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1. INTRODUCTION

Among different methods of investigation of magnetic objects, optical 
methods take leading positions because of their relative simplicity and self-
descriptiveness. Magnetooptics of the uniform magnetic media and magnetic
structures with the size greater than the wavelength of electromagnetic radia-
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tion has been studied in detail for the last several decades. Magnetooptical
(MO) techniques of such objects allowed investigation of their magnetic struc-
ture both in statics and in dynamics. By means of these methods, images of the
magnetization distribution can be obtained in polarization microscopy on the
bases of the Faraday, Kerr, or Voigt effects.

At the same time, nowadays, there is great interest in the study of the mag-
netic properties of low-dimension systems, nanostructures, and granular mate-
rials. Magnetic nanostructures are viewed as a promising material for ultrahigh
density (up to 1Tbit/cm2) data recording. Note that such a giant record density
approaches the superparamagnetic limit (10Tbit/cm2) [1], which seems to be
the ultimate value of the surface record density (today’s value is 30Gbit/cm2

[2]). The typical size of a one-domain magnetic particle in structured nanome-
dia is estimated at 5–100nm. MO investigations of nanostructures are also
being conducted and yield fruit. Conventional methods like MO Faraday and
Kerr observation along with new optical methods, such as scanning near-field
optical microscopy and polarized microscopy, can give a great amount of infor-
mation about these structures.

Usually, MO methods in their adaptation to the nanoscale world preserve
simplicity in realization and cheapness. Optical imaging of magnetic structures
is nondestructive, provides high sensitivity, and is not limited by protective non-
magnetic layers. Most importantly, magnetooptical imaging does not require
magnetic probes, in contrast to magnetic force microscopy, and consequently
does not influence the magnetic structure under investigation and allows meas-
urements in applied magnetic field. Spatial resolution that can be achieved in
MO imaging [in scanning near-field optical microscopy (SNOM)] is of the same
order (10nm) as the best resolution obtained by other (e.g., magnetic force
microscopy) methods. At the same time some MO methods (e.g., MO Kerr
magnetometry) also perform high temporal resolution.

Nevertheless, some difficulties in the experimental setup arise: organiza-
tion of high precision sample positioning, smooth displacements, production 
of miniature probes, and so on. At the same time, new features of interaction
between light and nanoscaled magnetic objects have not been fully studied, and
theory techniques for nanoscale magnetooptics have been poorly developed.
MO properties of nano-sized objects strongly depend on their transport prop-
erties (conductivity). They are also greatly influenced by quantum effects; con-
sequently, dielectric tensor for bulk media is no longer appropriate for their
description.

Taking, the aforesaid, into account, elaboration of consistent theory for the
determination of transport and optical properties of magnetic nanostructures is
quite urgent. Along with that, some improvements and innovations in experi-
mental technique are also needed in this area.
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Magnetooptics of granular materials and other nanoscaled magnetic objects
is a thriving part of modern optics. At present it is only in the initial stages, and
further investigation in this direction are to be performed.

In this chapter we give a brief outline of the conventional magnetooptics
of granular materials, and then we discuss some theoretical and experimental
aspects of MO observations of nanoscale magnetic structures.

2. OPTICS OF THE COMPOSITE MEDIA

In this section we shall consider propagation of the electromagnetic radiation
through the media with inhomogeneities—that is, composite media. For
example, it can be randomly spaced metallic particles embedded into dielectric
polymer matrix. In general, when a wave propagates in the same medium, it
does not resolve the individual particles, and the composite appears as a homo-
geneous material. Let us consider this question in more detail. When a hetero-
geneous material is probed by an electromagnetic wave, the resolution limit of
the probing wave is set by l/2. In addition, the Rayleigh scattering strength varies
as l-4. It follows that in the so-called long wavelength limit the heterogeneous
material would appear homogeneous to the probing wave, with the material
properties characterized by effective parameters. In the long wavelength
approximation it is possible to regard the material as being homogeneous and
possessing an appropriate effective value of the permittivity, permeability, and
conductivity. These effective parameters can be found in terms of the proper-
ties of the composite constituent phases by means of a homogenization proce-
dure or an effective-medium theory. Since for the optical frequencies the range
permeability constant is close to unity, we in what follows shall consider only
dielectric constant [3].

Two main composite topologies should be marked out: cermet and aggre-
gate (Figure 7.1) [4]. In the cermet topology, each inclusion is completely sur-
rounded by host material; and for not very large filling factors of the metallic
phase composite, it performs as a dielectric material. For the aggregate topol-
ogy the metallic inclusions are allowed to touch, making the composite con-
ductive. The transition between these two topologies happens when the filling
factor reaches the percolation threshold fpc at which the metallic network first
becomes connected. In the vicinity of fpc, the dielectric constant and therefore
the optical properties exhibit dramatic changes. In general, the percolation
threshold occurs at 0.2 < fpc < 0.75. Thus for cubic lattices the maximum pos-
sible f are 0.52, 0.68, and 0.74, for sc, bcc, and fcc lattices, respectively [5]. In
Co–SiO2 for instance, fpc is about 0.55, while it equals to 0.25 for Co–Al2O3

[6].
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In regular arrays the percolation transition is sharp, because all of the
spheres approach contact at once. Practically no ordered structure of the inclu-
sions can take place in the composite. That is why when f is not very small,
disordered composites generally contain (a) local metallized regions (particle
clusters) where the critical density has been reached and (b) other nonmetal-
lized (dielectric) regions with lower local particle densities. With increasing
volume filling factor f, the metallized clusters grow at the expense of the dielec-
tric regions. Thus, in contrast with the behavior of regular arrays, the metal-
lization transition in disordered composites occurs at different times in different
regions of the sample. Nevertheless, at f = fpc the entire suspension becomes
conductive.

There are a number of formulas for the determination of the effective
dielectric constant: Maxwell Garnett (MG) formula, Bruggeman (BG) equa-
tion, Hanai–Bruggeman (HBG) formulas, empirical Lichtenecker mixture
equations, and so on.

The empirical equations are obtained by the intuitive suggestions with the
use of experimental data. Here we cite an instance of two Lichtenecker equa-
tions [7–9] for two-phase and multiphase composites:
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Figure 7.1. Effective medium theory approach for cermet (a) and aggregate 
(b) topologies.
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where fi is the volume fraction of ith constituent, and ei¢ and ei≤ are real and
imaginary parts of the dielectric constant, respectively. For other empirical for-
mulas, one can address the following references.

The MG, BG, and HBG formulas are based on the more comprehensive
approaches, one of which is presented further.

2.1. Homogenization Technique, 
the Effective-Medium Formulas

The approach is based on considering the composite as made up of elementary
structural units (ESU)—that is, in fact, the main principle of the effective-
medium theory [4, 10, 11]. For example, in a composite with the cermet topol-
ogy, the basic unit may be taken as a coated grain (Figure 7.1a). If the inclusions
are allowed to touch—that is, if the aggregate topology is presented—then the
two phases should be considered on an equal basis, and a grain of constituent
A and a grain of constituent B are two basic units (Figure 7.1b). Once the ESU
are chosen, the next step is the embedding of each individual unit in a homo-
geneous effective medium characterized by a yet-undetermined effective
dielectric constant eeff or effective conductivity seff.

