 994, 995 f
in peptide bond formation, 86, 86f
condensation reaction, 65
condensins, 1002
cone cells, 477-480, 477f, 480f
in color vision, 480, 480f
configuration, 16
isomeric, 16-18, 16f, 17f
vs. conformation, 248
conformation
boat, 249 f
chair, 249f
molecular, 19, 19 f
native, 31, 116
protein, 115-116
vs. configuration, 248
conjugate acid-base pairs, 61, 61f
as buffer systems, 64, 64f, 65-66
conjugate redox pair, 528
electron transfer of, 530-531, 530f
conjugated proteins, 89, 89t
consensus sequences, 104, 105b
oriC, 1020-1021, 1020f
of promoters, $\mathbf{1 0 6 0}, 1061 \mathrm{f}, 1157,1157 \mathrm{f}$
of protein kinases, 230-231, 231t
consensus tree of life, 108 f
conservation of energy, 21, 21f
constitutive gene expression, 1156

contig, 342

contractile proteins, 179-184, 180f-183f
cooperativity, binding, 163-169, 165f, 166f
copper ions, in Complex IV, 742, 742f
Corey, Robert, 117f, 120, 126, 133
Cori, Carl F., 564b, 616b, 616f, 621
Cori, Gerty T., 564b, 616b, 616f, 621
Cori cycle, 564b, 568-569, 948, 948f
Cori disease, 617 t
Cornforth, John, 862, 863f
coronary artery disease
hyperlipidemia and, 871-874, 872b-873b
trans fatty acids and, 361
corrin ring system, 680b
corticosteroids, 372, 372f, 372s, 933t, 935. See also under steroid hormone(s)
synthesis of, $874,874 \mathrm{f}, 875 \mathrm{f}$
cortisol, 372, 372s, 851s, 937, 958-959
in glucose metabolism, 851
cotransport systems, 409, 409f
coumarins, 992b
coumermycin A1, 992b
coupling, operational definition of, 748
covalent bonds, 9
in enzymatic reactions, 195
heterolytic cleavage of, $\mathbf{5 1 2}, 512 \mathrm{f}$
homolytic cleavage of, $\mathbf{5 1 2}, 512 \mathrm{f}$
of phosphorus, 515-516, 515f
covalent catalysis, 200
covalent modification, of regulatory enzymes, 226,
228-235, 229f, 231t, 232f
COX (cyclooxygenase), $\mathbf{8 4 5}$
COX inhibitors, 845-847, 846f
COX4, 761, 761f
cpDNA (chloroplast DNA), 983
Crassulaceae, photosynthesis in, 818
creatine, $521 \mathrm{~s}, \mathbf{9 0 6}, 946 \mathrm{~b}-947 \mathrm{~b}, 947 \mathrm{~s}$
amino acids as precursors of, 906-907
biosynthesis of, 908f
in muscle, $945 \mathrm{f}, 946 \mathrm{~b}-947 \mathrm{~b}, 947$
creatine kinase, 526, 708b
creatinine, 946b-947b
CREB (cyclic AMP response element binding protein), $\mathbf{6 1 0}$
Creutzfeldt-Jakob disease, 150b-151b
Crick, Francis, 97, 126, 287, 287f, 288-289, 977, 1011, 1092, 1092f, 1104
crocodile, movement of, 564b
crossing over, 1043, 1043f
errors in, aneuploidy and, 1045b
CRP. See cAMP receptor protein (CRP)
cruciform DNA, 292, 292f, 989, 990f
crude extract, $\mathbf{8 9}$
cryptochromes, 536
crystal structures, bound water molecules in, 54-55, 55f
CTP, in ATCase synthesis, 227, 227f
CTR1, 475, 475 f
culture, mammalian cell, 323
cyan fluorescent protein (CFP), 448b-449b
cyanobacteria, 5
evolution of, $36,37 \mathrm{f}$
nitrogen fixation by, 882
phosphorylation/photophosphorylation in, 789, 789f, 790f
cyanocobalamin, 680b
cyclic AMP. See cAMP (adenosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate)
cyclic GMP. See cGMP (guanosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate)
cyclic nucleotide phosphodiesterase, 439f, 445
cyclin, 484f, $\mathbf{4 8 5}$
degradation of, 486-487, 486f, 1148
synthesis of, 487
cyclin-dependent kinase complex, 484-488, 485f, 486f
cyclin-dependent protein kinase(s), 485-488, 485f
in cell cycle regulation, 485-488, 485f
inhibition of, 487
oscillating levels of, 451-452, 452f
phosphorylation of, 485-486, 485f, 486f, 488f
regulation of, 485-486, 485f-487f
synthesis of, 487
cyclin-dependent protein kinase 9, 1068
cycloheximide, 1138, 1139s
cyclooxygenase (COX), 845
cyclooxygenase (COX) inhibitors, 845-846, 846f
cycloserine, 907
cystathionine β-synthase, $\mathbf{8 9 4}$
cystathionine γ-lyase, $\mathbf{8 9 4}$
cysteine, 10s, 79s, 81, 81s, 715, 894
biosynthesis of, 892-894, 895f
degradation of, to pyruvate, $715,715 \mathrm{f}$
properties of, $77 \mathrm{t}, 81$
cystic fibrosis
defective ion channels in, 415b, 424
protein misfolding in, 149, 151
cystine, 81, 81s
cytidine, 283s
cytidine diphosphate (CDP), 853, 853f
cytidine 5'-monophosphate (CMP), 283s, 853
cytidylate, 282 t , 283 s
cytidylate synthetase, 916
cytochrome(s), $\mathbf{7 3 5}$
prosthetic groups of, 735, 736f
cytochrome $b_{5}, 843$
cytochrome b_{5} reductase, 843
cytochrome $b c_{1}$ complex, 738t, 740-742,
741f. See also Complex III
cytochrome $b_{6} f$ complex, 781-783, 782f
cytochrome $b_{6} f$, dual roles of, 790 f
cytochrome c
absorption spectra of, 735, 736f
in apoptosis, 764-765, 764f
structure of, 133t
cytochrome f, water chain in, 54-55, 55f
cytochrome oxidase, 742. See also Complex IV
subunits of, 742 f
cytochrome P-450, 763-764, 844b, 935, 943
mitochondria and, $\mathbf{7 6 3}$
in xenobiotics, 763-764
cytoglobin, 163
cytokines, $\mathbf{4 5 7}$
in cell cycle regulation, 486f, 487
cytoplasm, 3, 3f
filaments in, 8-9, 8 f
cytosine, 10s, 282, 282t, 283f. See also pyrimidine bases
deamination of, 299, 300 f
methylation of, 302
cytoskeleton, 8-9, 8f
cytosol, 3, 3f
cellulose synthesis in, 822-823
contents of, 10, 11f
lipid synthesis in, 839 , 840f
sucrose synthesis in, 819-820
cytotoxic T cells (T_{C} cells), $\mathbf{1 7 5}, 175 \mathrm{t}$

D

D arm, of tRNA, 1118, 1119f
D isomers, 245
D, L system of stereochemical nomenclature, 18 , $76 f, 78,245$
dabsyl chloride, 98-100, 98s
Dalgarno, Lynn, 1127
daltons, 14b
Dam, Henrik, 374, 375f
Dam methylase, 1019t, 1020
in mismatch repair, 1029
dAMP (deoxyadenosine 5'-monophosphate), 283s
dansyl chloride, 98-100, 98 s
databases
for DNA fingerprinting, 330b, 330t
genomic, 342, 348-349
for protein structure, 115f, 138-140, 139f-140f
daughter chromosomes, 484
Dayhoff, Margaret Oakley, 76, 76f
dCMP (deoxycytidine 5'-monophosphate), 283s
DDI, 1089b
De Duve, Christian, 617b
de novo pathways, 910-922
deamination
of nucleotide bases, 299-300, 300f
oxidative, $\mathbf{7 0 0}$
debranching enzyme, 560, 614
decarboxylation
of amino acids, 908-909, 910f
free radical-initiated, 514-515, 515f
of β-keto acid, 513 s
oxidative, 634
degeneracy, of genetic code, $\mathbf{1 1 0 7}$
dehydration, of 2-phosphoglycerate to
phosphoenolpyruvate, 554
dehydroascorbate, 129s
7-dehydrocholesterol, 373, 373s
dehydrogenase, 529
stereospecificity of, employing NAD^{+}or NADP^{+} as coenzymes, 532-535, 534t
dehydrogenation, 529
oxidations involving, 529-530, 529f
dehydrohydroxylsinonorleucine, 130s
deletion mutations, 1027
ΔG (free-energy change). See free-energy change (ΔG)
ΔS (entropy change), 23
denaturation
of DNA, 297-298, 297f, 298f
of proteins, 143-146, 144f
of RNA-DNA hybrids, 298
denaturation mapping, 1012
dendrotoxin, 426
denitrification, $\mathbf{8 8 2}$
2-deoxy- α-D-ribose, 10s
β-2'-deoxy-D-ribofuranose, 284f
2-deoxy-D-ribose, 244s, 282
deoxyadenosine, 283s
deoxyadenosine 5^{\prime}-monophosphate (dAMP), 283s
5'-deoxyadenosyl group, 680
5'-deoxyadenosylcobalamin, 678, 680b
deoxyadenylate, 283s
deoxycytidine, 283s
deoxycytidine 5'-monophosphate (dCMP), 283s
deoxycytidylate, 283s
deoxyguanosine, 283 s
deoxyguanosine 5'-monophosphate (dGMP), 283s
deoxyguanylate, 283 s
deoxynucleoside triphosphates, regulation of ribonucleotide reductase by, 918-919, 936f
deoxyribonucleotides, 30, 282t, 283, 283f. See also nucleotides
ribonucleotides as precursors of, 917-920, 917f, 936f
deoxythymidine, 283 s
deoxythymidine 5^{\prime}-monophosphate (dTMP), 283s
deoxythymidylate, 283s
depurination, 300 , 300 f
dermatan sulfate, 261
desaturases, $842-845,843 \mathrm{f}$
desensitization, receptor, 434, 434f, 443-446, 445f
desmin, $\mathbf{1 8 1}$
desmosine, $\mathbf{8 1}, 82$ s
desolvation, in enzymatic reactions, 198, 198 f
development
gene regulation in, gene silencing in, 1185-1186, 1185f
pattern-regulating genes and, 1188-1191
dexamethasone, 851 s
in glucose metabolism, 851
dextran, 256, 258f, 262t. See also polysaccharide(s) synthetic, 256
dextrose, 243, 244s. See also glucose
DGDG (digalactosyldiacylglycerol), 365, 365f
dGMP (deoxyguanosine 5'-monophosphate), 283s
diabetes insipidus, 408b
diabetes mellitus, 959-960
acidosis in, 67
defective glucose and water transport in, 408b
diagnosis of, 250b-251b, 960
early studies of, 931b
fat metabolism in, 559 f
fatty acid synthesis in, 849-850
glucose metabolism in, 558, 559f, 957f, 959-960
glucose testing in, 250b-251b
ketosis/ketoacidosis in, 688, 711, 959-960
mature onset of the young, 611b-612b
mitochondrial mutations and, 768
pathophysiology of, 959-960
sulfonylurea drugs for, 954
treatment of, 852, 954, 964-965
type 1, 611b, 959
type 2, 611b, 959, 968-970
drug therapy for, $852,970,970 \mathrm{t}$
insulin insensitivity in, 959, 964-965, 968-970
lipid toxicity hypothesis for, 969-970
diabetic ketoacidosis, $67,688,711,960$
diacylglycerol, 370, 447, 450f
in triacylglycerol synthesis, 849f
diacylglycerol 3-phosphate, in triacylglycerol synthesis, 849, 849f
dialysis, protein, $\mathbf{9 0}$
diastereomers, 17, 17 f
dichromats, 480
dideoxy method, for DNA sequencing, 302-304, 303f, 304f
dideoxyinosine (DDI), 1089b
dideoxynucleotides, in DNA sequencing, 302-304, 303f, 304f
dielectric constant, 50
2,4-dienoyl-CoA reductase, $\mathbf{6 7 7}$
differential centrifugation, $8,8 f$
diffusion
facilitated, 403-404, 404f. See also transporter(s)
hop, 398
of membrane lipids, 396-398, 396f-398f
simple, 403, 403f, 404f
of solutes, 402-404, 403f, 404f. See also membrane transport
difluoromethylornithine (DFMO), for African sleeping sickness, 211b-212b
digestive enzymes, 697-699, 698f
dihedral angles in secondary structures, 123-124, 124f
dihydrobiopterin reductase, $\mathbf{7 2 0}$
dihydrofolate reductase, $\mathbf{9 2 0}$
substrate binding to, 195f
dihydrogen phosphate, as buffer, 62-63, 63f
dihydrolipoyl dehydrogenase, 635
dihydrolipoyl transacetylase, 635
dihydroxyacetone, 244, 244s, 246s
dihydroxyacetone phosphate, 198, 550, $550 \mathrm{~s}, 562 \mathrm{~s}$
in Calvin cycle, 805, 806f, 808f, 809
in glyceroneogenesis, 850
in glycolysis, 544-546
P_{i} exchange for, 809-810, 809f, 810f
transport of, 809-810, 810f
1,25-dihydroxycholecalciferol, 373, 373s, 933t
1,25-dihydroxycholecalcitriol, 935
dimethylallyl pyrophosphate, in cholesterol synthesis, 861, 861f, 862f
dimethylnitrosamine, as mutagen, 301f, 302
dimethylsulfate, as mutagen, 301f, 302
dinitrogenase, $\mathbf{8 8 3}$
dinitrogenase reductase, $\mathbf{8 8 3}$
Dintzis experiment, 1127
dioxygenases, 844b
diphtheria toxin, 1139
dipole-dipole interactions, 117
direct transposition, 1049, 1050f
disaccharides, 243, 252-253. See also carbohydrate(s); oligosaccharide(s)
conformations of, 257-259, 258f, 259f
formation of, 252, 252f
hydrolysis of, 252-253
to monosaccharides, 558-560, 560f
nomenclature of, 252-253
oxidation of, 252-253
reducing, 252-253
structure of, 252-253, 252f, 253f
dissociation constant (acid) ($K_{\text {a }}$), 61f-63f, 62-63
dissociation constant (K_{d}), 160-162, 161t
for enzyme-substrate complex, 204
in Scatchard analysis, 435b
dissociation energy, 48
distal His, 163
disulfide bonds, in amino acid sequencing, 99-100, 99f
divergent evolution, 644
of β-oxidation enzymes, 683-684
DNA, 15, 29, 31f. See also nucleic acids
A-form, 291, 291f
annealing of, 297-298, 297f
B-form, 291, 291f, 987
bacterial, 981, 982f, 982 t
packaging of, 1002-1003
topoisomerases and, 990
base pairs in, 287, 287f, 288-290, 289f, 290f. See also base(s), nucleotide/nucleic acid; base pairs/pairing
Chargaff's rules for, 288
chemical synthesis of, 304, 305f
chloroplast, 983
cleavage of, 314-317, 315f
blunt ends in, 316, 317 f
restriction endonucleases in, 314-317, 315f, 315t, 317f
sticky ends in, 316-317, 317f
closed-circular, 986-987, 987f
coding, 984
compaction of, 994-1000, 1002f
complementary. See cDNA (complementary DNA)
damaged, 1027-1038, 1036f. See also DNA repair; mutation(s)
error-prone translesion DNA synthesis and, 1034-1037
repair of. See DNA repair
SOS response and, 1035, 1036t, 1169-1170, 1169f
degradation of, 1013
denaturation of, 297-298, 298f, 300f
denaturation mapping of, 1012
double helix of, 288-290, 289f, 290f. See also DNA structure
supercoiling and, 985-994, 987f. See also DNA, supercoiling of
in transcription, 1058f
underwinding of, $\mathbf{9 8 7}, 987 \mathrm{f}$
unwinding of/rewinding of, 297-298, 297f, 298f, 1012-1013, 1013f. See also DNA replication
variations of, 290-291, 291f
double-strand breaks in
in recombination, 1043-1046, 1052f
repair of, 1038-1046, 1044f, 1052f
early studies of, 288-290, 288f-290f
enzymatic degradation of, 1013
eukaryotic, 981-983, 982t
evolutionary stability of, 29
folding of, 998-999
highly repetitive, 984
histones and, 994-1000, 996f
human, 981-983, 982t
hybridization of, 298-299, 300f
hydrophilic backbone of, 285, 285f, 288
junk, 1096b
light absorption by, 297-298
linker, in nucleosome, 995f
linking number of, 988-989, 988f, 996
topoisomerases and, 989-990, 991f
melting point for, 298, 298f
methylation of, 302
mitochondrial, 765-768, 765f, 983, 1108b-1109b See also mitochondria; mtDNA aging and, 766
mutagenic changes in
from alkylating agents, 301f, 302
from nitrous acid, 301, 301f
from radiation, 300 , 301f
noncoding regions of, 342-344, 984. See also introns
nontemplate (coding) strand of, in transcription 1058f, 1059
nucleosomes and, 994, 995-1000, 996f, 997f, 1000f, 1175-1176. See also nucleosomes
nucleotides of, 282t, 283-284, 283f. See also nucleotide(s)
packaging of, 979, 979f, 985-994, 994-995. See also DNA, supercoiling of
in bacteria, 1002-1003, 1003f
in eukaryotes, $994-1000$, 1001f
phosphodiester linkages in, 284-285, 285f
recognition sequences in, 315,315 t
recombinant, 314. See also cloning
regulatory sequences in, $\mathbf{9 8 0}$
relaxed, $\mathbf{9 8 5}, 987 \mathrm{f}, 989 \mathrm{f}, 1019$
repetitive, 984-985
centromeric, 984, 984f
telomeric, 984-985, 984f
replication of, 30, 31f
satellite, $\mathbf{9 8 4}$
simple-sequence, 344,984
as single molecule, 30
size of, 981-983, 982f-983f
specific linking difference for $\mathbf{9 8 8}$
stability of, 35
strand length in, 981-983, 982f-983f
supercoiling of, 985-994, 987f, 996, 996f
chromatin assembly and, 997f
condensins and, 1002, 1002 f
degree of, 987 f
negative, 989, 989 f
plectonemic, 992-993, 994f
positive, 989, 989f
solenoidal, 993, 994f, 996
topoisomerases and, 989-990, 990f, 991f
in transcription, 1058 f
superhelical density of, $\mathbf{9 8 8}$
superhelix of, 987 f
synthesis of. See DNA replication
template strand of, in transcription, 1058f, 1059, 1059f
topoisomers of, $\mathbf{9 8 9}, 990,990$ f
topology of, 986
in transcription, 31f
as transcriptional template, 1058f, 1059
viral, 980-981, 982t, 1026-1027
weak interactions in, 286-287, 287f, 289, 289f, 290f
yeast, $981,982 \mathrm{t}$
Z-form, 291, 291f
DNA amplification, by polymerase chain reaction, 327-331, 328f
DNA-binding domains/motifs
in gene regulation, 1160-1163, 1162f
helix-turn-helix, 1162
homeodomain, 1163, 1163f
zinc finger, 1162-1163, 1163f
DNA-binding proteins, 1017, 1019f
DNA cloning. See cloning
DNA-dependent RNA polymerase, 1058-1060, 1058f, 1157
DNA-dependent transcription, 1058-1069 See also transcription
DNA fingerprinting, 329-330
DNA genotyping, 329b-330b
DNA glycolases, in base-excision repair, 1030-1031, 1032f
DNA gyrase, 1019t, 1023t
DNA helicase II, in mismatch repair, 1030
DNA helix. See DNA, double helix of
DNA hybridization, cDNA in, 299, 300f, 1087
DNA library, 332, 332f, 1096b-1097b
specialized, $334,335 \mathrm{f}$
DNA ligases, 314, 315f, 315t, 317f, 1018, 1023t
in mismatch repair, 1030, 1031f
in nick translation, 1017f, 1018, 1023, 1023f, 1028t, 1031-1032, 1033f
DNA metabolism, 1009-1052. See also DNA recombination; DNA repair; DNA replication
nomenclature of, 1010
overview of, 1009-1010
DNA microarrays, 337-338, 337f, 338f
DNA mismatch repair, 302, 1028-1030, 1029f-1031f
DNA photolyases, 1028t, 1032-1033, 1034f
reaction mechanism of, 1034f
DNA polymerase(s), 303f, 315t, 327
in base-excision repair, 1037
dissociation/reassociation of, 1014
$5^{\prime} \rightarrow 3^{\prime}$ exonuclease activity of, 1017
functions of, 1016-1017, 1023t
in nick translation, 1017
processivity of, $\mathbf{1 0 1 4}$ proofreading by, 1015, 1016f
properties of, 1016t, 1018t
reaction mechanism of, 1014f
in replication, 1013-1017. See also replication in bacteria, 1011-1025
in eukaryotes, 1026
RNA-dependent, 1085-1094, 1086f
template for, 1014f
$3^{\prime} \rightarrow 5^{\prime}$ exonuclease activity of, 1015f, 1017
types of, 1016-1017, 1016t, 1018t viral, 1026-1027

DNA polymerase I, 1016, 1016f, 1017
discovery of, 1013
functions of, 1016, 1023t
large (Klenow) fragment of, $\mathbf{1 0 1 7}$
in nick translation, 1017, 1017f
structure of, 1016f, 1017
DNA polymerase II, 1016, 1016t
DNA polymerase III, 1016, 1016t, 1017, 1018t, 1021-1022, 1023f
functions of, 1023t
in mismatch repair, 1030, 1031f
subunits of, 1016t, 1017t, 1018f
DNA polymerase IV, 1016, 1037
DNA polymerase V, 1016, 1036-1037
DNA polymerase $\alpha, 1026$
DNA polymerase $\delta, 1026$
DNA polymerase $\eta, 1037$, 1037b-1038b
DNA polymerase $\boldsymbol{\iota}, 1037$
DNA polymerase $\lambda, 1037$
DNA primases, 1018, 1019t, 1021, 1022f
DNA profiling, 329-330
DNA recombination, 1038-1052
in bacteria, 1039-1041
branch migration in, 1040-1041, 1042f
crossing over in, 1043, 1043f-1044f
in DNA repair, 1039-1041, 1044f
double-strand break repair model for, 1043-1046, 1044f
in eukaryotes, 1041-1043
functions of, 1039
homologous genetic, 1038-1046
functions of, 1039, 1043
site-specific, 1038, 1046-1049, 1047f, 1048f
in immunoglobulin genes, 1049-1051, 1051f, 1052f
meiosis events and, 1039-1041, 1043f
site-specific, 1038, 1046-1049, 1047f, 1048f
transposition in, 1049, 1050f
DNA repair, 1027-1038
in bacteria, 1028t
base-excision, 1028t, 1030-1031, 1032f
cancer and, 1037b-1038b
cyclin-dependent protein kinases in, 486, 488, 488f
direct, 1032-1033, 1034f
DNA photolyases in, 1028t, 1032-1033, 1034f
error-prone translesion DNA synthesis in, 1034-1037, 1036t
mismatch, 302, 1015, 1028-1030, 1028t, 1029f-1031f
nick translation in, 1017, 1017f, 1018, 1023, 1024f, 1028t, 1031-1032, 1033f
nucleotide-excision, 1028t, 1031-1032, 1033f, 1037b-1038b
O^{6}-methylguanine-DNA methyltransferase in, 1033, 1035f
phosphorylation in, 486, 488, 488f
proofreading in, 1015, 1016 f
recombinational, 1039-1041, 1044f
SOS response in, 1035, 1036t, 1169-1170
TLS polymerases in, 1034-1037, 1037b-1038b
DNA replicase system, $\mathbf{1 0 1 7}$
DNA replication, 30, 31f, 1011-1027
accuracy of, 1015, 1016f
automated, 304, 304f, 305f
in bacteria, 1011-1025, 1013-1026, 1015-1025, 1015f-1025f
base pairing in, 1013, 1014f, 1015, 1015 f
base stacking in, 1013, 1014f
chain elongation in, 1013-1014, 1014f, 1019t, 1021-1022, 1021f-1024f, 1022f
directionality of
in bacteria, 1012-1013, 1013f
in eukaryotes, 1026
DNA-binding proteins in, 1017, 1019f
enzymology of, 1013-1017, 1014f, 1023t. See also DNA polymerase(s) and specific enzymes
error-prone translesion, 1034-1037, 1036t
in eukaryotes, 1025-1026
helicases in, 1017, 1020f
initiation of, 1019-1021, 1019t, 1020f
lagging strand in, 1013, 1013 f
synthesis of, 1021-1022, 1022f

DNA replication (Continued)
leading strand in, 1012, 1013 f
synthesis of, 1021-1022, 1022f
mistakes in, 1015, 1016 f
nick translation in, 1017, 1017f, 1018, 1023,
1023f, 1024f
nucleophilic attack in, 1013, 1014f
Okazaki fragments in, 1012-1013, 1013f,
1021-1022, 1021f, 1022f
phosphorylation in, 1013, 1014f
primer in, 1014, 1014f, 1017-1018
proofreading in, 1015, 1016f
rate of, in eukaryotes, 1025-1026
replication fork in, 1012, 1013f, 1021-1023
in bacteria, 1012, 1013f, 1021-1023, 1021f
in eukaryotes, 1025-1026, 1030f
repair of, 1039-1041, 1044f. See also DNA repair
stalled, 1024-1025, 1036f
replisomes in, 1017, 1022, 1023
reverse transcriptase in, 1086-1087
RNA-dependent, 1085-1094. See also RNA replication
rules of, 1011-1013
semiconservative, 1011
site-specific, 1046-1049
strand synthesis in, 1013, 1013f
structural aspects of, 289-290, 290f
template for, 1011, 1014f
Ter sequences in, 1023-1025, 1024f
termination of, in bacteria, 1023-1025
topoisomerases in, 989-990, 990, 990f, 991f, 999, $\mathbf{1 0 1 7}$
Tus-Ter complex in, 1023-1025, 1024f
vs. transcription, 1058
DNA replication origin (oriC), 1020-1021, 1020f in bacteria, 1012
DNA sequences, in genome, 342-345, 343f, 344f
DNA sequencing, 302-304, 303f, 304f
automated, 304, 304f
next-generation, 304, 339-342, 341f, 342f
pyrosequencing, 339-341, 341f
reversible terminator, 341-342, 342f
shotgun, 341-342
DNA structure, 30-31, 287-293
antiparallel orientation in, $\mathbf{2 8 9}$
in bacteria, 1003f, 1037b-1038b
base stacking in, 286-287, 288-289, 289f, 290f
chromosomal scaffolds and, 999, 1000f
compacted, $994-1000,1002 \mathrm{f}$
cruciforms in, 292, 292f, 989, 990f
early studies of, 288-290, 288f-290f
folding in, 998-999, 1000f
functional correlates of, 288, 289-290, 290f
hairpins (loops) in, 292, 292f, 999, 1000f
in replication fork, 1012, 1012 f
helical. See DNA, double helix of
Hoogsteen positions/pairings in, 292, 293f
inverted repeats in, 291-292, 292f
linking number and, 988-989, 988f, 996
major/minor groove and, 289, 289f
mirror repeats in, 292, 292 f
palindromes in, 291-292, 292f
primary, 287-288
ribbon model of, 989 f
secondary, 287
strand complementarity in, 289-290
strand separation in, 987-989, 987f
supercoiling and, 985-994. See also DNA, supercoiling of
tertiary, 288,979

tetraplex, $\mathbf{2 9 2}$

three-dimensional, 290-291
topoisomerases and, 989-990, 990f
triplex, 292, 293f
twist in, 989
underwinding and, 987, 987f
variations in, 290-293, 291f
Watson-Crick model for, 288-290, 289f, 290f
writhe in, $\mathbf{9 8 9}$
x-ray diffraction studies of, 288, 289, 289f

DNA synthesis. See DNA replication
DNA transposition. See transposition
DNA unwinding element (DUE), 1019
DNA viruses, 980-981, 1026-1027
DnaA protein, in replication initiation, 1019t, 1020, 1020f
DnaB helicase
in chain elongation, 1022 f
in mismatch repair, 1031f
in replication initiation, 1019t, 1020, 1020f, 1021-1022, 1023t
DnaC protein, in replication initiation, 1019t, 1020, 1020f
DnaG protein, 1019t, 1021, 1023t
DnaK/DnaJ, in protein folding, 147
DNases, $\mathbf{1 0 1 3}$
Dobzhansky, Theodosius, 32
dodecanoic acid, 358t
Doisy, Edward A., 374, 375f
dolichols, 375, 375s
domains, 137
microdomains, 398-399
dopamine, 909
double-displacement mechanism, 207, 207f
double helix, 30, 31f
DNA, 288-290, 289f, 290f. See also DNA structure
supercoiling and, 985-994, 987f. See also DNA, supercoiling of
in transcription, 1058f
underwinding of, 987, 987f
unwinding of/rewinding of, 297-298, 297f, 298f, 1012-1013, 1013f. See also DNA replication
variations of, 290-291, 291f
RNA, 294-295, 294f, 295f
double-reciprocal plot, 203, 204b
for enzyme inhibitors, 209b
double-strand break
error-prone translesion DNA synthesis repair for, 1046
in recombination, 1043-1046, 1044f, 1051, 1052f
recombinational DNA repair for, 1039-1041, 1044f
double-strand break repair model, 1051
Down syndrome, 1045b
doxorubicin (Adriamycin), 993b, 993s
Drosophila melanogaster
development in
gene regulation in, 1186-1191
pattern-regulating genes in, 1188-1191
genome of, 981, 982t
life cycle of, 1186-1187, 1189f
drug metabolism, cytochrome P-450 in, 844b, 943
drug resistance
ABC transporters and, 413-414
plasmids in, 981
drug therapy. See specific drugs
dTMP (deoxythymidine 5^{\prime}-monophosphate), 283s
dynamic steady state, 21
dyneins, 179

E

E° (standard reduction potential), $\mathbf{5 3 0}$
of biologically important half-reactions, 531 t in calculating free-energy change, 531-532 measurement of, 530
E (exit) binding site, ribosomal, 1128
E. coli. See Escherichia coli

E1/2/3 enzymes, in protein degradation, 1147, 1147f, 1148
eating, hormonal control of, 960-968
Edelman, Gerald, 175
editing, mRNA, 1075-1076, 1111-1113
Edman, Pehr, 98
Edman degradation, 98-100, 98f
effectors, 1157
Ehlers-Danlos syndrome, 130
eicosanoic acid, 358t
eicosanoids, 371-372, 371f, 845, 933t, 935.
See also leukotriene(s); prostaglandin(s); thromboxane(s)
in signaling, 847
synthesis of, 845-847, 846f
eicosatrienoate, synthesis of, 842 f
eIF4E binding proteins, 1184
Einstein, Albert, 222
elasticity, of enzyme, 597b
elasticity coefficient $(\varepsilon), \mathbf{5 9 7}, \mathbf{5 9 7 b}$
enzyme response and, 597, 597f
elastin, proteoglycans and, 266
electrical charge
of amino acids, 84
pH and, 84
electrical potential energy, of proton-motive force, 744f
electrochemical gradient (electrochemical potential), 403, 403f
free-energy change for, equation in, 744
in membrane polarization, 464-465, 464f
electrogenic transport, $\mathbf{4 1 0}$
electrolytes, plasma levels of, 950
electromagnetic radiation, $771,771 \mathrm{f}$
electromotive force (emf), $\mathbf{5 2 8}$
electron(s)
reduction potential affinity for, 530-531, 530f, 531t
transfer of, 528-529
electron acceptors
pyruvate as, in lactic acid fermentation, 563-565
universal, 734-735, 734t
electron carriers. See also electron-transfer reactions, mitochondrial
soluble, NADH and NADPH as, 532-535, 533f, 534t
specialized, 532
universal, coenzymes and proteins as, 532
electron flow
light-driven, 776-786
acting in tandem, 779-781
antenna chlorophylls in, 778, 781-782, 781f in chloroplasts, 770
cytochrome $b_{6} f$ complex and, 781-783, 782 f
kinetic and thermodynamic factors in, 778-779
reaction centers in, 776-778, 778f
water split in, 784-785
proton gradient in, 786-787, 788f
through cytochrome $b_{6} f$ complex, 782 f
electron pushing, $216,216 \mathrm{f}$
electron-transfer reactions
ATP synthesis in, 747-750, 748f
mitochondrial, 732-747
alternative mechanism of NADH oxidation in, 746, 746b-747b
Complex I, 738, 738t, 739 f
Complex II, 740, 740f
Complex III, 740-742, 741f
Complex IV, 742-743, 742f
in multienzyme complexes, 737-743
in plants, 746
through membrane-bound carriers, 735-737, 736f, 737f, 737t
protein components of, 737-738, 738t
proton gradient conservation of energy in, 743-745, 744f
universal electron acceptors in, 734-735, 734t
electron-transferring flavoprotein (ETF), 674
electronegativity, atomic, 216
electroneutral transport, 409
electrophiles, in enzymatic reactions, 216 f , 512, 512f
electrophoresis, 92-95, 93 f
in cloning, 320
in DNA sequencing, 302-304, 303f, 304f, 305f
polyacrylamide gel, 93-94, 93f
pulsed field gel, $\mathbf{3 2 0}$
two-dimensional, $\mathbf{9 4}, 95 \mathrm{f}$
electroporation, $\mathbf{3 1 8}$
electrospray ionization mass spectrometry, 101, 101f
electrostatic interactions, with water, 50, 51f
elements, essential, 12, 12 f
elimination reaction, 513-514, 514f
Elion, Gertrude, 923, 923f, 1026
ELISA, 178f, 179, 932
ellipticine, 993b, 993s
elongation, 1129
elongation factors, $\mathbf{1 1 2 9}$
transcriptional, 1066t, 1068
Elvehjem, Conrad, 535
Embden, Gustav, 544
embryonic development, gene regulation in, 1186-1191
gene silencing in, 1185-1186, 1185f
embryonic stem cells, $\mathbf{1 1 9 2}$
enantiomers, 17, 17f, 77, 244
monosaccharide, 244, 244f
encephalomyopathy, mitochondrial, 767-768
endergonic reactions, 23, 25
coupled with exergonic reactions, 24-25, 24f
Endo, Akira, 872b
endocrine glands, $\mathbf{9 3 3}, 936-937,936 f$
hormone release from, 936-937, 938f. See also hormone(s)
endocytosis, $\mathbf{8}$
receptor-mediated, 868-869, 868f, 1146-1147, 1146 f
endogenous pathways, $\mathbf{8 6 7}$
endomembrane system, $\mathbf{8}$
endonucleases, 1013
in mismatch repair, 1029-1030
restriction. See restriction endonucleases
endoplasmic reticulum, 6, 7 f
fatty acid synthesis in, 840f, 842, 843
lipid metabolism in, 840f, 842, 843
ω oxidation of fatty acids in, 684-685, 685f
protein targeting in, 1140, 1141f
endosymbiosis, $\mathbf{3 6}$
in eukaryotic evolution, 36, 37f
endosymbiotic bacteria, chloroplast evolution from 788-789
energy, 20-29
activation, 27, 27f, 193, 193f
in membrane transport, 403-404, 404f
rate constant and, 194
ATP, 306, 306f, 522-523, 523f, 577f
binding, 195
biological transformations of, in thermodynamics, 506-507, 507t
bond dissociation, 48
cellular, in oxidative phosphorylation regulation, 760
conservation of, 21, 21f
for dissolution, 51-52
entropy and, 23, 25
free. See free energy (G)
Gibbs free, 506
informational macromolecules requirement for, 524-525
interconversion of, 21f
light, chlorophyll absorption of, 771-773, 772f, 773f
oxidative, in citric acid cycle, 647-649, 649f, 649t
potential, of proton-motive force, 744
of protein conformation, 116
for protein folding, $116,146,146 \mathrm{f}$
proton gradient conservation of, in mitochondrial electron-transfer reactions, 743-745, 744f
solar, 769, 770f
sources of, 21
energy-coupled reactions, 24-25, 24f
energy metabolism, 588 f
enolase, $\mathbf{5 5 4}, 593 \mathrm{t}$
catalytic activity of, 220, 221f
reaction mechanism of, 221f
enoyl-ACP reductase, $837 \mathrm{f}, \mathbf{8 3 8}$
trans- Δ^{2}-enoyl-CoA, 673
enoyl-CoA hydratase, 674
Δ^{3}, Δ^{2}-enoyl-CoA isomerase, $\mathbf{6 7 7}$
enterohepatic circulation, $\mathbf{8 6 9}$
enteropeptidase, $\mathbf{6 9 8}$
enthalpy $(H), \mathbf{2 3 , 5 0 6}$
enthalpy change $(\Delta H), 506-507$
units of, 507t
entropy (S), 21f, 22b-23b, 23, $\mathbf{5 0 6}$
increase in, 23
negative, 23
protein stability and, 116
solubility and, 51, 53, 53f
entropy change $(\Delta S), \mathbf{2 3}$
entropy reduction, in enzymatic reactions, 198, 198f
env, 1086f, 1087, 1088
enzymatic pathways, 28
enzymatic reaction(s), 27-28, 27f, 28f, 192-200
acid-base catalysis in
general, 199, 199f
specific, 199
activation energy of, $\mathbf{1 9 3}, 195$
binding energy of, 195-197
bisubstrate, 206-207, 207f
chymotrypsin-catalyzed, 200, 210f, 214-218, $215 f-217 \mathrm{f}$
coordinate diagram for, 192-193, 193f
covalent interactions in, 195
desolvation in, 198, 198f
double-displacement (Ping-Pong) mechanism in, 207, 207f
electron pushing in, 216, 216f
enolase-catalyzed, 220, 221f
entropy reduction in, $\mathbf{1 9 8}, 198 \mathrm{f}$
equilibria of, 192-194, 194t
evolution of, 33f, 34-35
first-order, 194
free-energy change in, 25-26, 192, 193f, 194, 194t, 197-198
ground state in, $\mathbf{1 9 2}$
hexokinase-catalyzed, 219-220, 220f
inhibition of
competitive, 207-208, 208f, 209f, 209t
reversible, 207-210, 208f, 209f, 209t
intermediates in, 217
lysozyme-catalyzed, 220-222, 222f, 223f
mechanism-based inactivators in, $\mathbf{2 1 0}$
metal ion catalysis in, 200
noncovalent interactions in, 195
pre-steady state, 202
in protein purification, 93t, 95-96, 95f
rate of, 192-194, 193f. See also enzyme kinetics
acceleration of, 192-194, 194t
measurement of, 207
rate constants for, 194, 203-205, 205t
rate equation for, $\mathbf{1 9 4}$
rate-limiting steps in, $\mathbf{1 9 4}, 203-205$
reaction intermediates in, 193
regulation of, 226-235, 589-592. See also enzyme(s), regulatory
metabolic, 592-593
in RNA processing, 1082-1085, 1082f-1084f
steady-state, 202, 203-205
steps in, 216-217, 216f-217f, 217 f
suicide inactivators in, 210
transition-state, 27, 193, 195-197, 217
weak interactions in, 53, 53f, 54, 195-197, 196f
enzymatic reaction mechanisms, 216-217, 216f-217f
chymotrypsin, 200, 210f, 215f-217f
definition of, 216
enolase, 220, 221f
hexokinase, 219-220, 220f
lysozyme, 220-222, 222f, 223f
Phillips, 221-222
enzyme(s), 27, 189-237, 190. See also specific enzyme, e.g., glucose 6-phosphate dehydrogenase
acetylation of, 229
active site of, $\mathbf{1 9 2}, 192 \mathrm{f}$
activity of, 93t, 95-96, 96f, 192-200
catalytic, 27-28, 28f, 192-200. See also catalysis; enzymatic reaction(s)
evolution of, 33f, 34-35
specific, 93t, 95-96, 96f
adenylation of, 229 f
ADP-ribosylation of, 229, 229f
allosteric, 226-228, 227f, 228f
conformational changes in, 226-227, 227f
kinetics of, 227-228, 228f
in carbohydrate metabolism, 592-593, 593t
classification of, 190-191, 191t
in coagulation, 232-235, 232f, 233f
coenzymes and, $\mathbf{3}, \mathbf{1 9 0}, 191 \mathrm{t}$. See also
coenzyme(s)
cofactors for. See enzyme cofactor(s)
contributing to flux, 596-597, 596f
debranching, 560, 614
definition of, 190
early studies of, 190
elasticity of, 597b
in fatty acid oxidation, 668-672, 670f-672f, 684f
evolution of, 683-684
functions of, 27-28, 28, 28f
glycine cleavage, $\mathbf{8 9 4}$
hepatic, 939-943
in hydrolysis reactions, 65
methylation of, 229, 229f
in nitrogenase complex, 882-888, 886f, 887f
nomenclature of, 190-191, 191t, 844b
in nucleotide biosynthesis, chemotherapeutic agents targeting, 923-925, 923f, 924f
overview of, 189-191
pH of, 210f, 212-213
pH optimum of, $\mathbf{6 7}$
phosphorylation of, 229-231, 229f, 231t, 232f
prosthetic groups and, $\mathbf{1 9 0}$
in protein degradation to amino acids, 696-699, 698f
in protein folding, 147
proteolytic, regulation of, 231-232, 232f
purification of, 93t, 95-96
in pyruvate dehydrogenase complex, 635-636
receptor, 453-460. See also receptor enzymes
in recombinant DNA technology, 315t
in redox reactions, $844 \mathrm{~b}-845 \mathrm{~b}$
regulatory, 226-235
allosteric, 226-228, 227f, 228f
complex, 235
covalent modification of, $\mathbf{2 2 6}, 228-235,229$ f, 231t, 232f
functions of, 226-227
kinetics of, 227-228, 228 f
phosphorylation and, 229-232, 229f, 231t, 232f
proteolytic cleavage and, 231-234, 232f
unique properties of, 226
response of
elasticity coefficient and, 597f, 598b-599b
to metabolite concentration, $593,593 \mathrm{t}$
restriction. See restriction endonucleases
RNA, 34-35, 34f, 1069, 1070-1075, 1082-1085, 1082f-1084f, 1092-1094, 1117b
selectivity of, 28
in signaling, 434, 434f
specificity of, $\mathbf{1 9 7}$
structure of, 190
turnover number for, 205, 205t
ubiquitination of, 229
in urea synthesis, 704-706, 705f, 706f
genetic defects and, 709-710, 710f
uridylylation of, 229f
enzyme activity
change in, in metabolite flux, 596f, 597, 597f
factors determining, 589-592, 590f
enzyme cascade, 434, 434f, 621
MAPK, 455, 456 f
in plants, $475-476,475 \mathrm{f}$
enzyme cofactors(s), 190, 190t
adenosine as, 306-308, 307f
in amino acid catabolism, 712-715, 712f, 713f
lipids as, 370, 374-375
enzyme inhibitors, 207-212, 208f, 209f
competitive, 207-208, 208f, 209f, 209t
irreversible, 210-212
mixed, 208, 208f, 209f
reversible, 207-208, 208f, 209f, 209t
uncompetitive, 208, 208f, 209f, 209t
enzyme kinetics, 200-213
comparative, 205
initial velocity and, 200-201, 201f
maximum velocity and, 201-205, 201f
mechanism-based inactivators in, $\mathbf{2 1 0}$
Michaelis-Menten, 203-207
Michaelis-Menten equation for, 203, 203f
pH and, 210f, 212-213
rate equation for, $\mathbf{2 0 3}, 203 \mathrm{f}$
rate measurement and, 207
of regulatory enzymes, 227-228, 228f
steady-state, 202, 203-205
steady-state assumption and, 202
substrate concentration and, 201f, 203f
reaction rate and, 201-203, 201f, 203f
for regulatory enzymes, 228, 228f
suicide inactivators in, 210, 211b-212b
transition-state, $\mathbf{2 7}, \mathbf{1 9 3}, 195-197,217$
enzyme-linked immunosorbent assay (ELISA) 178f, 179, 932
enzyme multiplicity, 900
enzyme-substrate complex, 192, 192f, 195-197
active site in, $\mathbf{1 5 8}, \mathbf{1 9 2}, 192 \mathrm{f}$
binding energy of, $53,53 \mathrm{f}, 54,55 \mathrm{f}$,

