
5. Dynamics of Fibre Processing Processes

5.1 Dynamics of the Fibre Transport

5.1.1 Task

Each fibre manufacture and processing process is connected to the dynamic
basic principle of the transport. Neither fibre formation nor fibre processing
are possible without continuously running down transport operations, which
are realised as a rule, by means of rotations for specific machine tools. Fibres
or yarns are not able to pick up axial pressure forces. Therefore, a continuous
fibre transport is only possible if a tensile force is produced and permanently
maintained in the transported fibre or yarn. A controlled refining of the yarn
(for instance in the draw process of man-made fibres) can even be effected
by means of this tensile force besides the pure transport and processing (for
instance twisting, package winding, sectional warping, texturing). On the
one hand, specially man-made fibres are very sensitive to tensile force fluc-
tuations during their processing. On the other, some disturbed process and
product variables (caused for instance by thread guide elements, preparation
oils, unbalanced machine tools, fluctuating fibre material itself) permanently
influence the quantity of the tensile force. It is obvious that the dynamic
analysis and the dynamic modelling of the basic process fibre transport is
from fundamental and primary importance for the process analysis of the
technological fibre formation and processing processes.
Some elaborated model ideas to this set of problems are presented in the
following. These are valid for small deformation ranges (elongation demand
< 10%) in which current linearity is between tensile force and elongation in
the first approximation. Nonlinear deformation processes (with changing fi-
bre deformation characteristics along the fibre length or with essential plastic
deformation parts) are excluded.
The investigations can be used as a basis for the treatment of the following
problems:

- process synthesis oriented (for instance statements to favourable or un-
favourable arrangement and design of machine tools in the thread line),

- process analysis oriented (for instance influence of thread guide elements
to the thread unevenness, reaction of measuring sensors to the thread) or
even
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- thread test oriented (for instance questions in relationship with the fric-
tional test or with the unevenness measuring of threads).

Besides our own detailed paper to fibre transport modelling [291] the
reader should be referred to the complementing three papers dealing with
the problem of running elastic fabrics between driven rolls [292]- [294]; [295]
is also recommended.
The analysis of any continuous running thread line in a fibre formation, fibre
processing or fibre testing machine or apparatus shows that three different
thread strain lines (arranged in different manners of series) can be found:
These are the delay thread line, the dead time thread line and the friction
thread line.
The dynamic modelling of any realised thread transport process therefore
supposes knowledge and solutions of the dynamic description equations (that
means the DEq.) for the three named typical thread transport strain lines.

5.1.2 Dynamic Model to the Description of a Delay Thread Line

A delay thread line is in the present relationship a part of a transported,
under a tensile force situated, thread with the length l which runs into this
part with the velocity vi and the fineness T ti and comes out of this part with
the velocity vo and the fineness T to. Here: vo > vi (trivial condition for the
improvement of a tensile force) is valid and each fineness change comes off
evenly at each point along this part. The last prerequisite is a simplification
for the transported thread in the settled limited strain range which the thread
attributed rubber elastic behaviour.

Figure 5.1 (already known in a similar form, compare Figs. 2.5 and 4.20)
shows a possible practical realisation for the given definition. At this, one can
also imagine, the backing-off point of a thread from a cop which is transported
along a determined free way distance into the rotating input element of a
thread processing machine.

The linearised DEq. (the mathematical dynamic model) of such a delay
thread line can be deduced naturally from the basic Eqs. 2.23 and 4.7 to:

(vom+p·lm)·ΔT to+T tom ·Δvo−vim ·ΔT ti−T tim ·Δvi+p·T tom ·Δl = 0 (5.1)

Equation 5.1 can be transmitted easily to the dynamic transfer function (re-
peatedly explained in Chap. 4 before) from which all further dynamic func-
tions in the frequency and time range are calculable.
It is easy to state that after some practice in the handling of DEqs. in the oper-
ator style of writing and their solution functions that the dynamic behaviour
of a delay thread line is practically identical to the already fully described
behaviour of the fibre formation distance in melt spinning polymers for the
product variable fibre fineness (see also Sect. 4.2.1). All resulting equations
and their normalised presentations (Figs. 4.4 to 4.6) are valid, similarly, for
the transport delay line. It is simple to substitute the variables qi, qim and Δqi
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Fig. 5.1. Technological scheme of a delay thread line

by T ti, T tim and ΔT ti in Sect. 4.2.1. Δ� = 0 is to be set additionally because
this variable is not of interest here.

In the following practical example of Sect. 5.1.5 we will fall back upon
Eq. 5.1 and its application will be demonstrated.

5.1.3 Dynamic Model to the Description of a Dead Time Thread
Line

A dead time thread line is in the present relationship a part of a transported,
under a tensile force situated, thread with the length l which runs into this
part with the velocity vi and the fineness T ti and comes out of this part with
the velocity vo and the fineness T to. Here: vo = vi is valid and the thread
does not suffer fineness changes inside this part.
This definition says that the input thread fineness appears unchanged at the
output after running through this part (after the so-called dead time Td has
expired). Under this condition:
mass inflow per time = T ti · vi

mass discharge per time = T to · vo

with the both boundary conditions

vo = vi (5.2)

T to = T ti · exp(−p · Td) (5.3)

Figure 5.2 shows a realisation of a thread (transport) dead time line.
Equation 5.3 expresses the dead time relation between T to and T ti in the
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Fig. 5.2. Technological scheme of a dead time thread line

style of operator writing. It is the dynamic transfer equation for dead time
elements known from the automatic control engineering (see for instance [10]).
If the dead time Td is realised by the thread wrap around a cylindrical thread
transport element (for instance a wrapped godet which is a typical dead time
transport element) with the diameter D, the angle of wrap α (in radian mea-
sure) and the circumference velocity vi can then be written as:

Td =
D · α
2 · vi

(5.4)

One gets the dynamic model equation (first of all nonlinearly according to
the variables T ti, T to, vi, D and α) for the dead time thread line by putting
Eq. 5.4 into 5.3:

Φ = T to − T ti · exp
(
−p · D · α

2 · vi

)
= 0 (5.5)

Linearisation by means of partial differentiation then results in the linearised
final motion DEq. of the dead time thread line to:

ΔT to − exp
(
−p · Dm · αm

2 · vim

)
· ΔT ti

−p · T tim · Dm · αm

2 · v2
im

· exp
(
−p · Dm · αm

2 · vim

)
· Δvi

+p · T tim · αm

2 · vim
· exp

(
−p · Dm · αm

2 · vim

)
· ΔD

+p · T tim · Dm

2 · vim
· exp

(
−p · Dm · αm

2 · vim

)
· Δα = 0
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(5.6)

Equation 5.6 can be transmitted into the, in each case interesting, dynamic
transfer function for determined concrete cause-effect-questions. From the
latter the frequency, the amplitude and the phase frequency responses are
calculable. The effect variable output thread fineness T to will surely be of
special interest in most cases. It is to be remarked that the calculation of the
step response on the basis of the transfer function (by means of the residue
theorem of the Laplace-transformation) is not possible here because the step
response function of a dead time thread line is not a continuous function. The
practical application of Eq. 5.6 will be demonstrated by means of an example
in Sect. 5.1.5.

5.1.4 Dynamic Model to the Description of a Friction Thread Line

A friction thread line is in the present relationship a part of a transported,
under a tensile force situated, thread with the length l which runs into this
part with the velocity vi and the fineness T ti and comes out of this part with
the velocity vo and the fineness T to. Thus the following statement is valid:
The tensile force of the thread increases permanently along the part accord-
ing to the tensile friction law and the thread fineness decreases (a constant
E-modulus of the thread material is presumed) permanently according to the
same law (in a modified manner).
Friction lines appear practically on all fixed thread guides at the thread trans-
port. They are as you know even consciously designed parts of the appropriate
friction test apparatuses. The technological scheme of such a friction thread
line is shown in Fig. 5.3. It is at first necessary to determine the thread mass
on the friction element to the development of the continuity equation for the
dynamic working case. The following is valid for the tensile force in the input
and output thread (Fi and Fo):

Fo = Fi · eμ·α (5.7)

eμ·α rope friction factor
μ coefficient of friction
α angle of wrap (in radian measure)

The tensile force within a thread (which possesses the fineness T tzm before
the force influence on it and the fineness T ti during the force influence on it)
can be written as:

Fi = Azm · T tzm

[
T tzm
T ti

− 1
]

(5.8)

Azm to the thread fineness related rise of the force-elongation-
curve of the thread; dimension: force · fineness−1 ·
(relative length change)−1
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Fig. 5.3. Technological scheme of a friction thread line

Equation 5.8 put in Eq. 5.7 results:

Azm · T tzm

[
T tzm
T to

− 1
]

= Azm · T tzm

[
T tzm
T ti

− 1
]
· exp(μ · α) (5.9)

Equation 5.9 results for T to:

T to =
T tzm[

T tzm
T ti

− 1
]
· exp(μ · α) + 1

(5.10)

The, on the friction element situated, thread mass M can now be determined
by means of Eq. 5.10. The fineness T to (dependent on the angle of wrap α)
is to be multiplied by the circular arc α · Dm/2 to this (Dm = diameter of
the friction element). Because To is a function of α it is to be integrated over
the whole way of friction:

M =
Dm

2

α∫
o

T tzm[
T tzm
T ti

− 1
]
· exp(μ · α) + 1

· dα (5.11)

The solution of Eq. 5.11 results after substitution:

M =
Dm · T tzm

2 · μ

⎧⎪⎪⎨⎪⎪⎩μ · α + ln

[
T tzm
T ti

− 1
]

+ 1[
T tzm
T ti

− 1
]
· exp(μ · α) + 1

⎫⎪⎪⎬⎪⎪⎭ (5.12)
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If Eq. 5.10 is reduced to T ti and this value is inserted in Eq. 5.12 then one
gets the thread mass on the friction element M in dependent upon the output
thread fineness T to:

M =
Dm · T tzm

2 · μ
[
μ · α + ln

(T tzm − T to) · exp(−μ · α) + T to
T tzm

]
(5.13)

The time differential of Eq. 5.13 can be formed now because the value dm/dt
is nothing else than the changing thread mass on the friction element if T to
changes. This change element is easy to calculate:

dM

dt
=

Dm · T tzm[1 − exp(−μ · α)]
2 · μ(T tzm − T to) · exp(−μ · α) + T to

· Ṫ to (5.14)

Equation 5.14 represents the change of stored mass. The nonlinear DEq. as
the dynamic model equation for a friction thread line according to the basic
Eq. 2.23 can now be written with the latter and both quantities

• mass inflow per time = T ti · vi and
• mass discharge per time = T to · vo

Φ = vo ·T to+
dM

dt
=

Dm · T tzm[1 − exp(−μ · α)]
2 · μ(T tzm − T to) · exp(−μ · α) + T to

· T to·p−vi·T ti = 0

(5.15)

After partial derivation to all quantities which can change (vo, vi, T to, T ti,
μ, α) the following linearised motion-DEq. for a friction thread line results
from Eq. 5.15:

Ttom · Δvo − Ttim · Δvi − vim · ΔTti

+

{
vom + p

2Tt2zmDmμmexp(−μmαm)[1 − exp(−μmαm)]

[2μm(Ttzm − Ttom)exp(−μmαm) + Ttom]2

}
· ΔTto

+p
2TtzmTtomDmexp(−μmαm)[Ttomαm/2 − (Ttzm − Ttom)[μmαm − exp(−μmαm)]]

[2μm(Ttzm − Ttom)exp(−μmαm) + Ttom]2
· Δμ

+p
2TtzmTtomDmμmexp(−μmαm)[Ttom/2 + μm(Ttzm − Ttom)]

[2μm(Ttzm − Ttom)exp(−μmαm) + Ttom]2
· Δα = 0

(5.16)

The structure of Eq. 5.16 is a bit more complicated than the derivated equa-
tions until now. Nevertheless, it is the basis of the dynamic transfer functions
and their derivated functions in the frequency range (frequency, amplitude,
and phase frequency responses) which can answer to appointed cause-effect-
questions. In the following subsection the use of the dynamic model Eqs. 5.1,
5.6 and 5.16 of the delay, dead time and friction lines thread will be repre-
sented by means of some practical examples. From these derived statements
it will also be shown for the carrying out of the process.
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5.1.5 Examples of Quantitative Investigations of Fibre Transport
Processes

Fibre Influence in a Series Arrangement of Delay and Dead Time
Thread Lines

The investigated delay thread line with a following dead time thread line
is shown in Fig. 5.4. A practical realisation could be, for instance, that the
thread runs from a supply bobbin into the manifold wrapped taking in godet
of a drawing zone or the thread runs in an elongation zone realised between
a taking in godet and a manifold wrapped taking out godet.