The basic definition of an effective medium is that the ESU, when embed-
ded in the effective medium, should not be detectable in an experiment using
electromagnetic measurement. In other words, the extinction of the ESU should
be the same as if it were replaced with a material characterized by eeff. This cri-
terion makes it fruitful to use a recently derived [12] “optical theorem” for
absorbing media; it relates the extinction of the spherical cell compared to that
of the surrounding medium with the scattering amplitude in the direction of the
impinging beam S(0) (forward scattering amplitude) by

where k is the wave vector of the light in the effective medium. From the def-
inition of an effective medium, it follows that Cext = 0, that is S(0) = 0, which
expresses the fundamental property of an effective medium. Consequently, the
effective-medium general condition is then [13]

(1)

where fi is the volume fraction of the ith unit. Since Si(0) is an implicit func-
tion of eeff, equation (1) represents a condition for its determination.

f Si i
i

0 0( ) =Â

C S kext = ( )[ ]4 0 2pRe
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If ESU is a coated sphere (Figure 7.1a), then the Lorenz–Mie [14] theory
gives S(0) as

The filling factor is

where a(b) is the radius of the inner (outer) sphere in Figure 7.1a. This yields
the Maxwell Garnett formula

(2)

which is often written in a different form:

The MG approach is applicable for so-called cermet topology [15, 16]. This
formula has been accepted as satisfactory when the exact interparticle interac-
tions are not important—for example, in the case of dilute dispersions or com-
ponents of low polarizabilities.

For small volume fractions, by expanding equation (2) to the first order in
the volume fraction, one can find the absorption coefficient of the composite a
that is related to the imaginary part of eeff:

where e1 and e2 are real and imaginary parts of eA [17]. This absorption coeffi-
cient has a maximum at w for which the condition e1 + 2eB = 0 takes place,
which is known as the surface plasmon resonance.

In the aggregate topology the ESU are two spheres (Figure 7.1b). These
two spheres are submerged into the effective medium, and their relative con-
centrations are f and 1 - f, where f is a volume fraction of the constituent A.
Using the dipolar approximation of S(q) for a sphere [12] leads to the 
Bruggeman equation:
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(3)

For small concentrations of inclusions ( f close to 1 or to 0), it appears that
a number of composite films are better described by the separated grain struc-
ture—that is, ruled by the MG equation. For intermediate values of f, the BG
approach gives better results. Nevertheless, both approaches are not very
precise. That is why symmetrized MG approximations have been proposed by
introducing an average over the two following random units: an inclusion of A
coated by a shell of B and an inclusion of B coated by a shell of A. Using this
picture, the film or plate can be modeled as a mixture of two types of coated
spheres or ellipsoids. Dielectric-coated metal ellipsoids are denoted as type 1
units, and metal-coated insulator ellipsoids are denoted as type 2 units (Figure
7.2). The problem is to evaluate the proportion of these two random units for
a given value of the filling factor f. Sheng [4] has introduced a probabilistic
growth model where the probability of occurrence of these two units as a func-
tion of f is given by the number of possible configurations of each type of units.
This number is given by the volume available to the internal ellipsoid in the
external ellipsoid. For details see reference 4.

2.2. The Hanai–Bruggeman Formula

The HBG formulas, also known as the asymmetric Bruggeman formulas, are
obtained assuming that the MG model is exact at low filling factors and then,
following an iterative procedure, adding a small fraction of particles at each
step [18, 19]. This model is recognized as valid at least for f < 0.8.

The first HBG formula is for spherical particles:
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Figure 7.2. Random units 1 and 2 in the effective medium (symmetrized Maxwell 
Garnett approximation).
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and the second one is for lamellar particles:

Some authors have proposed a generalized HBG equation that includes all
possible types of inclusion geometry [20]:

The generalization is accomplished by letting the depolarization factor L vary
between 0 and 1.

Thus, if the wavelength of the light is much greater than the grain size, the
long wavelength approximation and effective medium theory can be applied to
determine the effective value of the composite dielectric constant and, conse-
quently, describe composites optical properties. However, if the size of the
structure is of the order of tens and even units of nanometers, then the effec-
tive medium approach is not applicable. Indeed, within this approximation, the
effective permittivity of a composite is determined as a function of the permit-
tivity for each composite component and, in turn, the nanocomposite compo-
nents are characterized by the same tensor of permittivity as those used for bulk
media.1
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1 However, in the case of granular metallic structures in which the grain sizes do not exceed
several nanometers, the conditions of applicability of this approach are violated, because the
mean free path of electrons in these materials is considerably greater than the mean grain size,
and spin-dependent scattering and tunneling of electrons become significant. Thus, it is evident
that the effective-medium approximation, as applied to these systems, is rather contradictory and
does not offer an adequate description of their properties. For the optical properties of the com-
posites with magnetic constituents, spin-dependent electron scattering both inside conducting
regions and at rough interfaces plays a very important role. The only way to describe optical
properties of the composite in such a case is to consider directly an interaction of light and 
electrons in the composite. It can be done, for example, by means of the consistent solution of
Boltzmann kinetic equation in each region of the material. This procedure is rather complex and
can be done exactly only for some special composite geometries: spherical inclusions in the
uniform matrix or multilayered film [21, 22]. Since the electron distribution function is found,
the current distribution can be readily calculated and after using the averaging procedure one can
determine dielectric constant for the material. Some other theoretical approaches can be found
in references 23–25.
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If we are interested not only in the total optical response of the medium but
also in its response at submicron scales and nanoscales (i.e., imaging of the
nanosized structures), then it is vital to have a possibility of calculation of fine
electromagnetic field distribution at the fixed distances above the sample. One
of the powerful methods that can be utilized for that is the Green function tech-
nique, which will be described in Section 7.

2.3. Effective Medium Approach for Magnetic Composites

Basic equations of the homogenization theory are applicable not only for scalar
values of the constituents dielectric constants ei, but also for the tensorial 
quantities. Indeed, evaluation of these equations does not demand any special
requirements regarding the character of the electric displacement D and elec-
tric intensity E relation: D = êe0E in which dielectric constant ê can be tenso-
rial. This fact enables us to calculate the effective dielectric constant eeff for the
composites with anisotropic constituents. It can be, for example, polymer com-
posites with magnetic granular, the permittivity of which is tensorial quantity.
The explicit form of the ê tensor for magnetic media will be given in the next
section.

Here we consider effective-medium equations for a composite consisting
of the anisotropic granules characterized by permittivity êA placed into an
isotropic matrix with permittivity eBÎ, where Î is the unit tensor.

We assume that the anisotropic part of êA tensor, which we denote as dêA,
is much smaller than the diagonal one. Thus, êA tensor can be presented as

where |dêA| << eA. Effective permittivity êeff can also be written in the form êeff

= eeffÎ + dêeff. The anisotropic part of the êeff tensor is to be found from the con-
ventional mixture equations. Substitution of the tensorial form of the phase per-
mittivities into the MG equation (2) gives

(4)

If the dêA tensor has only off-diagonal nonzero components, then the Brugge-
man equation leads to the following expression for dêeff:
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eeff is to be found from the conventional BG equation (3). The BG approach
also works for the case when some diagonal components of the dêA tensor are
nonzero, but this time expression for dêeff is more cumbersome.

