
2. Steady State and Non-Steady State

Technological Processes

2.1 Definitions

In this section the meaning of some technical terms, which are necessary for
the understanding of the following parts, will be explained. Besides the terms
“fibre formation” and “fibre processing” characterising the textile technologi-
cal process the title of the book contains the terms of dynamics and modelling.
The latter are to be defined first.

2.1.1 The Technological Process

Before the consideration of some specific points, the technological process
itself is defined:

The technological process is an organised series of scientifically determined
changes of the treated product in order to fulfill a certain manufacturing task.
Those changes are initiated by the employment of production instruments and
machines.

The succession of each technological process is coupled with the appear-
ance of certain energetic processes:

Each technological process is a meaningful coupling of different energetic
processes, which are applied to the treated product. Their combination serves
the realisation of a goal-directed procedure.

The example of the drawing process, a basic process in the production of
chemical fibres, shall clarify the given definitions.

Figure 2.1 shows a series of important parameters of the manufacturing
task of drawing. During the process they are connected by varied cause-effect
relations. The drawing process is put into reality by input and output godet
pairs driven with different velocities. The parameters can be divided into two
groups:
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Fig. 2.1. Technological scheme of the drawing process, essential process control
and product variables

1. the process characteristics, which define the mechanical, geometric and
energetic, in other words, the technical-physical set point values charac-
terising a certain technological operating point;

2. the product characteristics, which define the quality or state of the input,
the processed and the output materials of the process. Thereby the input
materials can either be raw materials or semifinished products, whereas
the processed materials are semifinished or finished products.

According to Fig. 2.1 the group of the process characteristics contains the
input velocity vi and the output velocity vo of the drawing godets, which are
characterised by the diameters Di and Do and the motive revolutions per
minute ni and no. Furthermore, the length of the drawing zone l, as well as
the godet temperature Thg (only if a hot drawing process, for instance for
the polyester production, is considered), which is given by the heating voltage
Uh, the heating current Ih, the heating resistance Rh and the heating power
Nh, belong to this group.

The product characteristics group comprises for instance the finesses T ti
and T to, the elastic moduli Eyi and Eyo, the birefringences Δi and Δo and
the crystallinities Xci and Xco of the incoming undrawn and the outcoming
drawn yarns, the breaking elongation εb of the drawn yarn, the breaking force
Fb of the drawn yarn, the tensile force F of the yarn in the drawing zone and
the temperature Ty of the yarn at a certain point of the drawing zone.

As the above definitions show, the modification of the properties of the
involved materials is characteristic for each technological process. Those mod-
ifications can either be intentional or disturbing. The materials’ properties,
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which partly serve as a measure of the quality of the raw materials and the
semifinished or finished products, are the product characteristics.

Just as well, the process characteristics are not constant during a certain
period of the process. Compared with those of the product characteristics
the modifications of the process characteristics are quite small but in gen-
eral undesirable. In order to emphasise the dynamic character it seems to be
meaningful to employ the terms product variable and process variable instead.
As already mentioned, the product and process variables are only constant
in some very special cases. In the quality characterisation and classification
it is therefore usual to permit tolerances around a desired mean value of a
product property.

This fact allows a further conclusion. As the process variables vary around
their operating point, the product variables of interest are oscillating around
the defined set point value, as well. In other words, the quantities fluctuate
with the dynamics caused by the cause-effect relations of the single process
lines. Thus, the process dynamics are an inherent component of the process
itself.

2.1.2 Dynamics, Process Dynamics

In technical mechanics, dynamics mean the theory of motions caused by
forces. In connection with the technological process the term dynamics has
to be modified and adjusted. It must be restricted to:

Dynamics relating to the technological process, which will be called pro-
cess dynamics in the following sections, mean the behaviour of a process run
during a transition (transition behaviour) from one technologically adjusted
operating point to another one. This transition is initiated by a determined
or a stochastic disturbance and can be described in its quantitative and tem-
porary progress.

The above definition can be easily explained for the drawing process. Let
us take a yarn, which is, according to its macromolecular structure, relatively
unoriented.

As shown in Fig. 2.2 the yarn is classically spun between the drawing
godets and consequently continuously formed by the elongation ε(t). The
elongation results in a higher oriented form of the yarn which is connected
with some desired physical properties. The realised elongation ε(t) depends
on the input and output velocities of the drawing godets vi(t) and vo(t) in
the following way:

ε(t) =
vo(t) − vi(t)

vi(t)
(2.1)
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Fig. 2.2. Technological scheme of the drawing process, step-like disturbance of the
output velocity Δvo (symbol , see Sect. 2.4.2 too), effect ΔF (t)

The raised elongation causes a reaction force in the drawn yarn, the draw-
ing yarn tensile force F (t). Let the process run at the technological operating
point 1 characterised by the input velocity vi1(t) = const. and the drawing
yarn tensile force F1(t) = const. At the moment t = 0 the output velocity
vo(t) of the drawing godets is step-like increased by Δvo and consequently
reaches the new level vo2(t) = vo1(t) + Δvo, which shall characterise the op-
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erating point 2.1 Let level 2 be constant for t > t0. The input velocity shall
remain constant. Caused by the step-like disturbance +Δv, which can be
classified as determined aperiodic disturbance (Fig. 2.2), the drawing tensile
force (as effect quantity) will leave the level F1(t) for t > t0. This transition is
continuous and not step-like! Thus, the tensile drawing force reaches a level
F2(t) after a transition period. Then, F2(t) remains constant if there is no
further change of the new godet velocities vi2(t) and vo2(t).

The quantitative chronological description of the transition behaviour of
the effect quantity drawing yarn tensile force from F1(t) to F2(t) caused by a
step-like disturbance of a cause quantity (here: step-like increase of vo1(t) to
vo2(t)) is called step response function or simply step response. The response
function describes the transitory behaviour of an effect caused by a step-like
disturbance and is thus an expression for the dynamics of the process un-
der consideration. Already the evaluation of such a simple dynamic standard
function allows some fundamental statements regarding the characterisation
and the assessment of the dynamic properties of technological processes or
specific parts of them. This will be explained in detail in further sections,
general facts are given in Sect. 2.4.2.

Let us assume we have a stable technological operating point. Now let
the output velocity vo(t) periodically (for instance sinusoidal) oscillate with
the amplitude Δvo1 and the circular frequency ω1 around its mean value vom

(see Fig. 2.3).

This periodic disturbance makes the drawing tensile force F (t) oscillate
with the amplitude ΔF1 and the same circular frequency ω1 around its mean
value Fm. The initial oscillation (vo-disturbance) and the response oscillation
(F -disturbance) are not synchronous for the effect runs behind the cause. This
behaviour is reflected in the phase shift angle ϕ1. A change of the circular
frequency of the periodic disturbance from ω1 to ω2 at a constant amplitude
Δvo1 results in a modification of the response oscillation. Then, F (t) oscillates
at ω2 with the modified amplitude ΔF2 and a changed phase shift angle ϕ2.
The magnitude of the ratio ΔF/Δvo and the change of the phase shift angle ϕ
dependent upon the disturbing frequency are, similarly to the step response,
an expression of the dynamic characteristics of the drawing process. They
lead to the terms transfer function, frequency response, amplitude frequency
response (simply amplitude response) and phase frequency response (simply
phase response). Explanations will follow later in Sect. 2.4.3.

