
Edited by Andreas Lendlein and Adam Sisson

WILEY-VCH

Handbook of Biodegradable Polymers

Edited by Andreas Lendlein and Adam Sisson

Handbook of Biodegradable Polymers

Further Reading

Loos, K. (Ed.)

Biocatalysis in Polymer Chemistry

2011 Hardcover ISBN: 978-3-527-32618-1

Mathers, R. T., Maier, M. A. R. (Eds.)

Green Polymerization Methods

Renewable Starting Materials, Catalysis and Waste Reduction

2011 Hardcover ISBN: 978-3-527-32625-9

Yu, L.

Biodegradable Polymer Blends and Composites from Renewable Resources

2009 Hardcover ISBN: 978-0-470-14683-5

Elias, H.-G.

Macromolecules

2009 Hardcover ISBN: 978-3-527-31171-2 Matyjaszewski, K., Müller, A. H. E. (Eds.)

Controlled and Living Polymerizations

From Mechanisms to Applications

2009 ISBN: 978-3-527-32492-7

Matyjaszewski, K., Gnanou, Y., Leibler, L. (Eds.)

Macromolecular Engineering

Precise Synthesis, Materials Properties, Applications

2007 Hardcover ISBN: 978-3-527-31446-1

Fessner, W.-D., Anthonsen, T. (Eds.)

Modern Biocatalysis Stereoselective and Environmentally Friendly Reactions

2009 ISBN: 978-3-527-32071-4

Janssen, L., Moscicki, L. (Eds.)

Thermoplastic Starch A Green Material for Various Industries

2009 Hardcover ISBN: 978-3-527-32528-3

Handbook of Biodegradable Polymers

Synthesis, Characterization and Applications

WILEY-VCH Verlag GmbH & Co. KGaA

The Editors

Prof. Andreas Lendlein

GKSS Forschungszentrum Inst. für Chemie Kantstr. 55 14513 Teltow Germany

Dr. Adam Sisson

GKSS Forschungszentrum Zentrum f. Biomaterialentw. Kantstraße 55 14513 Teltow Germany All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at < http://dnb.d-nb.de>.

© 2011 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Cover Design Grafik-Design Schulz, Fußgönheim Typesetting Toppan Best-set Premedia Limited, Hong Kong

Printing and Binding Fabulous Printers Pte Ltd, Singapore

Printed in Singapore Printed on acid-free paper

ISBN: 978-3-527-32441-5 ePDF ISBN: 978-3-527-63583-2 ePub ISBN: 978-3-527-63582-5 Mobi ISBN: 978-3-527-63584-9 oBook ISBN: 978-3-527-63581-8

Contents

Preface XV List of Contributors XVII

1 Polyesters 1

Adam L. Sisson, Michael Schroeter, and Andreas Lendlein

٧

- 1.1 Historical Background 1
- 1.1.1 Biomedical Applications 1
- 1.1.2 Poly(Hydroxycarboxylic Acids) 2
- 1.2 Preparative Methods 3
- 1.2.1 Poly(Hydroxycarboxylic Acid) Syntheses 3
- 1.2.2 Metal-Free Synthetic Processes 6
- 1.2.3 Polyanhydrides 6
- 1.3 Physical Properties 7
- 1.3.1 Crystallinity and Thermal Transition Temperatures 7
- 1.3.2 Improving Elasticity by Preparing Multiblock Copolymers 9
- 1.3.3 Covalently Crosslinked Polyesters 11
- 1.3.4 Networks with Shape-Memory Capability 11
- 1.4 Degradation Mechanisms 12
- 1.4.1 Determining Erosion Kinetics 12
- 1.4.2 Factors Affecting Erosion Kinetics 13
- 1.5 Beyond Classical Poly(Hydroxycarboxylic Acids) 14
- 1.5.1 Alternate Systems 14
- 1.5.2 Complex Architectures 15
- 1.5.3 Nanofabrication 16
 - References 17

2 Biotechnologically Produced Biodegradable Polyesters 23

Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão

- 2.1 Introduction 23
- 2.2 History 24
- 2.3 Polyhydroxyalkanoates Granules Morphology 26
- 2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and Other Polyhydroxyalkanoates 29

