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Preface

In many respects, we understand the structure of the universe better than the
workings of living cells. Scientists can calculate the age of the Sun and predict
when it will cease to shine, but we cannot explain how it is that a human being
may live for eighty years but a mouse for only two. We know the complete
genome sequences of these and many other species, but we still cannot predict
how a cell will behave if we mutate a previously unstudied gene. Stars may be
l0a3 times bigger, but cells are more complex, more intricately structured, and
more astonishing products of the laws of physics and chemistry. Through hered-
ity and natural selection, operating from the beginnings of life on Earth to the
present day-that is, for about 20Vo of the age of the universe-living cells have
been progressively refining and extending their molecular machinery and
recording the results of their experiments in the genetic instructions they pass
on to their progeny.

With each edition of this book, we marvel at the new information that cell
biologists have gathered in just a few years. But we are even more amazed and
daunted at the sophistication of the mechanisms that we encounter. The deeper
we probe into the cell, the more we reafize how much remains to be understood.
In the days of our innocence, working on the first edition, we hailed the identi-
fication of a single protein-a signal receptol say-as a great step forward' Now
we appreciate that each protein is generally part of a complexwith many others,
working together as a system, regulating one another's activities in subtle ways,
and held in specific positions by binding to scaffold proteins that give the chem-
ical factory a definite spatial structure. Genome sequencing has given us virtu-
ally complete molecular parts-lists for many different organisms; genetics and
biochemistry have told us a great deal about what those parts are capable of
individually and which ones interact with which others; but we have only the
most primitive grasp of the dynamics of these biochemical systems, with all
their interlocking control loops. Therefore, although there are great achieve-
ments to report, cell biologists face even greater challenges for the future.

In this edition, we have included new material on many topics, ranging from
epigenetics, histone modifications, small RNAs, and comparative genomics, to
genetic noise, cytoskeletal dlmamics, cell-cycle control, apoptosis, stem cells,
and novel cancer therapies. As in previous editions, we have tried above all to
give readers a conceptual framework for the mass of information that we now
have about cells. This means going beyond the recitation of facts. The goal is to
learn how to put the facts to use-to reason, to predict, and to control the
behavior of living systems.

To help readers on the way to an active understanding, we have for the first
time incorporated end-of-chapter problems, written by Iohn Wilson and Tim
Hunt. These emphasize a quantitative approach and the art of reasoning from
experiments. A companion volume, Molecular Biology of the CelI, Fifth Edition:
The Problems Book 0SBN 978-0-8153-4110-9), by the same authors, gives com-
plete answers to these problems and also contains more than 1700 additional
problems and solutions.

A further major adjunct to the main book is the attached Media DVD-ROM
disc. This provides hundreds of movies and animations, including manythat are
new in this edition, showing cells and cellular processes in action and bringing
the text to life; the disc also now includes all the figures and tables from the main



book, pre-loaded into PowerPoint@ presentations. Other ancillaries available for
the book include a bank of test questions and lecture outlines, available to qual-
ified instructors, and a set of 200 full-color overhead transparencies.

Perhaps the biggest change is in the physical structure of the book. In an
effort to make the standard Student Edition somewhat more portable, we are
providing chapters 2r-25, covering multicellular systems, in electronic (pDF)
form on the accompanying disc, while retaining in the printed volume chapters
l-20, covering the core of the usual cell biology curriculum. But we should
emphasize that the final chapters have been revised and updated as thoroughly
as the rest of the book and we sincerely hope that they will be read! A Reference
Edition (ISBN 97s-0-8153-4r11-6), containing the full set of chapters as prinred
pages, is also available for those who prefer it.

Full details of the conventions adopted in the book are given in the Note to
the Reader that follows this Preface. As explained there, we have taken a drastic
approach in confronting the different rules for the writing of gene names in dif-
ferent species: throughout this book, we use the same style, regardless of
species, and often in defiance ofthe usual species-specific conventions.

As always, we are indebted to many people. Full acknowledgments for sci-
entific help are given separately, but we must here single out some exceptionally
important contributions: Iulie Theriot is almost entirely responsible for chap-
ters 16 (cytoskeleton) and 24 (Pathogens, Infection, and Innate Immunity), and
David Morgan likewise for chapter 17 (cell cycle). wallace Marshall and Laura
Attardi provided substantial help with chapters 8 and 20, respectively, as did
Maynard olson for the genomics section of chapter 4, Xiaodongwang for chap-
ter 18, and Nicholas Harberd for the plant section of Chapter 15.

we also owe a huge debt to the staff of Garland science and others who
helped convert writers' efforts into a polished final product. Denise schanck
directed the whole enterprise and shepherded the wayward authors along the
road with wisdom, skill, and kindness. Nigel orme put the artwork into its final
form and supervised the visual aspects of the book, including the back cover, with
his usual flair. Matthew Mcclements designed the book and its front cover.
Emma Jeffcock laid out its pages with extraordinary speed and unflappable effi-
ciency, dealing impeccablywith innumerable corrections. Michael Morales man-
aged the transformation of a mass of animations, video clips, and other materi-
als into a user-friendly DVD-ROM. Eleanor Lawrence and sherry Granum
updatedand enlarged the glossary. Jackie Harbor and Sigrid Masson kept us orga-
nized. Adam Sendroffkept us aware ofour readers and their needs and reactions.
Marjorie Anderson, Bruce Goatly, and sherry Granum combed the text for obscu-
rities, infelicities, and errors. we thank them all, not only for their professional
skill and dedication and for efficiency far surpassing our own, but also for their
unfailing helpftrlness and friendship: they have made it a pleasure to work on the
book.

Lastly, and with no less gratitude, we thank our spouses, families, friends
and colleagues. without their patient, enduring support, we could not have pro-
duced any of the editions of this book.



Contents

Speci.al Features
Detailed Contents
Acknowledgments
A Note to the Reader

PART I
I .
2 .
3 .

PART II
4.
5 .
6.
7.

PART III
B.
9.

PART IV
10.
11 .

12.
13 .
14.
15.
16.
t7 .
tB.

PARTV
19.
20.

2 I ,
22.
23,
24.
25.

Glossary
Index
TabIes

uiii
ix

xxui
xxxi

INTRODUCTION TO THE CELL
Cells and Genomes
Cell Chemistry and Biosynthesis
Proteins

BASIC GENETIC MECHANISMS
DNA, Chromosomes, and Genomes
DNA Replication, Repair, and Recombination
How Cells Read the Genome: From DNA to Protein
Control of Gene Expression

METHODS
Manipulating Proteins, DNA, and RNA
Visualizing Cells

INTERNAL ORGANIZATION OF THE CELL
Membrane Structure
Membrane Transport of Small Molecules and the Electrical

Properties of Membranes
Intracellular Compartments and Protein Sorting
Intracellular Vesicular Traffi c
Energy Conversion: Mitochondria and Chloroplasts
Mechanisms of Cell Communication
The Cytoskeleton
The Cell Cycle
Apoptosis

CELLS IN THEIR SOCIAL CONTEXT
Cell lunctions, Cell Adhesion, and the Extracellular Matrix
Cancer

Chapters 2I-25 available on Media DVD-ROM
Sexual Reproduction: Meiosis, Germ Cells, and Fertilization
Development of Multicellular Organisms
Specialized Tissues, Stem Cells, and Tissue Renewal
Pathogens, Infection, and Innate Immunity
The Adaptive Immune System

The Genetic Code, Amino Acids

195
263
329
41 I

I
45

t25

50r
579

6t7

651
695
749
Br3
879
965

1053
1115

1131
I205

1269
r305
L4l7
1485
1539

G-1
L1
T-1



Special Features

Table l-l
Table l-2

Table 2-1
Table2-2
Table 2-3

Table2-4

Panel 2-l
Panel2-2
Panel 2-3

Panel2-4
Panel 2-5
Panel 2-6
Panel2-7
Panel 2-B
Panel 2-9
Panel 3-l
Panel 3-2
Table 3-1
Panel 3-3
Table 4-l
Table 5-3
Table 6-l
Panel B-l
Table 10-l
Thble 11-l
Panel 1l-2
Panel ll-3
Table l2-l

Table l2-2
Table l4-l
Panel l4-l
Thble r5-5
Panel 16-2
Panel 16-3

Table I7-2
Panel l7-l

Some Genomes That Have Been Completely Sequenced
The Numbers of Gene Families, classified by Function, That Are common to All
Three Domains of the LivingWorld
Covalent and Noncovalent Chemical Bonds
The Types of Molecules That Form a Bacterial Cell
Approximate Chemical Compositions of a Typical Bacterium and a Typical
Mammalian Cell
Relationship Between the Standard Free-Energy Change, AG, and the
Equilibrium Constant
Chemical Bonds and Groups Commonly Encountered in Biological Molecules
Water and Its Influence on the Behavior of Biological Molecules
The Principal Types of weak Noncovalent Bonds that Hold Macromolecules
Together
An Outline of Some of the Types of Sugars Commonly Found in Cells
FattyAcids and Other Lipids
A Survey of the Nucleotides
Free Energy and Biological Reactions
Details of the t0 Steps of Glycolysis
The Complete Citric Acid Cycle
The 20 Amino Acids Found in Proteins
Four DifferentWays of Depicting a Small Protein, the SH2 Domain
Some CommonTypes of Enzymes
Some of the Methods Used to Study Enzymes
SomeVital Statistics for the Human Genome
Three Major Classes of Transposable Elements
Principal Tlpes of RNAs Produced in Cells
Review of Classical Genetics pp.
Approximate Lipid Compositions of Different Cell Membranes
A Comparison of Ion Concentrations Inside and Outside a Typical Mammalian Cell
The Derivation of the Nernst Equation
Some Classical Experiments on the Squid GiantAxon
RelativeVolumes Occupied by the Major Intracellular Compartments in a Liver
Cell (Hepatocyre)
Relative Amounts of Membrane Types in Two Kinds of Eucaryotic cells
ProductYields from the Oxidation of Sugars and Fats
Redox Potentials
The Ras Superfamily of Monomeric GTpases
The Polymerization of Actin and Tubulin pp. 978-979
Accessory Proteins that Control the Assembly and position of Cvtoskeletal
Filaments pp. 994-995
Summary of the Major Cell-Cycle Regulatory proteins p. 1066
The Princinle Stases of M Phasp (Mitnsis nnrl  Crrfnlr inpcic\ in qn Animal /-ol l  nn rATo rA?a

p. 18

p .24
p. 53
p .55

p .63

p .77
pp. 106-107
pp. 108-109

pp.
pp.
pp.
pp.
pp.
pp.
pp.
pp.
pp.

r10 -111
112-113
I l4-1 I5
I 16-1 r7
I IB-t 19
r20-I2l
I22-t23
tzg-729
132-133

p .159
162-163

p.206
p .318
p .336

554-555
p.624
p.652
p .670
p. 679

p. 697
p .697
p.824
p .830
p.926

pp.