1 A step-like change in mass effected technical systems is normally not possible to
realise. Nevertheless, this model image will be used here and in the following,
because this affords an insight in the dynamic process behaviour on the basis of
a well developed mathematical signal and system theory.
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Fig. 2.3. Drawing process, periodic disturbances of the output velocity Δvo1, effect
ΔF1, circular frequency of the disturbances ω1, phase shift angle ϕ1

2.2 Modelling of the Steady State Melt Spinning
Process

2.2.1 Goal of Modelling

The goal of each modelling procedure is to obtain a mathematical description
of the technological process for better understanding of the main relations
between process parameters, material behaviour and product properties. An
entire theory of melt spinning should also take into account the history of
the polymer, thermal and deformational (rheological) behaviour, and the
non-equilibrium conditions for the transfer processes. Such a theory would
be quite complicated and is only marginally realised with respect to rheology.
But, stationarity in melt spinning means that there are stable conditions in
time, that there are no dependences of the process variables, no changes, dis-
turbances or drifts in time. The values describing the fibre formation process
change only with respect to space and describe therefore a steady state pro-
cess, but it is noticeable that the process in reality is not one of equilibrium.
A reasonable model for this process involves the dynamics of melt spinning
and the resulting fibre properties. The best model then is one which is simple
enough for handling but good enough for answering the questions which the
fibre producers and developers are interested in. Early investigations to the
melt spinning process, and based on this knowledge the development of the
fundamentals of the model of fibre formation were done by Ziabicki [14–23],
Andrews [24], Kase and Matsuo [25–28], Hamana [29, 30], Han [31–37],
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George [38–40], Shimizu [41–53, 56–60], Yasuda [61–67], and many other
authors [78–99,176–183,256].

The research on this interesting topic is still actively persued, there are
many efforts made by scientists, engineers and producers to get a deeper
understanding of the process. Recently, a multitude of contributions to the
theory of fibre formation and melt spinning have been published. A major
review about the literature is given in two books by Ziabicki [184, 274].

The following two sections only give a short and very simplified introduc-
tion to the model of fibre formation, more details to the steady state model
will be discussed in Chap. 3 later. The goal of this section is only to give an
impression of what the model analysis is capable of doing, therefore, as an
example, a first and simple estimation to the fibre cooling process is made.

2.2.2 Balance Equations

To form filaments, the molten polymer is extruded through capillaries and is
drawn down by a take-up unit which applies the necessary force. The take-
up unit is often realised by godets but in principle it is also possible to wind
up the fibres directly onto bobbins. Another common procedure for taking
up the filaments is by using special air suction devices (for example in the
spunbonded nonwoven process). At their path from the spinneret to the take-
up unit, the filaments cool down, become accelerated to their final take-up
speed, solidify and at last they can be partly oriented and crystallised. The
engineering analysis of this process is made by the application of the physical
balance equations of mass, energy and momentum to the fibre forming process
in combination with material behaviour. In the following, the three basic
equations are briefly summarised.

The most important (and simplest) relation is the continuity equation, it
describes the mass balance in melt spinning:

Q = T t · v . (2.2)

The filament cooling, i. e. the heat loss by heat transfer from the fibre
surface to the surrounding air, is described by the energy balance. If we only
regard the convective heat transfer (see later, Eq. 3.10) it is given in the
following form:

dT

dx
= −(T − Tair) · 1

Lc
. (2.3)

Then, the momentum balance describes the forces acting at the fibres:

F = F0 + Fsurf + Finert + Fdrag − Fgrav . (2.4)

Using Eq. 2.2 above, the fineness (titre) T tL of the as-spun filament with
take-up velocity vL then is given by

T tL =
Q

vL
. (2.5)
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2.2.3 Example: Heat Transfer

The differential equation 2.3 can easily be integrated for constant parameter
Lc and constant temperature Tair of surrounding air. The solution is a simple
exponential function

T (x) = Tair + (T0 − Tair)e−x/Lc . (2.6)

with the cooling length Lc proportional to the primary variable mass through-
put: Lc ∝ Q (for more details see Sect. 3.1.2). The formula (2.6) can be
used as a rough estimation for how fast the filaments will cool down. For
poly(ethylene terephthalate) (PET) as typical melt spinning polymer the
cooling length Lc per mass throughput becomes Lc/Q ≈ 0.2 m/(g · min−1)
(see Sect. 3.1.2). If the exponential course of the filament temperature is
taken into consideration it means for PET, to cool down a filament with a
mass throughput of about 1 g/min from an initial melt temperature of 290
to a temperature of 50 where solidification is surely reached, one needs
about 0.5 m cooling length, for 2 g/min about 1.0 m, etc. (see Fig. 2.4).

Fig. 2.4. Estimated course of PET filament temperature vs. distance, 1 – mass
throughput Q = 1 g/min, 2 – Q = 2 g/min
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2.3 Modelling of Non-Steady State Dynamic Process

2.3.1 System and Signal

In view of the closing remarks of Sect. 2.1.2 a second definition of the techno-
logical process is necessary. The definition can be derived from the following
way of thinking, which is the norm in the fields of automatic control engi-
neering, system engineering or information technology:
The realisation of each technological process requires an arrangement of cer-
tain mechanical, electrical, electronic, pneumatic or hydraulic devices and
instruments, which are assembled in a machine or a part of a machine. They
are the material basis for the fulfillment of the manufacturing task for the
materials passing the process.

The machine and the passing and processed materials together are called
the system.

As soon as the system, which is assumed to be at standstill and is not
performing any material or energy transfer at first, begins to run, one can
speak about a process. Only then the previously defined process and product
variables begin to interact according to their varied cause-effect relations.
Those interactions imply that all process and product variables are reflected
in their (desired) mean values and their (in most cases undesired) fluctuations
around the mean values. Those lapses of time are called time functions of the
process and product variables, for instance T to(t), F (t), εb(t), vi(t), Thg(t)
and so on. The information content of a time function, in other words the
mean value and the fluctuations, are called their signal. If those signals are
missing (for instance process interruption after a fibre break) the interaction
between the process and product variables will not exist any longer. The
process will fall back into its static (unproductive) state. Thus, the following
process definition, which is the most contensed one, seen under the system
technical viewpoint, is possible:

process = system + signal(s)

Consequently, the scientific analysis of a process with respect to its dy-
namics includes both, at least one signal analysis and one system analysis; in
other words:

process analysis = system analysis + signal analysis

This situation is once more illustrated in Fig. 2.5 (after [4]), some terms
appearing in this figure will be explained in the following section within the
presentation of specific examples.
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Fig. 2.5. Elements of a process analysis under system-technical aspect according
to [4]

2.3.2 Model

The term model is another important expression being introduced now. Deal-
ing with a given process it always has a certain reason, for instance:

• The process runs too instable. The prescribed tolerances of the product
qualities cannot be maintained. The causes have to be investigated and
eliminated.

• There are too many disturbances leading to process interruptions (= in-
terruptions of the signal exchange). The causes must be determined and
removed, too.

• A better machine shall be designed (= construction and design task).

Each of those exemplary mentioned tasks means that, at first, an anal-
ysis of the given state has to be made. This fact leads to the theoretical
and/or experimental attempt to investigate the quantitative relations be-
tween the cause-effect relations of the process and product variables and
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their time-dependent behaviour. In most cases the results of this work have
the shape of an image of the real constellation. This can be a formula, a
graph, a regression equation, a DEq., a machine on a reduced scale, which
is more transparent in its working, or an electronically aided simulation of
the process or its parts. Those representations are designated as a more or
less complete and sufficient model. Thus, relating to the technological process,

the model is an image of a process in its most significant parts, which
describes the essential aspects of and the relations between the process and
product variables with reference to a certain question.

