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1.1 Hierarchy of textile materials

Textiles technologies have evolved over millennia and the term ‘textile’ now
has a very broad meaning. Originally reserved for woven fabrics, the term
now applies to fibres, filaments and yarns, natural or synthetic, and most
products derived from them. This includes threads, cords, ropes and braids;
woven, knitted and non-woven fabrics; hosiery, knitwear and garments;
household textiles, textile furnishing and upholstery; carpets and other fibre-
based floor coverings; industrial textiles, geotextiles and medical textiles.

This definition introduces three important notions. First, it states that
textiles are fibrous materials. A fibre is defined as textile raw material,
generally characterised by flexibility, fineness and high ratio of length to
thickness; this is usually greater than 100. The diameter of fibres used in
textile reinforcements for composites (glass, carbon, aramid, polypropylene,
flax, etc.) varies from 5 mm to 50 mm. Continuous fibres are called filaments.
Fibres of finite length are called short, discontinuous, staple or chopped with
lengths from a few millimetres to a few centimetres.

Fibres are assembled into yarns and fibrous plies, and then into textiles.
The second important feature of textiles is their hierarchical nature. One
can distinguish three hierarchical levels and associated scales: (1) fibres at
the microscopic scale; (2) yarns, repeating unit cells and plies at the mesoscopic
scale; and (3) fabrics at the macroscopic scale. Each scale is characterised by
a characteristic length, say 0.01 mm for fibre diameters, 0.5–10 mm for yarn
diameters and repeating unit cells, and 1–10 m and above for textiles and
textile structures. Each level is also characterised by dimensionality where
fibres and yarns are mostly one-dimensional while fabrics are two- or three-
dimensional, and by structural organisation where fibres are twisted into
yarns, yarns are woven into textiles, etc.

Textiles are structured materials. On a given hierarchical level one can
think of a textile object as an entity and make abstraction of its internal
structure: a yarn may be represented as a flexible rod, or a woven fabric as
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Design and manufacture of textile composites2

a membrane. This approach is useful but the internal structure must be
considered if one wishes to assess basic features and behaviour of textile
objects such as the transverse compression of yarns or shear behaviour of
fabrics. The diversity of textile technologies results in a large variety of
available textile structures. Figure 1.1 depicts textile structures that are widely
used as reinforcements for composites; these are discussed in this chapter.

The properties of a fabric are the properties of fibres transformed by the
textile structure. The latter is introduced deliberately during manufacturing.
Modern fibres turn millennium-old textile technologies into powerful tools
for creating materials designed for specific purposes, where fibre positions
are optimised for each application. Textile manufacturing methods and internal
structure are two important topics that are addressed in this chapter.

1.2 Textile yarns

1.2.1 Classification

The term yarn embraces a wide range of 1D fibrous objects. A yarn has
substantial length and relatively small cross-section and is made of fibres
and/or filaments, with or without twist. Yarns containing only one fibre are
monofilaments. Untwisted, thick yarns are termed tows. Flat tows are called
rovings in composite parlance; in textile technology this word designates an
intermediate product in spinning. Sizing holds the fibres together and facilitates
the processing of tows; it also promotes adhesion of fibres to resin in composites.
In twisted yarns, fibres are consolidated by the friction resulting from twist.
A twist is introduced to a continuous filament yarn by twisting. For a twisted
yarn made of staple fibres the process is called spinning and involves a long
chain of preparatory operations. There are different yarn spinning processes
(ring spinning, open-end spinning, friction spinning) leading to yarns with
different internal distributions of fibres. Note that these are distinct from
fibre spinning processes such as wet spinning, melt spinning or gel spinning,
which are used to make individual fibres, most often from various polymers.

Fibres of different types are easily mixed when yarn spun, producing a
blend; thermoplastic matrix fibres can be introduced among load-carrying
fibres in this way. Finally, several strand yarns can be twisted together,
forming a ply yarn.

1.2.2 Linear density, twist, dimensions and fibrous
structure of yarns

The linear density is the mass of a yarn per unit length; the inverse quantity
is called yarn count or number. Common units for linear density are given in
Table 1.1. Linear density, the most important parameter of a yarn, is normalised
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1.1 Textile structures: (a–c) 2D woven fabrics; (d) 3D woven fabrics; (e, f) 2D braided fabrics; (g, h) weft-knitted fabrics;
(i) multiaxial multiply warp-knitted fabric.
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by specifications and controlled in manufacturing. The unevenness, or
coefficient of variation of linear density, is normally below 5% for continuous
filament yarns while for spun yarns special measures in manufacturing keep
it within a specified range. For yarns made of short and stiff fibres such as
flax the unevenness can be as high as 15–20%.

The twist K of a yarn is a number of turns per unit length. Values of twist
for yarns used in composite reinforcements are normally below 100 m–1. The
twist angle is the inclination of fibres on the surface of the yarn due to twist
(Fig. 1.2). If d is the yarn diameter and h = 1/K is the length of the period of
twist, the twist angle is calculated as:

tan  =  = b p pd
h

dK 1.1

Table 1.1 Units of linear density and yarn count

Unit Definition

Tex (SI) 1 tex = 1 g/km
Denier 1 den = 1 g/9 km
Metric number 1 Nm = 1 km/kg
Glass (UK and US) NG = 1 pound/1 yard

d

h

1.2 Calculation of twist angle.
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The twist angle is indicative of the intensity of frictional interaction
between fibres inside a yarn, and of the tensile resistance of a staple yarn. It
provides an estimation of the deviation of the orientation of fibres from the
yarn axis and ideal load direction in the case of textile reinforcements for
composites; the effective modulus of an impregnated yarn can be estimated
as proportional to cos4 b. For example, a yarn of diameter d = 0.5 mm and
twist K = 100 m–1 would lead to b = 9∞ and cos4 b = 0.95, resulting in a
decrease in stiffness of 5% for the impregnated yarn.

Fibrous yarns do not have precise boundaries; their dimensions are arbitrary.
Considering a circular yarn with similar dimensions along all radii, the diameter
of a cylinder having the same average density as that yarn is:

d T
V

 = 4
f fpr 1.2

where T is the linear density of the yarn, rf is the fibre density and Vf is the
fibre volume fraction in the yarn (which is generally unknown). In practice,
eqn 1.2 is rewritten:

d C T = 1.3

where an empirical coefficient C applies to each yarn type. Typical values of
C correspond to Vf = 0.4 to 0.6. Measuring d presents difficulties with values
depending on the pressure applied to the yarn and on image processing of
yarn cross-sections. These can be avoided by extrapolating the results of
transverse yarn compression tests to zero load. Remarkably, values of C
obtained empirically for very different yarns (cotton, wool, polyester, aramid,
glass, etc.) all lie in the range 0.03–0.04 (d in mm and T in tex), which is
useful for first estimations.

Rovings and tows used in composites are normally sized, leading to better-
defined surfaces without loose fibres. Roving cross-sections can be
approximated by elliptical, lenticular or various other shapes with a width-
to-thickness ratio of 3 to 10. Actual dimensions depend on manufacture-
induced spreading; however, relationships exist between linear density and
section dimensions (Fig. 1.3). Fibres are positioned randomly within cross-
sections. Clusters separated by random voids are formed, and these remain
present upon compaction. Fibres do not align in theoretically ideal hexagonal
arrays because of fibre crimp1.

1.2.3 Mechanical properties of yarns

During textile manufacture, yarns are subjected to different loads and constraints
that define their final configuration in the textile. The behaviour of yarns
under load is non-linear and non-reversible owing to their fibrous nature and
inter-fibre friction. The most important yarn deformation modes in determining
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the internal geometry of a fabric are bending, which allows interlacing of
yarns and generates yarn interaction forces in the fabric, and transverse
compression which results from these interactive forces and defines the shape
of yarns in the fabric. Tension and torsion are generally unimportant for
unloaded fabrics.

Bending of textile yarns

Yarn bending is characterised by a bending diagram M( k) where M is the
bending moment and k is the curvature, with k = 1/R where R is the radius
of curvature. Typical bending diagrams registered on the Kawabata (KES-F)
bending tester2 appear in Fig. 1.4 for a sized carbon tow; the lower cycle was

y = 1.790 E–04x + 1.691E–01
R 2 = 9.896 E-01
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1.3 Thickness and width of glass rovings (from different
manufacturers).
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shifted vertically for clarity. The initial stage of bending (stage I – k lower
than 0.2 cm–1, R higher than 5 cm) features high stiffness values associated
to fibres linked by sizing and friction3; the yarn acts as a solid rod. Curvature
radii in fabrics are of the order of a few millimetres. hence stage I is not
relevant to their internal structure: standard practice stipulates that bending
rigidity should be determined between k = 0.5 and k = 1.5 cm–1. The slope
over stages II and III is averaged and bending rigidity is calculated as:

B M = D
Dk 1.4

The bending diagram also provides information on the hysteresis, typically
defined as the difference between values of the bending moment at k = 1 cm–1

upon loading and unloading; this is rarely used in practice but helps in
understanding the physics of the phenomenon: clearly the behaviour is not
elastic. There are many simple test methods for determining B using the
deformation of the yarn under its own weight4,5. These are easier to use but
their application to thick, rigid tows used in composites is limited as small
deformations lead to large errors.

The bending rigidity of a yarn can be estimated from the bending rigidity
of single fibres. Each fibre in a yarn containing Nf circular fibres of diameter
df and modulus Ef has a bending rigidity of:

B
E d

f
f f

4

 = 
64

1.5

Fibres in a yarn are held together by friction and/or bonding. In one
extreme the yarn can be regarded as a solid rod, while in the other extreme
each fibre bends independently. Lower and upper estimates of the yarn bending
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1.4 Bending diagrams for carbon roving (3.2 ktex).
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rigidity can be derived as Nf Bf £ B £ N f
2 Bf; the difference between these

two extremes is great as Nf is counted in hundreds or thousands. Experiments
show that for rovings typical of composite reinforcements the lower estimation
is valid:

B ª NfBf 1.6

Figure 1.5 shows measured bending rigidity values for glass and carbon
rovings and estimates from eqn 1.6. The trend for glass rovings is not linear
as fibre diameters differ (13 to 21 mm) for different yarns. The carbon tows
are all made of fibres with a diameter of 6 mm. The difference in the fibre
diameters explains why bending rigidity of the glass rovings is higher. The
outlier point in Fig. 1.5, located below the trend line, results from internal
fibre crimp in an extremely thick (80K) tow.

1.5 Bending rigidity of glass and carbon rovings.

Compression of textile yarns

When compressed a textile yarn becomes thinner in the direction of the force
and wider in the other direction, Fig. 1.6. Changes in yarn dimensions can be
expressed using coefficients of compression h:
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where d1 and d2 are the yarn dimensions, Q is the load, h1 < 1, h2 > 1 and
subscript 0 refers to the shape at Q = 0. The load Q is defined as a force per
unit length, which is simpler to use than a pressure because of changes in
yarn dimensions.

Measuring h1 is straightforward. The Kawabata compression tester2 is the
standard tool for doing this. As shown in Fig. 1.6 the first and second
compression cycles differ substantially but subsequent cycles are similar to

1.6 Compression of textile yarns. Top: schematic of test configuration
and typical KES-F curves (two loading cycles). Bottom:
compressibility of glass rovings.
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the second. The first cycle measures forces associated to factors such as the
imperfect flatness of relaxed rovings, which disappear in subsequent cycles.
Latter cycles should be regarded as characteristic of yarn behaviour. Figure
1.6 also shows compression curves for glass rovings of different linear density,
to be compared with zero-load thickness data in Fig. 1.3. Non-linearity is
evident from Fig. 1.6. The curves may be approximated by a power law:

1 – ( )
( ) –  

 = 
*

1

1 1min

h
h h

aQ
Q

Q
Q

Ê
Ë

ˆ
¯ 1.8

where h1min is the maximum compressibility of the yarn (Q Æ µ). The curve
for the 276 tex glass roving can be approximated with h1min = 0.398, Q* =
0.014 N/mm and a = 0.612. Measuring h2 is a different issue for which no
standard procedure exists. Published techniques6–8 involve observing the
dimensions of a yarn compressed between two transparent plates. Experimental
results show that:

h h2 1
–  ,  = 0.2ª a a to 0.3 1.9

1.3 Woven fabrics

1.3.1 Parameters and manufacturing of woven fabric

A woven fabric is produced by interlacing warp and weft yarns, identified as
ends and picks. It is characterised by linear densities of warp and weft yarns,
a weave pattern, a number of warp yarns per unit width PWa (ends count,
inverse to warp pitch or centre-line spacing pWa), a number of weft yarns per
unit length PWe (picks count, inverse to weft spacing pWe), warp and weft
yarn crimp, and surface density.

Figure 1.7 represents a weaving loom. Warp yarns are wound on the warp
beam, rolling off it parallel to one another under regulated tension. Each
warp yarn is linked to a harness, a frame positioned across the loom with a
set of heddles mounted on it. The heddle is a wire or thin plate with an eye
through which a warp yarn goes. When a harness goes up or down, the warp
yarns connected to it go up (warp 2) or down (warp 1). A shed is formed,
which is a gap between warp yarns where a weft yarn may be inserted using
a weft insertion device such as a shuttle, projectile, air/water jet or rapier.
The weft yarn is positioned by battening from a reed, a grid of steel plates
between which warp yarns extend. The reed is mounted on a slay which
moves back and forth; the backward motion opens space for weft insertion
while the forward motion battens the weft. Once a weft yarn is in position
the harnesses move in opposite directions, closing the shed and locking the
weft in the fabric. The fabric is moved forward by the cloth beam and the
process is repeated (Fig. 1.7). In the final fabric roll the warp ends extend
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along the roll direction while the weft picks extend parallel to the roll axis.
Lateral extremities are sometimes referred to as the selvedge.

The ends count, picks count and weave pattern are respectively determined
by the total number of warp yarns on the beam and the fabric width, by the
rotation speed of the cloth beam, and by the sequence of connection between
warp yarns and harnesses and the harness motions. All motions happen
within one rotation of the main shaft. The rotation speed of this shaft determines
the number of weft yarns inserted per minute. Modern looms rotate at 150 to
1000 rpm. The loom speed determines the productivity A, the area of fabric
produced in a given time:

A nb
P

 = 
We

1.10

where n and b are the loom speed and fabric width. Typical values for a
composite reinforcement produced on a loom with a projectile weft insertion
are n = 300 min–1, PWe = 4.0 cm–1, b = 1.5 m. Productivity here is then 67.5
m2/h or, assuming a surface density of 300 g/m2, 20 kg/h.

Weft insertion

Weaving looms are classified according to weft insertion devices: shuttle,
projectile (‘shuttleless’), rapier, air or water jet. Air jet insertion is unsuitable

Harness 2

Reed 2. Insert the weft

Inserted weft

3. Batten the weft

Slay

Cloth beam

4. Take the
fabric off.

Determines
the picks

count.

Shed
Warp 2

Heddle

Warp 1

Harness 1

Warp tension
mechanism

Warp

Warp
beam

1b. Open the shed. Deter-
mines the weave pattern.

1a. Release the stored warp yarns.
Control tension of the warp.
Determines the ends count.

1.7 Schematic diagram of a weaving loom.

© Woodhead Publishing Limited, 2005



Design and manufacture of textile composites12

for thick glass and carbon tows. Weft insertion speeds are typically between
7 and 35 m/s, depending on the insertion technique employed. These relate
to the productivity of different looms. If weft insertion takes a fraction a of
the weaving cycle (typically a =1/4 to 1/3), loom speed can be estimated as:

n v
b

 = a 1.11

where v is the average velocity of the weft insertion.
A shuttle is a device shut from side to side of the loom. It carries a spool

with a weft thread that is unwound during insertion. Automatic looms work
on the same principle as shuttle hand looms. In order to carry enough weft
yarn, the shuttle must be large. The shed must open wide with considerable
warp tension to prevent it from tearing. Shuttles with masses of about 500 g
prevent velocities above 10 m/s. Noisy shuttle looms consume much energy
but can insert any type of weft yarn with ease, including heavy tows. They
are widely used to produce composite reinforcements.

Shuttleless looms use a projectile instead of a shuttle. The projectile does
not carry a spool and can be much lighter, about 50 g. A weft yarn is fixed
to the projectile and unwound from the bobbin during insertion. The projectile
is kept on target by a grid fixed to a reed, preventing contact with warp yarns.
This allows smaller shed opening, while the lighter projectile leads to high
insertion speeds (up to 20 m/s). Shuttleless looms can carry heavy yarns up
to a certain limit.

Air looms use an air jet as the weft carrier. A length of weft yarn is cut off
and fed into an air nozzle. An air jet carries the yarn across the loom in a
tunnel attached to a reed. The tunnel helps maintaining the jet speed. On
wide looms (above 1 m) additional nozzles accelerate the jet along the weft
yarn path. High velocity of insertion (up to 35 m/s) ensures maximum
production speed but weft linear densities are limited to 100 tex, restricting
usage of these looms for composite reinforcements.

Water looms use a water jet for weft yarn insertion. This allows handling
of heavier yarns, including thick tows for composite reinforcements, but
excludes moisture-sensitive fibres such as aramids.

Rapier looms insert weft yarns using mechanical carriers. Yarns are stored
on a bobbin and connected to the left rapier, which moves to the centre. The
right rapier does the same from the other side. When they meet, the yarn is
transferred mechanically from one rapier to the other and cut off before a
new weaving cycle is started. Rapier looms are relatively slow (~ 7 m/s) but
have no restrictions in weft thickness, and consume less energy than shuttle
or projectile looms.
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Shedding mechanisms

Shedding mechanisms lift and bring down warp yarns in a prescribed order,
creating sheds. Groups of warp yarns are lifted and lowered by harnesses;
their number determines weave complexity, with the maximum usually being
8 or 16 but sometimes as many as 32. The motion of harnesses can be
effected by cams or dobby. Alternatively the motion of each warp yarn can
be controlled separately, allowing any weave pattern. Such shedding
mechanisms are called Jacquards.