VI Contents

2.4.1 2.4.2 2.4.3 2.5 2.6 2.7	Polyhydroxyalkanoates Biosynthesis on Microorganisms 29 Plants as Polyhydroxyalkanoates Producers 32 Microbial Degradation of Polyhydroxyalkanoates 33 Extraction and Recovery 34 Physical, Mechanical, and Thermal Properties of Polyhydroxyalkanoates 36 Future Directions 37 References 38
3	Polyanhydrides 45 Avi Domb, Jay Prakash Jain, and Neeraj Kumar
3.1	Introduction 45
3.2	Types of Polyanhydride 46
3.2.1	Aromatic Polyanhydrides 46
3.2.2	Aliphatic–Aromatic Polyanhydrides 49
3.2.3	Poly(Ester-Anhydrides) and Poly(Ether-Anhydrides) 49
3.2.4	Fatty Acid-Based Polyanhydrides 49
3.2.5	RA-Based Polyanhydrides 49
3.2.6	Amino Acid-Based Polyanhydrides 51
3.2.7	Photopolymerizable Polyanhydrides 52
3.2.8	Salicylate-Based Polyanhydrides 53
3.2.9	Succinic Acid-Based Polyanhydrides 54
3.2.10	Blends 55
3.3	Synthesis 55
3.4	Properties 58
3.5	In Vitro Degradation and Erosion of Polyanhydrides 63
3.6	<i>In Vivo</i> Degradation and Elimination of Polyanhydrides 64
3.7	Toxicological Aspects of Polyanhydrides 65
3.8 3.9	Fabrication of Delivery Systems 67 Production and World Market 68
3.9	Biomedical Applications 68
5.10	References 71
4	Poly(Ortho Esters) 77 Jorge Heller
4.1	Introduction 77
4.2	POE II 79
4.2.1	Polymer Synthesis 79
4.2.1.1	Rearrangement Procedure Using an Ru(PPh ₃) ₃ Cl ₂ Na ₂ CO ₃
	Catalyst 80
4.2.1.2	Alternate Diketene Acetals 80
4.2.1.3	Typical Polymer Synthesis Procedure 80
4.2.2	Drug Delivery 81
4.2.2.1	Development of Ivermectin Containing Strands to Prevent Heartworm Infestation in Dogs 81
4.2.2.2	Experimental Procedure 81

Contents VII

- 82 4.2.2.3 Results 4.3 POE IV 82 4.3.1 Polymer Synthesis 82 Typical Polymer Synthesis Procedure 82 4.3.1.1 4.3.1.2 Latent Acid 83 4.3.1.3 Experimental Procedure 83 4.3.2 Mechanical Properties 83 4.4 Solid Polymers 86 4.4.1 Fabrication 86 4.4.2 Polymer Storage Stability 87 4.4.3 Polymer Sterilization 87 4.4.4 Polymer Hydrolysis 88 4.4.5 Drug Delivery 91 4.4.5.1 Release of Bovine Serum Albumin from Extruded Strands 91 4.4.5.2 Experimental Procedure 93 4.4.6 Delivery of DNA Plasmid 93 4.4.6.1 DNA Plasmid Stability 94 4.4.6.2 Microencapsulation Procedure 94 4.4.7 Delivery of 5-Fluorouracil 95 4.5 Gel-Like Materials 96 4.5.1 Polymer Molecular Weight Control 96 4.5.2 Polymer Stability 98 4.5.3 Drug Delivery 99 4.5.3.1 Development of APF 112 Mepivacaine Delivery System 99 4.5.3.2 Formulation Used 99 4.5.4 Preclinical Toxicology 100 4.5.4.1 Polymer Hydrolysate 100 4.5.4.2 Wound Instillation 100 4.5.5 Phase II Clinical Trial 100 4.5.6 Development of APF 530 Granisetron Delivery System 100 4.5.6.1 Preclinical Toxicology 100 4.5.6.2 Rat Study 101 4.5.6.3 Dog Study 101 4.5.6.4 Phase II and Phase III Clinical Trials 101 Polymers Based on an Alternate Diketene Acetal 102 4.6 4.7 Conclusions 104 References 104 5 Biodegradable Polymers Composed of Naturally Occurring α-Amino Acids 107 Ramaz Katsarava and Zaza Gomurashvili 5.1 Introduction 107 5.2 Amino Acid-Based Biodegradable Polymers (AABBPs) 109 5.2.1 Monomers for Synthesizing AABBPs 109 Key Bis-Nucleophilic Monomers 109 5.2.1.1
- 5.2.1.2 Bis-Electrophiles 111