Detailed Contents

Chapter 1 Cells and Genomes

THE UNIVERSAL FEATURES OF CELLS ON EARTH

All Cells Store Their Hereditary Information in the Same Linear
Chemical Code (DNA)

All  Cel ls ReplicateTheir Hereditary Information byTemplated
Polymerization

All CellsTranscribe Portions of Their Hereditary Information into
the Same Intermediary Form (RNA)

All Cells Use Proteins as Catalysts
All Cells Translate RNA into Protein in the Same Way
The Fragment of Genetic Information Corresponding to One

Protein ls One Gene
Life Requires Free Energy
All  Cel ls Function as Biochemical Factories Dealing with the

Same Basic Molecular Bui lding Blocks
All  Cel ls Are Enclosed in a Plasma Membrane Across Which

Nutrients and Waste Materials Must Pass
A Living Cell Can Exist with Fewer Than 500 Genes
Summary

THE DIVERSITY OF GENOMES AND THE TREE OF LIFE

Cells Can Be Powered by a Variety of Free Energy Sources
Some Cells Fix Nitrogen and Carbon Dioxide for Others
The Greatest Biochemical Diversity Exists Among Procaryotic Cells
The Tree of Life Has Three Primary Branches: Bacteria, Archaea,

and Eucaryotes
Some Genes Evolve Rapidly; Others Are Highly Conserved
Most Bacteria and Archaea Have 1000-6000 Genes
New Genes Are Generated from Preexisting Genes
Gene Duplications Give Rise to Families of Related Genes Within

a Single Cell
Genes Can Be Transferred Between Organisms, Both in the

Laboratory and in Nature
Sex Results in Horizontal Exchanges of Genetic Information

Within a Species
The Function of a Gene Can Often Be Deduced from lts Sequence
More Than 200 Gene Families Are Common to All Three Primary

Branches of the Tree of Life
Mutations Reveal the Functions of Genes
Molecular Biologists Have Focused a Spotlight on E coli
Summary

GENETIC INFORMATION IN EUCARYOTES

Eucaryotic Cells May Have Originated as Predators
Modern Eucaryotic Cells Evolved from a Symbiosis
Eucaryotes Have Hybrid Genomes
Eucaryotic Genomes Are Big
Eucaryotic Genomes Are Rich in Regulatory DNA
The Genome Defines the Program of Multicellular Development
Many Eucaryotes Live as Solitary Cells: the Protists
A Yeast Serves as a Minimal Model Eucaryote
The Expression Levels of All The Genes of An Organism Can Be

Monitored Simultaneously
To Make Sense of Cells, We Need Mathematics, Computers, and

Quantitative I nformation
Arabidopsis Has Been Chosen Out of 300,000 Species As a Model

Plant

1

1

The World of Animal Cells ls Represented By a Worm, a Fly,
a Mouse, and a Human 36

Studies in Drosophila Provide a Key to Vertebrate Development 37
TheVertebrate Genome ls a Product of Repeated Duplication 38
Genetic Redundancy ls a Problem for Geneticists, But lt Creates

Opportunities for Evolving Organisms
The Mouse Serves as a Model for Mammals
Humans Report on Their Own Peculiari t ies
We Are All Different in Detail
Summory
Problems
References

Chapter 2 Cell Chemistry and Biosynthesis

THE CHEMICAL COMPONENTS OF A CELL
Cells Are Made From a FewTypes of Atoms
The Outermost Electrons Determine How Atoms lnteract
Covalent Bonds Form by the Sharing of Electrons
There Are Different Types of Covalent Bonds
An Atom Often Behaves as if lt Has a Fixed Radius
Water ls the Most Abundant Substance in Cells
Some Polar Molecules Are Acids and Bases
FourTypes of Noncovalent Attractions Help Bring Molecules

5

4
5
o

8

9
1 0
1 1

1 1

1 2
1 3
1 4

t 5
t o

1 7
1 8

1 9
2 1

39
5 >

40
41
42
42
44

45

45
45
46
48
50
5 1
5 1
52

7
8

58
59
61

oz

63
65

65

66

22
2 2

23
z )

24
26

Together in Cells 53

A Cell ls Formed from Carbon Compounds 54

Cells Contain Four Major Famil ies of Small  Organic Molecules 55

Sugars Provide an Energy Source for Cells and Are the Subunits
of Polysaccharides 55

Fatty Acids Are Components of Cell Membranes, as Well as a
Source of EnergY

Amino Acids Are the Subunits of Proteins
Nucleotides Are the Subunits of DNA and RNA
The Chemistry of Cells ls Dominated by Macromolecules with

Remarkable Properties
Noncovalent Bonds Specify Both the Precise Shape of a

Macromolecule and i ts Binding to Other Molecules
Summary

CATALYSIS AND THE USE OF ENERGY BY CELLS

Cell Metabolism ls Organized by Enzymes
Biological Order ls Made Possible by the Release of Heat Energy

from Cells
Photosynthetic Organisms Use Sunlight to Synthesize Organic

Molecules
Cells Obtain Energy by the Oxidation of Organic Molecules
Oxidation and Reduction Involve Electron Transfers
Enzymes Lower the Barriers That Block Chemical Reactions
How Enzymes Find Their Substrates: The Enormous Rapidity of

Molecular Motions
The Free-Energy Change for a Reaction Determines Whether lt

Can Occur
The Concentration of Reactants Influences the Free-Energy

Change and a Reaction's Direction
For Sequential Reactions, AG" Values Are Additive
Activated Carrier Molecules Are Essential for Biosynthesis
The Formation of an Activated Carrier ls Coupled to an

Eneroeticallv Favorable Reaction

26

26

30
30
3 1
3 1
5 Z

33

34

35

J O

66

68
70
7 1
72

74

75

76
77
78



ATP ls the Most Widely Used Activated Carrier Molecule
Energy Stored in ATP ls Often Harnessed to Join Two Molecules

Together
NADH and NADPH Are lmportant Electron Carriers
There Are Many Other Activated Carrier Molecules in Cells
The Synthesis of Biological Polymers ls Driven by ATp Hydrolysis
Summary

HOW CELLS OBTAIN ENERGY FROM FOOD
Glycolysis ls a Central ATP-producing pathway
Fermentations Produce ATP in the Absence of Oxygen
Glycolysis lllustrates How Enzymes Couple Oxidation to Energy

Storage
Organisms Store Food Molecules in Special Reservoirs
Most Animal Cells Derive Their Energy from Fatty Acids Between

Meals
Sugars and Fats Are Both Degraded to Acetyl CoA in Mitochondria
The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups

to CO2
Electron Transport Drives the Synthesis of the Majority of the ATp

in Most Cells
Amino Acids and Nucleotides Are part of the Nitrogen Cycle
Metabolism ls Organized and Regulated
Summary
Problems
References

Chapter 3 Proteins

THE SHAPE AND STRUCTURE OF PROTEINS
The Shape of a Protein ls Specified by lts Amino Acid Sequence
Proteins Fold into a Conformation of Lowest Energy
The cr Helix and the B Sheet Are Common Folding patterns
Protein Domains Are Modular Units from which Larger proteins

Are Buil t
Few of the Many Possible Polypeptide Chains Will Be Usefur

to Cells
Proteins Can Be Classif ied into Many Famil ies
Sequence Searches Can ldentify Close Relatives
Some Protein Domains Form parts of Many Different proteins
Certain Pairs of Domains Are Found Together in Many proteins
The Human Genome Encodes a Complex Set of proteins,

Revealing Much That Remains Unknown
Larger Protein Molecules Often Contain MoreThan One

Polypeptide Chain
Some Proteins Form Long Helical Filaments
Many Protein Molecules Have Elongated, Fibrous Shapes
Many Proteins Contain a Surprisingly Large Amount of

Unstructured Polypeptide Chain
Covalent Cross-Linkages Often Stabilize Extracellular proteins
Protein Molecules Often Serve as Subunits for the Assembry

of Large Structures
Many Structures in Cells Are Capable of Self-Assembly
Assembly Factors Often Aid the Formation of Comolex

Biological Structures
Summary

PROTEIN FUNCTION

All Proteins Bind to Other Molecules
The Surface Conformation of a Protein Determines lts Chemistrv
Sequence Comparisons Between protein Family Members

Highl ight Crucial Ligand-Binding Sites
Proteins Bind to Other Proteins Through Several Types of

Interfaces
Antibody Binding Sites Are Especially Versatile
The Equil ibr ium Constant Measures Binding Strength
Enzymes Are Powerful and Highly Specific Catalysts
Substrate Binding ls the First Step in Enzyme Catalysis
Enzymes Speed Reactions by Selectively Stabilizing Transitron

States
Enzymes Can Use Simultaneous Acid and Base Catalysis
Lysozyme lllustrates How an Enzyme Works
Tightly Bound Small Molecules Add Extra Functions to prorerns

MolecularTunnels Channel Substrates in Enzymes with
Multiple Catalytic Sites

Multienzyme Complexes Help to Increase the Rate of Cell
Metabolism

The Cell Regulates the Catalytic Activities of its Enzymes
Allosteric Enzymes Have Two or More Binding Sites That Interact
Two Ligands Whose Binding Sites Are Coupled Must

Reciprocally Affect Each Other's Binding
Symmetric Protein Assemblies Produce Cooperative Allosteflc

Transit ions
The Allosteric Transition in Aspartate Transcarbamoylase ls

Understood in Atomic Detail 173
Many Changes in Proteins Are Driven by Protein

Phosphorylation
A Eucaryotic Cell Contains a Large Collection of Protein Kinases

and Protein Phosphatases
The Regulation of Cdk and Src Protein Kinases Shows How a

Protein Can Function as a Microchip
Proteins That Bind and Hydrolyze GTP Are Ubiquitous Cellular

Regulators
Regulatory Proteins Control the Activity of GTP-Binding proteins

by Determining Whether GTP or GDP ls Bound
Large Protein Movements Can Be Generated From Small Ones
Motor Proteins Produce Large Movements in Cells
Membrane-Bound Transporters Harness Energy to Pump

Molecules Through Membranes
Proteins Often Form Large Complexes That Function as Protein

Machines
Protein Machines with Interchangeable Parts Make Efficient Use

of Genetic lnformation
The Activation of Protein Machines Often Involves Positioning

Them at Specific Sites
Many Proteins Are Controlled by Multisite Covalent Modification
A Complex Network of Protein Interactions Underlies Cell Function
Summary
Problems
References

Chapter 4 DNA, Chromosomes, and Genomes

THE STRUCTURE AND FUNCTION OF DNA
A DNA Molecule Consists of Two Complementary Chains

of Nucleotides
The Structure of DNA Provides a Mechanism for Heredity
In Eucaryotes, DNA ls Enclosed in a Cell Nucleus
Summory

CHROMOSOMAL DNA AND ITS PACKAGING IN THE
CHROMATIN FIBER

Eucaryotic DNA ls Packaged into a Set of Chromosomes
Chromosomes Contain Long Strings of Genes
The Nucleotide Sequence ofthe Human Genome Shows How

Our Genes Are Arranged
Genome Comparisons Reveal Evolutionarily Conserved DNA

)equences 207
Chromosomes Exist in Different StatesThroughout the Life

ofa Cell 2OB
Each DNA Molecule That Forms a Linear Chromosome Must

Contain a Centromere, Two Telomeres, and Replication Origins 2Og
DNA Molecules Are Highly Condensed in Chromosomes 210
Nucleosomes Are a Basic Unit of Eucaryotic Chromosome

Structure 211
The Structure ofthe Nucleosome Core Particle Reveals How

DNA ls Packaged Z'tZ
Nucleosomes Have a Dynamic Structure, and Are Frequentry

Subjected to Changes Catalyzed by ATp-Dependent Chromatin-
Remodeling Complexes 215

Nucleosomes Are Usually Packed Together into a Compact

80

8 1
82
83
84
87

88

88
Rq

'167

168
169
171

171

1 7 2

175

176

1 7 7

178

179
179
1 8 1

182

184

184

1 8 5
t 6 0

187
1 9 0
1 9 1
1 9 3

9 1
9 1

95
vo

o7

100
1 0 0
1 0 1
103
103
124

125

125
t z J

1 3 0
1 3 1

t J )

