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Fig. 1.1 The Reelin signaling pathway



Fig. 1.2. Cortical development in normal and reeler and Dab1 mutant mice. In the embryonic 
cortex of normal mice, the preplate (PP) is split by the arrival of early radially migrating neurons, 
whereas in the reeler cortex, this does not happen and cells form a superplate structure (SPP). 
Cellular layers in the cortical plate (CP) are also disrupted in reeler. Other abbreviations: MZ, 
marginal zone; IZ, intermediate zone; VZ, ventricular zone; SVZ, subventricular zone; RG, radial 
glia; CR, Cajal-Retzius cells
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Fig. 3.1 Summary of the Reelin signaling pathway. See text for details 



Fig. 5.2 Reelin repeat structure. (A) Crystal structures of single reelin repeat domains. Each panel 
shows a stereo presentation of R3 (top), R5 (middle), and R6 (bottom) structures. Subdomains are 
differently colored; subrepeat A (cyan), EGF (green), subrepeat B (magenta), and N- and C-termini 
are labeled. Bound calcium ions and disulfide bridges are shown as red spheres and yellow stick 
models, respectively. In R3, segments missing in the crystal structure are modeled and shown in 
gray. (B) Two-dimensional averages from representative particle classes obtained from the 
untilted electron micrographs of the R3–6 fragment. The width of each panel corresponds to 
376 Å. (C) Three-dimensional volume map of an R3–6 fragment derived from single-particle 
tomography (gray) in a stereo representation. Four complete space-filling models for reelin repeats 
(R3, red; R4, green; R5, blue; and R6, yellow) are fitted into the envelope



