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3.1 INTRODUCTION

Flexible macromolecules populate an enormous number of

conformations at ordinary temperature, T. If n stable con-

formations are available to each internal bond in a chain of n
bonds, the chain can access nn�2 conformations. When

n ¼ 3, as is appropriate for many simple polymers, the

number of distinguishable conformations exceeds 10100

when n > 211. This number is achieved by polyethylene at

the relatively low molecular weight of 2,984. Scientists and

engineers need information about the average properties of

specific chains with much larger values of n, where the

conformation-dependent physical properties of interest de-

pend on an appropriate average over a truly enormous num-

ber of conformations. Among the several models that have

been proposed for averaging over this ensemble of con-

formations, the rotational isomeric state (RIS) model is

unique in its combination of structural detail with computa-

tional efficiency. It incorporates as much structural detail

(bond lengths, l, bond angles, u, torsion angles, f, differ-

ences in energy for conformations produced by rotation

about a bond or pair of bonds) as most chemists are likely

to desire. Figure 3.1 defines the values of u and f that are

associated with bond i. This detailed description of the local

chain structure is presented in a mathematical framework

that often permits extremely fast calculation of the average

values of many conformation-dependent physical properties

of individual polymer chains in the amorphous bulk state

and in dilute solution in a solvent chosen so that the ex-

cluded volume effect is negligible. The speed of the calcu-

lation follows from the formulation of the problem as the

serial product of n matrices. Computers are easily trained to

rapidly, and accurately, compute this serial product.

The most commonly calculated property is the mean

square unperturbed dimension. It is usually represented

by the mean square unperturbed end-to-end distance,

hr2i0, obtained by averaging the square of the length of

the end-to-end vector, r, over all conformations under

conditions where the chain is unperturbed by long-range

interactions.
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The double sum in Eq. (3.2) can be handled efficiently by

matrix methods when the chain is in its unperturbed, or Q,

state. The result for hr2i0 is usually presented as the dimen-

sionless characteristic ratio, Cn.

Cn ¼
r2
� �

0

nl2
: (3:3)

As defined in Eq. (3.3), Cn is the ratio of the mean square

unperturbed end-to-end distance to the value expected for

the freely jointed chain with the same number of bonds, of

the same length. If the bonds in the chain are of different

lengths, as in polyoxyethylene, l2 in the denominator is

replaced by the mean square bond length. For any flexible

unperturbed chain, Cn approaches a limit, C1, as n ! 1.

The final approach to this limit is usually from below, but it

can sometimes be from above. The latter situation can be

encountered when Cn passes through a maximum at finite

n [1].

The mean square unperturbed radius of gyration, hs2i0, is

accessible by similar methods that rapidly evaluate and sum

the mean square end-to-end distances for all of the sub-

chains, denoted by hr2
iji0, where i and j identify the chain

atoms at the ends of the subchain. If all n þ 1 chain atoms,

indexed from 0 to n, can be taken to have the same mass,

hs2i0 is given by the expression in Eq. (3.4).

s2
� �
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ij

D E

0
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If the chain is flexible, the RIS calculations produce

hs2i0 ¼ hr2i0=6 in the limit as n ! 1, as expected [2].

The ratio hr2i0=hs2i0 may differ from 6 at finite n
because hr2i0 and hs2i0 do not have the same approach to

their limiting behavior [1]. For many real chains,

hr2i0=hs2i0 > 6 at finite n, although hr2i0=hs2i0 ! 6 as

n ! 1. The RIS model has no peer for the calculation

of hs2i0 or hr2i0 as a function on n because it combines

speed with structural detail. Numerous other conformation-

dependent physical properties are accessible also from this

model. This chapter will describe the RIS method, present a

few illustrative results, and cite many of the RIS models for

specific polymers that have been presented in the literature.

3.2 HISTORY AND NOTEWORTHY REVIEWS

The speed of calculations using the RIS model arises from

its formulation of the problem as a serial product of matri-

ces. The generator matrix technique, which lies at the heart

of the calculation, predates the appearance of the RIS model

by 10 years [3]. The application of the RIS technique to

polymers is now over five decades old [4], although its

appearance in the polymer literature did not begin to mush-

room until a decade after its first appearance [5–9]. Because

computers at that time did not have nearly the speed and

widespread availability that is seen today, there was a strong

motivation for formulation of the problem in a manner that

allowed efficient calculation. With today’s computers, the

most popular calculations require no more than a few sec-

onds of cpu time.

The first important general work on the RIS model is

Flory’s classic book, which first appeared in 1969 [10].

His book was followed 5 years later by an excellent review

in Macromolecules that presented a more general and con-

cise formulation of the RIS method [11]. Another book on

the RIS model appeared during the year of the 25th anni-

versary of the first publication of Flory’s original text [12].

It was soon followed by an exhaustive compilation, in a

standardized format, of the RIS models presented in the

literature over the four decades that ended in the mid-

1990s [13].

3.3 RELATIONSHIP TO SIMPLER MODELS

The information incorporated in the RIS model and sev-

eral simpler models is summarized in Table 3.1. The freely

jointed chain has n bonds of length l, with no correlation

whatsoever in the orientations of any pair of bonds. The

contribution of the double sum in Eq. (3.2) is nil, and Cn ¼ 1

at all values of n. Fixing the bond angle, but allowing free

rotation about all bonds, produces the freely rotating chain.

If u 6¼ 90�, Cn will depend on n. The asymptotic limit as

n ! 1 is (1 � cos u)=(1 þ cos u). If u > 90�, as is usually

the case with real polymers, the freely rotating chain model

yields C1 > 1. Energetic information, in the form of a

torsional potential about the internal bonds, E(f), is incorp-

orated in the third model in Table 3.1. If the same symmetric

torsion potential is applied independently to all internal

bonds, the characteristic ratio depends on the average value

of the cosine of the torsion angle. The term from the freely

rotating chain is retained, and it is multiplied by another

term that arises from the symmetric hindered rotation,

C1 ¼ [(1� cos u)=(1þ cos u)] [(1�hcosfi)=(1þhcosfi)].

li

li+1

li�1

fi
qi

FIGURE 3.1. The definitions of ui and fi associated with
bond i.
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Since hcosfi depends on T, hcosfi ¼ {
Ð

exp [ � E(f)=kT]

df}�1
Ð

cosf exp [ � E(f) =kT] df, this model is the only

one in this paragraph that explicitly says the mean square

unperturbed dimensions are temperature dependent. The

Boltzmann constant is denoted by k. All of the results in

this paragraph assume that the bonds are identical.

In general, it is difficult or impossible to write the results

for C1 with such simple closed-form expressions when the

torsions become interdependent and the bonds are not all

identical. However, Nature asks that we take account of the

interdependence of the torsions, because nearly all of the

real-world polymers have bonds that are subject to interde-

pendent torsions. And many important polymers are made

up of bonds with different lengths. The closest one can come

to a general and simple expression is something of the form

given in Eq. (3.5).

C1 ¼ Lim
n!1

G1G2 � � �Gn

U1U2 � � �Un
¼ Lim

n!1

1

Zn
G1G2 � � �Gn: (3:5)

As we shall see below, the denominator in Eq. (3.5) is the

conformational partition function, Zn, for the RIS model of

the chain. It is constructed as a sum of Boltzmann factors

that depend on T and the energies of the first- and higher-

order interactions present in all of the conformations of the

chain. Structural information does not appear explicitly in

Zn. However, a wealth of structural information (l, u, f) can

appear in the numerator of Eq. (3.5). The numerator also

contains all of the thermal and energetic information from

Zn. The combination of this information allows a rapid

estimation of Cn, even at large n, because computers can

rapidly calculate the serial matrix products that appear in the

numerator and denominator of Eq. (3.5).

U1 . . .Un is a simpler serial product than G1 . . .Gn, be-

cause it does not include structural information explicitly.

For this reason, the easiest introduction to the RIS model is

to focus first on Zn, rather than G1 . . .Gn.

3.4 THE ROTATIONAL ISOMERIC STATE

APPROXIMATION

The basis for the RIS model is most easily seen if we

consider a chain where the torsion angles at internal bonds

are restricted to a small set of values. For many simple

polymers, the RIS models use n ¼ 3, but the model is

sufficiently robust so that it can be used with other choices

also. The number of conformations of a chain of n bonds is

nn�2, which becomes enormous when n is large enough so

that the molecule becomes of interest to polymer scientists.

A pair of two consecutive bonds, bonds i � 1 and i, has n2

conformations. The n2 conformations can be presented in

tabular form, where the columns represent the n conforma-

tions at bond i, and the rows represent the n conformations at

bond i � 1. Each entry in the table corresponds to a specific

choice of the conformations at these two bonds. In the RIS

model, this table becomes a matrix. The elements in the

matrix represent contributions to the statistical weights for

the conformation adopted at bond i (which depends on the

column in the matrix), for a specific choice of the conform-

ation at the preceding bond (which depends on the row in the

matrix).

3.5 THE STATISTICAL WEIGHT MATRIX

The statistical weight matrix for bond i, denoted Ui, is

usually formulated as the product of two matrices.

Ui ¼ ViDi: (3:6)

Interaction energies that depend only on the torsion at bond i
are responsible for the statistical weights that appear along

the main diagonal in Di. These interactions are termed first-

order interactions because they depend on a single degree of

freedom, fi. For the example of a polyethylene-like chain

with a symmetric three-fold torsion potential, the rotational

isomeric states are t, gþ, g� (trans, gaucheþ, gauche�). In

the approximation that all bonds are of the same length, all

bond angles are tetrahedral, and the torsion angles for

the t and g� states are 1808 and + 608, the separation of

the terminal atoms in a chain of three bonds is (19=3)1=2l
in the t state, but this separation falls to (11=3)1=2l in the g�

states. This change in separation usually produces different

energies in the t and g� states. The influence of these ener-

gies on the conformation of the chain is taken into account in

D. Often a statistical weight is calculated from the corre-

sponding energy as a Boltzmann factor, w ¼ exp ( � E=RT).

The t state is usually taken as the reference point, with Et ¼ 0

TABLE 3.1. Information incorporated in the RIS model and in several simpler models.

Model Geometric informationa Energetic information

Freely jointed chain n, l None
Freely rotating chain n, l, u None
Simple chain with symmetric

hindered rotation
n, l, u,f First-order interactions (independent

bonds, symmetric torsion)
RIS model n, l, u,f First- and higher-order interactions (interdependent

bonds, torsion need not be symmetric)
aAll bonds are assumed to be identical in the usual implementations of the first three models. The assumption of identical bonds
is easily discarded in the RIS model.
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and a statistical weight of one, and the g states have a

statistical weight ofs ¼ exp [ � (Eg � Et)=RT] if the torsion

is symmetric, with Egþ ¼ Eg�. A pre-exponential factor may

also be necessary if the t and g� wells have significantly

different shapes. When the order of indexing of the rows and

columns is t, gþ, g�, this diagonal matrix takes the form

shown in Eq. (3.7).

Di ¼ diag(1,s,s) ¼
1 0 0

0 s 0

0 0 s

2
4

3
5, 1 < i < n: (3:7)

Real chains often have s < 1, as in polyethylene [14], but a

few chains, such as polyoxymethylene, have s > 1 [15].

The second-order interactions depend jointly on fi�1 and

fi. For a simple chain with n ¼ 3 and symmetric torsion

about its internal bonds, the second-order interactions in the

tgþ, tg�, gþt, and g�t states are identical, as are the inter-

actions in the gþgþ and g�g� states, and the interactions in

the gþg� and g�gþ states. The general form of Vi under

these conditions appears in Eq. (3.8), where the order of

indexing is t, gþ, g� for both rows and columns, and the

reference point for the second-order interactions is any of

the four conformations where one bond is t and the other is g.

Vi ¼
t 1 1

1 c v

1 v c

2

4

3

5, 2 < i < n: (3:8)

The state at bond i � 1 indexes the rows, and the state at

bond i indexes the columns.

Figure 3.2 depicts the four possible separations of the

terminal atoms in a chain of four bonds when all bonds are

of the same length, bond angles are tetrahedral, and the

torsion angles for the t and g� states are 1808 and �608.
By far the shortest separation is seen when the two internal

bonds adopt g states of opposite sign. This short distance

causes most real chains to have severely repulsive second-

order interactions in the gþg� and g�gþ conformations,

producing v < 1, as in both polyethylene and polyoxyethy-

lene. Often the other second-order interactions are weak

enough so that little error is introduced if they are ignored,

which frequently leads to the approximation t ¼ c ¼ 1.

The statistical weight matrix incorporates the first- and

second-order interactions, according to Eq. (3.6). For the

chain with a symmetric three-fold torsion potential and pair-

wise interdependent bonds, Ui adopts the form in Eq. (3.9).

Ui ¼
t s s

1 sc sv

1 sv sc

2

4

3

5, 2 < i < n: (3:9)

The first rotatable bond in the chain, with i ¼ 2, is a special

case because there is no preceding rotatable bond for use in

defining the statistical weights to be incorporated in V2.

This situation is handled by formulating U2 using only the

statistical weights for first-order interactions, which is

achieved by using a value of 1 for every element in V2.

For the simple chain considered in the examples pre-

sented in Eqs. (3.7)–(3.9), all of the Ui are square and

identical [14]. In polyoxymethylene, all of the Ui are square,

but there are two square Ui with distinctly different numer-

ical values of the elements [15]. Half of the statistical weight

matrices for polyoxymethylene incorporate second-order

interactions between pairs of oxygen atoms, and the other

half incorporate second-order interactions between pairs of

methylene groups. For other polymers, such as the polycar-

bonate of bisphenol A [16], some of the Ui may be rect-

angular but not square, because there is a different number

of rotational isomeric states at bonds i � 1 and i. The RIS

model does not require that all bonds adopt the same value

for n.

3.6 THE CONFORMATIONAL PARTITION

FUNCTION, Zn

The conformational partition function, in the RIS ap-

proximation, is the sum of the statistical weights for the

nn�2 conformations in the RIS model. The terminal row

and column vectors must be formulated so that they will

extract the desired sum of the statistical weights of all

conformations from V2D2 . . .Vn�1Dn�1.

Zn ¼ J�V2D2V3D3 . . .Vn�1Dn�1J

¼ J�U2U3 . . .Un�1J: (3:10)

J� denotes a row of n elements in which the first element is 1

and all following elements are 0, and J denotes a column of

n elements in which every element is 1. The statistical

weight matrix Ui, 1 < i < n, is the product ViDi. Often J�

and J are written instead as U1 and Un [11].

Zn ¼ U1U2U3 . . .Un�1Un ¼
Yn

i¼1

Ui: (3:11)
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FIGURE 3.2. The four distinguishable separations of the ter-
minal atoms in a chain of four bonds when all bonds are of the
same length, l, all bond angles are tetrahedral, and the three
states at each internal bond have torsion angles of 1808 (t) or
+608 (gþ and g�).
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As a specific example, Zn for a polyethylene chain can be

calculated by the combination of Eqs. (3.9) and (3.11), in the

approximation where t ¼ c ¼ 1 [14].

Zn ¼ 1 0 0½ �
1 s s

1 s s

1 s s

2

4

3

5
1 s s

1 s sv

1 sv s

2

4

3

5
n�3

1

1

1

2

4

3

5 ¼ J�
1 s s

1 s sv

1 sv s

2

4

3

5
n�2

J: (3:12)

For ethyl terminated polyoxyethylene, the main portion of

the calculation employs a repetition of three distinct statis-

tical weight matrices, containing two distinct s’s and two

distinct v’s [15].

Zn ¼ J�
1 sa sa

1 sa sa

1 sa sa

2
4

3
5

1 sa sa

1 sa sava

1 sava sa

2
4

3
5

1 sb sb

1 sb sbvb

1 sbvb sb

2
4

3
5

1 sa sa

1 sa savb

1 savb sa

2
4

3
5

0
@

1
A

(n�4)=3
1 sa sa

1 sa sava

1 sava sa

2
4

3
5J: (3:13)

Here sa and sb denote the statistical weights for the first-

order interaction of two methylene groups and two oxygen

atoms, respectively, in g states. The statistical weights for

the second-order interactions of two methylene groups and a

methylene group with an oxygen atom in g�g� states are

denoted by va and vb, respectively.

Table 3.2 summarizes RIS models for several chains with

pair-wise interdependent bonds subject to a symmetric

three-fold torsion potential, such that U is given by

Eq. (3.9). The torsion angles are 1808 and �(608þ Df).

Every entry has Ev < 0. This energy is listed as being

infinite when the population of the gþg� and g�gþ states

is so small that it can be ignored. In contrast with Ev, the

table contains entries for Es that are of either sign.

Table 3.3 summarizes selected literature citations for

RIS models for homopolymers with 1–7 bonds per repeat

unit, with all bonds subject to symmetric torsions. The list in

Table 3.3 terminateswith poly(6-aminocaproamide),nylon 6,

although RIS models for chains with much longer repeat units

have been reported in the literature [13]. The selection of

entries in Table 3.3 is based in part on recognizing contribu-

tions of historical interest, and in part on more recent models

that exploit computational methods and experiments that

were not readily available during the early days of the devel-

opment of RIS models. It does not include all applications of

the RIS model to a given polymer. In some cases this number

would be huge. For example, there are well over 100 appli-

cations of RIS models for polyethylene in the literature.

TABLE 3.2. RIS models for several chains with pair-wise interdependent bonds subject to a symmetric threefold torsion potential
and Et ¼ Ec ¼ 0. Lengths in nm, angles in degrees, energies in kJ/mol.

