
Chapter 4

Theory of Fiber Bragg
Gratings

Wave propagation in optical fibers is analyzed by solving Maxwell's equa-
tions with appropriate boundary conditions. The problem of finding solu-
tions to the wave-propagation equations is simplified by assuming weak
guidance, which allows the decomposition of the modes into an orthogonal
set of transversely polarized modes [1-3]. The solutions provide the basic
field distributions of the bound and radiation modes of the waveguide.
These modes propagate without coupling in the absence of any perturba-
tion (e.g., bend). Coupling of specific propagating modes can occur if the
waveguide has a phase and/or amplitude perturbation that is periodic with
a perturbation "phase/amplitude-constant" close to the sum or difference
between the propagation constants of the modes. The technique normally
applied for solving this type of a problem is coupled-mode theory [4-9],
The method assumes that the mode fields of the unperturbed waveguide
remain unchanged in the presence of weak perturbation. This approach
provides a set of first-order differential equations for the change in the
amplitude of the fields along the fiber, which have analytical solutions
for uniform sinusoidal periodic perturbations.

A fiber Bragg grating of a constant refractive index modulation and
period therefore has an analytical solution. A complex grating may be
considered to be a concatenation of several small sections, each of constant
period and unique refractive index modulation. Thus, the modeling of the
transfer characteristics of fiber Bragg gratings becomes a relatively simple
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120 Chapter 4 Theory of Fiber Bragg Gratings

matter, and the application of the transfer matrix method [10] provides
a clear and fast technique for analyzing more complex structures.

Another technique for solving the transfer function of fiber Bragg
gratings is by the application of a scheme proposed by Rouard [11] for a
multilayer dielectric thin film and applied by Weller-Brophy and Hall
[12,13]. The method relies on the calculation of the reflected and transmit-
ted fields at an interface between two dielectric slabs of dissimilar refrac-
tive indexes. Its equivalent reflectivity and phase then replace the slab.
Using a matrix method, the reflection and phase response of a single
period may be evaluated. Alternatively, using the analytical solution of
a grating with a uniform period and refractive index modulation as in
the previous method, the field reflection and transmission coefficients of
a single period may be used instead. However, the thin-film approach does
allow a refractive index modulation of arbitrary shape (not necessarily
sinusoidal, but triangular or other) to be modeled with ease and can
handle effects of saturation of the refractive index modulation. The disad-
vantage of Rouard's technique is the long computation time and the lim-
ited dynamic range owing to rounding errors.

The Bloch theory [14,15] approach, which results in the exact eigen-
mode solutions of periodic structures, has been used to analyze complex
gratings [16] as well. This approach can lead to a deeper physical insight
into the dispersion characteristics of gratings. A more recent approach
taken by Peral et al. [17] has been to develop the Gel'Fand-Levitan-Mar-
chenko coupled integral equations [18] to exactly solve the inverse scatter-
ing problem for the design of a desired filter. Peral et al. have combined
the attributes of the Fourier transform technique [19,20] (useful for low
reflection coefficients, since it does not take account of resonance effects
within the grating), the local reflection method [21], and optimization of
the inverse scattering problem [22,23] to present a new method that allows
the design of gratings with required features in both phase and reflection.
The method has been recently applied to fabricate near "top-hat" reflecti-
vity filters with low dispersion [24]. Other theoretical tools such as the
effective index method [25], useful for planar waveguide applications,
discrete-time [26], Hamiltonian [27], and variational [28], are recom-
mended to the interested reader. For nonlinear gratings, the generalized
matrix approach [29] has also been used. For ultrastrong gratings, the
matrix method can be modified to avoid the problems of the slowly varying
approximation [30].



4.1 Wave Propagation 121

The straightforward transfer matrix method provides high accuracy
for modeling in the frequency domain. Many representative varieties of
the types and physical forms of practically realizable gratings may be
analyzed in this way.

4.1 Wave Propagation

The theory of fiber Bragg gratings may be developed by considering the
propagation of modes in an optical fiber. Although guided wave optics is
well established, the relationship between the mode and the refractive
index perturbation in a Bragg grating plays an important role on the
overall efficiency and type of scattering allowed by the symmetry of the
problem. Here, wave-propagation in optical fiber is introduced, followed
by the theory of mode coupling.

We begin with the constitutive relations

where e0 is the dielectric constant and /U.Q is the magnetic permeability,
both scalar quantities; D is the electric displacement vector; E is the
applied electric; B and H are the magnetic flux and field vectors, respec-
tively; and P is the induced polarization,

The linear susceptibility ̂ (1) is in general a second-rank tensor with
two laboratory frame polarization subscripts ij and is related to the per-
mittivity tensor e^ with similar subscripts as

Assuming that the dielectric waveguide is source free, so that

and in the absence of ferromagnetic materials,
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the electric field described in complex notation is

and the induced polarization vector is also similarly defined.
Using Maxwell's equations,

where J is the displacement current, and using Eq. (4.1.1) in Eq. (4.1.9)
and with J = 0, we get

Taking the curl of Eq. (4.1.8) and using Eqs. (4.1.2H4.1.5) and the
time derivative of Eq. (4.1.10), the wave equation is easily shown to be

Using Eq. (4.1.3) and (4.1.4) in (4.1.11), we arrive at

or

4.1.1 Waveguides

The next step in the analysis is to introduce guided modes of the optical
fiber into the wave equation. The modes of an optical fiber can be described
as a summation of/ transverse guided mode amplitudes, A^z), along with
a continuum of radiation modes, Ap(z] [2], with corresponding propagation
constant, £}/& and fip,
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where ̂  and ̂  are the radial transverse field distributions of the /uth
guided and pth radiation modes, respectively. Here the polarization of the
fields has been implicitly included in the transverse subscript, t. The
summation before the integral in Eq. (4.1.14) is a reminder that all the
different types of radiation modes must also be accounted for [e.g., trans-
verse electric (TE) and transverse magnetic (TM), as well as the hybrid
(EH and HE) modes]. The following orthogonality relationship ensures
that the power carried in the /zth mode in watts is JA^J2:

Here, ez is a unit vector along the propagation direction z. 8^ is Kro-
necker's delta and is unity for /JL = v, but zero otherwise. Note that this
result is identical to integrating Poynting's vector (power-flow density) for
the mode field transversely across the waveguide. In the case of radiation
modes, 8^ is the Dirac delta function which is infinite for /u, = v and zero
for ytt ^ v. Equation (4.1.15) applies to the weakly guiding case for which
the longitudinal component of the electric field is much smaller than
the transverse component, rendering the modes predominantly linearly
polarized in the transverse direction to the direction of propagation [1].
Hence, the transverse component of the magnetic field is

The fields satisfy the wave equation (4.1.13) as well as being bounded
by the waveguide. The mode fields in the core are J-Bessel functions and
.fiT-Besse! functions in the cladding of a cylindrical waveguide. In the
general case, the solutions are two sets of orthogonally polarized modes.
The transverse fields for the /uth jc-polarized mode that satisfy the wave
equation (4.1.13) are then given by [2]
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and the corresponding fields in the cladding are

where the following normalized parameters have been used in Eqs.
(4.1.17M4.1.20):

and

where neff is the effective index of the mode and

Finally, assuming only a single polarization, the .y-polarized mode,

The choice of the cosine or the sine term for the modes is somewhat
arbitrary for perfectly circular nonbirefringent fibers. These sets of modes
become degenerate. Since the power carried in the mode in watts is
|AM|2, from the Poynting's vector relationship of Eq. (4.1.15), the normal-
ization constant C^ can be expressed as
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where e^ = 2 when /u, = 0 (fundamental mode) and 1 for /u, =£ 0. Matching
the fields at the core-cladding boundary results in the waveguide charac-
teristic eigenvalue equation, which may be solved to calculate the propaga-
tion constants of the modes:

4.2 Coupled-mode theory

The waveguide modes satisfy the unperturbed wave equation (4.1.13) and
have solutions described in Eqs. (4.1.17) through (4.1.20). In order to
derive the coupled mode equations, effects of perturbation have to be
included, assuming that the modes of the unperturbed waveguide remain
unchanged. We begin with the wave equation (4.1.11)

Assuming that wave propagation takes place in a perturbed system
with a dielectric grating, the total polarization response of the dielectric
medium described in Eq. (4.2.1) can be separated into two terms, unper-
turbed and the perturbed polarization, as

where

Equation (4.2.1) thus becomes,

where the subscripts refer to the transverse mode number JUL. For the
present, the nature of the perturbed polarization, which is driven by the
propagating electric field and is due to the presence of the grating, is a
detail which will be included later.
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Substituting the modes in Eq. (4.1.14) into (4.2.4) provides the follow-
ing relationship:

Ignoring coupling to the radiation modes for the moment allows the
left-hand side of Eq. (4.1.13) to be expanded. In weak coupling, further
simplification is possible by applying the slowly varying envelope approxi-
mation (SVEA). This requires that the amplitude of the mode change
slowly over a distance of the wavelength of the light as

so that

Expanding the second term in Eq. (4.2.5), noting that a>2/u,0e0er = /3 ,̂
and combining with Eq. (4.2.7), the wave equation simplifies to

Here, the subscript t on the polarization Pgrating,t reminds us that the
grating has a transverse profile. Multiplying both sides of Eq. (4.2.8) by
£* and integrating over the wave-guide cross-section leads to
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Applying the orthogonality relationship of Eq. (4.1.15) directly results
in

Equation (4.2.10) is fundamentally the wave propagation equation,
which can be used to describe a variety of phenomena in the coupling
of modes. Equation (4.2.10) applies to a set of forward- and backward-
propagating modes; it is now easy to see how mode coupling occurs by
introducing forward- and backward-propagating modes. The total trans-
verse field may be described as a sum of both fields, not necessarily
composed of the same mode order:

Here the negative sign in the exponent signifies the forward- and the
positive sign the backward-propagating mode, respectively. The modes of
a waveguide form an orthogonal set, which in an ideal fiber will not couple
unless there is a perturbation. Using Eqs. (4.2.11) and (4.2.12) in Eq.
(4.2.10) leads to

4.2.1 Spatially periodic refractive index modulation

In a medium in which the dielectric constant varies periodically along
the wave-propagation direction, the total polarization can be defined with
the perturbed permittivity, Ae(z) and the applied field as
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The terms within the parentheses are equivalent to x(l\ and er is the
relative permittivity of the unperturbed core. The constitutive relations
between the permittivity of a material and the refractive index n result
in the perturbation modulation index being derived from n2 = er so that

Assuming the perturbation to be a small fraction of the refractive
index, it follows that

Defining the refractive index modulation of the grating as

where ATI is the refractive index change averaged over a single period of
the grating, v is the visibility of the fringes, and the exponent term along
with the complex conjugate cc describe the real periodic modulation in
complex notation. An arbitrary spatially varying phase change of (fj(z) has
been included. A is the period of the perturbation, while N is an integer
(-00 < N < +00) that signifies its harmonic order. The period-averaged
change in the refractive index has to be taken into account since it alters
the effective index neff of a mode.