Within the scope of this book the following classification is chosen:
The term model is divided into the steady state model on the one hand and
the dynamic model on the other. The first describes the relations between the
constant mean values of the process and product variables whereas the latter
includes the relations between the changes and fluctuations of the process
and product variables. Thus, the dynamic model represents the time depen-
dence of the cause-effect relations.

As both models will be presented mathematically, it has to be mentioned
that in most cases the steady state model does not require DEqs. in time
whereas the dynamic model always leads to such DEqs.. This must be ex-
plained with the fact that the time-dependent behaviour can only be de-
scribed with differentials of time.

As in the former section, the above definitions shall be clarified by an easy
example. Again, the drawing process according to Fig. 2.1 is employed. With
some fundamental technological knowledge we can write for the fineness of
the drawn yarn T to:

T to = T ti · vi

vo
(2.7)

Here, T to, T ti, vo and vi are the mean values of the corresponding process
and product variables. In this case, Eq. 2.7 would be the quite simple steady
state mathematical model expressing the relations between the mean values
of the target quantity T to and its determining variables T ti, vo and vi.

The dynamic mathematical model describing the modification behaviour
of the same target quantity T to at the same process level is given by the
mass balance equation. In our case, the balance equation is realised by the
following DEq.:

vo · T to + l · dT to
dt

− vi · T ti = 0 (2.8)
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The meaning of the differential element l · dT to
dt

in Eq. 2.8 will be ex-
plained below the Eq. 2.23 in Sect. 2.5.2.

For a step-like disturbance of the input velocity vi of the magnitude Δvi

the solution of the DEq. 2.8 would be the following step response function:

ΔT to|Δvi = Δvi · T ti
vo

[
1 − exp

(
−vo

l
· t

)]
, (2.9)

which describes the lapse of time of the effect of this disturbance on the mod-
ification of the output fineness ΔT to.

The DEq. 2.8 and its solutions (for the case of an aperiodic step-like dis-
turbance such a solution is given by the Eq. 2.9) are a dynamic mathematical
model of the drawing process.

2.4 Characterisation of the Dynamic Process Behaviour

2.4.1 Differential Equation

Restricting the dynamic mathematical modelling of processes or process steps
on the clear representation in the time range and/or the frequency range,
further terms, which accompany the methodical approach, have to be intro-
duced.

For the determination of the dynamics of technological processes the
DEq., describing the time behaviour of the system, plays a fundamental role.
The DEq. is the mathematical reproduction of the cause-effect relations of
those processes and product variables which are taken into account within
the scope of the model. The DEqs. formation for specific technical systems
is based on the dynamic mass-, energy- and momentum balance relations.
Hereby, not only the steady state, but the dynamic (related to the general
case of a running process) balances (processing mode) must be employed. Dif-
ferent a-priori knowledge of the process of interest, mathematical-methodical
knowledge as well as some basic scientific laws are required for the DEqs.
development.

2.4.2 Description in the Time Range; Step Response

If the DEq. shall supply facts about the dynamic properties of the system
forming its basis, it must be solved first. According to the type of the time
function of the independent variables of the DEq., which correspond to the
causes for the system modifications, several solutions for the dependent vari-
able, corresponding to the effect, are possible.
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If the time function of the independent (cause-)variable, which disturbs
the system, initiates a single (aperiodic) change of the previous (steady state)
mean value or technological operating point, the arising new time function of
the dependent (effect-)variable will be called response function. For special
time functions of the independent (disturbance- or cause-) variables the re-
sponse time- (or simple only time-) function can be designated more exactly.
If the cause-time function is a single step (symbol , see also Fig. 2.2), the
response time function will be called step response. If the cause time function
is a single impulse (symbol ⊥), which means that the cause variable leaves
its steady state value only for an infinitely short time t = t0, say impulse-
like, and comes back to this value instantaneously, the response time function
will be called impulse response function. Additionally, it has to be mentioned
that, besides those two standard types of a cause time function, arbitrary
signal types can appear as disturbances. The mathematical algorithm for the
solution of the DEq. for step-like and impulse-like disturbances is well-known
and ready for application. But at technological process steps the impulse-like
disturbance has almost no practical significance, for in an experiment this
type cannot be realised with sufficient exactness. Therefore, all common de-
scriptions are based on the step response or simply response function. As the
response functions are solutions of the DEq. reflecting the time behaviour of
the dependent effect variables, we also speak about a representation in the
time range. The following equation shows the general form:

Δy|Δx = f(t) (2.10)

with Δx as cause, Δy as effect and t as running time.

2.4.3 Description in the Frequency Range

Dynamic Transfer Function; Complex Frequency Response

The cause variable can also be assumed to be a periodic function of time.
In other words, the variable is disturbed frequently and not only at one
time as considered in the above section. Now, in contrast to the case of a
single disturbance, the solution of the DEq. does not reveal the exact time
behaviour of the effect variable after a defined cause disturbance, but the
solution specifies:

a) how the ratio of the amplitudes of the dependent and the periodic inde-
pendent variable, and

b) how the phase shift angle ϕ between the cause-and the effect disturbance

will depend on the frequency ω of the periodic disturbance.

In principle, similar to the case of aperiodic disturbances, arbitrary types
of disturbance signals are possible. In most practical cases the sine function
is used because its mathematical treatment is quite easy.
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However, the amplitude- and phase shift angle dependence on the disturb-
ing frequency are the solution of the DEq., which models the dynamics of the
system under investigation, in the frequency range. This solution is called
dynamic transfer function or complex frequency response. In the common
literature of system control or automatic control engineering the dynamic
transfer function is given as the following complex function:

G(jω) =
Δ̃y(ω)

Δ̃x(ω)
· ejϕ(ω) (2.11)

with the following symbols2:
Δ̃x(ω) vector of the sinusoidal disturbance of the independent cause

variable Δx sin(ωt)
Δ̃y(ω) vector of the sinusoidal response of the dependent response

(effect) variable Δy sin(ωt + ϕ)
ejϕ(ω) factor, which gives the phase shift between cause- and effect

oscillation in the complex plane
j imaginary unit, j2 = −1

As detailed examples later in the text will show, the dynamic transfer
function or complex frequency response are directly obtained as the solution
of the DEq. for periodic sinusoidal disturbances of the independent variable.

The complex frequency response Eq. 2.11 can, as common with complex
quantities, be separated into its real and imaginary part:

G(jω) = Re(ω) + j · Im(ω) , (2.12)

whereas Re(ω) represents the real part and Im(ω) corresponds to the imag-
inary part of the complex frequency response.

The representation of the complex frequency response Eq. 2.11 or Eq.
2.12 in the complex plane (x axis = real axis; y axis = imaginary axis) marks
the end points of all those vectors, which can be drawn from the origin of the
coordinate system dependent upon the excitation frequency ω. This curve is
called transfer locus of the complex frequency response (Fig. 2.6).

Equivalent to the response function in the time range, the transfer locus
describes the dynamic behaviour of a system in the frequency range, because
the amplitude of the dependent effect variable is now plotted against the fre-
quency.

