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PREFACE

This book is written for the practicing pharmaceutical scientist involved in

absorption–distribution–metabolism–excretion (ADME) measurements who needs

to communicate with medicinal chemists persuasively, so that newly synthesized

molecules will be more ‘‘drug-like.’’ ADME is all about ‘‘a day in the life of a drug

molecule’’ (absorption, distribution, metabolism, and excretion). Specifically, this

book attempts to describe the state of the art in measurement of ionization constants

(pKa), oil–water partition coefficients (log P/log D), solubility, and permeability

(artificial phospholipid membrane barriers). Permeability is covered in considerable

detail, based on a newly developed methodology known as parallel artificial

membrane permeability assay (PAMPA).

These physical parameters form the major components of physicochemical

profiling (the ‘‘A’’ in ADME) in the pharmaceutical industry, from drug discovery

through drug development. But, there are opportunities to apply the methodologies

in other fields, particularly the agrochemical and environmental industries. Also,

new applications to augment animal-based models in the cosmetics industry may be

interesting to explore.

The author has observed that graduate programs in pharmaceutical sciences

often neglect to adequately train students in these classical solution chemistry

topics. Often young scientists in pharmaceutical companies are assigned the task of

measuring some of these parameters in their projects. Most find the learning curve

somewhat steep. Also, experienced scientists in midcareers encounter the topic of

physicochemical profiling for the first time, and find few resources to draw on,

outside the primary literature.
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The idea for a book on the topic has morphed through various forms, beginning

with focus on the subject of metal binding to biological ligands, when the author

was a postdoc (postdoctoral fellow) in Professor Ken Raymond’s group at the

University of California, Berkeley. When the author was an assistant professor of

chemistry at Syracuse University, every time the special topics course on speciation

analysis was taught, more notes were added to the ‘‘book.’’ After 5 years, more than

300 pages of hand-scribbled notes and derivations accumulated, but no book

emerged. Some years later, a section of the original notes acquired a binding and

saw light in the form of Applications and Theory Guide to pH-Metric pKa and log P

Measurement [112] out of the early effort in the startup of Sirius Analytical

Instruments Ltd., in Forest Row, a charming four-pub village at the edge of

Ashdown Forest, south of London. At Sirius, the author was involved in teaching

a comprehensive 3-day training course to advanced users of pKa and log P

measurement equipment manufactured by Sirius. The trainees were from pharma-

ceutical and agrochemical companies, and shared many new ideas during the

courses. Since the early 1990s, Sirius has standardized the measurement of pKa

values in the pharmaceutical and agrochemical industries. Some 50 courses later,

the practice continues at another young company, pION, located along hightech

highway 128, north of Boston, Massachusetts. The list of topics has expanded since

1990 to cover solubility, dissolution, and permeability, as new instruments were

developed. In 2002, an opportunity to write a review article came up, and a bulky

piece appeared in Current Topics in Medicinal Chemistry, entitled ‘‘Physicochem-

ical profiling (solubility, permeability and charge State).’’ [25] In reviewing that

manuscript, Cynthia Berger (pION) said that with a little extra effort, ‘‘this could be

a book.’’ Further encouragement came from Bob Esposito, of John Wiley & Sons.

My colleagues at pION were kind about my taking a sabbatical in England, to focus

on the writing. For 3 months, I was privileged to join Professor Joan Abbott’s

neuroscience laboratory at King’s College, London, where I conducted an informal

10-week graduate short course on the topics of this book, as the material was

freshly written. After hours, it was my pleasure to jog with my West London Hash

House Harrier friends. As the chapter on permeability was being written, my very

capable colleagues at pION were quickly measuring permeability of membrane

models freshly inspired by the book writing. It is due to their efforts that Chapter 7

is loaded with so much original data, out of which emerged the double-sink sum-Pe

PAMPA GIT model for predicting human permeability. Per Nielsen (pION)

reviewed the manuscript as it slowly emerged, with a keen eye. Many late-evening

discussions with him led to freshly inspired insights, now embedded in various parts

of the book.

The book is organized into eight chapters. Chapter 1 describes the physico-

chemical needs of pharmaceutical research and development. Chapter 2 defines the

flux model, based on Fick’s laws of diffusion, in terms of solubility, permeability,

and charge state (pH), and lays the foundation for the rest of the book. Chapter 3

covers the topic of ionization constants—how to measure pKa values accurately and

quickly, and which methods to use. Bjerrum analysis is revealed as the ‘‘secret

weapon’’ behind the most effective approaches. Chapter 4 discusses experimental
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methods of measuring partition coefficients, log P and log D. It contains a

description of the Dyrssen dual-phase potentiometric method, which truly is the

‘‘gold standard’’ method for measuring log P of ionizable molecules, having the

unique 10-orders-of-magnitude range (log P from �2 to þ8). High-throughput

methods are also described. Chapter 5 considers the special topic of partition

coefficients where the lipid phase is made of liposomes formed from vesicles made

of bilayers of phospholipids. Chapter 6 dives into solubility measurements. A

unique approach, based on the dissolution template titration method [473], has

demonstrated capabilities to measure solubilities as low as 1 nanogram per milliliter

(ng/mL). Also, high-throughput microtiter plate UV methods for determining

‘‘thermodynamic’’ solubility constants are described. At the ends of Chapters 3–6,

an effort has been made to collect tables of critically-selected values of the

constants of drug molecules, the best available values. Chapter 7 describes PAMPA

(parallel artificial membrane permeability assay), the high-throughput method

introduced by Manfred Kansy et al. of Hoffmann-La Roche [547]. Chapter 7 is

the first thorough account of the topic and takes up almost half of the book. Nearly

4000 original measurements are tabulated in the chapter. Chapter 8 concludes with

simple rules. Over 600 references and well over 100 drawings substantiate the

book.

