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obtained 5
In this chapter we will describe those factors that control the intensities
of Bragg reflections and how to express them mathematically so that
we can calculate an electron-density map. The Bragg reflections have
intensities that depend on the arrangement of atoms in the unit cell
and how X rays scattered by these atoms interfere with each other.
Therefore the diffraction pattern has a wide variety of intensities in it
(see Figure 3.8a). Measured X-ray diffraction data consist of a list of
the relative intensity I (hkl), its indices (h, k, and l), and the scattering
angle 2Ë (see Chapter 4), for each Bragg reflection. All the values of
the intensity I (hkl) are on the same relative scale, and this entire data
set describes the “diffraction pattern.” It is used as part of the input
necessary to determine the crystal structure.

As already indicated from a study of the diffraction patterns from
slits and from various arrangements of molecules (Figures 3.1 and 3.9
especially), the angular positions (2Ë) at which scattered radiation is
observed depend only on the dimensions of the crystal lattice and the
wavelength of the radiation used, while the intensities I (hkl) of the dif-
ferent diffracted beams depend mainly on the nature and arrangement
of the atoms within each unit cell. It is these two items, the unit-cell
dimensions of the crystal and its atomic arrangement, that comprise
what we mean by “the crystal structure.” Their determination is the
primary object of the analysis described here.

Representation of the superposition of waves

As illustrated in Figure 1.1b and the accompanying discussion, and
mentioned again at the start of Chapter 3, X rays scattered by the elec-
trons in the atoms of a crystal cannot be recombined by any known lens.
Consequently, to obtain an image of the scattering matter in a crystal,
the “structure” of that crystal, we need to simulate this recombination,
which means that we must find a way to superimpose the scattered waves,
with the proper phase relations between them, to give an image of the material
that did the scattering, that is, the electrons in the atoms. We call this image
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72 The diffraction pattern obtained

an “electron-density map.” It shows approximately zero values at sites
in the unit cell where there are no atoms, and positive values at sites
of atoms. The electron-density values are higher for heavier atoms than
for lighter atoms (an effect expressing the number of electrons in each
atomic nucleus) so that this electron-density map may permit discrimi-
nation between atoms that have different atomic numbers.

How then can the superposition of waves be represented? There are
several ways. Electromagnetic waves, such as X rays, may be regarded
as composed of many individual waves. When this radiation is scat-
tered with preservation of the phase relationships among the scattered
waves, the amplitude of the resultant beam in any direction may be
determined by summing the individual waves scattered in that direc-
tion, taking into account their relative phases (see Figure 3.2). We
use a cosine wave (or a sine wave, which differs from it by a phase
change of π/2 radians or 90◦). The phase for this cosine wave may
be calculated by noting the position of some point on it, such as a
maximum. This is measured relative to an arbitrarily chosen origin (see
Figures 1.2 and 5.1a).

There are several ways of representing electromagnetic waves so that
they can be summed to give information on the nature of the combined
wave.

Graphical representation

The usual way to represent electromagnetic waves graphically is by
means of a sinusoidal function. Unfortunately, graphical superposition
of waves of the type illustrated in Figure 3.2 is not convenient with a
digital computer. Therefore, for speed and convenience in computing,
other representations are preferred.

Algebraic representation

When we represent a wave by a trigonometric (cosine) function, we use
the following algebraic expressions for the vertical displacements (x1 or
x2) of two waves at a particular moment in time:

x1 = c1 cos(ˆ + ·1) (5.1)

x2 = c2 cos(ˆ + ·2) (5.2)

Here c1 and c2 are the amplitudes of the two waves (their maximum ver-
tical displacements). The value of ˆ is, at a given instant, proportional
to the time (or distance) for the traveling wave and is the same for all
waves under consideration; ·1 and ·2 are the phases, expressed relative
to an arbitrary origin. We will assume here that the wavelengths of
the scattered waves are identical, inasmuch as the X rays used in
structure analyses are generally monochromatic (only one wavelength).
Because the wavelengths are the same, the phase difference between
the two scattered waves (·1 − ·2), remains constant (assuming that no
change in the phase of either wave has taken place during scattering).
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Fig. 5.1 The representation of sinusoidal waves.

(a) Graphical representation of a sinusoidal cosine wave, amplitude F (hkl) represented by the radius of the circle, and phase ·hkl
represented by the counterclockwise angle measured at the center of the circle. (b) Four examples of a phase angle, represented as
shown in (a), and the cosine wave it represents. Note the relationship of the phase angle in the circular representation to the location of
the peak of the cosine wave.

When the waves are superimposed, the resulting displacement, xr , is,
at any time, simply the sum of the individual displacements, as shown
earlier in a graphical manner in Figure 3.2:

xr = x1 + x2 = c1 cos(ˆ + ·1) + c2 cos(ˆ + ·2) (5.3)

which, since cos (A + B) = cos Acos B − sin Asin B, may be rewritten as

xr = c1 cos ˆ cos ·1 − c1 sin ˆ sin ·1 + c2 cos ˆ cos ·2 − c2 sin ˆ sin ·2

(5.4)
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or

xr = (c1 cos ·1 + c2 cos ·2) cos ˆ − (c1 sin ·1 + c2 sin ·2) sin ˆ (5.5)

If we define the amplitude, cr , and phase, ·r , of the resulting wave such
that

cr cos ·r = c1 cos ·1 + c2 cos ·2 =
∑

j

c j cos · j (5.6)

and

cr sin ·r = c1 sin ·1 + c2 sin ·2 =
∑

j

c j sin · j (5.7)

then we can rewrite Eqn. (5.5) as

xr = cr cos ·r cos ˆ − cr sin ·r sin ˆ = cr cos(ˆ + ·r ) (5.8)

Thus the resultant of adding two waves of equal wavelength is a wave
of the same frequency, with a phase ·r (relative to the same origin)
given by Eqns. (5.6) and (5.7) or, more compactly, by the following
equation:

tan ·r =
cr sin ·r

cr cos ·r
=

∑
j

c j sin · j∑
j

c j cos · j
(5.9)

The amplitude of the resultant wave, cr , is given by

cr = [(cr cos ·r )2 + (cr sin ·r )2]1/2

=
[(∑

j

c j cos · j

)2
+

(∑
j

c j sin · j

)2]1/2
(5.10)

Vectorial representation

These relationships can all be expressed alternatively in terms of two-
dimensional vectors, as illustrated in Figures 5.1a and b. You will
remember that a vector has a magnitude (measure), direction (angle
from the horizontal), and sense (where it starts and ends) (see Glossary).
The length of the j th vector is its amplitude, c j , and the angle that it
makes with the arbitrary zero of angle (usually taken as the direction of
the horizontal axis pointing to the right, with positive angles measured
counterclockwise) is the phase angle · j . This is shown in Figures 5.1a
and 5.2a, where c j is represented as F (hkl), the structure factor. The
components of the vectors along orthogonal axes are just A = c j cos · j

and B = c j sin · j and the components of the vector resulting from addi-
tion of two (or more) vectors are just the sums of the components
of the individual vectors making up the sum, a result expressed in
Eqns. (5.6) and (5.7). The relationship of the vector representation of a
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Fig. 5.2 Vector representation of structure factors.

(a) The relation of the vector F to A and B.
(b) The vector addition of the contribution of each atom to give a resultant F.
(c) If a “heavy” atom (M) has a much higher atomic number, and hence a much longer vector in a diagram (like that in Figure 5.2b)

than any of the other atoms present, then the effect on the vector diagram for F is normally as if a short-stepped random walk
had been made from the end of FM. Since the steps or f -values for the lighter atoms are relatively small, there is a reasonable
probability that the angle between F and FM will be small and an even higher probability that · (for the entire structure) will lie
in the same quadrant as ·M (for the heavy atom alone). Thus the heavy-atom phase, ·M, may be used as a first approximation to
the true phase, ·.

wave to its sinusoidal appearance and phase angle is shown in Fig-
ure 5.1b. When there are several atoms in the unit cell, the various com-
ponent scattering vectors can be added, as shown in Figures 5.2b and c.

Exponential representation (complex numbers)

For computational convenience, vector algebra is an improvement over
graphical representation, but an even simpler notation is that involving
so-called “complex” numbers, often represented as exponentials. The
exponential representation is particularly simple because multiplication of
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exponentials involves merely addition of the exponents. Equations (5.6)
and (5.7) express the components of the resulting wave; Eqn. (5.10)
expresses the amplitude of the resulting wave as the square root of the
sum of the squares of its components, which we will now abbreviate as
A and B. Equations (5.6), (5.7), and (5.10) may be rewritten as

A = cr cos ·r =
∑

j

c j cos · j (5.11)

B = cr sin ·r =
∑

j

c j sin · j (5.12)

and
cr = (A2 + B2)1/2 (5.13)

We will, as is conventional, let i represent
√ −1, an “imaginary” num-

ber. A complex number, C , is defined as the sum of a “real” number, x,
and an “imaginary” number, iy (where y is real),

C = x + iy (5.14)

The magnitude of C , written as |C |, is defined as the square root of the
product of C with its complex conjugate C∗ (which is defined as x − iy)
so that

|C | ≡ [CC∗]1/2 = [(x + iy)(x − iy)]1/2 = [x2 − i2 y2]1/2 = [x2 + y2]1/2

(5.15)

Comparison of Eqns. (5.14) and (5.15) with Eqns. (5.10)–(5.13) shows
that the vector representations of a wave and the complex number represen-
tations are parallel, provided that we identify the vector itself as A + iB.
The result is that cr of Eqn. (5.13) is identified with |C | of Eqn. (5.15),
and hence the vector components A and B are identified with x and
y, respectively. A and B [as given by Eqns. (5.11) and (5.12)] represent
components along two mutually orthogonal axes (called, with enor-
mous semantic confusion, the “real” and “imaginary” axes, although
both are perfectly real). The magnitude of the vector is given, as is usual,
by the square root of the sum of the squares of its components along
orthogonal axes, (A2 + B2)1/2, as in Eqns. (5.13) and (5.15).

One advantage of the complex representation follows from the
identity

ei· ≡ cos · + i sin · (5.16)

(which can easily be proved using the power-series expansions for these
functions). We then have our expression for the total scattering as

A + iB = cr cos ·r + icr sin ·r ≡ cr ei·r (5.17)

Note that the amplitude of this scattered wave is cr and its phase angle
is ·r , as before, with ·r = tan−1(B/A), as in Eqn. (5.9).

Thus Eqn. (5.17) provides a mathematical means that is computer-
usable for summing values of A and iB. It is often said, when this rep-
resentation of the result of the superposition of scattered waves is used,
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that A is the “real” component and B the “imaginary” component, a ter-
minology that causes considerable uneasiness among those who prefer
their science firmly founded and not flirting with the unreal or imag-
inary. It cannot be stressed too firmly that the complex representation is
merely a convenient way of representing two orthogonal vector components in
one equation, with a notation designed to keep algebraic manipulations
of the components in different directions separate from one another.
Each component is entirely real, as is evident from Figures 5.1 and 5.2.

Scattering by an individual atom

Electrons are the only components of the atom that scatter X rays signif-
icantly, and they are distributed over atomic volumes with dimensions
comparable to the wavelengths of X rays used in structure analysis.
The amplitude of scattering for an atom is known as the “atomic scat-
tering factor” or “atomic form factor”, and is symbolized as f . It is
the scattering power of an atom measured relative to the scattering
by a single electron under similar conditions. If the electron density is
known for computed atomic orbitals (see Hartree, 1928; James, (1965);
Stewart et al., 1965; Pople, 1999), then atomic scattering factors can
be calculated from this electron density as shown in Figure 5.3. The
electron densities of the atomic orbitals form the basis of the scattering
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Fig. 5.3 Atomic scattering factors.

(a) Radial electron density distribution in atomic orbitals from theoretical calculations
and (b) the scattering factors derived from them. The scattering curves in Figure 5.4 are
similar to the uppermost curve (marked “Sum”) in (b) here.



78 The diffraction pattern obtained

Biso=0.0 Å2

Biso=3.5 Å2

6

0.2 0.4 0.6 0.8

f e
– (

B
is
o

si
n2

q
/l

2 )

sin q /l

(c)

30

25

20

Br–

Fe++

Ca++

CI–

O

C

H

15

10

5

0

35

(a)

0.80.60.40.2 1.0 1.2
sin q /l

f

(b)

Direct beam

Direct beam

Small atom

Large atom

Small path difference
with respect to wavelength
at edges of atom

Bragg reflection
Very little intensity
reduction

Bragg reflection
Reduced intensity

Large path difference
with respect to wavelength
at edges of atom

PD

PD

2q

2q

Fig. 5.4 Atomic-scattering-factor curves.

(a) Some atomic-scattering-factor curves for atoms, given as a function of sin Ë/Î so that they will be independent of wavelength.
(Remember that 2Ë is the deviation of the diffracted beam from the direct X-ray beam, wavelength Î.) The scattering factor
for an atom is the ratio of the amplitude of the wave scattered by the atom to that of the wave scattered by a single electron.
At sin Ë/Î = 0 the value of the scattering factor of a neutral atom is equal to its atomic number, since all electrons then scatter in
phase. Note that calcium (Ca++) and chloride (Cl−) are isoelectronic; that is, they have the same number of extranuclear electrons.



Scattering by an individual atom 79

factors as a function of sin Ë/Î; they are published and available in
International Tables. Some values are given in Appendix 5.

For most purposes in structure analysis it is adequate to assume that
atoms themselves are spherically symmetrical, but, with some of the
best data now available, small departures from spherical symmetry
(attributable to covalent bonding, lone pairs of electrons, and nonspher-
ical orbitals, for example) are detectable. However, in our discussions,
unless stated otherwise, we will assume spherical symmetry of atoms.
This means that the scattering by an assemblage of atoms—that is,
by the structure—can be very closely approximated by summing the
contributions to each scattered wave from each atom independently,
taking appropriate account of differences in the phase angles of each
wave. Some atomic scattering factors, plotted as a function of sin Ë/Î,
are shown in Figure 5.4a. Since the diffraction pattern is the sum of the
scattering from all unit cells, and this can be represented by the average
contents of a single one of these unit cells, vibrations or disorder may
be considered the equivalent of the smearing out of the electron density,
so that there is a greater fall-off in the intensity of the diffraction pattern
at a higher sin Ë/Î values (cf. the optical analogy in Figure 3.1: the wider
the slit, the narrower the diffraction pattern). This modification of the
fall-off by atomic vibration, motion or disorder, which results in a larger
apparent atomic size as shown in Figure 5.4b, increases the falloff in
scattering power as a function of scattering angle (Figure 5.4c). This fall-
off may be isotropic (equal in all directions) or anisotropic (greater in
certain directions in the unit cell than in others). Information obtained
from an analysis of such atomic motion or disorder is discussed in
Chapter 12. It leads, in nearly all crystal structures, to a model with
anisotropic displacement parameters representing an inexact register
of atomic positions from unit cell to unit cell. By contrast to X-ray scat-
tering, neutrons are scattered by atomic nuclei, rather than by electrons
around a nucleus, and hence, since the nucleus is so small (equivalent
to a “point atom”), the neutron scattering for a nonvibrating nucleus is
almost independent of scattering angle.

The positively charged calcium ion pulls electrons closer to the nucleus than does the chloride ion, which is negatively charged
and has a lower atomic number. The resulting “narrower atom” for Ca++ will, for reasons shown in Figure 3.1, give a broader
diffraction pattern. This is shown at high values of sin Ë/Î by higher values of f for Ca++ than for Cl−.

(b) When radiation is scattered by particles that are very small relative to the wavelength of the radiation, such as neutrons, the
scattered radiation has approximately the same intensity in all directions. When it is scattered by larger particles, the radiation
scattered from different regions of the particle will still be in phase in the forward direction, but at higher scattering angles there
is interference between radiation scattered from various parts of the particle. The intensity of radiation scattered at higher angles
is thus less than for that scattered in the forward direction. This effect is greater the larger the size of the particle relative to the
wavelength of the radiation used.

(c) The effects of isotropic vibration on the scattering by a carbon atom. Values are shown for a stationary carbon atom (Biso of

0.0 Å
2
) and for one with a room temperature isotropic displacement factor (Biso of 3.5 Å

2
) that corresponds to a root-mean-

square amplitude of vibration of 0.21 Å. Vibration and disorder result in an apparently relatively greater size for the atoms (since
we are considering an average of millions of unit cells), and consequently a decrease in scattering intensity with increasing
scattering angle. If Biso is large, no Bragg reflections may be detectable at high values of 2Ë; that is, a narrower diffraction pattern
is obtained from the “smeared-out” electron cloud of a vibrating atom (cf. Figure 3.1).
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Scattering by a group of atoms (a structure)

The X radiation scattered by one unit cell of a structure in any direction
in which there is a diffraction maximum has a particular combination of
amplitude and relative phase, known as the structure factor and symbol-
ized by F or F (hkl) (Sommerfeld, 1921). It is the ratio of the amplitude
of the radiation scattered in a particular direction by the contents of one
unit cell to that scattered by a single electron at the origin of the unit
cell under the same conditions. The intensity of the scattered radiation
is proportional to the square of the amplitude, |F (hkl)|2. In the manner
just discussed [see Eqn. (5.17)], the structure factor can be represented
either exponentially or as an ordinary complex number:

F (hkl) = |F (hkl)|ei·(hkl) = A(hkl) + iB(hkl) (5.18)

with |F | or |F (hkl)| representing the amplitude of the scattered wave,
and ·(hkl) its phase relative to the chosen origin of the unit cell.* As

* The structure factor F may be repre-
sented as a vector, but it is not conven-
tionally written in bold face, so we, as is
common, will use F for the vector and |F |
for its amplitude.

before (Figure 5.1), · = tan−1(B/A) and cr = |F (hkl)| = (A2 + B2)1/2. The
quantities A and B, representing the components of the wave in its
vector representation (see Figure 5.2), can be calculated, if one knows
the structure, merely by summing the corresponding components of the
scattering from each atom separately. These components are [by Eqns.
(5.6) and (5.7)] the products of the individual atomic-scattering-factor
amplitudes, f j , and the cosines and sines of the phase angles, · j , of the
waves scattered from the individual atoms:

A(hkl) =
∑

j

f j cos · j (5.19)

and

B(hkl) =
∑

j

f j sin · j (5.20)

But how do we calculate · j for each atom?
If an atom lies at the origin of the unit cell and if other atoms lie one or

several unit-cell translations (a ) from it, then this grating of atoms will
give a series of Bragg reflections h00 on diffraction. If there is another
atom between two of them, at a distance xa from the origin (where x is
less than 1), radiation scattered by this atom will interfere with the other
resultant Bragg reflection by an amount that depends on the value of x.
This can be generalized so that, for each h00 Bragg reflection, the phase
difference (interference) will depend on the value of hx as illustrated
in Figures 5.5 and 5.6. We show in Appendix 6 that the phase of the
wave scattered in the direction of a reciprocal lattice point (hkl) by an
atom situated at a position x, y, z in the unit cell (where x, y, and z are
expressed as fractions of the unit-cell lengths a , b, and c, respectively) is
just 2π(hx + ky + lz) radians, relative to the phase of the wave scattered
in the same direction by an atom at the origin. This is important because
it defines the effect of the location of an atom in the unit cell. The “rela-
tive phase angle” for an atom at x,y, z, where these numbers are defined
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phase of a wave scattered by an atom (shown as a black circle within the unit cell) and
the phase of a wave scattered in the same direction by an imaginary atom at the chosen
origin of the unit cell.

a

100 Bragg
reflection
scattered by atoms
at 0 and 1.0

Origin

U
ni

t 
ce

ll 
le

ng
th

100
Bragg
reflection
scattered by
atom at x
(partially
out of phase)

x

Atom

Fig. 5.6 The relative phase angle on diffraction.

If a one-dimensional structure with a repeat distance a has an atom at 0.0 (and this is
repeated from unit cell to unit cell by other atoms at 1.0, 2.0, etc.) and an atom at x/a , the
phase difference between the atom at 0.0 and the atom at x/a is 2πhx radians. Suppose
that the atom at 0.0 is at the chosen origin of the system. Its phase angle for a cosine
function is 0◦. The phase angle of the atom at x is 2πhx radians. This is the difference of
its phase with that of the atom at the origin, and hence the radiation scattered by the atom
at x is considered to have a relative phase of 2πhx radians.
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with respect to a chosen origin at 0, 0, 0, is 2π(hx + ky + lz) radians. If
the location of the chosen origin is changed, the relative phase will also
be changed. Each structure factor is the sum of the scattering from all
atoms j in the unit cell. Thus Eqns. (5.19) and (5.20) (for all atoms j) can
be rewritten as

A(hkl) =
∑

j

f j cos 2π(hxj + kyj + lz j ) (5.21)

B(hkl) =
∑

j

f j sin 2π(hxj + kyj + lz j ) (5.22)

where the value of f j chosen is that corresponding to the value of
sin Ë/Î for the Bragg reflection in question, modified to take into account
any thermal vibration of the atom. A comparison with Eqns. (5.19) and
(5.20) shows that we now know the phase · j . The magnitude of |F (hkl)|
depends only on the relative positions of the atoms in the unit cell,
except to the extent that f j is a function of the scattering angle. The size
and shape of the unit cell do not appear as such in the expressions for
A and B. In Figure 5.2, F is represented as a vector. Note that a shift in
the chosen origin of the unit cell will add a constant to the phase angle
of each atom [see Eqns. (5.21) and (5.22)]; that is, it will rotate the phase
diagrams in Figure 5.2 relative to the coordinate axes, but will leave the
length of |F (hkl)|, and hence the values of |F (hkl)|2 and the intensity,
unchanged.

Effects of atomic vibration and displacements
on atomic scattering

Atomic vibrations in a crystal, that is, displacements from equilibrium
positions, have a frequency of the order of 1013 per second. This is
much slower than the frequencies of X rays used to study crystals; these
are of the order of 1018 per second. Therefore a vibrating atom will
appear stationary to X rays but displaced in a random manner within
the vibration amplitude. Atoms in other unit cells will also exhibit this
random deviation from their equilibrium positions, different for each
such atom in the various unit cells throughout the crystal. Because
minor static displacements of atoms appear similar to displacements
caused by atomic vibrations, it is usual to use the term “atomic dis-
placement parameter” rather than “atomic temperature factor” for the
correction factor. When 2Ë = 0, all electrons in the atom scatter in phase,
and the scattering power of an atom at this angle, expressed relative to
the scattering power of a free electron, is just equal to the number of
electrons present (the atomic number for neutral atoms).

