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Introduction 1
Much of our present knowledge of the architecture of molecules has
been obtained from studies of the diffraction of X rays or neutrons by
crystals. X rays* are scattered by the electrons of atoms and ions, and the

* “X ray” for a noun, “X-ray” for an adjec-
tive.interference between the X rays scattered by the different atoms or ions

in a crystal can result in a diffraction pattern. Similarly, neutrons are
scattered by the nuclei of atoms. Measurements on a crystal diffraction
pattern can lead to information on the arrangement of atoms or ions
within the crystal. This is the experimental technique to be described in
this book.

X-ray diffraction was first used to establish the three-dimensional
arrangement of atoms in a crystal by William Lawrence Bragg in 1913
(Bragg, 1913), shortly after Wilhelm Conrad Röntgen had discovered
X rays and Max von Laue had shown in 1912 that these X rays could
be diffracted by crystals (Röntgen, 1895; Friedrich et al., 1912). Later, in
1927 and 1936 respectively, it was also shown that electrons and neu-
trons could be diffracted by crystals (Davisson and Germer, 1927; von
Halban and Preiswerk, 1936; Mitchell and Powers, 1936). Bragg found
from X-ray diffraction studies that, in crystals of sodium chloride, each
sodium is surrounded by six equidistant chlorines and each chlorine by
six equidistant sodiums. No discrete molecules of NaCl were found and
therefore Bragg surmised that the crystal consisted of sodium ions and
chloride ions rather than individual (noncharged) atoms (Bragg, 1913);
this had been predicted earlier by William Barlow and William Jackson
Pope (Barlow and Pope, 1907), but had not, prior to the research of the
Braggs, been demonstrated experimentally. A decade and a half later, in
1928, Kathleen Lonsdale used X-ray diffraction methods to show that
the benzene ring is a flat regular hexagon in which all carbon–carbon
bonds are equal in length, rather than a ring structure that contains
alternating single and double bonds (Lonsdale, 1928). Her experimental
result, later confirmed by spectroscopic studies (Stoicheff, 1954), was of
great significance in chemistry. Since then X-ray and neutron diffraction
have served to establish detailed features of the molecular structure of
every kind of crystalline chemical species, from the simplest to those
containing many thousands of atoms.

We address ourselves here to those concerned with or interested in
structural aspects of chemistry and biology who wish to know how
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4 Introduction

crystal diffraction methods can be made to reveal the underlying three-
dimensional structure within a crystal and how the results of such
structure determinations may be critically assessed. In order to explain
why molecular structure can be determined by single-crystal diffraction
of X rays or neutrons, we shall try to answer several questions: Why use
crystals and not liquids or gases? Why use X rays or neutrons and not
other types of radiation? What experimental measurements are needed?
What are the stages of a typical structure determination? How are the
structures of macromolecules such as proteins and viruses determined?
Why is the process of structure analysis sometimes lengthy and com-
plex? Why is it necessary to “refine” the approximate structure that is
first obtained? How can one assess the reliability of a crystal structure
analysis?

This book should be regarded not as an account of “how to do it” or of
practical procedural details, but rather as an effort to explain “why it is
possible to do it.” We aim to give an account of the underlying physical
principles and of the kinds of experiments and methods of handling
the experimental data that make this approach to molecular structure
determination such a powerful and fruitful one. Practitioners are urged
to look elsewhere for details.

The primary aim of a crystal structure analysis by X-ray or neutron
diffraction is to obtain a detailed three-dimensional picture of the con-
tents of the crystal at the atomic level, as if one had viewed it through
an extremely powerful microscope. Once this information is available,
and the positions of the individual atoms are therefore known precisely,
one can calculate interatomic distances, bond angles, and other features
of the molecular geometry that are of interest, such as the planarity of a
particular group of atoms, the angles between planes, and conformation
angles around bonds. Frequently the resulting three-dimensional repre-
sentation of the atomic contents of the crystal establishes a structural
formula and geometrical details hitherto completely unknown. Such
information is of great interest to chemists, biochemists, and molecular
biologists who are interested in the relation of structural features to
chemical and biological effects. Furthermore, precise molecular dimen-
sions (and information about molecular packing, molecular motion in
the crystal, and molecular charge distribution) may be obtained by this
method. These results expand our understanding of electronic struc-
ture, molecular strain, and the interactions between molecules.

Atoms and molecules are very small and therefore an extensive
magnification is required to visualize them. The usual way to view
a very small object is to use a lens, or, if even higher magnification
is required, an optical or electron microscope. Light scattered by the
object that we are viewing is recombined by the lens system of the
microscope to give an image of the scattering matter, appropriately
magnified, as shown in Figure 1.1a. This will be discussed and illus-
trated later, in Chapter 3. What is important is how the various scattered
light waves interact with each other, that is, the overall relationship
between the relative phases** of the various scattered waves (defined

** Relative phases (discussed in Chapter 3)
describe the relationships between the
various locations of peaks and troughs of
a series of sinusoidal wave motions. They
are described as “relative” phases because
they are measured with respect to a fixed
point in space, such as but not necessarily
the selected origin of the unit cell.
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Fig. 1.1 Analogies between light microscopy and X-ray diffraction.Analogies between the two methods of using scattered radiation for
determining structure are shown here—optical microscopy on the left, X-ray diffraction on the right. The sample that is under study in
both instruments scatters some of the incident radiation and this gives a diffraction pattern.

(a) In the ordinary optical microscope there are two lenses. The lower objective lens gathers light that has been scattered by the
object under study and focuses and magnifies it. The eyepiece or ocular lens, which is the one we look through, increases this
magnification. There is no need to record a diffraction pattern because the light that is scattered by the object under examination
is focused by these lenses and gives a magnified image of that object. The closer the objective lens is to the object, the wider
the angle through which scattered radiation is caught by this lens and focused to form a high-resolution image. The rest of the
radiation is lost to the surroundings.

(b) With X rays the diffraction pattern has to be recorded electronically or photographically, because X rays cannot (at this time) be
focused by any known lens system. Therefore the recombination of the diffracted beams (which is done by an objective lens in
the optical microscope) must, when X rays are used, be done mathematically by a crystallographer with the aid of a computer. As
stressed later (Chapter 5), this recombination cannot be done directly, because the phase relations among the different diffracted
beams cannot usually be measured directly. However, once these phases have been derived, deduced, guessed, or measured
indirectly, an image can be constructed of the scattering matter that caused diffraction—the electron density in the crystal.

in Figure 1.2); this is because, when two scattered waves proceed in
the same direction, the intensity of the combined wave will depend on
the difference in the phases of the two scattered beams. If they are “in
phase” they will enhance each other and give an intense beam, but if
they are “out of phase” they will destroy each other and there will be no
apparent diffracted beam. Generally it is found that such enhancement
or destruction is only partial, so that the diffracted beams have some
intensity and the diffraction pattern that is obtained contains diffracted
beams that have differing intensities—some are weak and some are
intense.

In an optical microscope, that is, a microscope that uses light that
is visible to the human eye, the radiation scattered by the object is
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Fig. 1.2 A sinusoidal wave.

A sinusoidal wave, showing its amplitude, phase relative to the origin, and wavelength.
Sine and cosine functions are sinusoidal waves with different phases [cos x = sin(x + π/2)
when the distance traveled is measured in radians]. Shown is a cosine wave (black line),
which has a peak at the wave origin. This wave origin coincides with the origin in space
that has been selected by the crystallographer. A second wave (dashed line) has its peak in
a different location. The distance between these two peaks defines their “relative phase.”

recombined by the lens system (the objective lens) so that a magni-
fied image of the object under study is obtained (Figure 1.1a). Light
flows through and beyond the lens system of the microscope in such
a way that the relationships between the phases of the scattered waves
are maintained, even after these waves have been recombined by the
second lens (the eyepiece lens). In a similar way, X rays are scattered
by the electrons in atoms and ions (Figure 1.1b), but, in contrast to the
situation with visible light, these scattered X rays cannot be focused
by any presently known experimental techniques. This is because no
electric or magnetic field or material has yet been found that can refract
X rays sufficiently to give a practicable X-ray lens. Therefore an X-ray
microscope cannot yet be used to view atoms (which have dimensions
too small to permit them to be visible with an ordinary light micro-
scope). Much research on a possible X-ray lens is currently in progress
(see Shapiro et al., 2005; Sayre, 2008). The information obtained from
an X-ray diffraction experiment, however, is three-dimensional, and
therefore the great usefulness of this method will doubtless continue
after an X-ray lens can be made.

Since a lens system cannot be used to recombine scattered X rays to
obtain images at atomic resolution, some other technique must be used
if one wishes to view molecules. In practice, the diffracted (scattered)
X rays or neutrons are intercepted and measured by a detecting sys-
tem, but this means that the relationships between the phases of the
scattered waves are lost; only the intensities (not the relative phases)
of the diffracted waves can be measured. If the values of the phases
of the diffracted beams were known, it would be possible to combine
them with the experimental measurements of the diffraction pattern
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and simulate the recombination of the scattered radiation—just as if a lens
had done it—by an appropriate, though complicated, calculation (done
by a crystallographer and a computer in Figure 1.1b). Then we would
have an electron-density map, that is, an image of the material that
had scattered the X rays. This mathematical calculation, the Fourier
synthesis of the pattern of scattered or “diffracted” radiation (Fourier,
1822; Porter, 1906; Bragg, 1915), is a method for summing sinusoidal
waves in order to obtain a representation of the material that scat-
tered the radiation. Such a Fourier synthesis is a fundamental step in
crystal structure determination by diffraction methods and is a central
subject of our discussion (described in detail in Chapters 5, 6, 8, and
9). The difficult part of correctly summing these sinusoidal waves is
termed the “phase problem,” that is, finding where the peaks of each
sinusoidal wave should lie with respect to the others in the summa-
tion. Any of several methods (to be described) can be used to over-
come this difficulty and determine the phases of the various diffracted
beams with respect to each other. When the correct phases are known
(that is, derived, deduced, guessed, or measured indirectly), the three-
dimensional structure of the atomic contents of the crystal (and hence
of the molecules or ions that it contains) will be revealed as a result of a
Fourier synthesis.

Why make the effort to carry out a crystal structure analysis? The
reason is that when the method is successful, it is unique in provid-
ing an unambiguous and complete three-dimensional representation of
the atoms in the crystal. This three-dimensionality is incredibly useful
because chemical and biological reactions occur in three dimensions,
not two; surface and internal structures of molecules, plus informa-
tion on their interactions with other molecules, are revealed by this
powerful technology. Other experimental methods can also provide
structural information. For example, large molecules, such as those of
viruses, can also be visualized by use of an electron microscope, but
individual atoms deep inside each virus molecule cannot currently
be distinguished. Newer technologies such as field ion microscopy
and scanning tunneling microscopy (or atomic force microscopy) are
now providing views of molecules on the surfaces of materials, but
they also do not provide the detailed and precise information about
the internal structure of larger molecules that X-ray and neutron dif-
fraction studies do. Infrared and microwave spectroscopic techniques
give quantitative structural information for simple molecules. High-
field nuclear magnetic resonance (NMR), the main alternative method
currently used for structure determination, can also provide distances
between identified atoms and can be used to study fairly large mole-
cules. No other method can, however, give the entire detailed three-
dimensional picture that X-ray and neutron diffraction techniques can
produce.

Crystal diffraction methods do, however, have their limitations,
chiefly connected with obtaining samples with the highly regular long-
range three-dimensional order characteristic of the ideal crystalline
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state. The success of high-resolution diffraction analysis requires that
the sample be prepared as an ordered array (e.g., a crystal). Molecular
motion or static disorder within the regular array of molecules in a
crystal may result in a time-averaged or space-averaged representation
of the molecular structure. Freedom of molecular motion is, in general,
much more restricted in solids than it is in liquids or gases. Even in
solids, however, both overall and intramolecular motion can be appre-
ciable, and precise diffraction data may reveal enlightening information
about atomic and molecular motion.

When a crystal structure analysis by diffraction methods is com-
pleted, a wealth of information results. It reveals the shapes of mole-
cules and the way they interact, and gives geometrical data for each.
The method can be adapted to a wide range of temperatures, pres-
sures, and environments and has been successfully used to estab-
lish the molecular architecture and packing of an enormous diver-
sity of substances, from elementary hydrogen and simple salts to
molecules such as buckminsterfullerene and to proteins and nucleic
acids and their assemblages in viruses and other cellular structures.
X-ray diffraction methods have also contributed significantly to our
understanding of natural and synthetic partially crystalline materials
such as polyethylene and fibers of DNA. Although structure deter-
minations of organic and biochemically significant molecules have
received the most attention in recent years, the contributions of the
technique to inorganic chemistry have been equally profound, ini-
tially through the clarification of the chemistry of the silicates and of
other chemical mysteries of minerals and inorganic solids, and then
with applications to such diverse materials as the boron hydrides,
alloys, hydrates, compounds of the rare gases, and metal-cluster
compounds.

Throughout the book you may encounter symbols or terms that are
unfamiliar, such as d010 or d110 in Figure 2.5. We have included a list
of symbols at the start, and a glossary (to provide definitions of such
symbols and words) and a list of references at the end of the book. We
urge you to use all of these sections frequently as you work your way
through the book.



Crystals 2
The elegance and beauty of crystals have always been a source of
delight. What is a crystal? A crystal is defined as a solid that contains a very
high degree of long-range three-dimensional internal order of the component
atoms, molecules, or ions. This implies a repetitious internal organization,
at least ideally.* By contrast, the internal organization of atoms and ions

* Real crystals often exhibit a variety of
imperfections—for example, short-range
or long-range disorder, dislocations, irreg-
ular surfaces, twinning, and other kinds of
defects—but, for our present purposes, it
is a good approximation to consider that
in a specimen of a single crystal the order
is perfect and three-dimensional. We dis-
cuss very briefly in Chapter 13 the way
in which our discussion must be modi-
fied when some disorder is present—for
example, when the order is only one-
dimensional, as in many fibers.

within a noncrystalline material is totally random, and the material
is described as “amorphous.” Studies of crystal morphology, that is,
of the external features of crystals, have been made since early times,
particularly by those interested in minerals (for practical as well as
esthetic reasons) (Groth, 1906–1919; Burke, 1966; Schneer, 1977).

It was Max von Laue who realized in 1912 that this internal regularity
of crystals gave them a grating-like quality so that they should be
able to diffract electromagnetic radiation of an appropriate wavelength.
From Avogadro’s number (6.02 × 1023, the number of molecules in the
molecular weight in grams of a compound) and the volume that this
one “gram molecule” of material fills, von Laue was able to reason
that distances between atoms or ions in a crystal were of the order of
10−9 to 10−10 m (now described as 10 to 1 Å).** A big debate at that time

** Crystallographic interatomic distances
are usually listed in Å. 1 Å = 10−8 cm =
10−10 m.

was whether X rays were particles or waves. If X rays were found to
be wavelike (rather than particle-like), von Laue estimated they would
have wavelengths of this same order of magnitude, 10−9 to 10−10 m.
Therefore, since diffraction was viewed as a property of waves rather
than particles, von Laue urged Walther Friedrich and Paul Knipping
to test if X rays could be diffracted by crystals. Their resulting diffrac-
tion experiment was dramatically successful. The crystal, because of
its internal regularity, had indeed acted as a diffraction grating. This
experiment was therefore considered to have demonstrated that X rays
have wavelike properties (Friedrich et al., 1912). We now know that
particles, such as neutrons or electrons, can also be diffracted. The X-ray
diffraction experiment in 1912 was, in spite of this later finding, highly
significant because it led to an extremely useful technique for the study
of molecular structure. An analysis of the X-ray diffraction pattern of a
crystal, by the methods to be described in this book, will give precise
geometrical information on the molecules and ions that comprise the
crystal.

The most obvious external characteristic of a crystal is that it has
flat faces bounded by straight edges, but this property is not necessary
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10 Crystals

or sufficient to define a crystal. Glass and plastic, neither of which is
crystalline, can be cut and polished so that they have faces that are flat
with straight edges. However, they have not been made crystalline by
the polishing, because their disordered internal structures have not
been made regular (even though the word “crystal” is often used for
some quality glassware). Therefore the presence of flat faces or straight
edges in a material does not necessarily indicate that it is crystalline.
It is the internal order, rather than external appearance, that defines a
crystal. One way to check whether or not this internal order is present
is to examine the diffraction pattern obtained when the material is
targeted by a beam of X rays; the extent of the crystallinity (that is,
the quality of its regular internal repetition) will be evident in any
diffraction pattern obtained.

