
4. Dynamics of Fibre Formation Processes

4.1 Task

It is well-known that textile fibres are produced with essentially three basic
technologies:

a) The separating, refining, strengthening and winding up of spinnable liq-
uid mass streams. All organic and inorganic chemical fibres are to be
subsumed to this group independently, if they are produced in a melt,
dry or wet spinning process.

b) The separating, parallel join and twist of fibres. All fibre yarns are to
be classified into this group independently, if the single fibres come from
natural (animal, vegetable) or chemical sources. The latter case is mostly
extending in front of a chemical fibre spinning process as seen in case a)
with following cut process.

c) Cut of plain sheets of organic polymers into thin, tape like stripes (slit
film yarn).

Each fibre formation process aims at the manufacturing of yarns with
equal properties along to the yarn length axis. This means in conformity
with the given definitions, that all product variables, which estimate the
textile processing and wear properties of the yarn, should be as constant as
possible. The case of effect yarn manufacture with consciously determined
periodic or stochastic disturbed yarn structures along its length axis is an
exception that should be mentioned. However, it will not be subject of the
following considerations.

The processing of textile yarns and their wear behaviour is characterised
by the product variable mass (fineness) along the yarn length axis or defor-
mation resistance (elastic modulus) along the fibre length axis. These product
variables oscillate around their averages caused by oscillations of raw materi-
als and process variables. Therefore these product variables characterise the
yarn unevenness, in which the fineness characterises the so-called outer yarn
unevenness and the elastic modulus characterises the so-called inner yarn
unevenness.
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4.2 Melt Spinning of Polymers

4.2.1 Variable Fibre Fineness

The yarn finenesses and the yarn orientation are the most important among
the different variables which describe the yarn quality. Therefore, the de-
velopment of a mathematical model for these two yarn variables should be
demonstrated here. At first, we start the investigations with the variable fibre
fineness.

Cause-Effect-Scheme

The cause-effect relations of the process and the product variables for the
target quantity yarn fineness should be demonstrated in the following. The
recommended first step of the modelling process (registration and order of
relevant process and product variables; see Sect. 2.5.1) can be carried out best
through the elaboration of a cause-effect-scheme. The technological scheme
of a melt spinning process is shown in Fig. 4.1.

It is to be remarked that this scheme is strongly simplified. It only con-
tains the absolutely necessary tools and variables for our considerations. For
instance thread guides, the oiling system and in some cases existing godets
before the winder are not drawn. It is assumed that the heating system for
the spinning die is an electrical resistance heating equipment. This is usual for
laboratory equipment. Typical for the polymer melt spinning process is, that
the thermoplastic melt (produced normally by means of an extruder) is fed to
the single spinning positions along a melt distribution system by means of an
exactly feeding volume conveyor tool for each (gear pump, spinning pump).
After passing the spinning die (the tool, which distributes the melt stream
into the number of filaments in the yarn) the single thin melt filaments are
rapidly deformed, cooled and strengthened. At this complicated rheological
and structural formation, shift processes take place in the filaments, which are
caused directly or indirectly by the take-up velocity, created by the winder.
For the target quantity or effect variable “fineness of the spun yarn” the
process and product cause variables that are probably interesting at such a
spinning position are shown in Fig. 4.1 as well.
Figure 4.2 shows the cause-effect-scheme for the target quantity fineness T ts
(designed on this basis).

The cause-effect-arrows go from the cause to the effect. The box of the
target quantity fineness is thickly framed, boxes of quantities at the process
periphery are shaded (from these arrows only lead off). The fineness T ts is
only caused under static conditions from the take-down (spinning) velocity
at the output of the fibre formation distance vs and from the throughput
through the spinneret Qs, which feeds the fibre formation distance at its
input. The basic equation uses the suitable dimensions
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Fig. 4.1. Technological scheme (simplified) of a polymer melt spinning process

T ts[tex] =
Qs[g/min]
vs[km/min]

(4.1)

It should be added, that changes of the quenching air velocity Δva below
the die, and the necessary traverse motion at the bobbin of the winder, which
is effected by the amplitude tma and the frequency tmf of the thread guide
for the traverse motion, also effect changes of the yarn fineness. However,
they do not effect changes to the mean fineness. They only change the value
of the fineness differentially. These 3 boxes are dotted frames. More detailed
explanations to the latter are in Sects. 4.1.1.3 and 5.1.5.4.

The main cause variables for the fineness T ts, namely the throughput Qs

and the take-down (spinning) velocity vs, can be traced back now regarding
their cause process and product variables. The take-down velocity vs is caused
by the speed of the bobbin nb, which is caused by the mains supply voltage
Um and the mains supply frequency fm if an asynchronous drive motor is



148 4. Dynamics of Fibre Formation Processes

heating
resistor Rh

cooling,
heat capacity

chemical
composition

traverse motion
amplitude tma

spinneret 
geom. s, d, z

heating
power Nh

spinneret
temperat. Ts

melt
viscosity ηs

flow
resistance Rs

traverse motion
frequency tmf

pressure bef.
spinneret ps

throughput
spinneret Qs

fibre
fineness Tts

geometry of
spinn. pump

speed
sp. pump np

throughput
sp. pump Qp

running
time t

mains supply
voltage Um

mains supply
frequency fm

speed
bobbin nb

wind-up
diameter D

spinning
velocity vs

quench. air
velocity Δva

Fig. 4.2. Cause-effect-scheme for the target quantity fineness T ts of a polymer
melt spinning process

used, and the wind-up diameter D. The latter of course increases with the
running time t.

The throughput Qs is only caused by the throughput of the spinning
pump Qp, which depends upon itself because of its geometrical design and
its speed np. Back stream leakages of the spinning pump, which would mean
Qs < Qp, are not regarded here. If the spinning pump would be driven by an
asynchronous motor from the same mains supply Um and fm to T ts would
be effectively doubled along the cause-effect-chains:

Um, fm → nb → vs → T ts and
Um, fm → np → Qp → Qs → T ts

The pressure before the spinning die ps does not appear as a cause variable
in regard to Qs. It only depends, corresponding to the Hagen-Poiseuille-
law for laminar flows in the tube, see [279], on the flow resistance inside the
capillary holes of the die Rs and from Qp. The flow resistance Rs depends on
its part from the geometry of the capillary holes (length s, diameter d, number
z) and from the melt viscosity ηs. The dependence of the melt viscosity ηs

on the spinneret temperature Ts and on the chemical polymer composition is
comprehensible by reason of simple basic physical laws. The dependence of
Ts on the cooling conditions at the spinning die and on the heating power Nh
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(itself depending on the mains supply voltage Um and on the Ohm’s heating
resistance Rh) can be concluded with the same reasons.
In the next step it is necessary to set up the DEq. for each cause-effect
relation or, if impossible, to investigate the dynamic signal transfer properties
of the partial transfer systems. The signal transfer and signal interlacing
character can be better represented by means of the so-called functional block
diagram. In automatic control this is an often used scheme, which develops
formally from the cause-effect-scheme by means of technological and prior
physical knowledge. This only contains the change or oscillating parts of
the process and product variables as their signals are connected together
by cause-effect relations. The dynamic transfer properties are represented
by the blocks, “black boxes”, which are unknown at the beginning of the
analysis. This procedure will be demonstrated more fully in Sect. 4.3 with
the example of “glass fibre spinning”. In the following, the set up of the
dynamic model will be demonstrated, which on the one hand describes the
cause-effect relations between the cause variables throughput spinneret Qs

and the spinning velocity vs and the fibre fineness T ts which is effected by
these variables, on the other. The final goal of this procedure is to prepare
technological statements about the disturbance transfer properties of the fibre
formation distance.

Specified Differential Equation of a Fibre Formation Distance (sim-
plified)

Figure 4.3 shows the fibre formation distance of the melt spinning process,
only one monofilament fibre, which is reduced to the most necessary of ele-
ments and variables.

A melt stream is pressed through the capillary hole, cross section qi, of
the spinneret with the velocity vi (input velocity or injection velocity into the
fibre formation distance). At the length l between the spinneret and the take-
up rolls with the output velocity vs it is drawn, solidified and transported.
The ready fibre with the cross section qs esp. the fineness T ts appears at
the take-up rolls. The relationship between the fibre fineness and the cross
section is given by the density � in the following manner:

T ts[tex] = �[g/cm3] · qs[μm2] · 10−3 (4.2)

The following relationship exists between the mass discharge per time (or
throughput) Qs and the input variables of the fibre formation distance:

Qs = � · qi · vi (4.3)

In Eq. 4.3 it is not distinguished between �fibre and �melt, because a constant
factor exists between these two densities and an influence on the time and
frequency oscillation relations will not be given. We split according to the
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Fig. 4.3. Fibre formation distance (simplified) of the
polymer melt spinning

agreement the variables, if necessary, into the mean value and the fluctuating
part, consequently for instance:

vi = vim ± Δvi,
qs = qsm ± Δqs and so on

The question is: Which T ts-fluctuations appear and if fluctuations of the
variables vi, qi, �, vs or l appear? The question can only be answered on the
basis of a dynamic fibre formation model. Ingeniously the starting point is
the dynamic continuum equation (2.18).
Applied to the present fibre formation distance are:

mass inflow/time = qi·vi·�
mass discharge/time = qs·vs·� = T ts·vs

change of stored mass = q̇s·l·� = Ṫ ts·l
The assumed simplification at the formulation of the stored mass is, that

the deformation range of the melt stream until it reaches its solidification
point is not considered. At this point the diameter or the fineness of the spun
fibre is reached. However, this range of the whole fibre formation distance is
relatively small (∼ 0.5...0.8 m), and the related mistakes do not prevent qual-
itatively correct results. An exact and quantitatively correct consideration of
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this range makes a correct mathematical solution impossible. In Sect. 3. the
very complex processes which take place in the fibre formation distance are
explained in more detail.

Using the expressions above the complete DEq. of the fibre formation
distance can now be written as:

qi · vi · � − T ts · vs − Ṫ ts · l = 0 (4.4)

By marking the whole left side of the DEq. 4.4 with the letter Φ and in-

troducing the Laplace-operator p =
d
dt

, the DEq. is converted into the
transformed quantic:

Φ = qi · vi · � − T ts · vs − p · T ts · l = 0 (4.5)

Equation 4.5 represents a nonlinear DEq. first order, because all variables
in the single terms, which can fluctuate, are multiplicatively connected to-
gether. Equation 4.5 can be linearised by means of the partial differentiation
as follows:

∂Φ

∂qs
· Δqs +

∂Φ

∂vs
· Δvs +

∂Φ

∂qi
· Δqi +

∂Φ

∂vi
· Δvi +

∂Φ

∂l
· Δl +

∂Φ

∂�
· Δ� = 0 (4.6)

The instruction of Eq. 4.6 means, that the whole DEq. 4.5 is to be derived
partially with respect to each single variable of change. The mean value is to
be set by the single derivation step for these variables which are not to be
derived. The following linearised complete DEq. is achieved as the mathemat-
ical dynamic model of the fibre formation distance after the partial derivation
and order of the single terms:

(vsm + p · lm) · ΔT ts + T tsm · Δvs − vim · �m · Δqs

−qim · �m · Δvi + p · T tsmΔl − qim · vim · Δ� = 0
(4.7)

Equation 4.7 is a multilateral applicable dynamic model equation for fibre
formation and fibre transport processes (see also Sect. 5.1). The performed
linearisation (each term of the Eq. 4.7 contains only variables of change in
time) is connected to the following consequences regarding the analysis:
Equation 4.5 represents primarily a nonlinear relationship. This is imaginable
as a spatial multidimensional curved sheet and it is approached by a plane
tangential sheet in the technological operating point. It is determined by the
mean values of the single variables. The linearised relation is better validated
the nearer the analytical investigation remains at this technological operation
point. That means that the linearised Eq. 4.7 is valid more exact the smaller
the investigated change quantities are in relation to their mean values. In
practice it should be kept for any change variable x:

Δx � 0.1 · xm (4.8)
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Solutions of the Differential Equation of the Fibre Formation Pro-
cess

DEq. 4.7 is the calculation basis for the characterisation of the dynamic
behaviour of the fibre formation distance. It is now possible to calculate the
effects of Δvs-, Δvi-, Δqi-, Δ�- and Δl- disturbances on the fineness changes
ΔT ts. Each change variable is ingeniously to be regarded separately.