2 In mathematics the imaginary unit is usually designated with i. As in technical
context the symbol i is often used for electric currents, the symbol j is used for
the imaginary unit here.
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Fig. 2.6. Transfer locus of a complex frequency response; general example

It can be easily seen that for the excitation frequency ω = 0, the amplitude
vector of the independent cause variable (which always remains on the real
axis) and the amplitude vector of the dependent variable have the same
direction and melt together on the real axis. This represents the initial point
of the transfer locus defining a kind of steady state excitation for the very
special case of ω = 0. For this exemplary situation there is no phase shift
between cause and effect oscillation: ϕ = 0.

Amplitude Frequency Response

Proceeding from the complex frequency response Eq. 2.12 the ratio of the
amplitudes of the cause- and the effect oscillation, Δ̃y(ω)/Δ̃x(ω), can be plot-
ted against the excitation frequency ω. This amplitude ratio corresponds to
the absolute value of the single complex number of the frequency response
G(jω), that is |G(jω)|, or to the ratio of the mentioned vectors of the transfer
locus of the complex frequency response. Those absolute values are calculated
as follows:

|G(jω)| =
√

Re(ω)2 + Im(ω)2 (2.13)

Equation 2.13 gives the amplitude frequency response, which is one part
of the complex frequency response. Consequently it is just another form of
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Fig. 2.7. Amplitude frequency response of the transfer locus according to Fig. 2.6

representation in the frequency range, as the solution is plotted against the
frequency ω, again (Fig. 2.7).

Phase Frequency Response

The second part which can be extracted from the complex frequency response,
is the phase frequency response. This function describes how the phase shift
angle ϕ between cause- and effect oscillation depends on the excitation fre-
quency ω. In the transfer response representation it is exactly that angle
included by the real axis and each vector beginning at the origin of the co-
ordinate system and ending on the transfer locus curve. The tangent of the
phase shift angle ϕ is equal to the ratio of the imaginary and the real part of
the complex frequency response 2.12, namely:

tan[ϕ(ω)] =
Im(ω)
Re(ω)

(2.14)

According to Eq. 2.14, the phase shift angle ϕ can be calculated directly:

ϕ(ω) = arctan
[
Im(ω)
Re(ω)

]
(2.15)

For the general case the phase frequency response is depicted in Fig. 2.8.
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While the complex frequency response or its transfer locus, respectively,
contain the information from the DEqs. solution for a certain sinusoidal dis-
turbance of the independent cause variable, i.e. the dependence of the ampli-
tude ratio and the phase shift angle on ω, the amplitude frequency response
and the phase frequency response provide only the dependence of either the
amplitude ratio or the phase shift angle on ω.

For more detailed information, didactically reasoned descriptions and an-
alytical proofs see for instance [5], [6] or [7]. Within the scope of this book,
only the basic knowledge which seems to be inherently necessary for the
understanding of the following sections, has been sketched. A very detailed
example, which is thought to clarify the above mathematical terms and con-
nections, is presented in Sect. 2.5.2.

2.4.4 Correlation and Power Density Spectrum Functions

In the previous sections only such functions characterising the dynamic sys-
tem behaviour have been considered, which are based on the transfer descrip-
tion of determined disturbances or changes of the system. But in principle it
is also possible to develop a mathematical description for the transfer of non-
determined or stochastic disturbances of the cause variables. This becomes
necessary as soon as it is experimentally impossible to produce determined
disturbances or if the process of interest should not be faced with higher
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disturbance amplitudes, which are in most cases needed for determined dis-
turbances, for reasons of safety or any other reasons. In those cases the arbi-
trary (stochastic) fluctuations of the cause and effect variables around their
mean values, which are generally always present and which determine their
technological operating point, can be used for the dynamic system analysis.
Consequently, this method of analysis implies the possibility to gain informa-
tion during the normal process run. In doing so, some very strict conditions
and standards have to be fulfilled. Those conditions and standards specifi-
cally concern the parts of system engineering and system analysis of such an
investigation. This methodical procedure for the system analysis will not be
shown in this book, the approach to this specific theoretical and experimental
discipline can be studied for instance in [5–8]. Within the scope of stochastic
system investigations statistic characteristic functions of the time functions
of the process and product variables are used as they allow a so far hardly
practised approach to the system analysis with a higher gain of information
in the field of advanced, process related disturbance analysis of textile prod-
ucts. Therefore the fundamental equations with some short explications are
now given and will be applied in later sections. These equations are the cor-
relation function and the power density spectrum function.

The correlation function K(τ) of one time function x(t) is defined in the
following way.

Integral representation:

K(τ) = lim
t→∞

1
T

∫ t

0

[x(t) − x̄][x(t + τ) − x̄]dt (2.16)

Sum representation:

K(k · Δt) =
1

n − k

n−k∑
i=0

(xi − x̄)(xi+k − x̄) (2.17)

Boundary condition: kmax ≤ n

5
, with k = 0, 1, 2, 3, . . . kmax.

x(t) time function
x̄ mean value of the time function in the evaluation

range 0 ≤ t ≤ T or 0 ≤ k·Δt ≤ n−k, respectively
xi discrete value of time function x(t), taken in

steps of Δt
T time period of the integration range
τ, k · Δt time shift
k, n, m running (sequence) indices
K(τ), K(k · Δt) single values of the correlation function for τ or

k · Δt, respectively
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As can be seen from Eqs. 2.16 and 2.17 all values of the time function are
multiplied continuously or at certain points with the values of the same time
function after a time shift of τ or k · Δt, namely x(t + τ) or xi+k, and finally
added up to get K(τ) or K(k · Δt) (see Fig. 2.9 too).

t

x

i = 1, 2, 3,... ... n... 11,...

x1 x2 x3 x11 xn

x(t)

Δt

x

Fig. 2.9. Time function x(t), distributed into n single values for the design of the
auto-correlation function

The result of this summation divided by the length of the addition- or in-
terpretation interval T represents the single value of the correlation function
K(τ) or K(k · Δt). The repetition of this calculation for different τ or k · Δt
yields the complete correlation function.

As x(t) is correlated with itself according to Eqs. 2.16 and 2.17, the cor-
responding correlation function is called auto-correlation function.

Without an extended discussion of the efficiency and the interpretation
possibilities (more about this topic in Sect. 6.4.2), it should be mentioned that
the initial value of the auto-correlation function K(0) is equal to the square
spread of the time function in the interpretation- and integration range.

The algorithm for the calculation of the correlation function can also
be applied to two different time functions x(t) and y(t), which could be for
instance coupled by certain cause-effect relations. Analogous to Eqs. 2.16 and
2.17 the corresponding equations are:
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K(τ) = lim
t→∞

1
T

∫ t

0

[x(t) − x̄][y(t + τ) − ȳ]dt , (2.18)

K(k · Δt) =
1

n − k

n−k∑
i=1

(xi − x̄)(yi+k − ȳ) (2.19)

Boundary condition: kmax ≤ n

5
, with k = 0, 1, 2, 3, . . . kmax.

As the partial products of two cross-wisely analyzed time functions are
summed up, the resulting correlation function is called cross-correlation func-
tion. To support a better understanding the situation of a cross-correlation
is visualised in Fig. 2.10.

t

x, y

i = 1, 2, 3,... ... n... 11,...

x1 x2 x3 x11 xn
x(t)

Δt

y1 y2 y3 yn

y(t)
y11

x

y

Fig. 2.10. Time functions x(t) and y(t), distributed into n single values for the
design of the cross-correlation function

The independent variable of the auto- or cross-correlation function is the
time shift τ or k · Δt. Thus, this form of representation is a representation in
the time range (see also Sect. 2.4.2).