Consider a shedding mechanism with harnesses. Figure 1.8 illustrates the
way to weave a desired pattern. The pattern shows crossovers of warp (columns)
and weft (rows) yarns. In the paper-point diagram, squares corresponding to
crossovers where the warp is on top of the weft appear in black, otherwise
they are white. Top (face) and bottom (back) refer to fabric on the loom.
Circles in the loom up order diagram indicate which harness controls which
warp yarns, and crosses in the shedding diagram indicate the lifting sequence
of the harnesses.

Loom up order Shedding order

Harness
no.

5
4
3
2
1

Weft
no.

5
4
3
2
1

1 2 3 4 5

Shed no.

1 2 3 4 5

Warp no.
Weave pattern

Harness positions at shed no. 2

3

2
1

5
4

Harness no.
Warp no.

1 2 3 4 5

1.8 Weave design and movement of harness.

In cam shedding mechanisms, each cam controls the motion of one harness.
To change a weave pattern one must change the cams. Dobby shedding
mechanisms control harnesses through more complex electronic programs.
They are used when the number of cams on a loom, usually eight, is insufficient
for a chosen weave pattern. Jacquard machines control the motions of warp
yarns independently. Warp yarns go through the heddles which are connected
with the Jacquard machine by harness cords, lifting and lowering the heddles
according to a program. Such machines are used to make 3D reinforcements.
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1.3.2 Weave patterns

Figure 1.9 depicts elements of a woven pattern used for weave classification.
The pattern is represented with a paper-point diagram, with black squares
corresponding to crossovers where the warp yarn is on top. The minimum
repetitive element of the pattern is called a repeat. The repeat can have a
different number of warp (NWa) and weft (NWe) yarns.

Repeat size

Weft Nwe = 7

Move or step

fwa = 1 Swa = 2

fwa = 5

Float

Nwa = 6

1.9 Elements of a typical weave.

The length of a weft yarn on the face of the fabric, measured in number
of intersections, is called weft float (fWe). For common weaves it is equal to
the number of white squares between black squares on any weft yarn. The
warp float (fWa) is defined similarly. Consider two adjacent weft yarns and
two neighbouring warp intersections on them. The distance between them,
measured in number of squares, is called move or step (s). This characterises
the shift of the weaving pattern between two weft insertions. Different yarns
in the pattern shown in Fig. 1.9 have different floats and steps. In common
weaves these parameters take uniform and regular values, as described below.

Fundamental weaves

The family of weaves having the most regular structures and used as basis
for other weaves is called fundamental weaves. They are characterised by a
square repeat with NWa = NWe = N. Each warp/weft yarn has only one weft/
warp crossing with f = 1 for warp/weft, and the pattern of adjacent yarns is
regularly shifted with s being a constant.

Warp
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The plain weave, Fig. 1.10, is the simplest fundamental weave with repeat
size N = 2 and step s = 1. Each weft yarn interlaces with each warp yarn.
Twill weaves, Fig. 1.11, are characterised by N > 2 and s = ±1. Constant shift
by one position creates typical diagonals on the fabric face. If the step is
positive, diagonals go from the lower left to the upper right of the pattern and
a right or Z-twill is formed. If the step is negative, the twill is called left or
S-twill. Different twill patterns are designated as fWa/fWe where fWa is the
number of warp intersections on a yarn (warp float) and fWe is the number of
weft intersections on a yarn (weft float). If there are more warp intersections
than weft ones on the fabric face, the twill is a warp twill. The term weft twill

Left twill 1/2
s = – 1

(Right) twill 1/2
s = 1

Weft twill 2/1 s = 1

Twill 1/4

1.10 Plain weave.

1.11 Twill weaves.
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for the opposite case is normally omitted. A full designation for a twill
weave reads (right)|left or warp|(weft) twill fWa/fWe where terms in brackets
can be omitted and vertical lines mean ‘or’. Twill weaves are often characterised
by a propensity to accommodate in-plane shear, resulting in good drape
capability (see section 2.2).

Satin weaves, Fig. 1.12, are characterised by N > 5 and | s | > 1. Sparse
positioning of the interlacing creates weaves in which the binding places are
arranged with a view to producing a smooth fabric surface devoid of twill
lines, or diagonal configurations of crossovers. The terms warp satin, or
simply satin, and weft satin, or sateen, are defined similarly as for twills. N
and s cannot have common denominators, otherwise some warp yarns would
not interlace with weft yarns, which is impossible (Fig. 1.12). The most
common satins (5/2 and 8/3) are called 5-harness and 8-harness. In composites
literature the terms 3-harness and 4-harness (or crowfoot) can be found.
Such satins are actually twills (Fig. 1.12). Satins are designated as N/s; a full
designation of a satin weave reads warp|(weft) satin N/s, or N harness and s
step satin|sateen. Rigorously, each warp yarn interlaces with each weft yarn
only once, each weft yarn interlaces with each warp yarn only once, interlacing
positions must be regularly spaced, and interlacing positions can never be
adjacent – both along the warp and weft.

Satin 5/2

‘Sateen 6/2’

3-Harness or ‘crowfoot’
satin = left twill 1/2

3-Harness or ‘crowfoot’
satin = left twill 1/3

8-Harness satin (satin 8/3)

1.12 Satin weaves.
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Modified and complex weaves

Fundamental weaves can serve as a starting point for creating complex patterns,
to create some design effect or ensure certain mechanical properties for the
fabric. Figure 1.13 shows modified weaves created by doubling warp
intersections in plain (resulting in rib and basket weaves) and twill patterns.
Such weaves are identified by a fraction fWa/fWe, where fWa is the number of
warp intersections on a warp yarn and fWe is the number of weft intersections
on a yarn (Fig. 1.13a–c). Complex twills can have diagonals of different
width identified by a sequence fWa1/fWe1, . . . fWaK/fWeK, (Fig. 1.13d). A twill
pattern can also be broken by changing diagonal directions (sign of s), creating
a herringbone weave (Fig. 1.13e). If an effect of apparent random interlacing
is desired the repeat can be disguised (crepe weave) by combining different
weaves in one pattern (Fig. 1.13f).

(a) (b) (c) (e)

(d) (f)

1.13 Modified and complex weaves: (a) warp rib 2/2; (b) basket 2/2;
(c) twill 2/2; (d) twill 2/3/1/2; (e) herringbone; (f) crepe (satin 8/3 +
twill 2/2).

Tightness of a 2D weave

The weave tightness or connectivity is determined by the weave pattern and
quantifies the freedom of yarns to move. This is not to be confused with
fabric tightness, which is the ratio of yarn spacing to their dimensions. The
weave tightness characterises the weave pattern, providing an indication on
fabric properties as a function of weave type. Two simple ways to characterise
weave tightness follow:

Tightness = liaison

Wa We

N
N N2

1.12
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where Nliaison is the number of transitions of warp/weft yarns from one side
of the fabric to another and the denominator is multiplied by 2 so as to have
a value of 1 for plain weaves, and:

Tightness = 2
 + Wa Wef f  

1.13

Equation 1.12 will be used in the remainder of the chapter. Lower weave
tightness values indicate less fixation of the yarns in a fabric, less fabric
stability and better fabric drapability. As the fabric is less stable it tends to be
distorted easily as shown by differences in fabric resistance to needle penetration
(Fig. 1.14a). Higher tightness means also higher crimp, which deteriorates
fabric strength (Fig. 1.14b).

Multilayered weaves

Conventional weaving looms allow the production of multilayered weaves
used for heavy apparel and footwear. Multilayer integrally woven
reinforcements are often called 3D or warp-interlaced 3D weaves. A multilayer
weave is shown in Fig. 1.15. The weave is called 1.5-layered satin as the
pattern is similar to satin on the fabric face and the fabric has two weft layers
and one warp layer – 1.5 being an average. The weave pattern is more
complex. Positions where warp yarns appear at the fabric face above the
upper weft layer (Arabic figures) are black. Positions between the upper and
the weft layers lower (Roman figures) appear as crosses and positions at the
back of the fabric appear in white.

The weaving pattern does not reveal the weave structure clearly. The
spatial positioning of yarns is created by stopping the fabric upon insertion
of a lower weft and only resuming after insertion of an upper weft, hence
inserting two wefts at the same lengthwise position in the fabric. The spatial
weave structure is better revealed by a section in the warp direction, (Fig.
1.15b). A fabric with L weft layers can have warps occupying L + 1 levels,
level 0 being the fabric face and level L being the back. Each warp is coded
as a sequence of level codes and the entire weave is coded as a matrix.

In composite reinforcements warps are often layered as shown in Fig.
1.16. Warp paths are coded as warp zones, identifying sets of warp yarns
layered over each other. The 1.5-layered satin of Fig. 1.15 has four warp
zones, each occupied by one yarn. Yarns going through the thickness of a
fabric are called Z-yarns. Multilayered composite reinforcements are termed
orthogonal when Z-yarns go through the whole fabric between only two
columns of weft yarns (Fig. 1.16a), through-thickness angle interlock when
Z-yarns go through the whole fabric across more than two columns of weft
yarns (Fig. 1.16b) or angle interlock when Z-yarns connect separate layers
of the fabric (Fig. 1.16c).
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Matrix coding of weaves allows the analysis of their topology. Consider
for example the front warp yarn in Fig. 1.16b with level codes {wi} = {0, 2,
4, 2}. This coding means that the yarn path goes from the top of the fabric
(level 0) on the left, to beneath the second weft (level 2), to the bottom of the
fabric (level 4), then back to level 2 before the pattern repeats. Consider
crimp intervals, which are yarn segments extending between two crossovers.
Over the first crimp interval the yarn interacts with weft yarns in layers

1.14 Influence of fabric tightness on the fabric properties:
(a) resistance of cotton fabrics (warp/weft 34/50 tex, 24/28 yarns/cm)
to needle penetration; (b) strength factor of yarns in aramid fabrics
(ratio of the strength of the fabric per yarn to the strength of the
yarn).
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1.15 1.5-Layered satin: (a) weaving plan and structure; (b) coding.
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1.16 Types of multilayered weaves: (a) orthogonal; (b) through-the-
thickness angle interlock; (c) angle interlock.
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l1
1 = 1  and l1

2  = 2 , where the subscript and superscript identify the crimp
interval and each of its ends. The yarn is above its supporting weft at the left
end (1) of the crimp interval (  = 1)1

1P and below its supporting weft at the
right (2) end (  = –1)1

2P . For all the crimp intervals of this yarn:

l l P  P

l l P  P

l l P  P

l l P

1
1

1
2

1
1

1
2

2
1

2
2

2
1

2
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1
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1
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4
1

1
2

1
1

 = 1,  = 2,  = +1,  = –1

 = 3,  = 4,  = +1,  = –1

 = 4,  = 3,  = –1,  = +1

 = 2,  = 1,  = –1, PP1
2  = +1

1.14

These values can be obtained from the intersection codes {wi}, using the
following algorithm:

w w  l l  w  L P P
w L

w L

w w  l w l  w  P  P

i i i i  i i i
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i

i i i i i i i i
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+1
1 2  1  2

+1
1 2

+1
1 2

fi Ï
Ì
Ó

fi 11

 >    =  + 1,  = ,  = –1,  = +1+1
1 2

+1
1 2w w  l w  l  w P  Pi i i i i i i ifi

1.15

Similar descriptions of weft yarns are obtained from intersection codes
and crimp interval parameters for warp yarns. For a weft yarn i at layer l, the
first warp yarn with l li

1 =  or l li
2  =  (supported by weft yarn i at layer l) is

found from the crimp interval parameters list; this is the left end of the first
crimp interval on the weft yarn. The support warp number is thus found, with
a weft position sign inverse to that of the warp. Then the next warp yarn
supported by weft (i, l) is found; this is the right end of the first weft crimp
interval and the left end of the second. This is then continued for all crimp
intervals.

1.3.3 Geometry of yarn crimp

The topology and waviness of interlacing yarns are set by the weave pattern.
The waviness is called crimp. The term also characterises the ratio of the
length of a yarn to its projected length in the fabric:

c
l

l l
 = 

 –  
yarn

yarn fabric
1.16

Crimp is caused primarily by out-of-plane waviness; reinforcements do not
feature significant in-plane waviness because of the flat nature of their rovings.
Typical crimp values range from less than 1% for woven rovings to values of
well over 100% for warp-interlaced multilayered fabrics. The wavy shape of
a yarn in a weave may be divided in intervals of crimp, say between intersections
A and B; Fig. 1.17. Considering a warp yarn, let p and h be distances
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1.17 Elementary crimp interval: (a) scheme; (b) characteristic functions; (c) Peirce’s model; (d) comparison between
various models.

© Woodhead Publishing Limited, 2005



Manufacturing and internal geometry of textiles 23

between points A and B along the warp direction x and thickness z, with p
defined as the yarn spacing. The distance h is called the crimp height. If this
is known one may wish to describe the middle line of the yarn over the crimp
interval:

z(x) : z(0) = h/2; z ¢(0) = 0; z(p) = –h/2; z ¢(p) = 0 1.17

The actual shapes of warp and weft yarn cross-sections can be very complex,
even if dimensions d1 and d2 known are known (subscripts ‘Wa’ and ‘We’,
Fig. 1.17c). Two simplified cases will be considered here. In the first, cross-
section shapes are defined by the curved shape of interlacing yarns. This is
acceptable when fibres move easily in the yarns, for example with untwisted
continuous fibres. In the second case cross-section shapes are fixed and
define the curved shape of interlacing yarn. This is representative of
monofilaments or consolidated yarns with high twist and heavy sizing.

Elastica model

In the first approach one can consider yarn crimp in isolation, find an elastic
line satisfying boundaries represented by eqn 1.17 and minimise the bending
energy:

W B
z
z

x
p

 = 1
2

 ( )
( )

(1 + ( ) )
d   min

0

2

2 5/2Ú ¢¢
¢

Æk 1.18

where B(k) is the yarn bending rigidity which depends on local curvature. A
further simplification using an average bending rigidity leads to the well-
known problem of the elastica9 for which a solution can be written using
elliptical integrals. Calculations are made easier with an approximation of
the exact solution:

z
h

x x A
h
p

x x x x x
p

 = 1
2

(4  – 6  + 1) –  (  –  1)  –  
1
2

,  = 3 2 2 2Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯ 1.19

where function A(h/p) is shown in Fig. 1.17b; the value A = 3.5 provides a
good approximation in the range 0 < h/p < 1. The first, underlined term of
eqn 1.19 is the solution to the linear problem. This cubic spline very closely
approximates the yarn line.

As the yarn shape defined by eqn 1.19 is parameterised with the
dimensionless parameter h/p, all properties associated with the bent yarn
centreline can be written as a function of this parameter only. This allows the
introduction of a characteristic function F for the crimp interval, used to
define the bending energy of the yarn W, transversal forces at the ends of the
interval Q and average curvature k, (Fig. 1.17b):

W B
z
z

x
B

p
F h

p

p

 = 1
2
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( )

[1 + ( ) ]
d  = 

( )
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k = 1  
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If a spline approximation of eqn 1.19 and linear approximation of eqn
1.20 are used,

W B  z x B h
p

p

 = 1
2

( ) ) d  =  6 ( )
0

2 
2

3k kÚ ¢¢( 1.23

and F ª 6(h/p)2 (dotted line, Fig. 1.17b). The difference with the exact F(h/
p) is negligible.

Peirce type models

In the second approach, yarn cross-sections take set shapes. The simplest
model for this case, proposed by Peirce10 and still widely used, is based on
two assumptions: weft cross-sections are regarded as circular when considering
crimp intervals for warp yarns, and warp yarns are straight when not in
contact with the weft (Fig. 1.17c). The vertical distance between centres of
the weft yarns is the weft crimp height hWe. As the warp and weft yarns are
in contact the following geometric constraint holds:

hWa + hWe = dWa + dWe = D 1.24

The yarn spacing p, yarn length l and contact angle q must satisfy the following
relations:

p l D D

h l D D
We Wa Wa Wa Wa

Wa Wa Wa Wa Wa

 = (  – )cos  +  sin 

 = (  – )sin  + (1 – cos )

q q q
q q q

1.25

The same equations may be written for weft yarns:

p l D D

h l D D
We We We We We

We We We We We

 = (  –  ) cos  +  sin 

 = (  –  )sin  + (1 –  cos )

q q q
q q q

1.26

The system 1.24–1.26 providess five equations for six unknowns hWa, hWe,
lWa, lWe, qWa and qWe. If one of the crimp heights is given or some relation
between them is assumed then all parameters can be determined. Peirce’s
model can represent non-circular cross-sections in a similar manner.

Mixed model

The two above models have their advantages and limitations. Figure 1.17(d)
compares yarn mid-line shapes obtained from the different models. Differences
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are small, justifying a mixed model where average characteristics of crimp
intervals are obtained from (1.20–1.22), taking advantage of the single
parameter h/p involved in these equations, while yarn shapes over crimp
intervals are defined by Peirce-type models for an assumed cross-section
shape. This approach is taken in the following section.

1.3.4 Balancing yarn crimp

Plain weave, incompressible yarns

Consider a plain weave fabric made of incompressible yarns. Yarn spacing p,
bending rigidity B and vertical dimensions d are given. Crimp height h is
needed to derive a full description of the yarn geometry from the previous
equations. This can be calculated by minimising bending energy of all yarns
in the repeat:

W
B
p

F
h
p

B
p

F
h
pS

Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯ Æ =   +    minWa

We
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We

We

Wa

We

Wa
1.27

Using the approximation from eqn 1.23 this is easily solved:

h D
B p

B p  B p
h D  

B p

B p  B pWa
We We

3

Wa Wa
3

We We
3 We

Wa Wa
3

Wa Wa
3

We We
3 =  

 + 
,  = 

 + 
1.28

A few special cases are illustrated in Fig. 1.18(b). If BWa = BWe and pWa =
pWe then hWa = hWe = D/2, which is typical of a balanced fabric. If BWa >>
BWe and pWa = pWe then hWa = 0 and hWe = D. Rigid warp yarns stay straight
and compliant weft yarns wrap around them, which is typical of quasi-
unidirectional woven fabrics. If pWa >> pWe and BWa = BWe then again hWa =
0 and hWe = D. Long segments of weft yarn extending between crossovers are
easier to bend than short segments of warp yarns.