Disturbance Δvs (changes of the take-down velocity). The boundary
condition for this case is:

Δvi = Δqi = Δ� = Δl = 0

Introducing this into the DEq. 4.7 and applicatiing the calculation and
conversion algorithms (which were explained in detail in Sect. 2.5.2) results
in:

dynamic transfer function:

G(p) =
ΔT ts
Δvs

= −T tsm
vsm

· 1

1 + p · lm
vsm

(4.9)

The complex frequency response follows:

G(jω) =
˜ΔT ts

Δ̃vs

· ejϕ = −T tsm
vsm

· 1

1 + jω · lm
vsm

(4.10)

Equation 4.10 can be split into the amplitude frequency response (simply
also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃vs

⏐⏐⏐⏐⏐ = (−)
T tsm
vsm

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.11)

and the phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
− π (4.12)

By means of Eqs. 4.9 and 2.41 the time transient function can be calcu-
lated as: (also step response)

ΔT ts|Δvs = −Δvs · T tsm
vsm

[
1 − exp

(
−vsm

lm
· t

)]
(4.13)

A collected qualitative and quantitative evaluation of the results of
Eqs. 4.9 to 4.13 is given in the next Sect. “Summarised Evaluation and Con-
clusions to the Solutions of the Differential Equation”. However, already here
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it should be referred to the minus sign in the Eqs. 4.9, 4.10, 4.11, 4.13, which
hints at the physical right dependence: A positive Δvs-change effects a nega-
tive ΔT ts-change. That means an increase of the take-down velocity effects,
under constant other conditions, a decrease of the spun fibre fineness.

Disturbance Δvi (changes of the input velocity). Boundary condition:

Δvs = Δqi = Δ� = Δl = 0

It is to be written in the same manner as described before:

dynamic transfer function:

G(p) =
ΔT ts
Δvi

=
qim · �m

vsm
· 1

1 + p · lm
vsm

(4.14)

or, because qim · �m = T tsm · vsm

vim

G(p) =
ΔT ts
Δvi

=
T tsm
vim

· 1

1 + p · lm
vsm

(4.15)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃vi

· ejϕ =
T tsm
vim

· 1

1 + jω · lm
vsm

(4.16)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃vi

⏐⏐⏐⏐⏐ =
T tsm
vim

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.17)

phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
(4.18)

time transient function (or step response)

ΔT ts|Δvi = Δvi · T tsm
vim

[
1 − exp

(
−vsm

lm
· t

)]
(4.19)

A collected qualitative and quantitative evaluation of the result Eqs. 4.15
to 4.19 is given in the next Sect. “Summarised Evaluation and Conclusions to
the Solutions of the Differential Equation”. The effects of Δvi-disturbances are
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co-directional to the ΔT ts-changes opposite to the described Δvs-disturbances.
That means an increase of the input velocity effects under constant other
conditions, an increase of the spun fibre fineness as well. Besides it should
also be hinted here, that the result equations of Sect. 2.5.2 (example drawing
process at input velocity disturbances) are equivalent to the presented result
equations of the fibre formation distance for Δvi-disturbances. That means it
corresponds in each case Eqs. 4.15 to 2.40, 4.16 to 2.36, 4.17 to 2.38, 4.18 to
2.39 and 4.19 to 2.46.

Disturbance Δqi (changes of the input cross sectional area). Bound-
ary condition:

Δvs = Δvi = Δ� = Δl = 0

Such a disturbance is actually unlikely for a melt spinning process (it
would be more plausible to assume step-like or oscillating changes of the cap-
illary hole diameter in the spinneret). Nevertheless, dynamic solution equa-
tions will be explained in the following for this disturbance model as well. In a
row of other fibre formation and fibre processing processes Δqi-disturbances
are identical namely with changes of the fineness at the process input. A
modified application of the here given result equations is easily possible. Ex-
amples will follow in later sections.

dynamic transfer function:

G(p) =
ΔT ts
Δqi

= �m · vim

vsm
· 1

1 + p · lm
vsm

(4.20)

or, because vim · �m =
T tsm · vsm

qim

G(p) =
ΔT ts
Δqi

=
T tsm
qim

· 1

1 + p · lm
vsm

(4.21)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃qi

· ejϕ =
T tsm
qim

· 1

1 + jω · lm
vsm

(4.22)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃qi

⏐⏐⏐⏐⏐ =
T tsm
qim

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.23)
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phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
(4.24)

time transient function (or step response)

ΔT ts|Δqi = Δqi · T tsm
qim

[
1 − exp

(
−vsm

lm
· t

)]
(4.25)

A collected qualitative and quantitative evaluation of the result of Eqs. 4.21
to 4.25 is given in the next Sect. “Summarised Evaluation and Conclusions
to the Solutions of the Differential Equation”. But, it should already be said
here, that the effected ΔT ts-disturbances, caused by Δqi-disturbances, are
co-directional.

Disturbance Δ� (changes of the density of fibre material). Boundary
condition:

Δvs = Δvi = Δqi = Δl = 0

It can be concluded in the same manner as described before:

dynamic transfer function:

G(p) =
ΔT ts
Δ�

=
qim · vim

vsm
· 1

1 + p · lm
vsm

(4.26)

or, because qim · vim =
T tsm · vsm

�m

G(p) =
ΔT ts
Δ�

=
T tsm
�m

· 1

1 + p · lm
vsm

(4.27)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃�
· ejϕ =

T tsm
�m

· 1

1 + jω · lm
vsm

(4.28)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃�

⏐⏐⏐⏐⏐ =
T tsm

�

[
1 +

(
ω · lm

vsm

)2
]−1/2

(4.29)
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phase frequency response (simply phase response)

ϕ(ω) = arc tan
[
−ω · lm

vsm

]
(4.30)

time transient function (or step response)

ΔT ts|Δ� = Δ� · Δ� · T tsm
�m

[
1 − exp

(
−vsm

lm
· t

)]
(4.31)

A co-directional dependence of Δ�-changes on effected ΔT ts-changes is
also to be seen here. A collected qualitative and quantitative evaluation of the
result of Eqs. 4.27 to 4.31 is given in the next Sect. “Summarised Evaluation
and Conclusions to the Solutions of the Differential Equation”.

Disturbance Δl (changes of the length of the fibre formation dis-
tance). Boundary condition:

Δvs = Δvi = Δqi = Δ� = 0

At first glance, this disturbance does not seem to be of any practical inter-
est. But it is to be hinted, that the fibre influence by means of the dynamics
of thread traverse motion at winders (especially at the godetless high speed
melt spinning) is exactly equivalent to the change model “length of the fibre
formation distance”. More details can be found in Sect. 5.1.5.

The following result equations are to be concludet:

dynamic transfer function:

G(p) =
ΔT ts

Δl
= −T tsm

lm
· p

p +
vsm

lm

(4.32)

complex frequency response:

G(jω) =
˜ΔT ts

Δ̃l
· ejϕ = −T tsm

lm
· jω

jω +
vsm

lm

(4.33)

amplitude frequency response (simply also amplitude response)

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT ts

Δ̃l

⏐⏐⏐⏐⏐ = (−)
T tsm
lm

· ω ·
[
ω2 +

(
vsm

lm

)2
]−1/2

(4.34)
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phase frequency response (simply phase response)

ϕ(ω) = arc tan
[

vsm

ω · lm

]
− π (4.35)

time transient function (or step response)

ΔT ts|Δl = −Δl · T tsm
lm

· exp
(
−vsm

lm
· t

)
(4.36)

Also these result Eqs. 4.32 to 4.36 will be collected and discussed in the
following Sect. “Summarised Evaluation and Conclusions to the Solutions of
the Differential Equation”

Summarised Evaluation and Conclusions to the Solutions of the
Differential Equation

Three summarised unifying statements can be made by the comparing all
result equations regarding the cause-effect relations between the different
process and product variables Δvs, Δvi, Δqi, Δ� and Δl on the one hand and
the product variable ΔT ts on the other:

1. Statement

Four of the five dynamic transfer functions are equally constructed. (cp.
4.9, 4.15, 4.21 and 4.27). This fact leads of course to equally constructed, from
it derived functions, as complex frequency response, amplitude frequency re-
sponse, phase frequency response and step response. This applies to the dis-
turbances Δvs, Δvi, Δqi and Δ�. This dynamic behaviour is characterised by
it in the transfer function, that the Laplace-operator p exists only once
linear in one of two terms of the denominator. Such a behaviour is called
proportional action with delay of first order. It is typical for such a system
behaviour, that residual changes (esp. step-like) of the cause variables (if they
continue long enough) effect residual changes of the effect variables (ΔT ts),
in which the quantities of cause and effect changes are proportional to each
other. Delay of first order means, that only one time constant and only one
exponential function (coming from only one differential quotient in the DEq.)
determine the dynamic transient process.

2. Statement

The dynamic transfer function for the disturbance Δl (Eq. 4.32) is de-
flectively constructed. It actually possesses the same denominator compared
with the named transfer functions in the first statement, but the Laplace-
operator p appears once more linear in the numerator. This behaviour is
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called differential action with delay of first order. It is typical for such a
system behaviour, that changes of the effect variables (ΔT ts) reduce to zero
again, if the changes(esp. step-like) of the cause variables only continue long
enough. Delay of first order means in this case, that likewise only one time
constant and only one exponential function determine the subsidence of the
effect to zero (a transient process as well).

3. Statement

The dynamic behaviour of a fibre formation distance is dominated by the
quantity lm/vsm. This was also the case in Sect. 2.5.2 (there for the drawing
process) for the system time constant Tc (see Eq. 2.47). The time constant Tc

is readable from the exponent of the e-functions in the time transient func-
tions of Eqs. 4.13, 4.19, 4.25, 4.31 and 4.36.
The critical frequency fc can be determined likewise by lm and vsm corre-
sponding to Eq. 2.49 (vsm corresponds to vom).

Considering the first statement it is possible to get common solutions for
the four disturbance causes Δvs, Δvi, Δqi and Δ� regarding their effects to
the fineness ΔT ts. Uniform, normalised solutions can be determined for the
complex frequency response, the amplitude frequency response, the phase
frequency response and the time transient function (step response), which
are valid for all of the four disturbance causes in similar manners.

Considering Eqs. 2.48 and 2.49 one gets from the Eqs. 4.10, 4.16, 4.22
and 4.28 the common normalised complex frequency response, in which ω is
substituted by f :

G[j(f/fc)] = −
˜ΔT ts/T tsm

Δ̃vs/vsm

· ejϕ =
˜ΔT ts/T tsm

Δ̃vi/vim

· ejϕ

=
˜ΔT ts/T tsm

Δ̃qi/qim

· ejϕ =
˜ΔT ts/T tsm

Δ̃�/�m

· ejϕ

=
1

1 + j(f/fc)

(4.37)

Considering Eqs. 2.48 and 2.49 one gets from the Eqs. 4.11, 4.17, 4.23
and 4.29 in the same manner the common normalised amplitude frequency
response:

|G[j(f/fc)]| =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃vs/vsm

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃vi/vim

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃qi/qim

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃�/�m

⏐⏐⏐⏐⏐ = [1 + (f/fc)2]−1/2

(4.38)
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The transfer locus of this normalised complex frequency response is shown
in Fig. 4.4.
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Fig. 4.4. Transfer locus of the normalised complex frequency responses for changes
of fibre fineness ΔT ts in consequence of different disturbance causes (Eqs. 4.37 and
4.42)

It should be considered that, at the modulus generation the negative
sign for the disturbance Δvs disappears. The normalised amplitude frequency
response is presented in Fig. 4.5.

The common normalised phase frequency response of the same single
phase frequency responses of Eqs. 4.18, 4.24 and 4.30 is:

ϕ(f) = arc tan[−f/fc] (4.39)

and for 4.12:

ϕ(f) = arc tan[−f/fc] − π (4.40)

Both are also included in Fig. 4.5. At last the common normalised step re-
sponses can be concluded from Eqs. 4.13, 4.19, 4.25 and 4.29 considering
Eq. 2.48:
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−ΔT ts/T tsm|Δvs

Δvs/vsm
=

ΔT ts/T tsm|Δvi

Δvi/vim

=
ΔT ts/T tsm|Δqi

Δqi/qim
=

ΔT ts/T tsm|Δ�

Δ�/�m

= 1 − exp(−t/Tc)

(4.41)

The common normalised step response is shown in Fig. 4.6. It is char-
acteristic for this type of disturbances, that the effect to the fibre fineness
is smaller the smaller the disturbance frequency f is. In a way steady state
Δl-changes (frequency f ≈ 0) do not result in fineness changes (see Figs. 4.4
and 4.5), whereas the frequency and amplitude frequency responses rapidly
approach the maximum amplification factor 1 for f > fc.
This differential action appears in the step response. The fineness shift is
first of all a maximum after the imprint of the cause step Δl and after that
decreases to zero according to e−t/Tc . The critical frequency fc or the time
constant of the system Tc are the significant sizes for quantitative estimations
here as well.

Quantitative conditions can be deduced easily, for instance from the devel-
oped relationships for the design of yarn traverse motion systems at wind-up
devices. The goal is in this case a minimising of the fineness changes ΔT ts,
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Fig. 4.6. Normalised step response for changes of fibre fineness ΔT ts in consequence
of different disturbance causes (Eqs. 4.41 and 4.45)

caused by the permanent effecting Δl-changes (see example presentation in
Sect. 5.1.5). A high critical frequency fc (that means short fibre formation
distances lm and high take-up velocities vom) would be preferred for the dis-
turbance type Δl alone. However, these are conditions which are connected
with high amplifications of the other dealt with disturbance causes. At this
point it is necessary that compromises be settled.

