
6. Dynamics of the Tensile Force and its

Importance for Process Stability

6.1 Task

Since the textile fibre formation and fibre processing processes have been car-
ried out the special attention has been aimed at the reaction force of the yarn
to an induced longitudinal deformation or elongation. The number of papers
on the problem of yarn tensile force has increased meanwhile to probably
more than a thousand. At first the steady state or dynamic measurements
of the yarn tensile force (its mean value or the statistical description of its
fluctuation parts) were, in the textile test lab, a sign of quality and use fit-
ness of the threads. Yarn tensile force measurements have been carried out
after the thread line on most different production machines in various man-
ners. The measured signal courses have been analyzed by means of simple
or also pretentious algorithms of the signal analysis or signal concentration.
It is not the task of this chapter to sort and evaluate this specific textile-
technological literature. Rather a row of universal regularities and hints to
the measuring-methodical and analytic-technical practice which are worth
mentioning should be given. These come from the theory of dynamic mea-
surements as well as from own experimental results and they are not collected
(to the knowledge of the authors) in this manner anywhere else.

The following specifics and problems are to be mentioned in connection
with the product variable yarn tensile force:

a) Each fibre formation and yarn transport process is connected to a yarn
elongation (see Sect. 5.1 - dynamics of the fibre transport). The so-called
yarn tensile force therefore appears because each elongated yarn counteracts
the elongation, a reaction force which is generally (as time function of the
yarn tensile force) an expression for dynamic process reactions.
The mechanism of this appearance comes from the force-elongation diagram
of the yarn (Fig. 6.1); each elongation ε (for instance ε1, ε2) is correlated
with a yarn tensile force F (for instance F1, F2).

b) The yarn tensile force is a product variable which only exists during
the process run. It provides information unlike any other process or product
variable (measurable directly during the process) to the following points:
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Fig. 6.1. Force-elongation diagram of a yarn (in principle)

- unevennesses of the force-elongation-behaviour of the threads (problem of
the “inner unevennesses”).
- unevennesses of the yarn transport (irregularities at the passing of the yarn
transport lines which are necessary for carrying out the fibre formation and
yarn processing processes).

c) The yarn tensile force is a complex effect quantity. Most of the different
causes are reflected to it in the strongest superposed manner.

d) As a rule, only a visual analysis of recorded yarn tensile force signals
does not allow an unambiguous research of disturbance causes.

e) The yarn tensile force is the cause of effected structural changes in
man-made fibres (for instance orientation changes of the macromolecules).
The yarn tensile force is because of that an essential cause quantity to the
stress strain properties.

f) The time function of the yarn tensile force can be seen as an indicator
of the process stability. High mean values of the yarn tensile force near the
breakage limit lead similarly to increased yarn breakages and decrease of the
productivity as great changes of the yarn tensile force at its low mean value.
It is noticed that the breakage limit itself is not a constant value (see Fig. 6.2).
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Fig. 6.2. Oscillations of the yarn tensile force – cause for the yarn breakage; above:
great average Fa, small oscillations ±ΔF ; below : small average Fa, great oscillations
±ΔF

g) The measurement of the yarn tensile force is in most cases without
contact. Reactions to the thread line are therefore not excluded.

h) yarn tensile force measuring sensors must have a sufficiently high crit-
ical frequency because the time function of the yarn tensile force reflects the
dynamics of most of the different disturbance causes (see Sect. 6.3).
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6.2 Connection Between Fibre Fineness and Fibre
Tensile Force Variations

The derived dynamic functions of fibre formation and yarn transport lines (see
Sect. 4.2.1 and Sect. 5.1) place several cause-effect relations for the product
variable yarn fineness into the center of view.

All derived dynamic time transient functions, complex frequency re-
sponses, amplitude frequency responses and phase frequency response are
valid for effected yarn tensile force changes similarly, but, only if the same
disturbance causes (as described in Sect. 4.2.1 and Sect. 5.1) take place and
if the following developed mathematical relationships between yarn fineness
and yarn tensile force will be put into the model equations.

Tt0

l0

l1

Tt1, ε, R
F

unloaded
state: F = 0

loaded
state: F > 0

Fig. 6.3. Elongation

The well-known relations are valid between the unloaded (T t0, l0) and
the yarn (T t1, l1, ε, Ry) loaded by means of the tensile force F according to
Fig. 6.3:

Ry = Ey · ε (6.1)

Ry tensile stress = F/T t1
ε yarn elongation
Ey elastic modulus

Equation 6.1 can be written as:

F = Ey · T t1 · ε (6.2)

The fineness of the loaded yarn T t1 is inserted into Eqs. 6.1 and 6.2 only
because this mediates the approach to the tensile stress (fineness related ten-
sile force) which the material will suffer from physically. This differs from the
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practice of yarn testing in a lab, where for the tensile stress (fineness related
tensile force), the fineness of the unloaded yarn is in general use.

The elongation ε can be read as:

ε =
l1 − l0

l0
=

T t0 − T t1
T t1

(6.3)

Eq. 6.3 put into Eq. 6.2 results in:

F = Ey · (T t0 − T t1) (6.4)

If we take F and T t1 as variable sizes which consist of a mean value part
Fm and T t1m as well as a change part ΔF and ΔT t then Eq. 6.4 can also be
written as:

Fm + ΔF = Ey · [T t0m − (T t1m + ΔT t1)] (6.5)

The fineness of the unloaded yarn T t0 should apply to this constantly
and designated (formal following the same agreement) with T t0m. Equation
6.5 now represents the conversion relations between the yarn fineness under
elongation load and the appearing yarn tensile force:

Fm = Ey · (T t0m − T t1m) (6.6)

The change sizes are obtained through the relationship:

ΔF = −Ey · ΔT t1 (6.7)

It is also valid for the interesting output fineness (T to, T tom, ΔT to) of the
yarn which leaves the process line according to the generally used relationship
in Sect. 4.2.1 and Sect. 5.1:

Fm = Ey · (T t0m − T tom) (6.8)

ΔF = −Ey · ΔT to (6.9)

All dynamic functions which the yarn fineness change contains as effect
variable can be converted immediately into the effect variable yarn tensile
force by use of the conversion relationship of Eq. 6.9.
The formal procedure should be demonstrated using the dynamic transfer
function (see Eq. 4.9) which the relationship represented between a change
of the output velocity Δvo and yarn fineness change ΔT to effected by this.
Equation 4.9 in Sect. 4.2 can be read as:

G(p) =
ΔT ts
Δvs

= −T tsm
vsm

· 1

1 + p · lm
vsm
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The effect variable ΔT to is to be substituted by the new effect variable ΔF
according to Eq. 6.9:

G(p) =
ΔF

Δvs
= −Ey · T tsm

vsm
· 1

1 + p · lm
vsm

(6.10)

The step response of the yarn tensile force change ΔF owing to a step of the
output velocity Δvo also comes from the step response of the yarn fineness
change (Eq. 4.13) similarly:

ΔF |Δvs = Δvs · Ey · T tsm
vsm

[
1 − exp

(
−vsm

lm
· t

)]
(6.11)

The elastic modulus Ey of the elongation-loaded transported yarn also ap-
pears as the conversion factor with the dimension mN/tex. All diagram rep-
resentations (for instance Figs. 2.13, 2.14 to 2.16, 4.4 to 4.6, 5.6, 5.8, 5.9,
5.20, 5.21) are usable in principle if the presented conversion relations are
used. The appropriate ordinate measure is to be converted from ΔT to to ΔF
according to the conversion relation. The normalised representation of ordi-
nate measures (Figs. 4.4 to 4.6) do not cause again normalised (relative effect
change referred to relative disturbance change) representations after the con-

version from ΔT to to ΔF ! The normalised amplitude ratio
Δ̃T to/T tom

Δ̃vo/vom

will

be converted into − Δ̃F/(Ey · T tom)

Δ̃vo/vom

and not to − Δ̃F/Fm

Δ̃vo/vom

because of the

simple conversion relation Fm = −Ey ·T tom is not valid according to Eq. 6.8.

6.3 Dynamic Properties of Tensile Force Measuring
Sensors and its Importance for Experimental Process
Analytical Investigations

It is useful to remember some general theoretical knowledge of oscillation
science and the measuring of dynamics before the evaluation of time functions
from the yarn tensile force can be described.

Yarn tensile force measuring sensors are oscillatable elements related to
the tools which are turned toward the yarn (usually bend-stiff elastic, one-
sided chucked steel tongues are used for force transmission). Therefore, the
yarn tensile force changes can only be transmitted up to an appointed upper
frequency (the well-known critical frequency) without an amplitude falsifica-
tion of the measured tensile force change course. Tensile force fluctuations
above the critical frequency of the measuring sensor will be reflected damped,
that means the amplitudes will either be reflected on a small scale or not even
noticeable.
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The demand for a measuring quantity transmission without any mistakes is:

critical frequency of the measuring sensor ≥ the greatest
occurring oscillation frequency in the time function of the
concerned process or product variable

(6.12)

However, the relation 6.12 is only one necessary prerequisite. A further im-
portant prerequisite is an optimum dampening of the force transmitting,
oscillatable bending tongue. Only then is it possible to fully treat the critical
frequency fc of a measuring sensor. Optimum dampening means that the
amplitude frequency response of the (sinusoidal) bending tongue shift Δ̃w
is almost constant in the frequency range 0 ≤ f ≤ fc by means of a sinu-
soidal imprinted tensile force at the free end of the bending tongue which is
equipped with a yarn guiding element. The optimum dampening is realised
by means of special design arrangements either as pure air dampening or as
oil dampening (for instance with an oil filling of suitable viscosity between
the bending tongue and the fixed sensor case).

Figure 6.4 shows an example of a one-sided chucked measurement sensor
bending tongue which’s bending way Δ̃w is measured by means of two induc-
tive way sensors (capacitive measurement is likewise possible). The necessary
dampening is reached by oil which is filled into the slit between the induc-
tive way sensors and the bending tongue. Such a design solution (here only
outlined schematically) is described in [318].

In principle the dynamic transfer properties and the possible amplitude
frequency responses are shown in the diagram in Fig. 6.4 for such a system
with differently strong dampening of the bending tongue.

The curves are based upon the generally known amplitude frequency re-
sponse equation of a mass-spring-dampening system which can be found for
instance in [5]. For the case of our system:

|G(jf)| =

∣∣∣∣∣ Δ̃w

Δ̃F

∣∣∣∣∣ = KN ·
[(

1 − f2

f2
n

)2

+ 4d2
f

f2

f2
n

]−1/2

(6.13)

The symbols mean:
Δ̃F amplitude of the induced sinus-like force oscillations at the

bending tongue
Δ̃w amplitude of the sinus-like shifts at the bending tongue
KN normalising factor
f frequency of the induced sinus-like force oscillations
fn natural frequency of the bending tongue
df dampening factor

A dampening factor that is too small (df < 0.6) as well as a dampening
factor that is too large (df > 0.6) is unsuitable for a measuring signal trans-
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Fig. 6.4. Bending tongue of a yarn tensile force measuring sensor and normalised
amplitude frequency responses depending on different dampening factors

mission without mistakes. Strong raised shifts of the bending tongue (caused
always by steady exciting force amplitude at the bending tongue) will be
recorded in the first case in a large frequency range. These already start near
the steady state load (f/fn → 0) and they decrease quickly to insignificant
shifts above the natural frequency of the bending tongue. Such a measuring
sensor would only be suitable for the measuring of quasi steady state or very
slow yarn tensile force changes. All other frequencies are transmitted with
amplitudes that are either too small or too large.