Plain weave, compressible yarns

Consider the same problem with compressible yarns. Compressibility of
warp and weft yarns is given by experimental diagrams. Subscripts 0, 1 and
2 respectively designate the relaxed state, yarn dimension in the vertical
direction and in-plane dimensions; q is a compression force per unit length.

d d q d d q1
Wa
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1
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20
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2
Wa = ( ),  = ( )h h 1.29a

d d q d d q1
We

10
We

1
We

2
We

20
We

2
We = ( ),  = ( )h h 1.29b

Equation 1.27 applies with constraint including dimensions depending on
yarn interaction forces:
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where the transversal forces Q are calculated from eqn 1.21, giving:
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Equation 1.30 assumes that the zone over which Q acts has dimensions
equal to in-plane yarn dimensions; a better description of the yarn contact
zone would improve the model. The non-linear system (eqn 1.29–1.31) can
be solved iteratively by setting:

p Wa
p We

dWe

d Wa
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hWe (a)

(b)
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1.18 Balance of crimp in plain weave: (a) scheme; (b) three special
cases; (c) change in yarn dimensions for typical fabric with
compressible yarns.
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Transversal forces are computed from eqn 1.31, yarn dimensions are obtained
from eqn 1.29 and the minimum problem of eqn 1.27 is solved for hWa and
hWe. Then convergence is checked by comparing with values from eqn 1.32
and the above steps are repeated as necessary.

Figure 1.18(c) shows an example of changes in yarn dimensions for a
glass plain weave with tow linear density of 600 tex, tow bending rigidity of
0.44 N mm2 and ends/picks count 36/34 yarns/cm. The compression diagram
in Fig. 1.18(c) was measured using the KES-F tester. Results show that the
yarns are compressed considerably, changing the fabric thickness by 8%.

1.4 Braided fabrics

1.4.1 Parameters and manufacturing of a 2D braided
fabric

In braiding, three or more threads interlace with one another in a diagonal
formation, producing flat, tubular or solid constructions. Such fabrics can
often be used directly as net-shape preforms for liquid moulding processes
such as resin transfer moulding (RTM). This section discusses 2D flat or
tubular braids.

Braiding process

The principle of braiding is explained in Figs 1.19 and 1.20 for a maypole
machine. Carriers move spools in opposite directions along a circular path.
Yarn ends are fixed on a mandrel and interlace as shown in Fig. 1.19. Interlaced
yarns move through the convergence zone of the machine, towards the mandrel
which takes the fabric up the loom. The yarns follow helical paths on the
mandrel and interlace each time spools meet. Producing a thin, tight braided
lace or a circular tube does not require a mandrel. On the other hand, 2D
braids produced on shaped mandrels can be used as reinforcements for
composite parts. Braiding over shaped mandrels allows the introduction of
curvature, section changes, holes or inserts in the reinforcement without
need to cut the yarns, as shown in the photograph in Fig. 1.19.

In the process described above spools must travel to and from the inner
and outer sides of the circular path to create interlacing. Fig. 1.20 shows the
necessary spool motions for a part of the path. Carriers with odd and even
numbers move from left to right (clockwise) and from right to left (counter-
clockwise) respectively. The notched discs are located on the circumference
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of the machine, spool carrier axles are located in these notches and adjacent
disks rotate in opposite directions. Consider carrier 1; once taken by a disk
to a position where notches superpose with those of the neighbouring disk
the carrier is transferred to that disk by centrifugal force and a rotating guide.
Because of the difference in rotation directions, spool 1 is taken toward the

V (take up) Mandrel

Fell point

Convergence zone

Spool plane

+ w
– w

Carrier with spool

Carriers
Convergence

zone

Mandrel

(a)

(b)

1.19 Scheme and photograph of a maypole braider: diagonal
interlacing of the yarns, where only two carriers are shown. Insets:
non-axisymmetric mandrel and braided products with holes and
inserts.
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outside of the machine by the second disk. The same happens to its counterpart
2 carried by the notched disks in the opposite direction. Hence carriers 1 and
2 cross each other and change sides, creating interlacing. Figure 1.21(a)
shows carrier paths producing a tubular braid. If the sequence of disks is
interrupted, the carriers create a flat braid as shown in Fig. 1.21(b). In modern
braiders notched disks are replaced by horn gears and carrier feet are directed
along slots in a steel plate covering the gears.

Additional yarns extending along the braid axis can be incorporated,
producing what are commonly described as triaxial braids. They do not
travel on carriers but are fed from stationary guides situated at the centres of
horn gears, Fig. 1.21(c). Such inlays or warp yarns are supported by the
braided yarns and are almost devoid of crimp. They are common in
reinforcements.

Braid patterns and braiding angle

Patterns created by braiding are similar to weaves and can be described in
these terms (Fig. 1.22). Braids are identified in the same way as twills, by
floats lengths for the two interlacing yarn systems. Three patterns have special
names: diamond (1/1), regular or plain (2/2) and hercules (3/3) braids. A
plain weave and a plain braid correspond to different patterns.
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5
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1 4 3
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5 4 1 6

1.20 Horn gears and movements of the yarn carriers.
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1.21 Carrier paths and braided patterns: (a) circular braid; (b) flat
braid; (c) braid with inlays (triaxial braid).

(a)

(b)

(c)
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1.22 Geometry of a braid unit cell: (a) dimensions of the unit cell;
(b) geometry of crimp; (c) yarn crimp in a braid with inlays (darker
yarns).
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The repeat of a braid is defined as the number of intersections required for
a yarn to leave at a given point and to return to the equivalent position further
along the braid (arrows, Fig. 1.21). This measure is called plait, stitch or pick
and equals the total number of yarns in a flat braid or half their number in
tubular braids. The definition differs from that of repeat in weaves; to avoid
confusion the term unit cell is used to identify the basic repetitive unit of a
pattern. The most important parameter of a braid is the braiding angle between
interlaced yarns (Fig. 1.22), calculated from the machine speed and mandrel
diameter Dm:

a p
 = 2 arctan mD n

v 
1.33

where n and v are the rotational speed (s–1) and take-off speed. The angle
depends on the mandrel diameter; if a complex mandrel is used the take-up
speed must be constantly adjusted to achieve a uniform angle. By varying
the take-up speed variable angles can be induced, allowing stiffness variations
for the composite part. The practical range of braiding angles is between 20∞
and 160∞.

Equation 1.33 implies that the mandrel is circular (or at least axisymmetric),
but as shown in Fig. 1.19 this is not a requirement for the process. An
average braid angle for a non-axisymmetric mandrel can be obtained by
replacing the term pDm in eqn 1.33 with the local perimeter of the mandrel.
However, it has been observed that the braid angle changes significantly
with position around any section of a complex mandrel. Models have been
proposed recently to predict this behaviour11,12.

A braider can be set vertically or horizontally. The former is common for
the production of lace or general tubular braids, and the latter for braiding
over long mandrels. Typical carrier numbers are up to 144. Rotation and
take-up speeds can reach 70 rpm (depending on carrier numbers) and 100 m/
min respectively. Productivity as mass of fabric per unit time can be estimated
by the equation:

A TvN D TNn
 = 

cos
2

 = 
2

sin 2

m

a
p

a 1.34

where T and N are the yarn linear density and number of carriers. The
productivity can reach several hundreds of kilograms per hour; braiding is
more productive than weaving by an order of magnitude.

1.4.2 Internal geometry of 2D braids

The internal geometry of braids is governed by the same phenomenon
mentioned for woven fabrics namely yarn crimp. The non-orthogonal interlacing
of the yarns results in certain peculiarities. Consider a braided unit cell. Let
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n be a float in the braid pattern identified as n/n; n = 2 in Fig. 1.22. Unit cell
dimensions are given by the braiding angle, stitch length per unit cell s and
line length per unit cell l:

l s =  tan 
2

a 1.35

The shape of yarn centrelines can be modelled in a similar way as for woven
fabrics (Fig. 1.22b). On a section of the fabric including the centre of a yarn
(axis x ¢), spacing p and dimensions d ¢ of support cross-sections are given by:

p s

n

l

n
d d = 

4  sin 
2

 = 
4  cos 

2

,  = 
sin 

2
a a a¢ 1.36

where d is the yarn width. A function z(x ¢) is constructed for a given crimp
height h using an elastica or Peirce-type model and crimp balance is computed
using the algorithm previously formulated. Observation of triaxial braids
reveals mostly straight and crimp-free inlays extending along the machine
direction. This is expected for balanced braids, while unbalanced braids are
quite rare in practice. The presence of inlays changes the crimp height of
interlacing yarns but the algorithms for the calculation of the mid-line shape
and crimp balance remain unchanged, (Fig. 1.22c).

When the braided yarns are not perpendicular the yarn paths will be
twisted, so that yarn cross-sections appear rotated. This also applies to woven
fabrics subjected to shear deformation (for example during fabric draping).

1.4.3 3D braided fabrics

3D braiding presents some similarities with 2D braiding. In 2D maypole
braiding only two sets of carriers rotate around the braiding axis in opposite
directions, creating a single textile layer. In contrast, 3D braids can be regarded
as multiple layers of interlaced yarns which are connected more or less
extensively by individual yarns extending through the thickness. It is possible
to braid preforms where the level of interlacing between different layers is
such that it becomes impossible to discern the distinct layers in the final
preform. Carrier paths may be defined over concentric circles or Cartesian
arrays, which are square or rectangular.

Two examples of 3D braiding processes are described by Byun and Chou13,
known as the four-step and two-step processes. The four-step process (Fig.
1.23a) uses a framework of yarn carriers in a rectangular or circular array. As
the name suggests, the process consists of four steps, each involving alternate
movements of the rows and columns of yarn carriers. Between cycles the
yarns are ‘beaten up’ into the structure and the braid is hauled off by one
pitch length. The two-step process (Fig. 1.23b) involves a large number of
axial yarns arranged in the required preform geometry, with a smaller number
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of yarn carriers arranged around them. The carriers are moved through the
array of axial yarns in two alternate directions.

Such processes can be used to produce preforms featuring yarns that
extend along many directions. Yarn directions are not limited to a plane, and
this constitutes the main advantage of the process. However, any increase in
out-of-plane properties is achieved at the expense of in-plane properties. 3D
braids generally feature axial yarns. Preforms of various shapes can be
produced, for composite parts of which the geometry is very different to the
shells associated to parts based on 2D textiles such as weaves or non-crimp
fabrics. Such applications are still relatively rare; rocket engines constitute a
classic example while biomedical engineering is one area of emergence.

1.23 Schematic illustration of the (a) four-step and (b) two-step 3D
braiding processes.
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1.5 Multiaxial multiply non-crimp fabrics

The above textile reinforcements offer economical advantages while being
easier to process than prepregs. However, compromises are made on the
performance of the composite because of crimp that causes fibre misalignments.
Non-crimp fabrics combine unidirectional crimp-free fibre layers by assembling
them together by stitching – sewing or knitting – and/or bonding by chemical
agents.

1.5.1 Terminology and classification

European standard EN 13473 defines a multiaxial multiply fabric as

A textile structure constructed out of one or more laid parallel non-crimped
not-woven thread plies with the possibility of different orientations, different
thread densities of single thread plies and possible integration of fibre
fleeces, films, foams or other materials, fixed by loop systems or chemical
binding systems. Threads can be oriented parallel or alternating crosswise.
These products can be made on machines with insertion devices (parallel-
weft or cross-weft) and warp knitting machines or chemical binding
systems.

The definition stresses that fibrous plies are laid up with threads. Stitching
the plies together by warp-knitting can be achieved in such a way that the
stitches pierce the plies between the laid yarns, resulting in an open preform
architecture; Fig. 1.24a. On the other hand wide threads (flat tows) laid close
together form continuous fibrous plies bound by warp-knitting with piercing
sites positioned according to the needle spacing, without any connection to
tow positioning. Needles pierce the fibrous plies and distort them locally;
Fig. 1.24b. Such a preform construction is close to ideal unidirectional
uniform plies. The latter case is the most common, and is the subject of this
section.

A fabric is characterised by the nature of the fibres (E/G/C/A glass, carbon
or aramid), surface density of each ply (g/m2), fibre direction in each ply
given as an angle with respect to the machine direction in the range [–90∞,
90∞], type of binding agent, nature of the binding agent (polyamide/poly
(ethylene)/poly(ether sulphone)/poly(ethylene terephthalate/polypropylene;
PA/PE/PES/PET/PP, chemical binder) and surface density of the binding
agent. For example the designation stipulated by the standard for a 3-ply
+45∞/–45∞/0∞ glass fabric stitched by a polyester yarn is:

[G, 235, +45∞ // G, 235, –45∞ // G, 425, 0∞][PES, 12, L]

with a total surface density of 907 g/m2. Ply weight depends on yarn weight
and placement density. In general yarn weight is characterised by a number
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of filaments ranging from 3K to 80K for carbon tows. Surface densities
usually range from 100 g/m2 upwards. Higher yarn weights normally translate
into higher ply surface density values for a closely covered surface. Low
surface density values may be reached with thick tows by spreading, using a
special unit. Yarns with higher fibre count present the economical advantages
of cheaper raw material and faster production. Low ply surface weights are
desirable as lighter fabrics have better drapability. Current technology achieves
150 g/m2 with 12K yarns in the weft or 24K in 0∞ layers.

1.5.2 Manufacturing

Producing a multiaxial multiply fabric involves laying plies or weft insertion,
and stitching or knitting them together. Hence the machine has two main
parts, a weft insertion device and a knitting unit.

(a)

(b)

1.24 Multiaxial multiply warp knitted fabrics: (a) open structure, with
stitching sites in between the tows; (b) continuous plies, with
stitching penetrating the tows forming ‘cracks’ in the plies.
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Weft insertion

Weft insertion carriages travelling across the machine lay several tows
simultaneously at a desired angle across the fabric. The tows are fixed to the
needles of the moving chains. The length of the weft insertion part of a
typical machine is about 10 m and allows up to three layers with angles from
20∞ to 90∞ or –20∞ to –90∞. The speeds of weft insertion carriages dictate the
fibre angles. Measurements show that the orientation of oblique fibres can
deviate from the prescribed value by several degrees.

Weft inserted tows together with optional 0∞ plies are stitched by a warp-
knitting device. A powder binder (e.g. epoxy) can be added beforehand to
facilitate composite processing. A foil or non-woven ply may be added below
the plies. A warp-knitting device as described below stitches the plies by an
action of needles, which are collected in a needle bed and move upwards,
piercing the plies.

Walking needle

Stitching of ply construction by warp-knitting is optimised to decrease
misalignment and disturbance of the weft yarns by the knitting needles. In
older knitting units needles move in one direction only, standing at a certain
angle to the plies. The needles move linearly upwards to catch the warp
knitting yarn and then down to pull the yarn through the ply, building a
stitching mesh. Plies move constantly forward. The relative movement of
plies and needles in the horizontal direction causes misalignment during
penetration, the extent of which depends on the stitching length and other
parameters. This limitation was reduced drastically by the development of
the walking needle device, introducing a new needle movement where the
needle is placed at 90∞ to the textile and moves in the vertical direction as
well as in the direction of ply movement during penetration. The relative
horizontal motion between the textile and needle is minimal. The needle
head is designed to penetrate the ply construction by pushing away the
filaments of reinforcing yarns, minimising the damage.

Warp knitting

The principle of warp knitting is illustrated in Fig. 1.25. An actual warp
knitted fabric or a knitted web, whereby warp knitting is used to stitch
unidirectional fibrous plies, is an assembly of loops formed by the interaction
of needles and guides. Yarns are fed through all guides and all needles are
fixed on a needle bar, moving simultaneously and forming a loop around
every needle in every cycle.

Consider a warp yarn about to be looped, going thorough the guide at the
beginning of the knitting cycle (Fig. 1.25a). Knitting needles are in their
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upper position. Loops forming the edge of the fabric are on the stems of the
needles. The guide carries the new yarn around a needle, forming a new loop
(Fig. 1.25b,c). The needle moves down, connecting the new loop with the
old one sitting on its stem (Fig. 1.25d,e); in the case of ply stitching the loop
is pulled through the plies. The textile is pulled and a new cycle starts. The
knitting action creates loop connections in the machine (course) direction.
Movements of the guides across the needle bed create connections in the
cross (wale) direction, forming a warp-knit pattern; Fig. 1.26. The positions
of the gaps between the needles, where guides pass in subsequent knitting
cycles, can be used to code the pattern by the so-called Leicester notation.
Consider a diagram of the guides’ movement, called a lapping diagram (Fig.
1.26). Rows of dots represent needle positions in plane view. The numbering
of needles assumes that the pattern mechanism is on the right side. As the
guides position themselves in the spaces between needles, the positions

1.25 Principle of warp knitting, showing interaction of the knitting
needles and guides.

Guide New yarn

D

Needles(a) (b)

(c) (d)

(e) (f)

New loop is formed Guide
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a new
needle
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1.26 Warp-knit pattern formation and coding.
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between vertical columns of dots represent lateral shifts of the guides. The
pattern is a sequence of these numbers:

s1–S1/s2–S2/ … / sN–SN 1.37

where si and Si are the positions of the guide forming the ith loop and N is
the number of knitting cycles in the pattern. Positions si and Si refer to gaps
between needles where the elementary movement of guides start. A pair si–
Si represents an overlap motion (guides move behind needles) while Si/si+1 is
an underlap motion (guides move in front of needles). The following consider
patterns where overlaps extend by one needle only, i.e. Ási–Si Á= 1.