The statistic characteristic function, which supplies the equivalent infor-
mation about the signal shape of the time function in the frequency range
is the power density spectrum function. This function can also be written as
auto- (APSF) or cross-power density spectrum function (CPSF).
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Following, the calculation rule for the power density spectrum function is
given, as Sect. 6.4.2 will exclusively refer to it. Furthermore, the principle is
commercially available in the form of modules for yarn and fibre uniformity
testing devices or spectrometers. These instruments allow the automatised
calculation of the amplitude spectrum, which is similar to the power density
spectrum function, of measured signal shapes of the fibre fineness.3

Integral representation to the auto-power density spectrum function:

S(ω) = lim
T→∞

1
T

{ [∫ T

0

(x(t) − x̄) cos(ωt)dt

]2

+

[∫ T

0

(x(t) − x̄) sin(ωt)dt

]2 } (2.20)

Sum representation:

S(ω) =
1
n

{ [
n∑

i=1

(x(t) − x̄) cos(ω · i · Δt)

]2

+

[
n∑

i=1

(x(t) − x̄) sin(ω · i · Δt)

]2 } (2.21)

Boundary condition:
10π

n · Δt
≤ ω ≤ π

Δt

If the auto-correlation function, in its sum definition according to Eq. 2.17,
has already been calculated the single function values of K(k · Δt) can be
applied directly for the determination of the power density spectrum function
without a repeated access to the values for the xi of the basic time function.
The conversion formula is:

S(ω) = 2Δt

m∑
k=1

K(k · Δt) · cos(ω · k · Δt) (2.22)

Boundary condition:
2π

m · Δt
≤ ω ≤ π

Δt

Further explications are given in [8, 9].

3 The spectrograph of the Zellweger Co., Uster, Switzerland, which is delivered
as a module for the Uster uniformity tester, has been popular for decades.
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2.5 Dynamic Process Analysis and Modelling

2.5.1 Methodical Procedure

Since the most essential terms have been introduced and explained quite inde-
pendently in the previous sections, now some fundamental rules with respect
to the methodical procedure for dealing with process-analytic tasks, which
are well-tried, are given. These rules will help to get a general idea of the
connections and interactions between those essential terms.

There are two stages in the system analysis, which are classified according
to the qualitative representation of their result:

a) the stage of the steady state system analysis aiming on the development
of a steady state model of the process, and

b) the stage of the dynamic system analysis aiming on the setting up of a
dynamic model of the process, which can include the steady state model
as a special case.

According to Table 2.1 (taken from [1]) the mathematical-analytical ap-
proach to the modelling of technological flow-processes (which are, in contrast
to piece-processes, such processes where the process variables are exposed to
continuous changes and not to generally step-like changes) always leads to at
least one DEq. or usually to a system of DEqs.

Table 2.1. Fundamental mathematical-analytical approaches to the modelling of
technological flow-processes; x, y, z . . . space coordinates, t . . . time

Processes with Processes with
concentrated parameters scattered parameters

Steady state Systems of algebraic Systems of ordinary DEqs.

model equations with derivatives
d

dx
Systems of transcendental Systems of partial DEqs.

equations with derivatives
∂

∂x
,

∂

∂y
,

∂

∂z

Dynamic Systems of ordinary DEqs. Systems of partial DEqs.

model with derivatives
d

dt
with derivatives

∂

∂t
and

∂

∂x
,

∂

∂y
,

∂

∂z

Considering the principied type of the chosen methodical approach, the
system analysis can be arranged in three classes:

a) the theoretical,
b) the experimental, and
c) the combined theoretical-experimental system analysis.
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The latter is based on a continuous interaction between theoretically estab-
lished relations and experimental investigations, see Fig. 2.12. Practically,
this type is the most common one.

The specific steps for the dynamic system analysis or the modelling are:

1. All process and product variables, being involved in the process and prob-
ably being connected with each other via cause-effect relations, are to be
collected and sorted. For that purpose the establishment of a cause-effect-
scheme, which inherently goes along with an exact physical-analytical
way of thinking and the inclusion of all available a-priori knowledge, is
inevitable.

2. If possible, all DEqs. of the system, following from mass-, energy- and
momentum balances, have to be set up.

3. The DEqs. coefficients have to be determined theoretically and exper-
imentally. The DEq. is to be solved (step response function and/or
frequency-, phase- and amplitude response).

4. If it is impossible to set up a DEq., the cause-effect-scheme has to be
split into meaningful smaller cause-effect-blocks. The structure and the
parameters of those partial systems must be investigated by actively per-
formed experiments.

5. The model is tested and improved.
6. Mathematical simulations are performed in order to answer the techno-

logical questions. The model is applied.

The realisation of the experiments mentioned in 4., aiming on the investi-
gation of the cause-effect relations between the process and product variables,
requires the modification of the concerned cause variable under a certain law
and the subsequent measurement of the system’s response (of the effect vari-
able). The evaluation of the time functions of the varied input variable (test
signal) and of the output variable allows the determination of the dynamic
behaviour of the system. Figure 2.11 (after [4]) summarises the possible test
signals for the input variable (cause variable).

The transfer functions are the response time functions for aperiodic deter-
mined test signals. From their characteristics the dynamic parameters and the
structure of the system can be derived. If periodic determined test signals,
for instance sinusoidal signals of tunable frequency, are used, the dynamic
transfer function or the complex frequency response of the system can be in-
vestigated experimentally. Analogously, the dynamic system characteristics
can be determined from them. Correlation and spectral analysis methods
belong to the group of methods which employ stochastic signals for the de-
termination of the system parameters and the system’s structure. However,
their application is coupled with a considerable expenditure. Nevertheless,
in several cases it is the only possibility to carry out any dynamic process
investigation at all.
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test signals

non-determinate
signals

determinate
signals

aperiodic

impulse

step

ramp

non-steady state
stochastic
signals

steady state
stochastic
signals

periodic

sinusoidal
triangular
rectangular
sawtooth

Fig. 2.11. Classification of test signals

Figure 2.12 schematically shows the different methods of dynamic process
analysis.

As can be seen here, the problem can be solved theoretically as well as
experimentally. That model which starts from the setting up of the DEq. tak-
ing all qualitative physical-analytical relationships into consideration and in
which only the quantitative fixing of the DEqs. parameters is tested experi-
mentally, must be seen as the most valuable model. All dynamic characteristic
functions, for instance the step response function or the complex frequency
response, can be calculated if the DEq. of the process or process part be-
haviour is known.

As soon as the setting up of the DEq. becomes impossible, the questions
of interest have to be exclusively solved by experiments. In principle, all ex-
perimental methods are equally good, but practically there are big differences
with respect to the expense of time and aid and the achievable accuracy. The
step or impulse test quickly supplies characteristics in the time range, which
can be converted into the qualitatively more valuable characteristic in the
frequency range (the complex frequency response or the dynamic transfer
function) only with a limited accuracy. Investigations applying a periodic
test signal permit a direct access to the complex frequency response – how-
ever, with a higher expenditure of time but also with a good accuracy. Those
methods which utilise stochastic test signals take a lot of time, as well. Their
accuracy decisively depends on the quality of the measuring instruments.
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Fig. 2.12. Methods of the dynamic process analysis: L means Laplace-
transformation from the time to the frequency range, L−1 means retransformation
of the Laplace-transformation from the frequency to the time range

Here, an important problem relating to the purely experimental procedure
(often of necessity) shall be mentioned. Of course the experimental procedure
leads to a quantitatively correct model of the process under consideration.
But such a model cannot contribute to an understanding of the fundamen-
tal physical-analytical relations of the process and product variables. The
experimentally gained model is usually limited to that process that was em-
ployed for its acquisition. It is quite good for the process control but not for
a general explication of the connections between several input and output
variables. Furthermore, such a model should not be transferred to a similar
but larger process (up scaling) without testing its validity again.