If the dampening is chosen too large then an exact amplitude reproduction
is possible only likewise for quasi steady state changes of the yarn tensile force
whereas amplitudes that are too small are measured in whole other frequency
range.
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A nearly exact amplitude measuring in the frequency range 0 ≤ f ≤ fn is
possible if the dampening is optimally adjusted to df = 0.6. The amplitude
frequency response curve is nearly constant in the named frequency range.
About 0.8 times of the natural frequency fn of the freely oscillating, un-
dampened bending tongue can be stated as critical frequency fc for such a
measurement system which should satisfy higher exactness pretensions. If the
measuring sensor is used beyond this, then 20% of the decreasing amplitude
(referring to the imprinted signal) appears already for f = fn.

Today offered yarn tensile force measuring sensors have critical frequen-
cies in the range of fc ≤ 500 Hz (in special cases also above it) and they
fulfill virtually all wishes regarding the dynamic transmission properties. It
is indeed problematic to fulfill the demands of a small reaction to the running
yarn for narrow yarn tensile forces and for high yarn transport velocities. The
latter is evident in high-speed spinning processes of the man-made fibre in-
dustry. Yarn guide rolls with light-motionable ball bearings are recommended
for such tensile force measuring sensors. The named relations and regularities
(collected here for the special case of the yarn tensile force measuring sen-
sors) are of course valid for measuring sensors which measure signal courses
of other process and product variables if the signal-recording element is a
mass-spring-dampening-system.

6.4 Evaluation of the Tensile Force Time Function

6.4.1 Stationary Evaluation

It is surely correct that still today most recorded yarn tensile force courses
are submitted to a steady state evaluation only, although in most cases pow-
erful electronic computers are available. This is a contradiction in so far as
just the time function of any process and product variables is an expression
of the process dynamic. A pure steady state evaluation of a naturally dy-
namic measuring quantity gives away a considerable part of the information
substance which it contains.

An assumed time course according to Fig. 6.5 is estimated normally to
the following quantities:

a) mean value Fm results from

Fm =
1
n
·

n∑
i=1

Fi (6.14)

b) maximum amplitude shift ΔFmax
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Fig. 6.5. Scanned time function of an assumed tensile force course; scan interval
Δt = 0.1 s. Fm = 150 mN, dq = 56 mN, vc = 37%, ΔFmax = 210 mN

c) quadratic dispersion (variance), standard deviation or coefficient of varia-
tion as summary data for the fluctuation range of the time function course
around the mean value. These quantities are calculated according to the fol-
lowing algorithms:

quadratic dispersion (variance) d2
q

d2
q =

n∑
i=1

(Fi − Fm)2

n − 1
(6.15)

standard deviation dq

dq =

√√√√√√
n∑

i=1

(Fi − Fm)2

n − 1
(6.16)

coefficient of variation vc

vc =
1

Fm
·

√√√√√√
n∑

i=1

(Fi − Fm)2

n − 1
· 100% (6.17)

The single signs mean:
Fi discontinuous value of time function F (t), taken in steps of Δt
Fm mean value of the time function F (t) in the range F1...Fi

n maximum number of available single values Fi

i running index
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6.4.2 Dynamic Evaluation; Auto Correlation and Auto Power
Density Spectrum Functions

Fundamentals

The steady state analysis does not give any data about the time behaviour of
the recorded time functions, this means no data is given about the frequencies
of a fluctuation course. Essentially three possibilities are given in order to get
such related data:

a) Visual estimation of the time function. It is possible in exceptional cases
to only recognise strong outstanding frequencies because many fluctua-
tion courses are a mixture of frequencies.

b) Calculation of the auto-correlation function of the recorded time function.
c) Calculation of the auto-power density spectrum function of the recorded

time function.

Calculation algorithms

The general calculation algorithms for the auto-correlation (ACF) and the
auto-power density spectrum functions (APSF) have already been given in
Sect. 2.4.4 (see Eqs. 2.16, 2.17, 2.20 to 2.22 and Fig. 2.9). The special equa-
tions can be read in the present case of the time function of the yarn tensile
force as:

ACF, Integral representation:

KF(τ) = lim
T→∞

1
T

∫ T

0

[F (t) − Fm][F (t + τ) − Fm]dt (6.18)

ACF, Sum representation:

KF(k · Δt) =
1

n − k

n−k∑
i=1

(Fi − Fm)(Fi+k − Fm) (6.19)

Boundary condition: kmax ≤ n

5
, with k = 0, 1, 2, 3, . . . kmax.

APSF, Integral representation:

SF(f) = lim
T→∞

1
T

{ [∫ T

0

(F (t) − Fm) cos(2π · f · t)dt

]2

+

[∫ T

0

(F (t) − Fm) sin(2π · f · t)dt

]2 } (6.20)
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APSF, Sum representation:

SF(f) =
1
n

{ [
n∑

i=1

(F (t) − Fm) cos(2π · f · i · Δt)

]2

+

[
n∑

i=1

(F (t) − Fm) sin(2π · f · i · Δt)

]2 } (6.21)

Boundary condition:
5

n · Δt
≤ f ≤ 1

2 · Δt

APSF, calculated from KF(k · Δt):

SF(f) = 2Δt

m∑
k=1

KF(k · Δt) · cos(2π · f · k · Δt) (6.22)

Boundary condition:
1

m · Δt
≤ f ≤ 1

2 · Δt

F (t) time function of the tensile force
Fm mean value of the time function of tensile force,

evaluation range 0 ≤ t ≤ T or 0 ≤ k · Δt ≤ n − k
Fi discontinuous value of time function F (t),

taken in steps of Δt
T time period of the integration range
τ, k · Δt time shift
k, m, n running (sequence) indices
KF(τ), KF(k · Δt) single values of the ACF of time function

F (t) for τ or k · Δt
SF(f) single values of the APSF of time function F (t) for f

It has been previously referred to the use and the expanded assertion
possibilities of these analysis procedures regarding the fineness unevenness
analysis of threads and spun yarns [319]. Nevertheless, various applications
have not been induced, because electronic computers were not yet available.