When fibrous plies are stitched, the pattern is seen on the face of the
fabric (Fig. 1.26). These yarns are laid on the face of the fabric by the guides.
On the back of the fabric chains of loops are seen, extending in the machine
direction. These loops are formed on separate needles and interconnect through
the knitting action of the needles.

1.5.3 Internal geometry

Positions of the stitching sites

A stitching yarn pierces the fibrous plies at positions defined by the needle
spacing in the needle bed (spacing in cross direction A) and by the speed of
the material feeding in the knitting device (spacing in machine direction B).
The value of A is also expressed by the machine gauge, a number of needles
per inch. In a warp-knitted fabric devoid of fibrous plies, yarn tension leads
to significant deviations of the actual loop spacing in the relaxed fabric. In
the case of multiaxial multiply fabrics the stitching yarn is fixed by the
fibrous plies, resulting in fairly regular spacing. Figure 1.27 gives an example
of spacing variability for such a fabric. Deviations in the positions of stitching
lead to deviations of the loops from the ideal machine direction; the deviation
can be as high as 15∞.

Geometry of the stitching loop

The loop geometry can be assumed using a geometric approach or described
using a mechanical approach where the shape is calculated from equilibrium
equations applied to the looped yarns. The latter approach is unsuitable here
as loop positions are set by the plies, and large fluctuations of loop shapes
are observed in practice. Hence the geometric approach is considered more
appropriate.

Stitching yarns normally have a low linear density of around 10 tex with
tyically 15 filaments, and low twist (<100 m–1). They are easily compressible,
which explains the large observed variations of their dimensions. Stitch yarn
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1.27 Spacing of the stitching loops for a carbon 0/–45/50 fabric:
(a) definition of A and B and (b) measured values for adjacent wales.
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shapes are observed to vary within the repeating pattern, with cross-sections
ranging from circular to flattened (elliptical) and with varying dimensions14.

The geometry of the yarn centreline is defined by identifying a set of
anchor points A–M along the loop and approximating the centreline between
the anchor points by straight lines or circular arcs. In Fig. 1.28 h is the total
thickness of the plies; arcs AB, CD, FE, GH, IJ and KL have constant radii
and diameter d0. The loop width w depends on knitting tension. Considerable
tension produces narrow loops with w ª 3d0; lesser tension increases w to 4
to 5 times d0.

Interactions of the stitching with fibrous plies

Stitching causes deviations to fibre orientations. These deviations can result
in linear channels (Fig. 1.29a), or be localised near stitching sites as cracks
(Fig. 1.29b). Localised cracks have a rhomboidal shape of width b and
length l. A channel is formed when localised cracks touch or overlap. The
direction of cracks and channels corresponds to that of fibres in the ply. The
cracks/channels are also evident inside the fabric, where they provide routes
for resin flow. In a composite they create resin rich zones which can play an
important role in the initiation of damage.

Crack and channel dimensions feature much scatter (Fig. 1.29c). Table
1.2 shows measured crack and channel dimensions for various fabrics. Crack
widths are approximately proportional to the thickness of the stitch yarn, so
that an empirical coefficient k can be used to calculate b = kd0, where d0 is
the compacted stitch diameter. Fibres in a powdered fabric are more difficult
to displace, explaining the low values of k and l/b for the latter fabric. In non-
powdered fabrics channels are wider than cracks, with rough k averages of 4
(cracks) and 7 (channels) and l/w values for cracks of about 20. Dimensions
are also influenced by knitting tension.

When large channels extend along the machine direction, stitch yarn sections
on the fabric face or loops on the back can sink in the channels. This
phenomenon plays a major role in nesting of non-crimp fabric layers in
laminates. When this sinking occurs the layers can come closer, closing any
gap between them that might be introduced by stitched yarns laying on the
surface of the fabric. This is evidenced by compression curves of multiple
layers of fabric such as a biaxial ‘B’ –45∞/45∞ and quadriaxial ‘Q’ 0∞/–45∞/
90∞/45∞; Fig. 1.30. In the former, stitch yarns extend across the fibre direction
and cannot sink in cracks. The face of the latter textile has wide channels
into which stitches sink deeply (Fig. 1.30a), allowing nesting. Hence the
thickness per layer of the compressed fabric ‘Q’ decreases with an increase
in number of layers while it stays constant for fabric ‘B’.
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1.28 Geometry of the stitching loops, showing positions of anchor points.
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1.29 Channels and cracks in the fibrous layers: (a) channels in a 0∞
(face) ply; (b) crack in a 45∞ (back) ply; (c) distribution of channel/
crack widths.
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Table 1.2  Dimensions of channels and cracks in multiaxial multiply carbon fabrics

Fabric Stitching Crack/channel w (mm) l (mm) k l/w

Material, linear d0 (mm)
density

–45/–45, 12K PES, 7.6 tex 0.088 Face cracks 0.276 5.05 3.13 18.3
Back cracks 0.434 7.15 5.39 16.5

0/90, 24K PES, 7.6 tex 0.088 Face channels 0.62 n/a 7.04 n/a
Back channels 0.36 n/a 4.09 n/a

0/–45/90/45 PES, 7.6 tex 0.088 Face channels 0.658 n/a 7.47 n/a
Back cracks 0.483 7.28 5.48 15.0

45/–45, 12K PES, 6 tex 0.071 Face cracks 0.28 7.43 3.94 26.5
Back cracks 0.27 7.85 3.80 29.1

0/90, 12K, powdered PA, 10 tex 0.107 Face channels 0.18 n/a 1.68 n/a
Back cracks 0.53 3.46 4.95 6.53
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1.30 Sinking of the stitching in channels in the fibrous plies: (a) fabric
‘Q’ (see text), photo and schematic, and compression curves for (b)
biaxial fabric ‘B’ and (c) quadriaxial fabric ‘Q’.
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1.6 Modelling of internal geometry of textile

preforms

Textiles are hierarchically structured fibrous materials. As discussed in the
classic paper by Hearle et al.15 this description of the nature of textiles
allows efficient construction of mathematical models for the geometry and
the mechanical behaviour of textile structures. In spite of the generally
recognised usefulness of this approach, it has not been used to its full strength
for the creation of textile structure models. During the 1930s the first serious
mechanical treatments of the structure of textile materials were published by
Peirce10, Pozdnyakov16 and Novikov17. Since then, numerous publications
have been proposed on the mechanical behaviour of textiles, culminating in
a comprehensive treatment on Mechanics of Flexible Fibre Assemblies in
198018. In the following years the ideas and approaches outlined in this book
were pursued further. Textile mechanics at the outset of the 21st century
includes models of the internal geometry of textile structures such as
continuous-filament and staple yarns, random fibre mats, woven and knitted
fabrics. The hierarchical description of textile structures is implemented
using the minimum energy principle as introduced by Hearle and Shanahan19

and de Jong and Postle20. This allows the decomposition of a structure into
a set of structural elements, leading to models that are physically sound and
computationally feasible. It should be noted that the principle of minimum
energy is heuristic when applied to non-conservative mechanical systems
such as textiles.

Following the hierarchical approach one can consider a description of the
internal geometry of a fabric on two different levels: the yarn paths mode
describing the spatial configuration of yarns and the fibre distribution mode
describing spatial distribution properties of the fibrous assembly. In the former
case the fabric is regarded as an agglomeration of yarns – slender curved
bodies. Their spatial positions are defined by description of yarn midlines
and cross-section at each point of the midlines. The internal fibrous structure
of the yarns is not considered. In the latter case the fibrous structure of yarns
should be defined. The definition of the spatial positions of yarns states
whether any point in the unit cell lies inside a yarn or not; if so, parameters
of the fibrous assembly at this point are determined. The yarn path mode is
sufficient for the calculation of simpler data related to the internal geometry,
such as surface density, fabric thickness and local inter-yarn porosity. The
fibre distribution mode is needed when detailed information on the fibrous
structure is required.

1.6.1 Yarn path mode

Figure 1.31 illustrates the description of yarn spatial configuration. The mid-
line of the yarn shown in Fig. 1.31b is given by the spatial positions of the
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centres of the yarn cross-sections O: r(s) where s and r are coordinates along
the midline and the radius-vector of point O. Let t(s) be the tangent to the
midline at point O. The yarn cross-section is normal to t and defined by its
dimensions d1(s) and d2(s) along axes a1(s) and a2(s), which are defined in
the cross-section and rotate around t(s) if the yarn twists along its path.

O

r(s)

(b)

(a)

A

B

ta2

a1

O

d2 d1

(c)

(d)

P
Vf

f

(e)

1.31 Models of textile structures: (a) yarn spatial positions; (b) yarn
path mode; (c) parameters of a cross-section; (d) fibre distribution
mode (fibre directions for a twisted yarn); (e) parameters of a fibrous
assembly.

© Woodhead Publishing Limited, 2005



Manufacturing and internal geometry of textiles 49

Because of this rotation the system [ a1 a2t] may differ from coordinate system
along the path.

A definition of the spatial position of a yarn with a given cross-section
shape therefore consists of the five functions r(s), a1(s), a2(s), d1(s), d2(s).
Models defining these functions for different textile structures were described
in previous sections. Two approaches are possible for definition of the midline
path r(s): a simpler geometric and a more complex mechanical one.

Geometric approach

In the geometric approach, midline anchor points are defined from topological
information for the textile structure. These points can be located at yarn
contacts or crossovers for some textiles, as the distance between contacting
yarns is known from cross-section dimensions. For more complex textiles in
may be necessary to introduce additional points to represent some curvatures.
Yarn midlines are represented by smooth lines going through these points;
typically Bézier curves are used21–23.

The main advantage of the geometric approach is that it can represent any
textile structure under one single format while producing simple and portable
definitions. As a result, downstream models of the physical properties of
textiles and their composites can be used with these geometric definitions,
regardless of the textile manufacturing process. Furthermore, the format is
equally well suited to simpler closed-form physical property models as it is
to more computationally intensive ones. The philosophy behind the geometric
approach consists in creating geometric models that are ensured to be
appropriate, devoid of interference for example, with the view of refining the
assumed initial geometry through mechanical methods, and this for any
textile and manufacturing processes. Figure 1.32 shows diverse examples,
with anchor points forming 3D linear segments represented as vectors on the
left and the resulting geometric models on the right. Any interferences resulting
from user input were corrected by a geometric algorithm where sections are
modified arbitrarily and yarn Vf remains constant. Another major advantage
is that it allows explicit consideration of important practical phenomena
such as the statistical variation of dimensions inherent within actual textiles.

Although the geometric approach method offers the advantages of simplicity,
speed and certainty over aspects such as interference, the models that it
produces clearly depend on user input. The anchor points are predefined and
assumptions are made about yarn interaction or crimp height, for example.
Symmetry considerations can assist but only to a certain extent, and in its
basic form predictive geometry determination is not possible. For an accurate
description, dimensions must be measured from real fabrics.
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Mechanical approach

A mechanical approach to the modelling of yarn paths requires a mathematical
description of the interaction of contacting yarns. In relaxed fabrics this
involves bending and compression of yarns; twisting may also be present.
Therefore, it also requires appropriate experimental data for the yarns in
these deformation modes. If this is available, the model must account for
contacts between interacting yarns and describe the equilibrium of the final
configuration. The minimum energy principle is normally used for this
description. Examples of such models were shown above for weaves and braids.

1.32 Geometric approach to textile modelling for a range of textiles,
showing vectorial description of yarn paths (left) and resulting textile
models (right).
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Computational efficiency is critical in the mechanical approach and therefore
the definition of fabric geometry should use the principle of hierarchy and
structure decomposition. The repeat is a natural structural unit for fabrics
and contains a number of yarns {Y} that contact others. The contact regions
occupy certain zones on the yarns. Characteristic points provide natural
boundaries for structural elements of the repeat (Fig. 1.31a). In a woven
fabric the structural elements consist of intervals of warp and weft yarns
located between subsequent crossovers, where characteristic points are located.

A yarn Y consists of a set of structural elements {e}Y, each characterised
by the coordinates of its end points AYe and BYe, the dimensions of the contact
regions near the end-points, and the forces acting on the contact regions. The
exact shape and dimensions of the contact regions on a structural element
and the forces acting on them are determined by yarn interactions in the
structure.

The basic assumption of the decomposition routine is that the spatial
positions of the end-points of structural elements play a central role in
calculating the geometry of that element. Supposing that the end positions of
the structural elements for all yarns in a repeat are known and fixed, contact
regions develop near the end-points due to yarn interactions, and internal
forces arise in the contact zones. Geometric constraints imposed on the
structure by the end-point positions determine the local deformations of
yarns at contact regions and the shape and dimensions of these regions,
which in turn determine the contact forces.

In general cases a set of parameters q1, q2, q3, … are designated that
determine the complex mechanical behaviour of structural elements. Relating
to the assumption formulated in previous paragraphs, these parameters consist
of the positions of end-points of the structural elements, {qi} = {A, B}.

Consider now the problem of computing the spatial position of yarns in
the fabric repeat space. Let rY(s) be the parametric representation of the
centreline of yarn Y. According to the minimum energy principle the set of
rY(s) for all yarns in the fabric repeat should satisfy:

S
( )

 [ ( )]  min
Y YW sr Æ 1.38

If rY(s) is split into separate functions for each structural element e on yarn
Y this takes the form:

S S
( ) ( )

 [ ( )]  min
Y e

YeW sr Æ 1.39

which can be recast as:

S S
( ) ( )

1 2 3 [ ( ; , , )]  min
Y e

YeW s q q qr º Æ 1.40
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This global minimisation problem can be reformulated as a series of
minimisation problems for structural elements:

min   [ ( ; , , )]
( ) ( ) ( )

1 2 3r
r

s Y e
YeW s q q qS S º

= min    min { [ ( | , , )]}
1 2 3, , ( ) ( ) ( ) 1 2 3q q q Y e s YeW s q q q

º
ºS S

r
r 1.41

Each minimisation problem should be solved with parameters {qi} fixed,
yielding the solution:

min
( )r s

{W[r(s | q1, q2, q3 …)]} fi r(s | q1, q2, q3…) 1.42

which is used to calculate the energy of the structural element:

r(s | q1, q2, q3 …) fi W(q1, q2, q3 …) 1.43

The function W, which depends only on parameters of the structural element,
is termed the characteristic function of the structural element. The minimisation
problem (1.40), which has the functions rY(s) as arguments, is reduced to the
following minimisation problem:

S S
Y e

YeW q q q  ( , , )  min1 2 3 º Æ 1.44

where the arguments are a set of scalar parameters {qi}. This leads to a
system of non-linear algebraic equations instead of differential or integral
equations, which would result from eqn 1.38. A practical application of this
appears in section 1.3.3 for a simple weave. Note that the energy functions
involved in eqn 1.44 may represent bending, compression and torsion and
accounting for non-linearity.

Mechanical models aim to be predictive and to determine the structure of
fabrics from independent measurements of yarn properties. In some cases
this cannot be achieved as yarns undergo mechanical loading during fabric
manufacture and the resulting deformations are not relaxed, leading to
deviations between reality and analysis based on equilibrium in the relaxed
state. This is especially true for cases when manufacturing tensions are extreme,
say for example in 3D weaving. For such cases one must rely on a geometric
model coupled with physical measurements taken from the fabric.

Using yarn path mode

The yarn path mode (mesoscopic geometric model) is a necessary step in
building models at the microscopic scale (fibre distribution mode). Mesoscopic
models also have inherent value: they define yarn volumes and therefore
inter-yarn porosity, as well as local fibre directions of yarns. Information on
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the local direction of the yarns is essential for most predictive models of the
physical properties of textiles, say for example in micro-mechanical models
of composites to calculate the homogenised stiffness matrix of the unit cell,
or in permeability models for composites processing. One approach to the
former consists in defining ellipsoidal inclusions with stiffness properties
equivalent to those of elements of the impregnated yarn, and then using the
solution of Eshelby for homogenising the stiffness of agglomerated inclusions24.
Both approaches rely on a representation of the local, microscopic fibrous
structure as a unidirectional array of fibres, the equivalent stiffness of which
is obtained from empirical formulae25 or finite element analysis results26.
These issues are discussed further in Chapter 8.

The second use of the yarn path mode is related to numerical modelling.
The geometry of yarn volumes can be easily transferred to mesh generators;
(Fig. 1.33). Yarn segments can be assembled into solid models of fabrics and
meshed. The geometry of the empty volumes extending between the yarns is
far more intricate; this must also be meshed for problems of flow and heat
transfer through textiles and for all problems related to textile composites.
Although commercial solid modellers can sometimes process this, good results
often require very high mesh densities. Other solution techniques that do not
use conformal meshing, or that simplify the problem, constitute important
topics towards the routine use of such tools as a support to industrial design
of textile applications. Figure 1.34 shows a 2.5D mesh used for calculating
in-plane permeability tensors of textile reinforcements based on a simplified,
efficient technique27.

1.6.2 Fibre distribution mode

Yarn path mode geometric modelling describes yarn volumes but says nothing
about the fibrous structure of yarns, unit cells or fabrics. The fibre distribution
mode provides such information. Consider a point P (Fig. 1.31e) and a
fibrous assembly in the vicinity of this point. The assembly can be characterised
by different parameters including physical and mechanical properties of the
fibres near point P (which may vary throughout the fabric), fibre volume
fraction Vf and direction f. Length distribution of fibres near the point, average
curvature and other parameters can be specified if the point is in a yarn. A
fibre distribution mode model should provide such information for any point P.