Since equation (4) was derived from the MG equation, it is applicable for
small concentrations of inclusions. On the contrary, equation (5), which was
derived from the BG equation, is more appropriate for the intermediate values
of f.

Determination of the dêeff tensor allows us to describe anisotropic optical
properties of the composites. In particular, for magnetic composites the effec-
tive value of the MO parameter Q, which plays an important role in the mag-
netooptics, can be evaluated. The definition of the parameter Q is given in the
next section.

3. MAGNETOOPTICS OF UNIFORM MEDIA

Particular properties of a medium in the macroscopic theory of the MO 
phenomena are defined by the form of the ê and m̂ tensors. It is enough 
to consider just the ê tensor, because the properties that we describe below 
are similar for ê and m̂ tensors. Besides, for visible and near-infrared light 
the m̂ tensor is approximately equal to the unit tensor. In the magnetically
ordered state the ê tensor depends on the order parameter. In ferromagnets 
the order parameter is magnetization M, in antiferromagnets it is the sub-
lattice magnetization, and so on. We shall confine our discussion to 
ferromagnets.

Let us consider the simplest case of an optically isotropic ferromagnet. The
presence of magnetization reduces the symmetry to the single-axis one. The ê
tensor can be represented as a sum of symmetric and asymmetric tensors, which
is given by [26]

(6)

The D vector for ferromagnetic medium can be written as

(7)

where m = M/M, b(M) = e1 - e0, e0 is the dielectric permittivity of the medium
at M = 0, and g is the gyration vector. In an isotropic medium, normally 
g = aM. If there is an absorption, then
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are complex functions of the frequency. The second terms in the formulas (6)
and (7) define the gyrotropic effects: magnetic gyrotropic birefringence and
magnetic circular dichroism. The last terms define optical magnetic anisotropy:
magnetic linear birefringence and magnetic linear dichroism.

The constants g and b become zero when M approaches zero.
Usually for the characterization of the MO effects the MO (Voigt) param-

eter Q is used. It is defined as

Normally, |Q| << 1. If the m̂ tensor can no longer be considered as a unit
tensor, then both Q and QM need to taken into account and the MO medium is
called bi-gyrotropic.

In crystals the dependence of the ê tensor on M is more complicated,
namely,

where gl = alqMq and eikl is the antisymmetric three-dimensional-order
pseudotensor (the Levi–Civita tensor). The polar tensors e0

ik, alq, and diklm are
defined by the crystallographic symmetry.

4. MAGNETOOPTICAL EFFECTS IN TRANSMISSION

The MO Faraday effect manifests itself in a rotation of polarization plane of a
linearly polarized light at an angle F when the light propagates along the
medium magnetization M (Figure 7.3).

In electromagnetic theory the Faraday effect can be explained as follows.
When the medium magnetization has non-zero projection on the wave vector
k0 of the incident radiation, two independent fundamental Maxwell equations
solutions are circular polarized waves with different refractive indexes n+

n-, respectively. At the output of the magnetic medium these waves gain phase
shift and when added give linearly polarized wave with rotated polarization
plane. That is why Faraday effect is also called magnetic circular birefringence
[26, 27].

The angle of the light polarization plane rotation is given by

q q= = -Fh
k gh

n
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02
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where qF is a specific Faraday rotation (rotation of polarization plane of the
wave per unit length of the sample, typical values of qF are 1000–30,000°/sm),
n0 = 1/2(n+ + n-), h is the sample’s thickness, k0 is the wave vector module of the
incident light, and g is the module of the medium gyration vector [26].

If a medium has absorption, the absorption coefficients of the right- and
left-handed circular polarized light are different. This phenomenon is called
magnetic circular dichroism. After transmission through a medium that exhibits
such properties, the light changes its polarization from linear to elliptical. The
elliptical polarization is characterized by the orientation angle q, which is anal-
ogous to the Faraday angle, and ellipticity y. These quantities are calculated
by [26]

Specific magnetic circular birefringence and magnetic circular dichroism can
be unified into one general concept—the complex specific Faraday rotation:

The Faraday effect is widely used for the magnetic structure visualization
in transparent samples with an easy direction axis not parallel to the sample’s
surface [27]. In this case, electromagnetic radiation passing through the
domains of opposite magnetization gains slightly different rotation of the polar-
ization plane. This enables us to visualize domains and domain walls by means
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Figure 7.3. The MO effect resulting from the interaction of optical radiation with 
the medium for the geometry when radiation passes along the medium magneti-
zation—the Faraday effect.
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of analyzer. Depending on the mutual orientation of polarizer and analyzer, one
can obtain images with different types of the contrast (Figure 7.4).

If the magnetic sample is transparent but magnetized in its plane, then for
the visualization of the magnetic structure the Cotton–Mouton or Voigt effect
can be used. It arises when electromagnetic radiation propagates in the direc-
tion that is perpendicular to the medium’s magnetization. A linearly polarized
light that has its polarization plane oriented at an angle to the magnetization
direction becomes elliptically polarized after propagation through the medium,
with the longer axes of the ellipse being approximately parallel to the incident
polarization. This effect results from the difference of refractive indexes of two
components of light radiation, which are linearly polarized parallel and per-
pendicular to the direction of magnetization. Consequently, magnetic linear
birefringence takes place.

The Voigt effect is often revealed in experiment as a relative phase shift of
the two polarization components per unit length of a sample:

where n|| = (e0)1/2 and n^ = (e1 - e0
-1g2)1/2 are the refractive indexes for the light

polarized parallel and perpendicular to the gyration vector.

B c n nC M- ^= ( ) -( )w Re ||
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Figure 7.4. Domains images in the polarization microscopy (the field of vision size 
is 20mkm) at the different mutual positions of polarizer and analyzer: (a, c) Domain
contrast; (b) domain walls contrast. In the inlets mutual polarizer (P), analyzer (A)
orientations are showed.
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The Voigt effect is quadratic in magnetization (i.e., the second-order effect),
in contrast to the Faraday effect, which is linear in magnetization.

Analogous to circular magnetic dichroism, linear magnetic dichroism is
also possible in absorbing medium. This effect originates from the difference
in absorption coefficients of the two fundamental linearly polarized waves. The
presence of the magnetic linear dichroism results in a rotation of the orienta-
tional angle of the ellipse during the wave propagation.

When the Voigt effect is utilized for the sample’s magnetic pattern obser-
vation, the analyzer half-wave plate is set in order to convert elliptical polar-
ization into either linear polarization or new elliptical polarization, with the
smaller eccentricity depending on the sign of rotation in the incident ellipse
[28]. The polarization transformation courses differ in terms of the images of
differently magnetized domains (Figure 7.5).

5. THE MAGNETOOPTICAL KERR EFFECT

Along with MO effects that take place during transmission of light through a
magnetized substance, there are a number of effects that manifest themselves
when the light is reflected from the surface of a magnetized material. These
phenomena are conventionally designated MO Kerr effects (MOKE). There are
three types of the Kerr effect, which are differentiated depending on a mutual
orientation of the magnetization, with respect to both the wave propagation
direction and the normal to the surface [26, 29].

