
3. Modelling of Steady State Fibre Formation

Process in Melt Spinning

3.1 Steady State Single Fibre Formation Process

3.1.1 Definition: What Does Fibre Formation Mean?

Melt spinning is the production of continuous solid filaments from polymeric
melt. The fibre formation process includes change in shape, structure and
properties of the thermoplastic polymer. The polymer pellets or granules
are fed into an extruder where, through heating, their melting temperature
is exceeded. The polymeric melt is then transported, under pressure, to the
spinneret. Hygroscopic polymers require vacuum drying prior to processing in
order to ensure a low water content. The extrusion temperature T0 is roughly
30-50 K above the melting temperature Tm of the polymer, i. e. T0=250-270
for PA 6 or 280-295 for PET, respectively. A constant mass flow rate of
the melt is achieved by a metering pump (the spinning pump) which can be
positioned inside the spinning head. Within the spinneret the melt flow is
channelled into a number of individual capillary holes, each is responsible for
the formation of a single filament. After the melt flow passes through these
spinneret orifices into the air, the single filaments cool off, solidify, and are
collected into a fibre bundle that is finally wound up. The take-up speed is
much higher than the average extrusion velocity at the spinneret exit. The
ratio between the spinning velocity vL (take-up velocity at any distance L)
and the (average) extrusion velocity v0 at the spinneret exit defines the draw
down ratio ddr:

ddr =
vL

v0
. (3.1)

Between take-up of the as-spun fibre and the final winding to bobbins an
additional drawing procedure (with additional draw ratio DR) may be in-
troduced. The drawing is typically achieved by means of godet pairs. Two or
more drawing steps can be performed (Fig. 3.1). Fibre formation in the sense
of spinnability requires three necessary conditions:

1. Attenuation and acceleration of the filaments, i. e. ddr > 1,
2. Stability in time that allows the production of continuous filaments, i. e.

no filament breakage,
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Fig. 3.1. Melt spinning equipment (schematic): a – spinning floor, b – winding
floor; 1 – container with polymer pellets, 2 – electrical motor and drive train, 3 –
extruder assembly with screw, 4 – spinning head with metering pump (gear pump),
5 – spinneret with capillary holes, 6 – spinning chamber with quenching air, 7 – spin
finish applicator, 8 – pairs of godets for online drawing, 9 – (high speed) winder

3. Steady state conditions (stationarity), i. e. uniform filaments without any
variation of properties throughout the production time and therefore
along the filament length.

The maximum possible draw down ratio for a given polymer is an impor-
tant characteristic value for the spinnability of the polymeric melt. For well-
spinnable polymers draw down ratios of several hundred to up to ddr > 1000
can be reached in the high speed spinning process. Specifically the high speed
fibre spinning shows extremely high deformation and cooling rates. Structural
changes and phase transition from liquid to solid state are possibly taking
place within milliseconds.

3.1.2 Fundamental Balance Equations

At the exit of the capillary holes (at distance x = 0) the polymeric melt is
extruded with a given constant mass throughput Q and extrusion velocity
v0 at a constant extrusion temperature T0 (Fig. 3.2). The diameter of the
spinneret capillary holes is D0. The take-up device (godets, winder or air
suction device) positioned at any distance L from the spinneret, determines
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the final take-up velocity vL of the as-spun filaments. The velocity v(x), the
diameter D(x), the temperature T (x), and the filament force F (x) depend
upon the axial distance x from the spinneret. Their courses play an essen-
tial role in the development of the fibre structure and the resulting textile
yarn properties. The theory of steady state fibre formation helps to describe
the deformation, cooling, and stress developing processes. It is, in principle,
an application of the fundamental physical balance equations [274] of mass,
energy, and momentum, combined with the stress-deformation behaviour of
the polymer and the description of its structural changes.
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F=FL Fig. 3.2. Fibre formation in melt spinning

Mass Balance

The mass balance represents the continuity equation of the melt spinning
process. It is largely simplified because no mass exchange takes place between
the filament and its environment. The mass conservation formula connects
the most important quantities, mass throughput Q, filament cross sectional
area A(x) (or filament diameter D(x), respectively), and the (averaged over
the cross section) axial filament velocity v(x):

Q = �p(x) · A(x) · v(x) = const. (3.2)

The quantity �p in Eq. 3.2 denotes the mass density of the polymer. The
product �p(x) · A(x) = T t(x) is known in textile engineering as fineness
(titre). For a circular cross section with diameter D(x) follows

Q = �p · π

4
D2 · v = T t · v . (3.3)
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The fineness T t quantifies the linear mass density (mass per unit length of
the fibre) and has its own special units. The most common are tex (resp.
decitex ) and denier (den), defined as

1 tex =
1 g

1000 m
, 1 dtex =

1 g
10 000 m

, 1 den =
1 g

9000 m
.

The fineness of a fibre is called 1 dtex if 10 000 meters of fibre material is
equal to 1 gram (resp. the fineness 1 den equals 9 000 meters of 1 gram mass).
The relation between fineness T t (in dtex or denier), and diameter D (in
μm) depends on the mass density �p (in g/cm3) and is given by

T t = 0.0078 �p D2, D = 11.3
√

T t/�p for T t in dtex, (3.4a)

T t = 0.0112 �p D2, D = 9.44
√

T t/�p for T t in denier. (3.4b)

Two examples (with given mass densities) are listed in Table 3.1.

Table 3.1. Equivalence between fineness and diameter

Fineness T t Diameter D

PP – poly(propylene) 1 dtex 12 μm

(�p = 0.9 g/cm3) 10 dtex 37 μm

100 dtex 119 μm

PET – poly(ethylene terephthalate) 1 dtex 10 μm

(�p = 1.35 g/cm3) 10 dtex 31 μm

100 dtex 97 μm

Due of the fundamental character and simplicity of the mass balance Zi-

abicki [274] distinguishes the principal process variables by means of the
continuity equation into primary, secondary, and resulting variables.

Primary variables

• describe the material, its chemical and molecular structure (molecular
weight, molecular weight distribution), and the material’s characteristics
like viscosity, heat capacity, solidification behaviour etc.

• Primary variables are also the parameters which determine the technologi-
cal conditions of the melt spinning process. These are the mass throughput
Q delivered by the spinning pump, the extrusion temperature T0, the di-
mensions of the capillary holes (diameter D0), the length of the spinning
line L from spinneret to the take-up device, the take-up velocity vL, and
the conditions of the cooling process, its velocity profile vair of quenching
air, the temperature profile Tair, and the air humidity.
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Secondary spinning variables result from the primary variables by appli-
cation of the continuity equation (3.2). Examples are:

• the (average) extrusion velocity v0 with

v0 =
Q

�p
π
4 D2

0

,

• the as-spun fineness T tL = Q/vL, and the corresponding diameter DL,
• the draw down ratio ddr (3.1) with

ddr =
vL

v0
=

vL

Q
�p

π

4
D2

0 .

The formulas show that the secondary variables are combinations of the pri-
mary variables, specifically the draw down ratio.

Resulting variables are determined by primary variables as well as the
dynamics of the fibre formation process. Some examples are:

• the development of the fibre velocity v(x) along the spinning path,
• the length of the fibre formation zone, i. e. the distance between the spin-

neret and the solidification point,
• the maximum deformation rate of the polymeric downstream,
• the filament tension force F (x) and the filament stress σ(x) at any dis-

tance x from spinneret, especially at the solidification point and at the
take-up point,

• the filament temperature T (x).

The development of stress and temperature and the structural changes de-
termine the physical and textile properties such as orientation, crystallinity,
elongation at break, tenacity and many others.

Modelling the dynamics of fibre formation should lead to a sufficient de-
scription of the resulting variables and their correlations to the fibre proper-
ties. The main goal is helping to understand the influence of primary variables
(material properties and technological process parameters) on the resulting
product properties.

Energy Balance

The energy equation describes the development of the filament temperature
T (x) from the point of exiting the capillary holes to the points of solidification
and take-up.



48 3. Modelling of Fibre Formation

D

x+dx

T(x)

x

T+dT

Tair

Fig. 3.3. Heat flow balance of a filament volume ele-
ment (schematic)

Simplified analysis. If we at first assume only heat convection (i. e. no heat
conduction and no heat sources within the filament, no heat radiation), then
the heat balance of any volume element between x and x + dx is given by
the following equation: The difference of heat flow into the unit volume and
out of it must be equal to the total heat loss of the unit volume, that is the
heat transfer from the surface of the unit volume into the surrounding air
(Fig. 3.3).
The heat balance equation can be written as

Q · cp · T − Q · cp · (T + dT ) = α · (T − Tair) · π · D · dx . (3.5)

Using the so-called (non-dimensional) Nusselt number Nu with

Nu =
α · D
λair

(3.6)

leads to

dT

dx
= −(T − Tair) · Nu

π λair

Q · cp
. (3.7)

In Eqs. 3.5–3.7 Tair is the temperature of surrounding air, α is the heat trans-
fer coefficient from the filament surface to the surrounding air, cp represents
the specific heat capacity of the polymer, and λair stands for the heat con-
ductivity of air.

The Nusselt number (or the heat transfer coefficient α) is an essential
parameter for calculating the filament temperature profile T (x). A more de-
tailed discussion of heat transfer will follow in Sect. 3.1.3. Here it should
be pointed out that the fraction on the right hand side of Eq. 3.7 has the
dimension of a reciprocal length:

Nu
π λair

Q · cp
=

1
Lc

. (3.8)

Equation (3.7) then becomes

dT (x)
dx

= −T (x) − Tair(x)
Lc(x)

with T (0) = T0 . (3.9)
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Example. To get an impression of the cooling of poly(ethylene terephtha-
late) (PET) filaments the following typical values should be used:

specific heat capacity (PET) cp 1500 kJ/kgK
temperature of the melt (PET) T0 290
air temperature Tair 20
heat conductivity of air λair 10−5 W/m
Nusselt number Nu ≈ 1

Using the parameters above (see also Eqs. 2.3 and 2.6) the cooling length for
PET per mass throughput becomes Lc/Q ≈ 0.2 m/g ·min−1. In order to cool
off a filament from its initial temperature of 290 to a solidification tem-
perature of 70 (glass transition temperature of PET) at a throughput of
1 g/min, a cooling length of approximately 0.5 m is needed. As the through-
put increases, the required cooling length increases as well, for Q = 2 g/min
follows Lc ≈ 1.0 m, and so on.

Further discussions about energy balance. Heat is transferred not only
via convection but also by heat radiation and heat conduction.

Heat radiation strongly depends upon the temperature (power law with
T 4 dependence – Stephan-Boltzmann law). Radiation plays an important
role for glass or metal spinning processes where the temperature can reach
1200 or more. But in melt spinning of thermoplastics with spinning tem-
peratures of up to 300 the contribution of radiation is, consequently, often
neglected.

Heat conduction occurs as inner conduction inside the fibres and also as
outer conduction in such cases where fibres are brought into contact with
other materials of different temperature, like fibre guides, metal plates or
godets. The inner conduction is negligible for thin filaments, but needs to be
taken into consideration for thick and very thick filaments. The contact of
filaments with other objects is sometimes used to force the cooling process.
But it is also possible to heat up the fibres in the contact area to initiate
phase transitions or to achieve certain drawing effects.

A sensitive contribution to the energy balance of the fibre can arise from
the internal heat which is set free when the filament crystallises. Stress-
induced crystallisation appears especially in high speed spinning of PET, PA,
PP and other crystallising polymers. It is necessary to take the crystallisation
heat [59,194–198,200] into consideration for the modelling of such processes.
The energy equation (3.7) then has to be expanded with the crystallisation
term to

dT

dx
= −(T − Tair) · Nu

π λair

Q · cp
+

ΔH

cp

dXc

dx
, (3.10)

where ΔH is the heat of fusion and Xc is the degree of crystallinity.
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The deformation energy can also be an additional source of internal heat.
However, in melt spinning the contribution of internal friction processes can
usually be neglected.

Momentum Balance

The momentum balance equation can be integrated in order to determine
the forces acting on the fibre. In this manner, the forces play an essential
role in structure development: the resulting fibre stress σ (that is fibre force
F divided by fibre cross-sectional area A) leads to the deformation of the
polymer and at least determines the orientational status and the structural
arrangement of the polymeric chains.

The analysis of the force contributions reveals the following components
which add-up to the total fibre force [274]:

• the initial force at the capillary exit F0,
• the inertial force Finert,
• the gravitational force Fgrav,
• the air drag force Fdrag,
• the surface tension force Fsurf ,
• the take-up force FL

Figure 3.4 shows how the forces act on the fibre and how they contribute to
the total fibre force.

F (x) = F0 + Fsurf(x) + Finert(x) + Fdrag(x) − Fgrav(x) (3.11a)
= FL − Fsurf(x) − Finert(x) − Fdrag(x) + Fgrav(x) (3.11b)
= Frheo(x) . (3.11c)

Discussion. Some more details should be discussed with respect to each
force contribution and its effect on the total force should be discussed by
means of simple estimation.

The surface tension force Fsurf should be regarded at first. It is caused
by the enlargement of the filament surface per unit volume during stretching
and thinning of the fibre:

dFsurf

dx
= π

d
dx

(σsurfR) (3.12)

or, after integration with respect to x (assuming constant σsurf) follows

Fsurf(x) = π σsurf

(
R0 − R(x)

)
, (3.13)

where σsurf is the surface tension (or specific surface energy) of the mate-
rial. The contribution of the surface tension force to the total force is usually
low, except for very low viscous materials. A typical value for poly(ethylene
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Fig. 3.4. Forces acting on a fibre

terephthalate) (PET) has a magnitude of about σsurf ≈ 0.05 mN/mm, and
with an assumed initial radius of R0 = 0.15 mm one gets a surface tension
Fsurf lower then 0.02 mN.

The gravitational force Fgrav at any distance x is the weight of the filament
at this point and can be expressed as

Fgrav(x) =
∫ x

0

�p g A(x′) dx′ , (3.14)

where �p is the mass density of the polymer, g is the gravitational acceler-
ation on earth (g ≈ 9.81 m/s2), and A denotes the filament cross-sectional
area. Assuming a circular PET filament (mass density �p = 1.35 g/cm3) with
an averaged radius of 10 μm and a length of about 1 m, then one can esti-
mate a weight of about 0.01 mN, which is also the order of magnitude of the
contribution of Fgrav.

The inertial force Finert is caused by acceleration of the polymeric material
from the initial velocity v0 at the exit point of the spinneret to the velocity
v(x) at any distance x, at least to the final take-up velocity vL. The changes
in speed directly affect the inertial force:

dFinert

dx
= Q

dv

dx
(3.15)

or, after integration with respect to distance x follows
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Finert(x) = Q · (v(x) − v0

)
. (3.16)

The assumption of a filament velocity of 3000 m/min for example and again
a radius of 10 μm leads to an estimated value of Finert ≈ 1 mN.

The discussion of air drag force Fdrag seems to be a little bit more difficult.
The air drag force acting on a filament with circular cross section (radius R)
can be written in the form

dFdrag

dx
= 2 π R(x) τf (x) , (3.17)

where τf is the shear stress at the filament surface to the surrounding air.
The shear stress is often expressed in terms of the air friction coefficient cf

τf =
1
2

�air v2(x) · cf , (3.18)

where �air denotes the air mass density. Unfortunately, the air friction co-
efficient cf depends on the current state of air flow within the fibre forma-
tion region. A short discussion about the interaction between the fibre and
its environment, including both heat transfer (Nu-number) and momentum
transfer (air friction coefficient cf), is presented in Sect. 3.1.3. Here it is to
be remarked that an often used formula to describe the air drag coefficient
is that of Hamana [29]:

cf = 0.37 · Re−0.61 (3.19)

or to be more general cf = a · Reb, with the different parameters a and b.
Re denotes the non-dimensional Reynolds number. The Reynolds number
itself is given by

Re(x) =
�air · v(x) · 2R(x)

ηair
=

v(x) · 2 R(x)
νair

, (3.20)

where ηair is the dynamic viscosity of air, and the fraction νair = ηair/�air is
called the kinematic viscosity of air.

Integrating Eq. 3.17 with 3.18 leads to

Fdrag(x) = 2 π

∫ x

0

R(x′)
�air

2
v2(x′) cf(x′) dx′ (3.21)

and a rough estimation shows that the air drag contribution can reach similar
magnitudes compared to the inertial force, especially at high filament velocity
v.

3.1.3 Interaction Between Fibre and Environment

The following section deals with heat and momentum transfer from the fibre
surface to the environment in more detail. Therefore, the equations for the
Nusselt number Nu and the air friction coefficient cf are presented.
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Heat Transfer

The heat transfer from the fibre surface to the ambient medium (usually
air) involves the mechanisms radiation, free convection, and forced convection
(Ziabicki [274]). The contributions from radiation and free convection are
often neglected or sometimes empirically incorporated into the model by the
chosen relationships for the heat transfer coefficient resp. Nusselt number
[25, 26, 38, 59, 62, 63, 68, 196]. However, some more recent investigations also
show the influence of radiation [203,204].

Radiation. Due to radiation, the heat transfer coefficient αr is strongly
dependent upon the temperature T

αr(T ) = σSB · εm · T 4 − T 4
air

T − Tair
, (3.22)

where σSB is the Stephan-Boltzmann constant and εm is the emissivity
of the polymeric material. Replacing the heat transfer coefficient with the
non-dimensional Nusselt number Nur (Eq. 3.6) for radiation then follows

Nur = const · D · T 4 − T 4
air

T − Tair
(3.23)

with const ≈ 1.7 · 10−6 (m · K3)−1 .

Figure 3.5 shows Nusselt numbers for the radiation heat transfer vs.
temperature for different fibre thicknesses. It can be seen that radiation in
the temperature range of T = 50 . . .300 for polymer melt spinning has
very little effect, only directly below the spinneret (T = 200 . . .300 , D =
300 μm) the Nusselt number can reach values between 0.1 . . . 0.2. This is
equal 5 . . . 20% of the convective heat transfer (see below).

Convection. The free (natural) convective heat transfer is a typical heat
transfer mechanism for stationary systems and is concerned with the move-
ment of the ambient medium (air) caused by thermal expansion and density
variation resulting from the related temperature field. The non-dimensional
Nusselt number Nun for free (natural) convection can be written as a func-
tion of two other non-dimensional numbers, namely the Grashof number
Gr, and the Prandtl number Pr [185]

Nun = Nun(Gr, Pr) , (3.24)

where the Grashof number is given by Gr = g βair (T − Tair)D3, with βair

as the thermal expansion coefficient of air, and the Prandtl number of air is
Pr = ηair cp,air/λair. Fibre cooling by means of free convection depends on the
temperature difference between fibre and ambient medium and becomes an
essential factor at low fibre velocities, especially near the spinneret. Near the
spinneret the high temperature of the spinning block brings forth additional
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Fig. 3.5. Nusselt number Nu vs. temperature T for different diameters D, re-
sulting a) from heat radiation (Eq. 3.23), b) from free convection (Nu = 0.65(Gr ·
Pr)0.07, after [186]), diameters: 1 – 300 μm, 2 – 100 μm, 3 – 30 μm, 4 – 10 μm;
temperature of ambient air: Tair = 25

complications regarding the air flow. Careful design of the spinning block
is required in order to reduce turbulences and improve the stability of the
spinning process.

Resulting Nusselt numbers for free convection, calculated from an em-
pirical correlation which was determined from analyzing the free convection
over thin wires [186] are shown in Fig. 3.5.