Ttim, ΔTti
vim, Δvi

Ttom, ΔTto

vom, Δvo

Dm , ΔD

αm

lm

delay line

dead line

Ttzm, ΔTtz
vzm, Δvz

Fig. 5.4. Series arrangement of a delay and a dead time thread line

The used abbreviations mean:

T tim, vim mean value of the thread fineness or velocity at the input into the
delay line

ΔT ti, Δvi changes of the thread fineness or velocity around their mean values
at the input into the delay line

T tzm, vzm mean value of the thread fineness or velocity at input into the dead
time line (≡ output of the delay line)

ΔT tz, Δvz changes of the thread fineness or velocity around their mean values
at input into the dead time thread line (≡ output of the delay line)

T tom, vom mean value of the thread fineness or velocity at output of the dead
time line

ΔT to, Δvo changes of the thread fineness or velocity around their mean values
at output of the dead time line

lm length of the delay line
Dm diameter of the godet
ΔD change of the godet diameter
αm angle of wrap of the thread around the godet (in radian measure)
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The dynamic model equations of a delay thread line (Eq. 5.1) and a dead
time thread line (Eq. 5.6) – applied to the present case – are used for the
calculation of the dynamic transfer function for a cause-effect relation whose
aim is also to be defined. It should be assumed that ΔD (no eccentricity of the
godet) as well as Δvz and Δvo (no speed changes of the transport godet) and
ΔT ti (no changes of the input thread fineness) are equal to zero. Moreover,
if it is considered that vzm = vom and T tzm = T tom then the equations can
be written as
delay line

(vom + p · lm) · ΔT tz − T tim · Δvi = 0 (5.17)

dead time line

ΔT to − exp
(
−p · Dm · αm

2 · vom

)
· ΔT tz = 0 (5.18)

It should now be investigated whether the reactions of the fineness at the
output of the transport godet (ΔT to) are if the velocity is changing at the
input of the whole transport line (Δvi). Now the dynamic transfer function
is to be formed

G(p) =
ΔT to
Δvi

which is to be calculated from Eqs. 5.17 and 5.18 as follows:

G(p) =
ΔT to
Δvi

=
T tim
vom

·
exp

(
−p · Dm · αm

2 · vom

)
1 + p · lm

vom

(5.19)

amplitude frequency response

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vi

⏐⏐⏐⏐⏐ =
T tim√

v2
om + (2πf · lm)2

(5.20)

phase frequency response

ϕ(f) = arc tan

⎡⎢⎢⎣−2πf · lm · cos
(

Dmαmπ

vom
· f

)
+ vom · sin

(
Dmαmπ

vom
· f

)
vom · cos

(
Dmαmπ

vom
· f

)
− 2πf · lm · sin

(
Dmαmπ

vom
· f

)
⎤⎥⎥⎦

(5.21)
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The phase shift angle ϕ(f) (Eq. 5.21) indicates (as you know) in which
angle ϕ (related to a full cycle duration of the disturbance oscillation) the
effect-oscillation follows the cause-(disturbance-)oscillation. It is easily pos-
sible to conclude from this phase shift angle ϕ(f) by means of the known
output velocity vom and of Eq. 2.50 to the thread length Ld which passes
the transport system at its output before an input disturbance reaches this
output. An independent representation of this delay thread length Ld from
the velocity vom can be given if it does not use the disturbance frequency f
as an independent variable, but the wavelength λf of a full cycle duration of
the disturbance in the thread. It is connected with the disturbance frequency
f and the thread output velocity vom according to the relation

f =
vom

λf
(5.22)

Comparable to this is also the equivalent Eq. 4.57.

The nomogram Fig. 5.5 should be inserted at this point. It allows the
conversion of the single quantities into each other and it can be used because
it is generally valid for other interests of the same kind which are presented
for instance in the Sects. 4.3.3, 4.4.2, 4.4.3 and the Sect. 4.5.

The amplitude frequency response of Eq. 5.20 and the delay thread length
Ld are represented in Figs. 5.6 and 5.7 depending upon the disturbance fre-
quency f and of the correlated thread length (in connection with the thread
output velocity), which represents a full disturbance oscillation. The corre-
sponding dependences are epitomised presented for the following process and
product variables (only for vim=100 m/min) relating to the model arrange-
ment in Fig. 5.4:

T tim = 3.4 tex
T tom = 3.3 tex
Dm = 0.1 m, 0.2 m
αm = 0 (thread goes out the delay thread line directly)
αm = 2π, 6π, 10π (≡ 1, 3, 5 wraps round the godet)
lm = 0.5 m, 1.0 m, 2.0 m
vim = 100 m/min, 500 m/min, 1000 m/min
vom = 103 m/min, 515 m/min, 1030 m/min

The following statements are to be derived also concerning the not pre-
sented results of the higher thread velocities:

a) The amplitude frequency responses (Fig. 5.6) show that the amplitude
of the output fineness change ˜ΔT to (caused by an input disturbance of the
velocity Δ̃vi) is independent on it, if a dead time thread line of any length
follows to the delay thread line or not. The result means that the imprinted
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Fig. 5.5. Nomogram to the estimation of the relationship between the thread
velocity vom, the disturbance frequency f and the disturbance wavelength λf

thread fineness changes ˜ΔT to along a godet line with more or less wraps will
neither decrease nor increase. They appear at the output unchanged and are
only delayed by the pure transport time (see definition of the dead time in
the Sect. 5.1.3).

b) Disturbances of the input velocity Δ̃vi of ≥ 50 m/min (according to
a frequency of the disturbance f of ≤ 3.3 · 10−2 Hz at vim = 100 m/min
or ≤ 3.3 · 10−1 Hz at vim = 1000 m/min) will be transmitted practically
undamped to the output thread fineness T to.

c) A practical complete dampening is reached if the disturbance is ≤ 50
mm (according to a frequency of the disturbance f of ≥ 33 Hz at vim = 100
m/min or ≥ 330 Hz at vim = 1000 m/min). It is furthermore to read that
the dampening effect is already put in at smaller frequencies the greater the
length of the delay line.
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d) It is furthermore remarkable that a variation of the delay thread line
length lowers or raises the critical frequencies in a similar ratio. From this it
is derivable that the dampening of such input velocity disturbances is better
the longer the line can be selected from the thread unwinding point to the
machine input. Such disturbances happen for instance at the twisting, draw
twisting or knitting in form of so-called “thread plucks” or also in longer pe-
riodic unwinding fluctuations by means of oil fluctuations on the thread. An
extension of this line alone must also work for thread break behaviour, be-
cause the thread break is an extreme case of fineness change (ΔT t = −T tm).
Each measurement must effect diminishing, to the thread breaks, which fine-
ness changes damp or dismantle, indifferent of which cause is produced.

e) The knowledge of the delay thread length Ld is also important for the
cause research of unevennesses (Fig. 5.7). The dead times (caused by different
roll wraps and diameters) are of decisive influence on Ld (contrary to the am-
plitude frequency response) specifically in the disturbance wavelength range
≤ 1 m. Whereas the delay thread length Ld with missing dead time (αm = 0)
line increases very strongly with increasing disturbance wavelength λf (ac-
cording to decreasing disturbance frequency f , notice the double logarithm
axes in Fig. 5.7) the dependence on the disturbance wavelength decreases
with the increasing dead time line. The delay thread length Ld approaches a
limit value versus the disturbance wavelength λf which is exactly equivalent
to the length of the delay thread line lm. This behaviour means practically
that Ld is determined for λf ≤ 1 m (according to great disturbance frequen-
cies f) almost fully by the dead time thread line, whereas the influence of the
delay thread line (according to the length of this) will be relatively stronger
for great disturbance wavelengths λf ≥ 5 m (according to small disturbance
frequencies f).

f) The relationships show that specific short-time disturbances of high
frequencies (with short and shortest wavelengths) in the thread (they influ-
ence the thread break behaviour especially drasticly) are very difficult to
characterise only by their cause-effect relationship. The reason is that their
amplitudes are probably strongly dampened (specifically for long delay lines)
and because (specifically for short delay lines) the delay thread length Ld can
amount to the multiple of the disturbance wavelength λf .

It is absolutely necessary that dynamic model investigations be carried out
for such practical interesting cases to the design of unique relationships out of
dynamic measurements. It can also be necessary that the interpretation of the
measuring results be found by cross-correlation analysis of the disturbance
time functions and their effects to the thread fineness (see to this Chap. 6).
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Fibre Influence at Fixed Thread Guides (Friction Thread Lines)

The thread line at fixed thread guides (thread deflection elements, thread
guides, friction brakes) has been defined as the friction line. The already
used scheme of the thread guidance around a fixed friction element (Fig. 5.3)
will be investigated quantitatively in the following more throughly. The used
symbols of the dynamic model Eq. 5.16 and their meaning should be given
as:

T tzm, vzm mean values of the thread fineness or velocity
of the tensionless thread

T tim, vim mean values of the thread fineness or velocity
at the input into the friction thread line

T tom, vom mean values of the thread fineness or velocity
at the output of the friction thread line

Dm diameter of the fixed (friction) thread guide
αm mean value of the angle of wrap of the thread

around the fixed (friction) thread guide (in ra-
dian measure)

μm mean value of the friction coefficient thread-
thread guide

ΔT ti, ΔT to,
Δvi, Δvo,
Δμm, Δαm, ΔD

⎫⎬⎭ changes of the adequate sizes around their
mean values

It is assumed according to Eq. 5.16 that D, T tz, vz, vo and α are constant
(the appropriate possible changes ΔD, ΔT tz, Δvz, Δvo and Δα are assumed
to be zero). Equation 5.16 is simplified appropriately then.

It is investigated in the following how the fineness change ΔT to acts if
either the velocity at the input of the friction thread line vi or the friction
coefficient μ fluctuate. The fineness of the thread at the input should be con-
stant (ΔT ti = 0).

The amplitude frequency responses for the named disturbances are:

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃vi

⏐⏐⏐⏐⏐ =
T tim · Aa√

A2
a · B2

a + (2πf · Ca)2
(5.23)

|G(jf)| =

⏐⏐⏐⏐⏐ ˜ΔT to

Δ̃μ

⏐⏐⏐⏐⏐ =
2πf · Ea√

A2
a · B2

a + (2πf · Ca)2
(5.24)

with the abbreviations

Aa = [2μm(T tzm − T tom) · exp(−μm · αm) + T tom]2

Ba = vom



5.1 Dynamics of the Fibre Transport 223

Ca = 2T t2zm · Dm · μm · exp(−μm · αm)[1 − exp(−μm · αm)]

Ea = 2T tzm · T tom · Dm · exp(−μm · αm)
· {(T tzm − T tom) · [1 − μmαm − exp(−μm · αm)] − T tom · αm/2}

The correlated phase frequency responses for the disturbance Δ̃vi are:

ϕ(f) = arc tan
[
−2πf · Ca

Aa · Ba

]
(5.25)

and for the disturbance Δ̃μ:

ϕ(f) = arc tan
[

Aa · Ba

2πf · Ca

]
(5.26)

By means of Eqs.+5.25, 5.26 and 2.50 it is possible to give the delay
thread lines Ldv (for a velocity disturbance Δvi) or Ldμ (for a friction co-
efficient disturbance Δμ) as a quantity for the thread length which passes
the transport system between the cause imprinting and the effect reaction of
periodic disturbances. Considering Eq. 5.22 it is also possible to give here a
result presentation versus the disturbance wavelength λf which is free of the
output velocity vom.

Before a quantitative analysis can be done it is necessary to calculate
the sizes vim, vzm, T tim and T tom from the given sizes vom and T tzm. If a
preelongation of 0.3% is assumed in the input thread then T tim = T tzm/1.003
follows according to the continuity equation. Equation 5.10 was valid between
input and output fineness of the thread along the friction line. With this it is
also possible to calculate the velocities vim and vzm if the continuity equation
T tim · vim = const. is considered additionally.