The fact that crystals have an internal structure that is periodic
(regularly repeating) in three dimensions has long been known. It
was surmised by Johannes Kepler, who wrote about the six-cornered
snowflake, and by Robert Hooke, who published some of the earliest
pictures of crystals viewed under a microscope (Kepler, 1611; Hooke,
1665; Bentley, 1931). They both speculated that crystals are built up
from an ordered packing of roughly spheroidal particles. The Dan-
ish physician Nicolaus Steno (Niels Stensen) noted that although the
faces of a crystalline substance often varied greatly in shape and size
(depending on the conditions under which the crystals were formed),
the angles between certain pairs of faces were always the same (Steno,
1669). From this observation Steno and Jean Baptiste Louis Romé de
Lisle postulated the “Law of Constancy of Interfacial Angles” (Romé
de Lisle, 1772). Such angles between specific faces of a crystal can be
measured approximately with a protractor or more precisely with an
optical goniometer (Greek: gonia = angle), and a great many highly
precise measurements of the interfacial angles in crystals have been
recorded over the past three centuries. This constancy of the interfacial
angles for a given crystalline form of a substance is a result of its
internal regularity (its molecular or ionic packing) and has been used
with success as an aid in characterizing and identifying compounds in
the old science of “pharmacognosy.” Investigations of crystal form were
carried out further by Torbern Olof Bergman in 1773 and René Just
Haüy in 1782; they concluded independently, as a result of studies of
crystals that had cleaved into small pieces when accidentally dropped,
that crystals could be considered to be built up of building bricks of
specific sizes and shapes for the particular crystal. These ideas led to the
concept of the “unit cell,” the basic building block of crystals (Bergman,
1773; Haüy, 1784; Burke, 1966; Lima-de-Faria, 1990).

Obtaining and growing crystals

The growth of crystals is a fascinating experimental exercise that the
reader is urged to try (Holden and Singer, 1960; McPherson, 1982;
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Ducruix and Giegé, 1999; Bergfors, 2009). Considerable perseverance
and patience are necessary, but the better the quality of the crys-
tal the more precise the resulting crystal structure. Generally crys-
tals are grown from solution, but other methods that can be used
involve cooling molten material or sublimation of material onto a
surface.

In order to obtain crystals from solution it is necessary to dissolve
the required substance (the solute) in a suitable solvent until it is near
its saturation point, and then increase the concentration of the solute in
the solution by slowly evaporating or otherwise removing solvent. This
provides a saturated or supersaturated solution from which material
will separate, and the aim is to make this separation occur in the form
of crystals. During the growth process, solute molecules meet in solu-
tion and form small aggregates, a process referred to as “nucleation.”
Extraneous foreign particles (such as those from a person’s beard or
hair, or “seeds,” or dust) may serve as initiators of such nucleation.
More molecules are then laid down on the surface of this nucleus, and
eventually a crystal may separate from the solution. Crystal growth will
continue until the concentration of the material being crystallized falls
below the saturation point:

Saturated solution → Supersaturation → Nucleation→Crystal growth

The crystallization process is essentially a controlled precipitation
onto an appropriate nucleation site. If growth conditions are achieved
too quickly, many nucleation sites may form and crystals may be
smaller than those obtained under slower crystallization conditions.
If too few nucleation sites form, crystals may not grow. Crystal habit
(overall shape) may be modified by the addition of soluble foreign
materials to the crystallization solution. These added molecules may
bind to growing crystal faces and inhibit their growth. As a result,
different sets of crystal faces may become more prominent.

When a molecule or ion approaches a growing crystal, it will form
more interactions than otherwise if it can bind at a step in the for-
mation of layers of molecules in the crystal. Various irregularities
or defects (dislocations) in the internal order of stacking can facil-
itate the formation of steps and therefore aid in the crystallization
process. Most real crystals are not perfect; that is, the regularity of
packing of molecules may not be exact. In general, they tend to be
composed of small blocks of precisely aligned unit cells (domains)
that may each be slightly misaligned with respect to each other.
The extent to which this occurs is referred to as the “mosaicity”
of the crystal, and its measurement indicates the degree of long-
range crystalline order (regularity) in the crystal under study. Most
real crystals are described as “ideally imperfect” if they have a
mosaic structure composed of slightly misoriented very small crystal
domains.

Several of the methods that are now used to facilitate the growth
of crystals involve changing the experimental conditions so that



12 Crystals
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Fig. 2.1 Crystals being grown by the vapor diffusion method.

(a) The sample (sodium citrate) to be crystallized is soluble in water but is not very
soluble in ethyl alcohol. A test tube containing sodium citrate dissolved in water
is sealed in a beaker containing ethyl alcohol. An equilibrium between the two
liquids is then approached. Vapor phase diffusion of the water molecules from the
test tube into the larger volume in the reservoir and of alcohol into the smaller
volume in the test tube takes place. The result is that crystals separate out in the
test tube as the solution in it becomes more concentrated and the alcohol helps the
citrate to separate out.

(b) Pure protein is usually available only in limited quantities and therefore the fol-
lowing scheme has been adopted to circumvent this problem. A drop of protein
solution is placed on a cover slip, which is sealed with grease over a container (a
beaker or one of the many small wells in a biological culture tray). In this sealed
system, the protein drop contains precipitant at a concentration below the point
at which protein precipitation would be expected; the sealed container (the well)
contains a much larger volume of precipitant at or slightly above the concentration
of the precipitation point of the protein. Water evaporates slowly from the protein-
containing drop into the container until the concentration of precipitant in the
hanging drop is the same as that in the well, and crystallization may occur. This
method works best for a protein if it is highly purified.

saturation of the solution will be exceeded, generally by a slow pre-
cipitation method (see Figure 2.1). In one method, a precipitant (that is,
a liquid or solution of a compound in which the substance is insoluble)
is layered on a solution of the material to be crystallized. For example,
alcohol, acting as a precipitant, when carefully layered on top of a sat-
urated aqueous solution of sodium citrate and left for a day or so, will
generally give good diffraction-quality crystals. Alternatively, some of
the solvent may be slowly removed from the solution by equilibration
through the vapor phase in a closed system, thereby increasing the
concentration of the material being crystallized. This can be done, as
shown in Figure 2.1a, with an aqueous solution of sodium citrate in a
test tube, placed in a covered beaker containing ethyl alcohol alone;
equilibration of the solvents in this sealed container will (hopefully)
then cause the formation of crystals. This vapor diffusion method is also
used for macromolecules. An aqueous solution of the protein, together
with a precipitant (a salt such as ammonium sulfate, or an alcohol such
as methylpentanediol) in the same solution but at a concentration below
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that which will cause precipitation, is put in a dish, or suspended as
a droplet on a microscope slide, in a sealed container. Then another,
more concentrated, precipitant solution is placed at the bottom of the
same sealed container (Figure 2.1b). Water will be transferred through
the vapor phase from the solution that is less concentrated in the pre-
cipitant (but containing protein) to that which is more concentrated
(but lacking protein). The result is a loss of water from the suspended
droplet containing protein. As the precipitation point of the protein
is reached in the course of this dehydration, factors such as pH, tem-
perature, ionic strength, and choice of buffer will control whether the
protein will separate from the solution as a crystal or as an amorphous
precipitate.

In summary, the main factors affecting the growth of good crystals are
an appropriate choice of solvent, suitable generation of nucleation sites,
control of the rate of crystal growth, and a lack of any disturbance of the
crystallization system (see Chayen, 2005). In practice the equipment for
doing this is now increasingly sophisticated, and often, for macromole-
cules, a robot setup is used that provides a wide variety of conditions
for crystallization (Snook et al., 2000). For example, it has been found
that protein crystallization may be more successful on space shuttles,
where gravity is reduced (DeLucas et al., 1999). The components do not
then separate as quickly and fluid flow at the site of crystallization is
reduced.

Crystals suitable for modern single-crystal diffraction need not be
large. For X-ray work, specimens with dimensions of 0.2 to 0.4 mm
or less on an edge are usually appropriate. Such a crystal normally
weighs only a small fraction of a milligram and, unless there is radi-
ation damage or crystal deterioration during X-ray exposure, can be
reclaimed intact at the end of the experiment. Larger crystals are needed
for neutron diffraction studies, although this requirement is becoming
less strict as better sources of neutrons become available.

Sometimes a crystal is difficult to prepare or is unstable under ordi-
nary conditions. It may react with oxygen or water vapor, or may efflo-
resce (that is, lose solvent of crystallization and form a noncrystalline
powder) or deliquesce (that is, take up water from the atmosphere
and eventually form a solution). Many crystals of biologically inter-
esting materials are unstable unless the relative humidity is extremely
high; since such crystals contain a high proportion of water, they are
fragile and crush easily. Special techniques, such as sealing the crystal
in a capillary tube in a suitable atmosphere, cooling the crystal, or
growing it at very low temperatures, can be used to surmount such
experimental difficulties. Sometimes a twinned crystal may be formed
as the result of an intergrowth of two separate crystals in a variety
of specific configurations. This may complicate optical and diffrac-
tion studies, but methods have been devised for working with them
because sometimes only twinned crystals, and no single crystals, can be
obtained.
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The unit cell of a crystal

Any crystal may be regarded as being built up by the continuing three-
dimensional translational repetition of some basic structural pattern, which
may consist of one or more atoms, a molecule or ion, or even a complex
assembly of molecules and ions; the simplest component of this three-
dimensional pattern is called the “unit cell.” It is analogous to a build-
ing brick. The word “translational” in the above definition of a crystal
implies that there is within it a repetition of an arrangement of atoms
in a specific direction at regular intervals; this repeat distance defines a
measure of the unit-cell dimension in that direction.
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Fig. 2.2 Unit-cell axes.

(a) A unit cell showing the axial lengths
a , b, and c and the interaxial angles (·
between b and c, ‚ between c and a , and
„ between a and b). The directions of axes
are given in a right-handed system, as
shown by the screw in (b) and the human
fist in (c). As x is moved to y, the screw
in (b) or the thumb in (c) moves in the z-
direction in a right-handed manner.

The basic building block of a crystal is an imaginary three-
dimensional parallelepiped,† the “unit cell,” that contains one unit of

† A parallelepiped is a three-dimensional
polyhedron with six faces, each a par-
allelogram that is parallel to a similarly
shaped opposite face. It does not have
any requirement that all or any angles at
the corners of the six faces be 90◦. Each
face, a parallelogram, is a four-sided two-
dimensional polygon with two pairs of par-
allel sides.

the translationally repeating pattern. It is defined by three noncoplanar
vectors (the crystal axes) a, b, and c, with magnitudes a , b, and c (Fig-
ure 2.2a). These vectors are arranged, for convenience, in the sequence a,
b, c, in a right-handed axial system (see Figures 2.2b and c). The angles
between these axial vectors are · between b and c, ‚ between a and
c, and „ between a and b (see Figure 2.2). Thus, the size and shape of
the unit cell are defined by the dimensions a , b, c, ·, ‚, „. As will be
described later, atomic positions along each of the unit-cell directions
are generally measured as fractions x, y, and z of the repeat lengths a ,
b, and c.

The unit cell is a complete representation of the contents of the
repeating unit of the crystal. As a building block, it must pack in three-
dimensional space without any gaps. The unit cells of most crystals
are, of course, extremely small, because they contain comparatively
few molecules or ions, and because normal interatomic distances are
of the order of a few Å. For example, a diamond is built up of a
three-dimensional network of tetrahedrally linked carbon atoms, 1.54 Å
apart. This atomic arrangement lies in a cubic unit cell, 3.6 Å on an
edge. A one-carat diamond, which has approximately the volume of

Fig. 2.3 An electron micrograph of a crystalline protein.

An electron micrograph of a crystalline protein, fumarase, molecular weight about
200,000. The individual molecules, in white, are visible as approximately spherical struc-
tures at low resolution. Note that several choices of unit cell are possible.
(Photograph courtesy of Dr. L. D. Simon)



The faces of a crystal 15

a cube a little less than 4 mm on a side, thus contains 1021 unit cells of
the diamond structure.‡ A typical crystal suitable for X-ray structure ‡ The unit cell of diamond is cubic. The

unit cell edges are 3.6 Å. Given that the
density is 3.5 g cm−3 we can calculate that
there are 8 atoms of C in the unit cell. 1
carat weighs 0.2 g.

analysis, a few tenths of a millimeter in average dimension, contains
1012 to 1018 unit cells, each with identical contents that can diffract X
rays in unison. Figure 2.3 shows an electron micrograph of a protein
crystal and the regularity of its molecular packing. The existence of unit
cells in this micrograph is evident.

The faces of a crystal

There is a need to be able to describe a specific face of a crystal, and
this is done with respect to the chosen unit cell. Finding three integers
that characterize a given crystal face or plane is known as “indexing.”
As shown in Figure 2.4, a crystal face or crystal plane is indexed with
three numbers, h, k, and l, with these indices relatively prime (not each
divisible by the same factor), when the crystal face or plane makes
intercepts a/h, b/k, c/ l with the edges of the unit cell (lengths a , b,
and c). This is derived from the “Law of Rational Indices,” which states
that each face of a crystal may be described by three whole (rational)
numbers; these three numbers describing a crystal face are enclosed
in parentheses as (hkl). This nomenclature was introduced by William
Whewell and William Hallowes Miller (see Haüy, 1784, 1801; Miller,
1839). If a crystal face is parallel to one crystal axis, its intercept on that
axis is at infinity, so that the corresponding “Miller index” is zero, as
shown in Figure 2.4a. If a crystal face intersects the unit-cell edge at
one-third its length, the value of the index is 3, as shown in Figure 2.4b.
When the crystal faces have been indexed and the angles between them
measured, it is possible to derive the ratio of the lengths of the unit
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Fig. 2.4 Indexing faces of a crystal.

A crystal face or plane (hkl) makes intercepts a/h, b/k, c/l with the edges of the unit cell of lengths a , b, and c. (a) The (100), (010), and
(001) faces are shown. (b) The (123) face makes intercepts a/1, b/2, and c/3 with the unit-cell axes. A parallel crystal plane (unshaded)
is also indicated; it makes the same intercepts with the next unit cell nearer to the observer.
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Fig. 2.5 The determination of the probable shape of the unit cell from interfacial angles in the crystal.

(a) A cross section of a crystal viewed down the c-axis. For each face in this figure, l = 0. If the faces can be indexed and the angles
between these faces measured, it is possible to derive the ratio of the lengths of the unit cell edges (in this example b/a ). This will then
give the shape (but not the absolute dimensions) of the unit cell. (b) One unit cell, showing the indices of some faces and the interplanar
spacings dhkl (the spacing between crystal lattice planes (hkl) in the crystal).

cell edges and hence the shape (but not the absolute dimensions) of the
unit cell.

The relative lengths of some interplanar spacings, dhkl (the spacing
between the crystal lattice planes (hkl) in the crystal), are indicated
in both Figures 2.5a and b. An index (hkl) with a line above any of
these entries means that the value is negative. For example, (3 1 0)
means h = 3, k = −1, l = 0; the intercepts with the axes are a/3 and −b,
and the faces or planes lie parallel to c, since l = 0 (intercept infinity).
Sets of planes that are equivalent by symmetry (such as (100), (010),
(001), (100), (010), and (001) constitute a crystal form, represented (with
“squiggly” brackets) as

{
100

}
. Square brackets enclosing three integers

indicate a crystal lattice row; for example, [010] denotes the direction of
the b axis, that is, a line connecting the unit-cell origin to a point with
coordinates x = 0, y = 1, z = 0. Before the discovery of X-ray diffraction
in 1912, it was possible to deduce only the relative lengths of the unit-
cell axes and the values of the interaxial angles from measurements of
interfacial angles in crystalline specimens by means of a special instru-
ment (an optical goniometer), as shown in Figure 2.5a. As we shall see
shortly, however, X rays provide a tool for measuring the actual lengths
of these axes, and therefore the size, as well as the shape, of the unit
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cell of any crystal can be found. In addition, if the density of a crystal is
measured, one can calculate the weight (and hence, in most cases, the
atomic contents) of atoms in the unit cell. The method for doing this is
described in Appendix 1.