Fibre cooling in melt spinning is mainly related to the forced convective
heat transfer . The filaments move with increasing velocity and can be addi-
tionally quenched by cross air flow. The Nusselt number Nuf for the forced
convection can depend upon the exposed length x of the filaments (in parallel
flow), but the main contributions are given by the parallel and/or transverse
air flow described with the related Reynolds numbers:

Nuf = Nuf(Re‖, Re⊥, x, Pr) . (3.25)

Many authors have developed relations to describe the heat transfer us-
ing both boundary layer theory or experimental investigations. Some earlier
expressions are summarised by Ziabicki [184, 274]. The formula developed
by Kase and Matsuo is often used [25]:

Nuf = 0.42Re0.334
‖

(
1 +

(8 v⊥
v

)2
)0.167

, (3.26)

which can be rearranged to the more general relationship

Nuf = a
(
Re2

‖ + b · Re2
⊥
)c

, (3.27)
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Table 3.2. Relationships for heat transfer (Nusselt number) in melt spinning

Equation for Nu-number References and conditions

only parallel flow

0.76Re0.38
‖ Andrews (1959) [24]

0.42Re0.334
‖ Kase, Matsuo (1965) [25]

0.10 + 0.15Re0.36
‖ Sano (1966) [189]

0.53Re0.33
‖ Copley (1967) [190]

0.325Re0.3
‖ Glicksman (1968) [192]

0.76Re0.41
‖ Conti (1970) [193]

0.25 + 0.15Re0.36
‖ Zieminski (1985) [194]

0.16Re0.50
‖ slow melt spinning of PEEK,

Ohkoshi (1993) [202]

0.42Re0.344
‖ Ra0.13 melt spinning of PEEK, Golzar (2004) [204]

3.0Re−0.22
‖ melt spinning of PEEK, Golzar (2004) [204]

only transverse flow

0.891Re0.33
⊥ 1 < Re⊥ < 4, Hilpert (1933) [205]

0.821Re0.385
⊥ 4 < Re⊥ < 40, dito

0.615Re0.466
⊥ 40 < Re⊥ < 4000, dito

0.32 + 0.67Re0.52
⊥ 0.1 < Re⊥ < 103, McAdams (1954) [206]

0.38Re0.6
⊥ 103 < Re⊥ < 5 · 104, dito

parallel and transverse flow

0.42
(
Re2

‖ + 64Re2
⊥
)0.167

(*) Kase, Matsuo (1965) [25]

0.28
(
Re2

‖ + 1024Re2
⊥
)0.17

(**) Brünig (1999) [207]

here with parameters a = 0.42, b = 64, c = 0.167. Re‖ and Re⊥ are the
Reynolds numbers related to the parallel and cross air flow, defined as
follows

Re‖(x) =
v‖(x) · D(x)

νair
, (3.28)

Re⊥(x) =
v⊥(x) · D(x)

νair
, (3.29)

where v‖ is the axial (difference) velocity between fiber and ambient air,
and v⊥ is the cross air velocity, νair = ηair/�air is the kinematic viscosity of
air, respectively. According to Eq. 3.10 it is possible to recalculate the total
Nusselt number for different spinning conditions, by carefully measuring
the fibre temperature T (x) simultaneously with fibre diameter D(x) and/or
velocity v(x), if no crystallisation occurs:

Nu = − d
dx

ln
(
T (x) − Tair

) · Q cp

π λair
. (3.30)
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The experimental investigations can be carried out under different conditions:
heated wires or filaments, running in stationary air, or stationary wires or
filaments in steady air flow, and so on.

Table 3.2 and Fig. 3.6 show some examples for the relationship between
the Nusselt number and Reynolds number.

Fig. 3.6. Nusselt number Nu vs. Reynolds number Re‖, symbols: recalculated
from experimental data, open symbols: without quenching air (Re⊥ = 0 (data
source: recalculated from Bragato, Gianotto [187], closed symbols: with quench-
ing air (vair = 0.4 m/s, data source: recalculated from Haberkorn et al. [188],
1 – calc. after Eq. (*) in Table 3.2, 2 – calc. after Eq. (**) in Table 3.2, a) without
quenching air (Re⊥ = 0), b) with quenching air (vair = 0.4 m/s, Re⊥ > 0)

Air Friction

Equation (3.18) describes the friction-caused momentum transfer between
the fibre surface and surrounding air. Similar to heat transfer, the air friction
coefficient cf was also investigated by several authors [53–55,82,208–211] both
experimentally and by using laminar and turbulent boundary layer theory.
Most results for the air drag coefficient have led to a relationship in the
following manner

cf = a Reb (3.31)

with non-dimensional Reynolds number Re related to the filament diameter
and with different parameters a and b. Often used are the numbers given by
Hamana [29] with a = 0.37 and b = −0.61. A summary of different formulas
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Table 3.3. Relationships for momentum transfer (air friction coefficient cf) in melt

spinning: cf = a · Reb, after Shimizu et al. [59], Table 4

a a∗ b References and conditions

4.8 - -1 Sakiadis (1961), laminar theory

1.8 - -0.5 Sakiadis (1961), laminar theory [208–210]

5.0 - -1 Higuchi, Katsu (1960), 0.04 < Re < 0.2, (a) [72]

1.23 0.4 -0.81 Kase, Matsuo (1967), 3 < Re < 100, (b) [26]

0.68 0.39 . . . 0.41 -0.8 Sano, Orii (1968), 10 < Re < 50, (d) [73]

0.65 0.5 -0.7 Glicksman (1968), 4 < Re < 100, (d) [192]

0.37 -0.61 Hamana (1968) [29]

1.78 Fukuda (1966), 5 < Re < 20, (b) [74]

1.3 Thompson (1953), 20 < Re < 150, (b) [75]

0.84 Anderson, Stubbs (1958), 10 < Re < 60, (b) [76]

0.77 Shimizu, Okui (1983), 50 < Re < 400, (b,e) [53]

0.41 Gould, Smith (1980), 20 < Re < 200, (b) [211]

0.56 Selwood (1962), 5 < Re < 54, (c) [77]

0.31 . . . 0.71 Kwon, Prevorsek (1979), 3 < Re < 30, (c) [182]

0.5 Shimizu, Okui (1983), 40 < Re < 250, (d) [53]

0.39 . . . 0.23 Shimizu, Okui (1983), 25 < Re < 70, (d) [53]

0.37 Matsui (1976), (d) [82]

a∗ recalculated from measurements under the condition that b = −0.61, mea-

surements made (a) on filaments falling in still air, (b) stationary filaments

in airstream, (c) moving filaments in still air, (d) filaments spun into still air,

(e) filaments spun into airstream

for Eq. 3.31 can be found in literary source [216] and some examples are
shown in Table 3.3 [59].

It is surprising that the most published relations do not describe the in-
fluence of quenching cross air on the air friction coefficient. But a simple
consideration leads to the assumption that with increasing quenching cross
air velocity v⊥ the air friction coefficient cf must also increase. The air flow
perpendicular to the fibre axis disturbs the originally axial symmetric bound-
ary layer surrounding the fibre and leads to an additional momentum flux,
analogous to the additional heat flux in the case of heat transfer (3.26). Be-
cause of the similarity of both transfer effects it was proposed to consider the
influence of quenching air by means of both Reynolds numbers Re‖ and
Re⊥ [207]:

cf = cf(Re‖, Re⊥) . (3.32)
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To estimate the parameters in Eq. 3.32 a boundary layer calculation and
several fibre spinning experiments with different profiles of quenching air were
conducted and evaluated. The investigations led to the following result

cf =
a

Re‖

(
Re2

‖ + b Re2
⊥
)c

with a = 0.33, b = 4096, c = 0.2 . (3.33)

Figure 3.7 shows the influence of both effects: the air friction coefficient cf

is depicted there dependent upon the parallel Reynolds number Re‖ and for
different cross quenching Reynolds numbers Re⊥. Usually in melt spinning
the Reynolds numbers are in the following ranges: 5 < Re‖ < 150 and
0 < Re⊥ < 5.

Fig. 3.7. Air friction coefficient cf vs. Reynolds number Re‖, 1 – cf = 0.37Re−0.61

(Hamana [29]), 2 – Eq. 3.33, a) Re⊥ = 0, b) Re⊥ = 0.05, c) Re⊥ = 0.25, d) Re⊥ =
1.0, e) Re⊥ = 4.0

The influence of the quenching cross air on the air friction coefficient leads
to an interesting effect which is unfortunately often neglected in modelling: A
strong quenching air profile causes a high cooling rate and therefore a short
fibre formation zone with a short fibre length exposed to air friction force. But
on the other hand, increasing quenching air flow leads to an increase of the air
friction coefficient cf . Both effects, the shorten fibre formation zone and the
higher air friction coefficient are in competition. This means that the total
air friction force and at least the resulting fibre stress at the solidification
point can decrease with increasing quenching air flow, but it is also possible
that they can increase with increasing quenching air flow. How the resulting
fibre orientation (and also the resulting fibre properties like the elongation
to break) changes with quenching air flow conditions depends on the current
spinning conditions.
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3.1.4 Response of the Polymer Melt

Shear flow of the polymeric melt takes place inside the capillary of the die.
After leaving the die exit, elongational flow takes place within the fibre for-
mation zone until at least the polymer melt stream solidifies to the final
fibre. Only the elongational flow after leaving the capillary die exit and no
flow behaviour inside the spinneret should be regarded: The elongation ε(x),
depending on distance x from the spinneret, is defined by the logarithmic
Hencky measure

ε(x) = ln
v(x)
v0

, (3.34)

where v0 is the (mean) extrusion velocity at the spinneret exit. Com-
paring the definition above with the normally used relation for exten-
sion (see Fig. 3.8) the equivalence for small elongations becomes obvious:
ε = ln(l/l0) = ln(1 + Δ l/l0) → ε = Δ l/l0 for Δ l � l0.

v(x)

ε = ln v /v 

l
l(x)0

0
Fig. 3.8. Definition of elongation:
Hencky measure

For modelling the elongational flow, a suitable constitutive equation is
necessary. It should describe the polymer response depending on the applied
tensile force in a practicable manner, that is the relation between stress σ
and strain ε of the fibre from the spinneret to the take-up device sufficient
for any treatment in an engineering approach.

The stress-strain behaviour is controlled by the rheological properties of
the polymeric material. Therefore, the spinline stress1 σ is given by the (axial)
tensile force F = Frheo divided by fibre cross section A

σ(x) =
Frheo(x)

A(x)
. (3.35)

Several constitutive equations have been developed either on the basis of
continuum mechanics or under consideration of the molecular structure of
the material by means of statistical methods. For modelling purposes of fibre
formation mostly viscous and/or visco-elastic phenomenological relationships
[25, 26, 99–102,155–158,196] are applied.

1 In a more detailed theory of flow problems, the stress tensor σ is related to
any kinematic tensor, and tension is described by the normal stress difference
Δσ = σxx − σrr of the components of the stress tensor σ
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Viscous and Visco-elastic Behaviour

The simplest engineering models for stress-strain behaviour are the basic rhe-
ological bodies Newton dashpot for purely viscous behaviour and Hook’s
spring for purely elastic behaviour. In general, molten polymers are visco-
elastic fluids. They show both viscous and elastic behaviour in their response
to applied stress (see Fig. 3.9). The relation between viscous and elastic de-
formation can essentially influence the spinnability of a polymer (for further
discussion see Sect. 3.3, visco-elasticity also gives reason for the concept of the
so-called apparent elongational viscosity). The viscous behaviour dominates
the elongational flow at comparatively low fibre velocity near the spinneret,
but the influence of the elastic part becomes more and more important with
increasing velocity (especially near the solidification region). Under certain
conditions the necking effect can occur, that is the sudden reduction of the
filament cross-sectional area within a short range because of a dramatic in-
crease in the filament velocity. The necking region is very sensitive to the re-
lationship of viscous and elastic materials behaviour. After solidication there
is only the transportation of the fibre and a (more or less) purely elastic
deformation up to the take-up device. Nevertheless it is often possible to get
reasonable results for describing and simulating the course of melt spinning of
common polymers without taking into account the elastic effects. But on the
other hand, including the elastic deformation behaviour, some possibilities
for calculating the textile properties are given (e. g. the elongation to break,
see Sect. 3.1.6). In the following paragraphs some often used constitutive
equations will be presented.

viscosity η

modulus E

η η η

E E E

1 2 n

1 2 n

...

Fig. 3.9. Model of purely viscous (Newton) and visco-elastic (Maxwell) rheo-
logical behaviour (left); spectral model, series of Maxwell-bodies (right)

Newton model: Purely viscous flow. The mechanical model of the purely
viscous elongation is based on the dashpot approach Fig. 3.9 (left side) and
the stress-strain-relation is given by the simple constitutive equation

σ = η · ε̇v , (3.36)
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where ε̇v = dεv/dt is the viscous deformation rate (strain rate) and η is
the elongational viscosity. For constant applied stress the piston inside the
dashpot moves at a constant strain rate. Under the steady state conditions
(ε = ε(x(t))) and with the definition of Eq. 3.34 then Eq. 3.36 becomes

σ = η · dv

dx
(3.37)

because of the equivalence

dε

dt
=

dε

dx
· dx

dt
=

1
v
· dv

dx
· v =

dv

dx
. (3.38)

Example: Constant tensile force. The course of fibre formation can be
discussed (after Ziabicki [184]) for the viscous deformation in a simple manner
assuming a constant tensile force F (x) = Fc. Neglecting all the contributions
of inertia, gravitation, air friction, and surface tension to the force balance
equation (3.11a) we get

σ(x) =
Fc

A(x)
= Fc · �p · v(x)

Q
(3.39a)

= η · dv

dx
. (3.39b)

This leads to the differential equation for the velocity v

η · dv

dx
= C · v(x), C = �p · Fc

Q
(3.40)

which can be integrated to

v(x) = v0 · exp (C · x · Φ(x)) , (3.41)

where the function Φ(x) is given by

Φ(x) =
1
x

∫ x

0

1
η(x′)

dx′ . (3.42)

The constant force Fc is related to the boundary conditions

v(x = 0) = v0

v(x = L) = vL

through

Fc =
Q

�p
· L

Φ(L)
· ln

(
vL

v0

)
. (3.43)

The function Φ(x) describes the so-called fluidity of the polymeric ma-
terial – the mean value of the reciprocal viscosity over certain length. An
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exponentially increasing elongational flow (Eq. 3.41) results from constant
viscosity η (and constant fluidity Φ). But in melt spinning the temperature
along the spinning line decreases, thus the viscosity increases with increasing
distance, and the slope dv/dx also more and more decreases. Assuming that
at the solidification point the viscosity becomes infinitely large, the velocity
then reaches its final value vL. The resulting behaviour is the characteristi-
cally ”S-shaped” course of velocity vs. distance for purely viscous behaviour.
Figure 3.10 shows an example for two different cases of fibre cooling with
following conditions:

Fibre temperature T (in ): T1(x) = 20 + 280 exp(−x/0.60)
T2(x) = 20 + 280 exp(−x/0.30)

Viscosity η (in Pa·s) : η(T ) = 0.015 exp( 5200
T+273 ) for T ≥ 70

η(T ) = ∞ for T < 70
Final draw down ratio : vL/v0 = 300 .

Fig. 3.10. Example of fibre formation with constant tensile force F0 and two
different cooling lengths: 1 – slow cooling, cooling length Lc = 0.60 m; 2 – fast
cooling, Lc = 0.30 m; Newtonian flow behaviour, draw down ratio ddr = 300

Maxwell model: Visco-elastic behaviour. The mechanical model con-
sists of the combination of dashpot and spring in series (Fig. 3.9). The applied
force causes the (ideal) spring to an immediate elongational elastic deforma-
tion (orientational deformation) εo proportional to the applied stress σ. The
same stress acts on the dashpot and causes the viscous elongational defor-
mation εv. The total deformation ε of the Maxwell body is now the sum
of both parts [280, 281]:

ε = εv + εo (3.44)
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with

σ = η · ε̇v = E · εo , (3.45)

where E is the elongational modulus of the spring. Modulus E and viscosity η
are the two material properties describing the deformation behaviour of the
Maxwell body. Often the modulus E is used together with the relaxation
time λ with

λ =
η

E
. (3.46)

The constitutive equation (considering the stationarity behaviour) of the
Maxwell model is given by

σ +
η

E
· v · dσ

dx
= η · dv

dx
(3.47)

or, expressed in terms of the relaxation time λ as

σ + λ · v · dσ

dx
= E · λ · dv

dx
. (3.48)

Approaching a spectral series of i = 1...N Maxwell bodies (Fig. 3.9, right)
the corresponding relation is given by

σ +
∑

i

λi · v · dσ

dx
=

∑
i

Ei · λi · dv

dx
. (3.49)

Generalisations. The constitutive equations above describe a simple one-
dimensional model for the extension in spinning-direction. All effects related
to the radial stress and deformation components of the uniaxial deformation
are neglected. Considering the three-dimensionality of the real deformation
process, a more detailed analysis needs to be carried out. This can be done
by means of precise formulation with the help of tensor-calculus. Neverthe-
less, the thin-filament approximation in which the radial dependence of axial
velocity (and temperature) ∂v/∂r = 0 (and ∂T/∂r = 0) is neglected should
further be used. For the incompressible axis symmetrical and uniaxial elon-
gational deformation, the deformation rate tensor ε̇ and the stress tensor σ
are given as follows:

ε̇ =
dv

dx

⎛⎝1 0 0
0 − 1

2 0
0 0 − 1

2

⎞⎠ and σ =

⎛⎝σxx 0 0
0 σrr 0
0 0 σrr

⎞⎠ . (3.50)

A possible generalisation for visco-elastic behaviour using the stress and
deformation rate tensors is the upper-convected Maxwell model with relax-
ation time λ and modulus G:
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σxx + λ

(
v

dσxx

dx
− 2

dv

dx
σxx

)
= 2 Gλ

dv

dx
, (3.51)

σrr + λ

(
v

dσrr

dx
+

dv

dx
σrr

)
= −Gλ

dv

dx
. (3.52)

The spinning line tension (3.35) is now related to the normal stress difference
Δσ = σxx − σrr with

Δσ = σxx − σrr =
F

A
. (3.53)

The Phan-Tien-Tanner model [212, 213] is another generalised con-
stitutive equation based on a special type of network theory to describe a
nonlinear strain-softening behaviour. It helps to describe the necking effect
at higher spinning speeds. The constitutive equations are:

K · σxx + λ

(
v

dσxx

dx
− 2

dv

dx
σxx

)
= 2 Gλ

dv

dx
, (3.54)

K · σrr + λ

(
v

dσrr

dx
+

dv

dx
σrr

)
= −Gλ

dv

dx
, (3.55)

K = exp
(α

G
· tr σ

)
. (3.56)

The parameter α describes the additional strain softening effect. For α → 0
in Eq. 3.56 the upper-convected Maxwell equation above follows. tr σ =
σxx + 2 σrr denotes the trace of the stress-tensor.

Of course it is also possible to use combinations of different Maxwell or
generalised Maxwell elements. This leads to a discrete or continuous spec-
trum with more than one relaxation time and modulus, respectively (Fig. 3.9).
Some investigators also describe the viscosity by means of a power law such
as

η(T, ε̇) = η0(T ) ·
(

dv

dx

)n−1

, n < 1 , (3.57)

or a generalised power law equation similar to the Cross-Carreau type
e. g.

η(T, ε̇) =
η0(T )

1 + a

(
η0(T )

dv

dx

)b
, (3.58)

respectively, to describe the additional influence of the strain rate ε̇ = dv/dx
and the deviation of the resulting viscosity from the Newtonian behaviour
with corresponding parameter n, a, b.
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Solidification

The glass transition point marks the temperature Tg at which the mobility of
the polymer chains prevent any further deformation flow. Some of the typical
values are listed in Table 3.4.

Table 3.4. Glass transition temperature Tg of melt spinning polymers

polymer Tg in

PET – poly(ethylene terephthalate) 70

PA 6 – poly(amide) 6 50 . . . 55

PP – poly(propylene) ≈ −20

In reality, the flow deformation often comes to an end before the glass
transition temperature is reached. The reason for this is that crystallisation
can take place within the spinline at certain high levels of orientation and
stress. The developing crystalline regions act as additional strain hardening
segments. Some researchers (e. g. George [39]) investigated the solidification
temperature Ts where the deformation comes to an end. They found that
the solidification temperature depends upon the spinning speed and spinline
stress. The solidification temperature Ts showed a step-like behaviour as func-
tion of stress σ. The solidification cannot be separated from the appearance
of stress-induced crystallisation, especially in the cases of highly crystallis-
able polymers in melt spinning. Therefore, an empirical relation Ts = Ts(σ)
between solidification temperature and spinline stress is often used for mod-
elling the fibre formation process .

3.1.5 Structure Development

Structure development is one of the most interesting aspects [175] in the
modelling of the melt spinning process because the resulting as-spun fibre
structure determines the textile fibre properties like tenacity, residual draw
ratio or elongation to break. This is why a practicable and useful simulation
should not stop with the calculation of fibre temperature, velocity, or stress,
but should also allow for the prediction of the structural parameters and the
correlated textile properties. To quantitatively describe the fibre formation
and resulting fibre structure it is necessary to possess information on how

• the elongational flow influences molecular orientation,
• the orientation influences the crystallisation of the material,
• crystallisation occurs (nucleation and kinetics),
• orientation and crystallisation change the rheological flow properties.
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Of course the effect of the heat of crystallisation should also be included. The
main parameters for structure development are temperature, stress, and time.
Although many researchers have investigated the melt spinning process for a
long time (and with investigations still ongoing) the current models do not
sufficiently consider these effects. A satisfactory description is still missing
specifically for the crystallisation.