Combining Eqs. (4.2.15) and (4.2.17), the total material polarization
is

where the first term on the RHS is the permittivity, the second term is
the dc refractive index change, and the third term is the ac refractive
index modulation. Finally, defining a new modulation amplitude by incor-
porating the visibility,

with A/i = vkn as the amplitude of the ac refractive index modulation.
Equation (4.2.19) describes the UV-induced refractive index change due
to a grating written into the fiber core. Figure 4.1 shows the refractive
index modulation for a uniform grating on a background index of the core
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Figure 4.1: Refractive index modulation in the core of a fiber for different
visibilities of the fringe pattern. Also shown is the average refractive index change
in the core (dashed line). The unperturbed core-to-cladding refractive index differ-
ence is 5 X 10~3, while the maximum refractive index modulation for unity
visibility is ±2 X 10~3.

of the fiber for different visibilities. Also shown is the effect on the average
core index. Note that the change in the average index in the core is
constant, irrespective of the visibility of the fringes, although it remains
a function of Sn. In the example shown, however, both the average index
and the refractive index modulation 8n increase with UV exposure time.

The perturbed polarization can now be related to refractive index
change shown in Eq. (4.2.19) to give

Including Eq. (4.2.20) in Eq. (4.2.13) results in
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On the LHS of Eq. (4.2.21), the rate of variation of either Av or B^ is
determined by the mode order /u, or v of the electric field ^*>l)t chosen as
the multiplier according to the orthogonality relationship of Eq. (4.1.15).
This was shown in Eq. (4.2.9) for the case of the single field. Once the
term on the LHS has been chosen, the next question is the choice of the
terms on the RHS. Before this is examined, we consider the terms on the
RHS in general.

The RHS of Eq. (4.2.21) has two generic components for both A and
B modes as

where the first exponent must agree with the exponent of the generated
field on the LHS of Eq. (4.2.21) and has a dependence on the dc refractive
index change, Arc. The reason is that any other phase-velocity dependence
(as for other coupled mode) will not remain in synchronism with the
generated wave. The second term on the RHS has two parts. The first
one is dependent on the phase-synchronous factor,

The mode interactions that can take place are determined by the
right-hand sides of Eqs. (4.2.21) and (4.2.22). Two aspects need to be taken
into account: first, conservation of momentum requires that the phase
constants on the LHS and the RHS of Eq. (4.2.22) be identical [Eq. (4.2.23)]
and so influences the coupling between copropagating or counterpropagat-
ing modes. Secondly, the transverse integral on the RHS of Eq. (4.2.22),
which is simply the overlap of the refractive-index modulation profile and
the distributions of the mode fields, determines the strength of the mode
interactions. Let us first consider the conservation of momentum, other-
wise known as phase matching.

4.2.2 Phase matching

We begin with Eq. (4.2.23) in which the phase factor is the sum or differ-
ence between the magnitude of the driving electric-field mode propagation
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constant /3V and the phase factor of the perturbation. The resultant /3p is
the phase constant of the induced polarization wave. This is the propaga-
tion constant of a "boundwave" generated by the polarization response of
the material due the presence of sources. For there to be any significant
transfer of energy from the driving field amplitude Av to the generated
fields on the LHS of Eq. (4.2.22), the generated and the polarization
waves must remain in phase over a significant distance, z. For continuous
transfer of energy,

Equation (4.2.24) then describes the phase-matching condition. A phase
mismatch A/2 is referred to as a detuning,

Including Eq. (4.2.23) in (4.2.25), we get,

If both (3V and /^ have identical (positive) signs, then the phase-matching
condition is satisfied (A/3 = 0) for counterpropagating modes; if they have
opposite signs, then the interaction is between copropagating modes.

Identical relationships for co- and counterpropagation interactions
apply to radiation mode phase matching. A schematic of the principle of
phase matching is shown in Fig. 4.2.

Finally, energy conservation requires that the frequency to of the
generated wave remains unchanged.

4.2.3 Mode symmetry and the overlap integral

The orthogonality relationship of Eq. (4.1.15) suggests that only modes
with the same order IJL will have a nonzero overlap. However, the presence
of a nonsymmetric refractive index modulation profile across the photosen-
sitive region of the fiber can alter the result, allowing modes of different
orders to have a nonzero overlap integral. The reason for this fundamental
departure from the normalization of Eq. (4.1.15) is the nonuniform trans-
verse distribution of sources, giving rise to a polarization wave that has
an allowed odd symmetry. This is graphically displayed in Fig. 4.3: A
driving fundamental mode (LP01, IJL = 0) electric field, £„ interacts with
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Figure 4.2: The principle of phase matching. The polarization wave grows
in synchronism with the driving field. The radiating dipoles are shown to be
spatially distributed with a period of A, allowing the radiated wave to remain in
phase with the driving field. This schematic applies to guided or radiation-mode
coupling.

Figure 4.3: A cross-section of the fiber showing the fields of the LP01 and
the LPU modes, along with the transverse refractive index modulation profile.
The overlap of the two fields with the profile of the index modulation [as per Eq.
(4.2.22)] changes sign across the core but does not have with the same magnitude.
The field overlap is therefore nonzero. The transverse profile of the refractive
index thus influences the symmetry of the modes allowed to couple. The transverse
profile of the perturbation is equivalent to a "blaze" across the core (tilted grating),
which benefits coupling to odd-order radiation modes as well. The two dashed
lines indicate the core boundary.
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a modulated permittivity that has a uniform transverse profile. Also
shown is a polarization field that is in the LPn mode (v — 1). Examining
the transverse overlap (which is proportional to the product of the field
amplitudes and the refractive-index profile) on the left half of the core,
we find that magnitude is the same as on the right half, but they have the
opposite signs, resulting in a zero overlap. The orthogonality relationship
holds and exchange of energy is not possible between the different order
modes. If, however, the refractive index profile is not uniform across the
core (Fig. 4.3), then although the signs of the overlap in the two halves
(around a plane through the axis of the fiber) are different, the magnitudes
are no longer identical.

Thus, the overlap is now not zero, allowing a polarization wave to
exist with a symmetry (and therefore, mode-order) different from that of
the driving mode. The selection rules for the modes involved in the ex-
change of energy are then determined by the details of the terms in the
integral in Eq. (4.2.22) and apply equally to radiation mode orders.

The consequence of the asymmetric refractive index perturbation
profile may now be appreciated in Eq. (4.2.21). On the RHS, the integrals
with the electric fields of the driving field ̂  and the polarization wave
gvt along with the asymmetric profile of the refractive index modulation
are nonzero for dissimilar mode orders, i.e., /JL =£ v. The magnitude of the
overlap for a particular mode combination will depend on the exact details
of the perturbation profile.

4.2.4 Spatially periodic nonsinusoidal refractive index
modulation

Note that in Eq. (4.2.21), the refractive-index perturbation can have a ±
sign in the exponent. This is a direct result of the Fourier expansion
of the permittivity perturbation. However, since it is equivalent to an
additional momentum, which can be either added to or taken away from
the momentum vector of a driving field, it may be viewed as a factor that
can take place, as already discussed.

In the general case when the refractive index modulation is not simply
sinusoidal but a periodic complex function of z, it is more convenient to
expand 8n in terms of Fourier components as
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where aN is the Fourier amplitude coefficient of the Nih harmonic of the
perturbation. Differently shaped periodic functions have their correspond-
ing aN coefficients, which in turn influence the magnitude of the overlap
integral, and hence the strength of the mode coupling.

4.2.5 Types of mode coupling

The phase-matching condition is defined by setting A/3 in Eq. (4.2.26) to
zero. Therefore,

Equation (4.2.28) states that a mode with a propagation constant of (B^
will be synchronously drive another mode Av with a propagation constant
of ySy, provided, of course, the latter is an allowed solution to the unper-
turbed wave equation (4.1.28) for guided modes and its equivalent for
radiation modes.

The guided modes of the fiber have propagation constants that lie
within the bounds of the core and the cladding values, although only
solutions to the eigenvalue Eq. (4.1.28) are allowed. Consequently, for
the two lowest order modes of the fiber, LP01 and LPn, the propagation
constants /3V and fi^ are the radii of the circles 27mv/A and 27771^/A. A mode
traveling in the forward direction has a mode propagation vector KLP()l

that combines with the grating vector Kgrating to generate K-resuLt. Since
the grating vector is at an angle 6g to the propagation direction, and the
allowed mode solution, KLPu is in the propagation direction, the phase-
matching condition reduces to

Under these circumstances, the process of phase matching reverses
in sign after a distance (known as the coherence length Zc) when

Consequently, the radiated LPn mode (traveling with a phase con-
stant of (3^ propagates over a distance of lc before it slips exactly half a
wavelength out of phase with the polarization wave (traveling with a
phase constant j3v).
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In order to understand the various phase-matching conditions, we
shall begin with the dispersion diagram of modes. The propagation con-
stants of modes and their dispersion is crucial to the understanding of
phase matching. To facilitate an insight into the properties of modes, we
use the approximate analogy between rays and modes, since the visual
aspect of rays is easier to understand. In Fig. 4.4 we see a section of an
optical fiber with a ray incident at the angle at which it is refracted out
of the fiber core to exit in a direction parallel to the z-axis. The propagation
direction is indicated as the z-axis while the transverse direction is the
x-axis. The angle Bcriticai

 = s^Ii~l(ndad^ncore^s marked as the critical angle
for that ray. The ray propagation angle is Qcutoff- Thus, all ray angles below
Ocutoff are allowed, but only those that form standing waves [2] exhibit
mode properties, with a specific effective propagation index neff. We note
an important relationship in the ray picture: Since the effective index of
at mode at cut-off is the cladding refractive index, the effective index of
a mode is the cutoff index of a mode propagating in a waveguide with a
cladding refractive index of neff.

We now transfer this picture to the one shown in Fig. 4.5. Three
circles with radii n0, nclad, and ncore form the boundaries for the waveguide.