The crystal lattice

The crystal lattice highlights the repetition of the unit-cell contents
within the crystal. If, in a diagram of a crystal, each complete repeating
unit (unit cell) is replaced by a point, the result is the crystal lattice. It
is an infinite three-dimensional network of points that may be gen-
erated from a single starting point (at a chosen position in the unit
cell) by an extended repetition of a set of translations that are, in
most cases, the conventional unit-cell vectors just described. This high-
lights the regularly repeating internal structure of the crystal, as shown
in Figure 2.6.

The term “crystal lattice” is sometimes, misleadingly, used to refer
to the crystal structure itself. It is important to remember that a crystal
structure is an ordered array of objects (atoms, molecules, ions) that make
up a crystal, while a crystal lattice is merely an ordered array of imaginary
points. Although crystal lattice points are conventionally placed at the
corners of the unit cell, there is no reason why this need be done. The
crystal lattice may be imagined to be free to move in a straight line
(although not to rotate) in any direction relative to the structure. A
crystal lattice point may be positioned anywhere in the unit cell, but
exactly the same position in the next unit cell is chosen for the next
crystal lattice point. As a result every crystal lattice point in the unit
cell will have the same environment as every other crystal lattice point
in the crystal. The most general kind of crystal lattice, composed of
unit cells with three unequal edges and three unequal angles, is called
a triclinic crystal lattice. Once the crystal lattice is known, the entire
crystal structure may be described as a combination (convolution§)

§ A convolution (with axes u, v, w) is a
way of combining two functions A(x, y, z)
and B(x, y, z) (with axes x, y, z). It is
an integral that expresses the extent to
which one function overlaps another func-
tion as it is shifted over it. The convolu-
tion of these two functions A and B at a
point (u0, v0, w0) is found by multiply-
ing together the values A(x, y, z) and
B(x + u0, y + v0, z + w0) for all possible
values of x, y, and z and summing all
these products. This process must then be
repeated for each value of u, v, and w of
the convolution. A crystal structure, for
example, can be viewed as the convolu-
tion of a crystal lattice (function A) with
the contents of a single unit cell (function
B) (see Figure 2.6). This is a simple exam-
ple because the crystal lattice exists only at
discrete points and the rest of this function
A has zero values. This convolution con-
verts a specific unit of pattern into a series
of identical copies arranged on the crys-
tal lattice. All that is needed is informa-
tion on the geometry of the crystal lattice
and on the unit of pattern; the convolution
of these two functions gives the crystal
structure.

of the crystal lattice with the contents of one unit cell, as shown in
Figure 2.6.

The two-dimensional example of the regular translational repetition
of apples, illustrated in Figure 2.6, might serve as a pattern for wall-
paper (which generally has two-dimensional translational repetitions).
Several possible choices of unit cell, however, can be made from the
two-dimensional arrangement of apples in it. How, then, can we speak
of the unit cell for a given crystal? In general, we can’t. The conventional
choice of unit cell is made by examining the crystal lattice of the crys-
tal and choosing a unit cell whose shape displays the full symmetry
of the crystal lattice—rotational as well as translational—and that is
convenient. For example, the axial lengths may be the shortest possible
ones that can be chosen and the interaxial angles may be as near as
possible to 90◦. There may be several possibilities that fit these con-
ditions. It is usual to derive the Niggli reduced cell (Niggli, 1928; de
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CRYSTAL LATTICE

CRYSTAL STRUCTURE

STRUCTURAL MOTIF

Convolution

Fig. 2.6 The crystal lattice and choices of unit cells.

The generation of a two-dimensional “crystal structure” from a crystal lattice and a
structural motif (an apple in this example). The crystal lattice is obtained from the crystal
structure by replacing each complete repeating unit by a point. The replacement of
each point in the crystal lattice by an apple would lead to a two-dimensional crystal
structure. This crystal structure may be described alternatively as the convolution of an
apple and the crystal lattice. There are many ways in which unit cells may be chosen in the
repeating pattern of apples. Some possible alternative choices are shaded, each having
the same area despite varying shape. This can be verified by noting that the total content
of any chosen unit cell in this figure is one apple. Infinite repetition in two dimensions of
any one of these choices for unit cell will reproduce the entire pattern.

Wolff and Gruber, 1991), that is, to select the three shortest noncoplanar
vectors in the crystal lattice. This may help in establishing whether
two crystals with different unit-cell dimensions are really the same
or not.

It is a common misconception, perhaps arising from the abundance
of illustrations of the simplest elementary and ionic structures in text-
books, that an atom must lie at the corner (origin) of each unit cell.
It is possible to choose the origin arbitrarily and place it at the site
of an atom, but in most structures the choice of origin is dictated by
convenience, because of its relation to symmetry elements that may be
present (i.e., the appropriate space group), and in the great majority
of known structures no atom is present at the origin. Another miscon-
ception is that what a chemist finds convenient to regard as a single
molecule or formula unit must lie entirely within one unit cell. Portions
of a single bonded aggregate may lie in two or more adjacent unit
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cells. If this does happen, however, any single unit cell will necessarily
still contain all of the independent atoms in the molecule—the atoms
simply comprise portions of different molecules. This is illustrated in
Figure 2.6, which shows that a given unit cell may contain only one
apple or portions of two or more apples.

Crystal symmetry

Unit cells and crystal lattices are classified according to their rotational
symmetry. If an object is rotated 180◦ and then appears identical to the
starting structure, the object is said to have a two-fold rotation axis
(the axis about which the 180◦ rotation occurred). The presence of an
n-fold rotation axis, where n is any integer, means that when the unit
cell is rotated (360/n)◦ about this axis, the crystal lattice so obtained is
indistinguishable from original before rotation. If you closed your eyes,
rotated the crystal lattice, and opened your eyes again, nothing would
appear to have changed. The symmetry of an isolated crystal can be
found by examination, and it can give us some very useful information
about the internal atomic arrangement. If the crystal is set down on
a flat surface, it is possible to note if there is another face on top of
the crystal that is parallel to the lower face lying on the flat surface.
Then one can determine if there is a center of symmetry between these
upper and lower faces of the crystal. Similarly, one can examine the
crystal for two-, three-, four- and six-fold rotation axes. The result of
such examinations is the determination of the point group of the crystal,
that is, a group of symmetry operations, such as an n-fold rotation axis,
that leaves at least one point unchanged within the crystal.

It is shown in Appendix 2 that there are seven ways in which dif-
ferent types of applicable rotational symmetry (such as two-, three-,
four-, and six-fold rotation axes) lead to infinitely repeatable unit
cells. These seven are called the seven crystal systems—triclinic, mon-
oclinic, orthorhombic, tetragonal, trigonal/rhombohedral, hexagonal,
and cubic. They are distinguished by their different rotational symme-
tries. For example, in a triclinic crystal lattice there is no rotational (only
one-fold) symmetry; this defines the term “triclinic.” As a result, usually
(but not always) in a triclinic crystal lattice, all unit-cell lengths (a , b, and
c) are unequal, as are all interaxial angles (·, ‚, and „). A monoclinic
crystal lattice (· = „ = 90◦) has a two-fold rotation axis parallel to the
b axis (where b is chosen, by convention for this crystal system, to be
unique). This means that a rotation of the crystal lattice by 180◦ about
the b axis gives a crystal lattice indistinguishable from the original.
In an orthorhombic crystal lattice, with three mutually perpendicular
rotation axes, all interaxial angles (·, ‚, and „) are 90◦. A cubic crystal is
defined by three-fold axes along the cube diagonals, not by its four-fold
axes. It must be stressed that it is the symmetry of the crystal lattice
that is important in defining the crystal system, not the magnitude of
the interaxial angles. Some monoclinic crystals have been found with
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‚ = 90◦, and some triclinic crystals with all interaxial angles very close
to 90◦; this is why symmetry rather than unit cell dimensions are used
to define which is the correct crystal system for the material under
study. In the diagrams of these seven crystal systems in Appendix 2
all crystal lattice points (designated by small circles) are equivalent by
translational symmetry. All crystal lattices except the triclinic crystal
lattice display more than one-fold rotational symmetry (see Chapter 7
for details).

It is customary when choosing a unit cell to take advantage of the
highest symmetry of the crystal lattice. If a unit cell includes only one
crystal lattice point (obtained from the fractions at each corner), it is
said to be primitive and the crystal lattice is designated P . Sometimes
it is more convenient to choose a unit cell that contains more than one
crystal lattice point (a “nonprimitive” unit cell). Nonprimitive unit cells
are chosen because they display the full symmetry of the crystal lattice,
or are more convenient for calculation; any given crystal lattice may
always be described in terms of either primitive or nonprimitive unit
cells. The latter type of crystal lattices have lattice points not only at the
corners of the conventional unit cell, but also at the center of this unit
cell (I for the German innenzentrierte), at the center of one pair of oppo-
site faces (A, B, or C), or at the center of all three pairs of opposite faces
(F ) (see Appendix 2). More than one crystal lattice point is then associ-
ated with a unit cell so chosen, but the requirement that every crystal
lattice point must have identical surroundings is still fulfilled. That
there are 14, and only 14, distinct types of crystal lattices was deduced
by Moritz Ludwig Frankenheim and Auguste Bravais in the nineteenth
century, and these crystal lattices are named after Bravais (Bravais,
1850). The Bravais crystal lattices are obtained from a combination of
the seven crystal systems (triclinic, monoclinic, orthorhombic, tetrago-
nal, trigonal/rhombohedral, hexagonal, and cubic) with the four crystal
lattice types (P , Aor B or C , F , and I ) after the elimination of any equiv-
alencies. The unit cells of these 14 Bravais crystal lattices are shown in
Appendix 2.

Space groups

Since the atomic contents in each unit cell are identical (or nearly so),
the symmetry of the arrangement of atoms in each unit cell must be
related by certain symmetry operations (in addition to translation) that
ensure identity from unit cell to unit cell. This means that the atomic
arrangement in one unit cell is related by defined symmetry operations
to the arrangement in all other unit cells. The smallest part of a crys-
tal structure from which the complete structure can be obtained by
space-group symmetry operations (including translations) is called the
asymmetric unit. The operation of the correct space-group symmetry
elements (other than crystal lattice translations) on the asymmetric unit
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will generate the entire contents of a primitive unit cell. When one
considers the possible combinations of symmetry elements (centers of
symmetry, mirror planes, glide planes, rotation axes, and screw axes)
that are consistent with the 14 Bravais crystal lattices, and thus the pos-
sible symmetry elements of the structures that can be arranged on the
crystal lattices, it is found that 230, and only 230, distinct combinations
of the possible symmetry elements exist for three-dimensional crystals
(and only 17 plane groups for two-dimensional wallpaper). Thus the
many different ways of arranging atoms or ions in structures to give a
regularly repeating three-dimensional arrangement in a crystal fall into
230, and only 230, different three-dimensional crystallographic space
groups. They are listed in International Tables for (X-ray) Crystallography
(referred to here as International Tables), and these Tables, listed at the
end of this book in the “References and further reading” section, are
constantly used by crystallographers. The important result is that if
the location of one atom in a crystal of known space group has been
found, then application of the space-group symmetry operations (listed
for convenience in International Tables) will give the locations of all other
such specific atoms in the unit cell. This can be repeated for each atom
in the ions or molecules that make up the crystal. Symmetry and space
groups are discussed further in Chapter 7.

Physical properties of crystals

Optical properties

The interaction of light with crystals is one of the reasons they are used
for ornamentation (as jewelry). It may also reveal information about
crystalline symmetry and, in certain cases, the internal structure of the
crystal (Hartshorne and Stuart, 1950; Wood, 1977; Wahlstrom, 1979).
Particularly useful information may be obtained from the refractive
index of the crystal. This gives a measure of the change in the velocity
of light when it enters the crystal. Refraction is evident when a straight
stick or rod is partially inserted in water; the rod appears to be bent at
the point of entry. The change in the velocity of light as it passes from
air to water is revealed by the angle to which the rod appears to be
bent; when this angle is measured it gives information on the ratio of
the two velocities (that is, the refractive index of water). The refractive
index of a crystal is generally measured by immersing it in liquids of
known refractive index, and determining when the crystal becomes
“invisible.” The crystal and the liquid surrounding it now have the
same refractive index.

Some crystals, such as cubic crystals, are optically isotropic: the
refractive index is independent of the direction from which the crystal
is viewed. Other crystals may be birefringent, with different refractive
indices in different directions. When a test tube containing birefringent
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crystals in their mother liquor is shaken, the crystals glisten (unlike the
situation for isotropic cubic crystals). Birefringence, or double refrac-
tion, is the decomposition of light into two rays, each polarized. One
ray, the “ordinary ray,” travels through the crystal with the same veloc-
ity in every direction. The other ray, the “extraordinary ray,” trav-
els with a velocity that depends on the direction of passage through
the crystal. The result of this can readily be seen for a calcite crystal
(Iceland spar) in Figure 2.7, in which two images are formed when light
passes through the crystal. If a birefringent crystal is colored, it may
show different colors when viewed in different directions. If the crystal
structure contains an approximately planar group, measurements of
refractive indices may permit deduction of the orientation of this planar
group within the chosen unit cell. This method, combined with unit-cell
measurements, was used to study steroid dimensions and packing long
before any complete structure determination was or could be initiated.
It led to a correct chemical formula for atoms in the steroid ring struc-
ture (Bernal, 1932).

Fig. 2.7 The birefringence of calcite (Ice-
land spar).

View through an Iceland spar crystal (cal-
cite) with the word “BIREFRINGENCE”
written on a strip of paper behind it. Light
is broken into two polarized beams as
it passes through the crystal. The word
is split into two images, hence the term
“birefringence.” As the crystal is rotated,
the image made by the extraordinary ray
moves around the image made by the
ordinary ray. Iceland spar crystals are
believed to have been used in the Arctic
regions for ages in navigation to deter-
mine the direction of the sun on a cloudy
day, and hence which direction to sail in.

There are many other interesting optical properties of crystals.
Second-harmonic generation (SHG, also called frequency doubling)
was first demonstrated when a ruby laser with a wavelength of 694 nm
was focused into a quartz crystal (Dougherty and Kurz, 1976). Analysis
with a spectrometer indicated that light was produced with a wave-
length of 347 nm (half the wavelength and twice the frequency of the
incident light). Only noncentrosymmetric crystal structures can double
the frequency, and therefore SHG provides a useful method for testing
the symmetry of a crystal. Green laser pointers combine a noncen-
trosymmetric (nonlinear) crystal with a red neodymium laser to pro-
duce green light.

Electrical properties

Certain crystals display piezoelectricity. This word is derived from a
Greek word meaning “to squeeze” or “press.” Piezoelectricity is the
creation of an electrical potential by a crystal in response to an applied
mechanical stress. This effect is reversible in that materials exhibiting
the direct piezoelectric effect also exhibit the converse piezoelectric
effect (the production of stress when an electric field is applied). The
piezoelectric effect was first reported by Pierre and Jacques Curie in
1880, who detected a voltage across the faces of a compressed Rochelle
salt crystal (Curie and Curie, 1880). The phenomenon has many indus-
trial uses. For example, when the button of a cigarette lighter or gas
burner is pressed, the high voltage produced by the compression of a
crystal causes an electric current to flow across a small spark gap, so that
the gas is ignited. Another example is in the airbag sensor of a car. The
intensity of the shock of a car crash to a crystal causes an electrical signal
that triggers expansion of the airbag. In the analogous phenomenon of
pyroelectricity, a crystal can generate an electrical potential in response
to a change in temperature.
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The significance of the unit cell

In this chapter we have described crystals and their representation by
a repeating component, the unit cell. Since a crystal is built up of an
extremely large number of regularly stacked cells, each of which has
identical contents, the problem of determining the structure of a crystal
is reduced to that of determining the spatial arrangement of the atoms
within a single unit cell, or within the smaller asymmetric unit if (as is usual)
the unit cell has some internal symmetry. If there is some static disorder
in the structure, the arrangements of atoms in different unit cells may
not be precisely identical, varying in an apparently random fashion.
There may also be dynamic disorder in a structure as various part of
the molecules move. Since the frequencies of atomic vibrations are of
the order of 1013 per second, and since sets of X-ray diffraction data are
measured over periods ranging from seconds to hours, time-averaging
of the atomic distribution is always involved. What one finds for the
arrangement of atoms in a crystal is the space-averaged structure of all
of its component unit cells.