Orientation and Birefringence

The polymer deformation, in melt spinning mainly the elongational flow,
causes an alignment of the polymer chain molecules. Herrmann’s orientation
factor f describes the orientation of the molecular chains with respect to the
fibre axis. It can be defined through different methods (e. g. X-ray scattering)
as follows [173]:

f =
3
〈
cos2 θ

〉− 1
2

, (3.59)

where θ is the angle between the molecular chains and the fibre axis, the
brackets denote the mean value. The orientation factor f is equivalent to
the second momentum 〈P2〉 of the development of orientation distribution
function N(θ) to Legendre polynomials Pn:

N(θ) = a0P0(cos(θ)) + a2P2(cos(θ)) + a4P4(cos(θ)) + . . . (3.60)

due to reasons of symmetry the odd-numbered coefficients vanish, the first
three even Legendre polynomials are given as follows:

P0(cos(θ)) = 1 , (3.61a)

P2(cos(θ)) =
1
2
(
3 cos(θ) − 1

)
, (3.61b)

P4(cos(θ)) =
1
8
(
35 cos4(θ) − 30 cos2(θ) + 3

)
. (3.61c)

The orientation distribution function N(θ) is defined at the sphere (see
Fig. 3.11) and of course normalised (〈P0〉 = 1), therefore the second momen-
tum 〈P2〉 gives us the first information about the orientation of the molecular
chains:

〈P0〉 = 2 π

∫ π

0

P0 N(θ) sin(θ) dθ = 1 , (3.62)

〈P2〉 = 2 π

∫ π

0

P2(θ)N(θ) sin(θ) dθ ≡ f . (3.63)

The orientation factor vanishes (f = 0) if all axes of the polymer chains
are randomly distributed. It’s maximum is f = 1 if all polymer chains align
parallel to the fibre axis. The orientation of the molecular chains affects the
polarisability and leads to the difference of the refractive index for linear
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x

y

z

θ

Fig. 3.11. Definition of the orientation distribution
function, θ is the angle between fibre axis z and the
end-to-end-vector of molecular chains, the distribution
of the orientation vectors about the sphere defines N(θ)

polarised light parallel and perpendicular to the fibre axis, called birefringence
Δn = n‖−n⊥ (Fig. 3.12). The birefringence is related to the orientation factor
as follows

Δn = f · Δn0 , (3.64)

where Δn0 is the maximum possible birefringence of the material (all molec-
ular chains are aligned parallel to the fibre axis), the so-called intrinsic bire-
fringence.

Fibre axis
Fig. 3.12. Linear polarised light, par-
allel and perpendicular to fibre axis

It was found that for noncrystalline amorphous polymers and for moderate
stress levels the (amorphous) birefringence Δnam satisfies a simple relation to
the applied stress σ, the stress-optical law [30]:

Δnam = Copt · σ , (3.65)

where Copt is the stress-optical coefficient.

The properties of partly crystalline polymers are usually described by
a two-phase model consisting of crystalline regions (fractional part Xc) and
amorphous regions (fractional part 1−Xc). Following this two-phase concept,
the birefringence of a semicrystalline material can be written as [174]

Δn = (1 − Xc) · Δnam + Xc · Δncr (3.66a)
= (1 − Xc) · fam Δn0

am + Xc · fcr Δn0
cr . (3.66b)
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The amorphous and crystalline phases are depicted by the subscripts ‘am’
and ‘cr’. An additional component of birefringence, the so-called ‘form’ bire-
fringence, is caused by the interaction of the two phases. In most cases this
form birefringence has only little effect and can be neglected. (However, if
rod-like voids are generated in the fibre, sometimes the form birefringence is
not negligible).

Crystallisation and Crystallinity

As mentioned above, a satisfactory and easy to handle theory of non-
isothermal crystallisation within the spinline is still missing. Nevertheless,
the basics of a phenomenological model will be shortly presented in the fol-
lowing section. For more details the interested reader is referred to separate
literature [163,214–240].

The crystallisation can be divided into nucleation and crystal growth. For
higher temperatures (near the melting point) the nucleation is low and the
material crystallises slowly, at lower temperatures (near the glass transition)
the molecular mobility is low and the crystal growth is slow. The result is a
maximum overall crystallisation rate at any intermediate temperature Tmax.
The high cooling rate in melt spinning allows for only a short time interval
for the temperature range where crystallisation is possible. Therefore the
temperature-dependent crystallisation rate for an isotropic material K(T, 0)
is given by the approximation

K(T, 0) = Kmax · exp

(
−4 ln(2) (T − Tmax)2

ΔT 2
1/2

)
, (3.67)

where Kmax is the crystallisation rate constant at the temperature Tmax of
maximum crystallisation rate, ΔT1/2 is the half-width of the Gaussian func-
tion. For a non-isotropic material with stress-related orientation f ∝ σ Zi-

abicki [214, 216, 220] proposed a series expansion of the crystallisation rate
K(T, σ) to include the stress and orientation effects in the form

K(T, σ) = K(T, 0) exp
(
C2 σ2 + C3 σ3 + . . .

)
, (3.68)

where Ci are constants. The linear term in (3.68) vanishes because of ther-
modynamic symmetry reasons. For moderate stress the crystallisation rate is
given as

K(T, σ) = Kmax · exp

(
−4 ln(2) (T − Tmax)2

ΔT 2
1/2

+ C2 σ2

)
. (3.69)

It can be seen that crystallisation is extremely sensitive to orientation or
stress, especially for the high-speed spinning process stress-induced crystalli-
sation can be observed. Other approaches [197–200] use the quiescent crys-
tallisation theory from Hoffman and Lauritzen, expanded by the stress-
orientation effect. This leads to
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K(T, σ) = K0 · exp
(
− U∗

R(T − T∞)
− C1

T · ΔT + C2T 2 · σ2

)
, (3.70)

where U∗ is the activation energy for segment motion, R is the gas con-
stant, ΔT = Tm − T is the supercooling where Tm is the melting temperature,
T∞ = Tg − 30K where Tg is the glass transition temperature, and K0, C1, C2

are material constants.

The development of the crystallinity Xc now is in agreement to the
Avrami approximation given by the relation

dXc

dt
= nK(1 − Xc)

[
ln

(
1

1 − Xc

)]n−1
n

, (3.71)

where n is the Avrami exponent, usually an integer value in the range of 1–4.
With n = 1 at steady state conditions the simpler (and often used) equation
follows:

dXc

dx
=

K(T, σ)
v

· (1 − Xc) . (3.72)

Mostly, melt spun fibres are partially crystalline. Assuming the two-phase
model of amorphous (density �am) and crystalline (density �cr) regions, the
mass density �p of a partially (Xc) crystalline fibre is given by the rule of
mixture:

�p(Xc) = (1 − Xc) �am + Xc �cr . (3.73)

Some typical values for fibre densities and also for the densities of the amor-
phous and crystalline regions are presented in Table 3.5, at a temperature of
20 .

Table 3.5. Amorphous, crystalline and typical fibre mass densities at 20

�am in g/cm3 �cr in g/cm3 �-fibre in g/cm3

PET 1.335 1.455 1.34−1.38

PA 6 1.09 α-modification: 1.23 1.12−1.14

γ-modification: 1.17

PP 0.854 0.963 0.90−0.905

Therefore, the precise measurement of the density can be used to deter-
mine the crystallinity in the solid state of the as-spun fibre:

Xc =
�p − �am

�cr − �am
. (3.74)

For example, Fig. 3.13 shows the mass density of some spun PET fibres vs.
spinning velocity. For a higher take-up velocity, the density increases because
stress-induced crystallisation occurs and the crystallinity Xc increases.
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ρ

Fig. 3.13. Mass density ρp for PET vs. take-up velocity vL, data points
taken/recalculated from [58,187,241–246]

3.1.6 Material Properties of Spinnable Polymers

Mass density and specific heat capacity of melt spinnable polymers are not
constant but depend on temperature and crystallinity. Elongational viscosity,
relaxation time and/or modulus also depend on temperature and structural
parameters. Finally the resulting fibre properties like elongation to break or
tenacity are correlated with the fibre structure.

Properties of the Melt

Mass density. The mass density �p of molten polymers can be assumed as
linear relation to the temperature T :

�p(T ) = �0 − �1 · T , T in . (3.75)

Some often used values for the parameter �0 and �1 for modelling the fibre
formation are shown in Table 3.6.

Table 3.6. Temperature dependence of mass density (3.75) in melt spinning

.

�0 �1 temp. range

in g/cm3 in ( )−1 in

PET 1.356 0.0005 70–300

PA 6 1.124 0.00056 55–300

PP 0.90 0.0006 25–260
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Heat capacity. The specific heat capacity of polymers can be determined by
analyzing their (equilibrium) melting behaviour using the established meth-
ods of differential scanning calorimetry (DSC). Regarding the thermal scans;
the glass transition, the crystallisation, and the melting peaks can be ob-
served. Therefore, the thermal analysis can also be used to calculate the
degree of crystallinity of the as-spun fibres. Otherwise the melt spinning pro-
cess appears in a non-equilibrium state. The process speed and cooling rate
are much higher, making it impossible to apply DSC methods for observa-
tion of phase transition. The locations and amounts of latent heat which one
can attain from the calorimetric scans normally cannot be used for describ-
ing the rapid fibre formation process. Regarding the tractability of the fibre
formation model, the specific heat capacity cp is often described by linear
relationship to temperature T :

cp(T ) = cp0 + cp1 · T , T in . (3.76)

Table 3.7 contains some possible values for the parameter cp0 and cp1 for
describing the heat capacity in the modelling of fibre formation.

Table 3.7. Temperature dependence of the specific heat capacity

cp0 cp1 temp. range

in J/(kg·K) in ( )−1 in

PET 1256 2.51 70–300

PA 6 2180 2.2 > 100

PP 1536 10.1 25–260

Elongational viscosity. The change of elongational viscosity with increas-
ing distance from the spinneret, essential, influences the characteristic course
of the spinning line (see the example of applying the constant force in
Sect. 3.1.4 on page 61). The elongational viscosity η (or the relaxation time
λ for the visco-elastic behaviour, respectively) generally depends upon the
molecular weight M and the molecular weight distribution of the polymer.
The dependence on the molecular weight often can be expressed by the in-
trinsic viscosity IV , or the relative solution viscosity. Sometimes it is conve-
nient to use the melt flow rate MFR (melt flow index MFI) instead of the
relative solution viscosity (e. g. for poly(propylene)). The local elongational
Newtonian viscosity η(x) depends on the local temperature T (x), and for
the non-Newtonian case the viscosity additionally depends on the local elon-
gational deformation rate ε̇(x). Finally, if crystallisation occurs, the effect of
the local degree of crystallinity Xc(x) has also to be taken into account.

The Newtonian viscosity is usually assumed to be approximated by the
Arrhenius equation with constant activation energy Ea:



72 3. Modelling of Fibre Formation

Table 3.8. Typical melt viscosities (zero shear viscosities) of spinnable polymers

PET PA 6 PP

Molecular weight 19 000 17 000 200 000

Processing temperatures ( ) 285–295 260–270 230–250

Melt viscosity (Pa·s) 120–90 140–120 120–80

η(T ) = η0 exp(Ea/k T ) , (3.77)

where η0 is a material constant depending on molecular weight or intrin-
sic viscosity and k is the Boltzmann constant. Equation (3.77) works well
in the high temperature range above the melting point. The better alter-
native to the Arrhenius formulation within the lower temperature range,
as the temperature approaches the glass transition temperature Tg, is the
Williams-Landel-Ferry (WLF) equation with Tg and melting tempera-
ture Tm as parameters:

η(T ) = η1 exp
( −(T − Tm)

(51.6 + T − Tg)(51.6 + Tm − Tg)

)
. (3.78)

On the one hand, the WLF equation gives a steep rise in the vicinity of glass
transition. However, on the other when solidification is reached the rise of
viscosity can be assumed to reach infinity for modelling purposes.

The influence of molecular weight M (expressed by intrinsic viscosity IV
or relative solution viscosity) on the elongational viscosity is usually given by
the power functions

η0 ∝ M b , η0 ∝ (IV )c , (3.79)

with exponents b = 3.2 . . . 3.4, and c = 1.8 . . . 2.2, respectively.
Table 3.8 shows selected parameters for typical melt viscosities of poly-

mers (measured in oscillatory shearing). For modelling purposes, the elonga-
tional viscosity is often assumed to be approximately three times the zero
shear viscosity. Some examples for the dependency of the elongational vis-
cosity on temperature for PET are shown in Fig. 3.14 .

The dependency of the viscosity on deformation and deformation rate
cannot be separated from the general visco-elastic and/or nonlinear rheolog-
ical behaviour. These problems are also strongly connected with the failure
behaviour of the polymer material. A short but only qualitative discussion is
given in Sect. 3.3.

Another unsolved problem is the correct description of the effect of crys-
tallinity on viscosity. There is a rapid increase of viscosity if crystallisation
occurs. Usually the viscosity η(T, Xc) = η(T )f(Xc) is expressed as a product
of temperature-dependent viscosity and a crystallinity-dependent function
f(Xc). There are several proposals [59, 200, 201] how to quantify the influ-
ence of crystallinity Xc on viscosity:
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Fig. 3.14. Elongational viscosity η vs. temperature T for PET, Arrhenius type
equations

η(T, Xc) = η(T ) exp(a Xb
c) , (3.80)

or

η(T, Xc) = η(T ) · (1 + 99 Xc) , (3.81)

or

η(T, Xc) =
η(T )

(1 − Xc/Xcrit)α
, (3.82)

with parameters a, b, α; Xcrit is a critical value derived from a crosslinking
model where η → ∞ when Xc → Xcrit.

Elastic modulus E. Little is known about the elastic modulus (or re-
laxation time) of the melt during elongational deformation. A possible as-
sumption follows the network deformation concept. For example the modulus
E = dσ/dεo of the Gaussian entropic network is given by

E(εo) = E0

(
2 exp(2 εo) + exp(−εo)

)
, (3.83)

where εo is the elongational (orientational) deformation of the network (see
also the discussion in the next paragraph), and where the parameter E0 fits
to the properties of the melt. Equation 3.83 implies that the relaxation time
λ = η/E has the same dependence on temperature as viscosity.
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Properties of the Solid Fibre - The Network Deformation Concept

Textile properties like elongation to break and/or the tenacity of as-spun
fibres are mainly determined by the orientational state reached during melt
spinning [280, 281]. The orientation itself depends on the realised spinning
stress.

Elongation to break. Regarding the correlation between (amorphous) ori-
entation (birefringence Δn) and elongation to break εb leads to the generally
accepted assumption that a maximum possible elongation εmax may exist de-
pending on the type of polymer. Extrapolating this relation to a hypothetic
value of vanishing orientation with Δn → 0 then allows to estimate the max-
imum possible elongation to break εmax. The same procedure can be applied
in principle for the behaviour of elongation to break vs. take-up velocity. Ex-
trapolating vL → 0 also leads to similar values for the maximum possible
elongation to break. Figure 3.15 shows as an example the elongation to break
vs. take-up velocity for as-spun PA 6 fibres at various spinning conditions.
The elongation ε measured in percentages relates to the corresponding draw
ratio DR and the logarithmic Hencky measure ε by2

DR = 1 +
ε (in %)
100%

, ε = lnDR . (3.84)

Fig. 3.15. Elongation to break εb vs. take-up velocity vL; PA 6, different spinning
conditions, filled symbols (•): molecular weight 16 000 – 18 000, open symbols (◦):
molecular weight 28 000; data source: Institute of Polymer Research Dresden

2 The elongation measured in percentage (%) is labeled with ε and the correspond-
ing logarithmic Hencky measure is labeled with ε.
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Table 3.9 contains the results for the maximum possible elongation to
break εmax also expressed as maximum corresponding draw ratio DRmax and
as logarithmic measure εmax.

Table 3.9. Maximum possible elongation of spinnable polymers

PA 6 PET

εmax (in %) 650–700 800–900

DRmax corresponding draw ratio 7.5–8.0 9.0–10.0

εmax (logarithmic Hencky measure) 2.0–2.1 2.2–2.3

Under the assumptions

• that a maximum possible elongation εmax exists and
• that each deformation (or drawing) step i is independent of the step before,

follows for the deformation steps the simple relation (in logarithmic Hencky

measure)∑
i

εi = εmax (3.85)

or, expressed with the corresponding draw ratios DRi∏
i

DRi = DRmax . (3.86)

Applying this concept of independent deformation steps to a typical melt
spinning process, one can easily calculate the residual elongation to break εb
of the fibre after spinning and drawing:

εb (in%) =
(

DRmax

DRm · DRspun
− 1

)
· 100 % (3.87a)

=
(

exp(εmax)
DRm · exp(εspun)

− 1
)
· 100 % (3.87b)

or, vice versa the necessary machine draw ratio DRm to any residual elonga-
tion to break εb of the final fibre after drawing if the logarithmic elongation
measure εspun of the as-spun fibre is known:

DRm =
DRmax/DRspun)

εb/100% + 1
(3.88a)

= exp(εmax − εspun − εb) . (3.88b)

In the equations above DRm = DR1 · DR2 · . . . · DRN denotes the total
draw ratio of the (machine) drawing procedure with N drawing steps; εmax
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is the polymer specific constant describing the maximum possible elongation.
The (logarithmic) as-spun elongation εspun reached in the fibre formation
process correlates with the elastic elongation and orientational deformation
of the visco-elastic rheological model (Maxwell or Phan-Tien-Tanner)
as described before: εspun ≈ εo. Figure 3.16 depicts this concept.

b

low speed spinning:

high speed spinning:

low speed spinning and drawing with high draw ratio:

high speed spinning and drawing:
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Fig. 3.16. Principle of network deformation concept: independent drawing steps

Tenacity. The tenacity TN (sometimes called strength) is defined as the
breaking force Fb divided by the initial fineness T t0 of the filament at the
beginning of the force-elongation experiment TN = Fb/T t0. Melt spun fibres
often show a strain hardening behaviour with increasing elongation. On the
other hand, the higher the pre-orientation of the fibre (resulting from take-
up velocity and spinning stress) the higher the tenacity and the lower the
residual elongation to break. For typical melt spinning polymers like PA and
PET the product of tenacity and residual elongation to break, the (true)
stress at break,

σb = TN ·
(εb (in %)

100%
+ 1

)
(3.89)

is nearly independent of pre-orientation and the resulting elongation and can
be taken as a property of the polymer and its molecular weight alone. This
assumption in combination with the concept of the independent deformation
steps (Eq. 3.87b) allows us to predict the tenacity TN depending upon the
machine draw ratio DRm of the spun and drawn fibre if the elongation to
break of the fibre is known:
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TN =
σb

εb(in %)/100% + 1
(3.90)

= σb · exp(εspun)
exp(εmax)

· DRm . (3.91)

As a consequence, a (true) stress–(true) strain ’master’-curve of the poly-
mer exists to which the stress-strain curves can be shifted [137,280]. The shift
of each curve from the origin represents the realised pre-orientation in the
spinning process, resp. the spin draw ratio DRspun. Figure 3.17 shows the
stress-strain behaviour and Fig. 3.18 shows the resulting master curve after
the shifting procedure for low and high speed spinning of PA 6.
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Fig. 3.17. Stress-strain behaviour of as-spun PA 6 fibres; Take-up velocities: 1 –
6000 m/min, 2 – 5000 m/min, 3 – 4000 m/min, 4 – 1000 m/min, 5 – 800 m/min,
6 – 600 m/min, 7 – 400 m/min, data source: Institute of Polymer Research Dresden;

hyperbolic envelope:
8.6 cN/dtex

ε/100% + 1

Remark. The concept of independent deformation steps is quite simple but works
well in the manner of an initial approximation. A more exact analysis of properties of
spun and drawn fibres shows that εmax is not independent of the drawing procedure.
There is a slight increase with increasing draw ratio εmax = f(DRm) to a new higher
level specifically for higher drawn yarns (FDY). An analogue observation can be
made for the maximum possible tenacity TNmax.
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Fig. 3.18. Master curve of PA 6 fibres (true stress - true strain behaviour), shifted
curves of Fig. 3.17; Take-up velocities: 1 – 6000 m/min, 2 – 5000 m/min, 3 –
4000 m/min, 4 – 1000 m/min, 5 – 800 m/min, 6 – 600 m/min, 7 – 400 m/min; data
source: Institute of Polymer Research Dresden

3.1.7 Practical Modelling: Simulation of Fibre Formation

The complete set of equations which allows the simulation of the fibre for-
mation process differs from case to case, especially with respect to the
question of how the authors or investigators describe the deformation be-
haviour and structure development of the polymer. The available math-
ematical models show the progress made in the theory of fibre spinning
[38,40,59,152–155,157–172,194–197,213,258] but of course they do not satisfy
all experimental observations and many of them give no conclusions to the
resulting textile fibre properties. Generally more agreement exists among the
basic balance equations. The following two sections summarise the relations
for the fibre formation model and give some examples for the simulation of
polyamide 6 melt spinning. The equations used for the model here (specif-
ically the correlations to textile fibre properties) have been developed over
many years at the Institute of Polymer Research Dresden as a result of the
collaboration with industrial and scientific partners.

Complete Set of Equations

Geometry

A(x) =
π

4
D2(x) . (3.92)
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Balance equations

Q = �p · v · A (3.93)
dT

dx
= − (T − Tair) · Nu · π λair

Q cp
+

ΔH

cp

dXc

dx
, (3.94)

dF

dx
= Q

dv

dx
+ cf

ρair

2
v2 π D − �p g A . (3.95)

Remark: The surface tension contribution is neglected.