Using fibre distribution mode

The ability to query the fibrous structure near arbitrary points can be used in
many applications dealing with mesh representations of heterogeneous media.
In finite element representations of fabrics the fibre distribution mode is used
to determine mechanical properties for each element. Figure 1.33(c) illustrates
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local coordinate systems for each element, aligned with the average fibre
direction; this allows correct representation of anisotropy. Mechanical properties
of a dry fabric include the tensile stiffness along the fibres and the compression
stiffness through thickness (see Chapter 2). For composite materials, the
homogenised stiffness of unidirectional fibre reinforced composite and local
fibre volume fraction are required. The same is done in cell models of composite
materials28. In such models a unit cell is subdivided into sub-cells (quasi-

1.33 Transformation of yarn path mode model into finite element
description: (a) yarn volumes; (b) mesh on the yarns; (c) local
coordinate systems, representing fibre directions.
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LN SYS

(a)

(b)

Local coordinate systems of the elements

Local coordinate systems of the sections

Global coordinate system

(c)
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finite elements), the effective stiffness of which is calculated from average
properties of the local fibrous assembly or matrix.

In models of flow through the reinforcement, a regular mesh or lattice is
defined in the unit cell. Nodes of the lattice can lie outside or inside the
yarns. In the former case the Navier–Stokes equation governs the fluid flow
near the node. In the latter case the flow is described by the Brinkmann
equation. The local permeability of the media is calculated using a unidirectional
description of the fibrous assembly near the node. These equations are solved
simultaneously for all the nodes in the unit cell, using, for example, the
lattice Boltzmann method29 or commercial software30.

1.6.3 Implementation of textile hierarchical model

Table 1.3 shows the hierarchy of structural elements in textile composites,
and the modelling problems associated with each scale. Unnecessary mixture
of hierarchical levels should be avoided: yarn data should be used to predict
behaviour of fabrics as opposed to fibre data, and so forth. Each hierarchy
level is occupied by models which use data from that level and the next lower
to predict properties of the defined structure at the next upper level.

Object oriented programming provides a powerful tool for the construction
virtual textiles. Associated data fields and methods are outlined in Table 1.4.
The results of geometric modelling serve as crucial input to models of
composites processing and mechanical behaviour. The main advantage is
that local variations in textile geometry, and hence in physical properties,

1.34 Mesh representing local yarn and resin/free volume mid-planes
for a single crossover of a plain weave. Each element has an
associated thickness (free volumes) or permeability (yarn). This
model is used for the ‘streamsurface’ permeability prediction
method27.
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can be accounted for explicitly. A composite material, as the final product in
the sequence ‘fibre to yarn to textile to preform to composite’, is included in
the hierarchical description of the textile, taking full advantage of the versatility
of the approach.

Fabrics are usually assembled into laminates to form reinforcements with
appropriate thickness. The layers of the laminate are not precisely positioned
one against another, causing a geometric and mechanical phenomenon of
nesting. Nesting plays an important role in determining the physical properties
of dry laminated reinforcements and composite parts. It causes statistical
distribution of the laminate properties, both within one part and between
different parts. A study of the nesting effect is therefore important for the
correct representation of the internal geometry in predictive models of
processing and performance and for the assessment of the statistical
characteristics of properties, determining processing parameter windows and
confidence intervals for the performance indicators. Such an approach is
possible using a hierarchical model of the type described here31.

Table 1.3 Hierarchy of structure and models of a textile composite

Structure Elements Models

Yarn (tow) Fibres Fibre distribution in the yarn and its
change under load/strain
Mechanical properties of the yarn

Fabric (woven, Yarns Geometry of yarns in the fabric and
knitted…) its change under load/strain

Mechanical behaviour of the fabric
repeat under complex loading

Composite unit cell Fabric Mechanical properties (stiffness
matrix/non-linear law; strength)

Matrix Permeability tensor

Composite part (Deformed/ Behaviour under loading
draped) unit Flow of the resin
cells Behaviour in the forming process
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Table 1.4 Implementation of virtual textile model via OOP approach

Object Data Methods

Group Fields

Fibre General Linear density (tex)
Diameter (mm)
Density (g/cm3)

Mechanics Elastic constants
Tenacity (MPa)
Ultimate elongation

Yarn General Yarn type: monofilament, Compute mass for a given length
continuous filament or spun

Linear density (tex)
Geometry of the Assumed shape: elliptical/ Compute volume of the given yarn
cross-section lenticular/rectangular length

Dimensions of cross-section in Determine, whether the given point
free state d01, d02 (mm) (x, y) lies inside the yarn

Compression Type of compression behaviour: Compute compressed yarn
no compression, specified dimensions under a given force per
compression law unit length

Compression coefficient h1 = d1/d10 / Compute compression of two
function of compressive force Q intersecting yarns for given normal
per unit length force and intersection angle

Flattening coefficient h2 = d2/d20/
function of compressive force Q
per unit length

Bending Bending curve ‘torque–curvature’ Compute bending rigidity value B
(linear for constant bending for a given curvature
rigidity) M(k)

(Contd)

© Woodhead Publishing Limited, 2005



D
esign and m

anufacture of textile com
posites

58Table 1.4 (Continued)

Object Data Methods

Group Fields

Friction Friction law yarn-yarn in the form Compute friction force for a given
F = fNn, where N is a normal force normal force

Yarn with Inherits data and methods of yarn. Adds the following and replaces (bold) some of yarn methods
fibre data

General Twist (1/m) Compute the twist angle
Twist direction (S or Z ) Compute linear density from fibre data

Fibre Fibre data (fibre object) Compute fibrous content and fibre
Number of fibres in cross-section direction in the vicinity of the given
Fibre distribution in the yarn point (x, y).

Compression Compute compressed yarn dimensions
and fibre distribution in it

Bending Compute bending resistance from
fibre data

Yarn path Implements yarn path mode
Fibrous assembly Holds a reference to yarn with

fibre data object
Yarn path Array of descriptions of dimensions Compute yarn volume, length and

and orientation of yarn cross-sections mass
Compute average fibre volume fraction

Fabric Generic description of a fabric
Fibrous assembly Array of yarn path objects Build the yarn descriptions (abstract).

Compute overall fabric parameters:
dimensions of unit cell, areal
density, fibre volume fraction

Compute local fibre data at given point
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Table 1.4 (Continued)

Object Data Methods

Group Fields

Visualise the fabric
Export data for micro-mechanical and

permeability analysis

Woven fabric Inherits from fabric object. Adds and replaces (bold) the following
Topology Weave coding
Yarns References to yarn with fibre data

objects for all yarns in fabric repeat
Spacing Ends/picks count
Fibrous assembly Build the yarn descriptions
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2.1 Introduction

This chapter describes the mechanical behaviour of textile reinforcements,
with the primary aim of understanding their behaviour during forming and
consolidation processes. A number of deformation mechanisms are available.
However, during typical composites manufacturing processes, it is generally
agreed that the most important of these are in-plane shear and tensile behaviour
and through-thickness compaction. Of these mechanisms, the ability of fabrics
to shear in-plane is their most important feature during forming, although
given their low shear stiffness, in-plane tensile behaviour represents the
largest source of energy dissipation. Compaction behaviour defines the fibre
volume fraction that can be obtained after manufacturing. Other properties
such as fabric bending and ply/tool friction are not considered here, primarily
because these have received relatively little attention elsewhere and little
data are available.

This chapter introduces a number of experimental methods for characterising
the deformation of textiles. These methods have been developed within research
studies, usually to obtain material data for manufacturing simulation (see
Chapter 4). One important consideration here is that none of these tests is
standardised – and in fact nearly all published studies use slightly different
test methods and specimen dimensions. This issue is being addressed at
present as part of a round-robin exercise1. Several standard tests are used in
the wider textiles community (e.g. BS ISO 4606:1995, BS 3356:1990, BS
3524-10:1987). Of particular relevance here is the ‘Kawabata Evaluation
System for Fabrics (KES-F)’, a series of test methods and associated testing
equipment for textile mechanical behaviour including tensile, shear, bending,
compression and friction2. However, while this system has been used widely
for clothing textiles, its application to reinforcement fabrics has been limited3.
This is probably because KES-F provides single point data at relatively low
levels of deformation, coupled with the limited availability of the (expensive)
testing equipment.

2
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As discussed in Chapter 1, the geometry of textile reinforcements can be
described at a number of length scales. Individual fibres represent the
microscopic scale, with large numbers of fibres (typically several thousand)
making up the tow or yarn. The scale of the yarns and of the fabric repeating
unit cell is the mesoscopic scale. Finally, the fabric structure constitutes the
macroscopic scale. The macroscopic mechanical behaviour of fabrics depends
on phenomena at smaller scales, and in particular it is dependent on geometric
and contact non-linearities. Such considerations will be used throughout this
chapter to develop predictive models for textile mechanical behaviour.

2.2 In-plane shear

2.2.1 Characterisation techniques

As mentioned above, in-plane (or intra-ply) shear is generally considered to
be the primary deformation mechanism during forming of textile reinforcements
to three-dimensional geometries. Characterisation of this mechanism has
therefore received a great deal of attention. The objectives are usually twofold:
to measure the non-linear mechanical response of the material during shear,
and to characterise the limit of deformation. At the simplest level, mechanical
behaviour is of interest for ranking of materials in terms of ease of forming.
More recently such data have been required for mechanical forming simulation
software based on finite element analysis (see Chapter 4). Here shear force
should be normalised by a representative length to eliminate sample size
effects. The limit of forming is often characterised by measurement of the
‘locking angle’, which represents the maximum level of shear deformation
that can be achieved before fabric wrinkling occurs. In practice this limit
varies widely and is highly dependent on the test method employed. The
primary use of locking angle data is to identify areas of wrinkling within
kinematic draping codes for fabric forming.

The majority of published studies have characterised resistance to intra-
ply shear using two approaches (Fig. 2.1). Bias extension tests, involving
uniaxial extension of relatively wide samples in the bias direction, are favoured
by a number of researchers4–6, as the testing procedure is relatively simple.
However the deformation field within the sample is non-uniform, with
maximum shear observed in the central region and a combination of shear
and inter-yarn slip observed adjacent to the clamped edges. In addition the
shear angle cannot be obtained directly from the crosshead displacement, so
that the test must be monitored visually to measure deformation. Nevertheless
this test can provide a useful measure of the locking angle, which in this case
represents the maximum shear angle achieved during the test. Above this
angle deformation occurs entirely by inter-yarn slip, indicating that the energy
required to achieve shear deformation has reached a practical limit. Although
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this may not indicate the exact angle at which wrinkling would occur, its
measurement is repeatable as the bias extension test is not affected significantly
by variability in boundary conditions. Bias extension testing is discussed in
more detail in Chapter 3, in the context of forming of pre-impregnated
composites.

The other popular test method for shear resistance of textile reinforcements
is the picture frame test7–10. Here the fabric is clamped within a frame hinged
at each corner, with the two diagonally opposite corners displaced using a
mechanical testing machine. Cruciform specimens are used typically, with
the corners of specimens removed adjacent to the bearings in the corners.
Samples must be mounted such that the fibres are parallel to the sides of the
picture frame prior to testing. Any small misalignment will lead to tensile or
compressive forces in the fibre directions, resulting in large scatter in measured
force readings. Nevertheless the picture frame test has proved popular as it
produces uniform shear deformation (if performed with care).

A number of picture frame test results obtained at Nottingham are reported
here as examples of typical behaviour. The picture frame shearing equipment
used is illustrated in Fig. 2.1, where the distance between the clamps (l) is
145 mm. Crimped clamps are used typically to ensure that the fabric does
not slip from the grips during testing. The apparatus is operated using a
Hounsfield mechanical testing machine, which monitors axial load versus
crosshead displacement. Here the results are converted into shear force versus
shear angle using the following relationships. The shear force (Fs) can be
obtained from the measured force in the direction of extension (Fx) using:

F
F

s
x = 

2 cos F 2.1

Gauge
length

F

Crosshead
mounting

Clamping
plate

Bearings

2.1 Characterisation tests for in-plane shear of biaxial fabrics – bias
extension (left) and picture frame shear (right).
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where the frame angle F is determined from the crosshead displacement Dx

and the side length of the shear frame (l) using:

F = cos 1
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2.2

The shear angle (reduction in inter-yarn angle) is given by:

q p F = 
2

 –  2  2.3

For tests reported here, a pre-tensioning rig was used to position dry
fabrics within the picture frame. This consists of a frame within which fabric
samples are clamped prior to mounting in the picture frame. Two adjacent
sides of the pre-tensioning frame are hinged, to which a measured force is
applied to impart tension to the fabric. This device serves two purposes, to
align the material within the rig and to enhance repeatability. For the results
reported here, a tension of 200 N was applied to fibres in each direction. All
tests were conducted at a crosshead displacement rate of 100 mm/min, although
experiments at other rates for dry fabric have produced almost identical
results11. A minimum of six tests were conducted for each fabric, with error
bars produced using the t-distribution at 90% confidence limit.

Initial yarn width and pitch (centreline spacing) values were measured
using image analysis from digital images oriented normal to the fabric.
Video images were also used to estimate the locking angle, although here the
procedure was more effective with the camera placed at an oblique angle to
the plane of the fabric. Samples were marked with horizontal lines, which
buckled when wrinkling occurred. A range of glass fibre reinforcements
were tested, including woven fabrics and non-crimp fabrics (NCFs).
Descriptions of the fabrics tested are given in Table 2.1, which also includes
locking angles averaged for at least four samples.

As shown in the table, for woven fabrics shear angles of at least 55∞ were
achieved before wrinkling was observed. Skelton5 proposed a lower limit
when adjacent yarns come into contact (i.e. yarn width is equal to yarn
pitch). Application of this model to the fabrics described in Table 2.1 is of
limited use, as the predicted locking angles are typically 20∞ lower than
those measured. Here, fabric locking occurred some time after adjacent yarns
came into contact. For the light plain weave (P150), the relatively large
spacing between the yarns permitted large shear angles, and in fact only
three of the six samples wrinkled before the end of the shear test. The
locking angle was lower for the heavier plain weave (P800). Woven fabrics
can be ranked for locking angle using the ratio between initial yarn (tow)
pitch and width, which is sometimes referred to as the fabric tightness. For
woven fabrics a high ratio appears to indicate a high locking angle. The same
procedure appears to apply to non-crimp fabrics, although ratios here are
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Table 2.1 Fibre architecture descriptions and measured locking angles for woven and non-crimp glass fabrics characterised in shear. In each
case, tow properties and spacings were identical in warp and weft

Fabric Style Fibre Surface Tow linear Tow Tow Tow pitch/ Locking angle
ID angles density density pitch width width (standard

(∞) (g/m2) (tex) (mm) (mm) deviation)

P150 Plain 0/90 147 150 2.04 1.22 1.67 ª68∞ (–)
weave

P800 Plain 0/90 800 1600 4.01 3.09 1.30 60∞ (1.4)
weave

S800-01 4-Harness 0/90 800 270 0.68 0.62 1.10 55∞ (1.7)
satin

S800-02 4-Harness 0/90 788 1450 3.70 2.80 1.32 61∞ (1.6)
satin

T800 2:2 Twill 0/90 790 2500 6.30 4.40 1.43 62∞ (1.7)
weave

Ebx936 Tricot 1&1 ±45 936 388 0.82 0.70 1.17 62∞ (–)
NCF

Ebx318* Pillar ±45 318 99 0.62 0.47 1.32 37∞/64∞ (–)
NCF

*Locking angle for this material depends on direction of testing. Value for fabric sheared parallel to stitching is significantly lower than value
when sheared perpendicular to stitch.
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generally lower than those for woven fabrics with similar locking angles. In
addition, for these materials the locking angle can depend on the direction of
testing, with different behaviour observed when the fabric is sheared parallel
or perpendicular to the stitching thread (as discussed below).

Typical shear compliance curves for woven fabrics are shown in Fig. 2.2.
Figure 2.2(a) compares the behaviour of fabrics with similar surface densities
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2.2 Experimental and predicted shear compliance curves for woven
fabrics. (a) Effect of weave pattern: plain weave (P800), 4-harness
satin weave (S800-02) and 2:2 twill weave (T800). (b) Effect of surface
density for plain weave: P150 (150 g/m2) and P800 (800 g/m2).
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but different fibre architectures. The plain weave (P800) requires the highest
force to achieve a particular shear angle, while the twill weave (T800) is the
most compliant. Clearly this is related to the ratio between yarn width and
pitch as described above, although difference in weave style is also significant
(as discussed in the next section). Similar observations can be made from
Fig. 2.2(b), which compares the behaviour of a two plain weaves with different
surface densities. For all fabrics tested, two distinct regions may be identified
within the shear compliance curve. The initial resistance to shear is relatively
low, and is likely to be caused by friction at the yarn crossovers as suggested
by Skelton5. Once adjacent yarns come into contact, the resistance increases
significantly as the yarns are compressed together. This is the region where
wrinkling is usually observed. If the test were continued, the curve would
tend towards an asymptote corresponding to maximum yarn compaction (i.e.
close packing of the filaments within each yarn).

Figure 2.3 shows typical shear compliance curves obtained for NCFs with
both tricot and pillar warp-knit stitching threads. The tricot warp-knit resembles
a ‘zigzag’ pattern, whereas the pillar warp-knit is similar to a chain stitch. In
both cases it is apparent that the compliance is lower when the fabric is
sheared parallel to the stitching direction. Testing in this direction results in
a tensile strain within the stitch, which causes an increase in shear force. The
effect is more pronounced for the pillar warp-knit, as the majority of the
stitching thread is aligned with the applied force. Here testing parallel to the
stitch results in a linear increase in force until the stitching thread snaps.
After this point the force is reduced until inter-yarn compaction occurs. The
directionality exhibited by NCFs during shear can result in non-symmetric
fibre patterns during forming, as described in Chapter 4.