Fig. 7.1 Reelin Dab1 signaling in upper layer cortical neurons. (A, B) Low-magnification images 
of layer 2/3 cortical neurons on postnatal day 2 (P2), 7 days after in utero electroporation on E16 
with either RNAi that suppresses Dab1 (RNAi) or control RNAi vector (Control). (A) Control elec-
troporated neurons show precise lamination and exuberant dendritic growth in the MZ (dashed lines) 
on P2, whereas (B) Dab1-suppressed cells (RNAi) show disrupted lamination with occasional ecto-
pic deep cells (arrow) and sparse dendrites in the MZ. (C, D) Higher-magnification images revealing 
extensive dendrites in (C) control cells and stunted dendrites in (D) RNAi-treated cells that either do 
not penetrate the MZ (cells 2 and 3) or stunted dendrites that do not show extensive secondary and 
tertiary branching in the MZ (cell 1). Scale bars: 50 µm (A, B); 20 µm (D). (E, F) Model of cell 
positioning and dendritogenesis in the developing cortex. (E) A control neuron (dark green) migrat-
ing on a radial glial process (red) extends a branched leading process into the MZ and then translo-
cates through the upper ~50 µm of the CP, arresting migration at the first branch point of the leading 
process. (F) Dab1-deficient cells extend a leading process into the MZ but it remains simplified and 
the neuron does not translocate efficiently. (G) Dab1 interactions (after D’Arcangelo, 2006). Reelin 
secreted by CR cells (1) binds Reelin receptors (ApoER2 and VLDLR) in the migrating neuron 
causing (2) the clustering of Reelin receptors and Dab1. (3) The cytoplasmic clustering of Dab1 
activates two SFKs (Fyn and Src) leading to (4) tyrosine phosphorylation of Dab1. (5) Phospho-
Dab1 binds Lis1, a cytoplasmic dynein interacting protein encoded by Lis1, the gene underlying 
Miller-Dieker lissencephaly. (6) Phospho-Dab1 also activates PI3 kinase and Akt kinase and (7) 
binds adapter proteins Crk, Nckβ as well as N-WASP. Reelin signaling may regulate multiple cel-
lular events including glial adhesion, somal positioning, and dendritogenesis. Panels A–F modified 
from Olson et al. (2006), copyright 2006 by the Society for Neuroscience
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Fig. 8.1 Reelin-labeled neurons in the vertebrate brain. (A) Low magnification image of reelin 
labeling in the adult human cortex (BA39) demonstrating the abundant presence of reelin-labeled 
cells in all layers of the cortex (brown-stained cells). The section is counterstained with cresyl 
violet. (B) High magnification of the same cortical area as in A showing reelin-labeled pyramidal 
(plain black arrows) and nonpyramidal (notched arrow) cells. An unlabeled pyramidal cell is 
indicated with a white arrow. (C) Reelin-labeled cells of the adult rat entorhinal cortex. Arrows 
indicate the particle reelin labeling present in the cytoplasm, while arrowheads indicate reelin-
labeled processes. (D) Reelin-labeled cells of the reticular rhombencephalic nucleus of the lam-
prey. Note the high similarity of the intracytoplasmic staining of these cells with the staining 
shown in C. vr, rhombencephalic ventricle; rm, nucleus reticularis medius. Scale bars: 500 µm 
(A); 50 µm (B); 15 µm (C); 150 µm (D). [A, B extracted from Roberts et al. (2005) J. Comp. 
Neurol. 482:294–308; C extracted from Perez-Costas (2002) Doctoral Thesis, p. 143; D extracted 
from Perez-Costas et al. (2004) J. Chem. Neuroanat. 27:7–21]
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Fig. 10.1 Reelin signaling and cell migrations in cerebellar development. The diagrams show 
schematic views of the developing cerebellum in sagittal sections through the vermis, oriented 
with rostral to the left and dorsal to the top. (A) Early stage of cerebellar development (mouse 
E13.5). Cells derived from the upper rhombic lip (URL) (green nuclei) migrate nonradially 
(curved arrow) through the rostral rhombic lip migratory stream (RLS) to the nuclear transitory 
zone (NTZ). Reelin (blue) is expressed by many cells in the RLS and NTZ. At the same time, 
Purkinje cells (red nuclei) migrate radially (straight arrow) from the ventricular zone (VZ) of the 
cerebellar plate neuroepithelium (CPN) along radial glial cells (gray) through the intermediate 
zone (IZ), toward the RLS and NTZ. The Purkinje cells express cytoplasmic Dab1 (yellow). (B) 
Later stage of cerebellar development (mouse E17.5). The Purkinje cell plate (PCP) has formed, 
and the external granular layer (EGL) has replaced the RLS. Cells from the EGL migrate radially 
inward through the PCP (straight arrows), while unipolar brush cells migrate directly from the 
URL into the IZ (curved arrows). The deep cerebellar nuclei (DCN) contain neurons derived from 
the NTZ that have migrated radially inward toward the VZ



