WOODHEAD PUBLISHING IN TEXTILES # Design and manufacture of textile composites Edited by A. C. Long Design and manufacture of textile composites ### Related titles from Woodhead's textile technology list: 3-D textile reinforcements in composite materials (1 85573 376 5) 3-D textile reinforced composite materials are obtained by applying highly productive textile technologies in the manufacture of fibre preforms. The damage tolerance and impact resistance are increased as the trend to delamination is drastically diminished due to the existence of reinforcements in the thickness direction. 3-D textile reinforcements in composite materials describes the manufacturing processes, highlights the advantages, identifies the main applications, analyses the methods for prediction of mechanical properties and examines the key technical aspects of 3-D textile reinforced composite materials. This will enable materials scientists and engineers to exploit the main features and overcome the disadvantages in relation to laminated composite materials. ### Green composites (1 85573 739 6) Life cycle assessment is becoming increasingly important at every stage of a product's life from initial synthesis through to final disposal, and a sustainable society needs environmentally safe materials and processing methods. With an internationally recognised team of authors, *Green composites* examines polymer composite production and explains how environmental footprints can be diminished at every stage of the life cycle. This book is an essential guide for agricultural crop producers, governmental agricultural departments, automotive companies, composite producers and materials scientists all dedicated to the promotion and practice of eco-friendly materials and production methods. ### Bast and other plant fibres (1 85573 684 5) Environmental concerns have regenerated interest in the use of natural fibres for a much wider variety of products, including high-tech applications such as geotextiles, and in composite materials for automotive and light industry use. This new study covers the chemical and physical structure of these natural fibres; fibre, yarn and fabric production; dyeing; handle and wear characteristics; economics; and environmental and health and safety issues. Details of these books and a complete list of Woodhead's textile technology titles can be obtained by: - visiting our website at www.woodheadpublishing.com - contacting Customer Services (e-mail: sales@woodhead-publishing.com; fax: +44 (0) 1223 893694; tel.: +44 (0) 1223 891358 ext.30; address: Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB1 6AH, England) # Design and manufacture of textile composites Edited by A. C. Long The Textile Institute CRC Press Boca Raton Boston New York Washington, DC WOODHEAD PUBLISHING LIMITED Cambridge England Published by Woodhead Publishing Limited in association with The Textile Institute Woodhead Publishing Limited Abington Hall, Abington Cambridge CB1 6AH England www.woodheadpublishing.com Published in North America by CRC Press LLC, 6000 Broken Sound Parkway, NW, Suite 300, Boca Raton FL 33487, USA First published 2005, Woodhead Publishing Limited and CRC Press LLC © Woodhead Publishing Limited, 2005 The authors have asserted their moral rights. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from the publishers. The consent of Woodhead Publishing Limited and CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited and CRC Press LLC for such copying. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress. Woodhead Publishing Limited ISBN-13: 978-1-85573-744-0 (book) Woodhead Publishing Limited ISBN: 10-1-85573-744-2 (book) Woodhead Publishing Limited ISBN-13: 978-1-84569-082-3 (e-book) Woodhead Publishing Limited ISBN-10: 1-84569-082-6 (e-book) CRC Press ISBN 0-8493-2593-5 CRC Press order number: WP2593 The publishers' policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elementary chlorine-free practices. Furthermore, the publishers ensure that the text paper and cover board used have met acceptable environmental accreditation standards. Project managed by Macfarlane Production Services, Markyate, Hertfordshire (macfarl@aol.com) Typeset by Replika Press Pvt Ltd, India Printed by T J International Limited, Padstow, Cornwall, England # Contents | | Contributor contact details | ix | |-----|--|------| | | Introduction | xiii | | | A C Long, University of Nottingham, UK | | | 1 | Manufacturing and internal geometry of textiles | 1 | | | S Lomov, I Verpoest, Katholieke Universiteit Leuven, Belgium and F Robitaille, University of