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Preface

In many respects, we understand the structure of the universe better than the
workings of living cells. Scientists can calculate the age of the Sun and predict
when it will cease to shine, but we cannot explain how it is that a human being
may live for eighty years but a mouse for only two. We know the complete
genome sequences of these and many other species, but we still cannot predict
how a cell will behave if we mutate a previously unstudied gene. Stars may be
1043 times bigger, but cells are more complex, more intricately structured, and
more astonishing products of the laws of physics and chemistry. Through hered-
ity and natural selection, operating from the beginnings of life on Earth to the
present day—that is, for about 20% of the age of the universe—living cells have
been progressively refining and extending their molecular machinery, and
recording the results of their experiments in the genetic instructions they pass
on to their progeny.

With each edition of this book, we marvel at the new information that cell
biologists have gathered in just a few years. But we are even more amazed and
daunted at the sophistication of the mechanisms that we encounter. The deeper
we probe into the cell, the more we realize how much remains to be understood.
In the days of our innocence, working on the first edition, we hailed the identi-
fication of a single protein—a signal receptor, say—as a great step forward. Now
we appreciate that each protein is generally part of a complex with many others,
working together as a system, regulating one another’s activities in subtle ways,
and held in specific positions by binding to scaffold proteins that give the chem-
ical factory a definite spatial structure. Genome sequencing has given us virtu-
ally complete molecular parts-lists for many different organisms; genetics and
biochemistry have told us a great deal about what those parts are capable of
individually and which ones interact with which others; but we have only the
most primitive grasp of the dynamics of these biochemical systems, with all
their interlocking control loops. Therefore, although there are great achieve-
ments to report, cell biologists face even greater challenges for the future.

In this edition, we have included new material on many topics, ranging from
epigenetics, histone modifications, small RNAs, and comparative genomics, to
genetic noise, cytoskeletal dynamics, cell-cycle control, apoptosis, stem cells,
and novel cancer therapies. As in previous editions, we have tried above all to
give readers a conceptual framework for the mass of information that we now
have about cells, This means going beyond the recitation of facts. The goal is to
learn how to put the facts to use—to reason, to predict, and to control the
behavior of living systems.

To help readers on the way to an active understanding, we have for the first
time incorporated end-of-chapter problems, written by John Wilson and Tim
Hunt. These emphasize a quantitative approach and the art of reasoning from
experiments. A companion volume, Molecular Biology of the Cell, Fifth Edition:
The Problems Book (ISBN 978-0-8153-4110-9), by the same authors, gives com-
plete answers to these problems and also contains more than 1700 additional
problems and solutions.

A further major adjunct to the main book is the attached Media DVD-ROM
disc. This provides hundreds of movies and animations, including many that are
new in this edition, showing cells and cellular processes in action and bringing
the text to life; the disc also now includes all the figures and tables from the main
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book, pre-loaded into PowerPoint® presentations. Other ancillaries available for
the book include a bank of test questions and lecture outlines, available to qual-
ified instructors, and a set of 200 full-color overhead transparencies.

Perhaps the biggest change is in the physical structure of the book, In an
effort to make the standard Student Edition somewhat more portable, we are
providing Chapters 21-25, covering multicellular systems, in electronic (PDF)
form on the accompanying disc, while retaining in the printed volume Chapters
1-20, covering the core of the usual cell biology curriculum. But we should
emphasize that the final chapters have been revised and updated as thoroughly
as the rest of the book and we sincerely hope that they will be read! A Reference
Edition (ISBN 978-0-8153-4111-6), containing the full set of chapters as printed
pages, is also available for those who prefer it.

Full details of the conventions adopted in the book are given in the Note to
the Reader that follows this Preface. As explained there, we have taken a drastic
approach in confronting the different rules for the writing of gene names in dif-
ferent species: throughout this book, we use the same style, regardless of
species, and often in defiance of the usual species-specific conventions.

As always, we are indebted to many people. Full acknowledgments for sci-
entific help are given separately, but we must here single out some exceptionally
important contributions: Julie Theriot is almost entirely responsible for Chap-
ters 16 {Cytoskeleton} and 24 (Pathogens, Infection, and Innate Immunity), and
David Morgan likewise for Chapter 17 (Cell Cycle). Wallace Marshall and Laura
Attardi provided substantial help with Chapters 8 and 20, respectively, as did
Maynard Olson for the genomics section of Chapter 4, Xiaodong Wang for Chap-
ter 18, and Nicholas Harberd for the plant section of Chapter 15.