However, an atom has size (relative to the wavelength of the X rays
used), with the result that X rays scattered from one part of an atom
interfere with those scattered from another part of the same atom at
all angles of scattering greater than 0◦. This causes the scattering to
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fall off with increasing scattering angle or, more precisely, increasing
values of sin Ë/Î, as indicated in Figure 5.4b. The fall-off in intensity
with higher scattering angle (Figure 5.4c) increases as the vibrations of
atoms become greater, and these vibrations in turn increase in extent
with rising temperature. Atoms are in motion in the crystalline state,
however, even when the temperature is reduced to near absolute zero.
This vibration, coupled with displacements of some atoms, leads to
a significant reduction in intensity that can be approximated by an
exponential function that has a large effect at high 2Ë values (illustrated
in Figure 5.4c); this indicates, as noted by Peter J. W. Debye and Ivar
Waller, that atomic motion endows a larger “apparent size” to atoms
(Debye, 1914: Waller, 1923). Effectively, since atoms are displaced
different amounts from unit cell to unit cell at the given instant in time
that measurement occurs, atoms appear to have become smeared in the
average of all the unit cells in the crystal. If the displacement amplitude
is sufficiently high, essentially no diffracted intensity will be observed
beyond some limiting value of the scattering angle; that is, the “slit” is
effectively widened by the vibration and so the “envelope” is narrow
(Figure 3.5a). If the displacements are nearly isotropic—that is, do not
differ greatly in different directions—the exponential factor can be
written as exp(−2Biso sin2 Ë/Î2), with Biso called the atomic displacement
factor.** Biso is equal to 8π2 <u2>, where <u2> is the mean square

** Many crystallographers omit the sub-
script “iso,” relying on the context to
avoid confusion with the quantity B
defined in F = A + iB.

amplitude of displacement of the atom from its equilibrium position.
The type of disorder found in a crystal may be static, with the atom
in one site in one unit cell and a different site in another unit cell.
Alternatively, it may be dynamic, which implies that the atom moves
from one site to another. The overall effect in both cases is a reduction
in the scattering factors of the atoms involved as sin Ë/Î increases
(see Willis and Pryor, 1975).

If the motion or disorder is anisotropic, it is necessary to replace Biso
by six terms. This is usually necessary for all atoms except hydrogen
atoms; these have only weak scattering power. Atoms in crystals rarely
have isotropic environments. The six parameters define the orientations
of the principal axes of the ellipsoid that represents the anisotropic
displacements and the magnitudes of the displacements along these
axes. The results are often displayed in an ORTEP† diagram, in which † ORTEP = Oak Ridge Thermal Ellipsoid

Plot (Johnson, 1965).the atomic displacement factors are drawn as ellipsoids (Johnson, 1965).
If the anisotropy is severe, the ellipsoid representing the displacement
probability and its direction may be abnormally extended in shape and
may be better represented as disorder in two positions.

Macromolecules, such as proteins, show interesting thermal and dis-
placement effects. While their structures are generally, but not always,
measured at a lower resolution than for small molecules, anisotropic
displacement parameters are rarely determined, but isotropic displace-
ments give information on the motion and flexibility of various portions
in the molecule. One domain of the molecule may appear to move
in a hingelike manner with respect to another part of the same mole-
cule. Also, side chains at the surface of the macromolecule may have
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alternate atomic positions from unit cell to unit cell as they interact
with the various water molecules that fill nearly half of the crystal
volume.

Calculating a structure factor

With a method for expressing a structure factor by means of an equation
(Eqn. 5.18), and information on the components of this equation, it is
possible to obtain a calculated value for the structure factor. This can be
compared with the experimental value derived from I (hkl). The data
needed in order to calculate a structure factor include the values of x,
y, and z for each atom; h, k, l, and sin Ë/Î for the Bragg reflection under
consideration; and the scattering factor f j for each atom at that value of
sin Ë/Î, modified by atomic displacement factors. Then it is necessary to
calculate 2π(hxj + kyj + lz j ) and its sine and cosine for each atom and
the Bragg reflection for which F (hkl) is being calculated. This gives all
the information necessary to sum the results for each atom and obtain
A(hkl) and B(hkl) according to Eqns. (5.21) and (5.22). These lead to
F (hkl), that is, (A2 + B2)1/2, and the relative phase angle ·(hkl), that is,
tan−1(B/A), for the Bragg reflection with indices h, k, and l when all the
atomic coordinates are known. This process has to be repeated for all of
the other Bragg reflections. It demonstrates how important computers
are to the X-ray crystallographer.

Information on the electron-density map will have to wait until
we know the phase of the structure factor (so that we can deter-
mine the atomic positions x, y, and z). All we have so far are the
experimentally measured structure amplitudes, |F (hkl)|, but we can
calculate F (hkl) = A(hkl) + iB(hkl) (including its relative phase angle
· = tan−1(B(hkl)/A(hkl)), see Eqns. 5.21 and 5.22) if we have x, y, and
z for a model in a unit cell of known dimensions and space group.

Summary

When X rays are diffracted by a crystal, the intensity of X-ray scattering
at any angle is the result of the combination of the waves scattered
from different atoms and the manner in which they modify this inten-
sity by various degrees of constructive and destructive interference.
A structure determination involves a matching of the observed inten-
sity pattern to that calculated from a postulated model, and it is thus
imperative to understand how this intensity pattern can be calculated
for any desired model. The combination of the scattered waves can be
represented in various ways:

(1) The waves may be drawn graphically and the displacements (ordi-
nates, vertical axis) at a given position (abscissae, horizontal axis)
summed.
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(2) A wave may be represented algebraically as

xj = c j cos(ˆ + · j ) (for the j th wave)

and the displacements, xj , of several such waves summed to give
a resultant wave.

(3) The waves may be expressed as two-dimensional vectors in an
orthogonal coordinate system, amplitude c j , with the relative
phase angle · j measured in a counterclockwise direction from the
horizontal axis. This is the equivalent of representing one com-
plete wavelength as 360◦, so that the periodicity of the wave is
expressed. The phase relative to some origin is given as a fraction
of a revolution. The vectors may then be summed by vectorial
addition of their components.

(4) The waves may be represented in complex notation

Aj + iB j = c j ei· j

which is merely a convenient way of representing two orthogonal
vector components (at 0◦ and 90◦) in one equation. By convention
A is the component at 0◦ and B the component at 90◦.

X rays are scattered by electrons. The extent of scattering depends
on the atomic number of the atom and the angle of scattering, 2Ë, and
is represented by an atomic scattering factor f . For a group of atoms,
the amplitude (relative to the scattering by a single electron) and the
relative phase of the X rays scattered by one unit cell are represented by
the structure factor F (hkl) = A(hkl) + iB(hkl) for each Bragg reflection.
For a known structure with atoms j at positions xj , yj , z j , this may be
calculated from

A(hkl) =
∑

j

f j cos 2π(hxj + kyj + lz j )

and

B(hkl) =
∑

j

f j sin 2π(hxj + kyj + lz j )

where the summation is over all atoms in the unit cell. The relative
phase angle ·(hkl) is tan−1(B/A) and the structure factor amplitude
|F (hkl)| is {(A(hkl)2 + B(hkl)2}1/2. The value of F (hkl) may be reduced as
a result of thermal vibration and atomic displacement so that if Fnovib is
the value for a structure containing stationary atoms, the experimental
values will correspond to F (hkl) = Fnovib exp(−Biso sin2 Ë/Î2), where
Biso, the atomic displacement parameter, is a measure of the amount
of vibration and/or displacement (Biso = 8π2 <u2>, where <u2> is the
mean square amplitude of displacement). With precise experimental
data, it is possible to measure the anisotropy of vibration and displace-
ment.



The phase problem and
electron-density maps6
In order to obtain an image of the material that has scattered X rays
and given a diffraction pattern, which is the aim of these studies, one
must perform a three-dimensional Fourier summation. The theorem of
Jean Baptiste Joseph Fourier, a French mathematician and physicist,
states that a continuous, periodic function can be represented by the
summation of cosine and sine terms (Fourier, 1822). Such a set of terms,
described as a Fourier series, can be used in diffraction analysis because
the electron density in a crystal is a periodic distribution of scattering
matter formed by the regular packing of approximately identical unit
cells. The Fourier series that is used provides an equation that describes
the electron density in the crystal under study. Each atom contains
electrons; the higher its atomic number the greater the number of elec-
trons in its nucleus, and therefore the higher its peak in an electron-
density map. We showed in Chapter 5 how a structure factor amplitude,
|F (hkl)|, the measurable quantity in the X-ray diffraction pattern, can
be determined if the arrangement of atoms in the crystal structure is
known (Sommerfeld, 1921). Now we will show how we can calculate
the electron density in a crystal structure if data on the structure factors,
including their relative phase angles, are available.

Calculating an electron-density map

The Fourier series is described as a “synthesis” when it involves struc-
ture amplitudes and relative phases and builds up a picture of the elec-
tron density in the crystal. By contrast, a “Fourier analysis” leads to the
components that make up this series. The term “relative” is used here
because the phase of a Bragg reflection is described relative to that of an
imaginary wave diffracted in the same direction at a chosen origin of
the unit cell (see Figure 6.1). The number of electrons per unit volume,
that is, the electron density at any point x, y, z, represented by Ò(xyz),
is given by the following expression (for an electron-density map,

86
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a Fourier synthesis):

Ò(xyz) =
1
Vc

∑∑
all hkl

∑
F (hkl) exp[−2πi(hx + ky + lz)] (6.1)

Here Vc is the volume of the unit cell, and F (hkl) is the structure factor
for the Bragg reflection with indices h, k, and l. The triple summa-
tion is over all values of the indices h, k, and l. This summation, first
calculated in 1925, represents a mathematical analogy to the process
effected physically in the microscope (Duane, 1925; Havighurst, 1925;
Waser, 1968). As described in Chapter 4, the amplitude of F (hkl), that
is, |F (hkl)|, is easily derived [Eqn. (4.3)] from the intensity of the Bragg
reflection. The phase of that same Bragg reflection ·(hkl), however,
is not.

We will simplify the following equations by putting

ˆ = 2π(hx + ky + lz) (6.2)

We then abbreviate A(hkl) and B(hkl) to A and B, respectively,* and
* Note that the exponential terms in the
expressions for F (the structure factor)
and Ò (the electron density) are opposite in
sign; F = ” f eiˆ and Ò = (1/V)”F e−iˆ. This
is because these are Fourier transforms
of each other (Glasser, 1987a,b; Carslaw,
1930).

F (hkl) = |F (hkl)|eiˆ to F = A + iB. This leads to Eqn. (6.3) (from Eqns.
(5.16) to (5.18) for |F (hkl)| = F (hkl)e−iˆ. In this equation, e−iˆ = cos ˆ −
i sin ˆ and i2 = −1:

F e−iˆ = (A + iB)(cos ˆ − i sin ˆ) = Acos ˆ + B sin ˆ − i(Asin ˆ − B cos ˆ)

(6.3)

Because the summation in Eqn. (6.1) is over all values of the indices
h, k, and l, it includes, in addition to every Bragg reflection hkl, the
corresponding one with all indices having the opposite signs, −h, −k,
−l (also denoted h, k, l). The magnitude of each term (A(hkl), B(hkl),
cos ˆ, and sin ˆ) is normally the same** for a Bragg reflection with

** This implies that “Friedel’s Law”
|F (hkl)|2 = |F (h̄k̄l̄)|2 is obeyed (Friedel,
1913); deviations from this law are
considered in Chapter 10.

indices hkl as for that with indices −h, −k, −l. The sign of the term
will change for these pairs of Bragg reflections if the term involves
sine functions [since sin(−x) = − sin x], but will remain unchanged if
it involves cosine functions [since cos(−x) = cos x]. Both A(hkl) [the
sum of cosines, by Eqn. (5.19)] and cos ˆ have the same sign for hkl as
for −h, −k, −l, whereas B(hkl) [the sum of sines, by Eqn. (5.20)] and
sin ˆ have opposite signs for this pair of Bragg reflections. Therefore,
when Eqn. (6.3) is substituted in Eqn. (6.1) and the summation is made,
the i(Asin ˆ − B cos ˆ) terms cancel for each pair of Bragg reflections
hkl and hkl and vanish completely. The remaining terms, A cos ˆ and
B sin ˆ, need be summed over only half of the Bragg reflections. All
those with any one index (for example, h) negative are omitted and a
factor of 2 is introduced to account for this. Therefore we may write, by
Eqns. (6.1) and (6.3),

Ò(xyz) =
1
Vc

{∣∣F (000)
∣∣ + 2

∑ ∞∑
h≥0, all k, l

excluding F (000)

∑
(Acos ˆ + B sin ˆ)

}
(6.4)
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Since A = |F | cos · and B = |F | sin · [by Eqn. (5.17), where · is the
relative phase angle of F (hkl), and cos X cos Y + sin X sin Y = cos(X −
Y), the above expression for the electron density (Eqn. (6.4)) may be
rewritten†

† A schematic example of the calculation
of the function described in Eqn. (6.5) is
shown in Figure 6.2. Ò(xyz) =

∣∣F (000)
∣∣

Vc
+

2
Vc

∑ ∞∑
h≥0, all k, l

excluding F (000)

∑
(|F | cos(ˆ − ·))

(6.5)

This may be alternatively expressed as

Ò(xyz) =∣∣F (000)
∣∣

Vc
+

2
Vc

∑ ∞∑
h≥0, all k, l

excluding F (000)

∑ ∣∣F (hkl)
∣∣ cos[2π(hx + ky + lz) − ·(hkl)]

Remembering that ˆ = 2π(hx + ky + lz), an inspection of Eqn. (6.5)
shows that we need both the magnitudes |F (hkl)| and the relative
phases ·(hkl) of the radiation that has been diffracted in different direc-
tions. These are necessary for us to be able to form an image of the
scattering matter, Ò(xyz). If we knew |F (hkl)| and ·(hkl), we could then
calculate the Fourier summation in Eqn. (6.5) and plot the values of Ò(xyz),
thereby obtaining a three-dimensional electron-density map. By assuming
that atoms lie at the centers of peaks in this map, we would then know
the atomic structure of the crystal.

However, as we have already stressed many times, we can normally
obtain only the structure factor amplitudes |F (hkl)| and not the relative
phase angles ·(hkl)‡ directly from the experimental measurements. We‡ Under certain conditions, when two-

beam diffraction occurs, some phase infor-
mation may be derived from experimental
measurements (see Chapter 10).

must derive ·(hkl), either from values of A(hkl) and B(hkl) that are
computed from structures we have deduced in various ways (“trial
structures”), or by purely analytical methods. The problem of getting
estimates of the phase angles so that an image of the scattering matter
can be calculated is called the phase problem and is the central one in X-
ray crystallography. Chapters 8 and 9 are devoted to methods used to
solve the phase problem, either by deriving a trial structure and then
calculating approximate values of ·(hkl) for each Bragg reflection, or
by trying to find values of ·(hkl) directly. Recall that, for the third-
order Bragg reflection, the path difference between waves scattered one
repeat unit (a ) apart (that is, by equivalent atoms in adjacent unit cells)
is three wavelengths. The important fact for the reader to understand
is that each resultant wave should be traced back and its phase com-
pared with that of an imaginary wave being scattered at the origin
of the repeat unit (with a relative phase angle of 0◦); that is why we
call it a “relative phase,” the origin being in a position chosen by the
investigator (see Nyburg, 1961).

How do we derive the relative phases of the density waves, that
is, their phases relative to a chosen origin? We attempt to show, in
Figure 6.1, how the X rays scattered from different atoms are summed to
give the resultant X ray beams of various amplitudes (and hence inten-
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Fig. 6.1 Scattered waves and their relative phases.

A one-dimensional crystal with two atoms in the unit cell, one at x = 1/3 and the other at
x = 2/3. Shown are the Bragg reflections (a) 100, (b) 200, and (c) 300 and their relationships
to an imaginary wave scattered at the chosen origin of the unit cell (which leads to
the “relative phase angle”). Note that the most intense of these three is the 300 Bragg
reflection.

sities). A unit cell containing two atoms, one at x = 1/3 and the other at
x = 2/3, is used to illustrate how relative phases are derived. Compared
with an imaginary atom at the origin, the atom at x = 1/3 scatters for
a third order reflection with a path difference of one wavelength and
the atom at x = 2/3 scatters with a path difference of two wavelengths.
Thus both scatter in phase with the wave scattered at x = 0. However,
for the second order, the atom at x = 1/3 scatters X rays with a path
difference of 0.67 wavelengths from that scattered by the imaginary
atom at the origin, and the atom at x = 2/3 scatters with a path difference
of 1.33 wavelengths from the wave scattered at the origin. The resultant
wave is then (0.33 + 0.67)/2 = 0.50 wavelengths out of phase with the
wave scattered by the imaginary atom at the origin. Thus, in summing
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Fig. 6.2 Fourier synthesis of the Bragg reflections from Figure 6.1.

The Fourier summation of density waves to give an electron-density map with peaks
at x = ±1/3. At any point x, y, z in the unit cell, volume Vc, the electron density Ò(xyz)
may be calculated by use of Eqn. (6.5). The following data have been used for this one-
dimensional example:
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density waves, as shown in Figure 6.2, the 300 wave has a relative phase
angle of 0◦ and the 200 density wave has a relative phase angle of 180◦.

Fourier transforms

We have shown that the electron density Ò(xyz) (Eqn. 6.1) can be
expressed in an equation that involves the structure factors F (hkl) as
coefficients,

Ò = (1/V)� F e−iˆ (6.6)

It is also possible to express the structure factors in terms of the electron
density:

F = � f eiˆ (6.7)

The relationship between these two is referred to as a Fourier trans-
form or Fourier inversion. These equations show that the structure
factor is the Fourier transform of the scattering density (electrons
in the molecule) sampled at the reciprocal lattice point hkl, while
the electron density is the Fourier transform of the structure fac-
tors (which contain their relative phases). The intensity at a par-
ticular point of the diffraction pattern of an object (a set of rela-
tive |F (hkl)|2 values) is proportional to the square of the Fourier
transform of the object (with the distribution of matter in the object
described by Ò(x, y, z)). Examples of Fourier transforms are shown in
Figure 6.3, with electron density and density waves on the left and
structure factors, with their relative phases, shown on the right as
positive or negative (· = 0◦ or 180◦). Equation (6.6) or (6.7) (whichever

h −3 −2 −1 0 1 2 3

|F (hkl)| 2 1 1 2 1 1 2
·(hkl)(◦) 0 180 180 0 180 180 0
cos[2π(hx − ·)] + cos 6πx − cos 4πx − cos 2πx +1 − cos 2πx − cos 4πx + cos 6πx

Therefore Ò(x) = |F (000)|/Vc + (4 cos 6πx − 2 cos 4πx − 2 cos 2πx + 2)/Vc.
When h = 0, the function does not depend on x and so is a straight line (but drawn

with half its amplitude to conform to the electron-density map equation with positive
and negative values of h). The phase angle of this is necessarily 0◦. The function for
h = 1 is − cos 2πx, the negative sign resulting from the relative phase angle of 180◦, and
so forth. These functions are summed for each value of x to give the result shown by
the heavy solid line. It has peaks at x = ±1/3. Clearly, unless the phases were known,
it would not be possible to sum the waves correctly. This kind of calculation must be
made, with thousands of Bragg reflections, at each of many thousands of points to give a
complete electron-density map in three dimensions. Therefore high-speed computers are
essential. For a three-dimensional electron-density map it is not possible to plot heights
of peaks (because we have no fourth spatial dimension), and therefore contours of equal
electron density (or height) are drawn on sections through the three-dimensional map.
Atomic centers appear at the centers of areas of high electron density, which look like
circular mountains on a topographical map. The larger values of F dominate the Fourier
summation.
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Fig. 6.3 Summing Fourier transforms.

Density waves for the 200, 300, and 500 Bragg reflections and their Fourier transforms.
When the columns are summed, the density waves (on the left) give the electron density
map, while their Fourier transforms (on the right) give the phases of the individual
density waves. When intensities are measured, the phase information is lost. Note: This
is a different structure from that in Figures 6.1 and 6.2.

is most appropriate) is used for the transformations. As will be seen
later, it is convenient to be able to move readily between real (electron
density) and reciprocal (structure factor) space, and this is how it is
done. For example, one may want to modify an electron-density map
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and calculate a new data set of structure factors for comparison with
experimental values or may calculate the theoretical electron density for
an atom or ion and then examine the atomic scattering factors relevant
to this density (as mentioned in Chapter 5). Alternatively, one may want
to change some (or all) of the structure factors and investigate the effect
of this on the electron-density map. The Fourier transform equations
make this possible.

Summing density waves to obtain an
electron-density map

We have emphasized the analogy between the action of a lens in col-
lecting and refocusing radiation to give an image of the scattering
matter, and the process of Fourier summation, a mathematical tech-
nique for forming an image by use of information about the ampli-
tudes and relative phases of the scattered waves. Fourier summation
techniques can be applied even when the waves cannot be refocused,
as in the X-ray experiment. With a lens the light waves are (ideally)
brought together with the same phases that they had when they left
the object; in the X-ray diffraction experiment these phases are usu-
ally not measurable, although if they can be found in some way,
then it is possible to calculate an electron-density map as shown in
Figures 6.3 and 6.4.

The individual waves in Eqn. (6.5) that are summed to give the
electron-density map are referred to, for convenience in this book, as
“density waves” (see Bijvoet et al., 1948). In other words, each term
|F (hkl)| cos[(2π(hx + ky + lz) − ·(hkl)], calculated as a function of x, y,
and z, is a density wave, as illustrated in Figure 6.4. In effect, Eqn.
(6.5) could be rewritten to say that the electron density Ò(x, y, z) at a
point in space x, y, z is equal to the sum of these density waves. Thus each
Bragg reflection with its relative phase can be considered to produce a
density wave in the crystal, with an amplitude that can be derived from
the intensity of the Bragg reflection; the superposition of these density
waves, once their phases are known, produces the electron-density map
for the crystal:

Ò(xyz) =
1
Vc

{ ∣∣F (000)
∣∣

+2
∑ ∞∑

all density waves

∑ ∣∣F (hkl)
∣∣ cos[2π(hx + ky + lz) − ·(hkl)]

}
(6.8)

The determination of the phases of these density waves is the subject
of much of the rest of this book. But what is the wavelength of a
density wave and how is it related to the order (h, k, l) of the diffracted
beam? Their wavelengths depend on h, k, and l, not the wavelength
of the X rays that caused each Bragg reflection. A close examination
of Eqn. (6.5) shows that |F (hkl)| is modified by a cosine function
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Fig. 6.4 Overview of X-ray diffraction.

Summary of the diffraction experiment, showing (i) the atomic structure (one-dimensional in this case); (ii) diffraction of X rays by the
crystal structure; (iii) density waves; (iv) summation of the density waves to give the electron-density map; and the result is an image
of the actual structure (v), which is the same as (i).

of (2π(hx + ky + lz) − ·(hkl)); thus it becomes a periodic function of h,
k, and l. In the simple case (Figure 6.2) where k and l are both zero,
cos 2π(hx) is at a maximum value when x = 1/h; that is, this cosine term
has an apparent wavelength of a/h (where a is the unit-cell length in the
x direction and x is expressed as a fraction of this dimension a ).

In summary, the wavelengths of the density waves are dhkl = Î/2 sin Ë,
their amplitudes are |F (hkl)|, and their phases are ·(hkl). For example,
the wavelength of the 1 0 0 density wave is the repeat distance a (= d100)
(see Figure 6.2), the wavelength of the 2 0 0 density wave is a/2 because
the second order of diffraction occurs at a sin Ë value twice that of the
first order, and so forth. For the 1 0 0 reflection, phase π, Eqn. 6.8 gives
the function cos [2πx + π] which is maximal at x = 1/2 (see Figure 6.4).
These are the density waves that are summed to give the electron-
density map shown in Figure 6.2. “High resolution” implies a high
value of sin Ë and thus a small value for the effective wavelength of
the density wave; as we shall see later, high-resolution Bragg reflec-
tions (short wavelength density waves) are needed to provide high-
resolution images of molecules.