Ottawa, Canada | | | 1.1 | Hierarchy of textile materials | 1 | | 1.2 | Textile yarns | 2 | | 1.3 | Woven fabrics | 10 | | 1.4 | Braided fabrics | 27 | | 1.5 | Multiaxial multiply non-crimp fabrics | 35 | | 1.6 | Modelling of internal geometry of textile preforms | 47 | | 1.7 | References | 60 | | 2 | Mechanical analysis of textiles | 62 | | | A C Long, University of Nottingham, UK, P Boisse, INSA Lyon, France and F Robitaille, University of Ottawa, Canada | | | 2.1 | Introduction | 62 | | 2.2 | In-plane shear | 63 | | 2.3 | Biaxial in-plane tension | 73 | | 2.4 | Compaction | 88 | | 2.5 | References | 107 | | 3 | Rheological behaviour of pre-impregnated textile | | | | composites | 110 | | | P HARRISON and M CLIFFORD, University of Nottingham, UK | | | 3.1 | Introduction | 110 | | 3.2 | Deformation mechanisms | 111 | | 3.3 | Review of constitutive modelling work | 116 | | 3.4 | Characterisation methods | 129 | | | | | | VI | Contents | | |-----|--|-----| | 3.5 | Forming evaluation methods | 137 | | 3.6 | Summary | 142 | | 3.7 | Acknowledgements | 142 | | 3.8 | References | 143 | | 4 | Forming textile composites | 149 | | | W-R Yu, Seoul National University, Korea and A C Long,
University of Nottingham, UK | | | 4.1 | Introduction | 149 | | 4.2 | Mapping approaches | 149 | | 4.3 | Constitutive modelling approach | 155 | | 4.4 | Concluding remarks and future direction | 175 | | 4.5 | Acknowledgements | 178 | | 4.6 | References | 178 | | 5 | Manufacturing with thermosets | 181 | | | J DOMINY, Carbon Concepts Limited, UK, C RUDD, University of Nottingham, UK | | | 5.1 | Introduction | 181 | | 5.2 | Pre-impregnated composites | 181 | | 5.3 | Liquid moulding of textile composites | 187 | | 5.4 | References | 196 | | 6 | Composites manufacturing - thermoplastics | 197 | | | M D Wakeman and J-A E. Månson, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland | | | 6.1 | Introduction | 197 | | 6.2 | Consolidation of thermoplastic composites | 198 | | 6.3 | Textile thermoplastic composite material forms | 205 | | 6.4 | Processing routes | 217 | | 6.5 | Novel thermoplastic composite manufacturing routes | 233 | | 6.6 | Conclusions | 236 | | 6.7 | Acknowledgements | 236 | | 6.8 | References | 237 | | 7 | Modeling, optimization and control of resin flow during manufacturing of textile composites with | | | | liquid molding | 242 | | | A GOKCE and S G ADVANI, University of Delaware, USA | | | 7.1 | Liquid composite molding processes | 242 | | 7.2 | Flow through porous media | 244 | | 7.3 | Liquid injection molding simulation | 247 | | 7.4 | Gate location optimization | 254 | | | | | | | Contents | vii | |------|--|-----| | 7.5 | Disturbances in the mold filling process | 259 | | 7.6 | Active control | 268 | | 7.7 | Passive control | 274 | | 7.8 | Conclusion | 285 | | 7.9 | Outlook | 286 | | 7.10 | Acknowledgements | 288 | | 7.11 | References | 288 | | 8 | Mechanical properties of textile composites | 292 | | | I A Jones, University of Nottingham, UK and A K PICKETT, Cranfield University, UK | | | 8.1 | Introduction | 292 | | 8.2 | Elastic behaviour | 292 | | 8.3 | Failure and impact behaviour | 312 | | 8.4 | References | 327 | | 9 | Flammability and fire resistance of composites | 330 | | | A R HORROCKS and B K KANDOLA, University of Bolton, UK | | | 9.1 | Introduction | 330 | | 9.2 | Constituents - their physical, chemical, mechanical and | | | | flammability properties | 332 | | 9.3 | Flammability of composite structures | 346 | | 9.4 | Methods of imparting flame retardancy to composites | 349 | | 9.5 | Conclusions | 359 | | 9.6 | References | 360 | | 10 | Cost analysis | 364 | | | M D Wakeman and J-A E Månson, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland | | | 10.1 | Introduction | 364 | | 10.2 | Cost estimation methodologies | 366 | | 10.3 | Cost build-up in textile composite applications | 374 | | 10.4 | Case study 1: thermoplastic composite stamping | 382 | | 10.5 | Case study 2: composites for the Airbus family | 396 | | 10.6 | Conclusions | 402 | | 10.7 | Acknowledgements | 402 | | 10.8 | References | 402 | | 11 | Aerospace applications | 405 | | | J Lowe, Tenex Fibres GmbH, Germany | | | 11.1 | Introduction | 405 | | 11.2 | Developments in woven fabric applications using | | | | standard prepreg processing | 406 | | viii | Contents | | |----------|--|-----| | 11.3 | Carbon fibre multiaxial fabric developments | 408 | | 11.4 | Improvement in standard fabric technology for | | | | non-prepreg processing applications | 416 | | 11.5 | Braided materials | 417 | | 11.6 | Tailored fibre placement | 418 | | 11.7 | Preforming | 