2.2.2 In-plane shear modelling

Given the large number of reinforcements available, it is desirable to develop
a model for fabric shear behaviour, both to predict resistance to shear and the
change in fabric geometry. Broadly, this must capture the evolution of the
fabric geometry during shear, and include contributions from each deformation
mechanism to the overall shear behaviour. From the experimental analyses
above, it may be concluded that the primary mechanisms are shear at yarn
crossovers and friction between yarns, both at crossovers and between parallel
yarns. NCFs also dissipate energy via relative displacement and stretching of
the stitching threads. The geometry of the fabric can be relatively complex,
so that precise determination of forces or energy dissipated via any individual
mechanism may be difficult to determine. For example in woven fabrics
parallel yarns are only in contact with each other over a fraction of their
lengths, and crossover contact may act over relatively complex curved surfaces.
Hence to produce an analytical model, a number of simplifications are required.
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Skelton5 suggested that resistance to in-plane shear for woven fabrics was
a result of friction at yarn crossovers, and developed an expression for shear
stiffness as a function of the number of crossovers. However, this implied a
linear relationship between shear force and shear angle, which is not the case
for large deformations (as illustrated above). Kawabata et al.12 performed a
more detailed study for a plain woven fabric. In this work the torque required
to rotate a single yarn crossover was expressed as an empirical function of
contact force and shear angle. Yarn paths were modelled using a saw tooth
pattern (straight lines between crossovers), which allowed the contact force
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2.3 Shear compliance curves for ±45∞ NCFs tested parallel and
perpendicular to the stitch. (a) tricot 1&1 warp-knit (Ebx936); (b) pillar
warp-knit (Ebx318).
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to be derived from the tensile forces in the yarns. This model is described in
detail in section 2.3.4 in the context of in-plane tensile behaviour. However,
it is of limited use for modelling of fabric shear, as it relies on specialised
equipment to determine the parameters for the yarn interaction model.

McBride and Chen13 modelled the yarn paths using sinusoidal curves,
which were allowed to evolve during shear deformation. Bias extension tests
were performed for a number of plain weave reinforcements, with image
analysis used to study the evolution in yarn spacing and yarn width during
shearing. Yarn width was found to remain constant until adjacent yarns came
into contact, after which the yarns were compacted. For all materials, fabric
thickness (measured using a fabric micrometer) remained constant prior to
wrinkling. These results may be explained by the fact that an increase in
thickness would require elongation of the yarns, resulting in forces significantly
higher than those measured above.

Souter11 developed a general model for shear resistance of woven fabrics.
A combination of inter-yarn friction at rotating crossovers and compaction
between adjacent yarns was used to predict shear resistance. Yarn cross-
sections were assumed to be lenticular based on microscopy, with yarns in
intimate contact at crossovers and following straight paths between crossovers.
The distance between yarn crossovers along each yarn remained constant
(i.e. inter-yarn slip was neglected), whereas the yarn width reduced once
yarns came into contact. Fabric thickness was assumed constant during shearing,
based on experimental observations by the authors and supported by those
from McBride and Chen13.

The resistance to shearing at each yarn crossover was modelled by
considering the torque (Tc) required to rotate a yarn crossover, defined by
Kawabata et al.12 as:

Tc = mc ¥ Fc ¥ Reff 2.4

where mc is the coefficient of friction (taken as 0.3), Fc is the contact force
between the yarns and Reff is the effective radius of rotation of the contact
area (i.e. the radius of a circle with the same area as the yarn crossover). Yarn
width was assumed to remain constant until adjacent yarns came into contact
(i.e. the yarn width is equal to the yarn pitch). After this point the yarn width
was reduced to prevent adjacent yarns passing through each other.

Inter-yarn contact force was calculated by resolving the contributions
from yarn tension and compaction into the direction normal to the crossover.
The resulting contact force depends on the weave style, as woven fabrics can
consist of a number of contact geometries as illustrated in Fig. 2.4. Compaction
was modelled here using the model from Cai and Gutowski14, who developed
the following equation for the fibre bundle pressure:

s b
b 11

bb 11 b1
2 = 

(  –  )
e F

F F F
2.5
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where the bulk strain in the yarn is defined as:

e 
v
vb

f

f0
 = 1 – 2.6

In the above, vf and vf0 are the current and initial fibre volume fractions, and
F11, Fb1 and Fbb are terms of the yarn compliance tensor, which are functions
of fibre modulus, fibre waviness (wavelength divided by amplitude for a
notional sinusoidal fibre path) and maximal fibre volume fraction. Parameters
determined by McBride15 for compaction of unidirectional yarns were used
in the present study.

The torque required to shear the fabric is obtained by summing the torque
for each crossover (Tc). The shear force for each specimen can then be
calculated from the number of unit cells it contains (N):

F
l 

T
i

N

s
=1

c = 1
 cos 

  iq S 2.7

This method of analysis was applied to the four different woven fabrics
described in Table 2.1. Results from the model are included in Fig. 2.2,
showing good agreement with experimental data. In particular, the model
represents the two observed regions within the shear compliance curve very

Type 1 Type 2 Type 3
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2.4 Three different types of tow crossover: before shearing (top) and
during shearing (bottom). Lc = contact length; Tw = tow width; Ts =
tow spacing.
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clearly. Before yarns come into contact, the resistance to shear is small as the
yarn contact force is low. Once yarns contact the shear force increases
significantly as the contact force includes an additional (and substantial)
contribution from yarn compaction.

The above modelling approach has recently been extended to NCFs16.
The primary differences here are that the yarns are assumed to be perfectly
straight, so that significant energy is dissipated via shearing and compaction
between parallel yarns. In addition the stitch contributes a significant resistance
to shearing via stitch tension and inter-stitch friction. These were modelled
using a simple geometric representation for a tricot stitch (Fig. 2.5). Results
from this model are shown in Fig. 2.6, which illustrates the difference in
shear behaviour predicted for two ±45∞ tricot-stitched fabrics with different
stitch lengths. The model is able to represent the asymmetric shear behaviour
typical of NCFs, and also predicts the effect of the stitch geometry on this
behaviour.

d
t

c

2.5 Tricot stitch pattern for NCF model (left), and stitch unit-cell
(right). It is assumed that fabric thickness (t) remains constant, and
dimensions c and d evolve as the fabric is sheared.

This section has presented approaches based on analytical modelling to
predict the shear response of textile reinforcements. An alternative here is to
use 3D finite element analysis to predict fabric shear behaviour. This
approach has many attractions, eliminating many of the simplifying assumptions
required by analytical models. The approach described in section 2.3.5
has recently been applied to this problem. Such techniques are very useful in
the design of reinforcement materials, allowing behaviour to be predicted
prior to fabric manufacture and providing useful information to the fabric
designer. To assess the effects of fabric mechanics on forming, predictions
from these approaches can be used directly as input data for simulations of
fabric forming17, which may allow fabric formability to be optimised for a
particular component.
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2.6 Predicted shear compliance curves for two ±45∞ tricot stitched
NCFs with different stitch lengths (Ebx 936 c = 2 mm; FGE 106 c = 2.5
mm). Positive shear angles represent shearing parallel to the stitch,
whereas negative values represent shearing perpendicular to the
stitch.

2.3 Biaxial in-plane tension

2.3.1 Introduction to tensile behaviour of textiles

This section concentrates on tensile behaviour of textile reinforcements when
loaded in the fibre directions. Whereas NCFs exhibit relatively linear behaviour,
as the fibres remain largely parallel to the plane of the fabric, woven fabrics
are well known to have non-linear mechanical properties. Hence woven
fabrics form the focus of this section. The diameter of individual fibres
within the yarns is very small (5–7 mm for carbon and 5–25 mm for glass)
compared with their length. Consequently they can only be submitted to a
tensile stress in the fibre direction h1:

s = s11 h1 ƒ h1 s11 ≥ 0 2.8

Fibres are assembled into yarns. Different yarn structures can be obtained
according to the fibre arrangement within the yarn. This section considers
yarns that are simply juxtaposed (untwisted). This permits relative sliding of
the fibres if yarns are subjected to bending, so that the stress state in the yarn
defined by eqn 2.8 remains valid.

From the stress state, it is convenient to define the tension in the yarn:

T S
A

11 11 = d
y

Ú s , T = T11h1 ƒ h1 2.9
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where Ay is the sum of the surfaces of the fibres constituting the yarn.
If two yarn networks in directions h1 and h2 are considered (Fig. 2.7a), the

stress state for the domain defined by these two yarn networks is of the form:

s = s11 h1 ƒ h1 + s 22 h2 ƒ h2 2.10

and the tensor of the tensions that can be transmitted:

T = T11h1 ƒ h1 + T22h2 ƒ h2 2.11

T S
A

11 11 = d
y1

Ú s , T22 = 
A

S
y2

22dÚ s , T11 ≥ 0, T22 ≥ 0 2.12

2.7 Bidirectional textile domains: (a) non-woven; (b) woven.

h2

h1

(a)

h2

h1

(b)

In the above, superscripts 11 and 22 indicate loading parallel to the two yarn
directions. When the warp and weft yarns are woven, T11 and T22 interact
because of the interlaced structure. Yarns within woven fabrics are ‘wavy’ or
crimped (Fig. 2.8). Under tensile loads, yarns tend to straighten and to become
flattened. In the extreme case, where transverse yarns are free to displace,
loaded yarns become totally straight, with transverse yarns becoming highly
crimped (Fig. 2.8, T22 = 0). In intermediate cases, an equilibrium state is
reached where the two directions show undulation variations. It is clear that
this phenomenon is biaxial and that the two directions interact. The tensile
behaviour of woven fabrics is non-linear at low tensions, even if the yarn is
linear in tension (Fig. 2.9). As will be shown in the following sections this
response depends on the ratio between warp and weft strains. This non-
linear phenomenon is observed in the macroscopic tensile behaviour of fabrics,
but it is due to geometrical non-linearities at the mesoscopic (repeating unit-
cell) scale and is amplified by yarn compaction at the microscopic scale.
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2.3.2 Tensile behaviour surfaces

For a woven domain subjected to in-plane tension (Fig. 2.7), the stress state
can be described by the tension tensor, which is of the form:

T = T11(e11, e22) h1 ƒ h1 + T22(e11, e22) h2 ƒ h2 2.13

The tensions in warp and weft directions, T11 and T22, depend on both axial
strains, e11 and e22, because of warp and weft interactions as described above.
For a woven domain made of ncell elementary woven cells submitted to in-
plane biaxial tension, the dynamic equation can be written in the following form:

S
p

n
p

=1 11

cell

 ( )e h pT11 pL1+ pe22(h) pT22pL2 – Text(h) = 
W

rÚ ü h dV 2.14

" h/h = 0 on Gu

2.8 Tension interactions due to interlacing in woven fabrics.

Load
(N/yarn)

Yarn

Fabric

Strain (%)

2.9 Non-linear tensile behaviour for woven fabrics based on linear elastic
yarns.
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Text (h) is the virtual work due to exterior loads:

T V Sext ( ) =  d  –  d
t

h h  h
W GÚ Úf t  2.15

In the above, f and t are the prescribed volume and surface loads, respectively.
Gu and Gt are boundaries of the fabric domain (W) with prescribed displacements
and surface loads, respectively. L1 and L2 are yarn segment lengths in the two
yarn directions for an individual cell, and r is the material density.

In eqn 2.13 the tensile mechanical behaviour of the fabric reinforcement
is defined by relations between the yarn tensions, which in turn are functions
of both yarn strains. Woven fabric tensile behaviour is defined by two biaxial
mechanical surfaces, which define the warp or weft loads as a function of the
biaxial strains. These are identical if the fabric is balanced, i.e. if the yarns
and their paths are the same in the warp and weft directions. Three different
analysis techniques are presented for this behaviour in the following sections:
experimental measurement, simplified analytical models and 3D finite element
analysis.

2.3.3 Experimental analysis of the biaxial tensile
behaviour

In this section biaxial tensile experiments are described, the primary aim of
which is to determine the two tension surfaces linking warp and weft tensions
to the corresponding strains. A number of specialist biaxial tensile devices
have been designed for fabric testing18, 19. The device used in this study is
operated using a conventional tensile/compressive testing machine, and needs
no servo-control between the two tensile axes. It is an extension of devices
developed for sheet metal, and works via two deformable lozenges20, 21 as
illustrated in Fig. 2.10. When the machine crosshead is raised, it compresses
the whole system. This generates a displacement in both the warp and weft
directions within a specimen set in the middle of the device. A cruciform
specimen is used, where only the square central region (50 mm wide) is of
interest. The arms of the cruciform have the transverse yarns removed, so
that these regions are uncrimped. This is essential to avoid the use of systems
that allow transverse deformation (as required in the Kawabata device, for
example18, 19).

Various ratios (denoted k) between strains in the warp and weft directions
can be imposed by adjusting the dimensions of the testing fixture in one
direction. In addition a regulation system allows the inter-yarn angle to be
modified from 90∞ (i.e. effects of fabric shear on tensile behaviour can be
measured). Load cells, positioned directly behind the specimen, give the
total load in each direction. Strain measurements are performed using either
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optical method22, 23 or extensometers. The two methods lead to results in
good accordance; optical strain measurements are particularly useful as they
allow the full strain field across the central woven region to be assessed.
Such analyses have confirmed that the strain field is uniform and homogeneous,
even in the inner corners that pose problems for materials with higher in-
plane shear stiffness (as is the case for metals20).

Results from tests on three fabrics are presented here to illustrate typical
biaxial behaviour. These materials are used to produce preforms for the RTM
(resin transfer moulding) process. Data are presented for several strain ratios
k = e1/e2 (1 is the direction under consideration, which may be warp or weft).
The fabric density in one direction is the number of yarns per unit fabric
length; the crimp characterises undulation and is defined as:

Crimp (%) = 
yarn length –  fabric length

fabric length
  100¥ 2.16

Balanced glass plain weave

This fabric is approximately balanced (the properties in the warp and weft
directions are almost identical). The yarn density is 0.22 yarns/mm and the

70 mm

50 mm

230 mm

40 mm

2.10 Biaxial tensile testing device and cruciform specimen.
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crimp is 0.4%. The individual yarns have slightly non-linear tensile behaviour
because fibre cohesion in the yarn is not particularly efficient and the filaments
are not rigorously parallel. The tenacity of the glass yarns is 350 N and their
stiffness is 38 KN. Tension versus strain curves for the fabric are highly non-
linear at low forces and then linear for higher loads (Fig. 2.11a). This non-
linearity is a consequence of non-linear geometric phenomena occurring at
lower scales, more precisely straightening at the mesoscale and compaction
at the microscale. This non-linear zone depends on the prescribed strain
ratio, which illustrates the biaxial nature of the fabric behaviour. The non-
linear zone is largest for tests in which displacement in the other direction is
free (i.e. uniaxial tests, k = 0). Here the yarns tend to become completely
straight under very low loads. Once the yarns in one direction become straight,
the behaviour of the fabric is very similar to that of the yarn alone. The value
of the strain corresponding to this transition is representative of the fabric
crimp in the loading direction. The experimental results are highly
reproducible24, 25. From the tension–strain curves for different strain ratios it
is possible to generate the experimental biaxial behaviour surface (Fig. 2.11b).

Balanced carbon 2 ¥ 2 twill weave

This balanced fabric is made of yarns composed of 6000 high-strength carbon
fibres. In both warp and weft directions the yarn density 0.35 yarns/mm.
Their tenacity is 420 N, and their uniaxial tensile behaviour is approximately
linear (Fig. 2.12a). The fabric crimp is 0.35%. Biaxial tensile curves for
different strain ratios are presented in Fig. 2.12(a), and the tension surface is
shown in Fig. 2.12(b). Although the yarns exhibit linear behaviour, the tensile
force versus strain behaviour of the fabric is highly non-linear at low loads
and then linear at higher loads. The non-linearity decreases as k is increased,
in a similar manner to the glass plain weave fabric. Failure has been reached
for e = 0.8% (k = 1)25 while the non-linear zone extends to approximately
0.3%. Consequently, when a woven material is loaded, for instance during
forming, a major part of the fabric is in a state where its behaviour is highly
non-linear; it is, then, important to describe this non-linearity in the mechanical
behaviour.

Highly unbalanced glass plain weave

The stiffness of the weft yarn of this fabric is 75 kN per yarn and that of the
warp is 8.9 kN per yarn. Consequently the fabric is very unbalanced. The
behaviour of the fabric is thus significantly more non-linear than that of the
individual yarns. The two warp and weft behaviour curves (and surfaces) are
different (Figs 2.13a&b). The weft, which is much more rigid, has a behaviour
that is influenced very little by the warp strain. The tension surface is obtained
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2.11 Results of biaxial tests for a glass plain weave: (a) load–strain
curves; (b) tension surface.
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by a straight translation in the warp strain direction. In contrast, the warp
strain depends strongly on the weft strain.

2.3.4 Analytical models

The biaxial experiments described above are rather difficult to perform and
it is convenient to use simplified analytical models to predict the mechanical
behaviour of the fabric from parameters related to the weave structure and
the mechanical characteristics of the yarns. Such models can be very fast and
can allow the influence of material parameters to be examined. Many models
have been proposed in the textile science literature18, 26–29. Here the well-
known Kawabata model18 is described, and a second model that is consistent
with the geometry of the woven fabric is presented.
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2.13 Results of biaxial tests for an unbalanced glass plain weave:
(a) weft load–strain curve; (b) warp load–strain curve.
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Kawabata model

In this model, yarns within a plain weave are described by straight lines as
shown in Fig. 2.14. From the geometry of the mesh the following equation
can be derived for the strain in each yarn direction:

efa = {4[e0a + (–1)awa]2 + L0
2

a  (1 + ea)2}1/2 (  + 4 ) – 10
2

0
2 –1/2L ea a

2.17

The angle between each yarn and x3 is:

cos qa = 2[e0a + (–1)awa]{L0
2

a (1 + ea)2 + 4[e0a + (–1)awa]2}–1/2

2.18

2.14 Geometric representation of a plain weave in Kawabata’s model.

In the above, a (= 1 or 2) refers to the yarn direction, and wa is the yarn
displacement in the x3 direction. Other symbols are defined in Fig. 2.14.
Equilibrium conditions and the projection of the loads onto the fabric mean
plane leads to:

T Tf
1

1 f
1

2 cos  =  cos q q    Taa = Tf
a  sin qa   Fc = 2 fT a cos qa 2.19

where Fc is the compressive force between yarns along x3. The tensile behaviour
of each yarn is given by:

T gf f = ( )a ae 2.20

A large number of studies have been published concerning the mechanics
of yarn compression14, 18, 29–32, and this is discussed in the context of fabric
compaction in section 2.4. Here an empirical compaction law is used, which
is different from that proposed by Kawabata18:
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f(Fc) = A[2 – exp(– BFc) – exp(– CFc)] = w1 – w2 2.21

The compaction coefficients A, B and C are identified using an inverse
method33, 34 from the biaxial test at k = 1.