Calculation Example; Estimation Rules; Necessary Measurement
and Evaluation Scopes

The formation of the ACF of an arbitrary given yarn tensile force course
according to Eq. 6.19 will be demonstrated in the following. This time func-
tion is reduced to 44 equidistant values Fi which are keyed into the distance
Δt (Fig. 6.5). The result are 10 single ACF-values KF(k ·Δt) for k = 0, 1, ... 9.

The calculation of these few values for the ACF (based on the underlied
time function) is as you can see already very expensive. With this it is to be
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remarked, that an ACF-calculation, which fulfills a useful dynamic analysis
requirement, supposes at least 1000 single values Fi (better more) from which
200 functional values KF(k · Δt) can be calculated.

The expenses for the calculation of the APSF can be much larger because
the according equations prescribe a continuous multiplication with sin- and
cos-functions of changing frequency. Automatised measuring data recording
of the time functions (and their processing) by means of computers are also
an absolute prerequisite to an effective use of these methods.

From our simple, roughly divided function F (t) (Fig.6.5) can be read,
after the statistic estimation, as:
Fm = 150 mN; ΔFmax = 210 mN; d2

q = 3098 mN2; dq = 56 mN; vc = 37%.
The 10 single values of the ACF according to Table 6.1 are drawn versus

the related time shift k · Δt in the Fig. 6.6.
The question is now, how is the ACF and/or the APSF to be evaluated
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Fig. 6.6. Auto-correlation function (ACF) of the time function corresponding to
Fig. 6.5 and Table 6.1

or to be discussed with respect to a deepened time function analysis. Some
simplified estimation rules will be given for this, in the following, for different
courses of the ACF and APSF which also allow a classification of our arbi-
traril chosen tensile force course according to Fig. 6.5.

a) Periodical parts of the time function appear in the ACF as pure,
unadulterated oscillations with the same cycle duration (measured in the
units of the time shift τ or k · Δt) which appears (mostly in a not exact dis-
cernible form) in the time function itself.
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Table 6.1. Development of the ACF KF(k · Δt) of the time function F (t) corre-
sponding to Fig. 6.5

(Fi − Fm)(Fi+k − Fm) for
i Fi Fi − Fm k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

[mN] [mN] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2] [mN2]

1 190 40 1600 0 -1200 -3200 -2000 3200 1200 1200 4400 -2800
2 150 0 0 0 0 0 0 0 0 0 0 0
3 120 -30 900 2400 1500 -2400 -900 -900 -3300 2100 0 600
4 70 -80 6400 4000 -6400 -2400 -2400 -8800 5600 0 1600 -3200
5 100 -50 2500 -4000 -1500 -1500 -5500 3500 0 1000 -2000 5000
6 230 80 6400 2400 2400 8800 -5600 0 -1600 3200 -8000 -4800
7 180 30 900 900 3300 -2100 0 -600 1200 -3000 -1800 -1800
8 180 30 900 3300 -2100 0 -600 1200 -3000 -1800 -1800 600
9 260 110 12100 -7700 0 -2200 4400 -11000 -6600 -6600 2200 1100

10 80 -70 4900 0 1400 -2800 7000 4200 4200 -1400 -700 -6300
11 150 0 0 0 0 0 0 0 0 0 0 0
12 130 -20 400 -800 2000 1200 1200 -400 -200 -1800 -400 -600
13 190 40 1600 -4000 -2400 -2400 800 400 3600 800 1200 -1200
14 50 -100 10000 6000 6000 -2000 -1000 -9000 -2000 -3000 3000 -4000
15 90 -60 3600 3600 -1200 -600 -5400 -1200 -1800 1800 -2400 0
16 90 -60 3600 -1200 -600 -5400 -1200 -1800 1800 -2400 0 1800
17 170 20 400 200 1800 400 600 -600 800 0 -600 -1600
18 160 10 100 900 200 300 -300 400 0 -300 -800 -500
19 240 90 8100 1800 2700 -2700 3600 0 -2700 -7200 -4500 7200
20 170 20 400 600 -600 800 0 -600 -1600 -1000 1600 600
21 180 30 900 -900 1200 0 -900 -2400 -1500 2400 900 900
22 120 -30 900 -1200 0 900 2400 1500 -2400 -900 -900 -3300
23 190 40 1600 0 -1200 -3200 -2000 3200 1200 1200 4400 -2800
24 150 0 0 0 0 0 0 0 0 0 0 0
25 120 -30 900 2400 1500 -2400 -900 -900 -3300 2100 0 600
26 70 -80 6400 4000 -6400 -2400 -2400 -8800 5600 0 1600 -3200
27 100 -50 2500 -4000 -1500 -1500 -5500 3500 0 1000 -2000 5000
28 230 80 6400 2400 2400 8800 -5600 0 -1600 3200 -8000 -4800
29 180 30 900 900 3300 -2100 0 -600 1200 -3000 -1800 -1800
30 180 30 900 3300 -2100 0 -600 1200 -3000 -1800 -1800 600
31 260 110 12100 -7700 0 -2200 4400 -11000 -6600 -6600 2200 1100
32 80 -70 4900 0 1400 -2800 7000 4200 4200 -1400 -700 -6300
33 150 0 0 0 0 0 0 0 0 0 0 0
34 130 -20 400 -800 2000 1200 1200 -400 -200 -1800 -400 -600
35 190 40 1600 -4000 -2400 -2400 800 400 3600 800 1200 -1200
36 50 -100 10000 6000 6000 -2000 -1000 -9000 -2000 -3000 3000
37 90 -60 3600 3600 -1200 -600 -5400 -1200 -1800 1800
38 90 -60 3600 -1200 -600 -5400 -1200 -1800 1800
39 170 20 400 200 1800 400 600 -600
40 160 10 100 900 200 300 -300
41 240 90 8100 1800 2700 -2700
42 170 20 400 600 -600
43 180 30 900 -900
44 120 -30 900