419 | | 11.8 | Repair of fabric components | 423 | | 12 | Applications of textile composites in the | | | | construction industry | 424 | | | J CHILTON, University of Lincoln, UK and R VELASCO, University of Nottingham, UK | | | 12.1 | Introduction | 424 | | 12.2 | Fibre reinforced polymers | 424 | | 12.3 | Membrane structures | 426 | | 12.4 | Case studies | 429 | | 12.5 | Future developments | 431 | | 12.6 | References | 435 | | 13 | Textile reinforced composites in medicine | 436 | | | J G Ellis, Ellis Developments Limited, UK | | | 13.1 | Splinting material | 436 | | 13.2 | Walking support frame | 438 | | 13.3 | Bone plates | 439 | | 13.4 | General application | 441 | | 13.5 | Living composites | 442 | | 14 | Textile composites in sports products | 444 | | | K VAN DE VELDE, Ghent University, Belgium | | | 14.1 | Introduction | 444 | | 14.2 | Materials | 445 | | 14.3 | Design | 447 | | 14.4 | Production technology | 449 | | 14.5 | Applications | 450 | | 14.6 | Conclusion | 456 | | 14.7 | Acknowledgement | 456 | | 14.8 | References | 456 | | Glossary | | 458 | ### Contributor contact details ### Introduction Professor A.C. Long School of Mechanical, Materials and Manufacturing Engineering University of Nottingham University Park Nottingham NG7 2RD UK Email: andrew.long@nottingham.ac.uk ### Chapter 1 Professor S. Lomov and Professor I. Verpoest Katholieke Universiteit Leuven Department of MTM Kasteelpark Arenberg 44 B-3001, Heverlee Belgium Email: stepan.lomov@mtm.kuleuven.ac.be Email: ignass.verpoest@mtm.kuleuven.ac.be Dr F. Robitaille Faculty of Engineering 161 Louis Pasteur Room A306 Ottawa, Ontario Canada K1N 6N5 Email: frobit@genie.uottawa.ca ### Chapter 2 Professor P. Boisse Laboratoire de Méchanique des Contacts et des solides LaMCoS, UMR CNRS 5514 INSA de Lyon Bâtiment Jacquard 27 Avenue Jean Capelle 69621 Villeurbanne Cedex France Email:Philippe.Boisse@insa-lyon.fr Professor A. C. Long School of Mechanical, Materials and Manufacturing Engineering University of Nottingham University Park Nottingham NG7 2RD UK Email: andrew.long@nottingham.ac.uk Dr F. Robitaille Faculty of Engineering 161 Louis Pasteur Room A306 Ottawa, Ontario Canada K1N 6N5 Email: frobit@genie.uottawa.ca ### X ### Chapter 3 Dr P. Harrison and Dr M. Clifford School of Mechanical, Materials and Manufacturing Engineering The University of Nottingham University Park Nottingham NG7 2RD UK Tel: (44) (0)115 8466134 Fax: (44) (0)115 9513800 Email: mike.clifford@nottingham.ac.uk # Chapter 4 Professor A. C. Long School of Mechanical, Materials and Manufacturing Engineering University of Nottingham University Park Nottingham NG7 2RD UK Email: andrew.long@nottingham.ac.uk Assistant Professor W-R. Yu School of Materials Science and Engineering Seoul National University San 56-1 Shillim 9 dong Kwanak-gu Seoul 151-742 Korea Email: woongryu@snu.ac.kr ### Chapter 5 Professor C. Rudd School of Mechanical, Materials and Manufacturing Engineering University of Nottingham University Park Nottingham NG7 2RD UK Email: christopher.rudd@nottingham.ac.uk Professor J. Dominy Carbon Concepts Ltd Unit A2, Lower Mantle Close Bridge Street Industrial Estate Clay Cross Derbyshire S45 9NU UK Email: john@carbonconcepts.co.uk ### Chapter 6 and 10 Dr M. D. Wakeman and Professor J-A. E. Månson Laboratoire de Technologie des Composites et Polyméres École Polytechnique Fédérale de Lausanne Lausanne Switzerand Tel: (41) 21 693 4281 Email: martyn.wakeman@epfl.ch Email: jan-anders.manson@epfl.ch ### Chapter 7 Dr A. Gokce and Professor S. G. Advani Department of Mechanical Engineering University of Delaware Newark DE 19716 USA Email: advani@me.udel.edu Email: gokce@ME.UDel.Edu # Chapter 8 Dr I. A. Jones School of Mechanical, Materials and Manufacturing Engineering University of Nottingham University Park Nottingham NG7 2RD UK Email: arthur.jones@nottingham.ac.uk Professor A. K. Pickett Cranfield University School of Industrial and Manufacturing Science Building 61, Cranfield Bedfordshire MK43 0AL UK Tel: (44) (0)1234 754034 Fax: (44) (0)1234 752473 Email: a.k.pickett@cranfield.ac.uk ### Chapter 9 Professor A. R. Horrocks and Dr B. K. Kandola Centre for Materials Research & Innovation University of Bolton Deane Road Bolton BL3 5AB UK Tel: +44 (0)1024 903831 Email: A.R.Horrocks@bolton.ac.uk ### Chapter 11 Dr J. Lowe Tenax Fibers GmbH & Co. KG Kasinostrasse 19-21 42 103 Wuppertal Germany Email: JLowe@t-online.de ### Chapter 12 Professor J. Chilton Lincoln School of Architecture University of Lincoln **Brayford Pool** Lincoln LN6 7TS UK Email: j.chilton@lincoln.ac.uk Dr R. Velasco School of the