Summary

A crystal is, by definition, a solid that has a regularly repeating internal
structure (arrangement of atoms). This internal periodicity was sur-
mised in the seventeenth century from the regularities of the shapes
of crystals, and was proved in 1912 when it was shown that a crystal
could act as a three-dimensional diffraction grating for X rays, since X
rays have wavelengths comparable to the distances between atoms in
crystals.

Crystals are generally grown by concentrating a solution of the mate-
rial of interest until material separates (hopefully in a crystalline state).
Experimental conditions should ensure a good choice of solvent, the
generation of a suitable number of nucleation sites, control of the rate
of growth, and a lack of disturbance of the setup.

The unit cell of a crystal is its basic building block and is described
by three axial lengths a , b, c and three interaxial angles ·, ‚, „. When
describing a crystal face or plane it is necessary to consider intercepts
on the three axes of the unit cell. The hkl face or plane makes intercepts
a/h, b/k, c/ l with the three axes. The internal regularity of a crystal
is expressed in the crystal lattice; this is a regular three-dimensional
array of points (each with identical environments) upon which the
contents of the unit cell (the motif ) are arranged by infinite repetition to
build up the crystal structure. There are seven ways in which rotational
symmetry can lead to infinitely repeatable unit cells. These are the
seven crystal systems—triclinic, monoclinic, orthorhombic, tetragonal,
trigonal/rhombohedral, hexagonal, and cubic (see Appendix 2). These
seven crystal lattices are combined with the four crystal lattice types
(primitive P , single-face-centered A or B or C , face-centered F , and
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body-centered I ) to give 14 Bravais lattices. Symmetry elements (center
of symmetry, mirror planes, glide planes, rotation axes, and screw axes)
combined with these 14 Bravais lattices give the 230 different combina-
tions of symmetry elements (the 230 space groups) that are possible for
arranging objects in a regularly repeating manner in three dimensions,
as in the crystalline state.
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A common approach to crystal structure analysis by X-ray diffraction
presented in texts that have been written for nonspecialists involves the
Bragg equation, and a discussion in terms of “reflection” of X rays from
crystal lattice planes (Bragg, 1913). While the Bragg equation, which
implies this “reflection,” has proved extremely useful, it does not really
help in understanding the process of X-ray diffraction. Therefore we
will proceed instead by way of an elementary consideration of diffrac-
tion phenomena generally, and then diffraction from periodic structures
(such as crystals), making use of optical analogies (Jenkins and White,
1957; Taylor and Lipson, 1964; Harburn et al., 1975).

Visualizing small objects

The eyes of most animals, including humans, comprise efficient optical
systems for forming images of objects by the recombination of visible
radiation scattered by these objects. Many things are, of course, too
small to be detected by the unaided human eye, but an enlarged image
of some of them can be formed with a microscope—using visible light
for objects with dimensions comparable to or larger than the wave-
length of this light (about 6 × 10−7 m), or using electrons of high energy
(and thus short wavelength) in an electron microscope. In order to
“see” the fine details of molecular structure (with dimensions 10−8 to
10−10 m), it is necessary to use radiation of a wavelength comparable to,
or smaller than, the dimensions of the distances between atoms. Such
radiation is readily available

(1) in the X rays produced by bombarding a target composed of an
element of intermediate atomic number (for example, between
Cr and Mo in the Periodic Table) with fast electrons, or from a
synchrotron source,*

* Synchrotron radiation is an intense and
versatile source of X rays that is emitted
by high-energy electrons, such as those
in an electron storage ring, when their
path is bent by a magnetic field. The
radiation is characterized by a continuous
spectral distribution (which can, however,
be “tuned” by appropriate selection), a
very high intensity (many times that of
conventional X-ray generators), a pulsed
time structure, and a high degree of
polarization.

(2) in neutrons from a nuclear reactor or spallation source, or
(3) in electrons with energies of 10–50 keV.

Each of these kinds of radiation is scattered by the atoms of the sam-
ple, just as is ordinary light, and if we could recombine this scat-
tered radiation, as a microscope can, we could form an image of the
scattering matter. This recombination of radiation scattered by atoms

25
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is, however, found to be more complicated than that necessary for
viewing through a microscope, and it is the major subject of this
book.

X rays are scattered by the electrons in an atom,** neutrons are scat-
** When X rays hit an atom, its electrons
are set into oscillation about their nuclei
as a result of perturbation by the rapidly
oscillating electric field of the X rays. The
frequency of this oscillation is equal to
that of the incident X rays. The oscillat-
ing dipole so formed acts, in accord with
electromagnetic theory, as a source of radi-
ation with the same frequency as that of
the incident beam. This is referred to as
“elastic scattering” and is the type of scat-
tering discussed in this book. When there
is energy loss, resulting in a wavelength
change on scattering, the phenomenon is
described as “inelastic scattering.” This
effect is generally ignored by crystallogra-
phers interested in structure and will not
be discussed in this book.

tered by the nuclei and also, by virtue of their spin, by any unpaired
electrons in the atom, and electrons are scattered by the electric field of
the atom, which is of course a consequence of the combined effects of
both its nuclear charge and its extranuclear electrons. However, neither
X rays nor neutrons of the required wavelengths can be focused by
any known lens system, and high-energy electrons cannot (at least
at present) be focused sufficiently well to show individually resolved
atoms. Thus, the formation of an atomic-resolution image of the object
under scrutiny, which is the self-evident aim of any method of crystal
structure determination—and is a process that we take for granted
when we use our eyes or any kind of microscope—is not directly possi-
ble when X rays, neutrons, or high-energy electrons are used as a probe.
Unfortunately, the atoms that we wish to see are too small to be seen
without these short-wavelength radiation sources.

When, however, X rays or neutrons are diffracted by crystalline mate-
rials, a measurable pattern of diffracted beams is obtained and these
results can be analyzed to give a three-dimensional map of the atomic
arrangement within the crystal and hence the molecular structures
involved. In order for the reader to understand the process involved
it is necessary to consider diffraction in general, and easier to start with
the effects of visible light on masks that are readily visible. Scattering
of light by slits will serve as a preliminary model for the scattering
of X rays by atoms. When the dimensions of both the slits and the
wavelength of visible light are reduced by several orders of magnitude,
analogous results can be obtained for atoms and X rays.

Diffraction of visible light by single slits

The pattern of radiation scattered by any object is called the diffraction
pattern of that object. Diffraction occurs whenever the wavefront of a
light beam is obstructed in some way. We are accustomed to think of
light as traveling in straight lines and thus casting sharply defined shad-
ows, but that is only because the dimensions of the objects normally
illuminated in our experience are much larger than the wavelength of
visible light. When light from a point source passes through a narrow
slit or a very fine pinhole, the light is found to spread into the region
that normally would be expected to be in shadow. In explanation of
this effect, each point on the wavefront within the slit or pinhole is
considered to act as a secondary source, radiating in all directions.
The secondary wavelets so generated interfere with each other, either
reinforcing or partially destroying each other, as originally described
by Francesco Maria Grimaldi, Christiaan Huygens, Thomas Young, and
Augustin Jean Fresnel (Grimaldi, 1665; Huygens, 1690; Young, 1807;
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de Sénarmont et al., 1866). As these waves combine, the extent of
interference will depend on their relative phases and amplitudes. It is
assumed that any phase change on scattering is the same for each atom
and therefore this change is generally ignored.† There are, however, † The reader will remember that an electro-

magnetic wave has a constant velocity in
vacuo (the speed of light) and consists of
successive crests and troughs. Two crests
are a wavelength apart, and this distance,
which is inversely proportional to the fre-
quency of the radiation, defines the prop-
erties of the electromagnetic wave (such
as color red or blue, X ray or infrared,
etc.). The wave has an amplitude (the
maximum value measured from its mean
value), which is related to the square root
of the intensity of the beam. It also has
a “relative phase,” which is the distance
of the crest of the wave measured from a
chosen origin of the wave or with respect
to the crest of another wave (see Figure
1.2). It was shown by John Joseph Thom-
son that when radiation is scattered by an
electron, there is a phase change of 180◦
in the sense that the electric field in the
scattered wave at a given point is opposed
to that of the direct (incident) wave at
that same point (Thomson, 1906). This is
discussed in detail by Reginald William
James (1965).

exceptions to this assumption, for example when the wavelength of the
radiation can cause changes in the atom (see Chapter 10).

The phenomenon of diffraction by a regular two-dimensional pattern
may be illustrated by holding a woven fabric handkerchief taut between
your eyes and a distant point source of light, such as a street light.
Instead of just one spot of light, as expected, a cluster of lights will
be seen. The same phenomenon can also be demonstrated with a fine
sieve (see the cover of this book). The narrowly and regularly spaced
threads of the fabric or wires of the sieve are considered to produce this
diffraction effect. The larger the spacing between the wires of the sieve,
the closer diffraction spots are found around the central spot.

Keeping in mind that we are interested in scattering (diffraction)
by atoms, we begin with a discussion of diffraction by slits because
these involve visible light and therefore help with the description of
the various principles of diffraction. Two examples of the diffraction of
light when it passes through a single slit are given in Figure 3.1; in one,

(a)

(b)

Fig. 3.1 Diffraction patterns of single narrow slits.

The diffraction patterns of two single slits of different width, both illuminated with light
of the same single wavelength.

(a) The diffraction pattern of a narrow slit.
(b) The diffraction pattern of a slit 2.2 times wider than that used in (a). The diffraction

pattern is now narrower by a factor of 2.2.

Note that the wider slit gives the narrower diffraction pattern.

From Fundamentals of Optics by Francis A. Jenkins and Harvey E. White, 3rd edition
(1957) (Figure 16A). Copyright © 1957, McGraw-Hill Book Company. Used with permis-
sion of McGraw-Hill Book Company.
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IN PHASE, HIGH INTENSITY

PARTIALLY OUT OF PHASE, LOWER INTENSITY

OUT OF PHASE, NO INTENSITY

A=1.4, I=2.0.

l/4=phase difference

1.4

A=2.0, I=4.0 in phase

0=phase difference

(a)

(b)

(c)

Resultant wave

2.0

A=0.0, I=0.0 out of phase

l/2=phase difference

λ

Amplitude=1.0

0.0

Fig. 3.2 Interference of two waves. Summation of waves.

Three examples are shown of what happens when two parallel waves of the same wavelength and equal amplitude add. In each
example, the two separate waves are shown on the left and their sum or resultant wave on the right. The different examples are
characterized by varying phase differences. The relative phase of a wave is the position of a crest relative to some arbitrary point (see
Figure 1.2). This position (relative phase) is usually expressed as a fraction of the wavelength, and often this fraction is multiplied by
360◦ or 2π radians, so that the phase will be given as an angle. Thus a phase difference of Î/4 may be given as 1/4, 90◦, or 2/π radians.
The resultant wave has the same wavelength, Î, as the original two waves. The intensity, I , of the resultant wave is proportional to the
square of its amplitude, A, obtained on wave summation.
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Figure 3.1a, the slit is narrow and the diffraction pattern is wide, while
in the other, Figure 3.1b, the slit has a greater width but the diffrac-
tion pattern is narrower. This implies that there is a reciprocal relation
between the angular spread of the scattering or diffraction pattern in
a particular direction and the corresponding dimension of the object
causing the scattering. The smaller the object, the larger the angular
spread of the diffraction pattern. What is actually involved is the ratio of
Î (the wavelength of the radiation used) to the minimum dimension, a ,
of the scattering object (for example, the width of the slit); the larger
the value of Î/a (wavelength divided by slit width), the greater the
spread of the pattern. Therefore Figure 3.1b might equally well be a
view of the same slit as in Figure 3.1a, illuminated with radiation of
wavelength about 2.2 times shorter than that used in Figure 3.1a. It
is, in fact, possible to produce this change of scale by any change in
a and Î whose combined effect is to decrease the value of Î/a by a
factor of 2.2.

The phenomenon of interference between two waves traveling in
the same direction and the importance of phase differences between
these two parallel waves are illustrated in Figure 3.2. The amplitude
of the wave resulting from the interaction of two separate waves trav-
eling in the same direction with the same wavelength, and a con-
stant phase difference, depends markedly on the size of this phase
difference. Figure 3.2 shows how such waves may be summed‡ for ‡ The displacements from the mean (zero),

parallel to the vertical axis (the ordinates),
are directly summed at many points along
the horizontal axis (the abscissae) to give
the resultant wave.

three examples of different phase differences (zero, a quarter, and
half a wavelength). The intensity of the resulting beam is propor-
tional to the square of the amplitude of the summed waves in each
case.

The variations in intensity seen in Figure 3.1 arise from the inter-
ference of the secondary wavelets generated within the slit, as shown
in Figure 3.3. In the direction of the direct beam, the waves scattered
by the slit are totally in phase and reinforce one another to give max-
imum intensity. However, at other scattering angles, as illustrated in
Figure 3.3, the relative phases of the waves cause interference between
waves traveling in the same direction so that the intensity falls off as a
function of scattering angle; this leads to an overall intensity contour
of the diffraction peak, and we term this “the envelope.” At most
scattering angles the different scattered waves are neither completely in
phase nor completely out of phase, so that there is partial reinforcement
and thus an intermediate intensity of the diffracted beam. The result is
illustrated in the single-slit diffraction pattern (the envelope) shown on
the right of Figure 3.3.

(a) Phase difference zero. In this case there is total reinforcement, and the waves are said to be “in phase” or to show “constructive
interference”. If the original waves are of unit amplitude, the resultant wave has amplitude 2, intensity 4.

(b) Phase difference Î/4. Partial reinforcement occurs in this case to give a resultant wave of amplitude 1.4, intensity 2.
(c) Phase difference Î/2. The waves are now completely “out of phase” and there is destructive interference, which gives no resultant

wave (that is, a wave with amplitude 0, intensity 0).
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Direct beam
resultant (A)

Resultant (B)
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DIFFRACTION BY
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DIFFRACTION BEAM PROFILE
(THE ENVELOPE)

Fig. 3.3 Diffraction by a single slit.

Diffraction from a single slit is diagrammed by the superposition of waves generated within the area of the slit. The variation in
intensity with increasing angle is shown by the different amplitudes of the resultant waves (A, B, and C) at different angles. Left-hand
side: diffraction by a single slit; right-hand side: diffracted beam profile (the envelope), showing the location of A, B, and C on this
envelope.

Diffraction of light by regular arrays of slits

In order to consider what happens when a crystal that has a periodic
internal structure diffracts radiation, we now describe diffraction by
a series of equidistantly aligned slits. Reinforcement of the diffracted
beam occurs at angles at which the path difference between two par-
allel waves is an integral number of wavelengths; for example, when
the two waves are out of phase by three wavelengths (n = 3), there
will be reinforcement at a specific scattering angle and the wave will
be described as the “third order of diffraction” (see Figure 3.4). As
shown in Figure 3.5, the diffraction pattern of a single slit is modified
by interference effects when increasing numbers of slits are placed
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Third order 300
(Three wavelengths
path difference)

Direct beam
(Zero path difference)

First order 100
(One wavelength
path difference)

Second order 200
(Two wavelengths
path difference)

000

100

300

200

Fig. 3.4 Orders of diffraction.

