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Refinement of the trial
structure 11
When approximate positions have been determined for most, if not
all, of the atoms, it is time to begin the refinement of the structure.
In this process the atomic parameters are varied systematically so as
to give the best possible agreement of the observed structure factor
amplitudes (the experimental data) with those calculated for the pro-
posed trial structure. Common refinement techniques involve Fourier
syntheses and processes involving least-squares or maximum likeli-
hood methods. Although they have been shown formally to be nearly
equivalent—differing chiefly in the weighting attached to the experi-
mental observations—they differ considerably in manipulative details;
we shall discuss them separately here.

Many successive refinement cycles are usually needed before a struc-
ture converges to the stage at which the shifts from cycle to cycle
in the parameters being refined are negligible with respect to their
estimated errors. When least-squares refinement is used, the equations
are, as pointed out below, nonlinear in the parameters being refined,
which means that the shifts calculated for these parameters are only
approximate, as long as the structure is significantly different from the
“correct” one. With Fourier refinement methods, the adjustments in
the parameters are at best only approximate anyway; final parameter
adjustments are now almost always made by least squares, at least for
structures not involving macromolecules.

Fourier methods

As indicated earlier (Chapters 8 and 9, especially Figure 9.8 and the
accompanying discussion), Fourier methods are commonly used to
locate a portion of the structure after some of the atoms have been
found—that is, after at least a partial trial structure has been identified.
Initially, only one or a few atoms may have been found, or maybe an
appreciable fraction of the structure is now known. Once approximate
positions for at least some of the atoms in the structure are known, the
phase angles can be calculated. Then an approximate electron-density
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map calculated with observed structure amplitudes and computed phase
angles will contain a blend of the true structure (from the structure
amplitudes) with the trial structure (from the calculated phases). If
the trial structure contains most of the atoms of the true structure,
at or near their correct positions, the resulting electron-density map
will contain peaks representing the trial structure, but, additionally, at
other sites, peaks representing atoms that were omitted from the trial
structure but that are really present. Conversely, if an atom in the trial
structure has been incorrectly chosen, the corresponding peak in the
electron-density map will usually be significantly lower than normal,
so that its location will be questionable. Finally, if an atom was put
into the calculation near, but not at, its correct position, the resulting
peak in the electron-density map will usually have moved a slight
amount from the input position towards (but not usually as far as) the
correct position. Examples of these effects for a noncentrosymmetric
structure are shown in Figure 11.1. In centrosymmetric structures, the
phase angles are either 0◦ or 180◦ and a slight error in the structure
may not have a large effect on most phase angles. Therefore, a map
computed with observed |F (hkl)| values and computed phase angles
may be almost correct even if the model used was slightly in error.
However, with noncentrosymmetric structures, for which the phase
angles may have any value from 0◦ to 360◦, there will be at least small
errors in most of the phases, and consequently the calculated electron-
density map will be weighted more in the direction of the trial structure
used to calculate the phases than it would be if the structure were
centrosymmetric.

It is usual, when most or all of the trial structure is known, to compute
difference maps rather than normal electron-density maps. For difference
maps, the coefficients for the calculation are (|Fo| − |Fc|) and the phase

(a) The effect of an atom in the wrong position. This example is from a noncentrosymmet-
ric structure. In (1), one atom, B, was inadvertently included (an input typographi-
cal error) at the wrong position (marked by an A) in the structure factor calculation.
The electron-density map phased with this incorrect structure contains a peak at
the wrong position, but this peak is lower in electron density than the others near
it. A small peak occurs in the correct position, B, shown in (2), although none was
introduced there in the phasing. Corresponding sections of a correctly phased map
are shown in (3) and (4); the spurious “atom” at A above has disappeared and the
correct peak, B, is now a pronounced one.

(b) The effect of an atom near but not at the correct position. The appearance of a partic-
ular section in successive electron-density maps is shown as the structure used
for phasing becomes more nearly correct. The map (1) was computed from the
positions of two heavy atoms (positions not shown) and from this the location of
atom X was correctly (as it turned out) deduced. But in (2) an atom was incorrectly
placed at P; it can be seen that the peak for this atom is elongated in the direction
of the correct position, Q. In (3) only atom X (of P, Q, and X) was included in the
phasing and peak Q now is more clearly revealed. In (4) the peak at Q is now
established as correct. A total of 2, 62, 54, and 68 atoms out of 73 were used in the
phasing of maps (1), (2), (3), and (4), respectively.
From Hodgkin et al., 1959, p. 320, Figures 8 and 9.
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angles are those computed for the trial structure. The difference map
is thus the difference of an “observed” and a “calculated” map (both
with “calculated” phases). In this map a positive region implies that
not enough electrons were put in that area in the trial structure, while
a negative region suggests that too many electrons were included in
that region in the trial structure. For example, if an atom is included in
the trial structure with too high an atomic number, a trough appears
at the corresponding position; if it is included (at the correct position)
with too low an atomic number or omitted entirely, a peak appears.
Hydrogen atoms can be located from difference maps calculated from
a trial structure that includes all the heavier atoms present (see Fig-
ure 11.2), although often hydrogen atoms are put at geometrically cal-
culated positions and then refined. Another use of difference maps is in
macromolecular structure determination, to locate the binding sites of
inhibitors, substrates, or products.

Figure 11.3 shows some examples of further uses of difference maps
for refinement of parameters. If an atom has been included near but
not at the correct position, the location at which it was input will lie
in a negative region, with a positive region in the direction of the
correct position. The amount of the shift needed to move the atom to
the correct position is indicated by the slope of the contours between the
negative and positive regions. If an atom is left out of the trial structure
(as in “omit maps”) it will appear in the correct position as a peak, pro-
vided, of course, that the phase angles used in computing the electron-
density map are approximately correct. If an atomic displacement factor
is too small in the calculated trial structure, a trough will appear at the
atomic position because the electrons in that atom have been assumed
in the trial structure to be confined to a smaller volume than in fact they
are, and hence to have too high a total electron density. Similarly, if the
atomic displacement factor is too large in the trial structure, a peak will
appear in the difference map. If the atom vibrates anisotropically, that
is, different amounts in different directions, but has been assumed to be
isotropic, peaks will occur in directions of greater motion and troughs
in directions of lesser motion. In summary, if there is a positive area in a
difference map, consider adding more electron density at that position;
a negative area indicates too much electron density at that location in
the trial structure.

The process of Fourier refinement can be adapted for automatic
operation with a high-speed computer. Instead of evaluating the elec-
tron density at the points of a fixed lattice, we calculate it, together
with its first and second derivatives, at the positions assumed for
the atomic centers at this stage. The shifts in the atomic posi-
tions* and temperature-factor parameters can then be derived from

* The shift required in x is

ƒx =
−∂ƒÒ

∂x
/

∂2Ò

∂x2

=
−(gradient of difference Fourier at x0)

(curvature of electron density at x0)

where x0 is the input position.

the slopes and the curvatures in different directions. When this
differential-synthesis method is used, it is normally applied to the
difference density. In fact, however, the method is used much less
extensively than least-squares refinement, for the latter is somewhat
more convenient for computer application and has the advantage
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Fig. 11.2 Hydrogen atoms found from a difference map.

This is a composite map of sections of a difference map for a monoclinic structure, anhydrous citric acid, viewed down b. Eight sections
containing hydrogen atoms are shown here. The contour interval is 0.1 electrons per cubic Å; the zero contour is omitted. Solid circles
show the final positions of the heavier atoms that were used in the phase-angle calculation. Peaks occur in the map at positions in which
not enough electron density has been included in the structure factor calculation, and thus at the positions of hydrogen atoms omitted
from the phase-angle calculation. The molecular formula is shown below the map, on the same scale and in the same orientation.

From Glusker et al., 1969, Acta Crystallographica B25, p. 1066, Figure 1.

of a statistically sounder weighting scheme for the experimental
observations.

One of the best criteria of a good structure determination is a flat
difference map at the end of the refinement (because now the values
of the observed and calculated structure amplitudes are approximately
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Fig. 11.3 Refinement by difference maps.

A difference map (the difference between the observed and calculated electron density, Òobs − Òcalc) may be used to refine atomic
positions and temperature factors. In a difference map a peak (a region of positive electron density) implies that not enough electron
density was included in the model at that position, and a trough (a region of negative electron density) implies the opposite.

(a) An error in the position of an atom. The peak in Òcalc shows the approximate position used in the calculation of structure factors.
The peak in Òobs is nearer to the correct position. Therefore, the assumed atomic position should be moved (to the right) in the
direction of the positive peak in the difference map.

(b) Incorrect atomic displacement parameter. If the displacement parameter exponent is too high in the model used to phase the map, the
atom is vibrating through too large a volume. A peak surrounded by a region of negative density occurs at the atomic position,
indicating that the exponent should be decreased to give a higher and narrower peak (and thus B should be decreased).

equal). It is possible to have a good average agreement of |Fo| and |Fc|,
and thus a low discrepancy index, R, and yet to have many (|Fo| − |Fc|)
values contributing to a peak or trough in a given area of the map,
indicating some error in the structure. Therefore, at the end of every
structure determination, a difference map should be calculated and
scanned for any peaks.

One question that always arises in discussions of Fourier refinement
is: How good must the trial structure be, or how nearly correct must
the phases be, for the process to converge? This question cannot be
answered precisely. For an ordinary small-molecule structure analysis,
if most of the atoms included are within about 0.3 Å (approximately
half their radius) of their correct sites, then a few that are farther away
and even one or two that may be wholly spurious can be tolerated.
When the initial phases are poor, the first approximations to the electron
density will contain much false detail (as illustrated in Figures 9.8 and
11.1b), together with peaks at or near the correct atomic positions. The
sorting of the real from the spurious is difficult, especially with noncen-
trosymmetric structures; experience, chemical information, and a sound
knowledge of the principles of structural chemistry are all desirable,
and a good deal of caution is essential. A very astute or fortunate crys-
tallographer may be able to recognize portions of a molecule of known
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structure in a map produced from an extremely poor trial structure, but
such perspicacity is uncommon.

Most investigators currently view electron-density and difference
maps on a computer screen. There are several mouse-driven three-
dimensional interactive programs such as O (Jones et al., 1991) and
COOT (Emsley and Cowtan, 2004) that show electron densities as three-
dimensional wire-frame entities. These can be rotated by the user to
better view them, and a diagram of a three-dimensional trial structure
can be overlaid on them. Some refinement can even take place at the
computer screen as the trial structure diagram is moved to best fit the
map. When the user is satisfied with the fit, the program will then
generate the atomic coordinates of the new and better position of the
model and these coordinates can be further refined.

The method of least squares

The method of least squares, first used by Legendre (1805), is a common
technique for finding the best fit of a particular assumed model to a set of
experimental data when there are more experimental observations than
parameters to be determined. Parameters for the assumed model are
improved by this method by minimizing the sum of the squares of the
deviations between the experimental quantities and the values of the
same quantities calculated with the derived parameters of the model.
The method of least squares is often used to calculate the best straight
line through a series of points, when it is known that there is an experi-
mental error (assumed random) in the measurement of each point. The
equation for a line may be calculated such that the sum of the squares
of the deviations from the line is a minimum. Of course, if the points,
which were assumed to lie on a straight line, actually lie on a curve
(described very well by a nonlinear equation), the method will not tell
what this curve is, but will approximate it by a straight line as best it
may. It is possible to “weight” the points; that is, if one measurement
is believed to be more precise than the others, then this measurement
may, and indeed should, be given higher weight than the others. The
weight w(hkl) assigned to each measurement is inversely proportional
to its precision, that is, the square of the standard uncertainty (formerly
known as the estimated standard deviation).