Finally it is pointed out that the conversion laws between the dynamic
transfer function and the step response, formally given in Fig. 2.12, are theo-
retically based on the Laplace-transformation (abbreviation symbols L and
L−1), which will be used in some later examples. Some literature hints will
also be given to this later.
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2.5.2 Detailed Example (Drawing Process)

Deviation of the Specified Differential Equation and its Solutions

Here, the methods introduced during the previous sections are demonstrated
by the setting up, the evaluation and interpretation of a simple dynamic
model for the drawing process. For that purpose the following question has
to be answered: Which dynamic transfer properties has the process step of
drawing relating to changes or fluctuations of the input velocity vi in its effect
on the fineness T to of the yarn leaving the drawing zone?

In this special case the first step of the analytical procedure recommended
in Sect. 2.5.1, namely the qualitative coverage of the process and product vari-
ables of interest, can be omitted. With some technological basic knowledge
the fundamental statistic equation for the output yarn fineness T to, see Eq.
2.7, can be given at once. As already mentioned, the output yarn fineness
depends on the input velocity vi as well as on the output velocity vo and the
fineness T ti of the incoming yarn.

The setting up of the DEq. requires the dynamic mass balance equation
for the draw field in which the fibre mass is exchanged continuously (the
undrawn fibre goes in, the drawn fibre comes out).

As the draw field and, by the way, a lot of other process steps of textile
processing processes are systems where a certain mass is stored, the general
balance equation (continuity equation) taking the dynamic processing mode
into consideration can be utilised as the basis for the formulation of the DEq.:

mass inflow
time

=
mass discharge

time
+ change of stored mass (2.23)

Specifically for the drawing zone the terms are:

mass inflow
time

= T ti · vi ,
mass discharge

time
= T to · vo

The term change of stored mass needs, relating to the modelling of the
filament drawing process, a short explanation leading to a simplification. The
yarn mass stored in the drawing zone is T to · l, see Fig.2.1. We assume now
that all changes of the fibre fineness take place homogeneously, quasi rubber
like, over the whole drawing zone. This assumption is sufficiently exact, if
only small changes of process variables around the operating point (<10%)
are in the view.
For the situation, that immediately after the inflow of the undrawn fibre the
full draw ratio of some 100% would be realised the fibre would reach its out-
put fineness T to shortly after the inflow (neck like deformation). The fibre
had to be transported only over the length l of the drawing zone with the
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output velocity vo. For the last case (which is not shown here) the model
description would be valid for a dead time thread line, which is explained
more in detail in Sect. 5.1.3.

The term change of stored mass means the mass per time interval which
is additionally flowing in or being discharged from the drawing zone after a
perturbation. Mathematically, this term is the first derivative of the stored
mass after the time:

d(T to · l)
dt

=
dT to
dt

· l = Ṫ to · l (2.24)

By inserting this equation in Eq. 2.23 we get the following DEq.:

T ti · vi = T to · vo + Ṫ to · l (2.25)

Equation 2.25, which is equal to Eq. 2.8, is the DEq. describing the drawing
process under the simplified conditions explained above. The cause variable
was vi and the effect variable was T to. The values of T ti, vo and l should be
constant.

Before we continue with the solution of the DEq., an agreement concern-
ing the symbols must be reached. Constants characterising the technological
operating point are written with the index m, standing for mean or mean
value. Variables are split into their constant mean value, also marked by the
index m, and their fluctuating part, which is symbolised by a Δ in front.

In our example we have to introduce T to = T tom+ΔT to and vi = vim+Δvi

for the variables and T tim, vom and lm for the constants.

Then, Eq. 2.25 appears as:

T tim · (vim + Δvi) = (T tom + ΔT to) · vom + (Ṫ tom + ΔṪ to) · lm
After multiplication, with T tim · vim = T tom · vom, which is equivalent to the
steady state balance equation, and with the knowledge that the derivative of
a constant is equal to zero the DEq. gets the following form:

T tim · Δvi = vom · ΔT to + lm · ΔṪ to (2.26)

In contrast to Eq. 2.25 this DEq. contains only those variables which have real
signal character and not the constant mean values. Consequently, Eq. 2.26
fits better with the definition of the dynamic model, which mainly investi-
gates the fluctuation behaviour of the process and product variables. Thus,
Eq. 2.26, represents a view point which is typical for the comparison between
actual value and rated value in the automatic control technique. There, only
fluctuations around the rated value are also considered [10].
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For the calculation of the transfer function the common approach being
well-known in the field of DEq. analysis

ΔT to = C1 · eC2·t (2.27)

is inserted in the homogeneous DEq. 2.26. Setting the independent cause
variable Δvi equal to zero, we get the so-called volatile solution:

vom · C1 · eC2·t + lm · C1 · C2 · eC2·t = 0 ,

which means:

C2 = −vom

lm
(2.28)

We insert Eq. 2.28 in Eq. 2.27, extend the approach by the so-called steady
state solution and get the modified, complete approach:

T to = C1 · exp
(
−vom

lm
· t

)
+ C3 (2.29)

Aiming on the determination of the coefficients C1 and C3 the approach of
Eq. 2.29 is inserted into the complete DEq. 2.26:

T tim ·Δvi = vom

[
C1 · exp

(
−vom

lm
· t

)
+ C3

]
− lm · vom

lm
·C1 ·exp

(
−vom

lm
· t

)
For t → ∞ we get:

C3 =
Δvi

vom
· T tim (2.30)

Inserting Eq. 2.30 into the approach of Eq. 2.29 leads to:

ΔT to = C1 · exp
(
−vom

lm
· t

)
+

Δvi

vom
· T tim (2.31)

For the determination of the constant C1 we investigate the solution of Eq.
2.31 for the case of t = 0, which corresponds to the beginning of the step-like
excitation (Δvi just applied). ΔT to is still equal to zero for t = 0, that means:

0 = C1 +
Δvi

vom
· T tim =⇒ C1 = − Δvi

vom
· T tim (2.32)

Equation 2.32 inserted in Eq. 2.31 results in the complete time transient
function or step response function:

ΔT to|Δvi = Δvi · T tim
vom

[
1 − exp

(
−vom

lm
· t

)]
(2.33)



2.5 Dynamic Process Analysis and Modelling 33

According to Fig. 2.12 the transfer function Eq. 2.33 represents the solution of
the DEq. 2.26 for step-like excitations of the system by the independent cause
variable. Equation 2.33 is identical with Eq. 2.9 of Sect. 2.3.2 but includes the
more detailed symbols for the several mean values and fluctuations. Before
the interpretation of Eq. 2.33 it is shown, how the complex frequency response
can be derived from the DEq. 2.26. As explained in one of the former sections
the complex frequency response represents the DEqs. steady state solution
for sinusoidal excitations.