195-197

rate acceleration and, 195-197
specificity and, 197-198
bisubstrate, 206-207, 207f
dissociation constant for, 204
induced fit in, 198, 219-220, 220 f
lock-and-key configuration in, 195-196, 195f
ordered water and, $53,53 \mathrm{f}$
substrate concentration in
reaction rate and, 201-203, 201f, 203f. See also enzyme kinetics
in regulatory enzymes, 203f, 228, 228f
in transition state, 195-197
turnover number for, 205, 205 t
weak interactions in, $53,53 \mathrm{f}, 54,195-197,196 \mathrm{f}$
epidermal growth factor receptor, 463
oncogenic mutations in, 489, 490b
epigenetics, 998b-999b
epimers, 245, 246f
epinephrine, 438s, $\mathbf{9 0 9}, \mathbf{9 3 4}$
cascade mechanism of, 622 f
in glucose metabolism, 958, 959t
in lipid metabolism, 958, 959t
as neurotransmitter vs. hormone, 930
regulation of, 438-446, 439f
as signal amplifier, 933
synthetic analogs of, 439f
epinephrine cascade, 443-444, 444f
epitope, $\mathbf{1 7 5}$
epitope tagging, 333-334, 335, 335f
equilibrium, 25
equilibrium constant $\left(K_{\text {eq }}\right), 25,59,194$
for ATP hydrolysis, 511
calculation of, 507-508, 511
in carbohydrate metabolism, $593,593 \mathrm{t}$
free-energy change and, 194, 194t, 507-508, 508t, 509t
for two coupled reactions, 511
for water ionization, 59
equilibrium expression, 160
erbB2 oncogene, 489
ergocalciferol (vitamin D_{2}), 373, 373f
ERK, 455, 455f
erlotibin, 491b
error-prone translesion DNA synthesis,
1034-1037, 1036t
erythrocytes, $\mathbf{9 4 9}, 950$ f
aquaporins of, 418-419, 419t
chloride-bicarbonate exchanger in, 398f,
407-409, 407f
culling of, 270
formation of, 163
G6PD-deficient, Plasmodium falciparum inhibition of, 576 b
in glucose transport, 406f, 408f
glucose transport in, 405-407, 405f, 406f
glycolytic reactions in, free-energy changes of, 570t
glycophorin in, 390, 390 f
membrane proteins of, 390 , 390 f
shape of, 173 f
synthesis of, JAK-STAT pathway in, 457-458, 457f
erythropoietin receptor, 457-458, 457f
erythrose, 246s
erythrose 4-phosphate, in Calvin cycle, 806, 806f, 807f
erythrulose, 246 s
ES complex. See enzyme-substrate complex
Escherichia coli. See also bacteria
citric acid and glyoxylate cycles in, 658-659
cloning in, 314-325
DNA in, 981, 982t, 1002-1003, 1003f
packaging of, 1002-1003, 1003f
topoisomerases and, 990
DNA replication in, 1015-1025, 1015f-1025f
fatty acids in, 396t
synthesis of, 834-839
$\mathrm{F}_{\mathrm{o}} \mathrm{F}_{1}$ complexes of, 766
genetic map of, 1010f
genome of, 981
inorganic polyphosphate in, 527
lac operon in, 1159-1160, 1159f
regulation of, 1165-1167, 1166f
lactose transporter in, 416, 416f, 416t
lipopolysaccharides of, 268
membrane proteins of, structure of, 393f
metabolism in, 28-29
metabolome of, 591, 591f
as model organism, 4-5
phospholipid synthesis in, 853-855, 854f
protein folding in, 147, 148f
protein targeting in, 1145-1146, 1146f
recombinant gene expression in, $322,322 \mathrm{f}$
ribosome of, 7f, 1115-1117, 1116f
RNase P of, 295f
signaling in, 473, 473f
structure of, 4-6, 7f
transcription in, 1058-1064, 1058f
Escherichia coli expression vector, 322, 322f
Escherichia coli plasmid vector, 317-319, 318f, $319 f$
ESI MS, 101, 101f
essential amino acids, $\mathbf{7 0 9}, \mathbf{8 9 2}$. See also amino $\operatorname{acid}(\mathrm{s})$
essential fatty acids, $\mathbf{8 4 5}$
esters
oxygen, free-energy hydrolysis of, 521-522, 522f
standard free-energy changes of, 509t
estradiol, 372f, 372s, 475s, 935
estrogens, $372,372 \mathrm{f}, 372 \mathrm{~s}, 475 \mathrm{~s}, 935$
synthesis of, $874,874 \mathrm{f}$
ETF:ubiquinone oxidoreductase, 739f, 740
ethane, 529s
ethanol. See alcohol(s)
from biomass, 816b-817b
ether lipids, $\mathbf{3 6 4}, 365$ f
ethylene receptor, in plants, 475 f
etoposide (Etopophos), 993b, 993s
euchromatin, 998b, 1175
Eukarya, 4, 4f
eukaryotes, $\mathbf{3}$
cell structure in, 6-8, 7f
evolution of, 36-37, 36f
eukaryotic DNA, 981-983, 982t
evaporation, 48t, 49
evolution, 32-39
adaptation to aqueous environments in, 69-70
adenine in, 1093
amino acid sequences in, 104-108, 106f-108f
amino acid substitutions in, 106
of bacteria, 35-36, 36f, 788-790
cellular specialization in, 36-37
of chloroplasts, 788-789
divergent, 644
of β-oxidation enzymes, 683-684 endosymbiosis in, 36, 37f, 765-766, 788-789 eukaryotic, 36-37, 36f, 37f in Galapagos finches, 1194b-1195b genetic divergence in, 38
genome sequencing and, 349-350, 349f, 350f
genomics and, 37-38, 38t, 345-347, 346f, 349-350
horizontal gene transfer in, 106
of immune system, 1049-1051
in vitro, 1092-1094, 1095b-1096b, 1117b
introns in, 1088-1089
Miller-Urey experiment in, 33-34, 33f
mitochondrial, 36, 37f
from endosymbiotic bacteria, 765-766
molecular, 104-108
amino acid sequences and, 104-108, 106f-108f
amino acid substitutions in, 106
homologs in, 106-107
horizontal gene transfer in, 106
of molecular parasites, 1094
mutations in, 32-33, 32f, 37-38, 1194b-1195b
natural selection in, 33
nucleic acids in, 33-34, 1092-1094
photosynthesis in, 35, 37f, 788-790, 791f
prebiotic, 33-34
prokaryotic, 35-36, 36f
protein families and, $\mathbf{1 4 0}$
protein homologs in, 106-107
proteins in, 1092-1094
retrotransposons in, 1088-1089
retroviruses in, 1088-1089
RNA world hypothesis and, 34-35, 34f, 1093-1094
time line of, 36-37, 36f
transcription in, 1092-1094
evolutionary trees, 107-108, 108f
excinucleases, 1032
excited state, $\mathbf{7 7 1}$
exciton, $\mathbf{7 7 1}$
exciton transfer, $\mathbf{7 7 1}$
in photosynthesis, 774-775, 775
exenatide (Byetta), 970t
exergonic reactions, $\mathbf{2 4}, 25,27$
in citric acid cycle, 655
in conversion of pyruvate to phosphoenolpyruvate, 570-572, 570t, 571f, 572f
coupled with endergonic reactions, 24-25, 24f
exit (E) binding, ribosomal, $\mathbf{1 1 2 8}$
exocytosis, $\mathbf{8}$
exogenous pathways, $\mathbf{8 6 6}$
exome, 340b
exons, 343-344, 343f, 984, 1070
transcription of, 1070
exonuclease(s), 1013
in mismatch repair, $1030,1031 \mathrm{f}$
exonuclease III, 315t
expression vectors, 321-325
extracellular matrix, 260
glycosaminoglycans in, 260-262, 261f, 262f, 264-266
proteoglycan aggregates in, 266, 266f
proteoglycans in, 263, 264-266, 266f
extrinsic pathway, $\mathbf{2 3 3}$

F
F-actin, 180f, 181
in muscle contraction, 182
F_{1}-ATPase, $\mathbf{7 5 0}$
structure of, 760, 760 f
F_{1} component, of ATP synthase, 750,751
stabilization of ATP relative to ADP on, 750-751, 751f
F-type ATPase, 412-413, 413f. See also ATP synthase(s)
Fab fragment, 175, 176f, 177f
Fabry disease, 369b
facilitated diffusion, 403-404, 404f. See also transporter(s)
factor VII, $\mathbf{2 3 4}$
factor VIIa, 234
factor VIII, deficiency of, 234, 235f
factor VIIIa, 233, $\mathbf{2 3 4}$
factor IX, $\mathbf{2 3 4}$
factor IXa, $\mathbf{2 3 4}$
factor X, $\mathbf{2 3 4}$
factor Xa, 234
factor XI, 234
FAD (flavin adenine dinucleotide), 307s, 536s
familial HDL deficiency, $\mathbf{8 7 4}$
familial hypercholesterolemia, 868, 871-873, 872b-873b
Fanconi-Bickel disease, 617t
Faraday constant, 410, 507t
farnesyl groups, membrane attachment of, 394f
farnesyl pyrophosphate, $\mathbf{8 6 1}$
in cholesterol synthesis, 862 f
farnesylation, of amino acid residues, 1136, 1137f
Fas receptor, in apoptosis, 493, 494f
fast-twitch muscle, 944
fasting state, glucose metabolism in, 955-956, 955f, 957f, 958f
fat(s)
body. See also adipose tissue; body mass
heat generated by, in oxidative phosphorylation regulation, 762-763, 763f
metabolic pathways of, 942t
rancid, 361
fat cells. See adipocytes
fat-STATs, 963
fatty acid(s), 357-362. See also lipid(s); triacylglycerol(s)
activation and transport of, 670-672, 671f
as amphipathic compounds, $52-53$, 52 f
analysis of, $377 \mathrm{f}, 378$
body stores of, 956 t
desaturation of, 842-845, 842f, 843f
double bonds of, 357-358, 358t
in E. coli cells, 396t
essential, 845
free, 359-360, $\mathbf{6 6 9}$
in glycerophospholipids, 363-365
as hydrocarbon derivatives, 357
as lipid anchors, 394, 394f
lysosomal degradation of, 368, 368f
melting point of, 358t, 359
mobilization of, 849-850, 850f, 943-944
glucagon in, 955-956
nomenclature for, 357-359, 357f, 358t
omega-3, 359
omega-6, 359
packing of, 359, 359 f
physical properties of, 358t, 359-360
polyunsaturated, $\mathbf{3 5 9}$
reesterification of, 849-850
saturation of, 361, 361f
in signaling, 847
solubility of, 358t, 359
structure of, 357-359, 358t
synthesis of, 833-845
trans, $361,362 \mathrm{t}$
in triacylglycerols, 359f, 360-361, 360f, 361f. See also triacylglycerol(s)
fatty acid catabolism, 667-688
digestion, mobilization, and transport in, 668-672
ketone bodies in, 686-688
oxidation in, 672-686. See also fatty acid oxidation
fatty acid metabolism
in adipose tissue, 849-850, 850-852, 851f, 936f, 943-944, 957f, 958f
in brain, 949
cortisol in, 958-959
in diabetes mellitus, 559 f
epinephrine in, 958, 959t
in fasting/starvation, 957f, 958f
in liver, 942 , 943 f
in muscle, 944-948, 945f
pathways of, 942 t
fatty acid oxidation, 667, 672-686
α, 685-686
in peroxisomes, 685 f
β
in bears, 676 b
enzymes of, 683-684, 684f
in peroxisomes, 682-683, 683f
in plants, 683, 683f
steps in, 673-675, 673f
yielding acetyl-CoA and ATP, 674-675, 676t
complete, 677-678, 680b-681b
enzymes of, 669-672, 670f-672f
of monounsaturated fat, $677,677 \mathrm{f}$
odd-number, 677-678, 678 f
ω, 684-685, 685f
in endoplasmic reticulum, 684-685, 685f
of polyunsaturated fats, $677,678 \mathrm{f}$
regulation of, 678-679
stages of, 673f
of unsaturated fats, $677,677 \mathrm{f}, 678 \mathrm{f}$
fatty acid synthase, 834-839
active sites of, 834-836
associated proteins of, 836-838
in plants, 839
variants of, 834, 835 f
fatty acid synthesis, 943-944
acetoacetyl-ACP in, 837f, $\mathbf{8 3 8}$
acetyl-CoA carboxylase in, $\mathbf{8 3 3}, 834$ f 841, 842f
acetyl-CoA in, 833, 834f, 838-839, 951-952 acetyl-CoA-ACP transacetylase in, 837 f acyl carrier protein in, 836, 836f, 837 f
adipose tissue in, 943-944
in bacteria, 834-839, 843
trans- Δ^{2}-butenoyl-ACP in, 837f, $\mathbf{8 3 8}$
butyryl-ACP in, $837 \mathrm{f}, \mathbf{8 3 8}$
carbonyl group reduction in, 837f, 838-839
condensation in, 837f, 838
in cytosol, 839, 840f
dehydration in, 837f, 838
in diabetes mellitus, 849-850
double-bond reduction in, $837 \mathrm{f}, 838$
in endoplasmic reticulum, 840 f, 842,843
enoyl-ACP reductase in, $837 \mathrm{f}, \mathbf{8 3 8}$
fatty acid synthase in, 834-839
fatty acyl chain elongation in, 834, 842, 851f in hepatocytes, 843
β-hydroxyacyl-ACP dehydratase in, 837f, 838
insulin in, 951-952
β-ketoacyl-ACP reductase in, 837f, 838
β-ketoacyl-ACP synthase in, 837f, 838
malonyl/acetyl-CoA-ACP transacetylase in, $\mathbf{8 3 8}$ malonyl/acetyl-CoA-ACP transferase in, 837f malonyl-CoA in, 842
malonyl-CoA-ACP transferase in, 837 f
palmitate in, $834,837 \mathrm{f}, 842$, 842 f
palmitate synthesis in, 811f, 834, 838-839
in plants, 839, 840f
regulation of, 840-842, 842f, 849-850
steps in, 834, 837f, 838
in vertebrates, 842 f
in yeast, 842 f
fatty acyl-CoA, 670-671
conversion of fatty acids into, 670-671, 671f
in triacylglycerol synthesis, 848-849, 848f
fatty acyl-CoA dehydrogenase, genetic defects in, 682
fatty acyl-CoA desaturase, $\mathbf{8 4 3}$
fatty acyl-CoA synthetase, reaction mechanism of 670-671
Fc region, 175, 176f, 177 f
Fe-S reaction center, 777. See also iron-sulfur entries
feedback inhibition, $\mathbf{2 9}$
in purine nucleotide biosynthesis, $914-915,914 \mathrm{f}$ in pyrimidine nucleotide biosynthesis, 916, 916f sequential, 900
Fehling's reaction, 250b
FeMo cofactor, $\mathbf{8 8 3}$
fermentation, $\mathbf{5 4 4}, 565, \mathbf{5 6 5}, 566$ b
in beer brewing, $565,566 \mathrm{~b}$
ethanol (alcohol), 544, 548f, 565, 565f
foods produced by, 566-568
industrial-scale, 566-568
lactic acid, 546
pyruvate in, 563-565
thiamine pyrophosphate in, $\mathbf{5 6 5}, 567 \mathrm{f}, 568 \mathrm{t}$
ferredoxin, 778, 780, 886
ferredoxin-thioredoxin reductase, 811-812, 811f
ferredoxin: NADP^{+}oxidoreductase, $\mathbf{7 8 1}$
ferritin, 642b
ferrous ion, oxidation of, 528-529
fetus, hemoglobin-oxygen binding in, 172
fibrin, 233, 374
fibrinogen, 233, 374
fibroblast growth factor, 262f, 265, 265 f
fibroin, 130, 131f
fibronectin, proteoglycans and, 266, 266f
fibrous proteins, 125-130
coiled coils in, 126, 126 f
collagen as, 127-130, 127 f
fibroin as, 130, 131f
in hair, 126, 126f, 127b
α-keratin as, 126-127
polypeptide chain arrangement in, 125
structure of, 126f, 127-130, 127 f
functional correlates of, 126 t
secondary, 120-125, 120f, 122f-124f, 126t
tertiary, 96f, 97, 125-140, 127f, 130f, 131f.
See also tertiary protein structure
fight-or-flight response, epinephrine in, 958, 959t
filaments, cytoskeletal, 8-9, 8f
Fire, Andrew, 1185, 1185f
firefly bioluminescence cycle, 525b
first law of thermodynamics, 21
Fischer, Emil, 78, 195
Fischer projection formulas, 244, 245f, 247-248
5' cap, $\mathbf{1 0 7 0}$
5' end, 285, 305f
$5^{\prime} \rightarrow 3^{\prime}$ exonuclease activity, in DNA polymerases, 1017, 1017f
fixation, in nitrogen cycle, $\mathbf{8 8 2}$
flagella, 6 f
flagellar motion, 179
flavin adenine dinucleotide (FAD), 307s, 536s
flavin mononucleotide (FMN), 536f
flavin nucleotides, 535-537, 536t, 734-735
flavoproteins, 89t, 535-537, 536f, 536t, 734-735
electron-transferring, $\mathbf{6 7 4}$
flickering clusters, 48 , 52 f
flip-flop diffusion, of membrane lipids, 396-397, 396f
flippases, 396f, 397
floppases, 396f, 397
fluid mosaic model, 387, 387 f
fluorescence, $\mathbf{7 7 1}$
fluorescent resonance energy transfer (FRET), 448b-449b
L-fluoroalanine, 907
fluoroquinolones, 992b-993b
fluorouracil, 923, 924f
flux $(J), \mathbf{5 8 9}, \mathbf{5 9 7}, 598$ b-599b
enzymes contributing to, 596-597
glycolytic, 596 f
increased, metabolic control analysis prediction of, 598b-599b
metabolite, change in enzyme activity on, 596f, 597, 597f
response coefficient effect on, 598b-599b
flux control coefficient (C), 597, 597b
fMet-tRNA, in protein synthesis, 1127
posttranslational modification of, 1136
FMN (flavin mononucleotide), 536f
F_{o} component, of ATP synthase, 750
rotation of, 752-755, 755f, 756f
foam cells, $\mathbf{8 7 1}, 872 \mathrm{f}$
$\mathrm{F}_{0} \mathrm{~F}_{1}$ complex, of Escherichia coli, 766
folate deficiency, 713-714, 920
folate metabolism, as chemotherapy target, 924 f
folds, 133-140, 137, 139f-140f. See also protein folding
food
from fermentation, 566-568
trans fatty acids in, 361, 362t
footprinting, 1062b
Forbes disease, 617 t
forensic medicine, DNA genotyping in, 329-330
forkhead box other (FOXO1), 610, 610f
formaldehyde, 529 s
formic acid, 529s
N-formylmethionyl-tRNA ${ }^{\text {fMet }}$, in protein synthesis, 1127
posttranslational modification of, 1136

454 sequencing, 339-341, 341f
FOXO1 (forkhead box other), 610, 610 f
fraction, 89
fractionation
cellular, $8,8 \mathrm{f}, 57$
protein, 89-90, 90f
frameshifting, 1111
Framingham Heart Study, 872
Franklin, Rosalind, 288, 288 f
FRAP technique, 397f, $\mathbf{3 9 8}$
free energy $(G), \mathbf{2 5}, \mathbf{5 0 6}$
cell sources of, 507
enthalpy and, $\mathbf{2 3}$
entropy and, 23
Gibbs, 506
of hydrolysis, 517-519, 520f, 521-522, 521f, 521t, 522f
free-energy change $(\Delta G), \mathbf{2 5}-26, \mathbf{1 9 2}, 193 \mathrm{f}, \mathbf{5 0 6}$
in ATP hydrolysis, 518-519, 518f, 520f
calculation of, using standard reduction potential, 531-532
in carbohydrate metabolism, 593t
of electrochemical gradient, equation for, 744
in enzymatic reactions, 25, 192-193, 193f, 194, 194t, 197-198
of esterification, 509 t
of glycolytic reactions in erythrocytes, 570t
in membrane transport, 409-410
vs. standard free-energy change, 509. See also standard free-energy change
free fatty acids (FFAs), 359-360, 669. See also fatty acid(s)
free-living bacteria, nitrogen-fixing, 887-888
free radicals, 514-515, 515f
FRET (fluorescent resonance energy transfer),

448b-449b

fructokinase, $\mathbf{5 6 1}$
fructose, 243, 244s, 245, 246s
fructose 1,6-bisphosphatase, 572-573
light activation of, 811, 811f
fructose 1,6-bisphosphate, $\mathbf{5 4 9}, 549$ s
in Calvin cycle, $806,806 f$
cleavage of, $550,551 \mathrm{f}$
conversion to fructose 6-phosphate in gluconeogenesis, 570t, 572-573
in glycolysis, 544, 545 f
phosphorylation of fructose 6-phosphate to, 549-550
regulation of, 604, 605 f
fructose 1,6-bisphosphate aldolase, 550
fructose 2,6-bisphosphatase (FBPase), 604, 605f, 606
fructose 2,6-bisphosphate (F26BP), 605, 605s, 820, 820 f
in regulation of glycolysis and gluconeogenesis, 605-606, 605f
in sucrose synthesis, $\mathbf{8 2 0}, 820$ f
fructose 1-phosphate, 562s
fructose 1-phosphate aldolase, $\mathbf{5 6 2}$
fructose 6 -phosphate, $\mathbf{5 4 9}, 549 \mathrm{~s}$
in Calvin cycle, 806, 806f, 807f
conversion of fructose 1,6 -bisphosphate to, in gluconeogenesis, 570t, 572-573
conversion of glucose 6 -phosphate to, $549,549 f$
phosphorylation to fructose 1,6-bisphosphate, 549-550
in sucrose synthesis, $820,825 \mathrm{f}, 826$
β-d-fructofuranose, 247
fruit fly
development in
gene regulation in, 1186-1191
pattern-regulating genes in, 1188-1191
genome of, 981, 982t
life cycle of, 1186-1187, 1186f
ftz, 1190, 1190f
fucose, 249s
fumarase, 647
fumarate, 646
glucogenic amino acids and, 574t
oxidation of succinate to, 646-647
fumarate hydratase, 647
fumaric acid, 16-17, 16f, 16s
functional genomics, 38-39
functional groups, 12-14, 13f, 14f
furanoses, 247, 247f, 248f
fused gene, 334
fushi tarazu, 1190, 1190f
fusion proteins, 325, 333, 400
futile cycles, $\mathbf{6 0 1}, 850$
triacylglycerol cycle as, 850

G

G (free energy). See free energy (G)
G-actin, 180f, 181
G protein(s), 441b-443b
binary switches in, 438, 440f, 441b-443b
disease-causing defects in, 442b-443b
G_{i} (inhibitory), $\mathbf{4 4 6}$
$\mathrm{G}_{\text {olf }}, 481,482 \mathrm{f}$
$\mathrm{G}_{\mathrm{q}}, 447$
G_{s} (stimulatory), 438, 439f
adenylyl cyclase and, 438
self-inactivation of, 438
Ras-type, 441b, 455, 456f
in signaling, 437-452
small, 455
Ras-type, 441b, 455, 456f
in signaling, 455
stimulatory, $\mathbf{4 3 8}$
trimeric, $\mathbf{4 3 8}$
G protein-coupled receptor(s) (GPCRs), 436f, 437, 438-446, 482-484, 483f, 483t
β-adrenergic receptor as prototype of, 438-446
evolutionary significance of, 482-483
heptahelical, 438
G protein-coupled receptor kinases (GRKs), 446
G tetraplex, 292
GABA (γ-aminobutyric acid), 909
receptor for, as ion channel, 424
gag, 1086f, 1087
frameshifting and, 1111
gag-pol, frameshifting and, 1111
GAL genes, regulation of, 1181
Gal4p
acidic activation domain of, $\mathbf{1 1 8 1}$
in yeast two-hybrid analysis, 335-337
D-galactitol, 562s
galactokinase, $\mathbf{5 6 2}$
galactolipids, 365, 365 f
galactosamine, 249-250, 249s
galactose, 245, 246s
conversion of, to glucose 1-phosphate, 571f
epimers of, 246s
oxidation of, 249f, 250
galactose metabolism genes, regulation of, 1180-1182, 1180f
galactosemia, 562
β-galactosides, lac operon and, 1159-1160
Galápagos finches, beak evolution in, 1194b-1195b
γ chains, immunoglobulin, 176
ganglioside(s), 268, 366-367, 367f, 368f, $\mathbf{8 5 7}$
functions of, 367-368
lysosomal degradation of, 368,368 f
structure of, 366s
synthesis of, 857
ganglioside GM2, 367 f
in Tay-Sachs disease, 369b
gangliosidosis, 369b
gap genes, 1188, 1190
GAPs (GTPase activator proteins), 442b
gas constant (R), 507t
gas-liquid chromatography, 378
gases, solubility of, $51,51 \mathrm{t}$
gastric enzymes, 697, 698 f
gastric ulcers, 271f, 272
gastrin, 697
gastrointestinal tract, 698f
GATC sequences
in mismatch repair, 1029, 1029f, 1030, 1030f
in replication, 1020
Gaucher disease, 369b
GCN5-ADA2-ADA3, 1176t

GDGT (glycerol dialkyl glycerol tetraether), 365, 367f
GDP (guanosine 5'-diphosphate)
in β-adrenergic pathway, 438, 439f
in olfaction, 481, 482 f
in vision, 478-479, 479f
gel electrophoresis. See electrophoresis
gene(s), 281, 979-980. See also protein(s)
bacterial, 984
mapping of, 1010f
naming conventions for, 1010
caretaker, 492
chromosome population of, 981
cloned. See also cloning
alteration of, 323-325, 325f
expression of, 321-325, 322f
definition of, 281, 979-980, 980
evolutionary divergence of, 38
exons in, 984, 1070
transcription of, 1070
functional analysis of, 333-337. See also protein function
functional classification of, 38-39
functionally related, identification of, 334-337
fused, 334
gap, 1188, 1190
homeotic, 1188, 1190-1191, 1191f, 1192f
homologous, 38
housekeeping, 1156
immunoglobulin, recombination of, 1049-1051, 1051f, 1052f
introns in. See introns
jumping, 1039, 1049
maternal, 1188, 1188-1190, 1189f
mutation of. See mutations
naming conventions for, 1010
number in genome, 342
orthologous, 38, 333
pair-rule, 1188
paralogous, 38, 333
pattern-regulating, 1188-1191
reporter, 334
segment polarity, 1188, 1190
segmentation, 1188
size of, $980,981 \mathrm{t}$
stability, 492
gene expression
of cloned genes, 321-325, 322f, 325f
constitutive, 1156
induction of, 1156
recombinant, in bacteria, 322, 322f
regulated, 1156. See also gene regulation
repression of, $\mathbf{1 1 5 6}$
gene products
inducible, 1156
repressible, $\mathbf{1 1 5 6}$
gene regulation, 1155-1195
acidic activation domain in, $\mathbf{1 1 8 1}$
activators in, $\mathbf{1 1 5 7}$
antigenic variation in, 1174t
catabolite repression in, $\mathbf{1 1 6 5}$
chromatin in, 1175-1176
coactivators in, $\mathbf{1 1 7 8}$
combinatorial control in, 1158-1159, 1177, 1177 f
in development, 1186-1191
gene silencing in, 1185-1186, 1185f
DNA-binding domains in, 1160-1163,

1162f-1164f

effectors in, $\mathbf{1 1 5 7}$
enhancers in, $\mathbf{1 1 7 8}$
in eukaryotes, 1176-1195
steps in, 1179-1180
in glucose metabolism, 608-609, 609t
histone in, 1175-1176
hormonal, 471-472, 1182-1184, 1183f
host range, 1174 t
induction in, 1156, 1160
insulin in, 453-457, 456f, 624, 1184
mating-type switch in, 1174t
mRNA in, 1171-1173
negative, 1157, 1158f
operators in, $\mathbf{1 1 5 7}$
operons in, 1159-1160
regulation of, 1165-1167, 1166f
phase variation in, 1173, 1173f
positive, 1157, 1158f, 1176-1177
in eukaryotes, 1176-1177
principles of, 1156-1165
in prokaryotes, 1165-1174
proline-rich activation domains in, $\mathbf{1 1 8 2}$
protein-protein interaction domains in, 1163-1165
recombinational, 1173-1174, 1174t
regulons in, $\mathbf{1 1 6 6}$
repression in, $\mathbf{1 1 5 6}$
repressors in, $\mathbf{1 0 6 1}, \mathbf{1 1 5 7}, 1162,1180$
translational, 1170-1171, 1184-1185, 1188
riboswitches in, 1172
RNA interference in, 1185-1186, 1185 f
second messengers in, 1171
signaling in, 1171, 1182-1184
site-specific recombination in, $\mathbf{1 0 3 8}, 1046-1049$, 1047f
SOS response in, 1035, 1036t, 1169-1170, 1169f
specificity factors in, $\mathbf{1 1 5 7}$
stringent factor in, 1171, 1171f
stringent response in, 1171, 1171f
TATA-binding protein in, 1177-1178, 1179
transcription activators in, 1178, 1181-1182
transcriptional attenuation in, 1166f-1168f, 1167-1169
translational repression in, 1170-1171, 1170f, 1180, 1188
translational repressor in, 1170-1171
upstream activator sequences in, $\mathbf{1 1 7 8}$
in yeast, 1180f, 1181
gene silencing, by RNA interference, 1185-1186, 1185f
gene transfer, lateral, $\mathbf{1 0 6}$
general acid-base catalysis, $\mathbf{1 9 9}, 199 \mathrm{f}$
general recombination. See homologous genetic recombination
general transcription factors, $\mathbf{1 0 6 6}, 1066 \mathrm{t}, 1067 \mathrm{f}$
genetic code, 1103-1113
base composition in, 1105
base sequences in, 1105
codons in, 1104f, 1105
cracking of, 1104-1108
degeneracy of, $\mathbf{1 1 0 7}, 1107 \mathrm{t}$
expansion of, 1124b-1126b
overlapping, 1104f
reading frames in, 1067f, $\mathbf{1 1 0 5}$
second, 1122-1123
triplet (nonoverlapping), 1104f, 1105
universality of, 1104f, 1107t, 1108
variations in, 1108b-1109b, 1134b
wobble and, 1110
genetic counseling, for inborn errors of metabolism, 369b
genetic defects
in amino acid catabolism, 717t, 718-721, 720f
in fatty acyl-CoA dehydrogenase, 682, 692
in urea cycle, 709-710
treatment of, 710f
genetic diseases
genetic counseling for, 369b
inborn errors of metabolism in, 369b
linkage analysis for, 347-349, 348f
protein misfolding in, 148-151
genetic engineering, 314. See also cloning; recombinant DNA technology
genetic map, of E. coli, 1010f
genetic mutations. See mutations
genetic recombination. See also DNA recombination
functions of, 1039
homologous, 1038-1043
site-specific, 1038, 1046-1049, 1047f, 1048 f
genetics, overview of, 29-32
genome, 3, 15, 37
annotated, $\mathbf{3 8}$
bacterial, 981, 982t
chimpanzee vs. human genome, 345-347, 345f
components of, 984
contents of, 342-345, 344f