The density waves, derived by arguments such as these, are summed
as shown in Figures 6.2 and 6.4 to give the electron density of the
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Fig. 6.5 Comparison of electron-density maps when the phases are correct and when they are incorrect and random.

In the computation of all maps shown here, the same |F (hkl)| values but different phases were used. The upper left electron-density
map (a) is the correct result; the other three maps ((b) to (d)) have incorrect relative phases, and provide an incorrect electron-density
map. The phases of these three “random phase” maps were found by a computer program for random number generation. Since the
structure is noncentrosymmetric, the phase for each Bragg reflection could have any value between 0◦ and 360◦. In each case, the
molecular skeleton is shown by solid lines in the correct position, but it is clear that only the first map (top left) correctly represents
the true structure.

Courtesy H. L. Carrell.

structure, and the peaks in such a map correspond to the centers of
atoms. The importance of the phases in determining a structure is illus-
trated in Figure 6.5. Each of the four electron-density maps in this figure
has the same values of |F |, but differs in the phases used in the calcula-
tion. For clarity, the true crystal structure is indicated by a line diagram.
As can be seen, only the first map correctly gives peaks at atomic posi-
tions. An electron-density map with correct phases much more nearly
approximates the correct structure than does an electron-density map
with incorrect phases, even if each has the correct magnitudes for the
|F (hkl)| values. The analysis of electron-density and Patterson maps has
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benefited greatly from the improvements in computer graphics so that
now it is possible to view the three-dimensional map on a computer
screen and rotate and move it at will in order to obtain structural
information. However, automatic fitting of a three-dimensional model
structure to the electron-density map is now possible by computer
without any need for display (Lamzin et al. 2001; Oldfield, 2003).

An initial trial structure

At the start of a structure determination one does not know the
positions of all the atoms in the structure (for if one did, the structure
would probably not need to be investigated), but one can often deduce
an approximation to the correct structure. The calculated phases for
this initial (approximate) trial structure will provide a starting point for
structure determination. This trial structure may be one that completely
fills the unit cell or else it may be only a partial structure (even, for
example, one heavy atom). It is possible to calculate an approximation
to the true electron density by a three-dimensional Fourier summation
of the observed structure factor amplitudes, |Fo|, with phases calculated
from an initial trial structure which may be only partially complete.
It has been found that the general features of an electron-density map
depend much more on the phase angles than on the structure factor
amplitudes. Therefore a map calculated with only approximately
correct phases will be an imperfect representation of the structure.
However, it is biased toward the correct structure because the observed
structure amplitudes |Fo| were used in the calculation. By comparison
with a similar synthesis using the calculated amplitudes |Fc|, or even
more simply by computing the difference (|Fo| − |Fc|) to obtain a “dif-
ference synthesis”, one can deduce the changes in the model needed to
give better agreement with observation. The positions of some hitherto
unrecognized atoms may be indicated, and shifts in the positions of
some atoms already included will normally be suggested as well.

Correctness of the trial structure

Once the approximate positions and identities of all the atoms in the
asymmetric unit are known (that is, when the true crystal structure is
known), the amplitudes and phases of the structure factors can readily
be calculated (see Chapter 5). These calculated amplitudes, |F (hkl)c|,
may be compared with the observed amplitudes, |F (hkl)o|. If the struc-
tural model is a correct one and the experimentally observed data are
reasonably precise, the agreement should be good. The situation is
different for phases. The phases calculated for a trial structure cannot
be compared with observed phases, because normally phases are not
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observed; they depend on where the origin of the unit cell was chosen
to be.

One measure of the correctness of a structure is the so-called
discrepancy index (or reliability index or conventional residual), R,
defined as

R =
∑∣∣(|Fo| − |Fc|)

∣∣∑
(|Fo|) (6.9)

It is a measure of how closely the experimentally observed structure
factor amplitudes are matched by the values calculated for a proposed
trial structure. At present, R values in the range of 0.02 to 0.06 (alter-
natively described as 2 percent to 6 percent) are being quoted for the
most reliably determined structures of small molecules. An R value of
0.83 corresponds to a random centrosymmetric structure; that is, with
proper scaling a randomly incorrect structure with a center of symme-
try would give an R value of about 0.83 (0.59 for a noncentrosymmetric
crystal structure) (Wilson, 1950). A refinable trial structure may have an
R value between 0.25 and 0.35, or even somewhat higher. This value
will (hopefully) be decreased by methods described in Chapter 11 to a
much lower value. If one atom of high atomic number is present, the
initial trial value of R may be much lower because the position of this
atom can usually be determined reasonably well even at an early stage,
and a heavy atom normally dominates the scattering, as illustrated in
the atomic scattering factors in Figure 5.4a. If the trial structure is a
reasonable approximation to the correct structure, the R value goes
down appreciably as refinement proceeds.

The discrepancy index R is, however, only one measure of the pre-
cision (but not necessarily the accuracy) of the derived structure. It
denotes how well the calculated model fits the observed data. Many
complications can cause errors in the observed or calculated struc-
ture factors or both—for example, absorption of the X-radiation by
the crystal, or atomic scattering factors and temperature factors that
do not adequately describe the experimental situation. The fit of the
calculated structure factors to the observed ones may then be good,
but if the observations are systematically in error, the accuracy of the
derived structure may be low, despite an apparently high precision.
Hence care must be taken in interpreting R values. In general, the
lower the R value the better the structure determination, but if one or
more very heavy atoms are present, they may dominate the structure
factor calculation to such an extent that the contributions from light
atoms may not have noticeable effects on R, especially if the structure
has not been refined extensively. The positions of the light atoms may
then be significantly in error. Also the resolution of the data (i.e., the
maximum value of sin Ë/Î) must be taken into account in assessing the
meaning of an R value. A few grossly incorrect trial structures have
been refined to R values as low as 0.10. Fortunately this situation is not
common.
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Resolution of a crystal structure

The variation of resolving power with scattering angle in structural dif-
fraction studies has a direct analogy with the resolution of an ordinary
microscope image (Abbé, 1873; Porter, 1906). If some of the radiation
scattered by an object under examination with a microscope escapes
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Fig. 6.6 Different stages of resolution for a given crystal structure.

The electron-density maps shown were calculated after eliminating all observed |F (hkl)|
measured beyond a given 2Ë value. The “resolution” obtained is usually expressed in
terms of the interplanar spacings d = Î/(2 sin Ë) corresponding to the maximum observed
2Ë values (Î = 1.54 Å for copper radiation in this example).
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rather than being recombined to form an image (as shown in Figure 1.1),
the image that is formed will be, to some degree, an imperfect rep-
resentation of the scattering object. More particularly, fine detail will
remain unresolved. Similarly, with X rays, if the diffraction pattern
for the customary wavelengths is observed only out to a relatively
small scattering angle, the resolution of the corresponding image recon-
structed from it will be low. Furthermore, the resolution will be limited
by the wavelength chosen even if the entire pattern is observed. Some
examples of electron-density maps calculated with data out to a listed
resolution are shown in Figure 6.6. As can be seen, lower numbers, indi-
cating higher resolution, give more detailed pictures of the molecule.
As in any process of image formation by recombination of scattered
radiation, detail significantly smaller than the wavelength used cannot
be distinguished by any scheme. On the other hand, the positions of
well-resolved objects of known shape can be measured with high preci-
sion, and fortunately all interatomic distances are well resolved in three
dimensions with the X rays we generally use. Hence, the positions of the
resolved atoms can be measured and the details of molecular geometry
calculated quite precisely.

The basic data in X-ray crystal studies

It is important to stress here which are the experimental data in an X-
ray or neutron diffraction experiment. The experimental results are the
intensities of the diffracted beams (combined with their indices hkl) and
their conversion to |F (hkl)| values. The relative phases are generally not
measured, but are derived by the methods described in Chapters 8 and
9; isomorphous replacement and Renninger reflection measurements
may, however, give some initial phase information. The electron-density
maps that follow are generally not primary experimental data but are the

d(Å) Maximum 2Ë(◦) Relative number of Bragg reflections
included in each calculation

(1) 5.5 16 7
(2) 2.5 36 27
(3) 1.5 62 71
(4) 0.8 162 264

In each of the maps, the skeleton of the actual structure from which the data were taken
has been superimposed. The first stage (1) (upper left) is typical of those encountered
early in the determination of a protein structure. For protein structures, a degree of
resolution between (2) and (3) is generally as much as is possible. The detail shown in (4)
is characteristic of a structure determination with good crystals of low-molecular-weight
compounds with radiation from an X-ray tube with a copper target. These electron-
density maps may be compared to views of an object through a microscope, each corre-
sponding to a different aperture (from Glusker et al., 1968). Note the lower peak heights of
the carbon atoms compared with the nitrogen atoms. Also note that in the high-resolution
structure, hydrogen atom locations are indicated.
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results of estimated phase angles and, as shown in Figure 6.5, may or
may not be correct. Therefore, if the final structure is not as expected,
rereview the methods used to obtain the phases and to refine the pro-
posed trial structure.

Summary

The electron density at a point x, y, z in a unit cell of volume Vc is

Ò(xyz) =
1
Vc

∑ ∑
all hkl

∑∣∣F (hkl)
∣∣ cos[2π(hx + ky + lz) − ·(hkl)]

[see Eqn. (6.5)]. Therefore, if we knew |F (hkl)| and ·(hkl) (for each h,
k, l) we could compute Ò(x, y, z) for all values of x, y, and z and plot
the values obtained to give a three-dimensional electron-density map.
Then, assuming atomic nuclei to be at the centers of peaks, we would
know the entire structure. However, we can usually obtain only the
structure factor amplitudes |F (hkl)| and not the relative phase angles
·(hkl) directly from experimental measurements. This is the phase prob-
lem. We must usually derive values of ·(hkl) either from values of A(hkl)
and B(hkl) computed from suitable “trial” structures or by the use
of purely analytical methods. In practice, approximations to electron-
density maps can be calculated with experimentally observed values
of |F (hkl)| and calculated values of ·(hkl). If the trial structure is not
too grossly in error, the map will be a reasonable representation of the
correct electron-density map, and the structure can be refined to give
a better fit of observed and calculated |F (hkl)| values. The discrepancy
index R is one measure of the correctness of a structure determination.
However, it is at best a measure of the precision of the fit of the model
used to the experimental data obtained, not a measure of the accuracy.
Some structures with low R values have been shown to be incorrect.



Symmetry and space
groups 7
A certain degree of symmetry is apparent in much of the natural world,
as well as in many of our creations in art, architecture, and technology.
Objects with high symmetry are generally regarded with pleasure. Sym-
metry is perhaps the most fundamental property of the crystalline state
and is a reason that gemstones have been so appreciated throughout
the ages. This chapter introduces some of the fundamental concepts of
symmetry—symmetry operations, symmetry elements, and the combi-
nations of these characteristics of finite objects (point symmetry) and
infinite objects (space symmetry)—as well as the way these concepts
are applied in the study of crystals.

An object is said to be symmetrical if after some movement, real or
imagined, it is or would be indistinguishable (in appearance and other
discernible properties) from the way it was initially. The movement,
which might be, for example, a rotation about some fixed axis or a
mirror-like reflection through some plane or a translation of the entire
object in a given direction, is called a symmetry operation. The geomet-
rical entity with respect to which the symmetry operation is performed,
an axis or a plane in the examples cited, is called a symmetry element.
Symmetry operations are actions that can be carried out, while symmetry
elements are descriptions of possible symmetry operations. The difference
between these two symmetry terms is important.

It is possible not only to determine the crystal system of a given crys-
talline specimen by analysis of the intensities of the Bragg reflections
in the diffraction pattern of the crystal, but also to learn much more
about its symmetry, including its Bravais lattice and the probable space
group. As indicated in Chapter 2, the 230 space groups represent the
distinct ways of arranging identical objects on one of the 14 Bravais
lattices by the use of certain symmetry operations to be described below.
The determination of the space group of a crystal is important because
it may reveal some symmetry within the contents of the unit cell. Space
group determination also vastly simplifies the analysis of the diffrac-
tion pattern because different regions of this pattern (and hence of the
atomic arrangement in the crystal) may then be known to be identical.
Furthermore, symmetry greatly reduces the number of required calcu-
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lations because only the contents of the asymmetric portion of the unit
cell (the asymmetric unit) need to be considered in detail. In summary,
the concept of the unit cell reduces the amount of structural information
that needs to be determined for a crystal. It is not necessary to deter-
mine the locations of millions of molecules in a crystal experimentally,
only the locations of those in one unit cell. The concept of the space
group further reduces the information required to the “asymmetric
unit,” which is a portion of the unit cell that is defined by the space
group of the crystal structure. Once the locations of atoms in the asym-
metric unit are known, it is possible to calculate the positions of all
other atoms in the unit cell and also of all those in the entire crystal by
application of the space-group symmetry operations. These have been
meticulously tabulated and are readily available in International Tables
(Hahn, 2005).

Scrutiny of diffraction patterns of crystals reveals that there are
often systematically related positions where diffraction maxima might
occur but where, in fact, the observed intensity is zero. For exam-
ple, if molecules pack in a crystal so that there is a two-fold screw
axis parallel to the a axis, this means that each atom is moved a
distance a/2 and then rotated 180◦ about the screw axis (from x, y,
z to 1/2 + x,−y, 1/2 − z). A result is that for every atom at position x
there is another at 1/2 + x. As far as h 0 0 Bragg reflections are con-
cerned, the unit-cell size has been halved (to a/2) and the reciprocal
lattice spacing has doubled (to 2a∗). Bragg reflections will then only be
observed for even values of h. This situation is made evident by sum-
ming in Eqns. (5.21) and (5.22) for atoms at x and 1/2 + x when k and l
are zero:** cos x + cos y

= 2 cos [(x + y)/2] cos [(x − y)/2]

sin x + sin y
= 2 sin [(x + y)/2] cos [(x − y)/2]

cos 0 and cos 2π = 1, cos π = −1

cos π
2 and cos 3π

2 = 0

A(h00) = f cos 2π(hx) + f cos 2π(hx + h/4)

= 2 f cos 2π(hx + h/4) cos 2π(h/4) (7.1)

B(h00) = f sin 2π(hx) + f sin 2π(hx + h/4)

= 2 f sin 2π(hx + h/4) cos 2π(h/4) (7.2)

A(h00) and B(h00) are both zero if h is odd, and therefore no Bragg
reflection is observed. By contrast, if h is even, values may be found for
A(h00) and B(h00).

Most, but not all, combinations of symmetry elements give rise to
systematic relationships among the indices of some of the systemat-
ically “absent reflections.” The word “systematically” implies some
numerical relationship between the indices hkl of the Bragg reflections.
For example, the only h k 0 Bragg reflections with a measurable intensity
may be those for which (h + k) is even. Such systematic relationships
imply certain symmetry relations in the packing in the structure. Before
continuing with an account of methods of deriving trial structures, we
present a short account of symmetry and, particularly, its relation to the
possible ways of packing molecules or ions in a crystal.
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Symmetry groups

Any isolated object, such as a crystal, can possess “point symme-
try”. This term means that any symmetry operation, such as a rota-
tion of, say, 180◦, when applied to the object, must leave at least one
point within the object fixed (unmoved). “Space symmetry” is different,
because it includes translational symmetry (which is not permitted in
a point group because this requires one point to be fixed in space).
A translation operation is a space-symmetry operation; it leaves no
point unchanged, since it moves all points equal distances in parallel
directions. For example, an infinite array of points, such as a crystal
lattice (or an ideal unbounded crystal structure), has translational sym-
metry, since unit translation (motion in a straight line, without rotation)
along any unit crystal lattice vector moves the crystal lattice into self-
coincidence. Because most macroscopic crystals consist of 1012 or more
unit cells, it is a fair approximation to regard the arrangement of atoms
throughout most (if not all) of a real crystal as possessing translational
symmetry.

Symmetry elements (defined above as descriptions of possible sym-
metry operations) can be classified into groups (Cotton, 1971). A group,
in the mathematical sense, is a set of elements, one of which must be the
identity element, and the product of any two elements must also be an
element in that same group. In addition, the order in which symmetry
elements are combined must not affect the resulting element, and, for
every element in the group, there must be another that is its inverse
so that when the two are multiplied together the identity element is
obtained. Studies of crystal symmetry involve point groups (one point
unmoved when symmetry operations are applied) that are used in
descriptions of crystals, and space groups (which also allow transla-
tional symmetry) that are used in descriptions of atomic arrangements
within crystals.

Point symmetry and point groups

The operations of rotation, mirror reflection, and inversion through a
point are point-symmetry operations, since each will leave at least one
point of the object in a fixed position. The geometrical requirements of
crystal lattices restrict the number of possible types of point-symmetry
elements that a crystal can have to these three:

(1) n-fold rotation axes. A rotation of (360/n)◦ leaves the object or
structure apparently unchanged (self-coincident). The order of
the axis is said to be n, where n is an integer. When n = 1 (that
is, a rotation of 360◦), the operation is equivalent to no rotation
at all (0◦), and is said to be the “identity operation.” A four-fold
rotation axis, 90◦ rotation at each step, is shown in Figure 7.1, and
is denoted by the number 4. It may be proved that only axes of
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Fig. 7.1 A four-fold rotation axis.

In the figures in this chapter, in order to make the distinction of left and right hands clearer, a ring and watch have been indicated on
the left hand but not on the right (even after reflection from the left hand). A four-fold rotation axis, parallel to c and through the origin
of a tetragonal unit cell (a = b), moves a point at x, y, z to a point at (y,−x, z) by a rotation of 90◦ about the axis. The sketch on the right
shows all four equivalent points resulting from successive rotations; only two of these are illustrated in the left-hand sketch.

order 1, 2, 3, 4, and 6 are compatible with structures built on three-
dimensional (or even two-dimensional) crystal lattices. Isolated
molecules can have symmetry axes of other orders (5, 7, 8, or 17,
for example), but when crystals are formed from a molecule with,
for example, a five-fold axis of symmetry, this five-fold axis cannot
be a symmetry axis of the crystal, although it can be a symmetry
axis of the molecule. The molecule may still retain its five-fold
symmetry in the crystal, but it can never occur at a position such
that this symmetry is a necessary consequence of five-fold sym-
metry in the crystalline environment. In other words, five-fold
symmetry is local and not crystallographic—that is, not required
by any space group. This results from the requirement that there
be no empty spaces in the packing in a crystal. Pentagonal tiles
will not cover a floor without leaving untiled spaces.

(2) n-fold rotatory-inversion axes. The inversion operation, with the
origin of coordinates as the “center of inversion,” implies that
every point x, y, z is moved to −x, −y, −z. From a point at x,
y, z one could consider an imaginary straight line to proceed
through the center of symmetry (at 0, 0, 0) and, further, an equal
distance to −x, −y, −z. This inversion can also be augmented by
a rotation to give an n-fold rotatory-inversion axis. This involves
a rotation of (360/n)◦ (where n is 1, 2, 3, 4, or 6) followed by
inversion through some point on the axis so that no apparent
change in the object or structure occurs. The one-fold case, 1̄, is
the inversion operation itself and is often merely called a center
of symmetry. A two-fold rotatory-inversion axis, denoted 2̄, is
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Fig. 7.2 A mirror plane.

The operation 2̄, a two-fold rotatory-inversion axis parallel to b and through the origin, converts a point at x, y, z to a point at x, −y, z.
One way of analyzing this change is to consider it as the overall result of first a two-fold rotation about an axis through the origin and
parallel to b (x, y, z to −x, y,−z) and then an inversion about the origin (−x, y, −z to x, −y, z). This is the same as the effect of a mirror
plane perpendicular to the b axis. Note that a left hand has been converted to a right hand. The hand illustrated by broken lines is an
imaginary intermediate for the symmetry operation 2̄.

shown in Figure 7.2. In general, these axes are symbolized as n̄.
The rotatory-inversion operations differ from the pure rotations
in an important respect; they convert an object into its mirror
image. Thus a pure rotation can convert a left hand only into a
left hand. By contrast, a rotatory-inversion axis will, on successive
operations, convert a left hand into a right hand, then that right
hand back into a left hand, and so on. Chiral objects that cannot be
superimposed on their mirror images cannot possess any element
of rotatory-inversion symmetry.

(3) Mirror planes. We are all familiar with mirrors. They convert a
left-handed molecule into a right-handed molecule. As shown in
Figure 7.2, a mirror plane is equivalent to a two-fold rotatory-
inversion axis, 2̄, with the axis oriented perpendicular to the
plane. The symbol m is more common for this symmetry element.

The point symmetry operations listed above (1, 2, 3, 4, 6, 1̄, 2̄ or m, 3̄,
4̄, and 6̄) can be combined together in just 32 ways in three dimensions
to form the 32 three-dimensional crystallographic point groups (Phillips,
1963). There are, of course, other point groups, appropriate to isolated
molecules and other figures, containing, for example, five-fold axes, but
objects with such symmetry will have problems packing without gaps
in three-dimensional space. The 32 crystallographic point groups or
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symmetry classes may be applied to the shapes of crystals or other finite
objects (Groth, 1906–1919); the point group of a crystal may sometimes
be deduced by an examination of any symmetry in the development
of faces. For example, a study of crystals of beryl shows that each has
a six-fold axis perpendicular to a plane of symmetry (6/m), with two
more symmetry planes parallel to the six-fold axis and at 30◦ to each
other (mm). The corresponding point group is designated 6/mmm. This
external symmetry is a manifestation of the symmetry in the internal
structure of the crystal. Frequently, however, the environment of a crys-
tal during growth is sufficiently perturbed that the external form or
morphology of the crystal does not reflect, to the extent that it might, the
internal symmetry. Diffraction studies then help to establish the point
group as well as the space group.

Space symmetry

A combination of the point-symmetry operations with translations
gives rise to various kinds of space-symmetry operations, in addition
to the pure translations.

(1) n-fold screw axes. A two-fold screw axis, 21, is shown in Figure 7.3.
Screw axes result from the combination of translation (by dis-
tances such as 1/r of the repeat axis) and pure rotation (by an
n-fold axis) and are symbolized by nr . They involve a rotation
of (360/n◦) (where n = 1, 2, 3, 4 or 6) and a translation parallel
to the axis by the fraction r/n of the identity period along that
axis (where r is less than n and both are integers). If we consider
a quantity p = n − r , then the axes nr and np (such as 41 and 43
screw axes) are enantiomorphous; that is, they are mirror images
of one another, like left and right hands. It is important, however,
to note that it is only the screw axes that are enantiomorphous;
structures built on them will not be enantiomorphous unless the
objects in the structure are themselves enantiomorphous. Thus a
left hand operated on by a 41 will give an arrangement that is the
mirror image of that produced by the operation of a 43 on a right
hand, but not, of course, the mirror image of that produced by the
operation of a 43 on another left hand, as shown in Figure 7.4 (far
left and far right).

