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15.1 Introduction

The extent to which a fibre becomes permanently deformed when it is stretched is of
great technical importance. It may be just as serious a form of damage as actual
breakage of the fibre. The values of stress and strain above which permanent deformation
occurs may well be the limiting values in use. In some specialised applications, such
as ropes used in rock-climbing, the fibres may safely be taken beyond their yield
point once, but their properties will then be so altered that they are unfit for further use.

Elastic recovery, that is, the behaviour on removal of stress, is only a special case
of the general phenomenon of hysteresis. In a cyclic change of stress or strain, the
results will not fall on a single line. After a few initial cycles, the fibre will become
conditioned and the results will tend to fall on a loop, as in Fig. 15.1. This means that
energy is used up by internal friction, and consequently the material will heat up and
may tend to dry out. This is important where fibres are subject to repeated loading,
as in tyres, and the heating will affect their properties. In these uses, fibres showing
little hysteresis are desirable.

On a molecular scale, recoverable or elastic deformation is due to a stretching of
inter-atomic and intermolecular bonds, as in Fig. 15.2(b), while non-recoverable or
plastic deformations result from a breaking of bonds and their re-forming in new
positions, Fig. 15.2(c), or to the stabilisation of new chain conformations.

As with other tensile properties, recovery is time dependent. This leads to hysteresis,
even if, after time, the recovery is complete. Although creep is defined as elongation
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15.1 Hysteresis loop.
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under constant load, part of the elongation under increasing load can be regarded as
slow ‘creep’, which is followed by slow ‘creep recovery’.

15.2 Definitions

Elasticity, a much misused word, has been defined by the American Society for
Testing and Materials as ‘that property of a body by virtue of which it tends to
recover its original size and shape after deformation’. Its opposite is plasticity. It
should not be used as synonymous with extensibility.

A deformation may be divided up, as shown in Fig. 15.3, into an elastic part,
which is recovered when the stress is removed, and a plastic or permanent part.
Quantitatively, it is convenient to use the following definition:

elastic recovery = elastic extension
total extension

Complete recovery will then have the value 1 (or 100%), incomplete recovery will
have a proportionately lower fraction, and no recovery at all will have the value zero.

Instead of studying dimensional recovery, one may study and define work recovery
in a similar manner:

a b c d e a b c d e a b c d e

a′ b′ c′ d′ e′
(a)

a′ b′ c′ d′ e′
(b)

a′ b′ c′ d′ e′
(c)

15.2 Schematic illustration of elastic and plastic deformations: (a) initial
configuration; (b) elastic deformation with straining of links; (c) plastic
deformation with re-forming of links in new positions.
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15.3 Elastic and plastic extension.
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work recovery = 
work returned during recovery
total work done in extension

It should be noted that (1– work recovery) gives the proportion of the total work that
is dissipated as heat.

15.3 Experimental methods

The method used by Meredith [1] in his classic series of comparative tests, is typical
of experiments on elastic recovery, though Instron-type testers would now be used.
He studied the same fibres as he had used in tests of their tensile properties.

In measurements of recovery, the particular programme of application and removal
of stress is important. Meredith used the Cliff constant-rate-of-loading tester and
applied the load at a rate of 10 gf/(den min) (0.15 mN/(tex s). When the required load
had been reached, it was left on the specimen for 2 min. The load was taken off at the
same rate and left off until 1 min after the start of unloading. The procedure was then
repeated for higher loads. Preliminary experiments had shown that this timing was
the minimum that would give a reasonable approach to equilibrium. Tests were made
at stresses of 0.3, 0.5, 1, 2, 2.5, 3, 4 and 5 gf/den (26.7, 44.5, 89, 198, 222.5, 267, 396,
445 mN/tex) (up to break) and at the yield stress. The results were found to be little
affected by test-length. A 1.5 cm length was used for short fibres and a 5 cm length
for long fibres. The relative humidity was 65% and the temperature 20 °C.

Figure 15.4 gives a typical record obtained in the tests and shows the division into
elastic and permanent extensions. From this, the elastic recovery can be calculated.
Note the extension and recovery at constant stress due to creep during the dwell
periods. In an Instron test at constant rate of extension, there would be a decrease of
stress at constant extension due to stress relaxation, as shown in Figure 15.5.

15.4 Stress–strain curves of viscose rayon in loading and unloading. After
Meredith [1].
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15.4 Results

15.4.1 Comparative values

Elastic recovery may be plotted against stress or strain. The first shows the extent to
which a given force will cause permanent damage to a fibre. The second shows what
proportion of a given extension will be recovered and the amount of the permanent
deformation. Figs 15.6 and 15.7 show Meredith’s results.
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15.5 Test procedure used by Hockenberger et al. [2].

15.6 Elastic recovery plotted against stress. After Meredith [1].

E
la

st
ic

 r
ec

o
ve

ry

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5 6
Specific stress (cN/dtex)

N/tex
0 0.25 0.5

0 2 4 6
g/den

Casein

Acetate
rayon

Viscose
rayon Cotton

Silk

Ramie

Flax
Wool

& hair

Stretchd
rayon

Nylon

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres342

In cotton, the elastic recovery from a given strain is almost independent of the
variety, but, since coarse cottons have a lower modulus, it follows that they will show
less recovery from a given stress. Cotton shows no yield point (or it may be more
correct to say that the yield point is at zero stress and zero strain). The elastic
recovery falls steadily to about 0.3. Compared with that of other fibres, the recovery
of cotton is only moderate. In particular, even small strains leave an appreciable
proportion of permanent deformation.