More remarks to the phase frequency responses of the dealt with distur-
bance causes (Fig. 4.5):

The disturbances Δvi, Δqi, and Δ� result in the running behind of the
phase shift angles of the effect oscillations against the periodic cause oscil-
lations (they start for f/fc = 0 with ϕ = 0 and end for f/fc → ∞ with
ϕ = −π/2). Whereas, the disturbance Δvs causes (settled by the negative
coupling to the effect oscillation ΔT ts - see the minus signs before the func-
tions in Eqs. 4.9 until 4.11 and 4.13) a running behind of the phase shift angle
which is additionally shifted about −π. That means it starts for f/fc = 0
with ϕ = −π and ends for f/fc → ∞ with ϕ = −3π/2 (see also Eq. 4.12).

A differential action with delay of first order (in the present case Δl-
disturbances) normally results in a running before of the phase shift an-
gles which start at f/fc = 0 with ϕ = +π/2 and end for f/fc → ∞
with ϕ = 0. Because the coupling between the Δl-disturbances and the ef-
fected ΔT ts-disturbances is also negative (minus signs before the functions in
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Eqs. 4.32...4.34 and 4.36) the phase shift angles are shifted in the same way
about −π (see also Eq. 4.35). The result is the altogether running behind
of the phase shift angles, which appear as ϕ = −π/2 (for f/fc = 0) until
ϕ = −π (for f/fc → ∞).

These specialities for Δvs- and Δl-disturbances are considered in Fig. 4.5
by different ordinates for the common dotted drawn phase frequency response
curve.

Further explanations to the use of the phase frequency response for the
analysis of specific problems will be given in Sect. 5.1.5.

The system time constant Tc and the critical frequency fc of a fibre for-
mation distance respectively a fibre formation line (we will see later that it
is also valid for many yarn processing lines in the same manner), which are
characterised by a length lm, can be investigated by means of the nomogram
in Fig. 4.7. These lines are characterised by a length of lm which passes the
fibre or yarn with the output or take-up velocity vom. The nomogram is the
graph of the definition of Eqs. 2.47 and 2.49 and allows for a quick estimation
of Tc and fc. lm and vom (outer ladders) are to be lined rectilinearly and Tc

and fc can be read from the point of intersection with the middle ladder. The
drawn straight lines (1) and (2) represent the concrete application examples
that have been described in Sects. 2.5.2 and 5.1.5.

As one can see, the ordinates of Figs. 4.5 and 4.6 are divided appropriately
into the dimensionless ratio of relative effect-cause-changes, and the abscissa
is divided into the also dimensionless ratio f/fc or t/Tc. The ordinate val-
ues assert, by which factor a percentage cause change is to be multiplied
in order to get the effected fineness change. This factor is at the most 1
for small disturbance frequencies (periodic disturbances) or for infinite long
times (step-like disturbances). If the frequency of the disturbances is exactly
equal to the critical frequency of the fibre formation distance (f = fc) then
the factor is 1/

√
2 ≈ 0.71 and decreases with greater disturbance frequency

quickly to zero.
Normally disturbances should only influence the aim variable as little as pos-
sible. Taking this into consideration the technological operating point of the
fibre formation distance demands that the time constant Tc should be as
much as possible and concerning the critical frequency fc as little as pos-
sible. It is then guaranteed, that disturbances of small frequency no longer
have any considerable penetrance to the aim variable fibre fineness. It is to be
reached, if either the length of the fibre formation distance lm can be enlarged
and/or the take-up (spinning) velocity vsm can be reduced. The latter is not
usually desired. But this dynamic model reflection shows that the instable
process behaviour at increased velocity is objectively foundable on the one
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hand. It also shows on the other the limits of constructive and technological
compromises, which can be made if necessary.

The cause-effect-transmission of the disturbance model Δl is the exact op-
posite of the four dealt with disturbance models above. The normalised com-
plex frequency response can be concluded from Eq. 4.33 considering Eqs. 2.48
and 2.49:

G(jf) =
˜ΔT ts/T tsm

Δ̃ls
· ejϕ = − j(f/fc)

1 + j(f/fc)
(4.42)

The transfer locus of this normalised complex frequency response is also
included in Fig. 4.4.
One can get the amplitude frequency response from Eq. 4.34 in the same
manner considering Eqs. 2.48 and 2.49:

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT ts/T tsm

Δ̃ls

⏐⏐⏐⏐⏐ = (−)(f/fc)
[
1 + (f/fc)

2
]−1/2

(4.43)

The normalised phase frequency response is according to 4.35:

ϕ(f) = arc tan(fc/f) − π (4.44)

Normalised amplitude and phase frequency responses are shown in Fig. 4.5.
The minus sign of the complex frequency response is suppressed in the modu-
lus representation of the amplitude frequency response. At quantitative eval-
uations it has to be considered of course, that a positive Δl-change correlates
with a negative ΔT ts-change and vice versa.
At last from Eq. 4.36 we get the step response as:

ΔT ts/T tsm|Δl

Δl/lm
= −exp(−t/Tc) (4.45)

This normalised step response is shown in Fig. 4.6.

It is characteristic of this kind of disturbance, that the effect to the fi-
bre fineness is smaller if the frequency f of disturbances is smaller. In a way
steady state Δl-changes (frequency f ≈ 0) result in no fineness changes what-
soever (see Figs. 4.4 and 4.5), whereas the frequency and amplitude frequency
responses quickly reach the maximum amplification factor 1 for f > fc.

This differential action is expressed in the presentation of the step re-
sponse (Fig. 4.6) so that an imprinted step Δl causes first of all a maximum
fineness shift, which then decreases to zero according to exp(−t/Tc). The
critical frequency fc or the system time constant Tc are significant quantities
also for quantitative estimations in such cases.
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The developed relationships can be used for instance as the calculation
basis for the design of traverse motion systems at winders. It is possible
to give quantitative conditions for a reduction of the fineness changes ΔT ts
caused by the permanent effecting Δl-changes (see example in Sect. 5.1.5).
A high critical frequency fc would be preferred for the disturbance type Δl,
this means a short fibre formation distance lm and a high take-up velocity
vom would be favourable. However, these are just conditions for a high am-
plification of the other dealt with disturbance causes as named before. The
necessity of compromises is obvious at this point.

A few remarks to the phase frequency responses of the dealt with distur-
bance causes (Fig. 4.5):

The disturbances Δvi, Δqi and Δ� produce running behind phase shift an-
gles versus the causing oscillations (f/fc = 0 starts with ϕ = 0 and ends for
f/fc → ∞ with ϕ = −π/2). Whereas, the disturbance Δvs (involved by the
negative coupling to the effected oscillation ΔT ts - see minus signs before the
dynamic functions of Eqs. 4.9 to 4.11 and 4.13) produces a running behind
phase shift angle which is shifted additionally by −π. This means, it starts
with f/fc = 0 with ϕ = −π and ends with f/fc → ∞ with ϕ = −3π/2 (see
also Eq. 4.12).

A differential action with delay of first order (as being submitted by the
disturbance Δl) normally produces running before phase shift angles which
start with f/fc = 0 with ϕ = +π/2 and ends with f/fc → ∞ with ϕ = 0.
But, also because a negative coupling is given for Δl-disturbances to the
effected ΔT ts-disturbances (see minus signs before the dynamic functions of
Eqs. 4.32 to 4.34 and 4.36) the phase shift angles are also shifted by −π (see
also Eq. 4.35). Therefore, running behind phase shift angles appear altogether
which start with ϕ = −π/2 (for f/fc = 0) and end with ϕ = −π (for f/fc →
∞). These specialities by Δvs- and Δl-disturbances are considered in Fig. 4.5
by different ordinates for the dotted lined common phase frequency response.
More detailed explanations to the use of the phase frequency response for
special problems will be given in Sect. 5.1.5.

The system time constant Tc and the critical frequency fc of a fibre for-
mation distance (we will see later, that it is also valid for many other fibre
processing distances) can be found out by means of the nomogram Fig. 4.7.
This converts the Eqs. 2.47 and 2.49 into a quickly utilisable manner. To this
the length of the fibre formation distance lm and the take-up velocity vom

(outer nomogram ladders) are connected rectilinearly and in the cross point
with the middle ladder the Tc and/or fc can be read. This is done for instance
for two applications, dealt with in Sects. 2.5.2 and 5.1.5 (straight lines (1)
and (2)).

At last some remarks to the question of the model-mathematical treat-
ment of different process and product variable disturbances which simultane-
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ously appear and effect fibre fineness changes. In principle, the superposition
principle can be applied to the single developed solution equations (transfer
function, complex frequency response and time transient function) for the
single disturbance of the DEq. 4.7. However, the following has be taken into
consideration:

a) The related step response (for instance Eqs. 4.13 and 4.19, if step-like
disturbances Δvs and Δvi are at hand) are added in consideration of the time
range. If the different disturbances do not start at the same time t = 0 then
the corresponding time shift of the one transient function to the other is to
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be considered. Of course a graphic addition of the transient functions is also
possible.

b) The related dynamic transfer functions or complex frequency responses
(for instance Eqs. 4.9 and 4.15 or 4.10 and 4.16, if periodic disturbances
Δ̃vs and Δ̃vi are at hand) are to be added corresponding to the rules of
the addition of complex numbers (vector addition) in consideration of the
frequency range. If the exciting frequency ω is not the same for the viewed
disturbances then ω1 and ω2 must be put in separately to both basic equations
of the complex frequency responses (corresponding to p1 = jω1 and p2 = jω2

to both basic equations of the transient functions). The amplitude frequency
responses and the phase frequency responses can only be calculated by means
of the complex added complex frequency responses and not by means of the
simple addition of the amplitude and phase frequency responses from the
both single disturbances.

4.2.2 Variable Fibre Orientation

Cause-Effect-Scheme

A very important product variable of a melt spun fibre is the achieved orien-
tation of the macromolecules along the fibre length axis, consequently along
the main tension direction during the fibre formation and elongation pro-
cesses. The orientation determines the textile-physical properties of the fibre
decisively. This fibre orientation determines the breaking tensile force Fb and
the breaking elongation εb. It should be characterised by the orientation
elongation εo which the fibre has suffered, starting from the complete unset-
tled isotropic state of the thermoplastic melt. A measurement for εo is the
birefringence of the fibre Δo at the exit of a special fibre formation distance.

The following a-priori knowledges from the literature [280, 281] are im-
portant and are concerned with the qualitative and quantitative relationship
between the imprinted orientation elongation εo and the causing process and
product variables in the fibre formation process:

a) Thermoplastic fibre polymers possess a maximum imprintable orien-
tation elongation εomax. This is independent of the kind and the quantity of
as to time consecutive elongation steps (spinning, draw and tensile testing or
high speed spinning, post draw and tensile testing and so on) and its value
is nearly constant for an appointed fibre polymer.

If the achieved elongation εoi of a single elongation step i is expressed as
the natural logarithm, consequently:

εoi = ln
[

T tii
T toi

]
then it is valid with good exactness for the fibre material PA
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εoi =
n∑

i=1

εoi ≈ 2

and for the fibre material PET

εoi =
n∑

i=1

εoi ≈ 2.3

b) In the first step of such a consecutive chain of elongation steps (this is
the spinning step) the fibre has reached the orientation elongation εo1. This
is dependent upon the tensile stress (fineness related tensile force) RTg which
appears in the fibre at the glass transition temperature Tg (for PA 6 nearly
50 , for PET nearly 80 ). For temperatures < Tg the fibre is “ready”, this
means T ts is reached and on the following take-up way the fibre will not be
further elongated plastically.

c) RTg is the tensile stress (fineness related tensile force) at the point
< Tg. Therefore, it is necessary to analyze the tensile force FTg at this point
because it is valid:

RTg = FTg/T ts (4.46)

As informed in [280] and [281] FTg is improved essentially by an air fric-
tion component Fdrag and an acceleration component Finert, in which both of
these components have totally different quantitative importance in the clas-
sical spinning (vs ≤ 1200 m/min) and in the high speed spinning (vs ≥ 3000
m/min). With completing this it should be remarked, that in the classical
spinning process the rheological initial force Frheo should be taken into con-
sideration.

d) The air friction force Fdrag is dependent upon the throughput through
the spinneret Qs, the spinning velocity vs and the distance between the spin-
neret and the point at which the fibre reaches the glass transition temperature
Tg. This spinneret distance lTg is essentially dependent upon the through-
put through the spinneret Qs, the spinneret temperature Ts and the cooling
conditions (surrounding air velocity, surrounding air temperature and sur-
rounding air humidity).

e) The acceleration force Finert is dependent upon the spinning velocity
vs as well as upon the throughput through the spinneret Qs.

The verbally described dependences are summarised as shown in the tech-
nological scheme Fig. 4.8 and the cause-effect-scheme Fig. 4.9.

Looking at Fig. 4.9 it is evident that the fibre fineness T ts is one of the
two relevant product variables which effects the tensile stress (fineness related
tensile force) RTg . The latter effects the target quantity fibre orientation
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Fig. 4.8. Scheme of fibre formation at the melt
spinning of polymers. Solidification point at the
glass transition temperature Tg in the distance
lTg

through the elongation orientation εo1. It would be possible to integrate the
whole cause-effect-scheme Fig. 4.2 into Fig. 4.9 for the variable fibre fineness
T ts. Nevertheless, only the important process variables Qs and vs (which
directly effect the fineness T ts) have been inserted in Fig. 4.9 because these
additionally influence the tensile stress (fineness related tensile force) RTg

through the tensile force FTg.