Built Environment University of Nottingham University Park Nottingham NG7 2RD UK Email:laxrv@nottingham.ac.uk # Chapter 13 Mr J. G. Ellis, OBE Ellis Developments Limited The Clocktower Bestwood Village Nottingham NG6 8TQ UK Tel: 44 (0)115 979 7679 Email: julian.ellis@ellisdev.co.uk ### Chapter 14 Dr K. Van de Velde Ghent University Department of Textiles Technologiepark 907 B-9052 Zwijnaarde (Ghent) Belgium Email: Kathleen. Vande Velde @ UGent.be ### A C LONG, University of Nottingham, UK Textile composites are composed of textile reinforcements combined with a binding matrix (usually polymeric). This describes a large family of materials used for load-bearing applications within a number of industrial sectors. The term textile is used here to describe an interlaced structure consisting of yarns, although it also applies to fibres, filaments and yarns, and most products derived from them. Textile manufacturing processes have been developed over hundreds or even thousands of years. Modern machinery for processes such as weaving, knitting and braiding operates under automated control, and is capable of delivering high-quality materials at production rates of up to several hundreds of kilograms per hour. Some of these processes (notably braiding) can produce reinforcements directly in the shape of the final component. Hence such materials can provide an extremely attractive reinforcement medium for polymer composites. Textile composites are attracting growing interest from both the academic community and from industry. This family of materials, at the centre of the cost and performance spectra, offers significant opportunities for new applications of polymer composites. Although the reasons for adopting a particular material can be various and complex, the primary driver for the use of textile reinforcements is undoubtedly cost. Textiles can be produced in large quantities at reasonable cost using modern, automated manufacturing techniques. While direct use of fibres or yarns might be cheaper in terms of materials costs, such materials are difficult to handle and to form into complex component shapes. Textile-based materials offer a good balance in terms of the cost of raw materials and ease of manufacture. Target application areas for textile composites are primarily within the aerospace, marine, defence, land transportation, construction and power generation sectors. As an example, thermoset composites based on 2D braided preforms have been used by Dowty Propellers in the UK since 1987¹. Here a polyurethane foam core is combined with glass and carbon fibre fabrics, with the whole assembly over-braided with carbon and glass tows. The resulting preform is then impregnated with a liquid thermosetting polymer via resin transfer moulding (RTM). Compared with conventional materials, the use of textile composites in this application results in reduced weight, cost savings (both initial cost and cost of ownership), damage tolerance and improved performance via the ability to optimise component shape. A number of structures for the Airbus A380 passenger aircraft rely on textile composites, including the six metre diameter dome-shaped pressure bulkhead and wing trailing edge panels, both manufactured by resin film infusion (RFI) with carbon non-crimp fabrics, wing stiffeners and spars made by RTM, the vertical tail plane spar by vacuum infusion (VI), and thermoplastic composite (glass/ poly (phenylene sulphide)) wing leading edges. Probably the largest components produced are for off-shore wind power generation, with turbine blades of up to 60 metres in length being produced using (typically) noncrimp glass or carbon fabric reinforcements impregnated via vacuum infusion. Other application areas include construction, for example in composite bridges which offer significant cost savings for installation due to their low weight. Membrane structures, such as that used for the critically acclaimed (in architectural terms) Millennium Dome at Greenwich, UK, are also a form of textile composite. Numerous automotive applications exist, primarily for niche or high-performance vehicles but also in impact structures such as woven glass/polypropylene bumper beams. This book is intended for manufacturers of polymer composite components, end-users and designers, researchers in the fields of structural materials and technical textiles, and textile manufacturers. Indeed the latter group should provide an important audience for this book. It is intended that manufacturers of traditional textiles could use this book to investigate new areas and potential