The least-squares method has been extended to the problem of fitting
the observed diffraction intensities to calculated ones (Hughes, 1946),
and has been for more than six decades by far the most commonly
used method of structure refinement, although this practice has not
been without serious criticism.** Just as in a least-squares fit of data to a

** These criticisms are based in part on the
fact that the theory of the least-squares
method is founded on the assumption
that the experimental errors in the data
are normally distributed (that is, follow a
Gaussian error curve), or at least that the
data are from a population with finite sec-
ond moments. This assumption is largely
untested with most data sets. Weighting
of the observations may help to alleviate
the problem, but it depends on a knowl-
edge of their variance, which is usually
assumed rather than experimentally mea-
sured. For a discussion of some of these
points, see Dunitz’s discussion of least-
squares methods (Dunitz, 1996).

straight line (a two-parameter problem), the observed data are fitted to
those calculated for a particular assumed model. If we let ƒ|F (hkl)| be
the difference in the amplitudes of the observed and calculated struc-
ture factors, |Fo| − |Fc|, and let the standard uncertainty of the experi-
mental value of Fo(hkl)2 be [1/w(hkl)], then, according to the theory of
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errors, the best parameters of the model assumed for the structure are
those corresponding to the minimum value of the quantity†

† The equations can be formulated with
|F 2| rather than |F |, so that the equation
parallel to Eqn. (11.1) then becomes

Q = �w(hkl)[ƒ|F 2(hkl)|]2

Most crystallographers prefer refinement
that involves F 2 for a variety of reasons,
including ease of refining twinned struc-
tures, calculating weights for the least-
squares refinement, and dealing with
weak Bragg reflections (which may have
negative values of F 2 from the nature of
the measurement process).

Q = �w(hkl)[ƒ|F (hkl)2|]2 (11.1)

in which the sum is taken over all unique diffraction maxima. In an
analysis of the equations that define Fc, the effects of small changes
in the atomic parameters are considered, and changes are found that
will difference between Fo and Fc [and thus the sum in Eqn. (11.1)].
Since even the problem of fitting data to a two-parameter straight line
involves much calculation, this method requires a high-speed, large-
memory computer.

The variable parameters that are used in the minimization of Q in
Eqn. (11.1) normally include an overall scale factor for the experimental
observations; the atomic position parameters x, y, and z for each atom,
j ; and the atomic displacement parameters for each atom, which may
number as many as six.‡ Occasionally, when disorder is present, occu-‡ These six vibration parameters, different

for each atom j , are symbolized in vari-
ous ways (see Chapter 12). Here we rep-
resent them as b11, b22, b33, b12, b23, and
b31, with sometimes an additional sub-
script to denote the atom j . As mentioned
later, more parameters may be needed to
describe the atomic motion in extreme cir-
cumstances.

pancy factors (varying from 0 to 1, and perhaps correlated with those
of other atoms) may be refined for selected atoms. Thus in a general case
there may be as many as (9N + 1) or even a few more parameters to be
refined for a structure with N independent atoms.

If the total number of parameters to be refined is p, then the mini-
mization of Eqn. (11.1) involves setting the derivatives of Q with respect
to each of these parameters equal to zero. This gives p independent
simultaneous equations. The derivatives of Q are readily evaluated.
Clearly, at least p experimental observations are needed to define the p
parameters, but, in fact, since the observations usually have significant
experimental uncertainty, it is desirable that the number of observa-
tions, m, exceeds the number of variables by an appreciable factor. In
most practical cases with three-dimensional X-ray data, m/p is of the
order of 5 to 10, so that the equations derived from Eqn. (11.1) are
greatly overdetermined.

Unfortunately, the equations derived from Eqn. (11.1) are by no
means linear in the parameters, since they involve trigonometric and
exponential functions, whereas the straightforward application of the
method of least squares requires a set of linear equations. If a rea-
sonable trial structure is available, then it is possible to derive a set
of linear equations in which the variables are the shifts from the trial
parameters, rather than the parameters themselves. This is done by
expanding in a Taylor series about the trial parameters, retaining only
the first-derivative terms on the assumption that the shifts needed are
sufficiently small that the terms involving second- and higher-order derivatives
are negligible:

ƒ |Fc| =
∂ |Fc|
∂x1

ƒx1 +
∂ |Fc|
∂y1

ƒy1 + · · · +
∂ |Fc|
∂b33,n

ƒb33,n (11.2)

The validity of this assumption depends on the closeness of the trial
structure to the correct structure. If conditions are unfavorable, and
Eqn. (11.2) is too imprecise, the process may sometimes converge to
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a false minimum rather than to the minimum corresponding to the
correct solution or may not converge at all. Thus this method of refine-
ment also depends for its success on the availability at the start of a
reasonably good set of phases—that is, a good trial structure. Since the
linearization of the least-squares equations makes them only approx-
imate, several cycles of refinement are needed before convergence is
achieved. However, the linear approximation becomes better as the
solution is approached because the neglected higher-derivative terms,
which involve high powers of the discrepancies between the approx-
imate and true structures, become negligible as these discrepancies
become small.

It is often desirable in a least-squares refinement to introduce various
constraints or restraints on the atomic parameters to make them satisfy
some specific criteria, usually geometrical. Constraints are limits on
the values that parameters in a least-squares refinement may take. For
example, they may relate two or more parameters, or may assign fixed
values to certain parameters. As a result they reduce the number of
independent parameters to be refined and are mathematically rigid
with no standard uncertainty. For example, suppose that the structure is
disordered in some way, or that the available diffraction data are of lim-
ited resolution. The individual atomic positions obtained by the usual
least-squares process for some of the atoms will then have relatively
high standard uncertainties and the geometrical parameters derived
from these positions may not be of high significance. If geometrical
constraints are introduced—for example, constraining a phenyl ring to
be a regular hexagon of certain dimensions, or merely fixing certain
bond lengths or bond angles or torsion angles within a particular range
of values—the number of parameters to be refined will be significantly
reduced and the refinement process accelerated. By contrast, restraints
are assumptions that are treated like additional data that need to be
refined against. For example, a phenyl group would be described as an
“approximately regular hexagon” with a standard uncertainty within
which it is supposed to be refined. Constraints remove parameters and
restraints add data.

If the trial model used in a least-squares refinement is incorrect or
partially incorrect, there are almost always indications that this is so.
The discrepancy index R may not drop to an acceptable value, and
the parameters may show certain anomalies. For example, if a false
atom has inadvertently been included in the initial trial structure, it
may move to a chemically unreasonable position, perhaps too close to
another atom, and its temperature factor will increase strikingly to a
value far higher than that normally encountered for any real atom. This
corresponds physically to a very high vibration amplitude—that is, a
smearing of the atom throughout the unit cell, an almost infallible sign
that there is no atom in the actual structure at the position assumed in
the trial structure.

At the conclusion of any least-squares refinement process, it is always
wise to calculate a difference Fourier synthesis. If it is zero everywhere,
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within experimental error, then the least-squares procedure is a reason-
able one. If it is not, and the peaks in it are not attributable to light
atoms that have been left out of the structure factor calculations or to
some other understandable defect of the model, then it is distinctly
possible that the least-squares procedure may have converged to a false
minimum because the initial approximation (the trial structure) was not
sufficiently good. Another plausible trial structure must be sought and
refinement tried again.

The maximum likelihood method

Maximum likelihood estimation is an increasingly commonly
employed statistical method that is used to refine a statistical model
to experimental data, and thereby provide improved estimates of the
parameters of this model (Murshudov et al., 1997; Terwilliger, 2000).
It deals in conditional probability distributions, that is, probabilities
that are conditional upon additional variables, and aims to maximize
their likelihoods. For example, if we know that the probability of data
A is dependent upon model B, we can find the likelihood of model
B given the data A. Stephen Stigler compares maximum likelihood
to the choice that prehistoric men made of “where and how to hunt
and gather,” that is, experience and acute observation which indicates
how best to do something (Stigler, 2007). The likelihood function
for macromolecular structures is proportional to the conditional
distribution of experimental data when the parameters are known.
The conditional probability distributions for each Bragg reflection are
multiplied together and the result is the joint conditional probability
distribution. This includes the experimental data plus any phase
information and any experimental standard uncertainties that may
be available. The aim of the method is to find those values of the
parameters that make the observed data most likely. The necessary
equations are contained in the program REFMAC (Vagin et al., 2004),
which will minimize atomic parameters to satisfy either a maximum
likelihood or a least-squares residual. The method has been used
with great success, and, if the data have been measured to very high
resolution, approaches least squares as a good refinement method.

The correctness of a structure

What assurance is there that the changes suggested by difference maps,
least-squares methods, or maximum likelihood estimations are correct?
Are the suggested changes really improvements that will make the
trial structure more nearly resemble the actual distribution of scatter-
ing matter in the crystal? In fact, if the experimenter is injudicious
or unfortunate, some changes may actually make the model worse,
since an image formed with incorrect phases will always contain false
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detail—for example, peaks that may seem to suggest atoms but that
really arise from errors in the phases. If the model is altered in a
grossly incorrect way (or if it was inadequate in the first place), the
“refinement” process may converge to a quite incorrect solution. What
then are the criteria for assessing the likely correctness of a structure
that has been determined by the refinement of approximate phases?
There are no certain tests, but the most helpful general criteria are
the following. (A number of erroneous structures have been reported
because of inadequate attention to these criteria.)

(1) The agreement of the individual observed structure factor ampli-
tudes |Fo| with those calculated for the refined model should be
comparable to the estimated precision of the experimental mea-
surements of the |Fo|. As stressed in Chapter 6, the discrepancy
index, R [Eqn. (6.9)], is a useful but by no means definitive index
of the reliability of a structure analysis.

(2) A difference map phased with the final parameters of the refined
structure should reveal no fluctuations in electron density greater
than those expected on the basis of the estimated precision of the
electron density.

(3) Any anomalies in the molecular geometry and packing, or other
derived quantities—for example, abnormal bond distances and
angles, unusually short nonbonded intramolecular or intermolec-
ular distances, and the like—should be scrutinized with the great-
est care and regarded with some skepticism. They may be quite
genuine, but if so they should be interpretable in terms of some
unusual properties of the crystal or the molecules and ions in it.

If writers of crystallographic papers have done their work properly,
the information needed for a reader to assess the precision and accuracy
of the reported results will be given. The precision of an experimen-
tal result, usually expressed in terms of its standard uncertainty, is
a measure of the reproducibility of the observed value if the exper-
iment were to be repeated. Accuracy, on the other hand, gives the
deviation of a measurement from the value accepted as true (if that is
known). The standard uncertainties of the various observed results—
distances, angles, and so on—can be estimated by statistical methods,
using as a basis the estimated errors of the prime experimental quan-
tities, the intensities and directions of the diffracted radiation and the
instrumental parameters of the equipment used. The basic assumption
involved in the estimation of standard uncertainties is that fluctuations
in observed quantities are due solely to random errors, which implies
that the fluctuations are about an average value that agrees with the
“true value.” However, it is very important to recognize that there
may be systematic errors, too, arising from failure to correct for various
effects, which may be either known—for example, the effect of absorp-
tion on the intensities—or unknown—for example, inadequacies of the
model because of lack of knowledge of the way in which molecular
motion occurs in the crystal. Uncorrected systematic errors can cause
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the reported values to differ from the “true” values by considerably
more than would be estimated on the basis of the precision; that is, the
accuracy may be low even if the precision is high. As in any experiment,
it is far harder to assess the accuracy than the precision, because many
systematic errors are unsuspected; the best way to detect systematic
errors is to compare many distinct measurements of the quantity of
interest, under different experimental conditions and by different meth-
ods if possible.§§ A classic example of this approach led

to the discovery of the noble gases by
Rayleigh and Ramsey through a compari-
son of highly precise measurements of the
density of nitrogen prepared from vari-
ous pure nitrogen-containing compounds
with that of a sample obtained by fraction-
ation of liquid air.