8 Color Plates

Fig. 10.2 Cerebellar histology in control and reeler mice. Sagittal sections through the cerebellar 
vermis (A, B, E–H, L) or hemisphere (C, D, I–K) of control and reeler (B, D, F–H, J–L) mice 
were stained with cresyl violet on P0.5 (A–D) or P22 (E–L). The boxed area in G is enlarged in 
H, and the boxed area in H is enlarged in L. In P0.5 controls, Purkinje cells had migrated to the 
Purkinje cell plate (pcp), and folia were developing by migration and proliferation of cells in the 
external granular layer (egl). In P0.5 reeler mice, the cerebellum was hypoplastic, no folia were 
developing, and Purkinje cells formed large, centrally located ectopic clusters (asterisks). The 
hypoplasia and defective foliation of the reeler cerebellum became even more obvious by P22. 
Most Purkinje cells in the P22 reeler cerebellum are located in the large central clusters, although 
some are isolated ectopically in the granule cell layer (GCL), and others form a nearly normal 
Purkinje cell layer (PCL) below the molecular layer (ML). In L, arrowheads indicate Purkinje 
cells in deep ectopia, and the arrow indicates a Purkinje cell in the GCL. The GCL in reeler con-
sistently shows gaps (arrowheads in G, K), which may be related to the presumptive locations of 
fissures (Goldowitz et al., 1997). The deep cerebellar nuclei (DCN) in reeler are located near the 
normal location, but somewhat distorted by the Purkinje cell ectopia (Goffinet, 1983; Goffinet 
et al., 1984). Sections oriented as described for Figure 1. Scale bar (in E): A–D, 400 µm; E, F, I, J, 
1000 µm; G, K, 500 µm; H, 200 µm; L, 100 µm
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Fig. 11.1 (A) Schematic view of the developing cortex. A radial glial cell (black) is shown, 
extending a radial process from its perikaryon in the ventricular zone (VZ) toward the marginal 
zone (MZ). Neurons (red) in the ventricular zone are generated by asymmetric division of radial 
glial cells. A newly generated neuron (N) migrates along the radial glial process toward the mar-
ginal zone. Cajal-Retzius cells (CR; green) located in the marginal zone, secrete the glycoprotein 
Reelin (green dots) into the extracellular matrix. Reelin controls the positioning of radially migrat-
ing neurons by acting on both radial glial cells and migrating neurons
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Fig. 12.1 Reelin-expressing cells in adult mouse hippocampus. Double immunofluorescent 
 staining of a hippocampus cryosection obtained from a 6-week-old wild-type mouse. Note that 
Reelin-containing cells (red) were primarily distributed in the dentate hilar region (hilus) and 
stratum lacunosum-moleculare (s.l.m.) but also can be found in stratum oriens (s.o.) and stratum 
radiatum (s.r.) of CA1 region. Immunostaining of the calcium-binding protein calretinin (green) 
was used to visualize the dentate gyrus layers