(2) Glide planes. These symmetry elements result from the combina-
tion of translation with a mirror operation (or its equivalent, 2̄,
normal to the plane), as illustrated in Figure 7.5. The glide must
be parallel to some crystal lattice vector, and, because the mirror
operation is two-fold, a point equivalent by a simple translational
symmetry operation (a crystal lattice vector) must be reached
after two glide translations. Thus these translations may be half of
the repeat distance along a unit-cell edge, in which case the glide
plane is referred to as an a -glide, b-glide, or c-glide, depending
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Two-fold screw axis through the origin
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Fig. 7.3 A two-fold screw axis.

A two-fold screw axis, 21, parallel to b and through the origin, which combines both a two-fold rotation (x, y, z to −x, y,−z) and a
translation of b/2 (−x, y,−z to −x, 1/2 + y, −z). A second screw operation will convert the point −x, 1/2 + y,−z to x, 1 + y, z, which is the
equivalent of x, y, z in the next unit cell along b. Note that the left hand is never converted to a right hand by this screw axis.
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Fig. 7.4 A four-fold screw axis.

Some crystallographic four-fold screw axes showing two identity periods for each. Note that the effect of 41 on a left hand is the mirror
image of the effect of 43 on a right hand.

b-glide plane through the origin and normal to c

x, y, z x, 1+ y, z x, 2+ y, z

c

a

b
1 2

x, ½ + y, –z x, 1½ + y, –z

Fig. 7.5 A glide plane.

A b-glide plane normal to c and through the origin involves a translation of b/2 and a reflection in a plane normal to c. It converts a
point at x, y, z to one at x, 1/2 + y, −z. Note that left hands are converted to right hands, and vice versa.
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on the edge parallel to the translation. Alternatively, the glide
may be parallel to a face diagonal. No glide operation involves
fractional translational components other than 1/2 or 1/4, and the
latter occurs only for glide directions parallel to a face diagonal
or a body diagonal in certain nonprimitive space groups.

Space groups

We showed in Chapter 2 how an investigation of the symmetries of
crystal lattices led to the seven crystal systems (triclinic, monoclinic,
orthorhombic, tetragonal, hexagonal, rhombohedral, and cubic). These,
when combined with unit-cell centering (face- or body-centering), gave
the 14 Bravais lattices (see Appendix 2). If the 14 Bravais lattices are

Fig. 7.6 Part of a page from International Tables for X-Ray Crystallography.

Information on the space group P212121. The crystal is orthorhombic and there are three sets of mutually perpendicular nonintersecting
screw axes. P denotes a primitive crystal lattice (that is, one lattice point per cell with no face- or body-centering) and 21 denotes a two-
fold screw axis. The origin of the cell, chosen so that it lies halfway between these three pairs of nonintersecting screw axes, lies in the
upper left-hand corner with the x direction down and the y direction across to the right; x is parallel to a and y is parallel to b. The
symbol ( ) refers to a two-fold screw axis perpendicular to the plane of the paper. The symbol (¬) refers to a two-fold screw axis in a
plane parallel to the plane of the paper; the fractional height of this plane above the plane z = 0 is shown (unless the screw axis is in the
plane z = 0). The operations of the space group on the point (x, y, z) give three additional equivalent positions, whose coordinates are
listed. Thus the screw axis parallel to c at x = 1/4, y = 0 converts an atom at x, y, z to one at 1/2 − x,−y, 1/2 + z. Similar transformations
are effected by the other two sets of screw axes (parallel to a and b, respectively). The diffraction patterns of crystals with this space
group show systematic absences only for h 0 0 when h is odd, 0 k 0 when k is odd, and 0 0 l when l is odd. Such crystals contain only
molecules of one handedness (chirality). This diagram is from Volume 1 of International Tables. The current Volume A of International
Tables contains the same information and more. Reproduced with permission of the International Union of Crystallography.
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Fig. 7.7 A structure that crystallizes in the space group P212121.

Contents of the unit cell of potassium dihydrogen isocitrate (van der Helm et al., 1968). The space group (see Figure 7.6) requires that, for
each atom at x, y, z, there should be equivalent atoms at 1/2 − x,−y, 1/2 + z; 1/2 + x, 1/2 − y, −z; and −x, 1/2 + y, 1/2 − z. These are indicated
on the diagram (oxygen stippled, potassium dark, hydrogen small). Interactions via hydrogen bonding and metal coordination are
indicated by broken lines. This figure illustrates how anions cluster around a cation (dark spheres, K+) and how this clustering, together
with hydrogen bonding, is a major determinant of the structure.

combined with the symmetry elements of the 32 crystallographic point
groups (involving reflection, rotation, and rotation-inversion symme-
try), plus, in addition, the translational symmetry elements of glide
planes and screw axes, the result is just 230 arrangements. These 230
space groups are compatible with the geometrical requirements of
three-dimensional crystal lattices, that is, that the space-group symme-
try should generate exactly the same arrangement of objects from unit
cell to unit cell. There are thus 230 three-dimensional space groups,
ranging from that with no symmetry other than the identity operation
(symbolized by P1, the P implying primitive) to those with the highest
symmetry, such as F m3m, a face-centered cubic space group. These 230
space groups represent the 230 distinct ways in which objects (such as
molecules) can be packed in three dimensions so that the contents of
one unit cell are arranged in the same way as the contents of every other
unit cell.

It is interesting to note that these 230 unique three-dimensional
combinations of the possible crystallographic symmetry elements were
derived independently in the last two decades of the nineteenth century
by Evgraf Stepanovich Fedorov in Russia, Artur Moritz Schönflies in
Germany, and William Barlow in England (Schoenflies, 1891; Fedorov,
1891; Barlow, 1894). It was not until several decades later that anything
was known of the actual atomic structure of even the simplest crys-
talline solid. Since the introduction of diffraction methods for studying
the structure of crystals, the space groups of many thousands of crystals
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have been determined. It has been found that about 60% of the organic
compounds studied crystallize in one of six space groups.**

** The centrosymmetric space groups
P21/c, P1, C2/c, and Pbca and non-
centrosymmetric space groups P212121
and P21.

All 230 space groups, and the systematically absent Bragg reflections
found for them in the diffraction pattern, are listed in International
Tables, Volume 1 or A, which is in constant use by X-ray crystallogra-
phers (Wyckoff, 1922; Astbury and Yardley, 1924; Hahn, 2005). Part of
a specimen page from Volume 1 is shown in Figure 7.6. The symmetry
operations in a space group must ensure that the next unit cell has the
same contents as the original, and that it packs against the original unit
cell with no gaps or spaces. Once the space group is determined from
the systematically absent Bragg reflections in the X-ray diffraction pat-
tern and by other means, if needed, only the structure of the contents of the
asymmetric unit, not the entire unit cell, need be determined. The contents
of the rest of the cell (and of the entire structure) are then known by
application of the symmetry operations of the space group. An example
is shown in Figure 7.7. An excellent way to obtain an introduction to
space groups is to work one’s way through the 17 plane groups listed
just before the space groups in International Tables for Crystallography,
Volume A, Space-group Symmetry (Hahn, 2005).

Space group ambiguities

The principal method used to determine the space group of a crystal is
that of determining which Bragg reflections are systematically absent
in the space group. These are listed in International Tables, Volume A.
As shown in an example at the beginning of this chapter, these sys-
tematic absences depend on the translational symmetry of the space
group (screw axes, glide planes, face- or body-centering); that is, a
two-fold screw axis resulted in systematic absences for h00 when h is
odd. Therefore, space groups with the same translational symmetry
elements (for example, P21 and P21/m)† will have the same systematic † Equivalent positions for P21 are x, y, z

and −x, 1/2 + y,−z. Equivalent positions
for P21/m are x, y, z; −x, −y,−z;
−x, 1/2 + y,−z; and x, 1/2 − y, z.

absences in their diffraction patterns, giving rise to an ambiguity in the
determination of the space group.

However, there are ways of overcoming this problem. If the crystal
contains only one enantiomorph of an asymmetric molecule, then the
space group cannot contain a mirror or glide plane or a center of
symmetry, since these symmetry elements convert one enantiomorph
into the other. As a result, if the ambiguity involves a pair of space
groups, one centrosymmetric and the other noncentrosymmetric (such
as P1 and P1 or P21 and P21/m), then a distinction can be made if the
crystal contains molecules of only one chirality, since the crystal cannot
then be centrosymmetric. In other cases the distinction can usually be
made, as described in more detail in Chapter 8, by a consideration
of the distribution of intensities in the diffraction pattern, since cen-
trosymmetric structures have a higher proportion of Bragg reflections
of very low intensity than do noncentrosymmetric structures. Other
diagnostic methods involve tests of physical properties, including the
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piezoelectric and pyroelectric effects (see Chapter 2). These effects are
found only for noncentrosymmetric crystals. Still another method of
distinguishing between space groups is to analyze the vectors in the
Patterson map, described in Chapter 9. Finally, a consideration of the
chemical identity of the contents of the unit cell may help resolve any
space group ambiguity.

The following example of such an ambiguity may be of interest. The
protein xylose isomerase, consisting of four identical subunits bound
in a tetramer, crystallizes in the space group I 222 or I 212121 with two
molecules (eight subunits) in the unit cell. The systematic absences in
Bragg reflections are, unfortunately, the same for both space groups, so
here is an example of a space group ambiguity. This follows because
the space-group absences for a body-centered unit cell are such that
h + k + l must be even, while the three screw axes require h00 with h
even, k00 with k even, and l00 with l even; these last three require-
ments are included in the first condition, so that it does not make
any difference to the systematic absences whether or not the screw
axes are there. However, each unit cell for either space group contains
eight asymmetric units, and therefore one subunit (one quarter of the
molecule) must be the asymmetric unit (together with solvent, not
considered here). If the space group were I 212121 the protein would be
an infinite polymer, because of the requirements of the two-fold screw
axes, contrary to physical evidence. Therefore the space group is I 222,
so that the subunits are related to each other by two-fold rotation axes
rather than two-fold screw axes.

Chirality

Chirality is the handedness of a structure (Greek: cheir = hand); that
is, if a structure cannot be superimposed on its mirror image it is said
to be chiral or enantiomorphous. We are most familiar with this in
the example of the asymmetric carbon atom—that is, a carbon atom
connected to four different chemical groups so that two types of mole-
cules, related to each other by a mirror plane, are found. This chirality,
however, can also extend to the crystal structure itself. For example,
silica crystallizes in a helical arrangement that has a handedness shown
in the external shape of the crystal—small hemihedral‡ faces appear‡ Called “hemihedral” because only half

the number of faces expected for a cen-
trosymmetric structure is observed.

in such a way as to give crystals that are mirror images of each other.
The observation of such hemihedry was used by Louis Pasteur in 1848
to separate sodium ammonium tartrate into its left- and right-handed
enantiomers (Pasteur, 1848; Patterson and Buchanan, 1945). Solutions
of these pure enantiomers rotate the plane of polarization of light in
opposite directions. When such resolution§ occurs the space group must

§ The term “resolution” is used in a dif-
ferent sense from that in the caption to
Figure 6.6. Here it is used to mean the
separation of enantiomers. The term is
also used to describe the process of dis-
tinguishing individual parts of an object,
as when viewing them through a micro-
scope.

contain no mirror planes, glide planes, or centers of inversion (i.e.,
any symmetry operation that would convert a left-handed structure
into a right-handed structure). Such crystals also exhibit pyroelectric
and piezoelectric properties as a result of their asymmetry. Pasteur’s
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resolution of sodium ammonium tartrate was possible because the
space group was one for a noncentrosymmetric structure, so the two
crystal forms looked different. If an asymmetric molecule crystallizes
in a centrosymmetric space group, then there are equal numbers of
left- and right-handed molecules in the crystal structure. This will be
discussed further in Chapter 10.

Space groups of chiral objects

Chiral molecules, such as proteins and nucleic acids, cannot crystal-
lize in space groups with centers of symmetry, mirror planes, or glide
planes, because otherwise molecules with the opposite chirality would
also be required. There are 65 space groups that are suitable for such
chiral molecules (see Appendix 7). In all, there are three types of space
groups. 90 space groups are centrosymmetric and contain equal num-
bers of both enantiomers (left-handed and right-handed species) in the
crystal. There are, however, 75 other space groups that are neither cen-
trosymmetric nor chiral; that is, while the space group is noncentrosym-
metric, the unit cell still contains equal numbers of both enantiomers
(see Appendix 7). Some space groups among those for chiral molecules
are designated as “polar space groups.” They do not have a defined
origin, for example, because, as in the space group P21, there is only
one screw axis and it moves an atom at x, y, z to −x, 1/2 + y, −z (by
convention along the b axis). So y can have any value for the first
atom in a list of atomic coordinates; its value then defines the origin
that has been selected (but this is not defined by the space group), so
that all other atoms are correctly related in space to the first atom. The
polar space groups are indicated in Appendix 7. This polar property
of the crystal must be remembered when atomic coordinates are being
refined, as described later in Chapter 11. It also implies that opposite
crystal faces perpendicular to the b axis may have different physical
characteristics, as will be described in Chapter 10.

Summary

Symmetry in the contents of the unit cell is revealed to some extent
by the symmetry of the diffraction pattern and by the systematically
absent Bragg reflections (see Appendix 2). The probable space group
of the crystal can be deduced from this information about the dif-
fraction pattern. Knowledge of the space group may also give infor-
mation on molecular packing, even before the structure has been
determined.

(1) There are 14 distinct three-dimensional lattices (the Bravais lat-
tices), corresponding to seven different crystal systems.

(2) Point-symmetry operations leave at least one point within an
object fixed in space. Those characteristic of crystals consist of:



114 Symmetry and space groups

(a) n-fold rotation axes (1, 2, 3, 4, 6) and
(b) n-fold rotatory-inversion axes (1̄, 2̄ or m, 3̄, 4̄, or 6̄).

(3) These point-symmetry operations can be combined in 32 and only
32 distinct ways to give the three-dimensional crystallographic
point groups.

(4) Combination of point-symmetry operations with translations
gives space-symmetry operations by way of:
(a) n-fold screw axes, nr , and
(b) glide planes.

(5) All these operations may act on a given motif in the asymmetric
portion of the structure. They can be combined in just 230 distinct
ways, giving the space groups which can be used to describe crys-
tal structures composed of multiple unit cells, each with identical
structural components within them.



The derivation of trial
structures. I. Analytical
methods for direct phase
determination

8

As indicated at the start of Chapter 4, after the diffraction pattern
has been recorded and measured, the next stage in a crystal structure
determination is solving the structure—that is, finding a suitable “trial
structure” that contains approximate positions for most of the atoms
in the unit cell of known dimensions and space group. The term “trial
structure” implies that the structure that has been found is only an
approximation to the correct or “true” structure, while “suitable”
implies that the trial structure is close enough to the true structure that
it can be smoothly refined to give a good fit to the experimental data.
Methods for finding suitable trial structures form the subject of this
chapter and the next. In the early days of structure determination, trial
and error methods were, of necessity, almost the only available way of
solving structures. Structure factors for the suggested “trial structure”
were calculated and compared with those that had been observed.
When more productive methods for obtaining trial structures—the
“Patterson function” and “direct methods”—were introduced, the
manner of solving a crystal structure changed dramatically for
the better.

We begin with a discussion of so-called “direct methods.” These
are analytical techniques for deriving an approximate set of phases
from which a first approximation to the electron-density map can be
calculated. Interpretation of this map may then give a suitable trial
structure. Previous to direct methods, all phases were calculated (as
described in Chapter 5) from a proposed trial structure. The search for
other methods that did not require a trial structure led to these phase-
probability methods, that is, direct methods. A direct solution to the
phase problem by algebraic methods began in the 1920s (Ott, 1927;
Banerjee, 1933; Avrami, 1938) and progressed with work on inequalities
by David Harker and John Kasper (Harker and Kasper, 1948). The latter
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authors used inequality relationships put forward by Augustin Louis
Cauchy and Karl Hermann Amandus Schwarz that led to relations
between the magnitudes of some structure factors (see Glossary). These
proved very useful, enabling them to derive relationships between the
relative phases of different structure factors, and therefore to determine
the crystal structure of decaborane (Kasper et al., 1950). This provided
a previously unthought-of chemical structure for this molecule and
greatly augmented our understanding of the structure and chemistry
of the boron hydrides. Many scientists and mathematicians worked
on the derivation of phase relationships in direct methods from this
time on.* David Sayre provided an important equation that led to his

* There have been many involved in the
development of direct methods, in the
programming of methods to use them,
and in teaching people how to do it. These
include (in alphabetical order), in the
earlier stages, William Cochran, Joseph
Gillis, David Harker, Herbert Hauptman,
Isabella Karle, Jerome Karle, John S.
Kasper, Peter Main, David Sayre, George
Sheldrick, Michael Woolfson, and William
H. Zachariasen. Many others also merit
our appreciation of the ease with which
crystal structures can generally be deter-
mined.

demonstration of the structure of hydroxyproline (Sayre, 1952), while
Herbert Hauptman and Jerome Karle worked on the probabilistic basis
of direct methods (Karle and Hauptman, 1950; Hauptman and Karle,
1953). These, and the studies of many others, led to the equations of
direct methods that are used today, and to the production of computer
programs to do the analysis (Germain et al., 1971, for example) together
with initially much-needed teaching on how to interpret the results of
their use correctly.

“Direct methods” make use of two important facts: (1) that the inten-
sities of Bragg reflections contain the structural information that peaks
(representing atoms) are well resolved from each other (the principle of
atomicity), and (2) that the background is fairly flat, and that this back-
ground should not be negative, because this would imply a negative
electron density (the principle of positivity). These two conditions are
true for X-ray diffraction, where atoms generally scatter by an amount
that depends on their atomic number. The basic assumption that atoms
are resolved from each other results in a requirement of high resolu-
tion, usually 1.1 Å or better, for direct methods. In the case of neutron
diffraction, the electron-density map may have negative peaks because
atoms, such as hydrogen, with a negative scattering factor for neutrons,
are present. In spite of this, direct methods appear to work for neu-
tron structures as well (Verbist et al., 1972). Centrosymmetric structures
(with the positional coordinates of each atom at x, y, z, matched by
those of an equivalent atom at −x, −y, −z) are considered first here,
because the problems presented by noncentrosymmetric structures are
more formidable. Techniques other than “direct methods” for deriving
trial structures and the principles upon which they are based are dis-
cussed in Chapter 9.

It is possible to derive relations among the phases of different Bragg
reflections. The basic assumption of direct methods is that the intensi-
ties in the X-ray diffraction pattern contain phase information (because
the phases are constrained to give atomic peaks and positive electron
density and this limits their values). It means that direct methods can
be viewed as a mathematical problem—the control of the phase angles
of density waves because of the principles of atomicity and positivity.
How can the many density waves be aligned (as required by their
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individual phases) so that the resultant electron-density map shows
peaks or a flat background with no negative areas? What must their
phases be to satisfy these conditions?

In crystal structures with a center of symmetry at the origin and no
appreciable anomalous-dispersion effects, each structure factor has a
phase angle of 0◦ or 180◦, so that cos · is just +1 or −1 and sin · = 0.
Therefore, in a centrosymmetric structure, F = |F | cos · = +|F | or −|F |,
and one often speaks of the sign of a structure factor; when the phase
angle · is 0◦ we write “+” and when it is 180◦ we write “−”. If N
Bragg reflections have been observed for the structure, 2N electron-
density maps would need to be calculated, representing all possible
combinations of signs for all N independent structure factors. One of
these 2N maps must represent the true electron density, but how could
one tell which one it is? For even as few as twenty Bragg reflections,
more than one million different maps would need to be calculated
(220 = 1,048,576), and most structures of interest have of the order of
103–106 unique Bragg reflections. Since the contributions from Bragg
reflections with high values for the structure factor amplitude will tend
to dominate any electron-density map calculated, only the most intense
Bragg reflections need be considered initially when one is trying to
obtain an approximation to the correct map. However, even with as
few as ten terms, the number of possible maps is 1024, much too high a
number to make any simple trial-and-error method practicable. With a
noncentrosymmetric crystal structure, a phase angle may be anywhere
between 0◦ and 360◦ and one would have to calculate an impossibly
large number of maps to ensure having at least approximately correct
phase angles for even ten Bragg reflections.

Relationships can be found among the signs of the structure factors,
and these relationships involve the magnitudes of the larger structure
factors normalized (that is, modified) in a certain way, as will be
described in this chapter. If you want to know what a given structure
factor of known relative phase contributes to the overall electron
density in a unit cell (its density wave), it is easy to plot this. Suppose
that F (1 0 0) for a centrosymmetric structure is large (see Figure 8.1).
If this Bragg reflection has a positive sign (phase angle of 0◦), then
the computed electron-density map has a peak near the origin at x = 0
and a hole at x = 1/2. By contrast, if this Bragg reflection has a negative
sign, there is a peak at x = 1/2 and a hole at x = 0. Therefore the fact that
this Bragg reflection is intense in a centrosymmetric structure implies
that there must be a peak in the electron-density map near either x = 0
or x = 1/2, whatever the sign (phase) to be associated with F (1 0 0). If
F (2 0 0) is considered, it can be seen in Figure 8.1 that a peak at either
0 or 1/2 implies a positive sign for F (2 0 0). Consequently, if F (1 0 0)
and F (2 0 0) are intense, F (2 0 0) is probably positive no matter whether
the sign of F (1 0 0) is positive or negative. Figure 8.1 shows also that
when only these terms are summed, a positive sign for F (2 0 0) results
in an “electron density” that has a shallower negative trough than does
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Fig. 8.1 Summing density waves.

In centrosymmetric structures, the phase angle of any structure factor F (hkl) is either 0◦ or
180◦. “Electron-density maps” based on one structure factor (“density wave”) are shown
for F (1 0 0) and F (2 0 0). In general, for centrosymmetric structures, if F (hkl) is large,
whatever its sign, and F (2h2k2l) is also large, then the latter is probably positive (a phase
of 0◦). (1) Possible situations for F (1 0 0): solid line—F positive, phase 0◦; dotted line—F
negative, phase 180◦. (2) Possible situations for F (2 0 0); solid line—F positive, phase 0◦;
dotted line—F negative, phase 180◦. (3) Summations for the four combinations of possible
situations in (1) and (2), showing the deep negative areas obtained when F (2 0 0) is given
a phase of 180◦ (C, D). The F (0 0 0) term, which has been omitted, is always positive and
therefore when it is included the sum is always more positive at each given point (see
Figure 6.2).

Areas of negative electron density are shaded. The inferences on the position of an atom
(at x) from these electron-density maps are: 3A, x = 0; 3B, x = 1/2; 3C, 3D, x = 1/4, 3/4. The
last two have more negative troughs and so are excluded. Therefore we conclude 200 is +
(phase angle 0◦) and x is 0 and/or 1/2.

the electron density that results when a negative sign is assigned to
F (2 0 0) (regardless of the sign of F (1 0 0)). Thus the phase of F (2 0 0)
is probably +.