The complex polar Kerr effect consists of both the rotation of polarization
plane and the appearance of the ellipticity if a linearly polarized light reflects
from a sample surface and the sample is magnetized normally to this surface
(Figure 7.6a). If the light falls from the vacuum perpendicularly on the sample

214 MAGNETOOPTICS OF GRANULAR MATERIALS

a       b     c  
Figure 7.5. Domain structure observation by means of the Cotton–Mouton effect 
in the iron–garnet film with crystallographic orientation (100). (a) Magnetization
distribution in the sample; (b, c) images obtained at different polarizer and 
analyzer orientations [28].
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surface, the expression for the complex polar Kerr effect takes the following
form:

where FK is the Kerr rotation angle and YK is the ellipticity. The polar Kerr
effect versus photon energy is presented in Figure 7.7.

The longitudinal (meridional) Kerr effect means both the rotation of polar-
ization plane and appearance of the ellipticity when a linearly polarized light

F̃ F YK K Ki
inQ

n
= + =

-2 1
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Figure 7.6. MO Kerr effects taking place when light is reflected from the surface 
of a magnetized material: polar (a), longitudinal (b), and transverse (c) effects.

Figure 7.7. The polar Kerr rotation (curve 1) and the ellipticity (curve 2) for EuO 
single crystal at 10K and H = 40kOe [31].
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reflects from a sample surface provided that the magnetization vector belongs
to both the sample plane and the light incidence plane (Figure 7.6b).

The polar and longitudinal Kerr effects constitute the group of longitudi-
nal MO effects. Under certain conditions, variations of the intensity of linearly
polarized reflected light are observed in the configuration of either the polar or
longitudinal Kerr effect geometry [30].

Like the above-mentioned effects, the transversal (equatorial) Kerr effect
is linear on magnetization. The transversal effect may be observed only in
absorbing materials. It is manifested as the intensity variations and the phase
shift of a linearly polarized light reflected from a magnetized material, if the
magnetization lies in the sample plane but is perpendicular to the light inci-
dence plane (Figure 7.6c). For p-polarization of the incident light (radiation
polarization is perpendicular to the incident plane) the relative change in the
reflected light intensity is given by

where I and I0 are the intensities of the reflected light in the magnetized and
nonmagnetized states, respectively,

rp
12 is the conventional Fresnel coefficient for reflection, and n is the refraction

coefficient for the magnetic medium.
MO Kerr effects are used to observe the domain structure of opaque mate-

rials. If the magnetization vector is perpendicular to the sample plane, then the
polar Kerr effect is utilized. If the magnetization lies in the sample plane, then
structure images can be obtained either in the longitudinal geometry with polar-
izers or in the transverse geometry without polarizers.

6. NONLINEAR MAGNETOOPTICAL EFFECTS

Nonlinear MO effects and, in particular, the second harmonic generation effect
are becoming increasingly important because they are nondestructive and can
be remotely sensed in situ with high spatial and temporal resolution at any inter-
face accessible by light.

In centrosymmetric media, the electric field contribution to the second-
order optical polararizability is forbidden by symmetry [32]. At the same time,
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the majority of widely spread magnetic materials (Fe, Co, Ni, FeNi, etc.)
possess inversion symmetry, so second harmonic generation appears only in
ultrathin surface layer where inversion symmetry is broken. The magnetization
of a material does not usually break this symmetry, but it can modify substan-
tially the form of the nonlinear susceptibility for surface second harmonics gen-
eration [33, 34]. This explains the fact that nonlinear MO effects usually exceed
corresponding linear effects by several orders of magnitude [35–42]. Thus for
granular Co–Cu magnetic films (thickness is 200nm) in polar geometry the
nonlinear Kerr effect is 8°, whereas the linear effect is no more than several
tenths of a degree [38]. In the transversal configuration the nonlinear effect sur-
passes the linear effect more than 40-fold. While investigating ultrathin films
(thickness of 1–10nm) it was revealed that the nonlinear effect, in contrast to
the linear one, practically does not depend on the sample thickness and even
for nanometer scales is about 10°–20° [39] (Figure 7.8). Thus, the technique of
nonlinear optical signal observation is very convenient and sensitive for inves-
tigation of the magnetic materials surfaces.

The surface nonlinear optical polarization of second order can be written
in the form [34]

(8)P E Es ijk j k
2 2w c= ( )
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Figure 7.8. Nonlinear Kerr rotation Fk
(2) for an Fe–Cr multilayer as a function of 

the angle of incidence. Filled circles: s-input polarization; filled diamonds: p-input
polarization. The curves are theoretical fits [39].
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where the surface nonlinear susceptibility tensor c(2)
ijk is a function of magneti-

zation M, and E is the electric field of the light wave. The symmetry of c(2)
ijk is

defined by the time-reversal symmetry and by the symmetry of the particular
surface under consideration. The time-reversal properties, neglecting dissipa-
tion, requires that the real part of c(2)

ijk is an even function of M, while the imag-
inary part is an odd function of M. The latter feature can be particularly useful
for probing of the magnets surfaces.

From a symmetry viewpoint the second-order surface polarization in the
linear (-in-M) approach can be written as

(9)

where

(10)

and

(11)

are contributions that are independent of the magnetization Ps0
2w and are linear

in the magnetization Psm
2w, where ci, i = 1, 2, are nonlinear optical parameters,

and ci, i = 3, 4, 5, 6, are nonlinear MO parameters; and N is the vector normal
to the surface. It is clear that only these two independent combinations that are
second order in E and have the symmetry of the polar vector can be composed
from the polar vectors N and E to get Ps0

2w; and only four independent combi-
nations can be composed from the polar vectors N and E and the axial vector
m to get Psm

2w.
The relation (11) should be regarded as an expansion of P(E, N, M) in E,

N, and M. We restrict the analysis to the terms that are quadratic in E and linear
in N and M. The ratio of the light-wave field E to the magnitude of the
intraatomic field E*, the ratio z = Esurf /E* of the surface electric field Esurf (which
breaks the even symmetry at the surface) to E* (for N), and the magnitude of
the magnetooptical gyrotropy (M), which is determined by the MO parameter
Q and usually satisfies the condition Q << 1, are small parameters. Here expan-
sion in N actually means expansion in NEsurf, as was shown in reference 35.

The use of the expansions (10) and (11) reduces the number of parameters
needed to describe nonlinear MO phenomena (in comparison to the general
formula (8). We can show this by comparing equation (8) with equations (9)
and (10). Formula (10) can naturally be represented in a matrix form, just 
as equation (8), where the third-rank tensor has the following form in Voigt’s
notation:

P E E mN E mN Em EN EN Emsm
2

3 4
2

5 6
w c c c c= ( )( ) + [ ]+ [ ]( ) + [ ]( )

P E EN E Ns0
2

1 2
2w c c= ( ) +

P P Ps s sm
2

0
2 2w w w= +
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(12)

It is symmetric relative to interchange of the indices j and k. Such a form for
the tensor c(2)

ijk corresponds to the limiting •m symmetry group (the Curie
group). A uniform electric field, for example, has this symmetry. It follows from
equation (10) that e33 = e31 + 2e15; that is, the tensor c(2)

ijk (M = 0) is specified in
our case by two independent parameters, rather than three, as required by •m
symmetry. However, there is no contradiction between formulas (10) and (11),
since formula (10) corresponds to the linear approximation with respect to z.
Taking into account the next term with respect to z in the expansion in (10) in,
for example, the form N(NE)2, we obtain e33 = e31 + 2e15 + O(z2).