Equations 5.23 to 5.26 have been analysed for the following combinations
of process and product variables:

T tzm = 3.4 tex
αm = π/2 (1/4 wrap)

= 2π (1 wrap)
T tim = 3.3898 tex
T tom = 3.384 tex (for αm = π/2)

= 3.334 tex (for αm = 2π)
vom = 100 m/min, 500 m/min, 1000 m/min
vzm(α = π/2) = 99.54 m/min, 497.76 m/min, 995.72 m/min
vzm(α = 2π) = 98.10 m/min, 490.41 m/min, 980.82 m/min
vim(α = π/2) = 99.84 m/min, 499.26 m/min, 998.52 m/min
vim(α = 2π) = 98.40 m/min, 491.94 m/min, 983.82 m/min
Dm = 2 mm, 5 mm
μm = 0.3
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Fig. 5.8. Normalised amplitude frequency responses of fineness changes ˜ΔT to
caused by input velocity changes Δ̃vi of a friction thread line after Fig. 5.3, output
velocity vom = 100 m/min

The results of the quantitative calculations are partly shown (for vom =
100 m/min only) in Figs. 5.8 to 5.11. The following statements are also to
be derived concerning the not presented results of the higher thread velocities:

a) ˜ΔT to will be smaller so the disturbance frequency f will be greater if
a disturbance Δ̃vi effects. The reason for this is the dampening effect of the
friction thread guide line (Fig. 5.8). This dampening effect starts at smaller
frequencies the thicker the friction thread guide and the smaller the wrap an-
gles are. It does not occur unless the disturbed thread lengths (disturbance
wavelengths λf) are smaller than the wrap line on the thread guide.

b) A practically complete dampening of an input velocity disturbance
occurs only at disturbance wavelengths in the thread of λf < 0.15 mm (ac-
cording to influence times of the disturbance of < 0.1 ms!). Because all dy-
namic disturbances have as a rule a much longer influence time it is to be
stated that all Δvi disturbances at the input of a friction thread line will
be transmitted greatly proportionally in the same ΔT to changes at the out-
put (under the most suitable conditions of a constant output thread velocity).

c) The friction thread line effects (only for high frequency disturbances)
a better disturbance decrease the greater its diameter and the smaller its
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wrap angle is. This result suggests the following recommendation: To the
realisation of an appointed mean thread tensile force at the input of a pro-
cessing machine it is better to arrange serially several friction lines with large
diameters and in each case small thread wrap angles (for instance a lattice
brake) than only one friction thread line with a small diameter and a great
wrap angle. If the use of only one friction thread line is possible then a great
diameter is in its turn more favourable than a smaller on the same wrap angle.

d) The effect of friction coefficient changes or oscillations Δ̃μ to the fine-
ness T to are shown in Fig. 5.9. The relationships are valid for the case that
the thread which runs into the friction thread line is braked with a constant
brake force and it is constantly elongated (here 0.3%). Further it should be
as valid as before: vo = vom = const.
Disturbances with a frequency of < 1 Hz (consequently all quasi steady state
changes of the friction coefficient too) will not be of influence on the fineness.
The fineness changes reach only less than 0.01% in this range for instance
if the friction coefficient changes by 1%. The effect of the disturbances with
the same dimensions is here (in opposite to the case of a input velocity dis-
turbance discussed before) the greater in the rest of the frequency range the
thicker the friction thread guide and the greater the thread wrap angle are.
The amplitude frequency response of the model variants approximated be-
fore always to zero for high disturbance frequencies. In the present case of
a friction coefficient disturbance the amplitude frequency response reaches a
constant value (dependent on the thread line velocity; Fig. 5.9 only shows the
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output velocity vom = 100 m/min) for disturbance frequencies of > 5 · 103

to > 5 · 104 Hz. It is the question here of a differential action which follows
from the amplitude frequency response (5.24). Friction coefficient changes of
1% effect in this range even 2% (for α = π/2) to 3% (for α = 2π) fineness
changes. However, this range is not effective because the according distur-
bance wavelengths in the thread are < 1 mm, that means below the length of
the wrap or friction line. This amounts to, for the selected model relations,
between 1.6 mm (for Dm = 2 mm and α = π/2) and 15.7 mm (for Dm = 5
mm and α = 2π). A disturbance dampening occurs for such short disturbance
wavelengths because a mean value of the friction coefficient can only effect
along a thread part which just passes the friction line.

e) The delay thread line Ldv always amounts to < 0.12 mm in the entire
interesting disturbance wavelength range > 1 mm (Fig. 5.10). These only
insignificant delays (compared to the disturbance wavelengths) are of com-
pletely no account for dynamic measurements of threads which are running
about fixed friction elements due to their smallness.

f) The relations are similar for disturbances of the friction coefficient
(Fig. 5.11). The amplitude frequency response (see Fig. 5.9) is so small for
disturbance wavelengths > 10 cm (the delay thread length Ldμ could amount
here to more than 1 to 3 cm) that a nearly complete disturbance dampening
exists. The delay thread lengths Ldμ are already insignificantly small again
(< 0.3 mm) at disturbance wavelengths below 2 to 3 mm if the amplitude
frequency response reaches its full value.

Possibilities to the Dampening of Tensile Force and Tensile Elon-
gation Variations in Thread Input Lines

In Sect. 5.1.5 it has been hinted that a skillful designing of delay lines can
effect dampening to input velocity disturbances and their effects to fineness
unevennesses. Such delay lines are found in many machines of thread or fibre
processing. The thread is unwound normally from fixed or rotating supported,
but not actively driven, supply bobbins by means of the machine taking-in el-
ements. The so-called axial “over end unwinding” is predominant here. But,
the radial thread unwinding from rotating supported supply bobbins can
also be found. Numerous examples can be given as to the spinning, draw-
ing, twisting, winding, texturing, warping, sectional warping, and knitting.
Such thread input lines (Fig. 5.12) are more or less significant (according to
process step and material kind) under the view point of the cause research
to process disturbances or thread and fabrics unevennesses. The reason for
this is that each uncontrolled thread input (which is realised in the described
manner) is connected to thread tensile force and thread elongation changes.
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Such changes can be the cause for changes of appointed textile-physical qual-
ity characteristics of the thread which will only be formed in the following
process steps or will be optically visible displaced to the fabric possibly. But,
they can “only” be responsible for an increased thread break frequency. In
the following, possibilities and their efficiency to an effective dampening of
thread tensile force and thread elongation changes without the use of spe-
cial devices (for instance automatic controlled thread brakes) in connection
with [296] and [297] will be discussed. These investigations are independent
of the causing factors for such thread tensile force and thread elongation
changes for instance hooked and plastered up threads on the supply bobbins,
periodic changes of the unwinding geometry at threads which are unwinded
radially from rotating supported supply bobbins.

lm (+lext)

input element
of the machine

yarn take-off point
of the bobbin 

vim, Δvi,

Ttim, ΔTti

vom, Δvo,

Ttom, ΔTto, Δε

Fig. 5.12. Technological scheme of a thread input line

Input velocity changes Δvi according to Fig. 5.12 are the most frequent
cause for fineness changes ΔT to (and by this elongation and force changes Δε
and ΔF , as will be demonstrated later in Sect. 6.2). Therefore the starting
point of our views is the known dynamic transfer function of a delay line,
which is derived from DEq. 5.1:

G(p) =
ΔT to
Δvi

=
T tom
vim

· 1

1 + p · lm
vom

(5.27)

The elongation ε of a thread with the fineness T ti in the unloaded state and
the fineness T to in the elongated state is

ε =
T ti
T to

− 1 (5.28)
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The partial differentiation of Eq. 5.28 to the three variables, which can be
changeable, results in

Δε =
1

T to
· ΔT ti − T tim

T t2om
· ΔT to (5.29)

We will not consider fineness changes of the input thread T ti in the present
case (ΔT ti = 0). Equation 5.29 is simplified then to

Δε = − T tim
T t2om

· ΔT to (5.30)

ΔT to from Eq. 5.30 introduced into Eq. 5.27 results to the amplitude frequency
response

|G(jf)| =

⏐⏐⏐⏐⏐ Δ̃ε

Δ̃vi/vim

⏐⏐⏐⏐⏐ = (−)
T tim
T tom

[
1 +

(
2πf · lm

vom

)2
]−1/2

(5.31)

The amplitude frequency response of Eq. 5.31 is shown versus the length of
the input line lm for different frequencies of the disturbance ṽi in Fig. 5.13.
The diagram is related to an experimental investigation of a twister. The
velocity vom amounted to 58 m/min.
Thread input velocity oscillations Δ̃vi should only effect small Δ̃ε oscilla-
tions in a stable process. That means, the amplitude frequency response
should be as small as possible or even zero. A relatively simple technological-
constructive method insists on the extension of the thread input (delay) line
as long as possible (compare Fig. 5.13). A further modified quantitative analy-
sis of the solution equation for the dynamic mathematical model can be given
as follows.
Dependent on
- the length lm of any existing thread input line on a machine,
- the thread transport velocity vom,
- the frequency f of the thread tensile force and the thread elongation changes
an exactly quantitative predetermined extension of the input line lext can be
calculated, in which the existing amplitudes of the thread tensile force and
thread elongation oscillations are reduced by a wished reduction factor R.
This reduction factor R is defined as

R = 1 − |G(jf)| (input line (lm + lext))
|G(jf)| (input line lm)

(5.32)

Equation 5.32 inserted into Eq. 5.31 yields:

R = 1 −

√√√√√√√√
1 +

(
2πf · lm

vom

)2

1 +
[
2πf · (lm + lext)

vom

]2 (5.33)
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line

Equation 5.33 dissolved to lext results in the condition for the necessary
extension of the thread input line at the wished reduction factor R

lext =

√
R · v2

om · (2 − R) + (120π · f · lm)2

120π · f · (1 − R)
− lm (5.34)

The following dimensions are used:

lm, lext m
vom m/min
f Hz
R dimensionless, possible range from 0 (no reduction of disturbances)

until 1 (full dampening of disturbances)

The necessary input line extension lext can also be appointed by means of
a simplified approximation relation 5.35 (the basis for this is also Eq. 5.34),
if a reduction of the thread tensile force and thread elongation changes have
reached the half according to those by an unextended input line (reduction
factor R = 0.5). This is much better to handle, but it requires somewhat
greater lext-values for high thread line velocities (vom > 500 m/min) and
simultaneously small disturbance frequencies (f < 5 Hz). These lext-values
are concerning the desired effect.

lext ≈ 15 · vom/f + lm (valid for R=0.5) (5.35)
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The following dimensions are used:

lm, lext m
vom m/s
f min−1

Quantitative data to the choice of input line extensions under concrete
technological conditions can be taken away in Fig. 5.14.
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Fig. 5.14. Necessary extension factor lext/lm dependent upon the disturbance fre-
quency ratio f/fc and on the reduction factor R

The use is the following:
One appoints the critical frequency fc of the input line by means of Eq. 2.49
or Fig. 4.7 on the basis of the already present input line length lm and winding
up thread or input velocity into the machine vom. It is also possible to find
out the extension factor lext/lm according to the already present input line
lm, which is to be realised for a dampening of the changes with the appointed
reduction factor R.
If the necessary input line extension cannot be realised in a straight line on
the machine then the whole length can be realised by means of thread deflec-
tion elements. However, the latter must be thread guide elements with light
running rolls to reach the full dampening effect [297].



232 5. Dynamics of Fibre Processing Processes

The efficiency of an input line extension (calculated on the basis of the
developed theoretical fundamentals) should be demonstrated finally using
variation coefficients derived from the experimentally measured thread ten-
sile force time functions in the input line of a ring twister (Fig. 5.15).
The normal input line amounted to lm = 0.42 m, and the thread input ve-
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Fig. 5.15. Variation coefficients of tensile force time functions on a Mouliné-twister
for different input line extensions lext, fibre material: PET 11 tex (20), texturised,
vom = 58 m/min

locity to vom = 58 m/min (fc = 0.37 Hz). It was to observed through this
condition that a main frequency of the thread tensile force changes (and with
this also of the thread elongation) of 0.75 Hz caused by a radially unround
thread backing-off from a rotating supported supply bobbin. The tensile force
changes amount nevertheless to ±50% around the mean value of 75 mN and
result in a variation coefficient of 35.15% (lext = 0). These led to the induced
elongation changes of the same relative quantity to distinct shade distur-
bances of the manufactured plied threads which consisted of two such supply
threads of different fundamental colours. Input line extensions of lext = 0.45
m led to a variation coefficient of 13.34% and the disturbed quality deficien-
cies were removed at the input line extensions lext ≥ 1.6 m. The variation
coefficients of the tensile force time functions decrease then to < 9% (see also
Sect. 6.4.2 and Fig. 5.15 again).
This technological example shows that an undisturbed thread run can be re-
alised throughout without greater additional expense, if the dynamic trans-
mission regularities are strictly used.
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Fibre Influence by Means of Dynamics of Thread Traverse Motion
at Winders

A further interesting application of the dynamic model of a delay thread line
(applied to a concrete technological situation) is the analysis of the fineness
influence caused by the periodic thread traverse motion at the winders. The
characteristics of the appropriate extensive investigations [298] and some re-
sults are presented as follows. First, a few remarks to the motive of such
investigations:

a) The traverse motion system permanently imprints the thread periodic
property changes along its length axis which can be recorded as elongation
and fineness changes. Such changes can evoke considerable molecular struc-
ture changes of the threads, particularly at the spinning machines for man-
made fibres, because these changes are imprinted during the decisive phase
of the structure development [299].

b) Already periodic elongation and fineness changes of 1% (!) can be the
cause for visible dyeing defects in special products of man-made fibres [300].

c) A well-defined relationship exists between the quantity of the thread
breaks at special processing processes and the fineness fluctuation amplitudes
imprinted by the thread traverse motion process at the man-made fibre spin-
ning machine.

d) Elongation and thread tensile force fluctuations caused by the traverse
motion can involve deviations of the reel body from the desired cylindrical
shape which leads to local different mill work particularly at the friction roll
drives as a consequence of different contact pressures.