Figure 4.5 shows the generalized dispersion diagram for an optical
fiber. The outer circle has a radius of ncore, the middle circle has a radius
of nciad, and the shaded circle represents free space and has a radius of
unity. It is based on the ray diagram shown in Fig. 4.4, so that the critical
angle for the backward-propagating guided modes is marked as ff^uicai
between the dotted and the dashed lines at point G™, with a similar angle
at Gf for the forward-propagating modes. The two vertical dotted lines

Figure 4.4: Ray propagation in a waveguide.
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Figure 4.5: Generalized dispersion diagram for guided and radiation modes
and radiation field for waveguides.

are tangential to the cladding and inner circles, respectively. All guided
modes have their cutoff at 6^.iticai. The equivalent cutoff angles in the
propagation direction for all guided modes are also marked at the origin,
as Cutoff-

For the radiation (cladding) modes the equivalent angles are
^critical and %utoff> subtended by the dashed lines to points Rb and Rf. The
dashed lines in Fig. 4.5 mark these. We note that all guided modes have
effective indexes lying within the region bounded by the outer two circles.
A forward-propagating guided mode has an effective index of n™ff, which
lies on a circle of radius n™fr (part of a dashed circle is shown) and on a
vector OGm, propagating at an angle (T1 to the z-axis. It is easy to show
that the loci of all the effective indexes of the (forward- and backward-
propagating) modes lie on circles (shown as the outer two dashed circles).
The length of the vector from the origin to the intercept with the n1^ circle
subtends the ray angle ff71 for that mode. The point at which these dashed
circles meet the nclad circle defines the cutoff of the guided modes. A
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similar set of circles intersects the free space shaded inner circle to define
the cutoff of all cladding modes. Beyond this point and into the inner
shaded circle is the radiation field region. If the cladding were extended
to infinity, the middle circle would become the locus of all cladding space
modes (continuum). In the present situation, the inner circle remains the
locus of the free space modes, which are the cladding modes beyond cutoff.

Having defined the phase space for all the modes, we can proceed to
the phase-matching diagram, shown in Fig. 4.6. Here we see a forward-
propagating mode, with an effective index of ncore cosfff1, phase matched
to a counterpropagating mode with an effective index of ncore cos (9^ (point
Gpm) with a grating that has an "effective index" of ng cos0g. The grating
period Ag = A/(ng cos6g). When 6g — 0, we have the normal Bragg condition.
We can now see the effect of detuning this interaction to shorter wave-
lengths. The point Gm moves down toward B, dragging the grating vector
ng with it. This action carves out a phase-matching curve on the LH side
of the figure, marked by the dashed curve. Phase matching is lost since

Figure 4.6: Guided mode and radiation mode/field phase-matching diagram
for the slanted Bragg grating (counterradiating coupling).
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there is no intersection with the outer or inner circles. There is a gap in
the spectrum, in which no phase matching is possible. At some point the
arrowhead meets the vertical dotted line for the radiation modes on line
a, and phase matching to the radiation modes begins. This will couple to
the lowest-order modes. With an infinite cladding, free-space radiation
mode phase matching occurs. As the wavelength becomes even shorter,
the angle of the radiation modes increases, and only when the vector 6
meets the nclad circle is radiation mode coupling at an angle of ffb. After
this point, the angle of the radiation mode increases beyond ffb. We now
note that the change in the mode index is 8n from the RH side of the
figure, so that we can calculate the wavelength at which the radiation
loss starts to occur.

Figure 4.6 shows the phase-matching diagram for coupling to the
guided and radiation modes and fields with a tilted grating, known as
side-tap-grating (STG, also see Chapter 6). This grating has a period
similar to Bragg gratings but does not have its grating planes normal to
the fiber axis, and it is tilted at an angle, 6g. The diagram specifically
deals with the case of coupling to counterpropagating fields.

In the first interaction with ng, we have Bragg reflection at ABragg.
We assume that the grating angle dg = 0, and that when the wavelength
is tuned, the effective index of the mode is ns^rt at the point indicated by
a on Fig. 4 6, so that mathematically, this is simply phase matching to a
mode with the cladding index as

where start indicates the wavelength at which the radiation mode coupling
begins.

Rearranging and using the approximation neff ^ ns*^rt «* n^agg, it
follows that

Therefore, radiation loss begins at a wavelength slightly shorter than the
Bragg wavelength, governed by the ratio in the brackets in Eq. (4.2.32).
For example, in a fiber with a large core-cladding index difference with
a tightly confined Bragg wavelength (1550 nm) mode (neff = 1.475), the
start wavelength will be at —1537 nm, some 13 nm away.
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We can estimate the maximum angle for the radiation by observing
the point E on the phase-matching curve in Fig. 4.6. The tangent to this
point on the phase matching at E intersects the cladding circle at the
"+" point. This point subtends the largest radiation mode angle for this
particular grating, at the origin. The maximum angle of the radiation for
an untilted grating is at the shortest wavelength and is easily shown to
be

which is maximum if neff = nclad. For a core-to-cladding refractive index
difference of 0.01 in a silica fiber, ffmax *» 6.7°. It should be remembered
that phase matching to specific radiation modes will only occur if a clad-
ding mode exists with the appropriate mode index. However, with an
infinite cladding, coupling to a continuum of the radiation field occurs so
that the spectrum is continuous.

There is another possibility for coupling to radiation modes. We begin
with 6g = 0 and the condition for Bragg reflection from, for example, the
forward to the counterpropagating LPQl mode. If the grating is tilted at
an angle 6g, it is shown simply as a rotation of ng around the pivot at Gm.
Following the mathematical approach taken for Eq. (4.2.33), we find that
at some angle ffg the radiation mode is at the Bragg wavelength, i.e., the
start wavelength moves toward the Bragg wavelength, until they coincide.
At this point, there is strong coupling to the radiation modes. Referring
to Fig. 4.6, the angle is easily found by changing the tilt of the grating.
This directly leads to

where neff is the effective index of the mode at the Bragg wavelength of
the untilted grating (when Og = 0), so that

Again, the tilt angle of the grating for this condition to be met in-
creases with neff and is a maximum when neff = ncore. We can calculate
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that for a standard fiber, with an neff «* /ic/arf + 6An (<5rc = 4.5 X 10~3)
and b = 0.4 at 1550 nm [2], the angle at which the Bragg wavelength
equals the radiation wavelength is ffg *** 2.85°. It is clear from Eq. (4.2.35)
that the angle becomes larger with increasing core-cladding index differ-
ence.

Finally there is a set of unconfined radiation modes at a continuum
of angles subtended at O, but with vector lengths within the space of the
radiation zone. Making the grating "effective index" ng small so that the
arrowhead remains on the RH side of Fig. 4.6, one can see that phase
matching will occur between copropagating modes, or to radiation modes
in the forward direction. This is better shown in Fig. 4.7.

The following points should be noted regarding the phase-matching
diagram. The guided mode propagation constants have discrete values
and lie on the loci for the particular mode propagation constants. The
grating vector can have any angle 6g to the propagation direction, as can
the radiated field, provided the cladding is assumed to be at infinity. If,

Figure 4.7: The phase-matching diagram for copropagating modes with radi-
ation mode coupling with a long-period grating.
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however, a cladding boundary is present as shown by the innermost dashed
circle, then the radiated modes only have allowed y8-values. This radiation
may be viewed as the modes of a waveguide with a core of refractive index
nciad and a radius equal to the fiber-cladding radius surrounded by an infi-
nite cladding of air/vacuum refractive index. The diagram then acquires a
set of circles with radii nvacuum <np< nciad representing discrete cladding
modes, similar to those for guided modes, at the points of intersection with
the dispersion curves. The radiation mode fields are slightly modified by
the presence of the high-index fiber core.

Coupling is also possible to the forward-radiating modes and fields.
This requires a different grating, known as a long-period grating, which
has a much longer period than a Bragg grating, since the momentum of
the mode does not change sign (as in forward-to-backward coupling).
The phase matching for the generalized case of the tilted grating for
copropagating coupling is shown in Fig. 4.7. The form of the diagram is
similar to Figs. 4.5 and 4.6.

For phase matching, the movement of the ng arrowhead for the LPG
is opposite to that of the STG. We begin with an LP0i mode with the
propagation index arrow nLPoi pointing in the +z direction. The grating
ng starts at the tip of the guided mode arrow, inclined at 6g = 0 to the
fiber axis. The wavelength at which radiation is first emitted is when the
tip of the grating vector from point A intersects the tangent to the cladding
mode circle (dashed vertical line). This point represents the longest-wave-
length LP01 mode that has a propagation constant equal to the cladding
index and has the lowest angle. Light is coupled to radiation modes within
the radiation zone as ng is moved to the left and the. LP01 mode is "cut
off' at the radiation angle, dr Therefore, 6r is the angular spread of the
radiated fields. Mode coupling is only possible if there is phase matching
to specific modes. Note that this wavelength approaches oo, since the
fundamental guided mode effective index approaches nctad. The wave-
length vs angle has the opposite dependence of the STG, i.e., long wave-
lengths exit at the largest angle in the LPG, while it is the shortest
wavelengths in the STG. The first Bragg wavelength reflection (very weak)
is at the short wavelength side of the LPG radiation loss spectrum, while
it is on the long wavelength side of the STG radiation loss spectrum. The
spectrum of the LPG is "reversed" around the Bragg wavelength.

Figure 4.8 shows various types of phase-matched interactions possible
with different types of gratings.
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Figure 4.8: Types of Bragg gratings categorized by action of coupling. The
schematics show various gratings in the core of an optical fiber. All gratings
are shown to be transversely uniform. A nonuniform transverse refractive index
modulation profile enhances coupling to either different mode orders of guided
or to the radiation field. A shows a guided mode reflection grating. B shows a
reflecting guided mode polarization coupler, mode converter, or radiation mode
coupler ("side-tap" grating). C is a polarization coupler for copropagating modes,
also knows as a "rocking filter" [31]. D is the copropagating guided-mode to
radiation-mode coupler, also known as the "long-period grating."