If the distribution of errors is normal, statistical tables can be used
to assess the probability that one observation or derived quantity is
“significantly” different from another—that is, that the difference arises
not merely from random errors but rather is one that further sufficiently
precise measurements could verify. If two measurements differ from
one another by twice the standard uncertainty (s.u.) of either, the prob-
ability is about 5 percent that the difference between them represents
a random fluctuation; if they differ by 2.7 times the s.u., the proba-
bility is only about 1 percent that the difference represents a random
fluctuation—in other words, there is about 99 percent probability that
they represent two distinct values, which further precise measurements
would verify as being different. It is a matter of taste what one accepts
as being “significantly different”; some people accept the 2 s.u. (or “95
percent confidence”) level, while those who are more conservative may
choose the 2.7 s.u. (or “99 percent confidence”) level, or an even higher
one. Because systematic errors are so difficult to eliminate, the standard
uncertainties calculated on the assumption that only random errors
are present are usually quite optimistic as estimates of the accuracy of
the results, however valuable they may be as measures of precision.
Hence, in comparing results from different studies—for example, in
comparing two bond lengths, or in trying to decide whether a bond
angle is significantly different from that expected on the basis of some
theoretical model—it is usually sound not to regard the difference as
significant unless it is at least three or more times the s.u. For example,
if a bond length is measured to be 1.560 Å with an s.u. of 0.007 Å, it is
probably not significantly different from one measured to be 1.542 Å.

There are several known sources of systematic errors in even the
more precise crystal structure analyses published to date. Most of these
effects are under study in various laboratories and some of the most
careful recent studies take them into account. They include:

(1) Scattering factor curves (uncorrected for thermal motion) are nor-
mally assumed to be spherically symmetrical, which is clearly not
correct for bonded atoms. Extensive studies (both theoretical and
experimental) of this asymmetry, which is detectable only in the
most precise work, are now under way.

(2) The motions of some molecules in crystals are very complicated,
and the usual ellipsoidal approximation for the motion of each
atom may be a considerable oversimplification, especially if the
motion is appreciable. Furthermore, in some crystals the corre-
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lated motions of molecules in different unit cells—so-called “lat-
tice vibrations”—may give rise to appreciable “thermal diffuse
scattering” (e.g., streaks extending out from the usual Bragg dif-
fraction peaks). Correction must be made for such effects in the
most precise work.

(3) Many errors that can in principle be eliminated—for example,
those arising from absorption or instrumental effects—may not
have been properly taken into account.

(4) Sometimes the diffracted beam is rediffracted in the crystal when
two planes are in a position to “reflect” simultaneously. This can
give rise to significant errors in measurements of intensities.

Failure to correct for systematic errors may occur because the errors
are regarded as minor and the corrections too complicated to be worth-
while, because an appropriate method of correction is not known, or
because the source of error is overlooked. A critical reader will seek
to discover what the author has done about known sources of system-
atic errors. Of course, it takes experience to assess the likely effects of
having ignored some of them. Because of the ever-present possibility
of systematic errors in even the most careful work, it is usually unwise
to regard measured interatomic distances in crystals as more accurate
than to the nearest 0.01 Å, although the stated precision may be as low
as 0.001 Å. An exception is the now relatively unusual circumstance
that the distance involves no parameters at all other than the unit-
cell dimensions, for example, the Na+ to Cl− distance in NaCl or the
C-C distance in diamond, each of which can be measured accurately
to better than 0.001 Å at any given temperature. However, even when
an interatomic distance is known with high precision and apparent
accuracy, it must always be remembered that it represents only the
distance between the average positions of the atoms as they vibrate
in the crystal. For substances such as rock salt, the root-mean-square
amplitude of vibration of the atoms at room temperature is 0.08 Å, and
for organic molecules it is larger by a factor of two or three.

Summary

Since there are so many measured reflections (50 to 100 or more per
atom in precise structure determinations), the “trial structure” para-
meters, representing atomic positions and extents of vibration, may
be refined to obtain the best possible fit of observed and calculated
structure factors.

Difference Fourier methods

Either electron-density or difference electron-density maps may be cal-
culated, the latter being especially useful in the later stages of refine-
ment. A peak in a difference map indicates too little scattering matter
in the trial structure, a trough too much. For example, if a hydrogen
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atom is left out of a trial structure, a peak will show where the atom
must lie in the corrected trial structure. In general a model is adjusted
appropriately to give as flat a final difference map as possible; this
map should ideally be zero everywhere, but fluctuations will occur as a
result of experimental uncertainties or inadequacies of the model used.

Least-squares/maximum likelihood methods

In any crystal structure analysis there are many more observations than
parameters to be determined. The best parameters corresponding to
some assumed model of the structure are found by minimizing the
sum of the squares of the discrepancies between the observed values
of |F | (or |F |2) and those calculated for an appropriate trial structure
(or a partially refined version of it). Maximum likelihood methods are
now increasingly used for structure refinement. These two methods of
refinement have only been practicable for three-dimensional data since
the advent of high-speed computers.

The correctness of a structure

All the following criteria should be applied:

(1) The agreement of individual structure factor amplitudes with
those calculated for the refined model should be consistent with
the estimated precision of the experimental measurements of the
observations.

(2) A difference map, phased with final parameters for the refined
structure, should reveal no fluctuations in electron density greater
than those expected on the basis of the estimated precision of the
electron density.

(3) Any anomalies in molecular geometry or packing should be scru-
tinized with great care and regarded with some skepticism.
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The results of an X-ray structure analysis are coordinates of the indi-
vidual, chemically identified atoms in each unit cell, the space group
(which gives equivalent positions), and displacement parameters that
may be interpreted as indicative of molecular motion and/or disorder.
Such data obtained from crystal structure analyses may be incorporated
into a CIF or mmCIF (Crystallographic Information File or Macromolec-
ular Crystallographic Information File). These ensure that the results of
crystal structure analyses are usefully archived. There are many checks
that the crystallographer can make to ensure that the CIF or mmCIF
file is correctly informative. For example, the automated validation
program PLATON (Spek, 2003) checks that all data reported are up
to the standards required for publication by the International Union
of Crystallography. It does geometrical calculations on the structure,
illustrates the results, finds if any symmetry has been missed, inves-
tigates any twinning, and checks if the structure has already been
reported. We now review the ways in which these atomic parameters
can be used to obtain a three-dimensional vision of the entire crystal
structure.

Calculation of molecular geometry

When molecules crystallize in an orthorhombic, tetragonal, or cubic
unit cell it is reasonably easy to build a model using the unit-cell
dimensions and fractional coordinates, because all the interaxial angles
are 90◦. However, the situation is more complicated if the unit cell
contains oblique axes and it is often simpler to convert the fractional
crystal coordinates to orthogonal coordinates before calculating molec-
ular geometry. The equations for doing this for bond lengths, interbond
angles, and torsion angles are presented in Appendix 12. If the reader
wishes to compute interatomic distances directly, this is also possible if
one knows the cell dimensions (a , b, c, ·, ‚, „), the fractional atomic coor-
dinates (x, y, z for each atom), and the space group. For example, the
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square of the distance between two points (x1, y1, z1) and (x2, y2, z2) is

l2 = [(x1 − x2)a ]2 + [(y1 − y2)b]2 + [(z1 − z2)c]2

−[2ab cos „(x1 − x2)(y1 − y2)] − [2ac cos ‚(x1 − x2)(z1 − z2)]

−[2bc cos ·(y1 − y2)(z1 − z2)]

= [�x a ]2 + [�y b]2 + [ƒz c]2 − [2ab cos „�x �y]

−[2ac cos ‚�x �z] − [2bc cos ·�y �z] (12.1)

where �x = x1 − x2, and so forth. This provides an equation for
calculating a bond length or other type of interatomic interaction. If
the three distances between atoms A, B, and C, where AB = l1, AC = l2,
BC = l3, are known, then the angle B–A–C = ‰ may be calculated with
the law of cosines,

cos ‰ =
l2
1 + l2

2 + l2
3

2l1l2
(12.2)

These two equations [Eqns. (12.1) and (12.2)] are used for most
of the preliminary information necessary for analyzing a crystal
structure.

Some illustrations of results from some very simple crystal structure
studies are shown in Figures 12.1–12.3. For example, sodium chloride,
NaCl (Figure 12.1), crystallizes at room temperature in the space group
F m3m, a face-centered cubic space group, and the unit-cell dimension
is a = 5.6402(2) Å; the 2 in parentheses is a measure of the standard
uncertainty in the last place quoted, so that it could be read as a =
5.6402 ± 0.0002 Å. Since this crystal structure involves a sodium ion
at the origin (x = y = z = 0.0) and a chloride ion at 1/2, 0, 0, each ion is
surrounded by six of the opposite type so that there is no significant
buildup of charge (positive or negative) in the crystal. It can be read-
ily calculated that the nearest distance between cations and anions is
2.82 Å. Integration of the experimental electron densities of Na and Cl,
assuming that the minimum of electron density between them defines
the edge of each atom or ion, shows that they are ions rather than
atoms (see Dunitz, 1996). Potassium chloride has a similar structure
in a unit cell with a = 6.2931(2) Å and therefore a K+. . .Cl− distance of
3.15 Å. On the other hand, cesium chloride has a cubic unit cell with a
cesium ion at the origin and a chloride ion in the center of the cell at
x = y = z = 1/2 to give a primitive unit cell (not a body-centered unit cell,
because the atoms at the origin and the center of the unit cell are different),
so that the space group is primitive, Pm3m. Since the unit-cell edge is
a = 4.120(2) Å, the Cs+. . .Cl− distance is 4.120 × (

√
3)/2 = 3.57 Å. Iron

pyrite, FeS2 (Figure 12.2), also crystallizes in a cubic unit cell, space
group Pa3, a = 5.4175(5) Å, with an iron atom at the origin and a sulfur
atom at x, x, x, where x = 0.39. Iron atoms are shown in black in this
figure, with Fe–S distances of 3.05 Å. Sulfur atoms are speckled, and
S–S bonds that are about 2.06 Å in length are illustrated in this figure
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Fig. 12.1 Crystal structure of sodium chloride.

Sodium chloride (Na+ black, Cl− stippled circles) (Bragg, 1913).
4Na+ at 0, 0, 0; 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0 and 4Cl− at 1/2, 0, 0; 0, 1/2, 0; 0, 0, 1/2; 1/2, 1/2, 1/2.

with black bonds. Diamond, shown in Figure 12.3, crystallizes in a cubic
unit cell, a = 3.5597 Å, space group Fd3m, with eight carbon atoms per
unit cell (Bragg and Bragg, 1913). The crystal structure clearly show
the tetrahedral surroundings of each carbon atom and the result is the
hardest mineral known. The nearest neighbor to an atom at the origin is
the atom at x = y = z = 1/4, so that the C–C distance is 3.5597 × (

√
3)/4 =

1.541 Å, the C–C–C bond angle is 109.5◦, and the C–C–C–C torsion
angles are 60◦ or 180◦ depending on which carbon atom is chosen as the
fourth (see equations in Appendix 12). Approximate atomic and ionic
radii for many common ions in crystals have been derived from data
such as these. There is always an element of arbitrariness in assigning
radii, and no set is completely consistent, because ions are not “hard
spheres,” their effective radii varying somewhat with environment.
Some typical values, however, are: Na+, 0.95–1.17 Å; K+, 1.33–1.49 Å;
Cl−, 1.64–1.81 Å; F−, 1.16–1.36 Å (Frausto da Silva and Williams, 2001;
Brown, 2006). A general analysis of ionic crystals was written by Linus
Pauling in 1929, in which he showed how charged groups congregate
in a crystal and aim to stay distant from hydrophobic groups (Pauling,
1929).