Fig. 12.2 Reelin signaling enhances glutamatergic function in the hippocampus. (A, B) In cul-
tured embryonic mouse hippocampal neurons derived from homozygous Reeler embryos, stunted 
neurite growth and fewer neurite ramifications are seen; in addition, when neurons were filled 
with fluorophores to reveal dendritic spines, it was observed that neurons from wild-type cultures 
show significantly more spines in their primary dendrites. (C, D) Neurons from both wild-type 
and Reeler embryos are cultured for 2 weeks and then immunostained with NMDA receptor sub-
unit NR1 and AMPA receptor subunit (GluR1) antibodies. A larger number of puncta that are 
positive for both NR1 and GluR1 were observed in wild-type cultures compared with Reeler 
cultures. (E) Long-term potentiation experiments using acute hippocampal slices prepared from 
6-week-old mice. A 20-min perfusion of Reelin dramatically elevated the magnitude of tetanus-
induced LTP
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Fig. 12.3 Schematic representation of Reelin signaling and the subsequent enhancement of syn-
aptic function in the adult hippocampus. Reelin binds and activates ApoER2/VLDLR and leads to 
tyrosine phosphorylation and activation of Dab1 and Src family protein tyrosine kinases. Src 
kinases phosphorylate NMDA receptor subunits and lead to enhanced channel conductance, aug-
mented Ca2+ influx during activation, and increased synaptic plasticity. This increased synaptic 
plasticity may involve changes of AMPA receptor phosphorylation and trafficking as well. In 
response to Reelin signaling, PI3K and PKB/AKT can be activated as well, resulting in inhibition 
of tau phosphorylation. In addition to ApoER2/VLDLR, Reelin also activates integrins
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Fig. 13.2 Events downstream of Dab1 phosphorylation and SFK activation. (A) Phosphorylation 
sites in Dab1 that are phosphorylated by SFKs and Cdk5. (B) Events that may be important in 
Reelin signaling are shown separated into two categories: those triggered by active SFKs and 
those dependent directly on Dab1 phosphorylation
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Fig. 15.1 Effects of hypothyroidism on reelin RNA and protein expression in the neonatal brain. 
(A, B) Pattern of reelin RNA expression in the neocortex of control (A) and hypothyroid (B) rats 
at P0. (C, D) Photomicrographs showing the distribution of CR50 antibody immunostaining in 
layer I of control (C) and hypothyroid rats (D) at P0. Some CR50-positive Cajal-Retzius cells are 
indicated by arrowheads. Note the decreased staining in hypothyroid animals. Cortical layers are 
indicated to the right. (E–G) Reelin expression detected by CR50 immunostaining in hippocampal 
organotypic slice cultures. (E) Slice from euthyroid rats incubated for 6 days in standard serum. 
(F) Slice from hypothyroid rats incubated for 6 days in thyroid-depleted serum. (G) Slices from 
hypothyroid rats incubated for 6 days in T3/T4-depleted serum supplemented with 500 nM T3. 
Note that the reduced expression levels in hypothyroid slices are rescued by T3 treatment. (H–K) 
Patterns of Reelin distribution in the cerebellum (H, I) and olfactory bulb (J, K) of control (H, J) 
and hypothyroid (I, K) rats at P5. Note the increased Reelin levels in the hypothyroid cerebellum 
and the opposite in the olfactory bulb. Abbreviations: C, control; CA3, CA1, hippocampal subdivi-
sions CA3 and CA1; CP, cortical plate; DG, dentate gyrus; EGL, external granule cell layer; GCL, 
granule cell layer; GL, glomerular cell layer; H, hypothyroid; I, cortical layer I; IGL, internal 
granule cell layer; MCL, mitral cell layer; ML, molecular layer; S, stratum lacunosum-moleculare. 
Scale bars: A, 40 µm (applies to A–D); E, 200 µm (applies to E–I); J, 50 µm (applies to J and K). 
(Figure modified from Álvarez-Dolado et al., 1999. © The Journal of Neuroscience)
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Figure. 17.1. Reelin (A–D, F, G) and GFAP (E) expression in human (A) and rat (B–G) liver. 
(A) Reelin immunostaining in stellate cells of human fetus at GW7. (B) Reelin immunostaining 
in liver of rat fetus at E13 (arrow). (C) Reelin immunostaining in stellate cells of rat fetus at E13; 
C is a high magnification of B. (D) Reelin immunostaining in adult rat stellate cells. (E) GFAP 
immunostaining in adult rat stellate cells. (F) Reelin immunostaining in a stellate cell of adult rat 
observed on a semithin section stained with toluidine blue (arrow). (G) Reelin immunostaining in 
a stellate cell of adult rat: electron microscopic examination; staining is observed in rough endo-
plasmic reticulum (arrow). Scale bars = 40 µm (A, C–E), 800 µm (B), 10 µm (F), and 2 µm (G)
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Figure 17.2 Reelin (A–E) and CD31 (F, G) expression in rat fetus (A), adult rat (B–D), and adult 
human (E–G). (A) Reelin immunostaining in the jugular lymphatic sac of rat fetus at E13. (B) Reelin 
immunostaining in lymphatics of adult rat ovarian medulla. (C, D) Reelin immunostaining of lym-
phatics around Peyer’s patches in adult rat gut; D is a high magnification of C. (E)Absence of reelin 
immunostaining in adult human lymph node. (F, G) CD31 immunostaining in adult human lymph 
node; G is a high magnification of F. Scale bars = 150 µm (A, C, E) and 40 µm (B, D, F, G)