Rheology: Constitutive equations
Case 1: Newton model, purely viscous behaviour

σ = η
dv

dx
. (3.96)

Case 2: Maxwell model, visco-elastic behaviour

σ + λ v
dσ

dx
= η

dv

dx
. (3.97)

Case 3: upper convected Maxwell model, visco-elastic behaviour

σxx + λ v
dσxx

dx
= 2 λ (G + σxx)

dv

dx
, (3.98)

σrr + λ v
dσrr

dx
= −λ (G + σrr)

dv

dx
. (3.99)

Case 4: Phan-Tien-Tanner model, visco-elastic behaviour with strain soft-
ening

κ · σxx + λ

(
v

dσxx

dx
− 2

dv

dx
σxx

)
= 2 Gλ

dv

dx
, (3.100)

κ · σrr + λ

(
v

dσrr

dx
+

dv

dx
σrr

)
= −Gλ

dv

dx
, (3.101)

κ = exp
( α

G
(σxx + 2 σrr)

)
. (3.102)

Stress for constitutive equations cases 1 and 2:

σ =
F

A
, (3.103)

for constitutive equations cases 3 and 4:

Δσ = σxx − σrr =
F

A
. (3.104)

Crystallisation

dXc

dx
=

K

v
(1 − Xc) , (3.105)

K = Kmax exp

(
−4 (ln 2)(T − Tc)2

ΔT 2
1/2

+ C · f2
am

)
. (3.106)
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Birefringence and orientation

Δn = Δnam(1 − Xc) + Δncr Xc , (3.107)
Δnam = Copt · σ , (3.108)

fam = Δnam/Δn0
am . (3.109)

Polymer material properties

• mass density �p = �p(T, Xc, ...) ,
• specific heat cp = cp(T, Xc, ...) ,
• elongational viscosity ηe = ηe(T, M, ε̇, Xc, ...) ,
• modulus E = E(εo, T, Xc, ...) ,
• relaxation time λ(T, . . .),
• solidification temperature Ts = Ts(σ, ...) .

Transfer equations: heat and momentum

• heat transfer: Nusselt number Nu = Nu(Re‖, Re⊥) ,
• air friction coefficient cf = cf(Re‖, Re⊥) .

Environment material properties, e. g. for surrounding air

• density of air �air ,
• heat conductivity of air λair ,
• kinematic viscosity of air νair .

Structure development and textile fibre properties

• elongation to break εb ,
• tenacity TN ,
• orientation or birefringence Δn ,
• crystallinity Xc ,
• possible draw ratio (to get full drawn yarn, FDY) DR .

Initial and boundary conditions. To solve the coupled system of ordi-
nary differential equations of fibre formation above, the related initial and/or
boundary conditions are necessary. Known conditions at the spinneret are

• T (0) = T0, the filament (spinning or extrusion) temperature, and
• D(0) = D0, the filament diameter, resp. the filament velocity (= extrusion

velocity) v(0) = v0.

The initial rheological force F (0) = F0 is unknown, therefore the boundary
condition for the take-up point L has to be used:

• v(L) = vL, the take-up velocity.
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In practice, a shooting method needs to be applied in order to solve the
differential equations. The unknown initial rheological force F0 is estimated
first and then varied in an iterative procedure until the velocity v reaches the
take-up velocity vL after solidification within a given tolerance range. The
other initial conditions (e. g. the initial crystallisation rate for computing the
crystallisation) are usually set to zero at the starting point.

At higher take-up velocities stress-induced crystallisation may occur. The
differential equations describing the crystallisation kinetics and the fibre for-
mation procedure become stiffer and for solving them numerically a step
width control is necessary. The maximum step width Δxmax can be fitted to
a given maximum velocity step: Δxmax < Δvmax ·

(
dv
dx

)−1
.

Examples of Calculation

The primary interest in simulating the melt spinning process is the possibility
to get results on how the large number of process parameters influence the
spinning behaviour and consequently the fibre properties. But the simulation
results have to be verified by means of experiments in order to assess the
quality of the model. These tests must be carried out in a twofold manner.
At first, by measuring the physical variables within the fibre formation zone
itself, for example by measuring the velocity v vs. distance x from the spin-
neret. Secondly, by determining the resulting fibre properties after spinning,
for example the elongation to break, the birefringence, or the tenacity of the
fibres. Many researchers have investigated several aspects to model the fibre
formation process. However, their results differ more or less with respect to a
satisfactory description of the material behaviour and correlation to the fibre
properties. Sometimes the experimental verification seems rather difficult.

The following simulations were carried out exemplary for PA 6 (but would
also be possible for other materials) and show some effects of changing the
process variables to fibre formation. The computer simulation program and
the equations used here for describing the material behaviour and the corre-
lations to fibre properties (mainly for PA 6 and PET) were elaborated and
tested over a long time during the scientific cooperation of the authors and
their coworkers at the Institute of Polymer Research Dresden, together with
several partners from the industry. The strong interaction between exper-
imental and theoretical work is an unalterable requirement for developing
and improving any model.

Figure 3.19 shows the fibre velocity v versus distance x from the spin-
neret exit for a typical melt spinning experiment of PA 6. The points in the
figure are determined experimentally by means of laser doppler anemometry
(LaserSpeed LSM50, TSI Inc.), the solid lines are calculated using computer
simulation for two different rheological models discussed in Sect. 3.1.4. Nu-
merous experiments with different spinning conditions have been conducted
in order to improve and verify the model equations. Now the simulation can
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be used for quick estimation of fibre formation, the simulation needs less than
1 second on a modern personal computer.

Fig. 3.19. Fibre velocity v vs. distance x from spinneret, points: velocity measured
by means of laser doppler anemometry, each distance with 100...200 measurements,
solid lines: calculated, 1 – Maxwell model, 2 – Phan-Tien-Tanner model for rhe-
ological behaviour, Spinning parameter: PA 6, molecular weight: 17 000, through-
put (per hole): 1.5 g/min, diameter of capillary: 0.25 mm, melt temperature: 250 ,
velocity of quenching air: 0.35 m/s, temperature of quenching air: 15 , take-up
velocity: 4000 m/min; data source: Institute of Polymer Research Dresden

Figure 3.20 shows another comparison between experimentally deter-
mined and calculated fibre velocities, respectively. Each point in the diagram
represents the mean value of 500...1000 measurements of velocity. The simu-
lation results are in accordance with the experimental data, only for the high
take-up speed of 5000 m/min the calculation seems to become a little inaccu-
rate which shows a small gap of about 5 cm for the step (like a jump) to the
final velocity. It becomes clear that melt spinning is a highly dynamic pro-
cess, specifically the course of fibre formation at higher take-up velocities is
very sensitive to little changes because of the occurrence of the stress induced
crystallisation. In principle it seems that the accuracy of simulation which
can be reached with current models is in the magnitude of about 10 percent
of deviation.

The next simulations carried out for PA 6 and shown in the following dia-
grams are based on the Maxwell model in order to describe the rheological
behaviour. The molecular (number) weight (Mn) of the polymer is about
17 000. The molecular weight is related to the relative solution viscosity (in
H2SO4, 96%, 20 ) of about 2.45.

Figure 3.21 shows the effect of different take-up velocities on the cooling
behaviour (up to 6000 m/min). It can be observed that there is only weak
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Fig. 3.20. Fibre velocity v vs. distance x from spinneret exit, symbols: velocity
measured by means of laser doppler anemometry, each point represents the mean
value of 500...1000 individual velocity measurements, solid lines: calculated with
Phan-Tien-Tanner model for rheological behaviour, Spinning parameter: PA 6,
molecular weight: 17 000, throughput (per hole): 2.0 g/min, diameter of capillary
holes: 0.30 mm, melt temperature: 265 , no quenching air, temperature of environ-
ment: 25...28 , 1 – take-up velocity: 5000 m/min, 2 – 3000 m/min, 3 – 2000 m/min;
data source: Institute of Polymer Research Dresden

coupling between velocity and cooling. On the other hand, the take-up veloc-
ity is the most important process parameter to affect the fibre properties. The
higher the velocity, the higher the tensile stress and the higher the resulting
orientation of the as-spun filaments. The higher the orientation, the lower
the elongation to break. In reality, the spinning experiment with 1 g/min
throughput and 6000 m/min take-up is not practicable because of the very
high increase of spinning stress (see Fig. 3.22).

The two figures (Figs. 3.23 and 3.24) show the graphs of fibre formation
for different mass throughputs Q. The mass throughput strongly influences
the fibre cooling behaviour and therefore the filament temperature T (x), and
also the fineness of the as-spun filaments.

As shown in Fig. 3.24 the variation of the mass throughput Q has only
a little effect on the stress at the solidification point. The higher throughput
causes an increased length of the fibre formation zone and leads to an increase
of the acting fibre force F (inertia and the air friction force increase with
increasing mass throughput and distance). However, the larger diameter D,
respectively the larger cross-sectional area A, compensate this effect with
respect to the stress σ = F/A. Finally, the variation of troughput leads to
nearly similar stress at the solidification point. There is only little changing
of the fibre orientation and elongation to break with the variation of mass
throughput.
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Fig. 3.21. (Calculated) fibre velocity v (left) and temperature T (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, mass throughput (per hole): 1.0 g/min, diameter of capillary hole:
0.30 mm, melt temperature: 265 , no quenching air, take-up velocity indicated:
500, 1000, 2000, 4000 and 6000 m/min

vL xs σs εspun

m/min m MPa %

500 1.20 0.23 416

1000 1.16 0.80 257

2000 1.12 2.99 138

4000 0.76 7.94 79

6000 0.50 13.41 54

Fig. 3.22. Left: (calculated) tensile stress σ(x) vs. distance x from spinneret,
Maxwell model, right: stress σs at solidification point xs and resulting elonga-
tion to break εspun of as-spun fibres, Spinning parameter: see Fig. 3.21

Combining the changes of both process variables, mass throughput Q and
take-up velocity vL, leads to the diagrams shown in Fig. 3.25. In this figure
the graphs for the proportional increase of both Q ∝ vL are depicted, this
means constant as-spun fineness T t.

Obviously, the stress at the solidification point increases if the mass
throughput and take-up velocity increase in a proportional manner. The re-
sulting fibre orientation also increases and the elongation to break for the
as-spun fibres decreases.

Finally, the effect of the cooling conditions will be investigated. Fig-
ure 3.26 shows the influence of the environmental air temperature Tair and
Fig. 3.27 depicts the effect of different velocity profiles vair of quenching air
on fibre temperature T (x) and fibre velocity v(x).
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Fig. 3.23. (Calculated) fibre temperature T (left) and velocity v (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, mass throughput (per hole) indicated: 1...5 g/min (#1...#5), diam-
eter of capillary hole: 0.30 mm, melt temperature: 265 , no quenching air, take-up
velocity: 3000 m/min

Fig. 3.24. (Calculated) fibre diameter D (left) and tensile stress σ (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, mass throughput (per hole) indicated: 1...5 g/min (#1...#5), diam-
eter of capillary: 0.30 mm, melt temperature: 265 , no quenching air, take-up
velocity: 3000 m/min

Table 3.10 summarises the effects of changing certain parameters with
respect to fibre orientation, expressed by the elongation to break.

It is interesting to see the model predictions for the practical task of
changing the spinning parameter under the conditions of constant fineness
and constant elongation to break after drawing. The following is a typical
question that occurs in fibre production: How to change mass throughput,
take-up velocity and draw ratio to increase productivity (expressed by the
mass throughput) under the condition of unchanging final fibre properties
after drawing? An answer can be given with the help of the fibre formation
model. The next figures show the main results for the task of spinning a full
oriented PA 6 yarn (FDY) with final filament fineness of 4 dtex and final
elongation to break of 25% after drawing.
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Fig. 3.25. (Calculated) fibre velocity v (left) and tensile stress σ (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, diameter of capillary holes: 0.30 mm, melt temperature: 265 , no
quenching air, constant as-spun fineness of T t = 10 dtex: 1 — 1 g/min, 1000 m/min,
2 – 2 g/min, 2000 m/min, 3 – 3 g/min, 3000 m/min, 4 – 4 g/min, 4000 m/min,
5 – 5 g/min, 5000 m/min

T

T

Fig. 3.26. (Calculated) fibre Temperature T (left) and velocity v (right) vs. dis-
tance x from spinneret exit, Maxwell model, Spinning parameter: PA 6, molecular
weight: 17 000, diameter of capillary hole: 0.30 mm, melt temperature: 265 , mass
throughput: 3 g/min, take-up velocity: 3000 m/min, different temperatures of en-
vironmental air: 1 – 0 , 2 – 15 , 3 – 30

Figure 3.28 depicts the simple relations between as-spun fineness T t and
needed draw ratio DR for different mass throughputs Q vs. take-up velocity
vL under the condition that the final filament fineness of (here) T tf = 4 dtex
should be reached after drawing:

T t =
Q

vL
, DR =

T t

T tf
=

Q

vL · T tf
.

Each point of these graphs represents the necessary draw ratio DR to reach
the final filament fineness of 4 dtex for each combination (Q, vL). But each
combination of the spinning parameters (Q, vL) is also connected with desti-
nated orientation of the as-spun fibres and therefore the necessary draw ratio
to reach the final fineness of 4 dtex leads to very different final elongations
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v

v

Fig. 3.27. (Calculated) fibre temperature T (left) and velocity v (right) vs. distance
x from spinneret, Maxwell model, Spinning parameter: see Fig. 3.26, different
velocity profiles of quenching air: 1 – no quenching air, 2 – vair = 0.4 m/s, 3 –
vair = 0.8 m/s, temperature of air: Tair = 25

to break. Only at certain combinations (in Fig. 3.28 they are marked by the
symbol (•)) the elongation to break of 25% can be obtained.

Table 3.10. Variation of technological parameters: effects on orientation resp. elon-
gation to break for as-spun filaments.

Changing see Fig. Example εb in %

Take-up velocity vL 3.21 500 m/min 416

(Q = 1 g/min) 1000 m/min 257

2000 m/min 138

4000 m/min 79

Throughput (per hole) Q 3.24 1 g/min 95

(vL = 3000 m/min) 2 g/min 98

3 g/min 101

4 g/min 102

Q ∝ vL 3.25 1 g/min, 1000 m/min 257

(T t = 10 dtex) 2 g/min, 2000 m/min 146

3 g/min, 3000 m/min 101

4 g/min, 4000 m/min 84

Air temperature Tair 3.26 0 109

(vair = 0 m/s) 15 105

30 101

Air velocity vair 3.27 0.0 m/s 102

(Tair = 25 ) 0.4 m/s 100

0.8 m/s 97
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Fig. 3.28. Relation between (as-spun) fineness T t and needed draw ratio DR vs.
take-up velocity vL to reach final filament fineness of T tf = 4 dtex after drawing; dif-
ferent mass throughputs Q: a) 1.0 g/min, b) 1.5 g/min, c) 2.0 g/min, d) 2.5 g/min,
the symbols (•) mark the combinations where additionally the (calculated) final
elongation of 25% after drawing is reached, see also Fig. 3.29, Spinning parame-
ter: PA 6, moleculare weight: 17 000, diameter of capillary hole: 0.30 mm, melt
temperature: 265 , no quenching air

The calculated results for the dependency of elongation to break of the
as-spun fibres on take-up velocity vL for different mass throughputs Q are
shown in the upper part of Fig. 3.29. In the lower part the resulting final
elongations to break εb after drawing to the final filament fineness of 4 dtex
are depicted. It can be seen that only for certain combinations (Q, vL) it is
possible to reach the required final properties of T tf = 4 dtex fineness and
εb = 25% elongation.

In Fig. 3.30 the results of the calculations are summarised and the answer
to the question for how to increase productivity, posed at the beginning of this
section, is given. The relation between mass throughput and take-up velocity
is a nonlinear one: To increase the mass throughput, a super proportional
increase of the take-up velocity is necessary if the final fibre properties all
remain unchanged.

It is easy now to get the direction of how to adjust the general parameters
throughput and take-up velocity for a given task in fibre spinning and also
to appreciate the effects of changing spinning parameters on fibre properties.

Therefore the model of fibre formation can be a powerful tool not only in
fibre research but also in the production process.
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Fig. 3.29. (Calculated) elongation to break vs. take-up velocity vL before drawing
(as-spun) and after drawing to the final fineness of T tf = 4 dtex, different mass
throughputs Q: a) 1.0 g/min, b) 1.5 g/min, c) 2.0 g/min, d) 2.5 g/min, the points
(•) mark the required 25% elongation to break after drawing; Spinning parameter:
see Fig. 3.28

Fig. 3.30. Relationships between (1) take-up velocity vL, (2) draw ratio DR and (3)
wind-up velocity vw = DR · vL vs. mass throughput Q (per hole) for FDY spinning
process with final filament fineness of T tf = 4 dtex and (calculated) elongation to
break of εb = 25% after drawing, Spinning parameter: see Fig. 3.28
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3.2 Modelling of Fibre Formation in the Multifilament
Melt Spinning Process

3.2.1 Peculiarities in Multifilament Spinning

In the prior discussion about modelling the stationary single filament process,
the environment of the fibre was initially assumed to be the boundary con-
dition with a given temperature Tair(x), resp. velocity profile vair(x) of the
surrounding air. It is important to recognise that in multifilament spinning
these boundary conditions can vary from filament to filament location within
the filament bundle because of the interaction between the filaments and air.
At first, the hot filaments dissipate heat to the quenching air while it flows
through the bundle. The air temperature increases. Secondly, the air flow is
deflected in filament direction because the running filaments will impart the
axial component and reduce the transversal component of air velocity. These
effects are illustrated in Fig. 3.31. On the other hand, the cross flow of air will
also disturb the axially sucked air flow in the boundary layer of the filaments.
For a sufficient number of filaments per square unit the boundary layers for
the individual filaments also may overlap. Near the converging point where
the filaments are bundled the air flow inside the bundle will be pressed out.
As a result, the friction forces for the individual filaments then vanish.

y

x

windward leeward

y

x

Fig. 3.31. Multifilament melt spinning process (schematic), left: active quenching
from left hand side, right: no active quenching but air is sucked from the bundle
itself

All these effects influence the heat and momentum transfer from each
filament surface to the environment. Different geometries of the bundle and
air flow are possible, too (Fig. 3.32). Therefore, the spinning conditions of
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the individual filaments within the bundle vary and the spun filaments show
differences in structure and properties as a function of their position. These
differences lead to non-uniform or scattered properties, respectively, which
may influence the further processing in a negative manner.

Fig. 3.32. Possible geometries of multifilament spinning. Left: one-sided and
double-sided cross quenching; right: radial blowing from inside to outside and vice
versa

Examples. The following two examples give a simple estimation in which a
rise in temperature for the quenching cross air flow in a filament bundle can
be expected:

1. POY - yarn, PA 6

polymer: poly(amide) 6
spinneret: 24 holes arranged on two concentric circles,

diameter of outer circle: D1 = 50 mm,
diameter of inner circle: D2 = 40 mm,
diameter of capillary holes: D0 = 0.25 mm,

melt temperature: T0 = 255 ,
throughput: QPA = 24 × 1.5 g/min = 36 g/min,
take-up velocity: vL = 3000 m/min . . . 4000 m/min,
quenching: cross quenching from one side,

air temperature Tair = 20 ,
air velocity of air vair = 0.35 m/s,
length of quenching zone Lair = 1.20 m .

Assuming that the fibre formation zone ends at the end of the quenching
zone (no further deformation occurs) the transported heat Qair · cair and
the temperature rise ΔTair of air can be estimated as follows

Qair · cair · ΔTair = QPA · cPA · ΔTPA , (3.110)

where cair is the specific heat capacity of air, and the air volume affecting
the fibre bundle is approximately given by Qair ≈ �air ·vair ·Lair ·D1, while
using the diameter D1 of the outer circle as effective width of quenching
air. Using the following parameters
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temperature change of polymer: ΔTPA = 200 K,
specific heat capacity of PA 6: cPA = 2.4 kJ/(kg · K),
specific heat capacity of air: cair = 1.0 kJ/(kg · K),
mass density of air: �air = 1.2 kg/m3,

leads to the temperature rise of quenching air of ΔTair,1 ≈ 10 K. The
higher temperature at the exit side of air causes a delayed cooling of
the filaments and thus increases the length of the fibre formation zone.
The distance from the spinneret exit to the solidification point for the
filaments at the leeward side is larger as at windward side. Figure 3.33
shows the effect of the different curves of fibre velocity vs. distance for
filaments at the windward and leeward side.

Fig. 3.33. Filament velocity v (measured by means of laser doppler anemometry)
vs. distance x from spinneret exit, differences between windward (a) and leeward (b)
sides; quenching air velocity: 0.35 m/s, PA 6 melt spinning, throughput: 1.5 g/min,
take-up velocity: 1 – 4000 m/min, 2 – 2000 m/min; data source: Institute of Polymer
Research Dresden

2. Staple fibre process, PET
The example concerns staple fibre spinning with the following parame-
ters:

polymer: poly(ethylene terephthalate), PET
spinneret: 1300 holes, 13 rows with 100 holes in each row,

dimension W x B: 26 cm x 6.5 cm, rectangular,
diameter of capillary holes: 0.30 mm,

melt temperature: T0 = 290 ,
throughput: QPET = 1300 × 0.6 g/min = 780 g/min,
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take-up velocity: vL = 1200 m/min,
quenching: cross quenching from one side,

air temperature Tair = 20 ,
air velocity vair = 1.5 m/s,
length of quenching zone Lair = 0.5 m .