I Jt)

137
1 3 9
140
141

142

"t42

143
t 4 )

"146

147

148
149

1 5 1
't52

152

1 5 3
154

1 5 5

t f , o

1 5 6
157
1 5 8
i 5 9

1 9 5

197

197
199
200
201

202

202
204

205

Chromatin Fiber
Summary

l t o

218

THE REGULATION OF CHROMATIN STRUCTURE 219
Some Early Mysteries Concerning Chromatin Structure 220

160
160
16"1
166



Heterochromatin ls Highly Organized and Unusually Resistant
to Gene Exoression

The Core Histones Are Covalently Modified at Many Different Sites
Chromatin Acquires Additional Variety through the Site-Specific

lnsert ion of a Small  Set of Histone Variants
The Covalent Modifications and the Histone Variants Act in

Concert to Produce a "Histone Code"That Helps to
Determine Biological Function

A Comolex of Code-Reader and Code-Writer Proteins Can Spread
Specific Chromatin Modifications for Long Distances Along a
Chromosome

Barrier DNA Sequences Block the Spread of Reader-Writer Complexes
and Thereby Separate Neighboring Chromatin Domains

The Chromatin in Centromeres Reveals How Histone Variants
Can Create Special Structures

Chromatin Structures Can Be Directly Inherited
Chromatin Structures Add Unique Features to Eucaryotic

Chromosome Function
Summary

THE GLOBAL STRUCTURE OF CHROMOSOMES

Chromosomes Are Folded into Large Loops of Chromatin
Polytene Chromosomes Are Uniquely Useful for Visualizing

Chromatin Structures
There Are Multiple Forms of Heterochromatin
Chromatin Loops Decondense When the Genes Within Them Are

Exoressed
Chromatin Can Move to Specific Sites Within the Nucleus to

Alter Their Gene Exoression
Networks of Macromolecules Form a Set of Distinct Biochemical

Environments inside the Nucleus
Mitotic Chromosomes Are Formed from Chromatin in lts Most

Condensed State
Summary

HOW GENOMES EVOLVE

Genome Alterations Are Caused by Failures of the Norma
Mechanisms for Copying and Maintaining DNA

The Genome Sequences of Two Species Differ in Proportion to
the Length ofTimeThatThey Have Separately Evolved

Phylogenetic Trees Constructed from a Comparison of DNA
Sequences Trace the Relationships of All Organisms

A Comoarison of Human and Mouse Chromosomes Shows
How the Structures of Genomes Diverge

The Size of a Vertebrate Genome Reflects the Relative Rates of
DNA Addit ion and DNA Loss in a Lineage

We Can Reconstruct the Sequence of Some Ancient Genomes
Mult ispecies Sequence Comparisons ldenti fy lmportant DNA

Sequences of Unknown Function
Accelerated Changes in Previously Conserved Sequences Can

Help Decipher Crit ical Steps in Human Evolut ion
Gene Duplication Provides an lmportant Source of Genetic

Novelty During Evolution
Duplicated Genes Diverge
The Evolution of the Globin Gene Family Shows How DNA

Duplications Contr ibute to the Evolut ion of Organisms
Genes Encoding New Proteins Can Be Created by the

Recombination of Exons
Neutral Mutations Often Spread to Become Fixed in a Population,

with a Probability that Depends on Population Size
A Great Deal Can Be Learned from Analyses oftheVariation

Among Humans
Summary
Problems
References

Chapter 5 DNA Replication, Repair, and
Recombination

THE MAINTENANCE OF DNA SEQUENCES
Mutation Rates Are Extremely Low
Low Mutation Rates Are Necessary for Life as We Know lt
Summory

DNA REPLICATION MECHANISMS

Base-Pair ing Underl ies DNA Replication and DNA Repair
The DNA Replication Fork ls Asymmetrical
The High Fidelity of DNA Replication Requires Several Proofreading

Mechanisms
Only DNA Replication in the 5'-to-3'Direction Allows Efficient Error

Correction
A 5pecial Nucleotide-Polymerizing Enzyme Synthesizes Short RNA

Primer Molecules on the Lagging Strand
Special Proteins Help to Open Up the DNA Double Helix in Front

ofthe Replication Fork
A Sliding Ring Holds a Moving DNA Polymerase onto the DNA
The Proteins at a Replication Fork Cooperate to Form a Replication

Machine
A Strand-Directed Mismatch Repair System Removes Replication

Errors That Escape from the Replication Machine
DNA Topoisomerases Prevent DNA Tangling During Replication
DNA Replication ls Fundamental ly Similar in Eucaryotes and

Bacteria
Summary

THE INITIATION AND COMPLETION OF DNA REPLICATION

IN CHROMOSOMES

DNA Synthesis Begins at Replication Origins
Bacterial Chromosomes Typically Have a Single Origin of DNA

Reolication
Eucaryotic Chromosomes Contain Mult iple Origins of Replication
In Eucaryotes DNA Replication Takes Place During Only One Part

of the cell cycle
Different Regions on the Same Chromosome Replicate at Distinct

Times in S Phase
Highly Condensed Chromatin Replicates Late, While Genes in

Less Condensed Chromatin Tend to Replicate Early
Well-Defined DNA Sequences Serve as Replication Origins in a

Simple Eucaryote, the Budding Yeast
A Large Multisubunit Complex Binds to Eucaryotic Origins of

Reolication
The Mammalian DNA Sequences That Specify the Initiation of

Replication Have Been Difficult to ldentify
New Nucleosomes Are Assembled Behind the Replication Fork
The Mechanisms of Eucaryotic Chromosome Duplication Ensure

That Patterns of Histone Modification Can Be Inheriteo
Telomerase Replicates the Ends of Chromosomes
Telomere Length ls Regulated by Cells and Organisms
Summary

DNA REPAIR

Without DNA Repair, Spontaneous DNA Damage Would Rapidly
Change DNA Sequences

The DNA Double Helix ls Readily Repaired
DNA Damage Can Be Removed by MoreThan One Pathway
Coupling DNA Repair to Transcription Ensures That the Cell's Most

lmportant DNA ls Efficiently Repaired
The Chemistry of the DNA Bases Facilitates Damage Detection
Special DNA Polymerases Are Used in Emergencies to Repair DNA

Double-Strand Breaks Are Efficiently Repaired
DNA Damage Delays Progression of the Cell Cycle
Summary

HOMOLOGOUS RECOMBINATION

Homologous Recombination Has Many Uses in the Cell
Homologous Recombination Has Common Features in All Cells

DNA Base-Pairing Guides Homologous Recombination
The RecA Protein and its Homologs Enable a DNA 5ingle Strand

to Pair with a Homologous Region of DNA Double Helix

Branch Migration Can Either Enlarge Hetroduplex Regions or
Release Newly Synthesized DNA as a Single Strand

Homologous Recombination Can Flawlessly Repair Double-
Stranded Breaks in DNA

Cells Carefully Regulate the Use of Homologous Recombination
in DNA Repair

Holliday Junctions Are Often Formed During Homologous
Recombination Events
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Meiotic Recombination Begins with a programmed Double-
Strand Break

Homologous Recombination Often Results in Gene Conversron
Mismatch Proofreading Prevents promiscuous Recombinatron

Between Two Poorly Matched DNA Sequences
Summary

TRANSPOSITION AN D CONSERVATIVE SITE-SPECIFIC
RECOMBINATION

FROM RNATO PROTEIN 366
An mRNA Sequence ls Decoded in Sets ofThree Nucleotide 367
IRNA Molecules Match Amino Acids to Codons in mRNA 368
tRNAs Are Covalently Modified Before They Exit from the Nucleus 369
Specific Enzymes Couple Each Amino Acid to lts Appropriate IRNA

Molecule
Editing by RNA Synthetases Ensures Accuracy
Amino Acids Are Added to the C-terminal End of a Growing

Polypeptide Chain
The RNA Message ls Decoded in Ribosomes
Elongation Factors Drive Translation Forward and lmprove lts

Accuracy 377
The Ribosome ls a Ribozyme 379
Nucleotide Sequences in mRNA Signal Where to Start Protein

Synthesis 379
Stop Codons Markthe End ofTranslat ion 381
Proteins Are Made on Polyribosomes 391
There Are MinorVariations in the Standard Genetic Code 392
Inhibitors of Procaryotic Protein Synthesis Are Useful as

Antibiot ics
Accuracy in Translation Requires the Expenditure of Free Energy
Quality Control Mechanisms Act to Prevent Translation of Damaqed

mRNAs
Some Proteins Begin to Fold While Still Being Synthesized
Molecular Chaperones Help Guide the Folding of Most proteins
Exposed Hydrophobic Regions Provide Critical 5ignals for protein

Quality Control
The Proteasome ls a Compartmentalized Protease with

Sequestered Active Sites
An Elaborate Ubiquitin-Conjugating System Marks Proteins for

Destruction
Many Proteins Are Controlled by Regulated Destruction
Abnormally Folded Proteins Can Aggregate to Cause Destructive

Human Diseases 396
There Are Many Steps From DNA to Protein 3gg
Summory 3gg

THE RNA WORLD AND THE ORIGINS OF LIFE 4OO
Life Requires Stored Information 401
Polynucleotides Can Both Store Information and Catalyze
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373
Through Transposition, Mobile Genetic Elements Can Insert lnto

Any DNA Sequence y7
DNA-OnlyTransposons Move by Both Cut-and-paste and Replicative

Mechanisms 317
Some Viruses Use a Transposition Mechanism to Move Themselves

into Host Cell  Chromosomes 319
Retroviral-like Retrotransposons Resemble Retroviruses, but Lack a

Protein Coat 320
A Large Fraction of the Human Genome ls Comoosed of

Nonretroviral Retrotransposons 32,l
Different Transposable Elements predominate in Different

Organisms 322
Genome Sequences Reveal the Approximate Times that

Transposable Elements Have Moved 323
Conservative Site-Specific Recombination Can Reversibly

Rearrange DNA 323
Conservative Site-Specific Recombination Was Discovered in

Bacteriophage ), n+
Conservative Site-Specific Recombination Can Be Used to Turn

Genes On or Off
Summary
Problems
References

Chapter 6 How Cells Read the Genome: From
DNA to Protein

FROM DNATO RNA
Portions of DNA Sequence Are Transcribed into RNA
Transcription Produces RNA Complementary to One Strand of DNA
Cells Produce Several Types of RNA
Signals Encoded in DNA Tell RNA polymerase Where to Start and

Stop
Transcription Start and Stop Signals Are Heterogeneous in

Nucleotide Sequence
Transcription Initiation in Eucaryotes Requires Many proteins
RNA Polymerase ll Requires General Transcription Factors
Polymerase ll Also Requires Activator, Mediator, and Chromatin-

Modifying Proteins
Transcript ion Elongation Produces Superhel ical Tension in DNA
Transcription Elongation in Eucaryotes ls Tightly Coupled to RNA

Processing
RNA Capping ls the First Modification of Eucaryotic pre-mRNAs
RNA Splicing Removes Intron Sequences from NewlyTranscribed

Pre-mRNAs
Nucleotide Sequences Signal Where Splicing Occurs
RNA Splicing ls Performed by the Spliceosome
The Spliceosome Uses ATP Hydrolysis to produce a Complex Series

of RNA-RNA Rearrangements
Other Properties of Pre-mRNA and lts Synthesis Help to Explain

the Choice of Proper Splice Sites
A Second 5et of snRNPs Splice a Small Fraction of Intron Sequences

in Animals and Plants
RNA Splicing Shows Remarkable plasticity
Spliceosome-Catalyzed RNA Splicing probably Evolved from