Polymer Bond l u Df Es Ev Reference

Polymethylene C–C 0.153 112 7.3�3 1.1–1.9 5.4–6.7 [14]
Polymethylene C–C 0.153 112 0�3 1.8–2.5 7.1–8.0 [14]
Polyoxymethylene C–O 0.142 112 5 �5.9 1 [15]

O–C 0.142 112 5 �5.9 6.3
Polydimethylsilmethylene Si–C 0.190 115 0 0 1 [17]

C–Si 0.190 109.5 0 0 0.80
Polydimethylsiloxane Si–O 0.164 143 0 3.6 1 [18]

O–Si 0.164 110 0 3.6 4.2
Polyoxyethylene C–O 0.143 111.5 10 �1.7 to �2.1 1.7 [15]

O–C 0.143 111.5 10 �1.7 to �2.1 1
C–C 0.153 111.5 10 3.8 1.7

Poly(trimethylene oxide) O–C 0.143 111.5 10 3.8 1 [15]
C–C 0.153 111.5 0 �1.7 1
C–C 0.153 111.5 0 �1.7 2.5
C–O 0.143 111.5 10 3.8 1
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3.7 THE STEREOCHEMICAL SEQUENCE

IN VINYL POLYMERS

Vinyl polymers, for which polypropylene serves as a

prototype, present some additional issues not encountered

in chains with symmetric torsions. The physical properties

of these chains depend on the stereochemical composition

and stereochemical sequence of the chain, and this depend-

ence must be reflected in Z. Two equivalent methods have

been used for description of the stereochemistry of vinyl

polymers. One approach uses pseudoasymmetric centers

[67]. Although the fragment denoted by ---CH2---CHR---

CH2--- does not contain a chiral center, it can be treated as

though it were chiral if one CH2 group is distinguished from

the other. This distinction is drawn when the bonds in the

chain are indexed from one end to the other, because then

the CH2---CHR bond preceding the pseudoasymmetric cen-

ter bears a different index from the following CHR---CH2

bond. The –CHR-group is defined here to be in the d (l)
configuration if the z component of the nonhydrogen sub-

stituent is positive (negative) in a local coordinate system

for the CHR---CH2 bond. This local coordinate system

is defined as follows: The x-axis for the CHR---CH2

bond is parallel with the bond and oriented from CHR to

CH2. The y-axis is in the plane of the chain atoms in

---CH2---CHR---CH2---, and oriented with a positive projection

on the x-axis for the preceding CH2---CHR bond, which

points from CH2 to CHR. The z-axis completes a right-

handed Cartesian coordinate system. Alternatively (and

equivalently), the stereochemical sequence can be described

TABLE 3.3. Selected literature citations for RIS models of polymers without rings in the backbone and with bonds
subject to symmetric torsions. x denotes the number of chain atoms in the repeat unit. For a given value of x, the
models are listed in the order of increasing molecular weight of the repeat unit specified in the third column.

x Polymer Repeat unit References

1 Polymethylene, polyethylene ---CH2--- [14,19]
Polysilane ---SiH2--- [20]
Polymeric sulfur –S– [21–23]
Polytetrafluoroethylene ---CF2--- [24–26]
Polydimethylsilylene ---Si(CH3)2--- [20]
Polymeric selenium –Se– [21–23, 27]

2 Polyoxymethylene ---CH2---O--- [15,28,29]
Polysilylenemethylene CH2SiH2 [30]
Polydihydrogensiloxane OSiH2 [31]
Polyisobutylene ---CH2---C(CH3)2--- [32–35]
Polyvinylidene fluoride ---CH2---CF2--- [36,37]
Polydimethylsilylenemethylene ---CH2---Si(CH3)2--- [17,30,38]
Polydimethylsiloxane ---O---Si(CH3)2--- [18,39]
Polyphosphate ---O---PO2--- [40]
Polyvinylidene chloride ---CH2---CCl2--- [41]
Polydichlorophosphazene ---N---PCl2--- [42]
Polyvinylidene bromide ---CH2---CBr2--- [36]
Polydiphenylsiloxane ---O---Si(C6H5)2--- [43]

3 Polyoxyethylene ---O---CH2---CH2--- [15,44–46]
Polyglycine ---NH---CH2---CO--- [47]
Polythiaethylene ---S---CH2---CH2--- [48,49]
Poly(oxy-1,1-dimethylethylene) ---O---CH2---CH(CH3)2--- [50]

4 Poly(1,4-cis-butadiene) ---CH2---CH==CH---CH2--- [51–54]
Poly(1,4-trans-butadiene) ---CH2---CH==CH---CH2--- [53–56]
Poly(trimethylene oxide) ---CH2---CH2---CH2---O--- [15]
Poly(1,4-cis-isoprene) ---CH2---CH==C(CH3)---CH2--- [51,52,57]
Poly(1,4-trans-isoprene) ---CH2---CH==C(CH3)---CH2--- [53,55,56]
Poly(trimethylene sulfide) ---CH2---CH2---CH2---S--- [58]
Poly(3,3-dimethyloxetane) ---O---CH2---C(CH3)2---CH2--- [59,60]
Poly(3,3-dimethylthietane) ---S---CH2---C(CH3)2---CH2--- [61]

5 Poly(tetramethylene oxide) ---CH2---CH2---CH2---CH2---O--- [15]
Poly(1,3-dioxolane) ---CH2---CH2---O---CH2---O--- [62]

6 Poly(pentamethylene sulfide) ---S---CH2---CH2---CH2---CH2---CH2--- [63]
Poly(thiodiethylene glycol) ---O---CH2---CH2---S---CH2---CH2--- [64]

7 Poly(hexamethylene oxide) ---O---CH2---CH2---CH2---CH2---CH2---CH2--- [65]
Poly(6-aminocaproamide) ---NH---CH2---CH2---CH2---CH2---CH2---CO--- [66]
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as sequences of meso diads (two successive identical pseu-

doasymmetric centers) and/or racemo diads (two successive

nonidentical pseudoasymmetric centers) [67].

Statistical weight matrices that include all first- and sec-

ond-order interactions can be formulated using Eq. (3.6) and

the additional matrix defined in Eq. (3.14).

Q ¼
1 0 0

0 0 1

0 1 0

2
4

3
5: (3:14)

Q has the useful property that Q2 ¼ E, where E denotes the

identity matrix. For a vinyl polymer with a nonarticulated

side chain (such as a halogen atom), the ---CHR---CH2--- bond

immediately following a pseudoasymmetric center has a D

matrix that is either

Dd ¼ diag(h,1,t) (3:15)

or

Dl ¼ diag(h,t,1) ¼ QDdQ, (3:16)

depending on whether the CHR is a d or l pseudoasymmetric

center. The three-rotational isomeric states are t,gþ, and g�,

in that order. The conformation weighted by t has two first-

order interactions, which occur between the underlined pairs

of atoms in CH2---CHR---CH2---C and CH2---CHR---CH2---C

(this t is different from the one used in Eq. (3.9)). The

conformation with only the second of these first-order inter-

actions is weighted by h, and the conformation with only the

first of these first-order interaction is the reference point,

with a statistical weight of 1. The most important second-

order interactions are independent of the configuration of

the side chain because they only involve atoms in the main

chain.

Vd ¼ Vl ¼
1 1 1

1 1 v

1 v 1

2
4

3
5: (3:17)

The complete statistical weight matrices for this bond in the

two stereochemical configurations are obtained as VD, from

Eq. (3.6).

Ud ¼ QUlQ ¼
h 1 t

h 1 tv

h v t

2
4

3
5: (3:18)

Proceeding in the same manner, there are four possible

statistical weight matrices for the CH2---CHR bond immedi-

ately before a pseudoasymmetric center, depending on the

stereochemistry at this center and the preceding pseudoa-

symmetric center. If both pseudoasymmetric centers have

the same chirality, the two possibilities, Udd and Ull, can be

interconverted using Q.

Udd ¼ QUllQ ¼
hvRR tvCR 1

h tvCR vCC

hvCR tvCCvRR vCR

2

4

3

5: (3:19)

The double subscript on v shows whether the second-order

interaction is between two groups in the backbone, vCC, two

side chains, vRR, or a side chain and a group in the back-

bone, vCR. If the two pseudoasymmetric centers have op-

posite chirality, the two possibilities are given in Eq. (3.20).

Udl ¼ QUldQ ¼
h vCR tvRR

hvCR 1 tvCC

hvRR vCC tv2
CR

2
4

3
5: (3:20)

When pseudoasymmetric centers are used for the descrip-

tion of the stereochemical sequence, six distinct statistical

weight matrices, Eqs. (3.18)–(3.20), are required. They can

be replaced by a total of three statistical weight matrices,

denoted by Up,Um, and Ur, if the stereochemical sequence is

described instead as a sequence of meso and racemo diads.

Up ¼ QUd ¼ UlQ, (3:21)

Um ¼ UddQ ¼ QUll, (3:22)

Ur ¼ Udl ¼ QUldQ: (3:23)

The conformational partition function for a vinyl polymer of

specified stereochemical sequence is formulated as a string

of matrices where every second matrix is Up, and the inter-

vening matrices are either Um or Ur, depending on the

sequence of the diads in the chain. The definitions of the

rotational isomeric states must change also when Eqs.

(3.21)–(3.23) are used. Instead of using the t,gþ, and g�

states that are appropriate for d and l pseudoasymmetric

centers, one uses t, g, and �gg states for meso and racemo
diads. The gauche state that has t in its statistical weight is

denoted by �gg, and the other gauche state is denoted simply

by g. Indexing of rows and columns in Up,Um, and Ur is in

the sequence t, g, �gg.

Several vinyl polymers, such as polystyrene, have statis-

tical weights such that t and all of the v’s are much smaller

than 1. Under these circumstances little error may be intro-

duced if the �gg state is ignored because its statistical weight

always includes tv. This simplification allows construction

of Z with 2 � 2 matrices where the rows and columns are

indexed t, g [68].

Up ¼ 1 1

1 v

� �
, (3:24)

Um ¼ h2vRR h

h vCC

� �
, (3:25)

Ur ¼ h2 hvCR

hvCR 1

� �
: (3:26)

In these three equations, all of the statistical weights for

first-order interactions in the diad have been placed in Um

and Ur. The UpUm sequence shows that an isotactic chain

can avoid conformations weighted by v (a very small

number in most polymers) if it adopts an ordered sequence

that is either tg or gt, which is consistent with the com-

monly observed chain conformation in crystalline isotactic
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polymers. In contrast, the UpUr sequence shows that a

syndiotactic chain is more likely to crystallize in either the

tt or gg conformation, because these conformations do not

require weighing with v.

Literature citations for RIS models for several vinyl poly-

mers, as well as related polymers for which stereochemical

compositions and stereochemical sequences are issues, are

summarized in Table 3.4.

3.8 EXTRACTION OF USEFUL INFORMATION

FROM Zn

The conformational partition function is subject to the

same types of manipulations as are other partition functions

encountered in statistical mechanics. Thus the average con-

formational energy of the chain is obtained from the tem-

perature dependence of Zn.

hEi � E0 ¼ kT2 @ ln Zn

@T

� �
: (3:27)

Zn depends on T because the elements of the statistical

weight matrices are Boltzmann factors. The conformational

entropy is obtained from this result and ln Zn.

S ¼ hEi � E0

T
þ k ln Zn: (3:28)

The same approach can be used to deduce average con-

formations of local portions of the chain. The probability

that bond i is in a particular rotational isomeric state, h, is

obtained by dividing Zn into the sum of the statistical

weights of all conformations where this bond is in the

desired state.

ph;i ¼ Z�1U1U2 � � �Ui�1U0
h;iUiþ1 � � �Un: (3:29)

The modified statistical weight matrix denoted by U0
h;i

is obtained by zeroing all columns of Ui except the

column that indexes the desired state, h. This operation

has the effect of ignoring the statistical weights of all con-

formations of the chain where bond i is not in the desired

state, while keeping intact the statistical weights of all chain

Table 3.4. RIS models for selected vinyl polymers and related polymers for which stereochemical composition
and stereochemical sequence are issues. Chains are listed in the order of the molecular weight of their repeat unit.

Polymer Repeat unit References

Polypropylene ---CH2---CH(CH3)--- [69–72]
Poly(vinyl alcohol) ---CH2---CH(OH)--- [73,74]
Poly(vinyl fluoride) ---CH2---CHF--- [75]
Poly(1-butene)a ---CH2---CH(C2H5)--- [76]
Polysilapropylene ---CH2---SiH(CH3)--- [77]
Poly(propylene oxide) ---O---CH2---CH(CH3)--- [78,79]
Poly(vinyl methyl ether)a ---CH2---CH(OCH3)--- [80]
Poly(vinyl chloride) ---CH2---CHCl--- [81,82]
Poly(methyl vinyl ketone) ---CH2---CH(COCH3)--- [83]
Poly(propylene sulfide) ---S---CH2---CH(CH3)--- [79,84,85]
Poly(trifluoroethylene) ---CF2---CHF--- [75]
Head-to-head, tail-to-tail polypropyleneb ---CH2---CH(CH3)---CH(CH3)---CH2--- [86]
Poly(vinyl acetate) ---CH2---CH(OCOCH3)--- [87]
Poly(methyl acrylate) ---CH2---CH(COOCH3)--- [88–90]
Poly(tert-butyl vinyl ketone) ---CH2---CH[COC(CH3)3]--- [91]
Poly(methyl methacrylate) ---CH2---C(CH3)(COOCH3)--- [92–94]
Poly(methyl phenyl siloxane) ---O---Si(CH3)(C6H5)--- [95]
Polystyrene ---CH2---CH(C6H5)--- [68,96,97]
Poly(2-vinylpyrridine) ---CH2---CH(C5NH4)--- [98]
Poly(vinyl bromide) ---CH2---CHBr--- [99]
Poly(N-vinyl pyrrolidone) ---CH2---CH(C4NOH6)--- [100]
Poly(a-methylstyrene) ---CH2---C(CH3)(C6H5)--- [101]
Polysilastyrene ---SiH2---SiH(C6H5)--- [102,103]
Poly(p-chlorostyrene) ---CH2---CH(C6H4Cl)--- [104]
Poly(phenyl acrylate) ---CH2---CH(COOC6H5)--- [105]
Poly(N-vinyl carbazole) ---CH2---CH(C12NH8)--- [106,107]
Poly(methylphenylsilylene) ---Si(CH3)(C6H5)--- [102,108]
Asymmetrically substituted polysilylenemethylenea ---CH2---Si(CH3)[O(CH2)3OC6H4C6H5]--- [109]

aThese articulated side chains require more elaborate methods that are extensions of the simpler ones
described in this Chapter.
bHydrogenated poly(2,3-dimethylbutadiene).
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conformations where this bond is in state h. The ph;i are

useful in the interpretation of conformation-dependent prop-

erties of polymers that are highly local in origin. Examples

are the coupling constants in NMR spectra [110], as evalu-

ated by a Karplus relationship [111–114], and the optical

activity of chiral vinyl polymers [115].

An extension of this approach yields the probability that

bonds i � 1 and i are simultaneously in states j and h,

respectively.

pjh;i ¼ Z�1U1U2 � � �Ui�1U0
jh;iUiþ1 � � �Un: (3:30)

The matrix U0
jh;i is obtained from Ui by zeroing every

element except the one in the row and column indexed by

j and h, respectively.

A useful method for calculating the probabilities for

longer sequences of bonds, in the approximation where

there is interdependence of nearest-neighbor pairs of

bonds, makes use of another probability that can be calcu-

lated from the results of Eqs. (3.29) and (3.30).

qjh;i ¼ pjh;i=pj;i�1: (3:31)

This term is the probability that bond i is in state h, given

that bond i � 1 is in state j. (This restriction on the state at

bond i � 1 was absent in the definition of pjh;i.) The differ-

ences in qjh;i and pjh;i are apparent from examination of the

types of summations that must be performed in order to

achieve unit probability.

Xn

j¼1

Xn

h¼1

pjh;i ¼ 1, (3:32)

Xn

h¼1

qjh;i ¼ 1: (3:33)

The normalization is achieved differently for pjh;i and qjh;i.

If s ¼ 0:543 and v ¼ 0:087, a C–C bond in the middle of a

long polyethylene chain has the following values for these

probabilities, where each set of probabilities is presented in

the form of a 3 � 3 matrix with rows and columns indexed in

the order t, gþ, g�.

pjh;i ¼
0:321 0:138 0:138

0:138 0:0591 0:00516

0:138 0:00516 0:0591

2
4

3
5, (3:34)

qjh;i ¼
0:538 0:231 0:231

0:682 0:292 0:026

0:682 0:026 0:292

2
4

3
5: (3:35)

The elements in Eq. (3.34) illustrate the importance of the

interdependence of the bonds in polyethylene. The probabil-

ity for a pair of bonds in g states depends strongly on

whether they are of the same or opposite sign. The inter-

dependence of the bonds is also apparent in Eq. (3.35). If

the bonds were independent, all rows of qjh;i would be

identical.

The probability that bonds i � 2, i � 1, and i are in states

z, j, and h, respectively, is given by pz;i�2qzj;i�1qjh;i, which

results from the logical extension of Eq. (3.30). This ap-

proach can be extended to the probabilities for observations

of longer sequences of bonds in specified states.

3.9 VIRTUAL BONDS

Many important chains contain bonds that are locked into

a single conformation due to restrictions imposed by ring

formation, as in the benzene ring of poly(ethylene tereph-

thalate), or electronic structures (as in the amide unit of

nylon-6, which strongly prefers the planar trans conform-

ation). These rigid units are often treated with virtual bonds,

where a single virtual bond spans the rigid unit. Several

instances where virtual bonds have been used are summar-

ized in Table 3.5.

3.10 MATRIX EXPRESSION FOR THE

DIMENSIONS OF A SPECIFIED

CONFORMATION

The geometry for a specified conformation of a chain of n
bonds is formulated in a manner that will facilitate aver-

aging of the result with the aid of the information contained

in Zn. We will defer the averaging process until the next

section, and focus here on a single conformation. The stat-

istical weight of this conformation is irrelevant in the pre-

sent section, but it will become highly relevant in the next

section.

The local Cartesian coordinate system depicted in Fig. 3.3

is affixed to each bond in the chain. Bond i runs from chain

atom i � 1 to chain atom i. The x-axis for this bond is

parallel with the bond, and oriented from chain atom i � 1

to chain atom i. The y-axis is in the plane of bonds i and

i � 1, and oriented with a positive projection on bond i � 1.

The z-axis completes a right-handed Cartesian coordinate

system. Since the first bond does not have a previous bond

for use in defining the y-axis, an imaginary zeroth bond is

used. This bond is oriented such that it produces a trans state

TABLE 3.5. Examples of the use of virtual bonds in the
construction of RIS models.

Rigid unit Examples References

Aromatic ring Polybenzoxazine [116]
Polycarbonates [16,117]
Polyesters [118–120]
Polypyrrole [121]

Aliphatic ring Polysaccharides [122–124]
Nucleic acids [125]

Amide group Poly(amino acids) [126–128]
Ester group Poly(lactic acid) [129]
CH2CH¼CHCH2unit Polybutadiene [51]
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at the first bond. With these definitions of the local coord-

inate systems, a bond vector in its own coordinate system

can be quickly written.

li ¼
l
0

0

2

4

3

5 (3:36)

The matrix that transforms a vector from its representation

in the coordinate system of bond i þ 1 into its representation

in bond i is denoted Ti. It depends on the angle made by

these two bonds and the torsion at bond i.

Ti ¼
� cos u sin u 0

� sin u cosf � cos u cosf � sinf

� sin u sinf � cos u sinf cosf

2
4

3
5: (3:37)

The expression for liþ1 in the coordinate system of bond i is

Tiliþ1. With this notation, the end-to-end vector in a speci-

fied conformation can be written as a serial product of n
matrices constructed from T and l [11].

r ¼ [ T1 l1 ]
T2 l2

0 1

� �
� � � Tn�1 ln�1

0 1

� �
ln

1

� �

¼ A1A2 � � �An�1An: (3:38)

All of the geometric information (li, ui, fi) pertinent to

bond i appears in Ai. The squared end-to-end distance and

squared radius of gyration can be calculated using exactly

the same information, but with the information presented in

larger matrices.

r2 ¼ [ 1 2lT
1 T1 l21 ]

1 2lT2 T2 lT
2

0 T2 l2

0 0 1

2
4

3
5 � � �

1 2lT
n�1Tn�1 l2n�1

0 Tn�1 ln�1

0 0 1

2
4

3
5

l2
n

ln

1

2
4

3
5 ¼ G1G2 � � �Gn�1Gn: (3:39)

The expression for s2 is written in the approximation where

all of the chain atoms can be taken to be of the same mass.

s2 ¼ (n þ 1)�2H1H2 . . .Hn�1Hn: (3:40)

Matrices H1 and Hn are written as the first row and last

column, respectively, of the general expression for

Hi;1 < i < n, as was true also for G [11].

Hi ¼

1 1 2lT
i Ti l2

i l2i
0 1 2lTi Ti l2

i l2i
0 0 Ti li li

0 0 0 1 1

0 0 0 0 1

2
66664

3
77775

, 1 < i < n: (3:41)

The squared dipole moment, m2, of polar chains such as

polyoxymethylene can be treated using a simple modifica-

tion of Eq. (3.39). The bond vector, li, for bond i is replaced

by the dipole moment vector, mi, for the same bond [15].

For polyoxymethylene, the bond vectors are connected in a

head-to-tail fashion, but the bond dipole moment vectors are

connected in a head-to-head, tail-to-tail fashion, with the

oxygen atom being at the negative end of mi. Extension to

polyoxyethylene requires that some of the mi be null vec-

tors, as would be the case for the CH2---CH2 bond [15]. In

some chains, such as poly(vinyl chloride), the important mi

are not aligned with the li [130].

3.11 AVERAGING THE DIMENSIONS OVER ALL

THE CONFORMATIONS IN Zn

The matrices denoted by Ai, Gi, and Hi(1 < i < n)

in Eqs. (3.38)–(3.40) depend on the rotational isomeric

state assigned to bond i through the appearance of fi in

Ti. The states at this bond also index the columns of Ui.

We now seek a pairing of the appropriate statistical

weight from Ui with the geometry in Ti. This objective is

achieved by expansion of each element in Ui through

multiplication of each of its elements by the appropriate

Ai, Gi, or Hi, depending on whether the target of the calcu-

lation is hri0, hr2i0, or hs2i0. As an example, the calcula-

tion of hr2i0 can be written as a serial product of n G

matrices [11].

hr2i0 ¼ Z�1G1G2 . . .Gn�1Gn: (3:42)

The internal Gi are constructed by expansion of each elem-

ent in Ui, denoted ujh, by Gh, such that Gi becomes a

5n � 5n matrix, whereas Ui was a n � n matrix. The ter-

minal Gi are either a row or column of 5n elements. When

n ¼ 3, the G matrices take the forms shown in Eqs. (3.43)–

(3.45).