- Contents
 - AABBPs' Synthesis Methods 5.2.2 111
 - 5.2.3 AABBPs: Synthesis, Structure, and Transformations 115
 - 5.2.3.1 Poly(ester amide)s 115
 - Poly(ester urethane)s 119 5.2.3.2
 - 5.2.3.3 Poly(ester urea)s 119
 - 5.2.3.4 Transformation of AABBPs 119
 - 5.2.4 Properties of AABBPs 121
 - 5.2.4.1 MWs, Thermal, Mechanical Properties, and Solubility 121
 - 5.2.4.2 Biodegradation of AABBPs 121
 - Biocompatibility of AABBPs 123 5.2.4.3
 - 5.2.5 Some Applications of AABBPs 124
 - 5.2.6 AABBPs versus Biodegradable Polyesters 125
 - 5.3 Conclusion and Perspectives 126 References 127
 - 6 Biodegradable Polyurethanes and Poly(ester amide)s 133
 - Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí Abbreviations 133
 - 6.1 Chemistry and Properties of Biodegradable Polyurethanes 134
 - 6.2 Biodegradation Mechanisms of Polyurethanes 140
 - Applications of Biodegradable Polyurethanes 142 6.3
 - 6.3.1 Scaffolds 142
 - 6.3.1.1 Cardiovascular Applications 143
 - 6.3.1.2 Musculoskeletal Applications 143
 - 6.3.1.3 Neurological Applications 144
 - 6.3.2 Drug Delivery Systems 144
 - 6.3.3 Other Biomedical Applications 145
 - New Polymerization Trends to Obtain Degradable Polyurethanes 6.4 145
 - Polyurethanes Obtained without Using Diisocynates 6.4.1 145
 - Enzymatic Synthesis of Polyurethanes 146 6.4.2
 - 6.4.3 Polyurethanes from Vegetable Oils 147
 - Polyurethanes from Sugars 147 6.4.4

6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable Thermoplastics with Interest as New Biomaterials 149 Acknowledgments 152 References 152

7 Carbohydrates 155

Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu

- 7.1 Introduction 155
- Alginate 156 7.2
- 7.3 Carrageenan 160
- 7.4 Cellulose and Its Derivatives 162
- 7.5 Microbial Cellulose 164
- 7.6 Chitin and Chitosan 165

viii I

Contents IX

7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14	Dextran 169 Gellan 171 Guar Gum 174 Hyaluronic Acid (Hyaluronan) 176 Pullulan 180 Scleroglucan 182 Xanthan 184 Summary 186 Acknowledgments 187 In Memoriam 187 References 187	
8	Biodegradable Shape-Memory Polymers 195 Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein	
8.1	Introduction 195	
8.2	General Concept of SMPs 197	
8.3	Classes of Degradable SMPs 201	
8.3.1	Covalent Networks with Crystallizable Switching Domains, $T_{\text{trans}} = T_{\text{m}}$ 202	
8.3.2	Covalent Networks with Amorphous Switching Domains, $T_{\text{trans}} = T_{\text{g}}$ 204	
8.3.3	Physical Networks with Crystallizable Switching Domains, $T_{\text{trans}} = T_{\text{m}}$ 205	
8.3.4	Physical Networks with Amorphous Switching Domains, $T_{\rm trans} = T_{\rm g}$ 208	
8.4	Applications of Biodegradable SMPs 209	
8.4.1	Surgery and Medical Devices 209	
8.4.2	Drug Release Systems 210 References 212	
9	Biodegradable Elastic Hydrogels for Tissue Expander Application Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and Kang Moo Huh	217
9.1	Introduction 217	
9.1.1	Hydrogels 217	
9.1.2	Elastic Hydrogels 217	
9.1.3	History of Elastic Hydrogels as Biomaterials 218	
9.1.4	Elasticity of Hydrogel for Tissue Application 219	
9.2	Synthesis of Elastic Hydrogels 220	
9.2.1	Chemical Elastic Hydrogels 220	
9.2.1.1	Polymerization of Water-Soluble Monomers in the Presence of Crosslinking Agents 220	
9.2.1.2	Crosslinking of Water-Soluble Polymers 221	
9.2.2	Physical Elastic Hydrogels 222	
9.2.2.1	Formation of Physical Elastic Hydrogels via Hydrogen Bonding	222