Self-Spl icing Mechanisms
RNA-Processing Enzymes Generate the 3, End of Eucaryotic mRNAs
Mature Eucaryotic mRNAs Are Selectively Exported from tne

Nucleus
Many Noncoding RNAs Are Also Synthesized and processed in the

Nucleus
The Nucleolus ls a Ribosome-producing Factory
The Nucleus Contains a Variety of Subnuclear Structures
Summarv

Chemical Reactions
A Pre-RNA World May Predate the RNA World
Single-Stranded RNA Molecules Can Fold into Highly Elaborate

Structures
Self-Replicating Molecules Undergo Natural Selection
How Did Protein Synthesis Evolve?
All Present-Day Cells Use DNA as Their Hereditary Material
Summary
Problems
References

Chapter 7 Control of Gene Expression

Pathway from DNA to RNA to Protein
Summary

AN OVERVIEW OF GENE CONTROL 4'11
The Different Cell Types of a Multicellular Organism Contain the

Same DNA 411
Different Cell Types Synthesize Different Sets of proteins 412
External Signals Can Cause a Cell to Change the Expression of

Its Genes 413
Gene Expression Can Be Regulated at Many ofthe Steps in the
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DNA-BINDING MOTIFS IN GENE REGULATORY PROTEINS 416
Gene Regulatory Proteins Were Discovered Using Bacterial

Genetics
The Outside of the DNA Helix Can Be Read by proteins
Short DNA Sequences Are Fundamental Components of Genetic

Switches
Gene Regulatory Proteins Contain Structural Motifs That Can

Read DNA Seouences
The Helix-Turn-Helix Motif ls One of the Simplest and Most

Common DNA-B|nding Motifs
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Homeodomain Proteins Constitute a Special Class of Helix-Turn-
Helix Proteins

There Are SeveralTypes of DNA-B|nding Zinc Finger Motifs
p sheets Can Also Recognize DNA
Some Proteins Use Loops That Enter the Major and Minor Groove

to Recognize DNA
The Leucine Zipper Motif Mediates Both DNA Binding and Protein

Dimerization
Heterodimerization Expands the Repertoire of DNA Sequences That

Gene Regulatory Proteins Can Recognize
The Helix-Looo-Helix Motif Also Mediates Dimerization and DNA

Binding
It ls NotYet Possible to Predict the DNA Sequences Recognized

by All Gene Regulatory Proteins
A Gel-Mobility Shift Assay Readily Detects Sequence-Specific

DNA-Binding Proteins
DNA Affinity Chromatography Facilitates the Purification of

Sequence-Specific DNA-Binding Proteins
The DNA Sequence Recognized by a Gene Regulatory Protein

Can Be Determined Experimentally
Phylogenetic Footprinting ldentifies DNA Regulatory Sequences

Through Comparative Genomics
Chromatin lmmunoprecipitation ldentifies Many of the Sites

That Gene Regulatory Proteins Occupy in Living Cells
Summary

HOW GENETIC SWITCHES WORK

The Tryptophan Repressor ls a Simple Switch That Turns Genes
On and Off in Bacteria

Transcriptional Activators Turn Genes On
A Transcriptional Activator and a Transcriptional Repressor

Control the Loc Operon
DNA Looping Occurs During Bacterial Gene Regulation
Bacteria Use Interchangeable RNA Polymerase Subunits to Help

Regulate Gene Transcription
Complex Switches Have Evolved to Control Gene Transcription

in Eucaryotes
A Eucaryotic Gene Control Region Consists of a Promoter Plus

Regulatory DNA Sequences
Eucaryotic Gene Activator Proteins Promote the Assembly of RNA

Polymerase and the General Transcription Factors at the
Startpoint of Transcription

Eucaryotic Gene Activator Proteins Also Modify Local Chromatin
Structure

Gene Activator Proteins Work Synergistically
Eucaryotic Gene Repressor Proteins Can Inhibit Transcription

in Various Ways
Eucaryotic Gene Regulatory Proteins Often Bind DNA

Cooperatively
Complex Genetic Switches That Regulate Drosophila Development

Are Buil t  Up from Smaller Modules
fhe Drosophila Eve Gene ls Regulated by Combinatorial Controls
Complex Mammalian Gene Control Regions Are Also Constructed

from Simple Regulatory Modules
Insulators Are DNA Sequences That Prevent Eucaryotic Gene

Regulatory Proteins from Influencing Distant Genes
Gene Switches Rapidly Evolve
Summary

THE MOLECULAR GENETIC MECHANISMS THAT CREATE
SPECIALIZED CELLTYPES

DNA Rearrangements Mediate PhaseVariation in Bacteria
A Set of Gene Regulatory Proteins Determines Cell Type in a

Budding Yeast
Two ProteinsThat Repress Each Other! Synthesis Determine the

Heritable State of Bacteriophage Lambda
Simple Gene Regulatory Circuits Can Be Used to Make Memory

Devices
Transcriptional Circuits Allow the Cell to Cany Out Logic Operations
Synthetic Biology Creates New Devices from Existing Biological Parts
Circadian Clocks Are Based on Feedback Loops in Gene Regulation
A Single Gene Regulatory Protein Can Coordinate the Expression

of a Set of Genes

Expression of a Critical Gene Regulatory Protein Can Trigger
the Expression of a Whole Battery of Downstream Genes

Combinatorial Gene Control Creates Many Different CellTypes
in Eucaryotes

A Single Gene Regulatory Protein Can Trigger the Formation
of an Entire Organ

The Pattern of DNA Methylation Can Be Inherited When
Vertebrate Cells Divide

Genomic lmprint ing ls Based on DNA Methylat ion
CG-Rich lslands Are Associated with Many Genes in Mammals
Epigenetic Mechanisms Ensure That Stable Patterns of

Gene Expression Can BeTransmitted to Daughter Cells
Chromosome-Wide Alterations in Chromatin Structure

Can Be Inherited
The Control of Gene Expression is Intrinsically Noisy
Summary

POST-TRANSCRI PTIONAL CONTROLS

Transcription Attenuation Causes the Premature Termination
of Some RNA Molecules

Riboswitches Might Represent Ancient Forms of Gene Control
Alternative RNA Splicing Can Produce Different Forms of a

Protein from the Same Gene
The Definition of a Gene Has Had to Be Modified Since the

Discovery of Alternative RNA Splicing
Sex Determinationin Drosophilo Depends on a Regulated

Series of RNA Splicing Events
A Change in the Site of RNA Transcript Cleavage and Poly-A

Addition Can Change the C-terminus of a Protein
RNA Edit ing Can Change the Meaning of the RNA Message
RNA Transport from the Nucleus Can Be Regulated
Some mRNAs Are Localized to Specific Regions of the Cytoplasm
The 5'and 3'Untranslated Regions of mRNAs Control

Their Translation
The Phosphorylation of an lnitiation Factor Regulates Protein

Synthesis Globally
lnitiation at AUG Codons Upstream of the Translation Start

Can Regulate Eucaryotic Translation Initiation
Internal Ribosome Entry Sites Provide Opportunities for

Translation Control
Changes in mRNA Stability Can Regulate Gene Expression
Cytoplasmic Poly-A Addition Can RegulateTranslation
Small Noncoding RNA Transcripts Regulate Many Animal and

Plant Genes
RNA Interference ls a Cell Defense Mechanism
RNA Interference Can Direct Heterochromatin Formation
RNA lnterference Has Become a Powerful Experimental Tool

Summory
Problems
References

Chapter 8 Manipulating Proteins, DNA, and RNA

ISOLATING CELLS AND GROWING THEM IN CULTURE
Cells Can Be lsolated from IntactTissues
Cells Can Be Grown in Culture
Eucaryotic Cell Lines Are a Widely Used Source of

Homogeneous Cells
Embryonic Stem Cells Could Revolutionize Medicine
Somatic Cell Nuclear Transplantation May Provide a Way to

Generate Personalized Stem Cells
Hybridoma Cell Lines Are Factories That Produce Monoclonal

Antibodies
Summary

PURIFYING PROTEINS

Cells Can Be Separated into Their Component Fractions 510

Cell Extracts Provide Accessible Systems to Study Cell Functions 51 1

Proteins Can Be Separated by Chromatography 512

Affinity Chromatography Exploits Specific Binding Sites on
Proteins 513

Genetically-Engineered Tags Provide an Easy Way to Purify

Proteins 514
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Purified Cell-Free Systems Are Required for the precise Dissection of
Molecular Functions

Summory

ANALYZING PROTEINS

Proteins Can Be Separated by SDS polyacrylamide-Gel
Electrophoresis

Specific Proteins Can Be Detected by Blotting with Antibodies
Mass Spectrometry Provides a Highly Sensitive Method

for ldentifying Unknown proteins
Two-Dimensional Separation Methods are Especial ly powerful
Hydrodynamic Measurements Reveal the Size and Shape of

a Protein comolex
Sets of Interacting Proteins Can Be ldentified by Biochemical

Methods
Protein-Protein Interactions Can Also Be ldentified by a

Two-Hybrid Technique in yeast
Combining Data Derived from DifferentTechniques produces

Reliable Protein-lnteraction MaDs
Optical Methods Can Monitor Protein Interactions in RealTime
Some Techniques Can Monitor Single Molecules
Protein Function Can Be Selectively Disrupted with Small

Molecules
Protein Structure Can Be Determined Using X-Ray Diffraction
NMR Can Be Used to Determine protein Structure in Solutron
Protein Sequence and Structure provide Clues About protein

Function
Summory

ANALYZING AND MANIPULATING DNA
Restriction Nucleases Cut Large DNA Molecules into Fragments
Gel Electrophoresis Separates DNA Molecules of Different Sizes
Purif ied DNA Molecules Can Be Specif ical ly Labeled with

Radioisotopes or Chemical Markers in yitro
Nucleic Acid Hybridization Reactions provide a Sensitive Way of

Detecting Specific Nucleotide Sequences
Northern and Southern Blotting Facilitate Hybridization with

Electrophoretically Separated Nucleic Acid Molecules
Genes Can Be Cloned Using DNA Libraries
Two Types of DNA Libraries Serve Different purooses
cDNA Clones Contain Uninterrupted Coding Sequences
Genes Can Be Selectively Amplified by pCR
Cells Can Be Used As Factories to produce Soecific proteins
Proteins and Nucleic Acids Can Be Synthesized Directly by

Chemical Reactions
DNA Can Be Rapidly Sequenced
Nucleotide Sequences Are Used to predict the Amino Acio

Sequences of Proteins
The Genomes of Many Organisms Have Been Fully Sequenceo
Summary

STUDYING GENE EXPRESSION AND FUNCTION
Classical Genetics Begins by Disrupting a Cell  process by Ranoom

Mutagenesis
Genetic Screens ldentify Mutants with Specific Abnormalirres
Mutations Can Cause Loss or Gain of protein Function
Complementation Tests Reveal Whether Two Mutations Are

in the Same Gene or Different Genes
Genes Can Be Ordered in Pathways by Epistasis Analysis
Genes ldentified by Mutations Can Be Cloned
Human Genetics Presents 5pecial problems and Special

Opportunities
Human Genes Are Inherited in Haplotype Blocks, Which Can

Aid in the Search for MutationsThat Cause Disease
Complex Traits Are Influenced by Multiple Genes
Reverse Genetics Begins with a Known Gene and Determines