4.3 Coupling of counterpropagating
guided modes

The simplest form of interaction is between a forward-propagating and an
identical backward-propagating mode. However, for a general approach,
dissimilar modes are considered for the counterpropagating (reflected)
mode phase matching with Eq. (4.2.21) rewritten as
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By choosing the appropriate ft value for identical modes (/u, = u) but
with opposite propagation directions in Eq. (4.3.1) and dividing both sides
by exp[j(w£ + fi^z)],

which leads to the following simple coupled-mode equations by choosing
the appropriate synchronous terms,

with

and the dc coupling constant,

while the ac coupling constant Kac includes the overlap integral,

if /u = v. The change in the amplitude of the driving mode may also be
derived from Eq. (4.2.21) as

Eqs. (4.3.3) and (4.3.7) are the coupled-mode equations from which the
transfer characteristics of the Bragg grating can be calculated.
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To find a solution, the following substitutions are made for the forward
(reference) and backward propagating (signal) modes [32]:

Differentiating Eq. (4.3.8) and substituting into Eqs. (4.3.3) and
(4.3.7) results in the following coupled-mode equations:

The physical significance of the terms in brackets is as follows: Kdc influ-
ences propagation due to the change in the average refractive index of
the mode, as has already been discussed. Any absorption, scatter loss, or
gain can be incorporated in the magnitude and sign of the imaginary part
of Kdc. Gain in distributed feedback gratings will be discussed in Chapter
8. There are also two additional terms within the parentheses in Eqs.
(4.3.9) and (4.3.10), the first one of which, A/3/2, is the detuning and
indicates how rapidly the power is exchanged between the "radiated"
(generated) field and the polarization ("bound") field. This weighting factor
is proportional to the inverse of the distance the field travels in the
generated mode. At phase matching, when A/2 = 0, the field couples to
the generated wave over an infinite distance Finally, the rate of change
of (f> signifies a chirp in the period of the grating and has an effect similar
to that of the detuning. So, for uniform gratings, dfldz = 0, and for a
visibility of unity for the grating, Kac = Kdc/2.

The coupled-mode Eqs. (4.3.9) and (4.3.10) are solved using standard
techniques [33]. First the eigenvalues are determined by replacing the
differential operator by A and solving the characteristic equation by equat-
ing the characteristic determinant to zero. The resultant eigenvalue equa-
tion is in general a polynomial in the eigenvalues A. Once the eigenvalues
are found, the boundary values are applied for uniform gratings: We
assume that the amplitude of the incident radiation from — oo at the input
of a fiber grating (of length L) at z = 0 is R(Q) — 1, and that the field S(L)
= 0. The latter condition is satisfied by the fact that the reflected field
at the output end of the grating cannot exist owing to the absence of the
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perturbation beyond that region. These conditions result in the following
analytical solution for the amplitude reflection coefficient:

where

and

A few points regarding Eqs. (4.3.9)-(4.3.13) are worth mentioning.
First, for reflection gratings that have a constant period A, the variation
in the phase d<ftz)ldz = 0. Second, at precise phase matching, A/3 = 0,
and the ac coupling constant Kac is a real quantity. Finally, the power
reflection coefficient is \p\2,

in which Eq. (4.3.13) has been used to simplify the result. Noting from
Eq. (4.3.14) that a can be real or imaginary, the following regimes may
be identified:

1. a is real when \Kac\ > 8 and Eqs. (4.3.11) and (4.3.14) apply.
2. a is zero when |/cac| = S.
3. a is imaginary when Kac < S and Eqs. (4.3.11) and (4.3.14) trans-

form to

and

4.4 Codirectional coupling

In a multimode fiber, coupling can occur between orthogonally polarized
modes of the same order, or to cladding modes (LPG) if the transverse
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profile of the refractive index perturbation is uniform. However, as has
been described by the general mode-coupling constants of Eqs. (4.2.5) and
n(4.2.6) dissimilar mode orders that normally cannot couple owing to the
orthogonality relationship [Eq. (4.1.15)] are allowed to couple when the
transverse profile of the refractive index is nonuniform. This applies
equally to copropagating modes. In this case, coupling may normally occur
between

1. Copropagating orthogonal polarizations, e.g., (HE^)xy <-> (HEn)ytX

(LPoljX and the LPolj,). A uniform grating profile is necessary for
good efficiency. To allow coupling between these modes, the grating
is written at 45° to the principle birefringent axes of the fiber (see
Section 4.5 and Chapter 6).

2. (LPol)x>y <->• (LPVIJ)x>y Here, the transverse profile of the grating
strongly influences the strength of the coupling. With a uniform
profile, the coupling is zero for v + 0.

3. Coupling to the radiation field Ep (as with LPGs). Since the radia-
tion field is evanescent in the core of the fiber and oscillatory in
the cladding, coupling can be strongly influenced if a grating ex-
tends into the cladding as well. The latter diminishes the overlap
integral between the guided lowest-order mode and the radiation
modes, while an asymmetric transverse grating profile can en-
hance the interaction with odd modes.

Following the analysis developed in Section 4.2 and 4.3, the mode
coupling equations for copropagating modes are

but with the phase-mismatch factor

and the dc self-coupling constant for each of the modes,
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The cross-coupling constant KOC remains the same as for contradirec-
tional coupling as

The amplitude of the input mode evolves as

Notice that the dc coupling constants may be different for the evolu-
tion of the input and coupled modes. To resolve this problem, we introduce
new variables, R and S as before, but slightly modified, to result in a
common coupling factor:

The subscripts //, and v on the dc coupling constants Kdc are specific
to each mode and is defined by Eq. (4.2.5) for identical modes. Differentiat-
ing R and S, collecting terms, and substituting into Eqs. (4.4.1) and (4.4.6)
leads to

The phase-mismatch factor A/3 is now proportional to the difference
in the propagation constants of the two modes as shown in Eq. (4.4.2).

The cross-coupling constant Kac is defined by Eqs. (4.2.6) and (4.4.5)
as Kac>IM} for identical or nonidentical modes. Note that the coupling con-
stant is real so that Kac>JLLV = K^>vfJL = /cac.

The grating transmission function comprises two modes — in the
simplest case, two orthogonal modes of the same order. However, the
general case includes nonidentical modes (including a radiation mode)
with the same or orthogonal polarization. The details of the coupling
constants Kac and Kdc need to be evaluated numerically. Radiation modes
are considered in Section 4.7, while coupling between different polariza-
tions is presented in Section 4.5.
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The solutions to the coupled-mode Eqs. (4.4.9) and (4.4.10) are found
by applying the boundary values as in the case of the reflection grating.
However, for the transmission grating, the input fields, R(—L/2) — 1 and
S(—L/2) = 0. The power couples from R to S so that the transmission in
the uncoupled state is

and the transmission in the coupled state (also known as the crossed
state) is

In Eqs. (4.4.11) and (4.4.12), a = (\Kaf + <52)172, and

The difference between reflection as in contradirectional coupling and
codirectional mode coupling is immediately apparent according to Eqs.
(4.2.14) and (4.4.12). While the reflected signal continues to increase with
increasing aL, the forward-coupled mode recouples to the input mode at
aL > 77/2. Therefore, a codirectional coupler requires careful fabrication
for maximum coupling.

Figure 4.9 demonstrates the optimum coupling to the crossed state
with KacL = 77/2 (curve A) as the coupling length doubles, the transmission
band becomes narrower (C), while B shows the situation of KacL = IT,
when the light is coupled back to the input mode.

4.5 Polarization couplers: Rocking filters

Equations (4.4.9) and (4.4.10) also govern coupling of modes with orthogo-
nal polarization. An additional subscript is used to distinguish between
the laboratory frame polarizations. However, there are differences in the
detail of the coupling mechanism. In order to couple two orthogonally
polarized modes, the perturbation must break the symmetry of the waveg-
uide. This requires a source term, which can excite the coupled mode. In
perfectly circular fibers, any perturbation can change the state of the
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Figure 4.9: Cross-coupled transmission for codirectional coupling. The data
shown is for coupling constants of 7r/2 with a grating length of L (curve A) and
length 2L (curve C). The bandwidth is halved for the longer grating. Also shown
is data for «L = Trand grating length L (curve B). Note that the grating overcouples
at zero detuning. The transmission spectra of LPGs are identical to that shown
above for each of the cladding modes to which the guided mode couples.

output polarization. Nondegenerate orthogonally polarized modes can
only exist in birefringent fibers and so require a periodic perturbation
equal to the beat length.

Generically, the polarization coupler behaves in a similar way to the
intermodal coupler, except that the coupling is between the two eigenpo-
larization states of the fiber rather than two different order modes. As a
result, gratings that have a uniform refractive index modulation across
the core are used rather than blazed (or tilted) gratings. Coupling between
two dissimilar order modes occurs when symmetry is broken by slanting
the grating in the direction of propagation; for coupling between the eigen-
polarization states of the same order, symmetry is broken by orienting
the grating at 45° to the polarization axes of the fiber. "Slanting" the
grating azimuthally at an angle of 45° to the birefringent axes "rocks"
the birefringence [34] of the fiber backward and forward, with a period
equal to the beat length,
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where Lb is the beat length, so that the rocking period Ar is

N is the order of the grating, and the detuning parameter is

We assume that the dielectric constants of the principal axes are e^
and ey A UV beam incident at an angle 6 degrees to the jc-axis and
orthogonal to the propagation direction induces a new set of orthogonal
birefringent axes with a change Aa,. and Aey in the dielectric constants.
Figure 4.10 shows the incident UV beam on the cross-section of the fiber.
The major and minor axes of the ellipse are the birefringent axes of the
fiber. The beam is incident at an angle 6. As a result, the birefringence
changes locally, inducing a rotation in the birefringent axes of the fiber.
The rotation angle 0 is related to the change in the birefringence as [35]

where <5Ae = Ae~< — Aev< and Ae = a, — ev For the case when the induced•*• y * y
birefringence is much less than the intrinsic birefringence, then the rota-
tion angle </> is small, and it follows that

Figure 4.10: Birefringence induced by the incident UV beam in a birefringent
fiber for the formation of a rocking filter.
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Remembering that <5Ae/Ae = 2nav(8kn')/(2navhn\ with Skn' = &nx

- Any,

where B is the difference in the refractive index of the principle axes.
For the special case of 6 = 77/4, Eq. (4.5.6) simplifies to <f> = 6&n'/

(25). A rotation that changes sign over one beat length implies a change
in the rotation of 20 radians per beat length so that the coupling constant,

^ac>

and remembering that B = \ILb leads to

where A is the resonance wavelength. The coupler length Lr is given by
the distance at which the input polarization is rotated by 77/2, from which
it follows that

Substituting Eq. (4.5.8) into Eq. (4.5.9), we get the rotation length
for 100% polarization conversion as

In order to calculate the bandwidth between the first zeroes of the
transmission spectrum, we note the argument of Eq. (4.4.12), aLr = ±TT,
which leads to

Using typical figures for the reported changes in the birefringence
[36,37,35,31], at a wavelength of 1550 nm, we find that the rocking filter
has a length of ~0.5 m. Note that the coupler length is only dependent
on the wavelength of operation and the induced birefringence, but not
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the intrinsic birefringence of the fiber. If however, the "duty cycle" of the
UV-exposed region is varied so that less than half of a beat length is
exposed per beat length, then the effective rocking angle per beat length
will be reduced, as with the change in 6.

4.6 Properties of uniform Bragg gratings

Quantities of interest are the bandwidth, AA, reflectivity, transmissivity,
the variation in the phase 0, and the grating dispersion D as a function
of detuning.