X Contents

 Hydrophobic Interaction 224 9.3 Physical Properties of Elastic Hydrogels 225 9.3.1 Mechanical Property 225 9.3.2 Swelling Property 227 9.3.3 Degradation of Biodegradable Elastic Hydrogels 229 9.4 Applications of Elastic Hydrogels 229 9.4.1 Tissue Engineering Application 229 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.3.1 Mechanical Property 225 9.3.2 Swelling Property 227 9.3.3 Degradation of Biodegradable Elastic Hydrogels 229 9.4 Applications of Elastic Hydrogels 229 9.4.1 Tissue Engineering Application 229 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.3.2 Swelling Property 227 9.3.3 Degradation of Biodegradable Elastic Hydrogels 229 9.4 Applications of Elastic Hydrogels 229 9.4.1 Tissue Engineering Application 229 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.3.3 Degradation of Biodegradable Elastic Hydrogels 229 9.4 Applications of Elastic Hydrogels 229 9.4.1 Tissue Engineering Application 229 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.4 Applications of Elastic Hydrogels 229 9.4.1 Tissue Engineering Application 229 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells – Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.4 Applications of Elastic Hydrogels 229 9.4.1 Tissue Engineering Application 229 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells – Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.4.1 Tissue Engineering Application 229 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 Sutures 230 9.5 Elastic Hydrogels for Tissue Expander Applications 231 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 9.6 Conclusion 233 References 234 10 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
References23410Biodegradable Dendrimers and Dendritic Polymers237Jayant Khandare and Sanjay Kumar10.1Introduction23710.2Challenges for Designing Biodegradable Dendrimers24010.2.1Is Biodegradation a Critical Measure of Biocompatibility?24310.3Design of Self-Immolative Biodegradable Dendrimers24510.3.1Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation246
 Biodegradable Dendrimers and Dendritic Polymers 237 Jayant Khandare and Sanjay Kumar 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
Jayant Khandare and Sanjay Kumar10.1Introduction 23710.2Challenges for Designing Biodegradable Dendrimers 24010.2.1Is Biodegradation a Critical Measure of Biocompatibility? 24310.3Design of Self-Immolative Biodegradable Dendrimers 24510.3.1Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
Jayant Khandare and Sanjay Kumar10.1Introduction 23710.2Challenges for Designing Biodegradable Dendrimers 24010.2.1Is Biodegradation a Critical Measure of Biocompatibility? 24310.3Design of Self-Immolative Biodegradable Dendrimers 24510.3.1Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 10.1 Introduction 237 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 10.2 Challenges for Designing Biodegradable Dendrimers 240 10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
 10.3 Design of Self-Immolative Biodegradable Dendrimers 245 10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
10.3.1 Clevable Shells-Multivalent PEGylated Dendrimer for Prolonged Circulation 246
Prolonged Circulation 246
•
10.3.1.1 Polylysine-Core Biodegradable Dendrimer Prodrug 250
10.4 Biological Implications of Biodegradable Dendrimers 256
10.5 Future Perspectives of Biodegradable Dendrimers 259
10.6 Concluding Remarks 259
References 260
References 200
11 Analytical Methods for Monitoring Biodegradation Processes
of Environmentally Degradable Polymers 263
Maarten van der Zee
11.1 Introduction 263
11.2 Some Background 263
11.3 Defining Biodegradability 265
11.4 Mechanisms of Polymer Degradation 266
11.4.1 Nonbiological Degradation of Polymers 266
11.4.2 Biological Degradation of Polymers 267
11.5 Measuring Biodegradation of Polymers 267
11.5.1 Enzyme Assays 269
11.5.1 Enzyme Assays 269 11.5.1.1 Principle 269
11.5.1 Enzyme Assays 269 11.5.1.1 Principle 269 11.5.1.2 Applications 269
11.5.1 Enzyme Assays 269 11.5.1.1 Principle 269 11.5.1.2 Applications 269 11.5.1.3 Drawbacks 270
11.5.1 Enzyme Assays 269 11.5.1.1 Principle 269 11.5.1.2 Applications 269 11.5.1.3 Drawbacks 270 11.5.2 Plate Tests 270
11.5.1 Enzyme Assays 269 11.5.1.1 Principle 269 11.5.1.2 Applications 269 11.5.1.3 Drawbacks 270 11.5.2 Plate Tests 270 11.5.2.1 Principle 270
11.5.1 Enzyme Assays 269 11.5.1.1 Principle 269 11.5.1.2 Applications 269 11.5.1.3 Drawbacks 270 11.5.2 Plate Tests 270