7. GREEN FUNCTIONS APPROACH. OPTICS OF 
SEPARATE NANOOBJECTS

Averaged signal from inhomogeneous medium with nanoscaled objects gener-
ally is not very informative, and it is vital in some cases to detect signal from
separate nanostructures. This type of situation arises, for example, in read–write
processes at high storage densities, when the sizes of the written information
bits and distances between them do not exceed several tens of nanometers. At
this stage, characterization of the optical properties of the sample by the effec-
tive permittivity is no longer appropriate, and one has to use methods more rig-
orous than the homogenization technique. Among these methods, the dyadic
Green functions approach deserves particular consideration.

As is known from the differential equations theory, the Green functions are
used for solution of the linear inhomogeneous differential equations:

(13)

where L̂ is the linear differential operator. The Green function for this equation
is given by

With the use of the Green function, the solution of equation (13) can be
expressed as
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where y0(r) is the solution of corresponding homogeneous equation. The 
standard Helmholtz equation with nonzero right side

where k0 = w/c, can be solved in terms of the function

which is called the scalar free-space Green function.
However, while dealing with the inhomogeneous medium, one faces more

complex equation. The medium inhomogeneities can be described by a rela-
tively small additional term P1(r,t) in the medium polarization:

The fact that susceptibility c(z,w) depends only on the Z-spatial coordinate
means that we examine here a medium with a stratified structure. The polar-
ization vector P1(r,t) is determined by the kind of inhomogeneities. If it is
related to the magnetization distribution, then in linear magnetooptics we have

where m = M/M is the unit magnetization vector and Q is the MO parameter
(see Section 3). If one is to investigate the MO response at the second 
harmonics, then P1(r,t) is determined by equation (8).

In the Maxwell equation

let us substitute E(r,t) = E(r,w)e-iwt and D(r,t) = D(r,w)e-iwt and use the relation

where e(z,w) = 1 + c(z,w). Then the equation for the Fourier coefficient of the
electric field E(r,w) is given by

(14)— ¥ — ¥ ( ) - ( ) ( ) = ( )E r z k E r
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where k0 = w/c. This equation is inhomogeneous, and thus the apparatus of the
Green function can be used to solve it. But the Green function this time is dyadic
[43]. It is introduced by the equations

(15)

which are solved with ordinary Maxwell boundary conditions. Therefore, the
expressions for the fields derived using the Green function a priori meet these
boundary conditions. The method of Green functions makes it possible to derive
analytical formulas for the Fourier transform of the electric field of a diffracted
wave. This approach proved to be valid in solving a great variety of scattering
problems: light reflection and transmission in rough surface media [43, 44],
plasmon polariton propagation [45], investigation of nonlinear surface MO effects
[36, 40], and calculation of the field distribution in the near-field region [46–49].

With the use of this function, one can convert the partial differential equa-
tion (14) into an integral equation

(16)

where Em
(0)(r,w) is a solution of the corresponding homogeneous equation

Em
(0)(r,w) describes electric field without taking into account inhomogeneities.

To solve the integral equation (16), the first Born approximation can be uti-
lized. In the first Born approximation, additional medium polarization P1(r,w)
depends only on the unperturbed electric field Em

(0)(r,w), and the total electric
field is

where

To proceed further, it is appropriate to introduce the Fourier representations of
Gmv(r,r¢,w) and P1v

(0)(r,w):
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(18)

where k|| = (kx,ky, 0) and r|| = (x,y, 0). The form of these representations is dic-
tated by the dielectric constant e(z,w). The Fourier transforms of the Green
functions are determined by solving ordinary differential equations. This 
procedure is outlined, for example, in references 43–45. Examples of the 
Green function Fourier transforms for the half-space or plate can be found in
references 43 and 45.

Using equations (17) and (18), we can express Fourier transform of the
scattered electric field Êm

(1)(z,w,k||) in terms of the Fourier transform P̂1v
(0)(z,w,k||)

of the medium inhomogeneities polarization:

(19)

Thus, to pass to the electric field distribution in the real space, one needs to
make inverse Fourier transformation.

With the electric field E(r,w) found, one can calculate optical properties of
the material—transmission, reflection, and absorption—and simulate an image
of its structure. For the letter, it is important that relation (19) describes in fact the
angular spatial spectrum of the field of the wave diffracted from the grains or
other inhomogeneities of the sample (e.g., magnetic structure). The scattered
wave field can be written as a superposition of electromagnetic plane waves with
various wave vectors k|| and complex amplitudes defined by equation (19). Based
on equation (19), one can theoretically investigate optical properties of the mate-
rials and calculate images of their dielectric and magnetic structures obtained in
the various types of the microscopy. Two examples of such calculations for the
scanning near-field and dark-field microscopies are presented in Section 10. The
microscopic image is formed by those spatial Fourier components of the wave
field that arrive at the microscope objective. A set of harmonics passed through
the system is controlled by the objective numerical aperture NA = n sinu, where
n is the refractive index of the medium surrounding the objective and u is the aper-
ture angle of the objective. Thus, the features of the image formed in the optical
system are controlled by the inverse Fourier transform that takes into account
only the field harmonics passed through the system:

(20)

Once electric field at the image plane is found, one can calculate the intensity
distribution at this plane: I(r||) = |E(r||)|2; that is, one can simulate an image of
the investigated structure.
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8. SCANNING NEAR-FIELD OPTICAL MICROSCOPY

Detailed study of the magnetization distributions on submicrometer spatial
scales and the elaboration of the corresponding high-resolution techniques is
presently one of the most important problems in applied and fundamental
micromagnetism. In the past decade, significant progress has been made in the
development of methods for studying micro- and nanostructures with the advent
and onrush of magnetic force microscopy, which is a version of scanning probe
microscopy [50]. Currently, magnetic force microscopy is characterized by the
best spatial resolution in studying magnetic microstructures (tens of nanome-
ters [51]). However, its application offers a number of problems: complicated
interpretation and identification of images, the uncontrollable influence of the
microprobe on the magnetization distribution in samples and vice versa, the
problem of positioning the force microscope tip above a surface point under
study, and the low scanning velocity, which makes real-time observation of fast
processes impossible [52]. In this connection, some other alternative methods
of magnetic imaging should be investigated. In this chapter we shall analyze
scope and limitations of the promising approach to optical microscopy of 
magnetic structures, namely, scanning near-field optical microscopy (SNOM).
It combines the rich capabilities of optical methods with the high resolution of
scanning probe microscopy [53, 54]. In the SNOM, a probe scans the speci-
men, with the distance between them being smaller than the wavelength from
its surface.