For the purpose of illustration, Fig. 4.11 shows the reflection spectrum
of two Bragg gratings with different coupling constants KacL of 2 and 8
calculated from Eq. (4.3.16). Note that the central peak is bounded on
either side by a number of subpeaks. This feature is characteristic of a
uniform-period grating of finite length, with a constant fringe visibility.
The abrupt start and end to the grating is responsible for the side struc-
ture. In the weak grating limit (R < 0.2), the Fourier transform of the
variation in the index modulation results in the reflection spectrum [5].

Figure 4.11: Reflectivity of two gratings with coupling constants Ka^L of 2
and 8, as a function of normalized detuning. Note that for the weaker reflection
grating (Ka^L = 2, dashed curve), the bandwidth to the first zeroes (between the
main reflection peak and the next subpeaks) is much narrower than for the
stronger grating (xa;(L = 8, continuous curve). The side-mode structure increases
rapidly for stronger gratings.
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Thus, a uniform period and index-modulation grating ("top hat") will
produce side lobes. However, for stronger gratings, a Fourier transform
for the fundamental component of the refractive index modulation alone
is no longer appropriate and gives rise to increasing errors.

For the uniform grating, dtydz — 0, the peak reflectivity occurs at a
wavelength at which 8= 0 [and therefore, a = Kac], and Eq. (4.3.16) leads
to

At the phase matching wavelength, the reflectivity reduces to

For identical forward- and counterpropagating modes, it is simple to
show by using the orthogonality relationship of Eq. (4.1.15) in Eqs. (4.3.5)
and (4.3.6) that

where the overlap integral 77 «* 1 for identical modes, and it therefore
follows that the peak of the Bragg reflection is at

The Bragg wavelength \B is defined at the phase-matching point A/3
= 0 for the general case of dissimilar modes,

with the result

For identical forward- and counterpropagating modes or nearly iden-
tical mode indexes, Eq. (4.6.6) reduces to
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The reason why the reflection peak is at a longer wavelength than
the Bragg wavelength is because the average refractive mode index Arc
continuously increases with a positive refractive index modulation.

For nonidentical modes, the integral in Eq. (4.3.5) has to be integrated
numerically. However, the integral is simply a weighting factor, 0 < 77 < 1,
dependent on the mode and refractive index profiles. It is for this reason
that 77 has been introduced in Eq. (4.6.3), normalized to unity for identical
modes.

There are several definitions of bandwidth. However, the most easily
identifiable one is bandwidth between the first minima on either side of
the main reflection peak (with reference to Fig. 4.11). This may be calcu-
lated by equating the argument oL in Eq. (4.3.11) to TT,

Therefore,

which, after rearranging, becomes

From Eq. (4.3.12), assuming Kdc = 0 and d<$dz = 0 (no chirp in the
grating), we get

so that the detuning from the peak to the first zero is

For identical modes, /u, = v, using Eq. (4.3.4) we get,

where the bandwidth from the peak to the first zero is A A. Combining
Eqs. (4.16.12) and (4.6.13), and noting that the bandwidth between the



4.6 Properties of uniform Bragg gratings 155

first zeroes is twice the bandwidth between the peak and the first zero,
leads to

From Eq. (4.6.14) it follows that if (KacL)2 < 7J2, then the bandwidth is
an inverse function of the grating length as

while if the reverse is true, (KacL)2 > 7T2, then the bandwidth is indepen-
dent of the length of the grating and is proportional to the ac coupling
constant,

so that increasing Kac increases the bandwidth.
Zeroes in the reflection spectrum of the grating can be evaluated by

using a similar analysis, to occur at

from which the corresponding detuning follows,

It is also useful to note the approximate position of the side-lobe
peaks at

which leads to

4.6.1 Phase and group delay of uniform period gratings

Figure 4.12 shows the phase response of the two gratings in Fig. 4.11, as
a function of detuning, in units of radians per meter of grating. In the
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Figure 4.12: Total phase change in reflection from a uniform-period grating
as a function of detuning for Ka^L = 2 (dashed line) and Ka^L = 8 (solid line).
The stronger gratings behaves as a point reflector, since the phase change on
reflection is large and almost constant for the same bandwidth when compared
with the weaker grating.

region outside of the band stop of the grating, the phase of the light
changes according to the unperturbed material refractive index. Into the
band stop, the phase velocity slows down with increasing strength of the
grating.

In Fig. 4.13 is the group delay of the same grating as in Fig. 4.12 in
units of psec/m. This group delay per meter is

Figure 4.13: The normalized delay of a uniform period grating as a function
of normalized de-tuning. For the larger coupling constant, the group delay in the
center of the band is constant, while at the edges it increases rapidly, but is
confined to a small spectrum.
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Close to the edge of the band stop, strong dispersion can be seen with
increasing strength of the grating. However, this dispersion is limited to
a small bandwidth. At the center of the band, the group delay is a mini-
mum and is approximately l/(2/cacL^) for gratings with a reflectivity close
to 100%.

4.7 Radiation mode couplers

4.7.1 Counterpropagating radiation mode coupler:
The side-tap grating

These gratings couple from a forward-propagating guided mode to a back-
ward-propagating cladding mode, or a continuum of radiation modes. In
this section, a new and simple theory is presented to gain a physical
insight into the scattering of a guided mode into the counterpropagating
radiation modes. The theory for radiation mode coupling has been pre-
sented elsewhere by various authors: Marcuse [2], Erdogan and Sipe [38],
Mizrahi and Sipe [39], Erdogan [40], and Morey and Love [41], These
articles explain the phenomenon of radiation mode coupling using coupled
mode theory and have successfully described the short-wavelength radia-
tion loss from unblazed gratings [39], as well as the fine detailed spectrum
observed under cladding mode resonance in tilted gratings [38,40]. Sur-
prisingly little work has been reported on the application of these gratings.
The term "side-tap" is appropriate for such gratings since the radiation
is tapped from the side of the fiber, as happens when bending a fiber. A
particular difference from bending is the reduced bandwidth and wave-
length selectivity of the loss induced by such blazed gratings. Important
properties of blazed gratings are their stability and low intrinsic tempera-
ture sensitivity, which may be reduced even further by appropriate design
of fiber or coating [42,43]. Although the reflectivity into the counterpropa-
gating guided mode is not generally zero, for acceptable performance in
practical applications, it can be made very low by careful design of the
filter.

The intention of this section is to provide a physical insight into the
functioning of blazed gratings with the purpose of intentionally designing
filters, which predominantly exhibit only radiation loss. The potential
applications are numerous, e.g., in-fiber noninvasive taps, spectrum ana-
lyzers [44], and gain flattening of optical amplifiers using a single blazed
grating [45] and multiple blazed gratings [46] and mode converters [47].
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Figure 4.14 shows a schematic of the blazed "side-tap" grating written
in the core of an optical fiber. The guided mode shown on the LHS of the
figure can couple to the radiation field or to a "supermode" of a composite
waveguide formed by the cladding and air interface. These are shown as
a field distribution leaving the core at an angle and as a mode of the
waveguide formed by the cladding, respectively. While the radiated fields
form a continuum if unbounded [see Eq. (4.2.5)], they evolve into the bound
supermodes of the composite waveguide in the presence of a cladding.
The power in the radiated field and the radiated bound mode may grow
provided the overlap of the interacting fields and the transverse distribu-
tion of the "source" (refractive index perturbation) is nonzero (see Section
4.2.3). The exchange of energy between the core mode and the radiated
bound supermode is determined by the prevailing phase-matching condi-
tions discussed in Section 4.2.5 and is solely a coherent interaction; the
coupling to the unbound continuum of the radiation field is, however, only
partly governed by this requirement. Physically, the radiated field exiting
from the fiber core at a nonzero angle is spread away so that the distance
over which it is coupled to the driving field is limited. This may be under-
stood by the following: The driving mode field amplitude, which is assumed
to be spatially constant, overlaps with a radiation field that is spreading

Figure 4.14: Schematic of counter-propagating radiation field and bound
cladding mode coupling from a forward propagating guided mode with a blazed
grating.
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rapidly away from the guided mode. For a coherent interaction, the fields
must overlap over a distance with the correct phases. While the phases
may remain synchronous, the radiated field spreads away, reducing the
overlap as a function of propagation distance. With the cladding present,
the field forms a mode, which propagates in the cladding and is then
strongly coupled to the guided mode. This type of coupling is similar to
simple Bragg reflection to discrete modes of the cladding. The transmis-
sion spectrum of a grating, which demonstrates this effect, is shown in
Fig. 4.15. In this case, coupling is to modes of the HEln order (LP0n), with
a blaze angle close to zero. The cladding resonances are clearly visible.

Also shown in Fig. 4.14 is the equation describing the phase-matching
condition for coupling to counterpropagating radiation at zero angles.
This radiated field is at the longest wavelength at which coupling to the
radiation field is possible, and only to zero-order modes, i.e., LP0m. Note
that the period of the grating, Ag, is dependent on the sum of the propaga-
tion constants of the guided driving mode and the radiated field (see also
Fig. 4.5). As a consequence, any change in the cladding mode index only
weakly affects the radiated field, but does change the coherent coupling
to the supermodes. For a radiation mode tap, it is useful to consider the
coupling to the unbounded radiation field. Another point to note is the
angle of the radiated field, which is always slightly more than twice the
tilt angle of the grating, apparent from Fig. 4.6. However, this angle is
reduced when the overlap to the radiated field is taken into account.

Figure 4.15: Cladding mode resonance in untilted gratings. On the right is
the LP0i —> LP01 guided mode reflection, while the others are to the LPQn cladding
modes (n = 2 to 10). See cover picture for example of cladding modes.
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In Fig. 4.16 is shown the practical case of side illumination of optical
fiber with UV irradiation. The absorption in the fiber causes the refractive
index to be highly asymmetric [48]. This asymmetry is like a blaze, since
one side of a propagating mode experiences more of a perturbation than
the other. Consequently, such an asymmetric grating breaks the symmetry
to allow coupling to odd, / = 1, order modes i.e., LPlm. This is also true
of blazed gratings, which are uniform across the core with the same effect
on the guided mode.

A few points should be noted about scattering from a blazed grating.
It is known that scattering of light from bulk blazed gratings [49] is
directional and the phase-matching conditions easily derived for scatter-
ing, in thin and thick holograms [32]. The general approach taken in the
next section is similar in so far as the scattering element is considered
nonlocal and all the scattering events summed to arrive at the final
unbounded coupling to the radiation field.