For the cause variable we write:

Δvi = Δ̃vi · ejωt , (2.34)

and for the effect variable:

ΔT to = ˜ΔT to · ej(ωt+ϕ) , (2.35)

where ω is the excitation frequency and ϕ is the phase shift angle. The Eqs.
2.34 and 2.35 correspond to an oscillating behaviour of the two variables and
are written in the complex form, which will directly lead to the questioned
complex frequency response (see for instance [10] for further information).
When we use Eqs. 2.34 and 2.35 in Eq. 2.26 we gain:

T tim · Δ̃vi · ejωt = vom · ˜ΔT to · ej(ωt+ϕ) + lm · ˜ΔT to · jω · ej(ωt+ϕ)

or

T tim · Δ̃vi = ˜ΔT to · ejϕ(vom + jω · lm)

Calculating the cause/effect-ratio finally leads to:

G(jω) =
˜ΔT to

Δ̃vi

· ejϕ =
T tim
vom

· 1
1 + jω · lm

vom

(2.36)

Eqation 2.36 represents the complex frequency response of the system under
investigation and corresponds to Eq. 2.11 in Sect. 2.4.3.
According to Eq. 2.13 the amplitude frequency response is equal to the abso-
lute value of the complex frequency response. For its calculation we have to
seperate the real and the imaginary part of Eq. 2.36. This can be reached by

extension of the fraction by the factor
(

1 − jω · lm
vom

)
:

G(jω) =
˜ΔT to

Δ̃vi

· ejϕ =
T tim
vom

·
1 − jω · lm

vom(
1 + jω · lm

vom

) (
1 − jω · lm

vom

)
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G(jω) =
˜ΔT to

Δ̃vi

· ejϕ =
T tim
vom

·
1 − jω · lm

vom

1 +
(

ω · lm
vom

)2 (2.37)

The absolute value of Eq. 2.37 leads to the amplitude frequency response due
to Eq. 2.13:

|G(jω)| =

∣∣∣∣∣ ˜ΔT to

Δ̃vi

∣∣∣∣∣ =
T tim
vom

· 1√
1 +

(
ω · lm

vom

)2
(2.38)

Employing Eq. 2.15 the phase frequency response is:

ϕ(ω) = arctan
[
−ω · lm

vom

]
. (2.39)

A more elegant and, mainly for the solution of DEqs. of higher order,
faster technique for the calculation of the complex frequency response is
the Laplace-transformation. Cutting out any details, the method is now
explained for the (quite simple) DEq. 2.25.

The derivatives with respect to the time
du

dtu
are replaced by the so-called

Laplacian pu. Because only first derivatives occur (ΔṪ to) results here u = 1:

T tim · Δvi = vom · ΔT to + p · lm · ΔT to ,

where p · ΔT to stands for ΔṪ to or
d(ΔT to)

dt
.

It follows:

G(p) =
ΔT to
Δvi

=
T tim
vom

· 1
1 + p

· lm
vom

(2.40)

It can be easily seen that Eq. 2.40, which is called dynamic transfer func-
tion G(p) in a narrower sense, proceeds to the complex frequency response
G(jω) (Eq. 2.36) when the Laplacian pu is replaced by the complex fre-
quency (jω)u. The advantage of this direct method, which indirectly includes
all boundary conditions, is obvious.

If we look for the step response we will need a transformation from the
frequency range back to the time range. For that purpose the retransforma-
tion integral of the Laplace-transformation must be applied. In our special
case that integral is:
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ΔT to|Δvi =
Δvi

2πj

+j∞∫
−j∞

G(p)
p

· ept · dp , (2.41)

or with Eq. 2.40:

ΔT to|Δvi =
Δvi · T tim
2πj · vom

+j∞∫
−j∞

ept

p ·
(

1 + p · lm
vom

) · dp (2.42)

The value of the integral Eq. 2.42 can either be extracted from the appropri-
ate literature [11], [12] or solved with the residue theoremof the Laplace-
transformation [13]. The residue theorem states that the value of the integral
is equal to the sum of all residues multiplied by the factor 2πj.

This means for the given example:

ΔT to|Δvi = Δvi · T tim
vom

·
2∑

ν=1

Res
pν

[S(p)] , (2.43)

where pν are the zero values of the integrand of Eq. 2.42. Those are:

p1 = 0 and p2 = −vom

lm

The general equation for the calculation of the residues is:

Res
pν

[S(pν)] = lim
p→pν

(p − pν) · S(p)

Here S(p) represents the whole integrand of Eq. 2.42. Now, the two residues
can be calculated:

Res
p1

[S(p1)] = lim
p→0

(p − 0) · ept

p ·
(

1 + p · lm
vom

) = 1 , (2.44)

Res
p2

[S(p2)] = lim
p→− vom

lm

(
p +

vom

lm

)
· ept

p ·
(

1 + p · lm
vom

) = − exp
(
−vom

lm
· t

)
(2.45)

The input of Eqs. 2.44 and 2.45 into the Eq. 2.43 leads to the transfer function

ΔT to|Δvi = Δvi · T tim
vom

[
1 − exp

(
−vom

lm
· t

)]
(2.46)

Obviously, Eq. 2.46 is the same as Eq. 2.43, which has been acquired by the
classical approach with the DEq. 2.25.
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Evaluation of Results

We are now ready to deal with the sixth step (application of the model, sim-
ulations with respect to technological questions) of rules for the methodical
procedure for the dynamic modelling given in Sect. 2.5.1. For that purpose
the potential of the mathematical solutions found in the previous section is
demonstrated by means of a concrete example. Let us assume a drawing pro-
cess of a synthetic yarn characterised by the following process and product
variables:

mean input yarn fineness T tim = 30 tex
mean output yarn fineness T tom = 10 tex
(⇒ mean draw ratio = 3)
mean input velocity vim = 300 m/min
mean output velocity vom = 900 m/min
assumed step-like or sinusoidal
shift of the input velocity Δvi or Δ̃vi = 15 m/min.
Figure 2.13 shows a transfer function calculated with Eq. 2.33 by means

of the above values for lm = 0.3 m.
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Fig. 2.13. Drawing process; time transient function of the fineness ΔT to(t) by
means of an input velocity step Δvi = 15 m/min:
T tim = 30 tex; T tom = 10 tex; vim = 300 m/min; vom = 900 m/min

The following information can be extracted from the curves:

a) The change of the output yarn fineness ΔT to shows an exponential be-
haviour and reaches a steady state value of 0.5 tex. Consequently, if the
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disturbance of the input velocity is 15 m/min the outgoing yarn will have
a constant fineness of 10.5 tex after a certain transition time.

b) The transition period between leaving the old technological operating
point (T to = 10 tex) and reaching the new disturbed one (T to = 10.5
tex) lasts 100 ms.

c) The proportional change of the fineness after the end of the transition
period is equal to the proportional change of the input velocity (5%).

There are a number of further considerations to be made. First, the transi-
tion time of 100 ms seems to be quite short. But we have to bear in mind that
already 1.5 m of the fibre with fineness values differing from the desired value
have left the drawing zone during that period. If the input velocity jumped
back from the disturbed value of 315 m/min to the initial value of 300 m/min
after those 100 ms we would have to wait for further 100 ms until the output
yarn fineness had reached its original value of 10 tex again. Thus, an only
100 ms lasting change of the input velocity to a 5% higher value would have
caused a 3 m fibre segment with undefined fineness and – which is even worse
for synthetic silks – with different orientation and structure characteristics,
which possibly show negative effects on the staining homogeneity. Here, the
terms of skitteriness and barre suggest themselves and do not have to be
interpreted in detail. As for the rest, the changes of the input velocity cause
slippage effects of the fibre on the input godet roll (in diminishing direction),
which are often barely recognised, appear for extremely short periods and
can be hardly measured.