The thread line between the delivery godet and the wind-up bobbin can
be taken in as a delay thread line (Fig. 5.16) which also includes the common
case of an asymmetric traverse motion triangle (Fig. 5.17).

The basis for the derivation of the dynamic model is therefore the com-
mon linearised DEq. for a delay line. The cause variable of the fineness dis-
turbances ΔT to of the winded thread are the periodically enforced changes of
the length Δl of the delay line. The short friction lines on the thread guides at
the top of the traverse motion triangle and of the traverse motion are itself
neglected in the following. The dynamic model DEq. derives from Eq. 4.7
and is changed to:

(vom + p · lm) · ΔT to + p · T tom · Δl = 0 (5.36)
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Fig. 5.16. Technological scheme of the thread traverse motion, case a

The symbols in Figs. 5.16, 5.17 and Eq. 5.36 mean:

T tom mean value of the fineness of thread at the bobbin wind-
up point approaching from the traverse motion triangle

lm mean value of the thread length between godet and wind-
up point of the bobbin

vom mean value of the velocity of thread which the bobbin
winds up (output or wind-up velocity)

lh height of the traverse motion triangle
vtm mean value of the linear velocity of traverse motion

thread guide
lb length of the bobbin
fts frequency of the traverse motion thread guide for the

operation of one twice stroke, that means its motion from
the left bobbin edge to the right and back

e asymmetry parameter
p differential operator d/dt
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Fig. 5.17. Technological scheme of the thread traverse motion, case b

The resolution of the DEq. 5.36 for impulse-like Δl-disturbances (it is
equivalent to the first derivation of the step response Eq. 4.36) is

ΔT to⊥Δl = Δl · T tom · vom

l2m
· exp

(
−vom

lm
· t

)
(5.37)

If the change Δl caused by the traverse motion is impulse-like then the effected
fineness change can already be calculated by means of Eq. 5.37. However, the
time function of the change Δl is to be derived from the root laws of the
rectangular triangle (see Figs. 5.16, 5.17). This can be derived after several
intermediate steps (not further described here) and simplifications:
Forward motion (thread guide goes from the left bobbin edge to the right
with the linear velocity vtm = 2 · lb · fts)

Δl(t) = Ab · t2 + Bb · t (5.38)

Backward motion (thread guide goes from the right bobbin edge to the left
with the linear velocity vtm = 2 · lb · fts)

Δl(t) = Ab · t2 + Cb · t (5.39)
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The abbreviations Ab, Bb and Cb mean:

Ab = 8f2
ts ·

[√
l2h + (e + 0.5 · lb)2 +

√
l2h + (e − 0.5 · lb)2 − 2

√
l2h + e2

]

Bb = 2fts ·
[
4
√

l2h + e2 − 3
√

l2h + (e − 0.5 · lb)2 −
√

l2h + (e + 0.5 · lb)2
]

Cb = 2fts ·
[
4
√

l2h + e2 − 3
√

l2h + (e + 0.5 · lb)2 −
√

l2h + (e − 0.5 · lb)2
]

Figure 5.18 shows the resulting percent thread length shifts in the traverse
motion triangle versus the bobbin length axis for different geometrical con-
ditions.
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Fig. 5.18. Per cent thread length shifts in the traverse motion triangle caused by
the traverse motion

In the next step, the resolution of the DEq. 5.36 for the time courses of the
disturbances Δl defined by Eqs. 5.38 and 5.39 has to be found. The Laplace-
transformation makes a resolution algorithm available for any time course by
means of the convolution integral (see for instance [13]). The integral applied
to the present case can be read as:

ΔT to/Δl =
∫ t

0

Δl(τ) · T tom · vom

l2m
· exp

(
− t − τ

l
· vom

)
dτ (5.40)

The integrand consists of the product of the disturbance time function (here
Δl(τ), the time variable t is to be substituted by the integration variable τ –
Eqs. 5.38 and 5.39 are to be inserted practically) and the impulse response
function of the wanted goal variable (here ΔT to) for the same cause variable
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(here Δl, that means Eq. 5.37). The time variable is to be substituted finally
by shifting the term t − τ .
After the integrations, one gets the following related time functions of the
percent fineness changes caused by the traverse motion thread guide:
Forward motion

ΔT to
T tom

=
100
vom

〈(
2Ab · lm

vom
− Bb

) [
1 − exp

(
−vom

lm
· t

)]
− 2Ab · t

〉
(5.41)

Backward motion

ΔT to
T tom

=
100
vom

〈(
2Ab · lm

vom
− Cb

) [
1 − exp

(
−vom

lm
· t

)]
− 2Ab · t

〉
(5.42)

The mathematical basis is now given for quantitative investigations by means
of Eqs. 5.41 and 5.42. The changes ΔT to are completely calculable only for a
single stroke of the traverse motion thread guide, because the time functions
Δl(t) are also not informable close too (the derivations are not defined at the
turning back points of the bobbin edges and should be taken from one equa-
tion to the other). The destination of the steady state oscillation state is only
possible by repeatedly modified joinings of Eqs. 5.41 and 5.42. It should be
observed when the change time functions of two successive double strokes of
the traverse motion thread guide do not distinguish themselves. It is also only
possible to calculate the steady state oscillation state iteratively as a sequence
of mathematical completely calculable single time courses of the thread fine-
ness changes which partly depend on each other. Closed resolutions have
become known (these develop the periodic, not continuous Δl(t)-course into
a Fourier -row and only use the first element for further calculations [299]),
but only with greater mistakes at the turning back points. However, the Δl(t)-
course possesses the greatest gradation at only this points.

Extensive quantitative investigations have been carried out which in-
cluded variations of the wind-up velocity vom (1000...6000 m/min), the height
of the traverse motion triangle lh (0.3...1 m), the length of the bobbin lb
(0.135...0.205 m), the twice stroke frequency of the traverse motion thread
guide fts (500...1500 min−1), and the asymmetry of the top of the traverse
motion triangle e (0...2 · lb). Some selected result diagrams are shown in
Figs. 5.19 (transient oscillations of the percent fineness shifts), 5.20 (percent
maximal spans of the fineness shifts), and 5.21 (percent fineness shifts on the
bobbin edges). The valid technological conditions should be learned from the
signatures of the figures in each case.
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Fig. 5.19. Transient oscillations of percent fineness shift caused by the thread
traverse motion; lm = 1.0 m, lh = 0.5 m, vom = 4000 m/min, fts = 1000 min−1
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The following statements and conclusions can be given on the basis of all
calculation results (also those which are not shown in the figures):

a) The fineness change course shows (for < 0.5 · lb) twice the frequency
compared to systems with > 0.5 · lb (see Fig. 5.19) at symmetric and little
asymmetric traverse motion triangles.

b) The amplitudes of the shifts are smaller than ±1% for symmetric and
slightly asymmetric traverse motion triangles and the so-called technologi-
cal operating point ranges. They increase more for large asymmetries of the
traverse motion triangle. If e increases from 0 to 0.5 · lb (triangle top is sit-
uated above the bobbin edge) then the fineness shift will nearly quadruple
(see Fig. 5.20).

c) A strong ascent of the fineness shifts can be observed if the top of
the traverse motion triangle moves nearer to the bobbin. The fineness shift
is nearly doubled in the investigated operation range if lh is halved (see
Fig. 5.20).
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Fig. 5.21. Percent fineness shifts on the bobbin edges caused by the thread traverse
motion; lm = 1.0 m, lb = 0.205 m, vom = 4000 m/min

d) The fineness shifts also increase with longer bobbins (see Fig. 5.19).

e) High wind-up velocities dampen the fineness shifts. This is then the
special case if they are connected with small double stroke frequencies of the
traverse motion thread guide, because the thread will be transported faster
out of the traverse motion field for these cases the fineness shift is then im-
printed by the Δl-lengthening or -shortening.

f) The influence of the traverse motion frequency is quantitatively dif-
ferent. In principle high frequencies effect greater fineness shifts, but their
influence is strongly dependent upon the selected wind-up velocity. The in-
fluence is weakly stamped for small wind-up velocities and strongly stamped
for high wind-up velocities (see Fig. 5.20).

g) Symmetric traverse motion systems produce a symmetric bobbin struc-
ture in which fineness minima appear at the bobbin edges. These are double
the size of the fineness maxima in the middle of the bobbin (not presented
here). Bale-shaped bobbins with reduced bobbin edges will arise always with
this (see Fig. 5.21).

h) Asymmetric traverse motion triangles produce in principle greater fine-
ness shifts. But, the bobbin structure is also seemingly unsymmetric for such
systems: The one bobbin edge will be built up stronger and corresponds to
the mean value of the fineness, the other will then be provided with the
maximum negative fineness shifts. It does not appear bale-shaped or barrel-
shaped, but leads to conical bobbins (see Fig. 5.21).
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i) The following constructive and technological conditions can be proposed
which allow for the smallest fineness shifts (caused by the traverse motion):
- symmetric structure of the traverse motion system (e = 0)
- greatest possible height of the traverse motion triangle (lh > 0.5 m)
- as short as possible bobbins (manifold wind-up technology is ideal if each
single bobbin can get its own symmetric traverse motion triangle!)
- lowest possible traverse motion velocity, that means small double stroke
frequency.

The fineness shifts or changes (caused by the traverse motion system)
can be held constant under these conditions at smaller than ±0.2% without
special resources (for instance stress compensation rolls).

5.2 Dynamics of the Twist Transfer at the False Twist
Texturing

5.2.1 Task

The majority of the PET and PA fine yarns manufactured today is texturised.
The preferred process is the false twist (or FT-) texturing which realises more
than 90% of all texturised fine yarns.
A twisting element gives the yarn torsional twists which are strongly im-
printed (fixed) on this by means of consecutive heating and cooling. The
imprinted so-called false twists will be dissolved after passing the twisting
element and the texturised (equipped with a strong fixed curling) yarn is
wound up. One distinguishes the magnetic spindle and the friction disk prin-
ciples according to the kind of twist generation by means of the different false
twist spindles. Both principles should generate torsional, or false twists, to
the yarn on an only limited, usually short distance of the yarn length axis by
means of quickly rotating machine elements. The torsion twist is to be gen-
erated by an intensive, as slip poor, as possible friction transmission through
the yarn surface. It is not the task of this section to discuss the different ad-
vantages and disadvantages of the different basic principles of the false twist
texturing. A lot of special literature is available concerning this.
However, some dynamic cause-effect relations of this process should be ex-
plained which regard the effect or goal variable twist density TD of the tex-
turised yarn in the texturing and setting zone. The expert knows from a-priori
knowledge (one should once again recall to Sect. 2.5.1 - proposed steps for
the working out the dynamic model) that texturing mistakes (that means,
changes of the curling intensity along the texturised yarn) are caused mainly
by dynamic changes of the product variable twist density TD which only ex-
ists during the running process.
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It is therefore obvious to elaborate a dynamic model of this product vari-
able which theoretically founds the relationship of the different process and
product variables. This should help to clear up the process analytical relation-
ships between the disturbances of the variable TD and the product quality.
In the past, investigations have been done for either the steady state process
only or the experimental results of measured twist densities and (also partly)
for their changes (see [301] until [310]).

Nevertheless, it is to be remarked that simplifications and approximations
(more than in other sections of the book) have been necessary for the follow-
ing demonstrated investigations because of the complicated structure of the
exact physical-analytical relationships. This necessity aims at presenting ex-
plicit resolution equations which should be usable without any further special
knowledge. This should allow for qualitatively correct tendency statements
in their proportions between each other on the one hand, but on the other is
only restricted quantitative exactness connected with this.

5.2.2 Mathematic-Dynamic Model

Differential Equation of the Twist Density and its Solutions

The development of the DEq. for the twist density of the yarn in the tex-
turing and setting zone TD enforces some previous considerations and results
which were informed in Sect. 5.1 (as a-priori knowledges to be declared now).
The earlier recommended registration and sorting of all process and product
variables, which are involveded in the process and are probably connected
with each other via cause-effect relations (see Sect. 2.5.1) should be carried
out here only verbally. The basis is the Fig. 5.22 which shows the necessary
process and product variables of the thread course of a false twist texturing
process with magnetic spindle twist element(magnetic false twist spindle) in
a strongly simplified form.