We also owe a huge debt to the staff of Garland Science and others who
helped convert writers’ efforts into a polished final product. Denise Schanck
directed the whole enterprise and shepherded the wayward authors along the
road with wisdom, skill, and kindness. Nigel Orme put the artwork into its final
form and supervised the visual aspects of the book, including the back cover, with
his usual flair. Matthew McClements designed the book and its front cover,
Emma Jeffcack laid out its pages with extraordinary speed and unflappable effi-
ciency, dealing impeccably with innumerable corrections. Michael Morales man-
aged the transformation of a mass of animations, video clips, and other materi-
als into a user-friendly DVD-ROM. Eleanor Lawrence and Sherry Granum
updated and enlarged the glossary. Jackie Harbor and Sigrid Masson kept us orga-
nized. Adam Sendroff kept us aware of our readers and their needs and reactions.
Marjorie Anderson, Bruce Goatly, and Sherry Granum combed the text for obscu-
rities, infelicities, and errors. We thank them all, not only for their professional
skill and dedication and for efficiency far surpassing our own, but also for their
unfailing helpfulness and friendship: they have made it a pleasure to work on the
book.

Lastly, and with no less gratitude, we thank our spouses, families, friends
and colleagues. Without their patient, enduring support, we could not have pro-
duced any of the editions of this book.
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Structure of the Book

Although the chapters of this book can be read independently of one another,
they are arranged in a logical sequence of five parts. The first three chapters of
Part I cover clementary principles and basic biochemistry. They can serve either
as an introduction for those who have not studied biochemistry or as a refresher
course for those who have.

Part II deals with the storage, expression and transmission of genetic infor-
mation.

Part 11T deals with the principles of the main experimental methods for
investigating cells. It is not necessary to read these two chapters in order to
understand the later chapters, but a reader will find it a useful reference.

Part IV discusses the internal organization of the cell.

Part V follows the behavior of cells in multicellular systems, starting with
cell—cell junctions and extracellular matrix and concluding with two chapters on
the immune system. Chapters 21-25 can be found on the Media DVD-ROM
which is packaged with each book, providing increased portability for students.

End-of-Chapter Problems

A selection of problems, written by John Wilson and Tim Hunt, now appears in
the text at the end of each chapter. The complete solutions to these problems
can be found in Molecular Biology of the Cell, Fifth Edition: The Problems Book.

References

A concise list of selected references is included at the end of each chapter. These
are arranged in alphabetical order under the main chapter section headings.
These references frequently include the original papers in which important dis-
coveries were first reported. Chapter 8 includes several tables giving the dates of
crucial developments along with the names of the scientists involved. Elsewhere
in the book the policy has been to avoid naming individual scientists.

Media Codes

Media codes are integrated throughout the text to indicate when relevant videos
and animations are available on the DVD-ROM. The four-letter codes are
enclosed in brackets and highlighted in color, like this <ATCG>. The interface for
the Cell Biology Interactive media player on the DVD-ROM contains a window
where you enter the 4-letter code. When the code is typed into the interface, the
corresponding media item will load into the media player.

Glossary Terms

Throughout the book, boldface type has been used to highlight key terms at the
point in a chapter where the main discussion of them occurs. Italicis used to set
off important terms with a lesser degree of emphasis. At the end of the book is
the expanded glossary, covering technical terms that are part of the common
currency of cell biology; it is intended as a first resort for a reader who encoun-
ters an unfamiliar term used without explanation.

Nomenclature for Genes and Proteins

Each species has its own conventions for naming genes; the only common fea-
ture is that they are always set in italics. In some species (such as humans), gene
names are spelled out all in capital letters; in other species (such as zebrafish),
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case and rest in lower case; or (as in Drosophila) with different combinations of
upper and lower case, according to whether the first mutant allele to be discov-
ered gave a dominant or recessive phenotype. Conventions for naming protein
products are equally varied.

This typographical chaos drives everyone crazy. It is not just tiresome and
absurd; it is also unsustainable. We cannot independently define a fresh con-
vention for each of the next few million species whose genes we may wish to
study. Moreover, there are many occasions, especially in a book such as this,
where we need to refer to a gene generically, without specifying the mouse ver-
sion, the human version, the chick version, or the hippopotamus version,
because they are all equivalent for the purposes of the discussion. What con-
vention then should we use?

We have decided in this book to cast aside the conventions for individual
species and follow a uniform rule: we write all gene names, like the names of peo-
ple and places, with the first letter in upper case and the rest in lower case, but all
in italics, thus: Apc, Bazooka, Cdc2, Dishevelled, Egll. The corresponding protein,
where it is named after the gene, will be written in the same way, but in roman
rather than italic letters: Apc, Bazooka, Cdc2, Dishevelled, Egll. When it is neces-
sary to specify the organism, this can be done with a prefix to the gene name.

For completeness, we list a few further details of naming rules that we shall
follow. In some instances an added letter in the gene name is traditionally used
to distinguish between genes that are related by function or evolution; for those
genes we put that letter in upper case if it is usual to do so (LacZ, RecA, HoxA4),
We use no hyphen to separate added letters or numbers from the rest of the
name. Proteins are more of a problem. Many of them have names in their own
right, assigned to them before the gene was named. Such protein names take
many forms, although most of them traditionally begin with a lower-case letter
(actin, hemoglobin, catalase), like the names of ordinary substances (cheese,
nylon), unless they are acronyms (such as GFP, for Green Fluorescent Protein, or
BMP4, for Bone Morphogenetic Protein #4). To force all such protein names into
a uniform style would do too much violence to established usages, and we shall
simply write them in the traditional way {actin, GFP, etc.). For the corresponding
gene names in all these cases, we shall nevertheless follow our standard rule:
Actin, Hemoglobin, Catalase, Bmp4, Gfp. Occasionally in our book we need to
highlight a protein name by setting it in italics for emphasis; the intention will
generally be clear from the context.