- 11.5.3 Respiration Tests 271
- 11.5.3.1 Principle 271
- 11.5.3.2 Applications 271
- 11.5.3.3 Suitability 271
- 11.5.4 Gas (CO₂ or CH₄) Evolution Tests 272
- 11.5.4.1 Principle 272
- 11.5.4.2 Applications 272
- 11.5.4.3 Suitability 273
- 11.5.5 Radioactively Labeled Polymers 273
- 11.5.5.1 Principle and Applications 273
- 11.5.5.2 Drawbacks 273
- 11.5.6 Laboratory-Scale Simulated Accelerating Environments 274
- 11.5.6.1 Principle 274
- 11.5.6.2 Applications 274
- 11.5.6.3 Drawbacks 275
- 11.5.7 Natural Environments, Field Trials 275
- 11.6 Conclusions 275 References 276

12 Modeling and Simulation of Microbial Depolymerization Processes of Xenobiotic Polymers 283

Masaji Watanabe and Fusako Kawai

- 12.1 Introduction 283
- 12.2 Analysis of Exogenous Depolymerization 284
- 12.2.1 Modeling of Exogenous Depolymerization 284
- 12.2.2 Biodegradation of PEG 287
- 12.3 Materials and Methods 287
- 12.3.1 Chemicals 287
- 12.3.2 Microorganisms and Cultivation 287
- 12.3.3 HPLC analysis 288
- 12.3.4 Numerical Study of Exogenous Depolymerization 288
- 12.3.5 Time Factor of Degradation Rate 291
- 12.3.6 Simulation with Time-Dependent Degradation Rate 293
- 12.4 Analysis of Endogenous Depolymerization 295
- 12.4.1 Modeling of Endogenous Depolymerization 295
- 12.4.2 Analysis of Enzymatic PLA Depolymerization 300
- 12.4.3 Simulation of an Endogenous Depolymerization Process of PLA 302
- 12.5 Discussion 306 Acknowledgments 307 References 307
- 13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck Surgery 309 Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung, Andreas Lendlein, and Ralf-Peter Franke

XII Contents

13.1	Introduction 309
13.1.1	History of Implant Materials 309
13.1.2	Regenerative Medicine 309
13.1.3	Functionalized Implant Materials 310
13.1.4	Sterilization of Polymer-Based Degradable
	Implant Materials 310
13.2	Regenerative Medicine for the Reconstruction of the Upper
	Aerodigestive Tract 311
13.2.1	Applications of Different Implant Materials in
	Tracheal Surgery 312
13.2.2	New Methods and Approaches for Tracheal
	Reconstruction 313
13.2.2.1	Epithelialization of Tracheal Scaffolds 317
13.2.2.2	Vascular Supply of Tracheal Constructs 319
13.2.3	Regenerative Medicine for Reconstruction of
	Pharyngeal Defects 320
13.3	Methods and Novel Therapeutical Options in Head and
	Neck Surgery 321
13.3.1	Primary Cell Cultures of the Upper Aerodigestive Tract 321
13.3.2	Assessment and Regulation of Matrix Metalloproteases and Wound
	Healing 321
13.3.3	Influence of Implant Topography 322
13.3.4	Application of New Implant Materials in Animal Models 324
13.4	Vascularization of Tissue-Engineered Constructs 328
13.5	Application of Stem Cells in Regenerative Medicine 329
13.6	Conclusion 331
	References 331
14	Biodegradable Polymers as Scaffolds for Tissue Engineering 341
	Yoshito Ikada
	Abbreviations 341
14.1	Introduction 341
14.2	Short Overview of Regenerative Biology 342
14.2.1	Limb Regeneration of Urodeles 342
14.2.2	Wound Repair and Morphogenesis in the Embryo 343
14.2.3	Regeneration in Human Fingertips 344
14.2.4	The Development of Bones: Osteogenesis 345
14.2.5	Regeneration in Liver: Compensatory Regeneration 347
14.3	Minimum Requirements for Tissue Engineering 348
14.3.1	Cells and Growth Factors 348
14.3.2	Favorable Environments for Tissue Regeneration 349
14.3.3	Need for Scaffolds 350
14.4	Structure of Scaffolds 352
14.4.1	Surface Structure 352
1112	Devery Churchene 252