DNA sequences in, 342-345, 343f, 344f
eukaryotic, 981-983, 982t
evolution of, 37-38, 345-347
mapping of. See genome sequencing
number of genes in, 342
synteny in, $\mathbf{3 3 3}$
viral, 980-981, 982t
yeast, $981,982 \mathrm{t}$
genome sequencing, 37-38, 38t, 333, 339-351
in database construction, 333
databases for, 342, 348-349
evolution and, 345-347, 346f, 349-350, 349f, 350f
454 sequencing in, 339-341, 341f
medical applications of
in disease gene identification, 347-349, 348f
in personalized genomic medicine, 39, 340b, 350-351
pyrosequencing in, 339-341, 341f
reversible terminator sequencing in, 341-342, 342f
shotgun sequencing in, 341-342
for Neanderthals, 350b-351b
next-generation, 304, 339-342, 341f, 342f
polymerase chain reaction in, 327-331
purposes of, 345-347
shotgun, 341-342
genomic databases, 342, 348-349
genomic library, 332
genomic mapping, for E. coli, 1010f
genomics, 15, 39, 313, 339-351
comparative, $39, \mathbf{3 3 3}, 345-348,345 f$
functional, 38-39
geometric isomers, $\mathbf{1 6 - 1 7}$
geranyl pyrophosphate, $\mathbf{8 6 1}$
in cholesterol synthesis, $860 \mathrm{f}, 862 \mathrm{f}$
geranylgeranyl groups, membrane attachment of, 394, 394f
germination, seed, triacylglycerols in, 683, 683 f
ghrelin, 962f, 966-967, 967 f
G_{i} (inhibitory G protein), $\mathbf{4 4 6}$
Gibbs, J. Willard, 23
Gibbs free energy (G), 506. See also free energy (G)
Gilbert, Walter, 302
Gilman, Alfred G., 441b, 441f
Gla, 234
Gleevec, 491b
glimepiride (Amaryl), 970t
glipizide (Glucotrol), 970t
global warming, 816b-817b
globins, 159, 159f. See also hemoglobin; myoglobin
structure of, 141
nuclear magnetic resonance studies of, 135b-136b, 135f, 136f
x-ray diffraction studies of, 134b-135b, 134f-135f
globosides, 366, 367 f
globular proteins, 125, 130-138
β turns in, 123, 124f
diversity of, 130-131
folding of, 130-131, 130-138, 132f
functions of, 130-131, 130-138
hydrophobic interactions in, 132, 132 f
in large proteins, 133-140, 137f, 138f
myoglobin as, 131-133, 132f, 133f
polypeptide chain arrangement in, 125
small, structure of, 130-138
in small proteins, $130-138,133 \mathrm{t}$
structure of, 130-131, 130-138, 132f
glomerular filtration rate (GFR), 947b
glucagon, 605, 951, 953, 955-956
cascade mechanism of, 622 f
in cholesterol regulation, 870,870 f
in fatty acid mobilization, 956
in glucose metabolism, 955-956
in glucose regulation, 955 f
glucocorticoids, 372, 372f, 372s, 933t, 935 .
See also under steroid
synthesis of, 874, 874f, 875f
glucogenic amino acid, 711
glucokinase, 617, 940
in glucose regulation, 953f, 954
kinetic properties of, $603,603 \mathrm{f}$
regulation of, 603-604, 603f
gluconate, 249s
gluconeogenesis, 568, 568-575, 601. See also glucose metabolism
amino acids in, 574, 574t, 942
bypass reactions in
fructose 1,6-bisphosphate to fructose 6-phosphate conversion, 570t, 572-573
glucose 6-phosphate to glucose conversion, 570t, 573
pyruvate to phosphoenolpyruvate conversion, 570-572, 570t, 571f, 572f
carbohydrate synthesis and, 568-570, 569f
in chloroplast, 820-821, 820f
citric acid cycle and, 574, 957-958, 957f
in fasting/starvation state, 956-958, 957f
in germinating seeds, 825-826
glycolysis and. See also glycolysis fructose 2,6-bisphosphate in, 605-606, 605f opposing pathways of, 569-570, 569f, 601f regulation of, 574, 601-612
liver in, 940-941, 955-956, 956t, 957f
in muscle, 943-944, 948, 948f
regulation of, 601-612, 605f, 607f, 850-852
glycolysis and, 601-612
sequential reactions in, 573 t
in well-fed state, 951, 952 f
glucono- δ-lactone, 249 s
Glucophage (metformin), 970t
glucopyranose, 247f, 248f
glucosamine, 249-250, 249s
glucose, $244 \mathrm{~s}, 549 \mathrm{~s}$
α form of, 246, 247f
β form of, 246, 247f
blood levels of, 950
in diabetes, 960
reference ranges for, 956 t
regulation of, 940-941, 941f, 951-960.
See also glucose metabolism
blood tests for, 250b-251b
body stores of, 956 t
in cellulose synthesis, 822-823
conversion of amino acids to, $711,711 \mathrm{f}$
conversion of glucose 6-phosphate to, in gluconeogenesis, 570t, 573
degradation of. See glycolysis
anaerobic. See fermentation
epimers of, 246s
hexokinase catalysis of, 219-220, 220f
lac operon and, 1165-1167, 1166f
membrane transport of. See glucose transporters
in muscle contraction, 945f, 946-948, 948f
in myocytes, control of glycogen synthesis from, 598-600
oxidation of. See glucose oxidation
phosphorylation of, 251, 548-550
as reducing sugar, 251, 252
regulation of, 940-941, 941f, 951-960. See also glucose metabolism
in starch synthesis, 818-819
storage of, 951-953, 952f
in glycogen, 253, 255-256, 951-953, 952f
in starch, 253, 255
structure of, $10 \mathrm{~s}, 219,219 \mathrm{~s}, 244,245,246 \mathrm{~s}$
synthesis of, 942
triacylglycerol conversion to, 683, 683f
UDP. See UDP-glucose
urine tests for, 250b-251b
utilization of, 543
glucose-alanine cycle, 703, 703f, 942
glucose carbon, in formation of glyceraldehyde 3-phosphate, 552f
glucose catabolism, 942 t
in cancerous tissue, $555,556 \mathrm{~b}-557 \mathrm{~b}$
glucose metabolism, 951-960
in adipose tissue, $943-944,943 \mathrm{f}$
in brain, 949, 949 f
cortisol in, 958-959
in diabetes mellitus, 558, 559f, 959-960
epinephrine in, 958, 959t
in fasting state, 955f, 956-958, 957f, 958f
glucagon in, 955-956
insulin in, 951-953, 952f, 952t
in liver, 940-941, 941f, 952f, 955-956, 956t
in muscle, 945f, 946-948, 948f
neuronal, 949, 949f
pancreas in, 952t, 953-955, 953f
in starvation, 956-958, 957f, 958f
in well-fed state, 951-953, 952f
glucose oxidation, 26, 249f, 250
ATP yield from, 760 t
cellular, to carbon dioxide, 532
energy-coupled reactions in, $24 \mathrm{f}, 26$
neuronal, 949, 949f
pentose phosphate pathway of, 577f. See also
pentose phosphate pathway
glucose 1-phosphate, 617
conversion of galactose to, 571f
glycolysis of, 614-615, 614f, 616b, 617t
in starch synthesis, 819
α-D-glucose 1-phosphate, 613-614, 613f
glucose 6-phosphatase, 573
hepatic metabolism of, 940-941, 941f
hydrolysis of glucose 6 -phosphate by, 614-615, 615f
glucose 6 -phosphate, 219s, 249f, 251, 548, 587, 593t, 617, 941f
conversion of
to fructose 6-phosphate, 549, 549f
to glucose in gluconeogenesis, $570 \mathrm{t}, 573$
fate of, 940-941, 941f
in glycolysis, 580, 580f
hepatic metabolism of, 940-941, 941f
hexokinase catalysis of, 219-220
hydrolysis of, by glucose 6 -phosphatase, 614-615, 615f
insulin regulation of, 951-953
nonoxidative recycling of pentose phosphates to, 577-580, 578f, 579f, 580f
in pentose phosphate pathway, $580,580 \mathrm{f}$, 940-941
glucose 6-phosphate dehydrogenase (G6PD), 534t, 575-576
deficiency of, 576b
light inactivation of, 812
glucose tolerance test, $\mathbf{9 6 0}$
glucose transporters, 626; See also specific GLUT transporters
in diabetes, 408b, 558, 559f
erythrocyte (GLUT1), 405-407, 405f, 406f, 407t
intestinal (GLUT2), 406-407, 407t, 416-417, 417f, 953-954
muscle (GLUT4), 407t, 408b, 456, 456 f
in diabetes, 408b
Na^{+}-glucose symporter, 417, 417f
types of, 407t
glucosuria, 959
glucosylcerebroside, 367f
Glucotrol (glipizide), 970t
glucuronate, 249f, 249s, 261, 261s
GLUT1 transporter, 405-407, 405f, 406f, 407t, 416
GLUT2 transporter, 406-407, 407t, 417f, 418, 603, 603f, 953-954
GLUT4 transporter, 407t, 408b, 456, 456 f in diabetes, 408b
glutamate, $79 \mathrm{~s}, \mathbf{8 1}, \mathbf{7 2 1}, \mathbf{8 8 8}, \mathbf{8 9 2}$
ammonia released by, 700-702, 702f
biosynthesis of proline and arginine from, 892, 893f
biosynthetic pathway of, 888
catabolic pathways for, 721 f
in nitrogen metabolism, 696
properties of, 77t, 81
titration curve for, 85, 85f
L-glutamate dehydrogenase, 534t, 700-701
oxidative deamination catalyzed by, 700-701, 702f
glutamate-oxaloacetate transaminase (GOT), 708, 708b
glutamate-pyruvate transaminase (GPT), 708b
glutamate synthase, $\mathbf{8 8 8}$
glutaminase, $\mathbf{7 0 3}$
glutamine, 79s, 81, 696, 709, 710s, 721, 888, 892, 923f
ammonia transported in bloodstream as, 702-703, 702f
biosynthetic pathway of, 888-890
catabolic pathways for, 721 f
in nitrogen metabolism, 696
properties of, 77 t , 81
glutamine aminotransferase, 890-891, 890 f proposed reaction mechanism for, 910 f
glutamine-rich domains, $\mathbf{1 1 8 2}$
glutamine synthetase, 235, 702, 888
allosteric regulation of, 889-890, 889 f
in nitrogen metabolism, 889-890
reaction of, 888
subunit structure of, 889
glutaredoxin, 917
glutathione, 906-907
amino acids as precursors of, 906-907
biosynthesis of, 908 f
in cell protection against oxygen derivatives, 576b, 576f
metabolism of, 908 f
glutathione peroxidase, $\mathbf{7 4 5}, 907$
glutathione-S-transferase tag, $326,326 \mathrm{f}$
GLUTs. See glucose transporters
glyburide, 970 t
glycans, 254. See also polysaccharide(s)
glycated hemoglobin, 250b-251b
glyceraldehyde, 244, 246s, 562s
isomers of, 244-245, 245f
glyceraldehyde 3 -phosphate, $\mathbf{5 5 0}$, 550 s catalysis of, 198
in Calvin cycle, 805, 806f, 807 f
glucose carbons in formation of, 552 f
in glycolysis, 545f, 546
oxidation to 1,3-bisphosphoglycerate, 551-552, 553 f
synthesis of, 804-805, 808f, 809, 824f
glyceraldehyde 3-phosphate dehydrogenase, 534t, 551, 593t, 804, 805f, 808-809
light activation of, 811-812, 811f
reaction mechanism of, 552, 553 f
glycerol, 360s
in archaeal membrane lipids, 365-366, 366f
chiral forms of, 363, 363f
in galactolipids, 365 f
in phospholipids, 363-365, 363f, 364f
structure of, $360 \mathrm{~s}, 363 \mathrm{~s}$
in triacylglycerols, 359f, 360-361, 360f, 848 f
glycerol dialkyl glycerol tetraethers (GDGTs), 365, 367f
glycerol kinase, 670, 848, 848f
glycerol 3-phosphate
in carbohydrate synthesis, 826,826 f
in glyceroneogenesis, 850
in lipid synthesis, 848, 848f, 850, 854f
synthesis of, 850,850 f, 851 f
glycerol 3-phosphate dehydrogenase, 740, 848, 848f
glycerol 3-phosphate shuttle, 759, 759 f
glyceroneogenesis, 574, 850-852, 851f. See also glucose metabolism
glycerophospholipid(s), 362-363, 363-365, 363f, 364f, 367f. See also triacylglycerol(s)
fatty acids in, 363-364
head groups of, 363, 852-853, 854f, 855, 857
nomenclature of, 363, 364f
structure of, $363,363 \mathrm{~s}$
synthesis of, 848-849, 848f
head group attachment in, 852-853, 854f
transport of, 857-858
glycine, 79, 79s, 715, 894
in α helix, 122, 124, 124f
biosynthesis of, 892-894, 894f
as buffer, $84,84 \mathrm{f}$
in collagen, 127, 127 f
degradation of, to pyruvate, 715-717, 715f, 716f
in photosynthesis, $806 \mathrm{f}, 813 \mathrm{f}, 814$
$\mathrm{p} K_{\mathrm{a}}$ of, 83-84, 84f
as precursor of porphyrins, $902-904,905 f$
properties of, 77 t
receptor for, as ion channel, 424
in secondary structures, 124, 124f
titration curve for, 82-84, 83f
glycine cleavage enzyme, $\mathbf{7 1 5}, 894$
reaction mechanism of, 715 f
glycine decarboxylase complex, 806f, 813f, $\mathbf{8 1 4}$
glycine synthase, $\mathbf{8 4 9}$
glycobiology, 269
glycoconjugates, 243, 263-268, 263f
glycolipids, 263, 268, 268 f
glycoproteins, 263-264, 263f, 266-268, 268f
proteoglycans, 263-268, 263f, 264f
glycogen, 244, 255-259, 262t. See also polysaccharide(s)
biosynthesis of, in bacteria, 819
body stores of, 956 t
branch synthesis of, 619f
degradation of, glycogen phosphorylase in, 569f, 613-614, 613f, 615 f
glucose removal from, 256
glucose storage in, 253, 255-256
glycogenin priming of sugar residues in, 619, $619 f$
granular form of, 256
in hepatocytes, 256
hydrolysis of, 256
metabolism of, 612-620
glucose 1-phosphate in, 614-615, 614f
glycogen breakdown in, 613-614, 614f, 673 f
glycogenin in, 619, 619f, 634f
phosphoprotein phosphatase $1 \mathrm{in}, 624,625 \mathrm{f}$
sugar nucleotide UDP-glucose in, 618f, 619f
UDP-glucose in, 615-619
in muscle, 945f, 946-948, 948 f
reducing end of, 256
storage of, 613, 613 f
structure of, 255-256, 256f, 258, 260f, 262 t
synthesis of, 456, 456f, 618 f
control vs. regulation of, 598-600
regulation of, 601-612
sugar nucleotides in, 615-619
glycogen granules, in hepatocyte, $613,613 \mathrm{f}$
glycogen phosphorylase, $230, \mathbf{5 6 0}, 951$
a/b forms of, 230, 621
allosteric modification of, 235
covalent modification of, 230f
glycogen breakdown by, 230, 235, 569f, 613-614, 613f, 614f
interconvertible forms of, 621
phosphorylation of, 230
regulation of, 230, 620-622
allosteric and hormonal, 623f, 624 f
glycogen storage diseases, 616b-617b, 617 t
glycogen synthase, 231, 456, 456f, 618, 951
phosphorylation of, 230
primer for, 619
regulation of, 623-624, 623f, 624f
glycogen synthase $a, 623$
glycogen synthase b, 623-624
glycogen synthase kinase 3 (GSK3), 456, 456f, 461-462, 461f, 623
effects of, on glycogen synthase activity, 623, 623f
insulin activation of, $623,624,624 \mathrm{f}$
glycogen-targeting proteins, 624
glycogenesis, 613
glycogenin, 619
and glycogen particle, 620 f
as primer for glycogen synthesis, 619, 620f
structure of, 619, 619 f
sugar residues in glycogen and, 619
glycogenolysis, 613
glycolate pathway, 813-815, 813f
glycolipids, 268, 268f, 363. See also lipid(s)
neutral, 363f, 366, 367 f
synthesis of, $857,859 \mathrm{f}$
transport of, 857-858
glycolysis, 544-558, 671f, 951-953, 952f. See also glucose metabolism
ATP formation coupled to, 546
in chloroplast, 820f
in diabetes mellitus, $558,559 \mathrm{f}$
feeder pathways for, 558-563, 569f
glycogen and starch degradation in, 560-561
monosaccharides in, 561-563, 571f
polysaccharide and disaccharide hydrolysis in 558-560
free-energy changes of, in erythrocytes, 570 t
gluconeogenesis and. See also gluconeogenesis
fructose 2,6-bisphosphate in, 605-606, 605f
opposing pathways of, 568-570, 569-570, 569f, 601f
regulation of, 574, 601-612
of glucose 1-phosphate, 614-615, 614f, 616b-617b, 617t
glucose 6-phosphate in, 579f, 580, 580f
payoff phase of, 545f, 546
ATP and NADH in, 550-555, 553f
conversion of 3-phosphoglycerate to 2-phosphoglycerate in, 554, 554f
dehydration of 2-phosphoglycerate to phosphoenolpyruvate in, 554
oxidation of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate in, 551-552, 553f
phosphoryl transfer from 1,3-bisphosphoglycerate to ADP in, 552-554
phosphoryl transfer from phosphoenolpyruvate to ADP in, 554-555
phosphorylated hexoses in, 546-548
preparatory phase of, 544-546, 545f, 548-550
ATP in, 549f, 551f, 552f
cleavage of fructose 1,6 -bisphosphate in, $550,551 \mathrm{f}$
conversion of glucose 6-phosphate to fructose 6-phosphate in, 549, 549f
glycogen, starch, disaccharides, and hexoses in, 569 f
interconversion of triose phosphates in, 550, $552 f$
phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate in, 549-550
phosphorylation of glucose in, 549
regulation of, 555, 849-850
in solid tumors, $555,556 \mathrm{~b}-557 \mathrm{~b}$
regulation of, 601-612
gluconeogenesis and, 601-612
steps in, 545f, 547f
glycolytic flux, 597f
glycolytic pathway, glycerol entry into, 597f, 671f
glycome, 15
glycomics, $\mathbf{2 6 7}$
glycophorin, $387, \mathbf{3 9 0}, 398 f$
topology of, 390, 390f
glycoproteins, 89, 89t, 263-264, 263f, 266-268, $268 f$
as glycoconjugates, $\mathbf{2 6 3}$
ligand binding of, 387
membrane, 267-268. See also membrane proteins
oligosaccharide linkage to, 266-268, 267f, 387 1141-1142, 1142f
in protein targeting, 1141-1142
sugar moieties of, 387
topology of, 390, 390f
glycosaminoglycans, 260-262, 261f, 262t
in proteoglycans, 263-268, 264f
glycosidases, retaining, 222
glycoside, standard free-energy changes of, 509t
glycosidic bonds, $\mathbf{2 5 2}$
phosphorolysis vs. hydrolysis reactions of, 613-614
glycosphingolipids, 264, 366, 367f
as glycoconjugates, $\mathbf{2 6 3}$
N-glycosyl bonds, 282
disaccharide, 252
hydrolysis of, 300, 300f
glycosylated derivatives of phosphatidylinositol (GPI), as lipid anchor, 394, 394f, 399
glycosylation, in protein targeting, 1141-1142, 1142f
glyoxylate, 656-659, 657
glyoxylate cycle, 657-659, 657f-659f
four-carbon compound production from, 657-658
in plants, $825,825 f, 826$
regulation of citric acid cycle and, 658-659, 680f-681f
glyoxysomes, 826, 826f
β oxidation in, 683f in plants, $683,683 \mathrm{f}$
glypicans, 264, 264f
GMP (guanosine 5'-monophosphate), 283s, $308,308 \mathrm{~s}$
Goldberger, Joseph, 535
Goldstein, Joseph, 868, 868f, 873b
$\mathrm{G}_{\text {olf }}, 481,482 \mathrm{f}$
Golgi complex, 6, 7f
lectins and, 269-273
protein sorting in, 1142
transport vesicles of. See transport vesicles
GOT (glutamate-oxaloacetate transaminase), 708b gout, 922-923
GPCRs. See G protein-coupled receptors
G6PD. See glucose 6-phosphate dehydrogenase (G6PD)
GPI-anchored proteins, 394, 394f, 399
$\mathrm{G}_{\mathrm{q}}, 447$
grana, $\mathbf{7 7 0}$
Grb2, 454, 456f, 457
SH2 domain of, 454, 456f
green-anomalous trichromats, $\mathbf{4 8 0}$
green ${ }^{-}$dichromats, $\mathbf{4 8 0}$
green fluorescent protein (GFP), 333, 334, 334f, 335f, 448b-449b
greenhouse effect, 816b-817b
GRK2, 445
GRKs (G protein-coupled receptor kinases), 446
GroEL/GroES, in protein folding, 147, 148f
ground state, 192, 771
ground substance. See extracellular matrix
group transfer reactions, 515-516
growth factors, 487, 487f
Grunberg-Manago, Marianne, 1085, 1085f
$\mathrm{G}_{\mathrm{s}}, 438$
GSH. See glutathione
GSK3 (glycogen synthase kinase 3). See glycogen synthase kinase 3 (GSK3)
GTP (guanosine 5'-triphosphate)
in β-adrenergic pathway, 441b
cGMP synthesis from, 459-460
in olfaction, 481, 482f
in vision, 478-479, 479f
GTPase, G_{s} as, 438
GTPase activator proteins (GAPs), as biological switches, 438, 440f, 442b
GTPase activating proteins (GAPs), 441b-443b
guanine, 10s, 282, 282t, 283f. See also purine bases
deamination of, 300 f
guanine nucleotides, biosynthesis of, regulatory mechanisms in, 914-915, 914f
guanosine, 283s
in splicing, 1071, 1072f
guanosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate. See cGMP (guanosine $3^{\prime}, 5^{\prime}$-cyclic monophosphate)
guanosine 5'-diphosphate (GDP). See GDP (guanosine 5^{\prime}-diphosphate)
guanosine 5^{\prime}-diphosphate, 3^{\prime}-diphosphate (ppGpp), 308, 308s
guanosine 5^{\prime}-monophosphate (GMP), 283s, 308, 308s
guanosine nucleotide-binding proteins. See G protein(s)
guanosine nucleotide-exchange factors (GEFs), 426b, 442b
guanosine tetraphosphate (ppGpp), 308, 308s
guanosine tetraplex, 292
guanosine 5^{\prime}-triphosphate (GTP). See GTP (guanosine 5'-triphosphate)
guanylate, 282t, 283s
guanylin, $\mathbf{4 6 0}$
guanylyl cyclases, 459-460, 459f
in vision, 480
guide RNA, 1111
Guillemin, Roger, 930
gulose, 246 s
gustation, signaling in, 481, 483f, 484f
gustducin, 481
gut bacteria, obesity and, 968

H

H^{+}. See hydrogen ion(s)
H (enthalpy), 23, $\mathbf{5 0 6}$
H_{4} folate (tetrahydrofolate), 712, 712 f conversions of one-carbon units by, 712 f substrate binding to, 195f
hair
coiled coils in, 126 f
α-keratin in, 126-127
permanent waving of, 127b
hairpin loops
in DNA, 292, 292f, 999, 1000f
in replication fork, 1012, 1012 f
in RNA, 295, 295f, 1065f, 1084-1085
Haldane, J. B. S., 68b, 190, 190f, 196, 202
half-reaction, 528-529
standard reduction potentials of, 531 t
Halobacterium salinarum, 789-790
bacteriorhodopsin in, 391, 391f
halophilic bacteria, ATP synthesis in, 789-790, 791f
hammerhead ribozyme, 1082, 1082f, 1083
Hanson, Richard, 850
haplotypes, 344-345, 345f
haptens, $\mathbf{1 7 5}$
Harden, Arthur, 548, 548 f
Hartley, B. S., 215
HAT (histone acetyltransferases), $\mathbf{1 1 7 6}$
Hatch, Marshall, 816
Haworth perspective formulas, 247-248, 248f
HDLs. See high-density lipoproteins (HDLs)
head group exchange reaction, in phospholipid synthesis, 855-856
heart attack, 708, 948
heart disease
angina in, nitrovasodilators for, 440
atherosclerotic, 871-874, 872b-873b
hyperlipidemia in, 871-874, 872b-873b
trans fatty acids and, $361,362 \mathrm{t}$
heart muscle, 947b, 948, 948f
heat
production of. See thermogenesis
randomization of, 22b
heat of vaporization, 47, 48t
of water, 48-49, 48t
heat shock gene promoters, 1061
heat shock proteins, in protein folding, 146-147, 148f
heavy chains, immunoglobulin, 175-176, 176f recombination in, 1050-1051
helicases, 1017
in mismatch repair, 1030, 1030f, 1031f
in replication, 1017, 1019t, 1020
Helicobacter pylori, lectins and, 271-272, 271f, 273f
helix
α. See α helix
double
DNA, 30, 31f, 288-290, 289f, 290f. See also DNA structure
supercoiling and, 985-994, 987f. See also DNA, supercoiling of
in transcription, 1058 f
underwinding of, $\mathbf{9 8 7}, 987 \mathrm{f}$
unwinding of/rewinding of, 297-298, 297f, 298f, 1012-1013, 1013f. See also DNA replication
variations of, 290-291, 291f
right- vs. left-handed, $120,121 \mathrm{~b}$
RNA, 294-295, 294f, 295f
triple, 293f
of collagen, 124f, 126t, 127, 128b-129b
of DNA, 292, 293f
helix-loop-helix, 1163-1164, 1164f
helix-turn-helix, 1162, 1163f
helper T cells, $\mathbf{1 7 5}, 175 \mathrm{t}$
heme, 158
from aminolevulinate, biosynthesis of, 905 f
definition of, 158
free, 158-159
in oxygen binding, 158-159. See also
hemoglobin-oxygen binding
as source of bile pigment, 904-906, 907f
structure of, 158-159, 159f
heme $a, 736 \mathrm{~s}$
heme b, of Complex II, 740
heme $c, 736$ s
heme cofactors, of cytochromes, 735, 736f
heme group, 132-133, 133f
hemiacetals, $\mathbf{2 4 5}, 247 \mathrm{f}$
hemiketals, 245, 247f
hemin-controlled repressor (HCR), $\mathbf{1 1 8 5}$
hemocytoblasts, $\mathbf{1 6 3}$
hemoglobin
amino acids of, 8f, 9
genetic variations of, 172
glycated, 250b-251b
as oligomer, 141
R-state, 163-165, 165f, 171-172, 172 f
sickle-cell, 172-174, 173f
structure of, 141, 163-165, 163f, 164f, 172-173, 173f
conformational changes in, 163-165, 165f, 166f
subunits of, 163, 163f, 164f
T-state, 163-165, 165f, 171-172, 172 f
hemoglobin A, structure of, $173,173 \mathrm{f}$
hemoglobin-carbon dioxide binding, 170-171
hemoglobin-carbon monoxide binding, $162,163,167$
hemoglobin glycation, 250b
hemoglobin-hydrogen binding, 170-171, 170f
hemoglobin-oxygen binding, 158-174. See also protein-ligand interactions
2,3-bisphosphoglycerate in, 171-172, 172 f
Bohr effect in, $\mathbf{1 7 0}$
carbon dioxide in, 170-171
in carbon monoxide poisoning, 168b-169b
conformational changes in, 163-165, 165f, 166f
cooperative, 163-169, 166f
fetal, 171
heme in, 158-159, 159f
hemoglobin transport and, 163-169
models of, 167-169, 170f
MWC (concerted), 167-168, 170f
sequential, 168-169, 170f
myoglobin in, 159, 159 f
pH in, 170-171, 170f, 171
quantitative description of, 159-162, 160f, 167
structural factors in, 163-165, 163f, 164f
T-state to R-state transition in, 163-165, 165f, 171-172, 172f
hemoglobin S, 172-174
hemoglobin transport
of hydrogen, 169-171
of oxygen, 163-169. See also hemoglobin-oxygen binding
hemophilia, 234, 235f
hemoproteins, 89t
Henderson-Hasselbalch equation, 64-65, 84
Henri, Victor, 201
Henseleit, Kurt, 704
heparan sulfate, 261, 264-266, 265 f
heparin, $\mathbf{2 3 4}, 261-262,261 \mathrm{~s}, 262 \mathrm{f}$
hepatic enzymes, 939-943
hepatocyte, 939
amino acid metabolism in, 941-942
carbohydrate metabolism in, 624-626, 626f
epinephrine cascade in, 443-444, 444f
fatty acid metabolism in, 941-942, 943f
fatty acid synthesis in, 843
glucose metabolism in, 940-941, 941f
glycogen granules in, 613, 613f
glycogen in, 256
NADPH synthesis in, 839, 840f
nutrient metabolism in, 939-943
triacylglycerol recycling in, $\mathbf{8 5 0}, 850$ f
heptahelical receptors, 438. See also GPCRs
heptoses, 244
hereditary nonpolyposis colon cancer, 1038b
hereditary optic neuropathy, Leber's, 767
herpes simplex virus, DNA polymerase of, 1026-1027
Hers disease, 617 t
Hershey, Alfred D., 288
Hershey-Chase experiment, 288
heterochromatin, $\mathbf{1 1 7 5}$
heterolytic cleavage, of covalent bonds, $\mathbf{5 1 2}, 512 \mathrm{f}$
heteroplasmy, $\mathbf{7 6 7}$
heteropolysaccharides, $\mathbf{2 5 4}, 260-262,262$ t. See also polysaccharide(s)
heterotrophs, 4, 5f, 501
heterotropic ligand binding, 166
heterozygosity, allelic, 173
hexadecanoic acid, 358t
hexokinase, 220s, 548, 593t
catalytic activity of, 219-220, 220f
forms of, 602-603
regulatory, 602-603
hexokinase I, 602, 617
kinetic properties of, 603, 603f
hexokinase II, 602, 617
hexokinase IV, 603, 617, 940
in glucose regulation, 953f, 954
kinetic properties of, 603-604, 603f
regulation of, 603-604, 603f
hexose(s), 244
derivatives of, 249-251, 249f
phosphorylated, in glycolysis, 546-548
structure of, 244f
hexose monophosphate pathway, 575. See also pentose phosphate pathway
hexose phosphates, movement of, 826, 826f
hibernation, fatty acid oxidation in, 676 b
HIF (hypoxia-inducible transcription factor), in cancerous tissue, 556b
high-density lipoproteins (HDLs), 865f, 865t, $\mathbf{8 6 9}$
deficiency of, 874
in reverse cholesterol transport, 873-874, 874f
high mobility group (HMG) proteins, 1178f, 1179
high-performance liquid chromatography (HPLC), 92
highly repetitive DNA, $\mathbf{9 8 4}$
Hill, Archibald, 167
Hill coefficient, 167, 167f, 592, 592t
Hill equation, $\mathbf{1 6 7}$
Hill plot, 167, 167 f
Hill reaction, $\mathbf{7 7 0}$
Hill reagent, $\mathbf{7 7 0}$
hippurate, 709, 710s
HIRA, in chromatin remodeling, 1176 t
his operon, 1169
histamine, 909
histidine, 10s, 79s, 81, 721-722, $\mathbf{8 9 8}$
in amino acid biosynthesis, 898-899, 903f
as buffer, $65,65 \mathrm{f}$
conversion of, to α-ketoglutarate,
721-722, 721f
properties of, 77 t , 81
titration curve for, 85,85 f
histone(s), 994, 994-1000, 995f, 995t
acetylation/deacetylation of, 1175-1176
chromatin and, 994, 996f, 998b-999b,
1175-1176. See also chromatin
in chromosomal scaffold, 999
in gene regulation, 1175-1176
in nucleosomes, 996f, 997f, 1000f, 1175-1176. See also nucleosomes
positioning of, 996-997
properties of, $995,995 \mathrm{t}$
types of, 995, 995t
variant, 995, 998b-999b
histone acetyltransferases (HATs), 1176
histone deacetylases (HDACs), in chromatin remodeling, 1176
histone tails, 996, 996f
Hitchings, George, 923, 923f
HIV/AIDS, 218-219, 1088, 1089b
HMG-CoA, 687
in cholesterol synthesis, $\mathbf{8 6 0}$

HMG-CoA reductase, in cholesterol synthesis, $\mathbf{8 6 0}$, 869-871
HMG-CoA reductase inhibitors, $872 \mathrm{~b}-873 \mathrm{~b}$
HMG-CoA synthase, in cholesterol synthesis, $\mathbf{8 6 0}$
HMG proteins, 1178f, 1179
Hoagland, Mahlon, 1104
Hodgkin, Dorothy Crowfoot, 658, 680f
Holden, Hazel, 180
Holley, Robert W., 1104, 1118 f
Holliday intermediates, 1040-1041, 1042f
in homologous genetic recombination, 1040-1041, 1042f
resolution of, 1048-1049, 1048f
in site-specific recombination, 1047, 1047f
Holliger, Philipp, 1093
holoenzyme, 190
homeobox, 1163
homeobox-containing genes, 1190-1191
homeodomain, 1163, 1163f
homeostasis, 589
homeotic genes, 1188, 1190-1191, 1191f, 1192f
homing, 1089
homocystinuria, 717t
homogentisate dioxygenase, $\mathbf{7 2 1}$
homologous genetic recombination, 1038-1046. See also DNA recombinatin
functions of, 1039, 1043
site-specific, 1038, 1046-1049, 1047f, 1048f
homologous proteins, 106
homologs, 38, 106
homolytic cleavage, of covalent bonds, 512, 512f
homoplasmy, $\mathbf{7 6 7}$
homopolysaccharides, 254-259. See also glycogen; polysaccharide(s); starch
functions of, 255-257
structure of, 254f, 256f, 257-259, 257f, 258f, 259f, 260f
homotropic ligand binding, $\mathbf{1 6 6}$
homozygosity, allelic, 173
Hoogsteen pairing/positions, 292, 293f
hop diffusion, 398
horizontal gene transfer, 106
hormonal cascade, 937, 938f
hormone(s), 929-971
adrenocortical, 933t, 935
autocrine, 933
bioassays for, 930-932
in carbohydrate metabolism regulation, 624-626, 626f
lipid metabolic integration with, 626
catecholamine, 933t, 934-935. See also catecholamines
in cholesterol regulation, 869-871, 870f
classification of, 933-936, 933t
definition of, 929
discovery of, $930,931 \mathrm{~b}$
diversity of, 933-936, 933t
eicosanoid. See eicosanoids
endocrine, 933, 933t
endocrine glands and, 936-937, 936f
excitatory effects of, 446
in fat metabolism regulation, 626
functions of, 929-930
in gene regulation, 453-454, 456f, 1182-1184, 1183f
in carbohydrate and fat metabolism, 624-626
in glycogen phosphorylase regulation, 621-622, 622f
inhibitory effects of, 446
lectin binding of, 269
mode of action of, $932-933,932 \mathrm{f}, 933 \mathrm{t}$
as neurotransmitters, 930
nitric oxide as, 933t, 936
oligosaccharide moieties of, 269
overview of, 929-930
paracrine, $933, \mathbf{9 3 3}, 933 \mathrm{t}$
eicosanoid, 371-372, 371f
peptide, 934
synthesis of, 934
regulation of, 936-937
release of, 936-937, 938f
feedback inhibition of, 937
response time for, 933
retinoid, 933 t , 936
sex, $372,372 \mathrm{~s}, 475 \mathrm{~s}, 933 \mathrm{t}, 935$
steroid, 372, 372s
synthesis of, $874,874 \mathrm{f}$
in signaling, 453-454, 930, 930f, 932f, 933. See also signaling; signaling proteins
hormonal cascade in, 937, 938f
signal amplification in, 933, 937, 938f
steroid, 372, 372f, 372s, 933t, 935
receptor for, 1173f, 1183-1184
synthesis of, 874, 874f, 875f
synthesis of, $874,874 \mathrm{f}, 875 f$
mitochondrial, 763-764
target organs of, 936f
response time of, 933
thyroid, 933t, 936
in transcription regulation, 471-472, 472f
transport of, in blood, 949-950
in triacylglycerol synthesis, 669-670, 670f, 671f, 849-850, 850f

tropic, 937

water-insoluble, 932-933
hormone receptor, 932-933
hormone-receptor binding, 932-933, 932f. See also receptor-ligand binding
Scatchard analysis of, 435b, 932
hormone response elements (HREs), 471,

1182, 1183t

host range, 1174 t
Housay, Bernardo, 616b
housekeeping genes, 1156
HOX genes, 1190-1191, 1195
HOXA7, 1191
HPLC (high-performance liquid chromatography), $\mathbf{9 2}$
HREs (hormone response elements), 1182, 1183t
Hsp70 family, in protein folding, 146-147, 147f, 148 f
HU , in replication, 1019, 1019t, 1020f
human immunodeficiency virus infection, 218-219, 1088, 1089b
humoral immune system, 174. See also immune system
hunchback, 1189 f
Huntington disease, protein misfolding in, 150
hyaluronan, 260-261
hyaluronate, $261 \mathrm{~s}, 262 \mathrm{t}, 266 \mathrm{f}$
hyaluronic acid, 260-261, 261s, 262t, 266f
hyaluronidase, 261
hybrid duplexes, 299
hybridization. See cloning; DNA hybridization
Hycamptin (topotecan), 992s, 993b
hydrazine, in anammox reaction, 884 b- 885 b
hydride ion, 530
hydrocarbons, 12
hydrogen
hemoglobin transport of, 169-171
hydrogen bonds, 9, 48. See also bond(s)
directionality of, 50,50f
examples of, 50 t
formation of, 49-50, 116-117
in ice, 48-49, 49f
low-barrier, 218
of nucleic acid base pairs
in DNA, 286-287, 287f, 288, 289f, 290f
in RNA, 296 f
number of, 116
with polar hydroxyl groups, 49-50
in polysaccharides, 256f, 258-259, 258f
properties of, 47-50, 49f
in water, 47-50, 48f-50f, 55f
as weak interactions, 54-55, 54t, 55f
hydrogen ion(s)
concentration of, 59-61, 60f, 60t. See also pH
from water ionization, 58-63
hydrogen sulfide
solubility in water, $51,51 \mathrm{t}$
hydrolases, 65
hydrolysis, $\mathbf{6 5}, \mathbf{6 9}, 69 f$
of acetyl-CoA, 521, 521f, 521t
ATP. See ATP hydrolysis
of 1,3 -bisphosphoglycerate, 520,520 s
of disaccharides, 252-253
free energy of, 517-519, 520f, 521-522, 521f, 521t, 522f
of glucose 6-phosphate, by glucose 6-phosphatase, 614-615, 615 f
of glycosidic bonds, vs. phosphorolysis reaction, 613-614
of oxygen esters, 522f
of phosphocreatine, $520,521 \mathrm{f}$
of phosphoenolpyruvate, 520,520 f
of phosphorylated compounds, 520-521, 521t
of polysaccharides and disaccharides, to monosaccharides, 558-560, 569f
of thioesters, $\mathbf{5 2 1}, 521 \mathrm{f}$
hydronium ions, 58, $\mathbf{8 1}$
hydropathy index, 392-393
hydropathy plot, 392f
hydrophilic compounds, 50, 50t
hydrophobic compounds, $9, \mathbf{5 0}, 50$ t
solubility in water, 50-53, 52f, 53f
hydrophobic interactions, 53, 54t, 116. See also weak interactions
in amphipathic compounds, 52-53, 52f
in globular proteins, 132, 132f
in protein stability, 116-117
β-hydroxy- β-methylglutaryl-CoA. See HMG-CoA
β-hydroxyacyl-ACP dehydratase, 837f, 838
β-hydroxyacyl-CoA (3-hydroxyacyl CoA), 674
β-hydroxyacyl-CoA dehydrase, 674
β-hydroxyacyl-CoA dehydrogenase, 674
β-hydroxybutyrate, 686
in brain metabolism, 949
hydroxylases, $\mathbf{8 4 4 b}$
5-hydroxylysine, 81, 82s
in collagen, 128b-129b
5-hydroxymethylcytidine, 284s
hydroxyproline, 81, 82s, 128b-129b, 129s
in collagen, 127, 128b-129b
hyperammonemia, 709
hypercholesterolemia, 868, 871-873, 872b-873b
hyperchromic effect, 297-298
hyperglycemia, insulin secretion in, 951-953, 952 f
hyperinsulinism-hyperammonemia syndrome, 702
hyperlipidemia, 871-873, 872b-873b
in heart disease, 871-874, 872b-873b
trans fatty acids and, $361,362 \mathrm{t}$
hypertonic solutions, 56-57, 56f
hypochromic effect, 297-298
hypoglycemia, 950, 951f
hypothalamic-pituitary axis, 936-937, 938f
hypothalamus, 936-937, 936f, 937f
in body mass regulation, 961-962, 961f
hypotonic solutions, 56-57, 56f
hypoxanthine, from adenine deamination, 300f
hypoxanthine-guanine phosphoribosyltransferase, 922
hypoxia, 171, 546, 760-761
adaptive responses in, 760-761
reactive oxygen species and, 760-761
hypoxia-inducible transcription factor (HIF), 761, 761f
in cancerous tissue, $\mathbf{5 5 6}$

I

I bands, 181, 181 f
ibuprofen, 846,846 s
ice, hydrogen bonds in, 48-49, 49f
icosatetraenoic acid, 358t
idose, 246s
iduranate, 261, 261s
IgA, 176
IgD, 176, 177
IgE, 176, 177
IgG, 175-177, 176f
IgG genes, recombination of, 1050-1051, 1051f
$\operatorname{IgM}, \mathbf{1 7 6}, 176 \mathrm{f}, 177$
Illumina sequencer, 341-342, 342f
imatinib mesylate, 491b
immune system, 174-179
antigen-antibody interactions in, 174-179
cells of, 174-175, 175t
cellular, $\mathbf{1 7 4}$
clonal selection in, $\mathbf{1 7 5}$
evolution of, 1049-1051
humoral, $\mathbf{1 7 4}$
integrins in, 471
oligosaccharides in, 270-271, 270f
in plants vs. animals, $476,476 \mathrm{f}$
selectins in, 270, 270f
immunization, viral vaccines in, 1088
immunoblot assay, 178f, 179
immunodeficiencies
drugs for, 1089b
immunofluorescence, 333-334, 334f
immunoglobulin(s) (Ig), 174. See also antibodies
heavy chains of, $176,176 \mathrm{f}, 177$
recombination in, 1050-1051
light chains of, 176, 176f, 177
recombination in, 1049-1051, 1051f, 1052f
structure of, 176, 176f, 1050-1051
immunoglobulin A, 176
immunoglobulin D, 176, 177
immunoglobulin E, 176, 177
immunoglobulin fold, $\mathbf{1 7 6}, 177$
immunoglobulin G, 175-177, 176f, 177f
immunoglobulin genes, recombination of, 1049-1051, 1051f
immunoglobulin M, 176, 176f, 177
immunoprecipitation, 335, 335 f
IMP. See inosinate (IMP)
importins, 1144
in vitro evolution (SELEX), 1093, 1095b, 1117b
in vitro studies, limitations of, 9
inborn errors of metabolism, 369b
indirect immunofluorescence, 333-334, 334f
indirubicin, 491b
induced fit, 157
in antigen-antibody binding, 177-178, 177f
in enzyme-substrate binding, 198,
219-220, 220f
inducers, 1160
inducible gene products, 1156
induction, 1156
industrial-scale fermentation, 566-568
influenza
drug therapy for, 271, 271f
lectins and, 270-271
selectins and, 270-271
information theory, 23
informational macromolecules, 15
inhibition feedback
concerted, 900
cumulative, 889
sequential, 900
inhibitory G protein, $\mathbf{4 4 6}$
inhibitory proteins, in ATP hydrolysis during ischemia, 760, 760 f
initial velocity (rate) $\left(V_{0}\right), \mathbf{2 0 0}-\mathbf{2 0 1}, 201 \mathrm{f}$
initiation codons, 1107, 1107f. See also codons
in protein synthesis, 1127-1129, 1129f
initiation complex, 1128
in bacteria, 1127-1128, 1128f
in eukaryotes, 1128-1129, 1130f, 1131t
initiation factors, 1131t, 1184
initiator sequences, 1177-1178
Inman, Ross, 1012
inorganic phosphate $\left(\mathrm{P}_{\mathrm{i}}\right)$. See phosphate, inorganic
inorganic pyrophosphatase, in plants vs. animals, 819-820
inorganic pyrophosphate $\left(\mathrm{PP}_{\mathrm{i}}\right), 819-820$
inosinate (IMP), 912
in anticodons, 1109-1110, 1110f
biosynthesis of AMP and GMP from, 914 f
purine ring of, 912 f
inosine, 284s, 1112
inositol
in lipid synthesis, $855,855 \mathrm{f}$
inositol 1,4,5-trisphosphate $\left(\mathrm{IP}_{3}\right), 370-371$, 447-448, 450f
Inr (initiator) sequences, 1177-1178
insect viruses, recombinant gene expression in, $323,324 f$
insects, recombinant gene expression in, 323
insertion mutations, 1027
insertion sequences, 1049
insertion site, $\mathbf{1 0 1 4}$
Insig, $\mathbf{8 7 0}$
insulin, 934
amino acid sequence of, 97-99
in cholesterol regulation, 869-871, 870f
in diabetes mellitus, 959
discovery of, 931b
in gene regulation, 453-457, 456f, 608-609, $609 \mathrm{t}, 1184$
in carbohydrate and fat metabolism, 624-626
in glucose regulation, 453-457, 951-953, 952t, 953f
in glucose transport, 408b
glycogen synthase kinase 3 mediation of, 624 , 624 f
in glycogen synthesis, $456,456 \mathrm{f}$
leptin and, 963-964, 964f
in lipid metabolism, 869-871, 870f
as peptide hormone, 934
in signaling, 453-457, 934, 934f
synthesis of, 934, 934f
in triacylglycerol synthesis, 849-850, 849f
in weight regulation, $963-964,965 f$
insulin insensitivity, 959, 964-965, 968-971
insulin pathway, 453-457, 456f
insulin receptor, 453-457, 456f
insulin receptor substrate-1 (IRS-1), 454, 456, 456 f
integral membrane proteins, 389-394. See also membrane proteins
integrins, 266, 266f, 402, 470-471, 470f
intermediate, 217
intermediate filaments, $8,8 \mathrm{f}$
internal guide sequences, 1082, 1083 f
intervening sequences, $\mathbf{3 4 3}, \mathbf{9 8 4}, 984$ f.
See also intron(s)
intestinal glucose transporter (GLUT2), 406-407, 407t, 417f, 418, 953-954
intrinsic factor, $\mathbf{6 8 1}$
intrinsic pathway, $\mathbf{2 3 3}$
intrinsically disordered proteins, 141-142, 142f, 760
introns, $\mathbf{3 4 3}-344$, 343f, $\mathbf{9 8 4}, 984 \mathrm{f}, 1070$
enzymatic properties of, 1082-1083, 1084f
evolutionary significance of, 1088-1089
homing by, 1089, 1090f
as mobile elements, 1089, 1090f
self-splicing, 1070-1072, 1093
enzymatic properties of, 1082-1085, 1084f
evolutionary significance of, 1093
spliceosomal, 1072, 1074f
splicing of, 1069-1075, 1070f, 1072f-1074f
transcription of, 1070
inverted repeat DNA, 291-292, 292f
ion(s)
blood levels of, 950
hydride, 530
as intracellular messengers, 468
ion channels, 403f, 404-405, 420-426, 421
$\mathrm{Ca}^{2+}, 420-421,424$
Cl^{-}
in cystic fibrosis, $415 \mathrm{~b}, 424$
in signaling, 468
current measurement in, 421
defective, 424-426
in cystic fibrosis, 415 b
$\mathrm{K}^{+}, 422-424,422 \mathrm{f}, 466 \mathrm{f}$
defective, diseases caused by, 426t
in signaling, 465-466, 466f, 468
ligand-gated, 421, 424
in insulin secretion, 955 f
in membrane transport, 424
in signaling, 424, 436f, 437, 464f, 466f, 469f
membrane potential and, 464-465, 464f
$\mathrm{Na}^{+}, 424$
defective, diseases caused by, 426 t
in signaling, 465-467, 466f, 468
neurotransmitter, 468
nicotinic acetylcholine receptor as, $\mathbf{4 2 4}$
operation of, 464-465
patch-clamp studies of, 421
voltage-gated, 421, 422-424
in signaling, 424, 436f, 437, 464-469, 464f, 466f
vs. transporters, $404,404 \mathrm{f}$
ion concentration, in cytosol vs. extracellular fluid, 465t
ion-exchange chromatography, 90, 91f, 93t
ion gradients, 414-418, 416f, 417f
ion product of water $\left(K_{\mathrm{w}}\right), \mathbf{5 9}, 60$
ion pumps/transporters. See ATPase(s); membrane transport; transporter(s)
ionic interactions, 9, 54, 54t. See also weak interactions
protein stability and, 116-117
in solutions, 50-51
ionization
equilibrium constants for, 59
peptide, 86-87, 86f
of water, 58-63
equilibrium constant for, 59
ionization constant. See dissociation constant $\left(K_{a}\right)$
ionizing radiation, DNA damage from, 300
ionophores, 418
ionotropic, 468
IP_{3} (inositol 1,4,5-trisphosphate), 370-371, 447-448, 450f, 452f
IPTG (isopropylthiogalactoside), $1160,1160 \mathrm{~s}$
irinotecan (Campto), 992s, 993b
iron, heme, 158-159, 159f. See also heme
iron protoporphyrin IX, 736 s
iron regulatory proteins, 642b
iron response elements (IREs), 642b-643b
iron-sulfur centers, 641, 735-736, 736 f
in aconitase, $641,642 \mathrm{f}$
reaction, 777-778
iron-sulfur proteins, 735
Rieske, 735, 741f