Sum [mN2] 133200 13800 11800 -36300 -16700 -44700 -9200 -24400 -11300 -25700
n − k 44 43 42 41 40 39 38 37 36 35

KF(k · Δt) [mN2] 3027 321 281 -885 -418 -1146 -242 -659 -314 -734

Periodical parts of the time function appear in the APSF as a maximum
at these frequencies which the periodic parts themselfs possess in the time
function.
The appropriate analysis situation is shown in Fig. 6.7. If the time function
shows strict periodical oscillations then the ACF does not die-away to zero
with increasing τ but it will monotonously oscillate like the time function
itself. If the time function shows strict periodical oscillations then the APSF
shows a narrow high maximum.

b) If the time function only has stochastic (statistic) parts then the ACF
does continuously die-away like an exponential function and will be zero in
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the end. The APSF does not have any sort of maximum but it shows a more
or less equalised (in the ideal case a constant) course (see Fig. 6.8).

c) If the time function has superimposed, periodic and statistic parts then
these appear in good separated form in the ACF and APSF appropriate to
the given criteria under a) and b). Figures 6.9 and 6.10 show two (separate)
examples for the superposition of statistic and 1- or 2-times periodic parts in
the basic time function.

The time function of the yarn tensile force Fig. 6.5 is to be characterised by
means of its ACF (Fig. 6.6) as a function which consists of statistic parts and
a one-time periodic part. Nevertheless, such an assertion would be supported
more exactly by means of a longer analysis interval, an essentially greater
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Fig. 6.8. Auto-correlation and auto-power density spectrum functions of a time
function with pure stochastic changes

number of single tensile force values and a more extensive ACF-analysis.
The necessary measuring and estimation volume to the calculation of the
ACFs and APSFs (from more intensive analyzing time functions) can be
fixed according to the following rules of thumb. Some likeness exists about
the problem of the necessary measuring and gauge length of threads for the
purpose of analysis of dynamic disturbances (see Sect. 4.5).

It is necessary to estimate the probable highest and lowest occurring fre-
quencies fmax and fmin (by means of test records or a-priori knowledges)
before appointing a measuring and analysis strategy, because the time func-
tions of the product variable yarn tensile force can consist of high- as well as
low-frequency fluctuation parts in proportion to the process step.

The necessary maximum analysis time TA of the time function (and with
it the measuring time for the complete recorded function) results from the
condition that also a low frequency periodic change (fmin) could be run at
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Fig. 6.9. Auto-correlation and auto-power density spectrum functions of a time
function with (superposed) one periodic (sinusoidal) and stochastic changes; TP

cycle duration of the periodic change, fP frequency of the periodic change

least 5-times. The condition for TA is therefore:

TA ≤ 5
fmin

(6.23)

If the calculation of the ACF and/or the APSF are realised according to
the sum equations (Eqs. 6.19, 6.21) then the number n of equidistant taken
single values Fi of the time function F (t) can be derived from the following
condition. A periodic change which runs with fmax should take at least 5
equidistant single values. This means that the taken interval Δt must be:

Δt ≤ 1
5 · fmax

(6.24)

The necessary number of single values nmin results with this to:
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Fig. 6.10. Auto-correlation and auto-power density spectrum functions of a time
function with two periodic (sinusoidal) and stochastic changes; TP1 and TP2 cycle
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nmin ≥ TA

Δt
= 25 · fmax

fmin
(6.25)

A maximum possible time shift τmax can be recommended for the ACF-
calculation as follows:

τmax ≤ TA

5
=

1
fmin

(6.26)

If this condition is observed then the slowest can also occur.
It is easy to estimate according to Eq. 6.25 that the number of single

values nmin must be more than 1000, if the ratio is fmax/fmin = 40 (for
instance fmax = 4 Hz, fmin = 0.1 Hz).
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Technological Example

The preceding statements will be demonstrated once more by means of the
concentration of five yarn tensile force courses to their auto-correlation and
auto-power density spectrum functions. We choose, in retrospect, five mea-
sured time functions of the yarn tensile force in the input line according to
Fig. 5.15 in Sect. 5.1.5. The technological situation of this yarn input line has
already been discussed in detail. It is a characteristic of this that extremely
different, but overlookable time functions, can be submitted to the ACF- and
APSF-calculation. The five time functions F (t) have been characterised by
an input line length lm = 0.42 m in the first case, an extended input line of
lext = 0.45 m in the second case, an extended input line of lext = 1.60 m in
the third case, an extended input line of lext = 4.80 m in the fourth case,
and an extended input line of lext = 6.40 m in the fifth case, all according to
the technological scheme of Fig. 5.12. The analyzed time functions and the,
in each case attached, ACFs and APSFs are shown in Figs. 6.11 to 6.15.

The following conclud statements which confirm the discussion in Sect.
5.1.5 can be made:

a) The ACF of the undamped yarn tensile force course clearly has a strong
periodic character with a main disturbance frequency of f = 0.75 Hz (equiv-
alent yarn length of 1.3 m; see Fig. 6.11). It is equivalent with that to the
basic type, outlined in Fig. 6.7. A second disturbance frequency (f = 4.65 Hz,
equivalent yarn length 0.21 m) appears clearer with the increasing dampening
of this main disturbance frequency. This can only be made visible by a dras-
tic changed ordinate measure of the ACF-diagrams (see Figs. 6.12 to 6.15),
because the main disturbance frequency in the undamped case (Fig. 6.11)
dominates and covers all the other. This second disturbance frequency also
correlated with the periphery of a small eccentric running input godet of the
twister. The ACF passes over from the basic type of the one periodic dis-
turbance to that of two periodic disturbances without discernible stochastic
parts (compare Figs. 6.11 to 6.15 with Fig. 6.10).