The fibre formation should be finished after a distance of 0.5 m. In anal-
ogy to the first example and using the parameters applicable to PET

temperature change of polymer: ΔTPET = 220 K,
specific heat capacity PET: cPET = 1.5 kJ/(kg · K),
effective width of quenching air: W = 26 cm,

then follows the mean temperature rise of quenching air at the exit side
of approximately ΔTair,2 ≈ 20 K

The estimated temperature change of air can be confirmed for the PA 6–
POY process experimentally. But, in the case of the second example of the
PET–staple fibre process, the experimental observations differ strongly from
the estimation: The temperature rise of quenching air at the leeward side
varies with distance from the spinneret and reaches more than 100 K near
the spinneret (see Fig. 3.44 following on page 115). Based on the rather simple
heat balance, the approximation carried out is no longer valid because the
local effects of air deflection and heat transfer are neglected. A more detailed
analysis becomes mandatory.

3.2.2 Models of Interaction Between the Fibre Bundle and the
Environment

The temperature and velocity field of air within the fibre bundle and the
fibre strands interact and thus influence each other [247,248]. Therefore, the
multifilament process should be treated as a two-phase system [249] where
the filaments are embedded in an environmental ’matrix’. At the boundary
layers between the two phases the general conditions for heat and momentum
transfer have to be satisfied. This method was employed specifically for the
wet spinning process by Szaniawski and Zachara [250–254]. But, in case
of a common melt spinning process where the ’matrix’ is given by air, the
properties and the behaviour of the two phases are extremely different. This
is why it is possible to regard both phases in a separate manner, and finally
to combine a model of multifilament melt spinning from three parts

• the single fibre formation model,
• the model of air velocity and air temperature fields,
• and the model of interaction between both.

Due to the heat and momentum exchange between fibres and air an iter-
ative calculation procedure is necessary. The iteration can be carried out in
the following manner (Fig. 3.34):
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environment

filament

interaction

�

�

Fig. 3.34. Schematic model for multifilament spinning

1. Calculation of velocity and temperature fields of air on the basis of simple
assumptions about fibre formation.

2. Calculation of the fibre formation process for some (not all) single fibres in
various positions across the bundle on the basis of the calculated velocity
and temperature fields of air.

3. Like step 1, calculation of velocity and temperature fields of air, but now
on the basis of the new calculated fibre formation results.

Steps 2 and 3 need to be repeated until sufficient convergence is reached, i. e.
no further changes occur. Finally, the calculation of fibre formation for all
fibre positions should be conducted with the final temperature and velocity
fields of air.

Cells method. Matsuo et al. [255], Yasuda et al. [65, 66] and Ishihara

et al. [256, 257] developed a method to treat the multifilament effects. They
divided the fibre bundle into individual cells for each filament row to apply
the balance equations of energy and momentum (Fig. 3.35). This method was
also used by Dutta [258, 259] and later similar treatments were developed
by means of FEM (finite elements method) calculations.

N(j-1) N(j) N(j+1)

i,ji,j-1 i,j+1

v (i,j-1)

q (i,j-1)

v (i-1,j) q (i-1,j)

v (i,j)

q (i,j)

v (i,j) q (i,j)

xx

x x

y y

yy

Fig. 3.35. Multifilament bundle divided into individual cells
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In Fig. 3.35, N(j) is the spinline of row number j, vx(i, j) and vy(i, j) are
the components of air velocity in the cell (i, j), and qx, qy are the components
of heat flow in x and y direction, respectively. The dimensions of each cell are
given by Δx · Δy · Δz (dimensions in fibre direction, in blowing air direction,
and perpendicular to both). The balance of air flow is composed by four flow
elements(

vy(i, j − 1) − vy(i, j)
)
Δz Δx +

(
vx(i − 1, j) − vx(i, j)

)
Δy Δz = 0 (3.111)

and the heat flow balance is given by five elements

qy(i, j − 1) − qy(i, j) + qx(i − 1, j) − qx(i, j)

=
(
T (i, j) − Tair

)
Nu π λair . (3.112)

The components of heat flow are defined as

qy(i, j) = �air cair vy(i, j)Tair(i, j) Δz Δx (3.113)
qx(i, j) = �air cair vx(i, j)Tair(i, j) Δz Δy , (3.114)

where T (i, j) and Tair(i, j) denote the filament and air temperature in cell
number (i, j), respectively, �air and cair are the density and heat capacity of
air. The main problem connected with this method is the determination of
the exact amount of air pumping rate of fibre – this is the difference of the
entrained air flows vx(i, j)−vx(i−1, j). Some researchers used the estimation
of Sakiadis [208–210] based on the boundary layer theory for continuous
cylindrical surfaces. But the cross air flow disturbs the cylindrical symmetry
of the boundary layer and a detailed analysis may show that the assumptions
made by Sakiadis are no longer valid in this case. There is no sufficient
theory for the flow behavior around a fibre in motion with additional cross
air flow. Nevertheless, some calculations using FEM-methods more recently
have been reported.

3.2.3 Continuum Theory

In order to avoid the difficulties related to the pumping effect of filaments
(which are quenched by an additional cross air flow) another model can be
used [260, 261]. The basic idea of this model was originally developed by
Schöne. The following section describes the method of calculating the ve-
locity and temperature fields of air for symmetric fibre bundles based on the
continuum theory of hydrodynamics. The application of this model to the
multifilament staple fibre spinning will be demonstrated later.
The main ideas of the continuum method are:

• Momentum balance: the equivalence of both air friction force acting on
fibres and acceleration impart of axial velocity component of air.

• Heat balance: the equivalence of both cooling of fibres and heating of
quenching air.
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• Continuously smoothed sources: the fibres are the sources of momentum
and heat imposed to the quenching air. These sources are assumed as
continuously distributed density fields in the bundle region.

• Rectangular or axially symmetric geometry is assumed in order to sim-
plify the mathematical treatment and to allow for the use of analytical
expressions for the quenching air flow.

Air Velocity

Rectangular geometry. The expressions for components vx and vy of the
air velocity field vair are given by the Navier-Stokes equations and the
continuity equation. In cartesian coordinates they are written as follows

�air(vxvx,x + vyvx,y) = ηair(vx,xx + vx,yy) + fx − p,x , (3.115)
�air(vxvy,x + vyvy,y) = ηair(vy,xx + vx,yy) + fy − p,y , (3.116)

vx,x + vy,y = 0 . (3.117)

The partial derivatives with respect to the coordinates are symbolised by the
subscripts (),x ≡ ∂()/∂x and (),y ≡ ∂()/∂y, vx and vy are the components of
air velocity in fibre direction x and in cross flow direction y, see Fig. 3.36, left
side. The terms �air and ηair represent the density and (dynamic) viscosity
of air, p is the pressure, and fx and fy are the components of the external
force density (see later). The continuity equation (3.117) can be satisfied by
introducing the potential flow function Ψ(x, y) with

vx = Ψ,y , vy = −Ψ,x . (3.118)

x

y0
0

B
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x

0 R R rR0 1 2
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Fig. 3.36. Geometry of multifilament spinning. Left: rectangular (cartesian) co-
ordinates, blowing air from the left side, right: radial symmetry, blowing air from
inner candle (with radius R0) outside
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Discussion I. Some simplifications, which are not so far from real spinning
conditions, should be discussed as follows. These assumptions will allow us
to use an analytical description of the air flow inside the fibre bundle.

1) At first, we should assume a constant air blowing profile vy(x, 0) = vy0,
independent of distance x at the windward-side. The interesting region for
fibre formation is the one between the spinneret exit at x = 0 and the solid-
ification point xs. In this region the course of fibre velocity v with respect to
distance x increases from the (very) low extrusion velocity v0 to the final take-
up velocity vL in an S-shaped manner. This development of the fibre velocity
v(x) should be simply approximated as a linearly with distance x increasing
function: v(x) = x · vL/xs. Furthermore, the relation between the air friction
force and the difference of fibre velocity and air velocity (v − vx) should be
assumed as a nearly linearly increasing function Fair ∝ x · (v − vx). It is
also convenient to approximate the air velocity vx itself as a function linearly
increasing with x. On the other hand, if there are free boundary conditions
on the leeward-side, the pressure p also becomes independent of distance x
and can be neglected in Eq. 3.115 (This argumentation is only valid in case
of the free leeward side, see Fig. 3.32). The advantage of the linearisation
is the possibility to uncouple the partial differential equations (3.115) and
(3.116), in order to get ordinary differential equations with respect to x and
y coordinates. The errors which are made by these linearisations with respect
to the real course of fibre formation can be corrected later by means of an
iteration procedure in a second step. Using the product

Ψ(x, y) = x · g(y) (3.119)

now leads to the simplified relations

�air x
(
g′2 − g g′′

)
= ηair x g′′′ + fx , (3.120)

�air g g′ = −ηair g′′ − p′ + fy , (3.121)

for the reduced potential flow function g, where g is only a function of the
cross direction y. The prime (′) denotes the derivative with respect to y,
g′ ≡ dg/dy.

2) Secondly, we should concentrate on Eq. 3.120. At the moment we are
only interested in the velocity field of air and its deflection and acceleration
within the filament bundle in the fibre direction. This is why we do not
consider the bending of filaments caused by the air stream in cross direction
and its backward deceleration effect on the air. Together with the linear
increasing force density (that is air friction force per unit volume) in the
form

fx(x, y) = x · �air k(y) (3.122)

we get for Eq. 3.120 the relation

g′2 − g g′′ = νair g′′′ + k , (3.123)
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where νair = ηair/�air ≈ 1.5 · 10−5 s/m2 is the kinematic air viscosity. Out-
side the bundle (region I in Fig. 3.36) the force density term k vanishes
and there is a simple analytical solution which satisfies the relation (3.123):
g(y) = c1 exp(c2 y) + c3 νair, with constants ci. Inside the bundle (region II)
the differential equation can be solved numerically. But because of the low
air viscosity, the viscous term νair g′′′ becomes insignificant in comparison to
the other parts and can thus be neglected. The numerical solutions with and
without the viscous part show that it is indeed possible to neglect the vis-
cous part within the bundle, and we then get the most simplified differential
equation

g′2 − g g′′ = k , (3.124)

which allows us to calculate the air velocity field inside the filament bundle.
Because we are only interested in the air velocity inside the bundle (region

II) the coordinate y can now be shifted in such a manner that the left edge
of the bundle fits into the origin at y = 0, and the right edge of the bundle
(its width) is given by y = B.

Analytical expressions for the air velocity field. An analytical solution
for g(y) in (3.124), resp. for the potential flow function Ψ(x, y) = x · g(y)
(3.119) and for the components vx and vy of the air velocity field inside
the filament bundle, exists for the special case that the variation of the force
density term k (3.122) across the fibre bundle in y-direction can be expressed
in the manner

k(y) = κ2 exp(2 α y) . (3.125)

Equation 3.125 includes different possible courses of the force density
across the fibre bundle: α = 0 describes the constant force density, α > 0 the
increasing force density, and α < 0 is related to a decreasing force density
with respect to y.

The analytical solution for the potential flow field in the simplified man-
ner (3.124) is given by an exponential function with complex argument. To
achieve physically realistic behaviour, a careful distinction between various
cases is required. With the abbreviation

β =
α · vy0

κ
(3.126)

the results for different cases can be expressed as follows:

Case 1: 1 − β2 > 0
The solutions for the potential flow function and the velocity components of
air in this case are

Ψ(x, y) = −x · vy0√
1 − β2

exp(α y) cos
(κ

√
1 − β2

vy0
y + c

)
, (3.127)
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vx(x, y) = x · κ · exp(α y)

[
sin

(κ
√

1 − β2

vy0
y + c

)
− β√

1 − β2
cos

(κ
√

1 − β2

vy0
y + c

)]
, (3.128)

vy(x, y) =
vy0√
1 − β2

· exp(α y) cos
(κ

√
1 − β2

vy0
y + c

)
, (3.129)

with

c = arctan
( β√

1 − β2

)
. (3.130)

Case 2: 1 − β2 = 0
The solutions for this (very special) case can be obtained by expanding the
functions above to

Ψ(x, y) = −x · vy0 · (1 − α y) exp(α y) , (3.131)
vx(x, y) = vy0 · α · x · y · exp(α y) , (3.132)
vy(x, y) = vy0 · (1 − α y) exp(α y) . (3.133)

Case 3: 1 − β2 < 0
For this case the square root

√
1 − β2 = i

√
β2 − 1 becomes imaginary. But

using the identities cos(i x) = cosh(x), sin(i x) = i sinh(x) and arctan(i x) =
i artanh(x), the solutions can be given again by means of real expressions

Ψ(x, y) = −x
α

|α|
vy0√
β2 − 1

exp(α y) sinh
(
d − κ

√
β2 − 1
vy0

y
)

, (3.134)

vx(x, y) = x · κ · α

|α| exp(α y)

[
cosh

(
d − κ

√
β2 − 1
vy0

y
)

− β√
β2 − 1

sinh
(
d − κ

√
β2 − 1
vy0

)]
, (3.135)

vy(x, y) =
α

|α|
vy0√
β2 − 1

exp(α y) sinh
(
d − κ

√
β2 − 1
vy0

y
)

, (3.136)

with

d = artanh
(√

β2 − 1
β

)
. (3.137)

Figure 3.37 depicts the graphs of the velocity component vy across the
bundle in non-dimensional manner (reduced by vy0) for the different cases
above.
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Fig. 3.37. Graphs of (reduced) velocity component vy/vy0 inside the bundle for
different cases β, κ B/vy0 = 1, values of β are indicated

Discussion II. Now we will discuss the important case of constant force
density k �= k(y) across the bundle (α = β = 0, case 1). The expressions
for the velocity components vx and vy (see Eqs. 3.128 and 3.129) then are
reduced to

vx(x, y) = xκ sin
(κ y

vy0

)
, (3.138)

vy(x, y) = vy0 cos
( κ y

vy0

)
. (3.139)

Comparing the analytical expressions above with the numerical solution of
Eq. 3.123 (with consideration of the air viscosity) shows that the approxi-
mated analytical solution and the numerical one are in accordance with each
other. The air flow velocity inside the bundle is determined mainly by inert-
ness and force density, therefore the viscous term can be neglected without
changing the overall flow behaviour.

If there is no active quenching the filament bundle will suck the needed
air by itself. This leads to a symmetrical air profile where air enters into
the bundle from both sides. The minimum value of air velocity vy0,min which
enters into the bundle can be determined with Eq. 3.138 and the condition

vx(x, 0) = vx(x, B) = 0 , (3.140)

or in equivalence with Eq. 3.139 and the condition for symmetry

vy(x, 0) = −vy(x, B) = vy0,min . (3.141)

The minimum value of air velocity which results from self-priming and which
describes the symmetric flow within the bundle is given by
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vy0,min =
κ B

π
. (3.142)

The value of quenching air which is necessary to penetrate the bundle vy0,pen

can be determined by the condition

vy(x, B) > 0 (3.143)

and leads to the relation

vy0,pen >
2 κ B

π
= 2 · vy0,min . (3.144)

Figure 3.38 qualitatively shows the air flow for the different cases.

Fig. 3.38. Air flow within the filament bundle. Left: symmetric case, no active
quenching, the filament bundle is self-priming air, vy0 = vy0,min; center: limiting
case of small quenching from left side, no penetration, vy0 = 2 vy0,min; right: active
quenching from left side, air penetrates the bundle, vy0 = 4 vy0,min

The assumption of constant force density (α = β = 0, case 1) across the
bundle is applicable for many purposes. An example of this is the staple fibre
spinning process with uniform distribution of capillary holes in the spinneret.
It will later be investigated in more detail in Sect. 3.2.4. On the other hand,
it is also possible to study the effect of air deflection by means of increasing
or decreasing the number of capillary holes in the spinneret at each line by
assuming a non-constant force density (α �= 0, k ∝ exp(2 α y)). The distri-
bution variation of the spinneret capillary holes changes the force density
k(y) across the bundle and influences the flow behaviour inside. Figure 3.39
shows the effect of increasing (left graphs) and decreasing (right graphs) force
density in comparison to the case of constant force density with respect to
distance y.
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Fig. 3.39. Air flow within the filament bundle. Left: Comparison between constant
force density (—–, α = 0) and increasing force density (−−−, α > 0); right: Com-
parison between constant force density (—–, α = 0) and decreasing force density
(−−−, α < 0)

The minimum necessary air velocity for the self-priming filament bundle
is given by Eq. 3.140. In the cases of variable force density α �= 0, it leads to
the expression

vy0,min =
κ B

π

√
1 +

α

|α|
(α B

2 π

)2

. (3.145)

Contrary to the symmetric flow in the case of constant force density (Fig. 3.38,
left hand side) the streamlines now become asymmetric.
Iterative improvement of the analytical solution. The Eqs. (3.128)
to (3.139) allow fast calculation of the air velocity inside the fibre bundle.
However, they are based on the assumptions of constant air blowing velocity
vy0 and linearly increasing filament velocity v(x). Normally, in real spinning
processes both the blowing air velocity and the filament velocity do notexactly
follow these conditions. But the effects of the afore mentioned assumptions are
mostly insignificant and therefore it is possible to use the developed relations
in a modified manner. The external force density fx(x, y) = x �air k(y) and
the velocity of blowing air vy0 are replaced by their globally varying mean
values (with respect to distance x)

k(y) → km(x, y) =
1
x

∫ x

0

k(x′, y) dx′ , (3.146)

vy0 → vym(x) =
1
x

∫ x

0

vy0(x′) dx′ . (3.147)

The dependence of the flow function on distance x can now be expressed
indirectly through its dependence of km (or κm) and vym, respectively, on
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distance x. Then, for the case α = 0, the Eqs. 3.138 and 3.139 become

vx(x, y) = x
√

km(x) sin
(√

km(x)
vym(x)

y
)

, (3.148)

vy(x, y) = vym(x) cos
(√

km(x)
vym(x)

y
)

. (3.149)

The mean value of the force density km(x, y) needs to be calculated by means
of iteration of the global momentum balance of air flow inside the fibre bundle
with respect to distance x:

Nr∑
j=1

N(j)
∫ x

0

cf(x′, yj)
�air

2
(
v(x′, yj) − vx(x′, yj)

)2
π D(x′, yj)2 dx′

= W

∫ B

0

�air v2
x(x, y) dy + W

∫ x

0

�air vx(x′, B) vy(x′, B) dx′ . (3.150)

Here, Nr is the number of filament rows, N(j) is the number of filaments
in each row j, yj is the inter-filament distance at row number j, and B and
W are the widths of the fibre bundle in y direction (quenching air direction)
and perpendicular direction, respectively. The left-hand side of Eq. 3.150
represents the sum of all air friction forces within the bundle at any distance x.
On the right-hand side, the first term describes the momentum in x direction
within the bundle, the second term is the expression for the momentum of
the air velocity component which has passed the bundle at distance y = B.
Equation (3.150) is the expression for the global balance between air friction
and momentum of the accelerated and deflected air in fibre direction x which
is to be satisfied. As an initial value (subscript 0) for the iteration of km the
result of the linear approximation (vy0 = const, v(x) ∝ x) can be used:

km,0(x) =
2

B W �air x2

Nr∑
j

N(j)Fair(x, yj) . (3.151)

Radial symmetry. It is also possible to find similar analytical expressions
for the air velocity in the case of radial symmetry and air flow from inside
(e. g. from a blowing candle) to the outside (see Fig. 3.36, right-hand side,
page 96). Concerning the rectangular cartesian case the procedures and the
discussions are analogue to the treatment above. The following paragraph
will only summarise the results. The Navier-Stokes and the continuity
equations for the radial case are

�air(vx vx,x + vr vx,r) = ηair(vx,xx + vx,rr) + fx − p,x , (3.152)
�air(vx vr,x + vr vr,r) = ηair(vr,xx + vx,rr) + fr − p,r , (3.153)

vx,x +
1
r

vr,r + vr,r = 0 . (3.154)
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Satisfying the continuity equation and decoupling the Navier-Stokes equa-
tion is possible by using the radial flow function Φ(x, r) with

Φ(x, r) = x · h(r) , (3.155)

where h(r) now is the solution of

�air · x · (h h′ − r h h′′ + r h′2) = r3 fx . (3.156)

The prime (′) in Eq. 3.156 denotes the derivative with respect to the radial
coordinate r. The velocity components are expressed by

vx(x, r) =
1
r

Φ,r , (3.157)

vr(x, r) = −1
r

Φ,x . (3.158)

With the following approach for the force density

fx(x, r) = x · κ2�air exp
[
2 α (r2 − R2

1)
]

, (3.159)

an analytical solution for Eq. 3.156 can be found. Again, three different cases
with respect to

γ =
2 α · v1 R1

κ
(3.160)

are to be distinguished.