The SNOM can be utilized in a variety of different imaging modes includ-
ing illumination mode, collection mode and dual mode (Figure 7.9) [55, 56].
In all modes, the resolution depends on the aperture size and the probe-
specimen spacing rather than on the wavelength. In the illumination mode, the
probe acts as the optical near-field generator, which illuminates the specimen.
The signal (transmitted, reflected, or emitted light) is collected in the far-field
using conventional optics. In the collection mode of the SNOM, the sample is
illuminated using far-field optics and the signal is collected by the SNOM tip.
Both the illumination mode and the collection mode of the SNOM have been
utilized and have achieved high-resolution imaging [53–58]. The motivation in
choosing one imaging mode over another is usually dictated by the particular
experiment. The tip can also be used to both illuminate the sample and to collect
the signal, a configuration known as dual SNOM mode [59]. This arrangement
is attractive because it is easy to implement (the need for far-field optics—that
is, the conventional optical microscope—is eliminated). In this mode, however,
both the illumination light and the collected signal must pass through the 
aperture, causing significant reduction in the signal-to-noise ratio.

Like conventional optical microscopy, the SNOM can be performed in
transmission or in reflection. The most common method is the transmission
SNOM in which a thin, transparent sample is excited by the tip (i.e., illumina-
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tion mode) and the signal light is collected in the far-field on the opposite 
side of the sample. For opaque samples, however, the reflection geometry is
required. In the reflection SNOM, the tip and collection optics must be placed
on the same side of the sample, which presents several important problems in
comparison with transmission SNOM [60, 61].
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Figure 7.9. Types of the SNOM configurations. (a) Transmission collection mode. 
The tip is generally metallized except for its nano-sized end. (b) Transmission illu-
mination mode. (c) Reflection collection mode. (d) Photon scanning tunnel mode.
The illumination beam is totally reflected inside a substrate. (e) Dual illumination
collection mode. It is a combination of (a) and (b). (f) Reflection illumination mode.
It is an inverted photon tunnel mode (d) [53].
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Moreover, among SNOM modifications operating in the collection mode,
there is a so-called photon scanning tunnel mode, where light is incident at the
angle of total internal reflection (Figure 7.9d). The optical near field localized
in the neighborhood of the specimen surface is detected with a near-field probe.

The first application of the SNOM for the MO studies happened in 1992
[62], when it was demonstrated that near-field MO observation can be obtained
in the same manner as conventional far-field observation—that is, by using two
cross-polarizers. Betzig et al. [62] visualized 100-nm magnetic domains and
claimed spatial resolution of 30–50nm. The possibility of MO domain imaging
was confirmed in both the transmission regime (Faraday geometry) [63, 64] and
the reflection regime (Kerr microscopy) [65–67].

By now the MO SNOM development is only at the initial stage. Published
experimental results are not very numerous and mainly addressed the investi-
gation of the simple magnetic structures in Co–Pt multilayers [62] and
iron–garnet films [63–70]. Apart from that, some problems related to the MO
images interpretation arise. At the same time, the MO SNOM has indisputable
potential for the imaging of magnetic structures due to its high resolution unlim-
ited by the light diffraction. That is why further experimental and theoretical
work is essential. In particular, utilization of the computer simulation of the
near-field images with some a priori model of the object with the subsequent
comparison of simulated and observed images looks quite natural for over-
coming the problem of images interpretation. In such simulation the dyadic
Green function technique can be very fruitful. Let us consider its application
for the calculation of magnetic nanoparticle images in SNOM.

We examine here the passive probe model [71], which ignores the effect of
the probe on the SNOM image and assumes that the signal detected is propor-
tional to the near-field intensity at the nanostructure surface in the absence of
the probe. This hypothesis may be valid either if the field scattered by the tip
is very small or if it is not reflected back by the sample. Thus, from this qual-
itative analysis, we may expect the probe to be passive either if the tip is very
small or if the sample has a low reflectivity. Therefore, a metallic tip close to
a metallic sample may not satisfy the assumption of a passive probe, whereas
a tiny metallic tip above a dielectric (or magnetic) might be considered as a
passive probe.

A passive probe model simplifies calculation substantially. Indeed, such an
approach enables us to work in the first Born approximation, while for calcu-
lation of the near field we only need to calculate the scattered field Êm

(1)(z,w,k||)
by equation (19) with the Fourier transform P̂1v

(0)(z,w,k||) chosen to be compati-
ble with the kind of nanoscaled structure. The specificity of work in the near-
field reveals information on the domain of integration {k||} in equation (20).
Since the main idea of the SNOM lies in dealing with nonradiation evanescent
waves that correspond to the high spatial frequencies, domain {k||} must include

SCANNING NEAR-FIELD OPTICAL MICROSCOPY 225

    SOFTbank E-Book Center Tehran, Phone: 66403879,66493070  For Educational Use.    



a wide range of k||, including k|| for which |k||| > k0. The fulfillment of the last
inequality is necessary to obtain a high spatial resolution. For example, a res-
olution of 10nm, which is reachable by the SNOM, can be achieved if all spatial
harmonics with kx,y Œ (-25k0, 25k0) are integrated. We should note here that the
scanning altitude [which is z in equation (19)] must not be larger than several
tens of nanometers. A more detailed description of the Green function method
application for the calculations in the near field can be found in reference 46.
Some results of the images modeling are presented in Section 10.

9. POLARIZED ANISOTROPIC DARK-FIELD MICROSCOPY

Dark-field optical microscopy techniques feature significant potential for
detecting and studying such magnetic formations as domain boundaries and
substructures (Bloch lines, Bloch points) characterized by an intricate magne-
tization distribution and a characteristic size of tenths and hundredths of a
micrometer. Dark-field optical microscopy is widely used in the studies of phase
objects in physics, mineralogy, biology, and so on [72]. In the simplest version
of this method, a sample is illuminated through a condenser with a diaphragmed
center, so that the light flux incident onto the sample represents a hollow cone
(Figure 7.10). If the objective aperture is smaller than the condenser aperture,
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Figure 7.10. The schematic diagram of the phase-object observation using the 
dark-field method.
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only light scattered at the sample phase structure hits the objective, forming a
structure image.

In terms of the spatial resolution, the dark-field method is virtually equiv-
alent to conventional optical microscopy [73]. At the same time, the detection
sensitivity of the method under consideration is much higher than that of the
conventional transmission microscopy, since the image is not subject to back-
ground illumination. This makes it possible to apply the dark field to observe
and detect phase inhomogeneities smaller than or of the order of fractions of a
micrometer (ultramicroscopy). Submicrometer magnetic structures may also be
related to such phase inhomogeneities, because one can use the MO (Faraday,
Kerr, Cotton–Mouton) effects. Currently, such magnetic structures also attract
significant interest in the context of searches for new methods for data record-
ing, storing, and reading.

The dark-field method was first applied to study magnetic media in reference
73, where the domain structure was visualized in ferrite–garnet films. A signifi-
cant contribution to the development of MO dark-field microscopy was made by
Thiaville and co-workers [74, 75], who optically detected the vertical Bloch lines
(VBLs) in iron–garnet films and described the visualization mechanism.

The VBLs represent stable magnetic vortices and separate domain wall
regions of opposite polarity [76]. The VBL sizes in many typical ferrite–garnet
films do not exceed tenths of a micrometer.

In references 21 and 74–77, experiments were carried out using the
anisotropic dark-field microscopy (ADFM) method, which is a modification of
the conventional dark-field method wherein a narrow beam is cut out from the
dark-field illumination cone. In references 74 and 75, the light incidence plane
was normal to the domain wall planes (Figure 7.11).