The strong different ordinate measures of the ACFs (and APSFs) in the
Figs. 6.11 to 6.15 demonstrate, in another way, the utmost effective calming
of the tensile force course. It is to be remarked at this point that the start
value of the ACF (for τ = 0) corresponds to the well-known quadratic dis-
persion (variance).

b) The same interpretation is valid for the APSFs (S(f)-values) of the five
time function courses. The Figs. 6.11 and 6.12 show the main disturbance fre-
quency of 0.75 Hz clearly and independently, Fig. 6.13 also shows the second
disturbance frequency of 4.65 Hz clearly, and in Figs. 6.14 to 6.15 (greatest
dampening) show the second disturbance frequency only independently. One
also notes here the different ordinate measures!
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The overswing of the S(f)-curves to negative values near the main maxi-
mum (which theoretically should not occur) is caused by mistakes which arise
from a too coarsely taken interval (Δt = 1/30 s), from the small number of
single values for the time functions (n = 600), and from the small number of
single values for the correlation function (m = 150). The limits of the used
sum represent the APSF by means of Eq. 6.22. Nevertheless, the general
statement is not even called into question in the presented case.

6.5 Combination Measurements and Evaluations

6.5.1 Task and Measurements

The dynamic behaviour of a process is normally distinguished not only by
the time functions of one process or product variable. Several time functions
and their mutual influence are to be analysed. The combined measurement
and analysis of the time functions of

- the yarn tensile force F (t),
- the yarn fineness T to(t),
- the tensile stress σ(t) = F (t)/T to(t)

have hardly been used in the past with respect to the research of dynamic
cause-effect relations in the beginning and the transmission of inner and outer
yarn unevennesses and their relationships. A related analytical method has
been presented until now only in just a few (own) papers [320,321]. The fol-
lowing statements are essentially a brief conclusion of these.

The following two possibilities are practically given to the measurement
recording of the named time functions:

a) Two channel synchronous measuring signal records of F (t) and T to(t)
in which the third time function σ(t) = F (t)/T to(t) is simultaneously cal-
culated as the tensile stress (fineness related tensile force) by means of a
quotient computer.

b) Two channel synchronous measuring signal records of F (t) and T to(t)
in which the time function of the tensile stress σ(t) is calculated after the
measuring signal records, point by point, by means of the division for each
temporal related values. This calculation can be carried out either “by hand”
or – better – also by means of a quotient computer.

It is an advantage for both methods, the primary records of the time func-
tions of the yarn tensile force F (t) and the yarn fineness T to(t), that they
can be to stored by means of a two channel measuring magnetic tape device
or of a quick external computer memory. It is then possible to temporally
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Fig. 6.16. Technological scheme of a combination measurement of yarn tensile
force, yarn fineness and tensile stress in the drawing process with correlation eval-
uation

and locally separate the measuring signal records on the machine and the
analysis in the lab. In this way, it is possible to carry out later the measuring
process at any time to repeat in the slow or fast motion manner or the quo-
tient calculation to the time function of the tensile stress σ(t). It is possible
in the same way to produce a data memory of the time functions which is
available to the further described analysis as follows.

Figure 6.16 shows a conventionally designed variant which proposes a
storage of the measuring values by means of a measuring magnetic tape
device which the time function can be submitted to in a (cross-)correlation
evaluation.
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6.5.2 Dynamic Evaluation and Cross-Correlation Functions (CCF)

Fundamentals

First of all several synchronously determined time function courses of different
process and product variables can also be evaluated visually, similarly as to
Sect. 6.4 for the evaluation and analysis of the time function course of the
yarn tensile force independently. This can take place, for instance, to observe
whether changes of the F (t)-, T to(t)- and σ(t)-courses correspond to each
other and whether this correlation will be positive or negative.

Further analytical statements can give the cross-correlation function
(CCF) or to the cross-power density spectrum function (CPSF) for the mu-
tual dependences or the dynamic relationship of time functions of two process
or product variables.

The calculation rules for the CCF of two time functions in the integral and
sum representation has been already described in Sect. 2.4.4 (see Eqs. 2.18
and 2.19). We will only regard the CCF in the following. The interested
reader can inquire as to the numerical more expensive formation rules and
the (until now only little used) statement possibilities of the cross-power
density spectrum function in [8] and [9].

Cross-correlation functions (CCF) of yarn tensile force, yarn fine-
ness and tensile stress in the draw process

The following three cross-correlation functions can be formated (in each case
in the integral and the sum representation) from the time functions of the
yarn tensile force F (t), the yarn fineness T to(t) and the tensile stress σ(t):

CCF of the yarn tensile force and the yarn fineness

KFTto(τ) = lim
T→∞

1
T

T∫
0

[F (t) − Fm][T to(t + τ) − T tom]dt (6.27)

KFTto(k · Δt) =
1

n − k

n−k∑
i=1

(Fi − Fm)(T to(i+k) − T tom) (6.28)

Boundary condition: m = kmax ≤ n

5
, which k = 0, 1, 2, 3, ...m

CCF of the yarn tensile force and the tensile stress

KFσ(τ) = lim
T→∞

1
T

T∫
0

[F (t) − Fm][σ(t + τ) − σm]dt (6.29)



304 6. Dynamics of the Tensile Force and Process Stability

KFσ(k · Δt) =
1

n − k

n−k∑
i=1

(Fi − Fm)(σi+k − σm) (6.30)

Boundary condition: m = kmax ≤ n

5
, which k = 0, 1, 2, 3, ...m

CCF of the yarn fineness and the tensile stress

KTtoσ(τ) = lim
T→∞

1
T

T∫
0

[T to(t) − T tom][σ(t + τ) − σm]dt (6.31)

KTtoσ(k · Δt) =
1

n − k

n−k∑
i=1

(T toi − T tom)(σi+k − σm) (6.32)