It is irrelevant, by the way, whether the twists are generated by a friction
spindle element or by a magnetic spindle. One can imagine that the several,
short in series operating twists transmitting yarn touch points of a friction
spindle are collected only in one integral effectual point. This one point then
carries out a sum of effectual friction on the yarn. An explanation of this will
be given at the end of this section.

The twist density TD, as the quantity of twists referred to the thread
length, (measured in the twisted state) obviously depends on

- the speed of the false twist spindle ns,
- the present velocity of the twisted thread in the texturing and setting zone

vi, and
- the thread fineness T t.
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Fig. 5.22. Technological scheme of the false twist texturing process with magnetic
twist spindle

The velocity of the twisted thread vi (simultaneously equal to the input
velocity of the twisted thread into the false twist spindle) finally turns up
dependent upon

- the input velocity of the untwisted thread into the input rolls vz,
- the thread output velocity vo,
- the rope friction factor eμαm ,
- the thread fineness T t, and
- the speed of the false twist spindle ns.

Changes of the thermic process and product variables (for instance thread
temperatures) and their effects on the thread properties (for instance changes
of the E-moduli and the following changes of the thread tensile force rela-
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tions before and after the twisting element) will be neglected, simultaneous
to a draw texturing process which imprints the thread additionally a greater
plastic longitudinal orientation elongation. Some explanatory remarks will be
given to the latter at the end of this section.

If the texturing and setting zone lm is taken as a store and exchange line
of the yarn torsional twists per time unit, then the dynamic basic Eq. 2.23
(applied to the present case in a modified form) can be formulated as follows:

twists inflow
time

=
twists discharge

time
+

changes of twists
time

(5.43)

It is to be put in as:

twists inflow/time = ns (where no slip is assumed at the twisting element)
twists discharge/time = TD · vi

changes of twists/time = ṪD · lm
(in which the same mean value of the twist density is assumed through the
whole line lm)

The DEq. of the twist density can be written then as:

ns = TD · vi + p · TD · lm (5.44)

where p =
d
dt

is the well-known Laplace-operator.

The steady state relation for the twist density TD = ns/vi follows for ṪD = 0
of course unrestricted.
Equation 5.44 contains the independent not-freely-adjustable process variable
vi which must be expressed by means of technological independent process
and product variables. The shortening factor Ks which represents the ratio
of the twisted length lt to the stretched, untwisted length lu of one twist of
the same in each case unloaded yarn piece must first of all be defined:

Ks = lt/lu (5.45)

Obviously it is also valid:

Ks = vi/vz (5.46)

The thread length of one twist lt is

lt = lm/z (5.47)

where z is the number of the total twists in the zone lm, that means:

z =
ns · lm

vi
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consequently

lt =
vi

ns
=

Ks · vz

ns
(5.48)

The stretched, untwisted length lu, of the same yarn piece, is calculated
from the periphery of the cross sectional area of the multifilament (twisted)
yarn which we will formally introduce as π · Dy (Dy is in this aspect the
diameter of the multifilament (twisted) yarn).
The stretched, untwisted length of one yarn twist finally results as the length
of the line of a screw with the diameter Dy and with the ascent height lu to:

lu =

√
(π · Dy)2 +

v2
i

n2
s

(5.49)

vi is determined in the real process by vo (caused by the output rolls) which
effects the friction body of the twisting element into the process line lm.

We assume that the yarn along the whole friction thread line will be
twisted on the twisting element and the false twists will be immediately
dissolved in turn, if the twisted yarn leaves the friction body down to the
output. In this peel-off moment in the twisted state, the yarn should possess
the velocity v′o and, immediately afterwards (after dissolving of the twists),
the output velocity vo. This is valid as:

vo =
v′o
Ks

(5.50)

The already deviated relationships of the thread transport along a friction
thread line (see Sect. 5.1.4) must be validated to the estimation of the velocity
transition from vi to v′o. The desired relation can be derived from Eq. 5.10
considering the continuity equation of a transported yarn without losses T ti ·
vi = const. It is read as, using the symbols of our problem:

v′o
v′z

=
(

vi

v′z
− 1

)
· exp(μ · αm) + 1 (5.51)

The independent given yarn input velocity vi is to be inserted into Eq. 5.51
in its reduced form

v′z = vz · Ks (5.52)

because the twisted yarn is this aspect on the friction body.
Finally vi is to be now written by using the Eqs. 5.45 and 5.48 to 5.52

vi =
√

[(vo − vz) · exp(−μαm) + vz]2 − (π · Dy · ns)2 (5.53)
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Before the final DEq. of the twist density TD will be formulated, the yarn
diameter Dy shall be expressed depending on the yarn fineness T t in the
following form:

Dy = Kp ·
√

T t (5.54)

Kp is a polymer-specific constant. The yarn diameter Dy will be reached in
the unit of m, if T t is set in tex and for Kp the following values are set at:

Kp = 33.3 · 10−6 for the fibre material PA (density = 1.12 g/cm3)
Kp = 30 · 10−6 for the fibre material PET (density = 1.38 g/cm3)

The final mathematic-dynamic model equation of the twist density TD can
be calculated now on the basis of DEq. 5.44 and under the consideration of
the Eqs. 5.53 and 5.54 as follows:

Φ = ns−TD ·
√

[(vo − vz) · exp(−μαm) + vz]2 − T t(πKp · ns)2−p·TD ·lm = 0

(5.55)

Differential equation 5.55 can be partially derived (for the purpose of its
linearisation) from the potentially changeable variables TD, ns, vz, vo, T t
and μ according to the already often demonstrated manner:

∂Φ

∂TD
· ΔTD +

∂Φ

∂ns
· Δns +

∂Φ

∂vz
· Δvz +

∂Φ

∂vo
· Δvo +

∂Φ

∂T t
· ΔT t +

∂Φ

∂μ
· Δμ = 0

If the partial differentiations are carried out then one gets the linearised DEq.
of the twist density TD as follows. It should be considered through this that
TDm = nDm/Wa[

W 2
a

nsm
+ T tm · nsm(πKp)2

]
· Δns − 〈Na[1 − exp(−μmαm)]〉 · Δvz

−Na · exp(−μmαm) · Δvo + 0.5 · (πKp · nsm)2 · ΔT t

+[αm · Na(vom − vzm) · exp(−μmαm)] · Δμ − W 2
a

nsm
[Wa + p · lm] · ΔTD = 0

(5.56)

The abbreviations Wa and Na mean:

Wa =
√

[(vom − vzm) · exp(−μmαm) + vzm]2 − T tm(πKp · nsm)2 (5.57)

Na = (vom − vzm) · exp(−μmαm) + vzm (5.58)

Equation 5.56 can be used now to calculate the dynamic transfer functions,
which inform about the influence of Δns-, Δvz-, Δvo-, ΔT t-, or Δμ- changes to
changes of the twist density ΔTD:
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G1(p) =
ΔTD

Δns
=

W 2
a

nsm
+ T tm · nsm(πKp)2

W 2
a

nsm
(Wa + p · lm)

(5.59)

G2(p) =
ΔTD

Δvz
= −Na[1 − exp(−μmαm)]

W 2
a

nsm
(Wa + p · lm)

(5.60)

G3(p) =
ΔTD

Δvo
= −Na · exp(−μmαm)

W 2
a

nsm
(Wa + p · lm)

(5.61)

G4(p) =
ΔTD

ΔT t
=

0.5(πKp · nsm)2

W 2
a

nsm
(Wa + p · lm)

(5.62)

G5(p) =
ΔTD

Δμ
=

αm · Na(vom − vzm) · exp(−μmαm)
W 2

a

nsm
(Wa + p · lm)

(5.63)

The corresponding normalised amplitude frequency responses of these transfer
functions (all of them show proportional action with delay of first order) are
the following:

|G1(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃ns/nsm

∣∣∣∣∣ =
W 2

a + T tm(πKp · nsm)2

Wa

√
W 2

a + (2πf · lm)2
(5.64)

|G2(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃vz/vzm

∣∣∣∣∣ = (−)
vzm · Na[1 − exp(−μmαm)]

Wa

√
W 2

a + (2πf · lm)2
(5.65)

|G3(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃vo/vom

∣∣∣∣∣ = (−)
vom · Na · exp(−μmαm)
Wa

√
W 2

a + (2πf · lm)2
(5.66)

|G4(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃T t/T tm

∣∣∣∣∣ =
0.5 · T tm(πKp · nsm)2

Wa

√
W 2

a + (2πf · lm)2
(5.67)

|G5(jf)| =

∣∣∣∣∣ Δ̃TD/TDm

Δ̃μ/μm

∣∣∣∣∣ =
μm · αm · Na(vom − vzm) · exp(−μmαm)

Wa

√
W 2

a + (2πf · lm)2
(5.68)

The corresponding phase frequency response of the complex frequency re-
sponses G1(jf), G4(jf) and G5(jf) are uniformly:

ϕ(f) = arc tan
[
−2πf · lm

Wa

]
(5.69)



248 5. Dynamics of Fibre Processing Processes

The corresponding phase frequency response of the complex frequency re-
sponses G2(jf) and G3(jf) are:

ϕ(f) = arc tan
[
−2πf · lm

Wa

]
− π (5.70)

An incidental evaluation of the achieved equations should be undertaken at
this point before we can discuss a quantitative result presentation of a tech-
nological process example:

a) In each case, the amplitude transmission factors of Eqs. 5.64 to 5.68
do not only depend on the disturbance frequency f but also, strongly, on
the mean values of the independent process and product variables which de-
fine the viewed technological operation point. This is an expression for the
declared complexity of the investigated general problem in spite of the sim-
plifications and neglects made in the statements.

b) The time constant Tc and the critical frequency fc of the process line
are qualitatively the same for all kinds of viewed disturbances and depend
likewise on the mean values of all independent process and product variables.
They can be best written from the phase frequency response Eq. 5.70 (see to
this Sect. 4.2.1):

1
2πfc

= Tc =
lm
Wa

(5.71)

The abbreviation Wa (see Eq. 5.57) is identical with the yarn velocity in the
texturing and setting zone.

c) The parameter Wa allows the data of a limit condition. This is not al-
lowed to be exceeded if a proper thread line (that really means the carrying
out of the process) should be reached. This deals with the yarn tensile stress,
yarn velocity and yarn twist density relations. This limited condition can be
defined as maximum eligible speed of the false twist spindle nsm dependent
upon the other free eligible process and product variables. They can be de-
rived from the trivial condition that the radicand of the root (Eq. 5.57) is
not allowed to be negative. It must always be fulfilled as:

nsm ≤ (vom − vzm) · exp(−μmαm) + vzm

π · Kp · √T tm
(5.72)

The following dimensions are to be inserted in Eqs. 5.53 to 5.72 for quanti-
tative calculations:
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vom, vzm numerical values to put in m/min
nsm numerical values to put in min−1

lm numerical values to put in m
T tm numerical values to put in tex
f numerical values to put in min−1 or 60Hz
Kp numerical values to put in as described in Eq. 5.54
αm numerical values to put in the radian measure (dimensionless)
μm coefficient of friction (dimensionless)

Technological Application and Analysis

At first Fig. 5.23 shows the limit curves of the eligible revolutions per minute
of the false twist spindle nsm for the fine yarn range (2 until 20 tex) and
dependent upon different velocity and angle of wrap levels for the fibre mate-
rials PA and PET. These correspond to the further investigated technological
variants which are collected in Table 5.1.

The curves confirm the practical experiences that the eligible (and also
necessary to reach an appointed twist density TDm) speed of the false twist
spindle nsm increases if the fineness T tm decreases and the yarn take-up
velocity vom increases. It is to be remarked that the results have the correct
size. The latter is moreover an indirect proof for the exactness for the principle
of the selected model idea.

Relating to practice, variants of the process realisation have been selected
for detailed analysis by means of the developed model equations. They have
been collected in Table 5.1 considering the preliminary investigations. The
last two columns contain the time constants Tc and the critical frequencies
fc of the texturing and setting zone which roughly characterise the dynamic
transmission behaviour.

The time constants Tc amount to about 2.50 s for the velocity level
100 m/min and about 1.65 s for the velocity level 200 m/min (indeed with
an assumed increased length of lm = 4 m). It can be concluded from this
that aperiodic disturbances of the viewed process and product variables will
effect undefined bulkiness properties along a thread length of about 12 m
in the first case (vom = 100 m/min) and of about 17 m in the second case
(vom = 200 m/min).