The principle of positivity of electron density may be extended to
three dimensions. For example, David Sayre noted that the functions
Ò(r ) and Ò2(r ) in a crystal composed of identical atoms are similar
in appearance. From analyses of the relationship between these two
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functions and of their Fourier transforms, he showed that∑ ∑
K

∑
F (K )F (H − K ) = VsF (H) (8.1)

F(200) –, phase 180º F(200) –, phase 180º

F(300) +, phase 0º

F(500) –, phase 180º

Sum

(i)

(ii)

(iii)

(iv)

Sum

F(500) +, phase 0º

F(300) +, phase 0º

Fig. 8.2 Aiming for nonnegative electron
density.

If |F (2 0 0)|, |F (3 0 0)|, and |F (5 0 0)| are all
large they must contribute significantly to
the final electron-density map (via “den-
sity waves”). Suppose that it is found that
F (2 0 0) has a negative sign and F (3 0 0)
has a positive sign; the areas in which
each then contributes in a positive man-
ner to the electron-density map are shaded
in (i) and (ii) on the left. The regions in
which these areas overlap, near x = ±0.3,
correspond to regions to which F (5 0 0)
contributes positively only if the sign of
the term F (5 0 0) is negative, that is, a
phase of 180◦, as indicated in (iii). On sum-
mation of these terms with the indicated
signs the background is reduced, as in (iv);
if F (5 0 0) has a positive sign, that is, a
phase of 0◦, the map is far less satisfactory.
The relation among these signs may then
be written (where s means “the sign of”)

s(5 0 0) ≈ s(2 0 0)s(3 0 0)

which is a special case of Eqn. (8.2). This
follows from the discussion in the text
since deep negative troughs (areas of neg-
ative electron density) are not satisfactory
or physically meaningful. With proper
phasing, the background is reduced to a
value closer to zero. Thus in (iv) on the
left the most negative value of the elec-
tron density is −4 e/Å, while for (iv) on
the right, which has a less satisfactory set
of phases, the most negative value of the
electron density is −9 e/Å. The addition
of data for F (000) will probably result in
an almost nonnegative map if F (500) has
a phase of 180◦.

This is the equation that bears his name (Sayre, 1952; see also Viterbo,
1992; Shmueli, 2007). In this equation H = h, k, l and K = h′, k ′, l ′; V is
the unit cell volume; s is the sign of the hkl Bragg reflection; and the
summations are over all values of K .

If one considers probabilities (denoted ≈), rather than certainties
(denoted =), it can be shown that, for a centrosymmetric structure, one
obtains a triple product

sF (H) sF (K ) ≈ sF (H + K ) (8.2)

where sF means the “sign of F ” and F (H), F (K ), and F (H + K ) are all
intense Bragg reflections. The symbol ≈ means “is probably equal to.”
It should be noted that a special case of Eqn. (8.2) is

s(2h 0 0) ≈ [s(h 0 0)]2 ≈ + (8.3)

because whatever the sign of F (h00), its square is positive. This is in
agreement with our qualitative argument for F (2 0 0) and F (1 0 0) above
and in Figure 8.1. In Figure 8.2 it is shown that if F (3 0 0) is known
to be positive and F (2 0 0) is known to be negative, then, if all three
are strong Bragg reflections, F (5 0 0) is probably (but not definitely)
negative. Again, this is shown to be consistent with the principle of
positivity of electron density. Two types of sets of triple products of
phases (see Eqn. 8.2) merit attention at this point. A “structure invari-
ant” is a linear combination of the phases that is totally independent of
the choice of origin; even if the origin is changed, the invariant remains
unchanged. The same is true for “structure seminvariants” except that
the origin change must be one that is allowed by space-group symmetry
constraints. The identification of structure invariants and seminvariants
helps to fix an origin and enantiomorph for the structure under study.

In practice, these analytical methods of phase determination are car-
ried out on “normalized structure factors”—that is, values of the struc-
ture factor |F (hkl)| modified to remove the fall-off in the individual
scattering factors f with increasing scattering angle 2Ë (see Figures 5.4
and 8.3). A normalized structure factor, E(hkl), represents the ratio of
a structure factor F (hkl) to (� f j )1/2, where the sum is taken over all
atoms in the unit cell at the value of sin Ë/λ appropriate to the values
of h, k, and l for the Bragg reflection and includes an overall vibration
factor. This sum, (� f j )1/2, represents the root-mean-square value that all
|F (hkl)|2 measurements would have (at that value of sin Ë/Î) if the struc-
ture were a random one, composed of equal atoms (see the discussion
of the Wilson plot at the end of Chapter 4):

∣∣E(hkl)
∣∣ =

∣∣F (hkl)
∣∣(

ε
∑

f j
)1/2 (8.4)
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Fig. 8.3 X-ray scattering by point atoms and normal atoms.

Theoretical point atoms have no width and no vibrational amplitude. As a result there
is no fall-off in value as sin Ë/Î increases. By contrast, real normal atoms have width and
vibrational amplitude and their atomic scattering factors fall off at high sin Ë/Î.

where ε is a constant (an epsilon factor)**, 1, 2, or 4, depending on the
** Contained in the expression for E(hkl) is
a factor, ε, that corrects for the fact that
Bragg reflections in certain reciprocal lat-
tice zones or rows (for example, 0 k 0, h k 0,
etc.) have higher average intensities in cer-
tain space groups than do general Bragg
reflections (hkl). It is an integer, 1, 2, or 4,
depending on the crystallographic point
group and the type of Bragg reflection (h,
k, and/or l = 0).

crystal class, and the summation is from j = 1 to N. This use of E(hkl)
values is approximately equivalent to considering each atom to be a
point atom (an extremely sharp peak occupying a very small volume
in the electron-density map). As a result, high-order Bragg reflections
(high sin Ë/Î), which normally are weaker because of the intensity fall-
off of atomic scattering factors f with sin Ë values, may have large |E |
values that would play an appropriate role in the structure determina-
tion (rather than being ignored because of their low values when |F | is
used).

Information on significant features of the structure is contained in
the very intense and very weak Bragg reflections; these have different
distributions when the structure is centrosymmetric and when it is non-
centrosymmetric (Wilson, 1949). The centrosymmetric distribution has
a higher proportion of Bragg reflections with very low intensities. An
analysis of the E(hkl) values in the diffraction pattern (the “distribution
of E(hkl) values”) shows that they contain (as, of course, do the F (hkl)
values as well) information on whether the structure is centrosymmetric
or noncentrosymmetric. For example, the mean value of E(hkl) is 0.798
for a centrosymmetric structure and 0.886 for a noncentrosymmetric
structure. The value that the crystallographer more commonly uses for
this test is |E2 − 1|, which is theoretically 0.968 for a centrosymmetric
structure and 0.736 for a noncentrosymmetric structure. These values
are calculated from the diffraction data that have just been measured,
and they probably will indicate which symmetry the crystal has.

Once a table of |E(hkl)| values has been prepared, it is usual to rank
these E(hkl) values in decreasing order of magnitude. Usually one
works with the strongest 10 percent of them. Then one looks for groups
of three Bragg reflections that satisfy the condition that their indices
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are numerically related in the manner described in Eqn. (8.2); this
selection of “triple products” [E(hkl), E(h′, k ′, l ′), E(h + h′, k + k ′, l + l ′)]
is generally made by computer. If each of the three Bragg reflections
in a triple product has a high E(hkl) value, the product of their three
signs is probably positive. This listing is called the “�2” or “sigma 2”
listing (see Eqn. (8.2) and Figure 8.2). The summation symbol � is used
in this naming because, in the probability formula, summations are
involved. The “�1” relations (see Eqn. (8.3) and Figure 8.1) are simpler
because they involve only pairs of intense Bragg reflections related by
E(hkl) and E(2h, 2k, 2l) and contain the implication that the sign of
E(2h, 2k, 2l) is probably positive in a centrosymmetric structure (see
Figure 8.1 and Eqn. (8.3)). The general equation used is

s[E(hkl)] ≈
[ ∑

h′,k ′,l ′
E(h′, k ′, l ′)E(h − h′, k − k ′, l − l ′)

]
(8.5)

The probability aspects of these sign relationships are very impor-
tant. If we replace h, k, l by H and h′, k ′, l ′ by K , the probability
that a triple product is positive in a centrosymmetric structure (that is,
sH ≈ sK sH−K ) is†

† tanh, the hyperbolic tangent of x, is
{(ex − e−x)/(ex + e−x)}.

P+ =
1
2

+
1
2

tanh
(

EH EK EH−K

N1/2

)
(8.6)

(where N is the number of equal atoms in the unit cell‡). Furthermore, ‡ We advance from Eqn. (8.5) to Eqn. (8.6)
by incorporating a commonly used abbre-
viation that has developed in the litera-
ture of direct methods: H ≡ (h, k, l), K ≡
(h′, k′, l ′), and hence H + K ≡ (h + h′, k +
k′, l + l ′). Note that, since −K and K have
the same E ’s (in sign and magnitude) in a
centrosymmetric structure, then a relation
between H and K and a relation between
H and −K are equivalent.

the probability that E(hkl) ≡ EH is positive is

P+ =
1
2

+
1
2

tanh

(
|EH |

∑
K

EK EH−K

N1/2

)
(8.7)

where the summation � is over all values of K = (h′, k ′, l ′), and P+ = 1
indicates a sign of +1, while P+ = 0 indicates that it is 0.§ These probabil-

§ For unequal atoms, (1/N1/2) in Eqns.
(8.6) and (8.7) is replaced by Û3Û

−3/2
2 ,

where Ûn = �Zn
j , the summation being

from 1 to N, and N is the number of atoms
with atomic number Zj for the j th atom.

ity aspects of direct methods result in a requirement for a large amount
of diffraction data.

Solving the structure of a centrosymmetric
structure

We will now describe the steps in the determination of a centrosym-
metric structure by direct methods. When the list of “triple prod-
ucts” [E(hkl), E(h′k ′l ′), and E(h + h′, k + k ′, l + l ′)] has been prepared,
the derivations of their signs requires some initial choices of signs.
Initially, in three dimensions, one has a choice of the signs of three
Bragg reflections for many centrosymmetric space groups; these choices
determine which of the possible positions is used for the origin of the
unit cell. The choice does not alter the structure, it just defines where
the unit-cell origin is. In selecting three origin-fixing Bragg reflections,
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An illustration of the successive application of Eqn. (8.2) to derive the signs of some
of the strongest Bragg reflections for a structure. Values of |E | are derived from those
for |F |, chiefly to eliminate the effects of thermal vibration and to treat each atom as
if all its electrons were concentrated at a point. Values of |E | are used in deriving sign
relationships because their magnitudes depend only on the arrangement and relative
atomic numbers of the atoms.

Monoclinic example:
|F (hkl)| = |F (h̄ kl)|

k + l even s(hkl) = s(hk̄l) = s(h̄kl̄) = s(h̄k̄l̄)

s(h̄ kl) = s(h̄k̄l) = s(hkl̄) = s(hk̄l̄)

k + l odd s(hkl) = s(h̄k̄l̄) = −s(hk̄l) = −s(h̄kl̄)

s(h̄kl) = s(hk̄l̄) = −s(hkl̄) = −s(h̄k̄l)

The compound studied is 2-keto-3-ethoxybutyraldehyde-bis (thiosemicarbazone),
space group P21/c. The above sign relationships for this space group are to be found
in International Tables, Volume A.

Relation to be used [Eqn. (8.2)]:

s(h + h′, k + k′, l + l ′) ≈ s(h, k, l) s(h′, k′, l ′)

h k l E Signs chosen arbitrarily fixing the origin. (If
one or all of these signs had been negative

another allowable origin would have resulted.)

3 3 1 3.74 +
9̄ 6 7 3.25 +

13 1 4 2.92 +

h k l E Relationships used Sign found (Notes)
12 0 0 4.35 ( 6 0 0)( 6 0 0) + (+)(+) = (−)(−) = +
6 0 0 2.80 ?

25 1 4 3.49 (12 0 0)(13 1 4) + ++ = +
22 4 5 2.22 ( 3 3 1)(25 1 4) + ++ = +
6 4 2 2.86 a An additional undetermined sign

is chosen and is temporarily
designated a

18 4 2 2.92 (12 0 0)( 6 4 2) a +a = a
9 7 3 2.07 ( 3 3 1)( 6 4 2) a +a = a

22 6 1 2.30 (13 1 4)( 9 7 3) −a −(+a) = −a
19 3 2 2.84 ( 3 3 1)(22 6 1) −a +(−a) = −a

(13 1 4)( 6 4 2) −(+a) = −a
7 3 2 2.14 (12 0 0)(19 3 2) −a +(−a) = −a
25 1 0 2.03 (18 4 2)( 7 3 2) − {

a(−a) = −
( 6 4 2)(19 3 2) a(−a) = −

Eventually the sign of some Bragg reflection could be found both in terms of a and
independently of it; this established the fact that the sign of a was probably +. If this
had not happened it would have been necessary to calculate two maps, one with the
sign of a positive and one with the sign of a negative.

Fig. 8.4 Numerical use of Eqn. (8.2) to derive phases of a crystal structure.
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it is essential for them to be different with respect to the evenness or
oddness of their individual indices, and h, k, and l must not all be even.
In the numerical example in Figure 8.4, arbitrary signs were chosen for
F (3 3 1) (odd, odd, odd), F (9 6 7) (odd, even, odd), and F (13 1 4) (odd,
odd, even) at the start.

The reader may ask where negative signs for phases come from. The
relationships of signs of Bragg reflections with negative values of h, k,
and/or l to that of a Bragg reflection with all indices positive are listed
for each space group in International Tables, Volume A. For example, in
the space group P21/c, if k + l is odd, then F (hkl) = −F (hk l) = −F (h kl).
Negative signs are introduced into the sign relationships in this way. It
is essential to have some negative terms in the calculation of the E-
map, because an E-map with all signs positive will give a high peak
at the origin, a rarely observed feature in complex structures; in fact
this E-map with all signs positive resembles a Patterson function (to be
described in the next chapter), but cannot be interpreted as an electron-
density map.

From the list of “triple products” it should be possible to derive,
for the set of E(hkl) values, a set of signs that have been determined
with acceptable probabilities (see the example in Figures 8.4 and 8.5). If
difficulties occur, it may be necessary to choose another set of origin-
fixing Bragg reflections. It may also be necessary to assign symbolic
signs (“a”, “b”, etc.) to certain Bragg reflections and generate the signs
of other Bragg reflections in terms of these symbols with the hope that
eventually the actual signs of these symbols may become clear. This
process is referred to as “symbolic addition” (Zachariasen, 1952; Karle
and Karle, 1966). For example, in Figure 8.4 it is deduced that the sign
of symbol “a” is positive. If n symbols have been used but their signs
cannot be determined in this way, it will be necessary to compute 2n E-
maps.

The derivation of signs for a monoclinic centrosymmetric structure
is shown in Figure 8.4. Some sign relationships could be immediately
deduced from a knowledge of the monoclinic space group relationships
among F (hkl) appropriate for this structure. Others were then deduced
from these new signs and some arbitrarily chosen signs. This process
was continued until the signs of 836 out of the 872 strongest terms
were found with no sign ambiguity (although it is usually not necessary
to work with this many terms). Part of the resulting Fourier synthesis
computed using E(hkl) values (an E-map) is shown in Figure 8.5.

The crystal structure of hexamethylbenzene was reported by Kath-
leen Lonsdale in 1928 and showed that the benzene ring is planar and
has six-fold symmetry (Lonsdale, 1928). The arrangement of atoms in
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Fig. 8.5 An excerpt from an E-map.

(a) A three-dimensional map calculated with phases derived as in Figure 8.4 and |E |
values rather than values of |F | as amplitudes (see Gabe et al., 1969). This is a composite
map; each peak has been drawn as it appears in the section in which it has the highest
value. It is a simple matter to pick out the entire molecule, 2-keto-3-ethoxybutyraldehyde-
bis(thiosemicarbazone), from this map. The molecular skeleton and the presumed iden-
tity of each atom have been added to the peaks. (b) A ball-and-stick drawing of the
molecule. (c) The chemical formula of the molecule.
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Fig. 8.6 A triple product in diffraction by hexamethylbenzene.

Shown is the crystal structure of hexamethylbenzene (Phase II) (Lonsdale, 1928). Maxima
of the density waves of three intense Bragg reflections, 340, 7 3 0, and 4 7 0, are dia-
grammed with the molecular structure superimposed. Note that all of the carbon atoms
lie at the intersection of maxima of the density waves of these three Bragg reflections.
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the unit cell is shown in Figure 8.6. Three strong Bragg reflections, 340,
7 3 0 and 4 7 0, form a triple product (inspect the indices) and, although
direct methods were not used in 1928, they illustrate the principle. The
maxima of the density waves of these three Bragg reflections are shown
in this figure. Note how the carbon atoms each lie on the intersections
of three density-wave maxima.

The final stage is the calculation of an E-map. This is an electron-
density map calculated with E(hkl) values rather than F (hkl) values
(so that atoms are sharper, corresponding to point atoms) (see Fig-
ure 8.5a). If all has gone well, the structure will be clear in this map.
Sometimes only part of the structure is revealed in an interpretable way
and the rest may be found from successive electron-density maps or
different electron-density maps. Sometimes the general orientation and
connectivity of the molecule are found, but the positioning in the unit
cell is wrong because some subsets of signs are in error. This problem
is usually recognizable when distances between atoms are calculated
and some nonbonded atoms are too close to others. In this case, the
development of signs must be done again, this time following some
new path, such as selecting origin-fixing Bragg reflections or assigning
symbols to a different set of Bragg reflections.

Solving the structure of a noncentrosymmetric
crystal

The derivation of phases for noncentrosymmetric structures is more
complicated because the values for the phases are not simply 0◦ or 180◦.
For noncentrosymmetric crystal structures, an additional formula may
be used to derive approximate values for the phase angle ˆH :

ˆH ≈
∑

K

(ˆH−K + ˆK ) (8.8)

where, as before, H ≡ h, k, l; K ≡ h′, k ′, l ′; ˆ is the phase angle of the
structure factor; and the brackets refer to an average over all values of
K , where H = (K ) + (H − K ). The so-called “tangent formula,”

tan ˆH =

∑
K

(|EK | |EH−K | sin(ˆK + ˆH−K ))∑
K

(|EK | |EH−K | cos(ˆK + ˆH−K ))
= tangent formula (8.9)

is used extensively to calculate and also to refine phases for
noncentrosymmetric structures. The probability function for
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noncentrosymmetric structures is more complicated than that
given in Eqns. (8.6) and (8.7). It is:

P(ˆH) =
exp[−4x cos(ˆH − ˆK − ˆH−K )]

2π∫
0

exp(4x cos „) d„

(8.10)

where x = |EH EK EH−K |/N1/2 and „ is a dummy variable. Higher-order
structure invariants and seminvariants (quartets, quintets, for example)
are also used in structure determination by direct methods. These are
sets of more than three Bragg reflections with indices that have a zero
sum. A so-called “negative quartet,”

ˆH + ˆK + ˆL + ˆ−H−K−L = π (8.11)

has a phase sum that is probably near 180◦ rather than 0◦ (Haupt-
man, 1974). It is useful not only in phase determination, but also
for finding the correct solution if there are several possibilities. Some
important computer programs currently in use for determining crystal
structures include SHELXS and SHELXD (Sheldrick, 2008), Shake-and-
Bake (Miller et al., 1993; Miller et al., 1994), SIR (Burla et al., 2005),
and SUPERFLIP (Palatinus and Chapuis, 2007), but there are many
more. The reader is advised to consult the World Wide Web for the
most suitable program for use for a current problem. In addition, much
useful information is provided in the various volumes of International
Tables (see the reference list).

Dual-space algorithms, which involve iterative cycles of Fourier
transforms between real and reciprocal space with changes at each
step, have proved very useful in the determination of the structures
of macromolecules. Some important methods of phase improvement
for proteins involve “density modification.” If the boundaries between
solvent and protein have been determined in the electron-density
map, the relative phases can be improved by “flattening” the solvent
area (“solvent flattening”). Improved phases are then obtained by a
Fourier transform (Hoppe and Gassmann, 1968; Wang, 1985; Leslie,
1987). Another example is provided by “real-space averaging” or “non-
crystallographic symmetry averaging,” in which electron densities (in
real space) of two units are averaged. “Histogram matching” can also
be applied to protein structures; in this, the initial electron densities
are modified to conform to an expected distribution. The Shake-and-
Bake (SnB) program is a phase-determining procedure for solving crys-
tal structures by direct methods, and it has been incorporated into
SHELXD (Schneider and Sheldrick, 2002). It alternates phase refinement
in reciprocal space by use of the minimal principle (the shake) with
real-space constraints through some form of electron-density modifi-
cation (the bake) (Miller et al., 1993; Miller et al., 1994). The minimal
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principle involves a residual described as a “minimum-variance, phase
invariant.” All phases are initially determined by computation from
a random atomic arrangement and are refined by minimizing this
residual. They are then Fourier transformed, and peaks are selected
from the resulting electron-density map and used for a new trial struc-
ture for the next cycle of the method. While used successfully for
small structures, the SnB program has also provided ab initio solutions
(meaning no preliminary experimentally determined phase informa-
tion but good resolution of 1.1 Å or higher) for protein structures
involving as many as 1000 independent nonhydrogen atoms. Another
dual-space structure determination method is the charge-flipping algo-
rithm, which is an iterative process that requires a complete set of
diffraction intensities to atomic resolution, but does not require any
information on the symmetry or chemical composition of the crystal
structure (Oszlányi and Süto, 2005; Palatinus and Chapuis, 2007). A
random set of phases is assigned to the measured structure factors
and their Fourier transform is calculated. All electron densities that
fall below a selected positive value (to be selected by the user) are
inverted (the charge-flipping step). The modified electron-density map
is then Fourier transformed and the new phases from the charge-
flipped map are combined with the original observed data, the structure
amplitudes |F (hkl)|. Then follows a new iteration cycle. The process
is repeated until a satisfactory structure is obtained. Results can be
checked, for example, by “random omit maps,” in which a selected
proportion, say one third, of the highest peaks in an electron-density
map are deleted, and the remaining atoms are used to calculate new
phases and start a new cycle (Bhat and Cohen, 1984; Bhat, 1988). Then
one can check if the deleted atoms appear in the new electron-density
map.

In an attempt to improve the resolution of a measured data set, the
“free lunch algorithm” (also called “nonmeasured reflection extrapo-
lation”) was introduced by Eleanor Dodson, developed by Carmelo
Giacovazzo, and named by George Sheldrick “since one is apparently
getting something for nothing” (Caliandro et al., 2005; Yao et al., 2005).
It extends the resolution of the measured data significantly by simply
inventing the missing data. This is done by Fourier transformation of
the existing experimental Fo map using the Wilson plot to obtain the
overall scale factor for the made-up data. Unexpectedly, it was found
that the introduction of unmeasured structure amplitudes produced
phases that improved the resulting electron-density map and led, in
many cases, to a structure solution (Usón et al., 2007). For some reason
random structure amplitudes are better than zero structure amplitudes
for those high-resolution data that cannot be measured experimentally
(Caliandro et al., 2007; Dodson and Woolfson, 2009).
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Overview

Direct methods for both centrosymmetric and noncentrosymmetric
structures have been programmed for many high-speed computers.
Since the equations involve probabilistic rather than exact relations,
uses of direct methods are most successful when care is taken initially
in the choice of the origin-fixing and symbolically assigned phases.
These are used to determine the phases of a good number of intense
Bragg reflections. In many structure analyses a reasonable approximate
(“trial”) structure has been recognizable from an E-map calculated with
only 5 or 10 percent of the observed Bragg reflections, although often
larger fractions are used, as in the example illustrated in Figures 8.4
and 8.5. Generally these “direct methods” result in a structure that
can be refined (Chapter 11), and so the structure may be considered
to be determined. A variety of excellent computer programs generally
ensure a correct structure. For several reasons, however, such success
may be elusive with some structures. There are many possible prob-
lems that can arise in using these methods, such as a poor choice of
origin-fixing Bragg reflections, the derivation of too few triple prod-
ucts so that some signs are generated with lower probabilities than
one would like, and a preponderance of positive signs for the derived
signs so that the resulting E-map has a huge peak at the origin even
though there is no heavy atom in the structure. However, with care
and experience these problems can usually, although not always, be
overcome.