Fig. 12.2 Crystal structure of iron pyrite.

Iron pyrite (fool’s gold), FeS2 (Fe black,
S stippled). Space group Pa3, unit-cell
dimensions a = 5.417 Å (Bragg, 1913).

4Fe at 0, 0, 0; 0, 1/2, 1/2; 1/2, 0,
1/2; 1/2, 1/2, 0 (as Na+ in NaCl); 8S
at ±(x, x, x; 1/2 + x, 1/2 − x, −x; −x, 1/2 + x,
1/2 − x; 1/2 − x, −x, 1/2 + x; where x = 0.39).

Of course, much more complicated structures than those illustrated
in Figures 12.1–12.3 are now being studied, and the amount of infor-
mation on bond lengths and the environments of various chemical
groupings is escalating. Examples of historical interest include the
phthalocyanines (Robertson, 1936), the boron hydrides (Lipscomb,
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1954), vitamin B12 (Hodgkin et al., 1957), myoglobin (Kendrew et al.,
1960), hemoglobin (Perutz et al., 1968; Perutz, 1976), lysozyme (Phillips,
1966), and tobacco mosaic virus (Stubbs et al., 1977). Data on the results
of X-ray and neutron diffraction studies on crystal structures of small
and medium-sized molecules containing at least one carbon atom are
available on the Cambridge Structural Database (CSD). This database
is maintained by the Cambridge Crystallographic Data Centre in Cam-
bridge, England, founded by Olga Kennard (Allen, 2002). Data files are
also available on other types of crystal structures, including inorganic
structures (the Inorganic Crystal Structure Database, ICSD) (Bergerhoff
and Brown, 1987) and proteins (the RCSB Protein Data Bank) (Bernstein
et al., 1977; Berman et al., 2003). A search of the World Wide Web will
show the reader that there are many other crystallographic databases
available and many computer-based methods of extracting structural
information from them.

Fig. 12.3 Crystal structure of diamond.

The crystal structure of diamond, show-
ing three-dimensional bonding through-
out the crystal (Bragg and Bragg, 1913).
This three-dimensional structure accounts
for its hardness.

C at 0, 0, 0; 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0;
1/4, 1/4, 1/4; 1/4, 3/4, 3/4; 3/4, 1/4, 3/4; 3/4, 3/4, 1/4.

Molecular conformations

The torsion angles in a molecular structure are frequently of interest
(see Appendix 12). These are a measure of the amount of twist about
a bond and are defined, for a bonded series of four atoms (A–B–C–
D), as the angle of rotation about a bond B–C needed to make the
projection of the line B–A coincide with the projection of the line C–
D, when viewed along the B–C direction. The positive sense is clock-
wise for this rotation. Thus the torsion angle is a representation of the
structure viewed so that the atom C is completely obscured by atom
B, as shown in Figure 12.4. A chain of methylene (–CH2–) groups will
generally have a staggered conformation so that torsion angles are 180◦

for C–C–C–C and 60◦ for C–C–C–H or H–C–C–H. The torsion angle
is actually independent of the direction of view; that is, the A–B–C–D
torsion angle equals the D–C–B–A torsion angle. However, for a pair
of enantiomers (mirror images) the torsion angles of equivalent sets of

A

Clockwise Counterclockwise

A

+q

q

-q

A

B,C B,C

B C

D

D
D

Fig. 12.4 Torsion angles.

Torsion angles measure the amount of twist about a chemical bond. For four bonded
atoms A–B–C–D, the torsion angle about the central B–C bond is the extent to which the
A–B bond has to be rotated clockwise so that it will eclipse the C–C bond.
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Fig. 12.5 Torsion angles in the isocitrate ion.

The isocitrate ion (see Figure 10.6b), showing some relevant torsion angles.

atoms have opposite signs (Figure 12.4, compare the two diagrams on
the right of this Figure). An example of torsion angles in a structure
is shown in Figure 12.5. Many studies of molecular structures involve
lists of torsion angles because these angles can indicate similarities (or
significant variations) in conformation (for example in sugars and in
steroids). Another very useful calculation is that of the least-squares plane
through a group of atoms in a molecule. Such planes can be used points
of reference in describing the rest of the molecule, particularly when the
shapes of molecules are being compared.

Intermolecular interactions

If one wishes to determine intermolecular distances (that is, distances
between atoms in different molecules), then space-group symmetry
information aids the calculations. The results are particularly useful
for investigating the presence of hydrogen bonds and also for checking
whether two molecules are unusually close to each other (an indication
either of an unexpected intermolecular interaction or of an incorrect
structure). For example, if the compound crystallizes in the space group
P212121, then, by use of Eqn. (12.1) and the information in Figure 7.6,
the distance may be calculated, for example, between one atom at x1,
y1, z1 and another at 1/2 − x2, 1 − y2, 1/2 + z2 (where x1, y1, z1 and x2,
y2, z2 are the coordinates of two atoms in one molecule). Systematic
calculations of distances and angles are now done almost entirely by
computer programs, which search for all distances (intramolecular and
intermolecular) within a selected range (in Å) around each atom in a
chosen molecule. Analysis of intermolecular packing has, in several
instances, led to an improved understanding of molecular interactions
(see, for example, Bürgi et al., 1973; Kitaigorodsky, 1973; Rosenfield,
1977; Brown, 1988).
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Benzene, for example, has been studied in the crystalline state at
−3◦ C and by neutron diffraction at −55◦ C, −135◦ C, −150◦C, and
−258◦C (because it is a liquid at room temperature) (Cox and Smith,
1954; Bacon et al., 1964; Jeffrey et al., 1987). The last two neutron studies
were done on deuterobenzene, C6D6. The structure is illustrated in

C1
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C2

C1’
C2’

C2

C1

C3

2.88 H1

H2

H3

2.91

2.82

3.0
33.02

3.03

3.06

Fig. 12.6 Crystal structure of benzene.

Benzene, space group Pbca, a = 7.44, b =
9.55, c = 6.92 Å. Atoms at ±{x, y, z; 1/2 + x,
1/2 − y, −z; −x, 1/2 + y, 1/2 − z; 1/2 − x, −y,
1/2 + z}

Atom x y z

C(1) −0.0569 0.1387 −0.0054
C(2) −0.1335 0.0460 0.1264
C(3) −0.0774 −0.0925 0.1295
H(1) −0.0976 0.2447 −0.0177
H(2) −0.2409 0.0794 0.2218
H(3) −0.1371 −0.1631 0.2312

The asymmetric unit is indicated by black
atoms (Cox and Smith, 1954; Bacon et al.,
1964).

Figure 12.6. The crystals are orthorhombic, space group Pbca, with cell
dimensions a = 7.44, b = 9.55, and c = 6.92 Å, and with half of a mole-
cule (in black) in the asymmetric unit. Atomic coordinates are listed
in the caption to this figure, which shows the molecular packing. The
average C–C bond is 1.390 Å and the average C–H bonds are 1.07 Å in
length. As shown in the figure, one hydrogen atom of one molecule
points toward the π-electron system of the aromatic ring of a neighbor-
ing molecule. This kind of C–H. . . π-electron interaction occurs in many
crystal structures of aromatic compounds.

Precision

All the quantities listed in a structure analysis (bond lengths, inter-
bond angles, torsion angles, and least-squares planes) have errors that
result from experimental errors in the diffraction measurements (see
Chapter 4). Furthermore, the atomic scattering model used is not an
exact representation of the electron density, merely the sum of ellip-
soidal electron densities around each atomic nucleus. Estimates of
errors, including those of unit-cell dimensions, may be made from least-
squares refinements of the appropriate data, and their values can be
used to assess the standard uncertainties in bond lengths, bond angles,
and torsion angles. Unsuspected systematic errors may also be present.

As pointed out in Chapter 11, it is always necessary to quote a
standard uncertainty with any computed geometrical quantity.* The

* Dunitz (1996) has an extensive discus-
sion of calculations of standard uncertain-
ties of derived quantities, including the
need for taking correlations between dif-
ferent parameters into account.

standard uncertainty of a bond length is a function both of the precision
in measurement of |F (hkl)| values (expressed in the R value) and of
the relative atomic numbers of the various atoms in the structure. For
example, the standard uncertainty of a C–C bond in a structure contain-
ing only carbon and hydrogen atoms may be 0.002 Å for an R value of
0.05, but can increase to 0.02 Å or more for a structure with R = 0.05 that
contains a heavy atom.

Atomic and molecular motion and disorder

The extent of atomic motion from vibration and/or disorder of each
atom in a structure can also be measured.** However, before deriving

** The name “temperature factor” has per-
sisted to denote the constants in the expo-
nential factors in Eqns. (12.3) and (12.4),
despite the fact that it has long been recog-
nized that vibrations persist at low tem-
peratures, and that a static disorder may
simulate a dynamic one if studies are
made only at a single temperature. We use
“displacement factor” here in recognition
of this problem, that is, that the factor may
represent thermal motion and/or disor-
der of the atom involved (Trueblood et al.,
1996).

their values it is important that absorption and other factors that affect
the intensity distribution be taken into account; otherwise the parame-
ters will not be a true representation of atomic motion or disorder.

The effect of the vibration of atoms in crystals on the scattering
of X rays by these atoms has been discussed in Figure 5.4 and the
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accompanying text. The simplest assumption that can be made is that
the motion of each atom is the same in all directions; that is, that the
motion is isotropic. The decrease of scattering intensity that results
from this motion then depends only on the scattering angle and not
on the particular orientation of the crystal with respect to the incident
X-ray beam. As indicated in Figure 5.4c, such isotropic motion causes
an exponential decrease of the effective atomic scattering factors as the
scattering angle, 2Ë, increases. The scattering factor for an atom at rest,
f , is replaced by

f e−Biso[(sin2 Ë)/Î2] (12.3)

Biso is related to the average of the square of the amplitude of vibra-
tion, <u2>, by Biso = 8π2 <u2>∼= 79 <u2>. For a typical B value of
around 4 Å

2
(for an atom in an organic molecule at room temperature),

this means that <u2> is about 0.05 Å
2
, and the root-mean-square vibra-

tion amplitude, <u2>1/2, is then around 0.22 Å. At liquid nitrogen tem-
peratures (near 100 K), B values are typically reduced by a factor of 2 or
3 from those at room temperature, and the root-mean-square amplitude
will then be of the order of 0.15 Å. Atomic displacement parameters
can be used to establish atomic type if the chemical formula of the
compound under study is not known. This was true for the azidopurine
that was used to demonstrate resolution in Figure 6.6 (Glusker et al.,
1968). When the structure was refined with all atoms as carbon atoms
it was found that the atomic displacement factors were lower for the
nitrogen atoms, so that the chemical formula was thereby established.