G1 ¼ 1 2lT
1 T1 l21 0 � � � 0

� �
, (3:43)

li

li+1

xi

yi

li�1

FIGURE 3.3. Local coordinate system for bond i. The x and y
axes are drawn on the figure. The z-axis (not drawn) com-
pletes a right-handed Cartesian coordinate system.
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Gi ¼
u11Gt u12Ggþ u13Gg�

u21Gt u22Ggþ u23Gg�

u31Gt u32Ggþ u33Gg�

2
4

3
5, 1 < i < n, (3:44)

Gn ¼

l2n
ln
1

l2n
ln
1

l2n
ln
1

2

6666666666664

3

7777777777775

: (3:45)

3.12 USE OF Cn FOR CALCULATION OF C1

The results of an illustrative calculation are depicted in

Fig. 3.4. The chain has u ¼ 112�, n ¼ 3, and f ¼ 180� and

�60�. The statistical weight matrix for all internal bonds is

given by Eq. (3.9) with t ¼ c ¼ 1. When s and v are also 1,

the chain has the same Cn as the freely rotating chain with

the same bond angle. Imposition of a symmetric torsional

potential that penalizes the g states, with s ¼ 0:4, increases

the Cn. Introduction of a pair-wise interdependence, via

s ¼ 0:4 and v ¼ 0:1, produces a further increase in Cn.

Obviously, the interdependence of the bonds can have a

strong effect on the unperturbed dimensions of the chain.

The value of C1 can be reliably determined from the

results depicted in Fig. 3.4 if s ¼ v ¼ 1, but the limiting

value is less reliably defined when s ¼ 0:4 and v ¼ 0:1.

This problem is alleviated by plotting the same data in

another manner, as shown in Fig. 3.5. The linear extrapola-

tion of the data to 1=n ¼ 0 leads unambiguously to the value

for C1. This linear extrapolation is theoretically justified

both for hr2i0=nl2 and for hs2i0=nl2 [1] and also for the

corresponding ratio constructed from the mean square un-

perturbed dipole moment, hm2i0=nm2 [131].

3.13 OTHER APPLICATIONS OF THE RIS MODEL

The previous portion of this chapter has focused primarily

on the use of the RIS model for the computation of the mean

square unperturbed dimensions, because that is the most

frequent application of the model. This section describes

briefly many other applications of the RIS model. All of

these applications employ the conformational partition func-

tion, but the additional information incorporated in the calcu-

lation, and the manipulation of Z, depend on the application.

3.13.1 Applications That Depend Only on the Energetic

Information Contained in Z

The calculation of ph;i as a function of i provides an

estimate of the distance that end effects penetrate into a

long unperturbed chain. This calculation shows that end

effects for polyethylene are confined to the first few bonds

at the end of the chain [10]. The end effects can extend much

further into the chain when the second-order interactions

become more severe, as is frequently the case for the prob-

ability of a helical conformation, ph;i, in a long homopoly-

peptide near the midpoint of its helix-coil transition [132].

In proton NMR, the values of ph;i are helpful in understand-

ing the values of the spin–spin coupling constants, using the

Karplus relationship [111–114], and in understanding the

g effect on the chemical shift in 13C NMR spectra [110,133].

The values of ph;i have also been used to interpret the optical

activity exhibited by chiral poly(a-olefins) [115] and other

polymers [134,135].

Cn

n

0

1
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3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Chain a

Chain b

Chain c

FIGURE 3.4. Cn vs. n for chains with u ¼ 112�, n ¼ 3, and
f ¼ 180� and �608. U for all internal bonds is given by Eq.
(3.9) with t ¼ c ¼ 1. The other statistical weights are (a)
s ¼ v ¼ 1, (b) s ¼ 0:4, v ¼ 1, and (c) s ¼ 0:4, v ¼ 0:1.
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FIGURE 3.5. The data in Fig.3. 4 plotted as Cn vs. 1/n, along
with linear extrapolations to 1=n ¼ 0. The values of C1, which
are (a) 2.198, (b) 4.396, and (c) 7.869, can be estimated with
an error no larger than 1% by linear extrapolation of the data
for n no larger than 128. The linear extrapolation shown,
which uses C64 and C128, leads to estimates for C1 of (a)
2.198, (b) 4.393, and (c) 7.858.
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The combination of ph and pjh gives the number of bonds

in a run of state h. An illustrative use is in the determination

of the average number of residues in a helical segment in a

homopolypeptide as ph=pch, where h denotes the helical

state, and c denotes any other state [10,132].

The stereochemical composition of vinyl polymers after

epimerization to stereochemical composition can be deter-

mined from the information contained in a more elaborate

form of Z that takes account of the conformations of all

stereochemical sequences, with all sequences weighted with

respect to the same definition for the zero point of the

conformational energy [136,137].

3.13.2 Applications That Use Properties Accessible

From Z and the Geometry of the Chains

The higher even moments of the unperturbed dimensions,

hr2pi0 and hs2pi0, p > 1, are accessible through an appropri-

ate expansion in the dimensions of the generator matrices

used for the simpler cases where p ¼ 1 [11]. Dimensionless

ratios formed from appropriate combinations of these even

moments provide information about the shape of the distri-

bution functions. Thus hr2i0 measures the average value of

r2,hr4i0=hr2i2
0 measures the width of the distribution for r2,

and hr6i0=hr2i3
0 measures the skewness of this distribution

function. All flexible homopolymers will approach the

Gaussian limit of hr4i0=hr2i2
0 ¼ 5=3 as n ! 1, but nar-

rower distributions (smaller hr4i0=hr2i2
0) are typical at finite

n [138]. Macrocyclization equilibria can be understood in

terms of these dimensionless ratios, via an elaboration of the

Jacobson–Stockmayer approach [139,140]. More accurate

results, particularly for rather short chains, are obtained

when the hr2pi0=hr2ip
0 are supplemented by additional

terms, calculated from the RIS model, that monitor the

angular correlation between bonds 1 and n in the unper-

turbed chain as r2 ! 0 [141,142].

Although the averages of many conformation-dependent

physical properties of interest can be extracted rapidly from

the RIS model by a matrix multiplication scheme of the type

shown in Eq. (3.42), with Gi defined as appropriate for the

specific property of interest, there are numerous other prop-

erties that cannot be evaluated by this simple device. For

these other properties, an efficient Monte Carlo (MC) simu-

lation can often be constructed, using the information in the

RIS model. The information in Z allows rapid computation

of the ph;2 and qjh;i, 2 < i < n. These normalized probabil-

ities and a random number generator allow rapid generation

of a representative sample of unperturbed chains. If the

sample is sufficiently large, the simple average of r2 over

all chains in the sample will approach the value of hr2i0

specified by Eq. (3.42). The MC simulation is less efficient

than Eq. (3.42) in the calculation of hr2i0, but it offers the

opportunity for the calculation of other physical properties

that cannot be formulated as a serial matrix product. An

example is provided by the angular scattering function,

P(q), where q is related to the scattering angle, u, and

wavelength of the radiation, l, by Eq. (3.47).

P(q) ¼ 1

(n þ 1)2

Xn

i¼0

Xn

j¼0

sin (qrij)

qrij

	 

, (3:46)

q ¼ 4p

l
sin

u

2

� �
: (3:47)

An illustrative example is provided by the use of this

approach to determine how the scattering function of unper-

turbed poly(methyl methacrylate) depends on the stereoche-

mical composition of the chains [143]. The method can also

be employed to generate accurate distribution functions for

the end-to-end distance in unperturbed chains that are suf-

ficiently short so that there are strong departures from the

Gaussian distribution which would be achieved in the limit

as n ! 1 [144].

The representative sample of unperturbed chains can be

edited to generate other useful ensembles. One of the most

common examples is to discard chains with r larger than a

specified cutoff. As this cutoff becomes smaller and smaller,

the ensemble of surviving chains approaches the ensemble

for the unperturbed macrocycle [145]. This ensemble can be

used to evaluate properties of the ensemble directly, or to

determine how easily polydimethylsiloxane macrocycles of

a given n can be threaded [146]. The unperturbed ensemble

can also be edited to discard chains that attempt placement

of their atoms in regions of space that are deemed to be

inaccessible. This approach generates ensembles of chains

that are tethered by one end to an impenetrable surface

[147], or chains in a melt that contains impenetrable spher-

ical filler particles [148]. The complete ensemble of unper-

turbed chains can also be perturbed by the introduction of

new interactions, not considered explicitly in the RIS model,

as in the re-weighting of the ensemble to investigate the

properties of bolaform electrolytes (polymer with ionic

groups at their ends) [149].

The ph;i and qjh;i can be used to cause coarse-grained

chains to mimic the conformational properties of specific

real chains, because these probabilities enforce the proper

distribution function for r for the entire coarse-grained

chain, as well as all of its subchains [150,151]. This feature

facilitates the recovery of atomistically detailed models

from equilibrated ensembles of coarse-grained chains

[152]. It also causes the coarse-grained chains to be sensitive

to subtleties such as the dependence of the miscibility of

polypropylene chains in the melt on their stereochemical

composition [153,154].

3.13.3 Applications That Depend on Properties in

Addition to Z and the Geometry of the Chains

Generator matrices are easily formulated for the compu-

tation of the mean square dipole moment, hm2i0, using the

analogy between formulating r as a sum of bond vectors and

54 / CHAPTER 3



formulating m as a sum of bond dipole moment vectors

[10,15,130]. This analogy can be extended, via the valence

optical scheme, to conformation-dependent properties that

depend on the anisotropy of the polarizability of a bond

[10,12]. This analogy leads to generator matrices for the

optical anisotropy, stress-optical coefficient, electrical bi-

refringence, i.e., molar Kerr constant, and magnetic birefrin-

gence, i.e., molar Cotton-Mouton constant.

3.14 WHY ARE SOME CHAINS DESCRIBED WITH

MORE THAN ONE RIS MODEL?

The appearance in the literature of several RIS models for

a single polymer may initially be confusing, but it is not at

all surprising when one considers the objectives of the RIS

approach. The exact description of the physical properties of

a polymer would start from the Schrödinger equation, in a

manner similar to one appropriate for small molecules. That

approach is not practical. Therefore we resort to practical

models that contain sufficient detailed information to let us

account in a satisfactory manner for the physical properties

that are of interest to us. Sometimes this objective can be

obtained to a similar degree of accuracy with somewhat

different values for the parameters in the model. This situ-

ation is illustrated by the first two entries in Table 3.2. The

two RIS models for polyethylene place the gauche states at

slightly different displacements, �(120� � Df), from the

trans state. In order to maintain the proper values for Cn, a

change in the geometry of the chain, produced by a change

in the value of Df, requires compensating changes in the

weighting of the chains, which is achieved by adjustments in

the values of Es and Ev [14]. If the value of Df were

increased from 0 to 7.58 without any other changes in the

model, Cn would increase because the g states would have

been moved closer to the geometry of the t state. This

increase in Cn can be avoided by increasing slightly the

probability for g state, and that objective is achieved by

the changes in Es and Ev. The literature contains many

similar examples where a given chain is described by vari-

ous RIS models that have the same form, but slightly dif-

ferent values of the parameters.

There are also numerous examples where the RIS models

have more substantial differences, because they use statis-

tical weight matrices of different dimensions. Several ex-

amples are presented in Table 3.6. An obvious origin of the

differences in dimension of the U’s is a difference in the

number of rotational isomeric states assigned to individual

bonds. Thus polyethylene has been described with RIS

models that assign three [14], five [14], or seven [155] states

to each internal bond. An increase in n should lead to a more

accurate model, because it permits the incorporation of more

detail into the calculation. Of course, it also introduces

more parameters into the model, with the added burden on

the user of assigning values to these parameters. The most

popular RIS models for polyethylene use n ¼ 3 because

the increased accuracy accessible with a larger value of n

usually is not justified because it makes a trivial improve-

ment in the agreement between the calculated values and

experiment. The principle here is to incorporate into the RIS

model as much detail as is necessary . . . but no more detail

than necessary.

The necessary amount of detail required in the RIS model

may depend on the physical property that is calculated from

the model. For example, the dependence of C1 on stereo-

chemical composition in poly(methyl methacrylate) is de-

scribed nearly as well by a relative simple three-state model

[94] and by a much more complex six state model that

contains many more parameters [93]. However, the six-

state model is superior to its simpler relative in the descrip-

tion of the scattering function, P(m), which is sensitive to

the precise description of the conformations of relatively

short subchains [159]. In the case of polypropylene, the

stereochemical composition achieved after epimerization

to stereochemical equilibrium is captured correctly by a

three-state model [71], but accurate description of the be-

havior of C1 with changes in stereochemical composition is

better achieved with a five-state model [72]. The stereoche-

mical composition at stereochemical equilibration does not

depend explicitly on the geometry (l, u, f) when it is cal-

culated with the RIS model [71], but C1 is obviously

sensitive to this geometry [72]. In particular, the manner in

which C1 depends on the probability of a meso dyad, pm, as

pm ! 1 can be improved by going from a three-state to a

five-state model.

The dimensions of U change, at constant n, if higher

order interactions are incorporated in the RIS model. Thus

TABLE 3.6. Representative polymers that have been
described by RIS models with different n’s

Polymer n References

Polyethylene 3 [14]
5 [14]
7 [155]

Polytetrafluoroethylene 3 [24]
4 [25]
6 [25]

Polyisobutylene 3 [32]
4 [34,35]
6 [33,35]

Poly(vinylidene chloride) 3 [156]
6 [41]

Polypropylene 3 [69,71]
4 [155]
5 [72,157]
6 [70]

Poly(methyl methacrylate) 2 [92]
3 [94]
6 [93]

Polycarbonate 2 [117,158]
4 [16]
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polyethylene has been treated using a 9 � 9 representation

of U. The calculation retains n ¼ 3, but the increase in

dimensions of U was necessary to test the potential import-

ance of third-order interactions [160]. In order to introduce

into U a statistical weight that depends on a third-

order interaction, the rows are indexed by the states at

bonds i � 2 and i � 1, and the columns are indexed by

the states at bonds i – 1 and i, leading to a n2 � n2

representation for U. The only nonzero elements in this

U are those where the row and column agree on the state at

bond i – 1. For this reason, 2/3 of the elements are zero.

Any nonzero element corresponds to a unique combination

of rotational isomeric states at bond i – 2, i – 1, and i.
Third-order interactions have also been included in U for

polyoxyethylene, requiring an expansion in the dimension

of U, even though n ¼ 3 [45]. Interactions of higher than

third order are sometimes important, as illustrated by the

transition from a random coil to an intramolecular antipar-

allel sheet with tight bends [161]. Under these circumstan-

ces, each U becomes a sparse matrix. The sparse character

of the matrix can be exploited in writing the computer

code required for numerical evaluation of the model [161].
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This chapter discusses the form and parameterization of

the potential energy terms that are used for the atomistic

simulation of polymers. The sum of potential terms consti-

tutes a molecular force field that can be used in molecular

mechanics, molecular dynamics, and Monte Carlo simula-

tions of polymeric systems. Molecular simulation methods

can be used to determine such properties as PVT data, self-

diffusion coefficients, modulus, phase equilibrium, x-ray

and neutron diffraction spectra, small molecule solubility,

and glass transition temperatures with considerable accur-

acy and reliability using current force fields. Included in the

coverage of Chapter 4 is a review of the fundamentals of

molecular mechanics and a survey of the most widely used

force fields for the simulation of polymer systems. In add-

ition, references to the use of specific force fields in the

study of important polymer groups are given.

4.1 MOLECULAR MECHANICS

Traditional molecular mechanics methods developed by

Allinger [1] and others view a molecule as a series of beads

(i.e., the nuclei) joined together by springs (i.e., the bonds).

The total potential energy, V, of the system is the sum of all

bonded and nonbonded terms as

V(r) ¼ VB(r) þ VNB(r): (4:1)

The bonded terms include bond stretching, angle bending,

and dihedral (i.e., torsional) contributions as

VB(r) ¼
X

bonds

Vbond(rij) þ
X

bends

Vbend(uijk) þ
X

dihedrals

Vtors(fijkl),

(4:2)

where the summations are made over all contiguous atoms

constitutingbonds (i.e., two-body interactions), angles (three-

body interactions), and torsions (four-body interactions)

in the system. Torsional contributions also may include

improper torsion and out-of-plane bending terms in some

force fields as discussed in Section 4.2.

Nonbonded terms typically include steric (e.g., van der

Waals) and electrostatic (e.g., Coulombic) terms but may

also include polarization contributions. Force field param-

eters for each bonded or nonbonded term are obtained by

fitting potential energy terms to ab initio (e.g., HF/6-31G*)

or DFT calculations of small molecules or by fitting to

experimental data such as crystal structure and the heat of

vaporization1 (DHV) for low-molecular-weight compounds.

The form of specific terms used by different commercial,

public domain, and customized force fields for polymer

simulations are given in the sections that follow.

4.1.1 Bonded Terms

Bond Stretching

Bond-stretching terms can have several different forms

including the simple harmonic function

Vbond(rij) ¼
1

2

X

bonds

kbond
ij rij � r0

ij

� �2

, (4:3)

where kbond
ij is the bond-stretching parameter and r0

ij is the

equilibrium bond distance (for which the potential energy

contribution is zero). The summation is taken over all bonds

in the system. Alternately, additional higher order (i.e.,

1 The heat of vaporization is related to the cohesive energy density
(CED), the total intermolecular energy, through the expression

ECED ¼ r

M
(DHV � RT)

where M is the molecular weight and r is the density of the low-molecular-
weight compound.
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anharmonic) terms may be included as a polynomial such as

the quartic expression

Vbond(rij) ¼
1

2

X

bonds

k2 rij � r0
ij

� �2

þk3 rij � r0
ij

� �3
�

þ k4 rij � r0
ij

� �4
�
: (4:4)

A Morse exponential potential [2] can also be used for the

bond-stretching term in the form

Vbond(rij) ¼
X

bonds

Dij exp �a rij � r0
ij

� �h i
� 1

n o2

, (4:5)

where Dij is the bond dissociation energy and

a ¼ kij

2Dij

� �1=2

: (4:6)

The Morse function is an accurate representation of the

bond-stretching potential since the exponential term in Eq.

(4.5) implicitly includes anharmonic terms.

Angle Bending

The harmonic term for (valence) angle bending can be

written as

Vbend(uijk) ¼ 1

2

X

bends

kbend
ijk uijk � u0

ijk

� �2

, (4:7)

where u0
ijk is the equilibrium (i.e., minimum energy) valence

angle. The quartic form may be written as

Vbend(uijk) ¼ 1

2

X

bends

k2 uijk � u0
ijk

� �2

þk3 uijk � u0
ijk

� �3
�

þ k4 uijk � u0
ijk

� �4
�
: (4:8)

An alternative to the harmonic expression Eq. (4.7) is the

Urey–Bradley expression

VUB ¼
X

UB

KUB S � S0ð Þ2: (4:9)

where S is the Urey–Bradley 1,3 distance (i.e., the A–C

distance in bond angle ABC).

Torsion

Torsional terms can have several different forms such as

Vtors(fijkl) ¼
1

2

X

dihedrals

X

n¼1,2,...
ktors

ijkl (n)[1 � cos (nfijkl)],

(4:10)

where n is the periodicity of the torsional motion. Another

torsional form that has been used is the Ryckaert–Bellemans

potential [3,4]

Vtors(fijkl) ¼
X

dihedrals

X5

n¼0

an cosn fijkl: (4:11)

Improper (out-of-plane bending) torsion potentials appear in

some force fields. These are used to represent potential

energy required to maintain the configuration of four con-

tiguous atoms within certain geometric limits. The form of

this potential term can be written as

Voop(vijkl) ¼
1

2

X

improper
torsions

koop
ijkl vijkl � v0

ijkl

� �2

, (4:12)

where v0
ijkl represents the equilibrium (i.e., minimum en-

ergy) improper torsion angle.

Cross-Coupling Terms

Cross-coupling terms have been used in several force

fields as a means to represent the effect of one type deform-

ation on another such as the interrelationship between bond

stretching and angle bending which can be expressed in a

bond–bend potential term as

Vb,b(rij,uijk) ¼ 1

2

X

bonds

X

bends

kb,b rij � r0
ij

� �2

uijk � u0
ijk

� �2

:

(4:13)

Other cross-coupling terms include bond–torsion and bend–

bend–torsion. Cross-coupling terms are important for accur-

ate modeling of normal mode vibrational frequencies and to

better model the potential at large deformation (i.e., posi-

tions far from the potential minimum).