Theoretical model for coupling to the radiation field

The STG is a useful device for filter applications when used to couple the
guided mode to the radiation field, rather than a mode. It forms a narrow
band stop, whose spectral width is not dependent on the length of the
grating in the same way as a Bragg grating. The wavelength and band-
width is easily adjusted by choice of fiber, and the properties of the grating
are as robust as those of the Bragg grating in terms of temperature

Figure 4.16: Effect of side illumination of a fiber core with UV radiation,
giving rise to a tilted grating
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sensitivity and strain. This allows the design of filters that depend only
on the properties of the guidance of the core.

The side-tap grating is modeled as a periodic collection of uniform
inclined planes of perturbed refractive index across the core. The mode
fields are defined by the wave-guiding parameters, but it is assumed for
the grating that the boundary of the cladding is absent; i.e., the grating
is written in an infinite medium, although it is itself confined to the core.
A consequence of this approximation is that refraction at the core-cladding
boundary may be ignored, but can be accounted for later, to form modes.
The assumption allows the design of filters in the same way in which the
Bragg grating can be modified. The physical phenomenon of scattering
is treated as Fraunhofer diffraction, with the amplitude of the scattering
obeying the laws of conservation of energy. Figure 4.17 shows the sche-
matic of the blazed grating. The mathematical description that follows
shows that this type of a grating is equivalent to an infinite sum of
small gratings written perpendicular to the axis of the fiber, but has an
azimuthal dependence that makes it possible to couple to a particular set
of radiation modes. In other words, the ^-dependence of the grating due
to the inclination of the planes is translated into a transverse variation
in refractive index modulation, with the result that it immediately con-
nects with the idea of the mode overlap integral, while separating the

Figure 4.17: Scattering of power from a blazed grating entirely embedded
in a cylinder.
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issue of phase matching. The grating inclination angle is 6g with respect to
the transverse axis, x, in thex-z plane. The refractive index perturbation of
the grating, 8n(x,y,x), simply described as a product of a grating of infinite
extent and a "window" function Wgj.atilig, which takes account of the trans-
verse variation in the amplitude of the grating, as

Converting Eq. (4.7.1) into cylindrical coordinates leads to the grating
function

where y = 27rN sm6g!Ag. Equation (4.7.2) requires explanation, since it
has real physical significance for the process of mode coupling. Each term
on the RHS is responsible for coupling from the guided mode (here the
fundamental) to a different set of radiation modes. Terms in the Bessel
function Jm couple to modes with an azimuthal variation of cos(ra0), i.e.,
to even-order radiation modes, while the J0 terms leads to the guided
mode back-reflection from the grating. Similarly, odd modes couple via
the remaining set of terms within the curly brackets. Immediately obvious
is the dependence of the back-reflection on y, which periodically reduces
the reflection to zero as a function of 6g.

We refer to Fig. 4.17, in which a grating blazed at angle 0g is shown
entirely within a cylinder. The scattered total power at a wavelength A
impinging on a surface of radius R can be shown to be due to radiation
from a current dipole situated at the grating [3] as

o — —

where (f> is the angle between projection of the radius vector R and the
x-axis. The Povnting vector is
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By integrating the scattered contributions from each part of the grat-
ing separated by SR, the scattered field, E(R,(f>,<p,\} may be derived by
neglecting the angular dependence on <p and </> and follows as

The above result is consistent with Fraunhofer diffraction theory [3],
and we note that it is in the same form as scattering due to the polarization
response of a material. We note that far away from the grating,

The result in Eq. (4.7.5) neglects secondary scattering, so that it is
implicitly assumed that the incident radiation is the primary cause for
the radiation. This may be justified for STGs, since it is the aim of the
exercise to consider radiation loss to the exclusion of reflection by proper
choice of blaze angle, and because the radiation field is only weakly bound
to the core.

We are now in a position to calculate the propagation loss of the
incident radiation. The power scattered as a function of length of the
grating described in Eq. (4.7.1) and into even azimuthal mode orders can
be described as

a' is a loss coefficient, which is dependent on the wavelength, the trans-
verse profile of the grating, and the incident field and is equivalent to
the overlap integral of Eq. (4.3.6). The incident field therefore decays as

The contribution due to the oscillating term within the exponent becomes
insignificant for large z, and the power decays as

From Eq. (4.7.9) follows the approximate decay of the incident electric
field,
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where a = a'/4 is a function of wavelength only, and fyis the propagation
constant for the incident fundamental mode. The longitudinal component
of the guided mode field is small and has been neglected in Eq. (4.7.10).

The physical analogy of the STG as a distributed antenna is particu-
larly useful, equivalent to an infinite sum of mirrors, each contributing
to the light scattered from the fiber core. For small lengths, we have to
include the oscillating term in quadrature in Eq. (4.7.8), but with z > Ag,
the electric field for the fundamental mode decays approximately as it
would for constant attenuation per unit length. The attenuation constant
depends on wavelength and the transverse distribution of the grating and
the incident field, but not on z. This approximate result suggests that the
filter loss spectrum should be independent of the length of the grating,
which is indeed the case.

To calculate the scattered power and the spectrum of the radiation,
we use Eq. (4.7.6) in Eq. (4.7.5) and include the grating function Wgrating

to arrive at

where Lg is the length of the fiber grating, the constant F is given

and IL(x, Lg) is obtained by integration with respect to z,

where y was defined in (4.7.2), and A/fy and A/3fe are the forward and
backward phase mismatch factors,

where /3cfad = 2,7mciad/A, and the signs are consistent with the measure-
ment of the angle, (p. The forward scattering process can easily be included
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if necessary but is ignored for now. For the backward phase-matching
condition, the radiation angle at resonance, <pL, is given by the A/fy = 0,
as has been seen in Section 4.2.5, so that

The last result is a longitudinal phase-matching condition, which is
exactly the same as normal Bragg reflection. It requires that the path
difference between light scattered from points that are both on a line
parallel to the optical axis of the fiber, and on adjacent fringes of the
grating, should be exactly A (Fig. 4.18).

Ignoring the forward scatter, we find the scattered counterpropagat-
ing power from Eqs. (4.7.11), (4.7.3), and (4.7.4) as

where the overlap integral over the profile of the grating, which we refer
to as the transverse phase-matching condition, is

Figure 4.18: Scattered light from the fringe planes of the gratings adds up
in phase when the resonance condition for longitudinal phase matching is met.
AB + BC = NA, at resonance.
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In understanding the physics of the scattering, we consider separately
the two components of the integral, the transverse phase-matching term
(Eq. 4.7.17) and the longitudinal phase-matching (pm) term which de-
pends on the detuning, A/86.

In the low-loss regime (a <^ A/3b), the longitudinal pm term is simply
like the Bragg matched reflection condition, but now as a function of <p.
For all practical purposes, this term is like a delta function that is only
significant at very small angles of radiation (<p < 1°). The integral has a
term dependent on cos<p, which becomes broader and asymmetric in its
angular bandwidth as <p —» 0° and which is also inversely dependent on
the length of the grating. For typical filter lengths of a few millimeters,
we find the angular bandwidth to be —1°. The asymmetry and broadening
at small phase-matching angles have been observed in phase-matched
second-harmonic generation with periodic structures [50].

In the high-loss regime, we find that the delta function broadens but
has a width similar to that of the low-loss case. We can therefore choose
to consider the dependence of the scattered power on the longitudinal
phase matching as a very narrow filter at a given angle. Comparison of
the longitudinal term with the transverse pm condition of Eq. (4.7.17)
shows that the angular dependence of the radiation for the transverse
case varies much more slowly and may be approximated to be a constant
over the region of the longitudinal bandwidth. Figure 4.19 shows the
dependence of the longitudinal and the transverse pm as a comparison for
standard fiber and a uniform grating profile, Wgrating = I. The longitudinal
response for a blaze angle of 5° and the transverse response for three
blaze angles are shown.

The analytical result for the loss coefficient a has been shown to be
[511,

By normalizing the radius as p = r/a (a is the core radius),
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Figure 4.19: (a) shows the longitudinal integral and (b) is the transverse
integral for different blaze angles.

and E0(p) is the field distribution of the fundamental mode. The integrals
70 and Im are defined as

In Eq. (4.7.20), we remind ourselves that 7 is the transverse grating
momentum that allows the mode to couple out of the core and is a function
of the grating period as well as the blaze angle,
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gL is the transverse momentum of the mode, depending on the output
radiation angle of the scattered light, <pL, at a given wavelength, and is

In Fig. 4.20 is shown the calculated and measured loss spectrum of
fibers with nominally the same u-value, but different core radii. The
agreement between the measured loss and the calculated loss spectrum
is quite good for two fibers. The blaze angle for the grating is 8°. The results
also show that the loss spectrum due to scattering into the radiation modes
is independent of the fiber length, and, indeed, this has been confirmed
by experimental observations [51].

The reflection coupling constant for a tilted grating [38] with an
arbitrary profile is

This integral has been plotted in Fig. 4.21 and shows that zero Bragg
reflection into the guided mode occurs at a lower blaze angle if the grating
is moved outward from the core. For comparison, the back reflection from
two fibers has been shown, one with a grating situated entirely in the
cladding and the other with a standard telecommunications fiber core.

Figure 4.20: Measured radiation loss from large core weakly guiding fibers
with radii of 7, 9, and 12 microns and a u-value of 1.9. Two measurements on 12-
micron core-diameter fibers are also shown (after Ref. [52]).
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Figure 4.21: Comparison of back reflection from two fibers: both have nomi-
nally the same u-values, but one has a photosensitive cladding only (after Ref.
[52]).

We note that the first back reflection minimum occurs at ~3° external
writing angle for the photosensitive cladding fiber, compared with 8° for
the standard fiber. This has an additional benefit of reducing the band-
width over which radiation loss occurs, as seen from the phase-matching
diagram in Section 4.2.5.

In Fig. 4.22 is shown the filter response for coupling to radiation
modes for the photosensitive cladding fiber. The benefit of making the
cladding photosensitive is clear, since it reduces the bandwidth at the
zero reflection writing angle (measured at 3° and calculated for the fiber
to be —3.6°). The core radius of this fiber is 3.4 /zm, and the photosensitive
cladding extends from a to 4a.

The agreement between the theoretical and experimentally observed
properties of tilted fiber Bragg gratings is extremely good [38] using the
complete theory presented by Erdogan [40,38]. In particular, the measured
peak visible at 1545 nm in Fig. 4.22 is shown to be due to leaky mode
coupling. The polarization dependence of tilted Bragg gratings in fibers
with a core radius of ~2.6 /mi and a core-to-cladding refractive index
difference of 5.5 X 10 ~3 becomes obvious as the tilt angle exceeds 6.5°
[38]. Above this angle, thep-polarization scatters less efficiently than the
s-polarization. Below a tilt angle of 6.5°, the radiation loss is predomi-
nantly due to coupling to even-azimuthal order radiation modes, giving
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Figure 4.22: The loss spectrum (calculated and measured) for a photosensi-
tive cladding fiber. The ripple in the loss spectra is a measurement artifact (after
Ref. [52]).

rise to a sharp narrow-bandwidth peak. Above 6.5°, the coupling is to odd-
azimuthal order modes and becomes much broader. By making angles for
the back-reflection small (Fig. 4.21), one benefits from both low polariza-
tion sensitivity and a narrow-loss spectrum.