The system of equations given above can be reduced to one non-linear
equation depending on transverse displacement, and can be solved by dichotomy
if strains are imposed. If loads are known, it is necessary to solve the whole
system; an iterative method (e.g. Broyden) can be used efficiently. Good
agreement between the model and experimental results for different values
of k is demonstrated in Fig. 2.15. Additional results for the fabrics presented
in section 2.3.3 are given by Buet-Gautier & Boisse25.

2.15 Comparison between Kawabata’s model and experimental data for
a glass plain weave.
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This model is simple and efficient. However, the 3D geometry of the
yarns built on the straight segments penetrate through each other, and in
order to obtain good results as shown in Fig. 2.15 the values of parameters
A, B and C are not consistent with physical values for the fabric. The goal of
the next model is to avoid penetration of the yarns (to be geometrically
consistent) and to work with physical values.

A geometrically consistent yarn model for fabric tensile biaxial behaviour

Here yarn longitudinal sections are curved lines with surfaces that are in
consistent contact with each other at yarn crossovers. Yarn cross-sections are
defined by the intersection of two circular arcs with different diameters.
Between yarn crossovers, the yarns are assumed to follow straight paths.
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Consequently, the yarn paths are represented by circular arcs and straight
segments (Fig. 2.16). The geometry is defined in the general case (unbalanced
fabric) by a set of seven material parameters. It is convenient to measure for
the warp (a = 1) and weft (a = 2) direction, the crimp ea, the interval
between two yarns aa  and the yarn width ca. The last parameter required is
the thickness of the fabric w. It can be shown that the solution of this system
can be reduced to two non-linear equations giving ja1:

tan 4 – 1
2

(  –  )
cos 

 –  = 1
1

2
–1 2

1/2

j ja a
a a

a 
a a  aL

a c
a c  c¢ ¢

¢ ¢  ¢
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ÎÍ

˘
˚̇

Ï
Ì
Ó

¸
˝
˛

2.22

where a ¢ = 3–a. If the fabric is balanced, only three parameters (crimp, yarn
width and interval between two yarns) are necessary to define the whole
geometry. For the balanced glass plain weave presented in Fig. 2.11, the
geometric measurements are ca = 3.80 mm, aa = 4.55 mm and ea = 0.40%.
The geometric model leads to ja1 = 0.134, ca = 2.30 mm, ba = 0.130 mm and
w = 0.710 mm. These calculated quantities agree well with their physical
measurements, for example the fabric thickness w. The 3D geometry obtained
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2.16 Geometry of the consistent model (a) and section through the
model along one yarn direction (b).

© Woodhead Publishing Limited, 2005



Mechanical analysis of textiles 85

can be used directly for generation of finite element meshes, as will be
described in the following section.

The relations between the two strains and tensions in the warp and weft
directions are obtained from equilibrium in the deformed configuration:

Tf
a  = PRa1 Ra¢1 ja1   T aa = Tf

a  cos j1a 2.23

where P is the contact pressure between crossing yarns. Axial strains in the
yarn direction (which are assumed to be small) and the strains in the plane
of the fabric are respectively:

e a a a

a
f
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0
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 –  L L
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a a
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˜ 2.24

where the subscript 0 indicates the initial value (prior to loading). The tensile
behaviour of the yarns is given by eqn 2.20. Transverse compaction stiffness
is defined by relating the parameter r = |z2 – z1|, which describes the relative
displacement between yarn paths, with the loads on the mesh. As suggested
above, this stiffness depends both on the compaction state and the yarn
tensions:

r A  e  e
C T T

 = 2 –   –  –BSP –
2

(  + )f
1

f
2È

ÎÍ
˘
˚̇ 

2.25

where S is the yarn contact surface area. Considering the difficulty in performing
a simple test to measure compaction of the yarn, the coefficients A, B and C
are again determined by an inverse method using the result of the biaxial test
for k = 1.

If a strain state of the fabric (e11, e22) is prescribed, the equations in the
deformed state give the two warp and weft yarn tensions (T11, T22). It can be
shown21, 35 that this set of equations can be reduced to a non-linear system of
two equations that can be solved using an iterative (Newton) method. The
tension surface obtained in the case of the balanced plain weave glass fabric
is compared with the experimental surface in Fig. 2.17. Both surfaces are in
good agreement, particularly at low strains where non-linearity is most
pronounced.

2.3.5 3D finite element analysis of the unit cell
under tension

3D finite element (FE) analysis is an alternative to the two previous approaches
to determine the biaxial tensile surfaces for fabric reinforcements. This gives
information on local phenomena that influence the global fabric mechanical
behaviour. It can be used before fabrication to define the geometrical
characteristics and the types of yarn for a fabric in order to obtain the desired
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2.17 Tensile behaviour surface for balanced glass plain weave:
(a) experimental and (b) geometrically consistent model prediction.
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mechanical properties. This is particularly interesting for complex fabrics
manufactured in small quantities and used in highly demanding structural
applications such as aerospace components. In addition the FE approach
allows the influence of material parameters (e.g. crimp, yarn density, weave
pattern) on the biaxial mechanical properties of the fabric to be analysed in
detail36.

The yarn is composed of a large number of fibres with small cross-sections
that are very flexible and can slide in relation to each other. Consequently
yarn mechanical behaviour is highly non-linear, and exhibits very low rigidity
in all directions other than parallel to the fibres. Furthermore, the transverse
stiffness depends on yarn compaction and tension. The equivalent material
used in 3D FE analysis must account for this behaviour. This can be achieved
using an elastic orthotropic model where the principal frame is defined with
direction 1 parallel to the yarn, with very small shear moduli (G12, G13, G23)
and Poisson ratios (n12, n13, n23), and with low transverse moduli (E2, E3) in
comparison with the longitudinal modulus (E1). Because local geometric
non-linearities are of primary importance, the simulation must be performed
using large strain theory. Since the axial (1 direction) and transverse moduli
are very different, it is important to specify the mechanical characteristics in
the appropriate directions during the analysis. Therefore, the yarn stiffnesses
are prescribed in material directions, i.e. linked to the finite elements in their
current position. In each of these material directions, hypoelastic behaviour
is considered.

The longitudinal modulus may be constant or strain dependent, and can
be determined by tension tests on single yarns. As already noted, yarn
compaction plays a major role in the deformation of woven fabrics. In the
current FE-based approach, local values of the mechanical properties are
needed, so that to model compaction the transverse modulus E3 is required.
When the yarns are under tension, it can be observed that it is more difficult
to compress them. It is therefore necessary to take this tension into account.
Here, yarn compaction is represented by the evolution of the transverse
modulus, which increases if transverse and longitudinal strains increase:

E E E n m
3 0 33 11 =  + | |e e e 2.26

where E0, m and n are three material parameters. Ee is the transverse Young’s
modulus in the unloaded state, which is almost zero for the fabric yarns
described in section 2.3.3. Equation 2.26 is consistent with results given by
global yarn compression models for the evolution of the yarn thickness30, 31.
When loading starts, the transverse stiffness increases because the voids
between fibres are reduced. Finally, the stiffness tends to an asymptotic
value, which is very large in comparison with the value at low strain. As for
the analytical models presented above, an inverse method33, 34, 36 was used to
determine the parameters E0, m and n, using the results for a biaxial test with
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k = 1. In this 3D simulation of the woven unit cell, a numerical difficulty
comes from the very large difference between weak (or zero) values of some
moduli (particularly shear modulus) and the modulus in the direction of the
yarn. This can result in spurious zero energy modes. The hourglass control
method, developed for finite elements with reduced integration, is used here
to avoid this problem37, 38. A master–slave approach is used to model contact
between the yarns. It has been observed that contact non-linearities are important
for the twill weave, but less so for the plain weave.

Figure 2.18 presents the unit cell mesh for the carbon 2 ¥ 2 twill weave
(30 000 degrees of freedom), as described in section 2.3.3 The tensile behaviour
surface obtained from computations under biaxial tensile loads with different
strain ratios is also shown. This is in good agreement with the surface
determined by experiments (Fig. 2.12); similarly good agreement between
FE predictions and experimental data was obtained for the other fabrics
described earlier21. Curves obtained from FE analysis are included in the
graphs in Fig. 2.13 (dotted lines) for the unbalanced fabric, again demonstrating
good agreement.

The 3D FE analyses show that yarn compaction is extremely important in
most cases. This is particularly evident under equal biaxial strains (i.e. k =
1), where the yarn compaction (logarithmic) strain reaches a maximum value
of 40% for the glass plain weave (Fig. 2.19). In contrast, under uniaxial
loading (k = 0), compaction is negligible: the stretched yarn becomes straight
while the undulation of the free yarn increases (Fig. 2.19a).

The 2.5D carbon fabric presented in Fig. 2.20 is used in aerospace structural
components. The weave pattern is such that the weft yarns cross two warp
layers, so avoiding delamination between the different plies. The FE model
presented in Fig. 2.20 has 53 000 degrees of freedom. The warp yarns are
initially straight. This explains why biaxial tests give the same response in
the warp direction for different strain ratios, so that the tensile behaviour
surface is flat (Fig. 2.20b). On the other hand, the response in the weft
direction is non-linear and depends on the strain ratio (Fig. 2.20c). Given the
complexity of such fabric reinforcements, 3D FE simulations can facilitate
fabric design so that the appropriate type of yarn and weave pattern for a
given application can be determined before fabric manufacture. Results of
computations for other fabrics are given by Boisse and coworkers21, 36.

2.4 Compaction

2.4.1 Importance of compaction in the processing textile
preforms and composites

The widespread use of textile preforms and reinforcements for composites
manufacturing results from the easy handling of large quantities of fibres
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2.18 3D finite element analyses for biaxial tensile behaviour of
carbon 2 ¥ 2 twill weave. (a) FE mesh and (b) predicted tensile
behaviour surface.
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2.19 Yarn compaction during tensile loading of a plain weave, for
strain ratios of (a) k = 0 and (b, c) k = 1.

offered by these material forms, which make fast and economical production
possible. Despite lower costs, stringent imperatives on processing and
performance are nonetheless present when manufacturing composites from
textiles. Preforms must be processed in a configuration that eases manufacturing
and maximises the properties of the final part.

In RTM (section 5.3.1), the injection of the resin through the preform is
eased by low fibre volume fractions. These must be kept within a certain
range, above a minimum value in order to prevent movement of the preform
in the mould upon injection and below a maximum value to ensure that resin
flows at sufficiently high rate under practicable injection pressures. Final
parts must feature high fibre volume fractions as this ensures minimal resin
usage and high specific properties, as well as limiting the possible occurrence
of resin-rich areas.

Similar considerations apply to VI (vacuum infusion, section 5.3.2). In
this process the vacuum level and the design of the mould and gates affect
the thickness at each point of the part, in its final state and at all times during
processing. In turn the thickness affects preform permeability, flow, filling
dynamics and pressure distribution. Thickness and compaction behaviour of
the textile reinforcement have a major influence on process kinetics for VI.

Compaction behaviour also plays an important role in the stamping of
textile-reinforced thermoplastic composites. Here the reduction in thickness
is an integral part of the manufacturing cycle, and must be timed accordingly.
Initially, any air must be evacuated by flowing along and/or between solid
fibres. Then the viscosity of the polymer (present as fibres or in partly
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2.20 3D finite element analysis for biaxial tensile behaviour of a 2.5D
fabric: (a) FE mesh and (b, c) predicted tensile behaviour surfaces.

© Woodhead Publishing Limited, 2005



Design and manufacture of textile composites92

consolidated form) is lowered throughout the preform, so that thorough
consolidation can take place under increased compaction forces. Critically,
these operations must be completed within a minimal cycle time. The thermal
behaviour of the material throughout the cycle depends on the imposed
compaction level. Knowledge of the fibre volume fraction in a part being
processed is also critical to minimising voids.

Textiles in their unloaded state have a low fibre volume fraction (typically
between 10 and 25%39) which must be increased during processing. The
final fibre volume fraction and the rates at which it is increased are generally
crucial to the economic production of quality parts. Hence control of the
compaction is essential.

Predictive simulation tools for composites manufacturing processes are
becoming increasingly available (see Chapters 4 and 7). Accurate predictions
require accurate data, including compaction data. However, the usefulness of
such compaction data extends beyond process modelling and control.
Knowledge of the compaction behaviour is equally important to the
specification of manufacturing equipment and textile reinforcements for RTM.
Process engineers need to know what forces are involved in bringing a preform
to a target fibre volume fraction, and which textiles may be most amenable
to this. Similarly, when selecting a vacuum pump for VI moulding one needs
to know what preform thicknesses can be achieved for a given port set-up
and part dimensions, so that the manufacturing operation can be designed
appropriately and operated with confidence.

The precise scope of this section is detailed below, followed by a description
of the phenomena covered here. Further information on the effect of diverse
parameters that relate to industrial situations is presented, and practical
recommendations are made. While the information applies to any manufacturing
process where textile reinforcements are used, throughout this section the
concepts and their practical consequences are discussed for three processes,
namely RTM, VI and thermoplastic stamping.

2.4.2 Scope of the section

This section describes the behaviour of textile reinforcements subjected to
compaction forces normal to their plane. The focus is on the relation between
the force F applied to the textile and its thickness h, which can be converted
respectively to a pressure P by dividing by the projected area A, and to a fibre
volume fraction vf.

In manufacturing, pressure is typically applied between the two rigid
surfaces of a mould (RTM, stamping, etc.) or between a lower rigid tool and
a flexible membrane (VI, diaphragm forming, etc.). In this section the pressure
refers to the force applied on a textile compacted between two platens of
finite area. The pressure is obtained by dividing the value of the force by the
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area of the platens, assuming that the textile sample has the same dimensions.
Textiles are made of yarns, which in turn are made of fibres. As it is transmitted
through the textile, the externally applied force is actually split into numerous
small forces that are transmitted at the numerous points of contact between
individual fibres. Therefore, the concept of an average pressure that is constant
over the surface of the platens is an approximation. A more detailed investigation
would reveal higher pressures on the yarns and no pressure in the empty gaps
separating them (Fig. 2.21). The pressure distribution on any given plane
cutting through the material would reflect the geometry of the preform on
that plane, with pressure levels on individual yarns being significantly higher
than the average applied pressure. Here the compaction pressure is defined
as the applied force divided by the area of the platens, including the yarns
and the empty volumes defined between them.

P

Average
pressure

Local
pressure

2.21 Definitions of local and average pressure during textile
compaction.

The other variable recorded in a compaction test is the preform height
(thickness), which is subsequently expressed as a fibre volume fraction. The
reason for this is that preforms can be made of any number of textile layers.
A given preform will often feature varying numbers of textile layers in
different locations, as well as diverse combinations of different textiles.
Using a single relationship between the applied pressure and the resulting
fibre volume fraction is simpler and more general. Also, the fibre volume
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fraction of a part is often more critical to designers than the thickness.
However, although the concept of a fibre volume fraction applied to a single
layer of textile compacted between two rigid platens is unambiguous, real
preforms are generally made of more than one textile layer. In such cases the
volume, or thickness, occupied by each layer is not precisely defined and
individual layers typically run into each other. Fibres from a given layer can
lodge themselves between fibres from another layer, and at a larger scale the
peaks and valleys formed, say, by a woven textile can either fill each other
or not, (Fig. 2.22). This phenomenon is known as nesting and affects the way
in which the applied force is transmitted through textile layers.

2.22 Illustration of nesting between fabric layers – no nesting (top)
and maximum nesting (bottom).

Experiments have shown that the compaction behaviour of multilayer
stacks of a given textile differs from that of a single layer of the same
material39. While a single relation between P and vf for a given textile may
be used as a guideline, in simulation one should ensure that the data represent
the actual lay-up envisaged for production, especially when a high-fibre
volumes fraction is required. Furthermore, properties such as in-plane
permeability of preforms or bending stiffness of composites depend on the
relative thickness of individual textile layers. Preforms are sometimes built
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with random mats located at their core or distributed through the thickness,
and enclosed between layers of directional reinforcements. Such preforms
will show high in-plane permeability without major reductions in their specific
bending stiffness if the compaction of the random mats is controlled. The
reader should note that European Standard BS EN ISO 5084:1997 ‘Textiles
– Determination of thickness of textiles and textile products’, which supersedes
BS 2544, involves a static test where the textile is subjected to one nominal
load only. The evolution of vf as a function of P is not supplied by the test.

Compaction data such as those presented here are usually gathered from
tests where platens are parallel and textiles are flat and normal to the compaction
axis. A typical rig used to perform such tests is illustrated in Fig. 2.2340.

2.23 Testing fixture for reinforcement compaction40.
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Textile layers are compacted between platens A and C. Other items B to G
in the figure are used to perform compaction tests on samples saturated in
fluid, as discussed later in the text. The two platens are mounted to the ram
and fixed traverse of a universal testing machine and the ensemble is loaded,
usually at a constant displacement rate in the order of 1 mm/min. Calibration
tests performed with an empty rig allow the subtraction of the deformation
of the rig from the total deformation at a given force, ensuring that only the
compaction of the textile layers is recorded. The sample is compacted either
to a predetermined load or to a predetermined fibre volume fraction, depending
on the information sought. Upon reaching this state, a number of things may
happen. The displacement will be held constant to record the relaxation at a
constant fibre volume fraction, or the force will be held constant to record
compaction creep, or the sample will be unloaded at the same rate in order
to record a compaction hysteresis.