4.1.2 Nonbonded Terms

Nonbonded terms include intramolecular interactions be-

tween pairs of atoms separated by three or more bonds and

those belonging to different molecules (i.e., intermolecular

interactions). Interactions between pairs of atoms separated

by one or two bonds are contained in the bonded energy

terms of the bond-stretch and angle-bending terms, respect-

ively. All interactions in a simulation system may be in-

cluded (i.e., Ewald summation) or distance cutoffs, typically

in the range from 8 to 12 Å, may be used.

Steric Terms

Steric interactions are typically represented by some form

of a Lennard-Jones (LJ) potential such as the LJ 6–12

potential or the LJ 6–9 potential as illustrated below

VLJ ¼
X

i 6¼j

«ij 2
r0

ij

rij

 !9

�3
r0

ij

rij

 !6
2
4

3
5: (4:14)
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The 6th order term in the LJ expression represents disper-

sion (long-range) interactions while the 9th (or 12th) order

term represents short-range repulsion. Sometimes an expo-

nential potential may be used as the short-range term in

combination with a 6th order dispersion term in the form

Vexp�6 ¼
X

i6¼j

Aij exp ( � Bijrij) �
Cij

r6
ij

" #
: (4:15)

The exponential form is a better representation of repulsive

interactions than the LJ inverse-12 form. The combination

of an exponential and a 6th order term has been called the

Buckingham potential function, the exponential-6 equation,

or the modified Hill equation.

The LJ parameters «ij and r0
ij appearing in Eq. (4.14) are

obtained by a combination rule using individual atomic

parameters. These combination rules include the Lorentz

and Berthelot rule and the 6th order combination law

given as [5]

r0
ij ¼

(r0
i )6 þ (r0

j )6

2

" #1=6

(4:16)

and

«ij ¼
2(«i«j)

1=2(r0
i r0

j )3

(r0
i )6 þ (r0

j )6
: (4:17)

Electrostatic Terms

The electrostatic terms include the simple Coulombic

expression in the general form

Ves ¼
X

i 6¼j

fqiqj

rij
, (4:18)

where qi represents the charge on atom i of the atom pair i, j,
rij is the separation between atoms i and j, and f ¼ 1=p«0

where «0 is the dielectric constant.

Hydrogen Bonding Contributions

An additional nonbonded term sometimes appearing in

force fields for biological systems (especially older force

field versions) is used to model the interaction between

hydrogen donor and acceptor atoms involved in hydrogen

bonding. An example is the potential energy term

VHB ¼
X

i 6¼j

Cij

r12
ij

� Dij

r10
ij

 !
cos4 uDHA, (4:19)

where uDHA is the angle between the donor (D), hydrogen

(H), and acceptor (A) atoms. Current force field versions do

not explicitly treat hydrogen bonding since extensive para-

meterization of nonbonded terms ideally should include

hydrogen bonding. Incorporation of multiple nonbonded

terms, including polarization terms as discussed in the next

section, significantly adds to the computational time since

nonbonded interactions must be calculated between thou-

sands of atoms at each timestep, typically 1 fs.

Polarization

Some force fields also include a polarization term, Vpol,

along with steric (i.e., LJ or Buckingham) and electrostatic

terms in the nonbonded potential expression as

VNB(r) ¼ Vsteric(r) þ Ves(r) þ Vpol(r): (4:20)

An example of the form of a polarization term is [6]

Vpol ¼ 1

2

X

i

miEi, (4:21)

where mi is the dipole moment associated with atom i and Ei

is the electrostatic field experienced at atom i. A detailed

discussion of polarization contributions is given by Smith

and Borodin [7]. Polarizable force fields allow the charge

distribution to respond to the dielectric environment [8] and

are particularly important in the atomistic simulation of

water and the detailed simulation of biological systems in

general. A problem associated with inclusion of a polariza-

tion potential term is the additional computational cost

incurred by including another nonbonded term. In the case

of polymers, polarizable force fields are particularly import-

ant in the treatment of polymer electrolytes including those

of poly(ethylene oxide)/Liþ as discussed by Smith and

Borodin [7] and in the atomistic simulation of systems in

which chemical reactions can occur as in the case of proton

transfer (e.g., fuel cell applications) or the simulation of

combustion events. Force fields that can treat bond forma-

tion or breaking include ReaxxFF [9] as discussed briefly in

the next section.

4.2 FORCE FIELDS

Many different force fields are now available from com-

mercial and other sources. Some force fields like the MM

series2 of force fields developed by Allinger and the Merck

MM [10] have been parameterized primarily for molecular

mechanics and dynamics of small molecules. Due to their

limited importance for polymer simulations, they will not

be covered in this section; however, they have been used

to study conformational properties of model compounds

for some aromatic polymers. In some cases, force fields

primarily developed for biomolecules such as AMBER,

CHARMM, and GROMOS have been used in the molecular

simulation of polymeric systems. Force fields having par-

ticular importance for polymers include simple but versatile

2 The most recent version is MM4.
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generic Class I force fields like DREIDING [11]. At the

upper end are ab initio parameterized Class II force fields

such as the consistent force field (CFF) family to which the

force field COMPASS3 [12] belongs. COMPASS has been

extensively parameterized using physical property data and

includes anharmonic and cross-coupling contributions in the

bonded interactions (Section 4.1.1). In the discussion that

follows, force fields are grouped into the categories of

generic force fields, biological force fields, and Class II

force fields. As shown by references given in Table 4.1

that surveys the literature from 1990 to 2005, all the force

fields discussed in this section have been used for the atom-

istic simulation of polymeric systems. Many of these articles

provide information on parameterization. References prior

to 1990 were included in the previous review by Roe [13].

4.2.1 Generic Force Fields

Universal. The parameters in the Universal force field

(UFF) [14–16] are calculated using general rules based

only upon the element, its hybridization, and its connectiv-

ity. For this reason, the UFF has broad applicability but is

inherently less accurate than extensively parameterized

force fields such as COMPASS. Bond-stretching terms in

the UFF are either harmonic or Morse functions. The angle-

bending and torsion terms are described by a small cosine

Fourier expansion. For nonbonded terms, the LJ 6–12

potential and Coulombic terms are used for steric and

electrostatic terms, respectively.

DREIDING. DREIDING is another general-purpose force

field that uses generalized force constants and geometry

parameters. Parameterization of DREIDING is biased to-

ward the first row elements (and carbon); however, DREID-

ING can be custom parameterized from ab initio or

semiempircal data from calculations of model compounds

with very good success in the atomistic simulation of poly-

mers as shown by Fried and Goyal [17] and others. The

default form of DREIDING uses the harmonic term, Eq.

(4.3), for bond stretching and a harmonic cosine form of the

angle-bend term given as

Vbend(uijk) ¼ 1

2

X

bends

kbend
ijk cos uijk � cos u0

ijk

� �2

(4:22)

The torsion term has the form

Vtor(fijk) ¼ 1

2

X

dihedrals

ktor
jk 1� cos njk(fjk �f0

jk)
ih on

(4:23)

where f is the dihedral or torsional angle between the ijk
and jkl planes formed by two consecutive bonds ij and kl. In

addition, DREIDING includes an inversion term that has

3 Condensed-phase Optimized Molecular Potentials for Atomistic
Simulation Studies.

TABLE 4.1. Literature citations (1990–2005) for force fields
used in the atomistic simulations of polymers.

Polymer Force field Reference

Poly(aryl ether ether ketone) TRIPOS [41]
DREIDING [42]

Polyarylates CHARMM [43]
Poly(2,5-benzimidazole) TRIPOS [44]
Polybenzoxazoles DREIDING [45]
trans-1,4-Polybutadiene CHARMM [46]
Polycarbonate CFF93 [36]

DREIDING [47,48]
TRIPOS [49]

Polydimethylsiloxane TRIPOS [50]
ReaxxFF [9]

Polyethersulfone DREIDING [51]
Polyethylene custom [52]

custom [53]
COMPASS [54]

Poly(ethylene oxide) CFF93 [39]
custom [55]
CVFF [56]
PCFF [57]
DREIDING [58]

Poly(ethylene terephthalate) CFF93þ [37]
Custom [59]
DREIDING [60]

Poly(p-hydroxybenzoic acid) CFF93 [37]
Polyimides DREIDING [61–66]

TRIPOS [67]
Polyisobutylene Custom [53]
Polyisoprene PCFF [68]
Polymethacrylates AMBER [69]

PCFF [70]
Poly(methyl methacrylate) PCFF [70,71]
Poly(naphthalic anhydride) DREIDING [72]
Poly(p-phenylene) DREIDING [73]

UFF [74]
Poly(p-phenylene isophthalate) AMBER [75]
Poly(p-phenylene sulfide) Custom [76]
Poly(p-phenylene terephthalate) COMPASS [77]

AMBER [75]
Polyphosphazenes COMPASS [40]

AMBER [78]
Polypropylene CFF91 [79]
Poly(propylene oxide) Custom [80]
Polypyrrole GROMOS [81]
Polyrotaxanes Tripos5.2 [82]
Polysilanes CFF93 [38]
Polystyrene CHARMM [83,84]

AMBER [85]
syndiotactic-polystyrene Custom [86]
Poly[1-(trimethylsilyl)-1-propyne] DREIDING [17]
Polyurethanes DREIDING [87]
Poly(vinyl chloride) custom [88]

CVFF, CFF91 [89]
Poly(vinyl methyl ether) PCFF2 [90]
Poly(vinylene fluoride) Custom [91]
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importance for atoms that are bonded to three other atoms

(e.g., N in NH3 and P in PH3). The inversion term represents

the difficulty of forcing all three bonds for atom i bonded to

exactly three other atoms j, k, l, into the same plane. For

nonbonded interactions, DREIDING uses a LJ 6–12 poten-

tial, a Coulombic expression for electrostatic interactions,

and a term to accommodate hydrogen bonding.

4.2.2 Biological Force Fields

Empirical force fields for biological macromolecules

have been reviewed by Mackerell [6] and by Ponder and

Case [18]. These include CHARMM, AMBER, OPLS, and

GROMOS. All may be classified as a Class I force field of

the general form given by Eg. (4.24)

V(r) ¼ 1

2

X

bonds

kbond
ij (rij � r0

ij)
2 þ 1

2

X

bends

kbend
ijk (uijk � u0

ijk)2 þ
X

torsions

kf[1 þ cos (nf� d)] þ 1

2

X

improper
torsions

koop
ijkl (vijkl � v0

ijkl)
2

þ
X

i 6¼j

«ij 2
r0

ij

rij

 !12

�3
r0

ij

rij

 !6
2
4

3
5þ

X

i6¼j

qiqj

«rij
, (4:24)

where the bonded terms are all harmonic and there are no

cross-terms.

CHARMM. The CHARMM4 [19] force field includes

harmonic terms for bond stretching and angle bending.

Both proper and improper torsion terms are included in

CHARMM as are LJ 6–12 and Coulombic nonbonded con-

tributions.

AMBER. AMBER [20,21] has been extensively used in

the simulation of proteins and nucleic acids but recently has

been generalized with parameters for most organic acid and

pharmaceutical molecules [22].

OPLS. The OPLS5 force field [23–25] was introduced in

the early 1980s to simulate liquid-state properties of water

and more than 40 organic liquids. The form of the OPLS-

AA force field is given as [25]

V(r) ¼
X

i

kb,i(ri � r0
i )2 þ

X

i

ku,i(ui � u0
i )2 þ

X

i

V0,i þ V1,i(1 þ cosfi)=2
�

þ V2,i(1 � cos 2fi)=2 þ V3,i(1 þ cos 3fi)=2
�
þ
X

i

X

j

(qiqje
2=rij) þ 4«ij (sij=rij)

12 � (sij=rij)
6

� �	 

: (4:25)

TRIPOS. A force parameterized for biomolecules and small

organic molecules, but sometimes used for polymers, is the

TRIPOS force field [26] in the Sybyl molecular modeling

package. The TRIPOS 5.2 force field includes harmonic

bond stretching and angle bending with a torsional function

consisting of a single cosine term. Nonbonded terms include

a LJ 6–12 potential and a Coulombic term with either a

constant or distance dependent dielectric function.

GROMACS. Another force field originally targeted

for the molecular simulations of biomolecules, but also

useful for polymers, is GROMACS6 that runs molecular

dynamics in a message-passing parallel mode. GROMACS

[27] is a new implementation of GROMOS7 developed

by van Gunsteren and Berendsen at the University of

Groningen in the late 1980s [28,29]. Provisions are avai-

lable in GROMACS for conversion between GROMACS

and GROMOS formats including the GROMOS87 and

GROMOS96 force fields that are provided in GROMACS.

Current features of GROMACS 3.0 have been reviewed by

Lindahl et al. [30].

For bonded terms, GROMACS uses either a two-body

harmonic potential (Eq. (4.3)) or Morse function for bond

stretching and a three-body harmonic potential for angle

bending (Eq. (4.7)). For both bond stretching and angle

bending, a constraint can be used in place of the potential

term. Four-body potentials include proper torsions and im-

proper torsion potentials in the form of Eqs. (4.11) and

(4.12), respectively. GROMACS uses a LJ 6–12 potential

(an exponential short-range term, Eq. (4.15), is optional) and

a Coulombic term (Eq. (4.18)) for nonbonded interactions.

Force fields options include GROMOS, OPLS, and

AMBER. Any united atom (UA) or all-atom force fields

based on the general types of potential functions implemen-

ted in the GROMOS code can be used. GROMACS also

permits the use of arbitrary forms of interactions with

spline-interpolated tables as well as external potential

terms for position-restraining forces and external acceler-

ation (for nonequilibrium molecular dynamics).

4 Chemistry at HARvard Macromolecular Mechanics).
5 Optimized Potentials for Liquid Simulations.
6 GROningen MAchine for Chemical Simulation.
7 GROningen Molecular Simulation.
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CVFF. The consistent valence force field (CVFF) origin-

ally applied to biological systems [31] is a forerunner of the

consistent force field (CFF) and its later derivatives (the

polymer consistent force field PCFF and COMPASS) as

discussed in Section 4.24. Terms in CVFF included a

Morse potential for bond stretching, a harmonic term for

angle bending, cosine torsional and out-of-plane torsional

terms, four cross-coupling terms (bond–bond, angle–angle,

bond–angle, and angle–torsion), and LJ 6–12 and Coulom-

bic terms for nonbonded interactions. CVFF has been

reported to perform less favorably than an early version of

CFF (CFF91) for predicting the conformational energies of

small molecules [32].

4.2.3 Specialized Force Field and MD Codes

ReaxFF. ReaxFF allows for bond breaking and bond

formation in MD simulation so that thermal decomposition

can be modeled as has been shown recently for polydi-

methylsiloxane [9]. ReaxxFF includes terms for traditional

bonded potentials as well as nonbonded potentials (i.e., van

der Waals and Coulombic). Bond breaking and bond forma-

tion are handled through a bond order/bond distance rela-

tionship. Parameterization is through high-level DFT

calculations (B3LYP/6-311þþG**).

DL_POLY. DL_POLY8 is a parallel molecular dynamics

simulation package originally developed at the Daresbury

Laboratory in England. Parameters for the current

DL_POLY_3 force field may be obtained from the GRO-

MOS, AMBER, and DREIDING force fields that share

functional forms.

LAMMPS. Another message-passing MD code is

LAMMPS9[33] used for high-performance parallelized

molecular dynamics calculations. The current version

(version 17) is compatible with both AMBER and

CHARMM.

4.2.4 Class II Force Fields

Class II force fields make extensive use of both anharmo-

nic and cross-coupling terms to adequately represent the

ab initio potential energy surface (PES). These include the

original consistent force field (CFF) that developed out of

CVFF (Section 4.2.2) and subsequent variations, the most

recent being the COMPASS force field.

CFF. The consistent force field (CCF) [34] developed by

Biosym10 is a descendent of CVFF but differs in the specific

types of potential terms. The nonbonded terms of CFF

include a quartic bond-stretch term (Eq. (4.4)), a quartic

angle-bending term (Eq. (4.8)), a three-term Fourier expan-

sion term for torsion (Eq. (4.10)), and an out-of-plane tor-

sion term (Eq. (4.12)). CFF includes several different

versions (CFF91, CFF93 [35], CFF95) and the polymer

consistent force field (PCFF). CFF93 has been parameter-

ized for polycarbonates [36], aromatic polyesters [37], poly-

silanes [38], and poly(ethylene oxide) [39].

COMPASS. COMPASS is an example of a Class II force

field parameterized by using an analytic representation of

the ab initio (e.g., HF/6-31G*) potential energy surface. The

functional form of the COMPASS force field is the same as

CFF93 and includes an out-of-plane potential term (angle

w), a LJ 6–9 potential as well as nonharmonic terms for bond

stretching and angle bending, a Fourier cosine series for

torsion, and a number of cross-coupled terms for the bonded

interactions. The form of the COMPASS force field de-

scribed in detail by Sun [12] is

V(r) ¼
X

b

k2(b � b0)2 þ k3(b � b0)3 þ k4(b � b0)4
� �

þ

X

u

k2(u� u0)2 þ k3(u� u0)3 þ k4(u� u0)4
� �

þ

X

f

k1(1 � cosf) þ k2(1 � cos 2f) þ k3(1 � cos 3f)½ �þ

X

w

k2w2 þ
X

b,b0
k(b � b0) b0 � b

0

0

� �
þ
X

b,u
k(b � b0)(u� u0)þ

X

b,f
(b � b0) k1(1 � cosf) þ k2(1 � cos 2f) þ k3(1 � cos 3f)½ �þ

X

b,u
k u0 � u

0

0

� �
(u� u0) þ

X

u,u,f
k(u� u0) u0 � u

0

0

� �
cosfþ

X

i,j

qiqj

rij
þ
X

i,j
«ij 2

r0
ij

rij

 !9

�3
r0

ij

rij

 !6
2
4

3
5: (4:26)

The partial charge for atom i in COMPASS is the sum of all

charge bond increments, dij, as

qi ¼
X

j

dij: (4:27)

The LJ parameters are obtained from the 6th order combin-

ation law (Eqs. (4.16) and (4.17)).

The parameterization of COMPASS for bonded poten-

tial terms includes a fitting of the total energies as well

their first derivatives (gradients) and second derivatives

(Hessians) to ab initio (HF/6–31G*) calculations of low-

molecular-weight analogs. Examples of such analogs in

the parameterization of COMPASS terms for polycarbo-

nate are diphenyl carbonate, dimethyl carbonate, and 2,2-

diphenylpropane [36]. Nonbonded parameters are obtained

from ab initio calculations and by parameter fitting to crys-

tal structures. Valence parameters and charges are further

scaled to fit experimental data. Full descriptions of the

parameterization procedures and a tabulation of force con-

stants for COMPASS have been given in several sources

[12,40].*

8 http://www.cse.clrc.ac.uk/msi/software/DL_POLY/.
9 Large-scale Atomic/Molecular Massively Parallel Simulator; http://

www.cs.sandia.gov/~sjplimp/lammps.html.
10 Biosym was merged with Molecular Simulations into the current

company Accelrys.
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5.1 INTRODUCTION

In the first part of this article the review of various theor-

etical models for polymer chains is given. The models of freely

jointed chains, freely rotating chains (including wormlike

chains), and chains with fixed bond angles and independent

rotational potentials and with interdependent potentials, in-

cluding rotational isomeric state approximation, are presented.

In the second part various theories of polymer networks

are presented. The affine network model, phantom network,

and theories of real networks are discussed. Scattering from

polymer chains is also briefly presented.

The third part of this article covers computer simulations

of polymer chains. Methods of simulation of chains on

lattices are presented and the equivalence between lattice

chains and off-lattice chain models is discussed. The simu-

lation of excluded volume effect is examined. The polymer

chain collapse from random coil to dense globular state, and

simulations of dense polymer systems are discussed.

This article describes models for linear chains of

homopolymers and for unimodal, unfilled polymer networks.

Theoretical models for other systems, such as star, branched,

and ring polymers, random and alternating copolymers,

graft and block copolymers are discussed in the book by

Mattice and Suter [1]. Block copolymers are discussed in

Chap. 32 of this Handbook [2]. Theories of branched and ring

polymers are presented in the book by Yamakawa [3].