Which Cell Processes Require lts Function
Genes Can Be Re-Engineered in Several Ways
Engineered Genes Can Be Inserted into the Germ Line of

Many Organisms
Animals Can Be Genetical ly Altered
Transgenic Plants Are lmportant for Both Cell Biology and

Agriculture

Large Collections ofTagged Knockouts Provide a Tool for
Examining the Function of Every Gene in an Organism

RNA Interference ls a Simple and Rapid Way to Test Gene Function
Reporter Genes and /n Situ Hybridization RevealWhen ano

Where a Gene ls Expressed
Expression of Individual Genes Can Be Measured Usino

Quantitative RT-PCR

Lipids in Cel l  Membranes
Phosphol io ids Soontaneouslv Form Bi lavers

Microarrays Monitor the Expression of Thousands of Genes at
Once 574

5ingle-Cell  Gene Expression Analysis Reveals Biological"Noise" 575
Summary 576
Problems 576
References 579

Chapter 9 Visual izing Cells

LOOKING AT CELLS IN THE LIGHT MICROSCOPE
The Light Microscope Can Resolve Details 0.2 pm Apart
Living Cells Are Seen Clearly in a Phase-Contrast or a Differential-

I nterference-Contrast M icroscooe
lmages Can Be Enhanced and Analyzed by Digital Techniques
IntactTissues Are Usually Fixed and Sectioned before Microscopy
Specific Molecules Can Be Located in Cells by Fluorescence

Microscopy
Antibodies Can Be Used to Detect Specific Molecules
lmaging of ComplexThree-Dimensional Objects ls Possible

with the Optical Microscope
The Confocal Microscope Produces Optical Sections by Excluding
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Out-of-Focus Light 590
Fluorescent Proteins Can Be Used toTag Individual proteins in

Living Cells and Organisms 592
Protein Dynamics Can Be Followed in Living Cells 593
Light-Emitt ing Indicators Can Measure Rapidly Changing

Intracel lular lon Concentrat ions 596
Several Strategies Are Available by Which Membrane-lmpermeant

Substances Can Be Introduced into Cells 597
Light Can Be Used to Manipulate Microscopic Objects As Well

As to lmageThem 598
Single Molecules Can Be Visual ized by Using Total Internal

Reflection Fluorescence Microscopy 5gg
Individual Molecules Can BeTouched and Moved Using Atomic

Force Microscopy 600
Molecules Can Be Labeled with Radioisotopes 600
Radioisotopes Are Used toTrace Molecules in Cells and Organisms 602
Summary 603

LOOKING AT CELLS AND MOLECULES IN THE ELECTRON
MtcRoScoPE 604
The Electron Microscope Resolves the Fine Structure ofthe Cell 604
Biological Specimens Require Special Preparation for the Electron

Microscope 605
Specif ic Macromolecules Can Be Local ized by lmmunogold Electron

Microscopy 606
lmages of Surfaces Can Be Obtained by Scanning Electron

Microscopy 607
Metal Shadowing Allows Surface Features to Be Examined at

High Resolution byTransmission Electron Microscopy 60g
Negative Staining and Cryoelectron Microscopy Both Allow

Macromolecules to Be Viewed at High Resolution 6l O
Mult iple lmages Can Be Combined to Increase Resolut ion 610
Different Views of a Single Object Can Be Combined to Give a

Three-Dimensional Reconstruction
Summary
Problems
References

Chapter 10 Membrane Structure
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The Lipid Bi layer ls a Two-Dimensional Fluid
The Fluidity of a Lipid Bilayer Depends on lts Composition
Despite Their Fluidity, Lipid Bilayers Can Form Domains of

Different Com position s
Lipid Droplets Are Surrounded by a Phospholipid Monolayer
The Asymmetry of the Lipid Bilayer ls Functionally lmportant
Glycolipids Are Found on the Surface of All Plasma Membranes
Summary

MEMBRANE PROTEINS

Membrane Proteins Can Be Associated with the Lipid Bilayer in
Various Ways

Lipid Anchors Control the Membrane Localization of Some
Signaling Proteins

In MostTransmembrane Proteins the Polypeptide Chain Crosses
the Lipid Bilayer in an o-Helical Conformation

Transmembrane cr Helices Often lnteract with One Another
Some p Barrels Form LargeTransmembrane Channels
Many Membrane Proteins Are Glycosylated
Membrane Proteins Can Be Solubilized and Purified in Detergents
Bacteriorhodopsin ls a Light-Driven Proton Pump That Traverses

the Lipid Bilayer as Seven s Helices
Membrane Proteins Often Function as Large Complexes
Many Membrane Proteins Diffuse in the Plane of the Membrane
Cells Can Confine Proteins and Lipids to Specific Domains Within

a Membrane
The Cortical Cytoskeleton Gives Membranes Mechanical Strength

and Restrict Membrane Protein Diffusion
Summary
Problems
References

Patch-Clamp Recording IndicatesThat Individual Gated Channels
Open in an All-or-Nothing Fashion 680

Voltage-Gated Cation Channels Are Evolutionarily and Structurally
Related 682

Transmittercated lon Channels Convert Chemical Signals into
Electrical Ones at Chemical Synapses 682

Chemical Synapses Can Be Excitatory or Inhibitory 684

The Acetylcholine Receptors at the Neuromuscular Junction Are
Transmitter-Gated Cation Channels 684

TransmitterGated lon Channels Are MajorTargets for Psychoactive
Drugs 686

Neuromuscular Transmission Involves the Sequential Activation
of Five Different Sets of lon Channels

Single Neurons Are Complex Computation Devices
Neuronal Computation Requires a Combination of at Least

Three Kinds of K+ Channels
Long-Term Potentiation (LTP) in the Mammalian Hippocampus

Depends on Ca2+ EntryThrough NMDA-Receptor Channels
Summary
Problems
References

Chapter 12 Intracellular Compartments and
Protein Sorting 695

THE COMPARTMENTALIZATION OF CELLS 695

All Eucaryotic Cells Have the Same Basic Set of Membrane-
Enclosed Organelles 695

Evolutionary Origins Explain the Topological Relationships of
Organelles

Proteins Can Move Between Compartments in DifferentWays
Signal Sequences Direct Proteins to the Correct Cell Address
Most Organelles Cannot Be Constructed De Novo: They Require

Information in the Organelle ltself
Summary

THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS

ANDTHE CYTOSOL

Nuclear Pore Complexes Perforate the Nuclear Envelope
Nuclear Localization Signals Direct Nuclear Proteins to the Nucleus

Nuclear lmport Receptors Bind to Both Nuclear Localization
Signals and NPC Proteins

Nuclear Export Works Like Nuclear lmport, But in Reverse
The Ran GTPase lmposes Directionality on Transport Through

NPCs
TransportThrough NPCs Can Be Regulated by Controlling

Access to the TransPort MachinerY
During Mitosis the Nuclear Envelope Disassembles
Summary

THETRANsPORT OF PROTEINS INTO MITOCHONDRIA

AND CHLOROPLASTS 713

Translocation into Mitochondria Depends on Signal Sequences
and ProteinTranslocators 7'13

Mitochondrial Precursor Proteins Are lmported as Unfolded
Polypeptide Chains 715

ATP Hydrolysis and a Membrane Potential Drive Protein lmport
Into the Matrix Space 716

Bacteria and Mitochondria Use Similar Mechanisms to lnsert

Porins into their Outer Membran 2 717

TransDort Into the Inner Mitochondrial Membrane and
Intermembrane Space Occurs Via Several Routes 717

Two Signal Sequences Direct Proteins to the Thylakoid
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Chapter 11 Membrane Transport of Small Molecules
and the Electrical Properties of Membranes 651

PRINCIPLES OF MEMBRANETRANSPORT 651

Protein-Free Lipid Bilayers Are Highly lmpermeable to lons 652
There Are Two Main Classes of Membrane Transport Proteins:

Transporters and Channels 652
Active Transport ls Mediated by Transporters Coupled to an

Energy Source
Summary

TRANSPORTERS AND ACTIVE MEMBRANETRANSPORT

ActiveTransport Can Be Driven by lon Gradients
Transporters in the Plasma Membrane Regulate Cytosolic pH
An Asymmetric Distribution of Transporters in Epithelial Cells

Underlies the Transcellular Transport of Solutes
There Are Three Classes of ATP-Driven Pumps
The Ca2+ Pump ls the Best-Understood P-type ATPase
The Plasma Membrane P-type Na+-K+ Pump Establishes the

Na+ Gradient Across the Plasma Membrane
ABC Transporters Constitute the Largest Family of Membrane

Transoort Proteins
Summary

ION CHANNELS ANDTHE ELECTRICAL PROPERTIES OF
MEMBRANES 667

lon Channels Are lon-Selective and Fluctuate Between Open and
closed States 667

The Membrane Potential in Animal Cells Depends Mainly on K+ Leak
Channels and the K+ Gradient Across the Plasma Membrane 669

The Resting Potential Decays Only SlowlyWhen the Na+-K+ Pump
ls Stopped 669

The Three-Dimensional Structure of a Bacterial K+ Channel Shows
How an lon Channel Can Work

Aquaporins Are Permeable to Water But lmpermeable to lons
The Function ofa Neuron Depends on lts Elongated Structure
Voltage-Gated Cation Channels Generate Action Potentials in

Electrically Excitable Cells
Myelination Increases the Speed and Efficiency of Action Potential

Propagation in Nerve Cells

Membrane in Chloroplasts
Summary

PEROXISOMES

Peroxisomes Use Molecular Oxygen and Hydrogen Peroxide to

Perform Oxidative Reactions
A Short Signal Sequence Directs the lmport of Proteins into

Peroxisomes
Summary
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THE ENDOPLASMIC RETICULUM 723
The ER ls Structural ly and Functional ly Diverse 724
Signal Sequences Were First Discovered in proteins lmoorteo

into the Rough ER 726
A Signal-Recognition Particle (SRp) Directs ER Signal Sequences

to a Specific Receptor in the Rough ER Membrane 727
The Polypeptide Chain Passes Through an Aqueous pore in the

Translocator 730
Translocation Across the ER Membrane Does Not Always Require

Ongoing Polypeptide Chain Elongation 731
In Single-Pass Transmembrane Proteins, a Single Internal ER Signal

Sequence Remains in the Lipid Bi layer as a Membrane-spanning
o Helix 732

Combinations of Start-Transfer and Stop-Transfer Signals Determine
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During Tissue Morphogenesis and Repair 1 180
Proteoglycans Are Composed of GAG Chains Covalently Linked

to a Core Protein
Proteoglycans Can Regulate the Activities of Secreted Proterns
Cell-Surface Proteoglycans Act as Co-Receptors
Collagens Are the Major Proteins of the Extracellular Matrix
Collagen Chains Undergo a Series of Post-Translational

Modifications
Propeptides Are Clipped Off Procollagen After lts Secretion

to Al low Assembly of Fibri ls
Secreted Fibril-Associated Collagens Help Organize the Fibrils
Cells Help Organize the Collagen Fibrils They Secrete by

Exerting Tension on the Matrix
Elastin Gives Tissues Their Elasticitv
Fibronectin ls an Extracellular Protein That Helps Cells Attach

to the Matrix 1191
Tension Exerted by Cells Regulates Assembly of Fibronectin

Fibri ls
Fibronectin Binds to IntegrinsThrough an RGD Motif
Cells Have to Be Able to Degrade Matrix, as Well as Make it
Matrix Degradation ls Localized to the Vicinity of Cells
Summary