IRP1, 642b

IRP2, 642b

irreversible inhibitor, 210
IRS-1 (insulin receptor substrate-1), 454, 456, 456f
ischemia, ATP hydrolysis during, inhibitory proteins in, 760, 760 f
islet cells, pancreatic, 953-955, 953f
islets of Langerhans, 931b, 953 f
isocitrate, 641 s
formation of, via cis-aconitate, 641, 641f
oxidation of, to α-ketoglutarate and CO_{2}, 641-644, 643f
isocitrate dehydrogenase, 534t, 641-644, 643f, 643s
reaction mechanism of, 643f
isocitrate lyase, $\mathbf{6 5 7}$
isoelectric focusing, $\mathbf{9 4}, 95$ f
isoelectric pH (point) (pI), 77t, 84, 95t
determination of, $94,95 \mathrm{f}$
isolated system, $\mathbf{2 1}$
isoleucine, 79, 79s, 717, 722, 898
biosynthesis of, 897f, 898-899
catabolic pathways for, $674,675 f, 718 f, 722 f$, 723 f
conversion of, to succinyl-CoA, 722, 722f
properties of, 77 t , 79
isomer(s)
configurational, 16-18, 16f, 17f
geometric, 16-17
L, 245
isomerases, $\mathbf{5 6 0}$
phosphoglucose, 593t
phosphohexose, reaction of, $549 f$
triose phosphate, 593 t
isomerization, 513-514, 514f
isopentenyl pyrophosphate, 874-875, 875f
in cholesterol synthesis, 860-861, 861f, 862f
isoprene, in cholesterol synthesis, $\mathbf{8 5 9}, 860-862$, 860f, 862f
isoprenoids
as lipid anchors, 394, 394f
synthesis of, 874-875, 875f
isopropylthiogalactoside (IPTG), $1160,1160 \mathrm{~s}$
isoproterenol, 438s
isotonic solutions, 56-57, 56f
isozymes, $\mathbf{5 4 9}, \mathbf{6 0 2}, 602 \mathrm{~b}$
ISWI family, in chromatin remodeling, 1176t

J

J segment, of kappa light chain, 1050-1051, 1051 f
Jacob, François, 293, 1159, 1159 f
Jagendorf, André, 787
JAK-STAT pathway, 457-458, 457 f
leptin in, 962-963
Janus kinase (JAK), 457-458, 457f, 962, 963f
Januvia (sitagliptin), 970 t
jasmonate, 372-373, 475, 475s, 847
jellyfish, fluorescent proteins in, 448b-449b
Jencks, William P., 197
Jetten, Mike, 884b
Joyce, Gerald, 1093
jumping genes, 1039, 1049
junk DNA, 1096b

K

K^{+}. See potassium
k (Boltzmann constant), 507t
k (rate constant), 194
activation energy and, 194
K_{a} (association constant), 160
in Scatchard analysis, 435b
Kaiser, Dale, 317
κ light chains, 176, 176f, 1050-1051, 1051 f
$k_{\text {catt }}$ 205, 205 t
$k_{\text {cal }} / K_{\mathrm{m}}$ (specificity constant), 205, 205t
K_{d} (dissociation constant), 160-162
in Scatchard analysis, 435b
Kendrew, John, 131, 134b-135b, 141, 141f
Kennedy, Eugene P., 638, 732, 853, 853 f
Kennedy cycle, 853
$K \mathrm{e}_{\mathrm{q}}$ See equilibrium constant $\left(\mathrm{Ke}_{\mathrm{q}}\right)$
keratan sulfate, 261, 261s
α-keratin
in hair, 126, 126f
structure of, 126-127, 126 f
ketals, 245-246, 247f
β-keto acid, decarboxylation of, 513s
α-keto acid dehydrogenase complex, branchedchain, $\mathbf{7 2 3}$
ketoacidosis, diabetic, $\mathbf{5 5 8}, 688,711,960$
ketoaciduria, branched-chain, 717 t
β-ketoacyl-ACP reductase, $837 \mathrm{f}, \mathbf{8 3 8}, 839 \mathrm{f}$
β-ketoacyl-ACP synthase, 837 f, 838, 839 f
β-ketoacyl-CoA, 674
β-ketoacyl-CoA transferase, 306, 687
ketogenic amino acid, 711
α-ketoglutarate, 129b, 129s, 641
in amino acid biosynthesis, 891f, 892, 894f
glucogenic amino acids in, 574t
oxidation of isocitrate to, 641-644, 643f
oxidation to succinyl-CoA and $\mathrm{CO}_{2}, 644$
transfer of α-amino groups to, 699, 699 f
α-ketoglutarate dehydrogenase, 534t, 568t
α-ketoglutarate dehydrogenase complex, 644
ketohexoses, 245, 246f
α / β forms of, $246,247 \mathrm{f}$
ketone(s), 12, 529s
hemiacetals and, $\mathbf{2 4 5}, 247 \mathrm{f}$
hemiketals and, $\mathbf{2 4 5}, 247 \mathrm{f}$
ketone bodies, 686-688, 942
conversion of amino acids to, 711, 711f
in diabetes mellitus, 688, 711
in fasting/starvation state, 688, 949f, 958
in liver, 686-688, 688f
in muscle contraction, $945,945 \mathrm{f}, 948,948 \mathrm{f}$
ketoses, 244, 244f
D isomers of, $245,246 \mathrm{f}$
L isomers of, 245
nomenclature of, 245
ketosis, 688, 711, 959-960
Khorana, H. Gobind, 304, 1106, 1106f
kidney
aquaporins of, 418-420, 419t
as endocrine organ, 936 f
glutamine metabolism in, 702-703

Kilby, B. A., 215
killer T cells, 175,175 t
kinase(s), 516, 548, 593t, 646b. See also protein kinases and specific type, e.g., hexokinase kinesins, 179
kinetoplast, 983
Klenow fragment, 1017
K_{m} (Michaelis constant), 202, 203f, 204t, 205t
apparent, 209t
calculation of, 203, 206
interpretation of, 203-205
Köhler, Georges, 178, 178f
Kornberg, Arthur, 616b, 1013, 1013f
Koshland, Daniel, 168, 198
Krebs, Hans, 633, 704
Krebs bicycle, 707, 707f
Krebs cycle, 633. See also citric acid cycle
$K_{\mathrm{t}}\left(K_{\text {transport }}\right), 406$
Kuenen, Gijs, 884b
Kunitz, Moses, 190
Kupffer cells, 939
K_{w} (ion product of water), 59, 60

L

L isomers, 245
L-19 IVS ribozyme, 1082-1083, 1084f
lac operon, 1159-1160, 1159f, 1160f, 1162, 1162f
regulation of, 1165-1167, 1166f
lac promoter, 1162, 1162 f
Lac repressor, 1162, 1166
DNA-binding motif of, 1162, 1163f, 1164f
β-lactam antibiotics, resistance to, 224, 225f
β-lactamases, 224, 225 f
lactate, $516 \mathrm{~s}, \mathbf{5 6 3}$. See also lactic acid fermentation
in muscle contraction, 946, 948
lactate dehydrogenase (LDH), 516s, 533f, 534t, 563, 602 b
lactic acid fermentation, 546
in muscle contraction, 946
pyruvate in, 563-565
Lactobacillus bulgaricus, in fermentation, 566
lactonase, $\mathbf{5 7 6}$
lactose, $253,253 \mathrm{f}$
lactose intolerance, $\mathbf{5 6 1}$
lactose transporter (lactose permease),
416, 416f, 416t
lactosylceramide, 367f
ladderanes, 885
lagging strand, 1013, 1013f
lambda light chains, immunoglobulin, 176 f
lambda phage vector, 315t
Lambert-Beer law, 80b
lamellae, $\mathbf{7 7 0}$
lanolin, 362
lanosterol, $\mathbf{8 6 2}$
large fragment, of DNA polymerase I, $\mathbf{1 0 1 7}$
lauric acid, 358t
Lavoisier, Antoine, 505
LDH. See lactate dehydrogenase (LDH)
LDL (low-density lipoprotein), 865f, 865t, $\mathbf{8 6 7}$
LDL receptor, $\mathbf{8 6 7}$, 868, 868f
leading strand, 1012, 1013 f
Leber's hereditary optic neuropathy (LHON), $\mathbf{7 6 7}$
lecithin. See phosphatidylcholine
lecithin-cholesterol acyl transferase (LCAT), $\mathbf{8 6 9}$
lectins, 269-273, 270f-273f
Leder, Philip, 1106
leghemoglobin, 888
Lehninger, Albert, 638, 732, 732f
Leloir, Louis, 615, 616b
leptin, 960, 961-964, 961f-964f
insulin and, 963-964, 964f
leptin receptor, 961
Lesch-Nyhan syndrome, 922
Letsinger, Robert, 304
leu operon, 1169
leucine, $\mathbf{7 9}, 79 \mathrm{~s}, \mathbf{7 1 7}, \mathbf{8 9 8}$
biosynthesis of, 897f, 898-899
catabolic pathways for, $674,675 \mathrm{f}, 718 \mathrm{f}, 723 \mathrm{f}$
properties of, 77t, 79
leucine zipper, 1163, 1164f
eukemia, 895-897
leukocytes, 174, 175t, 949-950, 950f
leukotrienes, 371f, 372, 847, 933t, 935. See also eicosanoids
Levinthal, Cyrus, 145
Levinthal's paradox, 145
lexA repressor, in SOS response, 1169-1170
LHC (light-harvesting complex), 773, 773f
Li-Fraumeni cancer syndrome, 492
life, origin of, 33-35, 33f, 34f, 1092-1094, 1117b See also evolution
ligand(s), 157. See also protein-ligand interactions
binding site for, 157-158, 1165
concentration of, 161-162
ligand-gated ion channels, 421, 424. See also ion channels
in membrane transport, 424
in signaling, 424, 436f, 437, 464f, 466f, 469f
ligand-gated receptor channels, 424
defective, 426 t
open/closed conformation of, 468, 469f
in signaling, 466f, 467-468, 469f
synaptic aggregation of, 398
ligand-receptor binding. See receptor-ligand binding
ligase, 646b
light
absorption of, 771-776, 773f
chemical changes due to, $300,301 \mathrm{f}$
chlorophylls in, 771-773, 772f, 773f
by DNA, 297-298
by photopigments, 772f, 773-774, 773f.
See also photopigments
by proteins, $80 \mathrm{~b}, 80 \mathrm{f}$
reaction centers in, 774-775, 775f
visible
as electromagnetic radiation, 771
electromagnetic radiation of, 771f
light absorption
chlorophyll in, 774-775, 775f
light chains, immunoglobulin, $176,176 \mathrm{f}$
recombination in, 1050-1051, 1051f, 1052f
light-dependent reactions (of photosynthesis), $\mathbf{7 6 9}$
light-driven electron flow, 776-786. See also electron flow, light-driven
light energy, harvesting of. See photosynthesis
light-harvesting complex (LHC), 773, 773f
light-harvesting molecules, $\mathbf{7 7 4}$
light reactions, 769
lignin, 908
lignoceric acid, 358t
Lind, James, 128b, $128 f$
Lineweaver-Burk equation, 204
linkage analysis, 347-349
linkers, 317-318, 317f
linking number ($L k$), 988-989, 988f, 996
linoleate, 843f, 845
synthesis of, 842f
linoleic acid, 358t
oxidation of, $677,678 \mathrm{f}$
linolenate, $843 \mathrm{f}, 845$
lipase, $\mathbf{3 6 0}$
lipid(s), 15, 357-380. See also fatty acid(s) analytical techniques for, 377-380, 377f, 379f annular, 391, 392 f
attachment to membrane proteins, 264, 387 394, 394f
biosynthesis of, 833-876
acetyl-CoA in, 833, 834f, 835f, 838-839, 951-953
eicosanoid synthesis in, 845-847, 846f
fatty acid synthesis in, 833-845. See also fatty acid synthesis
glyceroneogenesis in, 850-852, 851f
insulin in, 951-953
membrane lipid synthesis in, 852-859
subcellular localization of, 840 f
triacylglycerol synthesis in, 848-850
classification of, 379-380, 380t
components of, 8 f
dietary, intestinal absorption of, 668f
digestion, mobilization, and transportation of, 668-672, 668f, 670f, 671f
ether, 364, 365 f
synthesis of, 856-857, 858f
extraction of, 377-378, 377f
functions of, 833
hepatic metabolism of, 941-942
hydrolysis of, 378
intestinal absorption of, 668-669
membrane, 268, 268f, 362-370, 363f. See also membrane lipids
as oxidation-reduction cofactors, 374-375
as pigments, $370,376,376 \mathrm{f}$
separation of, 377f, 378
in signaling, 370
solubility of, 51, 52-53, 52f, 387, 388 f
storage, 357-362, 363f. See also fatty acid(s); waxes
transport of, 857-858, 864-871, 867f
lipid anchors, 264, 387, 394, 394f
lipid rafts and, 399
lipid bilayer, 387-389, 387f, 388f
formation of, 387, 388f
liquid-ordered/disordered state of, 395-396, 395f
lipid catabolism, in cellular respiration, 634 f
lipid metabolism, 588f
in adipose tissue, 849-850, 850-852, 851f, 936f, 943-944
in brain, 949
cortisol in, 958-959
in endoplasmic reticulum, 840f, 842,843
epinephrine in, 958, 959t
gene expression in, insulin and, 624-626
in liver, 941-942, 943f
in muscle, 945, 945f, 948f
regulation of
allosteric and hormonal, 626
xylulose 5 -phosphate in, 606
lipid rafts, 399, 399f
lipid toxicity hypothesis, 969-970, 969 f
lipidomes, 15, 379
lipidomics, 379-380, 380t
lipoate (lipoic acid), 635, 635s, 635f
in pyruvate dehydrogenase, 635-637
lipopolysaccharides, $\mathbf{2 6 8}$, 268f. See also polysaccharide(s)
lipoprotein(s)
classification of, 865 t
functions of, 865
high-density, 865f, 865t, $\mathbf{8 6 9}$
low-density, 865f, 865t, 866-867
properties of, 865 t
prosthetic groups of, 89, 89t
transport of, 864-871, 867f
very-low-density, 865f, 865t, 866-867
lipoprotein lipase, 265f, 669
liquid-ordered/disordered state, 395-396, 395f
lithotropes, 884b
liver
alanine transport of ammonia to, 702-703, 703f
branched-chain amino acids in, 723, 723 f
cholesterol synthesis in, 864
detoxification in, 943
epinephrine cascade in, 443-444, 444f
glutamate release of ammonia in, 700-702, 702f
glyceroneogenesis in, 849f, 850-852, 851f
glycogen in, 256
breakdown of, 614-615, 614f, 616b, 617t
ketone bodies in, 686-688, 688f
metabolism in, 939-943, 940f
of amino acids, 941-942, 941f
of carbohydrates, 624-626, 626f
of fatty acids, 941-942, 943f
of glucose, 940-941, 941f, 952f, 955-956, 956t
of glutamine, 702-703
muscle and, 945, 948f
triacylglycerol recycling in, $\mathbf{8 5 0}, 850$ f
liver enzymes, 939-943
liver X receptor (LXR), $\mathbf{8 7 1}$
living organisms. See bioorganisms
$L k$ (linking number), 988-989, 988f, 996
Lobban, Peter, 317

Lon, 1107
London forces, 53
loops (hairpins)
in DNA, 292, 292f, 999, 1000f
in replication fork, 1012, 1012 f
in RNA, 295, 295f, 1065f, 1084-1085
lovastatin (Mevacor), 872b-873b
low-barrier hydrogen bond, 218
low-density lipoprotein (LDL), 865f, 865t, $\mathbf{8 6 7}$
low-density lipoprotein receptor, $\mathbf{8 6 7}$
luciferin, activation of, 525b
lutein, 773, 774s
luteinizing hormone, 269

lyase, 646b

lymphocytes, $\mathbf{1 7 4}, 175 \mathrm{t}, \mathbf{9 5 0}, 950$ f
B, 175, 175t, 950
recombination in, 1049-1051, 1052f
functions of, 175
helper, 175, 175t
receptors for, $\mathbf{1 7 5}$
selectins and, 270, 270f
T, 175, 175t, 950
antigen binding by, 175
cytotoxic, $175,175 \mathrm{t}$
Lynen, Feodor, 862, 863f
lysine, $79 \mathrm{~s}, \mathbf{8 1}, \mathbf{7 1 7}, \mathbf{8 9 8}$
biosynthesis of, 896f, 898-899
carbamoylation of, in rubisco, 802-804, 804f
catabolic pathways for, 718 f
properties of, 77 t , 81
structure of, 79 s
lysolecithin, 869s
lysophospholipases, 368, 368f
lysosomes, 6, 7f
protein targeting to, 1142, 1143f
lysozymes, 260
catalytic activity of, 220-222, 222f, 223f
reaction mechanism of, 223 f
structure of, 133t
lyxose, 246s

M

M line (disk), 181, 181f
M-protein, 182
Mackinnon, Roderick, 422, 422 f
MacLeod, J. J. R., 931b
macrocytes, $\mathbf{7 1 4}$
macromolecules
informational, 15
energy requirements of, 524-525
weak interactions in, 54-55, 55 f
macrophages, $\mathbf{1 7 4}, 175 \mathrm{t}, 177,177 \mathrm{f}$
in insulin resistance, 969 f
in plaque formation, 872 f
mad cow disease, $150 \mathrm{~b}-151 \mathrm{~b}$
magnesium complex, ATP and, 518, 518f
magnesium ions, in Calvin cycle, 802-803, 803f,
804, 805, 810-811, 811f
major facilitator superfamily (MFS), 416
major groove, $\mathbf{2 8 9}, 289 f$
malaria, sickle-cell anemia and, 174

malate, 647

oxidation of, to oxaloacetate, 647
transport of, 840
malate-aspartate shuttle, 708, 758-759, 758f
malate dehydrogenase, 534t, 570, 647
in C_{4} pathway, 816-818
malate synthase, $\mathbf{6 5 7}$
MALDI MS (matrix-assisted laser desorption/ ionization mass spectrometry), 101, 274, 275f
maleic acid, 16-17, 16s
malic enzyme
in C_{4} pathway, 815 f, $\mathbf{8 1 6}$
in NADPH synthesis, $\mathbf{8 3 9}, 840,840$ f
malonyl/acetyl-CoA-ACP transferase, 837f, $\mathbf{8 3 8}$
malonyl-CoA, 679, 679f, 833s, 842
as inhibitor of carnitine acyltransferase I, 679, 679 f
synthesis of, 834f, 838
maltoporin, structure of, 393f
maltose, 252, 253, 253 f
formation of, 252, 252 f
structure of, $252,252 \mathrm{~s}$
mammalian cell cultures, 323
mammals
fat stores in, 361
signaling in, 474t
mannosamine, 249-250, 249s
mannose, 245, 246s
epimers of, 246 s
oxidation of, 249f, 250
structure of, 246 s
mannose 6-phosphate, 272-273, 272f
MAP kinase kinase (MAPKK), 455, 456f
MAP kinase kinase kinase (MAPKKK), 455, 456f
MAPK cascade, $\mathbf{4 5 5}, 456$
in JAK-STAT pathway, 457f, 458
in plants, 475-476, 475f, 476f
MAPKs, 455, 456 f
maple syrup urine disease, $717 \mathrm{t}, \mathbf{7 2 3}$
mapping. See also genome sequencing denaturation, 1012
genetic, of E. coli, 1010f
mass-action ratio (Q), 509, 593, $\mathbf{7 6 0}$
in carbohydrate metabolism, 593 t
in oxidative phosphorylation, $\mathbf{7 6 0}$
mass spectrometry, 100-102
in amino acid sequencing, 100-102, 101f, 102f
in carbohydrate analysis, 274,275 f
electrospray, 101, 101f
in lipid analysis, 378-379, 379f
matrix-assisted laser desorption/ionization, 101
tandem, 101, 102f
mass-to-charge ratio (m / z), 100
maternal genes, 1188-1190, 1189f
maternal mRNA, 1188-1190
mating-type switch, 1174 t
matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), 101, 274, 275f
Matthaei, Heinrich, 1105
mature onset diabetes of the young (MODY2), 611b-612b, 768
Maxam, Alan, 302
Maxam-Gilbert sequencing, 302
maximum velocity ($V_{\max }$), 201-205, 201f
MB isozyme, 947b
McArdle disease, 617t
McCarty, Maclyn, 288
McClintock, Barbara, 344, 1038, 1038 f
McElroy, William, 525b
McLeod, Colin, 288
MCM proteins, 1025
MDR1 (multidrug transporter), $\mathbf{4 1 3}$
mechanism-based inactivators, $\mathbf{2 1 0}$
Mediator, 1179
medicine. See also specific disorders
genomics in. See genome sequencing, medical applications of
personalized genomic, 39, 340b, 350-351
megaloblastic anemia, $\mathbf{7 1 4}$
megaloblasts, $\mathbf{7 1 4}$
meiosis, 1041-1046, 1042, 1043f-1044f, 1046f
in bacteria, 1039-1041
crossing over in, 1043, 1043f, 1045b
in eukaryotes, 1041-1043, 1043f
fetal, errors in, 1045b
recombination in, 1039-1046, 1043f
MEK, 455, 456f
melanocortin, 962
α-melanocyte-stimulating hormone $(\alpha-\mathrm{MSH}), \mathbf{9 6 2}$
Mello, Craig, 1185, 1185f
melting point
of common solvents, 48 t
of water, 47, 48-49, 48t
membrane(s), 3, 3f
asymmetry of, 387, 387f, 388
common properties of, 387
composition of, 386-387, 386f, 386t
flexibility of, 395
fluid mosaic model of, $\mathbf{3 8 7}$, 387 f
fluidity of, 395-396, 395f
functions of, 385
lipid bilayer of, 387-389, 387f
overview of, 385
permeability of, 387
plasma, 3, 3f
bacterial, 5, 6f
composition of, 386-387, 386f, 386t
lipid rafts in, 398-399, 399f
lipopolysaccharides of, 268, 268 f
microdomains of, 398-399, 399f
neuronal, transport across, 949
permeability of, 56
protein targeting to, 1142, 1143f
syndecans in, 264, 264f
polarization of, 464-465, 464f
structure of, 387-389
trilaminar appearance of, 387
types of, 386f
membrane-bound carriers, mitochondrial electron passage through, 735-737, 736f, 737f
sequence of, 736-737, 737f
standard reduction potential of, 737, 737 t
membrane dynamics, 395-402
membrane fusion, 400-401, 400f, 401f
membrane glycoproteins, 267
membrane lipids, 268, 268f, 362-370, 363f, 386, 386t. See also lipid(s)
abnormal accumulation of, 369b
aggregations of, $387,388 \mathrm{f}$
amphipathicity of, $362,398 \mathrm{f}$
of archaea, 365-366, 366f
in bilayer, 387-388, 387f, 388f
classification of, 363 f
diffusion of, 396-398, 396f-398f
catalysis of, 396-397, 396f
flip-flop, 396-397, 396f
lateral, 397-398, 397f
distribution of, 387, 389f, 403f
ether lipids, $\mathbf{3 6 4}, 365 \mathrm{f}$
glycolipids, 268, 268f, 363, 363f
glycosphingolipids, $\mathbf{2 6 4}$
head groups of, 363, 852-853, 854f, 855-856, 857
in liquid-ordered/disordered state, 395-396, 395f
lysosomal degradation of, $368,368 \mathrm{f}$
membrane protein attachment to, 387
microdomains of, 398-399, 399f
orientation of, $387,387 \mathrm{f}$
phospholipids, 363, 363f
in plants, $365,365 f$
plasmalogens, 364, 365 f
in rat hepatocyte, 386f
in signaling, 371-372, 371f
sphingolipids, 366-368, 367f
sterols, 363f, 368-370, 368f
synthesis of, 852-859
cytidine nucleotides in, $853,853 \mathrm{f}, 854 \mathrm{f}$
in Escherichia coli, 853-855, 854f
in eukaryotes, 855-856, 855f-857f
head group attachment in, 852-853, 853f, 854f
head-group exchange reaction in, 855-856, 857f
salvage pathways in, 856
in vertebrates, 855-856, 856f, 857f
in yeast, $855,856 \mathrm{f}$
transport of, 857-858. See also membrane transport
membrane lipopolysaccharides, 268, 268f
membrane permeability, 56
membrane polarization, in signaling, 445f, 464-467, 464f, 466f
membrane potential $\left(V_{\mathrm{m}}\right), \mathbf{4 0 3}, 403 \mathrm{f}, 464-465,464 \mathrm{f}$
in signaling, 464-469, 464f, 468
membrane proteins, 3,386 f, 386t, 387
aggregation of, $398,398 \mathrm{f}$
α helix of, 391, 392
amphitropic, $\mathbf{3 9 0}$
attachment of, 390-391, 391f lipid anchors in, 264, 387, 394, 394f, 398-399 prenylation in, 861f, 875
β barrels in, 137f, 391, 393-394
β sheets in, 392
carbohydrate linkage to, 266-268, 266f, 387
functional specialization of, 386f, 387
hydropathy index for, 392-393
hydrophilic interactions of, 387-388, 388f
hydrophobic interactions of, 387-388, 388f, 390-392
integral, 389-394, 391f, 392f
attachment of, 390-391, 391f
in cell-cell interactions/adhesion, 402 functions of, 402
proteoglycans as, 263-268, 264f
structure of, 391-394, 391f
lipid attachment to, 264, 387, 394, 394f
in lipid bilayer, 387, 387 f
membrane-spanning, 390-394, 390f-393f
orientation of, 387, 387f, 391
peripheral, 389
structure of, 390-394, 391f-394f
topology of, 390, 391-394, 391f-394f
amino acid sequence and, 390f, 391
transbilayer diffusion of, 398, 398f
transport, 393, 402-427. See also transporter(s)
Trp residues in, 393, 393f
Tyr residues in, 393, 393f
weak interactions of, 390-391, 391f, 392f
membrane rafts, 399, 399f
in signaling, 463
membrane-spanning proteins, 390-394, 390f-393f
membrane transport, 402-427
activation energy for, 403-404, 404f
active, 409-418
ATP energy in, 525-526
primary, 403f, 409, 409f
secondary, 403f, 409, 409f
aquaporins in, 418-420, 419t, 420f
ATP-driven, 409-414, 411f-413f
ATP synthases in, $\mathbf{4 1 2}$
Ca^{2+} pump in, 410-411, 411f
chloride-bicarbonate exchanger in, 398, 398f, 407-409, 407f
cotransport systems in, 409, 409f
in diabetes, 408b
direction of, 403f
electrochemical gradient in, 403, 403f
electrogenic, $\mathbf{4 0 9}$
electroneutral, 409
by facilitated diffusion, 403f. See also transporter(s)
free-energy change in, 409-410
of glucose
in erythrocytes, 405-407, 405f, 406f
transporters for, 405-407, 405f, 406f, 407t, 408f
ion channels in, 403f, 420-426. See also ion channels
ion gradients in, 414-418, 416f, 417f
ionophore-mediated, 403f, 418
kinetics of
in active transport, 409-410
in passive transport, 404, 404f, 405-407, 406f
lectins in, 272-273
of lipids, 857-858
membrane potential in, 403, 403f
modes of, 403f, 404f, 425t
$\mathrm{Na}^{+} \mathrm{K}^{+}$ATPase in, 411-412, 412f
neuronal, 949
passive, 402-409, 404
porins in, 393, 393
rate of, 403, 405-406, 406f
SERCA pump in, 410-411
by simple diffusion, 403, 403f
in targeting, 1141-1142. See also protein targeting
transporters in, 404-409. See also transporter(s)
menaquinone (vitamin K_{2}), 374 , 375 s
Menten, Maud, 201, 201f, 202
Merrifield, R. Bruce, 102-103, 103f, 304
Meselson, Matthew, 1011
Meselson-Stahl experiment, 1011, 1011f
mesophyll cells, in C_{4} plants, 815f, 817
messenger RNA. See mRNA (messenger RNA)
metabolic acidosis, 61, 67-68, 68b, $\mathbf{6 8 8}$
metabolic alkalosis, $61,68 \mathrm{~b}$
metabolic control, 592
metabolic control analysis, 596-602, 597
of carbohydrate metabolism, 598-600, 598b-599b
increased flux prediction by, 598b-599b
quantitative aspects in, 598b-599b
metabolic fuels, body stores of, 956 t
metabolic pathways, $\mathbf{2 8}, \mathbf{5 0 2}, 588 \mathrm{f}$, 942t. See also specific pathways, e.g., pentose phosphate pathway
anabolic
in glycogen metabolism, 613-614
vs. catabolic pathway, 503 f
catabolic
in glycogen metabolism, 613-614
vs. anabolic pathway, 503 f
de novo, 910-922
endogenous, $\mathbf{8 6 7}$
exogenous, $\mathbf{8 6 6}$
glycolytic. See glycolysis
regulation of, 502, 587-627
adenine nucleotides in, 594-596
enzyme activity in, 589-592, 590f
mechanisms of, 588f
near-equilibrium and nonequilibrium steps in, 592-593, 592f, 593t
steady state maintenance in, 589
salvage, 856, 857f, 910-911, 922-923
metabolic regulation, 592
metabolic syndrome, 969-971
metabolic water, 69
metabolism, 28, 502
in adipose tissue, 936f, 943-944
aerobic, of vertebrates, 564 b
amino acid, 588f
anaerobic, of coelacanths, 564 b
ATP in, 28, 28 f
bioenergetics and, 506-511
blood in, 949-950
in brain, 948-949, 949f
carbohydrate. See carbohydrate metabolism
carbon-carbon bond reactions in, 512-513, 512f, 520f
cellular, transformations in, 511-512
energy, 588f
feedback inhibition in, 29
folate, as chemotherapy target, 924 f
free radical reactions in, 514-515
glutathione, 908 f
glycogen. See glycogen, metabolism of group transfer reactions in, 515-516, 515f hepatic, 939-943, 940f
intermediary, $\mathbf{5 0 2}$
internal rearrangements in, 513-514, 514f
lipid. See lipid metabolism
in muscle, 944-948, 945f, 948f
nitrogen. See nitrogen metabolism
nucleotide, 588f
overview of, 501-504
oxidation-reduction reactions in, 516, 516f
regulation of, 28-29, $\mathbf{5 9 2}$
metabolite(s), 3, 14-15, 502
secondary, 15
metabolite concentration, regulatory enzyme response to, 592f, 593, 593t
metabolite flux, change in enzyme activity on, 597, 597f
metabolite pools, in plants, $\mathbf{8 2 6}, 826$ f
metabolome, 15, 591, 591f
metabolomics, $\mathbf{1 5}$
metabolon, 656
metal cluster, 785
metal ion catalysis, 200, 220, 221f
metalloproteins, $\mathbf{8 9}, 89 \mathrm{t}$
metamerism, 1188
metformin (Glucophage), 970t
methane, 529s
methanol, in lipid extraction, 377f, 378
methanol poisoning, 208
methionine, 79, 79s, $\mathbf{7 2 2}, \mathbf{8 9 8}$
biosynthesis of, 896f, 898-899
conversion of, to succinyl-CoA, 722, 722f
properties of, 77 t , 79
synthesis of, 714 f
methionine adenosyl transferase, 712
synthesis of, 714f
methotrexate, $\mathbf{9 2 3}, 924 \mathrm{~s}$
1-methyladenine, demethylation of, 1033, 1035f
methyladenosine, 284s
methylamine, $\mathrm{p} K_{\mathrm{a}}$ of, $83,84 \mathrm{f}$
methylation
of amino acid residues, 1136, 1137f
in DNA mismatch repair, 1029-1030, 1029f-1031f
enzyme, 229
of nucleotide bases, 302
5-methylcytidine, 284s, 302
methylcytosine
deamination of, 299-300, 300f
demethylation of, 1033, 1035f
methylguanosine, 284s
6-N-methyllysine, 81, 82s
methylmalonic acidemia (MMA), 717t, 724b-725b
methylmalonyl-CoA, 678
methylmalonyl-CoA epimerase, 678
methylmalonyl-CoA mutase, $\mathbf{6 7 8}$
Mevacor (lovastatin), 872b-873b
mevalonate, in cholesterol synthesis, 860-861, 860-861, 860f, 861f, 869
Meyerhof, Otto, 544
Mg^{2+}. See also magnesium
in biochemical standard state, 507
in Calvin cycle, 802-803, 803f
complex with ATP, 518, 5118f
as enzyme cofactor, 407, 407f
MGDG (monogalactosyldiacylglycerol), 365f
micelles, 52-53, 52f, 387, 388 f
Michaelis, Leonor, 201, 201f, 202
Michaelis constant (K_{m}), 202-206, 203f, 204t, 205t apparent, 209t
interpretation of, 203-204, 203-205
Michaelis-Menten equation, 203, 203f
Michaelis-Menten kinetics, 203-207, 591
microRNA (miRNA), 1081, 1185
microarrays
DNA, 337-338, 337f, 338f
oligosaccharide, $274,275 f$
microbes, gut, obesity and, 968
microdomains, 398-399
microtubules, 8,8 f, 179
Miescher, Friedrich, 288
mifepristone, 471, 472s
Miller-Urey experiment, 33-34, 33f
Milstein, Cesar, 178, 178 f
mineralocorticoids, 935
synthesis of, 874, 874f, 875f
minichromosome maintenance (MCM) proteins, 1025
Minkowski, Oskar, 931b
minor groove, 289, $289 f$
miRNA (microRNA), 1081, 1185
mirror repeat DNA, 292, 292f
mismatch repair, 1028-1030, 1028t, 1029f-1031f
missense mutations, 1111
Mitchell, Peter, 731, 747, 748f
mitochondria, 6, 7f, 983
aging and, 732, 766
in apoptosis, 764-765, 764f
ATP synthase complex in, 750
ATP synthesis in, 732. See also ATP synthesis
β oxidation in, 683f
biochemical anatomy of, 732-734, 733f
chemiosmotic theory applied to, 748 f
classes of cytochromes in, 735, 736f
DNA in, 765 f
electron-transfer reactions in, oxidative
phosphorylation and, 732-747. See also electron-transfer reactions, mitochondrial
evolution of, $36,37 \mathrm{f}$
from endosymbiotic bacteria, 765-766, 765f
functions of, 732, 762-765
mitochondria (Continued)
genetic code variations in, 1108b-1109b
heteroplasmy and, 767
homoplasmy and, 767
hypoxic injury of, 761
lipid metabolism in, 839, 840, 840f
matrix of, 733, 733f
membranes of, 732, 733 f
mutations in, 765f, 766-768
apoptosis and, 764-765
diseases associated with, 732, 767-768
endosymbiotic bacteria and, 765-766, 765 f
nitrous acid and, 301, 301f
oxidative stress and, 745-746, 745f
plant, alternative mechanism for NADH oxidation in, 746, 746b-747b
protein targeting to, 1142-1143
reactive oxygen species and, 745-746, 745f
in respirasomes, $\mathbf{7 4 3}$
respiratory proteins and, 766 t
shuttle system transport of cytosolic NADH into, 758-759, 758f, 759f
in thermogenesis, 762-763
transport of fatty acids into, 670-672, 671f
uncoupled, heat generated by, 762-763, 763f
in xenobiotics, 763-764
mitochondrial DNA (mtDNA), 765-768
evolution of, 765
genetic code variations in, 1108b-1109b
mutations in, 765f, 766-768, 767f, 768f.
See also mitochondria, mutations in
structure of, $765,765 f$
mitochondrial encephalomyopathy, 767-768
mitochondrial inheritance, 766-767
mitochondrial respiration, $\mathbf{8 1 2}$
mitosis, 484, 484f
mixed-function oxidases, $\mathbf{6 8 5}, \mathbf{7 2 0}, \mathbf{8 4 3}$,
844b-845b
mixed-function oxygenases, 844b
mixed inhibitor, 208, 208f, 209f, 209t
MjtRNA ${ }^{\text {Tyr }}, 1126 \mathrm{~b}$
MjTyrRS, 1126b
MMA (methylmalonic acidemia), 717 t
mobile elements, 1039-1040, 1049
introns as, 1089, 1090f
modularity, 434
modulators, in protein-ligand binding, 166
MODY (mature onset diabetes of the young), 611b-612b, 768
molecular biology, central dogma of, 977, 977f, 1086
molecular chaperones, 146-147, 146f, 147f, 1143, 1145 f
molecular evolution, 104-108. See also evolution amino acid sequences and, 104-108, 106f-108f
amino acid substitutions in, 106
homologs in, 106-107
horizontal gene transfer in, 104
molecular function, of proteins, $\mathbf{3 3 2}$
molecular logic of life, 2
molecular mass, 14b
molecular parasites, evolution of, 1094
molecular weight, 14b
molecules. See biomolecules
monocistronic mRNA, 294
monoclonal antibodies, 178
Monod, Jacques, 167, 293, 1159, 1159f
monogalactosyldiacylglycerol (MGDG), 365f
monooxygenases, 844b
monophosphates, nucleoside, conversion of, to nucleoside triphosphates, 916
monosaccharides, 243, 243-251. See also carbohydrate(s)
abbreviations for, 252 t
aldose, $\mathbf{2 4 4}, 244 \mathrm{f}$
anomers, 246
in aqueous solutions, 245
chiral centers of, 244-245, 245f, 246f
conformations of, 248, 249 f
D isomers of, $245,246 \mathrm{f}$
derivatives of, 249-251, 249f
enantiomers of, $\mathbf{2 4 4}, 245 f$
epimers, 245, 246 f
families of, 244, 244f
in glycolysis, 561-563, 571f
Haworth perspective formulas for, 247-248, 247f-249f
hemiacetal, 245, 247 f
hemiketal, 245, 247f
heptose, 244
hexose, 244
hydrolysis of polysaccharides and disaccharides to, 558-560, 569f
intermediates of, 249f, 250-251
ketose, 244, 244f
L isomers of, 245
nomenclature of, $244,245,250$
oxidation of, 249f, 250, 251
pentose, 244
phosphorylation of, 251
pyranoses, 246-247, 248f, 249 f
reducing, 251, 252-253
stereoisomers of, 244-245, 245f
structure of, 245-251, 246f-249f
tetrose, 244
triose, 244, 244f
moonlighting enzymes, 642b
morphogens, 1188
motifs, 137-140, 139f-140f. See also protein folding motor proteins, 179-184, 180f-183f
mRNA (messenger RNA), 281, 1057.
See also RNA
artificial, in genetic code studies, 1105
base pairing of, with tRNA, 1109-1110, 1110f
degradation of, 1084-1085, 1136
differential processing of, 1075-1077
early studies of, 293-294
editing of, 1111-1113
5^{\prime} cap of, $\mathbf{1 0 7 0}$
functions of, 293-294
hairpin loops in, 1065f, 1084-1085
length of, 294
maternal, 1188, 1188-1190
monocistronic, 294, 294f
polycistronic, 294, 294f
polypeptide coding by, 293-294
poly(A) tail of, 1075, 1075f
processing of, 1069-1077. See also RNA processing in translation.
stability of, 589-590
synthesis of, rate of, 589
α-MSH (α-melanocyte-stimulating hormone), 962
mtDNA (mitochondrial DNA), 765-768, 983, 1108b-1109b. See also mitochondrial DNA (mtDNA)
mTORC1, 965, 966 f
mucins, 267
Mullis, Kary, 327
multidrug transporter (MDR1), 413
multienzyme complex(es)
in oxidative phosphorylation
Complex I (NADH: ubiquinone oxidoreductase), $738,738 \mathrm{t}$, 739f
Complex II (succinate dehydrogenase), 740, 740f
Complex III (ubiquinone: cytochrome c oxidoreductase), 740-742, 741f
Complex IV (cytochrome oxidase), 742-743, 742f
electron carriers in, 737-743
substrate channeling through, 655-656, 655f
multifunctional protein (MFP), 684
multimer, 140
multipotent stem cells, $\mathbf{1 1 9 2}$
multisubunit proteins, 87, 87t
muramic acid, 249 f
muscle
alanine transport of ammonia from, 703, 703f creatine/creatinine in, 946b-947b
energy sources for, 945-948, 945f, 948f
fast-twitch, 944
gluconeogenesis in, 943-944, 948, 948f
heart, 947b, 948, 948f
metabolism in, 944-948, 945f, 948f
red, 944-945
in regulation of carbohydrate metabolism,
626, 626 f
slow-twitch, 944
structure of, 181-183, 181f, 182f
white, 944-945
muscle contraction, 182-183, 183f
ATP in, 525-526
creatine phosphate in, 946 b
fuel for, 945-948, 945f, 948 f
muscle fibers, structure of, 181-183, 181f
muscle proteins, 179-184, 180f-183f
mutagenesis
oligonucelotide-directed, 324, 325 f
site-directed, 323-324
mutarotation, 248
mutases, 560
mutations, 32, 299, 979, 1027. See also genetic defects
alkylating agents and, 301f, 302
apoptosis and, 764-765
cancer-causing, 489-494, 493f, 656, 1027-1028, 1037b-1038b
citric acid cycle, in cancer, 656
deletion, 1027
endosymbiotic bacteria and, 765-766, 765f
in error-prone translesion DNA synthesis, 1034-1037
in evolution, 32-33, 32f, 37-38, 1194b-1195b
in fatty acyl-CoA dehydrogenase, 682
insertion, 1027
mechanism of, 1035f
missense, 1111
mitochondrial, 301, 301f, 732, 764-768, 765f. See also mitochondria, mutations in
nonsense, 1134b
oncogenic, 489-494, 493f, 656, 1027-1028, 1037b-1038b
oxidative stress and, 745-746, 745f
radiation-induced, 300 , 301f
resistance of genetic code to, 1110-1111
silent, 1027, 1111
substitution, 1027
suppressor, 1134b
transition, 1111
wild-type, 33
MutH, in DNA mismatch repair, 1029-1030, 1030f, 1031f, 1038b
MutL, in DNA mismatch repair, 1029-1030, 1030f, 1031f, 1038b
MutS, in DNA mismatch repair, 1029-1030, 1030f, 1031f, 1038b
MWC model, of protein-ligand binding, 167-168, 170f
myelin sheath, components of, 386, 386t
myocardial infarction, 948
myoclonic epilepsy with ragged-red fiber disease (MERRF), $\mathbf{7 6 8}$
myocytes, 944
glucose in, control of glycogen synthesis from, 598-600
myofibrils, 181, 181 f
myoglobin, 131-133, 132f, 159, 159f
heme group in, 132-133, 133s
in oxygen binding, 159, 162, 162f. See also hemoglobin-oxygen binding
structure of, 131-133, 132f, 159, 159f, 163, 163f
nuclear magnetic resonance studies of, 135b-136b, 135f, 136f
x-ray diffraction studies of, 134b-135b, 134f-135f
subunits of, 163, 163f
myosin, 179-181, 180f. See also actin-myosin entries
coiled coils in, 126
in muscle contraction, 182-183, 183f
phosphorylation of, 487-488
structure of, 179-181, 180f, 181f
in thick filaments, 180f, 181, 182-183, 183f
myosin-actin interactions, 182-183, 183f
myristic acid, 358t
myristoyl groups, membrane attachment of, 394, 394f
m / z (mass-to-charge ratio), 100