Liquid–crystalline polymers are discussed in the book by

Grosberg and Khokhlov [4], and liquid crystalline elastomers

in the recent book of Warner and Terentjev [5]. Bimodal

networks are discussed by Mark and Erman [6,7]. Molecular

theories of filled polymer networks are presented by

Kloczkowski, Sharaf and Mark [8] and recently by Sharaf

and Mark [9].

This first part of this article deals only with treatment of

‘‘bonded’’ interactions of polymer chains, appropriate only

for modeling chains under Q-point conditions. Problems

connected with effects of excluded volume are presented

at the end of this chapter. The excluded volume effect for

chains in good solvents are also presented in Chaps. IIB [10]

and IIID [11] of this handbook and in books by Freed [12],

de Gennes [13], des Cloizeaux and Jannink [14], and
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Forsman [15]. More information about computer modeling

of polymers is provided by Binder [16,17], Baumgartner

[18], Kolinski and Skolnick [19], and most recently by

Kotelyanskii and Therodorou [20].

5.2 THE FREELY JOINTED CHAIN

The freely jointed chain model (known also as random

flight model) was proposed for polymers by Kuhn in 1936.

The chain is assumed to consist of n bonds of equal length l,
jointed in linear succession, where the directions (u, f)

of bond vectors may assume all values (0 # u # p;

0 # f # 2p) with equal probability (see Fig. 5.1).

This means that directions of neighboring bonds are com-

pletely uncorrelated. The freely jointed chain model corres-

ponds to a chain with fixed bond lengths and with

unconstrained, free to adjust valence angles and with free

torsional rotations. The mean square end-to-end vector hr2i0

in the unperturbed state (denoted by subscript 0) for the freely

jointed chain is

hr2i0 ¼ h(
Xn

i¼1

lj) � (
Xn

j¼1

lj)i0 ¼ nl 2 (5:1)

because

hli � lji0 ¼ 0 for i 6¼ j: (5:2)

It is convenient to compare real polymer chains with

freely jointed chain by using the concept of the characteris-

tic ratio defined as the ratio of the mean-square end-to-end

vectors of a real chain and freely jointed chain with the same

number of bonds

Cn ¼ hr2i0

nl 2
: (5:3)

The characteristic ratio is a measure of chain flexibility.

Flexible chains have Cn close to unity, while semiflexible and

rigid polymers have usually much larger values of Cn. The

mean-square radius of gyration for freely jointed chain is:

hs2i0 �

P
0 # I< j # n

hr2
iji0

(n þ 1)2
¼ (n þ 2)nl 2

6 (n þ 1):
(5:4)

For longer chains (in the limit n ! 1) we have

hs2i0

hr2i0

¼ 1

6
: (5:5)

The freely jointed chain model has an exact analytical

solution for the distribution function of the end-to-end vec-

tor. The probability that the chain of n bonds has the end-to-

end vector r is

P(r,n) ¼
Z

dl1dl2 . . . dlnd[(
Xn

i¼1

li) � r]P
j¼1

n

exp
�u(lj)

kT

� �
,

(5:6)

where T is the absolute temperature, k is the Boltzmann

constant, u(lj) is the potential energy of two segments con-

nected by the j-th bond lj, and d denotes Dirac delta func-

tion. For the freely jointed chain model we have

exp
�u(lj)

kT

� �
¼ 1

4pl 2
d(jljj � ‘): (5:7)

By using the Fourier representation of the d function we

obtain

P(r, n) ¼ 1

8p3

Z
dk e�ik�r sin (kl)

kl

� �n

¼ 1

2p2r

Z 1

0

sin (kr)
sin (kl)

kl

� �n

kdk: (5:8)

The solution of Eq. (5.8) is

P(r, n) ¼ 1

2nþ1pl 2r(n � 2)!

Xi#(n�r=l)=2

i¼0

( � 1)i n!

i!(n � i)!
(n � 2i � r=l )n�2: (5:9)

(1)
I1

I2

I3
I4

I5

In

In −1

q 1

q 2

q n −1

f 3

f n −1

f 2

(2)

(3)

(4)

(5)

(n −2)

(n −1)

(n)

(0)

FIGURE 5.1. Polymer chain composed of n bonds. Angles u are defined as complementary angles.
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In the limit n ! 1 the distribution function of the end-

to-end vector for freely jointed chain asymptotically

approaches a Gaussian function

P(r, n) ¼ 3

2pnl 2

� �3=2

exp
�3r2

2nl 2

� �
: (5:10)

5.3 THE FREELY ROTATING CHAIN

The freely rotating chain model is a freely-jointed chain

with fixed bond angles. It is assumed that all bond have

equal length l and all bond angles are equal. The angle ui is

defined as a supplementary angle of the skeletal bond angle

at segment i as seen in Fig. 5.1, and therefore

hliþ1 � lji ¼ l 2 cos u: (5:11)

Similarly for two bonds i and iþk we have

hliþk � lii ¼ l 2( cos u)k: (5:12)

This result follows from the fact that the projection of a

given bond on the preceding bond is cos u, while projections

in two transverse directions averaged over free rotations

are zero. This means that the projection of the kþi bond on

the kþi�1 bond is cos u, the projection of this projection

on the kþi�2 bond is (cos u)2, etc., which finally leads to the

Eq. (5.12). The mean square end-to-end vector for freely

rotating chain is

hr2i ¼
Xn

i¼1

hlii2 þ 2
Xn

i¼1

Xn�i

k¼1

hli � ljþki

¼ nl 2 1 þ cos u

1 � cos u
� 2 cos u[1 � ( cos u)n

n(1 � cos u)2

� �
: (5:13)

For infinitely long chains the second term in Eq. (5.13)

may be neglected and the characteristic ratio defined by Eq.

(5.3) becomes:

C1 ¼ 1 þ cos u

1 � cos u
: (5:14)

The mean square radius of gyration (defined by Eq. (5.4))

for freely rotating chain is

hs2i0

nl 2
¼ (n þ 2)(1 þ cos u)

6(n þ 1)(1 � cos u)
� cos u

(n þ 1)(1 � cos u)2

þ 2( cos u)2

(n þ 1)2(1 � cos u)3

� 2( cos u)3[1 � ( cos u)n]

n(n þ 1)2(1 � cos u)4
: (5:15)

For very long chains the last three terms in Eq. (5.15)

become negligible and hs2i0 ¼ hr2i0=6.

5.3.1 Worm-like Chain Model

The projection of the end-to-end vector of a chain r on the

direction of the first bond l1=l for the freely rotating chain is

hr � l1

l
i ¼ 1

l

Xn

i¼1

hl1 � lii ¼ l
Xn�1

i¼0

( cos u)i

¼ l
1 � ( cos u)n

1 � cos u
, (5:16)

where u is the angle between bonds. In the limit n ! 1 this

converges to

lim
n!1

hr � l

l
i ¼ 1

1 � cos u
� a: (5:17)

The quantity a is called the persistence length and is a

measure of chain stiffness. The wormlike chain model

(sometimes called the Porod-Kratky chain) is a special con-

tinuous curvature limit of the freely rotating chain, such that

the bond length l goes to zero and the number of bonds n goes

to infinity, but the contour length of the chain L ¼ nl and the

persistance length a are kept constant. In this limit

hr � l1

l
i ¼ a(1 � e�L=a) (5:18)

and

hr2i0

L
¼ 2a[1 � a

L
(1 � e�L=a)]: (5:19)

When the chain length L is much larger than the persis-

tance length a, the effect of chain stiffness becomes negli-

gible. In the limit L ! 1 we have hr2i0=L ! 2a and the

wormlike chain reduces to a freely-jointed chain.

5.4 CHAINS WITH FIXED BOND ANGLES AND

INDEPENDENT POTENTIALS FOR INTERNAL

BOND ROTATION

The more realistic model than freely rotating chain is a

chain with fixed bond angles and hindered internal rotations.

For simplicity it is assumed that the total configurational

energy of the chain is a sum of configurational energies of

chain bonds, and the energy of a given bond is independent

on the configurational states of other bonds in the chain

including the neighboring bonds. We should note that this

is an approximation and for real polymer chains because of

the steric interactions the energy of a given bond depends on

the energy of its neighbors.

We define a local Cartesian coordinate system for each of

the bonds. We assume that the axis xi is directed along the

bond i, and the yi axis lies in the plane formed by bonds i and

i�1, while the zi axis is directed to make the coordinate

system right-handed. The components of the (iþ1)th bond

liþ1 can be expressed in the coordinate system of the pre-

ceding bond i

l0iþ1 ¼ Tiliþ1, (5:20)
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where Ti is the orthogonal matrix of the rotational trans-

formation

Ti ¼
cos ui sin ui 0

sin ui cosfi � cos ui cosfi sinfi

sin ui sin�i � cos ui sinfi � cosfi

2
4

3
5 (5:21)

Here ui is the supplementary bond angle (see Fig. 5.1) and

fi is a dihedral angle between two planes defined by two

pairs of bonds: bonds i�1 and i, and i and i þ1.

The scalar product of two bonds li � lj written in the matrix

notation is lTi lj where lj is the column vector and lT
i is the

transpose of li (i.e., the row vector)

lj ¼ Ij

1

0

0

2
4
3
5 lT

i ¼ lj[100], (5:22)

where li and lj are lenghts of bonds i and j (li ¼ lj ¼ l in our

model but for polymers with different types of bonds in the

backbone they may differ). Transforming successively over

the intervening bonds the vector representation of the bond j
to the coordinate system of bond i (j > i) we have

hli�lji ¼ hlT
i TiTiþ1 � � �Tj�1Iji ¼ liljhTiTiþ1 � � �Tji11:

(5:23)

Here hTiTiþ1 . . .Tj�1i11 denotes configurational average of

the (1–1) element of the matrix product TiTiþ1 . . .Tj�1. The

configurational average of the product of rotational trans-

formation matrices is generally given by

hTiTiþ1 � � �Tj�1i ¼R
� � �
R

(TiTiþ1 � � �Tj�1) exp �E(l1,l2,���,ln)
kT

� �
dl1dl2 � � � dlnR

� � �
R

exp �E(l1,l2,���,ln)
kT

� �
dl1dl2 � � � dln,

(5:24)

where k is the Boltzmann constant, T is the absolute tempera-

ture and E(l1,l2, . . . ,ln) is the conformational energy of the

whole chain of n bonds. For a chain with fixed bond lenghts

this energy depends only on the orientations of bonds de-

scribed by bond anglesui and rotational anglesfi, where 1# i
# n�1, since the orientation of the last n-th bond is fully

determined by the orientation of preceding bonds. For a chain

with fixed bond angles the conformational energy is only a

function of rotational anglesfi, with 2# i# n�1, becausef1

is undefined. For chains with independent potentials for in-

ternal bond rotation the conformational energy of the chain is

a sum of bond energies Ei(fi)

E(f2,f3, � � � ,fn�1) ¼
Xn�1

i¼2

Ei(fi) (5:25)

and

hTiTiþ1 � � �Tj�1i ¼ P
j�1

k¼1
hTki, (5:26)

where for symmetric rotational potentials with ui(fi)

¼ ui( � fi) we have

hTki ¼
cos uk sin uk 0

sin ukhcosfki � cos ukhcosfki 0

0 0 �hcosfki

2
4

3
5:

(5:27)

Here hcosfki is

hcosfki ¼

R 2p

0
cosfk exp

�Ek(fk)

kT

h i
dfk

R 2p

0
exp

�Ek(fk)
kT

h i
dfk

: (5:28)

Using Eqs. (5.23) and (5.27) we may calculate the mean-

square end-to-end vector for fixed bond angles and inde-

pendent potentials for internal bond rotation

hr2i0 ¼ nl 2 þ 2l 2
Xn

i¼1

Xn�i

k¼1

hTik

" #

11

¼ nl 2 E þ hTi
E � hTi � 2hTi (E þ hTin

)

n(E � hTi)2

� �

11

, (5:29)

where E is the unit matrix, and the subscript 11 denotes the

(1–1) element of the matrix in square parenthesis. Equation

(5.29) resembles Eq. (5.13) for freely rotating chain with

cos u replaced by <T>. Similarly to Eq. (5.15) the mean

square radius of gyration is

hs2i0

nl 2
¼ (n þ 2)(E þ hTi)

6(n þ 1)(E � hTi) �
hTi

(n þ 1)(E � hTi)2

�

þ 2hTi2

(n þ 1)2(1 � hTi)3
� 2hTi3

[1 � hTin
]

n(n þ 1)2(1 � hTi)4

#

11

:

(5:30)

The general solution of eqs. (5.27) and (5.28) is possible

by diagonaliziation of the matrix <T> defined by Eq.

(5.27). The eigenvalues of <T> are

l1,2 ¼ 1

2
cos u(1 � hcosfi) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 u(1 � hcosfi)2 þ 4hcosfi

q� �

l3 ¼ �hcosfi
:

(5:31)

For example, the expression for hr2i0 in terms of eigen-

values of <T> is

hr2i0

nl 2
¼ (1 þ cos u)(1 þ hcosfi)

(1 � cos u)(1 � hcosfi)

� 2l1( cos uhcosfi þ l1)(1 � ln
1)

n(l1 � l2)(1 � l1)2

þ 2l2( cos uhcosfi þ l2)(1 � ln
2)

n(l1 � l2)(1 � l2)2
: (5:32)

For very long chains only first terms in Eqs. (5.29) and

(5.30) are important and we have

C1 ¼ lim
n!1

hr2i0

nl 2
¼ E þ hTi

E � hTi

� �

11

¼ (1 þ cos u)(1 þ hcosfi)
(1 � cos u)(1 � hcosfi)

(5:33)
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and

hs2i0

nl 2
¼ n þ 2

6(n þ 1)
¼ E þ hTi

E � hTi

� �

11

¼ (n þ 2)(1 þ cos u)(1 þ hcosfi)
6(n þ 1)(1 � cos u)(1 � hcosfi) :

(5:34

5.5 CHAINS WITH INTERDEPENDENT

ROTATIONAL POTENTIALS. THE

ROTATIONAL ISOMERIC STATE

APPROXIMATION

In real polymer chains the rotational potentials depend on

the steric interactions between pendant groups of neighbor-

ing bonds, and are generally not mutually independent. In

the simplest case of hydrocarbons the bond rotational po-

tential has three minima as shown in Fig. 5.2. The global

minimum at the torsional angle 08 corresponds to the trans
two other minima with the same energies at torsional angle

around þ1208 and �1208 correspond to the gaucheþ and the

gauche� states (gþ and g�). The energy difference between

the trans the gauche� states for n-alkanes is about 500 cal/

(mole). We may use the rotational isomeric state approxi-

mation that each bond in the chain occur in one of these

rotational states. This assumption enables us to replace all

integrals over rotational angles in the partition function and

statistical averages by summations over bonds rotational

states. Additionally steric interactions between pendant

groups of neighboring bonds become important, e.g., the

sequence g�g� becomes energetically very unfavorable.

We may neglect the longer range interactions and assume

that the configurational energy is a sum of energies of

nearest-neighbor pairs

E(f2,f3, � � � ,fn�1) ¼
Xn�1

i¼2

Ei(fi�1,fi): (5:35)

The configurational partition function becomes

Z ¼
Z

� � �
Z

exp � 1

kT
E(f2, � � � ,fn�1)

� �
df2 � � � dfn�1

¼
X

{f}

Yn�1

i¼2

exp � 1

kT
Ei(fi�1,fi)

� �
, (5:36)

where {f} denotes the set of all available states (t,gþ,g�)

for all bonds in the chain. We define the statistical weight

corresponding to bond i being in the h state while bond i � 1

being in the z state (where h and z are sampled from the

t,gþ,g� set)

uzh,i ¼ exp
�Ezh,i

kT

� �
(5:37)

and the statistical weight matrix

Ui ¼
utt,i utgþ,i utg�,i

ugþt,i ugþgþ,i ugþg�,i
ug�t,i ug�gþ,i ug�g�,i

2

4

3

5: (5:38)

It is convenient to express the energy of a given single

bond relative to the energy of the trans state. The energy

of a pair of bonds Ehz,i is defined relative to the state where

the bond i is in the trans state, and all subsequent bonds

j > i are also in the trans states. From this definition follows

Eht ¼ 0 for z ¼ t,gþ,g�. Additionally Etgþ ¼ Etg� ¼
Egþgþ ¼ Eg�g� (� 500 cal/mol for n-alkanes), and

Egþg� ¼ Eg�gþ (� 3,000 cal/mole for n-alkanes). This

means that the statistical weight matrix may be written as

U ¼
1 s s

1 sc sv

1 sv sc

2
4

3
5, (5:39)

where sc and sv denote ugþgþ and ugþg� , respectively.

By using the statistical weight matrices we may express

the configuration partition function as

Z ¼
X

{f}

Yn�1

i¼2

uhz,i ¼ J�
Yn�1

i¼2

Ui

" #
J, (5:40)

where J� and J are row and column vectors, respectively

J� ¼ [ 1 0 0] J ¼
1

1

1

2
4
3
5: (5:41)

For very long chains (in the limit n ! 1) the partition

function is determined by the largest eigenvalue l1 of the

statistical weight matrix U

Z ffi ln�2
1 : (5:42)

The largest eigenvalue of the matrix U defined by Eq. (5.39) is

l1 ¼ 1

2
1 þ s(cþ v) þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[1 � s(cþ v)]2 þ 8s

q� �
:

(5:43)
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FIGURE. 5.2. The dependence of the conformational energy
on the torsional angle in n-alkanes.
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The probability that bonds i � 1 and i occur in states h and z,

respectively is

phz,i ¼
1

Z
J�
Yi�1

k¼2

Uk

" #
@Ui

@ ln uhz,i

Yn�1

k¼iþ1

Uk

" #
J

ffi @ ln l1

@ ln uhz

: (5:44)

The probability that bond i is in the state z, irrespective of

the state of bond i�1 is

pz,i ¼
X

n¼t,gþ,g�
phz,i ffi

X

h¼t,gþ,g�

@ ln l1

@ ln uhz

: (5:45)

The conditional probability that bond i is in z state, given

that bond i � 1 is in state h is

qhz,i ¼
phz,i

ph,i�1

: (5:46)

In order to calculate the mean square end-to-end vector or

a radius of gyration we have to calculate averages

hTiTiþ1 . . .Tj�1i (Eq. (5.24)). For bonds with independent

rotational potentials this average is a product of averages

hTi for single bonds. For chains with interactions between

neighboring bonds we define for each bond i the superma-

trix k Ti k of the order 9�9

k Ti k¼
T(f1)

T(f2)

T(f3)

2
4

3
5

i

, (5:47)

where T is rotation matrix given by Eq. (5.21), and the

f1 ¼ 0	,f2 ¼ 120	,f3 ¼ �120	, are the torsional angles

corresponding to the trans, gaucheþ and gauche� states.

We define also a direct product Ui 
 E3 of the statistical

weight matrix Ui (defined by Eq. (5.38)) and the unit matrix

of order three E3.

Ui 
 E3 ¼
uttE3 utgþE3 utg�E3

ugþtE3 ugþgþE3 ugþg�E3

ug�tE3 ug�gþE3 ug�gE3

2
4

3
5: (5:48)

The statistical average of the product of rotation matrices

may then be written as

hTiTiþ1 . . .Tj�1i ¼ hT(j�i)
i i ¼ 1

Z
(J�U(i�2)

2 ) 
 E3

� �
�

[(U 
 E3) k T k�(j�i)
i (U

(n�j)
j J) 
 E3

h i
]

(5:49)

Then the mean-square end-to-end vector and the mean

square radius of gyration are

hr2i0 ¼ nl 2 þ 2
Xn�1

i¼1

Xn

j¼iþ1

lTi hT
(j�i)
i ilj (5:50)

and

hs2i0 ¼ 1

(n þ 1)2

X

0 # h # k # n

Xk

i¼hþ1

Xk

j¼hþ1

lT
i hT(j�i)ilj (5:51)

with hT(j�i)
i i given by Eq. (5.49). Both hr2i0 and hs2i0 may

be written in a more compact form in terms of proper super-

matrices. The details are given in Flory’s monograph [21].

Additional information is given in the Handbook chapter by

Honeycutt [22].

5.6 THEORIES OF POLYMER NETWORKS

5.6.1 The Affine Network

The theory of affine networks was developed by Kuhn

and improved by Treloar, and is based on the assumption

that the network consists of n freely-jointed Gaussian chains

and the mean-square end-to-end vector of network chains in

the undeformed network is the same as of chains in the

uncross-linked state. This assumption is supported by ex-

perimental data. It is also assumed that there is no change in

volume on deformation and the junctions displace affinily

with macroscopic deformation. The intermolecular inter-

actions in the model are neglected, i.e., the system is similar

to the ideal gas.