However, it is clear that the approximation of isotropic motion is
a poor one for atoms in most crystals, because the environments of
these atoms are far from isotropic. The increasing availability of high-
speed computers during the last three decades has made it worth-
while to attempt to collect precise intensity data and to analyze these
data for relatively subtle effects, such as more complicated patterns of
atomic and molecular motion. The next simplest approximation after
isotropic motion is to assume that the motion is ellipsoidal—that is,
that it can be described by the six parameters of a general ellipsoid
rather than the single parameter characteristic of a sphere. These six
parameters define the lengths of three mutually perpendicular axes
describing the amount of motion in these directions, and the orientation
of these ellipsoidal axes relative to the crystal axes. Figure 12.7 illus-
trates this representation of atomic motion in a portion of the structure
of sodium dihydrogen citrate. This diagram was drawn with the com-
puter program ORTEP (Johnson, 1965), which automatically generates
stereoscopic images of molecules and represents the molecular motion
by ellipsoids. These “thermal ellipsoids,” calculated from the atomic
displacement factors, show the amount that an atom is displaced in a
given direction (indicated by the shape of the ellipsoid, a cigar shape
indicating much motion or displacement). The ellipsoid also indicates
the direction of maximum motion. The plot of ellipsoids is made at a
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Fig. 12.7 Anisotropic molecular motion.

The anisotropic motion of atoms is usually described by “thermal ellipsoids,” as in this example, taken from a study of the structure
of sodium dihydrogen citrate and drawn with the program ORTEP (Johnson, 1965). Two complete dihydrogen citrate ions and two
sodium ions are shown, grouped around a center of symmetry in the middle of the figure. Two atoms [O(5) and O(2)] of each of two
other dihydrogen citrate ions are also shown. In order to simplify the figure, hydrogen atoms are not drawn, but their positions are
labeled and the bonds to them are displayed. The thick lines represent covalent bonds; the thin ones denote coordination interactions
of oxygen atoms with the sodium ion. The “thermal motion ellipsoids,” calculated from the displacement factors, are drawn at 67%
of the probability density function for each atom. The three numbers near each of the ellipsoids in the right half of the drawing
indicate the root-mean-square displacements (Å) along the three principal axes of that ellipsoid. The anisotropy of the motion is very
evident for some of the atoms, especially for those at the ends of the ion; for these peripheral atoms, the motion is always greatest in
directions perpendicular to the bonding direction. This result is just what one would expect, and thus is evidence for the reality of this
interpretation of the diffraction data. (From Glusker et al. (1965), p. 564, Figure 2.)

selected percentage of the probability density function for the electron
density of each atom, that is, the probability of finding an electron in
a defined volume of the crystal. It is noteworthy that both the degree
of anisotropy and the extent of atomic motion itself vary in different
parts of the citrate ion, being greatest for some of the peripheral atoms,
such as O(2).

The usual way of taking this kind of ellipsoidal motion into account
in the structure factor equations is by means of an anisotropic exponen-
tial factor analogous to that in Eqn. (12.3), with six anisotropic vibration
parameters, bi j (with superscripts in their labels), as multipliers of the
indices for each reflection hkl in the exponent, thus:

e−(b11h2+b22k2+b33l2+b12hk+b23kl+b31hl) (12.4)

Increasingly, anisotropic vibration parameters are reported as compo-
nents of a symmetric tensor, U, rather than as b values, because the
latter are dimensionless and their magnitudes cannot be related to
vibration amplitudes without taking the cell dimensions into account.
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The relation between the Ui j and bi j values is simple:

Uii = bii/2π2a∗2
i , Ui j = bi j/4π2a∗

i a∗
j (i = j) (12.5)

The mean square vibration amplitude in any direction, specified by
the cosines l of the angles this direction makes with reciprocal axes, is
given by

〈u2〉 = U11l2
1 + U22l2

2 + U33l2
3 + 2U12l1l2 + 2U23l2l3 + 2U31l3l1 (12.6)

The anisotropic vibration parameters bi j or Ui j differ from atom to atom
in a structure. The effect of temperature is illustrated in the ellipsoids in
Figure 12.8. At the lower temperature, the atoms fill less space.

92 k

239 k

Fig. 12.8 Root-mean-square displacemen-
ts at two different temperatures.

Two views of napththalene, measured
with X rays at 92 K (upper diagram) and
239 K (lower diagram). Note the smaller
root-mean-square displacements of the
atoms at the lower temperature.

(From Brock and Dunitz (1982). Pho-
tograph courtesy C. P. Brock and J. D.
Dunitz).

This ellipsoidal description of atomic motion is a convenient one for
computation, unlike more complex models that may be more realistic
physically, and it has proved adequate for most structure analyses to
date. It is, however, clear that the motions of atoms in crystals may fre-
quently be more complicated; for example, the atoms may move along
arcs rather than straight lines, or under the influence of an anharmonic
potential function that is steeper on one side of the equilibrium position
than on the other. Analysis of such motion requires the best possible
data and more complete equations describing the motion (Johnson,
1969). One needs to beware of possible problems; for example, appre-
ciable uncorrected absorption errors in a crystal of irregular shape may
be compensated for by spurious anisotropy of motion of some atoms
in the structure. However, by suitable choice of radiation and crystal
size and shape, such absorption errors can be minimized or corrected
for, and the reality of derived anisotropies of atomic motion in many
structures has been firmly established.

Rigid-body motion

Some molecules may be regarded as nearly rigid bodies, which implies
that when they move the relative positions of all atoms (and conse-
quently all interatomic distances) remain constant. The motion may
thus be considered to be motion of the molecule as a whole. This
is clearly only an approximation, because there are always “inter-
nal” vibrations—motion of an atom in the molecule relative to its
neighbors—but in many crystals the overall motion of the molecules (or
ions) is far greater than the internal vibrations. Analysis of the individ-
ual anisotropic thermal parameters of molecules in crystals sometimes
reveals striking patterns of molecular motion, which can frequently
be correlated with the shape of the molecule and the nature of its
surroundings in the crystal. The molecular motion may, in general,
be described in terms of three components: a translational motion
(vibration along a straight-line path), a librational motion (vibration
along an arc), and a combination of translation and libration that may
be regarded as vibration along a helical path (Schomaker and True-
blood, 1968; Dunitz et al., 1988). Libration is shown in Figure 12.9.
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Fig. 12.9 Libration.

Libration causes apparent but not real bond shortening. The movement of the librating
atom takes the form of an arc. This is, however, introduced into the structure as an
ellipsoid with the result that the bond appears to be shorter, as shown.

Some molecules that are not completely rigid may be composed of
segments that are themselves rigid, coupled together in a nonrigid
way—for example, molecules such as biphenyl and its derivatives, with
appreciable torsional oscillation about the inter-ring bond, or torsional
oscillation of the methyl groups in durene (1,2,4,5-tetramethylbenzene).
Methods have been developed for analysis of internal torsional motion
and similar motions in many molecules, and it has been possible to
obtain, from diffraction data, rough estimates of force constants for and
barriers to such motions. Since bond-stretching vibrations are small,
it was noted by Fred Hirshfeld that a bond length should not change
much even if the two atoms composing it are vibrating. This means
that the two atoms should move in synchrony along the direction of
the bond, but not necessarily in other directions (Hirshfeld, 1976); the
anisotropic displacement factors should reflect this condition. This is
shown (especially at the higher temperature) in Figure 12.8.

One important consequence of librational motion is that intra mole-
cular distances appear to be somewhat foreshortened, especially for
distances that are perpendicular to axes about which there is appre-
ciable librational motion. This is shown in Figure 12.9. Approximate
corrections to intramolecular distances are not hard to make if the
pattern of motion is known, but with molecules that are not rigid,
the corrections are not themselves precise, and consequently the cor-
rected distances cannot be. This is an example of a systematic error
that can make the accuracy of a derived result considerably poorer than
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would be implied by a statistical analysis based on the assumption that
only random errors were present. Only wide limits can usually be put
on intermolecular distances if there is appreciable molecular motion,
because the correlation (if any) of the motion of one molecule with that
of its neighbors is unknown.

Neutron diffraction

In many ways neutron and X-ray diffraction complement each other,
since they involve different phenomena. Neutrons are scattered by
nuclei (or any unpaired electrons present, the magnetic moment of
the electron interacting with that of the neutron). Although there have
been a few studies of the distribution of unpaired electrons (e.g., in
certain orbitals of selected transition metal ions), such applications have
been rare, and in most crystal diffraction studies with neutrons, all
electrons are paired and the scattering of the neutrons is essentially
by the nuclei present. X rays, on the other hand, are scattered almost
entirely by the electrons in atoms. Hence, if the center of gravity of the
electron distribution in an atom does not coincide with the position
of the nucleus, atomic positions determined by the two methods will
differ. Such differences are particularly noticeable for the positions of
hydrogen atoms, unless X-ray data have been collected to an usually
high angle corresponding to a sin Ë/Î of near 1.2, nearly twice as great
as usual (and thus corresponding to nearly eight times as many data, if
all reflections are collected). One disadvantage of neutron diffraction is
that larger crystals are needed than for X-ray structure analysis in order
to get sufficient diffraction intensity with the neutron flux available
from the present reactors. In order to collect data on myoglobin, a
crystal with minimum dimensions of 2 mm was needed. One advantage
of neutrons is that they do not cause as much radiation damage as
do X rays.

The amount of scattering by nuclei does not vary much (or in any
regular way) with atomic number. This fact may be used to clear up
some ambiguities in an X-ray study. Typical scattering-factor data for
X rays and neutrons are listed in Appendix 5. Hydrogen has a neg-
ative† scattering factor for neutrons (as shown in Figure 12.10 and † If a nucleus has a negative scattering fac-

tor, the radiation scattered by that nucleus
differs in phase by 180◦(cos 180◦ = −1)
from the radiation that would be scattered
from a nucleus that has a positive scat-
tering factor and is situated at the same
position.

Appendix 5) while deuterium has a positive one, both quite high, so
that these two isotopes may readily be distinguished; as far as X rays
are concerned, they are identical (Peterson and Levy, 1952). Neutron
diffraction can thus be useful in studying the structures of reaction
products that have been labeled with deuterium. It is also possible
with neutrons to distinguish atoms with nearly the same atomic num-
ber that cannot readily be distinguished with X rays (for example,
Fe, Co, and Ni), because their scattering power for neutrons may be
very different. Atomic positions for hydrogen or deuterium may be
determined as accurately as those for uranium and many other heavy
atoms. This is a particularly important advantage of neutron diffraction
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Fig. 12.10 Projection of the neutron scattering density for crystalline benzene.

Positive density (mainly at carbon atom positions) is indicated by full lines; negative density (mainly at hydrogen atom positions) by
broken lines. The unlabeled hydrogen atoms are parts of other benzene molecules. The ring plane is not perpendicular to the direction
of the projection; thus the ring does not appear as a regular hexagon. The deeper trough at H1 and H′

1 results from the fact that there
are two hydrogen atoms superimposed on each other at these positions in this projection.

(Figure courtesy of Dr. G. E. Bacon.)

studies. There may also be anomalous scattering with neutrons, as with
X rays. Since nuclei are extremely small relative to the usual neutron
wavelengths, which are about 1 Å, the intensity of neutrons scattered
from a stationary nucleus would not decrease markedly at high angles,
as it would for X rays. Atomic vibrations, even at low temperature,
will, however, cause a decrease of intensity at high angles, as with
X rays (Figure 5.4).

The combined use of neutron and X-ray diffraction to solve a bio-
chemical problem is illustrated by the analysis of the structure of
lithium glycolate (Johnson et al., 1965). Deuterated glycolic acid, HO–
CHD–COOH, was prepared biochemically and the structure of the
lithium salt determined by X-ray diffraction methods. Since hydrogen
and deuterium have the same atomic number they were each located
but could not be distinguished by this X-ray method. Crystals of the
lithium salt were prepared using lithium hydroxide enriched with
the isotope of atomic weight 6. It was then possible to determine
the absolute configuration of the lithium salt by neutron diffrac-
tion because the scattering amplitude of 6Li is anomalous to neu-
trons (0.18 + 0.025i × 10−12 cm) and the scattering amplitudes of hydro-
gen and deuterium (−0.378 and +0.65 × 10−12 cm, respectively) are so
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different. This then identified which hydrogen in the molecule was
H and which was D and also established the absolute configuration
of this glycolate stereoisomer that is acted on by the enzyme lactate
dehydrogenase.