The small critical frequencies fc of about 0.065 Hz at vom = 100 m/min
and of about 0.1 Hz at vom = 200 m/min mean that periodic disturbances of
only relatively small frequency will have a considerable influence on the twist
density Δ̃TD. Frequencies > 0.5 Hz will already have a sufficient dampening
in each case. The following figures also show this.

The normalised amplitude frequency responses |G1(jf)| to |G5(jf)| are
presented in Figs. 5.24 to 5.28 for all technological variants according to
Table 5.1.
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Fig. 5.23. Limit curves of eligible revolutions per minute of the false twist spin-
dle nsm dependent upon different technological conditions according to Eq. 5.72.
Further data see Table 5.1

Comparing the study of the figures leads to the following general conclu-
sions for the disturbance estimation:

a) Speed changes of the twisting element Δ̃ns have the greatest effect on
the twist density TD (|G1(jf)|, Fig. 5.24). Relative amplification factors of
1.0 to 2.0 will be reached in the disturbance frequency range f < fc. This
means that Δ̃ns-changes of 1% can effect Δ̃TD-changes from 1 to 2%. The
finenesses of the texturised thread T tm are of only small influence, in which
the coarser thread will be influenced more (specifically at the quasi steady
state disturbances – f nearly 0 Hz) than the finer. The usual variations of
the thread input velocity vz relative to the thread output velocity vo (present
lags are assumed from –2% to –6%) and number of wraps around the pin of
the twisting element (assumed 1 or 2 wraps) practically have no influence on
the start height of the curves and their further courses. On the other hand, a
PA-thread will be influenced more strongly than a PET-thread of the same
fineness.
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Table 5.1. Technological variants of the investigated FT-texturing process

Process vom vzm TDm nsm αm μm Kp Ttm lm Tc fc

variant in in in in in in in in

m/min m/min m−1 m−1 tex m s Hz

PA-fibres

1 100 98 4300 325348 2π 0.3 33.3 · 10−6 3.4 3.0 2.38 0.067

2 100 94 4300 314120 2π 0.3 33.3 · 10−6 3.4 3.0 2.46 0.065

3 100 98 4300 324496 4π 0.3 33.3 · 10−6 3.4 3.0 2.39 0.067

4 100 94 4300 311562 4π 0.3 33.3 · 10−6 3.4 3.0 2.48 0.064

PA-fibres

5 100 98 3000 221776 2π 0.3 33.3 · 10−6 7.8 3.0 2.43 0.065

6 100 94 3000 214122 2π 0.3 33.3 · 10−6 7.8 3.0 2.52 0.063

7 100 98 3000 221195 4π 0.3 33.3 · 10−6 7.8 3.0 2.44 0.065

8 100 94 3000 212379 4π 0.3 33.3 · 10−6 7.8 3.0 2.54 0.063

PET-fibres

9 100 98 3000 232598 2π 0.3 30.0 · 10−6 7.6 3.0 2.32 0.069

10 100 94 3000 224570 2π 0.3 30.0 · 10−6 7.6 3.0 2.40 0.066

11 100 98 3000 231988 4π 0.3 30.0 · 10−6 7.6 3.0 2.33 0.068

12 100 94 3000 222742 4π 0.3 30.0 · 10−6 7.6 3.0 2.42 0.066

PET-fibres

13 100 98 2300 169244 2π 0.3 30.0 · 10−6 16.7 3.0 2.45 0.065

14 100 94 2300 163403 2π 0.3 30.0 · 10−6 16.7 3.0 2.53 0.063

15 100 98 2300 168800 4π 0.3 30.0 · 10−6 16.7 3.0 2.45 0.065

16 100 94 2300 162072 4π 0.3 30.0 · 10−6 16.7 3.0 2.55 0.062

PA-fibres

17 200 196 4300 650696 2π 0.3 33.3 · 10−6 3.4 4.0 1.59 0.100

18 200 188 4300 628240 2π 0.3 33.3 · 10−6 3.4 4.0 1.64 0.097

19 200 196 4300 648992 4π 0.3 33.3 · 10−6 3.4 4.0 1.59 0.100

20 200 188 4300 623125 4π 0.3 33.3 · 10−6 3.4 4.0 1.66 0.096

PA-fibres

21 200 196 3000 443552 2π 0.3 33.3 · 10−6 7.8 4.0 1.62 0.098

22 200 188 3000 428244 2π 0.3 33.3 · 10−6 7.8 4.0 1.68 0.095

23 200 196 3000 442390 4π 0.3 33.3 · 10−6 7.8 4.0 1.63 0.098

24 200 188 3000 424757 4π 0.3 33.3 · 10−6 7.8 4.0 1.70 0.094

PET-fibres

25 200 196 3000 465196 2π 0.3 30.0 · 10−6 7.6 4.0 1.55 0.103

26 200 188 3000 449141 2π 0.3 30.0 · 10−6 7.6 4.0 1.60 0.099

27 200 196 3000 463977 4π 0.3 30.0 · 10−6 7.6 4.0 1.55 0.103

28 200 188 3000 445484 4π 0.3 30.0 · 10−6 7.6 4.0 1.62 0.098

PET-fibres

29 200 196 2300 338487 2π 0.3 30.0 · 10−6 16.7 4.0 1.63 0.098

30 200 188 2300 326806 2π 0.3 30.0 · 10−6 16.7 4.0 1.69 0.094

31 200 196 2300 337600 4π 0.3 30.0 · 10−6 16.7 4.0 1.64 0.097

32 200 188 2300 324145 4π 0.3 30.0 · 10−6 16.7 4.0 1.70 0.093

b) Changes Δ̃vz effect changes Δ̃TD quantitatively in the same manner
(|G2(jf)|, Fig. 5.25). Amplification factors of 1.0 to 1.9 are also to be ob-
served in the frequency range f < fc for such disturbances.
Smaller differences are given as follows: The coarser thread and the thread
with the greater number of wraps around the pin of the twisting element will
be disturbed relatively stronger than the finer thread and the thread with
only one wrap around the pin (αm = 2π). PA-threads are more disturbance
endangered than PET-threads. The influence of the lag of vzm is relatively
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Fig. 5.24. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the false twist spindle speed Δ̃ns at the FT-texturing process.
Further data see Table 5.1

insignificant; the variants with –6% lag have only somewhat lower amplitude
frequency response curves than those with –2% lag.

c) The output velocity vo clearly influences the goal variable Δ̃TD less than
the process variables ns and vz, named under a) and b) (|G3(jf)|, Fig. 5.26).
Changes Δ̃vo reach relative amplitude amplification factors of < 0.32, that
means a more than 3% periodic change of Δ̃vo around its mean value vom will
effect a 1% periodic change of the twist density Δ̃TD in an appropriately small
frequency range. A clear separation of the curves dependent on the angle of
wrap αm appears as well. The amplification factors nearly reach 0.32 (PA 6)
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Fig. 5.25. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the input velocity Δ̃vz at the FT-texturing process. Further
data see Table 5.1

for 1 wrap around the pin of the twisting element and they only reach in-
significant values of 0.05 for 2 wraps. Smaller insignificant differences can be
observed as follows: The process with the greater lag of vzm opposite vom and
the coarser threads show somewhat greater disturbance transmission factors.
PA is to be assessed again more unfavourably than PET.
This total result is also physical-obviously plausible so far, as output veloc-
ity changes must be transmitted into the texturing and setting zone of the
friction wrap line at first which effects dampening in this case. The output
velocity changes are effective only indirectly to the change Δ̃TD of the influ-
ence of the real velocity pertaining to the twisted thread vi (see Eq. 5.57,
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Fig. 5.26. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the output velocity Δ̃vo at the FT-texturing process. Further
data see Table 5.1

abbreviation Wa is identical with vim). It is intelligible that a lengthening of
this dampening friction thread line additionally degrades the influence of Δ̃vo

to Δ̃TD drastically.

d) Also the fineness of the texturising thread T t and its changes Δ̃T t effect
changes of the twist density Δ̃TD only with a maximum amplitude transmis-
sion factor of 0.3 to 0.5 (|G4(jf)|, Fig. 5.27). The curves obviously show the
larger, more unfavourable, values for coarser threads and (frequently pointed
out previously) for PA compared to PET.
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Fig. 5.27. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the thread fineness Δ̃T t at the FT-texturing process. Further
data see Table 5.1

e) The system behaviour regarding to changes Δ̃μ and their effect on
changes Δ̃TD (|G5(jf)|) is demonstrated in Fig. 5.28. The amplitude trans-
mission factors are extremely small with ≤ 0.04 for which a great angle of
wrap and/or a small vz-lag causes a further drastic decrease. Changes Δ̃μ of
about 30 to 40% would be necessary to effect a 1% change Δ̃TD. This is to be
practically excluded. But, it is to be remarked additionelly, that the present
model comprises changes Δ̃μ which only effect twist density changes by means
of velocity changes Δ̃vi of the texturised thread. Effects are not included, on
the other hand, which twist slip appearences at the pin of the twisting ele-
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Fig. 5.28. Normalised amplitude frequency responses of twist density changes Δ̃TD

caused by changes of the friction coefficient Δ̃μ at the FT-texturing process. Further
data see Table 5.1

ment (missing friction adhesion) evoked by means of great changes to Δ̃μ. Of
course, these twist slip appearences possibly effect much greater twist density
changes but they are not covered by the chosen model.

The common valid phase frequency response curves for the dynamic trans-
mission functions G1(p) to G5(p) (Eqs. 5.69 and 5.69) are shown in Fig. 5.29
for all technological variants according to Table 5.1. The delay thread length
Ld can be calculated by means of these because this has been demonstrated
in Sect. 5.1.5 (see also Eq. 2.50). The length Ld represented in the present
example which thread length leaves the texturing and setting zone before a
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Fig. 5.29. Phase frequency responses of twist density changes Δ̃TD caused by
changes of all regarded disturbance quantities at the FT-texturing process. Further
data see Table 5.1

change Δ̃ns, Δ̃vo, Δ̃vz, Δ̃T t or Δ̃μ will or can be visible in the output thread as
changes Δ̃TD. It has already been mentioned before that certain correlations
exist here with the time constant Tc or the critical frequency fc.

Two remarks should be given at the end of this subsection to the transmis-
sion of the presented model to other process realisations of the FT-texturing:

1. All model equations should also be transmittable to the friction textur-
ing process considering the developed imaginations and derivations in Sects.
5.1.4 and 5.1.5, if

a) the angle of wrap αm is interpreted as the sum of single angles which
are imprinted repeatedly to the thread by means of the friction disk. The
friction unit is assumed to be a collected effect at this point.

b) the efficiency of the twist transmission from the twisting element to the
thread1 is considered in the DEqs. 5.44 or 5.56 to be in the form of 0.7 · TD,
0.7 · TDm or 0.7 · ΔTD. The normalised results of Eqs. 5.64 to 5.68 are then
applicable in the same manner.

1 It is usually realised for the magnetic spindle principle with 100%; the efficiency
is only ≤ 70% for the friction principle
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2. The model seems to be more problematic to transmit to a simultaneous
draw-texturing process because twist generation and drawing are superim-
posed here. It should additionally be considered that the heating of the thread
(not considered until here) well-known decreases the mechanical draw energy
in the thread. Much harder conceivable relations are already given under pure
steady state view.
A coarse approximation of the real situation for the dynamic model could be
that one modifies Eqs. 5.53 and 5.57 as follows:

a) The input velocity of the partial else to drawing thread vz is to be cor-
rected by multiplying it with the draw ratio which is realised in the texturing
and setting zone. This product, named vzc, is then (instead of vz) the basis
for the calculation of the velocity vi which appoints the twist density.

b) It is generally to be inserted in the fineness and the diameter of the
drawn thread only.

5.3 Dynamics of Fibre Heating and Cooling

5.3.1 Task

The mathematical description of lapses of thermic proceedings is of impor-
tance in the modelling of appointed fibre formation and processing processes.
This becomes true specifically for process stages of manufacturing and pro-
cessing processes of polymer threads. The fibre formation of melts, the draw
process (if thermic energy is induced), and the texturing are examples of this.
Heating as well as cooling processes are to be described for the modelling of
the temperature-time-courses in the thread.

Thread heating and cooling processes are effected by means of heat spread-
ing processes which are due to three different basic principles:

a) Heat conduction which is to be described as heat spreading in solid,
resting fluid and resting gaseous bodies from points of higher temperature to
points of lower temperature.

b) Heat convection or heat transfer which is to be described as heat trans-
port by means of flowing fluids or flowing gases which is to be distinguished
between the enforced convection (flow separately generated) and the free con-
vection (flow arises from itself by means of density or pressure differences).

c) Heat radiation which is to be described as heat transfer between bodies
by means of electro-magnetic waves of the infrared spectral range without
the co-operation of a transmission medium.