In the ADFM images obtained in references 74 and 75 there is no illumi-
nation from domains, while domain walls are seen as contrast lines. Some 
portions of these lines exhibit lighter or darker regions, which are the VBLs of
different magnetic topology (Figure 7.11). Further studies showed that the pos-
sibility of observing the Bloch lines in this dark-field configuration is related
to the microscopic domain wall tilt in the VBL localization regions [21] rather
than to light scattering immediately on the magnetization distribution in the
Bloch line. Furthermore, another dark-field configuration making it possible to
observe the Bloch lines is when the light incidence plane is parallel to the
domain walls [21, 76, 77]. There is no illumination from either domains or
domain walls in the images obtained in this configuration, while the VBLs are
visualized as bright symmetric objects (Figure 7.11) regardless of magnetic
topology.

The theoretical study reported in reference 78 allowed one to conclude that
the VBL visualization mechanism in the last case is associated with light 
scattering on the VBL magnetic structure.
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Thus, the results obtained in references 74–79 showed that the dark-field
method can be used to detect magnetic structures of size ~0.1mkm. Varying
the specific observation geometry (e.g., the angle of light incidence and the
angle formed by the light incidence plane and the domain wall plane), it
becomes possible to obtain various images of magnetic microstructures. In 
this case, the possibility of imaging through various mechanisms is not 
improbable.

The high sensitivity of the dark-field anisotropic observation method 
suggests its possible application for magnetic nanoparticles imaging that we
discuss in brief in Section 10.
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Figure 7.11. Observation of the VBLs in the ADFM. (a, b) Two main observation 
configurations. (c, e) Typical images of domain walls and Bloch lines (marked by
arrows) obtained in observation configurations corresponding to (a) and (b), respec-
tively (contrast is inverted). (d) Magnetic structure of the sample. The Bloch lines
are indicated by arrows.
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10. NANOSCALE MAGNETIC ELEMENTS, MAGNETIC 
DOTS IMAGING

In the bulk, ferromagnetic materials usually form domain structures to reduce
their magnetostatic energy. However, in very small ferromagnetic systems—
that is, magnetic dots with the diameter not exceeding several hundred nanome-
ters, magnetic nanobridges, and nanowires—the formation of domain walls is
not always energetically favored. Thus, in magnetic dots, some other configu-
rations such as curling spin or collinear-spin configurations arise instead of the
domain structure. If the dot thickness is much smaller than its diameter, then,
as a rule, the following magnetization configuration takes place. Magnetization
directions change gradually in-plane so as not to lose too much exchange
energy, but to cancel the total dipole energy. In the vicinity of the dot center,
the angle between adjacent spins then becomes increasingly larger when the
spin directions remain confined in-plane. Therefore, at the core of the vortex
structure, the magnetization turns out-of-plane and parallel to the plane normal
[80, 81]. Calculations based on the discrete Monte Carlo method [82] or on the
solving of the Landau–Lifshitz equation with the full-scale magneto-dipole
interaction [83, 84] show that no out-of-plane component of the magnetization
occurs if the dot thickness becomes too small. When the thickness exceeds a
certain limit, the top and bottom spin layers will tend to cancel each other, and
again no perpendicular magnetization should be observed. For the dots with
diameters smaller than 100nm, a collinear-type single-domain phase is energy-
wise preferable. So with respect to the size and shape of the magnetic dots, dif-
ferent magnetic structures are realized.

Furthermore, many interesting and not always predictable spin configura-
tions happen in the dynamics when the external magnetic field is applied [83].

Though there are some other methods for the investigation of magnetiza-
tion structures at the nanometer scales (magnetic force microscopy, spin tunnel
microscopy), the MO observation can also give much information.

One of the MO methods that can be suitable here is the MOKE (Section
5)-based measurement of the hysteresis loops by plotting the signal (rotation
or ellipticity) as a function of the applied magnetic field [85–87]. Cowburn 
et al. [87] reported such measurements at the longitudinal MOKE on nanoscale
supermalloy (Ni80Fe14–Mo5) dot arrays. From their experiments it was possible
to conclude that a collinear-type single-domain phase is established in the 
particles with diameters smaller than a critical value (about 100nm) and that a
vortex phase likely occurs in dots with larger diameters. Aign et al. [88] used
polar MO Kerr microscopy to show the influence of dipolar interaction on the
magnetization reversal in the individual Co dots and on the collective behav-
ior of the dots array. From a comprehensive MO microscopy study, coupled to
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numerical simulations, they arrived at a detailed understanding of the parame-
ters that drive the single dot and collective magnetization reversal behaviors,
as, for instance, the formation of magnetostatically frustrated zones in the
arrays.

Investigation of magnetic nanoobjects structure on ultrafast timescales is
possible with the use of stroboscopic effects [89–91]. Domain walls propaga-
tion in magnetic nanowires was also observed by the MOKE microscopy [92].
Thus among the variety of MO methods the MOKE approach remains at the
forefront of magnetic nanostructure research performing high spatial and tem-
poral resolution.

10.1. Imaging in SNOM

At the same time, as suggested by theoretical calculations, the size of the spin
configuration peculiarities can be fairly small, and, consequently, conventional
magnetization measurements fail to distinguish them from the surrounding
magnetic structure. Moreover, observation of individual properties of the
closely packed magnetic dots also demands for super-resolution. At this stage
the SNOM microscopy—an optical technique with high spatial resolution—
must be utilized. In spite of some technically removable difficulties in the
extraction of the MO signal from the near-field images, this method allows a
detailed investigation of the nanoscaled magnetization distribution.

To prove this statement, let us examine properties of the SNOM nonmag-
netic and magnetic images. We consider scanning tunneling optical microscopy
configuration of the SNOM (see Section 8). In this configuration a nanostruc-
ture is supposed to be located on the surface of a transparent substrate illumi-
nated by linearly polarized light (wavelength l = 0.5mm) at an incident angle
beyond the limit of the total internal reflection (Figure 7.12). The light diffracted
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Figure 7.12. Schematic for scanning tunneling optical microscopy configuration. 
1, detector; 2, optical probe; 3, sample; 4, substrate.
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on the nanostructure is collected close to the sample surface by the tip of an
optical fiber.

While performing calculations the following parameters were assumed. The
refractive index of the semi-infinite substrate is n = 1.5, the incident angle is 
q = 70° (angle of internal reflection for n = 1.5 equals to 42°). Polarization of
the sample was supposed to be P1i

(0) = e0ci,jE j
(0) (see Section 7), where the tensor

of susceptibility is

(21)

m = (mx,my,mz) = M/M, the unit magnetization vector. The first term in ci,j is a
nonmagnetic part that can be called a crystalline one, and the second term in 
ci,j is a magnetic part (parameter x = 0 for nonmagnetic particle and x π 0 for
the magnetic one).

For the images calculation the Green function technique described in
Section 7 was utilized. Two main configuration of illumination were con-
sidered: s-polarization (incident polarization is perpendicular to the plain of
incidence) and p-polarization (incident polarization is parallel to the plain of
incidence). The electromagnetic field was calculated at a definite distance from
the sample surface (“constant” height of scanning).