Studies of proteins can yield a wealth of structural information
because deuterium and hydrogen can be distinguished, and therefore
the ionization state of the functional groups in a protein can be found.
If the conditions, such as the pH of the crystallization medium, are
changed, then the effect of the change on these ionization states will
be helpful in understanding how an enzyme accommodates to sub-
strate or inhibitor binding and how hydrogen atoms move throughout
the active site. For example, a lysine group may have two or three
hydrogen atoms attached to its terminal nitrogen atom; both situations
have been seen in neutron studies of the enzyme xylose isomerase
(Katz et al., 2006).

Deformation density and difference
density studies

The disposition of the electron density in a molecule is of particu-
lar interest to chemists since it provides information on what keeps
the atoms together in a molecule. The valence-electron scattering of
X rays is mainly concentrated in Bragg reflections with low sin Ë/Î

values. In order to view the valence-electron density by means of
difference electron-density maps, it is necessary to obtain precise and
unbiased positional and temperature parameters; this requires high-
order data, for which the spherical-atom approximation is more closely
valid. When diffraction data are measured to the maximum scattering
angles for shorter-wavelength X rays, such as MoKα radiation (Î =
0.7107 Å) or, even better, AgKα radiation (Î = 0.5609 Å), and especially
when measurements are made at low temperatures, a large number
of experimental data result and the structure perceived in the X-ray
experiment—that is, the electron density—is seen at much higher reso-
lution; atoms are therefore located with very high precision.

Some information on the detailed electron distribution in molecules
may be obtained by high-resolution X-ray diffraction studies, partic-
ularly if the results are combined with neutron diffraction studies. It
is possible to look at bonding effects that occur when atoms combine
to form molecules. For example, a “deformation density” map may
be obtained by calculating the difference electron density between the
experimental map and that calculated from the “promolecule” electron
density obtained from a model consisting of spherical atoms. This and
the other maps described here are affected by the precision of the
data used to obtain them and the correctness of the proposed struc-
tures. Superpositions that involve computing either an “X − X” map
(a difference map using atomic positions from an analysis of only the
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high-order X-ray diffraction data) or an “X − N” map (a difference map
using atomic positions from a neutron diffraction analysis, and hence
atomic nuclear positions) are used to examine the differences between
the map from experimental data and that from the promolecule. There
are some differences in results from X-ray and neutron studies, and
therefore the same displacement parameters (generally from the neu-
tron structure) are used with both the X-ray and neutron atomic coor-
dinates. It has already been pointed out that X-ray diffraction studies
give information on the electron density throughout the crystal while
neutron diffraction studies give information on atomic nuclei. Therefore
the difference between the two maps obtained will contain peaks in
positions expected for bonding electrons and for lone pairs of electrons.
For several molecules that have been studied (e.g., oxalic acid), quite
good agreement exists between the experimental deformation density
and a theoretical one, provided the latter model is sufficiently sophis-
ticated [i.e., an extended basis set is used in the theoretical calcula-
tion (Pople, 1999)]. For example, the centroid of the electron density
of a hydrogen atom is displaced from the nucleus (defined by neu-
tron data) toward the atom it is linked to, as expected for chemical
bonding. The future of this area of analysis is bright (Coppens, 1997;
Dittrich et al., 2007).

Summary

Molecular geometry

This may be computed from the unit-cell dimensions and symmetry
and the values of x, y, and z for each atom that have been derived
from electron-density maps or by least-squares methods. Bond lengths,
interbond angles, torsion angles, least-squares planes through groups
of atoms, and the angles between such planes give much useful chem-
ical information. It is common for crystal structures to be displayed in
publications as stereopairs.‡‡ Such stereodiagrams can be viewed with

stereoglasses or the reader can focus on
the two images until an image between
them begins to form. The reader should
allow his/her eyes to relax until the
central image becomes three-dimensional.
This process requires patience and may
take 10 seconds or more.

Atomic and molecular motion and disorder

The fall-off in intensity with increasing scattering angle becomes more
pronounced with increasing vibrations of atoms. Atomic vibration
itself becomes greater as the temperature of the specimen rises. For
spherically symmetrical motion, the reduction in intensity is simply
represented by an exponential, e−2Biso[(sin2 Ë)/Î2]. Thermal motion is fre-
quently represented by more sophisticated models, such as an ellip-
soid. Atomic disorder can also provide intensity fall-off. With both
atomic vibration and disorder the effective size of the atom, which is
an average of all such atoms in the crystal, appears to be increased
in volume while keeping the same number of electrons within that
volume.



Summary 195

Neutron diffraction

Neutrons are scattered by atomic nuclei or by unpaired electrons; X
rays are scattered significantly only by the electrons in atoms. Scattering
factors for neutrons do not vary systematically with atomic number or
atomic weight. Neutron diffraction studies can often clear up ambigui-
ties in X-ray work, and, when the two methods are compared, may give
information on the electron distribution that is due to chemical bonding
in the molecule. Neutron diffraction is used in protein structural stud-
ies, often after an enzyme has been soaked in D2O in order to insert
deuterium in the place of labile hydrogen atoms. The deuterium atoms
can be located in the protein electron-density map and therefore it is
possible to determine how many (and the percentage of each) H or D
atoms are on the oxygen, nitrogen, or sulfur atoms of side chains; this
means that neutron crystallography provides a probe of the location of
an H or D atom in a hydrogen bond and hence the local pH in a protein
(for example, distinguishing –NH2 from –NH3

+).



Micro- and noncrystalline
materials13
The crystalline state is characterized by a high degree of internal order.
There are two types of order that we will discuss here. One is chem-
ical order, which consists of the connectivity (bond lengths and bond
angles) and stoichiometry in organic and many inorganic molecules,
or just stoichiometry in minerals, metals, and other such materials.
Some degree of chemical ordering exists for any molecule consisting of
more than one atom, and the molecular structure of chemically simple
gas molecules can be determined by gaseous electron diffraction or
by high-resolution infrared spectroscopy. The second type of order to
be discussed is geometrical order, which is the regular arrangement of
entities in space such as in cubes, cylinders, coiled coils, and many
other arrangements. For a compound to be crystalline it is necessary
for the geometrical order of the individual entities (which must each
have the same overall conformation) to extend indefinitely (that is,
apparently infinitely) in three dimensions such that a three-dimensional
repeat unit can be defined from diffraction data. Single crystals of
quartz, diamond, silicon, or potassium dihydrogen phosphate can be
grown to be as large as six or more inches across. Imagine how many
atoms or ions must be identically arranged to create such macroscopic
perfection!

Sometimes, however, this geometrical order does not extend very far,
and microarrays of molecules or ions, while themselves ordered, are
disordered with respect to each other on a macroscopic scale. In such a
case the three-dimensional order does not extend far enough to give a
sharp diffraction pattern. The crystal quality is then described as “poor”
or the crystal is considered to be microcrystalline, as in the naturally
occurring clay minerals.

On the other hand, in certain solid materials the spatial extent of
geometrical order may be less than three-dimensional, and this reduced
order gives rise to interesting properties. For example, the geometrical
order may exist only in two dimensions; this is the case for mica and
graphite, which consist of planar structures with much weaker forces
between the layers so that cleavage and slippage are readily observed.
In a similar way, certain biological structures such as membranes and

196
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micelles have less than three-dimensional order. Sometimes, however,
geometrical order can be increased by external forces. For example,
“liquid crystals” can be temporarily aligned in three dimensions by
externally applied electric or magnetic fields (hence their use in liq-
uid crystal displays in watches, computers, and other instruments).
Even less geometrical order is shown by fibers such as silk, hair, and
some long-chain polymers that have essentially only one-dimensional
order.

Many times there is no evident geometric order beyond the imme-
diate near-neighbor environment of the fundamental building unit.
This is characteristic of liquids, glasses, and rubbers, whose spheri-
cally symmetrical diffraction patterns indicate that in no direction in
space is there geometric order extensive enough to define a period.
Such materials are described as amorphous and the only regulari-
ties seen in the diffraction pattern are those due to recurring bond
distances. Thus diffraction patterns from amorphous materials pro-
vide information about interatomic distances only when a particu-
lar distance stands out from the average of all—usually because it is
heavily weighted either by frequent occurrence or by involvement of
atoms with scattering factors that are large relative to those of the
other atoms present, but occasionally simply because it is unique,
with no other distances of comparable magnitude occurring in the
sample.

Liquid diffraction

Careful diffraction studies of liquids have provided much valuable
structural information on time-averaged interatomic distances; these
are spherically symmetrical in space and therefore are generally rep-
resented by radial distribution functions, that is, radially averaged
electron-density maps. Examples, calculated from the diffraction pat-
terns of water at various temperatures, are shown in Figure 13.1. These
show the expected interatomic distances (O–H, O. . . O, and H. . . O) and
the effects of neighboring molecules, which change as the temperature
is raised.

Glass diffraction

Traditional glass, used throughout history to construct containers, win-
dows, and ornaments, is made by fusion of a mixture of lime, silica,
and soda and subsequent blowing or pressing of the product into
the desired shape. Such glass is, of course, solid at ordinary temper-
atures. Glass stemware made from it is often referred to as “crystal”
in spite of the fact that it is not crystalline. Its diffraction pattern has
a halo-like appearance, resembling the diffraction pattern of a liquid;
this demonstrates clearly that it is not crystalline and that there is
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Fig. 13.1 Radial distribution functions.

Radial distribution curves obtained by X-ray diffraction studies on liquid water at tem-
peratures from 4◦ C to 200◦ C are shown. Sample pressures were atmospheric up to 100◦ C;
above 100◦ C, the pressure was equal to the vapor pressure. The vertical coordinate,
G(r ), for the curves represents a normalized radial distribution function; that is, it gives
information on the number of neighbor atoms or molecules at a distance r from an
average atom or molecule in the system compared with that expected for a liquid without
distinct structure.
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no well-defined geometrical order within it. The best model to date
of such glass consists of random chains, nets, and three-dimensional
arrays of SiO4 tetrahedra, linked together through oxygen atoms, with
appropriately situated cations. Many attempts have been made to fit
models with different kinds of short-range order to the observed dif-
fraction patterns and to other quantitative physical and chemical data
available on various glasses. This is done in an effort to define more pre-
cisely what might be meant by “the structure of glass” (Warren, 1940;
Tanaka et al., 1985).

In contrast to the traditional glasses that are the products of fusion
and can be “thawed” and reworked without crystallizing, there are
now known to be many other glass-forming composition systems and,
as a result, there are several ways of generating glasses and other
amorphous materials. Each of these gives rise to properties that are
useful. For example, amorphous metal films can be made by “splat
cooling”—that is, a jet of liquid metal is directed onto a cold surface and
therefore is cooled to a solid so rapidly from the melt that it has been
deprived of the time required for crystal organization. Another indus-
trial example is provided by the use of a chemical reaction in the gas
phase to generate an extremely fluffy amorphous “soot” that may be
sintered and compressed to three-dimensional solidity without crystal-
lizing. Optical-waveguide–laser communication technology depends in
large measure on the purity, composition control, and perfection of
such processes, achievable by starting with pure gases, such as silicon
tetrafluoride and oxygen, and reacting them to form a condensed phase
of pure silica “soot” where, presumably, the surface is both highly
energetic and unique such that particles “join” under pressure without
melting (sintering) to form a continuum; such sintering without melt-
ing precludes the possibility of any crystallization. A third example is
provided by glass-ceramics, which, although noncrystalline as formed,
cannot be heated to the softening point because they undergo crys-
tallization from the solid state; this crystallization must be controlled
carefully in order to obtain a glass-ceramic with the desired physical
properties.