All three principles are effective for the thread heating depending on the
process stage, for the thread cooling essentially only the principles a) and b).
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The convection or the heat transfer is of essential importance to the cal-
culation – and with this the modelling – of heating and cooling processes of
running threads in fibre formation lines of melt spinning processes, around
the heated or unheated godet systems and in texturing heaters.

Questions relating to such dynamic models can be for instance:

a) At which distance from the spinneret and under which conditions a
melt spun thread will be solidified?

b) How many thread wraps around a heated godet or a system of such
godets are necessary (for appointed boundary conditions, for instance thread
fineness, thread velocity, godet geometry), that a maximum possible thread
temperature can be reached?

c) How high is the reached mean thread temperature (under given bound-
ary conditions) in relation to the godet temperature?

d) How large are the fluctuations of the thread temperature of the mean
value which the thread suffers at one wrap around the godet system.

The answer to those questions is necessary for an optimal process opera-
tion as well as to the design of machine elements. In the following a simplified
description of the heat transfer between a thread and its surrounding which
enables process applied calculations with sufficient exactness as a rule will be
given. The heat transfer between threads and metallic surfaces and between
threads and air is theoretically explained in more detail in the additional
literature [311] to [313] considering heat transfer and heat equalise proceed-
ings in a monofilament thread on the one hand and multifilament threads on
the other. However, the study shows that appropriate results and methods
are not applicable enough for engineers in practice and are also difficult to
handle.

5.3.2 Differential Equation for the Description of Heat Transfer
at Fibres

Starting point of the view is the common DEq. of the heat exchange processes
on the surface of a cylindrical body, and without consideration of the heat
conduction inside the body. The last assumption means an equal temperature
across the whole thread cross section2. In other words, there is no temperature
2 This assumption is fulfilled not in any practical case because an utter heating

or cooling of the thread (general body) assumes a heat flow (being due to the
heat conduction principle) from the surface to the core or vice versa. Neverthe-
less, temperature differences are just the impulse for this. But, these differences
amount only to a few Kelvin for threads with their big surface-volume-ratios
(for coarse threads more unfavourable than for fine) and they are very small
compared to the normally imprinted mean temperature changes. Therefore this
assumption does not involve aggravating mistakes.
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difference between core and surface of the radial symmetric thread cross
section. If the heat balance is viewed on a small disk of a cylindrical thread
piece according to Fig. 5.30 then for heating [314] is valid

c · dm · dTy = α · dSy · (Th − Ty) · dt (5.73)

the left side of Eq. 5.73: absorbed heat quantity
the right side of Eq. 5.73: about the surface transmitted heat

quantity

dm, ρ, c

dSy, α, Ty

Dy

dl

Fig. 5.30. Cylindrical thread piece

In Fig. 5.30 and Eq. 5.73 the symbols mean:

dSy surface of the disk-shaped thread piece
which takes part in the heat exchange

Dy diameter of the thread piece
dl length of the thread piece
dm mass of the thread piece
� density of the thread material
c specific heat capacity of the thread material
α coefficient of the heat transfer
Ty temperature of the thread piece
Th temperature of the heat medium
dt time interval for the heat exchange
dTy temperature change of the thread piece

The following mass-surface-ratio is valid for the cylindrical- or disk-shaped
thread piece

dm

dSy
=

π · D2
y · � · dl

4 · π · Dy · dl
=

Dy · �
4

(5.74)

The DEq. 5.73 can be simply integrated considering Eq. 5.74
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Ty∫
Tb

dTy

Th − Ty
=

t∫
0

4 · α
c · � · Dy

· dt (5.75)

The equation for the fibre heating results from Eq. 5.75 to

Ty = Th − (Th − Tb) · exp
(
− 4 · α

c · � · Dy
· t

)
(5.76)

Tb is the thread temperature at the beginning of the heat exchange, that
means to the time t = 0.

The DEq. 5.73 can be similarly solved for the thread cooling from the
temperature at the beginning of the heat exchange Tb in a surrounding cool
medium with the temperature Tr.

The equation for the fibre cooling can be read as:

Ty = Tr + (Tb − Tr) · exp
(
− 4 · α

c · � · Dy
· t

)
(5.77)

Eqations 5.76 and 5.77 describe the thread heating and cooling as a dynamic
transfer process (in the form of the step response function) in a approximated,
but simplified manner. The practical use and the application of these equa-
tions to monofilament as well as multifilament man-made yarns are shown
in the following: The thread diameter Dy of a multifilament yarn is to be
calculated from its fineness (not from the fineness of the single filament!) as
the equivalent diameter which would have a monofilament yarn of the same
fineness [315]. This equivalent diameter (which has been proven correct for
the heat transfer) is:

Dy =

√
4 · T t

� · π · 109
(5.78)

The following dimensions are to be inputted:

fineness of the whole thread T t in tex
density of the fibre material � in g/cm3

The equivalent diameter of the whole thread Dy will be obtained in m.

Equation 5.78 has already been used in Sect. 5.2.2 as a numerical value
equation. All numerical constants for the fibre materials PA and PET (in-
cluding the densities �) have been collected to the numerical constants Kp

(see Eq. 5.54).



262 5. Dynamics of Fibre Processing Processes

For user friendly style of writing of the Eqs. 5.76 and 5.77 it is recom-
mended here that the material specific constants c and �, as well as all nu-
merical constants in the exponent of the e-functions (which remain after the
substitution of the diameter Dy by the fineness T t according to Eq. 5.78),
are collected to a material specific constant for the heat transfer Kh.

The equations can now be read as follows:

For the fibre heating:

Ty = Th − (Th − Tb) · exp
(
− Kh√

T t
· α · t

)
(5.79)

For the fibre cooling:

Ty = Tr + (Tb − Tr) · exp
(
− Kh√

T t
· α · t

)
(5.80)

The following dimensions are to be inputted:

Ty, Th, Tr, Tb in K or
T t in tex
α in W/(m2 · K)
t in s
Kh as numerical value 5.9 · 10−2 for PA

as numerical value 7.6 · 10−2 for PET

The value of 1.12 g/cm3 (for PA) resp. 1.38 g/cm3 (for PET) for the mate-
rial density �, and the value of 1.884 kJ/(kg·K) (for PA) resp. 1.256 kJ/(kg·K)
(for PET) for the specific heat capacity c have been used for the cal-
culation of Kh. The latter is almost valid in the temperature range of
40 ≤ Ty ≤ 100 .

The data of the heat transfer coefficient α presents a certain problem
for practical calculations. This depends strongly on the surrounding medium
which participates in the heat transfer (for threads normally resting or mov-
ing air or metallic surfaces), on the surface quality of the thread and the
metallic contact areas, on the thread velocity, on the thread fineness and
at last also on the mean temperature level at which the heat transfer takes
place. An (but not without any difficulties) experimental estimation is indis-
pensable for more detailed investigations of special process stages [315].

From the literature and on the basis of own investigations it is possible
to use the following ranges which are valid for PA and PET threads for cal-
culations with a good exactness:

For the heat transfer in air:
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α = 50...200 W/(m2 · K)

For the heat transfer on metallic surfaces (for instance godets):

α = 450...600 W/(m2 · K)

Greater values are valid in the tendency for finer threads and for higher ve-
locities.

The velocity dependence of the heat transfer coefficient for the heat ex-
change between thread and air can also be given a relationship which is
presented in [316]. This has been investigated experimentally as “air streams
alongside of even, rough metallic surfaces” which is valid for velocities of
v > 5 m/s and which also gives useful results for threads in an air stream
too. The relationship has been used also in the technological example for
Sect. 5.3.3 and to the calculation of the time constants and critical frequen-
cies of Table 5.2. It is read as (converted into SI-units):

α = 7.52 · v0.78 (5.81)

If v is inserted in m/s then α will be obtained in W/(m2 · K).

The time constant Tch and the critical frequency fch which describe the
heat transfer dynamic of a thread can be read from the exponent of the
exponential function in Eqs. 5.79 and 5.80:

Tch =
√

T t

α · Kh
(5.82)

fch =
α · Kh

2π
√

T t
(5.83)

The appropriate numerical values are collected for the used PA- and PET-
threads of the technological application example in Sect. 5.3.3. The heat
transfer coefficient for the heat transfer thread-metallic surface was taken as
a basis of α = 530 W/(m2 · K).

The heat transfer coefficient α for the heat transfer moved thread-air has
been selected depending on the velocity according to Eq. 5.81 and Kh for PA
and PET according to the data of Eqs. 5.79 and 5.80.

Qualitative conclusions to the dynamic transmission behaviour are possi-
ble by aid of the general explanations in Sect. 4.2.1 (specifically statements
dealing with Eq. 4.41). Each heat area- or air-contact with another temper-
ature than Ty means an imprinting step for the thread. The explanations to
the dynamic transfer functions with proportional action and delay of first
order are analogously valid here.
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Table 5.2. Time constants Tch and critical frequencies fch of PA- and PET-threads
corresponding to Eqs. 5.82 and 5.83

Material Fineness Velocity Time constant Critical frequency
T t [tex] v [m/min] Tch [s] fch [Hz]

Heating or cooling of the thread in contact with a metallic surface:
PA 5 7.53 · 10−2 2.11
PA 10 1.07 · 10−1 1.49
PA 20 1.51 · 10−1 1.06

PET 5 5.55 · 10−2 2.87
PET 10 7.85 · 10−2 2.03
PET 20 1.11 · 10−1 1.43

Heating or cooling of the thread in contact with surrounded air:
PA 5 500 1.02 1.57 · 10−1

PA 5 1000 5.92 · 10−1 2.69 · 10−1

PA 5 2000 3.45 · 10−1 4.62 · 10−1

PA 5 3000 2.51 · 10−1 6.34 · 10−1

PA 5 4000 2.01 · 10−1 7.93 · 10−1

PA 10 500 1.44 1.11 · 10−1

PA 10 1000 8.37 · 10−1 1.90 · 10−1

PA 10 2000 4.87 · 10−1 3.27 · 10−1

PA 10 3000 3.55 · 10−1 4.48 · 10−1

PA 10 4000 2.84 · 10−1 5.61 · 10−1

PA 20 500 2.03 7.83 · 10−2

PA 20 1000 1.18 1.35 · 10−1

PA 20 2000 6.89 · 10−1 2.31 · 10−1

PA 20 3000 5.02 · 10−1 3.17 · 10−1

PA 20 4000 4.01 · 10−1 3.97 · 10−1

PET 5 500 7.49 · 10−1 2.13 · 10−1

PET 5 1000 4.36 · 10−1 3.65 · 10−1

PET 5 2000 2.54 · 10−1 6.27 · 10−1

PET 5 3000 1.85 · 10−1 8.60 · 10−1

PET 5 4000 1.48 · 10−1 1.08

PET 10 500 1.06 1.50 · 10−1

PET 10 1000 6.16 · 10−1 2.58 · 10−1

PET 10 2000 3.59 · 10−1 4.43 · 10−1

PET 10 3000 2.62 · 10−1 6.08 · 10−1

PET 10 4000 2.09 · 10−1 7.61 · 10−1

PET 20 500 1.50 1.06 · 10−1

PET 20 1000 8.72 · 10−1 1.83 · 10−1

PET 20 2000 5.08 · 10−1 3.13 · 10−1

PET 20 3000 3.70 · 10−1 4.30 · 10−1

PET 20 4000 2.96 · 10−1 5.38 · 10−1
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5.3.3 Technological Application Examples

Dynamics of Fibre Heating of Man-Made Fibres at Heated Godet
Systems

The presented technological schemes of a heated godet roll duo (arrange-
ment I, following abbreviated with A I) and a heated godet roll with un-
heated temple pulley (arrangement II, following abbreviated with A II) are
taken as the basis for the following investigations (see Fig. 5.31). These ar-
rangements could be realised for instance at the spin-draw-winding process
(SDW-process). The example rests essentially upon already published results
of a formerly revised paper ( [317]).