THE PLANT CELL WALL

The Composition of the Cell Wall Depends on the Cell Type
The Tensile Strength of the Cell Wall Allows Plant Cells to

Develop Turgor Pressure
The Primary Cell  Wall  ls Bui l t  from Cellulose Microf ibri ls

Interwoven with a Network of Pectic Polysaccharides
Oriented Cell-Wall Deposition Controls plant Cell Growth
Microtubules Orient Cell-Wall  Deposit ion
Summary
Problems
References

Chapter 20 Cancer

CANCER A5 A MICROEVOLUTIONARY PROCESS
Cancer Cells Reproduce Without Restraint and Colonize

Other Tissues
Most Cancers Derive from a Single Abnormal Cell
Cancer Cells Contain Somatic Mutations
A Single Mutation ls Not Enough to Cause Cancer
Cancers Develop Gradually from Increasingly Aberrant Cells
Cervical Cancers Are Prevented by Early Detection
Tumor Progression Involves Successive Rounds of Random

Inherited Change Followed by Natural Selection
The Epigenetic Changes That Accumulate in Cancer Cells Involve

Inherited Chromatin Structures and DNA Methylat ion
Human Cancer Cells Are Genetical ly Unstable
Cancerous Growth Often Depends on Defective Control of

Cell Death, Cell Differentiation, or Both
Cancer Cells Are Usually Altered in Their Responses to DNA

Damage and Other Forms of Stress
Human Cancer Cells Escape a Buil t- ln Limit to Cell  prol i ferat ion
A Small Populat ion of Cancer Stem Cells Maintains Many

Tumors
How Do Cancer Stem Cells Arise?
To Metastasize, Malignant Cancer Cells Must Survive and

Proliferate in a Foreign Envlronment
Tumors Induce Angiogenesis
The Tumor Microenvironment Influences Cancer

Development
Many Properties Typically Contribute to Cancerous Growth
Summary
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THE PREVENTABLE CAU5E5 OF CANCER

Many, But Not Al l ,  Cancer-Causing Agents Damage DNA
Tumor Init iators Damage DNA; Tumor Promoters Do Not
Viruses and Other Infections Contr ibute to a Signif icant

Proport ion of Human Cancers
ldentification of Carcinogens Reveals Ways to Avoid

Cancer
Summary

FINDING THE CANCER-CRITICAL GENES

The ldentification of Gain-of-Function and Loss-of-Function
Mutations Requires Different Methods

Retroviruses Can Act as Vectors for Oncogenes That Alter
Cell  Behavior

Different Searches for Oncogenes Have Converged on the
Same Gene-Ras

Studies of Rare Hereditary Cancer Syndromes First ldenti f ied
Tumor Suppressor Genes

Tumor Suopressor Genes Can Also Be ldenti f ied from Studies
of Tumors

Both Genetic and Epigenetic Mechanisms Can Inactivate Tumor
Suppressor Genes

Genes Mutated in Cancer Can Be Made Overactive in Many
Ways

The Hunt for CancerCrit ical Genes Continues
Summary

THE MOLECULAR BASIS OF CANCER-CELL BEHAVIOR

Studies of Both Developing Embryos and Genetical ly
Engineered Mice Have Helped to Uncover the Function of
Cancer-Crit ical Genes

Many Cancer-Crit ical Genes Regulate Cell  Prol i ferat ion
Dist inct Pathways May Mediate the Disregulat ion of Cell-Cycle

Progression and the Disregulat ion of Cell  Growth in
Cancer Cells

Mutations in Genes That Regulate Apoptosis Al low Cancer Cells
to Survive When They Should Not

Mutations in the p53 Gene Allow Many Cancer Cells to Survive
and Proliferate Despite DNA Damage

DNA Tumor Viruses Block the Action of Key Tumor Suppressor
Proteins

The Changes in Tumor Cells That Lead to Metastasis Are Sti l l
Largely a Mystery

Colorectal Cancers Evolve SlowlyVia a Succession of Visible
Changes

A Few Key Genetic Lesions Are Common to a Large Fraction of
Colorectal Cancers

Some Colorectal Cancers Have Defects in DNA Mismatch Repair
The Steps of Tumor Progression Can Often Be Correlated with

SDecif ic Mutations
Each Case of Cancer ls Characterized by lts Own Array of Genetic

Lesions
Summary

CANCER TREATMENT: PRESENT AND FUTURE

The Search for Cancer Cures ls Diff icult  but Not Hopeless
Tradit ionalTherapies Exploit  the Genetic Instabi l i ty and Loss of

Cell-Cycle Checkpoint Responses in Cancer Cells
New Drugs Can Exploit  the Specif ic Cause of a Tumor's Genetic

Instabi l i ty
Genetic Instability Helps Cancers Become Progressively More

Resistant to Therapies
New Therapies Are Emerging from Our Knowledge of Cancer

Biology
Small Molecules Can Be Designed to Inhibit  Specif ic Oncogenic

Proteins
Tumor Blood Vessels Are Logical Targets for Cancer Therapy
Many Cancers May BeTreatable by Enhancing the lmmune

Response Against a Specif ic Tumor
Treating Patients with Several Drugs Simultaneously Has

Potential Advantages for Cancer Therapy
Gene Expression Profi l ing Can Help Classify Cancers into

Clinical ly Meaningful Subgroups

There ls Still Much More to Do 1264

Summory 1265
problems 1265

References 1267

Chapters 21-25 available on Media DVD-ROM

Chapter 2t Sexual Reproduction: Meiosis,
Germ Cells, and Fertilization

OVERVIEW OF SEXUAL REPRODUCTIOII 1269

The Haploid Phase in Higher Eucaryotes ls Brief 1269

Meiosis Creates Genetic Diversity 1271

Sexual Reproduction Gives Organisms a Competitive Advantage 1271

Summary 1272

ME|OS|S 1272

Gametes Are Produced byTwo Meiotic Cell  Divisions 1272

Duplicated Homologs (and Sex Chromosomes) Pair During Early
proohase 1 1274
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1264

1269

Homolog Pair ing Culminates in the Formation of a Synaptonemal
Complex

Homolog Segregation Depends on Meiosis-Specific, Kinetochore-
Associated Proteins

Meiosis Frequently Goes Wrong
Crossing-Over Enhances Genetic Reassortment
Crossing-Over ls Highly Regulated
Meiosis ls Regulated Differently in Male and Female Mammals
Summary

PRIMORDIAL GERM CELLS AND sEX DETERMINATION IN

MAMMALS

1275

1276
1278
1279
1 280
1 280
1281

1282

Signals from Neighbors Specify PGCs in Mammalian Embryos 1282

PGCS Migrate into the Developing Gonads 1283

The Sry Gene Directs the Developing Mammalian Gonad to
Become a Testis 1283

Many Aspects of Sexual Reproduction Vary Greatly between
Animal sPecies 1285

Summary 1286

EGGS 1287

An Egg ls Highly Specialized for Independent Development 1287

Eggs Develop in Stages 1288

Oocytes Use Special Mechanisms to Grow to Their Large Size 1290

Most Human Oocytes Die Without Maturing 1291

Summary 1292

SPERM 
't292

Sperm Are Highly Adapted for Delivering Their DNA to an Egg 1292

Sperm Are Produced Continuously in the Mammalian Testis 1293

Sperm Develop as a SYncYtium 1294

Summary 1296

FERTILIZATION 1297

Ejaculated Sperm Become Capacitated in the Female Genital Tract 1297

Capacitated Sperm Bind to the Zona Pellucida and Undergo an

Acrosome Reaction 1298

The Mechanism of Sperm-Egg Fusion ls Still Unknown 1298

Sperm Fusion Activates the Egg by Increasing Ca2+ in the Cytosol 1299

Ti're Cortical Reaction Helps EnsureThat Only One Sperm Fertilizes

the Egg 1300

The Soerm Provides Centrioles as Well as lts Genome to the Zygote 1301

IVF and lCSl Have Revolutionized theTreatment of Human
Infertility

Summary
References

Chapter 22 Development of Multicellular
Organisms
UNIVERSAL MECHANISMS OF ANIMAL DEVELOPMENT 1305

Animals Share Some Basic Anatomical Features 1307

1 301
1 303
1 304
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Mult icel lular Animals Are Enriched in proteins Mediat ino Cell
Interactions and Gene Regulat ion

Regulatory DNA Defines the program of Development
Manipulat ion of the Embryo Reveals the Interactions Between

Its Cells
Studies of Mutant Animals ldenti fy the Genes That Control

Developmental Processes
A Cell Makes Developmental Decisions Long Before lt Shows

a Visible Change
Cells Have Remembered Positional Values That Reflect Their

Location in the Body
Inductive Signals Can Create Orderly Differences Between

Init ial ly ldentical Cells
Sister Cells Can Be Born Different by an Asymmetric Cell

Division
Positive Feedback Can Create Asymmetry Where There Was

None Before
Positive Feedback Generates patterns, Creates All-or-None

Outcomes, and Provides Memory
A Small Set of Signaling Pathways, Used Repeatedly, Controls

Developmental Patterning
Morphogens Are Long-Range Inducers That Exert Graded Effects
Extracel lular Inhibitors of Signal Molecules Shape the Response

to the Inducer
Developmental Signals Can Spread Through Tissue in Severar

Different Ways
Programs That Are Intrinsic to a Cell Often Define the Time-Course

of its Develooment
Init ial  Patterns Are Establ ished in Small  Fields of Cells ano

Refined by Sequential Induction as the Embrvo Grows
Summory

CAENORHABDITIS ELEGANS: DEVELOPMENT FRoM THE
PERSPECTIVE OF THE INDIVIDUAL CELL
Caenorhabditis elegans ls Anatomically Simple
Cell Fates in the Developing Nematode Are Almost perfectly

Predictable
Products of Maternal-Effect Genes Organize the Asymmetric

Division of the Egg
Progressively More Complex patterns Are Created by Cell-Cell

I nteractions
Microsurgery and Genetics Reveal the Logic of Developmental

Control;  Gene Cloning and Sequencing Reveal l ts Molecular
Mechanisms

Cells Change Over Time in Their Responsiveness to
Developmental Signals

Heterochronic Genes Control the Timing of Development
Cells Do Not Count Cell  Divisions in Timing Their Internal

Programs
Selected Cells Die by Apoptosis as part of the proqram of

Development
Summary

DROSOPHILA AND THE MOLECULAR GENETICS OF
PATTERN FORMATION: GENESIS OF THE BODY PLAN
The Insect Body ls Constructed as a Series of Segmental Units
Drosophilo Begins lts Development as a Syncytium
Genetic Screens Define Groups ofGenes Required for Specific

Aspects of Early Patterning
Interactions of the Oocyte With lts Surroundings Define the

Axes of the Embryo: the Role of the Egg-polarity Genes
The Dorsoventral Signal ing Genes Create a Gradient of a

Nuclear Gene Regulatory protern
Dpp and Sog Set Up a Secondary Morphogen Gradient to

Refine the Pattern of the Dorsal part of the Embrvo
The Insect Dorsoventral Axis Corresponds to the Veriebrate

Ventrodorsal Axis
Three Classes of Segmentation Genes Refine the Anterior_posterior

Maternal Pattern and Subdivide the Embrvo
The Localized Expression of Segmentation Genes ls Regulated

by a Hierarchy of Posit ional Signals
The Modular Nature of Regulatory DNA Allows Genes to Have

Mult iple Independently Control led Functions

Homeotic Selector Genes Code for DNA-Binding proteins That
lnteract with Other Gene Regulatory Proteins 1342