Summary

There are limits to the possible phase angles for individual Bragg
reflections in both centrosymmetric and noncentrosymmetric struc-
tures. This follows from the constraints on the electron density; it must
be nonnegative throughout the unit cell and it must contain discrete,
approximately spherical peaks (atoms). For three intense related Bragg
reflections in a centrosymmetric structure, the signs are related by

sF (H) ≈ sF (K )sF (H + K )

where s means “sign of”; H ≡ h, k, l; K ≡ h′, k ′, l ′; H + K ≡ h + h′, k +
k ′, l + l ′; and F is a structure factor or E value. From such relationships
it is often possible to derive phases for almost all strong Bragg reflec-
tions and so to determine an approximation to the structure (a “trial”
structure) from the resulting electron-density map. Similar methods are
available for noncentrosymmetric structures.
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The steps in the determination of a structure by “direct methods”
consist of:

(1) Making a list of E values in decreasing order of magnitude and
working with the highest 10 percent or so.

(2) Analysis of the statistical distribution of E values to determine if
the structure is centrosymmetric or noncentrosymmetric. This is
important if there is an ambiguity in the space group determined
from systematically absent Bragg reflections.

(3) Derivation of triple products among the high E values.

(4) Selection of origin-fixing Bragg reflections.

(5) Development of signs or phases for as many E values as possible
using triple products and probability formulae.

(6) Calculation of E-maps and the selection of the structure from the
peaks in the map.

All of these steps are now incorporated into computer programs in wide
use.
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The two methods to be described here, the Patterson method* and the
* In the three decades from the mid 1930s
to the mid 1960s, the most powerful
method of analysis of the diffraction pat-
tern of a crystal was the Patterson method.
It revolutionized structure determination
because no longer was it necessary to pro-
pose a correct trial structure before analy-
sis. For the first time it provided a means
for solving most structures if good diffrac-
tion data were available.

isomorphous replacement method, have made it possible to determine
the three-dimensional structures of large biological molecules such as
proteins and nucleic acids. In addition, the Patterson function is still
useful for small-molecule studies if problems are encountered during
the structure analysis. If a crystal structure determination proves to
be difficult, the Patterson map should be determined to see if it is
consistent with the proposed trial structure.

The Patterson method involves a Fourier series in which only the
indices (h, k, l) and the |F (hkl)|2 value of each diffracted beam are
required (Patterson, 1934, 1935). These quantities can be obtained
directly by experimental measurements of the directions and intensities
of the Bragg reflections. The Patterson function, P(uvw), is defined in
Eqn. (9.1). It is evaluated at each point u, v, w in a three-dimensional
grid with axes u, v, and w that are coincident with the unit-cell axes
x, y, z; the grid fills a space that is the size and shape of the unit cell:

P(uvw) =
1
Vc

∑ ∑
all h,k,l

∑∣∣F (hkl)
∣∣2 cos 2π(hu + kv + lw) (9.1)

No phase information is required for this map, because |F (hkl)|2, unlike
F (hkl), is independent of phase. There is only one Patterson function for a
given crystal structure. For reasons that we explain shortly, a plot of this
function is often called a vector map. Appendix 8 gives some useful
background information and further details.

The Patterson function at a point u, v, w may be thought of as the
convolution**of the electron density with itself in the following manner:** See the Glossary.

130
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Fig. 9.1 Peaks in a Patterson (vector) map.

A Patterson map represents all interatomic vectors in a crystal structure, positioned with one end of the vector at the origin of the
Patterson map. (a) Atoms in a crystal structure showing one interatomic vector, which will appear as shown in (b) in the Patterson map.
(c) Two atoms related by a center of symmetry in a crystal structure. (d) The corresponding Patterson map showing vector coordinates.

P(uvw) = Vc

∫ ∫ ∫
whole cell

Ò(x, y, z)Ò(x + u, y + v, z + w) dx dy dz (9.2)

Equation 9.2 is obtained by multiplying the electron density at all points
x, y, z in the unit cell (that is, Ò(x, y, z)) with the electron density at
points x + u, y + v, and z + w (that is, Ò(x + u, y + v, z + w)). This Patter-
son function, P(u, v, w), can be thought of as the sum of the appearances
of the structure when one views it from each atom in turn, a procedure
illustrated in Figure 9.1. It is as if an atomic-scale elf sat on an atom, took
a snapshot of his surroundings, then moved to the next atom and super-
imposed his second snapshot on the first, and so forth.† Essentially the

† H. F. Judson, in The Eighth Day of Cre-
ation (Judson, 1996), uses the analogy of a
cocktail party in describing the Patterson
function. If there are one hundred guests
at a party, there must have been one hun-
dred invitations. The host would have to
make almost five thousand introductions
if he wanted to be sure everyone met each
other, and this would involve ten thou-
sand attempts to remember a new name.
If the shoes of the guests are nailed to
the floor, their handshakes must involve
different lengths and directions of arms
and different strengths of grip. This anal-
ogy may help some readers understand
the meaning of the vectors in a Patterson
map; they are interatomic vectors of dif-
ferent lengths and directions, with heights
proportional to the product of the atomic
numbers of the atoms at each end of
the vector. If each partygoer could then
recount every handshake and the direc-
tion, distance, and strength of it, then the
location of every guest in the room would
be known. Of course one would only use
this very complicated method (five thou-
sand vectors to locate one hundred peo-
ple) if it were absolutely necessary.

Patterson map samples the crystal structure at all sites separated by a
vector u0, v0, w0 and notes if there is electron density at both ends of this
vector; if this is so an interatomic vector has been localized. Therefore,
if any two atoms in the unit cell are separated by a vector u0, v0, w0 in
the three-dimensional structure (or electron-density map), there will be
peak in the Patterson map at the site u0, v0, w0.

The Patterson map [Eqns. (9.1) and (9.2)] is flat, near zero, except for
peaks that represent the orientation and length of every interatomic
vector in the structure. The vector between any two atoms is the dis-
tance between them and the direction in space that a line connecting
them would take. The heights of the peaks in the Patterson map are



132 The derivation of trial structures. II. Patterson, heavy-atom, and isomorphous replacement methods

proportional to the values of Zi Zj , where Zi is the atomic number of the
atom, i , at one end of the vector and Zi is that of the atom, j , at the other
end. The high peak that occurs at the origin of the Patterson function
represents the sum of all the vectors between an individual atom and
itself. It is important to note that a Patterson map is centrosymmetric
whether or not the structure itself is centrosymmetric.‡ This is because‡ This center of symmetry is evident in

Figure 9.1c. a vector from atom B to atom A has the opposite direction but the
same magnitude as a vector from atom A to atom B, so that these
two vectors, A → B and B → A, are related by a center of symmetry.
The symmetry of a Patterson map is generally not the same as that
of the electron-density map for the same crystal structure, but is like
the Laue symmetry. Symmetry elements containing translations (glide
planes and screw axes) are replaced by mirror planes or simple rota-
tion axes, respectively, and there is always the center of symmetry just
described.

If there is a peak in the Patterson map at a position related to
the origin of the map by a certain vector (with components u, v, w,
corresponding to a certain distance and direction from the origin),
then at least one position of that particular vector in the corresponding
crystal structure has both ends on atomic positions. (Remember that a
vector is characterized by a certain length and direction, but its ori-
gin may be anywhere). If there are many pairs of atomic positions
related by a particular vector, or if there are only a few but the atoms
involved have high atomic numbers, then the Patterson function will
have a high peak at that particular position u, v, w. If the value of
the Patterson function at a given position is very low, there is no
interatomic vector in the structure that has that particular length and
direction.

The Patterson map for a one-dimensional structure with identical
atoms at x = ±1/3 is shown in Figure 9.2. The values of the function
given by Eqn. (9.1) are designated P(u), and positions in the one-
dimensional map by u. An interesting feature of this map is that the
same result would be obtained from a structure in which the atoms
were at x = ±1/6. As shown in Figure 9.2, these two structures differ
only in that the location of the origin of the unit cell has been changed;
the relative positions of the atoms are the same in both solutions of
the map.

Thermal motion and disorder of atoms will cause a broadening of the
vector peaks and a lowering of their heights in the Patterson map. This
broadening can be reduced by “sharpening” the peaks. One method of
doing this is an artificial conversion of the atoms to point scatterers by
dividing each |F (hkl)| by the average scattering factor for the value of
sin Ë/Î at which it was measured. Normalized structure factors |E(hkl)|
fit this criterion and are commonly used with unity subtracted from
their square so that the origin Patterson peak will be removed. This
means that the coefficients used to compute the map are modified from
|F (hkl)2| to |E(hkl)2| − 1. The resulting origin-removed, sharpened
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Patterson map is

P(uvw) =
1
Vc

∑∑
all h,k,l

∑ ∣∣E(hkl)2 − 1
∣∣ cos 2π(hu + kv + lw) (9.3)

There are areas in a Patterson map, called “Harker sections” or
“Harker lines,” where symmetry operators involving translational com-
ponents (such as screw axes or glide planes) lead to useful information,
especially if a heavy atom is present (Harker, 1936). Therefore if the
space group lists atoms at x, y, z and 1/2 − x, −y, 1/2 + z, there will
be peaks at w = 1/2 in the Patterson map and they represent vectors

0

(a)

(b)

1/3

0

(2)

(1)
1 2

Vector
u = 1/3

x = ± 1/3

x = ± 1/6

Vector
u = 1/3Origin of

(1) in (2)

3

P(u)

u
2/3 1

x

Fig. 9.2 The calculation of a Patterson map for a one-dimensional structure.

(a) The equation of the Patterson function in one dimension is

P(u) =
1
a

∑
all h

|F |2 cos 2π(hu)

The function plotted is P(u) computed for a one-dimensional structure from the
following hypothetical “experimental” data:

h −3 −2 −1 0 1 2 3

|F |2 4 1 1 4 1 1 4

(b) There are two structures consistent with this map, one with atoms at x = ±1/3 and
one with atoms at x = ±1/6. As shown, these two structures are related simply by a
change of origin.
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between symmetry-related atoms at z and at z + 1/2. Therefore a perusal
of the Patterson map at w = 1/2 for a structure with this particular
space group may help solve the structure, especially if a heavy atom
is present.

A problem with Patterson maps is that there are N2 interatomic-
vector peaks within a unit cell that contains N independent atoms. N of
these peaks lie at the origin and, since the Patterson map has a center of
symmetry, there are (N2 − N)/2 independent vectors in the map. When
N becomes at all large (even as small as 20), the (N2 − N)/2 vector peaks
in the Patterson map necessarily overlap one another, since they have
about the same width as atomic peaks and occupy a volume equal
to that occupied by the N atoms of the structure. For example, when
N = 20 there are 20 × 19/2 = 190 Patterson peaks in the same volume
that the 20 atomic peaks occupy in the electron-density map. With crys-
tals of very large molecules, such as proteins, the overlap may become
hopeless to resolve, except for the peaks arising from the interactions
between atoms of very high atomic number, since a Patterson peak has
a height proportional to the product of the atomic numbers of the two
atoms involved in the vector it represents.

The structure shown in Figure 6.6, for which the Patterson map is
shown in Figure 9.3, contains only 12 nonhydrogen (O, N, or C) atoms
in the asymmetric unit. The great complexity of the Patterson map
compared with the electron-density map is obvious. In this example,
similar orientations of the six-membered rings in space-group-related
molecules give rise to very similar sets of six interatomic vectors, the
vectors in each set having nearly the same magnitude and direction,
thereby giving a high peak in the Patterson map (see peaks B, C, and
D in Figures 9.3a and b). Similarly oriented five-membered rings also
lead to high peaks (peaks A and E). The slope of the ring system is
clear in Figures 9.3c and d. This figure demonstrates the large amount
of structural information available in a Patterson map. However, since
all nonhydrogen atoms in the structure are similar in atomic number,
and the chemical formula was unknown until the structure was deter-
mined, the Patterson map was too complicated to analyze when first
obtained. Some Patterson maps that were much easier to interpret will
be described later in this chapter.

Until the advent of computer-assisted direct methods in the late
1960s, analysis of Patterson maps was the most important method for
getting at least a partial trial structure, especially for crystals contain-
ing one or a few atoms of atomic number much higher than those
of the other atoms present. In principle, for all but the largest struc-
tures, a correct trial structure can always be found from the Patter-
son distribution, but it is often very difficult to unravel the map,
especially when the chemical formula of the compound being stud-
ied is not known. Some people, however, find it a fascinating mental
exercise to try to deduce at least part of a crystal structure from a
Patterson map.
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Fig. 9.3 The analysis of a Patterson map.

(a) A two-dimensional Patterson map, P(u, v), a projection down the w axis, of an azidopurine is shown. The peaks in the P(u, v)
map that correspond to the multiple superposition of vectors from ring to ring are lettered A to E and are shown in both (a) and
(b).

(b) The interpretation of the map shown in (a).
(c) The P(u, w) map, a projection down the v axis, for the same structure, indicating the slope of the ring. The contour interval is

arbitrary.
(d) One molecule shown for comparison with the Patterson map in (c).

Data from Glusker et al. (1968).
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Fig. 9.4 The vector superposition method.
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Patterson superposition methods

There are several methods, and many are quite powerful, for finding
the structure corresponding to a Patterson map by transcribing P(uvw)
upon itself with different relative origins. One of the simplest methods
for analyzing the Patterson map of a compound that contains an atom
in a known position (such as a heavy atom that has been located in the
Patterson map) is to calculate, graphically or by computer, a “vector
superposition map.” The origin of the Patterson map is put, in turn,
always in the same orientation, at each of the symmetry-related posi-
tions of the known heavy atom, and the values of P(uvw) are noted
at all points in the unit cell. The lowest value of P(uvw) in the different
superposed Patterson maps is recorded for each point; the resulting vector
superposition map is therefore also known as a minimum function. The
principle underlying this approach is that it isolates the vectors arising
from the interaction of the known heavy atom with all other atoms
in the structure. A schematic example is illustrated in Figure 9.4. In
some of the maps there will be other peaks at this same position, cor-
responding to other vectors in the structure, but the possible ambiguity
that such peaks might introduce is minimized by recording the lowest
value of P(uvw) in any of the superposed maps. This method can be
used even if no atomic positions are known, simply by moving each
Patterson peak in turn onto the origin, as in the schematic example
illustrated in Figure 9.4.

Rotation and translation functions

Sometimes a structure contains a complex molecule, with (necessar-
ily) a multitude of vectors, but may include a group for which all
the vectors are known (relative to one another) rather precisely—for
example, a benzene ring in a phenyl derivative. The vector map of this
grouping can then be calculated and the resulting vector arrangement
can be compared with the arrangement of peaks around the origin of
the Patterson map. There will be many more peaks in this region
of the Patterson map than those arising from the known structural
features alone, but, in at least one relative orientation of the two maps,
all peaks in the vector map of the phenyl group will fall in positive areas

(a) Crystal structure.
(b) Patterson map of the structure shown in (a).
(c) Vector superposition. A search for the position of a third atom when the positions of the first two (#1 and #2, filled circles)

are known. The Patterson map illustrated in (b) has been placed (i) with the origin on the position of atom #1 (to give open
circles) and then, by superposition of peaks, (ii) with the origin on the position of atom #2 (to give crosses). Four unit cells are
shown. It can be seen that there are four positions within each unit cell where overlap of Patterson peaks occurs (a circle and
cross superposed). Two of these are, necessarily, at the positions of atom #1 (the origin) and atom #2; the other two are possible
positions for atom #3; that is, there are two solutions to the vector map at this stage. In practice, this ambiguity is not found
when many atoms are present, and the method will often show the structure clearly. Note that the two solutions to the structure
problem are mirror images of each other.
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of the Patterson map (although they will not necessarily all lie at max-
ima if the Patterson peaks are composite, as they usually are). This
method, which involves rotation of the Patterson map, is illustrated
in Figure 9.5. The fit of the calculated and observed Patterson maps
can be optimized with a computer by making a “rotational search” to
examine all possible orientations of one map with respect to the other
and to assess the degree of overlap of vectors as a function of the angles
through which the Patterson map has been rotated. The maximum over-
lap normally occurs (except for experimental errors) at or near the cor-
rect values of these rotation angles, thus giving the approximate orien-
tation of the group. Then the Patterson map can be searched for vectors
between groups in symmetry-related positions, and the exact position
of the group in the unit cell can be found and used as part of a trial
structure.

This method has been adapted to aid in the search for information
on the relationship between molecules if there are more than one in
the asymmetric unit. Sometimes, in crystalline proteins or other macro-
molecules, there is what is referred to as “noncrystallographic sym-
metry”; for example, a dimer of two identical subunits may be con-
tained in one asymmetric unit. Thus, there are two identical structures
with different positions and orientations within the asymmetric unit.
If, however, one copy of the Patterson map of this dimer is rotated on
another copy of the map, there will be an orientation of the first relative
to the second that gives a high degree of peak overlap (McRee, 1993;
Drenth, 2007; Sawaya, 2007). This is called a “self-rotation function.”
The results can be plotted in three dimensions in a map that describes
the rotation angles that achieved superposition of the two maps. A large
peak is expected at the rotation angles at which one subunit (or mole-
cule) becomes aligned upon another. For example, the relative orienta-
tions of two subunits in the same asymmetric unit may be determined
because the rotations required for superposition are directly related to
the orientation of the noncrystallographic (local) symmetry element of
the dimer, usually a two-fold axis (Rossmann and Blow, 1962). Thus a
rotation function, plotted as a contour map, provides information on
the results (as peaks) of the overlap of one Patterson function with the
rotated version of another Patterson function. In a similar way, it may
be possible to find the translational components of the noncrystallo-
graphic symmetry elements, but this is often considerably more difficult
(Crowther and Blow, 1967).

This concept of a probe and the finding of its location in the unit
cell by examination of the Patterson map is known as “molecular
replacement,” (Rossmann, 1972). For protein studies the probe may
be structural data from a similar protein such as a mutant of the
same protein. The method involves positioning the probe within the
unit cell of the target crystal so that the calculated diffraction pattern
matches that observed experimentally. The search is broken into two
parts, as described above—rotation then translation, each providing
three parameters. This method is very useful if atomic coordinates for
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Fig. 9.5 A Patterson search by rotation.

This is a schematic example. If the dimensions of a molecule or part of a molecule in a
crystal structure are known, but its orientation (and position) in the unit cell is unknown,
the orientation may often be found by a comparison of calculated and observed vector
maps around the origin. The position of the molecule will have to be found in some other
way. A comparison of vector maps calculated from trial structures in various orientations
with the Patterson map calculated from experimental data indicates that model (a) (above,
left) has the trial structure in its correct orientation. The orientations in (b) to (d) are
incorrect.
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a similar structure, such as a similar protein from a different biological
source, have already been reported.

The heavy-atom method

In the heavy-atom method, one or a few atoms in the structure have an
atomic number Zi considerably greater than those of the other atoms
present. Figure 5.2c showed that if one atom has a much larger atomic
scattering factor than the others, then the phase angle for the whole
structure will seldom be far from that of the single heavy atom alone,
unless, of course, many of the other atoms happen to be in phase
with one another, a most improbable circumstance. Heavy atoms thus
dominate the scattering of a structure, as illustrated in Figure 5.2c. If the
molecule of interest does not contain such an atom, then a derivative,
containing, for example, bromide or iodide, can often be prepared, with
the hope that the molecular structural features of interest will not be
modified in the process (Dauter et al., 2000). Heavy atoms can usually
be located by analysis of a Patterson map, although this depends on
how many are present and how heavy they are relative to the other
atoms present. In Appendix 9 some data relevant to the Patterson func-
tion are given for an organic compound containing cobalt, a derivative
of vitamin B12 with formula C45H57O14N5CoCl · C3H6O · 3H2O; cobalt
has an atomic number of 27 versus 6 for carbon, 7 for nitrogen, and
8 for oxygen. Therefore the scattering of cobalt, that is, |F (hkl)|2, is
12–20 times greater than that of any of the three lighter atoms. The
appearances of two Patterson projections for this substance are shown
in Figure 9.6. In spite of the presence of many other peaks, the cobalt–
cobalt peaks are heavier than most of those due to the other vectors and
dominate the map. The position of the cobalt atom in the unit cell was
thus found from these two Patterson projections (P(uv) and P(uw)). In
a similar way, the location of a heavy atom in a protein structure can
be found. In Figure 9.7, the heavy-atom position in a protein crystal
structure is found from the three Harker sections.

Once the heavy atom has been located, the assumption is then made
that it dominates the diffraction pattern, and the relative phase angle for
each diffracted beam for the whole structure is approximated by that
for a structure containing just the heavy atom. Figure 9.8 illustrates the
application of the heavy-atom method to the structure of the vitamin
B12 derivative just mentioned, which contained one cobalt atom, one
chlorine atom, and about seventy carbon, nitrogen, and oxygen atoms
(the structure used for the Patterson map illustrated in Figure 9.6).
The first approximation to the electron density was phased with the
cobalt atom alone. Peaks in it near the metal atom that were most
compatible with known features of molecular geometry were used,
together with the metal atom, in a calculation of phase angles for a
second approximate electron-density map. This process was contin-
ued until the entire structure had been found. The combined use of
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Fig. 9.6 Patterson projections for a cobalt compound in the space group P212121.

Peaks identified as arising from cobalt–cobalt interactions are indicated by arrows. See Appendix 9 for an analysis of these maps.

(a) P(u, v) Patterson projection down the c-axis. Co–Co peaks appear at 0.00, 0.00; 0.20, 0.32; 0.50, 0.18; 0.30, 0.50.
(b) P(u, w) Patterson projection down the b-axis. Co–Co peaks appear at 0.00, 0.00; 0.30, 0.30; 0.50, 0.20; 0.20, 0.50.

Note that these particular Patterson maps are projections, not Harker sections, but that Harker peaks at half each unit-cell direction
(u and v = 0.50 in (a) and u and w = 0.50 in (b)) helped solve the location of the cobalt atom.

From Proceedings of the Royal Society (Hodgkin et al. (1959), p. 312, Figure 3). Published with permission.