Case 1: 1 − γ2 > 0
The solutions are

Φ(x, r) = −x · v1 R1√
1 − γ2

exp
[
α (r2 −R2

1)
]
cos

(κ
√

1 − γ2

2 v1 R1
(r2 −R2

1) + c1

)
,

(3.161)

vx(x, r) = x · κ · exp
[
α (r2 − R2

1)
][

sin
(κ

√
1 − γ2

2v1 R1
(r2 − R2

1) + c1

)
− γ√

1 − γ2
cos

(κ
√

1 − γ2

2v1 R1
(r2 − R2

1) + c1

)]
, (3.162)

vr(x, r) =
v1 R1

r
√

1 − γ2
·exp

[
α (r2−R2

1)
]
cos

(κ
√

1 − γ2

2v1 R1
(r2−R2

1)+c1

)
, (3.163)

with

c1 = arctan
( γ√

1 − γ2

)
. (3.164)
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Case 2: 1 − γ2 = 0

Φ(x, r) = −x · v1 R1 ·
[
1 − α (r2 − R2

1)
]
exp

[
α (r2 − R2

1)
]

, (3.165)

vx(x, r) = x · 2 α2v1 R1

[
1 − α (r2 − R2

1)
]
exp

[
α (r2 − R2

1)
]

, (3.166)

vr(x, r) =
v1 R1

r
· [1 − α (r2 − R2

1)
]
exp

[
α (r2 − R2

1)
]

. (3.167)

Case 3: 1 − γ2 < 0

Φ(x, r) = −x
α

|α|
v1 R1√
γ2 − 1

exp
[
α (r2−R2

1)
]
sinh

(
d1− κ

√
γ2 − 1

2 v1 R1
(r2−R2

1)
)

,

(3.168)

vx(x, r) = x · κ · α

|α| exp
[
α (r2 − R2

1)
][

cosh
(
d1 − κ

√
γ2 − 1

2 v1 R1
(r2 − R2

1)
)

− γ√
γ2 − 1

sinh
(
d1 − κ

√
γ2 − 1

2 v1 R1
(r2 − R2

1)
)]

, (3.169)

vr(x, r) =
α

|α|
v1 R1

r
√

γ2 − 1
exp

[
α (r2−R2

1)
]
sinh

(
d1− κ

√
γ2 − 1

2 v1 R1
(r2 −R2

1)
)

,

(3.170)

with

d1 = artanh
(√

γ2 − 1
γ

)
. (3.171)

The discussion and application closely follow the analogue cases for the
rectangular filament bundle.

Air Temperature

The basis for determination of the air temperature field Tair(x, y) is the energy
equation of heat conduction and heat convection inside the fibre bundle. In
analogy to the calculation of the air velocity field a two-dimensional steady
state flow without free heat convection is assumed. The energy equation in
cartesian coordinates is then given by

λair(Tair,xx + Tair,yy) = cair �air (vx Tair,x + vy Tair,y) − qfib , (3.172)

where λair, cair, �air are the heat conductivity, the specific heat capacity, and
the density of air, respectively.
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The heat source density qfib is equivalent to the heat transfer from fibre
surfaces into air. Its mean value (for each fibre row at position yj) is deter-
mined similarly to the calculation of force density. The heat quantity per
length unit is given by the fibre cooling balance as follows

qfib(x, y) =
1

B W

Nr∑
j=1

N(j) · Q · cp · dT (x, yj)
dx

, (3.173a)

≈ N

B W
π λair Nu(x, y) · (T (x, y) − Tair(x, y)

)
, (3.173b)

where N(j), Nr and N are the number of fibres in the jth row, the number of
rows, and the total number of filaments within the bundle, respectively. The
product B W is the cross-sectional area of the rectangular bundle. Instead of
the real temperature profile of the air around each fibre, an effective average
temperature field Tair is now calculated.

In the case of radial symmetry the corresponding relation to Eq. 3.172 for
the heat energy is given as

λair

(
Tair,xx +Tair,rr +

1
r

Tair,r

)
= cair �air (vx Tair,x + vr Tair,r)− qfib , (3.174)

where the heat source density in the radial symmetric case is given as

qfib(x, y) =
N

R2
2 − R2

1

λair Nu(x, r) · (T (x, r) − Tair(x, r)
)

. (3.175)

Discussion. There is no analytical solution to the energy equations (3.172)
or (3.174) within the filament bundle. The solutions can only be found nu-
merically by transferring the partial differential equations into any adequate
difference equations and using for example a five or more-points formula.

The amount of heat transportation by means of thermal heat conduction
is insignificant in comparison to heat convection by air:

λair(Tair,xx + Tair,yy) � cair �air(vx Tair,x + vy Tair,y) . (3.176)

For modelling, this suggests the possibility to simplify the energy equations
through neglecting the heat conduction, which means the complete suppres-
sion of the left-hand side of Eq. 3.172 or 3.174. However, in such cases where
no active quenching occurs or in the range between spinneret and onset of
air blowing, the bundle sucks the air by itself (because of the pumping effect
– the momentum balance has to be satisfied) and the air flow becomes sym-
metrical from both sides of the bundle to the center line. The result of these
model assumptions is that no filament cooling takes place along the center
line if the heat conductivity is not taken into account. Therefore, heat con-
ductivity becomes essential especially for the symmetric flow cases and for the
regions without active quenching. Additionally, there are always oscillations
of fibres and air, turbulences, and free heat convection in real fibre spinning
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processes. These effects increase of course the heat transfer described by the
heat conduction term λair alone. For a more realistic simulation the influence
of heat conduction should be taken into consideration by replacing the heat
conductivity λair with an effectively increased term λeff .

On the other hand, the temperature slope for the air in spinning direction
x is small in comparison to the slope in quenching direction y. While assuming
Tair,xx � Tair,yy the term Tair,xx can be neglected in Eqs. 3.172 and 3.174.
Together with a = λair/(�air cair) and with Eq. 3.173b resp. 3.175 then follows

Tair,yy =
vx Tair,x + vy Tair,y

a
− N · πNu (T − Tair)

B W
(3.177)

for the rectangular case, resp.

Tair,rr +
1
r

Tair,r =
vx Tair,x + vr Tair,r

a
− N · Nu (T − Tair)

R2
2 − R2

1

(3.178)

for the radial symmetric case.
After the onset of quenching air the influence of heat conductivity within

the fibre bundle can be neglected in comparison to the effects of the forced
convection. The terms at the left-hand side in Eqs. 3.177 and 3.178 vanish
and the equations to calculate the air temperature inside the fibre bundle are
simplified to

vx Tair,x + vy Tair,y =
N · πNu a (T − Tair)

B W
(3.179)

for the rectangular case, and

vx Tair,x + vr Tair,r =
N · Nu a (T − Tair)

R2
2 − R2

1

(3.180)

for the radial symmetric case, respectively.

Some Remarks to Boundary Conditions, Geometry, and Numerical
Realisation

For the calculation of the air temperature fields Tair(x, y), resp. Tair(x, r), it
is necessary to possess knowledge about

• the velocity fields of air vair(x, y), resp. vair(x, r) within the bundle
• the fibre temperature profiles T (x, yj), resp. T (x, rj) of each row j and

the corresponding Nusselt numbers Nu(x, yj) resp. Nu(x, rj) within the
bundle, and

• the conditions at the borders of the bundle, the boundary conditions.
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Air temperature. Knowledge of the air temperature profile at the bound-
aries of the rectangular region (see Fig. 3.40) is required in order to solve
the partial differential equation (3.177) for the temperature field inside the
bundle (the radial symmetric case can be treated in an analogous manner):

region A : Tair(x = 0, y) = Tair,spinneret(y) ,

region B, C : Tair(x, y = 0) = Tair,0(x) ,

region D, E : Tair(x, y = B) = Tair,B(x) .

The air temperature at the spinneret (region A in Fig. 3.40) is assumed to
be equal to the spinneret temperature itself, this means that it is also equal
to the initial fibre temperature T0:

Tair(x = 0, y) = T (0) = T0 .

y

x A

B

C

D

E

Fig. 3.40. Boundary conditions for rectangular
fibre bundle: A – initial fibre temperature, B
and D – unknown temperature, C – temperature
profile of blowing air, E – temperature profile
results from calculation

Near the spinneret and before the onset of quenching, that is the region
where the filament bundle sucks air by itself, the temperature profile of the
sucked air is normally unknown (region B and D in Fig. 3.40). The air tem-
perature there is influenced by many factors, such as the geometry of the
current spinneret design, the realised spinning conditions, the free heat con-
vection, etc. It seems impossible to determine the air temperature in this
region a priori. The only possibility to derive necessary boundary conditions
for the calculation is to make an assumption regarding the air temperature
based on temperature measurement in a real spinning process. The purely
theoretical solution of the multifilament melt spinning problem in this region
is impossible. This is due to the fact that the temperature profiles at the
borders, required as input parameter, depend in a very complex way on the
specialities of each respective spinning equipment. The boundary parameter
may thus vary from case to case.
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After the onset of quenching air (region C in Fig. 3.40) the boundary
conditions for the windward side are given through the temperature profile
and velocity profile of blowing air which are well-defined parameters in the
melt spinning process. The velocity of the blowing air is much higher than the
velocity of the self-primed air. Furthermore, the heat transfer becomes much
more effective and can be described by means of the forced heat convection
alone. Neglecting the slope Tair,yy dramatically simplifies the energy equation
(3.179). No more information about the temperature profile at the leeward
side is now needed (region E in Fig. 3.40).

There is a second difficulty besides the unknown boundary conditions in
the region near the spinneret. The heat conductivity of air λair is too small
to show any effect for realistic cooling behaviour along the centre line of the
fibre bundle for the case where no active quenching is done by blowing air.
The calculated temperature becomes nearly independent from the distance
x in the centre. As discussed earlier, this unrealistic result can be improved
by using an effective value of heat conductivity λeff (instead of λair) that
takes into account oscillations, turbulences, and free convection effects. The
comparison of calculated temperatures with values measured in real fibre
spinning trials can be used to fit the effective heat conductivity to the mea-
surements. The results from several experiments suggest a factor between
λeff ≈ (100 . . . 200)λair.

Summarizing the discussion above, it can be said that near the spinneret
and for regions without active quenching the air temperature needs to be cal-
culated using the heat energy equation (3.177) (for the rectangular bundle),
whereas the heat conductivity of air is taken into consideration and should
be replaced with a more realistic effective value λeff . For the regions with
active quenching and much higher air flow velocity the consideration of heat
conductivity of air is no longer important and can be neglected. For this case
the calculation can be carried out using Eq. 3.179.

Numerical realisation. For the simplest but most interesting case of con-
stant force density across the fibre bundle, the velocity field of air is given
by Eqs. 3.148 and 3.149 for the rectangular geometry (and the respective
equations for the radial geometry). The improvement made by iterative cal-
culation of the global mean value of force density km with respect to distance
x follows from the global momentum balance equations (3.150) (resp. the
radial correspondence). For iteration the use of the dampened Newton pro-
cedure is helpful:

k(i+1)
m (x) = k(i)

m (x) − δ
F̃
(
k

(i)
m (x)

)
F̃ ′(k(i)

m (x)
) , (3.181)

where F̃ is given by the air friction momentum balance

F̃ =
∑

Fair,i − W

∫ x

0

�air vx vy dx′ − W

∫ B

0

�air v2
x dy (3.182)
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for rectangular bundle geometry, and

F̃ =
∑

Fair,i − 2 π R2

∫ x

0

�air vx vr dx′ − 2π

∫ R2

R1

�air v2
x r dr (3.183)

for the radial geometry, respectively. The dampening factor δ < 1 avoids
too rapid changes within the iteration process and supresses oscillations. The
results of the linearised assumptions can be used as the initial value k

(0)
m to

start the iteration procedure with

k(0)
m (x) =

2
�air B W x2

∑
Fair,i(x) (3.184)

for the rectangular bundle geometry, and

k(0)
m (x) =

2
�air π (R2

2 − R2
1)x2

∑
Fair,i(x) (3.185)

for the radial geometry, respectively. For the cases of non-constant force den-
sity across the bundle (α �= 0, Eqs. 3.125, 3.159) the convergence region for
the iteration procedure is to be carefully observed. The starting values k

(0)
m

above can only be successfully used if |2 αB| � 1, or
∣∣γ (R2

2 − R2
1)
∣∣ � 1 .

The partial derivatives of the energy equations (3.177) and (3.178) can be
replaced with difference quotients expressed by any adapted point-formula.
If the second derivative Tair,yy (resp. Tair,rr) is taken into account for the
symmetric case, the result is a (three-)diagonal system of algebraic equations
which can be effectively solved with LD-dissection. On the other hand, if the
conduction effects can be neglected, a simple step procedure may be carried
out. In the latter case the numerical procedure is quite similar to the solution
procedures for the earlier described cell-method (see page 94). To accelerate
the convergence for the alternating calculations of the multifilament system
(fibres – air – fibres – air ... ) it is convenient to use only the Nusselt number
and then simultaneously calculate the fibre temperatures again, according to
Eq. 3.10.

In principle, the only reason to start the calculation procedure with the
model of fibre formation first is its simplicity. At first, the calculation of the fi-
bre formation is done based on any assumption concerning the environmental
air. Then the air velocity and air temperature are determined on the basis of
the air friction force and the heat exchange from fibres to bundle. After that,
fibre formation calculation is carried out again, and so forth until no further
significant changes can be observed. Depending upon the starting values and
the current spinning parameters (and also on the step width and number of
rows) sufficient convergence can be reached after approximately three to five
calculation runs. A modern personal computer (1 GHz processor clock rate
for example) only needs seconds to complete the calculations.
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Geometrical limits. The described method for modelling the multifilament
melt spinning process is easy to manage and leads to quick calculations which
allow to assess technological parameters with respect to optimised spinning
conditions for high quality fibre products. But the model is restricted to
the assumption of free boundary conditions at the leeward side. The pressure
gradient p,x vanishes only for the free leeward side and it is possible to use
the harmonic functions for computing the air velocity components within
the bundle. This means that the deflection of air is only caused by means
of air friction from the filaments alone. There is no influence of any walls
of the quenching chamber affecting the leeward side. The quenching air flow
originates on the windward side (or from inner side to outer side in radial
geometry), and air flow deflection is only caused by the fibres. If there are
no fibres then no air flow deflection occurs. On the other hand, if any wall is
located at the leeward side then the boundary conditions are not free anymore
as in the before mentioned manner, the deflection of air will then be caused
by both the filaments and the wall. The same effect occurs if quenching air
flow is reached from both sides to the centre (or from outer to inner side in
case of radial geometry). The effect of the wall can then be replaced with a
symmetry line. Furthermore, the pressure gradient p,x cannot be neglected
anymore since the streamlines result from both, air friction from fibres and
from the geometrical conditions of the quenching chamber. The further use of
the developed model is only possible if some modifications are implemented.
Firstly, the streamlines of air have to be determined depending upon the
geometry of the quenching chamber. Secondly, the influence of air friction of
the fibres needs to be considered. The latter can be achieved, for example,
with the described concept of the varying force density km(x). Figure 3.41
illustrates the basic idea.

quenching quenching
wall

Fig. 3.41. Boundary conditions on leeward side. Left: free boundary, air deflection
is caused only by fibres; right: no free boundary, air deflection is caused by wall and
fibres, the influence of the wall can be treated by replacing it with a symmetry line
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3.2.4 Example 1: Numerical Simulation of Fibre Formation in the
Staple Fibre Melt Spinning Process

The PET staple fibre melt spinning with rectangular geometry of the filament
bundle, as the introductory discussed on page 92 shall now be treated by
means of the outlined model for different quenching conditions. The spinning
parameters are as follows

polymer: poly(ethylene terephthalate) (PET),
spinneret: 1300 holes, 13 rows with 100 holes on each row,

dimension W x B: 26 cm x 6.5 cm, rectangular,
diameter of capillary holes: 0.30 mm,

melt temperature: T0 = 290 ,
throughput: QPET = 1300× 0.6 g/min = 780 g/min,
take-up velocity: vL = 1200 m/min,
quenching: cross quenching from one side,

beginning 5 cm below spinneret,
temperature Tair = 25 ,
velocity (1) vair = 1.5 m/s,
length of quenching zone Lair = 1.0 m .

The results of the calculation are shown in the following figures. Fig-
ure 3.42 depicts the streamlines of air flow within the filament bundle. The
deflection of air in fibre direction can be clearly seen on the left hand side
of the figure. The air sucking effect from both sides below the spinneret, in
the 5 cm region free of quenching air flow, is also shown on the right-hand
side of the figure. Next, Fig. 3.43 shows the temperature of air within the
bundle (the isotherms); there is a transition from symmetric temperature
distribution below the spinneret to asymmetric distribution after the start of
quenching at distance x = 5 cm.

Figure 3.44 illustrates the experimental verification of the calculated air
temperature. The diagram depicts the dependency of air temperature Tair on
distance x from spinneret at three positions: at windward side, in the center,
and at leeward side. The temperature at windward side is a given boundary
condition (and thus cannot be used for verification). The temperature inside
the bundle seems impossible to be measured, but the temperature at the
leeward side, when the air has passed the bundle, can be determined easily.

Unevenness of the Filament Properties

The air flow and air temperature distribution within the filament bundle
lead to different environmental conditions for each filament row which influ-
ence their cooling and air friction behaviour. It is obvious that any retarded
cooling caused by higher air temperature increases the length of the fibre
formation zone and affects the resulting filament properties. The longer the
fibre formation zone (the distance from the spinneret exit to the solidification
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Fig. 3.42. Air flow (streamlines) inside the filament bundle. The magnified region
below spinneret (x = 0 . . . 0.1 cm) is presented again at the right part of the figure;
spinning parameter: PET staple fibre spinning process, see before

point) the greater the exposition to air friction, and the higher the part of
the friction force. On the other hand, the deflection of air into fibre direction
(especially at leeward side) reduces the air friction coefficient and therefore
can also reduce the friction force. Both effects interact and it depends on
the current spinning and geometric conditions if and how the resulting stress
at the solidification point changes and thus the connected fibre properties.
The following figures show the courses of temperature (Fig. 3.45) and tensile
stress (Fig. 3.46) for fibres within the bundle in three selected rows, one at
the windward side (row #1), one in the centre of the bundle (row #7), and
one at the leeward side (row #13).

Under the prevailing conditions near the spinneret the filaments at wind-
ward side and leeward side (the outer sides of the filament bundle) are sub-
jected to higher cooling rates compared to the filaments in the center of the
bundle. The symmetric conditions of geometry and air flow in the region
near the spinneret also result in symmetric courses of fibre formation. But
after the onset of (asymmetric) quenching air the cooling rates change to
the (expected) sequence of windward-centre-leeward and the courses of fibre
formation also become asymmetric, as expected. The solidification points for
the individual filaments are reached at different positions. As discussed in the
section about the modelling of fibre formation, the stress at the solidification
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Fig. 3.43. Air temperature (isotherms) inside the filament bundle with quenching
air blowing from the left hand side. The magnified region below spinneret (x =
0 . . . 0.1 cm) is presented again at the right part of the figure; temperatures are
indicated ( ); spinning parameter: PET staple fibre spinning process, see before

point essentially determines the fibre orientation and its resulting properties.
Figure 3.47 shows the stress at the solidification points and the corresponding
elongations to break across the fibre bundle. The lowest stress at the solidifi-
cation point, the lowest orientation and consequently the highest elongation
to break (the highest draw ratio) is not attained to the fibres at leeward side
of the bundle but inside the bundle at row #9. This (for the moment unex-
pected) result is a direct consequence of the conditions near the spinneret.
The course of graphs in the diagram Fig. 3.47 does not appear very smooth,
but the scattering results from the numerical effect of rounding the numbers
to limited digits. In principle the numerical accuracy and smoothness of the
graphs can be improved.

In order to indicate the tranversal uneveness of the filaments (the variation
of the orientation over the bundle cross section) the maximum and minimum
elongation to break can be used to define the variation coefficient CVεb :

CVεb =
εb,max − εb,min

εb,min
· 100 % . (3.186)
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Fig. 3.44. Air temperature inside the filament bundle at three different positions:
1 – windward side (row #1), 7 – center of the bundle (row #7), 13 – leeward side
(row #13), symbols: measured temperature at leeward side; data source: Institute
of Polymer Research Dresden

Fig. 3.45. Filament temperature T (x) (calculated) for three different locations:
1 – windward side (row #1), 7 – centre of the bundle (row #7), 13 – leeward side
(row #13), the position of solidification points at Ts =70 is indicated; spinning
parameter: PET staple fibre spinning process, see before

With the results shown in Fig. 3.47 the variation coefficient of orientation
(resp. elongation to break) is CVεb = 3.6 % .
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Fig. 3.46. Filament tensile stress σ(x) (calculated) for three different locations:
1 – windward side (row #1), 7 – center of the bundle (row #7), 13 – leeward side
(row #13), the position of solidification points is indicated; spinning parameter:
PET staple fibre spinning process, see before

Fig. 3.47. Filament stress σ(xs) at solidification point and corresponding elon-
gation to break (calculated) across the fibre bundle: rows #1 to #13; spinning
parameter: PET staple fibre spinning process, see before

The variation coefficient changes by modifying the process parameters,
but only small improvements are possible. Neither changes in throughput,
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extrusion temperature nor take-up velocity can entirely prevent this geomet-
rically associated variance. An example is shown in Fig. 3.48 which depicts
the trace of the maximum and minimum elongation to break and the vari-
ation coefficient CVεb versus the take-up velocity. The throughput in this
example was related to the take-up velocity in order to achieve a constant
filament fineness.