First, second, third, and higher orders of diffraction are obtained as scattered waves differ by one, two, three, and more wavelengths.
Readers should satisfy themselves that with a smaller spacing a between scattering objects, the angle at which a given order of
diffraction occurs is proportionally increased.

side by side in a regular manner to form a one-dimensional grating.
Sometimes rays proceeding in a specific direction after scattering are
in phase and sometimes they are not. The important point to note is
that the diffraction pattern from a grating of slits is a sampling of the single-
slit pattern in narrow regions that are representative of the spacings between
the slits (see Figure 3.5). With even as few as 20 slits in the “grating”
(see Figure 3.6), the small subsidiary maxima vanish almost completely
and the lines in the diffraction pattern are sharp. The overall diffraction
pattern of a series of slits is thus composed of an “envelope” and a series
of “sampling regions” within the envelope. This envelope represents
the diffraction pattern of a single slit (see Figure 3.3). The “sampling
regions” result from interference of waves scattered from equivalent
points in different slits; the spacing of these sampling regions in the
diffraction pattern (see Figure 3.6) is inversely related to the spacing of
the slits.
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Fig. 3.5 Diffraction by two slits.
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Figure 3.7 shows schematically how a two-dimensional regular
arrangement of simple scattering objects, in this case holes in an opaque
sheet (drawn as black spots on the left), produces a two-dimensional
diffraction pattern (drawn as lines or spots on the right). Each of the
one-dimensional gratings in Figures 3.7a and b produces (in two dimen-
sions) a pattern of scattered light (the diffraction pattern) consisting of
lines (representing the maxima of light, as seen on the right). These
lines are perpendicular to the direction of the original grating because
interference effects between light scattered from adjacent holes reduce
the scattered light intensity effectively to zero in all directions except
that perpendicular to the repeat direction of the original grating. Hence
lines of diffracted light are formed. In Figure 3.7c, a combination of
both kinds of one-dimensional gratings that were shown in (a) and (b)
are present at once. This gives a regular two-dimensional grating. The
lattice of the diffraction pattern in Figure 3.7c is necessarily, then, the
“reciprocal” of the lattice of the original scattering objects (the crystal
lattice) shown on its left; see Figure 3.7d. This will now be described.

The reciprocal lattice

In addition to the lattice of the crystal structure in real or crys-
tal space (discussed earlier), there is a second lattice, related to the
first, that is of importance in diffraction experiments and in many
other aspects of solid state physics. This is the reciprocal lattice, intro-
duced by Josiah Willard Gibbs in 1884, long before X-ray diffraction
was known (Gibbs, 1901; Ewald, 1921). Its definition in terms of the
crystal lattice vectors is shown in Appendix 3. In the reciprocal lat-
tice a point, (hkl), is drawn at a distance 1/dhkl from the origin (the
direct beam, (000)), and in the direction of the perpendicular distance
between the (hkl) crystal lattice planes (Figure 3.7d). The relation-
ship between these two important lattices (the crystal and reciprocal
lattices) is a particularly simple one if the fundamental translations
of the crystal lattice are all perpendicular to one another; then the

(a) An overview of the envelope profile (equivalent to diffraction by a single slit or
an atomic arrangement) and the sampling regions (equivalent to the diffraction
of a series of equidistant slits or a crystal lattice). The envelope is accessed at the
sampling regions only.

(b) When diffraction occurs from two slits, there are two effects to consider:

(1) The variation in intensity with angle as a result of interference of the waves
generated within each slit separately. Interference between D1 and E1 and
between D2 and E2 gives the “envelope,” as obtained for a single slit (see also
Figure 3.3). This is the equivalent of diffraction by a single slit.

(2) The interference of scattered waves at a given angle with those at the same
angle from the adjacent slit (D1 with D2 from the next slit, E1 with E2 from the
next slit, etc.). At angles of constructive interference, when the two resultant
waves are in phase, “sampling” of the “envelope” occurs, as shown in part (a).
At certain other angles, no diffraction is observed. This sampling is the result
of the distance between the two slits.
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Diffraction pattern of two slits

Photometer
trace

Envelope

Photometer
trace

Sampling regions

Sampling
region

Sampling regions

Wide spacing (6a) between slits (each width a). Narrow spacing between sampling regions.

d = 2a

d = 2a

d = 6a

d = 6a

PhotographSlits

Slits Photograph

Narrow spacing (2a) between slits (each width a). Wide spacing between sampling regions

(a)

Varying numbers of slits

1 slit

(b)

5 slits

20 slits2 slits

Fig. 3.6 Diffraction patterns from equidistant parallel slits.

(a) The effect of varying the distance, d, between two slits of constant width, a , is shown. On the left is a diagram of the slits with
spacings of 2a and 6a , respectively, between them. In the center is shown a photograph of the diffraction pattern. On the right,
a photometer tracing of the diffraction pattern for the combination of the two slits is drawn as a solid line, and the diffraction
pattern for a single slit, referred to in the text as the “envelope,” is drawn as a dashed line. The envelope in both cases has the
same shape because it represents the diffraction pattern of a single slit of the same width. The regions of the “envelope” that are
sampled are indicated by short vertical lines at the lower edge of the drawings on the right. When there is a relatively narrow
spacing between the slits (d = 2a ), the distance between sampling regions is relatively large, as shown in the upper diagram.
When there is a relatively wide spacing between the slits (d = 6a ), the distance between sampling regions has decreased; that is,
there is an inverse relationship of the spacing of the sampling regions to the spacing of the slits.
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fundamental translations of the reciprocal lattice are parallel to those of
the crystal lattice, and the lengths of these translations are inversely
proportional to the lengths of the corresponding translations of the
crystal lattice. With nonorthogonal axes, the relationships between
the crystal lattice and the reciprocal lattice are not hard to visualize geo-
metrically; a two-dimensional example is given in Figure 3.7d. As we
shall see shortly, the fundamental importance of the reciprocal lattice in
crystal diffraction arises from the fact that if a structure is arranged on a
given lattice, then its diffraction pattern is necessarily arranged on the lattice
that is reciprocal to the first.§ § This may be stated alternatively as fol-

lows. The diffraction pattern of a molecu-
lar crystal is the product of the diffraction
pattern of the molecule (also called the
molecular transform) with the diffraction
pattern of the crystal lattice (which is also
a lattice, the reciprocal lattice, described
above). The result is a sampling of the
molecular transform at each of the recipro-
cal lattice points. The diffraction pattern of
a single molecule is too weak to be observ-
able. However, when it is reinforced in a
crystal (containing many billions of mole-
cules in a regular array) it can be readily
observed, but only at the reciprocal lattice
points.

Diffraction of X rays by atoms in crystals

It is a principle of optics that the diffraction pattern of a mask with
very small holes in it is approximately equivalent to the diffraction
pattern of the “negative” of the mask—that is, an array of small dots
at the positions of the holes, each dot surrounded by empty space. This
equivalence is discussed lucidly by Richard Feynman (Feynman et al.,
1963). In a crystal, the electrons in the atoms act, by scattering, as sources
of X rays, just as the wavefront in the slits in a grating may be regarded
as sources of visible light. There is thus an analogy between atoms in a
crystal, arranged in a regular array, and slits in a grating, arranged in
a regular array. In diffraction of X rays by crystals, as of visible light
by slits in a grating, the intensities of the diffraction maxima show a
variation in different directions and also vary significantly with angle
of scattering.

Most unit cells contain a complex assembly of atoms, and each atom
is comparable in linear dimensions to the wavelength of the X rays
or neutrons used. Figure 3.8a shows a typical X-ray diffraction photo-
graph, taken by the “precession method,” which records the reciprocal
lattice without distortion. Considerable variation in intensity of the
individual diffracted beams is evident; this is a result of the arrange-
ment of atoms (and their accompanying electron density) in the struc-
ture. The analogy with Figures 3.3, 3.5, and 3.6 holds; that is, the X-
ray photograph is merely a scaled-up sampling of the diffraction pattern of
the contents of a single unit cell. The “envelope,” which is shown by the

(b) Diffraction patterns are shown for gratings containing 1, 2, 5, and 20 equidistant slits, illuminated by parallel radiation of the
same wavelength. The diffraction pattern for a grating composed of 20 (or more) slits consists only of sharp lines, the intervening
minor maxima having disappeared; similarly, the diffraction pattern for a crystal composed of many unit cells contains sharp
diffraction maxima.

Summary of key points:

(1) The size and shape of the envelope are determined by the diffraction pattern of a single slit.

(2) The positions of the regions in which the envelope is sampled are determined by the spacing between the slits.

From Fundamentals of Optics by Francis A. Jenkins and Harvey E. White, 3rd edition (1957) (Figures 16E and 17A). Copyright © 1957,
McGraw-Hill Book Company. Used with permission of McGraw-Hill Book Company.
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Fig. 3.7 Diagrams of diffraction patterns from one- and two-dimensional arrays. Relation
between the crystal lattice and reciprocal lattice.
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(b)(a)

Fig. 3.8 X-ray diffraction photographs taken by the precession method.

(a) The precession method gives an undistorted representation of one layer of the reciprocal lattice. An X-ray precession photograph
of a crystal of myoglobin is shown here. The direct X-ray beam, which might otherwise “fog” the film, has been intercepted, hence
the white hole in the middle of the photograph. The radial streaks, found for very intense Bragg reflections, occur because the X
rays are not truly monochromatic (one wavelength) but contain background radiation of varying wavelength but lower intensity.
As a result the spot appears somewhat smeared out (that is, for each Bragg reflection, sin Ë/Î is constant but since Î varies for
the background “white radiation,” sin Ë must also vary, giving rise to a streak rather than a spot on the film). Note the regularity
of the positions of spots in this photograph but the wide variation in intensity (from a very black spot to one that is almost or
apparently absent). The positions of the spots (diffracted beams) give information on unit cell dimensions; the intensities of the
spots give information on the arrangement of atoms in that unit cell.

Photograph courtesy Dr. J. C. Kendrew.
(b) A comparison of diagrams of the diffraction patterns of myoglobin (large unit cell, monoclinic, a = 64.5 Å, b = 30.9 Å not shown,

c = 34.7 Å, β = 106.0◦) on the left and potassium chloride (small unit cell, cubic, a = 6.29 Å) on the right. The larger the unit cell,
the nearer together the diffraction spots if the wavelength of the radiation is the same for both. Variations in Bragg reflection
intensities are not shown in these diagrams. Note that many Bragg reflections are measured when the unit cell is large.

variation in intensities of the individual diffracted-beam spots, is the
diffraction pattern of the scattering matter (the electrons of the atoms)
in a single unit cell. The “sampling regions,” which are the positions of
the diffracted-beam spots, are arranged on a lattice that is “reciprocal”
to the crystal lattice. Measurements of the distances between these will
lead to the dimensions of the unit cell, and they sample the diffraction

(a, b, c) On the left is shown the grating used and, on the right, the corresponding
diffraction pattern (such as might be obtained by holding the original grating in front of a
point source of light). a and b are direct lattice vectors in the crystal or grating, and a∗ and
b∗ are vectors in the diffraction pattern (a and b are the spacings of the original gratings,
and a∗ and b∗ are spacings in the diffraction pattern). The reciprocal relationships of a and
b to the spacings of certain rows in the diffraction pattern are shown. These are diagrams,
and no intensity variation is indicated. The black dots on the left-hand side represent
holes that cause diffraction, giving the pattern on the right-hand side, in which black
lines or spots represent appreciable intensity for diffracted light.

Adapted from H. Lipson and W. Cochran. The Crystalline State. Volume III. The Determi-
nation of Crystal Structures. Cornell University Press: Ithaca, New York; G. Bell and Sons:
London (1966) (Lipson and Cochran, 1966).

(d) The relationships of a and b in the crystal lattice to a∗ and b∗ in the corresponding
reciprocal lattice are shown.
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pattern of a single unit cell. A comparison of the reciprocal lattices of the
protein myoglobin (Figure 3.8a) with that of potassium chloride (with a
much smaller unit cell) is shown in Figure 3.8b.

Some diffraction patterns of individual and assembled molecules are
illustrated in Figures 3.9 and 3.10, which have been prepared using
a special optical device that permits photographs to be made of the
diffraction patterns of arrays of holes cut in an opaque sheet. By an
appropriate choice of the optical components, the effective ratio of the
wavelength of the light used to the sizes of these holes can be made
similar to the ratio of X-ray wavelengths to the sizes of atoms. One
can, then, simulate X-ray diffraction photographs of crystals by making
patterns of holes in opaque sheets that are similar, except for scale, to
the patterns of arrangement of the atoms in the crystals.

The relationship between the diffraction pattern of a single “mole-
cule” and various “samplings” that can be produced by regular
arrangements of such molecules are shown in Figure 3.9. The left-
hand side of each part of the figure shows different arrangements of
molecules and the right-hand side shows the corresponding diffraction
patterns. This figure also shows, from the dimensions of the unit cell,
that the lattice of the diffraction pattern is reciprocal to that of the
“crystal”. Figure 3.9b shows the diffraction pattern of two “molecules”
side by side (horizontally in the orientation shown here) and illustrates
the interference arising from the interaction of the scattering by the two
molecules, exactly analogous to the interference caused by the presence
of two adjacent slits that gives rise to Figure 3.6a. Figure 3.9c shows
the pattern arising from four “molecules” arranged in a parallelogram;
now there is interference parallel to each of the two axes of the incipient
crystal lattice. Figure 3.9d shows the diffraction pattern of an extended
regularly spaced row of the molecules—that is, from a one-dimensional
crystal; there is sharpening of the diffraction effects parallel to the
direction of ordering, but no interference at all in other directions.
Figure 3.9e shows the pattern obtained by placing two lengthy rows

(c) Four molecules arranged in a parallelogram.
(d) Many molecules horizontally side by side (a one-dimensional crystal). Only part

of the row is shown.
(e) Two rows of molecules arranged on an oblique lattice. Only parts of the rows are

shown.

In comparing (e) with (d), note again the analogy with the relation of the one-slit and
two-slit patterns of Figures 3.1 and 3.6.

(f) Two-dimensional crystal of molecules. Only part of the crystal and part of the
diffraction pattern are shown. Compare this with Figure 3.8a.

From C. A. Taylor and H. Lipson. Optical Transforms. Their Preparation and Application
to X-ray Diffraction Problems. Plate 26. G. Bell and Sons, London (1964). Published with
permission.
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Fig. 3.9 The effect of different lattice samplings on the diffraction pattern.

This shows the relationship between the diffraction pattern of a “molecule” and various
regular arrangements of such molecules. The optical mask is on the left (black points as
holes) and its diffraction pattern is on the right.

(a) A single molecule.
(b) Two molecules horizontally side by side.

In comparing (b) with (a), note the analogy with the one-slit and two-slit patterns of
Figures 3.1 and 3.6.
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Fig. 3.10 The optical diffraction pattern of an array of templates resembling the skeleton
of a phthalocyanine molecule.
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side by side and, finally, Figure 3.9f shows the pattern obtained from
a two-dimensional crystal of these “molecules.” The resemblance to
the precession photograph in Figure 3.8a is good. Figure 3.9a is being
sampled at reciprocal lattice points to give Figure 3.9f.

In Figure 3.10a arrays of holes, each of which has the shape of the
skeleton of a phthalocyanine molecule, are shown, together with the
optical diffraction pattern obtained (with visible light) from these arrays
(Figure 3.10b). Note that the intensity variation in the optical diffraction
pattern (shown as intensities in Figure 3.10b) parallels that found in the
corresponding pattern obtained by the diffraction of X rays (listed in
Figure 3.10c).

Diffraction and the Bragg equation: Two ways
of analyzing the same phenomenon

Von Laue, who, with Friedrich and Knipping, discovered the diffraction
of X rays by crystals in 1912, interpreted the observed X-ray diffraction

(c) Relative intensities for the phthalocyanine crystal

h → 0 1 2 3 4 5 6 7

7 6 0 2 7 0 6 0 0
6 25 52 45 11 4 0 3 0
5 36 1 0 58 0 1 2 0
4 3 17 0 14 0 38 0 9
3 15 1 2 14 4 4 2 1
2 72 85 21 16 0 8 27 1
1 61 0 64 30 2 2 1 3
0 94 72 10 0 2 17 1

−1 61 29 55 0 2 7 10 5
−2 72 46 23 3 0 0 18 14
−3 15 37 14 10 2 21 2 0
−4 3 13 0 10 18 2 1 0
−5 36 0 18 3 19 0 0 0
−6 25 5 35 5 2 0 1 0
−7 6 0 2 0 14 2 0 0
l ↑

From C. W. Bunn. Chemical Crystallography: An Introduction to Optical and X-ray
Methods. 2nd edition. Plate XIV. Oxford at the Clarendon Press: Oxford (1961).

(a) The array used to obtain the optical diffraction pattern. This models a crystal
structure of phthalocyanine.