Fig. 19.1 Schematic representation of dental innervation during tooth development from embry-
onic stages (A—D) to postnatal stages (E—H). (A) Epithelial thickening stage. A plexus of nerve 
fibers is observed in the mesenchyme beneath the thickened oral epithelium. (B) Bud stage. The 
oral epithelium thickens and the mesenchyme undergoes a condensation. Axon sprouts grow 
toward the mesenchyme and continue to the epithelium as lingual and buccal branches. (C) Cap 
stage. Local axons form a plexus at the base of the primitive dental papilla and come into contact 
with the dental follicle. (D) Early bell stage. The number of axons increases in the dental follicle. 
(E) Late bell stage. At the onset of amelogenesis and dentinogenesis, the first sensory axons enter 
the dental papilla. (F) During early root formation, the number of pulpal axons increases. 
(G) During tooth eruption and with the advancing root formation, a rapid development of sensory 
pulpal axons leads to the formation of the subodontoblastic plexus of Raschkow. (H) Enlarged 
schematic representation of the dentin pulp complex innervation. The sensory nerve endings 
originating from the plexus of Raschkow coil around the cell bodies and processes of odontoblasts 
in the dentinal tubules. D, dentin; D.F, dental follicle; D.P, dental papilla; E, enamel; Me, 
 mesenchyme; N.F, nerve fiber; Od, odontoblasts; O.E, oral epithelium
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Fig. 19.2 Schematic representation of reelin gene expression and its receptors during successive 
stages of odontogenesis. Reelin is first detected in the oral epithelium from the initiation stage 
through the early bell stage. Then, reelin expression shifts in differentiating odontoblasts at the 
late bell stage. Dab1 is mainly expressed in both oral epithelium and dental mesenchyme during 
the initiation stages (epithelial thickening and bud stages). CNRs are present in the epithelium 
through the tooth development whereas PCDH-γ is expressed in both epithelial and mesenchymal 
compartments. D.E, dental epithelium; I.D.E, inner dental epithelium; M, mesenchyme, OD, 
odontoblasts; O.D.E, outer dental epithelium; P, dental papilla; P.A, preameloblasts; S.I, stratum 
intermedium
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Fig. 19.3 Expression of reelin in human odontoblasts. (A) An immunolabeling of reelin per-
formed with anti-reelin antibody 142 shows a signal in the odontoblast layer (OD). No staining is 
observed in dental pulp cells (D.P) (bar is 100 µm). (B) Immunofluorescence labeling with the 
same antibody, and without permeabilization of the cells, appears as reelin-positive patches local-
ized around the cultured odontoblast cell membrane (arrowhead) (bar is 100 µm). (C) A double 
immunostaining with the monoclonal anti-reelin antibody and a polyclonal anti-neurofilament 
H on a human dental pulp section was analyzed by confocal microscopy. The nerve fiber course 
in the pulp can be followed (arrowheads). A yellow patch observed in a nerve varicosity, indicates 
a colocalization between nerve fiber and reelin close to the odontoblast membrane (arrow and 
insert) (bar is 20 µm). (D) Coculture of human odontoblasts and rat trigeminal ganglion shows the 
same colocalization (yellow) of reelin (red) and the varicosity (green) in the odontoblast cell layer 
(bar is 20 µm). [Modified from Maurin et al. (2004). Expression and localization of reelin in 
human odontoblasts. Matrix Biol. 23:277–285, with permission from Elsevier]



20 Color Plates

Fig. 22.2 The impact of clozapine on rat brain levels of Reelin. In clozapine-treated rat FC, 
Reelin protein showed significant downregulation of the 410- and 180-kDa isoforms while Reln 
mRNA was significantly upregulated versus controls

Fig. 22.3 The impact of fluoxetine on rat brain levels of Reelin. Reln mRNA was significantly 
upregulated in fluoxetine-treated rat FC versus controls
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Fig. 22.4 The impact of haloperidol on rat brain levels of Reelin. Reelin protein showed the 180-
kDa isoform was significantly downregulated as was Reln mRNA level in haloperidol versus 
control rat FC