N

N (Avogadro's number), 507t
N-linked oligosaccharides, 267, 267f,

1141-1142, 1142f

N_{2}. See nitrogen
Na^{+}. See sodium ion(s)
Na^{+}-glucose symporter, 417, 417
NAD^{+}(nicotinamide adenine dinucleotide), 307 s in Calvin cycle, 809
reduced form of. See NADH
ultraviolet absorption spectrum of, 533 f
NADH, 602b
cytosolic, shuttle systems acting on, 758-759, 758f, 759f
dehydrogenase reactions and, 532-535, 533f
oxidation of, in plant mitochondria, 746 , 746b-747b
in payoff phase of glycolysis, 550-555, 553f, 554f
ultraviolet absorption spectrum of, 533 f
NADH dehydrogenase, 674, 738, 738t, 739f. See also Complex I
NADH:ubiquinone oxidoreductase, 738, 738t, 739 f . See also Complex I
$\mathrm{NADP}^{+}, 533 \mathrm{~s}$
dehydrogenase reactions and, 532-533, 533f, 534 t
reduced form of. See NADPH
vitamin form of, deficiency of, 535
NADPH, 28f, 602b
in anabolic reactions, 839
in Calvin cycle, 801f, 804
in cell protection against oxygen derivatives, 576b, 576f
dehydrogenase reactions and, 532-533, 533f
in fatty acid synthesis, 838-839
in glucose oxidation, 575-577, 576b, 577f
in glyceraldehyde 3-phosphate synthesis, 801f, 804-805
in partitioning of glucose 6-phosphate, 580, 580f
in photosynthesis, 808-812, 808f-811f, 839
synthesis of
in adipocytes, 839,840 f
in chloroplasts, 839
in cytosol, 839, 840f
in hepatocytes, $839,840 \mathrm{f}$
$\mathrm{Na}^{+} \mathrm{K}^{+}$ATPase, 411-412, 412f, 417, 417f
in membrane polarization, 464, 464f
in retina, 477
in membrane transport, in neurons, 949
nalidixic acid, 992b, 992s
nanos, 1188-1189
naproxen, 846, 846s
National Center for Biotechnology Information (NCBI), 342
native conformation (protein), 31, 116
natural selection, 33
ncRNA, 1186
Neanderthals, genome sequencing for, $350 \mathrm{~b}-351 \mathrm{~b}$
near-equilibrium steps, in metabolic pathway, 592-593, 592f

nebulin, 182

Neher, Erwin, 421, 421f
Nernst equation, 530-531
Neu5Ac, 269-270
neural transmission, steps in, 466 f
neuroendocrine system, 930
neuroglobin, 163
neuron(s)
anorexigenic, 962
gustatory, 481, 483f, 484f
ion channels in, 465-467, 467f
membrane transport in, 949
Na^{+}channels in, $424,466 \mathrm{f}$
olfactory, 481, 482f
orexigenic, 962
photosensory, 477, 477f-480f
visual, 477, 477f-480f
neuronal signaling, 930, 930f
neuropathy, optic, Leber's hereditary, $\mathbf{7 6 7}$
neuropeptide Y (NPY), 962
neurotransmitters
biosynthesis of, from amino acids, 908-909, 910f
as hormones, 930
receptors for, 468
release of, 468
membrane fusion in, 401, 401f
neutral fats. See triacylglycerol(s)
neutral glycolipids, $363 \mathrm{f}, \mathbf{3 6 6}, 367 \mathrm{f}$
neutral $\mathrm{pH}, 59$
newborn, PKU screening in, 721
Nexavar, 491b
next-generation sequencing, 304, 339-342, 341f, 342f
NH_{3}. See ammonia
niacin (nicotinic acid), 535, 535s
dietary deficiency of, 535
niche, $\mathbf{1 1 9 2}$
nick translation, 1017, 1017f, 1018, 1023, 1024f, 1028t, 1031-1032, 1033f
nicotinamide, 535 s
nicotinamide adenine dinucleotide $\left(\mathrm{NAD}^{+}\right), 307 \mathrm{~s}$
reduced form of. See NADH
nicotinamide adenine dinucleotide phosphate. See NADP^{+}
nicotinamide nucleotide-linked dehydrogenases, 734
reactions catalyzed by, 734 t
nicotine, 535 s
nicotinic acetylcholine receptor, 424, 467-468 defective, 426 t
open/closed conformation of, 468, $469 f$
in signaling, 467-468, 469f
synaptic aggregation of, 398
nicotinic acid (niacin), 535, 535 s
dietary deficiency of, 535
Niemann-Pick disease, 369b, 869
Niemann-Pick type-C, $\mathbf{8 6 9}$
Nirenberg, Marshall, 1105-1106, 1105f
nitrate reductase, $\mathbf{8 8 2}, 883$ f
nitric oxide (NO), 460
as hormone, 933t, 936
solubility in water, 51
synthesis of, arginine as precursor in, 909, 911f
nitric oxide (NO) synthase, 460, 936
nitrification, $\mathbf{8 8 2}$
nitrifying bacteria, 884b-885b
nitrite reductase, $\mathbf{8 8 2}, 883$ f
nitrogen
available, nitrogen cycle maintenance of, 882, 882f
cycling of, 502, 502f
enzymatic fixation of
nitrogenase complex in, 882-888, 886f, 887f
excretion of, 704-710, 705f, 706f, 707f, 709f, 710f
reduction of, to ammonia, 882-883
solubility in water, $51,51 \mathrm{t}$
nitrogen cycle, $\mathbf{8 8 2}$
available nitrogen in, 882
bacteria in, 884b
nitrogen fixation, 822-888, 882f, 883f, 886f, 887 f
nitrogen-fixing nodules, 887-888, 887 f
nitrogen metabolism, 881-891
ammonia in, 888-889
available nitrogen in, $882,882 \mathrm{f}$
biosynthetic reactions in, 910 f
enzymatic fixation in, 882-888, 886f, 887f
glutamate and glutamine in, 696
glutamine amidotransferases in, 890-891, 890f
glutamine synthetase in, 888-890, 889f
nitrogen mustard, as mutagen, 301f
nitrogenase complex, 883-888
enzymes of, 886f
nitrogen fixation by, 882-888, 882f, 883f, 886f, 887f
nitroglycerin, 460
nitrous acid, as mutagen, 301, 301f
nitrovasodilators, 460
NLS (nuclear localization sequence), 1144
NMR spectroscopy. See nuclear magnetic resonance spectroscopy

NO. See nitric oxide (NO)
nocturnal inhibitor, 804
nodules, nitrogen-fixing, 887-888, 887f
Noller, Harry, 1103, 1103f
nomenclature systems
D, L, 18
RS, 18
Nomura, Masayasu, 1115, 1115f
noncoding DNA, 342-344, 984. See also introns
noncoding RNA (ncRNA), 1186
noncompetitive inhibition, $\mathbf{2 0 8}, 208 \mathrm{f}, 209 \mathrm{f}$, 209t
noncovalent bonds, 9. See also weak interactions
nonequilibrium steps, in metabolic pathway, 592f, 593
nonessential amino acids, 892. See also amino acid(s)
nonoxidative reaction, of pentose phosphate pathway, 577-580, 578f
nonpolar compounds. See hydrophobic compounds
nonreducing sugars, 252, 253
nonsense codons, 1107, 1107f. See also codons
nonsense mutations, 1134b
nonsense suppressors, 1134b
nonsteroidal anti-inflammatory drugs (NSAIDs), $371-372,845-847,846 \mathrm{~s}$
norepinephrine, 909,934
as neurotransmitter vs. hormone, 930
Northrop, John, 190
novobiocin, 992b
NPY (neuropeptide Y), 962
NS domains, 264f, 265, 265 f
NSAIDs (nonsteroidal anti-inflammatory drugs), 371-372, 845-847, 846s
NuA4, in chromatin remodeling, 1176 t
nuclear localization sequence (NLS), 1144, 1144f
nuclear magnetic resonance (NMR) spectroscopy
in carbohydrate analysis, $274,275 \mathrm{f}$
in protein structure determination, 135b-136b, 135f, 136f
nuclear proteins, targeting of, 1143-1145, 1144f
nuclear receptors, 436f, 437
nucleases, $\mathbf{1 0 1 3}$
nucleic acid(s), 15. See also DNA; RNA
bases of. See base(s), nucleotide/nucleic acid; base pairs/pairing
chemical synthesis of, $305,305 \mathrm{f}$
components of, 8f
evolution of, 33-34, 1092-1094
5^{\prime} end of, $\mathbf{2 8 5}, 285 f$
hydrophilic backbones of, 285, 285f, 288
long, 286
nomenclature of, 282, 282t, 284
nonenzymatic transformation of, 299-302
nucleotides of, 281-287. See also nucleotide(s)
phosphate bridges in, 284-286, 285f
phosphodiester linkages in, 284-286, 285f
polarity of, 285, 285f
pyrimidine bases of, 282-284, 284f
short, 286
structure of, 287-297
base properties and, 286-287, 296 in DNA, 287-293. See also DNA structure overview of, 287-297
in RNA, 294-295, 294f-296f
schematic representation of, 285-286
synthesis of. See DNA replication; translation
3^{\prime} end of, $\mathbf{2 8 5}$
nucleic acid sequences
amino acid sequence and, 980, 980f
in evolutionary studies, 107
nuclein, 288
nucleoids, 3, 3f, 5, 6f, $\mathbf{1 0 0 2}$
nucleophiles, in enzymatic reactions, 216f, 512, 512f
nucleophilic displacement reaction, of ATP, 523-524, 524f
nucleoside(s), 281
nomenclature of, 282t, 284
nucleoside diphosphate kinase(s), 526, 645, 916
Ping-Pong mechanism of, 526, 526f
nucleoside diphosphates, 306, 306f
nucleoside monophosphate kinases, 916
nucleoside monophosphates, 306, 306f
conversion of, to nucleoside triphosphates, 916
nucleoside triphosphates, $306,306 \mathrm{f}$
hydrolysis of, 306, 307f
nucleoside monophosphate conversion to, 916
in RNA synthesis, 524
nucleosomes, 994, 995-1000, 996f, 997f, 1000f
acetylation of, 1175-1176
positioning of, 996-997
in 30 nm fiber, $\mathbf{9 9 8}, 1000$ f
5'-nucleotidase, $\mathbf{9 2 0}$
nucleotide(s), $\mathbf{2 8 1}$
abbreviations for, 282t, 283f, 306f
absorption spectra of, 286, 286f
in ATP hydrolysis, 306
bases of, 281-287, 282s-284s. See also base(s), nucleotide/nucleic acid
components of, 281-284, 282f-284f
depurination of, $300,300 \mathrm{f}$
evolution of, 33-34, 1092-1094
flavin, 535-537, 536f, 536t, 734
functions of, 306-308
N-glycosyl bonds of, hydrolysis of, 300
linkage of, 284-286, 285f
metabolism of, 588f, 942 t
nomenclature of, 282, 282t, 283f, 284
nonenzymatic reactions of, 299-302, 300f, 301f
nonenzymatic transformation of, 299-302
phosphate groups of, 281, 281f, 282t, 283f, 306
purine. See purine nucleotides
pyrimidine, biosynthesis of, 915-916, 915f, 916f regulation of, $916,916 \mathrm{f}$
regulatory, 308, 308 f
as second messengers, $\mathbf{3 0 8}, 308 \mathrm{f}$
sequences of, schematic representation of, 285-286, 286f
structure of, 281-284, 282f-284f, 282s, 282t, 283s
sugar, 615-619
formation of, 615-616, 618f
in glycogen synthesis, 615-619, 617-619, 618f, 620f
synthesis of, 890-891, 910-925, 910f enzymes in, chemotherapeutic agents targeting, 923-925, 923f, 924f
transphosphorylations between, 526-527, 526f
variant forms of, 284, 284s, 290-293, 291f
nucleotide-binding fold, $\mathbf{3 0 8}$
nucleotide-excision repair, 1028t, 1031-1032, 1032f, 1033f, 1037b-1038b
in bacteria, 1028t, 1031-1032, 1033f
in humans, 1033f
nucleotide sequences
amino acid sequence and, 980, 980f
in evolutionary studies, 107
schematic representation of, 285-286, 286f
nucleotide sugar, 819
nucleotide triplets. See codons
nucleus, 3 , 3f
protein targeting to, 1143-1145, 1144f
NURF, in chromatin remodeling, 1175
Nüsslein-Volhard, Christiane, 1187, 1187f
nutrients, transport of, in blood, 949-950

0

O-glycosidic bond, $\mathbf{2 5 2}$
O-linked oligosaccharides, 266-267, 267f, 1141-1142
O_{2}. See oxygen
O^{6}-methylguanine
mutation from, 1033, 1035 f
O^{6}-methylguanine-DNA methyltransferase, 1033, $1035 f$
obesity, 960-971. See also body mass
gut bacteria and, 968
SCD1 in, 843
Ochoa, Severo, 616b, 1085, 1085 f
octadecadienoic acid, 358t
octadecanoic acid, 358t

Ogston, Alexander, 648b
Okazaki fragments, 1012-1013, 1013f, 1021-1022 synthesis of, 1021-1022, 1021f
oleate, $677,842-843,843 f$
synthesis of, 842-843, 842f
oleic acid, 358t
olfaction, signaling in, 481, 482f, 483f
oligo $(\alpha 1 \rightarrow 6)$ to $(\alpha 1 \rightarrow 4)$ glucantransferase, 614.
See also debranching enzyme
oligomers, 15, 87t, 88, 140
oligonucleotide, $\mathbf{2 8 6}$
oligonucleotide-directed mutagenesis, 324, 325 f
oligopeptides, $\mathbf{8 6}$
oligosaccharide(s), 243. See also carbohydrate(s); disaccharides
analysis of, 274, 275 f
chemical synthesis of, 274
conformations of, 258-259, 259f
diversity of, 269
glycoprotein linkage to, 266-268, 267f, 387, 1141-1143, 1142f
as informational molecules, 15, 269-273, 272f
lectin binding of, 269-263, 270f-273f
N-linked, 267, 267f, 1141-1142, 1142 f
nomenclature of, 252-253
O-linked, 266-267, 267f, 1141-1142
in peptidoglycan synthesis, 824 f
separation and quantification of, $274,275 \mathrm{f}$
structure of, 274, 275 f
synthesis of, 1141-1143, 1142f
oligosaccharide microarrays, 274, 275f
omega (ω) oxidation, 684-685, 685f
omega-3 fatty acids, $\mathbf{3 5 9}$
omega-6 fatty acids, $\mathbf{3 5 9}$
OmpLA, structure of, 393f
OmpX, structure of, 393f
oncogenes, 489, 494f
oncogenic mutations, 489-494, 493f, 656, 1027, 1037b-1038b
in citric acid cycle, 656
one gene-one enzyme hypothesis, $642 \mathrm{~b}, \mathbf{9 8 0}$
one gene-one polypeptide hypothesis, 980
open reading frame (ORF), $\mathbf{1 1 0 7}$
open system, $\mathbf{2 1}$
operators, $\mathbf{1 1 5 7}$
operons, 1159-1160
his, 1169
lac, 1159-1160, 1159f, 1160f
leu, 1169
phe, 1169
regulation of, 1165-1167, 1166
trp, 1167, 1167f
opsins, 477. See also rhodopsin
absorption spectra of, 480, 480f
optic neuropathy, Leber's hereditary, $\mathbf{7 6 7}$
optical activity, 18b, 77
ORC (origin replication complex), $\mathbf{1 0 2 5}$
ordered water, 53, 53f
orexigenic neurons, $\mathbf{9 6 2}$
ORF (open reading frame), $\mathbf{1 1 0 7}$
organelles, 6-8, 6 f
cytoskeleton and, 8-9, 8f
in plants, 800-801, 801f
organic solvents, in lipid extraction, 377-378, 377f
Orgel, Leslie, 1092, 1092f
oriC (DNA replication origin), 1020-1021, 1020f in bacteria, 1012, 1012f
in eukaryotes, $\mathbf{1 0 2 5}$
origin-independent restart of replication, $\mathbf{1 0 4 1}$
origin of replication (ori), $\mathbf{3 1 8}$
origin replication complex (ORC), $\mathbf{1 0 2 5}$
ornithine, $\mathbf{8 1}, 82 \mathrm{~s}$
ornithine δ-aminotransferase, $\mathbf{8 9 2}, 894 \mathrm{f}$
ornithine decarboxylase, 211b-212b, $\mathbf{9 0 9}$
ornithine transcarbamoylase, 706
orotate, $\mathbf{9 1 1}$
orthologs, 38, 106, 333
oseltamivir, 271
osmolarity, 56-57, 56f
osmosis, 56-57, 56f
osmotic lysis, 56-57
osmotic pressure, 56f, 57
osteogenesis imperfecta, 130
outer membrane phospholipase A, structure of, 393f
outgroups, 346
ovary, 936 f
overweight, 960 . See also body mass; obesity
oxaloacetate, $608, \mathbf{6 4 0}, 840,841 \mathrm{f}$
in amino acid biosynthesis, 895-898, 896f, 897f
asparagine and aspartate degradation to, 724, 724f
in C_{4} pathway, $815 \mathrm{f}, 816$
glucogenic amino acids and, 574t
in glyceroneogenesis, 8491
in glyoxylate cycle, in plants, $826,826 \mathrm{f}$
oxidation of malate to, 647
oxidases, 844b
mixed-function, $\mathbf{6 8 5}, \mathbf{7 2 0}, \mathbf{8 4 3}, \mathbf{8 4 4 b}-845 b$
oxidation
of acetate, $650,650 \mathrm{f}$
$\alpha, \mathbf{6 8 5}-686$
in endoplasmic reticulum, 685 f
in peroxisomes, 685 f
of amino acids, 696-704. See also amino acid oxidation
ATP yield from, 760t
β. See β oxidation
of carbon, 529f
in citric acid cycle, energy of, 647-649, 649f, 649t
of fatty acids, 672-686. See also fatty acid oxidation
of glucose, 26, 575-581. See also glucose oxidation
of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate, 551-552, 553f
of isocitrate to α-ketoglutarate and CO_{2}, 641-644, 643f
of α-ketoglutarate to succinyl-CoA and $\mathrm{CO}_{2}, 644$
of malate to oxaloacetate, 647
ω, in endoplasmic reticulum, 684-685, 685 f
of pyruvate to acetyl-CoA and $\mathrm{CO}_{2}, 634,634 \mathrm{f}$
of succinate to fumarate, 646-647
oxidation-reduction reactions, $\mathbf{2 2}, 516,516 f$
bioenergetics and, 528-537
dehydrogenation in, 529-530, 529f
electromotive force and biological work in, 528
enzymes in, 844b-845b
half-reactions in, 528-529
reduction potentials in, 530-531, 530f, 531 t
standard reduction potentials in, 531-532, 531t
oxidative deamination, 700
oxidative decarboxylation, $\mathbf{6 3 4}$
oxidative pentose phosphate pathway, 575-577, 577f, 579, 801, 811-812, 826
oxidative phosphorylation, 731-769. See also phosphorylation
ATP hydrolysis inhibition in, 760, 760f
ATP-producing pathways in, 761-762, 762 f
ATP synthesis in, 747-749. See also ATP synthesis
ATP yield in, $760 t$
brown adipose tissue heat production in, 762-763, 763f
cellular energy needs in, 760
chemical uncouplers of, $749,749 \mathrm{f}$
chemiosmotic theory of, $\mathbf{7 3 1}$
in heart muscle, 948
mitochondria in, 731-747
electron-transfer reactions of, 732-747. See also electron-transfer reactions, mitochondrial
gene mutations of, 766-768 apoptosis and, 764-765 endosymbiotic bacteria and, 765-766, 766f oxidative stress and, 745-746, 745f
photophosphorylation and, 732. See also photophosphorylation
reactive oxygen species and, 745-746, 745 f
regulation of, 759-762
oxidative photosynthetic carbon cycle, $\mathbf{8 1 5}$
oxidative stress
mitochondria in, 745-746, 745 f
oxidoreductase, $\mathbf{5 3 4}$

oxygen

cycling of, 501-502, 502f
electron transfer to, 529-530
hemoglobin binding of, 158-174. See also hemoglobin-oxygen binding
partial pressure of, 162
solubility in water, 51,51 t
oxygen-binding proteins, 158-174
oxygen consumption, ATP synthesis and, chemiosmotic coupling in, 755-757
oxygen ester, free-energy hydrolysis of, 521, 522 f
oxygen-evolving complex, 784-785, 785 f
water split by, 784-785
oxygen transport, in blood, 163, 949-950
oxygenases, 844b
mixed-function, 844b
oxytocin, 938 f