(b) The optical diffraction pattern obtained from (a).
(c) Relative h0l intensities measured from the X-ray diffraction pattern of a phthalo-

cyanine crystal. Qualitative comparison of these values with the intensities of the
corresponding spots in the optical diffraction pattern shown in (b) indicates that
the model used is a surprisingly good one. Note: Intensities for h0l and −h0 − l
(not listed below) are equal.
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crystal lattice.
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patterns of crystals in terms of a theory analogous to that used to treat
optical diffraction by gratings, extended to three dimensions. On the
other hand, William Lawrence Bragg, who worked out the first crystal
structures with his father, William Henry Bragg, during the summer of
1913, showed that the angular distribution of scattered radiation could
be understood by considering that the diffracted X-ray beams behaved
as if they were reflected from planes passing through points of the crystal
lattice (Bragg, 1913). This “reflection” is analogous to that from a mirror,
for which the angle of incidence of radiation is equal to the angle of
reflection, as shown in Figure 3.11a. Waves scattered from adjacent
crystal lattice planes will be just in phase (i.e., the difference in the paths
traveled by these waves will be an integral multiple of the wavelength,
nÎ) only for certain angles of scattering, as shown in Figure 3.11. From
such considerations Bragg derived the famous equation that now bears
his name:

nÎ = 2d sin Ë The Bragg equation (3.1)

In this equation Î is the wavelength of the radiation used, n is an integer
(analogous to the order of diffraction from a grating, so that nÎ is the
total path difference between waves scattered from adjacent crystal
lattice planes with equivalent indices), d is the perpendicular spacing
between the lattice planes in the crystal, and Ë is the complement
(90◦ − Ë) of the angle of incidence of the X-ray beam (and thus also the
complement of the angle of scattering or “reflection”). Since it appears
as if reflection has occurred from these crystal lattice planes, so that
the direct beam is deviated by the angle 2Ë from its original direction,
diffracted beams are commonly referred to as “reflections.” Because
the Bragg equation is easily visualized, it is commonly presented in
elementary discussions in diagrams such as those in Figures 3.11a and
b; in Appendix 4 we show how it can be related to diffraction by a
crystal lattice (as described above).

The Bragg equation can be derived by considering the path dif-
ference between waves scattered from adjacent parallel crystal lattice
planes; the path difference must be an integral number of wavelengths

(a) Constructive and destructive interference as waves are “reflected” from imaginary
planes, spacing d, in a crystal. Constructive interference of planes A and B (the
unit-cell repeat distance d apart), and partial destructive interference of plane C
with A and B.

(b) Diffraction geometry. Since the path difference of waves scattered by two adjacent
planes is 2d sin Ë, this must equal nÎ for total reinforcement to occur to give a
diffracted beam (as illustrated in Figures 3.3, 3.4, and 3.5).

(c) Planes (2 0 1) in a crystal that has many atoms in its structure (see Figure 9.3d); the
planes lie perpendicular to the plane of the paper. Note that the planes intersect the
unit-cell edges once in the c direction and twice in the a direction. The 201 Bragg
reflection is intense in this structure.
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if constructive interference (reinforcement) is to occur. The equation is
satisfied, and thus diffraction maxima occur, when and only when the
relation of wavelength, interplanar spacing, and angle of incidence is
appropriate. If a nearly monochromatic beam of X rays is used with a
single-crystal specimen, diffraction maxima will be observed only for
special values of the angle of incidence of the beam of X rays, and
not necessarily for other arbitrary angles. If the crystal is rotated in
the beam, it may be in a position (at certain rotation angles) to form
additional diffracted beams. Therefore rotation of the crystal increases
the number of observed Bragg reflections available for measurement.
We use the term “Bragg reflections” for the diffracted beams to remind
the reader that they will only occur when the angle of incidence of the
X-ray beam is such as to satisfy Eqn. (3.1) for some set of crystal lattice
spacings present in the crystal. This means that Î, d, and Ë must all be
such that the Bragg equation holds. The chance of this happening for a
perfect crystal is low. However, real crystals have a mosaic spread (as
if composed of minute blocks of unit cells, each block being misaligned
by a few tenths of a degree with respect to its neighbors), and the X rays
used are never truly monochromatic, so that, in practice, a Bragg reflec-
tion can be observed over a small range of Ë and therefore some Bragg
reflections are observed in almost any orientation of a single crystal.
With a powdered crystalline specimen many different orientations of
tiny crystallites are present simultaneously, and for any set of crystal
planes, Eqn. (3.1) will be satisfied in some of the crystallites so that
the complete diffraction pattern will be observed for any orientation
of the specimen with respect to the X-ray beam. It is also possible to
get a diffraction pattern from a stationary single crystal by the use of a
wide range of wavelengths simultaneously. This was, in fact, the way in
which von Laue, Friedrich, and Knipping did their original experiment;
the technique is known as the Laue method, and is now currently used
for studies of biological macromolecules with high-energy X rays (see
Moffat et al., 1984).

The Bragg equation says nothing about the intensities of the dif-
fraction maxima that will be observed when it is satisfied. If, how-
ever, a particular set of crystal lattice planes happens to coincide,
in orientation and position, with some densely populated planar or
nearly planar arrays of atoms in a crystal, and if there are no inter-
vening densely populated planes, the corresponding diffraction max-
imum will be an intense one because the scattering from all atoms
is approximately in phase. In an example cited in Chapter 9 (Fig-
ure 9.3d) involving a planar organic molecule, the “reflection” with
indices h = 2, k = 0, l = 1 (written 2 0 1, i.e., second order in h,
direct for k, and first order for l) is very intense because the mole-
cules lie nearly parallel to the crystal lattice plane with indices (2
0 1) and are separated by a spacing very nearly the same as the
interplanar spacing of this crystal lattice plane. This is shown in
Figure 3.11c.
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Summary

To explain what happens when a crystal diffracts X rays, we first
examined optical analogies with slits and then with templates resem-
bling two-dimensional crystals. The pattern of radiation scattered by
any object is called the diffraction pattern of the object. For diffraction
from a slit, the wider the slit the narrower the diffraction pattern for a
given wavelength of radiation. The diffraction pattern of many parallel
and equidistant slits consists of a sampling of the single-slit pattern in
regions that are representative of the spacings between the slits.

For a series of several slits, the diffraction of light of a given wave-
length leads to the information that:

(1) The size and shape of the “envelope” of the intensity variation
is determined by the characteristic diffraction pattern of a single
slit. This intensity variation tells us the shape and size of the
diffracting object.

(2) The spacings between the “sampling regions” in this “envelope”
are inversely related to the spacings between the slits. Thus the dif-
ferences between diffracting objects are revealed by the distances
between diffraction maxima.

These principles may be extended to three dimensions and to crys-
tals, in which the electrons in the atoms act as scatterers for X rays, just
as the areas within the slits behave as if they were scatterers for visible
light. The diffraction pattern of a crystal is arranged on a lattice that
is reciprocal to the lattice of the crystal. The analogy with the optical
example holds; the X-ray photograph is merely a scaled-up “sampling
region” of the diffraction pattern of a single unit cell, with the “enve-
lope” being the diffraction pattern produced by scattering from the elec-
trons in the atoms of the unit cell, and the “sampling regions” arranged
on the lattice reciprocal to the crystal lattice. In an analogous manner,
diffraction of X rays of a given wavelength by a series of unit cells in
a crystal gives an envelope, related to the arrangement of atoms in the
unit cell, and sampling regions, related to the unit-cell dimensions.

This phenomenon of X-ray diffraction by crystals can be considered
in terms of a theory analogous to that of diffraction by gratings and
extended to three dimensions (von Laue) or be considered in terms
of reflection from planes through points in the crystal lattice (Bragg).
While these two treatments are equivalent, we have chosen to empha-
size the first approach because it provides more insight into the process
of structure analysis by diffraction methods.
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measurements4
The analysis of a crystal structure by X-ray or neutron diffraction con-
sists of three stages:

(1) Data collection. This involves experimental measurement of the
directions of scatter of the diffracted beams so that a unit cell
can be selected and its dimensions measured. The intensities of as
many as possible of the diffracted beams (Bragg reflections) from
that same crystal are then recorded. These intensities depend on
the nature of the atoms present in the crystal and their relative
positions within the unit cell.

(2) Finding a “trial structure.” This is the deduction by some method
(such as one of those described in Chapters 8 and 9) of a sug-
gested atomic arrangement (a “trial structure”). This is listed as
atomic coordinates that have been measured with respect to the
unit-cell axes. The intensity of each Bragg reflection correspond-
ing to this trial structure can then be calculated (see Chapter 5)
and its value then compared with the corresponding experimen-
tally measured intensity in order to determine whether the trial
structure is “good,” meaning that it is essentially correct.

(3) Refinement of the trial structure. This involves modification (refine-
ment) of a good trial structure until the calculated and measured
intensities agree with each other within the limits of any errors in
the observations (see Chapter 11). This is usually done by a least-
squares refinement, although difference electron-density maps
may also prove useful. The result of the refinement is information
on the three-dimensional atomic coordinates in this particular
crystal, together with atomic displacement parameters.

This chapter is concerned with the first of these stages, the exper-
imental measurements. This is a rapidly changing area of science as
more powerful and precise equipment and detection devices become
available. The experimental data that may be derived from measurements
of an X-ray or neutron diffraction pattern include:

(1) The overall appearance of the Bragg reflections at the detec-
tion system. Ideally these diffraction maxima should be sharp,
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well-resolved peaks. Blurred, double spots or arcs may indicate
disorder or poor crystal quality.

(2) The angles or directions of scattering (including 2Ë, the angular
deviation from the direct beam).* These can be used to determine * See Figure 3.11 for a diagrammatic defin-

ition of Ë.the order, hkl, of each Bragg reflection and lead to a selection of a
unit cell and a measurement of its size and shape.

(3) The intensities, I (hkl), of the diffracted beams, which may be ana-
lyzed to give the positions of the atoms within the unit cell.

The result is a set of values—2Ë, h, k, l, I (hkl)—and some measure of
the precision, Û(I ), for each Bragg reflection. The diffraction pattern
is uniquely characteristic of the atomic identities and arrangement in
the particular crystal under study, and will only be the same for other
crystals of the same material grown under the same conditions and
having the same unit-cell dimensions and atomic composition. This
means that a diffraction pattern can serve as a “fingerprint,” and can
be used for identifying material.

The experimental setup

The apparatus that is used to measure an X-ray diffraction pattern
has the same configuration as that used in the very first diffraction
experiment in 1912. The overall setup, illustrated in Figure 4.1, consists
of:

(1) The crystal that has been selected for study. It is checked to ensure
that it is a single crystal and is mounted in the measurement
apparatus so that the incident radiation can pass through it and
be diffracted by it.

(2) An incident beam of radiation. This is a fine pencil-like beam of
X rays or a larger beam of neutrons directed at the crystal. The
source of such radiation may be an X-ray tube, a synchrotron
source, or neutrons from a nuclear reactor or spallation source.
The beam may be monochromatic (one wavelength) or polychro-
matic (many wavelengths, known as “white radiation”).

(3) A system to detect the diffraction pattern. This is usually an image
plate or a charge-coupled device that can detect, measure, and
electronically record the directions and intensities of Bragg reflec-
tions. Measurements may be serial (one Bragg reflection at a
time) or may involve as much as possible of the entire diffraction
pattern. The apparatus that aligns the incident beam, crystal, and
detector, ready for measurement, is a diffractometer.

There have been many improvements to these components of the
setup through the years and they are now significantly more effi-
cient and “user-friendly.” Advances in their design have now made
it possible to study the crystal structures of extremely large biological
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Fig. 4.1 The diffraction experiment.

The experimental setup used by von Laue, Friedrich, and Knipping to measure X-ray
diffraction intensities in 1912. The important components of the experimental equipment
consist of an X-ray source that provides a finely collimated beam of radiation, a crystal
that can scatter this radiation, and a detection device that can detect the diffraction pattern
and measure the directions and intensities of the diffracted beams. Currently this same
arrangement of equipment is used by X-ray crystallographers, but each component is
now much more sophisticated.

macromolecules (Blundell and Johnson, 1976; Helliwell, 1992; McRee,
1993; Drenth, 1999).

Selection of a suitable crystal

A crystal whose structure is to be determined should be a single crystal,
not cracked or a conglomerate. This may be checked by examining it
under a microscope, with polarized light, since most crystals are bire-
fringent** (Blundell and Johnson, 1976; Wahlstrom, 1979; Hartshorne

** One crystal form of the enzyme citrate
synthase is cubic (Rubin et al., 1983) and
shows no birefringence when a test tube
containing crystals is shaken.

and Stuart, 1950). In the polarizing microscope two Nicol prisms each
transmit only plane-polarized light, that is, light vibrating in a specific
direction. One prism, the polarizer, produces plane-polarized light and
the other prism, the analyzer, is only able to transmit light if the two
prisms are in the same orientation. They are set perpendicular to each
other so that no light can pass through. An optically isotropic crystal
placed between the prisms will not change this, but if the crystal is
birefringent and is rotated on the stage, it will show sharp extinction of
light at four rotation positions 90◦ apart. These extinctions occur when
the vibration directions of the Nicol prisms are the same as those of the
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Fig. 4.2 Mounting a crystal.

Methods for mounting crystals. (a) A crystal mounted on a glass fiber, as used for a small-molecule crystal that does not decompose
on exposure to air. (b) A crystal that does not diffract if it dries out is mounted in a sealed capillary tube with its mother liquor. (c) A
protein crystal frozen on a thin film of solvent in a loop.

crystal under examination. Generally, if multiple crystals are present,
only one part of the crystal will extinguish, and others will extinguish
on further rotation of the crystal (Bunn, 1961). In this way one can check
that a crystal is single.

If the crystal is too large, and therefore will not be fully bathed by
the incident X-ray beam, it may be possible to cut it safely with a
razor blade or with a solvent-coated fiber. Ideally one can try to find
a crystal that can be shaped, often by grinding, until it is approximately
spherical so that corrections for absorption of X rays are simplified.
Some crystals, however, are too soft, fragile, or sensitive even for a
delicate cutting and must be used as they have grown. For example,
crystals of macromolecules contain 30–70% water, sometimes more, and
they break very readily because the forces between such large molecules
are weak in view of the macromolecular size; therefore attempts to cut
the crystals may destroy them (Bernal and Crowfoot, 1934; McPherson,
1982; Bergfors, 2009).

The ultimate test of how good a crystal is comes from an inspection
of the diffraction pattern obtained. Crystals are mounted on an aligning
device (such as a goniometer head, see Figures 4.2 and 4.3), so that they
can be positioned in the direct X-ray or neutron beam, ready for diffrac-
tion. The centering of the crystal in the beam is checked by rotating and
viewing it through a microscope to make sure the center of the crystal
is fixed in space during the rotation, and therefore does not move out
of the incident beam during data collection.

A crystal to be studied is generally attached to a glass fiber with glue
or some similar material. If the crystal is unstable, it is put into a thin-
walled glass capillary tube (generally by gentle suction or simple capil-
lary action) and the capillary is then sealed. An appropriate atmosphere
is then maintained in the capillary to ensure stability of the crystal;
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Fig. 4.3 Centering a crystal.

A goniometer head is used for orienting and centering a crystal in the incident X-ray
beam. The goniometer arcs and lateral adjustments provide the means for the crystallog-
rapher to orient the crystal so that, in spite of reorientations of the centering device during
data collection, the crystal is always centered in the incident X-ray beam. The angle ˆ and
the position z define the orientation and height of the crystal.

for example, protein crystals require a small amount of mother liquor
to prevent drying out and disordering or collapse of the crystalline
structure. The fiber or capillary is fixed onto a brass pin by shellac or
glue and this pin is then attached to the diffraction equipment, as shown
in Figure 4.2. For biological macromolecules, such as enzymes, it is cur-
rently more usual to capture the crystal in a tiny loop (made of rayon,
nylon, or plastic and attached to a tiny rod). The crystal is mounted
or positioned for cryocrystallography in the thin film that forms when
the small loop is immersed in real or synthetic mother liquor, as shown
in Figure 4.2c; the crystal in the loop is then flash-cooled in liquid
nitrogen. The aim of this cooling is to reduce radiation damage caused
by the X rays, but it can sometimes cause the crystal to crack or form
ice on its surface; therefore it may be necessary to soak the crystal in a
cryoprotectant solution, such as glycerol, prior to cooling. Cooling will
also increase the maximum resolution of the diffraction data and the
value of I (hkl)/Û(I ). The crystals are then kept at a low temperature (just
above the boiling point of nitrogen) for data measurement. If its quality
is still poor the crystal can be annealed by warming the crystal, and then
flash-cooling it for a second time (Harp et al., 1998). Newer methods
of crystal mounting continue to be designed and reported on in the
literature.