Estimation to the Disturbance Transfer

In the following it should be attempted to estimate (without detailed deriva-
tion) the dynamic disturbance transmission to the fibre orientation εo1 con-
siderating the derived detailed relations from Sect. 4.2.1.

All disturbance quantities which influence Qs (these are Δvi, Δqi and Δ�),
effect by means of the ΔT ts-changes (itself effected by the well-known dy-
namic transfer equations) also changes of force (ΔRTg )- and with this of
orientation elongation (Δεo1)-changes with the same time and frequency be-
haviour. ΔQs-changes additionally cause by means of the FTg -branch changes
ΔRTg (see Fig. 4.9) in the same manner. The necessarily following change of
the stored melt mass in the fibre formation distance with the distance lTg

(which changes too) is decisively for the transfer behaviour of the acceleration
force changes as well as for the air friction force changes. The spinning veloc-
ity vs and the distance lTg are there, on the other hand, the time constant
determining quantities for the acceleration and air friction forces. The same
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Fig. 4.9. Cause-effect-scheme for the target quantity orientation elongation εo1

at the melt spinning of polymers, especially at the high speed spinning process
(vs ≥ 3000 m/min)

statement is also valid for the effect of spinning velocity disturbances Δvs to
changes of the orientation elongation Δεo1. The steady state amplification
factors are indeed different to estimate for the different disturbance types:
Changes of the spinneret throughput ΔQs (and its effecting disturbances)
effect in each case changes of the fineness T ts and also of the tensile force
FTg with equal sign. The effects referred to RTg and εo1 are comparatively
small, because they will be compensated by means of the quotient according
to Eq. 4.46. The amplification factor will be small.

Spinning velocity changes Δvs on the other hand effect changes of the
fineness ΔT ts and also of the tensile force ΔFTg with unequal sign. The quo-
tient according to Eq. 4.46 for RTg and its effect to εo1 will be large, and the
amplification factor will also be large.

Consequently, spinning velocity changes Δvs in principle to value are much
more influential than spinneret throughput changes ΔQs (which are caused
for instance by unevenly operating gear pumps, effecting changes of input
velocity Δvi) with view to the generation of structural unevennesses of a melt
spun fibre.

The same quantitative data can be authoritative therefore for the velocity
of disturbance transmissions to the fibre orientation (and with it to fibre
or yarn length with undefined structural properties) than they have been
obtained with the dynamic fineness changes.
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4.2.3 Complex Proceedings in the Fibre Formation Distance

A “Specified Differential Equation of a Fibre Formation Distance (simpli-
fied)” has been developed under Sect. 4.2.1. This equation does not consider
the first fibre formation range from the spinneret to the solidification point
of the melt which characterises the ready fibre state. This actual range of
the fibre formation is in principle a range of the highest complex dynamic
proceedings even by an undisturbed steady state process. Dynamic change
proceedings of all product variables of the fibre formation take place inside
this range in a very short time interval. This passage is referred to in Chap.
3, especially to the whole Sect. 3.1 which contains detailed investigations to
these complex processes.

4.3 Glass Fibre Spinning; Variable Fibre Fineness

4.3.1 Cause-Effect-Scheme

Another melt spinning material of a totally different source and with dif-
ferent physical and chemical structure is glass. This inorganic fibre material
obtained a separate importance for technical-textile applications (especially
as a reinforcing fibre material) and (because of its inflammability) for deco-
rative textiles in the last 50 years. Some process dynamic questions for this
technological fibre formation process will be discussed in the following sec-
tions. Specific further specialities for the methodical practice in the physical
analysis of a given technological situation will be explained in more detail
later.

The technological scheme of the glass fibre spinning process is shown in
Fig. 4.10. 1

The missing of a spinning pump is evident in comparison with the melt
spinning process of polymers (Fig. 4.1). The spinneret is the bottom of a
metallic Pt-Rh-oven which is connected serially in the secondary circuit of
an electrical heating current transformer. The oven with the spinneret is,
in this manner, practically an Ohm’s heating resistance. The throughput
Qs will be achieved by means of the hydrostatic pressure of the glass melt
which stands over the spinneret with the glass level h. A volume feeding
spinning pump would not be thinkable here for higher than 1200 of the
oven temperature. The pressure in front of the spinneret holes ps is a process
1 Additionally is to remark, that the so-called two steps process is demonstrated

here. Glass marbles (single mass from 10 until 15 g) are fed into the spinneret
oven. This is typical for small production or single lab equipments. In large
production is to find generally the one step process. The spinneret oven is fed
there directly by molten glass mass coming from the glass melt tub and the
marble phase is avoided.
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Fig. 4.10. Simplified technological scheme of the glass fibre spinning

variable which directly effects the spinneret throughput Qs concerning the
Hagen-Poiseuille-law for viscous melts (in the polymer spinning process,
see Fig. 4.2, the pressure ps was a secondary variable and did not control
Qs and following T ts directly!). The valid cause-effect-scheme of the glass
spinning process is shown in Fig. 4.11 for the target quantity fineness T ts.

These specifics can be learned from Fig. 4.11 in comparison to Fig. 4.2.
Another essential specific is that the spinneret temperature Ts (it is the main
cause variable for the melt viscosity ηs which effects the flow resistance Rs

in the spinneret holes) now directly causes the spinneret throughput Qs and
following the fineness T ts.
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Fig. 4.11. Cause-effect-scheme for the target quantity fibre fineness T ts by the
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The dynamics of the being at hand system has been described in detail
in [282, 283] in perspective of possible causes for fibre fineness changes. In
the following some few characteristics will be demonstrated which are based
upon the general strategy of the technical-physical analysis recommended
in Sect. 2.5.1. Specifically it will be clear that each concrete technological
situation enforces the consideration or elaboration of new product or process
specific a-priori knowledges. An additional product variable at the input of
the spinneret oven is the glass mass inflow per time unit Qi. This variable
carries out effects to the glass level h and the spinneret temperature Ts. All
other not else named variables of the cause-effect-scheme are explained in
Sect. 4.2.1.

4.3.2 Functional Block Diagram

The fibre formation distance possesses, in the glass fibre spinning process,
a few other properties than in the polymer spinning in relation to the dis-
turbance transmission. The fibre fineness is actually realised by means of the
glass mass inflow per time unit Qi as well as the spinning velocity vs. However,
the glass fibre is already ready in a distance of 3 to 5 cm below the spinneret
holes, because the glass melt does not have a viscous and elastic elongation
power. At this point the spinning velocity vs and the fineness T ts are reached.
The whole distance between this extremely die near deformation zone until
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the take-up bobbin is a pure transport distance in which fineness changes do
not take place further. The transmission range of disturbances is reduced to
the named short fibre formation distance below the die. This possesses a very
small time constant Tc in consequence of the small stored glass mass and the
short length from this fibre formation distance. This means further that all
disturbances Δvs and ΔQs will be transmitted practically undamped to ΔT ts.
The dynamic properties of the fibre formation distance can be described in
the first approximation by means of the steady state model.2

Therefore, the single cause-effect relations which produce either ΔQs or
Δvs changes must be investigated to the description of the dynamics relat-
ing to the product variable fibre fineness. A similar practice would also be
necessary for a further complete dynamic “backward” view of an adequate
polymer spinning equipment. However, this has been neglected in Sect. 4.2.1,
because a spinning pump enforces the spinneret throughput Qs and the dy-
namic investigation in the Qs, as well as in the vs branch, results in principle
in the investigation of the dynamic transmission properties of the electro-
motoric drives. This will be given now anyway for the lied before glass fibre
spinning process in the vs branch.

The functional block diagram Fig. 4.12 of the cause-effect relations can be
designed now on the basis of Fig. 4.11. This supposes partly the mathemat-
ical calculation of physical relationships, partly the experimental fixation of
the transmission behaviour of single transfer elements. These details are not
given here. They are described completely in [282], [283]. As one can see, from
the outside imprintable cause quantities to fineness changes ΔT ts are possible
concerning the dynamic transfer functions G1 to G18 which the transmission
effects from changes of the mains supply voltage ΔUm, changes of the input
mass per time unit ΔQi1, changes of the mains supply frequency Δfm and
changes of the wind-up diameter ΔD, symbolically marked in step response
in the single transfer elements of the functional block diagram characterise
the transmission behaviour of the concerned element.

A specific of the signal chain is the transfer elements G2 to G6 and G10

to G12 in the present functional block diagram. G2 to G6 characterise the
(linearised) relationships between a change of a heating voltage ΔUh and the
effected change of the spinneret temperature ΔTs as a standard example of
the electrical heating of an Ohm’s resistance generally.

G10 considers that a change of the glass melt temperature ΔTg effects a
change of the output mass per time unit ΔQs1 as well as (about the transfer
2 Strictly speaking the transport distance from the end of the deformation zone

until the take-up bobbin is the dynamic transmission distance which had to be
included in the considerations. This generates however a phase shift only between
cause and effect and not a change of the amplitude ratio of cause and effect.



174 4. Dynamics of Fibre Formation Processes

G17

ΔUh

ΔUh

Rhm

ΔNh

UhmG1

ΔNhG2 G3 G7G4

G5G6

ΔRh

ΔTs1 ΔTs

ΔIh

ΔRh•ΔNh
Rhm+
-

+
+

+
+

G10

G8

G12

G11G9

G15G14

G18G16G13

ΔUm

ΔQi1 ΔQi

ΔQi2

+ -

ΔTs2

ΔTg

ΔQs

ΔQs1

ΔQs2

+
+

Δh

+
+

Δnb2

Δnb1

Δnb

Δfm

ΔD

Δvs2

Δvs
Δvs1 +

+

ΔTts
ΔTts1

ΔTts2

+
+

Fig. 4.12. Functional block diagram for the target quantity change fibre fineness
ΔT ts by the glass fibre spinning

element G9) a change of the glass level Δh. G12 considers that a change of the
input mass per time unit ΔQi1 effects not only a change of the glass level Δh
but also a change of the glass melt temperature ΔTg. G10 and G12 consider
the existing couplings between the temperature and the glass level regime of
the spinneret oven.

The most important sizes of the theoretical and experimental investigated
glass fibre spinning equipment which characterise the technological regime are
collected in Table 4.1, the dynamic transfer functions G1 to G18 are collected
in Table 4.2.3

Both tables give an impression concerning the physical and technological
constants and relationships which are necessary to know for the solution of
the given task on the other hand. A better understanding of the following
quantitative result interpretations should be obtained herewith.

3 If it is unambiguously the question of dynamic transfer functions it is often
written instead of Gi(p) shortened Gi. This is used sometimes in the following.



4.3 Glass Fibre Spinning; Variable Fibre Fineness 175

Table 4.1. Compilation of technological and physical constants of the glass fibre
melt spinning equipment at the investigated technological operating point

Data to Designation Symbol Quantity and
complex dimension

Spinneret oven number of holes z 100
surface of glass melt As 20000 mm2

transfer factor of
heating transformer k 1.023·10−2

mains supply voltage Um 220 V
heating voltage Uhm 2.25 V
heating current Ihm 2.06 kA
heating power Nhm 4.64 kW
heating (Ohmic) resistance
of spinneret oven Rhm 1.092·10−3Ω
spinneret temperature Tsm 1223
glass melt temperature Tgm 1223
glass level hm 90 mm
throughput per spinneret Qsm 20 g/min

Winder speed of bobbin nb 2550 min−1

wind-up diameter Dm 0.15 m
gear ratio rg 1
mains supply frequency fm 50 Hz
spinning velocity vsm 1200 m/min
fibre fineness T tsm 16.7 tex
bobbin formation time Tbf 10 min

Static amplification transfer element G4 KS 100 /kW

factors transfer element G8 KS 0.25
g

min/

transfer element G9 K(T0) 0.22
g

min/mm

transfer element G12 KK -1.5 /
g

min
transfer element G13 KU 51 min−1/Hz

transfer element G14 KU 2.32 min−1/V

Delay time constants transfer element G4 TH 140 s
transfer element G7 TH 67 s
transfer element G9 Th 13500 s
transfer element G12 TK1, TK2 52 s, 386 s
transfer element G13, G14 TU 0.9 s

Physical constants resistance-temperature
coefficient of the
Pt-Rh-spinneret oven αrt 1.55·10−4/
glass density �m 2.5 g/cm3
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Table 4.2. Compilation of the dynamic transfer functions of all functional block
diagram elements corresponding to Fig. 4.12

Transfer element Gi Dynamic transfer function Gi(p)

G1
ΔUh

ΔUm
= k

G2
ΔUh/Rhm

ΔUh
=

1

Rhm

G3
ΔNh

ΔNh/Uhm
= Uhm

G4
ΔTs1

ΔNh
=

KS

1 + p · TH

G5
ΔRh

ΔTs
= Rhm · αrt

G6
ΔRh · Ihm/Rhm

ΔRh
=

Ihm

Rhm

G7
ΔTg

ΔTs
=

1

1 + p · TH

G8
ΔQs1

ΔTg
= KS

G9
Δh

ΔQi
=

1

K (T0)
· 1

1 + p · Th

G10
ΔQi2

ΔTg
= KS = G8

G11
ΔQs2

Δh
= K(T0)