A. AVDEEF
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DEFINITIONS

ACRONYMS�

AC aminocoumarin

ADME absorption, distribution, metabolism, excretion

ANS anilinonaphthalenesulfonic acid

AUC area under the curve

BA/BE bioavailability–bioequivalence

BBB blood–brain barrier

BBM brush-border membrane

BBLM brush-border lipid membrane

BCS biopharmaceutics classification system

BLM black lipid membrane

BSA bovine serum albumin

CE capillary electrophoresis

CHO caroboxaldehyde

CMC critical micelle concentration

CPC centrifugal partition chromatography

CPZ chlorpromazine

CTAB cetyltrimethylammonium bromide

CV cyclic votammetry

DA dodecylcarboxylic acid

DOPC dioleylphosphatidylcholine

DPPC dipalmitoylphosphatidylcholine

DPPH diphenylpicrylhydrazyl
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DSHA dansylhexadecylamine

DTT dissolution template titration

EFA evolving factor analysis

ET extrusion technique (for preparing LUV)

FAT freeze and thaw (step in LUV preparation)

FFA free fatty acid

GIT gastrointestinal tract

GMO glycerol monooleate

HC hydrocoumarin

HIA human intestinal absorption

HJP human jejunal permeability

HMW high molecular weight

HTS high-throughput screening

IAM immobilized artificial membrane

IVIV in vitro–in vivo

LUV large unilamellar vesicle

MAD maximum absorbable dose

MDCK Madin–Darby canine kidney

MLV multilamellar vesicle

M6G morphine-6-glucuronide

NCE new chemical entity

OD optical density

PAMPA parallel artifical membrane permeabillity assay

PC phosphatidylcholine

PCA principal-component analysis

PK pharmacokinetic

QSPR quantitative structure–property relationship

SCFA short-chain fatty acid

SDES sodium decyl sulfate

SDS sodium dodecyl sulfate

SGA spectral gradient analysis

SLS sodium laurel sulfate

STS sodium tetradecyl sulfate

SUV small unilamellar vesicle

TFA target factor analysis

TJ tight junction

TMADPH trimethylaminodiphylhexatriene chloride

UWL unstirred water layer (adjacent to membrane surface)
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NOMENCLATURE

CA;CD aqueous solute concentrations on the acceptor and donor sides of

a membrane, respectively (mol/cm3)

C0 aqueous concentration of the uncharged species (mol/cm3)

Cx
m solute concentration inside a membrane, at position x (mol/cm3)

d difference between the liposome–water and octanol–water log P

for the uncharged species

diff difference between the partition coefficient of the uncharged and

the charged species

� shift the difference between the true pKa and the apparent pKa

observed in a solubility–pH profile, due to DMSO–drug

binding, or drug–drug aggregation binding

Daq diffusivity of a solute in aqueous solution (cm2/s)

Dm diffusivity of a solute inside a membrane (cm2/s)

eggPC egg phosphatidylcholine

h membrane thickness (cm)

hit a molecule with confirmed activity from a primary assay, a good

profile in secondary assays, and with a confirmed structure

J flux across a membrane (mol cm�2 s�1)

Ksp solubility product (e.g., [Naþ][A�] or [BHþ][Cl�])

lead a hit series for which the structure–activity relationship is shown

and activity demonstrated in vivo

Kd or D lipid–water distribution pH-dependent function (also called the

‘‘apparent’’ partition coefficient)

Kp or P lipid–water pH-independent partition coefficient

Ke extraction constant

�nH Bjerrum function: average number of bound protons on a

molecule at a particular pH

Pa apparent artificial-membrane permeability (cm/s)—similar to Pe,

but with some limiting assumption

Pe effective artificial-membrane permeability (cm/s)

Pm artificial-membrane permeability (cm/s)—similar to Pe, but

corrected for the UWL

P0 intrinsic artificial-membrane permeability (cm/s), that of the

uncharged form of the drug

pH operational pH scale

pcH pH scale based on hydrogen ion concentration

pKa ionization constant (negative log form), based on the

concentration scale

poKa apparent ionization constant in an octanol–water titration

pKoct
a octanol pKa (the limiting poKa in titrations with very high

octanol–water volume ratios)

pKmem
a membrane pKa

NOMENCLATURE xxiii



pKgibbs
a ionization constant corresponding to the pH at which both the

uncharged and the salt form of a substance coprecipitate

pKflux
a apparent ionization constant in a log Pe–pH profile, shifted from

the thermodynamic value as a consequence of the unstirred

water layer; the pH where 50% of the resistance to transport is

due to the UWL and 50% is due to the lipid membrane

sink any process that can significantly lower the concentration of the

neutral form of the sample molecule in the acceptor

compartment; examples include physical sink (where the buffer

solution in the acceptor compartment is frequently refreshed),

ionization sink (where the concentration of the neutral form of

the drug is diminished as a result of ionization), and binding

sink (where the concentration of the neutral form of the

drug is diminished because of binding with serum protein,

cyclodextrin, or surfactants in the acceptor compartment)

double-sink two sink conditions present: ionization and binding

S solubility in molar, mg/mL, or mg/mL units

Si solubility of the ionized species (salt), a conditional constant,

depending on the concentration of the counterion in solution

S0 intrinsic solubility, that is, the solubility of the uncharged species

tLAG the time for steady state to be reached in a permeation cell, after

sample is introduced into the donor compartment; in the

PAMPA model described in the book, this is approximated as

the time that sample first appears detected in the acceptor well
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