P

P-450 enzymes, 763-764, 844b, 845b, 943 mitochondria and, 763
in xenobiotics, 763-764
P (peptidyl) binding site, ribosomal, 1128
P cluster, 883
P glycoprotein, 413, 414f
$\mathrm{P} / 2 e^{-}$, ratio, $\mathbf{7 5 5}$
P/O ratio, $\mathbf{7 5 5}$
P-type ATPases, 410-411, 411f, 463
P-type Ca^{2+} pump, 410-411, 411f
p27 protein, 142
p53 mutations, 492
p53 protein, 142, 142f
Pace, Sidney, 1083
Paganini, Niccolò, 130
pair-rule genes, 1188, 1190
Palade, George, 1140, 1140f
palindromic DNA, 291-292, 292f
palmitate
desaturation of, 842-843, 842f
in fatty acid synthesis, $842,842 \mathrm{f}$
synthesis of, 834, 836f, 838-839, 838f
palmitic acid, 358t
palmitoleate, synthesis of, 842-843, 842f
palmitoleic acid, 358 t
palmitoyl-CoA, 842
oxidation of, ATP in, 674-675, 676t
palmitoyl groups, membrane attachment of, 394, 394f
pancreas, 936 f
in glucose regulation, 953-955
pancreatic α cells, 953, 953f
pancreatic β cells, 953-955, 953f
pancreatic enzymes, 697-698, 698f, 699
pancreatic trypsin inhibitor, 699
pancreatitis, acute, 232, 699
paracrine hormones, 933
eicosanoid, 371-372, 371f
paralogs, 38, 106, 333
paralysis, toxic, 424-426
Paramecium, membrane components in, 386t
paramyosin, 182
parasites, molecular, evolution of, 1094
parathyroid, 936 f
Parkinson disease, protein misfolding in, 150
passive transport, 404
Pasteur, Louis, 18b, 189, 555, 587
patch-clamp technique, 421, 421f
pattern-regulating genes, 1188-1191
Pauling, Linus, 54, 105, 117f, 120, 126, 133, 196
PCNA (proliferating cell nuclear antigen), 1026
PCR (polymerase chain reaction), 327-331, 328f
PDI (protein disulfide isomerase), in protein folding, 147
pellagra, 535
penicillin. See also antibiotics
mechanism of action of, $224,824 \mathrm{f}$
plasmids and, 981
pentose(s), 244, 244s
conformations of, 282, 283f
nucleic acid, 282, 283f
nucleotide, 244, 244s, 281-284, 282f-284f
ring numbering conventions for, 281f, 284
pentose phosphate pathway, $\mathbf{5 7 5}, 745, \mathbf{8 0 1}$, 811-812, 825-826
general scheme of, 577 f
glucose 6-phosphate in, 577-580, 578f, 579f, 580f
glycolysis and, 580, 580f
NADPH in, 575-580, 577f
in NADPH synthesis, 839, 840f
nonoxidative reactions of, 577-580, 578f
overview of, 575
oxidative, 575-577, 577f, 579, 801, 811-812, 826
reductive, $\mathbf{5 7 9}, \mathbf{8 0 1}$
in Wernicke-Korsakoff syndrome, 580
pentose phosphates
movement of, 826, 826f
synthesis of, in Calvin cycle, 805-806, 806f-808f, 808-809
PEP. See phosphoenolpyruvate (PEP)
pepsinogen, 697
peptic ulcers, 271f, 272
peptide(s), 75, 85-88. See also polypeptide(s); protein(s)
amino acid residues in, $81,82 \mathrm{~s}$, 87
ionization behavior of, 86-87
naming of, 86f
size of, 87
standard free-energy changes of, 509t
structure of, 86f, 87-88
synthesis of, 102-104, 103f, 104t
titration curves of, 87
peptide bonds, 86f, 117-119, 120f. See also bond(s)
in α helix, 120f, 122
cis configuration of, 123, 124f
electric dipole in, 118f, 122
formation of, in protein synthesis, 1129-1130, 1132f
properties of, 117-119
trans configuration of, 124f
peptide group, 118, 118f
peptide hormones, 933t, 934, 934f
peptide prolyl cis-trans isomerase (PPI), in protein folding, 147
peptide translocation complex, 1140, 1141f
peptidoglycans, 262t, 823-824
bacterial synthesis of, 823-824, 824f
penicillin and, 224
structure of, $823,823 \mathrm{f}$
peptidyl (P) binding site, ribosomal, 1128
peptidyl transferase, $\mathbf{1 1 3 2}$
perilipin, $\mathbf{6 6 9}$, 670f, 961f
peripheral membrane proteins, 389-390
permanent waves, 127b
permeability transition pore complex (PTPC), $\mathbf{7 6 4}$
permeases, 404. See also transporter(s)
pernicious anemia, 681, 713
peroxisome(s), 6, 7f, 682
α oxidation in, 685-686
β oxidation in, 682-683, 683f
in plants, 683, 683f
lipid metabolism in, 840 f
peroxisome proliferator-activated receptors (PPARs), 679-682, 842, 965-966, 966f, 967f
personalized genomic medicine, 39, 340b, 350-351
pertussis toxin, 443b
Perutz, Max, 141, 141f
PFK-1. See phosphofructokinase-1 (PFK-1)
$\mathrm{pH}, \mathbf{6 0}-61,60 \mathrm{f}, 60 \mathrm{t}$
of aqueous solutions, $\mathbf{6 0}-61,60 f, 60 \mathrm{t}$
of blood, 66-67
buffering and, 63-69, 64f, 65 f
enzymatic activity and, $61,67,67 \mathrm{f}, 210 \mathrm{f}, 212-213$
functional importance of, 61
in hemoglobin-oxygen binding, 170-171, 170f
Henderson-Hasselbalch equation for, 64-65
isoelectric, 77t, $\mathbf{8 4}$
determination of, 94, 95f
measurement of, 60-61
neutral, 59
scale for, 60 t
standard free-energy changes and, 509t
in titration curve, 62-63, 62f, 63f, 83-84, 83 f
pH optimum, $\mathbf{6 7}$
pH scale, $\mathbf{6 0}$
phagocytosis, 177, 177f
pharmaceuticals. See under drug and specific drugs
phase variation, 1173, 1173 f
phe operon, 1169
phenotype, 979
phenotypic functions, of protein, 331-332
phenylacetate, 709, 710s
phenylacetyl-CoA, 709, 710s
phenylacetylglutamine, 709, 710s
phenylalanine, 79, 79s, 717, 898
biosynthesis of, 898, 902 f
catabolic pathways for, 718f, 719f, 720 f alternative, 719-721, 720f
degradation of, to acetyl-CoA, 717-719, 718f
genetic defects in, 718-721, 720f
in phenylketonuria, 719-721
properties of, $77 \mathrm{t}, 79$
phenylalanine hydroxylase, $\mathbf{7 1 9}, 898$
role of tetrahydrobiopterin in, 719, 720f
phenylketonuria (PKU), 717t, 719
newborn screening for, 721
phenylalanine in, alternative catabolic pathways for, 719-721, 720f
phenylpyruvate, $\mathbf{7 2 0}$
pheophytin, $\mathbf{7 7 6}$
pheophytin-quinone reaction center, 776-777, 777f
ϕ angle, secondary structures and, 123-124, 124f
Phillips, David, 221
Phillips mechanism, 221-222
phosphagens, 527
phosphatase, 646b
phosphate
as buffer, 61f, 62-63, 63f, 65-66
inorganic
in cells, 518 t
in glucose oxidation, 26
in photosynthesis, 809-810, 809f
as possible energy source, 518t, 527
in starch synthesis, 820-821, 821f
in nucleotides, 281, 281f
variant forms of, 284, 284f
triose, interconversion of, 550, 552f
phosphate bond, high-energy, 522
phosphate translocase, 757
phosphatidate, in triacylglycerol synthesis, 849, 849f
phosphatidic acid, 363, 364f, 388f, 849
synthesis of, 848f, 849, 853
in triacylglycerol synthesis, 849, 849f
phosphatidic acid phosphatase, in triacylglycerol synthesis, $\mathbf{8 4 9}, 849$ f
phosphatidylcholine, 363, 364f, 367f, 367s, 843, 843f, 855, 869s
membrane distribution of, 388
phosphatidylethanolamine, 363, 364f
in lipid synthesis, $854 \mathrm{f}, \mathbf{8 5 5}, 856,856$ f
membrane distribution of, $388,389 \mathrm{f}$
synthesis of, 848-849, 848f
phosphatidylglycerol, 363, 364f
in lipid synthesis, $\mathbf{8 5 3}$, 854 f
phosphatidylglycerol 3-phosphate, in triacylglycerol synthesis, 853
phosphatidylinositol(s), 370-371
membrane distribution of, 388 , 388 f
synthesis of, 854f, 855-856, 855f, 856f, 857f in yeast, $855,856 \mathrm{f}$
phosphatidylinositol 4,5-bisphosphate (PIP_{2}), 363, 364f, 370-371
membrane distribution of, 388 , 388 f
in signaling, 370-371
phosphatidylinositol kinases, 855, 855f, 857f
phosphatidylinositol pathway, 447-451, 450f
phosphatidylinositol 4-phosphate, membrane distribution of, 388, 388 f
phosphatidylinositol $3,4,5$-trisphosphate $\left(\mathrm{PIP}_{3}\right)$, in signaling, 370-371, 450f, 456-457
phosphatidylserine, 855-856
in lipid synthesis, $\mathbf{8 5 3}, 854 \mathrm{f}, 855-856,856 \mathrm{f}$
membrane distribution of, 388 , 388 f
phosphoanhydrides, 307f
phosphocreatine, 520 s, $\mathbf{9 0 6}, 946 \mathrm{~b}, 947 \mathrm{~s}$
cellular concentration of, 518t
hydrolysis of, 520, 520s
in muscle contraction, 945f, 947
phosphodiester linkages, in nucleic acids, 284-285, $285 f$
phosphodiesterase, in vision, 479, 479f
phosphoenolpyruvate (PEP), 221s, 554, 554s
acetate as source of, 656-657
dehydration of 2-phosphoglycerate to, 554
enolase catalysis of, 220
in gluconeogenesis, 570-572, 570t, 571f, 572f, 956
in glyceroneogenesis, $849 \mathrm{f}, 850$
in glyoxylate cycle, in plants, $826 f$
hydrolysis of, 520, 520f
synthesis of, from pyruvate, 570-572, 571f
transfer of phosphoryl group from, to ADP, 554-555
phosphoenolpyruvate carboxykinase, $\mathbf{5 7 0}, 571 \mathrm{~s}$, 610, 611f
in triacylglycerol synthesis, 849f, 850, 851f, 944
phosphoenolpyruvate carboxylase, in C_{4} pathway, 815f, 816
phosphofructokinase-1 (PFK-1), 549, 593, 594t
regulation of, 604, 604f, 605f
phosphofructokinase-2 (PFK-2), 606
phosphoglucomutase, 614
as catalyst in glucose metabolism, 614 f
6 -phosphogluconate dehydrogenase, 576
phosphogluconate pathway, 575. See also pentose phosphate pathway
phosphoglucose isomerase, $\mathbf{5 4 9}$, 594t
phosphoglutamase, $\mathbf{5 6 0}$
2-phosphoglycerate, 221s, 554s
conversion of 3-phosphoglycerate to, 554, 554f
dehydration to phosphoenolpyruvate, 554 enolase catalysis of, $220,221 \mathrm{f}$
3 -phosphoglycerate, 520s, 552-554, 554s
in amino acid biosynthesis, 892-894, 894f
conversion of
to 2-phosphoglycerate, 554
to glyceraldehyde 3-phosphate, 801, 803f, 804, 808f
in glycolate pathway, 813f, 814
P_{i} exchange for, 809-810, 809f, 810f
in starch synthesis, 821
synthesis of, 801-804, 803f
phosphoglycerate kinase, 552-553, 804, 805f
phosphoglycerate mutase, 554, 594t
reaction of, 554, 554f
3 -phosphoglyceric acid, 520s
phosphoglycerides. See glycerophospholipids
2-phosphoglycolate, 812, 813f
in glycolate pathway, 813-815, 813f, 814f
phosphohexose isomerase, 549
reaction mechanism of, 549f
phosphoinositide 3-kinase (PI3K), 456, 456f
phospholipase, $368,368 \mathrm{f}, 378$
phospholipase A
in eicosanoid synthesis, 846 f
outer membrane, structure of, 393f
phospholipase C, 370, 378, 447, 457 f
phospholipid(s), 363. See also lipid(s)
head groups of, $363,852-853,854$ f, 855-856, 857
lysosomal degradation of, 368 , 368 f
membrane. See membrane lipids
synthesis of, 852-859
cytidine nucleotides in, 853, 853f, 854f
in Escherichia coli, 853-855f, 854f
in eukaryotes, 855-856, 855f-857f
head group attachment in, 852-853, 853f, 854f
head-group exchange reaction in,
855-856, 857f
salvage pathways in, $856,857 \mathrm{f}$
steps in, 852
in vertebrates, 855-856, 857f
in yeast, $855,857 \mathrm{f}$
transport of, 857-858
phospholipid bilayer, 387-389, 387f
phospholipid head group attachment, 854f phospholipid head-group exchange reaction, 855-856, 857f
phosphomannose isomerase, $\mathbf{5 6 3}$
phosphopantetheine, 84f, 836
phosphopentose isomerase, 576-577
phosphoporin E, structure of, 393f
phosphoprotein phosphatase 1 (PP1), 621
in glycogen metabolism, $624,625 f$
phosphoprotein phosphatase 2A, 606, 607f
phosphoproteins, 89t
phosphoramidite method, of DNA synthesis, 305, 305f
5-phosphoribosyl-1-pyrophosphate (PRPP), 892
5-phosphoribosylamine, 912
phosphorolysis, 560-561
of glycogen and starch, 560-561
of glycosidic bonds, vs. hydrolysis, 613-614
phosphorus, covalent bonds of, 515-516, 515f
phosphorus-oxygen bond, 515-516, 515f
phosphoryl group
ATP and, 524
function of, in glycolysis, 545 f
in glycolysis, 546-548
phosphoryl group transfer, 515-516, 524f. See also phosphorylation
ATP in, 517-527
chemical basis for, 517-519, 518f
from 1,3-bisphosphoglycerate to ADP, 552-554
from inorganic polyphosphate, 518t, 527
from phosphoenolpyruvate to ADP, 554-555
phosphorylase, 646b
phosphorylase a phosphatase, 621
phosphorylase b kinase, 621
phosphorylase kinase, 230
phosphorylase phosphatase, 230
phosphorylated compounds, free-energy of hydrolysis of, 520, 520f, 521-522, 521f, 521t, 522 f
ranking of, 523f
phosphorylation. See also autophosphorylation
of acetyl-CoA carboxylase, 841, 842f
of amino acid residues, 228-231
of ATPase transporters, 26, 411, 412f
bioenergetics and, 517-527
consensus sequences in, 230-231, 232f
of cyclin-dependent protein kinases, 485-486, 485f, 486f, 488f
in DNA repair, 486, 488, 488f
in DNA replication, 1013, 1014f
in enzyme cascades, 434, 434f, 456, 456 f
in enzyme regulation, 228-231, 231t, 232 f
of fructose 6 -phosphate to fructose 1 , 6-bisphosphate, 549-550
in gene regulation, 1184
of glucose, 548-549
of glycogen phosphorylase, 229f, 230
in heart muscle, 948
multiple, 231, 232f
oxidative, 731-769. See also oxidative phosphorylation
posttranslational, 1136, 1136f
in protein targeting, 1142, 1143f
proton gradient in, 786-787, 807f
respiration-linked, 553-554
of retinoblastoma protein, 488, 488f
reversibility of, 231
of rhodopsin, 479f, 480
in RNA processing, 1085
in signaling, 453-460. See also signaling
in bacteria, 473, 473f
in β-adrenergic pathway, 438-446, 439f, 444t
by β-adrenergic receptor kinase, 446
by cAMP, 446-447
by cGMP, 459-460
by G protein-coupled receptor kinases, 446
in $\mathrm{IP}_{3} /$ DAG pathway, 447-451, 457f
in JAK-STAT pathway, 457-458, 457f
multivalent adaptor proteins in, 460-464
in PI3K-PKB pathway, 456, 456f
in plants, 474
by protein kinase A, 439f, 442-443, 444t, 446
of receptor tyrosine kinases, 453-458, 454f-456f
substrate-level, 553-554
in sucrose synthesis, 820-821, 821f
in transcription, 1068, 1184
phosphorylation potential $\left(\Delta G_{\mathrm{p}}\right), 518$
phosphotyrosine-binding domains, 460-462
phosphotyrosine phosphatases (PTPases), 463
photolyases, 536
DNA, 1028t, 1032-1033, 1034f
reaction mechanism of, 1034f
photon, 771
absorbed, energy conversion of, 774-775, 775f
photophosphorylation
ATP synthesis by, 786-788, 787f, 788f
chemiosmotic theory of, $\mathbf{7 3 1}$
chloroplasts in, 732
in cyanobacteria, 789, 789f, 790f
general features of, 769-771
light absorption in, 771-776, 773f
oxidative phosphorylation and, 732. See also oxidative phosphorylation
stoichiometry of, 787
photopigments, 480, 480f, 771-776, 773f
accessory, 772f, 773-774, 774f
of Halobacterium salinarum, 789-790
primary, 771-773, 772f, 773f. See also chlorophyll(s)
photorespiration, 812-818, 813f, 814f, 815f
in C_{4} plants, $815-818,815 \mathrm{f}$
photosensory neurons, 477, 477f-480f
photosynthesis, 769-790, 799-812
action spectrum for, $\mathbf{7 7 4}, 774 \mathrm{f}$
ATP in, 808-812, 808f-811f
C_{2} cycle in, $\mathbf{8 1 5}$
in C_{4} plants, $815-818$
in CAM plants, 818
carbon-assimilation reactions in, 769, 770f, 809, 810-812, 811f
carbon dioxide assimilation in, 801-806. See also Calvin cycle
carbon fixation in, 800, 801-806, 821f. See also Calvin cycle
electron flow in, 769
central photochemical event in, 776-786, 777f-782f, 784f, 785f
dark reactions of, 809
in evolution, 35, 37f, 788-790, 791f
exciton transfer in, 774-775
in genetically engineered organisms, 815 , 816b-817b
glycolate pathway in, 813-815, 813f
light absorption in, 771-776
by photopigments, 771-774, 772f-774f. See also photopigments
light-dependent reactions in, 769, 770f
NADPH in, 808-812, 808f-811f
photophosphorylation and, 769-770. See also photophosphorylation
photorespiration and, 812-818, 813f, 814f, 815f
P_{i}-triose antiporter in, 809-810, 810f
reaction centers in, 774-778, 775 f
in bacteria, 776-778, 777f, 778f
Fe-S, 777-778
integration of, 779-781
photosynthetic efficiency and, 778-779
in plants, 779-781, 779f, 780f
reductive pentose phosphate cycle in, $\mathbf{8 0 1}$
starch synthesis in, 810, 818-821
state transitions in, $\mathbf{7 8 3}$
sucrose synthesis in, 253, 809-810, 819-821, 819f, 820 f
water in, 69
photosynthetic biomass, 257
photosynthetic carbon reduction cycle, $\mathbf{8 0 0}$
photosystem I/II, 774, 779-783, 780, 780f, 781f, 782f, 784f
cytochrome $b_{6} f$ complex links of, 782-783, 782f
integration of, in chloroplasts, 779-783
supramolecular complex of, 781-782, 781f
phototrophs, 4, 5 f
phycobilin, $\mathbf{7 7 3}$
phycobiliprotein, 773
phycobilisomes, 773, 774f
phycoerythrobilin, 772 s
phylloquinone (vitamin K_{1}), 374, 375s, $\mathbf{7 8 0}$
phytanic acid, α oxidation of, 685-686, 685f
phytol, 771
P_{i}. See phosphate, inorganic
pI (isoelectric point), 77 t , $\mathbf{8 4}$
determination of, 94, 95f
P_{i}-triose antiporter, 780f, 809-810
PI3K-PKB pathway, 456, 456f
pigments
bile, heme as source of, 904-906, 934f
in color vision, 480, 480f
light-absorbing, 771-774, 772f-774f. See also photopigments
lipids as, $370,376,376 \mathrm{f}$
pili, 6 f
Ping-Pong mechanism, 207, 207f
pioglitazone (Actos), 852, 852s, 964-965, 970t
PIP_{2}. See phosphatidylinositol 4,5-bisphosphate $\left(\mathrm{PIP}_{2}\right)$
PIP_{3}. See (phosphatidylinositol 3,4,5-trisphosphate), ($\left(\mathrm{PIP}_{3}\right)$
pituitary
anterior, $936 \mathrm{f}, \mathbf{9 3 7}$, 937f
posterior, $936 \mathrm{f}, \mathbf{9 3 7}, 937 \mathrm{f}$
pituitary hormones, 938 f
PKA. See protein kinase A (PKA)
$\mathrm{p} K_{\mathrm{a}}$ (relative strength of acid/base), 62, 62f, 63f
of amino acids, $77 \mathrm{t}, 83-85$, 83f-85f
effects of chemical environment on, 83-84, 84f
in Henderson-Hasselbalch equation, 64-65
of R groups, $77 \mathrm{t}, 87$
in titration curve, 62-63, 62f, 63f, 83-84, 83f
PKB (protein kinase B)
activation of, 456, 456f
in signaling, 456, 456f
PKC. See protein kinase C (PKC)
PKD1 (protein kinase D1), 456
PKG (protein kinase G), 459-460
PKU. See phenylketonuria (PKU)
plant(s)
aquaporins in, 418-419
$\mathrm{C}_{3}, \mathbf{8 0 2}$
$\mathrm{C}_{4}, \mathbf{8 1 5}-818$
CAM, $\mathbf{8 1 8}$
carbohydrate metabolism in, 799-812, 825-826,
826f. See also Calvin cycle
cell structure in, 7 f
cell wall synthesis in, 822-823
desaturases in, $843,843 \mathrm{f}$
DNA in, 983
ethylene receptor in, 475-476, 475f
genetically engineered, $815,816 \mathrm{~b}-817 \mathrm{~b}$
gluconeogenesis in, 819f, 820-821, 820f
glycolate pathway in, 813-815, 813f
glycolysis in, 820-821, 820f
immune response in, 475-476, 476f
leguminous, symbiotic relationship of nitrogen-fixing bacteria and, 887-888, 887f
membrane components in, 386 t
membrane lipids of, 365 , 365 f
metabolite pools in, 826, 826 f
mitochondria in, alternative mechanism for
NADH oxidation in, 746, 746b-747b
mitochondrial respiration in, $\mathbf{8 1 2}$
NADPH synthesis in, 839
organelles in, 800-801, 800f, 801f
osmotic pressure in, 57
pentose phosphate pathway in, $\mathbf{8 0 1}, 811-812$, 825-826
photorespiration in, 812-818, 813f, 814f, 815f
photosynthesis in. See photosynthesis
reaction centers in, 779-781, 780f
signaling in, 372-373, 847, 933
vascular, 372-373
plant glyoxysome, β oxidation in, 683, 683f
plant peroxisome, β oxidation in, 683, 683f
plant substances, biosynthesis of, from amino acids, $908,909 \mathrm{f}$
plasma, 950, 950f
plasma lipoproteins, transport of, 864-871, 867f
plasma membrane, 3, 3f. See also membrane(s)
bacterial, 5, 6f
composition of, 386-387, 386f, 386t
lipid rafts in, 399, 399f
lipopolysaccharides of, 268, 268 f
microdomains of, 398-399, 399f
neuronal, transport across, 949
permeability of, 56
protein targeting to, 1142, 1143f
syndecans in, 264, 264 f
plasma membrane Ca^{2+} pump, 410-411, 411f
plasma proteins, $\mathbf{9 5 0}$
plasmalogens, 364, $365 \mathrm{f}, \mathbf{8 5 6}$, 858f
double bond of, $856,858 \mathrm{f}$
synthesis of, 856-857, 858f
plasmid(s), 5, 317-319, 981, 982 f
antibiotic resistance-coding, 981
plasmid vectors, 317-319, 318f, 320f
plasmodesmata, 816
Plasmodium falciparum, inhibition of, 576b
plastids, 800-801, 800f, 801f
evolution of, 36
plastocyanin, $\mathbf{7 8 0}$
plastoquinone $\left(\mathrm{PQ}_{\mathrm{A}}\right), 375,375 \mathrm{~s}, 780$
platelet(s), 233-234, 950, 950f
platelet-activating factor, 365, 365 f
synthesis of, $\mathbf{8 5 6}, 858 \mathrm{f}$
platelet-derived growth factor receptor, 463
PLC (phospholipase C), $\mathbf{4 4 7}$
plectonemic supercoiling, 992-993, 994f
PLP. See pyridoxal phosphate (PLP)
pluripotent stem cells, 1192, 1192f
poisons
ion channels and, 424-426
translation inhibition by, 1138-1139
pol, 1086f, 1087
frameshifting and, 1111
pol II. See RNA polymerase II and related entries Polanyi, Michael, 196
polar lipids, transport of, 857-858
polarity
of amino acids, $\mathbf{7 8}$
in embryonic development, 1186-1187
hydrophilicity/hydrophobicity and, 50-53, 50t, 51f, 51t, 52 f
poly(A) site choice, 1076
poly(A) tail, 1075, $1075 f$
polyacrylamide gel electrophoresis (PAGE), 93-94, 93f. See also electrophoresis
polyadenylate polymerase, 1075, 1075 f
polycistronic mRNA, 294, 294f
polyclonal antibodies, 178
polyketides, $\mathbf{3 7 6}$
polylinkers, 317, 317f
polymerase chain reaction (PCR), 327-331, 328f
in DNA genotyping, 329b-330b
quantitative, 331, 331f
reverse transcriptase, $\mathbf{3 3 1}$
polymorphic protein, $\mathbf{9 7}$
polynucleotide(s), 286
synthetic, in genetic code studies, 1105
polynucleotide kinase, 315t
polynucleotide phosphorylase, 1085, 1105
polypeptide(s), 86. See also peptide(s)
size of, 87
vs. proteins, 86
polypeptide chain elongation, in protein synthesis, 1114, 1129-1134. See also protein synthesis, elongation in
polyphosphate, inorganic, 518t, 527, 527s as phosphoryl donor, 518t, 527
polyphosphate kinase-1 (PPK-1), 527
polyphosphate kinase-2 (PPK-2), 527
polysaccharide(s), 15, 243, 254-263. See also carbohydrate(s)
in cell communication, 263-268, 264f
classification of, 254-255, 262t
conformations of, 258-259, 259f
in extracellular matrix, $\mathbf{2 6 0}$
folding of, 257-259, 258f, 259f
fuel storage in, 255-256
functions of, 255-257, 262t, 263
glycoconjugate, 263-268, 264f
heteropolysaccharides, 260-262
homopolysaccharides, 254-259
hydrolysis of, 257, 558-560, 569f
molecular size of, 262 t
molecular weight of, 255
repeating unit in, 262t
structure of, 254-255, 254f, 256f, 257-259, 257f,
258f, 259f, 260f, 262 t
weak interactions in, 258-259
polysomes, 1135, 1136 f
polyunsaturated fatty acids (PUFAs), $\mathbf{3 5 9}$
Pompe disease, 617 t
Popják, George, 862, 863f
porins, 393, 733, 733 f
β-barrel structure of, 391, 393, 393f
porphobilinogen, 902
porphyrias, 904, 906b
porphyrin(s), 158, 902
glycine as precursor of, 902-904, 905 f
porphyrin ring, 150f, 158
Porter, Rodney, 175
porters. See transporter(s)
positive-inside rule, $\mathbf{3 9 3}$
posterior pituitary, 936f, 937
postinsertion site, 1014
posttranslational modifications, in protein synthesis, 1114-1115, 1115t, 1136-1137.
See also protein synthesis
potassium, blood levels of, 950
potassium ion channels, 422-424, 422f, 423f, 465-466, 466f
ATP-gated, 954
defective, diseases caused by, 426 t
in glucose metabolism, 953f, 954
in signaling, 465-466, 466f, 468
potassium ion concentration, in cytosol vs. extracellular fluid, 465t
potassium ion transport, $\mathrm{Na}^{+} \mathrm{K}^{+}$ATPase in, 411-412, 412f
potential energy, of proton-motive force, 744
PPARs (peroxisome proliferator-activated receptors), 679-682, 842, 965-966, 966f, 967 f
ppGpp (guanosine tetraphosphate), 308, 308s
PP_{i} (inorganic pyrophosphate), 819-820
PPI (peptide prolyl cis-trans isomerase), in protein folding, 147
PPK-1 (polyphosphate kinase-1), $\mathbf{5 2 7}$
PPK-2 (polyphosphate kinase-2), $\mathbf{5 2 7}$
Prader-Willi syndrome, 967
pravastatin (Pravachol), 872b
pRb (retinoblastoma protein), 488, 488f
PRDM16, 971
pre-replicative complexes (pre-RCs), $\mathbf{1 0 2 5}$
pre-rRNA, processing of, 1077-1079, 1078f, 1079f
pre-steady state, 202
prebiotic chemistry, 33-34
precipitation, protein, 144
prednisolone, $372,372 \mathrm{~s}$
prednisone, $372,372 \mathrm{~s}$
pregnenolone, 875 f
prehistoric humans, genome sequencing for, 349-351
preinitiation complex (PIC), 1179
prenylation, 861f
preproinsulin, 934, 934f
preribosomal rRNA (pre-rRNA), processing of, 1077-1079, 1078f, 1079f
presenilin-1, 348, 349
primary active transport, 405, 409
primary structure, of proteins, $96-108, \mathbf{9 7}$
primary systemic amyloidosis, 149
primary transcript, 1069
splicing of, 1074f
primases, 1018, 1019t, 1021-1022, 1023t
primate, nonhuman, genome of, 345-347, 345f
primer
in DNA replication, 1014, 1015f, 1017-1018, 1087
in RNA replication, 1087
primer terminus, $\mathbf{1 0 1 4}, 1015 f$
priming, 623, $623 f$
of glycogen synthase kinase 3 phosphorylation, $623 f$ primosome, $\mathbf{1 0 2 1}$
replication restart, $\mathbf{1 0 4 1}$
prion diseases, 150b-151b
prion protein (PrP), 150b-151b
pro-opiomelanocortin (POMC), 934, 934f
probes, fluorescent, 448b-449b
procarboxypeptidase A, 698
procarboxypeptidase B, 698
processivity, of DNA polymerases, $\mathbf{1 0 1 4}$
prochiral molecules, 648b
proenzymes, 232
progesterone, synthesis of, $874,874 \mathrm{f}$
programmed cell death, 492-494, 494f
prohormones, 934
proinsulin, 934, 934f
prokaryotes, 3. See also bacteria
proliferating cell nuclear antigen (PCNA), 1026
proline, $\mathbf{7 9}$, 79s, 721, 892
in α helix, 122
in β helix, 122, 123, 124f
in β turns, 123
biosynthesis of, 892, 893f
in collagen, 127, 127f, 128b-129b
conversion of, to α-ketoglutarate, 721, 721f
properties of, 77t, 79
proline-rich activation domains, 1182
prolyl 4-hydroxylase, 129b
promoters, 1060-1061, 1061f, 1067f, 1157-1158
expression vectors and, $321,322 \mathrm{f}$
specificity factors of, $\mathbf{1 1 5 7}$
proofreading
in transcription, 1015, 1016f, 1060
in translation, 1121-1122, 1133-1134
propionate, 678
Propionibacterium freudenreichii, in fermentation, 567
propionyl-CoA, 678
oxidation of, $678,678 \mathrm{f}$
propionyl-CoA carboxylase, $\mathbf{6 7 8}$
proplastid, 801
propranolol, 438s
proproteins, $\mathbf{2 3 2}$
prostaglandin(s), 371, 371f, 845. See also eicosanoid(s)
synthesis of, $845,846 \mathrm{f}$
prostaglandin $\mathrm{E}_{1}, 446,475 \mathrm{~s}$
prostaglandin $\mathrm{H}_{2}, 845,846 \mathrm{f}$
prostaglandin H_{2} synthase, $\mathbf{8 4 5}$
prostaglandin inhibitors, 845-847, 846s, 935
prosthetic groups, $\mathbf{8 9}, 89 \mathrm{t}$, $\mathbf{1 9 0}$
heme as, 158
posttranslational addition of, 1137
protease(s)
in amino acid sequencing, 99-100, 100t
regulation of, 235
serine, 218-219, 219f
subclasses of, 218
protease inhibitors, 1088
proteasomes, $\mathbf{3 , 4 8 7}, 1147-1148$
protein(s), 15, 86. See also gene(s) and specific proteins
allosteric, $\mathbf{1 6 6}$
amino acid composition of, 88, 89t. See also amino acid(s)
amphitropic, 390
body stores of, 956 t
bound water molecules in, 54-55, 55f
catalytic, 27-28
cellular concentration of, regulation of. See gene regulation
conformation of, 115-116
conjugated, $\mathbf{8 9}, 89 \mathrm{t}$
crude extract of, $\mathbf{8 9}$
culling of, 270
degradation of, 1147-1149
denaturation of, 143-146, 144f
enzyme. See enzyme(s)
enzyme degradation of, in amino acid catabolism, 696-699, 698f
evolution of, 33-34, 33f, 34f, 140. See also evolution
evolutionary significance of, 1093
fibrous, 125-130. See also fibrous proteins
flavoproteins, 535-537, 536f, 536t
folding of. See protein folding
functional classification of, 38-39
functions of. See protein function
fusion, 325, 333, 400
G. See G protein(s)
globular, 125, 130-138. See also globular proteins
as glucose source, 956t, 958
half-life of, 572, 590t, 1147
homologous, 38, 106
immune system, 174-179
inhibitory, in ATP hydrolysis during ischemia, 760, 760f
intrinsically disordered, 141-142, 142f, 769
iron-sulfur, $\mathbf{7 3 5}$
Fe-S centers of, 736 f
isoelectric point of, $77 \mathrm{t}, 84$
determination of, $94,95 \mathrm{f}$
membrane. See membrane proteins
misfolded, 148-151
in mitochondrial electron-transfer chain, 738 t
molecular weight of, 87t
estimation of, 94, 95f
motor, 179-184, 180f-183f
multifunctional, 684
multimeric, $\mathbf{1 4 0}$
multisubunit, $\mathbf{8 7}, 87 \mathrm{t}$
naming conventions for, 1010
native, 31, 116
nuclear, targeting of, 1143-1144, 1144f
oligomeric, $87 \mathrm{t}, \mathbf{8 8}, \mathbf{1 4 0}$
orthologous, 38, 106
overview of, 75
oxygen-binding, 158-174
paralogous, 38
phosphoproteins, 89 t
phosphorylation and dephosphorylation of, 592 f
plasma, 950
polymorphic, 97
polypeptide chains in, 87-88, 87t. See also polypeptide(s)
posttranslational processing of, 1114-1115, 1115t, 1136-1137
proproteins, $\mathbf{2 3 2}$
proteolytic activation of, 232f, 235
protomeric, 140
RAG, 1050-1051, 1052f
regulatory. See also gene regulation
DNA-binding domains of, 1160-1163
renaturation of, 144f
respiratory, 766 t
mitochondrial gene encoding of, 766 t
ribosomal, 1116 t
synthesis of, rRNA synthesis and 1170-1171, 1170f
Rieske iron-sulfur, 735, 741f
scaffold, 434, 999, 1000f
in chromatin, 1000f
separation/purification of, 89-96
column chromatography in, 86-92, 90f, 93t
dialysis in, 90
electrophoresis in, 92-95, 93f-95f
for enzymes, 93t, 95-96, 95f
fractionation in, 86-92, 90 f
isoelectric focusing in, $\mathbf{9 4}, 95$ f
protocols for, 93t
signaling. See signaling proteins
structure of. See protein structure
in supramolecular complexes, 9 , 10f, 31
synthesis of. See protein synthesis
transport of. See membrane transport; transporter(s)
trifunctional, 674
uncoupling, 763, 963
as universal electron carrier, 532
protein binding. See protein-ligand interactions protein C, $\mathbf{2 3 4}$
protein catabolism, in cellular respiration, 634 f
Protein Data Bank (PDB), 115f, 132
protein disulfide isomerase (PDI), in protein folding, 147
protein domains, 137
microdomains, 398-399
protein families, $\mathbf{1 4 0}$
protein folding, 31, 31f, 1114-1115, 1115t.
See also tertiary structure
assisted, 146-147, 147f, 148f
chaperones in, 146-147, 147f, 148f
chaperonins in, 146, 147, 148 f
domains and, 137, 137 f
energy for, 116-117
errors in, 148-151
in globular proteins, 132f, 133-138
motifs (folds) in, 137-140, 139f-140f
patterns in, 138-140, 139f-140f
protein disulfide isomerase in, $\mathbf{1 4 7}$
representation of, 132f
rules for, 137-138
secondary structures in, 133-138,
137f-140f, 151b
steps in, 144-146, 145f
thermodynamics of, 146, $146 f$
protein function, 75f, 157-184. See also
protein-ligand interactions
amino acid sequence and, 97
analysis of, 333-337
comparative genomics in, $\mathbf{3 3 3}$
DNA microarrays in, 337-338, 337f, 338f
epitope tagging in, 333-334, 335, 335f
protein tags in, 335
yeast two-hybrid analysis in, 335-337, 336f
catalytic. See enzyme(s)
cellular, 332
conformational changes and, 158
expression patterns and, 333
molecular, 332
multiple, 642b-643b
noncatalytic, 158
phenotypic, 331-332
principles of, 157-158
structural correlates of, 115, 125-126, 130-131, 333
protein kinase(s), 229-230. See also specific types
AMP-activated, $\mathbf{5 9 4}$
autoinhibition of, 461f, 462
β-adrenergic receptor, 445f, 446
$\mathrm{Ca}^{2+} /$ calmodulin-dependent, 451-452, 451t
cAMP-dependent. See protein kinase A (PKA)
in cancer treatment, 490b-491b
in cell cycle regulation, 485-488
cGMP-dependent, 459-460
consensus sequences for, 230-231, 231t
cyclin-dependent, 485-488, 485f, 486f
G protein-coupled, 446
phosphorylation by, 229-230, 456-457, 456f
receptorlike, in plants, 476, 476f
in signaling, 444t, 446, 451-452, 451t, 453-460, 460-464, 461f
substrate specificity of, $231,231 \mathrm{t}$
in transcription, 1068
tyrosine-specific, 453-458, 454f-456f
epidermal growth factor receptor as, 456-457, 463
insulin receptor as prototype of, 453-457, 454f-456f
platelet-derived growth factor receptor as, 456-457, 463
in rafts, 463
protein kinase A (PKA), 438-444
activation of, 438-439, 439f, 440f, 456
AKAPs and, 446-447
in β-adrenergic pathway, 438, 439f, 440f, 442-443
enzymes/proteins regulated by, 442-443, 444t, 446
inactivation of, 439-440, 439f, 440f
measurement of, by FRET, 448b-449b
protein kinase B (PKB)
activation of, $456,456 \mathrm{f}$
in signaling, 456, 456f
protein kinase C (PKC), $\mathbf{4 5 0}$ activation of, 371
protein kinase D1 (PKD1), 456
protein kinase G (PKG), 459-460
protein-ligand interactions, 157-158
allosteric, 166, 166f
binding equilibrium in, 160
binding sites for, 157, 166-167, 175
complementary, 179-184
conformational changes in, 158, 165f, $166-167,166 f$
cooperative binding in, 163-169, 166f
enzyme. See enzyme(s)
graphical representations of, 160 f
heterotropic, $\mathbf{1 6 6}$
homotropic, $\mathbf{1 6 6}$
in immune system, 174-179
induced fit and, 157
ligand concentration and, 161-162 models of

MWC (concerted), 167-168, 170f
sequential, 167-168, 170f
modulators in, 166
of oxygen-binding proteins, 158-174. See also hemoglobin-oxygen binding
principles of, 157-158
protein structure and, 162-163
quantitative descriptions of, 159-162, 167
regulation of, 158
reversibility of, 157
specificity of, 157
protein moonlighting, $642 \mathrm{~b}-643 \mathrm{~b}$
protein phosphatases, 230-231
protein precipitation, 144
protein-protein interactions, analytical techniques for, 334-337
protein S, $\mathbf{2 3 4}$
protein sequences. See amino acid sequences; nucleic acid sequences
protein sorting, 1142
protein structure, 115-151
α helix and, 120f, 121-122, 122f
amino acid sequences and, 31, 31f, 104
analysis of, 97-102. See also amino acid sequencing
β conformation and, 123-124, 124f
classification of, 138-140, 139f-140f
covalent, 97-102
database for, 115f, 138-140, 139f-140f
free energy of, 116
functional correlates of, 115, 125-126, 130-131, 143-144, 333
key concepts for, 115
ligand binding and, 162-163
motifs (folds) in, 137-140, 139f-140f. See also protein folding
nuclear magnetic resonance studies of, 135b-136b, 135f, 136f
oligosaccharides and, 267-268
overview of, 115-119
primary, 96-108, 96f, 97
quaternary, 96f, 125, 140-141. See also quaternary structure
Ramachandran plots for, 119f, 120, 124f
representations of, 132 f
secondary, 96 f, 119-125, 120f, 122f-124f. See also secondary structure
stability of, 116-117
supersecondary, 137-140
tertiary, 96f, 97, 125-140. See also tertiary structure
three-dimensional, 31, 31f, 115-151
weak interactions and, 54-55, 56f, 116-117
x-ray diffraction studies of, 131, 134b-135b, 134f-135f
protein superfamilies, 140
protein synthesis, 102-104, 103f, 104t, 1113-1139
amino acid activation in, 1113, 1115t, 1119-1123, 1120f-1122f
aminoacyl-tRNA binding sites in, 1128, 1128 f
aminoacyl-tRNA formation in, 1119-1123, 1120f-1122f
codons in, 1105, 1106-1113. See also codons
elongation in, 1114, 1115t, 1129-1134
aminoacyl-tRNA binding in, 1128, 1128f, 1130
direction of, 1127, 1127f
elongation factors in, 1129-1130
peptide bond formation in, 1130-1132, 1132f
errors in, 1121-1122
evolutionary significance of, 1117b
fMet-tRNA ${ }^{\text {fMet }}$ in, 1127
frameshifting in, 1111
inhibition of, 1138-1139
initiation of, 1114, 1115t, 1127-1129
in bacteria, 1127-1128, 1128f
in eukaryotes, 1128-1129, 1130f
initiation complex in, 1127-1129, 1128, 1128f, 1130f, 1131t
initiation factors in, 1131t, 1184
Shine-Dalgarno sequences in, 1127-1128
mRNA degradation in, 1136
overview of, 1113-1115, 1115t
polypeptide release in, $1114,1115 \mathrm{t}$
polysomes in, 1135, 1136f
posttranslational modifications in, 1115t, 1136-1137
amino acid modifications, 1136, 1137f
amino-terminal/carboxyl-terminal modification, 1136
carbohydrate side chain attachment, 1136-1137
isoprenyl group addition, 1137, 1137f
loss of signal sequences, 1136
prosthetic group addition, 1137
proteolytic processing, 1137
proofreading in, 1121-1122, 1133-1134
protein folding in, 1114-1115, 1115t, 1136-1137
rate of, 144-145, 1103
regulation of. See gene regulation
ribosome as site of, 1103-1104, 1115-1118
ribozyme-catalyzed, 34-35, 34f, 1092-1094, 1117b
RNA world hypothesis and, 34-35, 34f, 1093-1094
rRNA synthesis and, 1170-1171, 1170f
steps in, 1113-1115, 1115t
termination of, 1114, 1115t, 1134-1135, 1135f
thermodynamics of, 1135
transcription coupled with, 1135-1136, 1136f
transcriptional. See transcription
translational. See translation
translocation in, 1132-1133, 1133f
protein tagging, 325-327, 325t
in affinity chromatography, 325-327, 325t
epitope, 333-334, 335
glutathione-S-transferase, 326, 326f
tandem affinity purification, 335, 336f
protein targeting, 1140
to chloroplasts, 1142-1143
in endoplasmic reticulum, 1140, 1141f
glycosylation in, 1141-1143, 1143f
in Golgi complex, 1142, 1143f
lectins in, 272-273
to lysosomes, 1142, 1143f
to mitochondria, 1142-1143
to nucleus, $1143-1144,1144 f$
peptide translocation complex in, $\mathbf{1 1 4 0}, 1141 \mathrm{f}$ to plasma membrane, $1142,1143 \mathrm{f}$
receptor-mediated endocytosis in, 1146-1147
signal recognition particle in, 1140, 1141f
transport mechanisms in, 1142-1143, 1143f. See also membrane transport
protein turnover, $\mathbf{5 9 0}$
protein tyrosine kinases. See tyrosine kinases
proteoglycan aggregates, 266
proteoglycans, 261, 263-268, 264f
proteolysis, 1147-1149, 1147f, 1148f
ATP-dependent, 1147
in protein activation, 232f, 235
ubiquitin-dependent, 1147-1149, 1147f
proteolytic enzymes, regulation of, 232f, 235
proteome, 15, 590
proteomics, $\mathbf{1 5}$
proteostasis, 143, 143 f
prothrombin, 375,376
proto-oncogenes, 489, 489f
protomers, $\mathbf{8 8}, \mathbf{1 4 1}$
proton flow, through cytochrome $b_{6} f$ complex, 782 f
proton gradient
in ATP synthesis, 748-749, 750f, 751-752, 751f
conservation of, in mitochondrial electron-
transfer reactions, 743-745, 744f
in electron flow and phosphorylation, 786-787
proton hopping, 55, 55f, 58-59, 58f
proton-motive force, $\mathbf{7 4 4}, 744$ f
active transport and, 757, 757f
bacterial flagella rotation by, 766, 766f
proton pumps. See ATPase(s); transporter(s)
proton transfer, in acid-base catalysis, 199, 199f
protoporphyrin, 158, 904
PRPP (5-phosphoribosyl-1-pyrophosphate), $\mathbf{8 9 2}$
Prusiner, Stanley, 150b
pseudoinosine, 284s
pseudouridine, 1080
psi angle, secondary structures and, 123-124, 124f
psicose, 246s
PTB domains, $\mathbf{4 6 1}$
PTEN, 456
puffer fish poisoning, 424-426
pulsed field gel electrophoresis, 320
in cloning, 320
pumilio, 1188-1190, 1189f
purine(s), $\mathbf{2 8 2}$
biosynthesis of, 898-899, 903f
degradation of, 920-922, 921f
ring atoms of, 912f
purine bases. See also base(s), nucleotide/ nucleic acid
anti form of, 290, 290f
Chargaff's rules for, 288
chemical properties of, 286-287
deamination of, 299-300, 300f
hydrogen bonds of, 286-287, 287f
loss of, 300, 300f
nucleic acid, 282-284, 282t, 283s, 284s
nucleotide, 281-284, 282f-284f
recycled, by salvage pathways, 922
structure of, 10s, 281-284, 282f-284f, 282t, 286-287
syn form of, 290, 290f
tautomeric forms of, 286, 286f
weak interactions of, 286-287, 287f
purine nucleotides
biosynthesis of, 912-922, 913f, 914f
regulation of, 914-915, 914f
catabolism of, 920-922, 921f
puromycin, 1138
purple bacteria, bacteriorhodopsin in, 391
pyranoses, 246-247, 248f, 249f
conformations of, 249 f
pyridine nucleotides, $\mathbf{5 3 2}, 535$
pyridoxal phosphate (PLP), 699, 718f
in glycogen phosphorylase reaction, 614
in transfer of α-amino groups to α-ketoglutarate, 699-700, 699f, 701f
pyrimidine(s), $\mathbf{2 8 2}$
catabolism of, 920-922, 922f
degradation of, 920-922, 922f
pyrimidine bases, 282, 282f. See also base(s), nucleotide/nucleic acid
recycled, by salvage pathways, 922
pyrimidine dimers
photolyase repair of, 1032-1033, 1034f
radiation-induced formation of, 300, 301f
pyrimidine nucleotides, biosynthesis of, 915-916, 915f, 916f
regulation of, 916, 916f
pyrophosphatase, inorganic, $\mathbf{5 2 4}$
in plants vs. animals, 819-820
pyrophosphoryl group, ATP and, 524
pyrophosphoryl transfer, 524f
pyrosequencing, 339-341, 341f
pyrrolysine, 1124b
pyruvate, 516 s, 554 s, 555
alternative fates for, $608,608 \mathrm{f}$
in amino acid biosynthesis, 895-898, 896f, 897f
amino acid degradation to, $715-717,715 \mathrm{f}, 717 \mathrm{t}$
conversion of, to phosphoenolpyruvate in gluconeogenesis, 570-572, 570t, 571f, 572f
decarboxylation and dehydrogenation of, 635-636, 637f
fates under anaerobic conditions, 563-568
in fermentation, 563-568
glucogenic amino acids in, 574t
in gluconeogenesis, 573t, 957f, 958
in glyceroneogenesis, 849f, 851f
in glycolysis, 545f, 546, 951, 952f, 955, 955f
energy remaining in, 546
fate of, 548f
hepatic metabolism of, 941f, 942
in lactic acid fermentation, 563-565
oxidation of, to acetyl-CoA and $\mathrm{CO}_{2}, 634$
phosphoenolpyruvate synthesis from, 570-572, 571f
synthesis of, 941f, 942
pyruvate carboxylase, $\mathbf{5 7 0}, 594 \mathrm{t}$, $\mathbf{6 5 0}, 652 \mathrm{~s}$
biotin in, 570, 571f, 651-653, 652f, 653f
reaction mechanism of, 652 f
pyruvate decarboxylase, $\mathbf{5 6 5}, 568 \mathrm{t}$
pyruvate dehydrogenase, 568t, $\mathbf{6 3 5}$
pyruvate dehydrogenase complex, 634
acetyl-CoA produced by, 654-655, 654f
coenzymes of, 634-635, 635f
in decarboxylation and dehydrogenation of pyruvate, 635-636, 652f
enzymes of, 635-636
reaction catalyzed by, 634 f
structure of, 636 f
pyruvate kinase, 554, 594t
ATP inhibition of, 606-608, 607f
regulation of, 955
pyruvate phosphate dikinase, in C_{4} pathway, 815f, 817
PYY $_{3-36}, 962 f, 967,968$

Q

Q (coenzyme Q), 735, 735s
Q (mass-action ratio), 509, 593, $\mathbf{7 6 0}$
in carbohydrate metabolism, $\mathbf{5 9 3}, 593 \mathrm{t}$
Q cycle, 741, 741f
quadruplex DNA, 292
quantitative PCR (qPCR), 331, 331f
quantum, 771
quaternary protein structure, $96 \mathrm{f}, \mathbf{9 7}, \mathbf{1 2 5}$, 140-141
of α-keratin, $126,126 \mathrm{f}$
quinolones, 992b-993b