14.4.2 Porous Structure 353

- 14.4.3 Architecture of Scaffold 353
- 14.4.4 Barrier and Guidance Structure 354
- 14.5 Biodegradable Polymers for Tissue Engineering 354
- 14.5.1 Synthetic Polymers 355
- 14.5.2 Biopolymers 356
- 14.5.3 Calcium Phosphates 357
- 14.6 Some Examples for Clinical Application of Scaffold 357
- 14.6.1 Skin 357
- 14.6.2 Articular Cartilage 357
- 14.6.3 Mandible 358
- 14.6.4 Vascular Tissue 359
- 14.7 Conclusions 361 References 361

15 Drug Delivery Systems 363

Kevin M. Shakesheff

- 15.1 Introduction 363
- 15.2 The Clinical Need for Drug Delivery Systems 364
- 15.3 Poly(α-Hydroxyl Acids) 365
- 15.3.1 Controlling Degradation Rate 366
- 15.4 Polyanhydrides 368
- 15.5 Manufacturing Routes 370
- 15.6 Examples of Biodegradable Polymer Drug Delivery Systems Under Development 371
- 15.6.1 Polyketals 371
- 15.6.2 Synthetic Fibrin 371
- 15.6.3 Nanoparticles 372
- 15.6.4 Microfabricated Devices 373
- 15.6.5 Polymer–Drug Conjugates 373
- 15.6.6 Responsive Polymers for Injectable Delivery 375
- 15.6.7 Peptide-Based Drug Delivery Systems 375
- 15.7 Concluding Remarks 376 References 376
- 16Oxo-biodegradable Polymers: Present Status and
Future Perspectives379

Emo Chiellini, Andrea Corti, Salvatore D'Antone, and David Mckeen Wiles

- 16.1 Introduction 379
- 16.2 Controlled-Lifetime Plastics 380
- 16.3 The Abiotic Oxidation of Polyolefins 382
- 16.3.1 Mechanisms 383
- 16.3.2 Oxidation Products 384
- 16.3.3 Prodegradant Effects 386
- 16.4 Enhanced Oxo-biodegradation of Polyolefins 387
- 16.4.1 Biodegradation of Polyolefin Oxidation Products 390

XIV Contents

16	.4.2	Standard Tests 391
16	.4.3	Biometric Measurements 393
16	.5	Processability and Recovery of Oxo-biodegradable Polyolefins 395
16	.6	Concluding Remarks 396
		References 397

Index 399

Preface

Degradable polyesters with valuable material properties were pioneered by Carothers at DuPont by utilizing ring-opening polymerization approaches for achieving high molecular weight aliphatic poly(lactic acid)s in the 1930s. As a result of various oil crises, biotechnologically produced poly(hydroxy alkanoates) were keenly investigated as greener, non-fossil fuel based alternatives to petrochemical based commodity plastics from the 1960s onwards. Shortly afterwards, the first copolyesters were utilized as slowly drug releasing matrices and surgical sutures in the medical field. In the latter half of the 20th century, biodegradable polymers developed into a core field involving different scientific disciplines such that these materials are now an integral part of our everyday lives. This field still remains a hotbed of innovation today. There is a burning interest in the use of biodegradable materials in clinical settings. Perusal of the literature will quickly reveal that such materials are the backbone of modern, biomaterial-based approaches in regenerative medicine. Equally, this technology is central to current drug delivery research through biodegradable nanocarriers, microparticles, and erodible implants, which enable sophisticated controlled drug release and targeting. Due to the long historic legacy of polymer research, this field has been able to develop to a point where material compositions and properties can be refined to meet desired, complex requirements. This enables the creation of a highly versatile set of materials as a key component of new technologies. This collected series of texts, written by experts, has been put together to showcase the state of the art in this ever-evolving area of science.

The chapters have been divided into three groups with different themes. Chapters 1–8 introduce specific materials and cover the major classes of polymers that are currently explored or utilized. Chapters 9–14 describe applications of biodegradable polymers, emphasizing the exciting potential of these materials. In the final chapters, 15–16, characterization methods and modelling techniques of biodegradation processes are depicted.