Boundary condition: m = kmax ≤ n

5
, which k = 0, 1, 2, 3, ...m

The signs and symbols in Eqs. 6.27 to 6.30 mean:

F (t), T to(t), time functions of the tensile force, yarn fineness,
σ(t) tensile stress
Fm, T tom, mean values of the tensile force, yarn fineness,
σm tensile stress in the range of

0 ≤ t ≤ T or 0 ≤ k · Δt ≤ n − k
T toi, T to(i+k), discontinuous values of the time functions
Fi, σi+k F (t), T to(t), σ(t), taken in steps of Δt
T length of the integration range
τ, k · Δt time shift
k, m, n running (sequence) indices
KFTto(τ),
KFσ(τ),
KTtoσ(τ),
KFTto(k · Δt),
KFσ(k · Δt), single values of the CCF of the time functions
KTtoσ(k · Δt) F (t), T to(t) and σ(t) for τ or k · Δt

The CCFs practically express the interconnected dispersion of the single
time functions among one another and not only in the simple known manner
for τ = 0. This is enabled by means of the continuously or step-like realised
time shift τ or k ·Δt (change values of the one time function are related to the
temporal with τ or k · Δt shifted change values of the other time function).
The CCFs also enable an estimation of the statistical relationship between
the values of the one time function and values of the other time function
which are more or less distantly temporal.
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The methods of combination measurements and evaluations of time func-
tions have been applied extensively in the past to the draw process of poly-
mer yarns. This process imprints on the yarn drastic fineness and E-modulus
changes (consequently quality changes) which are effected by yarn tensile
force. The following statements and ideas are not only applicable to the draw
deformation but also to all fibre formation and fibre deformation processes
which are similar to the draw process. Examples are the yarn deformation
processes of classical melt spinning, of high speed spinning, but also of si-
multaneous or sequential draw texturing. It has already been hinted to the
sharpened analysis situation at yarn deformation processes in a first extensive
paper [321]. Through this it has been given that the effecting quantities for F
and T to can be correlated (temporal stable or instable) among one another
in different manners with a more or less phase shift and that the changes of
the secondary product variable tensile stress σ(t) must be generated by an
additional quotient calculation of F (t) and T to(t).

The following dependences on other process and product variables can be
formally formulated for the primary quantities F and T to which generate the
tensile stress σ (see also Fig. 2.1 in Sect. 2.1.1):

T to = f(T ti, vo/vi, l, Eyi)

F = f(T ti, Eyi, vo/vi, vo, l, Ty)

The difficulties from these mutual interweavings will be distinctly special if
the characterising yarn quantity Eyo at the output of the drawing zone is
included into the estimation of the inner yarn unevenness:

Eyo = f(Eyi, vo/vi, vo, l, T ti, T to, F )

The combined measurement and estimation of time functions of yarn ten-
sile force F (t) and yarn fineness T to(t) can give answers to the following
questions:

a) Did induced fluctuate fineness changes to the yarn during the elongation
or deformation process? Which quantity exists at the process input?

b) Did induced fluctuate substance property changes (E-modulus, tensile
stress, plastic deformation part) on the yarn during the elongation or
deformation process?

c) Which relation exists between form changes and reaction stresses? Which
process influences are causally responsible for these changes?

d) Is a change of the yarn tensile force (which is marked often wrongly as
yarn stress, though of no sort cross section relation exists) the effect of
a change of the imprinted elongation or the effect of a change of the
momentary yarn elasticity (which again depends on the cross section or
the fineness as well as on the E-modulus of the yarn)?
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Tendencies of disturbance transmission in the drawing process are com-
piled in Table 6.2. These come from theoretical considerations and exper-
imental investigations for different combinations of possible process input
disturbances. We should remember: Fineness changes ΔT ti/T tim are an ex-
pression of outer, of elastic modulus ΔEyi/Eyim are an expression of inner
unevennesses of the input yarn. The following conclusions can be deduced
which emphasise the necessity of a detailed time function analysis:

a) Tensile force changes of the yarn in the drawing zone do not allow, in
any case, for an unambiguous assertion about the situation of disturbance
causes at the process input. The direction of the tensile force changes can be
predicted when at least one input size or both input sizes change in the same
direction. If fineness and E-modulus change turn out to contradict then the
change dimensions of the one input size compared to the change dimensions of
the other input size are responsible for the direction of the output disturbance.
The absence of some reaction is imaginable, in the special case, if the contrary
imprinted inner and outer unevennesses of the yarn at the drawing zone input
are just canceled.

Table 6.2. Tendencies of disturbance transmission in the drawing process

Yarn disturbances at the process Yarn disturbances at the process output

input: (length of the disturbance

< length of drawing zone)

Fineness E-modulus Tensile force Fineness E-modulus

ΔT ti/T tim ΔEyi/Eyim ΔF/Fm ΔT to/T tom ΔEyo/Eyom

0 + + ↑ ↓
0 − − ↑ ↓
+ 0 + ↑ ↑
− 0 − ↑ ↑
+ + + ↑ ↓
− − − ↑ ↓
+ − +,−,0 ↑,↓ ↑,↓
− + +,−,0 ↑,↓ ↑,↓

↑ increasing unevenness
↓ decreasing unevenness
+ positive deviation to the mean value
− negative deviation to the mean value
0 no deviation to the mean value

b) The calculation of the quotient of the (draw-)yarn tensile force to the
yarn fineness (the real fineness related draw yarn tensile force) is a necessary
but is not a sufficient prerequisite to the desirable separation of geometrical
and material influences to the yarn reaction (outer and inner unevenness).
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Identification Matrix to the Unevenness Analysis of Man Made
Fibres in the Draw Process

An identification matrix of the unevenness analysis of man-made fibres in the
draw process has been developed from the authors in the past which is based
on physical-analytical and mathematical-logical ideas. This identification ma-
trix allows a secure general valid assertion conclusion to the unevenness cause
structure of the relative unoriented yarn at the drawing zone input and the
oriented yarn at the drawing zone output. It has been tested in a row of
simulation calculations for the start values (that means for τ = k · Δt = 0)
of the three CCFs (Eqs. 6.27 to 6.32) which allow for a conclusion to the
constellation of the unevenness causes of the investigated yarns.