G12
ΔTs2

ΔQi1
=

KK

(1 + p · TK1) (1 + p · TK2)

G13
Δnb1

Δfm
=

KU

1 + p · TU

G14
Δnb2

ΔUm
=

KU

1 + p · TU

G15
Δvs1

Δnb
= π · Dm · rg

G16
Δvs2

ΔD
= π · nbm · rg

G17
ΔT ts1
ΔQs

=
1

vsm

G18
ΔT ts2

Δvs
= −Qsm

v2
sm
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It means in Table 4.2:

ΔQi1 change of the input mass per time unit
ΔQs change of the output mass per time unit
ΔUh change of the heating voltage
ΔIh change of the heating current
ΔNh change of the heating power
ΔRh change of the heating (ohmic) resistance
ΔUm change of the mains supply voltage
Δh change of the glass level
Δn change of the speed of bobbin motor
Δfm change of the mains supply frequency
Δvs change of the spinning velocity
ΔD change of the wind-up diameter
ΔTs change of the spinneret temperature
ΔTg change of the glass melt temperature
ΔT ts change of the fibre fineness

4.3.3 Evaluation and Results

The awaited dynamic changes of the glass fibre fineness ΔT ts can be calcu-
lated now on the basis of Fig. 4.12 and the relationships which are given in
Tables 4.1 and 4.2. The time transient function as well as the complex fre-
quency response can be used. However, the dynamic transfer functions should
be preferred to the calculation because a handling, as of items and factors,
on the basis of the functional block diagram is possible. The fineness change
ΔT ts2 caused by a change of the mains supply frequency Δfm through the
drive of the wind-up bobbin is to be calculated simply for instance by means
of the multiplication of the dynamic transfer functions in the cause-effect-
chain from Δfm to ΔT ts2, also

ΔT ts2
Δfm

= G13 · G15 · G18 = −π · KU · Dm · rg · Qsm

v2
sm(1 + p · TU)

(4.47)

All interesting total transfer equations can be built up step-like if the fol-
lowing basic rule is considered: Each output size of a transfer element in the
functional block diagram is equal to the product of its input size and transfer
function of the concerned transfer element, also for instance ΔQs1 = ΔTg ·G8

or Δh = ΔQi · G9. This rule is also valid, if single process variables are held
constant by means of an additional automatic control. Their changes in size
would be then zero (ideal imagination). The following single elements in the
functional block diagram would also be assumed to be zero when starting
from this points, because their input sizes are missing. If Ts were to be con-
trolled, for instance, then ΔTs would be zero in the ideal case and the transfer
elements G7 and G8 would be inoperative in practice. This would mean that
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changes ΔQs1 could not exist anymore and fineness changes could only be
induced by means of glass level changes or changes of the wind-up diameter
or changes of the speed of the bobbin motor.

Nine different disturbance transfer functions Gz1 to Gz9 of the fibre fine-
ness are presented in Table 4.3 which have been calculated on the basis of
the dynamic transfer functions G1 to G18 for 9 different disturbance variants.
These can be analysed quantitatively after inputting the equation expres-
sions for G1 until G18 given in Table 4.2. The last and further disturbance
transfer functions of other process variables (for instance glass level or spin-
neret temperature) and all resulting amplitude frequency responses, phase
frequency responses and step response can be found by the interested reader
in [282], [283].

Table 4.3. Compilation of the dynamic disturbance transfer functions of the fibre
fineness at the glass fibre spinning

Cause Additionally Disturbance transfer function Gzi(p)
variable const. held
disturb. variable

ΔUm not one Gz1(p) =
ΔT ts
ΔUm

=

2G1G2G3G4G7G17 (G8 − G9G10G11)

1 + G3G4G5G6
+ G14G15G18

ΔUm nb Gz2(p) =
ΔT ts
ΔUm

=
2G1G2G3G4G7G17 (G8 − G9G10G11)

1 + G3G4G5G6

ΔUm nb and h Gz3(p) =
ΔT ts
ΔUm

=
2G1G2G3G4G7G17

1 + G3G4G5G6 − G7G10G12

ΔUm h Gz4(p) =
ΔT ts
ΔUm

=
2G1G2G3G4G7G17

1 + G3G4G5G6 − G7G10G12

+G14G15G18

ΔQi1 not one Gz5(p) =
T ts

ΔQi1
=

G7G12G17 (G8 − G9G10G11)

1 + G3G4G5G6

+G9G11G17

ΔQi1 Ts Gz6(p) =
T ts

ΔQi1
= G9G11G17

ΔUm Ts Gz7(p) =
T ts

ΔUm
= G14G15G18

Δfm not one Gz8(p) =
T ts
Δfm

= G13G15G18

ΔD not one Gz9(p) =
T ts
ΔD

= G16G18
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The overview representation Fig. 4.13 is only a demonstration of am-
plitude frequency responses of the fineness |Gz1(jf)| to |Gz9(jf)|, shortened
|Gz1| to |Gz9|.

The oscillations percent of the fineness are drawn on the ordinate which
would appear at a one percent sinusoidal disturbance of ˜ΔUm, ˜ΔQi1, Δ̃fm or
Δ̃D appropriately of the selected disturbance variant. Three interacting mea-
surements are drawn on the abscissa (valid for the special numerical example
according to Table 4.1). The first abscissa measurement presents the meter
yarn spun from the start time point, the second presents the running time ac-
cording to the applied spinning velocity, the third the disturbance frequency.
The latter is also strongly connected with both of the first measurements.
The assertion of Fig. 4.13 should be explained by use of an example.

Assertion of the amplitude frequency response |Gz2|: Disturbance ˜ΔUm

with constant speed of the bobbin motor (Δ̃nb = 0). The mains supply volt-
age shall oscillate ±1% with a determined frequency sinusoidal around its
steady state value of 220 V. If the frequency of the disturbance is very small
then the glass level can change quickly enough and the change Δ̃Qs (caused by
Δ̃Ts respectively Δ̃Tg) can be compensated. If the frequency of the distrubance
increases then Δ̃h cannot follow Δ̃Ts respectively Δ̃Tg quickly enough and a
˜ΔT ts appears starting with small amplitude values. This increases more and
more with an increasing f . The amplitude curve stands out against the ab-
scissa and goes to its maximum. This is reached by a disturbance frequency
which is identical to the resonance frequency of the system. In this range an
oscillation of ˜ΔUm = ± 1% effects an oscillation of ˜ΔT ts = ± 10.8%. If f
increases furthermore then Tg cannot follow quickly enough (involved by the
heat inertia of the system) and the amplitudes ˜ΔT ts will again be smaller and
smaller. The amplitude frequency response again asymptotically approaches
the abscissa.

In the first abscissa measurement it is readable, that the mains supply
voltage oscillations in the named critical frequency range operates to the fine-
ness in a length range of 103 until 5 · 107 m yarn. This increase is therefore
precarious, because the Δ̃Uh (caused by ˜ΔUm) can be throughout ± 5% (in a
non-automatic controlled process). Fineness oscillations of ± 54% would be
the result! The conclusion of the dynamic analysis is that the process must be
stabilised by means of an automatic control. However, ˜ΔT ts inside of a yarn
length from 103 m would not be recordable independently of the quantities
of ˜ΔUm respectively Δ̃Uh.

The further disturbance inflows can be explained and estimated in an ad-
equate manner using the other curves of the diagram. Four additional single
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˜ΔT ts-oscillation parts are drawn in Fig. 4.13 (perpendicular straight lines to
the abscissa), which are caused by the yarn winding advance motion and
the wind-up diameter changes along a bobbin changing. These four distur-
bances only exist at four defined frequencies. The length of these straight
lines represents the maximum possible fineness oscillations caused by these
disturbances.

Figure 4.14 shows the yarn traverse motion element, which is generally
used in the glass fibre wind-up process. It consists of a rotating axle with
spacious buckled wires at which the yarn slips off. This special traverse mo-
tion element generates three distinguished oscillation frequencies. Analytical
details shall not be explained here because they are connected to the special
traverse motion element with its geometrical and kinematic specifities.
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Fig. 4.14. Scheme of the package construction by means of winding advance motion
on the glass fibre spinning

The until now given explanations show that practically each disturbance
kind in the spinning process will generate changes or oscillations of the fibre
fineness. These disturbances of the process variables are the real causes of
the fibre or yarn fineness unevenness. This is valid not only for the glass fibre
spinning process but for fibre formation processes in general. The dynami-
cal analysis of the whole process allows assertions which cause variables as
disturbance sizes are suitable for an appointed target quantity and in which
quantity and/or frequency range this will happen.

The reversed question to the conditions for a test proof of appointed dis-
turbance causes in the ready spun yarn will be cleared in Sect. 4.5. We will
come back to the summarised presentation of Fig. 4.13 there once more.
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4.4 Dynamics of Fibre Formation in the Spun Yarn
Spinning Process

4.4.1 Task

The classical technological basic principle to the manufacture of spun staple
yarn exists as you may know in different dissolution (beater), parallelisation
(roller top card or stationary flat card), and refining (drafting, doubling)
process steps of unarranged fibres, mostly pressed in fibre bales, of different
length (staple length) to a roving (flyer) which is the input sliver for the last
spinning process step, mostly realised by means of a ring frame. The dynamic
of the process steps of yarn formation has been investigated and described
(only partly or even empirically) in the past frequently under the preparation
or realisation view of an automatic control system to influence the fineness
unevenness of the produced rovings for the yarn manufacture. Especially the
papers are to be mentioned here which present a sufficient and founded dy-
namic analysis of the automatic controlled process step by means of the time
transient function or the dynamic transfer function description [284] to [289].

Two different types of the dynamic system behaviour can be met at the
appropriate partial processes: the dead time behaviour 4 and the proportional
action with delay 5. The first is typical for some partial systems of passages
in roller top cards and stationary flat cards, the second is for all passages in
drafting systems which drafts imprint into the product. The basic equations
and some conclusions will be given in the following for both types. Estima-
tions in principle and a further approach to the whole problem should be
possible for special tasks.

4.4.2 Dynamic Transfer Behaviour of Carding Engines

Each fibre spinning process pursues the goal to spin yarns with a fineness
unevenness as small as possible. Two general strategies can help to reach this
goal (besides a further development of the machine technique):
a) by means of a greater number of roving operation passages. This was the
only possibility before the invention of automatic controlled drafting systems.
The general law underlies this method that a yarn will be more even the more
it will be doubled and drafted in the spinning process. However, this is con-
nected as you know with a high expense of machines and (not unimportant)

4 Changes of a cause variable at the input of a system appears true after a deter-
mined time (the dead time) at the output as changes of the effected variable (in
the examples of this book it is always a transport time of the treated product).
See also Sect. 5.1.3.

5 To the definition of a proportional action with delay see the first statement of
the “Summarised Evaluation and Conclusions to the Solutions of the Differential
Equation” in Sect. 4.2.1
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a lot of working power is necessary.
b) by means of an automatic controlled drafting system in at least one draft-
ing passage in which the draft ratio changes automatically according to the
continuously measured fineness changes of the input (open loop control)
with or output (closed loop control) slivers. This method allows for draft-
ing and doubling passages to economise in the spinning process plane by an
unchanged quality of the ready yarn.

The fineness unevenness of the layed before fibre material (coming from
the roller top card or from the stationary flat card as pile, fleece or sliver) is
important for both strategies now. At this point, at the latest, the question
appears as to the dynamic disturbance transmission on these machines and
vice versa to the evenness power for uneven feeded fibre mats, fibre fleeces,
fibre flocks and the like.6

The dynamic transfer properties of roller top and stationary flat cards
have been described previously in the Russian special literature [285] to [287].
The essential ideas are explained in the following which lead to the dynamic
transfer function.

Roller Top Card

The technological scheme is shown in Fig. 4.15. Unordered and undis-
solved fibres will be fed into the machine, picked up from the main drum
and conveyed successively to a row of q worker-angle-stripper-pairs i (which
i = 1, 2, 3...q). In the end the fibres will be processed (dissolved and par-
allelised) and in each case delivered up to the main drum back. After the
run through all work elements the web will be taken up from the main
drum and taken off as a sliver. Nevertheless, not all fibres (coming from
the main drum) at each work station (consisting of a worker-angle-stripper-
pair) go to the concerned worker-angle-stripper-pair but only the Kth part
(0 < K < 1). The (1 − K)th part remains on the main drum and will be
transported immediately to the next worker-angle-stripper-pair. The, from
the worker-angle-stripper-pair picked up, fibres go back to the main drum
after the processing or transport time Td. Here also only a part of the fibres
(coming from the main drum) will be picked up in fact too at the removal
point of the web. This part shall be named Ka, whereas the (1 − Kth

a ) part
on the main drum will be mixed to the input of the machine once more after
the run of the transport time Td2. The transport time from the flake feeding
until the first worker-angle-stripper-pair shall be named Td2. It is assumed, to
6 At this point the following hint: The dynamic transfer behaviour of the cotton

beater (as well-known, directly extending in front of the cotton stationary flat
card) has been described fully in [288]. Details must be exempted here. These
would exceed the present investigations because these are technologically to far
from the fibre formation.
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simplify matters, that the coefficient of the fibre distribution K is the same
for all worker-angle-stripper-pairs. If this is not the case (in the practice ex-
perimental to fix only) different K should be put into the following equations.

xi

xo

worker

angle stripper

main drum

Fig. 4.15. Technological scheme of a roller top card; xi, xo input and output fibre
mass per time unit

The dynamic transfer function of a roller top card can be developed now
by means of the given a-priori knowledge. All quantities are to be taken
in equally as changing quantities around the mean averages of an adjusted
steady state technological operation point.