Fig. 3.48. Maximum and minimum elongation to break and corresponding co-
efficient of variation CVεb in dependence on take-up velocity, constant filament
fineness

Effect of Quenching Air Profile

The influence of changing the quenching air velocity on both the filament
cooling and to the uneveness of filament orientation across the bundle will be
briefly discussed in this section. Five different cases are considered, such as
no active quenching, and quenching air velocities of 0.5, 1.5, 2.0 and 3.0 m/s.
The case of 1.5 m/s air velocity was already mentioned, the figures of the
previous section can be directly compared to the following ones. The air
blowing starts again at distance x = 5 cm below the spinneret, the different
profiles of blowing air velocity and temperature are shown in Fig. 3.49.

The resulting streamlines and the air temperatures within the filament
bundle for the three cases (#A, #B, #D) are shown in Fig. 3.50.

It is obvious that the different velocity profiles affect the fibre properties.
Table 3.11 summarises the maximum and minimum elongations to break
together with the corresponding CV-value for each case. Additionally, results
of the calculations with vair = 1.5 m/s (#C) and vair = 3.0 m/s (#E) are
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Fig. 3.49. Velocity profiles (left) and temperature profile (right) of quenching air,
as used for calculation example

shown. It becomes clear that increasing the quenching air velocity increases
the eveness but also makes the process unstable if a critical value of air
velocity is reached. On the contrary, extremly high air velocities do not result
in a further decrease of uneveness. One reason for that is that the initial
rheological force F0 plays a more important role for fibre formation at low
take-up velocities than inertial or air friction force. The initial force F0 is
essentially determined from the conditions near the spinneret. Therefore it
should be possible to maximise the eveness by means of an adapted mass
throughput or by adapted temperature regime, respectively.

Table 3.11. Maximum and minimum elongation to break for different quenching
air velocity profiles

Air velocity εmax in % εmin in % CVεb in %

A: no active quenching 397 363 9.4

B: vair = 0.5 m/s 361 334 8.1

C: vair = 1.5 m/s 342 330 3.6

D: vair = 2.0 m/s 338 325 4.0

E: vair = 3.0 m/s 332 320 3.8

In general, stress at the solidification point becomes less dependent upon
spinning conditions at high take-up velocities. This is because the inertia force
then dominates the tensile stress. But at lower take-up velocities (which are
commonly used in the staple fibre spinning process and in the example above)
the stress at the solidification point can be influenced by spinning conditions
near the spinneret.
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Fig. 3.50. Streamlines (upper row) and temperature (lower row) of air inside the
filament bundle, A: no active quenching, B: vair = 0.5 m/s, D: vair = 2.0 m/s, the
temperature of the isotherms is indicated

Effects of Adapted Temperature Distribution and Mass Through-
put

The nearly parabolic characteristic of the elongation to break behaviour
which is shown in Fig. 3.47 can be corrected by a gradual adjustment of
the mass throughput and/or melt temperature distribution for the filaments
on each individual row of the spinneret. One possibility is to create a spe-
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cific temperature distribution across the spinneret plate (Fig. 3.51). The melt
temperature distribution has to affect the distribution of elongation to break
in opposite direction. The higher melt temperature at the windward side for
example first leads to a lower viscosity of the polymer melt and, under the
assumption of constant melt pressure, a higher mass throughput can be ex-
pected. Secondly, the higher temperature also affects the cooling length of the
fibres. Both effects act in the same direction and result (theoretically) in a
totally uniform orientation distribution across the bundle. The disadvantage
is that a filament bundle of such configuration indeed shows uniform orien-
tation but non-uniform fineness distribution. The filaments possess different
diameters resulting from the different throughputs. Besides that, it seems to
be difficult to implement the technical means for such temperature gradient
controlled spinneret plate under industrial conditions.

Fig. 3.51. Optimised melt temperature profile (left) and optimised capillary di-
ameters (right)

Another possibility to influence the mass throughput in the described
manner is to adjust the diameters of capillary holes in the spinneret. A similar
idea was already proposed earlier, with diameters gradually reducing from
windward to leeward side. The model calculation now allows to predict the
exact stepwise adaption of the hole diameters of each row. It indicates the
adaption of larger diameters at the windward side followed by the leeward side
and holes of smaller diameters in the centre. Figure 3.51 provides a proposal
for five stages of spinneret hole diameters. The corresponding Table 3.12
shows that, by adapting these five grades, the initial variation coefficient of
the elongation to break of nearly 4% drops to a quarter, and, adapting only
three grades still results in a drop of variation to half of the initial value. The
disadvantage of uneven fineness of course remains.

In principle it should be possible to combine the adapted melt tempera-
ture profile and the adapted capillary hole diameter distribution to minimise
both effects, that of uneven orientation and uneven fineness. But in practice
the realisation seems difficult and may only be achieved under very special
conditions.
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Table 3.12. Optimised spinneret hole diameters

Number of stages Diameter in [mm] Fineness in [dtex] CVεb in [%]

1 0.30 18 4

3 0.29 · · · 0.31 16 · · · 19 2

5 0.28 · · · 0.32 14 · · · 21 1

Effect of Retarded Cooling

A more effective and also easy to realise approach which does not change the
individual filament mass throughputs is the carefully designed asymmetrical
cooling program for the filament bundle. Since the cooling rate for the fila-
ment rows in the centre of the tow near the spinneret cannot be increased
and is always lower than that at the outer sides, the conclusion is to delay the
cooling rate of the filament rows at the windward and leeward side by means
of adapted booster heating. The lateral quenching exemplary adopted here
results in non-uniform cooling down of the windward side, the centre, and
the leeward side, respectively. A compensation of the non-uniform cooling can
be attained via asymmetrically designed booster heating near the spinneret.
The model calculation now allows to find the optimum temperature profile
at windward and leeward sides that provides (theoretically) for reduction to
zero of the CV value of the orientation. In practice the aim is to minimise the
variation of the orientation and the resulting uneveness of elongation to break
in order to achieve high quality yarns and to realise stable process conditions
and high productivity.

Figure 3.52 shows an optimised velocity and temperature profile of
quenching air, and Fig. 3.53 depicts the effect of the optimised profile to
the air temperature within the bundle. The air quenching starts 10 cm below
the spinneret. The region between spinneret at x = 0 and beginning of air
blowing is heated to different temperatures for the windward and the leeward
side, respectively.

Figure 3.53 can be directly compared with Fig. 3.43. The next diagram
(Fig. 3.54) shows the courses of fibre temperatures for three different posi-
tions inside the bundle. A comparison with Fig. 3.45 illustrates the retarded
cooling. The higher temperature near the spinneret mainly influences the ini-
tial rheological forces F0 of the fibres and therefore also the total forces at
each solidification distance. The result of booster heating is the nearly uni-
form distribution of stress at solidification points versus the filament rows
and at last nearly uniform filament orientations. Figure 3.55 shows the cal-
culated elongations to break across the fibre bundle in comparison with the
original (unoptimised) variant. The coefficient of variation for the elongation
to break CVεb changes from initially 3.6% to 0.8%.

As the mean orientation of the bundle is simultaneously reduced, a higher
draw ratio in the following drawing stages becomes possible and opens up the
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Fig. 3.52. Optimised profiles (#1) of air. Left: Velocity profile at windward side;
right: Air temperature profiles at windward and leeward sides, the profiles of the
example before (#2, see Fig. 3.49-C) is shown for comparison
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Fig. 3.53. Streamlines (left) and temperatures (right) of air inside the filament
bundle for optimised air profiles, the temperature of the isotherms is indicated.
Only the region 20 cm below spinneret is shown, please compare to Figs. 3.43 and
3.42

additional opportunity of increasing the mass throughput (increased produc-
tivity) with equal target fibre fineness. For the discussed example this would
lead to an increased productivity of about 4...5%. A further advantage of the
method of retarded cooling is its adabtability and flexibility. The method al-
lows for easy and quick adaptions to changes in production technology [262].
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Fig. 3.54. Filament temperature T (x) (calculated) for three different locations: 1 –
windward side (row #1), 7 – center of the bundle (row #7), 13 – leeward side (row
#13), the positions of solidification distances are indicated; optimised air profile

Fig. 3.55. Elongation to break (calculated) across the fibre bundle (row #1 to
#13) for the optimised air profile, CVεb = 0.8% (1), results of the origin variant
(Fig. 3.47) as comparison, CVεb = 3.6% (2)
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3.2.5 Example 2: Modelling of Fibre Formation in the
Spunbonded Nonwoven Process

The spunbonded nonwoven process represents a typical multifilament spin-
ning process because of its high number of filaments which can be up to a
multiple of thousands. Take-up of the filaments is usually achieved by means
of air friction, either in an excess-pressure or in an underpressure process, or
sometimes a combination of both. Hajji, Misra, Spruiell et al. [263, 264]
discussed the application of a modified single filament model to the Reicofil
spunbonding nonwoven process and found good agreement between experi-
mental and predicted data for their investigation. The following section deals
with the application of both single filament and multifilament fibre forma-
tion models to the underpressure spunbonding nonwoven process in order to
attain high filament velocities and low filament finenesses. The discussion is
based on investigations which were carried out by the authors together with
the Saxon Textile Research Institute Chemnitz [265]. The questions for the
investigations were the following: Which dependencies exist for the under-
pressure process between the filament velocity and the filament fineness on
the one hand and the spinning and take-up condition on the other? What are
the best energetic conditions for the air suction device? How is the take-up
to be designed to enable high filament velocities? Some answers can be given
with the help of the applied fibre formation model.

Friction Forced Filament Take-up

The specialty of the process is that the filament take-up is not realised by
means of godets or a winder like in the conventional yarn spinning processes
but via drag of an air stream in spinning direction (Fig. 3.56). Contrary to
the fibre spinning process where the final fibre velocity is fixed, the take-up
velocity resulting from air drag force is not known from the beginning and
thus cannot be treated as an initial spinning parameter. The higher the veloc-
ity of the axial air stream the higher the friction and drag force transferred to
the fibre – thus the higher the fibre velocity. Furthermore, the higher the fibre
velocity the lower its diameter (at constant mass throughput) and the lower
the resulting friction and driving of the fibre. Consequently, the intentional
effect will be reduced as the resulting air drag itself depends upon the differ-
ence between the velocities of fibre and air and also on the fibre fineness. The
final fibre velocity, its fineness and all corresponding properties result from
the balance between the air drag transferred to the fibre and the inherent fi-
bre force contributions like the rheological, inertial, and gravitational forces,
respectively.

When trying to solve the differential equations of the fibre formation
model it becomes obvious that the initial value F0 for the force at the spin-
neret is unknown. This causes no difficulties in the case of conventional take-
up by means of godets or a winder because the initial rheological force in the
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air

Fig. 3.56. Comparison between conventional yarn melt spinning process (left) and
nonwoven process with air drag take-up (right)

model can be determined via an iteration procedure, that is, until the final
take-up velocity is reached within an adequate numerical tolerance. However,
the situation regarding the take-up by means of air drag is quite different be-
cause the final take-up velocity results from an equilibrium of forces and
therefore is unknown from the beginning.

The simplest idea to solve this problem is to assume the initial rheological
force is equal to zero F0 = F (0) = 0 [263, 264]. But the problem can be
more accurately solved in general by means of an additional iteration if the
rheological force is known (or can be estimated) at any distance x of the
fibre path. Especially the usage of a take-up channel (see below) opens up
the possibility to get a much better assumption for the missing boundary
value.

Figure 3.57 illustrates the basic idea of modelling the effect of a take-
up channel. The possible technical realisation of an underpressure nonwoven
equipment is also depicted. The positions of entrance and exit of the take-up
channel (measured from the spinneret at x = 0) are x1 and x2, respectively.

The tensile force F for a single filament at entrance x1 of the take-up
channel is given by (see Eq. 3.11a on page 50 – the force balance)

F (x1) = F0 + Q · (v(x1)− v0) +
∫ x1

0

�air

2
cf ṽ2 π D dx−

∫ x1

0

�p g
π

4
D2 dx ,

(3.187)

where ṽ is the difference between the velocities of fibre and surrounding air,
respectively, ṽ = |v − vair|. The tensile force must be equal to the force applied
inside the take-up channel:

F (x1) = Fe +
∫ x2

x1

�air

2
cf ṽ2 π D dx −

∫ x2

x1

�p g
π

4
D2 dx . (3.188)

If the fibre is already solidified at the entrance x = x1 of the channel, which
means the fibre velocity and diameter are fixed and the air velocity inside
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Fig. 3.57. Principle of the take-up channel (left) and possible realisation of an
underpressure spunbonding nonwoven process (right)

the channel can also assumed to be constant, then (3.188) is simplified to

F (x1) = Fe + L
�air

2
cf ṽ2 π D − L �p g

π

4
D2 . (3.189)

The term Fe = F (x2) is the tensile force at the exit of the channel and
L = x2 − x1 is the channel length. Both equations can be combined together
for all distances x. If careful attention is payed to the signs of air friction
force contribution inside and outside of the take-up channel follows

F (x) = F0+Q·(v(x)−v0)+Θ

∫ x

0

�air

2
cf ṽ2 π D dx−

∫ x

0

�p g
π

4
D2 dx , (3.190)

with

Θ =

{
1 for v(x) > vair

−1 for v(x) < vair

. (3.191)

The initial tensile force F0 correlates with the initial fibre velocity gradient
dv/dx at x = 0 and therefore determines the final velocity after integration.
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The only reasonable assumption for the equilibrium of forces at any distance
is that the tensile force vanishes at the exit of the take-up channel

F (x2) = 0 . (3.192)

This condition replaces the boundary condition of a fixed take-up velocity.
With the air profile vair(x) given and the equations of fibre modelling, it is now
possible to calculate the final fibre velocity and all connected characteristics
of fibre formation.

High Filament Velocities – Realised by Means of an Underpressure
Spunbonding Nonwoven Process

Subject of the investigations described below is the design of an underpressure
spunbonding nonwoven equipment that realises high filament velocities up to
3000 m/min and filament finenesses of 1...2 dtex [265]. Boundary conditions
are: the maximum total height of the equipment of less than 3 m and the
limited power of the air suction blower. With help from the fibre formation
model it was possible to accompany the design process and to give useful
hints for the construction.

Inside the upper part of the underpressure spunbonding nonwoven equip-
ment, the air entrance chamber, the air flow behavior should be a symmetri-
cal (Fig. 3.57). Assuming a channel width of B = 20 mm, height of entrance
chamber of H = 1 m, and mean value of the air velocity inside the channel of
vchannel = 3000...6000 m/min, then follows for the air entrance velocity ventr:

ventr =
B

H
· vchannel = 1...2 m/s .

The amount of entrance air velocity is comparable to the quenching air veloc-
ity for the staple fibre multifilament spinning example treated in the section
before. Therefore the model of symmetrical flow behaviour can be used to
calculate the multifilament effects on individual fibre formation, for example
to estimate the differences in cooling behaviour of filaments located at the
inner and outer side of the bundle, respectively. Figure 3.58 elucidates the
application of the model for melt spinning of polypropylene.

For this process it must be assured that the filament temperatures inside
the take-up channel are lower than any given critical temperature in that
manner, and that no sticking occurs while the filaments touch each other
or the walls of the channel. The solidification which represents the end of
the fibre formation zone is not fixed because it depends on the spinning
conditions, especially on the mass throughput, the melt temperature, and the
kind of polymer material (with its property of heat capacity). Additionally,
the cooling rate is retarded in the centre of the filament bundle. Therefore
each set of spinning conditions determines a minimum distance xmin where
the temperatures of all filaments is lower than the critical temperature:
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Fig. 3.58. Example of multifilament model application to the underpressure spun-
bonded nonwoven process. Left: streamlines of air, right: filament temperatures
(isotherms), temperatures in indicated

T (xmin) < Tcrit . (3.193)

The next figure (Fig. 3.59) shows the distances where the polypropylene
filaments reach the temperature of Tcrit = 100 as example.

It can be seen that for the indicated spinning conditions these distances
are always lower than 1 m; therefore the minimum distance of xmin ≈ 1 m
according to the mass throughput of Q = 1 g/min is a sufficient distance be-
tween the spinneret and the entrance of the take-up channel. The calculation
also confirms the assumption that the final filament velocity depends nearly
linearly on the length L of the take-up channel. The calculation also provides
relationships to describe the dependence of final velocity on air velocity inside
the channel (see Figs. 3.60, 3.61).

At last the theoretical investigations allow to estimate the pairs of air ve-
locity vchannel within the channel and corresponding length L of the channel
to reach a destined filament velocity (Fig. 3.62). From the figures it can be
seen that the conditions to reach 3000 m/min filament velocity are approxi-
mately the following: channel length ≈ 1 m, driving air velocity ≈ 100 m/s.

The task of reaching a defined air velocity inside the take-up channel
of a given length and width is due to the power and energetic conditions
of the air suction blower and depends upon pressure losses of the channel
together with other parts of the spinning device. The longer the channel, the
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Fig. 3.59. Cooling length x100 (calc.) vs. final filament velocity v (upper and lower
limit for filaments at center and boundaries of the bundle); polymer: polypropy-
lene (PP), melt temperature: 260 , air temperature: 25 , three different mass
throughputs (per hole) are indicated

Fig. 3.60. Final filament velocity v (calc.) vs. length L of the take-up channel, two
different velocities of air inside channel (indicated), other spinning conditions: see
Fig. 3.59

higher the pressure losses and the lower the resulting air velocity inside, but
the higher the exposed length of the filaments to air friction force. On the
other hand, there is an optimum channel width B for a given length L to
achieve maximum possible air velocity. The smaller the channel width from
this optimum value the higher the pressure losses, and the higher the channel
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Fig. 3.61. Final filament velocity v (calc.) vs. air velocity vchannel inside take-
up channel, three different mass throughputs (per hole) indicated: 1 – 1 g/min,
2 – 0.6 g/min, 2 – 0.2 g/min, other spinning conditions: see Fig. 3.59

Fig. 3.62. Combinations for length L of take-up channel and air velocity vchannel to
destined final filament velocity v (indicated), mass throughput (per hole) 0.6 g/min,
other spinning conditions: see Fig. 3.59

width from the optimum, the higher the cross section area and the lower
the resulting air velocity. For the investigated equipment [265] the optimum
channel width was B = 20 mm. At last Fig. 3.63 shows the finally reached
filament velocities and finenesses depending upon the air velocity inside the
channel for the investigated equipment.
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Fig. 3.63. Final filament fineness T t and final filament velocity v in dependence
on the velocity of air inside take-up channel vchannel, mass throughput (per hole):
0.4 g/min, lines: calculated, symbols: measured values

3.2.6 Summary

Process modelling and simulation seems to be an effective way in order to
solve engineering problems. Computer simulations can indeed be a helpful
tool for understanding the principle behaviour of the considered process. But
one has to keep in mind that information generated by the computer pro-
gram is always based on any physical and/or mathematical model of the
real process, and this describes the essential aspects of the treated process
only in a relatively qualified manner. The simulations can never replace the
experimental work and the empirically collected experiences, but they can
powerfully support the laboratory and industrial research in order to avoid
time-consuming and/or expensive investigations regarding process modifica-
tion, extension, or optimisation, respectively. Especially the last mentioned
task of optimisation is typical for engineering procedures in melt spinning: the
prediction of resulting fibre properties after changing the process parameters,
geometrical conditions, the used material, or to optimise the process with re-
spect to productivity and quality. The example treated above shows how
the computer simulation was used to support the design of a special melt
spinning device for underpressure spunbonded nonwoven equipment. Here,
the theory of fibre formation together with the engineering modelling of the
entire process allowed for the determination of major dependencies and rela-
tions regarding material properties, process conditions and characteristics of
fibre formation. This knowledge, combined with additional empirical results
enabled the successful design of the device which provided for the desired
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filament velocity of 3000 m/min, and filament finenesses of 1...2 dtex, respec-
tively.

The results of any simulation are always to verify on the basis of ex-
perimental data. It is possible to measure on-line the filament velocity, the
filament diameter, the temperature, and orientation (birefringence) depend-
ing upon distance from the spinneret and to correlate the process conditions
with the resulting fibre properties. A serious model should be based on such
experimental background. Secondly, such a model should also be tractable
and for engineering purposes easy to handle. The models of fibre formation,
available after more than 40 years of development, do not satisfy all these re-
quirements. Some important effects cannot be described well so far but only
in an approximative manner (e. g. the theory of crystallisation in fibre forma-
tion). Some relations must be fitted to experimental data due to the lack of a
satisfactory theory. On the other hand, there are also reliable empirical data
missing for some polymer types, especially for the non-isothermal behaviour
under high stresses and high deformation rates. Therefore, the model of fi-
bre formation consists of both well investigated and exact relations but also
of approximations valid only for special conditions or within certain ranges.
For any successful engineering the need for the combination of both model
simulation and empirical experience is obvious.