In Fig. 4.23 is shown the design diagram for STG filters as a function
of the core-to-cladding refractive index difference, assuming an infinite

Figure 4.23: The design diagram for tilted STG filters with infinite cladding.
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cladding. Two important parameters, the FWHM bandwidth and the tilt
angle for zero back reflection into the fundamental mode for step index
fibers for different u-values, are shown. The trend is as follows. Small core-
cladding index difference and large u-value give the smallest radiation loss
bandwidths, as well as the smallest tilt angles and accordingly the lowest
polarization sensitivity. The penalty is the increased bend loss sensitivity.

4.7.2 Copropagating radiation mode coupling: Long-
period gratings

These gratings couple light from forward-propagating guided modes to
the forward-propagating cladding modes (as with an LPG) and the radia-
tion field.

A schematic of the interaction and the phase-matching condition for
coupling to forward-propagating radiation modes is shown in Fig. 4.24.
The mode-coupling equations for forward coupling are given in Section
4.4 [Eqs. (4.4.11) and (4.4.12)]. The overlap integrals governing the inter-
action are shown in Eqs. (4.4.14M4.4.17) with the appropriate phase-
matching terms. This type of coupling is similar to counterpropagating
interactions, so far as the overlap of the modes is concerned. However,
the power is exchanged between the radiated and guided modes periodi-
cally, as shown in Fig. 4.9, so that the filter length governs the bandwidth

Figure 4.24: Schematic of co-propagating radiation field and bound cladding
mode coupling from a forward propagating guided mode with a blazed grating.
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of the coupling to the radiation mode (as it does to the individual cladding
modes in the counterpropagating direction). The fundamental, LP01

guided mode can only couple to the even-order cladding modes of the same
order, LP0n [53]. Only if there is an asymmetry in the transverse profile
will modes of different order couple. For example, in depressed cladding
fibers that support a leaky LPn mode, coupling to the LP16 mode is
possible because of the very large overlap of the fields in the core [53],
almost as large as the LP01 —> LP01 modes. For fibers that support only
the Z/POI mode, a tilt in the grating allows coupling to copropagating (and
counterpropagating) modes of different order. Erdogan has shown that
the coupling constants to the radiation modes of the order v and the core
mode (LPQl) follow the definitions of Eqs. (4.4.3) and (4.4.4). They are
[40]

The eigenvalues and the field distributions for the cladding modes
may be calculated by field matching at the boundaries as for the core for
the low-order LPQn modes, using a procedure similar to the guided core
modes of the fiber [54]. Only coupling to the radiation modes with the
azimuthal order 1 = 1 (LPt_1>v type) has a nonzero integral. The equations
that describe the overlap integral, Eq. (4.7.24) of the modes for a trans-
versely uniform grating are involved and cumbersome [40]. For the v =
2, 4 modes, the field in the core is very low, and therefore contributes
little to the coupling. However, the field for the odd-numbered v modes
has high intensity and these fields dominate the coupling for the lower-
order modes. In Fig. 4.25 is shown the calculated coupling constants for
a set of 168 cladding modes for a fiber at 1550 nm, normalized to the
refractive index modulation, kn(z). The important point is that coupling
to the low-even-order modes is weak compared to the odd modes. For v
> 40, both even and odd order modes have almost identical coupling
constants, but remain <20% of the maximum possible for the odd modes.
Therefore, for many applications, it is necessary only to take account of
a maximum of first 20-30 cladding modes, especially when computing
the loss spectrum of an infinite cladding fiber (pure radiation loss).

A major difference between the STG and the LPG is shown in the
phase-matching Eq. (4.7.14). We note that the detuning A/^for a LPG is
sensitive to the difference in the propagation constants of the guided and
radiation modes. Any UV-induced change in the core index will result
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Figure 4.25: The coupling constants for the fundamental guided mode to
168 even- (/ = 2) and odd-order cladding modes with azimuthal order 1 (type
LPQn) (from: Erdogan T, "Cladding mode resonances in short and long period fiber
grating filters," Opt. Soc. Am. A 14(8), 1765, 1997.).

in a shift in the propagation constants, and thereby strongly affect the
resonance wavelength. This aspect does not affect the counterpropagating
resonance strongly, since the percentage change in the sum of the propaga-
tion constants is small. The change in the resonance condition for the
STG in which only the core mode is affected can be calculated as [55]

whereas the resonance condition for the LPG changes as

/30 is the average propagation constant of the core and cladding modes,
and TjSfiuv is the effect of the additional UV-induced detuning over and
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above the initial mismatch, A/6 between the modes, and 17 is the overlap
of the field within the core. A comparison between the two leads to

In Eq. (4.7.27) the average effective index has been replaced by ncore

and the difference in the mode propagation constants by the core-to-
cladding index difference. Therefore, for a typical fiber, the LPG is between
— XlOO and XlOOO more sensitive than the STG to the changes between
the propagation constants of the core and the cladding modes.

The transmission spectra of a typical LPG is shown in Fig. 4.26. A
number of resonances beginning with the coupling of the fundamental
guided mode to the cladding n = 2, 3, 4, 5, and 6 modes can be seen. It
should be noted that the transmission loss for each mode depends on the
strength of the coupling constant Kac and Kdc. The former indicates the
length of the grating required for 100% coupling, while the latter causes
the resonance wavelengths to shift [see Eq. (4.7.26)]. This requires a
grating period to be adjusted according to the conversion efficiency and

Figure 4.26: Transmission spectra of a ten mm long LPG in standard single
mode type fiber (Corning SMF 28), with a period of 450 /mi. Coupling is shown
from the fundamental core mode to the odd (u = l), n = 2 — » 6 cladding modes
(LP0J.



4.7 Radiation mode couplers 175

the required resonance wavelength. The bandwidth of a single resonance
of an LPG filter is approximately [56]

where coupling from the fundamental guided mode to the appropriate Iv
cladding mode has the core-to-cladding mode effective index difference of
&neff. The resonance wavelength is determined by Eq. (4.6.4).

Long-period gratings for coupling a guided mode to the cladding may
be designed for standard single-mode fibers by the data in Figs. 4.27 and
4.28. The period of a grating normalized to resonance wavelength Aresonance

is shown as a function of the difference of guided mode effective index
from the cladding index. For example, a resonance peak at 1550 nm
requires a grating with a period 100 X 1.55 = 155 microns for a mode-
effective index difference of 0.01.

We note that the change in the resonance wavelength of a long-period
grating is influenced by the change in the core refractive index as a grating
is being written [Eq. (4.7.30)]. As the coupling constant increases, the
coupling loss increases until [Eq. (4.4.12)]

and at the resonance wavelength, a = Kac. To maintain the maximum
loss, the length of the grating or the coupling constant has to be adjusted
for a given bandwidth.

Figs. 4.27 and 4.28 may also be used to show how the period of the
grating varies as a function of the change in the effective index of the
mode. The desired resonance wavelength for an LPG may be calculated
for the final mode effective index after the grating has been fabricated,
using the data in Fig. 4.28 for the real modes of standard SMF fiber.
For a required transmission loss, the refractive index modulation can be
calculated to arrive at the final mode effective index. With this data, and
from the required bandwidth of the grating, the appropriate choice for
the grating period can be made.

Figure 4.29 shows the effect of immersing a long-period grating in oil.
The resonance condition for coupling to the forward-propagating cladding
mode is destroyed as the cladding is index matched. With further increases
in the index of the oil, we note another resonance due to partial reflection
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Figure 4.27: Normalized approximate resonance wavelength for phase-
matched radiation mode coupling for LPG.

Figure 4.28: The computed grating periods for coupling of the LP01 core
mode to the of the first four LP0n cladding modes in standard (Corning SMF)
fiber.

at the cladding surface to form leaky modes. The loss (to 1/e2 of the input)
by leakage at the boundary of the cladding and the oil is [57]
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Figure 4.29: Radiation loss from a long-period grating as a function of the
index of the oil that surrounds the fiber (from: Stegall D B and Erdogan T, "Long
period fiber for grating devices based on leaky cladding modes," in Bragg Gratings,
Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and
Fundamentals, Vol. 17, OSA Technical Digest Series (Optical Society of America,
Washington DC, 1997), paper BSuB2, pp. 16-18.).
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where r is the Fresnel amplitude reflection coefficient at the cladding
surface, and Lb is the distance between the successive reflections at the
cladding surface.

4.8 Grating simulation

4.8.1 Methods for simulating gratings

Many of the techniques for simulating fiber Bragg gratings were intro-
duced at the beginning of the chapter [10,58,9,19]. All the techniques
have varying degrees of complexity. However, the simplest method is
the straightforward numerical integration of the coupled-mode equations
such as Eqs. (4.3.9) and (4.3.10). While this method is direct and capable
of simulating the transfer function accurately, it is not the fastest. Another
technique is based on the Gel'Fand-Levitan-Marchenko inverse scatter-
ing [58] method. This is again a powerful scheme based on integral coupled
equations but has the primary disadvantage of obscuring the problem
being solved. It has, however, the advantage of allowing a grating with
particular characteristics to be designed. Perhaps the most attractive
method is based on techniques developed for the analysis of metal wavegu-
ides by Rouard [11] and carries his name as a result. This technique,
extended by Weller-Brophy and Hall [12], works on the principle that the
waveguide may be segmented into subwavelength thin films. Standard
thin-film techniques for calculating the amplitude and phase of the trans-
mitted and reflected electric fields at each interface are propagated back-
ward from the output end of the grating. The method is slow, but is one
of the few that offers complete piecemeal control of the spatial variation
in the refractive index modulation of the grating. For example, the transfer
function of a grating with a sawtooth modulation is analyzed equally as
well as a square or sinusoidal profile. The influence on the phase and
amplitude response of the grating cannot be fully characterized if the
Fourier coefficient of the phase-synchronous term for phase matching as
shown in Eq. (4.2.27) alone is used. Thus, it is a laborious and time-
intensive computation; however, the results accurately simulate the char-
acteristics of complex-shaped grating periods with reasonable reflectivi-
ties, being limited by the rounding errors in the computation.