Fig. 22.5 The impact of lithium on rat brain levels of Reelin. The 180-kDa isoform of Reelin was 
significantly downregulated following chronic treatment with lithium. In contrast, Reln mRNA 
was significantly upregulated in lithium versus control rat FC
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Fig. 22.6 The impact of olanzapine on rat brain levels of Reelin. Olanzapine-treated rat FC 
showed significant upregulation of the 410- and 180-kDa isoforms of Reelin. Reln mRNA was 
also significantly upregulated

Fig. 22.7 The impact of valproic acid on rat brain levels of Reelin. Reln mRNA was significantly 
downregulated in rat FC as a result of treatment with VPA
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Fig. 23.1 (Control) Reelin expressed in double bouquet or horizontal cells in the upper prefrontal 
cortex layers is secreted by a constitutive mechanism in the extracellular matrix space and: (a) 
binds to the apical dendritic branches of pyramidal neurons inducing spine formation by facilitat-
ing dendritic resident mRNA translation or (b) binds to dendrites or cell bodies of GABAergic 
interneurons (double bouquet or chandelier cells), facilitating the action of glutamate at NMDA 
receptors located on GABAergic interneurons and thereby increasing the release of GABA on 
apical dendrites, cell bodies, and axon initial segments of pyramidal neurons.

(Schizophrenia) Reelin and GAD67 expression and reelin and GABA release are downregulated. 
The reelin deficit causes: (a) decreased dendritic spine density on the apical dendrites of pyrami-
dal neurons and (b) hypofunction of NMDA receptors located on double bouquet or chandelier 
cells, eliciting a further decrease of GABA released on the apical dendrites, cell bodies, or axon 
initial segments of pyramidal neurons. The deficit of GABAergic neurotransmission results in an 
increased output of glutamate from the axon terminal of pyramidal neurons
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Fig. 23.2 Putative role of reelin in synaptic plasticity. Reelin is depicted binding to a dendritic 
postsynaptic density of a cortical GABAergic interneuron. Either (A) to VLDL or ApoE2 recep-
tors (VLDLR or APOE2R) or (B) to integrin receptors (INTEGRINR). (A) Reelin modulates 
NMDA receptor (NMDAR) activity through SRC kinase-mediated tyrosine phosphorylation of 
the NMDAR intracellular sites (Weeber et al., 2002; Herz and Chen, 2006). (B) Reelin modulates 
Arc expression and cytoskeletal protein assembly through activation of mTOR kinase (Dong 
et al., 2003) 
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Fig. 23.6 Reelin promoter point mutations. We designed site-directed mutants within the Pax6 binding 
site that had previously been shown to be more heavily methylated in patients with SZ (Grayson et al., 
2005). These corresponded to the double (−141/−136), and single promoter mutants (m –141) and (m 
–136). These minimal mutants were introduced into NT2 cells using transient transfection assays and 
reporter activity was measured 36 hr later. NT2 cells transfected with the single mutant (m –136) and 
double mutant construct (m –136/–141) exhibited 50% of the activity of the −514 promoter. *p, 0.05 
expressed as a percent of the SV40 promoter and compared with the reelin –514 promoter for statistical 
purposes (one-way ANOVA followed by Fisher LSD Method)

Fig. 23.7 Proposed mechanisms by which mouse RELN promoter hypermethylation and recruit-
ment of chromatin remodeling complexes (MeCP2, HDACs, and co-repressors) regulate reelin 
gene expression. The mouse reelin (RELN) promoter region depicted here follows that reported by 
Tremolizzo et al. (2002) and includes the repressor protein complex. Vertical bars represent CpG 
dinucleotides present in this region. Pink dots denote 5mC present in the sequence. Note the 
increase of 5mC in MET (methionine)-treated mice. MeCP2 recruits co-repressor complexes 
including HDACs and induces a state of gene repression
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Fig. 24.1 Binding of RELN to lipoprotein receptors (LPR) activates a tyrosine kinase (TK)-
dependent cascade leading to Dab1 phosphorylation and expression of several genes that lead to 
long-lasting structural changes