Materials: Lendlein *et al.*, then Ienczak and Aragão, start with up-to-date reviews of the seminal polyesters and biotechnologically produced polyesters, respectively. Other chapters concern polymers with different scission moieties and behaviors. Domb *et al.* provide a comprehensive review of polyanhydrides, which is followed by an excellent overview of poly(ortho esters) contributed by Heller. Amino

| xv

acid- based materials and degradable polyurethanes make up the subject of the next two chapters by Katsarava and Gomurashvili, then Puiggali *et al.*, respectively. Synthetic polysaccharides, which are related to many naturally occurring biopolymers, are then described at length by Dumitriu, Dräger *et al.* To conclude the individual polymer-class section, biodegradable polyolefins, which are degraded oxidatively, and are intended as degradable commodity plastics, are covered by Wiles *et al.*

Applications: The two chapters by Ikada and Shakesheff give a critical update on the status of biodegradable materials applied in regenerative therapy and then in drug delivery systems. From there, further exciting applications are described; shape-memory polymers and their potential as implant materials in minimally invasive surgery are discussed by Lendlein *et al.*; Huh *et al.* highlight the importance of biodegradable hydrogels for tissue expander applications; Franke *et al.* cover how implants can be used to aid regenerative treatment of mucosal defects in surgery; Khandare and Kumar review the relevance of biodegradable dendrimers and dendritic polymers to the medical field.

Methods: Van der Zee gives a description of the methods used to quantify biodegradability and the implications of biodegradability as a whole; Watanabe and Kawai go on to explain methods used to explore degradation through modelling and simulations.

The aim of this handbook is to provide a reference guide for anyone practising in the exploration or use of biodegradable materials. At the same time, each chapter can be regarded as a stand alone work, which should be of great benefit to readers interested in each specific field. Synthetic considerations, physical properties, and erosion behaviours for each of the major classes of materials are discussed. Likewise, the most up to date innovations and applications are covered in depth. It is possible upon delving into the provided information to really gain a comprehensive understanding of the importance and development of this field into what it is today and what it can become in the future.

We wish to thank all of the participating authors for their excellent contributions towards such a comprehensive work. We would particularly like to pay tribute to two very special authors who sadly passed away during the production time of this handbook. Jorge Heller was a giant in the biomaterials field and pioneered the field of poly(ortho esters). Severian Dimitriu is well known for his series of books on biodegradable materials, which served to inspire and educate countless scientists in this area. Our sincerest thanks go to Gloria Heller and Daniela Dumitriu for their cooperation in completing these chapters. We also acknowledge the untiring administrative support of Karolin Schmälzlin, Sabine Benner and Michael Schroeter, and the expert cooperation from the publishers at Wiley, especially Elke Maase and Heike Nöthe.

Teltow, September 2010

Andreas Lendlein Adam Sisson

List of Contributors

Gláucia Maria Falcão de Aragão

Federal University of Santa Catarina Chemical and Food Engineering Department Florianópolis, SC 88040-900 Brazil

Marc Behl

Center for Biomaterial Development, Institute of Polymer Research Helmholtz-Zentrum Geesthacht Kantstr. 55 14513 Teltow Germany

Emo Chiellini

University of Pisa Department of Chemistry and Industrial Chemistry via Risorgimento 35 Pisa 56126 Italy

Andrea Corti

University of Pisa Department of Chemistry and Industrial Chemistry via Risorgimento 35 Pisa 56126 Italy

Salvatore D'Antone

University of Pisa Department of Chemistry and Industrial Chemistry via Risorgimento 35 Pisa 56126 Italy

Avi Domb

Hebrew University School of Pharmacy Department of Medicinal Chemistry Jerusalem 91120 Israel

Gerald Dräger

Gottfried Wilhelm Leibniz Universität Hannover Institut für Organische Chemie Schneiderberg 1B 30167 Hannover Germany

Severian Dumitriu^t

University of Sherbrooke Department of Chemical Engineering 2400 Boulevard de l'Université Sherbrooke, Quebec J1K 2R1 Canada

XVIII List of Contributors

Lourdes Franco

Universitat Politècnica de Catalunya Departament d'Enginyeria Química Av. Diagonal 647 08028 Barcelona Spain

Ralf-Peter Franke

Centre for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT) Institute of Polymer Research Helmholtz-Zentrum Geesthacht GmbH Kantstr. 55 14513 Teltow Germany and University of Ulm Central Institute for Biomedical Engineering Department of Biomaterials 89069 Ulm Germany

Yourong Fu

Akina, Inc. West Lafayette, IN 47906 USA

Rosemarie Fuhrmann

University of Ulm Central Institute for Biomedical Engineering Department of Biomaterials 89069 Ulm Germany