Radiation damage usually occurs as a result of free-radical formation
and heating effects; it will continue after X-ray exposure has stopped. It
is generally believed that such radiation damage can be reduced by the
use of incident monochromatic X rays, or by lowering the temperature
with appropriate attention to the solvent. If a small group of Bragg
reflections is measured at regular intervals throughout a sequential
measurement process, it will be possible to determine the amount of
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crystal decay as a function of time. In practice, each Bragg reflection
is affected in a unique manner, depending on the nature of the atomic
movement during damage, but an average fall-off in intensity will give
some (but not precise) information that is suitable for use in correcting
intensities for radiation damage. A neutron beam generally does not
cause any radiation damage to the crystal.

Unit-cell dimensions and density

The dimensions of the unit cell (a , b, c, ·, ‚, „) can be found from the
angles, 2Ë, of the deviation of given diffracted beams from the direction
of the incident beam, because each value of 2Ë at which a diffraction
maximum is observed is a function only of the cell dimensions and
of the known wavelength of the radiation used, see Appendix 1. The
spatial orientation of these diffracted beams allows indexing so that
the determination of cell dimensions is simplified; however, it is also
possible to determine unit-cell dimensions from powder photographs.

The density of the crystal can be measured by flotation, but generally
the value is now assumed to be the same as that of crystals with a
similar composition. Most crystals of organic compounds have a den-
sity near 1.3 g cm−3, otherwise described as 18 Å3 per atom, excluding
hydrogen atoms. For macromolecular crystals, which may have a high
water content, the Matthews coefficient (VM, volume per dalton of pro-
tein), calculated as the unit-cell volume, V, divided by the molecular
weight, MW, times the number of asymmetric units in the unit cell,
Z, should lie in the range 1.7 to 3.5 Å3 per dalton (average near 2.3)
(Matthews, 1968; Kantardjieff and Rupp, 2003):

Matthews coefficient VM = V/{Z times MW} cubic Å per dalton (4.1)

If the nature of the atomic contents of the crystal is uncertain, it still
may be necessary to measure its density. Experimentally, this is done
by mixing two miscible liquids in which the crystal is insoluble (one
more dense, one less dense than the crystal) in such proportion that the
crystal remains suspended in the mixture (it neither sinks nor rises to
the surface of the resulting mixture). The density of the liquid mixture
(with the same density as that of the crystal) is then found by weighing
a known volume in a “specific gravity bottle” or “pycnometer.” For
macromolecules, a “density gradient column” is prepared by layering
an organic liquid (in which the protein is insoluble) on another that is
miscible with the first. This column can be calibrated by measuring the
equilibrium positions along the column of drops of aqueous solutions
of known density. Some protein crystals are then added to the column
and their equilibrium positions read; these positions can be directly
converted to densities using the previously prepared chart. As seen
in Appendix 1, the density of the crystal, combined with its unit-cell
dimensions, will give the weight of the contents of the unit cell. If the
elemental analysis of the crystal is known, then the number of each type
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of atom in each unit cell can be determined. Then a decision can be
made whether or not to proceed with a structure analysis.

The Bragg reflections to be measured

The Bragg equation (Eqn. 3.1) is only satisfied for a few diffracted
beams if the crystal is stationary. Therefore it is usual to oscillate the
crystal in order to obtain more diffraction data. The maximum number
of Bragg reflections that can be accessed, N, will depend on appropriate
oscillation of the crystal, the wavelength Î of the radiation, the volume
V of the unit cell, and the number n of crystal lattice points in the unit
cell, according to the formula

N = (4π/3)(8V/nÎ3) (4.2)

How do we tell which Bragg reflections can be measured with a
selected arrangement of the diffraction-measuring apparatus? There is
a geometric construction that does exactly this. It is the Ewald sphere,
named after Paul Ewald, who was involved in discussions with von
Laue that led to the first crystal diffraction experiments in 1912 (Ewald,
1913). For the crystal under consideration, the Ewald sphere is a sphere
of radius 1/Î (for a reciprocal lattice with dimensions d∗ = 1/d), drawn
with its diameter along the incident beam direction. This is shown in the
diagrams of its construction in Figure 4.4. The origin of the reciprocal
lattice is positioned at the point at which the incident beam emerges
from the Ewald sphere. The reciprocal lattice is then rotated about its
origin (in the same manner as that planned for data measurement).
Whenever a reciprocal lattice point P touches the surface of the Ewald
sphere, the conditions for a diffracted beam are satisfied. A Bragg reflec-
tion, with the hkl indices of that reciprocal lattice point P, will result.
Thus, for a particular orientation of the crystal relative to the incident
beam, it is possible to predict which reciprocal lattice points and thus
which Bragg reflections will be observed. If radiation of a different
wavelength is used, the radius 1/Î, drawn in the Ewald sphere, can
be adjusted accordingly, and the angles through which the crystal is
rotated can be accounted for.

The incident radiation: X rays or neutrons

X rays are produced, as mentioned in Chapter 3, when a high voltage
is applied between a cathode and an anode in an evacuated glass bulb;
this voltage causes the cathode to emit fast-moving electrons,† and they

† The type of diffraction discussed in this
book is referred to as “kinematical dif-
fraction” and assumes that the incident
beam is diffracted and leaves the crys-
tal. In “dynamical diffraction,” which is
particularly evident in electron diffrac-
tion, the diffracted beams interact with
the crystal and each other (Ewald, 1969).
This repeated scattering makes analysis of
the diffraction pattern much more compli-
cated.

are directed at the anode (a metal target), and are suddenly decelerated
when they hit it. As a result of this impact, X rays are emitted. The
intensity of this initial source of X rays is controlled by the applied
voltage and amperage. A diagram of an X-ray tube is provided in
Figure 4.5. X ray-tubes have a relatively low flux and the background
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Fig. 4.4 The Ewald sphere (sphere of reflection).

(a) A sphere of radius 1/Î is drawn. (b) The origin of the reciprocal lattice, drawn on the
same scale, is placed with its origin on the surface of the sphere, at O. When a reciprocal
lattice point hits the surface of the Ewald sphere, a Bragg reflection will occur. To increase
the likelihood of this happening the crystal is rotated in the diffractometer, an event that
is represented in the Ewald construction by a similar rotation of the reciprocal lattice. If
white radiation is used, it will be necessary to draw spheres at the two limits of radiation.

radiation is appreciable, unless filters or a monochromator are used.
The greater the intensity of radiation from an X-ray tube, the more
extensive the diffraction pattern (since weak Bragg reflections are made
visible) and the better the signal-to-noise ratio. Since diffracted beams
are much weaker in intensity than the direct (undiffracted) beam, it is
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Diagram of the structure of an X-ray tube. Electrons are emitted from the tungsten
filament (cathode) and are attracted to the target in the anode. On hitting the target (Cu,
Mo, Cr, for example), X rays are emitted and exit the tube through beryllium windows.

necessary to intercept the direct beam by means of a small metal cup (a
“beam stop”) so that the detection system is not overloaded by the high
intensity of the direct incident beam of X rays.

Two types of X rays are produced in the X-ray tube (see Figure 4.6a).
The first has the label “Bremsstrahlung,” which means “braking radi-
ation” (in German), and is produced when accelerated electrons are
suddenly decelerated by a collision with the electrical field of an atom in
the metal target of an X-ray tube. This radiation, which generally serves
as background, has a continuous spectrum. The kinetic energy of the
fast electrons has been converted into radiation, including X rays. The
second type of radiation, called “characteristic radiation,” is produced
when the fast electrons cause a change in the atom that they hit; this
change is the ejection of an electron from an inner shell of an atom
in the metal target anode. When another electron from an outer shell
of the same atom moves to fill the void left by the ejected electron,
an X ray photon will be emitted with a wavelength representative of
the difference between the energy levels of the ejected electron and
of the electron that takes its place. The X-ray spectrum obtained is
therefore characteristic of the metal in the target anode. It is approxi-
mately monochromatic, and all but one narrow wavelength band can
be selected and used for diffraction studies. Characteristic X rays from
copper and molybdenum target anodes (wavelengths 1.54 Å and 0.71 Å,
respectively) are most commonly used in X-ray diffraction experiments,
but many other targets are available for use when necessary. The X
rays are labeled by the shell of the ejected electron (K, L, M, etc.) and
the number of shells that the replacement electron has passed through
(α for one shell, β for two, etc.) (see Figure 4.6b). For example, Kα

radiation corresponds to a transition from n = 2 to n = 1 (the innermost,
highest-energy atomic level, where n is the principal quantum number
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(a) The characteristic X-ray spectrum of copper radiation, produced with a copper target
in the X-ray tube. (b) X rays are labeled by the shell of the ejected electron (K, L, M, etc.)
and the number of shells the replacement electron has passed through (α for one shell, β
for two, etc.).

of a shell). This means that when a K-shell vacancy is formed, it is filled
by an electron from the adjacent L shell, and Kα radiation is emitted.
Kβ radiation corresponds to a transition from n = 3 to n = 1; that is, a
K-shell vacancy is filled by an M-shell electron, and so forth.

A monochromator, which transmits only a mechanically selectable
small range of wavelengths (its bandpass) from a larger range, is used
to tune X rays to a required wavelength. One type of monochromator
selects (by slits) a single Bragg reflection from an appropriate crystal,
such as one of graphite, silicon, germanium or copper, and this selected
Bragg reflection becomes the new incident beam for diffraction studies.
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Another type employs optical methods, that is, a combination of a
collimating mirror, a diffraction grating, and a focusing mirror, to give
the required spectral range; X rays can be focused by mirrors if the
angle of incidence is extremely small (less than 0.1◦). Sometimes two
monochromators are used, acting in tandem.

A major problem when X rays are produced in a sealed tube (as just
described) is that considerable heat is generated and must be elimi-
nated, for example by cooling the tube with flowing water. It has been
found that if the anode is rotated at high speed and the fast-electron
beam is directed at its outer edge, this heat can be dissipated, and, as a
result, it becomes possible to generate more intense X rays. This is the
principle of the rotating-anode generator, and, because of the high flux of
the X rays produced, it is possible to measure extensive diffraction data
for crystalline biological macromolecules.

Synchrotron radiation, however, currently provides the most intense
X rays suitable for diffraction studies. The emission of radiation is
a property of accelerated charged particles. Electromagnetic radiation
(which includes X rays) is emitted when accelerating electrons, travel-
ing at near the speed of light, are forced, by a magnetic field, to travel
in a circular orbit, as in an electron storage ring. The wavelength of this
radiation will depend on the strength of the magnetic field, the speed
of the electrons, and the size of the storage ring. These factors can be
appropriately chosen and combined to give a good source of X rays.
Synchrotron radiation has very high intensity (and therefore is good
for single-crystal diffraction studies), and low divergence (so that there
is good intrinsic collimation, a large signal-to-noise ratio, and a high
resolution). It is also highly polarized (which is useful for distinguish-
ing electronic from magnetic scattering) and is emitted in short pulses
(which facilitates fast time-resolved studies). It is multiwavelength
(white) radiation and, if a single wavelength is required, selection
(tuning) with a monochromator is essential. Its range of wavelengths
is wide, so that selection can be made of radiation near the absorp-
tion edge of an atom contained in the crystal; therefore anomalous-
dispersion experiments, as described in Chapter 10, can be done.

Another type of radiation used in crystal diffraction studies consists
of neutrons (Bacon, 1975; Dianoux and Lander, 2003; Willis and Carlile,
2009). Neutron diffraction can provide information that complements
that from X-ray diffraction. Neutrons are uncharged particles, highly
penetrating, but their beams are relatively weak, and, when not in
nuclei, they decay with a mean lifetime of about 15 minutes. They were
discovered by James Chadwick in 1932, and were subsequently shown
to be diffracted by crystals (even though they are particles) (Chadwick,
1932; von Halban and Preiswerk, 1936; Mitchell and Powers, 1936).‡‡ This was long after von Laue studied dif-

fraction of X rays by crystals in 1912 and
therefore decided that X rays are waves
(Friedrich et al., 1912).

This dual identity of neutrons is in line with the postulate of Louis
Victor de Broglie in 1923 that particles and waves should have
both particle-like and wavelike properties (de Broglie, 1923). Their
wavelength can be calculated from his equation Î = h/mv, where Î

is the wavelength, m is the mass of a neutron (1.67 × 10−24 g), v is its
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velocity, and h is Planck’s constant (6.626 × 10−34 kg m2 s−1) (Planck,
1901). The faster the neutron, the shorter its apparent wavelength.

X-ray diffraction probes the electron-density arrangement in the crys-
tal, while neutron diffraction probes the positions of atomic nuclei in
the crystal. Therefore, when the results of X-ray and neutron diffraction
by a crystal are compared, a large amount of structural and chemical
information, for example, on the asymmetry of the electron distribution
around a particular atomic nucleus, is obtained. This will be described
later in Chapter 12. Neutrons also have a spin of 1/2 and therefore can
also be used to probe the magnetic structure of a material.

Neutrons are generally produced at nuclear reactors, so that it is
necessary to visit a national atomic energy center for neutron diffrac-
tion studies. A large number of neutrons are produced in a reactor
by nuclear fission. They may also be produced at spallation sources.
The word “spallation” describes the ejection of material on impact.
Neutrons are obtained at a spallation source when short bursts of
high-energy protons bombard a target of heavy atomic nuclei (such
as mercury, lead, or uranium); each proton produces several high-
energy neutrons in a pulsed manner. Slow neutrons with wavelengths
of 1 to 2 Å are required for diffraction studies. Therefore fast neutrons
produced by either of these two processes must be slowed down by
moderators (such as heavy water) that reduce their kinetic energy and
provide neutrons with wavelengths that are approximately the same as
those used for X-ray diffraction studies. For further information on the
practical aspects of neutron diffraction, there are several excellent texts
(Bacon, 1975; Wilson, 2000; Willis and Carlile, 2009).

Equipment for diffraction studies

When X rays are used for crystal diffraction studies, it is found to
be necessary, in order to get a large number of Bragg reflections, to
oscillate or rotate the crystal, or to use polychromatic radiation (the
Laue method). The general geometry of the detection system is shown
in Figure 4.7. The relationship between the diffraction pattern and the
crystal orientation is diagrammed in Figure 4.8. While the crystal lat-
tice defines the crystal, the reciprocal lattice (Figure 4.9) represents the
diffraction pattern, and this information is useful when interpreting the
diffraction pattern in terms of Bragg reflections.

We first briefly describe the old film methods, as they are part of the
literature on the subject and they illustrate some of the principles that
the reader needs to know. Then we proceed to the more modern meth-
ods. The old methods mostly involve photographic film; this is a good
X-ray detector, but has now been superseded by more efficient elec-
tronic devices. To take an oscillation or rotation diffraction photograph,
a crystal, mounted on a goniometer head, is either rotated continuously
in one direction (to give a rotation photograph) or oscillated back and
forth through a small angle (to give an oscillation photograph). The
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Fig. 4.7 Source, crystal, and detector.

Diagram of the relative arrangement of the X-ray source, the detector, and the crystal and
their relationship to the diffraction vector. All are in the same plane.

resulting diffraction pattern is recorded on photographic film placed
around the crystal. If the axis of rotation or oscillation is perpendicular
to the X-ray beam, the resulting photograph contains lines (layers) of
Bragg reflections (see Figure 4.10). As can be seen in this figure, many
of the Bragg reflections overlap each other, so that indexing them may
difficult. Therefore the Weissenberg camera was invented, in which
the camera is moved as the crystal is rotated or oscillated. Only one
layer from an oscillation photograph is selected, by the positioning
of a metal screen with a slit in it, between the film and the X-ray
source (Weissenberg, 1924). The crystal is oscillated back and forth,
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Fig. 4.8 The relation between the crystal
orientation and the diffraction pattern.

The relative orientation of the reciprocal
lattice of a crystal (expressed here as a∗
and b∗), and its indexed X-ray diffraction
pattern (expressed here as h and k). Note
the relationship of a∗ to h and b∗ to k. From
the positions of diffracted beams on the
detection device it is possible to deduce
the dimensions of the reciprocal lattice
and hence of the crystal lattice; hence the
indices h, k, and l of each Bragg reflection.

while the slit ensures that only one layer of Bragg reflections (for
example, a specific value for the h index) is recorded on the film. At
the same time the camera moves in a direction parallel to the axis of
crystal oscillation. The most important feature is that the motion of
the camera is coupled to the oscillation of the crystal, which helps in
interpreting the photograph. Bragg reflections on a Weissenberg pho-
tograph can therefore be more readily indexed than on an oscillation
photograph.