The elastic free energy of a chain is related to the distri-

bution function of the end-to-end vector P(r)

Ael ¼ c(T) � kT ln P(r) ¼ A�(T) þ 3

2
kT

hr2i
hr2i0

(5:52)

for the Gaussian distribution given by Eq. (5.10). Here c(T)

and A�(T) are constants dependent only on the temperature

T, k is a Boltzmann constant, and hr2i0 is the average of the

mean-square end-to-end vector in the undeformed state.

The elastic free energy of the network DAel relative to the

undeformed state is a sum of free energies of individual

chains

DAel ¼
3kT

2hr2i0

X

v

(r2�hr2i0) ¼ 3

2
vkT

hr2i
hr2i0

� 1

� �

(5:53)

Here hr2i is the end-to-end vector in the deformed state

averaged over the ensemble of chains

hr2i ¼ hx2i þ hy2i þ hz2i: (5:54)

In the affine model of the network it is assumed all

junction points are imbedded in the network, and each

Cartesian component of the chain end-to-end vector trans-

forms linearly with macroscopic deformation

x ¼ lxx0, y ¼ lyy0, z ¼ lzz0 (5:55)

hx2i ¼ l2
xhr2i0, hy2i ¼ l2

yhy2i0, hz2i ¼ l2
z hz2i0 (5:56)

and therefore

DAel ¼
1

2
vkT(l2

x þ l2
y þ l2

z � 3): (5:57)

Here, lx, ly, and lz are the components of the deformation

tensor l, defined as the ratios of the final length of the
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sample Lt to the initial length Lt,0 in t ¼ x, y, and z direction,

respectively. (The more rigorous statistical mechanical

analysis by Flory [23] has shown that Eq. (5.57) should

contain additional logarithmic term –mkT ln (V=V0), where

m is the number of junctions, V is the volume of the

network, and V0 is volume of the network at the state of

formation).

The force f under uniaxial tension in direction z is

obtained from the thermodynamic expression:

f ¼ @DAel

@L

� �

T,V
¼ L�1

0

@DAel

@l

� �

T,V
, (5:58)

where l ¼ lz ¼ Lz=Lz,0. Because the volume of the sample

is constant during deformation the x and y components of

the deformation are lx ¼ ly ¼ l�1=2. Performing the differ-

entiation in Eq. (5.58) leads to the elastic equation of state

f ¼ vkT

L0

� �
(l� 1=l2): (5:59)

5.6.2 The Phantom Network Theory

The theory of phantom network was formulated by James

and Guth [24] in the forties. They assumed that chains are

Gaussian with the distribution P(r) of the end-to-end vector

P(r) ¼ g

p

� 	3=2

exp( � gr2), (5:60)

where

g ¼ 3

2hr2i0

(5:61)

and interact only at junction points. This means that chains

may pass freely through one another, i.e., are ‘‘phantom’’,

the excluded volume effects and chain entanglements are

neglected in the theory. They assumed also that all junc-

tions at the surface of the network are fixed and deform

affinely with macroscopic strain, while all junctions and

chains inside the bulk of the network fluctuate around their

mean positions. The idea of the phantom network is very

similar to the concept of the ideal gas. The theory based on

these simple assumptions leads to significant improve-

ments in the understanding of the properties of networks,

such as microscopic fluctuations and neutron scattering

behavior.

The configurational partition function ZN of the phantom

network is the product of the configurational partition func-

tions of its individual chains. junctions i and j:

ZN ¼ C
Y

i<j

exp( � 3r2
ij=2hr2

iji0)

¼ C
Y

i<j

exp � 1

2

X

i

X

j

g�
ijjRi � Rjj2

 !
: (5:62)

Here, Ri and Rj are positions of junctions i and j,
g�

ij ¼ 3=2hr2
iji0 if junctions i and j are connected by a

chain, and zero otherwise, and C is a normalization constant.

The position vectors Ri with i ranging from 1 to m, where m

is a number of junctions, may be arranged in column form,

represented as {R}. Equation (5.62) may then be written

ZN ¼ Cexp( � {R}TG{R}), (5:63)

where the superscript T denotes the transpose. The symmet-

ric matrix G known as the Kirchhoff valency-adjacency

matrix in the graph theory describes the connectivity of the

network and its elements gij are

G ¼
gij ¼ �g�

ij, i 6¼ j
gii ¼

P
j

g�
ij ¼

P
j

g�
ij:

(
(5:64)

James and Guth assumed that all m junctions in the

network may be divided into two sets of junctions: (i) ms

fixed junctions at the bounding surface of the polymer and

(ii) mt free junctions fluctuating about their mean positions

{�RRt} inside the polymer. The partition function of the net-

work due to fluctuating junctions is

ZN ¼ Cexp( � {DRt}
TGt{DRt}), (5:65)

where {DRt} denotes fluctuations of free junctions

{DRt} ¼ {Rt} � {Rt}: (5:66)

The product of the fluctuations of two junctions i and j
averaged over the network may be obtained from Eq. (5.65)

as

hDRi � DRji ¼
R
DRi � DRj exp [ � {DRt}

TGt{DRt}]d{DRt}R
exp [ � {DRt}

TGt{DRt}]d{DRt}

¼ � @ ln Zt

@gij

, (5:67)

where d{DRt} � dDR1tdDR2t . . . dDRmt and

Zt ¼
Z

exp [ � {DRt}
TGt{DRt]d{DRt} ¼ pmt

detGt

� �3=2

:

(5:68)

This leads to the expression

hDRi
.DRji ¼

3

2

@

@gij

ln jdetGtj ¼
3

2
(G�1

t )ij, (5:69)

where (G�1
t )ij denotes the (i�j)-th element of the inverse

matrix G�1
t . Fluctuations of junctions from their mean

positions in a phantom network depend on the network’s

functionality f and are independent of macroscopic deform-

ation.

For example for the infinitely large network with the

symmetrical tree-like topology (such as shown in Fig. 5.3)

the mean-square fluctuations of junctions h(DR)2i and
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correlations between fluctuations of two junctions i and j
hDRi

.DRji separated by m other junctions are:

h(DRi)
2i hDRi

.Rji
DRj

.DRii h(DRj)
2i

� �
¼ 3

2

(G�1
t )ii (G�1

t )ij

(G�1
t )ji (G�1

t )jj

" #

¼ 3

2g

f�1
f(f�2)

1
f(f�2)(f�1)m

1
f(f�2)(f�1)m

f�1
f(f�2)

" #
: (5:70)

The mean-square fluctuations of the distance rij ¼ jRi � Rjj
between junctions i and j are

h(Drij)
2i ¼ h(DRi � DRi)

2i

¼ 3

2
[(G�1

t )ii þ (G�1
t )jj � 2(G�1

t )ij]

¼ 2[(f� 1)mþ1 � 1]

f(f� 2)(f� 1)m hr2i0: (5:71)

For a special case of mean-square fluctuations of the end-

to-end vector (m ¼ 0) we have

h(Dr)2i ¼ 2

f
hr2i0: (5:72)

Equations (5.70) and (5.71) may be easily generalized

for fluctuations of points along the chains in the network,

since each point along the chain may be considered as

bi-functional junction. As a consequence the valence-

adjacency matrix in this generalized case contains add-

itional elements describing the connectivity of bi-functional

junctions. More details is provided in the review article by

Kloczkowski, Mark, and Erman [25].

The vector rij between junctions i and j is

rij ¼ rij þ Drij, (5:73)

where Drij is the instantaneous fluctuation of rij and rij is the

time average of rij. Squaring both sides of the above equa-

tion and taking the ensemble average leads to

hr2
iji ¼ hr2

iji þ h(Drij)
2i (5:74)

since instantaneous fluctuations and mean values are uncor-

related. From Eqs. (5.72) and (5.74) follows:

h�rr2i ¼ (1 � 2

f
)hr2i0: (5:75)

According to the theory the mean positions of junctions

transform affinely with macroscopic strain while the fluctu-

ations are strain independent:

rij ¼ rij þ Drij (5:76)

i.e.,

hr2i ¼ (1 � 2

f
)
l2

x þ l2
y þ l2

z

3
þ 2

f

" #
hr2i0: (5:77)

Using Eq. (5.53) for the elastic free energy, we obtain the

following expression for the free energy of the phantom

network

DAel ¼
1

2
(1 � 2

f
)nkT(l2

x þ l2
y þ l2

z � 3): (5:78)

Equation (5.78) is very similar to Eq. (5.57) for the affine

network. The only difference is that the so called front factor

(equal n=2 for affine network model) is replaced by j=2 for

the phantom network model where

j ¼ (1 � 2

f
)n: (5:79)

The equation for the elastic force is similar to Eq. (5.59) for

the affine network with n replaced by j.

5.7 STATISTICAL THEORIES OF REAL

NETWORKS

In real polymer network the effects of excluded volume

and chain entanglements should be taken into account. In

1977 Flory [26] formulated the constrained junction model

of real networks. According to this theory fluctuations of

junctions are affected by chains interpenetration, and as the

result the elastic free energy is a sum of the elastic free

energy of the phantom network DAph (given by Eq. (5.78))

and the free energy of constraints DAc

DAel ¼ DAph þ DAc (5:80)

with DAc given by the formula

DAc ¼
1

2
mkT

X

t¼x,y,z
Bt þ Dt � ln (1 þ Bt) � ln (1 þ Dt)½ �,

(5:81)

where

Bt ¼
k2(l2

t � 1)

(l2
t þ k2)2

(5:82)

and

Dt ¼
l2

t Bt

k
: (5:83)
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FIGURE 5.3. First three tiers of a unimodal, symmetrically
grown, tetrafunctional network (f ¼ 4) with tree-like topology.
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Here k is a parameter which measures the strength of the

constraints. For k ¼ 0 we obtain the phantom network limit,

and for infinitely strong constraints (k ¼ 1) the affine limit

is obtained. Erman and Monnerie [27] developed the con-

strained chain model, where constraints effect fluctuations

of the centers of the mass of chains in the network.

Kloczkowski, Mark, and Erman [28] proposed a diffused-

constraint theory with continuous placement of constraints

along the network chains.

A different statistical–mechanical approach based on so

called replica formalism was developed by Edwards and

coworkers [29,30]. They studied the effect of topological

entanglements between chains on the elastic free energy of

the network and formulated the slip-link model. The elastic

energy of constraints in the slip-link theory is

DAc ¼
1

2
NskT

X

t¼x,y,z

(l2
t � 1)

1 þ hl2
t

þ ln [
1 þ hl2

t

1 þ h
]

� �
, (5:84)

where Ns is the number of slip-links and h is the slipage

parameter. Equation (5.84) is very similar to Eq. (5.81) for

the constrained junction model. Vilgis and Erman [31]

showed that for small deformations both equations have

the same form (except minor volume term) with k ¼ 1=h.

5.8 SCATTERING FROM POLYMER CHAINS

The scattering form factor S(q) from a labeled chain in the

network is given by the Fourier transform of the distribution

function V(rij) of the vector rij between two scattering

centers i and j averaged over all pairs of scattering centers

along the chain:

S(q) ¼ 1

N2

XN

i, j¼1

Z
exp (iq � rij)V(rij)drij: (5:85)

Here q is the scattering vector representing the difference

between the incident and scattered wave vectors k0 and k,

respectively, and N is the total number of scattering centers

along the chain.

The distribution function V(rij) of the vector rij between

scattering centers in the undeformed state is assumed to be

Gaussian. The distribution function V(rij) in the deformed

state is

V(rij) ¼ [(2p)3hx2
ijihy2

ijihz2
iji]�1=2 exp ( � x2

ij=2hx2
iji

� y2
ij=2hy2

iji � z2
ij=2hz2

iji), (5:86)

where hx2
iji, hy2

iji, and hz2
iji are the mean-square components

of the vector rij in the deformed state. Substituting the ex-

pression forV(rij) given by Eq. (5.86) into Eq. (5.85) leads to

S(q) ¼ 1

N2

XN

i, j¼1

exp ( � q2
xhx2

iji=2 � q2
yhy2

iji=2 � q2
z hz2

iji=2),

(5:87)

where qx, qy, and qz are the components of the scattering

vector q. The vector rij between two scattering centers may

be written for a phantom network as rij ¼ rij þ Drij where

rij is the time average of rij, and Drij is the instantaneous

fluctuation of rij from its mean time-averaged value. As-

suming that mean-square fluctuations are strain independent

and that mean positions transform affinely with macro-

scopic strain and applying Eqs. (5.74)–(5.77) leads to

hx2
iji ¼ l2

x þ (1 � l2
x)
hDx2

iji0

hx2
iji0

" #
hx2

iji0, (5:88)

where lx is the x component of the principal deformation

gradient tensor l, with similar expressions for the y and z
components. For a freely jointed chain

hx2
iji0 ¼ hr2

iji0=3 ¼ hhr2i0=3,

where h ¼ ji � jj=N is the fractional distance, and hr2i0 is

the mean-square end-to-end vector for the undeformed

chain. Substituting these results to Eq. (5.87) leads to

S(q) ¼ 1

N2

XN

i,j¼1

exp �y
ji � jj

N
1 � (1 � l�2)

(f� 2)

f

ji � jj
N

� �� �
:

(5:89)

In this equation

y ¼ q2hr2i0=6 (5:90)

and the vector l� is

l� ¼ lq=q: (5:91)

For scattering parallel to the direction of extension

l� ¼ lk and for scattering perpendicular to the direction of

extension l� ¼ l? ¼ 1=
p
lk. Replacing the double summa-

tion by integration and evaluating one of the integrals leads

to

S(q) ¼ 2

Z 1

0

dh(1 � h) exp �yh 1 � h(1 � l�2)
f� 2

f

� �� �

(5:92)

the result obtained by Pearson [32]. As the strain goes to

zero Eq. (5.92) has the limiting form

lim
l!1

S(q) ¼ 2

y
(e�y þ y � 1) (5:93)

derived by Debye [33], corresponding to the scattering from

an unperturbed Gaussian coil. Readers interested in scatter-

ing from labeled cross-linked paths in unimodal and bi-

modal networks should consult the review article by

Kloczkowski, Mark, and Erman [25].

5.9 SIMULATIONS OF POLYMERS

System composed of polymers or containing polymers

immersed in low molecular media are extremely complex
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for many reasons. First, polymer chains (linear, branched, or

cyclic) have often a huge molecular mass. Large fraction of

single covalent bonds in the main chain imply at least a

limited internal rotational freedom for each such bond, and

consequently lead to an enormous number of available con-

formational isomers. Second, due to the excluded volume

effect polymer chains are non-Markovian, i.e., conforma-

tional space accessible to a selected portion of the chain

depends on the actual conformation of the remaining frag-

ments. Consequently, a rigorous analytical treatment of

polymer conformational statistics and dynamics is essen-

tially impossible; although various aspects of polymer phys-

ics could be quite successfully addressed within framework

of approximate theories (see the previous sections). Third,

the chain connectivity imposes a complex network of topo-

logical obstacles. A moving chain cannot cross its own

contour or the paths of the other chains present in the

system. This has pronounced consequences for polymer

dynamics in solutions and polymeric melts, where motion

of polymers has to be extremely correlated and the correl-

ation distances are several orders of magnitude larger

than it is observed in typical disordered low molecular

systems. The nature of these correlations could be extremely

complex.

For the above reasons computer simulations are very

important components of methodology of theoretical poly-

mer physics. Properly designed computational experiments

expand our understanding of these complex systems, pro-

vide excellent test of the existing theories and stimulate

development of new theoretical approaches. Due to the

large size, time scales involved, and complexity of poly-

meric systems numerous new simulation techniques have

been developed to meet these extreme computational de-

mands. This way theoretical physics of polymers had sig-

nificant influence on progress in computational physics in

general.

Simulations of polymers could be designed on various

levels of molecular details treated in an explicit way [16–

20, 34–36]. Molecular Dynamics (or Brownian Dynamics)

of all-atom systems are limited to short chains or/and to

studies of local and fast relaxation processes. It is rather

impractical, and often nonfeasible, to do MD simulations of

long polymer collapse or a self diffusion of polymer chain

in a melt, to give just a couple of typical examples. Monte

Carlo simulations of the all-atom systems have a bit less

limitations, but still large scale rearrangements are difficult

to study. For these reasons frequently reduced representa-

tions of polymer conformational space are employed.

These range from united atom models, where groups of

atoms are treated as single interaction units, to lattice

models where entire mers (or large united atoms) are

restricted to a lattice, thereby enormously reducing the

number of available states and simplifying energy calcula-

tions. While simple lattice models are of very limited utility

in the physics of low molecular mass system, for polymers

they provided general solutions to very fundamental prob-

lems. This qualitative difference is strictly related to the

difference in the correlation length scales in the two types

of systems. In polymers the local details become usually

irrelevant at large distances. Because of their importance

for general physics of polymers and educational values we

start from a discussion of simple lattice models of polymers

and polymer dynamics.

5.9.1 Ideal Lattice Chains are Equivalent to Off-lattice

Models

Let us consider a chain restricted to a simple cubic lattice,

with the lattice spacing equal to 1. The chain is a string of

vectors with the six allowed orientations belonging to the

following set {j1,0,0j, j � 1,0,0j, j0,1,0j, j0, � 1,0j, 0,0,1,

j0,0, � 1j}. A chain vector could be followed by any of the

vectors from the set. Thus, there is no any average orienta-

tional correlation between the chain vectors, in spite of the

lattice restrictions. Note, that for this ideal model a lattice

site can be occupied by more than one bead of the chain. It

could be immediately seen that the Eqs. (5.1) and (5.2)

written for the freely joined chain are true as well for the

ideal lattice chain. The models are equivalent, and an exact

analytical theory of their conformational statistics exists.

Such analogy goes much further. Let us now consider a

chain restricted to the diamond lattice with a constant tetra-

hedral value of the valence angle and three discrete values of

the torsional angle corresponding to the trans and two

gauche states. Again, it is easy to note that this model is

equivalent (in respect to its global properties) to the ideal,

freely rotating chain with the tetrahedral value of the planar

angle. It is also easy to show that such chain can mimic the

chain with restricted rotations and interdependent rotations,

provided Boltzmann weights are assigned to the trans and

gauche conformations and proper correlations between the

weights are taken into account.

Equivalence of the ideal continuous and the lattice

models extends also on the dynamic properties of a single

chain. The Rouse model [37,38] , (or the bead and spring

model) consists of a string of points (or beads) of equal mass

connected by harmonic springs of equal length and equal

strength of the harmonic potentials, although without any

angular interactions. An exact analytical solution for the

relaxation spectrum of this model is relatively easy to de-

rive. For the ideal (without excluded volume limitations)

lattice chain a simple model of dynamics, simulated by a

long random sequence of small local conformational

changes, could be formalized in a stochastic Master Equa-

tion of motion. It has been shown by Verdier and Stock-

mayer [39], that such model is equivalent to the Rouse

model [37,38] in almost entire relaxation spectrum, except

the fastest local oscillations involving a couple of chain

segments.
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5.9.2 Simulation of the Excluded Volume Effect

in a Single Chain

The ideal models described in the previous sections

ignored a very important fact, that a polymer has its own

volume, i.e., two segments cannot occupy the same place in

space. Using a series of approximations Flory has shown

that the exclude volume leads to a significant increase of the

average random coil dimensions and changes the number of

accessible conformers. Flory, has also shown that in a

thermodynamically ‘‘poor’’ solvent the proper volume of

the chain segments could be balanced by their mutual at-

tractions, leading to a pseudoideal state, very similar to the

Boyle point for the real gases. Typical, however, is the

situation of a ‘‘good’’ solvent, where the effect of excluded

volume is large. Exact analytical solution to the excluded

volume problem does not exist. It is unknown how to cal-

culate partition function of a single chain, since the prob-

ability of a given conformation of the (nþ1)th bond added

to a chain depends on the conformation of the preceding

n bonds. The process of virtual growth of a ‘‘real’’ (with

excluded volume, in contrast to the ideal, lacking volume

chains) chain is non-Markovian. This is exactly a situation

where the data from computer simulations are needed for

estimations of true (in silico) experimental properties of the

model system and for subsequent evaluation of the assump-

tions and predictions of various approximate theories.