R

R (gas constant), 507 t
R groups, 76, 77t, 78-81 aromatic, 77t, 79-80, 79f ionization behavior of, 87 negatively charged (acidic), 77t, 79f, 81 nonpolar aliphatic, 77t, 78-81, 79 f $\mathrm{p} K_{\mathrm{a}}$ of, $77 \mathrm{t}, 87$
polar uncharged, 77t, 79f, 80-81
positively charged (basic), 77t, 79f, 81
R-state, in hemoglobin-oxygen binding, 163-165, 165f, 171-172, 172f
$\mathrm{R}_{2} \mathrm{C}_{2}$ complex of protein kinase, 439-440, 440f
racemic mixture, $\mathbf{1 7}$
Racker, Efraim, 750, 750f
radiation
electromagnetic, 771, 771f
ionizing, DNA damage from, 300
ultraviolet, absorption of, by DNA, 297-298
chemical changes due to, $300,301 \mathrm{f}$
radicals, 512
free, $514-515,515 f$
radioimmunoassay (RIA), 930-932
Raf-1, 455, 456f
rafts, 399, $399 f$
in signaling, 463
RAG proteins, 1050-1051, 1052 f
Ramachandran plots, $\mathbf{1 1 7}, \mathbf{1 1 9}, 119 \mathrm{f}, 124 \mathrm{f}$
Ran GTPase, 1144-1145
rancidity, 361
random coil, 119
Ras, $441 \mathrm{~b}, 455,456 \mathrm{f}$
binary switches in, 438, 440f, 441b-443b
mutations in, 489
ras oncogene, 489, 492
rate constant $(k), \mathbf{1 9 4}$
rate equation, 194, 203, 203 f
rate-limiting step, $\mathbf{1 9 3}$
rational drug design, 210
$R b$ gene, 492
reaction. See chemical reaction(s)
reaction centers, 774, 775f, 776-778
in bacteria, 776-778, 777f, 778f
Fe-S, 777-778
integration of, 779-781
photosynthetic efficiency and, 778-779
in plants, 779-781, 779f, 780f
reaction coordinate diagram, $24 \mathrm{f}, 26$, 192-193, 193f
reaction equilibria, 192-194
reaction intermediates, $\mathbf{1 9 3}$
reaction mechanisms, 216-217, 216f-217f, See also specific enzymes
reactive oxygen species (ROS), 740, 745-746, 745 f
hypoxia and, 760-761, 761f
reading frame, 1105, $1105 f$
frameshifting and, 1111
open, 1107
RecA, 319, 322, 322f, 324, 1040-1041, 1041f in SOS response, 1169-1170
RecBCD helicase/nuclease, 1040-1041, 1040f
receptor(s). See also specific types
acetylcholine. See acetylcholine receptor
adhesion, 436f, 437
affinity for, 433-434, 434f
ANF, 459
β-adrenergic, 438-446
desensitization of, 445-446, 445f
in rafts, 463
structure of, 438, 439f
definition of, 175
desensitization of, $434, \mathbf{4 3 4}, 434 \mathrm{f}, 445-446$
epidermal growth factor, 463
erythropoietin, 457-458, 457f
ethylene, 475-476, 475f
Fas, 493, 493f
G protein-coupled. See G protein-coupled receptor(s)
ghrelin, 962f
glycine, 424
guanylin, $\mathbf{4 6 0}$
hormone, 436f, 437, 932-933, 1183-1184, 1183f
insulin, 453-457, 454f-456f
LDL, $\mathbf{8 6 7}$
leptin, $\mathbf{9 6 1}, 963$
neurotransmitter, 468
nicotinic acetylcholine, $\mathbf{4 2 4}$
defective, 426 t
open/closed conformation of, 468, 469f
in signaling, 467-468, 469f
synaptic aggregation of, 398
nuclear, 437
olfactory, 481
peroxisome proliferator-activated, 965-966, 966f
platelet-derived growth factor, 463
rhodopsin, 477, 480
as signal amplifier, 933
steroid (nuclear), 436f, 437
sweet taste, 481
T-cell, 175
receptor agonists, $\mathbf{4 3 8}$
receptor antagonists, $\mathbf{4 3 8}$
receptor channels, ligand-gated. See ligand-gated receptor channels
receptor enzymes, 436-437, 436f, 453-460
guanylyl cyclase, 459-460, 459f
in signaling, 436-437, 436f
tyrosine kinase, 453-457, 456f. See also receptor tyrosine kinases
receptor guanylyl cylases, 437
receptor histidine kinase, $\mathbf{4 7 3}, 473 \mathrm{f}$
receptor-ligand binding, 435b
equilibrium constant for, 435 b
saturation in, 435b
Scatchard analysis for, 421 b, 435 b
in signaling, 433-434, 434f, 435b
receptor-mediated endocytosis, $\mathbf{8 6 8}-869,868$ f, 1146-1147, 1146f
receptor potential, $\mathbf{4 8 1}$
receptor tyrosine kinases, 436-437, 453-458
epidermal growth factor receptor as, 456-457, 463
insulin receptor as prototype of, 453-457, 454f-456f
platelet-derived growth factor receptor as, 456-457, 463
in rafts, 463
receptorlike kinases, in plants, 476, 476f
recognition sequences, $315,315 \mathrm{t}$
recombinant DNA, $\mathbf{3 1 4}$
recombinant DNA technology, 314-339
affinity chromatography in, 91f, 92, 93t, 325-327, 327t
applications of
legal, 329b-330b
medical, 39, 339-342, 340b, 347-351
cloned gene expression in, 321-325
cloning and, 314-325. See also cloning
DNA genotyping in, 329b-330b
DNA libraries in, 332, 332f, 335f
DNA microarrays in, 337-338, 337f, 338f
enzymes used in, 314-317, 315t
expression vectors in, 321
fusion proteins in, 333-334
genome sequencing in, 333, 339-351
immunofluorescence in, 333-334, 334f
immunoprecipitation in, 335, 335f
linkage analysis in, 347-349
oligonucleotide-directed mutagenesis in, 324-325
polymerase chain reaction in, 327-331
protein purification in, 335
protein tagging in, 325-327, 327t, 333-335, 335f, 336f
pulsed field gel electrophoresis in, 320
restriction endonucleases in, 314-317, 315t
site-directed mutagenesis in, 323-324
yeast two-hybrid analysis in, 336-337, 336f, 337f
recombinant gene expression, hosts for, 322-323, 324f
recombinase, 1046-1047, 1047f
recombination. See DNA recombination
recombination signal sequences, 1050-1051, 1052 f
recombinational DNA repair, 1039-1041, 1044f
recoverin, $\mathbf{4 8 0}$
red-anomalous trichromats, 480
red blood cells. See erythrocytes
red ${ }^{-}$dichromats, $\mathbf{4 8 0}$
red muscle, 944-945
redox pair. See conjugate redox pair
redox reactions. See oxidation-reduction reactions
reducing end, $\mathbf{2 5 2}$
reducing equivalent, 530, $\mathbf{7 3 5}$
reducing sugars, $\mathbf{2 5 1}, 252-253$
reduction potential
and affinity for electrons, 530-531, 530f, 531t
standard. See standard reduction potential
reductive pentose phosphate cycle, $\mathbf{8 0 1}$
reductive pentose phosphate pathway, $\mathbf{5 7 9}$
Refsum disease, $\mathbf{6 8 6}$
regulated gene expression, $\mathbf{1 1 5 6}$
regulators of G protein signaling, $\mathbf{4 4 2 b}$
regulatory cascade, $\mathbf{2 3 2}$
regulatory enzymes, 226-235
allosteric, 226-228, 228f, 2271
complex, 235
covalent modification of, 226, 229-232, 229f, 231t, 232f
functions of, 226-227
kinetics of, 227-228, 228 f
proteolytic cleavage and, 231-232, 232 f
unique properties of, 226
regulatory proteins. See also gene regulation and
specific proteins, e.g., promoters
DNA-binding domains of, 1160-1163
regulatory sequences, $\mathbf{9 8 0}, 980$ f
regulons, 1166
relative molecular mass $\left(M_{r}\right), 14 \mathrm{~b}$
relaxed-state DNA, $\mathbf{9 8 5}$
release factors, $1114, \mathbf{1 1 3 4}-1135,1135 f$
Relenza, 271
renaturation, of proteins, 143-146, 144f
repetitive DNA, 984
replication, 977. See also DNA replication; RNA replication
origin-independent restart of, $\mathbf{1 0 4 1}$
replication factor A (RFA), 1026
replication factor C (RFC), 1026
replication fork, 1012, 1013f, 1021-1023
in bacteria, 1012, 1013f, 1021-1023, 1021f, 1022f
in eukaryotes, 1026
stalled, 1024-1025, 1024f
damage from, 1034-1035, 1036f
repair of, 1039-1041, 1044f. See also DNA repair
replication origin
in bacteria, 1012
in eukaryotes, 1025
replication restart primosome, $\mathbf{1 0 4 1}$
replicative forms, $\mathbf{9 8 1}$
replicative transposition, 1049, 1050f
replicators, $\mathbf{1 0 2 5}$
replisomes, 1017, 1023
reporter construct, 334
reporter gene, 334
repressible gene products, $\mathbf{1 1 5 6}$
repression, $\mathbf{1 1 5 6}$
repressors, 1061, 1157, 1158 f
in eukaryotic gene regulation, 1170-1171, 1180, 1184-1185
Lac, 1061, 1162, 1166
DNA-binding motif of, 1162,1163 f
SOS response and, 1169-1170
transcription activators as, 1180
translational, 1170-1171, 1170f, 1184-1185, 1188
Reshef, Lea, 850
respirasomes, $\mathbf{7 4 3}$
respiration, $\mathbf{6 3 3}$
alternative pathways of, in plants, 746b-747b
bicarbonate buffer system in, 66-67
cellular, 633
stages in, 633, 634f
mitochondrial electron transfer in, 732-747. See also electron-transfer reactions, mitochondrial
respiratory chain, mitochondrial, 732-747, 734. See also electron-transfer reactions, mitochondrial
respiratory proteins
mitochondrial genes encoding, 766 t
response coefficient $(R), \mathbf{5 9 8}-599, \mathbf{5 9 9 b}$
response elements, $\mathbf{5 8 9}$
response regulator, $\mathbf{4 7 3}$
restriction endonucleases, 314-317, 315f, 315t, 317f
recognition sequences for, 315,315 t
type I, 314-315
type II, 315, 315t
type III, 314-315
restriction-modification system, 302, $\mathbf{3 1 4}$
reticulocytes, translational regulation in, 1184-1185
retinal, 16s, 373-374, 374s, 477, 480
11-cis-retinal, 16s, 477, 480
all-trans-retinal, 16 s
retinal cones, 477-480, 477f, 478f, 480f
in color vision, 480
retinal rods, $477-480,477 \mathrm{f}-479 \mathrm{f}$
retinoblastoma, 492
retinoblastoma protein (pRb), 488, 488f
retinoic acid, $373,374 \mathrm{~s}, 936$
retinoid hormones, $933 \mathrm{t}, 936$
retinoid X receptors (RXRs), 871, 871f
retinol (vitamin A), 373-374, 374s, 936
retrohoming, 1089, 1090f
retrotransposons, 1088-1089
retroviruses, 1086f, 1087-1089
evolutionary significance of, 1088-1089
HIV as, 218-219, 1088, 1088f
oncogenic, 1088, 1088f
reverse cholesterol transport, 867f, $\mathbf{8 6 9}$, 873-874, 874f
reverse transcriptase, 315 t , 1086-1087, 1086 f
HIV, 1088, 1088f
reverse transcriptase PCR, 331
reversible inhibition, 207-208, 208f, 209f
reversible terminator sequencing,
341-342, 342f
Rezulin (troglitazone), 970t
RF-1, 1134, 1135f
RF-2, 1134, 1135f
RFA (replication factor A), 1026
RFC (replication factor C), 1026
rhamnose, 249s
Rhodobacter sphaeroides, 776
Rhodopseudomonas viridis, 776
photoreaction center of, 778 f
rhodopsin, 463, 478f, 479f, 480
absorption spectra of, 480, 480f
activation of, 477
phosphorylation of, 479f, 480
structure of, 478 f
rhodopsin kinase, $\mathbf{4 8 0}$
ribofuranose, 282, 283f
ribonuclease
denaturation of, 143-146, 144f
renaturation of, 143-146, 144f
structure of, 133t
ribonucleic acid (RNA). See RNA
ribonucleoproteins, small nuclear, 1072-1073
ribonucleoside $2^{\prime}, 3^{\prime}$-cyclic monophosphates, $\mathbf{2 8 4}$
ribonucleoside 3^{\prime}-monophosphates, $\mathbf{2 8 4}$
ribonucleotide(s), 282t, 283, 283f. See also nucleotide(s)
as precursors of deoxyribonucleotides, 917-920, 917f, 918 f
reduction of, $917-918,917 \mathrm{f}$
ribonucleotide reductase, $\mathbf{9 1 7}, 917 \mathrm{f}$
proposed mechanism of, 918, 918f
regulation of, 918-920
ribose, 10 s, $244 \mathrm{~s}, 246 \mathrm{~s}$
conformations of, 282
ribose 5-phosphate, $806,806 \mathrm{f}, 807 \mathrm{f}$
ribose 5-phosphate isomerase, 806 f
ribose phosphate pyrophosphokinase, $\mathbf{8 9 2}$
ribosomal (r) proteins, 1116t, 1170-1171, 1170f
synthesis of, rRNA synthesis and, 1170-1171, 1170f
ribosomal RNA. See rRNA (ribosomal RNA)
ribosomes, 3, 1115-1118
aminoacyl-tRNA binding sites on, $1128,1128 \mathrm{f}$
bacterial, 6f, 1115-1117, 1116f
discovery of, 1103-1104
eukaryotic, 7f, 1116f, 1117-1118
recycling of, 1135
as site of protein synthesis, 1103-1104, 1115-1118
structure of, 1115-1118, 1116f
subunits of, 1115-1117, 1116f, 1117
synthesis of, rRNA synthesis and, 1170-1171, 1170f
riboswitches, 1172-1173
ribothymidine, 283f
ribozymes, 1069, 1069, 1070-1075, 1082-1085, 1082f-1084f, 1092-1094, 1117b
RNA world hypothesis and, 34-35, 34f, 1093-1094
self-replicating, 1092-1094
ribulose, 246 s
ribulose 1,5-bisphosphate, $\mathbf{8 0 1}, 808,808$ f oxygen incorporation in, 812-813, 813f
regeneration of, 805-806, 806f-808f, 808
ribulose 1,5-bisphosphate carboxylase/oxygenase
(rubisco), 802-804. See also rubisco
ribulose 5 -phosphate, $577 \mathrm{~s}, \mathbf{8 0 6}, 806 \mathrm{f}-808 \mathrm{f}$
ribulose 5 -phosphate kinase, light activation of, 811,811f
Richardson, Jane, 137
ricin, 1139
rickets, 373 , 373 f
Rieske iron-sulfur protein, 735, 741f
rifampicin, $\mathbf{1 0 6 8}$
Rinaldo, Piero, 724b
RNA, 15. See also nucleic acids
base pairs in, 287, 287f, 294-295, 295f, 296f
catalytic, 34-35, 34f, 1069, 1070-1075, 1082-1085, 1082f-1084f, 1092-1094, 1117b
in cis/trans, 1171-1173
degradation of, reverse transcriptase in, 1086-1087
development, SELEX method in, 1093, 1095b, 1117b
early studies of, 293-294
editing of, 1075-1076, 1111-1113
in evolution, 34-35, 34f
5^{\prime} cap of, $\mathbf{1 0 7 0}$
functions of, 293-294
guide, 1111
hairpin loops in, 1065f, 1084-1085
hydrolysis of, 285, 285f
messenger. See mRNA (messenger RNA)
micro, 1081, 1185
noncoding, 1186
nucleotides of, 282t, 283-284, 283f. See also nucleotide(s)
parasitic, 1094
phosphodiester linkages in, 284-285, 285 f
posttranslational processing of. See RNA processing
preribosomal, processing of, 1077-1079, 1078f, 1079f
as primordial catalyst, 34-35, 34f
rate of turnover of, 1070
ribosomal. See rRNA (ribosomal RNA)
SELEX analysis of, $\mathbf{1 0 9 3}, \mathbf{1 0 9 5 b}, 1117 \mathrm{~b}$
self-replicating, 34-35, 34f, 1092-1094
small, 1171-1173
small nuclear, 1073, 1081, 1097b
small nucleolar, 1079, 1080f, 1081, 1097b, 1186
small temporal, $\mathbf{1 1 8 5}$
splicing of, 1069-1075, 1070f, 1072f-1074f. See also splicing
structure of, 294-296, 294f-296f
synthesis of, 294, 1058-1069. See also transcription
transfer. See tRNA (transfer RNA)
translation of, 31f
TUF, 1097b
weak interactions in, 286-287, 287f, 294-295
RNA aptamers, 1095b
RNA-dependent polymerases, 1085-1094, 1086f, 1092
RNA-DNA hybrids, denaturation of, 298
RNA enzymes, 1069, 1069, 1070-1075, 1082-1085, 1082f-1084f, 1092-1094, 1117b
RNA world hypothesis and, 34-35, 34f, 1093-1094
self-replicating, 1092-1094
RNA interference (RNAi), 1185-1186, 1185 f
RNA polymerase(s), 1019t
DNA-dependent, 1058-1060, 1058f, 1156-1157
promoter binding of, 1060-1061, 1063f
RNA-dependent, $\mathbf{1 0 9 2}$
σ subunit of, 1060-1061, 1061f, 1157
specificity factors in, $\mathbf{1 1 5 7}$
in transcription, 1058-1060, 1058f, 1156-1157 in bacteria, 1058-1060, 1058f in eukaryotes, 1064-1068, 1065f, 1066t, 1067f

RNA polymerase holoenzyme, 1060, 1060f
RNA polymerase I, 1064
RNA polymerase II, 1064-1068, 1065f
carboxyl-terminal domain of, 1064, 1067f
promoter binding of, 1177-1178
regulation of, 1068
structure of, 1064, 1067f
TATA box and, 1064, 1065f
transcription factors and, 1066, 1067 f
RNA polymerase III, 1064
RNA processing, 1069-1085
in bacteria, 1069-1070, 1077-1080, 1078f
differential, 1075-1077, 1076f
editing in, 1075-1076, 1111-1113
enzymatic, 1069, 1070-1075, 1082-1085, 1082f-1084f
in eukaryotes, 1070, 1070f, 1075-1077, 1076f, 1079, 1079 f
5^{\prime} cap in, 1070
of miRNA, 1081, 1081f
of mRNA, 1069-1077
polyadenylate polymerase in, 1075, 1075 f
poly(A) site choice in, 1076
poly(A) tail addition in, 1075, 1075 f
polynucleotide phosphorylase in, 1085
rate of, 1084
ribozymes in, 1069, 1070-1075, 1082-1085, 1082f-1084f
of rRNA, 1077-1079
of snoRNA, 1081
of snRNA, 1081
splicing in, 1069-1075, 1070f, 1072f-1074f alternative patterns of, 1075-1077, 1076f
RNA replicase, $\mathbf{1 0 9 2}$
RNA replication, 1085-1094, 1086f
evolutionary significance of, 34-35, 34f, 1092-1094, 1117b
homing in, 1089, 1090f
introns in, 1088-1089, 1090f
retrotransposons in, 1088-1089, 1088f
reverse transcriptase in, 1085-1086, 1086f
RNA replicase in, $\mathbf{1 0 9 2}$
self-generated, 34-35, 34f
telomerases in, 1089-1092, 1091f
RNA transcripts
complex, 1076-1077, 1076f, 1077f
primary, 1069
splicing in, 1074f
processing of. See RNA processing
of unknown function, 1097b
RNA viruses, 1088, 1088f, 1092
RNA world hypothesis, 34-35, 34f, 1093-1094
RNase P, 295f, 1078f, 1082, 1083
Roberts, Richard, 1070
rod cells, 477-480, 477f-479f
Rodbell, Martin, 441b, 441f
ROS (reactive oxygen species), $\mathbf{7 4 0}$
rosettes, in cellulose, $\mathbf{8 2 2}$, 822 f
rosiglitazone (Avandia), $852,852 \mathrm{~s}$, 964-965, 970t
Rossmann fold, 534, 534f
rotational catalysis, 752-755
in ATP synthesis, 730f, 755f, 756f
Rous, F. Peyton, 1088
Rous sarcoma virus, 1088, 1088f
rRNA (ribosomal RNA), 282, 1057, 1115-1118, 1116t. See also RNA
preribosomal, processing of, 1077-1079, 1078f, 1079f
processing of, 1077-1079
structure of, 1115-1118, 1116t, 1118f
synthesis of, protein synthesis and, 1170-1171, 1170f
RS system of stereochemical nomenelature, 18, $\mathbf{7 8}$
RU486, 471, 472 s
rubisco, 802-804
activation of, 804, 810-812
in C_{3} plants, 815
in C_{4} plants, $815-818,815 \mathrm{f}$
in CAM plants, 818
catalytic activity of
with CO_{2} substrate, 802-804, 803f, 804 f
with oxygen substrate, 812-813, 813 f
evolutionary significance of, 812-813
genetically engineered, $815,817 \mathrm{~b}$
in photorespiration, 812-813
reaction mechanism, 830f
regulation of, 804, 811-812
structure of, 802, 802f
rubisco activase, $\mathbf{8 0 4}$
Ruv proteins, 1041, 1042f

S

S. See entropy (S)

SAA protein, 149
saccharides. See carbohydrate(s); sugar(s)
Saccharomyces cerevisiae. See also yeast
recombinant gene expression in, 323
Sakmann, Bert, 421, 421f
salicylate, 845-846, 846s
Salmonella typhimurium, 1173f
gene regulation in, 1173-1174
lipopolysaccharides of, 268, 268 f
salts, dissolution of, 50-52, 51f
salvage pathways, $856,857 \mathrm{f}, 910-911,922$
Samuelsson, Bengt, 371, 371f
Sandhoff disease, 369b
Sanger, Frederick, 97, 98, 302
Sanger sequencing, 302-304, 303f
sarcomere, of muscle fiber, 181, 181f, 182
sarcoplasmic reticulum, of muscle fiber,
181, 181f
satellite DNA, 984
saxitoxin, 424-426
scaffold, chromosomal, 999, 1000f
scaffold proteins, 434, 462, 463f
AKAPs as, 447f
in chromatin, 1000f
in enzyme regulation, 463 f
Scatchard analysis, 435b, 932
SCDs (stearoyl-ACP desaturases), 843 obesity and, 843
Schally, Andrew, 930
SCK test, 708b
SCOP database, 138-140
scramblases, 396f, $\mathbf{3 9 7}$
scrapie, 150b
screenable markers, 318, 319
scurvy, 128b-129b
SDS. See sodium dodecyl sulfate (SDS)
SecA/B chaperones, 1145-1146, 1145f
second messengers, 437-452, 482-484. See also
signaling; signaling proteins
calcium as, 450f, 451-452, 451f, 451t
cAMP as, 446-447
in β-adrenergic pathway, 438-440, 439f, 440f
diacylglycerol as, 447-451, 457f
G protein-coupled receptors and, 437-452
in gene regulation, 1171
IP_{3} as, 447-451, 457f
mechanism of action of, 446-447
nucleotide, 308, 308 f
secondary active transport, 405, 409
secondary metabolites, 15
secondary structure(s), 96f, 97, 119-125, 120f, 122f-124f
α helix as, 120-122, 120f, 122f, 123t, 124f, 125f
amino acids in, 123-124, 124f
β conformation as, 122f-125f, 123-125, 126t
β turn as, 123, 124f, 126t
bond angles in, 123-124, 124f
of fibrous proteins, 120-125, 120f, 122f-124f, 126t
of globular proteins, 133-138, 133t, 137f-140f
motifs in, 137-140, 139f-140f. See also protein folding
in protein folding, 133-138, 137f-140f, 151b
Ramachandran plots for, 120, 124f
representations of, 132 f
supersecondary, 137-140, 139f-140f. See also protein folding
secondary systemic amyloidosis, 149
secretin, 697-698
sedoheptulose 1,7-bisphosphatase, $811,811 \mathrm{f}, 817 \mathrm{~b}$
sedoheptulose 1,7-bisphosphate, in Calvin cycle, 806, 806f, 807 f
sedoheptulose 7-phosphate, in Calvin cycle, 806f
seed germination
gluconeogenesis in, 825-826
triacylglycerols in, 683, 683f
segment polarity genes, 1188, 1190
segmentation genes, $\mathbf{1 1 8 8}$
selectable markers, $\mathbf{3 1 8}$
selectins, 270-272, 283f, $\mathbf{4 0 2}$
selenocysteine, 81, 82s
SELEX, 1093, 1095b, 1117b
self-splicing introns, 1070-1071, 1093
enzymatic properties of, 1082-1085, 1084f
evolutionary significance of, 1093
semiconservative replication, 1011
sensory neurons
gustatory, 481, 482f
olfactory, 481, 482f
visual, 477-480, 477f-480f
sequential feedback inhibition, 900
sequential model, of protein-ligand binding, 167-168, 170 f
sequential reactions, in gluconeogenesis, 573 t
SERCA pump, 410-411
serine, 10 s, $79 \mathrm{~s}, \mathbf{8 1}, \mathbf{7 1 5}, \mathbf{8 9 4}$
biosynthesis of, 892-894, 894f
chymotrypsin acylation/deacylation of, 218
in chymotrypsin mechanism, 218
degradation of, to pyruvate, $715,715 \mathrm{f}, 716 \mathrm{f}$
in glycolate pathway, 813-815, 813f, 814f
in lipid synthesis, $853,854 \mathrm{f}$
phosphorylated, 230-231
binding domains for, 460-464, 461f
in plants, 475-476, 476f
properties of, $77 \mathrm{t}, 81$
in proteoglycans, 264, 264f
serine dehydratase, 715
reaction mechanism of, 715 f
serine hydroxymethyltransferase, $\mathbf{7 1 5}, 849$
reaction mechanism of, 715 f
serine proteases, 218-219, 219f
serotonin, 475s, 909
receptor for, as ion channel, 424
serpentine receptors. See G protein-coupled receptor(s)
serum albumin, 669-670, 943
serum amyloid A (SAA), 149
7 transmembrane segment receptors. See G protein-coupled receptor(s)
sex hormones, $372,372 \mathrm{~s}, 475 \mathrm{~s}, 933 \mathrm{t}, 935$
steroid, $372,372 \mathrm{~s}$
synthesis of, $874,874 \mathrm{f}$
SGOT test, 708b
SGPT test, 708b
SH2 domain, 454, 457f, 458, 461, 461f
Shafrir, Eleazar, 850
Sharp, Phillip, 1070
shellfish poisoning, 424-426
Shine, John, 1127
Shine-Dalgarno sequence, 1127-1128
shivering thermogenesis, 948
Shoemaker, James, 724b
short tandem repeats (STRs), in DNA genotyping, 329b-330b
shotgun method, in mass spectrometry, 379, 379f
shotgun sequencing, 341-342
shuttle vectors, $\mathbf{3 2 0}$
sialic acid, 249s, 250, 269-270, 366s
in gangliosides, $366,366 \mathrm{~s}$
sickle cell disease, 172-174, 173f
sickle cell trait, 173
σ subunit, of RNA polymerase, 1060-1061, 1061f
signal recognition particle (SRP), 1140, 1141f
signal sequence(s), 1140
of insulin, 934
posttranslational removal of, $\mathbf{1 1 3 6}$
in protein targeting, 1140
in bacteria, 1144-1146
in eukaryotes, 1140, 1144-1146
signal transduction, 433, 436f. See also signaling signaling, 433-494
acetylcholine receptor in, 467-468, 469f
adaptor proteins in, 446, 460-464
adhesion receptors in, 4361
adrenergic receptors in, 438-446
autoinhibition in, 461f, 462
autophosphorylation in, 453-454. See also autophosphorylation
in bacteria, $473,473 \mathrm{f}, 474 \mathrm{t}$
basic mechanisms of, 436-437, 436f
β-adrenergic response in, termination of, 444-445
blood in, 949-950
carbohydrates in, 283f
caveolae in, 399, 400f
cooperativity in, 434, 434f
cross talk in, 458
eicosanoids in, 847
enzyme cascades in, 434, 434f, 456, 456 f
in plants, 475-476, 475f, 476f
in epinephrine regulation, 438-446, 439f
evolutionary aspects of, 457, 482-483
fatty acids in, 847
G protein-coupled receptors in, 436f, 437, 438-446
gated ion channels in, $424,436 \mathrm{f}, 437,464 \mathrm{f}$, 465-467, 466f
in gene regulation, in eukaryotes, 1182-1184
guanylyl cyclase in, 445-446, 476f
in gustation, 481, 482f, 483f
hormonal, 930, 930f, 932f, 933
in hormonal cascade, 937, 938f
signal amplification in, 937
target tissues in, 936-937, 937f
insulin in, 453-457, 454f-456f, 934, 934f
in insulin regulation, 453-457, 454f-456f
integration in, 434, 434f, 468
lipids in, 371-372
in mammals, 474 t
membrane polarization in, 464-467 464f, 466f
membrane potential in, 464-465, 464f
membrane rafts in, 463
neuronal, 930, 930f
in olfaction, 481, 482f, 483f
overview of, 433-437
phosphatidylinositol in, 855, 855 f
phosphorylation in, $454 \mathrm{f}-456 \mathrm{f}$, 456
in plants, 372-373, 473-475, 474f-476f, 474t 847, 933
protein interactions in, 460-464. See also signaling proteins
protein kinases in. See protein kinase(s)
proteoglycans/oligosaccharides in, 263-268, 269-273
in proteolysis, 1148
receptor desensitization in, $434,434 \mathrm{f}$, 445-446, 456f
receptor enzymes in, 436-437, 436f, 453-460
receptor-ligand binding in, 433-434, 434f, 435b
second messengers in, 446-452, 482-484. See also second messengers
signal amplification in, 434, 434f, 443-444 457, 933, 938 f
signal-receptor affinity in, 433-434, 434f
signal transduction in, 434f, 436f
signal variety in, 436t
specificity in, $\mathbf{4 3 3}, 434 \mathrm{f}$
steps in, 466f
steroid hormones in, 372, 372s
steroid receptors in, 436f, 437
termination of, 456
two-component systems in
in bacteria, 473, 473f
in plants, 475-476, 475f, 476f
tyrosine kinases in, 453-458, 456
in vision, 477-480, 477f-479f
signaling cascade, 933
signaling pathways
β-adrenergic, 438-446, 439f, 440f, 444f, 445f
conservation of, 482-483, 483f
$\mathrm{IP}_{3} / \mathrm{DAG}, 447-451,450 \mathrm{f}$
JAK-STAT, 457-458, 457f, 962-963, 963f
phosphatidylinositol, 447-451, 457f
PI3K-PKB, 456, 456f
signaling proteins, 460-464
binding domains of, 456-457, 460-464
examples of, 462 f
IRS-1, 454, 456f
multiple, 460-464, 462f
PTB, $\mathbf{4 6 1}$
SH2, 454, 461f
specificity of, $460,461 f$
conservation of, 482-483, 483f
interaction of, 460-464
multivalent, 460-464, 462f
signaling systems
common features of, 482-484, 483f
self-inactivation of, 483-484
signature sequences, $\mathbf{1 0 7}, 107 \mathrm{f}$
sildenafil (Viagra), 459, 460s
silent mutations, 1027, 1111
silk fibroin, 130, 131f
simple diffusion, 403, 403f, 404f
simple-sequence DNA (repeats), $344, \mathbf{9 8 4}$
simple transposition, 1049, 1050f
simvastatin (Zocor), 872b
single nucleotide polymorphisms (SNPs), 344-345, 345 f
in linkage analysis, 347-349, 348f
single particle tracking, 398
single-stranded DNA-binding protein (SSB), 1019t, 1020, 1023t
in mismatch repair, 1029-1030, 1031f
siRNA (small interfering RNA), $\mathbf{1 1 8 5}$
sirtuin, 142 f. See also histone deacetylases sister chromatids, 994, 1042-1044, 1043f
sitagliptin (Januvia), 970t
site-directed mutagenesis, 323-324
site-specific recombination, 1038, 1046-1049, 1047f
sitosterol dextrin, in cellulose synthesis, 822-823
$6-4$ photoproduct, $300,301 \mathrm{f}$
size-exclusion chromatography, 91f, $\mathbf{9 2}, 93 \mathrm{t}$
skeletal muscle. See muscle
skin cancer, in xeroderma pigmentosum, 1037b-1038b
Skou, Jens, 411, 411f
Slack, Rodger, 816
sleeping sickness, 211b-212b
slow-twitch muscle, $\mathbf{9 4 4}$
Sly, William, 724b
small G proteins, $\mathbf{4 5 5}$
small interfering RNA (siRNA), 1185
small intestine, fat absorption in, 668-669, 668f
small nuclear ribonucleoproteins (snRNPs), 1072-1073
small nuclear RNA (snRNA), 173, 1081, 1097b, 1186
small nucleolar RNA (snoRNA), 1079, 1081
small RNA (sRNA), 1172-1173
small temporal RNA (stRNA), $\mathbf{1 1 8 5}$
SMC proteins, 1000, 1001f
smell, signaling in, 481, 482f
Smith, Hamilton, 315
$\mathrm{S}_{\mathrm{N}} 1$ reaction, 220-222, 223f
$\mathrm{S}_{\mathrm{N}} 2$ reaction, 222, 223 f
snake venom, 426
SNAP25, 401, 401f
SNAREs, 401, 401f
snoRNA (small nucleolar RNA), 1079, 1080f, 1081, 1097b
snoRNPs, $\mathbf{1 0 7 9}$
SNPs (single nucleotide polymorphisms),
344-345, 345f
in linkage analysis, 347-349, 348f
snRNA (small nuclear RNA), 1073, 1081, 1097b, 1186
snRNPs (small nuclear ribonucleoproteins), 1072-1073
sodium, blood levels of, 950
sodium dodecyl sulfate (SDS), $\mathbf{9 4}$
in electrophoresis, $\mathbf{9 4}, 95 f$
sodium-glucose symporter, 417
sodium ion(s), 533s
dehydrogenase reactions and, 532-535, 533f, 534t
sodium ion channels, 424
defective, diseases caused by, 426 t
in signaling, 465-467, 466f, 467f, 468
sodium ion concentration, in cytosol vs. extracellular fluid, 465t
sodium ion transport, $\mathrm{Na}^{+} \mathrm{K}^{+}$ATPase in, 411-412, 412f
solar energy, 769, 770f
solenoidal supercoiling, 993, 994f, 996
solubility
of amphipathic compounds, 52-53, 52f, 53f
entropy and, 51, 53, 53f
of gases, 51,51 t
of hydrophilic compounds, $51,51 \mathrm{f}$
of hydrophobic compounds, $51,51 \mathrm{t}$
solutes
concentration of, colligative properties and, $\mathbf{5 5}, 55 \mathrm{f}$
membrane transport of. See membrane transport
solutions
buffered, 63-69, 64f, 65f
colligative properties of, 55-56, 55f, 56f
hypertonic, 56-57, 56f
hypotonic, 56-57, 56f
ionic interactions in, 50-51
isotonic, 56-57, 56f
osmolarity of, 56-57, 56f
pH of, 60-61, 60f, 60t
solvation layer, 116
solvents
boiling points of, 48 t
heat of vaporization of, 48t
melting points of, 48t
organic, in lipid extraction, 377-378
water as, 50, 51f. See also water
somatostatin, 953
sorafenib, 491b
sorbose, 245, 246s
Sos, $443,454-455,456 \mathrm{f}$
SOS response, 1035, 1036t, 1169-1170, 1169f
Sp1, glutamine-rich domains of, 1181-1182, 1182f
space-filling model, $16,16 \mathrm{f}$
specific acid-base catalysis, 199
specific activity, $\mathbf{9 5}$
specific linking difference, $\mathbf{9 8 8}$
specificity
enzyme, 197
specificity constant $\left(k_{\text {cat }} / K_{\mathrm{m}}\right), \mathbf{2 0 5}, 205 \mathrm{t}$
specificity factors, $\mathbf{1 1 5 7}$
spectrin, 398 f
spectrophotometry, 80 b
spermidine, 909
biosynthesis of, 911f
spermine, 909
biosynthesis of, 911 f
sphinganine, $\mathbf{8 5 7}$, 859f
sphingolipids, 264, 363f, 365f, 366-368, 367f, 368f
in blood groups, $367,368 \mathrm{f}$
functions of, 367-368
lysosomal degradation of, 368, 368f
membrane distribution of, 389 f
membrane microdomains of, 398-399, 399f
structure of, $366 \mathrm{~s}, 367 \mathrm{~s}$
synthesis of, 857, 859f
transport of, 857-858
sphingomyelin(s), 366, 367f, 367s, 857, 859f
in cell regulation, 371
membrane distribution of, 388, 389f
sphingomyelinase, in Niemann-Pick disease, 369b
spliceosomal introns, $\mathbf{1 0 7 2}$, 1074f
spliceosomes, 1072, 1074 f
splicing, 1069-1070, 1070-1075, 1070f,
1072f-1074f
alternative, 1075-1077
alternative patterns of, 1050f, 1076f, 1077f
guanosine in, 1071, 1072 f
internal guide sequence in, 1082, 1084f
spongiform encephalopathies, 150b-151b
squalene
in cholesterol synthesis, 860f, 861-862, 863f
squalene 2,3 -epoxide, $\mathbf{8 6 2}, 863 \mathrm{f}$
squalene monooxygenase, $\mathbf{8 6 2}$, 863 f
Src, 454, 458
SREBP cleavage-activating protein (SCAP), $\mathbf{8 7 0}$
SREBPs (sterol regulatory element-binding proteins), 610, 870, 870f
sRNA, (small RNA), 1171-1173
SRP (signal recognition particle), $\mathbf{1 1 4 0}$
SSB. See single-stranded DNA-binding protein (SSB)
stability genes, 492
Stahl, Franklin, 1011
standard free-energy change ($\boldsymbol{\Delta} G^{\circ}$), $\mathbf{2 5}, \mathbf{1 9 2}, 193$ f
for acid anhydride, 509t
additive, 510-511
of amide, 509t
for ATP synthesis, 750-751
biochemical, 192
concentration dependent, 509-510
calculation of, 508
related to equilibrium constant, 507-508, 508t, 509t
units of, 507t
in electron transfer, 743-745
equilibrium constant and, 194, 194t, 507-508, 508t, 509t
of peptides, 509t
pH and, 509t
vs. free-energy change, 509-510. See also free-energy change (ΔG)
standard reduction potential $\left(E^{\circ}\right), 530$
of biologically important half-reactions, 531t
in calculating free-energy change, 531-532
measurement of, 530, 530f
values for, $531,531 \mathrm{t}$
standard transformed constants, $\mathbf{5 0 7}$
starch, 255, 255-259, 262t. See also carbohydrate(s); polysaccharide(s)
in amyloplasts, 800, 800 f
biosynthesis of, 818-821
degradation of, 560-561
glucose storage in, 253, 255-256
granular form of, 256
hydrolysis of, 257
structure of, 254f, 255, 256f, 258-259, 258f, 259f, 260 f
synthesis of, in plants, 810
starch phosphorylase, $\mathbf{5 6 0}$
starch synthase, $\mathbf{8 1 9}$
starvation, overproduction of ketone bodies during, 688
state transitions, in photosynthesis, $\mathbf{7 8 3}$
statin drugs, 872b-873b, $\mathbf{8 7 3}$
STATs, 457-458, 457f, 963. See also JAK-STAT pathway
leptin and, 962-963, 963f
steady state, $\mathbf{2 0 2}$
cellular maintenance of, 589
dynamic, 21
steady-state assumption, 202
steady-state kinetics, 202
enzyme, 203-205
steady-state reactions, 25
stearate
desaturation of, 842-843, 842f
synthesis of, 842 f
stearic acid, 358 t
1-stearoyl, 2-linoleoyl, 3-palimitoyl glycerol, 360s
stearoyl-ACP desaturase (SCD), 843
stearoyl-CoA, 842
stem cells, 1191-1193, 1192, 1192f, 1193f
adult, 1192
embryonic, 1192
multipotent, 1192
pluripotent, 1192, 1192f
totipotent, 1192, 1192f
stereochemistry, 16-19, 16f-18f
nomenclature for, 18
stereoisomers, 16, 16f, 76-77, 78
nomenclature for, 18
optical activity of, 18, $\mathbf{7 7}$
sugar, 243
stereospecificity, 16, 19, 19f, 20 f
steroid hormone(s), 372, 372f, 372s, 933t, 935
in signaling, 372
synthesis of, 763-764, 874, 874f, 875f
cytochrome P-450 in, 763-764
steroid hormone receptors, 436f, 437, 933,
1183-1184, 1183f
sterol(s), 368-370, 368f
as lipid anchors, 394, 394f
membrane, 386 t
microdomains of, 398-399, 399f
steroid hormones from, 372, 372s
structure of, 368-370, 368f
sterol regulatory element-binding proteins (SREBPs), 610, 870-871, $870 f$
sticky ends, 316, 317f
stimulatory G protein (Gs), 438, 439f
adenylyl cyclase and, 438
self-inactivation of, 438
stomach ulcers, 271f, 272
stop codons, 1107, 1107f. See also codons
storage lipids, 363 f
classification of, 363f
fatty acids, 357-362
waxes, 362 , 362 f
Streptomyces lividans, potassium channel in, 422-424, 422f
streptomycin, 1138, 1139s
stress, oxidative, mitochondria in, 745-746, 745f
stress response
cortisol in, 958-959, 959t
epinephrine in, 958, 959t
stringent factor, 1171, 1171f
stringent response, 1171, 1171f
stRNA (small temporal RNA), 1185
stroma, $\mathbf{7 7 0}$
Strong, Frank, 535
strong acids, 61-62
Structural Classification of Proteins (SCOP), 138-140, 139f-140f
substitution mutations, 1027
substrate
enzyme, 158, 192. See also enzyme-substrate complex
substrate channeling, 636-637
substrate cycle, $\mathbf{6 0 1}$
succinate, 129s, 645
conversion of succinyl-CoA to, 644-645, 645f
in glyoxylate cycle, in plants, 826
oxidation of, to fumarate, 646-647
succinate dehydrogenase, $\mathbf{6 4 6}, 738 \mathrm{t}, \mathbf{7 4 0}$. See also Complex II
succinic thiokinase, $\mathbf{6 4 5}$
succinyl-CoA
conversion of, to succinate, 644-645, 645f
glucogenic amino acids and, 574t
oxidation of α-ketoglutarate to, 644
succinyl-CoA synthase, $\mathbf{6 4 5}$
reaction of, 645 f
sucrose, 243, 253, 253f, 819s
in photosynthesis, 253, 809-810
synthesis of, in germinating seeds, 825-826, 826f
sucrose 6 -phosphate, $\mathbf{8 1 9}, 819 \mathrm{~s}, 837 \mathrm{f}$
sucrose 6 -phosphate phosphatase, $\mathbf{8 1 9}, 837 \mathrm{f}$
sucrose 6 -phosphate synthase, $\mathbf{8 1 9}, 837$ f
sucrose synthase, in cellulose synthesis, 824 f
sugar(s), 243. See also carbohydrate(s); monosaccharides; oligosaccharides; polysaccharide(s)
acidic, 249 s
amino, 249s
complex, 243
deoxy, 249s
dolichols and, 375
epimers, 245, 246f
nonreducing, 252, 253
nucleotide, 819
phosphorylation of, 251
reducing, 251, 252-253
simple, 243
stereoisomers of, 243
sugar code, 269-273, 273f
sugar nucleotides, 615-619
formation of, 615-616, 618f
in glycogen synthesis, 617-619, 618f, 620 f
suicide inactivators, 210, 211b-212b
sulfation, in proteoglycans, 265, 265f, 266f
sulfolipids, 365, 365f
sulfonylurea drugs, 954, 970, 970 t
Sumner, James, 190, 190f
sunitinib, 491b
supercoiled DNA. See DNA, supercoiling of
superhelical density, of DNA, $\mathbf{9 8 8}$
superoxide dismutase, $\mathbf{7 4 5}$
superoxide radical, $\mathbf{7 4 0}$
mitochondrial production and disposal of, 745 f
suppressor tRNA, 1134b
supramolecular complexes, 9, 10f, 31
Sutent, 491b
Sutherland, Earl, 616, 621
sweetness, 254b-255b
SWI/SNF, in chromatin remodeling, $\mathbf{1 1 7 5}$, 1176t, 1180
switches, binary, in G protein(s), 438, 440f, 441b-443b
SWR1 family, in chromatin remodeling, 1175, 1176t
symbiont, $\mathbf{8 8 2}$
symporters, 409, 409f
Na^{+}-glucose, 417, 417f
synaptic transmission, steps in, 466f
syndecans, 264, 264f, 265
syndrome X, 969-971
synteny, 333, 333f
synthase, 646b
synthetase, 646b
system, 21
closed, 21
isolated, $\mathbf{2 1}$
open, 21
systems biology, 29, 313