These investigations have been carried out according to the signal scheme
of Fig. 6.16 and included step-like (aperiodic) as well as rectangular and
sinusoidal periodic changes of the fineness in the input yarn ΔT ti and/or
changes of its E-modulus ΔEyi.1

The identification matrix is shown in Table 6.3. Disturbance constella-
tions of the E-modulus and of the fineness of the yarn at the drawing zone
input are indicated symbolically in the left columns, in which positive and
negative disturbances of both product variables as well as positive and neg-
ative disturbances of only one product variable have been assumed. In the
three right-hand columns the awaiting start value constellation of the three
possible CCFs is inscribed according to the disturbance constellation. Com-
plex composed and superimposed primary measurement signals of the yarn
tensile force and the yarn fineness can be decoded with this (occurring for
the first time) by means of the third measurement size tensile stress and with
concentration on their three CCFs. A decoded disturbance cause description
is similarly possible.

The identification matrix shows that disturbances and their combinations
lead to the same start value constellations if they only differ in the sign of
1 The following is to be remarked at this point: The calculation of the CCFs from

the recorded time functions of the yarn tensile force, the yarn fineness and the
tensile stress must be secure. This means only real, each other physical attached
value of the yarn tensile force and the yarn fineness, will be related one upon
another for the calculation of the tensile stress. This means (see Fig. 6.16) that
the measuring value of the fineness at the drawing zone output correlates with
the measuring value of the tensile force when this yarn piece has passed the
position of the tensile force measuring sensor in the drawing zone. It is the
moment (t − Δt1) according to the chosen draw conditions (output velocity vo,
draw ratio DR, distance of measurement place a), which Δt1 can be signified
as the necessary phase shift between the time functions of the tensile force and
the fineness for the continuous quotient calculation to the tensile stress (see
Fig. 6.16).
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Table 6.3. Identification matrix to the unevenness analysis in the draw process

Disturbance in the yarn

Variant of at the process input Start value of the cross

disturbance (length of the disturbance correlation function (τ = 0)

<length of drawing zone)

Fineness E-modulus

ΔT ti ΔEyi KFTto(0) KFσ(0) KTtoσ(0)

1 + 0 + + −
2 − 0 + + −
3 + + − + −
4 − − − + −
5 − + + −(0, +) −
6 + − + −(0, +) −
7 0 + − + −
8 0 − − + −

+ positive deviation to the mean value; start value of the CCF positive
− negative deviation to the mean value; start value of the CCF negative

the disturbance (see Table 6.3, applicable to disturbance variants 1 and 2, 3
and 4, 5 and 6, 7 and 8). The following secure statements can be submitted
from the named simulation calculations:

a) Disturbance variants 1 and 2 always result for disturbance lengths > 4
mm and any formed ΔT ti

KFTto(0) > 0, KFσ(0) < 0, KTtoσ(0) < 0

A characteristic influence of the sign of the disturbance does not equate to
the values of CCFs(0).

b) Disturbance variants 7 and 8 always result for any disturbances and
any formed ΔEyi

KFTto(0) < 0, KFσ(0) > 0, KTtoσ(0) < 0

The sign of the disturbance is also not provable here by the values of the
CCFs(0).

c) The rectified synchronous disturbance of the E-modulus Eyi and the
fineness T ti according to the disturbance variants 3 and 4 leads at the start
values of the CCFs to the same results as with the disturbance variants 7 and
8. However, the variants 3 and 4 on the one hand and 7 and 8 on the other
do further differ in the course of the CCFs by increasing τ -values. The sign
of the KFσ(τ) changes from + to – with the unique Eyi-disturbance, whereas
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the function KFσ(τ) is positive (and for a larger τ nearly zero) for rectified
synchronous Eyi- and T ti-disturbances. This example shows that the whole
function course of the CCFs (beyond the start values) can be nevertheless
necessary for a detailed analysis of mistake causes for the draw process in the
particular case.

d) Different effects superimpose themselves due to contrary synchronous
Eyi- and T ti-disturbances depending on the disturbance parameters.
KFTto(0) > 0 and KTtoσ(0) < 0 is valid when disturbances are contradictary.
The sign changes for KFσ(0) depending on the length of the disturbance.
KFσ(0) is negative for disturbances longer than 12 mm. If the disturbance is
shorter then the KFσ(0) will be positive or zero.

The preceding informed investigations demonstrated problems of the sig-
nal analysis and their process-analytic importance contrary to most of the
other dealt with questions of this book. It is obvious that the presented
method of the qualitative unevenness analysis of man-made fibres in the
classical draw process is not only valid for this process stage but in principle
it is also transferable to analysis situations of the same kind on other contin-
uous realised thread deformation processes during the thread formation and
thread processing.

Finally, an idea for a device realisation for the described measuring and
evaluation method should be developed. It is imaginable by means of the
microelectronic tools available today that the electrical measuring signals
(coming from both measuring sensors for the yarn fineness and the yarn
tensile force) will be supplied by a specifically designed and appropriately
programmed micro processor system, in which

- the calculation of the fineness related thread tensile force and the CCF-
calculation repeatingly (appropriate selected integration times) can be re-
alised,

- the appropriate results to the presented (or an expanded) identification
matrix can be evaluated, and

- for instance the number of the identified disturbance variant (and if neces-
sary, other intermediate results) displays as total result on a small digital
screen.

Such a procedure of intelligent measuring value concentration would be
serviceable not only for simplified handling but also for broader applications
of the presented method [320].
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