The disturbance of the fibre mass Δxi (caused by uneven flock feed) comes
on the main drum at the input of the machine according to Fig. 4.16. This
Δxi will be mixed with the not fully taken up fibre mass Δxi1 from the exit
of the machine.

The sum passes the dead time element exp(−p · Td1).

Δxi2 = Δxi + Δxi1 (4.48)

This exponential function is the dynamic transfer function of a pure trans-
port or dead time line. The fed fibre mass from the machine entrance appears
at the first worker-angle-stripper-pair:

Δx1 = Δxi2 · exp(−p · Td1) (4.49)

The functional block diagram Fig. 4.17 is qualified for the deviation of
the dynamic transfer function of a worker-angle-stripper-pair.

The fibre mass Δx1 (coming from the main drum) and the fibre mass Δx2

(which is fed back from the processing) will be mixed and the sum Δx will
be processed either once more according to the fibre distribution coefficient
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Δxi1

1 - Ka

KaGAq(p)GA1(p) ....
ΔxqΔy1Δxi2 Δx1Δxi
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Δxo
Δyq

Δy1 = Δx2

Δy2 = Δx3

.........
Δyq-1= Δxq

e -p•Td2

e -p•Td1

Fig. 4.16. Functional block diagram of the roller top card; Δxi, Δxo changes of the
input and output fibre mass per time unit

Δx2

K

1 - K
Δx1 +

+

Δy1Δx

e -p•Td

Fig. 4.17. Functional block diagram of the first worker-angle-stripper-pair on the
roller top card; Δx1, Δy1 changes of the input and output fibre mass per time unit

K (branch with K) or to the main drum transmitted for the next worker-
angle-stripper-pair as output fibre mass per time unit Δy1. The transport
time transfer element exp(−p ·Td) is situated in the branch K. The following
equations are readable as:

Δx = Δx1 + Δx2

Δx2 = Δx · K · exp(−p · Td1)

Δy1 = Δx · (1 − K)

From this it is possible to calculate the dynamic transfer function:

GW1(p) =
Δy1

Δx1
=

1 − K

1 − K · exp(−p · Td)
(4.50)

Because each output Δyi of a worker-angle-stripper-pair is simultaneously
equal the input Δxi+1 of the next worker-angle-stripper-pair the dynamic
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transfer function of all q worker-angle-stripper-pairs of a roller top card can
be written as:

GW1(p) · GW2(p) · · · GWq(p) =
Δyq

Δx1
=

[
1 − K

1 − K · exp(−p · Td)

]q

(4.51)

The dynamic transfer function of the whole roller top card can be calcu-
lated now considering Eq. 4.51 and the following equations, which are read-
able from Fig. 4.16 as:

Δxo = Δyq · Ka

Δxi2 = Δxi + Δxi1

Δxi1 = Δyq · (1 − Ka) · exp(−p · Td2)

Δx1 = Δxi2 · exp(−p · Td1)

The final result for the whole roller top card is at last:

Grc(p) =
Δxo

Δxi
=

Ka · exp(−p · Td1)[
1 − K · exp(−p · Td)

1 − K

]q

− (1 − Ka) · exp[−p(Td1 + Td2)]

(4.52)

The complex frequency response as we know it is obtained when the op-
erator p is substituted by the complex frequency jω. Data about the dynamic
disturbance transmission properties and about the evenness power of the
roller top card are only general and extrapolated from results of possible
concrete realised machines. Prerequisites for a quantitative analysis are the
knowledge of the fibre distribution coefficients K and Ka and the dead times
Td, Td1 and Td2, which can be appointed only experimentally. Quantitative
analyses by means of graphic methods of the vector addition and inversion
say [285]:

a) The evenness power of the roller top card is only given for input dis-
turbances of the fed fibre mass per time unit, if the disturbance frequency is
large. The cycle duration for a full oscillation must be smaller than the whole
transport time of the fibres from the card entrance to its exit. This time can
be nearly estimated with Td1 + q · Td.

b) The evenness power of changes, which the conditions under a) actually
fulfill, will not take place if the cycle duration of the disturbances is equal or
if an integer part multiple of the dead time of a worker-angle-stripper-pair Td.
Then namely, the maxima from fibres which come back after the time Td co-
incide with maxima of the next, after the next and so on disturbance changes.
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c) The evenness power is the better the more worker-angle-stripper-pairs
are situated on the main drum periphery from the entrance of the card to its
exit (trivial assertion) and/or the more uneven these are designed regarding
its transport dead time. Because Td arises from the diameter of the roller
and from their speed (that means from their periphery and their periph-
ery velocity) two possibilities of variation are given in principle. This means
physically-obviously that resonance conditions should be at another distur-
bance frequency for each worker-angle-stripper-pair to avoid whole resonance
conditions for all disturbance frequencies.

Stationary Flat Card

In comparison to the roller top card with discreet situated working ele-
ments on the main drum (worker-angle-stripper-pairs) these melt together to
a closed technological unit in form of a flat clothing (Fig. 4.18).

xi

xo

1

3
2

4

6

5

7

9

8

Fig. 4.18. Technological scheme of a stationary flat card; ranges 1 - 2, 7 - 8 and 8
- 9 draft of the web; ranges 2 - 3, 3 - 4, 5 - 6 and 6 - 7 transport of the web; range
4 - 5 treatment of the web

Referring to [287] the following dynamic transfer function has been derived
and experimentally confirmed for the stationary flat card:

Gfc(p) =
Δxo

Δxi
=

1
V

· exp(−p · Td)
1 + (Tc1 + Tc2) · p + Tc1Tc2 · p2

(4.53)

The single symbols mean:
Δxi, Δxo changes of the input and output fibre mass

V whole draft of the fibre mass=
voutput

vinput

(ranges 1 - 2, 7 - 8, 8 - 9)
Td sum of all transport times of the fibres

(ranges 2 - 3, 3 - 4, 5 - 6, 6 - 7)
Tc1, Tc2 time constants, describing the dynamic of the fibre

redeposition power of the whole flat clothing, which
is a fibre mass storage with permanent fibre exchange
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With that (Eq. 4.53) the dynamic model of a stationary flat card shows
a dead time behaviour (exponential function in the numerator) with delay of
second order.

Complex frequency response (4.54), amplitude frequency response (4.55)
and phase frequency response (4.56) can be calculated on the basis of Eq. 4.53
as follows:

Gfc(jω) =
Δ̃xo

Δ̃xi

· ejϕ =
1
V

· exp(−jω · Td)
1 + (Tc1 + Tc2) · jω + Tc1Tc2 · (jω)2

(4.54)

|Gfc(jω)| =

⏐⏐⏐⏐⏐ Δ̃xo

Δ̃xi

⏐⏐⏐⏐⏐ =
1
V

[
(1 − Tc1Tc2ω

2)2 + ω2(Tc1 + Tc2)2
]−1/2

(4.55)

ϕ(ω) = arc tan
[
− (1 − Tc1Tc2ω

2) · sin(ωTd) + ω(Tc1 + Tc2) · cos(ωTd)
(1 − Tc1Tc2ω2) · cos(ωTd) − ω(Tc1 + Tc2) · sin(ωTd)

]
(4.56)

The following equivalent, to the output web of the card referred distances
gives both time constants as Tc1=̂2.12 m, Tc2=̂0.78 m in [287] for a specific
cotton stationary flat card. Hence they follow the time constants after division
by the web output velocity vo to:

Tc1=2.12/vo, Tc2=0.78/vo

The times will be derived in the dimension s, if vo is put in the dimension m/s.

The amplitude frequency response according to Eq. 4.55 is shown in
Fig. 4.19 and actually not versus the disturbance frequency ω but versus
the wavelength λo in the output web. The used conversion relation can be
read as:

ω = 2 · π · vo/λo (4.57)

The awaited evenness effect of the stationary flat card can be estimated
from this amplitude frequency response. The normalised to the mean values
xom and xim related fluctuation parts Δ̃xo and Δ̃xi are represented in the
ordinate.

The quotient

Δ̃xo/xom

Δ̃xi/xim

is obtained considering the relation

V =
vom

vim
=

xim

xom
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Fig. 4.19. Normalised amplitude frequency response by changes of the output fibre

mass per time unit Δ̃xo caused by changes of the input fibre mass per time unit Δ̃xi

of a stationary flat card

Figure 4.19 shows that a worth-while evenness of input fluctuations Δ̃xi

are only to be awaited to a web length of 5 m, an even good evenness to a
web length of 10 m and no worth-while evenness for a web length of more
than 15 m. The pertinent wavelength of the disturbance cause in the coming
in sliver λi of the stationary flat card (Δ̃xi-course) is simple to calculate by
using the quotient of λo and the draft V :

λi = λo/V

Finally it is to be remarked that the preceding considerations relate only to
the fibre mass distribution along the web. Uneven distributions across to the
transport direction have been excluded from the considerations because they
must be described preferably with other methods. Some hints are represented
moreover in [285].

4.4.3 Dynamic Transfer Behaviour of Drafting Zones in Drafting
Systems

Specified Differential Equation of a Drafting Zone and its Distur-
bance Transfer

The drafting or drawing process is the most important processing step for
the refinement of the slivers at the roving operation and at the final spin-
ning machines. The dynamic of these processes is not to describe easy by
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means of a mathematical model if the statistical discontinuity of the geo-
metrical single fibre properties (above all their length) are to be taken into
consideration by the investigations. An impression of the complication (and
also unfortunately the unwieldy handling) of a complete model description
is shown in [289] and [290]. Nevertheless, it is enough to use the following
simplified DEq. and its solutions for the outlet of design lines for automatic
control tools of drafting systems or also only for the estimation how the fine-
ness fibre of a sliver will in summary be influenced in such a drafting zone.

On this occasion it is assumed, that

- the fibre number in the sliver cross section at the drafting zone exit is
greater than (> 100) and

- the roll setting is 1.5 · lf ≤ l ≤ 2 · lf , in which lf is the middle staple length
of the fibres.

The latter prerequisite means, that neither the drafting forces should
increase to high (under limit) nor should “swimming” fibres appear in a
greater number which can no longer guarantee the cohesion of the free, not
conducted, sliver section.

According to Fig. 4.20 the process and product variables which are nec-
essary for the derivation of the DEq. can be defined in a similar manner as
with the drawing zone of the drawing process (Fig. 2.3). They are somewhat
the same:

vi input velocity
vo output velocity
zi number of fibres in the cross section of the coming in sliver
zo number of fibres in the cross section of the coming out sliver
l roll setting
lf fibre length
T tf fibre fineness
T ti fineness of the coming in sliver = zi · T tf
T to fineness of the coming out sliver = zo · T tf

The dynamic basic Eq. 2.23 for the exchange processes in a mass storage
system is similarly valid for the drafting zone. With this it is now possible
to immediately describe the dynamic transfer behaviour with the general
linearised DEq. 4.7. Single product variables, which apply to the yarn with
endless fibres, must be adapted and defined to the present sliver structure.
The linearised DEq. which fits the drafting zone of the sliver draft can be
defined, if the following variables of Eq. 4.7 are substituted: the middle input
cross sectional area qim and its change Δqi by the mean number of fibres in the
cross sectional area of the input sliver zim and its change Δzi. Furthermore
the mean density of the fibre material �m and its change Δ�, here no more
consisting of a continuum mass, by the mean fineness of the fibres T tfm and
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l

zi, Ttf, vi
drafting zone zo, Ttf, vo

draft V =       =
vo
vi

Tti
Tto

Tti = zi·Ttf Tto = zo·Ttf

Fig. 4.20. Technological scheme of a one step sliver drafting system

its change ΔT tf :

(vom + p · lm) · ΔT to + T tom · Δvo − vim · T tfm · Δzi

−zim · T tfm · Δvi + p · T tom · Δl − zim · vim · ΔT tf = 0
(4.58)

The dynamic transfer function of the fineness T to of the yarn at the
drafting system output can be given on the basis of Eq. 4.58 which was
demonstrated similarly in Sect. 4.2.1. The dynamic functions complex fre-
quency response, amplitude frequency response, phase frequency response
and step response for the changes of Δvo, Δvi, Δzi, ΔT tf or Δl to the effected
ΔT to-changes can now be derived. Probably, the most interesting dynamic
functions (amplitude and step responses) for quantitative estimations are
given as follows accordingly to Eqs. 4.13, 4.17, 4.19, 4.23, 4.25, 4.29 and 4.31.
The functions for Δl-changes are lost on this occasion because these are not
of any interest in drafting systems. The roll setting is assumed as constant
and designed as mean value lm:

disturbance Δvo (changes of the output velocity)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vo