An even more useful type of X-ray diffraction photograph is pro-
duced by a precession camera (Figures 3.8a and 4.11) (Buerger, 1964).
It gives an undistorted view of one selected plane of the recipro-
cal lattice. This makes it particularly useful for measuring unit-cell
dimensions and assigning a space group to the crystal. Here the cam-
era motion is more complicated in order that the recorded image
of the diffraction pattern may be simple. In fact, direct measure-
ment of all reciprocal lattice parameters is possible from a series of
precession photographs, with an appropriate scale factor taken into
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Fig. 4.10 Layer lines.

An X-ray diffraction photograph is
obtained from a crystal mounted with
the reciprocal lattice axis, c∗, vertical. On
oscillation about this vertical axis the
diffraction pattern shows layer lines, each
with a constant value for the index l along
them.

reciprocal lattice plane is inclined by an angle Ï (typically 30◦) to the
direct incident X-ray beam, and this then precesses (like the motion
of a toy spinning top) about the incident X-ray beam. The flat film
holder, which has an annular screen that isolates a single plane of
the reciprocal lattice, follows the precession motion, ensuring that
the film is always parallel to the selected reciprocal lattice plane
of the crystal being photographed. It does this in such a way that the
direct beam always hits the center of the film. The photograph that
results from this complicated set of motions is simple to interpret.
This method is very useful for triclinic crystals and for macromolecular
crystals.

Generally, crystal symmetry, crystal lattice constants, and diffraction
data are currently measured with a diffractometer (Figure 4.12). The
incident radiation may be X rays from a sealed tube, a rotating anode,
or a synchrotron source, or it may be a neutron beam. A diffractometer
requires a collimated incident beam and a beamstop to collect that part
of the direct beam that has passed undeflected through the crystal. The
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The indexing of Bragg reflections on a precession photograph. Note the systematic
absences—0k0 with k odd and 00l with l odd. By convention the positive direction of
a is toward the X-ray source.

detection system is an image plate or a charge-coupled device, rarely
photographic film. Many modern diffractometers do not require any
orientation of the crystal, only centering of the crystal, so that no matter
how the instrument is oriented the crystal is always centered in the
incident beam. A goniometer head can, however, be used to align the
crystal, if required. Protein crystals, mounted with mother liquor in a
capillary, are also put in a centering device. While both imaging with
film and digital signaling are employed for the detection of diffracted
radiation, they operate in different ways. A film records light as the
result of a series of chemical reactions, while charge-coupled devices
convert light (caused when X-ray photons hit a phosphor) directly into
a digital signal.
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(a) A four-circle diffractometer. The crystal is mounted on a goniometer head, for which the spindle axis is ˆ. The goniometer head is
attached to the ˜ circle. The angle ˜ is the angle between the ˆ axis of the goniometer head and the base of the diffractometer. The ˜

circle can be rotated about the ˘ axis, where ˘ is the angle between the diffraction vector and the plane of the ˜ circle. The detector is
moved on the 2Ë circle, where 2Ë is the angle between the incident and diffracted X-ray beams. The detection device can be an image
plate or a charge-coupled device. The setup for serial measurement is shown here. (b) A diffractometer with kappa (Í) geometry. The
omega block rotates about the base plate while the kappa block rotates about the omega block as shown. This simulates the chi circle
motions in the instrument in (a) but avoids clashes.
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There are several types of diffractometers. Some move a detector to
measure each Bragg reflection sequentially, and some employ a flat
detection device, an “area detector,” that measures a large number of
Bragg reflections at one time. The source of radiation is usually fixed
in space and, in a sequentially measuring diffractometer, the required
angular settings for the crystal and detector with respect to the incident
beam are calculated in advance once a few Bragg reflections have been
located and identified. This type of diffractometer is composed of sev-
eral mechanical circles that rotate the crystal or the detection system
with respect to the X-ray beam, as shown in Figure 4.12a. In this “four-
circle diffractometer” the crystal can be rotated around three axes (˜, ˆ,
and ˘) independently, and the detector can be rotated about a fourth
angle (2Ë, concentric with, but independent of, ˘), in the equatorial
plane parallel to the base of the instrument. The crystal is mounted on
a goniometer head and can be rotated about the vertical ˆ axis (phi)
of this mounting (see Figure 4.12a). The goniometer head is mounted
on the ˜ circle, which tilts the crystal about the horizontal ˜ axis (chi).
The 2Ë circle is attached to the detector device. This is concentric with
the ˘ circle that rotates the sample. The ˜ circle is mounted on top of the
˘ circle, and the ˆ circle is mounted on top of the ˜ circle. Usually the
entire instrument is controlled by a computer and the data collection
is then done automatically. There are also diffractometers that utilize
the kappa (Í) geometry (Figure 4.12b). This type of diffractometer was
designed specifically to reduce mechanical clashes during data collec-
tion. The ˘, ˆ, and 2Ë circles remain, but the ˜ circle is replaced by a
Í block that sits on the ˘ block (which replaces the ˘ circle) and this
controls the orientation of the crystal and its goniometer head.

If the measurement is to be sequential, the intensity of a Bragg
reflection is measured with the detector and recorded, together with
measurements of the background intensity near the Bragg reflection,
and then a new set of angles is calculated and another intensity mea-
surement made. One normally advances incrementally through the
Miller indices, hkl. In this way a systematic scan of all desired Bragg
reflections is done completely automatically. Alternatively, if the crystal
is stationary and white radiation is used, an image plate or charge-
coupled device will be positioned to receive and record as many as
possible of the diffracted beams. For this Laue diffraction, the inci-
dent radiation is white radiation with a range of wavelengths. It has
proved useful for studies of enzyme reactions (Hajdu et al., 1987).
For example, a crystal of the enzyme glycogen phosphorylase b was
mounted in a flow cell and substrate solution was passed over it. Laue
photographs (stationary crystal, white radiation) were taken with syn-
chrotron white radiation (over 10,000 Bragg reflections per second) at
a series of times after initiation of the biochemical reaction. A com-
parison of electron-density maps from the various data sets showed
the course of the reaction as a substrate was converted to product (by
phosphorylation).
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Detection systems

The intensities of the diffracted beams are measured by intercepting
the beams with a detecting material or device that is sensitive to X
rays. The intensity at the peak of the diffraction spot is measured, or,
better, the peak profile is scanned. Measurements of background counts
are also made, or calculated from the profile of the peak, and used to
correct the recorded intensities. Measurements may be done electroni-
cally or photographically and may concentrate on one diffracted beam
at a time (as is often done with a diffractometer) or on many diffracted
beams at the same instant (as with electronic analogues of photographic
film).

The simplest detection device for X rays is photographic film. This
contains silver halide in an emulsion on its surface. When the film
is developed, black metallic silver is deposited at the positions at
which the diffracted beams hit the photographic film. The darkness
of each spot so formed is a measure of the intensity of the dif-
fracted beam. These intensities can be measured with a film scan-
ner. Film is not used much nowadays, because of the development
of electronic detection devices (with superior detection capabilities)
and current problems in obtaining photographic film suitable for X-ray
studies.

Electronic detectors of X rays that have an appreciable area for detec-
tion of the diffraction pattern, and offer the possibility of resolving
and individually measuring the intensities of diffraction maxima at
different points across this area, are now preferred. They consist of scin-
tillation counters, television-enhanced scanning devices, image plates,
and charge-coupled devices, and are the equivalent of electronic film.
Position-sensitive detectors can measure the position at which a Bragg
reflection hits the detection device. These various devices represent the
development of improved ways of recording a diffraction pattern elec-
tronically in a computer-readable manner, and image plates and charge-
coupled devices are the current instruments of choice for this. Whereas
photographic film records photons through a series of chemical reac-
tions, charge-coupled devices convert light directly into a digital signal.
Scintillation counters make use of the ability of certain substances to
emit visible light by fluorescence when X rays hit them. The intensity
of the emitted light is measured by a photomultiplier tube. Similarly,
television area detectors contain a phosphor that produces visible light
when hit by X rays. The photon signal is intensified and then detected
by a television photocathode. These methods of detection are now less
used than image plates and charge-coupled devices. Neutrons, which
lack any charge, and readily penetrate materials, are detected by gas or
scintillator detectors; these are similar to the X ray detectors described
above (Wilson, 2000).

An image plate is a storage phosphor on which a latent image is
formed when X rays hit it. It contains plastic sheets with powdered
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phosphor crystals, doped with divalent europium ions, on their
surfaces. When X rays hit these sheets, the divalent europium ions
are converted to metastable trivalent ions and the electrons that are
liberated are stored ready for release when scanned by a laser beam
of visible light. When trivalent europium ions are encountered, blue
light (wavelength 3900 Å) is emitted that can be scanned and converted
to a digital image. This latent image has to be read; it is exposed to
laser light, which causes the emission of light of a different wavelength,
which is then detected. The image plate can then be erased, ready for
the next use, while the data from the scanning of the latent image, which
are in a computer-readable form, are then ready for use in structure
determination. The location of the direct beam is evident on the image,
and from the positions of diffracted beams it is possible to determine
the direction, as well as the intensity, of each Bragg reflection. Neutrons
can only be detected if they have undergone some reaction that results
in the emission of energetic charged particles; this means that a con-
verter must be used. Neutron image plates contain elements such as
gadolinium (which has a very high neutron, but not proton, capture
cross-section, or stopping power) that absorb neutrons and act as a
converter to enable the neutrons to emit electromagnetic radiation (such
as gamma rays), which can be detected like the X rays in the description
above.

Charge-coupled devices are used widely in X-ray diffraction equip-
ment. They are two-dimensional grids of radiation-sensitive semi-
conductor capacitors that have the capability of transferring charge
between their neighbors. They acquire a charge when hit by a photon,
and electron–hole pairs are generated by the photoelectric effect. The
total charge that is built up is a measure of the number of photons that
have been detected (the radiation intensity), and it is collected in an
array of electrodes. The charge and position of each pixel are transferred
as a result of a differential voltage across the electrodes, and the data
are read and digitized by a computer (see Ladd and Palmer, 2003). This
gives an immediate computer listing of the intensity and position on the
detection device, and therefore this device is closer to a direct detector
than is an image plate.

When white radiation is incident on a crystal, as in the Laue method,
it is necessary to know the wavelength of the radiation that causes
a particular Bragg reflection. The time-of-flight neutron diffraction
technique depends on the fact that neutrons with different energies
(wavelengths) travel at different speeds. Therefore a measurement of
the time of flight will reveal the wavelength of the diffracted beam
(generally selected from a multiwavelength incident beam). The instant
at which the diffracted beam hits the crystal and then impacts on the
detection system is measured and recorded. This, with the known dis-
tance traveled, gives the velocity of the neutron and hence its wave-
length. Therefore the wavelength of each diffracted neutron can be
measured.
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Preparing measured I(hkl) for subsequent
analysis

Since the intensity I (hkl) of any radiation propagated as a wave is
proportional to the square of its amplitude, |F (hkl)| the intensity of
the diffracted beam corresponding to the diffraction maximum for each
set of planes hkl is proportional to |F (hkl)|2. Modifications to I (hkl) are
necessary in order to correct for the geometry of measurement. Weak
Bragg reflections are measured carefully, rather than being ignored. Of
the various correction factors that are used, the Lorentz factor takes
into account the time that it takes for a Bragg reflection, represented
as a reciprocal lattice point with a finite size, to cross the surface of the
sphere of reflection; the longer the time, the higher the intensity. The
Lorentz factor equalizes the time taken to measure each Bragg reflec-
tion. The polarization factor depends on the state of polarization of the
incident X-ray beam; X rays are polarized on scattering, with reduction
of the intensity of the Bragg reflection. Corrections for absorption of
X rays by the crystal are also made; ideally, the path lengths through
the crystal of many component waves of each diffracted beam are com-
puted, and the diminution in intensity resulting from absorption can
then be determined. Semiempirical absorption corrections, based on the
intensity variation as certain intense Bragg reflections are scanned while
the crystal is rotated, are more generally used. If a crystal is strongly
absorbing for the radiation used, it may be shaped (with a scalpel
or razor blade) until it is approximately spherical so that absorption
corrections may be more uniform. Generally it is better to avoid using
a crystal larger than the primary beam, although this may be necessary
for protein crystals that are damaged by the X-ray beam, so that one can
move the crystal to an undamaged area during data collection. The aim
is to keep the amount of matter exposed to radiation independent of the
crystal orientation.

It is then possible to determine the absolute value (without phase) of
the structure factor F (hkl) from these measurements, as follows:

I (hkl) = k1{Î3VcLp Abs/˘V2}|F (hkl)|2 = K{Lp Abs}|F (hkl)|2

= k2|F (hkl)|2 (4.3)

where k1, k2, and K are constants, Vc is the volume of the crystal that
is bathed in the incident beam, V is the volume of the unit cell, Lp
consists of the Lorentz and polarization factors, Abs is an absorption
correction, and ˘ is the angular velocity of the crystal. Thus, values of
k2|F (hkl)|2 and hence of k2

1/2|F (hkl)| are immediately available once
intensity measurements have been made. The values of Lp and Abs
contain only known quantities and therefore can readily be computed
for each Bragg reflection.
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A Wilson plot of sin2 Ë/Î2 versus the logarithm of a function of the measured structure
factors, F (hkl) = F . The slope gives an overall measure of the displacement factors. The
intercept gives the scale factor necessary to obtain intensities on an absolute scale.

If the value of I (hkl), corrected for Lp and Abs, is called Icorr, we can
say

Icorr = I (hkl)/{Lp Abs} = K|F (hkl)|2 = K|Fnovib|2 exp(−2Biso sin2 Ë/Î2)

(4.4)

where |Fnovib| is the value of |F (hkl)| for a structure composed of non-
vibrating point atoms. The application of the Lp correction involves no
knowledge of the structure. An estimation of Abs can be made from a
knowledge of the shape, orientation, and composition of the crystal.
The value of |F (hkl)| so derived contains information on the atomic
displacement factors, B. Thus F = |Fnovib| exp(−Biso sin2 Ë/Î2) (see True-
blood et al., 1996). It is possible to derive Biso and K in Eqn. (4.4) from
the experimental data by a “Wilson plot” (Wilson, 1942). It is assumed
that, to a first approximation, the average intensity of Bragg reflections
at a certain value of 2Ë depends only on the atoms present in the cell, not
on their positions—that is, that the arrangement of atoms in the crystal
structure is random. By comparison of the averages of the observed
intensities in ranges (shells) of sin2 Ë/Î2 with the theoretical values for
a unit cell with the same atomic contents, approximate values for K
and Biso can be found from the Wilson plot (Figure 4.13). Values of the
resulting scale factor K can then be used for preparation of a full list
of values of |F (hkl)| on an approximately absolute scale (relative to the
scattering by one electron) for all Bragg reflections measured. The value
of Biso obtained from this graph will indicate the extent of disorder from
unit cell to unit cell in the crystal structure.
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The reader should note that the intensity, I (hkl), is a simple function
of the structure amplitude |F |. However, an inspection of Eqn. (4.4)
shows that each value of |F (hkl)|, and hence of the intensity, I (hkl), of the
diffracted beams contains, with few exceptions, a contribution from every
atom in the unit cell. The unraveling of these contributions makes the
structure solution complicated.

Summary

The diffraction of a crystal by X rays results from the constructive and
destructive interference of the X rays that have been scattered by each
individual atom in the structure. Three types of experimental diffrac-
tion data may be obtained:

(1) The angle of scattering (2Ë, the angular deviation from the direct
undeviated beam), which is used to measure the spacings of the
reciprocal lattice and hence the spacings of the crystal lattice.
These spacings can be used to derive the size and shape of the
unit cell.

(2) The orders of diffraction (hkl) of each diffracted beam.

(3) The intensities of the diffracted beams, I (hkl), which may be
analyzed to give the positions of the atoms within the unit cell.
These atomic positions are usually expressed as fractions of the
unit-cell edges.
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