The Homeotic Selector Genes Are Expressed Sequentially
According to Their Order in the Hox Complex

The Hox Complex Carries a Permanent Record of Positional
Information

The Anteroposterior Axis ls Controlled by Hox Selector Genes In
vertebrates Also

Summary

ORGANOGENESIS AND THE PATTERNING OF
APPENDAGES

Condit ional and Induced Somatic Mutations Make i t  possible to
Analyze Gene Functions Late in Development

Body Parts of the Adult Fly Develop From lmaginal Discs
Homeotic Selector Genes Are Essential for the Memory of

Posit ional Information in lmaginal Disc Cells
Specific Regulatory Genes Define the Cells That Will Form an

Appendage
The InsectWing Disc ls Divided into Compartments
Four Famil iar Signal ing Pathways Combine to Pattern the

Wing Disc: Wingless, Hedgehog, Dpp, and Notch
The Size of Each Compartment ls Regulated by Interactions

Among lts Cells
Similar Mechanisms Pattern the Limbs of Vertebrates
Localized Expression of Specific Classes of Gene Regulatory

Proteins Foreshadows Cell Differentiation
Lateral Inhibit ion Singles Out Sensory Mother Cells Within

Proneural Clusters
Lateral Inhibit ion Drives the Progeny of the Sensory Mother Cell

Toward Different Final Fates 857
Planar Polari ty of Asymmetric Divisions is Control led by Signal ing

via the ReceptorFrizzled 1359
Asymmetric Stem-Cell Divisions Generate Additional Neurons

in the Central Nervous System 1 359
Asymmetric Neuroblast Divisions Segregate an Inhibitor of Cell

Egg-Polarity, Gap, and Pair-Rule Genes Create a Transient
Pattern That ls Remembered bv Other Genes

Summary

HOMEOTIC SELECTOR GENES AND THE PATTERNING OF
THE ANTEROPOSTERIOR AXIS
The Hox Code Specifies Anterior-Posterior Differences

Division into Just One of the Daughter Cells
Notch Signal ing Regulates the Fine-Grained pattern of

Differentiated Cell Types in Many DifferentTissues
Some Key Regulatory Genes Define a Cell Type; Others Can

Activate the Program for Creation of an Entire Organ
Summary

CELL MOVEMENTS AND THE SHAPING OF THE
VERTEBRATE BODY

The Polarity of the Amphibian Embryo Depends on the polarity
of the Egg

Cleavage Produces Many Cells from One
Gastrulation Transforms a Hollow Ball of Cells into a Three-Lavered

Structure with a Primitive Gut
The Movements of Gastrulation Are Precisely predictable
Chemical Signals Trigger the Mechanical Processes
Active Changes of Cell Packing Provide a Driving Force for

Gastrulat ion
Changing Patterns of Cell  Adhesion Molecules Force Cells

Into New Arrangements
The Notochord Elongates, While the Neural plate Rolls Up ro

Form the Neural Tube
A Gene-Expression Oscillator Controls Segmentation of the

Mesoderm lnto Somites
Delayed Negative Feedback May Generate the Oscillations

of the Segmentation Clock
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Left-Right Asymmetry of the Vertebrate Body Derives From
Molecular Asymmetry in the Early Embryo

Summary

THE MOUSE

Mammalian Development Begins With a Special ized Preamble
The Early Mammalian Embryo ls Highly Regulat ive
Totipotent Embryonic Stem Cells Can Be Obtained From a

Mammalian Embryo
Interactions Between Epithel ium and Mesenchyme Generate

Branching Tubular Structures
Summary

NEURAL DEVELOPMENT

Neurons Are Assigned Different Characters According to the
Time and Place Where They Are Born

The Character Assigned to a Neuron at lts Birth Governs the
Connections l t  Wil l  Form

Each Axon or Dendrite Extends by Means of a Growth Cone at
Its Tip

The Growth Cone Pilots the Developing Neurite Along a Precisely
Defined Path /n Vlvo

Growth Cones Can ChangeTheir Sensibi l i t ies asTheyTravel
Target Tissues Release Neurotrophic Factors That Control Nerve

Cell Growth and Survival
Neuronal Specificity Guides the Formation of Orderly Neural

Maps
Axons From Different Regions of the Retina Respond Differently

to a Gradient of Reoulsive Molecules in the Tectum
Diffuse Patterns of Synaptic Connections Are Sharpened by

Activity-Dependent Remodeling
Experience Molds the Pattern of Synaptic Connections in the

Brain
Adult Memory and Developmental Synapse Remodeling May

Depend on Similar Mechanisms
Summary

PLANT DEVELOPMENT

Arabidopsis Serves as a Model Organism for Plant Molecular
Genetics

fhe Arabidopsis Genome ls Rich in Developmental Contro
Genes

Embryonic Development Starts by Establ ishing a Root-Shoot
Axis and Then Halts Inside the Seed

The Parts of a Plant Are Generated Sequentially by Meristems
Development of the Seedling Depends on Environmental Signals
Long-Range Hormonal Signals Coordinate Developmental Events

in Separate Parts ofthe Plant
The Shaping of Each New Structure Depends on Oriented

Cell  Division and Exoansion
Each Plant Module Grows From a Microscopic Set of Primordia

in a Meristem
Polarized Auxin Transport Controls the Pattern of Primordia

in the Meristem
Cell  Signal ing Maintains the Meristem
Regulatory Mutations Can Transform Plant Topology by

Altering Cell  Behavior in the Meristem
The Switch to Flowering Depends on Past and Present

Environmental Cues
Homeotic Selector Genes Specify the Parts of a Flower
Summary
References

Chapter 23 Specialized Tissues, Stem Cells,
and Tissue Renewal

EPIDERMIS AND IT5 RENEWAL BY STEM CELLS
Epidermal Cells Form a Multilayered Waterproof Barrier
Differentiating Epidermal Cells Express a Sequence of Different

Genes as They Mature
Stem Cells in the Basal Layer Provide for Renewal of the Epidermis
The Two Daughters of a Stem Cell Do Not Always Have to

Become Different

The Basal Layer Contains Both Stem Cells and Transit Amplifying
Cells

Transit amplifying Divisions Are Part of the Strategy of Growth
Control

Stem Cells of Some Tissues Selectively Retain Original DNA
Strands

The Rate of Stem-Cell Division Can Increase Dramatically
When New Cells Are Needed UrgentlY

Many Interacting Signals Govern Epidermal Renewal
The Mammary Gland Undergoes Cycles of Development and

Regression
Summary

SENSORY EPITHELIA

Olfactory Sensory Neurons Are Continually Replaced
Auditory Hair Cells Have to Last a Lifetime
Most Permanent Cells Renew Their Parts: the Photoreceptor

Cells of the Retina
Summary

THE AIRWAYS ANDTHE GUT

Adjacent Cell Types Collaborate in the Alveoli of the Lungs
Goblet Cells, Ci l iated Cells, and Macrophages Collaborate to

Keep the Airways Clean
The Lining of the Small  Intest ine Renews ltself  FasterThan

Any Other Tissue
Wnt Signal ing Maintains the Gut Stem-Cell  Compartment
Notch Signal ing Controls Gut Cell  Diversif icat ion
Ephrin-Eph Signaling Controls the Migrations of Gut Epithel ial

Cells
Wnt, Hedgehog, PDGF, and BMP Signaling Pathways Combine

to Delimit the Stem-Cell  Niche
The Liver Functions as an Interface Between the Digestive Tract

and the Blood
Liver Cell Loss Stimulates Liver Cell Proliferation
Tissue Renewal Does Not Have to Depend on Stem Cells: Insul in-

Secreting Cells in the Pancreas
Summary

BLOOD VEsSEL5, LYMPHATICS, AND ENDOTHELIAL

CELLS

Endothel ial Cel ls Line Al l  Blood Vessels and Lymphatics
Endothel ial Tip Cells Pioneer Angiogenesis
DifferentTypes of Endothelial Cells Form DifferentTypes ofVessel

Tissues Requir ing a Blood Supply Release VEGF; Notch Signal ing
Between Endothel ial Cel ls Regulates the Response

Signals from Endothelial Cells Control Recruitment of Pericytes
and Smooth Muscle Cells to Form the Vessel Wall

Summary

RENEWAL BY MULTIPOTENT STEM CELLS: BLOOD CELL

FORMATION

TheThree Main Categories of White Blood Cells Are Granulocytes,
Monocytes, and LYmPhocytes

The Production of Each Type of Blood Cell in the Bone Marrow ls

Individual ly Control led
Bone Marrow Contains Hemopoiet ic Stem Cells
A Multipotent Stem Cell Gives Rise to All Classes of Blood Cells

Commitment ls a StePwise Process
Divisions of Committed Progenitor Cells Amplify the Number of

Special ized Blood Cells
Stem Cells Depend on Contact Signals From Stromal Cells
Factors That Regulate Hemopoiesis Can Be Analyzed in Culture

Erythropoiesis Depends on the Hormone Erythropoietin
Mult iple CSFs lnf luence Neutrophi l  and Macrophage Production
The Behavior of a Hemopoietic Cell Depends Partly on Chance

Regulat ion of Cell  Survival ls as lmportant as Regulat ion of Cell

Proliferation
Summary

GENESIS, MODULATION, AND REGENERATION OF

SKELETAL MUSCLE

Myoblasts Fuse to Form New Skeletal Muscle Fibers
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Muscle Cells Can Vary Their Propert ies by Changing the protein
fsoforms They Contain 1465

Skeletal Muscle Fibers Secrete Myostatin to Limit Their Own Growth 1465
Some Myoblasts Persist as euiescent Stem Cells in the Adult :|466
Summary 1467

FIBROBLASTS AND THEIR TRANSFORMATTONS: THE
CON NECTIVE-TISSUE CELL FAMILY

Pathogens Evolve Rapidly
Antigenic Variation in Pathogens Occurs by Multiple

Mechanisms
Error-Prone Replication Dominates Viral Evolution
Drug-Resistant Pathogens Are a Growing Problem
Summary

BARRIERSTO INFECTION ANDTHE INNATE IMMUNE
5YsTEM

Lymphoid Organs
Summary

B CELLS AND ANTIBODIES

B Cells Make Antibodies as Both Cell-Surface Antigen Receptors
and Secreted Proteins

A Typical Antibody Has Two ldentical Antigen-Binding Sites
An Antibody Molecule ls Composed of Heavy and Light Chains
There Are Five Classes of Antibody Heavy Chains, Each witn

Different Biological Properties

Regions
The Light and Heavy Chains Are Composed of Repeating lg

Domains
An Antigen-Binding Site ls Constructed from Hypervariable Loops
Summary

THE GENERATION OF ANTIBODY DIVERSITY
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1524

1524Fibroblasts Change Their  Character  in Response to Chemical
Signals 1467

The Extracel lu lar  Matr ix  May Inf luence Connect ive-Tissue Cel l
Differentiation by Affecting Cell Shape and Attachment 1468

Osteoblasts Make Bone Matrix i46g
Most Bones Are Bui l t  Around Cart i lage Models 1470
Bone ls Cont inual ly  Remodeled by the Cel ls  With in l t  l r472
Osteoclasts Are Controlled by Signals From Osteoblasts 1473
Fat Cells Can Develop From Fibroblasts 1474
Leptin Secreted by Fat Cells Provides Feedback to Requlate

Epithelial Surfaces and Defensins Help Prevent Infection 1 525
Human Cells Recognize Conserved Features of Pathogens 1526
Complement Activation Targets Pathogens for Phagocytosis

or Lysis 1 52g
Toll-like Proteins and NOD Proteins Are an Ancient Family of

Pattern Recognition Receptors
Phagocytic Cells Seek, Engulf, and Destroy Pathogens
Activated Macrophages Contribute to the Inflammatory