Fig. 24.2 A view of RELN promoter sequence. RELN harbors a CG-rich promoter with 72 can-
didate cytosine (C) sites for methylation and several regulatory binding sites located in 450 base 
pairs upstream of the coding region. A CRE binding site is underlined in the first line and several 
SP1 binding sites (GGGCGG) and a consensus GC box are underlined in other locations. The 
boldface Cs that are followed by G are candidates for methylation, while other Cs or unmethylated 
Cs will be converted to T during bisulfite treatment
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Fig. 24.4 Comparison of DNA methylation levels by qMSP, revealing that the degree of RELN 
methylation in SCZ and BD is almost twice that of the controls. To visualize the differential levels 
of RELN promoter methylation in the patients and controls, the ∆C

T
 of methylated product for 

RELN, normalized with the C
T
 of β-actin, was sorted from minimum to maximum. Thus, the 

increase in the percent of methylation would be exponential. As shown, the base level of RELN 
promoter DNA methylation was greater in SCZ and BD compared to the control subjects (almost 
twofold). This difference remained nearly the same across the entire samples; however, patients 
with BD showed a lesser degree of RELN methylation in the last part of the curve, where the level 
of methylation was relatively high
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Fig. 24.5 Inverse correlation between the expression of RELN and DRD1, DRD2, and MB-
COMT. Consistent with the promoter methylation status, expressions of RELN, DRD1, and DRD2 
appear to be correlated, but are inversely correlated with the MB-COMT expression in both con-
trols and the patients, as well as in total samples. As a result, RELN hypoexpression could be 
associated with hypoactivity of dopaminergic neurotransmission in the frontal lobe
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Fig. 24.6 Age-dependent increase in RELN promoter methylation. The degree of RELN promoter meth-
ylation (Y axis), extracted from Grayson et al. (2005, supplementary Table 2), was sorted by age (X axis). 
As shown, the degree of promoter methylation increased by age in both SCZ and the control subjects
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Fig. 25.2 Putative gene–environment interaction model involving the Reelin and PON1 genes, and 
prenatal exposure to organophosphates (OPs). Reelin gene variants genetically determine normal or 
reduced levels of Reelin, associated with normal or “long” GGC alleles, respectively. Both condi-
tions are compatible with normal neurodevelopment, but prenatal exposure to OPs can transiently 
inhibit Reelin’s proteolytic activity, which may or may not fall below the threshold critical to neuro-
nal migration, also depending on baseline levels of Reelin. Furthermore, exposure to identical doses 
of OPs can affect Reelin to a different extent, depending on the amount and affinity spectrum of the 
OP-inactivating enzyme paraoxonase produced by the PON1 gene alleles carried by each subject 
(Gaita and Persico, 2006; Persico and Bourgeron, 2006). (Modified from Trends Neurosci., Vol. 29, 
Persico, A.M., and Bourgeron, T., Searching for ways out of the autism maze: genetic, epigenetic 
and environmental clues, pages 349–358, copyright 2006, with permission from Elsevier) 
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Fig. 27.1 Ischemic brain injury in wild-type (Wt) and transgenic mice with Reln deficiency (Tg) 
following focal cerebral ischemia. (A) HE staining shows an increased area of ischemic injury in 
reeler mice compared to WT mice. (B) Quantification of infarct volume in WT and reeler mice. 
p<0.05 compared to WT (Student’s t-test)
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Fig. 28.1 Immunohistochemical analysis of RELN in normal pancreas (a) and IPMN (b) and 
PanIN lesions (c,d). The thin arrow in a is pointing to pancreatic ductal epithelium, while the thick 
arrow is pointing to pancreatic acinar cells. In b, the arrow is pointing to the abnormal ductal 
epithelium of an IPMN; in c and d, the thick arrowhead is pointing to the abnormal ductal epithe-
lium of a PanIN. The thin arrow in c and d is pointing to the surrounding fibrosis