The peak near 1 Å represents the intramolecular O–H interaction and that at 2.9 Å
represents hydrogen-bonding interactions between oxygen atoms of neighboring water
molecules. A sequence of broad peaks follows, notably those near 4.5 Å and 7 Å, and they
may be attributed to preferred distances of separation for second and higher coordination
shells. At distances large compared with atomic dimensions, and also with increasing
temperature, the values of G(r ) merge to unity—that is, to the value for a structureless
liquid.

In liquid water the average coordination in the first shell represents about 4.4 mole-
cules (independent of temperature), compared with exactly 4 molecules in ice, in support
of the idea that the increase in density when ice melts is due to a small increase in
the average coordination number in the first coordination shell. Other details in the
distribution curves are compatible with an approximately tetrahedral coordination of
molecules, as found in ice.

The curves were kindly provided by Dr. A. H. Narten from Oak Ridge National
Laboratory Report 4378, June 1970.
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Fig. 13.2 Some diffraction patterns of DNA and polynucleotides.

Diffraction patterns of DNA and of a synthetic polynucleotide. Each diffraction photograph has been taken with the fiber axis vertical.
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Fiber diffraction

Fibers have disordered strands aligned within them along the fiber
axis (the meridian). If the fiber is rotated about this axis the diffraction
pattern does not change much. The diffraction patterns in Figure 3.9
show the effect on the diffraction pattern of partial but incomplete
internal order. Figure 3.9d displays quite effectively the result of one-
dimensional internal order (characteristic of certain fibers), with elon-
gated streaks instead of spots on the photograph. Many fibers are com-
posed of units with helical structures, with some order along the axis of
the helix, but often little order in the packing of adjacent helical units.
DNA, certain fibrous proteins, and many other natural and synthetic
materials have such structures. An X-ray photograph of DNA is shown
in Figure 13.2a; note that the fiber axis is vertical in Figure 13.2, but
horizontal in Figure 3.9d.

The coordinates of the atoms in a helical structure are best described
by cylindrical polar coordinates, and the scattering factor of a cylindri-
cal system is most appropriately represented in terms of Bessel func-
tions. A zeroth-order Bessel function is high near the origin and then
dies away like a ripple in a pond, while higher-order Bessel functions
are zero at the origin and then rise to a peak at a distance proportional to
their order and then die away, again like a ripple. These Bessel functions
are used in calculating the Fourier transform of a helix, which describes
the scattering pattern of the helix. The “cross” that is so striking in Fig-
ure 13.2a is characteristic of helical diffraction patterns. The diffraction
pattern is analyzed in Figure 13.2b and its relationship to DNA struc-
ture is shown in Figure 13.2c. Because the helix is periodic along the
axial direction, layer lines are formed. Two chief pieces of information
may be derived from such a photograph as that in Figure 13.2a. These
are the distance between “equivalent” units of the helical structure

(a) B-DNA, the diffraction of which is illustrated, is a form of DNA in which the individual molecules are packed together less
regularly. This fibrous noncrystalline form is that for which Watson and Crick first proposed their famous DNA helical structure.
The fibers are randomly oriented around the fiber axes, and a helical diffraction pattern with a characteristic cross is obtained.
Remember that short spacings in reciprocal space (the diffraction photograph) represent large spacings in real space. The peaks
at the top and bottom of the photograph represent the stacked DNA bases, 3.5 Å apart. The “cross” represents spacings between
the turns of the helix. (Photograph courtesy of Dr. R. Langridge.) (Langridge et al., 1957.)

(b) Analysis of the diffraction pattern of DNA shown in Figure 13.2a.
(c) DNA structure showing the stacked bases and the phosphodiester backbone. Periodicities in the structures of both of these are

seen in the diffraction photograph.
(d) Precession photograph of a crystalline decameric polynucleotide CGAQTCGATCGn (Grzeskowiak et al., 1991). This photograph

is a sampling of the fiber diffraction pattern in (a). Therefore it is clear which is the direction of stacked bases (vertical).
(Photograph courtesy of Dr. Richard E. Dickerson.)
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(for example, the base pairs in DNA) and the distance along the helix
needed for one complete turn. From these two data the pitch of the helix
can be deduced (see Watson and Crick, 1953; Franklin and Gosling,
1953; Wilson, 1966; Holmes and Blow, 1965; Squire, 2000).

The diffraction pattern of a crystalline dodecameric fragment of DNA
is shown in Figure 13.2d (Dickerson et al., 1985; Grzeskowiak et al.,
1991). Note that Figure 13.2d represents a sampling of the diffraction
pattern in Figure 13.2a, so that one immediately knows the orientation
of the molecules in the crystal (for example, the fiber direction). High-
resolution studies of polynucleotides have provided much information
on nucleic acid structure and function.

Small-angle scattering

Structural features that are large compared with the wavelength of
the radiation being used cause significant scattering only at small
angles (Figures 3.1 and 5.4). “Small-angle scattering” at angles 2Ë no
larger than a few degrees is thus used to measure long-range struc-
ture. For example, for a biological macromolecule it may be used to
measure the radius of gyration and to study the hydration of the
macromolecule. It has been widely applied to the study of liquids,
polymers, liquid crystals, and biological membranes. The radiation
used may be X rays (small-angle X-ray scattering, SAXS) or neutrons
(small-angle neutron scattering, SANS). The method is very useful
because it can provide information on partially or totally disordered
systems. Therefore particles can be studied under physiological condi-
tions (Guinier and Fournet, 1955; Brumberger, 1994; Koch et al., 2003;
Kasai and Kakudo, 2005).

Powder diffraction

The diffraction pattern of a powder (packed in a capillary tube) may
be considered that of a single crystal but with the pattern of the crystal
in all possible orientations (as are the crystallites in the capillary tube).
Powder diffraction is an extremely powerful tool for the identification
of crystalline phases and for the qualitative and quantitative analyses
of mixtures (Cullity, 1978). It is used for analysis of unit-cell parameters
as a function of temperature and pressure and to determine phase
diagrams (diagrams showing the stable phases present as a function
of temperature, pressure, and composition). A very useful compilation
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of common powder diffraction patterns, the Powder Diffraction File
(PDF), is maintained by the International Centre for Diffraction Data
(ICDD). This file contains d-spacings (related to angle of diffraction)
and relative intensities of observable diffraction peaks. A comparison of
a powder diffraction pattern obtained experimentally with the highest
diffracted intensities of some powder diffraction patterns in the file, a
search that can be done by computer, will often reveal the chemical
composition of a powder. Thus, the method is of great importance
industrially and forensically. For example, the composition of particles
in an industrial smokestack may be determined by analysis of the
diffraction pattern. Other useful information can also come from pow-
der diffraction studies. For example, an analysis of profile broadening
(Figure 13.3) can lead to an estimate of average crystallite sizes in the
specimen.

Powder methods may even be used for simple structural studies.
There are now sophisticated methods, originally introduced by Hugo
Rietveld in 1967, for the adjustment of parameters to give the best
fit with an experimental powder diffraction pattern (Rietveld, 1969;
Young, 1993; Jenkins and Snyder, 1996). The technique is now used
for the structure determination of simple structures and can provide
precise unit-cell dimensions, atomic coordinates, and temperature fac-
tors in the same way that crystal diffraction studies do. The Rietveld
method is, of course, of great value when suitably large crystals can-
not be grown. It uses a least-squares approach to obtain agreement
between a theoretical line profile and the measured diffraction pro-
file. The introduction of this technique was a significant step for-
ward in the diffraction analysis of powder samples as, unlike other
techniques at that time, it was able to deal reliably with strongly
overlapping reflections. Larger and larger structures are now being
tackled.

Summary

Studies of structures that are not fully crystalline

The diffraction patterns of liquids and glasses are spherically sym-
metrical and only radial information can be obtained. However, from
substances exhibiting partial order, more information may be derived.
For example, for a helical structure, the pitch of the helix and the repeat
distance along it can be deduced.

Powder diffraction

The diffraction pattern of a powder also gives only radial informa-
tion, since the powder contains crystallites in all possible orientations.
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Fig. 13.3 Powder diffraction.

(a) Comparison of an 11.46 cm diameter powder camera film (upper photograph) with a scanned diffractometer pattern of quartz
(with copper Kα radiation).

(b) Profile fitting of a portion of the diffraction pattern of quartz. The dots are experimental points from step-scanning and the
dashed lines are the individual results for each reflection. The sum is represented by a solid line. In this figure the peak
identifications “12.2,” “20.3,” and “30.1” represent, respectively, the 122, 203, and 301 Bragg reflections for this crystal. Note
the separation of the α1 and α2 wavelengths of the radiation (wavelengths 1.5405 Å and 1.5443 Å, respectively).

(Photographs and diagram courtesy of Dr. William Parrish.)
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Powder diffraction is used for the identification of crystalline phases
and for the qualitative and quantitative analysis of mixtures. When suit-
able crystals are not available, the Rietveld method has made evident
the power of powder diffraction to determine three-dimensional crystal
structures that otherwise could not have been studied.



Outline of a crystal
structure determination14
Small-molecule crystals

The stages in a crystal structure analysis by diffraction methods are
summarized in Figure 14.1 for a substance with fewer than about 1000
atoms. The principal steps are:

(1) First it is necessary to obtain or grow suitable single crystals; this
is sometimes a tedious and difficult process. The ideal crystal for
X-ray diffraction studies is 0.2–0.3 mm in diameter. Somewhat
larger specimens are generally needed for neutron diffraction
work. Various solvents, and perhaps several different derivatives
of the compound under study, may have to be tried before suit-
able specimens are obtained.

(2) Next it is necessary to check the crystal quality. This is usually
done by finding out if the crystal diffracts X rays (or neutrons)
and how well it does this.

(3) If the crystal is considered suitable for investigation, its unit-
cell dimensions are determined. This can usually be done in
20 minutes, barring complications. The unit-cell dimensions are
obtained by measurements of the locations of the diffracted
beams (the reciprocal lattice) on the detecting device, these spac-
ings being reciprocally related to the dimensions of the crystal
lattice. The space group is deduced from the symmetry of, and
the systematic absences in, the diffraction pattern.

(4) The density of the crystal may be measured if the crystals are
not sensitive to air, moisture, or temperature and can survive
the process. Otherwise an estimated value (about 1.3 g cm−3 if no
heavy atoms are present) can be used. This will give the formula
weight of the contents of the unit cell. From this it can be deter-
mined if the crystal contains the compound chosen for study, and
how much solvent of crystallization is present.

(5) At this point it is necessary to decide whether or not to proceed
with a complete structure determination. The main question is,
of course, whether the unit-cell contents are those expected. One
must try to weigh properly the relevant factors, among which are:

206
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(i) Quite obviously, the intrinsic interest of the structure.
(ii) Whether the diffraction pattern gives evidence of twinning,

disorder, or other difficulties that will make the analysis, even
if possible, at best of limited value. This will depend in part
on the type of information sought.

If the answer to (ii) is unfavorable, another crystal specimen or
polymorph (with a different crystalline form) may be sought.
However, under happy circumstances, one can proceed.