Patterson maps and heavy-atom methods made it possible for struc-
tures of moderate complexity to be solved in the 1950s and 1960s and,
for a while, was the most powerful tool in the analysis of structures
of moderate complexity (molecules with, say, 30 to 100 atoms). Direct
methods are now more commonly used to solve such structures (small
and moderate-sized), because these methods have become much more
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powerful with the greatly increased availability of high-speed, high-w = 0.50

w = 0.16

v = 0.30

v = 0.5
0

u = 0.28

u = 0.50

Fig. 9.7 The heavy-atom method. A dif-
ference Patterson map.

The macromolecule crystallizes in the
space group I 222. Atomic positions are
(0, 0, 0 or 1/2, 1/2, 1/2) + (x, y, z; −x, −y, z;
x, −y, −z; −x, y, −z). Three Harker sec-
tions have peaks at u = 2x, v = 2y, w = 0, at
u = 2x, v = 0, w = 2z, and at u = 0, v = 2y,
w = 2z. The heavy atom is therefore found
to lie at x = 0.14,y = 0.35, and z = 0.42.

capacity computers. One minor drawback of the heavy-atom method
is that when the heavy atom has an atomic number sufficiently high
to dominate the vector distribution, it will necessarily also contribute
strongly to the X-ray scattering. If it is desirable to know the structure
very precisely, it may be better to work on the structure of a compound
that does not contain a heavy atom as a derivative. However, now, with
precise low-temperature measurements and high-resolution data, it is
generally possible to locate hydrogen atoms in small structures, even if
a very heavy atom, such as tungsten or mercury, is present. In addition,
Patterson maps can permit a search for vectors of a specific length, such
as the S–S distance of a disulfide bridge or the vector between two metal
ions that share a particular functional group.

The isomorphous replacement method

Isomorphous crystals are similar in shape, unit-cell dimensions, and
structure. They have similar (but not identical) chemical compositions
(for example, when one atom has a different atomic number in the two
structures) (Mitscherlich, 1822). Ideally, the substances are so closely
similar that they can generally form a continuous series of solid solu-
tions, so that, for example, a colorless crystal of potash alum will con-
tinue crystal growth on a crystal of chrome alum. When the term “iso-
morphous” is used for a crystal of a biological macromolecule, it implies
that the crystal, with and without a heavy-atom compound soaked into
the water channels of the protein or else genetically engineered into
the structure, has the same unit-cell dimensions and space group. As a
result it is assumed that the macromolecules are in the same positions
and orientations in the two crystals.

The high scattering power of heavy atoms has been used to help solve
the structures of biological macromolecules. The isomorphous replace-
ment method that will be discussed next has been used in large number
of protein structure determinations. The Patterson map of a protein is
too complex, with too many overlaps of peaks, for direct interpretation,
but the location of a heavy atom, if it can be introduced into a protein
crystal, can be found. Data for both the protein and its “heavy-atom
derivative” are used to determine perturbations to intensities caused by
the addition of heavy atoms. With multiple isomorphous replacement,
the aim is to make some alteration in the crystal and examine how this
change perturbs the structure factors. From the measured intensities,
plus the changes on the introduction of different heavy atoms, it may
be possible to obtain phases for each Bragg reflection (Bokhoven et al.,
1949; Harker, 1956). For example, if a protein has a molecular weight
of 24,000, it contains approximately 2000 carbon, nitrogen, and oxygen
atoms. Then, at sin Ë = 0◦, the mean value of

< |FP |2>=
2000∑
j=1

f 2
c
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73 atoms

Co 26 atoms

Fig. 9.8 The heavy-atom method.

One section through a three-dimensional electron-density map for a structure with 73 atoms (including various solvent molecules, but
not hydrogen atoms) in the asymmetric unit is shown at three different stages of the structure analysis. In the calculation of the first
map, only a cobalt atom was used to determine phases. For the second map, 26 atoms were used (one Co, 25 C and N), chosen from
peaks in the first map. The third map was phased with the positions of all 73 atoms. Most of the features of the map phased with 73
atoms can be found, at least weakly, in the map phased with the heavy atom alone, although in the latter map there are many extra
peaks that do not correspond to any real atoms. Note the general reduction in the background density as the correct relative phase
angles are approached. Since these are sections of a three-dimensional map, some atoms that lie near but not in the plane of the section
are indicated by lower peaks than would represent them if the section passed through their centers. Other atoms implied by the skeletal
formula lie so far from this section that no peaks corresponding to them occur here.

From Proceedings of the Royal Society (Hodgkin et al. (1959), p. 328, Figure 14). Published with permission.

is about 98,000. If one uranium atom, atomic number 92, is added, this
value of <|FP |2> is increased to approximately 106,000, an 8 percent
change in average intensity. Differences in intensities of the native pro-
tein and the heavy-atom derivative can be measured, many of which
will significantly exceed the average. Therefore the position of the ura-
nium atom should be obtainable from the intensity differences.

If a protein crystal is soaked in a solution of a heavy-atom compound
(such as a uranyl salt), the heavy-atom compound will be distributed
throughout the solvent channels in the crystal by diffusion. In some
cases the heavy atom will bind to a specific group on the macromole-
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cule, and this binding may occur in an ordered arrangement within the
macromolecular crystal. The difference between the diffracted inten-
sities of the “heavy-atom derivative” of the protein crystal (structure
factors FP H) and the diffracted intensities of the “native protein” with-
out any added heavy atom (structure factors FP ) can be used to reveal
the position of the heavy atom by a “difference Patterson map.” This
is done with a Patterson map that uses ||FP H|2 − |FP |2| as coefficients.
In other cases, however, with this method of soaking heavy atoms into
the native protein, nonspecific binding of the heavy atom may occur,
since there are many binding groups on the surface of a protein. If this
does happen, that particular heavy-atom derivative can probably not be
used for structure determination because of the disorder of its position.
To prevent random binding it is necessary to stop the soaking after
an appropriate time, determined experimentally, in the hope that only
specific binding will occur; the concentration of the heavy-atom salt is
often critical for this. An alternative method, which involves attempting
to crystallize proteins from solutions containing heavy-atom salts, has
not proved very satisfactory, because the crystals so obtained are often
not isomorphous with the native crystal. Crystals must be isomorphous
for the use of the isomorphous replacement method that will now be
described. When a pair or series of isomorphous crystals can be found,
isomorphous replacement is a powerful method for the determination
of phase angles, especially for complex structures for which purely ana-
lytical methods (see Chapter 8) are inadequate. It has provided the
basis for the solution of many of the macromolecular crystal structures
determined to date.

Isomorphous crystals are crystals with essentially identical cell
dimensions and atomic arrangements but with a variation in the
nature of one or more of the atoms present. The alums constitute
probably the best-known example of a series of isomorphous crystals.
“Potash alum,” KAl(SO4)2 · 12H2O, grows as colorless octahedra, while
“chrome alum,” KCr(SO4)2 · 12H2O, forms dark lavender crystals of the
same shape and structure. The Cr(III) atom in chrome alum is in the
same position in the unit cell as the Al(III) atom in potash alum. A
common experiment in isomorphism is to grow a crystal of chrome
alum suspended from a thread and then to continue to grow it in a
solution of potash alum. The result is an octahedral crystal with a dark
center surrounded by colorless material (Holden and Singer, 1960). In
general, however, isomorphous pairs (involving isomorphous replace-
ment of one atom by another) are difficult to find for crystals with small
unit cells, because variations of atomic size usually cause significant
structural changes when substitution is tried. Even with large unit cells,
patience and ingenuity are usually needed to find an isomorphous
pair for a compound being studied. The rewards from this method
are enormous—the entire three-dimensional molecular architecture of
a protein molecule, found with minimal chemical assumptions.§ Max

§ Usually information about the sequence
of the amino acids in the protein chain is
needed to interpret the electron-density
maps, especially in poorly resolved
regions of the structure. Perutz searched for years for ways to solve the structure of hemoglobin,

and succeeded when he devised this isomorphous replacement method
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(Green et al., 1954). The existence of isomorphism between a protein
and a heavy-atom derivative may be demonstrated by the determina-
tion that their unit-cell dimensions do not differ by more than about 0.5
percent, and that there are differences in the diffraction intensity pat-
terns. It is hoped that there is only a change in the site of isomorphous
replacement and that most of the crystal structure of the native and the
heavy-atom-substituted protein is the same.

After a Patterson map has been calculated and the position of the
heavy atom has been found for each derivative, it is possible to cal-
culate the relative phases of the Bragg reflections directly by a proper
consideration of the changes in intensity from one crystal to another.

The method for calculating phase angles by the isomorphous replace-
ment method is illustrated in Appendix 8 in a numerical example
involving a centrosymmetric crystal. The atoms or groups of atoms (M
and M′) that are interchanged during preparation of the isomorphous
pair must be located, usually from a Patterson map, as described earlier.
This allows calculation of their contributions, FM and FM′ . If FM and
FM′ are positive (they necessarily have the same sign, since their only
difference is in the amount of scattering power in the atom or group of
atoms), then the overall F values (FT) must differ in the same way that
FM and FM′ differ. Since the absolute magnitudes of these measured
values of F are known and the difference equivalent to the change in M
can be computed, it is possible to find signs for FT and FT′ . The solutions
to the equations are in practice inexact, because of experimental errors
and also because the remainder of the structure, R, may move slightly
during the replacement of one ion group by another. In an interesting
variation to the isomorphous replacement method, it has been found
that the relationship between structures in a crystal before and after
radiation damage can be used to determine phases. For the “radiation-
damage-induced phasing” (RIP) method, two data sets of the same
crystal are measured. Between the two data collections the crystal is
exposed to a very, very large dose of X-rays. The structural changes as a
result of radiation damage (by analogy with heavy-atom insertion) are
enough to make it possible to determine the phasing, especially if a few
somewhat heavier atoms, such as sulfur, are present in the structure
(Ravelli et al., 2003).

With noncentrosymmetric structures, the situation is greatly compli-
cated by the fact that the phase angle may have any value from 0 to
360◦. This is the case for biological macromolecules. If the heavy-atom
position can be found from the Patterson map, then FH and the relative
phase angle ·H can be computed for a given diffracted beam for each
derivative. The construction for graphical determination of the phase
angle for the protein (P) is shown in Figure 9.9. For each heavy-atom
derivative (P H1 and P H2), two possible values¶ for the phase angle

¶ With reference to Figure 9.9a, the law of
cosines also illustrates the two-fold ambi-
guity in the phase angle determined from
just one heavy-atom derivative:

·P = ·H

+ cos−1 {(FP H
2−FP

2−FH
2)/2FP FH}

= ·H ± ·′

Thus two values of ·P , that is, ·H + ·′ and
·H − ·′, are possible and it is necessary
to study several heavy-atom derivatives
with substituted heavy atoms in different
positions in the unit cell; the value of ·P
that is common to these different studies
is determined in this way.

for the protein are found; in the example in Figure 9.9, these are near
53◦ and 322◦ for P H1 (Figure 9.9a) and near 56◦ and 155◦ for P H2
(Figure 9.9b). The phase angle for the free protein for this particular dif-
fracted beam must therefore be near 54◦. This process of estimating the



146 The derivation of trial structures. II. Patterson, heavy-atom, and isomorphous replacement methods
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Fig. 9.9 Isomorphous replacement for a noncentrosymmetric structure.

Graphical evaluation of the relative phase, ·P , of a Bragg reflection, indices hkl, diffracted with a structure factor |FP | from a
protein crystal. The diagrams illustrate the following equation: FP = FP H − FH , where P = “native protein,” H = heavy atom, P H =
protein heavy-atom derivative.

(a) One heavy-atom derivative is available, with a structure factor |FP H1| for the Bragg reflection hkl. A circle with radius |FP | is drawn
about the origin. From the position of the heavy atom, determined from a difference Patterson map, it is possible to calculate both
the structure amplitude and the phase of the heavy-atom contribution (|FH1|, phase angle ·H1). A line of length |FH1| and phase
angle −·H1 (i.e., ·H1 + 180◦ to give −FH1) is drawn. With the end of this vector as center, a circle with radius |FP H1| is drawn. It
intersects the circle with radius |FP | at two points, corresponding to two possible phase angles, ·P(1) and ·P(2), for the native protein.

(b) When two or more heavy-atom derivatives are available, then the process described in (a) is repeated and, in favorable
circumstances, only one value of phase angle for the native protein is obtained. Thus, a second derivative is needed to remove
the two-fold ambiguity of case (a). This method, of course, depends on accurate measurements of |FP |, |FP H1|, and |FP H2|
and involves the assumption that no other perturbation than the addition of a heavy atom to the native protein has occurred.
Additional derivatives are sometimes needed to improve the accuracy of the phase angles.
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phase angle must be repeated for each diffracted beam in the diffraction
pattern; usually more than two heavy-atom derivatives (in addition to
the free protein) are studied, so that the phases can be more accurately
determined. A measure of the error in phasing is provided by a figure
of merit, m. This is the mean cosine of the error in the phase angle; it is
near unity if the circles used in deriving phases (Figure 9.9) intersect in
approximately the same positions. For example, if the figure of merit is
0.8, the phases are in error, on the average, by ±40◦, if it is 0.9, the mean
error is ±26◦.

∗Areas of high electron density are stored
in the computer as three-dimensional
information and are represented by cage-
like structures on a video screen. Any
desired view can be generated. The back-
bone of the molecule is represented as
a series of vectors, each 3.8 Å in length
(the distance between α-carbon atoms in
a polypeptide chain). Each vector is posi-
tioned with one end on an α-carbon atom;
the other end of the vector is rotated
until it lies in an appropriate area of high
electron density. Then coordinates of both
ends of the vector are stored in the com-
puter, the process is repeated, and the
most likely location of the next α-carbon
atom is sought. Such vectors are repre-
sented in this figure, a stereopair∗∗ pho-
tographed from a video screen, as heavy
solid lines. In this way the “backbone,”
that is, the positions of the carbon atoms
of the polypeptide backbone of the protein
(excluding side chains), may be found.

(Photograph courtesy Dr. H. L. Car-
rell.)

∗∗ Such stereodiagrams can be viewed
with stereoglasses, or readers can focus on
the two images until an image between
them begins to form, and then allow
their eyes to relax until the central image
becomes three-dimensional. This process
requires practice and usually takes 10 sec-
onds or more.

Thus the stages in the determination of the structure of a protein
involve the crystallization of the protein, the preparation of heavy-atom
derivatives, the measurement of the diffraction patterns of the native
protein and its heavy-atom derivatives, the determination of the heavy-
atom positions, the computation of phase angles (Figure 9.9), and the
computation of an electron-density map using native-protein data and
the phase angles so derived from isomorphous replacement. The map
is then interpreted in terms of the known geometry of polypeptide
chains so that initially this backbone of the protein is traced through
the electron-density map. This was formerly done by model building
(using a half-silvered mirror in a “Richards box” so that a ball-and-stick
model and the electron-density map were superimposed and therefore
could be visually compared). Nowadays it is more common for this
interpretation of the electron-density map to be done with the help of
computer graphics (as shown in Figure 9.10).

The isomorphous replacement method was one of the most used
methods for determining macromolecular structure, is now being
replaced by experimental methods that involve anomalous dispersion
(“MAD” and “SAD” phasing). They will be described in Chapter 10,
where their advantages will be described.

Fig. 9.10 Protein backbone fitting by computer-based interactive graphics.∗
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Multiple Bragg reflection

A very different but important approach to phase measurement
involves “double reflection.” This is a physical effect that occurs when
the crystal is oriented so that two reciprocal lattice points, h1, k1, l1
and h2, k2, l2, lie simultaneously in the diffracting position; that is,
both lie on the surface of the sphere of reflection (the Ewald sphere)
at the same instant. The result is two beams that are diffracted in the
direction normally expected for h1, k1, l1, and which interfere with each
other. One is the normally expected h1k1l1 Bragg reflection (the primary
beam), and the other, also in the h1k1l1 direction, results from the h2k2l2
Bragg reflection (the secondary beam) acting as the incident beam for
the h1 − h2, k1 − k2, l1 − l2 Bragg reflection (the coupling beam). The
amplitude of the resultant Bragg reflection gives information on the
phase difference of these two waves. This effect is variously described
as the Renninger effect (Renninger, 1937), the Umweganregung effect (if
I (h1k1l1) is increased at the expense of I (h2k2l2)), or the Aufhellung effect
(if I (h1k1l1) is decreased). When a ¯-scan of the peak (through a very
small angle) is done it is found that there is an asymmetry, shown in
Figure 9.11, that depends on the value of the phase invariant. Therefore
a direct reading of ·sum is obtained:

·sum = ·(−h1,−k1,−l1) + ·(h2, k2, l2) + ·(h1 − h2, k1 − k2, l1 − l2) (9.4)

primary beam secondary beam coupling beam

–0.05 –0.00 +0.05

–0.05 –0.00 +0.05 –0.05 –0.00 +0.05

–0.05 –0.00 +0.05

asum = −90�

asum = +90�

asum = 180�

asum = 0�

I

I I

I

Y scan

Y scan Y scan

Y scan

(a)

(c) (d)

(b)

Fig. 9.11 Multiple Bragg reflections.

Some idealized ¯-scans and values of
·sum(hkl) derived from peak profiles. If the
crystal is noncentrosymmetric, intermedi-
ate phase sum values will be found.
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This is like a triplet phase relationship but is an equality rather than
a probability. A highly precise (six-circle) diffractometer is needed for
this experiment but, when available, such an instrument has provided
experimental data that have been used with good success (Hümmer
and Billy, 1986; Shen, 1998). Thus an experimental way of measuring
origin-independent structure invariants is provided.

Summary

The Patterson map

The map computed with amplitudes |F (hkl)|2, but no phase informa-
tion, will give a vectorial representation of the atomic contents of the
unit cell. The Patterson function, P(uvw), is expressed in the coordinate
system u, v, w in a cell of the same size and shape as that of the crystal.
It is calculated by

P(uvw) =
1
V

∑ ∑
all h,k,l

∑ ∣∣F (hkl)
∣∣2 cos 2π(hu + kv + lw)

The peaks in this map occur at points whose distances from the origin
correspond in magnitude and direction with distances between atoms
in the crystal, because

P(uvw) = V
∫ ∫ ∫

Ò(x, y, z) Ò(x + u, y + v, z + w) dx dy dz

Ideally this map can be interpreted in terms of an atomic arrangement.
In practice, however, this is only possible if there are comparatively
few atoms in the structure or if some are very heavy. The map may
also be “sharpened” and the high origin peak removes if values of
{|E(hkl)2| − 1} rather than |F (hkl)|2 are used. A rotation of a Patterson
map can be used to identify the angle between two identical molecules
when noncrystallographic symmetry is present.

The heavy-atom method

If one or a few atoms of high atomic number are present, they will
dominate the scattering. These atoms can generally be located from a
Patterson map and the phases of the entire structure approximated by
the phases of the heavy atom(s). In the resulting electron-density map,
portions or all of the remainder of the structure will usually be revealed,
leading to improved phases and successively better approximations to
the structure.

Isomorphous replacement method

For very large structures, such as those of proteins, the isomorphous
replacement method is a good method for the experimental determi-
nation of phase angles. Two crystals are isomorphous if their space
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groups are the same and their unit cells and atomic arrangements are
essentially identical. Since protein crystals contain solvent channels,
if heavy atoms (in solution) are soaked into them and the resulting
crystals are isomorphous with the unsubstituted (“native”) crystal, a
comparison of the two diffraction patterns will give relative-phase
information. If the positions of these added or replaced atoms can be
found from Patterson maps, their contributions to the phase angle of
each Bragg reflection can be calculated, and if the atoms are sufficiently
heavy, differences in intensities for the two isomorphs can be used to
determine the approximate phase angle for each Bragg reflection. At
least two heavy-atom derivatives are necessary for noncentrosymmetric
structures.

Multiple Bragg reflection

If the crystal is oriented so that two reciprocal lattice points lie simulta-
neously in the diffracting position, that is, both lie on the surface of the
sphere of reflection at the same instant, the resulting diffracted beam
contains information on a structure invariant involving three Bragg
reflections—the primary beam, the secondary beam, and the coupling
beam. This method requires specialized equipment.



Anomalous scattering
and absolute
configuration
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The concept of the carbon atom with four bonds extending in a
tetrahedral fashion was put forward by van’t Hoff and Le Bel in
1874. It coincided with the realization that such an arrangement could
be asymmetric if the four substituents were different, as shown in
Figure 10.1a (van’t Hoff, 1874; Le Bel, 1874). Thus, for any compound
containing one such asymmetric carbon atom, there are two isomers of
opposite chirality (individually called enantiomers), for which three-
dimensional representations of their structural formulas are related
by a mirror plane. Aqueous solutions of these enantiomers rotate
the plane of polarized light in opposite directions. As discussed in
Chapter 7, Pasteur showed that crystals of sodium ammonium tartrate
had small asymmetrically located faces and that crystals with these
so-called “hemihedral faces” rotated the plane of polarization of light
clockwise, while crystals with similar faces in mirror-image positions
rotated this plane of polarization counterclockwise. Thus the external
form (that is, the morphology) of the crystals illustrated in Figure 10.1b
was used to separate enantiomers (see Patterson and Buchanan, 1945).
Pure enantiomers can only crystallize in noncentrosymmetric space
groups unless both isomers are present.

But even if the chemical formula and the three-dimensional structure
of a molecule such as tartaric acid have been determined by standard
X-ray diffraction methods, there is an ambiguity about the absolute
configuration. Information about the absolute configuration is not con-
tained in the diffraction pattern of the crystal as it is normally measured.
Thus, although the substituents on the asymmetric carbon atoms have
been identified, and even the detailed three-dimensional geometry of
the molecule has been determined, it is not known which of the two
enantiomers (mirror-image forms, analogous to those shown in Fig-
ure 10.1a) represents the three-dimensional structure of a particular
individual molecule that has some distinguishing chiral property, such
as the ability to rotate the plane of polarized light to the right. In other
words, what is the absolute structure of the dextrorotatory form of the
compound under study?

151
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A

(a)

(b)

B

Mirror

C
D

A

D
C

B

Dextrorotatory sodium
ammonium tartrate

Levorotatory sodium
ammonium tartrate

Fig. 10.1 Absolute configurations.

(a) The asymmetric carbon atom. If A, B, C, and D attached to the tetrahedral carbon
atom are all different, there are two chiral isomers related to each other by a mirror
plane. In a similar way, the entire structure of a crystal may be chiral.

(b) Hemihedral faces (shaded) on sodium ammonium tartrate crystals (used by Pas-
teur to differentiate dextrorotatory from levorotatory forms).

A means of determining the absolute configurations of molecules
was, however, provided by X-ray crystallographic studies. It was made
possible by the observation that the absorption coefficient of an atom
for X-rays shows discontinuities when plotted as a function of the
wavelength of the incident X-radiation. These discontinuities, shown
in Figure 10.2, are graphically described as “absorption edges.” At
wavelengths at the absorption edge of an atom, the energy (inversely
proportional to wavelength) of the incident X rays is sufficient either to
excite an electron in the strongly absorbing atom to a higher quantum
state or to eject the electron completely from the atom. This has an effect
on the phase change of the X rays on scattering. The scattering factor for
the atom becomes “complex,” and the factor f is replaced by

f = fi + f ′
i + i f ′′

i (10.1)

where f ′ and f ′′ vary with the wavelength of the incident radiation.
While f ′ causes no change in phase (it remains at 180◦), f ′′ causes a
phase change of 90◦, which is the reason that the Friedel-pair symmetry
breaks down. The value of f ′′ is largest when the wavelength is near
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Wavelength of radiation (Å)
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Fig. 10.2 Absorption of X rays of various wavelengths by a cobalt atom.