In the context of a simple lattice model the problem could

be formulated as follows. Compute the number of non-self-

intersecting random walks on the lattice and the distribution

of the segment density, size, shape, etc., of the resulting

random coils as a function of the chain length. The first

thought is to use computer for an exact enumeration of all

possible conformations of a n-segment chain. Unfortu-

nately, the number of possible random walks grows expo-

nentially with the chain length. Exact enumeration is

possible only for n range of few tens of segments. In this

range the finite length effects are still large and an extrapo-

lation of the obtained (exact) data to higher values of n is

uncertain. Another approach is to employ a stochastic sam-

pling (Monte Carlo method) to get a ‘‘representative’’ en-

semble of non-self-intersecting random walks of the

assumed length n. There the result is not exact, however

avoids any systematic errors. The magnitude of the statis-

tical error could be always reduced by the increase of the

sample size. The algorithm is very simple.

1. Start from the first bond.

2. Add the next bond in a randomly selected direction (the

simple ‘‘back’’ step could be a priori prohibited and the

resulting bias easily removed from the results).

3. Check for non-self-intersection and repeat from (2) if a

double occupancy of a lattice site is not detected, other-

wise erase the chain and start from (1).

4. Stop the chain growth when the requested length n is

reached and add the chain to the statistical ensemble.

5. Repeat the entire process starting from (1) until the

required number of chain in the sample is collected.

6. Perform statistical analysis of the collected ensemble.

The process of the MC chain growth is illustrated in

Fig. 5.4.

Situations, as that schematically depicted in Fig. 5.4B

happen quite frequently. Therefore, the algorithm outlined

above has a huge sample attrition rate; only a small fraction

of the staring chains are finally accepted in the statistical

A B

FIGURE 5.4. Two dimensional illustration of the MC growth of non-self-intersecting walks (see the text for details). On the left side
(A) an example of the successful structure composed of n ¼ 15 segments is shown. On the right side (B) an intersection has been
detected before reaching n ¼ 15, the final chain length, and the chain has to be removed from the statistical ensemble.
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pool. To overcome this problem Rosenbluth and Rosenbluth

[40] proposed a modified approach. The segments are

selected only from the set of orientations which do not

cause the intermediate chain clash. In the case shown in

Fig. 5.4B the segment number 11 would be selected only

from the following two possibilities; to the left, and to the

top of the plane. Obviously, this introduces a bias to the

sample. This bias could be easily removed with a proper

weighting of the particular conformation with a factorials

depending on the number of the allowed continuations at

each step. The R&R method allows for generation of much

longer chains. Their length is limited by the ‘‘cull-the-sack’’

effect, where the growing chain end is surrounded by the

chain segments, blocking all the possibilities for the further

continuation of the growth process. A number of extensions

of the original R&R method have been proposed since then.

In general, these methods look into possibility of a continu-

ation in a larger perspective than just one segment ahead.

There are several qualitatively different ways of sampling

the polymer conformational space. One may start from a

chain of a given length and successively modify its con-

formation. Two examples of such types of algorithms are

illustrated in Fig. 5.5. One of them is the ‘‘pivot’’ algorithm,

where a single step consist of a random selection of a bond

and a rotation (in two dimensional case it is reduced just to a

flip; vertical or horizontal) of the selected end of the chain.

Advantage of this algorithm is that in a single step a large

modification of the chain conformation is attempted. How-

ever the acceptance rate for longer chain could be rather

small. A number of different global rearrangements of the

chain conformations were designed aiming on a more effi-

cient sampling. An example is the ‘‘reptation’’ algorithm,

where a bond (or a small number of bonds) is cut-off from

one end of the chain and added in a random direction on the

opposite end. The acceptance ratio for this type of global

update algorithms could be quite high. Yet another example

is a technique that could be viewed as a complex ‘‘pivot-

like’’ algorithm, where a part of the chain on one end is

erased and then re-grown in a random or semirandom fash-

ion. Of course, the statistical sample is collected in along

series of attempts (sometimes successful) to successive

modifications of subsequently generated conformations. In

the second type of algorithms (Fig. 5.5A) local micromo-

diffications of the chain conformation are randomly selected

at random position of the chain. Marginally, let us note that

the local move algorithm could be interpreted as a simulated

Brownian motion of a polymer chain. This is a ‘‘real’’ chain

version of the before mentioned Verdier–Stockmayer model

[39] of polymer dynamics. Again, it should be stressed out,

that an accurate analytical theory for the real chain dynam-

ics does not exist. The local move algorithms are powerful

tools for study of long-time (and large scale) polymer dy-

namics. There are however several problems with the

models employing a limited set of local moves and low

coordination number lattices. The algorithms could be none-

rgodic, or rather ergodic in a subset of its full conforma-

tional space. This is explained in Fig. 5.6. There is no path

to- and no path from the conformation shown in the draw-

ing. The problem may be cured using a higher coordination

lattices and/or a larger set of ‘‘less-local’’ micromodiffica-

tions. An example of such larger scale move is shown in

Fig. 5.6B. The backfire of such update of the local move

algorithms is a less clear relation with the model of the

Brownian motion. Perhaps, the ‘‘wave-like’’ move, when

attempted rarely could be interpreted as a particular coinci-

dence of a series of local moves, which somehow were able

to pass the local conformational barriers. An additional flaw

of the low coordination lattice models (beside the ergodicity

A B

FIGURE 5.5. The idea of the pivot algorithm (A), and the local moves algorithm (B). The black contours indicate the initial
structures, the lighter bonds show the accepted modifications. The local moves include (from top to the bottom of B): random chain
end modification, a crankshaft move and a corner move.
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problems) of polymer dynamics is the difficulty of control-

ling the effects of the lattice anisotropy on the observed

motion. Obviously, simple models of polymer conforma-

tions and dynamics, very similar to those described above

could be design in the continuous space. Such models could

be sampled using MD, MC, or via various hybrid sampling

techniques based on a combination of genetic algorithms

(GA) and molecular mechanics (usually MC dynamics). The

results from simplified lattice and off-lattice models are

essentially equivalent. For instance, the average chain

dimensions of the real chain models scale as hS2i � ng.

Interestingly, the value of the universal constant for the

3-dimensional chains is close (but not identical) to the

value resulting from the mean-field analytical theory of

Flory. More qualitative differences are observed between

the results of the ‘‘real’’ chain simulation of the polymer

dynamics and the ideal chain theory of Rouse [37].

5.9.3 Simulations of Polymer Chain Collapse

Polymer chains in solution can undergo a collapse transi-

tion from an expanded random coil state to a dense globular

state. The transition could be induced by decrease of tem-

perature or by adding a ‘‘poor’’ solvent to the solution [41].

This process is difficult to describe analytically, but could

be studied in details via computer simulations. Let us again

consider a very simple lattice model. Representation of

protein conformational state could be done using any kind

of simple lattice. In such context it is easy to design a very

simple potential mimicking the balance between the volume

of the chain segments and their mutual attractions in the

solution. The simplest form of such potential is given below:

Eij ¼
1, for rij < 1

«, for rij ¼ 1

0, for rij > 1:

8
<

: (5:94)

In the formula above rij is the distance between two beads

of the chain, 1 is the lattice spacing, and « is a negative

constant. With « ¼ 0 the model reduces to the model of a

‘‘real’’ chain in a good solvent, where mutual attractions of

the chain segments could be ignored. Energy of the entire

chain is a sum of the binary contributions SEij.

With decreasing temperature (or with increasing strength

of the long-range interactions «) the mean dimensions of the

chain decrease (the solid curve in Fig. 5.7). The curves be-

come steeper with increasing chain length; nevertheless the

collapse transition remains continuous. The dashed horizon-

tal line corresponds to the dimensions of an ideal chain of the

same local geometry. The vertical dashed line denotes the

collapse transition temperature. Slightly higher than ideal

dimensions of the real chain at the transition midpoint are

due to a bit higher prefactor – the scaling of the mean dimen-

sion with the chain length is at this point the same as for an

ideal chain i.e., hS2i � n. At very low temperatures, the

globular state is a dense droplet with hS2i � n2=3. Obviously,

at very high temperatures the chain behaves as the thermal

‘‘real’’ chain discussed in the previous section, i.e., hS2i � ng.

Very interesting are the models where on top of the long

range interactions a local stiffness of the model chain is

superimposed. Let us assume that we are dealing now

with a simple chain restricted to the diamond lattice (al-

though any other lattice or off-lattice model can include

the short-range interactions that simulate the polymer lim-

ited flexibility). Then let us assume that the trans conform-

ation is favored energetically in respect to the two gauche
conformations. At some critical ratio of the potential energy

A B

FIGURE 5.6. A trapped conformation for the algorithm with
only local moves for a chain on the simple square lattice (A). A
longer distance move that guarantees the ergodicity of the
algorithm, where a U shaped fragment at one part of the chain
is cut-off and attached somewhere else (B).

T*= –kBT/e

<
S

 2 >
/n

FIGURE 5.7. Collapse transition of a flexible polymer chain
(solid line) and a semiflexible chain (dashed line) of a limited
length (see the text for an explanation).
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of these two types of local geometries the behavior of a

chain of a limited length changes dramatically. In the range

of high temperatures with decreasing temperature the chain

dimensions increase due to increasing effect of the stiffness.

Relatively long expanded segments could be seen at this

range. At a critical temperature, these ‘‘rods’’ of fluctuating

length coalesce due to a huge decrease of the potential

energy of the long-range interactions for a small entropic

expense. The transition is abrupt, highly cooperative (the

average length of the expanded sequences jumps up at the

transition), and has all features of the first-order phase

transition, including easily detected metastable region, an

‘‘almost’’ singularity of the heat capacity and an extremely

low population of the intermediate states. At the transition

midpoint the simulated molecules adopt essentially only two

types of conformations; swollen random coils with a short

sequences of expanded states and a densely packed, highly

ordered globular state, with much longer sequences of the

expanded local conformations. This behavior of the semi-

flexible model has a number of essential properties of

globular proteins. First, the collapse transition is pseudo

first-order (all-or-none in the language of protein biophys-

ics). Second, it is cooperative and the collapse induces a

sudden increase of the length of the regular expanded frag-

ments, very much as the formation of secondary structure

during the protein folding transition. Third, the collapsed

structure is highly ordered with relatively well defined

(however not unique) number of ‘‘secondary structure’’

expanded elements. Note, that these striking similarities

are observed in the homopolymer model where all polymer

units are the same. This leads to the conclusion that one of

the most important general aspects of protein folding is a

competition between the long-range and the short-range

(stiffness) interactions. In this picture, differentiation of

the interactions along the polypeptide chains (sequence of

amino acids) plays a ‘‘fine-tuning’’ role, selecting the struc-

tural detail of the globular state. This analogy to protein

folding extends even further. As the length of the semiflex-

ible chain increases the ordering of the globular state be-

comes modular – domains are formed upon the collapse.

Each domain can form at slightly different temperature,

within the range of the metastable states shown in Fig. 5.7.

When the number of domains becomes large the collapse

transition becomes continuous, as it should be for any infin-

itely long flexible (or semiflexible) polymer chain. Such

detailed insight into the collapse transition of semiflexible

polymers could be gain only from computer simulations,

although a very approximate theories for a single globule

collapse of semiflexible polymers were published in past.

A single polymer simulations could address also the

issues of chain topology, including the effect of polymer

branching and macrocycles on the thermodynamics of the

collapse transition and the dynamics in a diluted media. This

can be addressed on various levels of details, from a large

scale conformational sampling within a framework of re-

duced models to a detailed molecular mechanics study of

local conformational transitions. For instance, a very inter-

esting simulation of DNA collapse has been recently per-

formed using the bead and string model with a short range

bending potential and the Brownian Dynamics as a sampling

technique. These simulations led to a very plausible and

nontrivial picture of the DNA collapse pathway. It is also

possible to employ a multiscale sampling, where the large

scale relaxations are modeled on a low resolution level and

the details are studied with the all-atom representation.

Finally, it is worth to mention a very broad class of

approaches to a specific problem of polymer collapse tran-

sition, the protein folding transition. This field attracts a lot

of researches due to its importance for molecular biology,

and biotechnology, genetics, and molecular medicine (in-

cluding new drugs design in particular). In the case of the

protein folding problem, the details of physics and the

pathway description of the collapse transition are (at least

by now) of a lesser importance. The mean goal is to predict

the unique structure of protein globular state. The task is

nontrivial, since the copolymers of interest are composed of

twenty different mers (amino acids) and the sequence of

these mers dictates a vast variety of three-dimensional

globular structures, with a very specific local conformations

and their well defined mutual packing in the globule. Two

types of algorithms are now the most successful. The first

one uses a large set of ‘‘prefabricated’’ protein fragments,

extracted from a collection of known three-dimensional

structures, and the sampling scheme are based on an itera-

tive shuffling of these fragments within the simulated chain.

Another approach is more in spirit of the classic polymer

algorithms. It employs a local move schemes, however with

a complex representation of the polypeptide conformational

space and elaborated set of mean field potentials, derived

either from the physical properties of the small molecules or

from statistical analysis of the structural regularities seen in

known structures of globular proteins. An amazing progress

was achieved in this field during the last few years. The

second approach is probably somewhat more general; it

opens a possibility of a qualitative study of protein folding

pathways and molecular mechanisms, not only the predic-

tions of the globular structure. The predictive power of the

both type of approaches are similar. Nevertheless, the sec-

ond one seems to be a bit more open for a wider range of

applications. These applications include the bootstrapped

(resolution- and time-vise multiscale) implementations of

the polypeptide representation and dynamics. Coupling of

the various levels of resolution enables for a quite detailed

study of protein dynamics and thermodynamics. The simu-

lation techniques and models developed specifically for

proteins are easily adaptable for more general applications

in polymer computational physics. [43]

5.9.4 Simulations of Dense Polymeric Systems

Dense polymeric systems include polymer solutions,

polymer networks, polymer melts, polymer liquid crystals
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and solids, and many more. There is a vast body of literature

on each of these subjects [42]. The modeling approaches are

also of great variety, from a simple reduced models (lattice

and continuous) to the detailed molecular mechanics and

even a quantum mechanics. It is beyond scope of this chap-

ter to go through the detail of various applications. Let us

just outline some of problems that could be addressed in

computer simulations, increasing our understanding of com-

plex systems and providing important stimuli for theoretical

studies and practical applications in material science and

biotechnology.

Typical dense polymer solutions and melts are globally

disordered; however the level of local ordering could be

relatively high. This is a very complex phenomenon that

involves long-range correlations that are the results of spe-

cific local interactions. A general insight could be gain from

the low resolution models that allow for study of the large

scale conformational rearrangements; although specific de-

tails could be very sensitive to the atomic structure and

require extensive molecular mechanic study of carefully

selected starting conformations. The same could be said

about the phase transitions in bulk polymers.

The rate polymer diffusion in polymer media spans orders

of magnitude. The mechanism of the process is unclear. It is

very difficult to provide even a qualitative mechanistic

picture how a long chain can move throughout a complex

network of entanglements superimposed by the other

macromolecules. The reptation theory of DeGennes [13] is

probably only qualitatively true and only for very specific

conditions. Simulations could be extremely helpful in at lest

qualitative understanding of this process.

Another challenging (however not really macromolecu-

lar) polymeric system are biological membranes. It is known

from various experiments that the spectrum of relaxation

processes in membranes is extremely wide; from local co-

operative motion of phospholipide chain and occasional

jumping of molecules from one side of a membrane to the

other one to a global flexing of the membrane and formation

of vesicles. Simulations are done on various levels of gen-

eralization. There are mesoscopic model which treat the

membrane as a kind of elastic network, but also a very

detailed all-atom study of membrane structure and local

dynamics. Bootstrapped, multiscale simulations could be a

very promising way to attack this problem.
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6.1 LINEAR POLYMERS

Textiles, much of living matter, plastics, and many other

materials consist of linear or branched polymers. Each poly-

mer usually is a carbon chain consisting of many monomers

like -CH2-. We emphasize here the modeling of such poly-

mers and compare the theoretical results with experiments.

First, we consider the conformation of a random linear

chain, which is a model for a dilute solution of a polymer in

a solvent [1–6]. Typical examples are polystyrene in ben-

zene or polydimethylsiloxane in toluene or cyclohexane.

We assume that the macromolecules are made of N statis-

tical units which are randomly oriented with respect to each

other. Because the actual monomers have to respect chem-

ical bond angles, independent units can be regarded as made

of several monomers. It is possible to define such independ-

ent units which will be used in all cases. This procedure was

first presented by Kuhn, who defined the concept of local

rigidity of a polymer [1]. Here, we consider the chains as

completely flexible, and we do not distinguish between

actual monomers and statistically independent units.

6.1.1 The Random Walk

The simplest model to describe the structure of a linear

chain made of N units of length l each is the random walk.

This is an ideal chain where no interactions are present

between monomers. The distribution function P(r,N),

which is the probability that a chain made of N steps starts

at the origin and ends at point r, is a Gaussian. In three-

dimensional space,

P(r, N) ¼ (3=2pN‘2)3=2 exp {�3r2=2N‘2}: (6:1)

From the second moment we define the fractal dimension df

of the walk by hr2idf=2 � N. For any spatial dimension d, the

second moment R2
0 � hr2i of P(r, N) is

R2
0 � N‘2, (6:2a)

Thus the fractal dimension [6] is

df ¼ 2 (6:2b)

for any d. It is important to stress that any definition of a

characteristic length for the random walk leads to this result.

What is a fractal and its dimension? A long spaghetti is

one dimensional since its mass increases linearly with the

length. A pizza has a mass proportional to the square of the

radius, if its thickness is constant, and thus is two dimen-

sional. A glass of red wine has a volume and mass propor-

tional to the third power of the length, and is three

dimensional. Thus an object with mass proportional to

(radius)df has a dimension df . It is called a fractal with the

fractal dimension df if df differs from the Euclidean dimen-

sion (usually 3) of the space into which the object is em-

bedded. The apple-like Mandelbrot set is perhaps the most

famous deterministic fractal, whereas the random walks of

Eq. (6.2a) are random fractals with mass / N / (radius)2.

In deterministic fractals, small parts are mathematically

similar to suitably chosen large parts; in random fractals

this ‘‘self-similarity’’ (a large branch of a tree looks similar

to a small twig on it) is often described but seldom defined

in any precise way.

For a polymer chain, it is possible to use the mean square

end-to-end distance, as we did above. It is also possible to
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define the average radius of gyration. One finds that these

lengths are proportional to each other if both are long, and

that the fractal dimension is 2 (for a discussion, see Chapter 1

in [7]). This is the reason for using the sign �, which denotes

asymptotic proportionality, and scaling laws are assumed to

be valid only asymptotically. It is important that the precise

way the length is defined will change the prefactor, but not

the exponents. In this sense, we can say that there is only one

characteristic length, and we will not be interested in the

differences between the prefactors.

The fractal dimension may be observed experimentally

by light or neutron scattering [8]. The scattered intensity

S(~qq) is the Fourier transform of the pair correlation function

S(~qq) ¼
XN

i,j¼1

hexp [i~qq � (~rri �~rrj)]i, (6:3)

where the brackets h� � �i represent an average over all con-

figurations, and~qq is the momentum transfer in the scattering

experiment: for a neutron with wavelength l elastically

scattered with an angle u, we have

q � j~qqj ¼ 4p

l
sin

u

2
: (6:4)

Because Eq. (6.1) is valid for any pair of units in a random

walk, Eq. (6.3) may be calculated exactly. This was done by

Debye [1] some years ago. He found

S(q) ¼ 2

X2
(e�x � 1 þ X), (6:5)

with

X ¼ q2R2
0=3: (6:6)

Here, R0 is the radius of gyration of the ideal chain. In the

intermediate range, l�1 � q � R�1
0 , where the fractal na-

ture of the walk appears, relation (6.5) may be approximated

by

S(q) � q�2: (6:7)

This relation provides a convenient way to measure the

fractal dimension of a single polymer, whenever the inter-

mediate range may be reached experimentally. Neutron

scattering is an excellent technique for this: The available

wave vector range is particularly well suited for polymers;

since the typical unit size is around 10A, and the radius of

gyration is several hundred Ångströms. Linear chains be-

have actually as random walks in two cases: in a melt, when

no solvent is present, and in a theta solvent [9]. The latter is

introduced in Section 6.1.2 when we discuss the actual

interactions between monomers.