(6) Once a decision has been made to proceed, the next stage is
to record, usually with a diffractometer equipped with an area
detector (e.g., CCD or imaging plate), the locations and intensities
of the accessible diffraction maxima. The intensities must then
be appropriately correlated, averaged, and multiplied by various
geometrical factors to convert them to relative values of |F |. For
a typical molecular structure, there may be between 103 and 104

unique diffraction maxima to be measured, or even more with
a very large molecule. The normal time involved in the collec-
tion and estimation of these intensity data is from a few hours
to several days, the exact amount depending on the equipment
available and the experience and other concurrent obligations of
the experimenter. The data processing is done with a computer as
are all subsequent steps, appreciably reducing the necessary time
involved in the analysis.

(7) Next it is necessary to attempt to get a “trial structure” or approx-
imate relative phases. Generally, direct methods and Patterson
methods are carried out with a computer-based “black box,”
indicated by shading in the flow chart. The excellent software
now available will make most of the necessary structure solution
decisions that the user requires. However, if problems arise, an
understanding of the entire process will be necessary (hence this
book). If all goes well, the normal procedure is to try some of
the direct-methods programs, or to calculate a three-dimensional
Patterson map with the aim of finding any heavy atom(s), or
some recognizable portion of the molecule that may be present.
Meanwhile, measurement of diffraction data on other related
compounds whose crystal structures may prove easier to solve (if
this one is unusually stubborn) should be considered; every lab-
oratory has its collection of unsolved structures, some of which
yield to new and improved methods or brighter minds that
come along, and a few of which persist indomitably against all
challengers.

(8) Hydrogen atoms, which are weak diffractors of X rays, are often
visible in a difference electron-density map. Alternatively, their
positions can often be calculated. Refinement (usually by a least-
squares method) may then be carried out. One way to ensure that
hydrogen atoms are correctly placed is to do a neutron diffraction
study on a deuterated specimen.
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(9) A satisfactory trial structure is one that is chemically plausi-
ble and for which there is good agreement between observed
and calculated structure factors. It must then be refined, as dis-
cussed earlier. The resulting structure should have an R index
[Eqn. (6.9)] consistent with the precision of the data that were
collected, and should meet the criteria discussed earlier under
the heading “The correctness of a structure” in Chapter 11
(see Müller, 2009).

(10) When the refinement is complete, the molecular geometry can be
calculated and analyzed.

(11) One by-product of a complete and successful structure analysis of
an optically active material can be a determination of its absolute
configuration, provided that it contains an atom that absorbs suf-
ficiently the X rays being used. This technique has been applied to
many organic natural products and was discussed and illustrated
in Chapter 10.

Macromolecular crystals

When a macromolecule is crystallized, somewhat different techniques
are used to determine its structure (Figure 14.2). The principal steps
are:

(1) The material is obtained either by extraction from a biological or
chemical specimen, or, if it is a protein, by cloning its gene into a
high-expression system. The material so produced needs to have
been carefully purified; mass spectrometry and electrophoretic
techniques help here. Suitable single crystals are then (hopefully)
grown by vapor diffusion of solvent or related methods (Chap-
ter 2 and Figure 2.1). If a suitable crystal is obtained, it is mounted,
ready for diffraction studies.

(2) The unit-cell dimensions, space group, and density are deter-
mined. These will indicate if the analysis is feasible or not. Some-
times a subunit of an enzyme or other large macromolecule is
the asymmetric unit. This should make the structure analysis
feasible. On the other hand, it sometimes happens that several
molecules comprise the asymmetric unit. This is not always
unfortunate, because the resulting additional symmetry in the
Patterson function may provide valuable help in solving the
structure.

(3) Then it is necessary to assess the degree of order in the crystal
under study. This is determined by the measurable Bragg reflec-
tions at the highest sin Ë/Î values (which indicate the expected
resolution of the measured structure). It must then be decided
whether the ultimate resolution will be sufficient to provide
information about the detailed structure. If the resolution is



Macromolecular crystals 211

poor, one must try to grow better crystals or look for another
source of the biological macromolecule (e.g., a different animal or
bacterium).

(4) The next question is whether there is a homologous structure
already reported in the crystallographic literature. The structure
being sought (the homologous structure) probably has approx-
imately the same amino acid sequence and similar enzymatic
activity to the protein investigated (the protein under study). To
find out if there is such a homologous structure in the crystal-
lographic literature, it is necessary to search the Protein Data
Bank; this is available on the World Wide Web. If such a homol-
ogous protein can be found, it is assumed that the foldings of
both proteins (the homologous protein and the protein under
study) are similar. Therefore diffraction data for the protein
under study are measured. An attempt is then made, usually
by Patterson methods, to determine the location of the homol-
ogous protein molecule in the unit cell of the protein crystal
under study. If this works out, the phases for the crystal under
study can be calculated and refined and an electron-density map
produced.

(5) If no homologous structure is available, there might be an oppor-
tunity for sulfur-SAD phasing if sulfur is present in the molecule.
This method is currently used frequently and it does not require
any heavy metals or homologous structures, only good data to
2.5 Å resolution. Single-wavelength anomalously scattered X-ray
data plus direct methods (to locate the sulfur atoms) will give
phases for an electron-density map.

(6) In the absence of sulfur or a strong anomalous scatterer, it
will be necessary to make conventional heavy-atom derivatives,
measure the diffraction data for the native crystal and each of
its heavy-atom derivatives that have been successfully crystal-
lized, and then determine the phases by isomorphous replace-
ment. For some proteins, side chains containing heavy atoms,
such as selenium, iodine, or bromine, may be genetically engi-
neered into them. The best heavy atoms are those that scat-
ter anomalously with X rays from either a laboratory X-ray
tube or a synchrotron source (with the possibility of X-ray
wavelength tuning to required values). The heavy-atom para-
meters are then refined by least-squares methods. Improved
phases are then derived, and an electron-density map is
computed.

(7) If an atom with a strong anomalous signal can be introduced into
the crystal, the measurement of anomalous data is probably the
best way to go (that is, by MAD or SAD phasing). If anomalous
data [i.e., I (hkl) and I (hkl)] are an option it is necessary to deter-
mine if the crystal will survive many data collections, since X
rays damage protein crystals. The single-wavelength anomalous
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dispersion (SAD) method (mentioned above for sulfur-containing
proteins) is used if the crystals are fragile or if it is more conve-
nient to study them in the investigator’s laboratory with stan-
dard X-ray tubes. Sturdier crystals can be studied by the mul-
tiwavelength anomalous dispersion (MAD) method, in which
several data sets at different wavelengths near and far from the
absorption edge of the anomalously scattering atom are mea-
sured. Selenomethione is often introduced in place of methionine
in proteins and acts as the anomalous scatterer. The advantage of
MAD phasing is that only one crystal is needed, but it is generally
necessary to go to a synchrotron source to obtain the required X-
ray wavelengths.

(8) In each of these methods, the result is an electron-density map.
This is probably a good place to stress that this map does not
constitute “data,” and to remind the reader that the primary
experimental data are the Bragg reflections. The map is totally
dependent on the phases that have been input into the calcu-
lation. These phases may be improved by density modification,
which includes solvent flattening for crystal structures with large
areas occupied by solvent and real-space averaging for structures
with noncrystallographic symmetry.

(9) If a protein crystal structure is under study, it is usual first to
“trace the chain” of the polypeptide backbone. The determina-
tion of side-chain coordinates for the protein follows from a
knowledge of the amino acid sequence of the protein and the
fitting of a model of each amino acid to the electron density on
a computer screen. Without sequence information, the analysis
of the electron-density map is difficult unless phasing is good to
atomic resolution (as is the case with increasingly many investi-
gations). If the macromolecule under study is a nucleic acid, the
phosphate groups and the bases are sought from the electron-
density map as a preliminary to phasing the electron-density
map.

(10) For an enzyme, the question of the location of the active site
of the catalytic process then arises. This may often be found
by soaking into native crystals either inhibitors, poor substrates
(if the substrate is too good, reaction may readily occur), or
cofactors. Then diffraction data are measured and a difference
electron-density map is calculated using phases from both the
native protein and the liganded complex. In this way the site of
attachment of a substrate may be evident, suggesting that this is
the active site of the enzyme. At this stage, neutron diffraction
studies on deuterated proteins and/or their ligands can yield
powerful information on the protonation state of each functional
group under the particular experimental conditions at which the
crystals formed. Therefore a combination of X-ray and neutron
diffraction investigations is encouraged.
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Concluding remarks

We have attempted to present enough about the details of structure
determination so that an attentive reader can appreciate how the
method works. As mentioned earlier, a glossary and list of references
(including a short bibliography) have been included so that those inter-
ested may delve further into the subject. Do not forget to use search
engines in the World Wide Web, as there are many useful articles and
reprints available for study. We will now summarize by answering our
initial questions.

Why use crystals and not liquids or gases?

A crystal has a precise internal order and gives a diffraction pattern
that can be analyzed in terms of the shape and contents of one repeat-
ing unit, the unit cell. This internal order is lacking in liquids and
gases and for these only radial information may be derived. Such
information may be of use in distinguishing between possible struc-
tures, but, for detailed results in terms of molecular structure and
intermolecular interactions, the analysis of crystals (or powders) is
necessary.

Why use X rays or neutrons and not other
radiation?

These radiations are scattered by the components of atoms and have
wavelengths that are of the same order of magnitude as the distances
between atoms in a crystal (approximately 10−10 m). Hence they lead to
diffraction effects on a scale convenient for observation and measure-
ment.

What experimental measurements are needed?

The unit-cell dimensions and the density of the crystal, and the indices
and intensities of all observable Bragg reflections.

What are the stages in a typical structure
determination?

These stages have been described above in detail for both small mole-
cules and macromolecules, and further information may be obtained
from the World Wide Web. The stages involve the preparation of a
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crystal, the indexing and measurement of intensities in the diffraction
pattern, the determination of a “trial structure,” and the refinement of
this structure.

Why is the process of structure analysis often
lengthy and complex?

Because 50 to 100 distinct intensity measurements are needed per atom
in the asymmetric unit for a resolution of 0.75 Å, because the deter-
mination of a trial structure may be difficult, because the refinement
requires much computation, and because in the end so much structural
information is obtained that analysis of it takes time. Many structures
are readily or even automatically solved, while others, tackled by the
same competent crystallographer, may take months or years to solve. It
is hard for the noncrystallographer, who may have been led to believe
that the determination of structure is now almost automatic, to compre-
hend this “never-never land” in which crystallographers occasionally
find themselves while trying to arrive at a trial structure for certain
crystals.

Why is it necessary to “refine” the
approximate structure that is first obtained?

Because the initially estimated phases may give a poor image of the
scattering matter. Since the least-squares equations are not linear, many
cycles of refinement are usually necessary. By refinement, one can tell
whether the approximate structure is correct and obtain the best pos-
sible atomic positions consistent with the experimental data and the
assumed structural model.

How can one assess the reliability of a
structure analysis?

By checking the standard uncertainties of the derived results, by con-
sidering measures of the agreement of the values of the observed |Fo|
with the values of the calculated |Fc|, by the absence of any unexplained
peaks in a final difference map, and by the chemical reasonableness of
the resulting structure.

We hope we have made it possible for you to read accounts of X-
ray structure analyses with some appreciation of the scope and the
limitations of the work described. Perhaps you are even interested
enough to want to try the techniques yourself. If so, trust that this
introduction serves as a useful background and reference. But also
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we hope that you realize that there is more to the crystallographer’s
discipline than just diffraction methods. When the crystal structure
is known, it is a first step in the interpretation of physical proper-
ties, chemical reactivity, or biological function in terms of the three-
dimensional structures and conformations of the component molecules
or ions.