Th

AB

DC

l3

l1

l 2l 2

Tr

Th

A B

D C

l1

l1

l 2l 2

arrangement A I:
godet roll duo

arrangement A II:
godet roll with
temple pulleyl1 = 0.314 m

l2 = 0.250 m l1 = 0.401 m
l2 = 0.157 m
l3 = 0.057 m

Fig. 5.31. Arrangements of heated godets

The following short signs have been chosen corresponding to Sect. 5.3.2:

Tb thread temperature at the input into the godet arrangement
Tr temperature of the cool medium, that means both the

surrounding air temperature and the temperature of the
unheated temple pulley corresponding to A II

Th temperature of the heated godet surface
T1, T2, ...Tn thread temperatures
Ty after passing the single heating and cooling lines
α1 heat transfer coefficient between metallic surface and thread

(for heating and cooling assumed of the same quantity)
α2 heat transfer coefficient between air and thread
l1 contact line of the thread with the heated godet surface
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(for A I and A II differently long corresponding to the
different geometry of the thread way around the godet
arrangements, see Fig. 5.31)

l2 air line of the thread (for A I and A II differently long
corresponding to the different geometry of the thread way
around the godet

l3 contact line of the thread with the surface of the
unheated temple pulley

T t thread fineness
Kh thread material specific constant for the heat transfer

(definition see Sect. 5.3.2)
v thread velocity
z number of thread wraps around the geometric arrangement

(one wrap = length of the way ABCDA)

The basis for the calculation is the common DEq. for the heat transfer 5.73
and its solutions 5.79 and 5.80 (step responses) for heating and cooling. The
equation system reads for a full thread wrap around the godet arrangement
A I (heated godet roll duo) corresponding to these derived basic equations
(l1...l3 are to be put in m, v is to be put in m/s, the other quantities are to
be put in as upper defined):

T1 = Th − (Th − Tb) · exp
(
−Kh · l1 · α1

v · √T t

)
(5.84)

T2 = Tr + (T1 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.85)

T3 = Th − (Th − T2) · exp
(
−Kh · l1 · α1

v · √T t

)
(5.86)

T4 = Tr + (T3 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.87)

The equation system reads for a full thread wrap around the godet arrange-
ment A II (heated godet with unheated temple pulley) as:

T1 = Th − (Th − Tb) · exp
(
−Kh · l1 · α1

v · √T t

)
(5.88)

T2 = Tr + (T1 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.89)

T3 = Tr + (T2 − Tr) · exp
(
−Kh · l3 · α1

v · √T t

)
(5.90)

T4 = Tr + (T3 − Tr) · exp
(
−Kh · l2 · α2

v · √T t

)
(5.91)
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The heating process similarly pursues the 2nd, 3rd, ... , nth-wrap. The, in
each case, actual thread temperatures T1, T2, ..., Tn are only to be taken over
in the next following exponential equations which describe the next heating
or cooling line of the thread.

In principle Fig. 5.32 shows the course of the heating process for both
arrangements A I and A II. The end values of the e-functions (which the
thread temperature Ty passes through the single thread lines) are connected
simply by straight lines. The thread way ly corresponds to the sizes of the
geometrical godet arrangements which were the basis for the investigations.
This thread way ly is of course proportional to the running time t if the
thread velocity is constant.
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It can be seen by using the Eqs. 5.84 to 5.91 that the total heating pro-
cess is only reproducible by means of a system of inputting each other and
dependent on each other e-functions. It appears that the system behaviour
can be described sufficiently by means of the following four aim quantities:

a) minimum number of thread wraps z
The quantity z is the minimum number of thread wraps which is necessary
to reach the steady state condition of the heating and cooling process at a
determined technological variant (Fig. 5.33). This has been defined in the
calculation program by means of a breaking off criterion. The steady state
condition is reached accordingly if the difference of the yarn temperatures at
the end of both last calculated heating sections falls below which is a limit
value, occurring for the first time, and which is given odds at your conve-
nience. One K has been chosen as the limit value in the following numerical
examples.

b) mean value of the thread temperature Tym

Tym means the mean value of the yarn temperature Ty (Fig. 5.34). The latter
oscillates around Tym after the steady state condition has been reached:

Tym =
Tn + Tn−1

2
(5.92)

Tn is on this occasion the yarn temperature at the end of the last heating
section at which the breaking off criterion has been reached, occurring for
the first time.

c) relative thread temperature oscillations ΔTy/Tym

The relative thread temperature oscillation ΔTy/Tym is the percent oscilla-
tion range (as the ± quantity) of the thread temperature referring to its mean
value Tym (Fig. 5.35).

ΔTy

Tym
· 100% =

Tn − Tn−1

Tn + Tn+1
· 100% (5.93)

d) heating yield ηh

ηh represents the ratio of the thread temperature mean value Tym to the
temperature of the godet surface Th (Fig. 5.36).

ηh =
Tym

Th
· 100% (5.94)

ηh is also a measurement for the approximation of the yarn temperature to the
theoretical maximum possible quantity Th. The latter could only be reached
by a sufficiently large number of yarn wraps if the cooling lines would be



5.3 Dynamics of Fibre Heating and Cooling 269

reduced to zero. ηh is not in this respect a yield in the energy sense. Further-
more it is of course to be remarked that this quantity possesses only relative
comparing character in case the temperatures are given (as usually) in .

Calculation results are presented following for the aim sizes previously
defined in a choice of diagrams (Figs. 5.33 to 5.36) for the yarn materials PA
and PET with the finenesses T t = 5, 10 and 20 tex. Temperatures of the
heated godets in each case of Th = 70 and 100 are assumed for both
geometrical arrangements A I and A II according to Fig. 5.31. Heat transfer
coefficients are taken as the basis as follows:

yarn - metallic surface: α1 = 530 W/(m2 · K),
yarn - air: according to Eq. 5.81.

The systems have been investigated in the yarn velocity range of 500 to
4000 m/min (time constants and critical frequencies of these cases regarding
heating and cooling see Table 5.2).

The following fundamental statements can be learned from the Figs. 5.33
to 5.36:

a) The minimum number of thread wraps z (which is necessary to reach
the steady state yarn temperature state Tym) is shown in Fig. 5.33. It must
be higher, the higher the yarn velocity v, the coarser the heating yarn and
the higher the godet temperature Th. The arrangement A II enforces roughly
1.5 times more wraps than the arrangement A I, where PA enforces, on the
average, a somewhat higher number of wraps than PET. It is remarkable that
more than 10 wraps are necessary to reach the mean yarn temperature Tym

if coarser yarns are to be heated at higher velocities.

b) The mean yarn temperature Tym (see Fig. 5.34) depends on the yarn
velocity. Tym decreases according to the expectation of higher velocity. This
decrease amounts in the simulated range (dependent on the yarn fineness and
the godet temperature) 15 ... 25 ! The reached temperatures at smaller ve-
locities (v < 1000 m/min for PA, v < 1500 m/min for PET) are significantly
higher at the arrangement A I (godet roll duo) than at the arrangement A
II. This tendency is obliterated at higher velocities (v > 2000 m/min) in
so-far as (dependent upon the yarn fineness) the A II (godet roll with a tem-
ple pulley) can produce the somewhat higher mean yarn temperatures. The
fineness influence comes forth clearly at higher velocities for both arrange-
ments: Coarser yarns can be heated to a lower mean temperature compared
to finer yarns. The difference can amount to v = 4000 m/min at 10 (5 tex
compared with 20 tex). It is also remarkable that PET-yarns can be heated
to higher temperature (especially at higher yarn velocities) on the average
than PA-yarns under the same technological boundary conditions and despite
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Fig. 5.33. Necessary numbers of thread wraps z around heated godet arrangements
A I and A II, corresponding to Fig. 5.32
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the same godet temperatures. Nevertheless, the relative dependences are the
same for both yarn materials.

It is quantitatively shown with these calculations that in principle the
mean yarn temperatures cannot reach the temperature of the heated godet
surface at such godet arrangements: The used godet temperatures will fail in
the yarn (at v = 4000 m/min) for instance between 20 and 40 for PA and
between 15 and 30 for PET. A difference of 5 to 15 can be seen even at
v = 500 m/min to the theoretically possible value Th.

c) A very important aim quantity is the relative yarn temperature oscilla-
tions ΔTy/Tym about the mean yarn temperature Tym which the yarn suffers
at each full wrap around the godet systems (see Fig. 5.35). This enormous
temperature change stress is imprinted onto the yarn in the investigated ve-
locity range nevertheless between 15 and 110 times/s, also with a disturbance
frequency of 15 to 110 Hz!

The following tendencies can be read as:
The temperature change stress decreases with increasing velocity, coarser
yarns and decreasing temperature of the heated godets. The arrangement A
II strains the yarn more than the arrangement A I. Change stresses up to
±5 can be awaited specifically in the range of small velocities (< 1000
m/min) for finer yarns at the higher godet temperature (Th = 100 ). The
dampening effect (which is correlated with the critical frequency of the sys-
tem “to heating or to cooling thread”) is effective in higher degrees (f > fch)
for the higher velocities, this means for higher disturbance frequencies. The
temperature change stress of the yarn decreases to uncritical values of < 2%
(see also time constants and critical frequencies in Table 5.2). The yarn ma-
terial PET is exposed to a somewhat greater temperature change stress than
the yarn mateial PA under the same technological conditions.

d) If one looks at the heating yield ηh (see Fig. 5.36) then a clear decrease
is to be noticed above all with increasing yarn velocity. The tendencies are
confirmed which are named under a): A I is more favourable, on the average,
according to the heat transfer (two heated godets are necessary, compared
to only one at A II!). But, this is no longer valid for coarser yarns (which
generally have the worse heat transfer conditions) at high yarn velocities.
PET-yarns can be heated with a higher heating yield ηh than PA-yarns.

Fibre Cooling in the Melt Spinning of Polymers (simplified)

Extensive investigations to the modelling and the complex proceedings in the
fibre formation distance have been described in detail in Sects. 3.1. and 3.2.
One of the most important product variables is the temperature of the melt
stream Tf which withdraws from the spinning die and solidifies along the
spinning way ls in the last amount of time to the filament with the fineness
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T tf . This problem is not able to be solved by means of the developed equations
in Sect. 5.3.2, but it is also pronounced as a problem of the thread cooling
dynamic. In the following it should be made clear that calculation results
describe the cooling process in a modified manner. These are based on the
application of a simple to handle basic equation which has been developed
in a formerly restricted paper the modelling of the fibre formation in melt
spinning [280]. It is taken into account at this occasion that the heat transfer
conditions and the heat capacity c of the solidifying polymer melt is subjected
to greater temperature depending changes. The following result (based on the
concentration of experimental data) is explained in [280]: The quotient of the
specific heat capacity c and the Nusselt-number3 is roughly constant along
the whole spinning way ls. An analytical equation can be derived on the basis
of this knowledge (after some intermediate steps which are not performed
here) for the temperature course of the formated filament is as follows:

Tf = Tr + (Ts − Tr) · exp(ls/x0) (5.95)

The length measurement x0 can be calculated as follows:

x0 = 1.5 · KW1 · (qo)0.79 · (vs)−0.05 (5.96)

or

x0 = 1.5 · KW2 · (T tf)0.79 · (vs)0.74 (5.97)

The single sizes and their dimensions in Eqs. 5.95 to 5.97 mean:

Tf filament temperature in or K
Tr temperature of the cooling medium (surrounding air) in or K
Ts temperature of the spinneret = melt temperature

at the spinneret output in or K
ls distance from the spinneret = spinning way in m
x0 length measurement corresponding to Eqs. 5.96 or 5.97,

dimension reads in m
qo throughput of one orifice in the spinneret = filament throughput

in g/min
T tf fineness of the filament
vs spinning velocity in m/min
KW1 polymer-specific constant in Eq. 5.96

KW1=0.81 for PA
KW1=0.57 for PET
KW1=0.91 for PP

3 The Nusselt-number is a dimensionless quantity to the description of the heat
transfer which arises from the heat transfer coefficient α, the heat conductivity λ
of the surrounding medium and a characteristic length measurement d as follows:
Nu = α · d/λ.
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KW2 polymer-specific constant in Eq. 5.97
KW2 = 3.44 · 10−3 for PA
KW2 = 2.42 · 10−3 for PET
KW2 = 3.89 · 10−3 for PP

Equation 5.95 also describes the filament temperature course depending
on the distance from the spinneret, that means on the spinning way ls. The
knowledge of this dependence is specifically important for the best design of
the spinning tube length or for the placing of filament treatment elements in
the filament line (for instance preparation disk or preparation finger).

Some typical filament temperature courses are shown in Fig. 5.37 for the
most important spinning materials PA and PET. Spinning velocities vs of
1000, 4000 and 6000 m/min and finenesses of the spun filaments T tf of 1
and 0.3 tex for both materials have been chosen. The spinneret tempera-
ture Ts has been set at 280 for PA and 300 for PET. The temperature
of the cooling medium (surrounding air) Tr = 20 and the diameter of the
orifice do = 0.25 mm (which is not of any effect) have been constantly chosen.

Quantitative tendencies of the cooling behaviour and conclusions in differ-
ent directions can be easily learned using the single curves from this diagram.
It can be seen as a quantitative completion of Sect. 3.1.7.
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