The mass absorption coefficient for cobalt as a function of wavelength. Note the discon-
tinuity near the absorption edge (1.608 Å); beyond it, there is a gradual increase in the
coefficient as the wavelength of the radiation increases.

the absorption edge (as for cobalt in a structure studied with copper Kα

radiation; see Figure 10.2).
When visible light passes through transparent matter, such as a glass

prism or a colorless crystal, its speed is decreased from the value it had
in a vacuum. This decreased speed depends on the wavelength of the
light. The refractive index of a material is the ratio of the velocity of
light in vacuo to its velocity when it passes through this medium. Since
white light consists of rays with a variety of wavelengths (from red
to violet), rays with different wavelengths will be refracted at slightly
different angles when they enter a material at an angle. This separation
of light so that the individual colors of the component waves become
visible is called “dispersion.” The violet and blue rays (of shorter wave-
lengths) are slowed more and therefore are bent to a greater extent
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than are the red and orange rays, with longer wavelengths; rays with
shorter wavelengths have a larger refractive index. The result of such
dispersion is a beautiful rainbow-like display of colors, such as that seen
when sunlight passes through and exits a glass prism. This dispersion
becomes “anomalous” when an energy absorption band is encountered
and a discontinuity occurs; the dispersion is normal on either side of the
absorption band, but at the absorption edge the refractive index is larger
for longer wavelengths, rather than shorter as is normal. In this area
near an absorption edge this plot of wavelength versus refractive index
shows an increase of refractive index with wavelength (so that blue
light is less refracted than red), the opposite of normal expectation. This
is called “anomalous dispersion” or “anomalous scattering,” meaning
that one is studying the area of a spectrum near an absorption edge.

All atoms scatter anomalously to some extent, but at wavelengths
near the absorption edge of a scattering atom, anomalous scattering
will be especially noticeable. If an atom in the structure absorbs, at least
moderately, the X rays being used, then this absorption will result in a
phase change for the X rays scattered by that atom, relative to the phase of the X
rays scattered by the other atoms of the structure, the equivalent of advanc-
ing or delaying the radiation for a short time as shown in Figure 10.3
[that is, equivalent to a hesitation (“gulp”) at the time of scattering].

Normal scattering

Anomalous scattering

Atom

Atom

Diffracted beam

Diffracted beam

Direct beam

Direct beam

(a)

(b)

Fig. 10.3 Phase change on anomalous scattering.

(a) Normal scattering with a phase change of 180◦. (b) Anomalous scattering with a different phase change.
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This implies that in order to demonstrate anomalous scattering, the
crystal must contain at least two different types of atoms. The phase
change caused by f ′′ changes the path length of the scattered radiation,
as illustrated schematically in Figure 10.3, and the result is an effect on
the intensities of the diffracted beams. When there is none of this so-
called “anomalous scattering,” the intensities of the Bragg reflections
with indices h, k, l and h̄, k̄, l̄ are the same (Friedel’s Law). When there is
anomalous scattering, the intensities of these two Bragg reflections may
be different because of changes in effective path differences between
scattered waves arising from the phase change on absorption by the
anomalously scattering atom.

The difference in intensities may alternatively be thought of as a
result of the complex nature of the scattering factor, fi [see Eqn.
(10.1)], so that the absolute value of F (hkl) is different from that of
F (−h,−k,−l), as illustrated in Figure 10.4. We showed in Eqn. (10.1)
that if there is an anomalous scatterer in the crystal, f is replaced by
f + f ′ + i f ′′. Let A′ = G( f + f ′) + A and B ′ = H( f + f ′) + B, where A
and B refer to the rest of the structure and G and H to the anomalous
scatterer. Remember that f and f ′ scatter with a phase change of 180◦,
while f ′′ scatters with a phase change of 90◦. As a result, since

F (hkl) = (A′ + iG f ′′) + i(B ′ + iH f ′′) = (A′ − H f ′′) + i(B ′ + G f ′′) (10.2)

|F (hkl)|2 = (A′ − H f ′′)2 + (B ′ + G f ′′)2 (10.3)

and similarly

F (h̄k̄l̄) = (A′ + iG f ′′) − i(B ′ + iH f ′′) = (A′ + H f ′′) − i(B ′ − G f ′′) (10.4)

|F (h̄k̄l̄)|2 = (A′ + H f ′′)2 + (B ′ − G f ′′)2 (10.5)

it then follows that

|F (hkl)|2 − |F (h̄k̄l̄)|2 = 4 f ′′(B ′G − A′ H) (10.6)

Thus, when the incident X-radiation is of a wavelength near that of the
absorption edge of an atom in a noncentrasymmetric structure, |F (hkl)|
does not equal |F (h̄k̄l̄)|. Under normal conditions the wavelength of the
X-radiation used for a diffraction experiment is far from any absorp-
tion edge and these two quantities, |F (hkl)| and |F (h̄k̄l̄)|, are equal. If
anomalous scattering occurs, the magnitude of the difference between
|F (hkl)|2 and |F (h̄k̄l̄)|2 for the two Bragg reflections (called “Friedel
pairs” or “Bijvoet pairs”) is a function of f ′′ (which depends on how
near the incident radiation is to the absorption edge) and the positional
parameters of both the anomalous scatterer and the rest of the structure.

It is possible from Eqn. (10.6) to calculate the expected differences
between |F (hkl)|2 and |F (h̄k̄l̄)|2 for a given enantiomorph (with a spe-
cific absolute configuration). In practice, the indices of the Bragg reflec-
tions are assigned so that h, k, and l are in a right-handed system.
Therefore the axes of x, y, z (that is, a, b, and c) must also be in a
right-handed system. Values of |F |2 for pairs of Bragg reflections hkl
and h̄k̄l̄ are measured and the magnitude and sign of their difference are
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Black atom instantaneously advances the wave + q causing Ihkl≠ Ihkl  (different path differences on diffraction)

Ihkl= Ihkl  (same path differences on diffraction)
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Fig. 10.4 Path differences on anomalous scattering in a noncentrosymmetric structure.

Effect of anomalous scattering on the path lengths of diffracted X-ray beams. Suppose that for a particular reflection the anomalous
scatterer (black circles) causes in effect a path difference, q , in addition to the usual difference of 2p between the radiation scattered by
a normal scatterer at this position and by a normal scatterer at some other position (open circles). As shown, the path difference for the
hkl reflection with anomalous scattering is 2p + q and that for the h̄k̄l̄ reflection is 2p − q . If no anomalous scattering had occurred, these
would be the same—namely, 2p. Since the intensity of a diffracted beam depends on the path differences between waves scattered
by the various atoms in the unit cell, the result of anomalous scattering is an intensity difference between hkl and h̄k̄l̄. It is possible to
compute values of |F (hkl)| and |F (h̄k̄l̄)| and see which should be the larger. If for many reflections the relations of the calculated values
to the experimentally measured values are the same as those calculated for the model, then the model has the correct handedness
(configuration); if not, the configuration of the model must be changed. That is, if |Fo(hkl)| > |Fo(h̄k̄l̄)|, then we must necessarily have
|Fc(hkl)| > |Fc(h̄k̄l̄)|. See Appendix 11.
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compared with the calculated value of 4 f ′′(B ′G − A′ H) [see Eqn. (10.6)].
G and A′ are cosine terms and do not change sign if the “handedness”
of the system in which the model is calculated is changed. However, B ′

and H are sine terms, and if the signs of x, y, and z for all the atoms
in the model are reversed, then B ′ and H change sign. Therefore, if
(|F (hkl)|2 − |F (h̄k̄l̄)|2 and (B ′G − A′ H) have opposite signs, the values
of x, y, and z in the model must be replaced by −x,−y,−z to give
the correct model. An example is given in Appendix 11. The result of
maintaining the same handedness for the axes in real and reciprocal space
is a three-dimensional representation of the molecule from which the
absolute configuration can be seen directly.

In order to establish the absolute configuration of a crystal structure
it is necessary (if anomalous scattering has taken place) to compare
I (hkl) and I (h̄k̄l̄), note which is larger, and compare this information
with the result of a structure factor calculation done with a model
of the structure. If there is not agreement between the signs of these
observed and calculated intensity differences, the handedness of the
model should be reversed. The signs of the differences should be correct
in all cases where they are large (keeping in mind the standard uncer-
tainties of their measurements). Alternatively, a Flack parameter, x, can
be calculated. This is obtained by the equation

I (hkl) = (1 − x)|F (hkl)|2 + x|F (h̄k̄l̄)|2 (10.7)

and is often part of the least-squares refinement (Flack, 1983). The value
found for x for all data generally lies between 0 and 1. If x is near 0
with a small standard uncertainty, the absolute structure that has been
obtained is probably correct. If x is near 1, then the signs of all x, y, and
z in the structure must be reversed. If x is near 0.5, the crystal may be
racemic or twinned, and further investigation is necessary.

In 1930 Coster, Knol, and Prins were able to determine the absolute
configuration of a zinc blende (ZnS) crystal (Coster et al., 1930).* This

* Zinc blende, ZnS, crystallizes in a cubic
unit cell, a = 5.42 Å, space group F 4̄ 3m.
The structure contains Zn at (0,0,0), (0, 1/2,
1/2), (1/2, 0, 1/2), and (1/2, 1/2, 0) and sulfur at
(1/4, 1/4, 1/4), (1/4, 3/4, 3/4), (3/4, 1/4, 3/4), and (3/4,
3/4, 1/4). The shiny, well-developed faces
have sulfur atoms on their surfaces, while
the rougher, matte faces have zinc on their
surfaces. When pressure is applied per-
pendicular to the 111 face, the shiny faces
become, by the piezoelectric effect, posi-
tively charged and the matte faces become
negatively charged.

contains, in one direction (a polar axis) through the crystal (the one
perpendicular to the 111 face), pairs of layers of zinc and sulfur atoms
separated by a quarter of the spacing in that direction and then another
pair one cell translation away, and so on (Figure 10.5). The sense or
polarity of that arrangement was determined by the use of radiation
(gold, AuLα1, Î = 1.276 Å, AuLα2, Î = 1.288 Å) near the K-absorption
edge of zinc (1.283 Å). The AuLα1 radiation caused anomalous scatter-
ing by the zinc atoms, but the AuLα2 radiation did not. As a result it
was shown that the shiny (1̄1̄1̄) faces have layers of sulfur atoms on
their surfaces and the dull (111) faces have layers of zinc atoms on their
surfaces (see Figure 10.5).

This method was extended, as described above and in Appendix 11,
by Bijvoet, Peerdeman, and van Bommel in 1951 to establish the abso-
lute configuration of (+)-tartaric acid in crystals of its sodium rubidium
double salt using zirconium radiation, which is scattered anomalously
by rubidium atoms and ions (Bijvoet et al., 1951). The result is shown in
Figure 10.6a. The absolute configuration was unknown until that time;
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Fig. 10.5 Polarity sense of zinc blende.

(a) The structure of zinc blende, showing the arrangement of zinc and sulfur atoms.
Two views are shown, one down an axis and the other to show the planes of atoms
in the [111] direction. Zinc blende is often called sphalerite. Zn black, S stippled.

(b) Reflections from the two faces of zinc blende (dull and shiny) will have different
relative path differences for the zinc and the sulfur atoms (compare with Fig-
ure 10.4). If the radiation is near the absorption edge of zinc, the two types of
reflections will have different intensities, allowing one to determine (as did Coster,
Knol, and Prins in 1930) that the dull face has zinc atoms on the surface and the
shiny face has sulfur atoms on the surface.
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Fig. 10.6 Absolute configurations of biological molecules.

(a) Absolute configuration of (+)-tartaric acid (dextrorotatory tartaric acid). Note that
in the actual structure (right) the chain of four carbon atoms has effectively a planar
zigzag arrangement. In the formula on the left, and by convention in all “Fischer
formulas,” vertical carbon chains are represented as planar but with successive
bonds always directed into the page. Thus, in the formulas in the center and left
here, the lower half of the molecule has been rotated 180◦ relative to the upper
half as compared with the actual structure. This affects the conformation but
not the absolute configuration of the molecule. The conformation of tartaric acid
illustrated on the left is a possible one for this molecule, but it is of higher energy
(because bonds are eclipsed) than that shown on the right, the conformation
observed in the crystals studied by Bijvoet et al. (1951). Still other conformers may
exist in solution or in other crystals.

(b) Absolute configuration of the potassium salt of (+)-isocitric acid (isolated
from the plant Bryophyllum calycinum). Fischer and Newman formulas are
shown. The correct designation of this enantiomer is 1R:2S-1-hydroxy-1,2,3-
propanetricarboxylate. The torsion angles are shown in Figure 12.5.

From Acta Crystallographica B24 (1968), p. 585, Figure 4.
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fortunately that which was found was the one arbitrarily chosen from
the two possibilities half a century earlier by Fischer (Fischer, 1890,
1894), so the current organic chemistry textbooks did not have to be
changed. The absolute configurations of many other molecules have
been determined either by X-ray crystallographic methods or by chem-
ical correlation with those compounds for which the absolute configu-
ration had already been established (see Figure 10.6b). Values of anom-
alous scattering factors, especially those near the absorption edge, have
been measured in detail with synchrotron radiation (see, for example,
Templeton et al., 1980).

But how can absolute configuration be represented? The R/S sys-
tem of doing this involved assigning a priority number to the atoms
around an asymmetric (carbon) atom so that atoms with greater atomic
number have the higher priority (Cahn et al., 1966). If two atoms have
the same priority, their substituents are considered until differentia-
tion of priorities can be established (otherwise, of course, the central
atom is not asymmetric). Then the structure is viewed with the atom
of lowest priority directly behind the central (carbon) atom and the
other substituents are examined. Then if the order of the substituents
going from highest to lowest priority is clockwise, the central atom
is designated R (Latin rectus, right). If it is anticlockwise, the central
atom is designated S (Latin sinister, left). As a result, once the absolute
configuration is established and each asymmetric tetrahedral atom has
an R or S designation, sufficient information is provided from these
designations to make it possible to build a model with this correct
absolute configuration.

The effect of anomalous scattering was used to solve the structure
of a small protein, crambin, containing 45 amino acid residues (and
which crystallized with 72 water and 4 ethanol molecules per protein
molecule) (Hendrickson and Teeter, 1981). The nearest absorption edge
of sulfur is at 5.02 Å, but for CuKα radiation, wavelength 1.5418 Å, the
values of f ′ and f ′′ are 0.3 and 0.557, respectively, for sulfur. Pairs
of reflections [|F (hkl)| and |F (h̄k̄l̄)|] were measured to 1.5 Å resolution
(the crystals scatter to 0.88 Å resolution); sulfur atom positions were
calculated from Patterson maps with |ƒF |2. While it was necessary to
take into account possible errors in such measurements of the differ-
ences of two large numbers, it was, in fact, possible to determine the
positions of the three disulfide links (six sulfur atoms). The structure
was then determined from an analysis of the Fourier map calculated on
the heavy-atom parameters of the sulfur atoms together with a partial
knowledge of the amino acid sequence.

SAD and MAD phasing

The use of anomalous scattering in structural work has increased
recently since the advent of “tunable” synchrotron radiation—that is,
X rays whose wavelength may, within certain limits, be selected at
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Fig. 10.7 Effects of anomalous scattering on F values.

The top diagram shows the structure factor vectors for F(hkl) and F(−h, −k, −l) in the
absence of anomalous scattering and the lower diagram shows the effect of anom-
alous scattering on such a diagram. When there is anomalous scattering, A(hkl) =
A(−h, −k, −l). The same occurs for B values, as shown (see Chapter 5 and especially
Figure 5.1 for the fundamentals of such diagrams).

will. As a result it is possible to measure the diffraction pattern of a
macromolecular crystal with X-radiation of wavelengths near and also
far from the absorption edges of any anomalous scatterers present. Two
data sets can be measured, one near and one far from any absorption
edge of atoms in the crystal. The integrity of the crystal during so much
radiation exposure is maintained by flash freezing. For example, the
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Fig. 10.8 Isomorphous replacement plus anomalous scattering (noncentrosymmetric).

The effect of anomalous scattering by an atom M, introduced to replace another atom,
may be used to resolve the ambiguity in phase-angle determination by the isomorphous
replacement method. The effect of anomalous scattering (Appendix 11) is to introduce
a phase shift, which means in effect, to change the atomic scattering factor of atom M
from a “real” quantity, f , to a “complex” one, ( f + f ′) + i f ′′. Suppose A and B refer to
that part of the structure that does not scatter anomalously, and A′ and B ′ to the total
structure without any f ′′ component; then A′ = G( f + f ′) + A and B ′ = H( f + f ′) + B,
where G and H refer to geometric components for the anomalous scatterer, M. A′′ and
B ′′ are components of the structure when anomalous scattering is present, and A′′

M and
B ′′

M are components for the anomalous scatterer M alone. Then

A′′
M = G( f + f ′ + i f ′′) = AM + G f ′ + iG f ′′

B ′′
M = H( f + f ′ + i f ′′) = BM + H f ′ + iH f ′′

Then, for the entire structure, including anomalous-scattering effects, we have

A′′ = A + G f + G f ′ + iG f ′′ = A′ + iG f ′′

B ′′ = B + H f + H f ′ + iH f ′′ = B ′ + iH f ′′

As shown in Appendix 11, we have for the entire structure with anomalous scattering (by
separating and squaring the “real” and “imaginary” components)∣∣F (hkl)

∣∣ =
√

(A′ − H f ′′)2 + (B ′ + G f ′′)2

∣∣F (h̄k̄l̄)
∣∣ =

√
(A′ + H f ′′)2 + (B ′ − G f ′′)2

(see Figure 10.4). Therefore, |F (hkl)| and |F (h̄k̄l̄)| are different; the intensity of each
reflection is measured to see which is the greater, as shown in Appendix 11.

A diagram to illustrate the determination of a phase angle for a macromolecule (that is,
·P ) by the combination of isomorphous replacement and anomalous scattering is shown.
This diagram is constructed in a similar way to Figure 9.9. Circles of radii |FP H(+)| and
|FP H(−)| (for reflections of the heavy-atom derivative with indices h, k, l and −h, −k,
−l, respectively) are drawn with centers at −(FH′ + FH′′ ) and −(FH′ − FH′′ ), respectively.
There are now three circles, radii |FP |, |FP H(+)|, and |FP H(−)|, and these intersect at a
phase angle of ·P (83◦). This is probably the phase angle of this reflection, h, k, l, for the
native protein.
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method of anomalous scattering may be combined with isomorphous
replacement in protein structure determination. Three data sets are
needed for this. One involves the protein crystal, and one a heavy-atom
derivative of this protein. A third data set is measured with X rays of a
wavelength that will cause maximal anomalous scattering by the heavy
atom. The heavy-atom position is located from the first two data sets,
and phase information is aided by the nonequivalent Friedel pairs of
Bragg reflections; these remove ambiguities in phase determination (see
Figures 10.7 and 10.8). This makes it possible to obtain approximate
phases from just one heavy-atom derivative.

The multiwavelength anomalous dispersion (MAD) method, sug-
gested by Wayne Hendrickson, is now a method of choice for phase
determination (Hendrickson, 1991). Generally proteins that are used
have been biologically expressed in a medium that contains only
selenomethionine. As a result the protein contains selenomethionine in
its sequence where methionine would normally be expected. Therefore
the strong anomalous signal of selenium can be used to derive phases.
X-ray diffraction data are measured near the absorption edge (where
f ′′ has a maximum value, 1.15 electrons), and also at one or two wave-
lengths remote from any absorption edge. Only one crystal is needed,
and the data are generally measured at a synchrotron source.

In the single-wavelength anomalous dispersion (SAD) method, dif-
fraction data for one wavelength of radiation are measured on a heavy-
atom-containing protein, not necessarily near an absorption edge. Since
when heavy atoms are soaked into a crystal they may attach to various
side chains in a disordered manner, the strategy has been to generate a
protein with a heavy atom, such as that in iodophenylalanine, chemi-
cally incorporated into one amino acid (Dauter, 2004). The value of f ′′

for iodine is 6.91 electrons for CuKα radiation. Alternatively, chromium
Kα radiation (Î = 2.2909 Å) may be used to locate sulfur, which has
an anomalous signal ( f ′′) of 1.14 electrons for CrKα radiation, twice
that for CuKα radiation (Yang et al., 2003). This means that naturally
occurring protein side chains such as those of methionine or cysteine are
sufficient to provide phasing with CrKα radiation. Also, the data collec-
tion can be done in a laboratory and no tuning of radiation wavelength
is needed; a simple X-ray tube can be used. The phase ambiguity that
comes from measuring just one data set can be aided by direct methods
or by density modification. Obviously crystallographers are now exper-
imenting with different wavelengths of radiation and different possible
anomalous scatterers, and the trend is to study a crystal that contains
only the molecule under study (and not variations such as heavy-atom
derivatives).

Sine-Patterson map

A modified Patterson map can be used to determine the absolute con-
figuration of a structure provided Bijvoet pairs of reflections have been
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measured and correctly indexed. The map is calculated with a func-
tion with {|F (hkl)|2 + |F (h̄k̄l̄)|2} as coefficients and a cosine term; this
gives peaks corresponding to Eqn. (9.1), that is, vectors between atoms.
Another function, with {|F (hkl)|2 − |F (h̄k̄l̄)|2} as coefficients and a sine
term, known as the sine-Patterson map,

Ps(u, v, w) =
1
Vc

∑∑
all hkl

∑{∣∣F (hkl)
∣∣2 − ∣∣F (h̄k̄l̄)

∣∣2
}

sin 2π(hu + kv + lw)

(10.8)

will have only vectors between anomalously and nonanomalously scat-
tering atoms, and these peaks are positive if the vector is from an anom-
alously scattering atom to a normal atom, and negative if the vector
is in the other direction. This map is asymmetric. Thus the absolute
configuration of the structure may be determined from such a map
(Okaya et al., 1955).

What effect does anomalous scattering have on the calculated elec-
tron density, since a term in the scattering factor now has an “imag-
inary” component? The answer is that the calculated electron den-
sity must be real, and, to obtain this, any effect of anomalous scat-
tering (which involves a complex scattering factor) must be removed
(as described in Appendix 11) (Patterson, 1963). This, of course, also
removes any means of distinguishing one enantiomorph from the other;
such information is contained only in the anomalous-scattering data.

Summary

If an atom in the crystal appreciably absorbs the X rays used, there will
be a phase change for the X rays scattered by that atom relative to the
phase of the X rays scattered by a nonabsorbing atom at the same site.
This phase change on absorption leads to anomalous scattering and,
for a noncentrosymmetric structure, results in differences in values of
|F (hkl)|2 and |F (h̄k̄l̄)|2 that are not found in the absence of anomalous
scattering. If the structure contains only one enantiomorph of a mole-
cule, its absolute configuration may be determined by a comparison of
the signs of the observed and calculated values of (|F (hkl)|2 − |F (h̄k̄l̄)|2).