The surfaces of production tools are rarely flat in their entirety, and they
are not parallel where changes in thickness occur. Therefore at most points
of the tool surfaces the compaction direction is not parallel to the axis of the
press. In simulations these factors are accommodated by projecting the press
displacement on the normal to the tool surface for every point of that surface,
and by obtaining the corresponding pressure level. One may note that assuming
that a textile compacts along the normal to the tool surfaces is not rigorously
correct, as the actual relative motion of the surfaces includes a lateral component
to any normal that is not parallel to the axis of the press. No published
experimental data document this phenomenon, and hence it is usually neglected.

The term compaction can be used in the context of individual tows or
yarns. Tow compaction happens when textiles are compacted, and is also
observed when textiles are sheared (section 2.2) and submitted to tension
(section 2.3). Tow compaction is discussed in more detail in Chapter 1.
While it may be possible to infer tow compaction properties from experiments
performed on textiles through intelligent use of textile models, the focus
here is industrial production. Basic compaction cycles are described, and
phenomena such as behaviour upon impregnation, relaxation and unloading
are discussed. The important aspect of repeatability and statistical distribution
of the data is covered, along with implications for mould design.

2.4.3 Basic compaction and relaxation curves

Figure 2.24 shows a typical compaction and unloading cycle for a stack of
textile reinforcements. In this case the distance between platens was reduced
at a constant rate of 0.5 mm/min, held constant for 1 min and returned to its
initial value at the same rate. The curve shows the evolution of the compaction
pressure P as a function of the average fibre volume fraction vf for six layers
of a woven textile; vf varies between 0.40 and 0.60 and the maximum pressure
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is 1.0 MPa or 10 bar; such high compaction pressures represent a practical
maximum. The compaction part of the cycle can be characterised by an
initial fibre volume fraction vf,o which relates to the unloaded textile, a
representative fibre volume fraction vf,r read at a predetermined pressure
level, and an average stiffness defined over part of the loading curve where
pressure levels are significant. The curve shows that compaction pressure P
builds up rapidly with vf and that over the range of fibre volume fractions
used in production parts, a small increase in vf requires a large increase in
pressure.

As one aims at maximising the fibre volume fraction in commercial parts,
textiles are often compacted to levels where P increases very rapidly with vf,
making knowledge of the compaction behaviour critical in selecting a press.
In processes such as RTM the press must equilibrate the compaction pressure
as well as the pressure of the resin injected in the tool. Slower injection rates
lead to longer production times but allow marginally higher fibre volume
fractions for a given press; such aspects must be considered carefully when
designing production equipment. The resistance to changes in vf with
fluctuations in P is advantageous in VI as small fluctuations in vacuum
levels do not affect the reproducibility of local part thicknesses. However, it
should be pointed out that vf is more sensitive to P at the lower levels of
pressure involved in that latter process. Finally, it is generally easier to
control the stamping of thermoplastics when conducted under a membrane
as opposed to a positive displacement press; this is important especially as
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2.24 Typical compaction and unloading curves for a stack of plain
weave  reinforcements, tested at a constant displacement rate
compaction test (pressure in MPa).
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achievement of low void content requires accurate timing of heating and
compaction.

The dotted line in Fig. 2.24 corresponds to the relaxation step where the
distance between platens is held constant, and to load removal. The most
prominent feature is that the two curves for loading and unloading do not
superimpose, hence the behaviour is not elastic. A practical consequence is
that if vf is overshot, say in preform stamping, the properties of the final
assembly will be altered. For example, if a RTM preform targeted at a fibre
volume fraction of 50% reached a value of 55% during its production
(preforming) it would produce lower compaction pressures upon closure of
the actual RTM mould (constant thickness), possibly resulting in a displacement
of the preform upon resin injection. However, the same phenomenon can
have fortuitous consequences. In VI compaction pressure is highest when the
preform is dry, and it is progressively reduced behind the flow front. Pre-
compacted preforms show reduced spring back for the same compaction
pressure, hence higher fibre volume fractions may be reached in the final
parts. More generally, energy is absorbed when a textile is compacted, its
structure is altered, and in most cases it will not return to its initial height.

Figure 2.25 illustrates a typical time relaxation curve. The curve shows
the evolution of P with time t when the distance separating the platens is held
constant after the initial compaction. Once a certain maximum pressure level
is reached and platen travel is stopped the pressure reduces. If after a certain
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2.25 Typical pressure relaxation curve, where the pressure is
measured as a function of time with the reinforcement held at a
constant thickness.
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time the pressure is returned to its initial maximum level the fibre volume
fraction will increase further. This is why some pressure-controlled preforming
presses can be observed to re-clamp at more or less regular intervals. The
practical benefits of this are limited as relatively long relaxation periods lead
to only small increases in vf, especially at higher fibre volume fractions. In
spite of this, relaxation is an important phenomenon as changes in relative
thickness for a multilayer preform affect permeability, and reduced overall
compaction pressure may render a preform more prone to movement during
injection.

Figure 2.26 shows the evolution of applied load and resulting platen
displacement with time for a compaction test conducted at a constant loading
rate. Such tests are conducted using instrumented machines, the control of
which is fairly remote to that of industrial presses. The curve is informative
as its first section shows that compaction slows down as it progresses, reflecting
the stiffening behaviour of compacted textiles. The second section of the
curve shows the effect of an imposed constant load. The fibre volume fraction
typically increases by 1–2% in 60 s, while relaxation curves typically show
reductions in pressure of 15–25% in 5 min. This reinforces previous remarks
stating that for fibre volume fractions representative of actual parts, time
does increase vf but only marginally. The third section corresponds to load
removal and confirms previous observations. The curve features a hysteresis,
hence the textile is irreversibly modified as it is compacted.
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2.26 Evolution of applied load and resulting displacement (bold line)
with time for a constant loading rate compaction test.

2.4.4 Effects of variable parameters

The compaction and relaxation behaviour of textile reinforcements is affected
by preform construction and production parameters. For example, both
compaction and relaxation are altered when the number of layers present in
a preform is changed. This section documents such effects. In order to provide
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a usable summary of general trends, the effect of parameters on a number of
variables are considered.

For compaction the following quantities were introduced previously: the
initial fibre volume fraction vf,o of the unloaded textile, the representative
fibre volume fraction vf,r read at a predetermined pressure level, and the
average stiffness defined over a set range of pressure levels. Another variable
that will be commented upon is the rate at which the rigidity of the textile
increases as the textile is compacted; this will be referred to as the stiffening
index. For relaxation, a reduction in compaction pressure is observed at a
constant thickness and therefore the reduction in pressure observed after a
period of 5 min will be commented upon; this will be referred to as the
pressure decay.

The parameters investigated for both compaction and relaxation are the
number of layers (NOL) and saturation by a fluid (SAT). In the latter case,
experimental observations show that the compaction behaviour of a set number
of layers of reinforcement differs if the reinforcement is compacted dry or
saturated with resin. Considering VI for example, this means that when the
resin front reaches a given point of the preform, the compaction behaviour at
that point changes, effectively becoming less stiff. This can result in a local
reduction in thickness at the flow front, a phenomenon usually visible to the
naked eye. Additional parameters will also be commented upon. For
compaction, the effect of the number of cycles (NOC) applied to a preform
will be discussed. This applies to numerous practical situations such as RTM
operations where preforms are often manufactured in a separate operation to
the actual moulding.

The observed effects of the NOL on compaction are as follows. Different
authors have reported different trends, which may be explained by the different
textiles and pressure levels used. For some textiles compacted to higher
pressures, it has been shown that stacks made of a higher number of layers
are more difficult to compact to a given fibre volume fraction vf with compaction
curves progressively shifting to the left (lower fibre volume fractions), mostly
at higher pressures. At the onset of compaction multilayer stacks are easier
to compact because of nesting; however, at higher pressures these preforms
are usually more difficult to compact to a given vf, hence fibre volume
fractions are lower for a given pressure and the curve shifts to the left. While
vf,o usually increases with NOL, vf,r shows the opposite trend at high pressures.
Therefore both the rigidity and stiffening index tend to increase with NOL
(Fig. 2.27). Other authors who have used lower compaction pressures, which
are more indicative of manufacturing using VI for example, find that multilayer
preforms are easier to compact to higher fibre volume fractions. Their results
are not contradictory as they use different pressure levels. Besides, the effect
of the number of layers on the compaction behaviour is often relatively weak
and some authors have observed conflicting trends.
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Preforms made of a higher number of layers show more relaxation in
pressure at constant thickness. The pressure decay, defined as the ratio of the
pressure observed after 5 mins to the maximum applied pressure, is typically
reduced by up to 10% for thicker preforms.

The effects of compacting a reinforcement saturated in a fluid, say resin,
are as follows. It should be noted that what is discussed here is quasi-static
compaction, i.e. compaction at displacement rates that are sufficiently low to
render insignificant the pressure generated by the fluid as it is squeezed out
of the reinforcement stack. The phenomenon investigated in the reported
experiments is the effect of saturation, and lubrication, on the individual
contacts between fibres where forces are transmitted. Typical results for the
effect of saturation are given in Fig. 2.28. Experiments show that saturated
(vf, P) compaction curves are generally shifted to the right, that is towards
higher fibre volume fractions. The initial fibre volume fraction vf,o and
representative fibre volume fraction vf,r are generally higher by a few per
cent. As both values of the fibre volume fraction, the rigidity and stiffening
behaviour, are generally unaffected; the compaction behaviour remains
essentially identical but marginally higher values of fibre volume fraction
are observed at given values of the compaction pressure. This can be observed
practically for VI as the preform usually compacts to a slightly lower thickness
(higher vf) as the flow front reaches a given position. The effect cannot be
observed easily for RTM; however, once enclosed in a mould it is thought
that the load on a preform will progressively reduce as a result of time
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2.27 Textile compaction data for stacks with different numbers of
layers for a non-crimp fabric reinforcement.
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relaxation, and that a further reduction will be observed upon impregnation.
It is therefore important to use a sufficiently thick preform that will lead to
appropriate initial levels of compaction pressure, in order to ensure proper
positioning of the preform in the tool throughout the process.

Saturation usually has a strong effect on the relaxation part of the cycle.
Saturated stacks reach somewhat higher volume fractions when compacted,
and they exhibit significantly less relaxation; after 5 mins the pressure usually
remains between 75 and 90% of its initial value. It is believed that this
behaviour can be explained by the lubrication of fibre-to-fibre contact points.
Individual fibres will slide more easily for a saturated stack and are therefore
more likely to attain a higher degree of stability for a given compaction
pressure. As a result, fibres are less likely to move under pressure, exhibiting
less relaxation.

The above comments are corroborated when one considers the compaction
behaviour of a preform subjected to repeated compaction cycles. Figure 2.29
shows typical compaction cycles imposed on a multilayer preform; the
maximum pressure level is constant at 1.0 MPa41. The figure clearly shows
that the compaction and load release curves shift to the right on successive
cycles. The shift is more marked on the first repeat and progressively diminishes
on successive cycles. Both vf,o and vf,r increase, and this increase is typically
more marked than those observed with saturated preforms, notably on the
first cycle. The fibre volume fraction observed at higher pressures increases,
but less than it does at low fibre volume fractions. Consequently, the rigidity
and stiffening index also increase markedly on successive cycles. Such
behaviour is observed over a number of cycles; the difference over successive
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2.28 Effect of fluid saturation in textile compaction behaviour.
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cycles diminishes progressively but does not appear to stabilise, at least over
50 cycles. This, along with the fact that an important hysteresis is observed
on each cycle, points to the fact that reorganisation of the fibres happens as
the textile is compacted and keeps happening on successive cycles. While of
little practical importance for processes such as RTM, this provides good
insight on the behaviour of textile reinforcements. Furthermore, this behaviour
may have consequences for VI where the preform is compacted under vacuum,
unloaded upon injection and possibly reloaded during bleeding.

The above trends can be put in perspective by looking at the natural
variability observed upon compaction of nominally identical stacks of textile
reinforcements. Figure 2.30 shows typical data scatter for 12 identical
compaction samples. Here the textile reinforcements were compacted to a
lower maximum pressure of 0.1 MPa, which usually leads to more scatter for
a given pressure. However, and although the trends discussed above emerge
clearly from carefully conducted experiments, the amplitude of the scatter
shown in Fig. 2.30 is similar to some of the weaker trends, say for example
the effect of the number of layers on compaction curves. Actual production
equipment is generally not selected for operation at its limit; in spite of this,
variability data should be included when considering necessary forces and
control accuracy.
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2.29 Pressure curves for successive compaction cycles applied to a
multilayer plain weave preform.
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2.4.5 Modelling

A number of authors have proposed models for the compaction behaviour of
textiles (a thorough review of these is given by Robitaille and Gauvin39).
Such models usually aim to fulfil one of two objectives: phenomenological
models attempt to explain the behaviour from the fundamental principles of
mechanics while empirical models provide a simple and usable representation
of experimental data. Although both approaches were investigated for
compaction, no credible explanation is available for the time relaxation of
textile reinforcements and in this case a limited number of empirical models
simply aim at quantifying the phenomenon.

The most widely known and used phenomenological compaction model
was proposed by Cai and Gutowski14. The main concept behind this model
is that individual fibres form arches between their contact points; as compaction
progresses it is assumed that the number of contact points increases as the
length of the arches is essentially proportional to the thickness of the
reinforcement being compacted. Consequently, beam bending theory dictates
that the arches progressively become more rigid as their number increases,
resulting in a marked stiffening behaviour. The authors have proposed different
equations (see equation 2.5 for an alternative example), but perhaps the most
general is expressed as:
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2.30 Compaction data for 12 tests conducted on samples of the same
reinforcement, showing the significant data scatter that is to be expected.
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where vf,o and vf,a are the initial and maximal fibre volume fractions, As is an
empirical constant, and vf and Pcomp are the fibre volume fraction and the
compaction pressure. It should be noted that owing to its nature and
phenomenological origin the model uses the fibre volume fraction as the
independent variable, which is not ideal; the form of the equation can make
the extraction of a fibre volume fraction at a given compaction pressure
awkward.

Gutowski’s work provides very interesting and valuable insight into the
compaction phenomenon; however, it really applies to homogeneous assemblies
of parallel fibres. Results of experiments conducted on reinforcements of
various architectures clearly show that the textile structure, or the way in
which tows or yarns of various sizes are assembled into a planar assembly
that is homogeneous and continuous at the macroscopic scale, but heterogeneous
and discontinuous at the mesoscopic scale, strongly affect the behaviour. It
is possible, for example, to classify compaction curves for random mats,
woven textiles and stitched directional reinforcements into relatively distinct
groups; this important point is discussed further in the following paragraphs.
Furthermore, getting a good fit for the diverse coefficients of the models can
be challenging in some cases, and values obtained for coefficients with a
clear physical meaning such as vf,o and vf,a often do not match reality when
the model is applied to heterogeneous textiles. The model was really developed
for assemblies of aligned fibres and the lack of correspondence between the
fitted and experimental values reduce its attractiveness to some extent.

The alternative consists of using empirical models. While studying changes
in the values of the coefficients of such models with experimental parameters
helps in identifying trends, there is no pretence at a quantitative, mechanical
description of the phenomena involved in the process. However, this can be
compensated by the fact that similar models can be used to describe relaxation
behaviour, enabling both phenomena to be included in process simulations
and treated in the same way. Empirical models of compaction and relaxation
are not satisfactory in all circumstances. Numerous published works have
provided remarkable phenomenological insight into compaction and other
properties of fibre assemblies, as well as models that can represent real
behaviour for actual fibrous structures such as ropes. Finite element analyses
similar to those described in section 2.3.5 would appear to be a promising
approach here, and this is expected to be an area of significant activity in the
near future. At this time most of these models require very significant
computational power, but work is ongoing and in the future, more efficient
models that can reasonably be used to support actual production of composite
parts may appear.

Most empirical models of the compaction revolve around some form of
the power law. The authors and numerous others have used the following
expression to fit experimental compaction data:
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v v P B
f fo comp =   ◊ 2.28

where vf,o is the fibre volume fraction recorded under a pressure of 1 Pa and
B is an empirical factor called the stiffening index. Because of the mathematical
form of the equation the latter value provides a good indication of the rate of
increase of the rigidity as a function of vf ; as such it is practically very
useful. Here the pressure is the independent variable, and the equation is
easily fitted to data.

Robitaille and Gauvin39 proposed a similar model for time relaxation:

P
P

C t D

o

(1/ ) = 1 – 2.29

where C is the pressure decay after 1 sec, D is the relaxation index, Po is the
initially applied pressure and P is the compaction pressure observed at time
t which is the independent variable.

The above empirical formulae have allowed the formal identification of
all the trends mentioned above. The compaction model was also successfully
integrated into a number of process simulation models. Tables of coefficients
for both equations can be found in the literature for a range of materials39, 40

and it is very straightforward to fit experimental data to the equations. While
these models do not explain the physics of compaction and relaxation and
one must identify the coefficients associated to each stack of reinforcements
that may be used in production, they are very useful in practice.

A recent study further extends the benefits of the compaction model when
considering a number of structurally different reinforcements42. The curve
shown in Fig. 2.31 is a compaction master curve, which presents the evolution

2.31 Compaction master curve, showing a relationship between stiffening
index and initial fibre volume fraction values (equation 2.28) for a range
of reinforcements.
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of the stiffening index B as a function of the initial fibre volume fraction vf,o

for an array of reinforcements. The curve shows a fairly clear general
relationship between the two parameters. Furthermore, all random
reinforcements are found on the left side of the curve, most woven fabrics
occupy the centre and textiles featuring highly oriented fibres (e.g. NCFs)
are found on the right. Practically this translates into the fairly simple fact
that random textiles initially show low fibre volume fractions and that they
stiffen relatively slowly, while crimp-free assemblies of unidirectional fibres
feature high initial fibre volume fractions and stiffen very rapidly.
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