The parameter in the transfer function which finally determines how fast
the effect variable can follow the step-like cause variable, is in our case (and
in many other similar cases) the exponent of the exponential function. The
reciprocal value of the factor vom/lm is called the time constant Tc of the
system:

Tc =
lm
vom

(2.47)

This means for our example:

Tc = 0.3 m
900 m/min = 3.33 · 10−4 min = 0.02 s = 20 ms.

As can be checked easily there is the following correlation between the
time since the beginning of a disturbance and the percentage of the alter-
ation range being passed by the effect variable:

1 · Tc ⇐⇒ 63%,
3 · Tc ⇐⇒ 95%,
5 · Tc ⇐⇒ 99%.
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Therefore it seems to be justified to consider the transition process as
finished after a period of 5·Tc (here: 100 ms). For less exact approximations
(error: 5%) even 3·Tc can be assumed as long enough. Consequently the time
constant can be extracted from a purely experimentally acquired transfer
function with sufficient exactness (in case of an exponential behaviour, which
has to be tested before): One determines the point of the curve, where 63% of
the whole alteration range has been passed, and extracts the corresponding
time value from the abscissa (Fig. 2.13). Another (less exact) method is the
construction of the tangent on the exponential function in the zero value of
time. That tangent also meets the parallel to the abscissa which corresponds
to the steady state final value of the alteration range of the effect variable at
the distance Tc.

Eqation 2.47 shows how the dynamic behaviour of the system (here: the
drawing process) can be changed. A faster responding system reacts with a
diminishing of the time constant which is equivalent to a shortening of the
drawing zone and/or an enlargement of the output velocity, whereas a slower
responding system reacts with an enlargement of the time constant which is
equivalent to a longer drawing zone and/or a smaller output velocity. If, for
a certain reason, the fibre length, being influenced by disturbances, has to be
changed, for instance minimised, this will only be possible by an adequate
diminishing of lm, as the disturbance fibre length is proportional to the prod-
uct Tc ·vom. The right curve of Fig. 2.13 illustrates how the transition process
changes when the drawing zone is enlarged to 0.4 m. For this special case Tc

is 26.7 ms and the transition process is practically finished after 133 ms.

Figures 2.14 to 2.16 show the solutions in the frequency range: the fre-
quency response in its transfer locus representation (Fig. 2.14), the amplitude
frequency response (Fig. 2.15) and the phase frequency response (Fig. 2.16).

The transfer locus as a summarising representation teaches us that

a) the oscillation ˜ΔT to, which is caused by sinusoidal exciting oscillation
with constant amplitude Δ̃vi (vector on the real axis), gets smaller for
growing excitation frequencies ω and finally vanishes for ω → ∞,

b) the phase shift angle ϕ, which is a measure for the delay of the effect
oscillation behind the (exciting) cause oscillation, grows from initially
zero (for ω = 0, quasi steady state excitation) to a value of −π

2
(for

ω → ∞).

Amplitude and phase frequency response show those statements sepa-
rately. The ordinate values of the amplitude frequency response are explicitly
given as the amplitude ratio ˜ΔT to/Δ̃vi for our example. The maximum value
for this ratio, appearing at ω = 0, is 0.5

15
tex

m/min = 0.033 tex
m/min. This means

that at the beginning of the amplitude frequency response, therefore at small
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disturbance frequencies, a fluctuation amplitude Δ̃vi =1 m/min results in a
fluctuation amplitude ˜ΔT to =0.033 tex.

The so-called critical (circuit) frequency ωc can be taken as a characteris-
tic value for the estimation of the dynamic system properties in the frequency
range representation. It is defined as the excitation frequency, at which the
effect oscillation amplitude has fallen to 1/

√
2 of the value being valid for the

case of steady state excitation (for ω = 0). In the transfer locus (Fig. 2.14)
the imaginary part of the vector for the effect oscillations is equal to its real
part at this point. This is the case for Eq. 2.37 with

ω · lm
vom

= 1 =⇒ ω = ωc =
vom

lm

or, for Eq. 2.47 with:

ωc =
vom

lm
=

1
Tc

(2.48)

There, the phase shift angle is ϕl = −π

4
= −45˚. For our technological

example we get: ωc =
900
0.3

m/min
m

= 3000 min−1 ∼= 50 s−1. It is clearer to
give the values for the circular frequency ω in the more familiar dimension
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Hertz corresponding to the number of oscillations per time unit f . The well-
known relation ω = 2πf lets Eq. 2.48 appear as

fc =
ωc

2π
=

vom

2π · lm (2.49)

For the example we get fc =
50
2π

Hz = 8 Hz. The frequency abscissas of Figs.
2.15 and 2.16 contain both values: ω and f . Practically, this means that the
drawing zone transfers periodic sinusoidal fluctuations of the input velocity
Δ̃vi · sin(ωt) or Δ̃vi · sin(2πf · t) at frequencies of 0 Hz � f � 8 Hz to the
fineness of the outgoing fibre with a transfer factor of at least 0.7 related to
the maximum amplitude ratio for f = 0 Hz. The input velocity would fluc-
tuate between 285 and 315 m/min. The fineness of the outgoing fibre would
fluctuate for a disturbance frequency of

≈ 0 Hz between 9.5 tex and 10.5 tex,
8 Hz between 9.65 tex and 10.35 tex.

If the disturbance frequency exceeds fc the cause oscillation will be trans-
ferred less to the effect variable ΔT to. Consequently the drawing zone with
its stored fibre mass will dampen the disturbance the better as the distur-
bance frequency reaches higher values. This behaviour corresponds to the
part of the amplitude frequency response which approaches zero for f > fc.
As in most practical cases such a system behaviour is formally desired for
the following appropriate measure, which directly follows from the explained
relations, can be recommended: The critical frequency of the technological
system for the critical cause-effect relations should be as small as possible
because then the desired dampening for the dynamic disturbance transfer
already begins at lower disturbance frequencies.

After the Eqs. 2.47 or 2.48 this means for the drawing zone: diminishing
of vom and/or enlargement of lm. As the first one lowers the productivity, an
enlargement of lm should be the aim. It is quite clear that other aspects, for in-
stance the technical conditions must be considered as well and consequently
compromises have to be made. This point is not further discussed at this
place. For comparison, Fig. 2.15 includes an amplitude frequency response
which is valid for a drawing process with a drawing zone being enlarged to
lm = 0.4 m. As can be calculated with Eq. 2.48 the critical frequency drops
to fc = 6 Hz for this case, so an effective dampening of disturbances can be
expected already for that frequency.

In a similar way as the time constant of the transfer function does, the
phase frequency response ϕ(ω) (Eq. 2.39) allows statements about the thread
length, which leaves the drawing zone before that point of the thread, which
corresponds to a disturbance, appears at the end of the drawing zone. This
thread length is called delay thread length Ld and is calculated as follows:
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Ld =
|ϕ(ω)|
2π · ω · vom =

|ϕ(ω)|
4π2 · f · vom (2.50)

For our example we get:

Ld = 37 mm for fc = 8 Hz (drawing zone 0.3 m),
Ld = 50 mm for fc = 6 Hz (drawing zone 0.4 m).

In Sect. 5.1.5 other problems for which the phase frequency response plays
an important role will be discussed.

The next sections cover important aspects of the dynamics of main process
steps of fibre/yarn/thread formation and processing technologies. There, the
mathematical techniques explained so far will be employed again.
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