A fast and accurate technique is based on the T-matrix (transfer) for
calculating the input and output fields for a short section SI of the grating
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[10]. The outputs of the first matrix Ml are used as the input fields to
the second matrix, M2, not necessarily identical to M1. The process is
continued until an entire complex profile grating is modeled. This method
is capable of accurately simulating both strong and weak gratings, with
or without chirp and apodization. It has the advantage of handling a
single period of grating as the minimum unit length for the matrix in the
case when the period or amplitude is a slowly varying function of length.
In the following section, two methods, Rouard's and the T-matrix, will be
presented for simulating gratings of arbitrary profile and chirp.

4.8.2 Transfer matrix method

An analytical solution for a grating of length Lg, with an arbitrary coupling
constant K(Z) and chirp A(z), is desirable but no simple form exists. The
variables cannot be separated since they collectively affect the transfer
function. In the T-matrix method, the coupled mode equations [for exam-
ple, Eq. (4.3.9)] are used to calculate the output fields of a short section
S11 of grating for which the three parameters are assumed to be constant.
Each may possess a unique and independent functional dependence on
the spatial parameter z. For such a grating with an integral number
of periods, the analytical solution results in the amplitude reflectivity,
transmission, and phase. These quantities are then used as the input
parameters for the adjacent section of grating of length SL2 (not necessarily
= 81 ±). The input and output fields for a single grating section are shown
in Fig. 4.30. The grating may be considered to be a four-port device with

Figure 4.30: Refractive index modulation in the core of a fiber. Shown in
this schematic are the fields at the start of the grating on the LHS and the fields
at the output on the RHS. The modulated refractive index is ± 2n&n about a
mean index.
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four fields: input fields R(-SL-J2) and R(SL^/2} and output fields S(-SL^I2)
and S(8ll/2). A transfer matrix Tl represents the grating amplitude and
phase response. For a short uniform grating, the two fields on the RHS
of the following equation are transformed by the matrix into the fields
on the LHS as

The boundary conditions applied to Eq. (4.8.1) lead directly to the
reflectivity and transmissivity of the grating. These conditions depend on
whether the grating is a contradirectional or a codirectional coupler.

Reflection grating

For a reflection grating, the input field amplitude R(— $1/2) is normalized
to unity, and the reflected field amplitude at the output of the grating
S(^!/2) is zero, since there is no perturbation beyond the end of the
grating.

Writing the matrix elements into Eq. (4.8.1) and applying the bound-
ary conditions leads to

in which, the superscript for T1 has been dropped for clarity. The transmit-
ted amplitude is easily seen to be

The reflected amplitude follows from Eqs. (4.8.2) and (4.8.3) as

Consequently, these are now the new fields on the RHS that can be
transformed again by another matrix, T2 and so on, so that for the entire
grating after the Nih section, where L = E^^-, is
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in which the field amplitudes on the RHS are the same as the those
expressed in Eq. (4.8.1).

Replacing the N multiplied 2 x 2 matrices in Eq. (4.8.5) by a single
2 x 2 matrix, we get the transfer function of the whole grating,

where the matrix T is

Now the transmissivity rof the whole grating follows from Eqs. (4.8.3)
and (4.8.4),

and reflectivity p,

From the solution to the coupled-mode equations (4.3.9) and (4.3.10),
the transfer matrix elements for the y'th section are

A schematic of the sectioned gratings with the relevant parameters
is shown in Fig. 4.31.
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Figure 4.31: The concatenation of several short reflection gratings with con-
stant parameters to form a composite grating. The phase <f>N is the phase of the
grating in each section.

Codirectional coupling

For transmission gratings, different boundary conditions have to be used;
.R(-L/2) is again normalized to unity. However, the field S(L/2) on the
LHS in Figure 4.30 is copropagating and has an amplitude of zero. At
the output, S(L/2) is also a copropagating mode. Codirectional coupling
is shown in Figure 4.32. Applying boundary conditions, one arrives at

The uncoupled [R($/2)] and cross-coupled [S(Sl/2)] amplitudes are
then simply derived from Eq. (4.8.14) as

Figure 4.32: For Codirectional coupling, the direction of propagation of the
S-fields is reversed on both ends of the grating; compare with the reflection grating.
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so that the crossed state amplitude is

and the uncoupled amplitude,

Following the solutions for the codirectional coupled-mode Eqs. (4.4.9)
and (4.4.10), the T-matrix elements for thejth section are

Equations (4.8.18-21) complete the analysis for guided-mode interac-
tions.

Phase shifts within a grating

It is often useful and necessary to incorporate phase jumps within a
distributed grating structure. The phase jump opens up a bandgap within
the reflection bandwidth, creating a narrow transmission band. This pro-
cedure has been applied to distributed feedback (DFB) lasers to allow
stable single-mode operation [59]. A phase shift is accomplished in the T-
matrix by multiplying the reflectivity of the./th section by matrix elements
containing only phase terms. On this basis, the transfer matrix takes on
the form
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where Tps is the new phase-shift matrix for a reflection grating,

For codirectional coupling we replace the phase-shift matrix (4.8.23)
by its conjugate. The phase factor, 0/2, is any arbitrary phase and may
be as a result of a change in the neff or a discontinuity within the grating.
The phase change could have arisen from a region in which the grating
was not present or from exposure to uniform UV radiation, thereby chang-
ing the local neff. In either case this phase

where dn is the local phase change over a length AL. The calculation of
the reflectivity and transmissivity proceeds in the same manner as with-
out the phase step.

General conditions and restrictions for the T-matrix method

The transfer matrix method requires that certain conditions be met for
accurate simulation of grating response [10]. First, when the grating
parameters are a function of z, the minimum length of the section 81 j ^
Aj X K, where K is a suitably large number. The actual factor K is a
consequence of the slowly varying approximation. The magnitude of K
depends on chirp rate dkAJdL where AA is the total chirp bandwidth in
the grating. This value determines the upper limit to the number of
sections allowed in any simulated grating. Figure 4.33 shows the effect
on the reflectivity of reducing the number of sections from 37 periods to
one period per section of a 2-mm-long grating with a chirp of 6 nm. The
refractive index modulation is 2 X 10~3.

Second, care must be taken to ensure that each section j has an
integer number of grating periods in order to have a smooth transition
between sections. An abrupt change in the grating modulation is equiva-
lent to a phase jump and hence the formation of a Fabry-Perot cavity, as
has been explained in Section 3.1.13. A consequence of not maintaining
this condition over several sections is that it can lead to a deleterious
effect outside of the bandwidth of the grating, by forming a superstructure
of cascaded Fabry-Perot cavities.
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Figure 4.33: The effect of too many sections on the simulation of a 6-nm
chirped 2-mm-long grating with 3729 (1 period/section) and 100 (37
periods/section) sections. The 100-section grating accurately models the grating,
while the assumptions for the simulation are violated for too many sections.

Third, adequate care must also be taken to smooth any spatial varia-
tion in the refractive index modulation. Sections of constant Kac but differ-
ent from adjacent ones inevitably form a superstructure [60, 61].
Superstructure can be responsible for replicas of the main Bragg reflection
peak at far-removed wavelengths, causing spurious cross-channel inter-
ference in filters. The smaller the section, the wider the wavelength band
over which the superstructure replicas may appear. Thus, there is a lower
limit to the number of grating sections that must be used to reduce this
detrimental effect. However, superstructure gratings, when carefully de-
signed, can be used to perform useful functions [62] and are covered in
Chapters 6 and 7.

Fourth, when simulating long chirped gratings, care must be taken
to allow adequate spectral resolution in order to calculate the group delay
accurately.

4.9 Multilayer analysis

4.9.1 Rouard's method

Simulation using this method relies on sectioning the grating into
multilayers and replacing the layer by an interface with a complex reflecti-
vity, which includes the phase change through the layer. To accurately
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model the refractive index profile of the grating, the period may be subdi-
vided into further sections. A recursive technique is then applied to calcu-
late the reflectivity of the composite period of the grating. Thus, the
problem is reduced to calculating the amplitude reflectivity p of each
single period. The processes is repeated for N single-period sections, each
with any local function for the refractive index modulation, period, or
phase steps. It is easy to realize that any type of grating, microns or
meters long, is then easily modeled. Alternatively, for certain types of
pure sinusoidal refractive index modulation, the analytical solution for
the constant period grating can be used [Eq. (4.3.11)] so long as the
conditions described in Section 4.8.2 are adhered to. The power of this
technique is, however, restricted by the computational errors when calcu-
lating the reflectivity and transmission of a large number of thin films.
Despite this restriction, many types of gratings are adequately realized,
provided the maximum reflectivity is limited to values ~99.99%. With
care and appropriate computational algorithms, better results may be
possible. The basic analysis is similar to the T-matrix approach; however,
the reflectivity is simply calculated from the difference in the refractive
index between two adjacent layers.

4.9.2 The multiple thin-film stack

Figure 4.34 shows a thin film on a substrate with light propagating at
normal incidence and with transverse field components. The refractive
index of each section is indicated. The reflectivities, rx and r2, at each
interface depends purely on the refractive indexes of the two dielectric
materials on either side and are also shown.

The field in each region Ej is the sum of the forward Rj and backward,
Sj, traveling fields:

Applying continuity of the transverse field components (which are
tangential to the interface) at the bottom layer, 1, and assuming propaga-
tion in a nonmagnetic medium, we get,
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Figure 4.34: (a) Two layers on a substrate. The refractive index of each layer
is also indicated. The left-hand figure is transformed into the problem shown in
(b), with a complex reflectivity p^ at the interface with the substrate, replacing
the layer n2.

Equations (4.9.2) and (4.9.3) can be expressed by algebraic manipula-
tion in the following matrix form:

The reflectivity rl at the substrate interface is

and the transmission coefficient, tl}

Once again applying continuity at the second interface from the bot-
tom, the reflected and transmitted fields are described as

The phase <PJ = fySlj = ^TTUjSLjlX.
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As before for the matrix method, combining Eqs. (4.9.3M4.9.7) leads
to

Equation (4.9.8) may be simplified as for the T-matrix method as,

from which the matrix elements follow as

Applying the boundary condition in the region n3, which is infinite,
leads to S3 = 0 as applied to Eq. (4.8.2). The simple complex reflectivity
for the layer n2 follows

and the transmission coefficient r2 is given by

Replacing the second section by a single interface as shown in Fig.
4.34b and adding another layer with fields R± and S4 above section 3, the
composite reflectivity p follows from
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so that in a similar manner to Eqs. (4.9.11) and (4.9.12),

It is now straightforward to appreciate that a single period of a grating
may be divided into j sections and the composite reflectivity computed
using this piecewise linear method for any complex shape for the grating.
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