John Garner

Akina, Inc. West Lafayette, IN 47906 USA

Zaza Gomurashvili

PEA Technologies 709 Mockingbird Cr. Escondido, CA 92025 USA

Jorge Heller^t

PO Box 3519, Ashland, OR 97520 USA

Bernhard Hiebl

Centre for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT) Institute of Polymer Research Helmholtz-Zentrum Geesthacht Kantstr. 55 14513 Teltow Germany

Kang Moo Huh

Chungnam National University Department of Polymer Science and Engineering Daejeon 305-764 South Korea

Jaciane Lutz Ienczak

Federal University of Santa Catarina Chemical and Food Engineering Department Florianópolis, SC 88040-900 Brazil

Yoshito Ikada

Nara Medical University Shijo-cho 840 Kashihara-shi Nara 634-8521 Japan

Jay Prakash Jain

National Institute of Pharmaceutical Education and Research (NIPER) Department of Pharmaceutics Sector 67 S.A.S. Nagar (Mohali) 160062 India

Friedrich Jung

Centre for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT) Institute of Polymer Research Helmholtz-Zentrum Geesthacht Kantstr. 55 14513 Teltow Germany

Ramaz Katsarava

Iv. Javakhishvili Tbilisi State
University
Institute of Medical Polymers and
Materials
1, Chavchavadze ave.
Tbilisi 0179
Georgia
and
Georgian Technical University
Centre for Medical Polymers and
Biomaterials
77, Kostava str.
Tbilisi 75
Georgia

Fusako Kawai

Kyoto Institute of Technology Center for Nanomaterials and Devices Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan

Jayant Khandare

Piramal Life Sciences Ltd. Polymer Chem. Grp 1 Nirlon Complex Off Western Express Highway Goregaon (E), Mumbai 400063 India

Andreas Krause

Gottfried Wilhelm Leibniz Universität Hannover Institut für Organische Chemie Schneiderberg 1B 30167 Hannover Germany

Neeraj Kumar

National Institute of Pharmaceutical Education and Research (NIPER) Department of Pharmaceutics Sector 67 S.A.S. Nagar (Mohali) 160062 India

Sanjay Kumar

Piramal Life Sciences Ltd. Polymer Chem. Grp 1 Nirlon Complex Off Western Express Highway Goregaon (E), Mumbai 400063 India

Andreas Lendlein

Center for Biomaterial Development and Berlin-Brandenburg Center for Regenerative Therapies, Institute of Polymer Research Helmholtz-Zemtrum Geesthacht Kantstr. 55 14513 Teltow Germany

XX List of Contributors

Lena Möller

Gottfried Wilhelm Leibniz Universität Hannover Institut für Organische Chemie Schneiderberg 1B 30167 Hannover Germany

Kinam Park

Purdue University Department of Biomedical Engineering and Pharmaceutics West Lafayette, IN 47907-2032 USA

Jordi Puiggalí

Universitat Politècnica de Catalunya Departament d'Enginyeria Química Av. Diagonal 647 08028 Barcelona Spain

Dorothee Rickert

Marienhospital Stuttgart Böheimstrasse 37 70199 Stuttgart Germany

Alfonso Rodríguez-Galán

Universitat Politècnica de Catalunya Departament d'Enginyeria Química Av. Diagonal 647 08028 Barcelona Spain

Michael Schroeter

Center for Biomaterial Development Institute of Polymer Research Helmholtz-Zentrum Geesthacht Kantstr. 55 14513 Teltow Germany

Kevin M. Shakesheff

The University of Nottingham School of Pharmacy, STEM NG 7 2RD UK

Adam L. Sisson

Center for Biomaterial Development and Berlin-Brandenburg Center for Regenerative Therapies, Institute of Polymer Research Helmholtz-Zentrum Geesthacht Kantstr. 55 14513 Teltow Germany

Thanh Huyen Tran

Chungnam National University Department of Polymer Science and Engineering Daejeon 305-764 South Korea

Masaji Watanabe

Okayama University Graduate School of Environmental Science 1-1, Naka 3-chome Tsushima, Okayama 700-8530 Japan

David Mckeen Wiles

Plastichem Consulting Victoria, BC V8N 5W9 Canada

Maarten van der Zee

Wageningen UR Food & Biobased Research P.O. Box 17 6700 AA Wageningen The Netherlands

Jörg Zotzmann

Center for Biomaterial Development Institute of Polymer Research Helmholtz-Zentrum Geesthacht Kantstr. 55 14513 Teltow Germany