Simulations of the near-field images of nonmagnetic nanoparticles mounted
on the surface of the dielectric substrate reveal one important feature (Figure
7.13): The plane of polarization rotates at the particle edges. Nonmagnetic 
rotation of polarization in near field is attributed to the fulfilling of boundary
conditions at the boundaries between two conductors.

This fact should be taken into account in the interpretation of MO images,
since MO observation exploits the property of a magnetized material to rotate
the plane of wave polarization.

Bearing in mind that Q for magnetic materials is on the order of several
hundredths, one can infer that a magnetic particle is difficult to be observed
because of the unavoidable nongyrotropic rotation of the plane of polarization
at its edges.

The MO contribution can be directly detected only at sites where the non-
magnetic contribution to the image approaches zero. Specifically, for a circu-
lar particle magnetized along the surface parallel to the plane of light incidence,
the MO contribution becomes noticeable in crossed polarizers (the exponen-
tially decaying background field is eliminated) at the edges parallel to the inci-
dent light (compare Figures 7.13 and 7.14).

Note that the nonmagnetic contribution is several hundred times higher than
that of the MO component.
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From the aforesaid, it follows that nonmagnetic inhomogeneities of
nanoobjects (nanoparticle edges, lattice defects, etc.) make MO observations
with SNOM difficult. Therefore, some special techniques are needed to extract
the MO signal: modulation of the light polarization or working in the 
apertureless SNOM [68]. Another possibility is to detect the SNOM signal 
at the second optical harmonic that is generated on the surface of the sample
[36, 40].
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Figure 7.13. Simulated images of a nonmagnetic circle Ag particle (refractive 
index n = 0.14 + i4.0, diameter is 100nm, thickness is 10nm) under various illumi-
nation and observation conditions. The spatial resolution is 10nm. A, analyzer; 
P, polarizer [46].
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The other problem that arises during MO observation is that the SNOM
resolution operating in transmission mode is limited not only by the size of the
fiber-tip aperture but also by the thickness of the magnetic film [93–96].

The qualitative explanation of the decrease of resolution in SNOM gives
Figure 7.15 [93]. Super-resolution beyond relay criterion is achievable by the
presence of evanescent spatial harmonics in detected signal. With the increase
of the sample’s thickness, the contribution of these evanescent harmonics is
reduced sharply: The contribution from the regions of the film that are located
further than several hundred nanometers (for l ~ 0.5mkm) is almost entirely
constituted by the far-field radiating components that are responsible for low-
frequency space harmonics and low resolution. So we can conclude that a 
magnetic medium lying below this level does not contribute to the high resolu-
tion but only makes it worse. Consequently, the best results with transmission
SNOM can be achieved only for thin (thickness is less than 300nm).

Such a limitation for resolution does not exist for reflection measurements
because this time only thin surface layers contribute to the image.

The other structure to be considered is a rectangular permalloy magnetic
film of thickness 1nm and size 200 ¥ 500nm. Simulation of the magnetization
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Figure 7.14. Simulated images of a 30-nm magnetic region embedded in a 10-nm-
thick film under various illumination and observation conditions. The images of the
nanoregion magnetized along the (a) x, (b) y, and (c) z axis are shown. The scan
height is 11nm, and the spatial resolution is 5nm. A, analyzer; P, polarizer.
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distribution in the sample with given geometrical and magnetic properties can
be performed using the Landau–Lifshitz equation taking into account the full-
scale magneto-dipole interaction [83] (Figure 7.16a).

In Figure 7.16b–e the calculated near-field images of the entire part of the
sample for different orientation of cross-polarizers and plane of incidence are
presented. Here again we consider the SNOM operating in the photon tunnel-
ing configuration. The brightest parts of the images correspond to the bound-
aries between the regions with uniform magnetization—that is, the domain
walls. That is why it is possible to determine the shape and the size of mag-
netic nanometer-sized structures in the SNOM. For example, from Figure 7.16
one can estimate the width of the domain wall as 50nm. This value is close to
the “real” domain wall’s width determined from the magnetization distribution
in Figure 7.16a.

Finally we look at a SNOM image of the magnetic nanocontact region [83,
84, 97] (Figure 7.17a).

In this case the crystalline part of ci,j plays the main role in the image for-
mation. This is because the banks of the nanocontact are not only magnetic
edges but also crystalline ones. As we have already discussed, this brings about
a very serious problem for the MO SNOM investigation of nanocontacts: In
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Figure 7.15. Radiation and nonradiation (near-field) fields arising in the magnetic 
film with the domain structure. Only near-field spatial harmonics radiated from the
surface layer of several hundredths of a micrometer can reach the probe.
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near field the nonmagnetic rotation of polarization takes place on the crystalline
edges of the structure, leading to extremely high intensities in the area of edges
even during observation in cross-polarizers (Figure 7.17b). If crystalline con-
tribution is subtracted from the image, then the magnetic structure becomes
visible and one can observe the domain wall located at the center of the
nanocontact. It is worth noting that the presence or absence of the domain wall
influences substantially the transport properties of the nanocontact leading to
the giant magnetoresistance effect [98].

10.2. Imaging in the ADFM

As we can see in Section 9, the ADFM technique is sensitive to the orientation
of the nanoparticle magnetization vector and, being simple, may be useful and
handy for studying the magnetization reversal. Combination of the ADFM tech-
nique with a high-speed photography setup presents a means for studying this
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Figure 7.16. Magnetization distribution in rectangular permalloy magnetic film 
of thickness 1nm (a) and simulated near-field images obtained in crossed polariz-
ers for different orientations of incident polarization and plane of incidence: p-
polarization, plane of light incidence is XZ plane (b); s-polarization, plane of light
incidence is the XZ plane (c); p-polarization, plane of light incidence is YZ plane (d);
s-polarization, plane of light incidence is the YZ plane. Height of scanning is 10nm.
Spatial resolution is about 15nm. Intensities in (c) and (e) are two orders of 
magnitude smaller than that in (b) and (d).
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process in situ with at least a nanosecond temporal resolution [99]—that is,
during exposure to magnetic field pulses. We note that, according to theoreti-
cal and experimental estimations, the time of nanoparticle magnetization rever-
sal is 10-12–10-9 sec [100, 101].

The ADFM technique can also yield data on the magnetization state of an
array of particles in the static case [21]. Indeed, by varying the azimuth angle
of light incidence, one can construct the dependence of the array image inten-
sity on the angle. The shape of the curves will depend on the scatter in the
nanoparticle magnetization directions. Notwithstanding the fact that separate
ADFM observation of nanoparticles is impossible at distances between parti-
cles shorter than l/2, the change in the dark-field image intensity during the
array magnetization reversal allows one to determine the average rate of remag-
netization and to detect the presence of particles exhibiting dynamic properties
differing from those of the majority of particles. Furthermore, the dependence
of the image intensity on the azimuth angle of light incidence allows one to
estimate the scatter in the particle magnetization directions in the static case.
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Figure 7.17. Magnetization distribution in magnetic nanocontact (a) and 
simulated near-field images obtained in crossed polarizers (s-polarization is inci-
dent, p-polarization is detected) for the case of light incidence parallel to the XZ
plane: with (b) and without (c) taking into account the crystalline part of ci,j in
equation (21). Height of scanning is 10nm. Spatial resolution is about 15nm.
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