3.3 Limits of Fibre Formation in Melt Spinning and
Spinnability

3.3.1 Maximum and Minimum Fineness

The limits of the melt spinning process can be estimated by some simple
physically based considerations [266, 267]. At first, we want to look at the
maximum possible fineness T tmax. The fineness of the as-spun filament is
given by the quotient T t = Q/v. Additionally, for the final drawn and full
oriented fibre the necessary draw ratio DR to reach final fineness T tf has
to be considered: T tf = Q/(v · DR). This means that in order to reach the
maximum possible fineness, the highest possible mass throughput Q and the
minimum possible take-up velocity v has to be used. The draw ratio itself
depends upon the spinning conditions, mainly on the take-up velocity. One
has to regard that cooling down of the polymer stream strongly relates to the
mass throughput (see Sect. 3.1, Fig. 3.23 on page 85) to realise the maximum
fineness. The higher the mass throughput per hole the longer the distance
to the solidification point. A simple demand for stable melt spinning and
avoidance of fibre breaks means that the fibres need to be cooled down below
the solidification temperature before their first contact with the preparation
applicator or any other fibre guidance element, respectively. The minimum
length Lmin of the spinning tube has to exceed the solidification distance:
Lmin > Ls. After solidification in general no further deformation of the fibres
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occurs. But sometimes it is required that a certain minimum fibre tempera-
ture has to be reached in order to avoid sticking effects between the filaments
and the guidance elements or between the filaments themselves. In Fig. 3.64
on the left-hand side the distance L50 is required to reach the temperature
T = 50 C and the solidification distance Ls for spinning of PA 6 at three
different mass throughputs depending upon the take-up velocity is shown.
For higher take-up velocities (v ≥ 3500 m/min) where stress induced spinline
crystallisation takes place the solidification occurs above the glass transition
temperature of Tg ≈ 50 C. But for maximum fibre fineness the lower take-up
velocities (v ≤ 3000 m/min) should be preferred so that the fibre temper-
ature at the solidification point equals the glass transition temperature of
Tg = 50 C for PA 6. The figure on the right-hand side depicts the calculated
cooling distance L50 ≈ Ls vs. mass throughput Q for different take-up ve-
locities of up to 3000 m/min. The upper curve in the picture represents the
relationship L50(Q) for the minimal possible take-up velocity vmin which itself
is determined by the minimal possible take-up distance (this is the solidifica-
tion distance) and the resulting gravitational force. The calculation based on
the minimal possible take-up velocity vmin was carried out in such way that
the resulting spinline stress shows a nearly constant or an only very small in-
creasing behaviour vs. the spinning distance x, that means that the minimum
take-up velocity has to be greater at least than the velocity of freely falling
fibre. At the solidification point the spinline stress for all variants reaches an
extremly low value: σs = 10 . . .15 kPa. The processing for PA 6 then results
in fibres with no (or very low) orientation and possible draw ratios of about
DR ≈ 6.

Fig. 3.64. Left: (calculated) distance L50 required to reach fibre temperature T =
50 C (solid lines) and solidification distance Ls (dotted lines) vs. take-up velocity v,
mass throughput (per hole) indicated; right: cooling distance L50 vs. mass through-
put Q, different take-up velocities: 1 – minimum possible (150 . . . 300 m/min), 2 –
500 m/min, 3 – 1000 m/min, 4 – 2000 m/min, 5 – 3000 m/min, Spinning parameter:
PA 6, molecular weight: 17 000, melt temperature: 265 C, no additional air quench-
ing
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Figure 3.65 shows on the left-hand side the thermal limitations for re-
garding the maximum possible fineness (after drawing to final elongation to
break of 25%) determined in terms of necessary cooling length vs. take-up
velocity. The figure on the right-hand side shows the maximum possible fine-
ness T tmax depending upon the throughput Q after drawing with draw ratio
DR = 6, applying the minimal possible take-up velocity vmin and under the
condition of an adapted optimum cooling distance.

Fig. 3.65. Left: limitation curves for maximum fineness T tmax (after drawing) vs.
take-up velocity v, cooling length L50 is indicated; right: (calculated) maximum
possible fineness T tmax (1) (after drawing) and minimum possible take-up velocity
vmin (2) vs. mass throughput Q (per hole), adapted spinning length; Spinning pa-
rameter: PA 6, molecular weight: 17 000, melt temperature: 265 C, no additional
air quenching

The maximum possible finenesses presented here are theoretical values,
of course, and estimated without any additional air quenching. Inclusion of
quenching should further stabilise the (low tension) spinning process. Result-
ingly, it can be stated that regarding the filament fineness the upper limit for
conventional spinning equipment with cooling lengths of L = 4 . . . 6 m for PA
is in the range of 30 . . . 40 dtex after drawing. For PET the required cooling
lengths are somewhat smaller, and the maximum possible fineness slightly
increases. In order to achieve any further increase of filament fineness the
conventional cooling by means of air is to be replaced by more effective cool-
ing methods, e. g. cooling and solidification in a water quench.

Remark. It must be mentioned that if the melt is extruded at very high through-

puts (high flow rates) the melt stream becomes distorted. These distortions are

known as melt fracture [268] where the extrudate shows instabilities in form of spi-

ral or gross flow behaviour or surface roughness and the so-called sharkskin effect.

These phenomena have been studied by many investigators and are still up to now

not fully understood.
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The minimum possible fineness after drawing should be reached with min-
imum throughput Q, maximum possible take-up velocity v and (if possible)
high draw ratio DR:

T tDR =
Q

v · DR
. (3.194)

The fibre orientation and therefore the resulting possible draw ratio are deter-
mined by the stress at the solidification point and depend upon the take-up
velocity (see Sect. 3.1, Fig. 3.22 on page 84). The higher the take-up veloc-
ity the higher the tensile stress and also the degree of orientation and the
lower the residual draw ratio. Figure 3.66 (left-hand side) shows the resulting
fineness before and after the drawing (to final elongation of 25%) of PA 6
fibres in a spinning process with increasing take-up velocity and constant
mass throughput. The advantage of getting minimum fineness after drawing
is not very effective due to the fact that, with increasing take-up velocity the
orientation increases and thus the draw ratio decreases. On the other hand,
the reduction of throughput directly decreases the fineness and only slightly
increases the fibre orientation resp. reduces the residual draw ratio. However,
the effect of increasing orientation in the case of decreasing throughput is
smaller than in the case of increasing velocity. To get minimal fineness, the
reduction of throughput is much more effective than increasing the spinning
speed (Fig. 3.66, right-hand side).

Fig. 3.66. (Calculated) filament fineness before drawing (1) and after drawing (2)
of PA 6 vs. take-up velocity v (left) resp. vs. mass troughput Q (right), constant
throughput and take-up velocity, respectively; the limits (marked with symbol ’ ?’)
are unknown and depend strongly on the material and the processing parameter

Increasing the take-up velocity and decreasing the mass throughput
rapidly border on the physical limits of the process. The higher the take-up
speed the higher the resulting spinline stress and the extensional deformation
rate of the material. This may cause filament breakages due to brittle cohe-
sive fracture or visco-elastic ductile failure. In the next section some aspects
of the failure behaviour will be discussed.
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An estimation of the limiting conditions with respect to fibre stress in the
spinning line can be made as follows: After solidification the tensile stress
must not exceed the critical stress level that may cause secondary deforma-
tion. Figure 3.67 shows on the left-hand side the fibre stress σL at certain
distances L depending upon take-up velocity vL. The example is calculated
for single PA 6 filaments with mass throughput Q = 1 g/min. The distance
to solidification for low take-up velocities when temperatures reach 50 C is
about Ls ≈ L50 ≈ 1 m. For higher take-up velocities the distance Ls becomes
smaller, however, the cooling distance L50 remains nearly constant. The fila-
ment stress strongly increases with take-up velocity, at longer distances L it
is mainly caused by air friction. To avoid unwanted secondary deformation,
the critical stress for PA 6 is assumed to be σcrit ≈ 50 MPa. The condition
σL < σcrit leads to the picture at the right-hand side of Fig. 3.67, which
depicts the maximum possible take-up velocity and the resulting minimum
fineness for the given mass throughput depending upon the take-up distance
L before and after drawing to 25% of final elongation. The shorter the take-up
distance L the higher the stress limited maximum possible take-up velocity
and the lower the resulting minimum fineness.

Fig. 3.67. Left: (calculated) filament stress σL vs. take-up velocity for different
distances L, distances are indicated: L = 1 m (1), 2 m (2), 3 m (3), 4 m (4), and
solidification distance Ls, dotted line: calculation without air friction; right: max-
imum possible take-up velocity (1) for the condition σL ≤ 50 MPa and minimum
fineness T tmin before (2) and after drawing (3) to 25% final elongation; PA 6, mass
throughput Q = 1 g/min

For the example above, with constant throughput of 1 g/min, it is not
possible to reach a final fineness of 1 dtex by only increasing the spinning
speed. For the production of fine filaments the reduction of throughput ap-
pears at the same time necessary. To get an impression of this second variant
in the next diagram (Fig. 3.68) the resulting tensile stress at distance L = 1 m
with respect to the accessible fineness is compared if (1) the throughput is
kept constant and the take-up velocity increases (this is the example above)
and if (2) the take-up velocity is kept constant and the throughput decreases,
respectively. It can be clearly observed that reducing the throughput leads to
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much lower stress at any certain distance and opens up the way to spinning
fine and ultra fine fibres.

Fig. 3.68. (Calculated) filament tensile stress σL at distance L = 1 m vs. filament
fineness T t, (1) – constant throughput Q = 1 g/min, increasing take-up velocity,
(2) – constant velocity v = 1000 m/min, decreasing throughput, (a) – fineness
before drawing (as spun filaments, solid lines), (b) – fineness after drawing to 25%
elongation (dotted lines)

Remark. Of course minimum air friction (and minimum stress level) results at
solidification distance Ls. In practice, the take-up distance should be as long as
necessary and as short as possible. To reduce air friction, it is effective to place the
guide, where the single filaments are bundled together, as close to the spinneret as
possible. Additionally, a further reduction of fibre stress seems possible via com-
plete avoidance of air friction. The friction component disappears if air and fibres
have an equal speed, realised by means of finely adjusted air stream in the fibre
direction through using a special shaped (e. g. conical) spinning tube. In this case
the tensile stress is mainly determined by inertia: σ ≈ � · v2

L (see dotted line in
Fig. 3.67) and nearly independent of throughput and the current take-up distance.
For very low mass throughput the cooling distance becomes very low and also the
resulting stress contribution from inertia. Now, the surface tension and the contri-
bution from initial rheological force F0 at the spinneret becomes more and more
important. F0 is determined from the mean fluidity of the material in the deforma-
tion region and can be influenced within certain limits by means of a post heating
zone below the spinneret in order to control the cooling and also the deformation
behaviour. Finally, the limit for possible minimum fineness of continously spun and
drawn filaments could be T tmin ≈ 0.1 dtex .
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On the other hand, the unlimited reduction of throughput leads sooner
or later to capillary break, the filaments divide into single drops. Under lim-
itation of very thin filaments the surface tension is contributed substantially
at the spinneret exit. The following consideration supports this assumption.
Melt spinning of filaments is also a generation of filament surface: The surface
generation rate ȦF for a filament is given by

ȦF = π · DF · vF = 2
√

π · vF · Q̇V , (3.195)

where DF is the final filament diameter, vF is the final velocity, and Q̇V is
the volumetric rate of throughput. Assuming N single drops with radius Rd,
the production rate of the drops surface Ȧd is given by

N · Ȧd =
Q̇V · 4 π R2

d

4/3 π R3
d

=
3

Rd
· Q̇V , (3.196)

and the ratio of surface generation between drops and filaments is given by
the relationship

NȦd

ȦF

=
3

2 Rd

√
Q̇V

π vF
. (3.197)

At decreasing throughput (volume rate Q̇V) the relation (3.197) becomes
at a certain level < 1 and the division into single drops is the energetically
favorable case. Of course the relationships above only provide for a qualitative
discussion and are not applicable to any quantitative calculation. For the
more detailed analysis Ziabicki showed that for capillary break the ratio
between surface tension and viscosity of the melt plays an important role
[274].

3.3.2 Visco-elastic Failure and Nonlinear Effects

Increasing spinning speed and/or decreasing throughput leads to filament
breakage. Failure behaviour in spinning polymer melts includes:

• capillary break,
• cohesive, brittle fracture,
• ductile failure.

For low take-up velocities and low deformation rates the Newtonian viscous
constitutive equation may sufficiently describe the rheological flow and de-
formation behaviour of the molten polymer. But even at higher deformation
rates the visco-elastic polymers show transient effects which characterise the
time dependency between polymer relaxation and deformation, described by
any relaxation time spectrum. To discuss the effect of visco-elastic failure the
simple Maxwell model (3.47) should be used. It is clear that the Maxwell



3.3 Limits and Spinnability 139

model, and only one single relaxation time λ, cannot completely characterise
the rheological behaviour of the fiber forming polymers in melt spinning but
the effect can be made quantitatively visible.

Equation (3.47) on page 63 can be written as

η · dv

dx
= σ + λ v

dσ

dx
, λ =

η

E
, (3.198)

and together with σ = F/A = �p v F/Q then follows

dv

dx
=

1
η
·
σ

(
1 + λ v

1
F

dF

dx

)
1 − σ/E

. (3.199)

It can be seen from Eq. 3.199 that the deformation rate dv/dx becomes
infinitely large if the spinning stress σ or/and the compliance 1/E reach
some critical value. Assuming constant tensile force F (x) = Fc = C · Q/�p

as in the example on page 61 the deformation rate is simplified to

dv

dx
=

1
η
· σ

1 − σ/E
=

1
η
· C · v
1 − C · v/E

. (3.200)

The ratio between stress and deformation rate defines the apparent elon-
gational viscosity

ηapp =
σ

dv/dx
, (3.201)

which for the simplified case of constant force becomes

ηapp =
η

1 + λ
dv

dx

=
η

1 + De
, (3.202)

where De denotes the Deborah-number, which describes the ratio between
relaxation time λ = η/E and deformation time (dv/dx)−1. Visco-elasticity
appears as an artificial reduction of viscosity if the deformation is described
in the manner above.

Ziabicki [184] discussed the solution of Eq. 3.200 for the special case of
E = const. and pointed out that after reaching the critical region some visco-
elastic spinning instability occurs. Its intensity increases the more the ratio
between the elastic and viscous properties of the material increases. Similar
results were found by means of dynamic rheological measurements. For well
spinnable polymers the ratio between storage modulus G′ and loss modulus
G′′ must not exceed any critical value [269]. To illustrate the complexity
of visco-elastic behaviour Fig. 3.69 (left side) shows the spinline velocity v
vs. distance x from spinneret for three different ranges of elastic modulus:
1) the pure viscous case (E → ∞), 2) the visco-elastic case describing the
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spinning behaviour of PA 6 more realistically by means of a deformation
dependent modulus E = E0 f(εe) (Eq. 3.83), and 3) a visco-elastic case like
2) but with drastically reduced modulus (factor 0.01). The condition used
for the calculation in all three cases was that both viscosity and modulus
reach infinity at solidification distance and deformation finishes afterwards.
The corresponding apparent viscosities Eq. 3.201 are shown at the right-
hand side of Fig. 3.69. The Deborah number for the visco-elastic case 2)

Fig. 3.69. The influence of visco-elasticity on spinning behaviour (calc.). Left:
velocity v vs. distance x from spinneret exit, right: apparent elongational viscosity
vs. distance, 1 – pure viscous behaviour (E1 → ∞), 2 – visco-elastic behaviour
(E2 = E0 f(εe)) realistically describing melt spinning of PA 6, 3 – highly elastic
behaviour (E3 = 0.01E2); material PA 6, mass throughput Q = 1 g/min, take-up
velocity vL = 3000 m/min

in Fig. 3.69 varies from De ≈ 0.05 near the spinneret to De ≈ 5 near the
solidification point. This means that the spinning behaviour changes from
viscous at the beginning over visco-elastic to mostly elastic deformation at
the end.

A high deformation rate may lead to another effect well known in rheology:
the decrease of viscosity with increasing the deformation rate. This kind
of nonlinear rheological behaviour is often described in shear melt rheology
by a power-law equation or by the Cross-Carreau model which can be
generalised for extensional deformation to any equation of the form

η(T, ε̇) =
η0(T )

1 + a ε̇ b
, (3.203)

or, respectively

η(T, ε̇) =
η0(T )

1 + a
(
η0(T ) · ε̇)b

, (3.204)

with parameters a, b.
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The nonlinear effect of decreasing viscosity is demonstrated in Fig. 3.70
where the fibre formation was calculated again for the visco-elastic Maxwell

model (Eq. 3.47) but now with deformation rate depending upon viscosity
Eq. 3.203. Because it is only a qualitative comparison the simplified relation
with power exponent b = 1 was used. Other used parameters are the same as
in the example for the purely viscous (case 1) and the visco-elastic (case 2)
behaviours.

η0_________
1 + a dv/dx

Fig. 3.70. The influence of nonlinear viscous and visco-elastic spinning behaviour
(calc.), left: velocity v vs. distance x from spinneret exit, right: apparent elonga-
tional viscosity vs. distance, 1 – purely viscous behaviour (E → ∞), 2 – visco-elastic
behaviour (E = E0 f(εe)) realistically describing spinning of PA 6, (a) linear viscous
behaviour, parameter a = 0, (b) nonlinear viscous behaviour, parameter a = 0.1;
material PA 6, mass throughput Q = 1 g/min, take-up velocity vL = 3000 m/min

Nonlinearity and visco-elasticity amplify each other because both show
similar behaviour of decreasing the apparent viscosity while increasing the
deformation rate. In Fig. 3.70 the beginning of failure at the end of graph (2b)
can be seen, only prevented here by the abrupt end of the deformation be-
cause the viscosity and modulus are set to infinity at the solidification point.
There is no solution for the calculation (within the frame of the used model
equations) for any larger value of the nonlinearity parameter a > 0.1. The
nonlinear and highly elastic behaviour can lead to fibre breakage if no rapid
stabilisation effect follows. In melt spinning the stress induced crystallisation
may overtake this role and acts as an additional hardener. Often the neck-like
deformation observed is followed by stress induced crystallisation.

The different kinds of failure behaviour are shown in Fig. 3.71 (accord-
ing to [270, 273]). Brittle fracture occurs if the stress exceeds the critical
amount of the breaking stress. No special deformation appears at the point
of rupture. Otherwise the ductile failure shows a typical thinning behaviour
which may also lead to break, perhaps in a similar manner to the brittle
fracture because the stress significantly increases. The thinning behaviour
may be locally limited; this deformation is called neck -deformation. If the
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elongation or the elongation rate exceeds some critical value, the transition
to ‘catastrophic’ failure may occur and can be explained with the special
nonlinear visco-elastic rheological material behaviour. On the other hand, if
there is any stabilizing effect like stress/elongation induced crystallisation the
required breaking stress may rapidly increase and thus fibre breakage may
be avoided.

1

2 3 4

Fig. 3.71. Failure behaviour, 1 – brittle fracture, 2 – ductile failure, 3 – neck-like
deformation, 4 – neck-like deformation followed by any stabilizing effect

Figure 3.72 shows some experimental results together with results from
calculation, exemplary for high speed spinning of PA 6. The range from
3000 m/min to 7200 m/min and from 1.0 g/min to 3.0 g/min was investigated
experimentally (the bold marked region in the diagram). Each point within
the ‘spinnability map’ (according to [271–273]) represents a combination of
take-up velocity vL and draw down ratio ddr = vL/v0 ∝ vL/Q. Horizontal
lines in this map represent constant draw down ratios and therefore constant
finenesses. The straight lines passing the origin mark the states of constant
mass throughput. For the experiments the take-up velocity was increased
stepwise at constant mass throughput until fibre breakage occurred and no
stable spinning process was further possible. The points (or more exactly:
the small region) where the stable spinning behaviour turned into unstable
behaviour mark the right border of the investigated region.

Additionally, the calculated lines of constant maximum deformation rate
ε̇ = dv/dx and the lines of constant stress σs at the solidification point are
shown in the diagram.

The maximum possible draw down ratio decreases with increasing through-
put and increasing take-up velocity. This means that in order to get fine
filaments lower throughput and lower take-up speed is to be recommended
with respect to spinning stability. It seems that for small throughputs the
maximum deformation rate and the ductile failure behaviour are the limit-
ing factors of spinnability. For sufficiently high mass throughputs and higher
spinning speeds the melt spinning behaviour of PA 6 shows the typical neck-
effect. Much higher deformation rates and also higher stresses are now possi-
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Fig. 3.72. Spinnability map for PA 6 melt spinning, lines of constant mass through-
put (indicated); bold marked region: experimentally investigated, stable spinning
conditions; points (•): limitation of spinnability, right from the border line no fur-
ther spinning is possible; lines of constant maximum deformation rate (calculated):
1 – ε̇ = 100 s−1, 2 – 800 s−1, 3 – 1200 s−1, lines of constant stress at solidification
point (calculated): A – σs = 5MPa, B – 10MPa, C – 15 MPa, data source: Institute
of Polymer Research Dresden

ble. It seems that the stress induced crystallisation that occurs after necking
acts as a stabiliser and the failure then results from brittle fracture. Similar
conclusions were drawn also by other authors [273]. The failure behaviour of
melt spun polymers is an interesting field of fibre research with many un-
solved problems. The question of spinnability includes problems of material
behaviour (flow behaviour, rheology, crystallisation, phase transition, struc-
ture development, and so on) as well as measuring and analytical techniques
and also engineering practice.
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