⏐⏐⏐⏐⏐ = (−)
T tom
vom

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.59)

time transient function (step response)

ΔT to|Δvo = −Δvo · T tom
vom

[
1 − exp

(
−vom

lm
· t

)]
(4.60)
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disturbance Δvi (changes of the input velocity)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vi

⏐⏐⏐⏐⏐ =
T tom
vim

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.61)

time transient function (step response)

ΔT t0|Δvi = Δvi · T tom
vim

[
1 − exp

(
−vom

lm
· t

)]
(4.62)

disturbance Δzi (changes of the number of fibres in the cross section of the
coming in sliver)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃zi

⏐⏐⏐⏐⏐ =
T tom
zim

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.63)

time transient function (step response)

ΔT to|Δzi = Δzi · T tom
zim

[
1 − exp

(
−vom

lm
· t

)]
(4.64)

disturbance ΔT tf (changes of the fibre fineness)
amplitude frequency response

|G(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

˜ΔT tf

⏐⏐⏐⏐⏐ =
T tom
T tfm

[
1 +

(
ω · lm

vom

)2
]−1/2

(4.65)

time transient function (step response)

ΔT to|ΔT tf = −ΔT tf · T tom
T tfm

[
1 − exp

(
−vom

lm
· t

)]
(4.66)

In all cases it is the question of proportional action with a delay of first
order (in Sect. 4.2.1 already described for fibre formation distances) as one
can see and Eqs. 4.59 to 4.62 are identical with Eqs. 4.11, 4.13, 4.17 and 4.19.
Also the phase frequency responses (here not given once more) are identically
with the previously given Eqs. 4.12, 4.18, 4.24 and 4.30 for the appropriate
disturbances. This result means, that the normalised complex frequency re-
sponses of Fig. 4.4, the normalised amplitude and phase frequency responses
of Fig. 4.5 and the normalised step response of the Fig. 4.6 are valid for the
estimating of the dynamic behaviour and its graphic presentation of a sliver
drafting zone in the same manner. Only the following equivalent relations
are to be considered: Δqi, qim of the polymer fibre formation correspond to
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Δzi, zim of the sliver drafting zone and Δ�, �m of the polymer fibre forma-
tion correspond to ΔT tf , T tfm of the sliver drafting zone. On the other hand,
Δvo, vom, Δvi, vim and Δl, zm are fully identical for both different process
steps of the fibre, respectively, yarn formation. The discussion in Sect. 4.2.1
is also consequently valid for the disturbance transmission of drafting zones
in drafting systems according to the fineness of the outrunning drafted yarn.
An additional hint: The disturbance sizes ΔT tf and, of even greater impor-
tance, Δzi characterise of course fineness disturbances of the inrunning sliver
ΔT ti whose evenness power chances can be estimated specifically through
means of the appropriate (homogeneously constructed) amplitude frequency
responses 4.63 and/or 4.65. A good evenness power effect through means of
an increased system time constant Tc = lm/vom is indeed limited at a sliver
drafting system, because the distance of the drafting zone lm cannot be se-
lected (dependent on the staple length of the single fibres) as large as one
would wish. The general observable smaller fineness fibre of long staple spun
yarns compared to short staple spun yarns is to be found objectively through
the viewpoint of the dynamic system. Because, longer staples enforce impera-
tively longer roll settings with greater time constants Tc (and smaller critical
frequencies fc) which are more effectively dampening for disturbances.

Disturbance Transfer of a Drafting System with Two Successive
Drafting Zones

Disturbance Δzi (changes of the fibre number in the input sliver).
Sliver drafting systems are often created in multi stages. It is the question of
how disturbances will be transmitted from the input to the different stages
and how these appear finally on the output. A drafting system with two
successive drafting zones according to Fig. 4.21 will be investigated in the
following.

drafting zone 2 zo, Ttf

Tto = zo·Ttf

drafting zone 1zi, Ttf

Tti = 
zi·Ttf

vi vz vo

zz, Ttf

Ttz = zz·Ttf

l2l1

draft V1 =
vz
vi

draft V2 =
vo
vz

Fig. 4.21. Technological scheme of a two steps sliver drafting system
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A sliver with the fineness T ti will be drafted to the fineness T to along the
drafting zones 1 and 2. The whole draft results as one knows to V1 · V2 and
the steady state equation is valid:

T t0 =
T ti

V1 · V2
= T ti · vi

vo
(4.67)

disturbance variant 1

There should exist a fineness disturbance at the input as a change of
the fibre number in the input sliver cross sectional area Δzi. How will ΔT to
appear at the output of the second drafting zone? The following process and
product variables are to be defined additionally compared with the previous
section: The dynamic transfer functions for the drafting zones 1 and 2 must

vz velocity of the middle drafting godet pair (output velocity of the
drafting zone 1 and simultaneously input velocity of the drafting
zone 2)

zz number of fibres in the cross section of the coming out sliver from
the drafting zone 1 and simultaneously of the coming in sliver into
the drafting zone 2

l1 length of the drafting zone 1
l2 length of the drafting zone 2
T tz sliver fineness at the output of the drafting zone 1 and the input of

the drafting zone 2 = zz · T tf

be derived at first from the dynamic basic Eq. 4.58 which correspond to the
question.
This is for the drafting zone 1:

G1(p) =
ΔT tz
Δzi

=
T tzm
zim

· 1

1 + p · l1m
vzm

(4.68)

One considers that the output fineness of the drafting zone 1 is T tz and not
T to which at first appears at the output of the drafting zone 2. Therefore,
the quantities ΔT to and T tom have been substituted by the quantities ΔT tz
and T tzm in Eq. 4.58 before the Eq. 4.68 has been derived.
The drafting zone 2 is valid as:

G2(p) =
ΔT to
Δzz

=
T tom
zzm

· 1

1 + p · l2m
vom

(4.69)

If the fineness of the fibres T tfm is also constantly valid as
T tzm = zzm · T tfm and ΔT tz = Δzz · T tfm
Therefore Eq. 4.68 is also to be written as:
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G1(p) =
Δzz · T tfm

Δzi
=

zzm · T tfm
zim

· 1

1 + p · l1m
vzm

(4.70)

The dynamic transfer function of the successive systems results from the
product of the transfer functions of the single systems. If one applies this law
to Eqs. 4.69 and 4.70 the following will be obtained for the two steps drafting
system:

GD(p) = G1(p)·G2(p) =
ΔT to
Δzi

=
T tom
zim

· 1(
1 + p · l1m

vzm

)(
1 + p · l2m

vom

) (4.71)

The complex frequency response follows from this:

GD(jω) =
˜ΔT to

Δ̃zi

· ejϕ =
T tom
zim

· 1(
1 + jω · l1m

vzm

)(
1 + jω · l2m

vom

) (4.72)

Equation 4.72 can be split into the amplitude frequency response

|GD(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃zi

⏐⏐⏐⏐⏐ =
T tom
zim

·

√[
1 − ω2 · l1m · l2m

vzm · vom

]2

+ ω2

[
l1m
vzm

+
l2m
vom

]2

[
1 +

(
ω · l1m

vzm

)2
][

1 +
(

ω · l2m
vom

)2
]

(4.73)

and into the phase frequency response

ϕ(ω) = arc tan

⎡⎢⎢⎣−ω ·
l1m
vzm

+
l2m
vom

1 − ω2 · l1m · l2m
vzm · vom

⎤⎥⎥⎦ (4.74)

Now the time transient function to be calculated from Eq. 4.71 is analo-
gous to Eq. 2.41:

ΔT to|Δzi = Δzi · T tom
zim

[
1 − vom · l1m

vom · l1m − vzm · l2m · exp
(
−vzm

l1m
· t

)]
−Δzi · T tom

zim
· vzm · l2m
vzm · l2m − vom · l1m · exp

(
−vom

l2m
· t

) (4.75)

Equations 4.72 to 4.75 do not mediate a clear assertion about the dynamic
properties of the two steps drafting system without of course an appropri-
ate quantitative analysis. The dynamic transfer properties should be demon-
strated using a numerical example. It should be assumed:
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vim = 1 m/min
vom = 36 m/min
vzm = 1.5 m/min (V1=1.5; V2=24) or 6 m/min (V1=6; V2=6)
T tim = 1000 tex
zim = 3600
T tfm = 0.28 tex
T tom = 27.8 tex
zom = 100
l2m = 45 mm
l1m = 50 mm or 40 mm

The disturbance should be step-like or sinusoidal Δzi = 180 respectively
Δ̃zi = ±180.

The time constants Tcd1 and Tcd2 and the critical frequencies fc1 and fc2

of the drafting zones 1 and 2 according to Eqs. 2.47 and 2.49 are:

Drafting Drafting
zone 1 zone 2

l1m vzm Tcd1 fc1 Tcd2 fc2

[mm] [m/min] [s] [Hz] [s] [Hz]

50 1.5 2.00 0.080 0.075 2.12
50 6 0.50 0.318 0.075 2.12
40 1.5 1.60 0.099 0.075 2.12
40 6 0.40 0.398 0.075 2.12

The normalised presentations of the complex frequency response, the am-
plitude frequency response and the step response are similarly valid if distur-
bances Δzi, ΔT tf or also Δvi appear at the input. The result interpretation is
qualitatively and quantitatively the same for these product and process vari-
ables regarding the effect to the output fineness ΔT to. The phase frequency
response is of course similarly valid for all three disturbances.

The transfer locus of the complex frequency response, the amplitude fre-
quency response and the phase frequency response of a two steps sliver draft-
ing system are shown in Figs. 4.22, 4.23 and 4.24. The amplitude and phase di-
agrams include in each case through agreement two additional curves (drawn
dotted) of a one step drafting zone. The appropriate step response is shown
in Fig. 4.25.

The following statements can be taken from the diagrams:

a) The evenness power effect is more exact the more unsymmetrical the
whole draft is divided between the drafting zones 1 and 2. And indeed, the
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greater part of the draft should be created in the drafting zone 2. This is to
be seen by the amplitude frequency response courses which fall down to the
abscissa at already clearly smaller disturbance frequencies for vz = 1.5 m/min
than for vz = 6 m/min. This tendency can also be seen in the step transfer
behaviour. The curves of vz = 1.5 m/min clearly increase more slowly than
those for vz = 6 m/min.

b) A change of the first drafting zone length by 10 mm (from a starting
point of 40 or 50 mm) does not effect aggravating changes of the dynamic
behaviour. The longer drafting zone 1 improves the dampening behaviour
for disturbances only insignificantly. A longer drafting zone 2 by same or
similar quantities is not practically of influence to the dynamic transmission
behaviour (not drawn here because appropriate diagram curves are nearly
identical).

c) The comparison with the dropped drawn curves for the one step draft-
ing system (following from the two steps system if l1m is set to zero; compare
also Eqs. 4.73 and 4.75 with 4.63 and 4.64) shows that a multi step draft-
ing system (here demonstrated using the two steps system) a more effective
evenness power is allowed than a one step drafting system for the fineness
of the output sliver in a greater frequency range. In our example the two
steps drafting system is able to suppress input disturbances with > 1 Hz to
the fineness effectively if the draft is divided skillfully. This would mean for
the output sliver in our example that a short periodic unevennesses of sliver
length < 60 cm would not appear anymore in a troublesome manner. The
same effect would occur for the comparable short one step drafting system
only at > 15 Hz, appropriate < 9 m sliver length.

Disturbance Δvz (velocity changes of the middle drafting roll pair).
There should exist step-like or periodic disturbances of the velocity of the
middle drafting godet pair vz. How will ΔT to appear at the output of the
drafting system?

disturbance variant 2

The mean value of the output fineness T tom will not change even after
longtime disturbances of vz, because in this case the whole draft does not
change steady state. But short time ΔT to-effects will appear. These consist
of two primary effective transmission processes: Δvz effects at first a change of
the fineness T tz at the output of the drafting zone 1, which is simultaneously
an input fineness disturbance of the drafting zone 2. Second, Δvz effects an
input velocity disturbance of the drafting zone 2. ΔT to consists of the two
parts ΔT to1 and ΔT to2 which are consequently to be added according to the
superposition law. ΔT to1 describes the disturbance transmission of ΔT tz to
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ΔT to and ΔT to2 describes the disturbance transmission of Δvz to ΔT to.