markets. While some attention is given to modelling of textile structures, composites manufacturing methods and subsequent component performance, this is intended to be substantially a practical book. So, chapters on modelling include material models and data of use to both researchers and manufacturers, along with case studies for real components. Chapters on manufacturing describe both current processing technologies and emerging areas, and give practical processing guidelines. Finally, applications from a broad range of areas are described, illustrating typical components in each area, associated design methodologies and interactions between processing and performance. The term 'textile composites' is used often to describe a rather narrow range of materials, based on three-dimensional reinforcements produced using specialist equipment. Such materials are extremely interesting to researchers and manufacturers of very high performance components (e.g. space transportation); an excellent overview is provided by Miravette². In this book the intention is to describe a broader range of polymer composite materials with textile reinforcements, from woven and non-crimp commodity fabrics to 3D textiles. However random fibre-based materials, such as short fibre mats and moulding compounds, are considered outside the scope of this book. Similarly nano-scale reinforcements are not covered, primarily because the majority of these are in short fibre or platelet forms, which are not at present processed using textile technologies. The first chapter provides a comprehensive introduction to the range of textile structures available as reinforcements, and describes their manufacturing processes. Inevitably this requires the introduction of terminology related to textiles; a comprehensive description is given in the Glossary. Also described are modelling techniques to represent textile structures, which are becoming increasingly important for prediction of textile and composite properties for design purposes. Chapter 2 describes the mechanical properties of textiles, primarily in the context of formability for manufacture of 3D components. The primary deformation mechanisms, in-plane shear, in-plane extension and through-thickness compaction, are described in detail, along with modelling techniques to represent or predict material behaviour. Chapter 3 describes similar behaviour for pre-impregnated composites (often termed prepregs), focusing on their rheology to describe their behaviour during forming. Chapter 4 demonstrates how the behaviour described in the previous two chapters can be used to model forming of textile composite components. This includes a thorough description of the theory behind both commercial models and research tools, and a discussion of their validity for a number of materials and processes. Chapters 5 and 6 concentrate on manufacturing technologies for thermoset and thermoplastic composites respectively. Manufacturing processes are described in detail and their application to a range of components is discussed. In Chapter 7, resin flow during liquid moulding processes (e.g. RTM) is discussed. This starts with a description of the process physics but rapidly progresses to an important area of current research, namely optimisation and control of resin flow during manufacturing. Chapter 8 describes the mechanical properties of textile composites, including elastic behaviour, initial failure and subsequent damage accumulation up to final failure. The first half of the chapter provides an excellent primer on the mechanics of composites in general, and shows how well-established theories can be adapted to represent textile composites. The second half on failure and impact builds upon this and concludes with a number of applications to demonstrate the state of the art. In Chapter 9 flammability is discussed – an important topic given the typical applications of textile composites and the flammability associated with most polymers. Chapter 10 introduces concepts associated with technical cost modelling, which is used to demonstrate interactions between the manufacturing process, production volume and component cost. Finally the last four chapters describe a number of applications from the aerospace, construction, sports and medical sectors. ### References - 1. McCarthy R.F.J., Haines G.H. and Newley R.A., 'Polymer composite applications to aerospace equipment', *Composites Manufacturing*, 1994 **5**(2) 83–93. - 2. Miravette A. (editor), 3-D Textile Reinforcements in Composite Materials, Woodhead Publishing Ltd, Cambridge, 2004.