For those who wish to know them, the Table below shows some of the offi-
cial conventions for individual species—conventions that we shail maostly vio-
late in this book, in the manner shown.

Mouse Hoxa4 Hoxa4
Bmp4 BMP4
integrin o1, tgaet integrin a1
Human HOXA4 HOXA4
Zebrafish cyclops, cyc Cyclops, Cyc
Caenorhabditis unc-6 UNC-6
Drosaphila sevenless, sev {named Sevenless, SEV
after recessive mutant
phenotype)
Deformed, Dfd (named  Deformed, DFD
after dominant mutant
phenotype}
Yeast
Saccharomyces cerevisioe (budding yeast)  ¢DC28 Cdc28, Cdc28p
5chizosaccharomyces pombe (fission yeast)  Cdc2 Cdc2, Cde2p
Arabidopsis GAl GAl
E coli UVrA UvrA

HoxA4

Bmp4

Integrin al, ltgo?
HoxA4

Cyclops, Cyc
Uncé

Sevenless, Sev

Deformed, Dfd

Cdc28
Cdc?
Gai
UvrA

HoxA4

BMP4

integrin o1
HoxA4
Cyclops, Cyc
Uncé
Sevenless, Sey

Deformed, Dfd

Cdc28
Cdc2
GAl
UvrA



A Note to the Reader

Ancillaries

Molecular Biology of the Cell, Fifth Edition: The Problems Book

by John Wilson and Tim Hunt (ISBN: 978-0-8153-4110-9)

The Problems Book is designed to help students appreciate the ways in which
experiments and simple calculations can lead to an understanding of how cells
work. It provides problems to accompany Chapters 1-20 of Molecular Biology of
the Cell. Each chapter of problems is divided into sections that correspond to
those of the main textbook and review key terms, test for understanding basic
concepts, and pose research-based problems. Molecular Biology of the Cell, Fifth
Edition: The Problems Book should be useful for homework assignments and as
a basis for class discussion. It could even provide ideas for exam questions. Solu-
tions for all of the problems are provided on the CD-ROM which accompanies
the book. Solutions for the end-of-chapter problems in the main textbook are
also found in The Problems Book.

MBoC5Media DVD-ROM

The DVD included with every copy of the book contains the figures, tables, and
micrographs from the book, pre-loaded into PowerPoint® presentations, one for
each chapter. A separate folder contains individual versions of each figure, table,
and micrograph in JPEG format. The panels are available in PDF format. There
are also over 125 videos, animations, molecular structure tutorials, and high-res-
olution micrographs on the DVD. The authors have chosen to include material
that not only reinforces basic concepts but also expands the content and scope
of the book. The multimedia can be accessed either as individual files or through
the Cell Biology Interactive media player. As discussed above, the media player
has been programmed to work with the Media Codes integrated throughout the
book. A complete table of contents and overview of all electronic resources is
contained in the MBoC5 Media Viewing Guide, a PDF file located on the root
level of the DVD-ROM and in the Appendix of the media player. The DVD-ROM
also contains Chapters 21-25 which cover multicellular systems. The chapters
are in PDF format and can be easily printed or searched using Adobe® Acrobat®
Reader or other PDF software.

Teaching Supplements
Upon request, teaching supplements for Molecular Biology of the Cell are avail-
able to qualified instructors.

MBoC5 Transparency Set
Provides 200 full-color overhead acetate transparencies of the most important
figures from the book.

MBoC5 Test Questions

A selection of test questions will be available. Written by Kirsten Benjamin
(Amyris Biotechnologies, Emeryville, California) and Linda Huang (University of
Massachusetts, Boston), these thought questions will test students’ understand-
ing of the chapter material.

MBoC5 Lecture Outlines
Lecture outlines created from the concept heads for the text are provided.

Garland Science Classwire™

All of the teaching supplements on the DVD-ROM (these include figures in Pow-
erPoint and JPEG format; Chapters 21-25 in PDF format; 125 videos, animations,
and movies) and the test questions and lecture outlines are available to qualified
instructors online at the Garland Science Classwire™ Web site. Garland Science
Classwire™ offers access to other instructional resources from all of the Garland
Science textbooks, and provides free online course management tools. For addi-
tional information, please visit http://www.classwire.com/garlandscience or
e-mail science@garland.com. (Classwire is a trademark of Chalkfree, Inc.)

Adohbe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated
in the United States andfor other couniries

PowerPoint is either a registered trademark or trademark of Microsoft Corporation in the United
States andfor other countries