6.1.2 The Self-Avoiding Walk

Random walks are ideal chains in the sense that there is

no interaction between monomers. For actual polymers,

there is an interaction between any two monomers. The

interaction consist of an attractive part for large distances,

goes through a minimum at intermediate distances, and

becomes a repulsive core at short distances. Because of

this ‘‘steric’’ constraint, two monomers cannot be in the

same location.

At high temperatures, the repulsive core is dominant, and

the local minimum may be neglected completely. This is the

excluded volume effect, and corresponds to what is called a

good solvent [10,11]. There exists a critical temperature

called the Flory theta temperature, where the excluded vol-

ume effect and the attractive part compensate each other.

Such solutions are said to be in a theta solvent [12–14]. For

still lower temperatures, the attractive part of the potential

becomes dominant, and although two monomers are not

allowed to be in the same location, they tend to be in the

vicinity of each other. As a consequence, the chain tends to

collapse on itself [15–17]. Solvents in which this happens

are known as poor solvents.

As mentioned above, at the theta temperature, because of

the compensation between attractive and repulsive parts of

the potential, the random walk model gives an adequate

description of a chain in three-dimensional space [1–6].

Actually, there are still logarithmic corrections, but they

may be neglected. In two dimensions, a chain at theta

temperature is still not equivalent to a random walk [18].

In what follows, we will be concerned with solutions in a

good solvent. It was realized by Edwards [10] that the exact

shape of the potential is not important, and that it could be

described by a parameter y(T), where T is the temperature,

called the excluded volume parameter, defined as

y(T) ¼
ð

{1 � eV(r)=kT}dr, (6:8)

like the classical second virial coefficient, where V(r) is the

effective monomer–monomer potential. This parameter is

positive in a good solvent, vanishes at the theta temperature

and becomes negative in a poor solvent.

In the good solvent, steric interactions are dominant, as

mentioned above, and the polymer is swollen compared to

the ideal chain. This swelling corresponds to a change in the

fractal dimension of the chain, which now becomes smaller

than 2.

The fractal dimension was calculated by various renor-

malization group techniques and by computer simulations

[19,20]. Here, we describe the Flory approximation which,

although being wrong [1–6], gives the fractal dimension

within a very good accuracy for all dimensions. In this

approximation one assumes that the free energy can be

written as

F=kT ¼ R2

R2
0

þ y
N2

Rd
: (6:9)

The first term is the elastic energy, in which one considers

the chain as a spring with spring constant 1=R2
0, where R0 is
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the ideal radius from Eq. (6.2). The radius R is the actual

radius of the chain, to be determined. The second term is the

interaction energy which can be estimated as follows. In a

unit volume, the number of monomers is N=Rd, the number

of pair interactions scales as (N=Rd)2, and the interaction

energy is therefore y(N=Rd)2. Thus, the total interaction

energy in the volume Rd scales as Rdy(N=Rd)2, which is

the second term in Eq. (6.9). Minimizing F with respect to R
gives the fractal dimension df of a linear chain in the Flory

approximation,

N � Rdf , (6:10a)

df ¼
d þ 2

3
: (6:10b)

This prediction df ¼ 5=3 in three dimensions is close to the

actual value near 1.7; df ¼ 1 and 4/3 for d ¼ 1 and 2,

respectively, is even exact. Note that we recover the ideal

chain dimension for d ¼ 4. This is the upper critical dimen-

sion above which the excluded volume interaction becomes

irrelevant, and the chain is ideal. For higher dimensions, the

interaction with itself is negligible for the exponents, be-

cause space is sufficiently large that the polymer almost

does not cross itself. Therefore, for d � dc chains with or

without interactions are equivalent.

Equation (6.10) was checked directly, using polymers

with different masses. It was also tested using scattering

experiments, by measuring the Fourier transform S(q) of

the pair correlation function. As above Eq. (6.7), one can

show that the scattered intensity is related to the wave vector

q by the fractal dimension. In d ¼ 3 one finds, using Eq.

(6.10), that

S(q) � q�5
3(‘�1

4q4R�1
0 ): (6:11)

Relations (6.10) and (6.11) were tested experimentally by

small angle neutron scattering. Let us mention that star-

shaped polymers are in this same universality class: the

mass dependence of their radius of gyration also follows

relations (6.10). However, it also depends on the number f of

branches, indicating the special geometry of the object. For

more details, the reader is referred to Refs. [21–25].

6.1.3 Dilute Solutions

So far, we have considered only a single polymer chain.

Actual solutions contain many chains! We expect the above

results to hold as long as the various polymers are far from

each other. This is the case for dilute solutions, where we

expect the concentration effects to be only perturbations to

the various laws that we found.

Let C be the monomer concentration. It is common to

define the overlap concentration C� where the distance

between centers of masses of the chains is of the order of

the radius of the macromolecules. Assuming the polymers

are randomly distributed, the average distance between their

centers of masses is

d � (C=N)�1=d: (6:12)

Equating Eq. (6.12) to the radius of gyration, and using Eq.

(6.10), we get

C� � N1�d=df � N�4=5 (d ¼ 3): (6:13)

Relation (6.13) exhibits the fractal character of the chains;

because they are fractals, their volume grows faster than

their mass. Therefore, the overlap concentration decreases

as the polymers become larger.

As mentioned above, we expect two concentration re-

gimes, with C=C� smaller or larger than unity. Therefore,

we do not expect N and C to act as independent variables for

all the properties, but to appear only through the ratio C=C�.
This scaling behavior occurs in many properties, but we will

consider here only the scaling behavior of the radius of

gyration R and of the osmotic pressure p. In both cases,

one may write a scaling relation deduced from the definition

of the fractal dimension, Eq. (6.10):

R(N,C) � N1=df f (C=C�), (6:14a)

and

p(N,C) ¼ C

N
g(C=C�): (6:14b)

Here the prefactor Cp � C=N in Eq. (6.14b) is merely the

pressure of an ideal gas that is obtained for very low con-

centrations when the chains are very far from each other.

The unknown functions f(x) and g(x) may be expanded for

small x in the dilute regime but have singular behavior for

large x in the semidilute regime. Therefore, in the dilute

concentration regime, one expects corrections both for the

radius and the osmotic pressure.

In the latter case, we may write

p(N,C) ¼ C

N
{1 þ aC=C� þ b(C=C�)2 þ . . . }, (6:15a)

where a, b, . . . are constants. This may be identified with a

virial expansion,

p(N,C) ¼ C

N
þ A2C2 þ . . . (6:15b)

Comparing Eqs. (6.15a) and (6.15b) and using Eqs. (6.13)

and (6.10) leads to the following expression for the second

virial coefficient:

A2 � (NC�)�1 � N3=df : (6:16)

A similar expansion can be obtained for scattering intensity

S(q,C) / 1=(1 þ q2R2 þ . . . ). For very low q, in the Guinier

regime qR51, this expansion is the basis for the so-called

Zimm plots that are commonly used to determine the radius

of a chain and the second virial coefficient of a solution.
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6.1.4 Semidilute Solutions

When the concentration C is increased above the overlap

concentration C�, one reaches a different regime where the

macromolecules interpenetrate each other, and we expect

the concentration effects to become dramatic. In dilute so-

lutions, the concentration effects are represented by correc-

tions to the power laws. Because the chains are fractals, the

volume they occupy grows much faster than their mass. As

indicated by Eq. (6.13), the larger the macromolecule, the

smaller is C�. For a typical polymer of 105 units, C� is of the

order of 10�2g=cm3.

For infinite chains, the overlap concentration vanishes,

and one is left only with the semidilute range. In this range,

because the chains are flexible, they overlap each other, and

we expect the simple laws we discussed above to break

down. Still, the scaling laws (6.14) are valid, but one has

to look for other limits. The basic idea to understand the

behavior of a polymer in this regime was given in the limit

of a melt by Flory [1] and was later generalized to semidi-

lute solutions by Edwards [26].

In a melt, the average interaction should cancel, since

each monomer is surrounded by other monomers, and there-

fore the polymer should behave as an ideal chain.

We will see below that although this argument is valid for

linear chains, it turns out to be wrong for branched poly-

mers. The reason for this is related to the interpenetration of

the various chains. For linear chains, this interpenetration

effect was studied by Edwards [10], who introduced the

concept of a screening length j. The idea here is that if we

consider two monomers on a given chain, their total inter-

action is the sum of the direct excluded volume interaction

and all the contributions coming from indirect interactions

between them via other monomers belonging to other

chains. This is equivalent to Debye–Hückel screening in

an electrolyte solution. Because of this, the notion of

‘‘blob’’ was introduced. It corresponds to a part of the

chain, made of g units, with radius j. Thus one may consider

a polymer in a semidilute solution as an ideal chain if the

blob is chosen as a statistical unit. Inside the blob, excluded

volume interactions are still present. Note that at the overlap

concentration, the blob is identical to the whole chain. Using

these ideas, it was shown that

j � C�3=4 (6:17)

and

R � N

g

� �1=2

j � N1=2C�1=8: (6:18)

Note that as concentration increases, the sizes of the

blob and of the chain decrease. In the bulk, we recover

Flory’s results: the interaction completely screened, the

size of the blob is the step length, and the chain is ideal.

Thus the present model ensures a gradual cross-over from

the swollen to the ideal behaviors for increasing concentra-

tions.

The next quantity we will consider is the osmotic pressure

[27]. We may use the same arguments as above to determine

its dependence on C, starting with relation (6.14b). In the

semidilute regime, we do not expect the expansion (6.15) to

be valid, since the variable x ¼ C=C� is larger than unity.

Instead, we assume that g(x) behaves as a power law. Its

exponent is determined by the following condition. In this

concentration range, we expect the osmotic pressure to be

given by the density of contacts between polymers. This is

again a collective property of the solution that should de-

pend only on concentration and not on the mass of the

individual chains. Using this condition, we find

p � C�d=(df�d) � C9=4, (6:19)

a relation that was found first by des Cloizeaux [28]. Equa-

tion (6.19) was tested experimentally by Noda et al. [29].

Many points are remarkable in Eq. (6.19). The first is that

these results differ strongly from what one would expect in a

mean field approach. The second, and most remarkable

result is that the fractal dimension controls the thermo-

dynamic properties of the solution. This is extremely inter-

esting because the fractal dimension was introduced to

describe the properties of a single chain, where only small

concentrations and distances in the order of several hun-

dreds of Ångströms were considered. We are now discuss-

ing thermodynamic, macroscopic, properties of a solution

that is semidilute, and where the polymers strongly interact.

Thus what was introduced to describe a local property of a

single chain controls a solution that may be rather concen-

trated: even a 20% solution may be in this concentration

range.

6.2 GELATION FOR BRANCHED POLYMERS

So far we have considered polymers made of bifunctional

units. These may react by two ends, or functionalities. When

the monomers are more than bifunctional, polymerization

leads to branched structures, and eventually to a solid called

a gel [48]. In this section we will consider this case. As we

will see, every polymer has still a fractal behavior. In add-

ition to this, there is a very broad distribution of molecular

weights, called polydispersity. Because of this, what is ob-

served is an effective dimension that depends also on the

dimension of the distribution. This holds for many polydis-

perse systems, with restrictions that will be discussed below.

We will first present the distribution of molecular weights

that is naturally found in the reaction bath. We will turn to

dilute solutions, where the fractal dimension is smaller

because of swelling. We will discuss the effective dimen-

sion that is observable. Then we will turn to the semidilute

solutions and to the swollen gels. Finally, we will discuss the

dynamics of these systems in the reaction bath.
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6.2.1 The Sol–Gel Transition

Let us consider a vessel with multifunctional monomers.

Each monomer may react by one or more of its f functional

groups. As time proceeds, there is a formation of dimers,

trimers, . . . , polymers; this is the sol. This process makes

the solution more and more viscous, because of the presence

of large macromolecules. The viscosity diverges, and this

defines a threshold time tc. For t > tc, in addition to the sol,

there is an infinite molecule, the gel. Thus, there appears an

elastic modulus due to the presence of a solid-like phase.

Although there are probably other universality classes,

this transition was successfully modeled by bond percola-

tion [6]. Generally, bond percolation on a lattice has each

bond (line connecting two neighboring lattice sites) present

randomly with probability p and absent with probability 1–

p. Clusters are groups of sites connected by present bonds.

For p > pc an infinite cluster is formed. Percolation theory

(in a Bethe lattice approximation) was invented by Flory

(1941) to describe gelation for three-functional polymers.

Sites are the unreacted monomers, bonds are the reacted

functionalities. Clusters are the polymers, and the infinite

cluster is the gel. We recall very briefly some results of

percolation. The main result concerns the distribution of

cluster sizes. This corresponds to what we called polydis-

persity. The distribution is very broad. If we call p the

probability that a bond is reacted, pc is its value at the

gelation threshold, the average probability P(N, «) that a

randomly selected monomer belongs to a large polymer

with N monomers each at a small ‘‘distance’’ « � p � pc

from the threshold is

P(N,«) � N1�tf («Ns), (6:20)

where t and s are percolation exponents [30] to be dis-

cussed below. The moments of the distribution have several

interesting properties. The first moment is normalized

below pc. The higher moments diverge with different expo-

nents

Nw �
R

NP(N,«)dNR
P(N,«)dN

� «�g (6:21)

and

Nz �
R

N2P(N,«)dNR
NP(N,«)dN

� «�1=s: (6:22)

Higher order moments defined the same way as above are

proportional to Nz. The number of polymers with N units

each is proportional to P(N,«)=N
The exponent g is the susceptibility exponent in percola-

tion. Similarly, one may also define a characteristic length,

corresponding to the size of the typical polymers in the sol,

dominating in diverging moments like Nz. This length

diverges as

j � «�n: (6:23)

Using relations (6.22) and (6.23), we find the fractal dimen-

sion df for percolation clusters,

1=df ¼ sn: (6:24)

Let us stress that this is the fractal dimension of the poly-

mers in the reaction bath. We assume that all polymers that

constitute the sol have this same fractal dimension. This was

calculated by renormalization group techniques and com-

puter simulations [31,32,33,34]. We will give a simple Flory

derivation [35] that is close to the former results for all space

dimensions. The polydispersity exponent t can be shown to

be related to the fractal dimension,

t ¼ 1 þ d=df : (6:25)

This hyperscaling relation is valid for space dimensions

d 	 6.

Equation (6.25) implies that the distribution is very spe-

cial; if one considers polymers with a given mass, they are in

a C� situation, i.e., they are in a space-filling configuration.

Since they are fractals, however, voids are left in the struc-

ture. These voids are filled by polymers with smaller

masses, with the same requirement for every mass: each

one is in a C� situation. Therefore, if one looks at the

distribution, for any size considered, one always observes

polymers at C*. In this sense, the distribution is fractal

[36,37]. Note that it is possible to relate the ‘‘masses’’ Nz

and Nw (in units of the monomer mass) defined above by

eliminating «,
Nz � Ndf=(2df�d

w : (6:26a)

Using relation (6.25), we get

Nz � N1=(3�t)
w : (6:26b)

Note that both relations (6.26a) and (6.26b) hold only if

df < d, or equivalently if t > 2. If df ¼ d, or t ¼ 2, both

masses become proportional to each other, and in our def-

initions, there is only one mass present in the problem. This

will prove to be important in the discussion for the scattered

intensity for dilute solutions below.

6.2.2 The Flory Approximation

Let us consider the large polymers, with mass Nz and

radius j in the distribution. In the Flory approximation,

one writes down a free energy made of two contributions

F ¼ j2

j2
0

þ v

Nw

N2
z

jd
: (6:27)

The first one is an entropic term where we assume that the

polymer behaves like a spring with constant j2
0, where j0 is

the radius of an ideal chain when no interactions are present.

The second term is the interaction energy in which y is the

excluded volume interaction, discussed for linear chains.

Except for the presence of Nw, this is very similar to what

we considered for chains. The presence of this factor is due
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to the fact that the large polymers are penetrated by the

small ones. Because of this, there is a screening of the

interactions, as in the semidilute case for linear chains.

The precise form for the energy was evaluated by Edwards

[26] and de Gennes [38] in a Debye–Huckel approximation.

The ideal chain radius j0 was calculated on a Cayley tree

[39] and was shown to be

Nz � j4
0: (6:28)

In the Flory approximation, all quantities, except the radius

which is to be calculated, are assumed to have a mean-field

behavior. Therefore there is a relation between Nz and Nw,

Nz � N2
w: (6:29)

Minimizing the free energy with respect to j and using

relations (6.23) and (6.24), we get the fractal dimension df

of the large percolation clusters,

df ¼
1

2
(d þ 2): (6:30)

This was tested indirectly by measurements of the mass

distribution and the exponent t (6.25).

6.2.3 Dilute Solutions

Once the distribution of polymer sizes is known, it is

possible to dilute the sol, and to consider dilute solutions.

Let us stress that the growth of the polymers is quenched

before dilution and that the distribution function is given.

Because of the excluded volume interactions the polymers

swell and their fractal dimension changes from df to da
f . The

new fractal dimension da
f may be obtained within a Flory

approximation by considering a free energy similar to that in

Eq. (6.27). The difference between a dilute solution and the

reaction bath which was considered above is in the inter-

action term. We expect that the excluded volume inter-

actions are present in the dilute case whereas they are fully

screened in the previous case [40]. Therefore, this contribu-

tion has the same form as in relation (6.9) for linear chains.

It is straightforward to minimize the free energy with respect

to the radius, which yields,

da
f ¼ 2

5
(d þ 2): (6:31)

The observation of this fractal dimension, however, is not

easy, as we discuss now. Any experiment provides the

average of the observed quantity over the whole distribution

of masses. This averaging procedure leads to an effective

dimension [41–44] that is different from the actual one. In

order to see this, let us consider the scattered intensity. For a

single mass, we have

S1(q, N) ¼ Ng[qR(N)]: (6:32a)

where the function g(x) behaves as a power law in the fractal

range, qR > 1 and qa
1, in such a way that the mass

dependence disappears. For a distribution of masses, and

in the dilute regime where one may neglect correlations

between monomers belonging to different polymers, the

total scattered intensity [45] is

Stotal(q) ¼
X

P(N,«)S1(q, N): (6:32b)

Using relations (6.32), (6.20), and (6.21), we get

Stotal(q) ¼ CNwg(qRz), (6:32c)

where C is the monomer concentration and Rz is the radius

of the largest polymers,

Rz �
Ð

NR2(N)P(N,«)dNÐ
NP(N,«)dN

: (6:33)

The radius Rz can be related to the largest masses Nz, Eq.

(6.22), through the fractal dimension

Rz � N
da

f
z � N5=8

w (d ¼ 3): (6:34)

This relation was tested by light scattering measurements

and found to be in good agreement with experimental re-

sults. In the intermediate scattering range, l�1
4q4R�1

z , the

function g(x) in Eq. (6.32) behaves as a power law. The

exponent of Stotal(q) is determined by the requirement that

we are now in the fractal regime where no explicit

mass dependence should appear. Using relations of Eq.

(6.26), we get

Stotal(q) � q�da
f
(3�t) � q�8=5(l�1

4q4R�1
z )

(d ¼ 3):
(6:35)

Therefore, an effective fractal dimension appears, that de-

scribes the behavior of the polydisperse system. As can be

seen from Eq. (6.32), this effective dimension is related to

the actual one, but also to the exponent t characterizing the

distribution of masses. Note that this holds for percolation

and for other distributions, as long as t > 2, as discussed

above. The polydispersity effect disappears when t ¼ 2. In

this sense, we will say that such systems are not polydis-

perse.

This has an important implication. Measuring an expo-

nent in a scattering experiment does not necessarily imply

that one gets the fractal dimension directly. First one has to

check the polydispersity by independent measurements, ei-

ther with viscosity, or with second virial coefficient experi-

ments. The latter may be calculated following the same

steps as above and taking into account the interactions

between the centers of masses of different polymers.

Finally, we define two more exponents related to the

viscosity h and the elastic modulus G

h � «�kG � «f (6:36)

for which the theory is less clear [46–51]. Note that for

crosslinks between very long linear chains one expects the

Bethe lattice or Cayley tree exponents to be valid except in

an unmeasurably small interval at the transition. We end by
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noting that recently, very similar ideas were successfully

applied to the diffusion of cancer cells in tissues modelled

by a gel [52,53].
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