The dynamic transfer behaviour is to be derived from the dynamic trans-
fer functions of the single part drafting zones.

effect of Δvz to ΔT tz:

G1(p) =
ΔT tz
Δvz

= −T tzm
vzm

· 1

1 + p · l1m
vzm

(4.76)

effect of ΔT tz to ΔT to1:

G2(p) =
ΔT to1
ΔT tz

=
T tom
T tzm

· 1

1 + p · l2m
vom

(4.77)

effect of Δvz to ΔT to1 = product of Eqs. 4.76 and 4.77:

G3(p) =
ΔT to1

Δvz
= −T tom

vzm
· 1(

1 + p · l1m
vzm

)(
1 + p · l2m

vom

) (4.78)

effect of Δvz to ΔT to2:

G4(p) =
ΔT to2

Δvz
=

T tom
vzm

· 1

1 + p · l2m
vom

(4.79)

The total ΔT to is the sum of ΔT to1 and ΔT to2. The total transfer function
GD(p) is for this disturbance case the sum of G3(p) and G4(p) according to
Eqs. 4.78 and 4.79:

GD(p) =
ΔT to1

Δvz
=

T tom
vzm

·
p · l1m

vzm(
1 + p · l1m

vzm

)(
1 + p · l2m

vom

) (4.80)

Equation 4.80 shows that a differential action with delay of second order lies
before (no permanent fineness shift after a steady state disturbance). It is
the starting point for the equations of the frequency, amplitude, phase and
step response which can be derived according to the already cited manifold
rules of Sect. 2.5.2.

complex frequency response

GD(jω) =
˜ΔT to1

Δ̃vz

=
T tom
vzm

·
jω · l1m

vzm(
1 + jω · l1m

vzm

)(
1 + jω · l2m

vom

) (4.81)
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amplitude frequency response

|GD(jω)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vz

⏐⏐⏐⏐⏐
=

T tom
vzm

·
ω · l1m

vzm

√[
1 − ω2 · l1m · l2m

vzm · vom

]2

+ ω2

[
l1m
vzm

+
l2m
vom

]2

[
1 +

(
ω · l1m

vzm

)2
][

1 +
(

ω · l2m
vom

)2
] (4.82)

phase frequency response

ϕ(ω) = arc tan

⎡⎢⎢⎣1 − ω2 · l1m · l2m
vzm · vom

ω

(
l1m
vzm

+
l2m
vom

)
⎤⎥⎥⎦ (4.83)

step response

ΔT to|Δvz = Δvz · T tom
vzm

·
exp

(
− l1m

vzm
· t

)
− exp

(
− l2m

vom
· t

)
1 − l2m · vzm

l1m · vom

(4.84)

The transfer locus of the frequency, amplitude and phase frequency re-
sponses of a two steps sliver drafting system for the disturbance Δvz are
shown in Figs. 4.26, 4.27 and 4.28. The step response is shown in Fig. 4.29.

Some statements can also be given here in principle:

a) Extremely short periodic as well as long periodic, fluctuations of the
velocity of the middle drafting godet pair also effect the output fineness
dampened strength (see amplitude frequency response curves). The range
of the maximum disturbance transmission in the example is situated be-
tween about 0.5 and 1 Hz. Relative periodic Δvz-changes have nearly the
same great ΔT to-changes and are actually for strong unsymmetric draft par-
tition (vzm = 1.5 m/min) somewhat greater than for less unsymmetric draft
partition (vzm = 6 m/min).

b) This disturbance type Δvz does not cause permanent fineness shifts
after a step-like disturbance (see step response). The old fineness mean value
T tom will be reached after a sufficient long time (here > 5 s) also if the
disturbance continues. The drafting system further operates with increased
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Fig. 4.26. Transfer locuses of the normalised complex frequency responses of fine-

ness changes ˜ΔT to in the coming out sliver caused by velocity changes Δ̃vz of the
middle godets at a two steps sliver drafting system
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draft in zone 1 and simultaneously with decreased draft in zone 2 in which
the total draft is unchanged. It is also to be observed here that greater short
time shifts of the fineness appear if the total draft is chosen unsymmetrically.
Length changes of the drafting zone 1 have a smaller influence in which an
increase of l1m effects a small increase of the fineness shift.

c) A result comparison of the demonstrated disturbance types (changes of
the fibre number of the input sliver Δzi or changes of the velocity of the middle
drafting godet pair Δvz) shows that the disturbance dampening effect varies
depending upon the disturbance type. Whereas an, as small as possible, draft
of the draft in zone 1 is an advantage for a good evenness power effect of the
drafting system at Δzi-changes the inverted effect is valid for Δvz-changes. A
greater break draft in drafting zone 1 is more dampening for disturbances
than a smaller break.

4.5 Necessary Measuring and Gauge Lengths to the
Proof of Dynamic Disturbances in Yarns

The presentation until now has shown that dynamic disturbances of different
kinds (periodic, aperiodic, at different technological operating points) of dif-
ferent process and product variables effect yarn disturbances along different
yarn lengths. It should be questioned as to which basic totality of (at one
working position) manufactured yarn length is to be included into a contin-
uous or discontinuous test in the textile test lab. What cut length is to be
selected for the continuous single tests to decisively describe dynamic distur-
bance effects in the yarn?

One can use a well-known rule of thumb for the electric measurement
technique to technically prove test disturbances by means of discontinuous
measurements. This is possible if the frequency of the tracing disturbance is
known and if this frequency is suitable for a measurable effect to the yarn
variable (for instance the fineness) according to the transfer and dampening
properties of the system. The latter mentioned are to estimate simply by
means of the amplitude frequency response or also roughly for the dominating
system time constant Tc or for the critical frequency fc.

The named rule of the electric measurement technique means that the
carrier frequency of the amplitude modulation (a well-known procedure of the
analogous transmission of electrical measuring signals) must be at least five
times greater than the highest awaiting frequency of the measuring size. If this
condition is fulfilled then a true to the form reproduction and transmission
is given of the dynamic measuring size. This means, in other words, that the
cycle duration for an oscillation of the carrier frequency must be included at
least five times in the cycle duration of the shortest awaiting oscillation of
the measuring size [5].
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This rule (applied to the presented problem of the gauge and measur-
ing length estimation) means that the yarn length (which has been exactly
manufactured or processed during a full oscillation of the disturbance) is to
be divided into at least five equal parts for further (for instance statistical)
estimations.

If the disturbance frequency f and the take-down velocity vo are known,
then the wavelength of the disturbance λf in the fibre or yarn amounts to:

λf =
vo

f
(4.85)

The necessary cut length Lcl for the named single tests can be derived
from Eq. 4.85 as follows:

Lcl =
1
n
· vo

f
=

λf

n
(4.86)

condition: n ≥ 5

It is not enough to only select as necessary gauge length Lgl the yarn
length of one cycle duration of the disturbance. Rather it is recommended
that the basic totality of the gauge length Lgl to select be at least so large
that five full disturbance oscillations are included. The necessary gauge length
Lgl for fibre or yarn testings can be recommended consequently to:

Lgl = n · vo

f
= n · λf (4.87)

condition: n ≥ 5

According to Eqs. 4.86 and 4.87, 25 continuous single tests of yarn pieces
with the cut length Lcl would be necessary to prove an expected distur-
bance frequency. Typical disturbance frequency ranges and the necessary
yarn lengths Lgl and Lcl for their proof (which can be derived from the wave-
length of a full disturbance oscillation λf in the shown manner) are collected
in Table 4.4 for a row of disturbance causes in the polymer and glass spinning
processes. Questions about the named aspects could not be answered if fixed
standard gauge lengths or cut lengths were used (fineness testing 100 m or
stress strain testing with specimen length of 0.5 m).

However, if the named conditions are fulfilled the following remarks are to
be added according to the assertion of statistical characteristics as quadratic
dispersion or variance and coefficient of variation. These characteristics do
not express the absolute shifts around the mean values of the concerned
variables in consequence to their integral calculation laws. If conditions are
being observed for the decision of the yarn lengths Lgl and Lcl according to
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Eqs. 4.86 and 4.87 (to investigate an appointed disturbance cause of known
frequency f) then the coefficient of variation will show sinusoidal shifts of
approximately 0.7 times around the mean value only (exactly

√
2/2 times)

for real existing maximum shift amplitudes.

It has been shown in Sect. 2.5.2 that the disturbance frequency f of pro-
cess and product variables essentially effect the interesting product variables
of the final product only if
- the dynamic transmission behaviour is shown with a considerable transfer
or amplification factor and
- the disturbance frequency f is located in an appointed range, which de-
pends on the critical frequency fc of the process line.

The last condition results in a practical undamped dynamic transmission
of a cause disturbance to the effect variable by a proportional action with
delay of first order

f ≤ fc (4.88)

It should be remembered that proportional action with delay of first order
takes place in the fibre formation of melt spinning for the transmission of
Δvo-, Δvi-, Δ�- or Δqi-disturbances to ΔT to-shifts.

If differential action with delay of first order lies before, on the contrary
then the condition reads for undamped disturbance transmission as:

f ≥ fc (4.89)

Differential action with delay of first order exist for instance for Δl-
disturbances, in melt spinning and its effect to ΔT to-shifts.

In Table 4.5 time constants Tc and critical frequencies fc (calculated by
means of Eqs. 2.47 and 2.49 are combined on the basis of the output velocity
vom and length of the process line lm) for some typical yarn formation and
processing lines. The collection can support estimations to possible effects of
periodic disturbances with known frequency f for variables of the yarn at the
output of a yarn formation or processing line.
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Table 4.4. Disturbance causes, disturbance frequencies and disturbance wave-
lengths in the fibre or yarn of melt spinning processes; necessary gauge and cut
lengths for the prove of disturbances (vom = take-down velocity in m/min)

Cause of the Disturbance Wavelength Necess. gauge Necess. cut
disturbances frequencyf in the fibre length Lgl length Lcl at
at the or yarn λf discontinuous
spinning testing
equipment [Hz] [m] [m] [m]

Melt spinning of polymers

Bobbin (1.4...5.6) (12...3) ≥ (6..1.5) ≤ (24...6)
changing ·10−4 ·10 · vom ·102 · vom ·vom

Melt (1.7...17) (10...1) ≥ (50..5) ≤ (20...2)
temperature ·10−3 ·vom ·vom ·10−1 · vom

Oiling disk (1.7...3.3) (10...5) ≥ (5..2.5) ≤ (2...1)
·10−1 ·10−2 · vom ·10−1 · vom ·10−2 · vom

Spinning (1.7...6.7) (10...2.5) ≥ (5..1.25) ≤ (20...5)
pump ·10−1 ·10−2 · vom ·10−1 · vom ·10−3 · vom

Quenching (5...50) (33...3.3) ≥ (16.7...1.7) ≤ (67...6.7)
air ·10−1 ·10−3 · vom ·10−2 · vom ·10−4 · vom

Traverse (1...10) (17...1.7) ≥ (85...8.5) ≤ (33...3.3)
motion ·10−1 ·10−4 · vom ·10−4 · vom ·10−5 · vom

Melt spinning of glass

Bobbin (5.7...16.7) (3...1) ≥ (15..5) ≤ (6...2)
changing ·10−4 ·10 · vom ·10 · vom ·vom

Main power ≤ 4 · 10−1 ≥ 4.2 ≥ 2.1 ≤ 8.4
(melt temp.) ·10−2 · vom ·10−1 · vom ·10−3 · vom

Throughput
spinneret
- without ≤ 1 · 10−3 ≥ 1.7 ≥ 8.5 ≤ 3.4 · vom

Ts-control ·101 · vom ·101 · vom

- with ≤ 1 · 10−4 ≥ 1.7 ≥ 8.5 ≤ 3.4
Ts-control ·102 · vom ·102 · vom ·10 · vom

- quick ≈ 1.751 · 101 ≈ 9.5 ≥ 4.75 ≤ 1.9
traverse ·10−4 · vom ·10−3 · vom ·10−4 · vom

≈ 3.5 · 101 ≈ 4.8 ≥ 2.4 ≤ 9.6
·10−4 · vom ·10−3 · vom ·10−5 · vom

- slow ≈ 3.3 · 10−2 ≈ 5 ≥ 2.5 · vom ≤ 1
traverse ·10−1 · vom ·10−1 · vom



208 4. Dynamics of Fibre Formation Processes

Table 4.5. Quantities of time constants and critical frequencies of different fibre
formation and fibre processing process lines

Process step Output velocity Formation Time constant Critical frequen-
of the process length of the of the process cy of the process
step process line line line
vom [m/s] lm [m] Tc [s] fc [Hz]

Man-made fibre manufacturing
Spinning
classically
and spin-
draw-winding (1.5...2) · 10 4...6 (2...4) · 10−1 (8...4) · 10−1

Spinning,
high speed
spinning (5...10) · 10 2...4 (2...8) · 10−2 8...2

Draw,
classically (1.2...1.5) · 10 3.5...4.5 · 10−1 (2.3...3.8) · 10−2 6.9...4.2

Draw,
spin-draw-
winding (5...10) · 10 4.5...5.5 · 10−1 (4.5...11) · 10−3 (3.5...1.5) · 10
False twisting,
texturing 2.5...10 1...2 (1...8) · 10−1 (16...2) · 10−1

Yarn manufacturing

Draw,
slivers and
rovings 1...8 (1...5) · 10−1 (1.3...50) · 10−2 12.2...0.32

Draw,
ring frame (3...10) · 10−1 (5...20) · 10−2 (5...67) · 10−2 (32...2.4) · 10−1
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