Response at Sites of Infection
Virus-lnfected CellsTake Drastic Measures to PreventViral

Replication 1534
Natural Ki l ler Cells Induce Virus-lnfected Cells to Ki l l  Themselves 1535
Dendrit ic Cells Provide the Link Between the Innate and

1467
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1476
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Hemopoietic Stem Cells Can Be Used to Replace Diseased Blood
Cells with Healthy Ones 1477

Epidermal Stem Cell  Populat ions Can Be Expanded in Culture for
Tissue Repair 1477

Neural Stem Cells Can Be Manipulated in Culture ir478
Neural Stem Cells Can Repopulate the Central Nervous System 147g
Stem Cells in the Adult Body Are Tissue-Specific 1479
ES Cells Can Make Any Part ofthe Body 1480
Patient-Specif ic ES Cells Could Solve the problem of lmmune

Rejection 1481
ES Cells Are Useful for Drug Discovery and Analysis of Disease 14g2
Summary lr4g2
References l4g3

Eating
Summary

STEM-CELL ENGINEERING

Chapter 24 Pathogens, Infection, and Innate
lmmunity

INTRODUCTION TO PATHOGENS
Pathogens Have Evolved Specific Mechanisms for Interacting

with Their Hosts
The Signs and Symptoms of  Infect ion May Be Caused by the

Pathogen or by the Host! Responses
Pathogens Are Phylogenetically Diverse
Bacterial Pathogens Carry Specialized Virulence Genes

and Other Chronic l l lnesses
Summary

CELL BIOLOGY OF INFECTION

Pathogens Cross Protective Barriers to Colonize the Host
Pathogens That Colonize Epithel ia Must Avoid Clearance bv

the Host
Intracel lular Pathogens Have Mechanisms for Both Enterinq

and Leaving Host Cells
Virus Part icles Bind to Molecules Displayed on the Host Cell

Su rface
Vir ions Enter Host Cells by Membrane Fusion, pore Formation, or

Membrane Disruotion
Bacteria Enter Host Cells by phagocytosis
Intracellular Eucaryotic Parasites Actively Invade Host Cells
Many Pathogens Alter Membrane Traffic in the Host Cell
Viruses and Bacteria Use the Host Cell Cytoskeleton for Intracellular
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A Note to the Reader

Structure of the Book
Although the chapters of this book can be read independently of one another,
they are arranged in a logical sequence of five parts. The first three chapters of

Part I cover elementary principles and basic biochemistry. They can serve either

as an introduction for those who have not studied biochemistry or as a refresher
course for those who have.

Part II deals with the storage, expression and transmission of genetic infor-

mation.
Part III deals with the principles of the main experimental methods for

investigating cells. It is not necessary to read these two chapters in order to

understand the later chapters, but a reader will find it a useful reference.
Part IV discusses the internal organization of the cell.
Part V follows the behavior of cells in multicellular systems, starting with

cell-cell junctions and extracellular matrix and concluding with tvvo chapters on

the immune system. Chapters 2l-25 can be found on the Media DVD-ROM

which is packaged with each book, providing increased portability for students.

End-of-Chapter Problems
A selection of problems, written by Iohn Wilson and Tim Hunt, now appears in

the text at the end of each chapter. The complete solutions to these problems

can be found in Molecular Biology of the CelI, Fifth Edition: The Problems Book.

References
A concise list of selected references is included at the end of each chapter. These

are arranged in alphabetical order under the main chapter section headings.

These references frequently include the original papers in which important dis-

coveries were first reported. Chapter 8 includes several tables giving the dates of

crucial developments along with the names of the scientists involved. Elsewhere

in the book the policy has been to avoid naming individual scientists.

Media Codes
Media codes are integrated throughout the text to indicate when relevant videos

and animations are available on the DVD-ROM. The four-letter codes are

enclosed in brackets and highlighted in color, like this <ATCG>. The interface for

the CeII Biology Interactiue media player on the DVD-ROM contains a window

where you enter the 4-letter code. lVhen the code is typed into the interface, the

corresponding media item will load into the media player.

GlossaryTerms
Throughout the book, boldface type has been used to highlight key terms at the

point in a chapter where the main discussion of them occurs. Italic is used to set

off important terms with a lesser degree of emphasis. At the end of the book is

the expanded glossary, covering technical terms that are part of the common

currency of cell biology; it is intended as a first resort for a reader who encoun-

ters an unfamiliar term used without explanation.

Nomenclature for Genes and Proteins
Each species has its own conventions for naming genes; the only common fea-

ture is that they are always set in italics. In some species (such as humans)' gene

names are spelled out all in capital letters; in other species (such as zebrafish),



case and rest in lower case; or (as in Drosophila) with different combinations of
upper and lower case, according to whether the first mutant allele to be discov-
ered gave a dominant or recessive phenotype. conventions for naming protein
products are equally varied.

This typographical chaos drives everyone crazy. lt is not just tiresome and
absurd; it is also unsustainable. we cannot independently define a fresh con-
vention for each of the next few million species whose genes we may wish to
study. Moreover, there are many occasions, especially in a book such as this,
where we need to refer to a gene generically, without specifliing the mouse ver-
sion, the human version, the chick version, or the hippopotamus version,
because they are all equivalent for the purposes of the discussion. \.A/hat con-
vention then should we use?

We have decided in this book to cast aside the conventions for individual
species and follow a uniform rule: we write all gene names, like the names of peo-
ple and places, with the first letter in upper case and the rest in lower case, but all
in- italics, thus: Apc, Bazooka, cdc2, Disheuelled, Egll. The corresponding protein,
where it is named after the gene, will be written in the same way, but in roman
rather than italic letters: Apc, Bazooka, cdc2, Dishevelled, Egll. lvhen it is neces-
sary to specify the organism, this can be done with a prefix to the gene name.

For completeness, we list a few further details of naming rules that we shall
follow In some instances an added letter in the gene name is traditionally used
to distinguish between genes that are related by function or evolution; foi those
genes we put that letter in upper case if it is usual to do so (LacZ, RecA, HoxA4).
we use no hyphen to separate added letters or numbers from the rest of the
name. Proteins are more of a problem. Many of them have names in their own
right, assigned to them before the gene was named. such protein names take
many forms, although most of them traditionally begin with a lower-case letter
(actin, hemoglobin, catalase), Iike the names of ordinary substances (cheese,
nylon), unless they are acronyms (such as GFB for Green Fluorescent protein, or
BMP4, for Bone Morphogenetic Protein #4).To force all such protein names into
a uniform style would do too much violence to established usages, and we shall
simply write them in the traditional way (actin, GFB etc.). For thl corresponding
gene names in all these cases, we shall nevertheless follow our standard rule:
Actin, Hemoglobin, catalase, Bmp4, G/p. occasionally in our book we need to
highlight a protein name by setting it in italics for emphasis; the intention will
generally be clear from the context.

For those who wish to know them, the Table below shows some of the offi-
cial conventions for individual species-conventions that we shall mostlv vio-
Iate in this book, in the manner shor.tm.

Mouse

Human
Zebrafish
Coenorhabditis
Drosophila

Yeast
Socch a ro myce s ce rev i si ae (budd ing yeast)
Sch izosacch a ro myce s pombe (fi ssion yeast)

Arabidopsis
E. coli

Hoxo4
Bmp4
integrin u-|, ltgal
HOXA4
cyclops, cyc
unc-6
sevenless, sey (named
after recessive mutant
phenotype)
Defarmed, Dfd (named
after dominant mutant
phenotype)

CDC28
Cdc2
GAI
uvrA

Hoxa4
BMP4
integrin cr1
HOXA4
Cyclops, Cyc
UNC-6
Sevenless, SEV

Deformed, DFD

Cdc28, Cdc28p
Cdc2, Cdc2p
GAI
UvrA

HoxA4

Bmp4

lntegrin d,l,ltgal

HoxA4

Cyclops, Cyc

Unc6

Sevenless, Sev

Deformed, Dfd

Cdc28

Cdc2

Gai

UvrA

HoxA4

BMP4

in tegr in  a1

HoxA4

Cyclops, Cyc

Unc6

Sevenless, Sev

Deformed, Dfd

Cdc28
Cdc2
GAI
UvrA



Anci l lar ies

Molecular Biolagy of the Cell, Fifih Edition:The Problems Book
by Iohn Wilson and Tim Hunt (ISBN: 978-0-8 I 53-4 f 10-9)
The Problems Book is designed to help students appreciate the ways in which
experiments and simple calculations can lead to an understanding of how cells
work. It provides problems to accompany Chapters I-20 of Molecular Biology of
the Cell. Each chapter of problems is divided into sections that correspond to
those of the main textbook and review key terms, test for understanding basic
concepts, and pose research-based problems. Molecular Biology of the Cell, Fifth
Edition: The Problem.s Book should be useful for homework assignments and as
a basis for class discussion. It could even provide ideas for exam questions. Solu-
tions for all of the problems are provided on the CD-ROM which accompanies
the book. Solutions for the end-of-chapter problems in the main textbook are
also found in The Problems Book.

MBoCSMediaDVD-ROM
The DVD included with every copy of the book contains the figures, tables, and
micrographs from the book, pre-loaded into PowerPoint@ presentations, one for
each chapter. A separate folder contains individual versions of each figure, table,
and micrograph in JPEG format. The panels are available in PDF format. There
are also over 125 videos, animations, molecular structure tutorials, and high-res-
olution micrographs on the DVD. The authors have chosen to include material
that not only reinforces basic concepts but also expands the content and scope
of the book. The multimedia can be accessed either as individual files or through
the Cell Biology Interactiue media player. As discussed above, the media player
has been programmed to workwith the Media Codes integrated throughout the
book. A complete table of contents and overview of all electronic resources is
contained in the MBoCS Media Viewing Guide, a PDF file located on the root
level of the DVD-ROM and in the Appendix of the media player. The DVD-ROM
also contains Chapters 21-25 which cover multicellular systems. The chapters
are in PDF format and can be easily printed or searched using Adobe@ Acrobat@
Reader or other PDF software.

Teaching Supplements
Upon request, teaching supplement s for Molecular Biologt of the Cell are avail-
able to qualified instructors.

MBoC1Transparency Set
Provides 200 frrll-color overhead acetate transparencies of the most important
figures from the book.

MBoCSTest Questions
A selection of test questions will be available. Written by Kirsten Benjamin
(Amyris Biotechnologies, Emeryville, California) and Linda Huang (University of
Massachusetts, Boston), these thought questions will test students'understand-
ing of the chapter material.

MBoCS Lecture Outlines
Lecture outlines created from the concept heads for the text are provided.

Garlnnd Science ClasswirerM
All of the teaching supplements on the DVD-ROM (these include figures in Pow-
erPoint and JPEG format; Chapters 2l-25 in PDF format; 125 videos, animations,
and movies) and the test questions and Iecture outlines are available to qualified
instructors online at the Garland Science Classwire'" Web site. Garland Science
Classwire'" offers access to other instructional resources from all of the Garland
Science textbooks, and provides free online course management tools. For addi-
tional information, please visit http://www.classwire.com/garlandscience or
e-mail science@garland.com. (Classwire is a trademark of ChalKree, Inc.)

Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated
in the United States andlor other countries
PowerPoint is either a registered trademark or trademark of Microsoft Corporation in the United

States and/or other countries