T

T cell(s) (lymphocytes), 175, 175t, 950
antigen binding by, 175
cytotoxic, $\mathbf{1 7 5}, 175 \mathrm{t}$
functions of, 175
helper, 175, 175t
T-cell receptors, 175
T loop, 1091, 1091f
t-SNAREs, 401, 401f
T-state, in hemoglobin-oxygen binding, 163-165, 165f, 171-172, 172 f
T_{3} (triiodothyronine), 933t, 936
T_{4} (thyroxine), 933t, 936
TAG. See triacylglycerol(s)
Tagamet (cimetidine), 909
tagatose, 246 s
tags. See protein tagging
talose, 246s
Tamiflu, 271
tamoxifen, $\mathbf{4 7 1}$
tandem affinity purification (TAP) tags, 335, 336f
tandem mass spectrometry (MS/MS), 101, 102f, 274, 275f
Tangier disease, $\mathbf{8 7 4}$
Tarceva, 491b

Tarui disease, 617t
taste
signaling in, 481, 482f, 483 f
sweet, 254b-255b
TATA-binding protein (TPB), 1066t, 1068, 1179
TATA box, 1064, 1065f
Tatum, Edward L., 642b, 979, 980f
taurocholic acid, 370s
Tay-Sachs disease, 369b
TCA (tricarboxylic acid) cycle, 633. See also citric acid cycle
telomerase, 1089-1092, 1090-1091, 1091f
telomeres, 984-985, 985t, 1026, 1089-1092, 1091f
Temin, Howard, 1087, 1087 f
temperature, absolute, units of, 507t
template strand
in replication, DNA as, 1011, 1013, 1014f
in transcription, 1059, 1059f, 1085
Ter sequences, 1023-1025, 1024f
terminal complexes, in cellulose, $\mathbf{8 2 2}$
terminal tags, in affinity chromatography, 325-327, 325t
terminal transferase, 315 t
termination codons, 1107. See also codons
termination factors, 1134-1135, $1135 f$
terminators, transcriptional, 1063-1064, 1065f
termites, cellulose digestion by, 257, 257f
tertiary protein structure, 96f, 97, 125-140. See also protein folding
of fibrous proteins, 126-130. See also fibrous proteins
of globular proteins, 125, 133-138. See also globular proteins
of α-keratin, 126-127, 126f
Ramachandran plots for, $\mathbf{1 2 0}, 124 \mathrm{f}$
representations of, 132f
testis, 937 f
testosterone, 372f, 372s, 935
etracosanoic acid, 358t
tetracyclines, 1138, 1138s. See also antibiotics
tetradecanoic acid, 358t
tetrahydrobiopterin, $\mathbf{7 1 4}$
in phenylalanine hydroxylase reaction, 720, 720f
etrahydrofolate $\left(\mathrm{H}_{4}\right.$ folate $), \mathbf{7 1 2}, 712 \mathrm{f}$
substrate binding to, 195
Tetrahymena thermophila, splicing in, 1071-1072, 1082, 1083f
tetraplex DNA, $\mathbf{2 9 2}$
tetrasaccharide bridge, 264
tetrodotoxin, 424-426
tetroses, 244
TFIIA, 1066t, 1068, 1179
TFIIB, 1066t, 1068, 1179, 1180
TFIID, 1180
TFIIE, 1066t, 1068, 1179
TFIIF, 1066t, 1068, 1179
TFIIH, 1066t, 1068
thermodynamics
bioenergetics and, 21-28, 506-527
biological energy transformations and, 506-507, 507t
first law of, 21
free energy in. See free energy (G)
physical constants used in, 507 t
of protein folding, $146,146 f$
second law of, 507
thermogenesis, 944 . See also brown adipose tissue
mitochondrial, 762-763
shivering, 948
thermogenin, $\mathbf{7 6 3}, \mathbf{9 4 4}, 962$
thiamine pyrophosphate, $\mathbf{5 6 5}$
in Calvin cycle, 805, 807f
in fermentation, $567 \mathrm{f}, 568 \mathrm{t}$
reaction mechanism of, 567f
thiazolidinediones, 852, 852s
thick filaments, 180-181, 180f, 181f
in muscle contraction, 182-183, 183f
thin filaments, 180f, 181, 181f
in muscle contraction, 182-183, 183f
thin-layer chromatography, 377f, 378
thioesters, $\mathbf{6 3 5}$
free-energy of hydrolysis of, 521,521

thiolase, 674

thioredoxin, $\mathbf{8 1 1}, 811 \mathrm{f}, \mathbf{9 1 7}$
thioredoxin reductase, 917
4-thiouridine, 284s
30 nm fiber, $\mathbf{9 9 8}, 1035 \mathrm{f}$
Thompson, Leonard, 931b
Thomson, James, 1193, 1193
3^{\prime} end, 285, 285f
$3^{\prime} \rightarrow 5^{\prime}$ exonuclease activity, in DNA polymerases, 1017, 1017f
threonine, 79 s, $\mathbf{8 1}, \mathbf{7 1 7}, \mathbf{7 2 2}, \mathbf{8 9 8}$
biosynthesis of, 896f, 897-898
conversion of, to succinyl-CoA, 722, 722 f
degradation of, to pyruvate, 715f, 717-718
phosphorylated, 230-231
binding domains for, 460-464
in plants, 475-476, 476f
properties of, 77 t
threose, 246s
thrombin, 233, 265 f
thrombomodulin, $\mathbf{2 3 4}$
thromboxane(s), 234, 371-372, 371f. See also eicosanoid(s)
synthesis of, 846f, $\mathbf{8 4 7}$
thromboxane synthase, 846f, $\mathbf{8 4 7}$
Thudichum, Johann, 367, 367f
thylakoid(s), $\mathbf{7 7 0}$
proton and electron circuits in, 775 f
thylakoid membrane
galactolipids in, 365,365
photosystems in, 775 f
thymidylate, biosynthesis of, 920, 920 f
as chemotherapy target, 924f
thymidylate synthase, $\mathbf{9 2 0}$
reaction mechanism of, 924 f
thymine, 10s, 282, 282t, 283f. See also pyrimidine bases
evolutionary significance of, 299-300
from 5-methylcytosine deamination, 299-300, 300f
thyroglobulin, 936
thyroid, 937f
thyroid hormones, 933t, 936
thyrotropin, 269
thyrotropin-releasing hormone
isolation and purification of, 930
structure of, 932 f
thyroxine $\left(\mathrm{T}_{4}\right), 933 \mathrm{t}, 936$
tissue damage, assays for, 708b
tissue factor, $\mathbf{2 3 3}$
tissue factor protein inhibitor, $\mathbf{2 3 4}$
tissue fractionation, 8, 8f
titins, 182
titration curves
for amino acids, 82-85, 83f, 85f
Henderson-Hasselbalch equation for, 64-65
of peptides, 87
for weak acids, 62-63, 62f, 63f
TLS polymerases, 1034-1037, 1038b
TNF. See tumor necrosis factor (TNF)
tocopherols, 374-375, 375s
topoisomerase(s), 989-990, 990f, 991f, 999, 1017, 1019t, 1020
in replication initiation, 1019t, 1020
topoisomerase inhibitors, 992b-993b
topoisomers, $\mathbf{9 8 9}, 990,990$ f
topology, $\mathbf{9 8 6}$
of DNA, 986
topotecan (Hycamtin), 992s, 993b
totipotent stem cells, 1192, 1192 f toxins
ion channels and, 424-426
translation inhibition by, 1138-1139
TPB (TATA-binding protein), $\mathbf{1 1 7 9}$
T $\psi \mathrm{C}$ arm, of tRNA, $\mathbf{1 1 1 8}, 1119 \mathrm{f}$
trace elements, 12, 12f
trans configuration, of peptide bonds, $124 f$
trans fatty acids, $361,362 \mathrm{t}$
transaldolase, 577-579, 579, 579
in Calvin cycle, 806f
covalent interactions with, 579 f
transaminase, 699
transamination, 699
enzyme-catalyzed, 699f
transcript
complex, 1076-1077, 1076f, 1077f
primary, 1069
splicing in, 1074f
processing of. See RNA processing
transcription, 31f, 294, 977, 1057, 1058-1069. See also protein synthesis
in bacteria, 1003f, 1058-1064, 1058f regulation of, 1165-1175. See also gene regulation vs. eukaryotes, 1175
definition of, 294
DNA-dependent, 1058-1069
DNA supercoiling in, 1058f, 1059 f
drug inhibition of, 1068, 1069 f
enzymology of, 1069. See also ribozymes
error rate in, 1060
in eukaryotes, 1064-1068
regulation of, 1176-1195. See also gene regulation
vs. bacteria, 1175
evolutionary significance of, 1092-1094
initiation of, 1058f, 1059, 1060-1061, 1063f, 1067f, 1068
of introns, 1070
nucleoside triphosphate in, 524
phosphorylation in, 1184
promoters in, 1060-1061, 1063f, 1067f 1157-1158
proofreading in, $\mathbf{1 0 1 5}, 1016 \mathrm{f}, 1060$
proteins in, 1066t, 1068
rate of, 589, 1059, 1157
regulation of, 1061-1063, 1155-1195. See also gene(s)
in bacteria, 1165-1175
in eukaryotes, 1176-1195
RNA-dependent, 1085-1094
steps in, 1066-1068, 1067f
strand elongation in, 1059, 1059f, 1063f, 1067f, 1068
termination of, 1063-1064, 1065f, 1067f, 1068
transcription factors in, 1064-1068, 1067f
translation coupled with, 1135-1136, 1136f
vs. replication, 1058
transcription activators, 1178, 1181-1182, 1182f
as repressors, 1180
transcription bubble, 1058, 1058 f
transcription factors, $\mathbf{5 8 9}, \mathbf{1 0 6 4}-1068,1066 \mathrm{t}$, 1067f, 1178-1179
basal, 1178
general, 1066, 1066t, 1067f
transcriptional attenuation, 1166f-1168f, 1167-1169
transcriptional regulation. See gene regulation
transcriptome, 590, 1057
transdeamination, 701
transducin, 478, 479f
transfection, 323, 324 f
transfer RNA. See tRNA (transfer RNA)
transferrin, 642b
transferrin receptor, $\mathbf{6 4 2 b}$
transformation, in cloning, 318
transition mutations, 1111
transition state
in enzymatic reactions, $\mathbf{2 7}, \mathbf{1 9 3}, \mathbf{1 9 5 - 1 9 7 , ~} 217$
transition-state analogs, $\mathbf{2 1 0}$
transition-state complementarity, 217
transketolase, 568t, 579,579 s
in Calvin cycle, 805, 806f, 807f
covalent interactions with, 579 f
defect of, Wernicke-Korsakoff syndrome exacerbation due to, 580
reactions catalyzed by, $\mathbf{5 7 7}, 579$ f
translation, 31f, 977, 1104. See also protein synthesis
in gene regulation, 1170-1171, 1170f
regulation of, 1184-1186, 1184f
repression of, 1170, 1170f, 1184-1186, 1188
transcription coupled with, 1135-1136, 1136f
translational frameshift, 1111
translocation
in protein synthesis, 1132-1133, 1133f
in protein targeting, 1140, 1141f
transmembrane electrical potential. See membrane potential
transpeptidase reaction, 224f
β-lactam antibiotics and, 224, 225f
transphosphorylation, between nucleotides, 526-527, 526f
transport. See membrane transport; protein targeting; transporter(s)
transport vesicles, 400-401, 401f
in lipid targeting, 857-858
in protein targeting, 1142, 1143f
transporter(s), 404-409
ABC, 413-414
active, 405
ATP in, 525-526, 757
primary, 405
secondary, 405
acyl-carnitine/carnitine, $\mathbf{6 7 1}$
alanine, 703, 703 f
Ca^{2+} pump, 410-411, 411f
citrate, $\mathbf{8 4 0}$
in cotransport systems, 409, 409f
F-type ATPase, 412-413, 413f
fatty acid, 670-672, 670f, 671f
glucose. See glucose transporters
glutamine, 702-703, 702f
lactose, 416, 416f, 416t, 417f
multidrug, 413-414
Na^{+}-glucose symporter, 417, 417f
$\mathrm{Na}^{+} \mathrm{K}^{+}$ATPase, 411-412, 412f
P-type ATPase, 410-411, 411f
passive, $\mathbf{4 0 4}$
SERCA pump, 410-411
types of, 425t
vs. ion channels, 404, 404f, 421. See also ion channels
transposition, 1038-1039, 1049, 1049f
in bacteria, 1049, 1049f
direct (simple), 1049, 1050f
in eukaryotes, 1049, 1088-1089, 1088f
replicative, 1049, 1050f
transposons (transposable elements), 344, 984, 1049, 1049f
bacterial, 1049
complex, 1049
eukaryotic, 1049, 1088-1089, 1088f
evolutionary significance of, 1088-1089
trehalose, 253, 253 f
triacontanoylpalmitate, 362f
triacylglycerol(s), 359f, 360-361, 360f, 362t, 683. See also fatty acid(s)
absorption of, 668-669, 668f
body stores of, 956 t
fate of, 939
food sources of, 361
functions of, 360-361
mixed, 360 , 360 f
recycling of, 849-850, 850f, 851, 944
in seed germination, 683, 683 f
simple, 360
storage forms of, 360-361, 360f
stored, mobilization of, 669-670, 670f, 671f, 943-944
synthesis of, 848-850, 943-944
glyceroneogenesis in, 849f, 850-852, 851f
hormonal regulation of, 849-850, 850f
triacylglycerol cycle, 850, 850f, 851, 944
triacylglycerol lipase, 944
tricarboxylic acid (TCA) cycle, 633. See also citric acid cycle
Trichonympha, 257, 257 f
trichromats, 480
trifunctional protein (TFP), $\mathbf{6 7 4}$
triglycerides. See triacylglycerol(s)
triiodothyronine (T_{3}), 933t, 936
trimeric G proteins, $\mathbf{4 3 8}$
trimethoprim, $924 \mathrm{~s}, \mathbf{9 2 5}$
triose kinase, 562
triose phosphate(s)
antiporter for, 809-810, 810f
in Calvin cycle, 805-810
regeneration of ribulose 1,5 -bisphosphate from, 805-806, 806f, 807f
synthesis of, 805f, 808-809, 808f
conversion of, to sucrose/starch, 819-821, 820 f
interconversion of, 550, 552f
movement of, 809-810, 810f, 826, 826 f
triose phosphate isomerase, $\mathbf{5 5 0}, 594 \mathrm{t}$
trioses, 244, 244f
triphosphates, nucleoside, nucleoside monophosphate conversion to, 916
triple helix
of collagen, 124f, 126t, 127-130, 127f, 128b-129b
of DNA, 292, 293f
triplet nucleotides. See codons
triplex DNA, 292, 293f
trisaccharide bridge, 264f
trisomy, 1045b
tRNA (transfer RNA), 282, 1057, 1079-1080. See also RNA
amino acid arm of, $\mathbf{1 1 1 8}, 1119 f$
aminoacylation of, 1119-1123, 1120f-1122f
anticodon arm of, 1118, 1119 f
base pairing of, with mRNA, 1109-1110, 1110f
in codon-anticodon pairing, 1109-1110
D arm of, 1118, 1119f
functions of, 294
nomenclature for, 1106
processing of, 296f, 1079-1080, 1080f
recognition of, 1122-1123, 1122f
structure of, 296f, 1118, 1119 f
suppressors, 1134b
$\mathrm{T} \psi \mathrm{C}$ arm of, 1118, 1119f
in translation, 1104, 1108b-1109b
yeast alanine, 1118, 1119f
troglitazone (Rezulin), 970t
tropic hormones, 937
tropins, 937
tropomyosin, $\mathbf{1 8 3}$
troponin, $\mathbf{1 8 3}$
trp operon, transcriptional attenuation in, 1167-1169, 1167f
Trp repressor, 1167, 1167f
Trp residues, in membrane proteins, 393, 393f
Trypanosoma brucei rhodesiense, 211b-212b
trypanosomiasis, African, 211b-212b
trypsin, 698
synthesis of, proteolytic cleavage in, 231-232, 232f
trypsin inhibitor, pancreatic, 698
trypsinogen, 231-232, 232f, 698
tryptophan, 79-80, 79s, 535s, 715,

717, 898

biosynthesis of, 898, 900 f
degradation of
to acetyl-CoA, 717-719, 718f, 719f
to pyruvate, $715,715 \mathrm{f}$
light absorption by, 80f
properties of, 77t, 79-80
tryptophan synthase, $\mathbf{8 9 8}$
reaction mechanism of, 898, 901f
tubocurarine, 426
TUF RNA, 1096b-1097b
tumor(s). See also cancer
solid, glycolysis in, 555, 556b-557b
tumor necrosis factor (TNF)
in apoptosis, 492-494, 494f
tumor suppressor genes, 489-494, 493f
tunicamycin, 1141, 1141s
turnover number, 205, 205t
Tus-Ter complex, 1023-1025, 1024f
26S proteasome, 1147
twist (Tw), 989, 989 f
twisted β sheet, 137-138, 137f
two-component signaling systems, $\mathbf{4 7 3}$
in bacteria, 473, 473f
in plants, 475, 475f, 476f
two-dimensional electrophoresis, 94, 95 f
type 1 diabetes. See diabetes mellitus, type 1
type 2 diabetes. See diabetes mellitus, type 2
type I topoisomerases, 990, 991f
type II topoisomerases, 990, 991f, 1021f
tyrosine, 10s, 79-80, 79s, 717, 898
biosynthesis of, 898, 902f
catabolic pathways for, 718f, 719f
insulin receptor and, 453-457
light absorption by, $80 f$
phosphorylated, 230-231 binding domains for, 460-464, 461f
in cell cycle regulation, 484, 486f
properties of, 77t, 79-80
tyrosine kinases, 456-457
membrane-protein, 456-457
receptor, 453-458
epidermal growth factor receptor as, 456, 457, 463
insulin receptor as prototype of, 453-457, 454f-456f
platelet-derived growth factor receptor as, 456, 457, 463
in rafts, 463
receptor-like, 456-457
soluble, 457-458
tyrosine residues, in membrane proteins, 393, 393f

U

UAS (upstream activator sequence), $\mathbf{1 1 7 8}$
ubiquinone, $375,375 \mathrm{~s}, \mathbf{7 3 5}, 735 \mathrm{~s}$
ubiquinone:cytochrome c oxidoreductase, 738 t , 740-742, 741f. See also Complex III
ubiquitin, $\mathbf{4 8 7}$
in disease, 1148-1149
in protein degradation, 1147-1149, 1147f
ubiquitin cascade, 1147-1148, 1147f
defects in, 1148-1149
UBS proteases, 149
ubx, 1191
UDP (uridine diphosphate), $\mathbf{5 6 2}$
UDP-glucose, 615s, 620s, 819s
in cellulose synthesis, 822
in glycogen synthesis, 615-619, 618f, 620 f
in sucrose synthesis, 819-820
UDP-glucose pyrophosphorylase, 617-618
ulcers, gastric, 271f, 272
ultrabithorax, 1191
ultraviolet radiation absorption
chemical changes due to, $300,301 \mathrm{f}$
by DNA, 297-298
by proteins, $80 \mathrm{~b}, 80 \mathrm{f}$
UMP (uridine 5'-monophosphate), 283s
UMUC, in DNA repair, 1035-1037
UmuD, in DNA repair, 1035-1037, 1036t
uncompetitive inhibitor, 208, 208f, 209f, 209t
uncoupling protein 1, 763, 963
undefined coil, 119
underwinding, of DNA, $\mathbf{9 8 7}, 987$
unfolded protein response, 149
uniporters, 409, 409
unipotent stem cells, 1192
units, of molecular mass, 14b
universe, $\mathbf{2 1}$
upstream activator sequences (UASs), $\mathbf{1 1 7 8}$
uracil, 10s, 282, 282t, 283f. See also pyrimidine bases
from cytosine deamination, 299, 300f
in disease, 920
tautomeric forms of, 286, 286f
uracil DNA glycosylase, 1030-1031
urate oxidase, $\mathbf{9 2 1}$
urea, 706
from amino acid metabolism, 942
in pyrimidine degradation, 921
urea cycle, 704, 705 f
citric acid cycle links to, 706-708, 707f
genetic defects in, 709-710
regulation of, 708, 709f
synthesis in
energetic cost of, 708-709
enzymatic steps in, 704-706, 705f, 706f
ureotelic species, 704
uric acid
excess, 922-923
in purine degradation, 921
uricotelic species, $\mathbf{7 0 4}$
uridine, 283s
uridine 5 '-monophosphate (UMP), 283s
uridine diphosphate (UDP), 562. See also

UDP entries

uridylate, 282 t , 283 s
uridylylation, enzyme, 229f
uridylyltransferase, $\mathbf{8 8 9}$
uronic acid, 250
in glycosaminoglycans, 260-261, 261f
UvrA, in DNA repair, 1032, 1036t
UvrB, in DNA repair, 1032, 1036t
UvrC, in DNA repair, 1032
UvrD, in DNA repair, 1032

V

V segment, of kappa light chain, 1050-1051, 1051f
v-SNAREs, 401, 401f
V-type ATPases, 412. See also ATPase(s)
vaccine, viral, 1088
vacuoles, $\mathbf{6}$, 7 f
Vagelos, P. Roy, 873b
valine, $\mathbf{7 9}, 79 \mathrm{~s}, \mathbf{7 2 2}, \mathbf{8 9 8}$
biosynthesis of, 897-898, 897f
catabolic pathways for, $674,675 \mathrm{f}, 722 \mathrm{f}$, 723 f
conversion of, to succinyl-CoA, 722, 722 f properties of, $77 \mathrm{t}, 79$
valinomycin, 418, 418 f
van der Waals interactions, $9,53,53 \mathrm{t}, 117$
as dipole-dipole interactions, 117
in myoglobin, 132, 132f
tertiary protein structure and, 132, 132f
van der Waals radius, 53, 53 t
vanadate, 410, 410s
vane, John, 371, 371f
van't Hoff equation, 56
van't Hoff factor, 56
vaporization, heat of
of common solvents, 48 t
of water, 47, 48-49, 48t
Varmus, Harold, 1088
vascular endothelial growth factor receptor, 490b
vascular plants, 372-373
vasopressin, 938 f
vectorial reactions, in oxidative
phosphorylation, $\mathbf{7 3 8}$
vectors. See cloning vectors
venom, ion channels and, 424-426
Venter, J. Craig, 339, 339f
vertebrate, small, aerobic metabolism of, 564b
very-low-density lipoprotein (VLDL), 865f, 865t,

866-867

vesicle, $\mathbf{3 8 8}$
Viagra (sildenafil), 459, 460s
Victoria, Queen, 234, 235f
vimentin, 182
viral DNA, 980-981, 982t
viral genome, 980-981, 982t
viral infections
cancer-causing, 489, 489f, 1088
vaccines for, 1088
viral oncogenes, 489, 489f
viruses. See also retroviruses
DNA, 980-981, 1026-1027

DNA polymerases of, 1026-1027
lectins and, 273 f
RNA, 1092
oncogenic, 1088, 1088f
selectins and, 270-271
virusoid, 1083
visible light
as electromagnetic radiation, 771
photopigment absorption of, 771-774, 772f-774f. See also photopigments
vision
color, 480, 480f
signaling in, 477-480, 477f-479f
vitamin(s), 373-375
biotin. See biotin
isoprenoids
as lipid anchors, 394, 394f
synthesis of, 874-875, 875f
niacin, 535, 535s
dietary deficiency of, 535
pyridoxal phosphate. See pyridoxal phosphate (PLP)
in pyruvate dehydrogenase complex. See pyruvate dehydrogenase complex
tetrahydrofolate. See tetrahydrofolate (H_{4} folate)
vitamin A (retinol), 373-374, 374s
vitamin B_{12} (cobalamin), 678, 680b-681b
deficiency of, 681, 713-714
reaction mechanism of, 681f
vitamin C (ascorbic acid), 128b-129b
deficiency of, 128b-129b
functions of, 128b
vitamin D, 933t
as hormone, 933 t , 935
vitamin D_{2} (ergocalciferol), 373, 373f
vitamin D_{3} (cholecalciferol), 373, 373f, 373s
vitamin E (tocopherol), 373, 375s
vitamin K, 374, 375s
vitamin K_{1} (phylloquinone), $374,375 \mathrm{~s}$
vitamin K_{2} (menaquinone), 374
VLDL (very-low-density lipoprotein), 865f, 865t, 866-867
V_{m} (membrane potential), 403, 403, 403f, 464-465, 464f
in signaling, 464-469, 464f
$V_{\max }$ (maximum velocity), 201-205, 201f
voltage-gated ion channels, 421, 422-424. See also ion channels
in signaling, 424, 436f, 464-469, 464f, 465-467, 466f
von Euler-Chelpin, Hans, 544
von Gierke disease, 617t
von Mering, Josef, 931b

w

Walker, John, 752, 752f
Warburg, Otto, 554-558, 555
Warburg effect, 555
warfarin, 234, $375,375 \mathrm{~s}$
waste treatment, anammox bacteria in, 884b-885b
water, 47-70
adaptation to life in, 69-70
boiling point of, 47, 48t
electrostatic interactions and, 50, 51f
evaporation of, 48-49, 48t
heat of vaporization of, 47, 48-49
hydrogen bonds in, 47-50, 48f-50f, $55 f$
hydrophilic (polar) compounds and, 50-52, 50t
hydrophobic (nonpolar) compounds and, 9,50, 50-53, 50t
ionic interactions in, 50-51, 51f
ionization of, 58-61
equilibrium constant for, 59
ion product of, $\mathbf{5 9}$
product of, 60
melting point of, 47, 48-49, 48t
membrane permeability for, 56
membrane transport of, 418-420, 419t, 434
metabolic, 69
molecular structure of, 47-48, 48f
nonpolar gas solubility in, 51,51 t
ordered, $52 \mathrm{f}, 53$, 53 f
in photosynthesis, 69
polarity of, 50
in proteins, $54-55,55 \mathrm{f}$
proton hopping in, 55, 58-59, 58f
as reactant, 69
solvation layer of, 116
as solvent, 50-53, 51f. See also aqueous solutions
weak acids/bases in, 61-63
water-splitting complex, 784-785, 785, 785 f
Watson, James D., 97, 287, 287f, 288-289, 339, 977, 1011
waxes
in beeswax, $362,362 \mathrm{f}$
in carnauba wax, 362
in lanolin, 362
weak acids, 61-63. See also acid(s)
as buffers, 63-69, 65 f
dissociation constants (K_{a}) of, 61f-63f, 62-63
relative strength of. See $\mathrm{p} K_{\mathrm{a}}$
titration curve for, 62-63, 62 f , 63f
Henderson-Hasselbalch equation for, 64-65
weak bases, 61 . See also base(s)
as buffers, 63-69
dissociation constants of, 61f-63f
weak interactions, 9
in aqueous solutions, 47-58
binding energy of, 54
cumulative effect of, 54
in DNA, 286-287, 287f, 288, 289f, 290f
effects of, on structure and function, 54-55
in enzyme-substrate complexes, 53f, 54,
195-197, 196f
hydrogen bonds as, 47-50, 48f-51f, 54-55, 54t, 55 f. See also hydrogen bonds
hydrophobic, 53, 54t
in amphipathic compounds, 52-53, 52f
in globular proteins, 132, 132f
protein stability and, 116-117
ionic, $9,54,54 \mathrm{t}$
in solutions, 50-51
in macromolecules, 54-55, 55f
of membrane proteins, 390-391, 493f
of nucleotide/nucleic acid bases, 286-287
in polysaccharides, 258-259
protein stability and, 116-117
in RNA, 286-287, 287f, 294-295
in solutions, 53
stability of, 54
system energy and, 54
tertiary protein structure and, 132, 132 f
van der Waals interactions as, 53, 53t, 54t
weight, regulation of, 849-850, 960-968
adiponectin in, 964-965, 964f
ghrelin in, 962f, 966-967, 967f
hypothalamus in, 961-962, 961f
insulin in, 963-964, 964f
leptin in, 961-964, 961f-964f
peroxisome proliferator-activated receptors in, 965-966
PYY $_{3-36}$ in, $962 \mathrm{f}, \mathbf{9 6 7}, 968$
thermogenesis in, 960
Weizmann, Chaim, 567-568
Wernicke-Korsakoff syndrome, exacerbation of, transketolase defect and, 580
Western blot, 179
white adipose tissue (WAT), 943, 943f
white blood cells, 950, 950f
white muscle, 944-945
whooping cough, 443b
wild-type cells, 33
Wilkins, Maurice, 288, 288 f
Withers, Stephen, 222
wobble hypothesis, 1110
Woese, Carl, 105, 1092, 1092f
Woolley, D. Wayne, 535
writhe ($W r$), 989, $989 f$
Wurtz, Charles-Adolphe, 192
Wyman, Jeffries, 167

X

X-linked adrenoleukodystrophy (XALD), 683
x-ray diffraction studies
of DNA, 288, 290 f
of protein structure, 129-130, 131, 134b-135b, 134f-135f
xanthine, from adenine deamination, 300 f xanthine oxidase, 921
allopurinol inhibition of, 923, 923f
xanthophyll, 774 s
xenobiotics, 763-764
xeroderma pigmentosum, 1037b-1308b
xylose, 219-220, 220s, 246s
xylulose, 246s
xylulose 5-phosphate, 577s
in Calvin cycle, 806, 806f, 807 f
in regulation of carbohydrate and fat, 606

Y

Yalow, Rosalyn, 930
yeast
centromeres in, 984, 984f
chromosomes in, 981
DNA of, 981, 982t
fermentation by, 565, 566
genome of, 981, 982t, 984f
membrane components in, 386t
plasmid vectors from, 320-321, 321f
recombinant gene expression in, 323
ribosome of, 1116f, 1117-1118
telomeres in, 984-985, 984f
yeast alanine-tRNA, 1118, 1119f
yeast artificial chromosomes (YACs), 320-321, 321f, 985
yeast replicators, 1025
yeast two-hybrid analysis, 335-337, 336f
yellow fluorescent protein (YFP), 448b-449b
Young, William, 548, 548f

Z

Z disk, 181, 181f, 183f
Z-DNA, 291, 291f
Z scheme, $\mathbf{7 8 0}$
Zamecnik, Paul, 1104, 1104f, 1115
zanamivir, 271
Zellweger syndrome, 682
zinc finger, 1162-1163, 1164f
Zuckerkandl, Emile, 105
zwitterion, 81, 83, 83f
zymogens, 232-235, 232f, 233f, 697, 699

Abbreviations for Amino Acids								
A	Ala	Alanine	N	Asn	Asparagine			
B	Asx	Asparagine or	P	Pro	Proline			
		aspartate	Q	Gln	Glutamine			
C	Cys	Cysteine	R	Arg	Arginine			
D	Asp	Aspartate	S	Ser	Serine			
E	Glu	Glutamate	T	Thr	Threonine			
F	Phe	Phenylalanine	V	Val	Valine			
G	Gly	Glycine	W	Trp	Tryptophan			
H	His	Histidine	X	-	Unknown or			
I	Ile	Isoleucine			nonstandard amino acid			
K	Lys	Lysine	Y	Tyr	Tyrosine			
L	Leu	Leucine	Z	Glx	Glutamine or			
M	Met	Methionine			glutamate			

Asx and Glx are used in describing the results of amino acid analytical procedures in which Asp and Glu are not readily distinguished from their amide counterparts, Asn and Gln.

The Standard Genetic Code							
UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
AUU	Ile	ACU	Thr	AAU	Asn	AGU	Ser
AUC	Ile	ACC	Thr	AAC	Asn	AGC	Ser
AUA	Ile	ACA	Thr	AAA	Lys	AGA	Arg
AUG	Met*	ACG	Thr	AAG	Lys	AGG	Arg
GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly

[^0]

*Lanthanides	$\begin{array}{\|l\|} \hline 57 \\ \mathbf{L a} \\ 138.91 \end{array}$	$\begin{array}{\|c\|} \hline 58 \\ \mathbf{C e} \\ 140.12 \end{array}$	$\begin{array}{\|l\|} \hline 59 \\ \mathbf{P r} \\ 140.91 \end{array}$	$\begin{array}{\|c\|} \hline 60 \\ \mathbf{N d} \\ 144.24 \end{array}$	$\begin{array}{\|l\|} \hline 61 \\ \mathbf{P m} \\ 144.91 \end{array}$	$\begin{array}{\|l\|} \hline 62 \\ \mathbf{S m} \\ 150.36 \end{array}$	$\begin{array}{\|l\|} \hline 63 \\ \mathbf{E u} \\ 151.96 \end{array}$	64 Gd 157.25	$\begin{array}{\|l\|} \hline 65 \\ \mathbf{T b} \\ 158.93 \end{array}$	$\begin{array}{\|l\|} \hline 66 \\ \mathbf{D y} \\ 162.50 \end{array}$	$\begin{array}{\|l\|} \hline 67 \\ \text { Ho } \\ 164.93 \end{array}$	68 Er 167.26	$\begin{array}{\|l\|} \hline 69 \\ \mathbf{T m} \\ 168.93 \end{array}$	$\begin{array}{\|l\|} \hline 70 \\ \mathbf{Y b} \\ 173.04 \end{array}$
**Actinides	89 Ac 227.03	90 Th 232.04	91 Pa 231.04	$\begin{array}{\|l\|} \hline 92 \\ \mathbf{U} \\ 238.03 \end{array}$	$\begin{array}{\|c\|} \hline 93 \\ \mathbf{N p} \\ 237.05 \end{array}$	$\begin{array}{\|l\|} \hline 94 \\ \mathbf{P u} \\ 244.06 \end{array}$	$\begin{array}{\|l\|} \hline 95 \\ \mathbf{A m} \\ 243.06 \end{array}$	$\begin{array}{\|l\|} \hline 96 \\ \mathbf{C m} \\ 247.07 \end{array}$	97 Bk 247.07	$\left.\begin{array}{\|l\|} \hline 98 \\ \mathbf{C f} \\ 251.08 \end{array} \right\rvert\,$	99 Es 252.08		101 Md 258.10	$\begin{array}{\|l} \hline 102 \\ \text { No } \\ 259.10 \end{array}$

Some Conversion Factors	
Length	$\begin{aligned} 1 \mathrm{~cm} & =10 \mathrm{~mm}=10^{4} \mu \mathrm{~m}=10^{7} \mathrm{~nm} \\ & =10^{8} \AA=0.394 \mathrm{in} \end{aligned}$
	$1 \mathrm{in}=2.54 \mathrm{~cm}$
	1 yard $=0.9144$ meters
	1 mile $=1.609$ kilometers
Mass	$\begin{aligned} 1 \mathrm{~g} & =10^{-3} \mathrm{~kg}=10^{3} \mathrm{mg}=10^{6} \mu \mathrm{~g} \\ & =3.53 \times 10^{-2} \mathrm{oz} \end{aligned}$
	$1 \mathrm{oz}=28.3 \mathrm{~g}$
Temperature	${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
	$\mathrm{K}={ }^{\circ} \mathrm{C}+273$
Energy	$1 \mathrm{~J}=10^{7} \mathrm{erg}=0.239 \mathrm{cal}$
	$1 \mathrm{cal}=4.184 \mathrm{~J}$
Pressure	$\begin{aligned} 1 \text { torr } & =1 \mathrm{~mm} \mathrm{Hg}=1.32 \times 10^{-3} \mathrm{~atm} \\ & =1.333 \times 10^{2} \mathrm{~Pa} \end{aligned}$
	$1 \mathrm{~atm}=758$ torr $=1.01 \times 10^{5} \mathrm{~Pa}$
Radioactivity	$1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{dps}=37 \mathrm{GBq}$
	$1,000 \mathrm{dpm}=16.7 \mathrm{~Bq}$

Unit Abbreviations			
A	ampere	kJ	kilojoule
\AA	angstrom	kPa	kilopascal
atm	atmosphere	L	liter
Bq	becquerel	M	molar (concentration)
C	coulomb	m	meter
${ }^{\circ} \mathrm{C}$	degree Celsius	mg	milligram
cal	calorie	min	minute
Ci	curie	mL	milliliter
cm	centimeter	mm	millimeter
cpm	counts per minute	mm Hg	millimeters of mercury (pressure)
Da	dalton	mol	mole
dm	decimeter	mV	millivolt
dpm	disintegrations per minute	$\mu \mathrm{m}$	micrometer
dps	disintegrations per second	$\mu \mathrm{mol}$	micromole
7	faraday	N	normal (concentration)
G	gauss	nm	nanometer
g	gram	Pa	pascal
GBq	gigabecquerel	r	revolution
h	hour	S	Svedberg unit
J	joule	s	second
K	kelvin	V	volt
kcal	kilocalorie	yr	year
kDa	kilodalton		

Some Prefixes Used in the International System of Units					
10^{9}	giga	G	10^{-3}	milli	m
10^{6}	mega	M	10^{-6}	micro	μ
10^{3}	kilo	k	10^{-9}	nano	n
10^{-1}	deci	d	10^{-12}	pico	p
10^{-2}	centi	c	10^{-15}	femto	f

Mathematical Constants	
π	3.1416
e	2.718
$\ln x$	$2.303 \log _{10} x$

On the front cover

The network of interactions in an animal mitochondrion. Each dot represents a compound, and each line, an enzyme that interconverts the two compounds. The major nodes include ADP, ATP, NAD ${ }^{\dagger}$, and NADH.

The image was constructed with Cytoscape software by Anthony Smith in the laboratory of Alan Robinson, Medical Research Council Mitochondrial Biology Unit, Cambridge, UK, using data from MitoMiner (Smith, A.C., Blackshaw, J.A., \& Robinson, A.J. (2012) MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res. 40, D1160-D1167).

Background image: Transmission electron micrograph of interscapular brown adipose cell from a bat. Don W. Fawcett/Science Source/Photo Researchers

Book Companion Site:
www.whfreeman.com/lehninger6e
BiochemPortal:
http://courses.bfwpub.com/lehninger6e

[^0]: *AUG also serves as the initiation codon in protein synthesis.