The bast fibres show poor recovery from strain but can withstand large stress
without great permanent damage.

Viscose rayon and acetate show a marked yield point. Below this point, the recovery
is good, but above it the curve drops rapidly, and the recovery is poor. The stretched
rayons can stand higher stresses without suffering permanent deformation.

Wool and hair also show a yield point, but the drop in the curve is less rapid, and
even near break there is still considerable recovery. These fibres are not good under
high stresses but can recover from large strains. Thus they show 60% recovery from
an extension of 35%. By contrast, in the casein fibre tested, the curve drops rapidly
above the yield point, and the large additional extension that can occur before break
is almost entirely non-recoverable. Thus, though the stress–strain curves of wool and
casein are similar, their recovery behaviour is quite different, and this is one of the
reasons why the regenerated-protein fibres of the 1950s did not last.

Wet wool fibres show complete recovery up to the end of the yield region (30%
extension) and very good recovery from higher strains. However, the path of the
recovery curve is different from that of the extension curve, as shown in Fig. 15.8,
and thus there is energy loss in cyclic deformation.

Silk shows fairly good elastic recovery from both stress and strain.
Nylon shows the best elastic recovery of any of the fibres tested by Meredith,

whether considered on the basis of stress or on that of strain. Even near break, its
recovery falls only to 0.7. Although, in strength and extension at break, nylon is
surpassed by some other fibres, these curves show its superiority in resisting permanent
damage as a result of undue stress or strain.
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15.7 Elastic recovery plotted against strain. After Meredith [1].
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After some time on a package, spandex fibres such as Lycra acquire a temporary
set, and the first elongation shows a high stiffness. As shown in Fig. 15.9, a small
amount of the initial extension is not recovered; in subsequent elongations, a steady
hysteresis cycle with good reversible behaviour is established [3].
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15.8 Stress–strain behaviour of wool in extension and recovery. The stress is
in arbitrary units.
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15.9 Cycling response of spandex fibre: 1, first elongation; 2, 6th cycle loading
and unloading [3].
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It is interesting to compare values of the yield point obtained from stress–strain
curves (see Section 13.5) with those from recovery curves (arbitrarily defined as the
point of 95% recovery). This is done in Table 15.1. It will be seen that there is
qualitative agreement, though the values from the stress–strain curves are generally
higher than those from the recovery curves.

Beste and Hoffman [4] measured the elastic recovery of fibres, by means of a
slightly different experimental procedure, and obtained results in general agreement
with those of Meredith. They made tests at relative humidities of 60 and 90%, and
examples of their results are given in Table 15.2. It will be seen that at small strains
the elastic recovery is less at the higher humidity, but at larger strains it is greater for
a number of the materials. They also measured work recovery, and some of their
results are shown in Fig. 15.10. This shows that, at large strains, the energy dissipated
by nylon is considerably less than that by other fibres.

Table 15.1 Yield point

Fibre From-stress-strain curves From recovery curves

Stress Strain Stress Strain
(mN/tex) (%) (mN/tex) (%)

Cotton – – 9 1
Viscose rayon 59 2 39 1
Acetate 69 3 39 2
Stretched rayon 118 0.8 88 1
Wool 59 5 39 4
Casein 49 5 29 1
Silk 156 3.3 98 4
Nylon 402 16 127 8

Table 15.2 Effect of humidity on elastic recovery [4]

Material Elastic recovery (%) from:

1% extension 5% extension 10% extension

60% r.h. 90% r.h. 60% r.h. 90% r.h. 60% r.h. 90% r.h.

Cotton 91 83 52 59 – –
Viscose rayon 67 60 32 28 23 27
Acetate 96 75 46 37 24 22
Wool 99 94 69 82 51 56
Silk 84 78 52 58 34 45
Nylon 90 92 89 90 89 –
Polyethylene 98 92 65 60 51 47

terephthalate
(Dacron)

Polyacrylonitrile 92 90 50 48 43 39
(Orlon)

Casein 90 76 47 43 30 25
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15.4.2 Influence of test conditions on recovery

Values obtained for elastic recovery are very sensitive to conditions. Guthrie and
Norman [5] studied the influence of the time te for which viscose rayon fibres were
held at constant strain and the time tr of recovery at zero stress. The rate of extension
and contraction was 100%/min. Figure 15.11 shows their results and indicates that
any value between 25 and 65% could be obtained, depending on the test procedure.
Even if, as is often done, the two times were made equal, the values would range
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15.10 Work recovery of fibres After Beste and Hoffman [4]: A, wool; B, Dacron
polyester fibre; C, acetate; D, casein; E, nylon; F, Orlon acrylic fibre; G, silk; H,
cotton; I viscose rayon.
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15.11 Elastic recovery of viscose rayon, showing variation with time
extended, te, and recovery time, tr.
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from 50 to 38%. Similar behaviour in other fibres has been described by Guthrie and
Wibberley [6], and the problem has also been discussed by Hadley [7].

Temperature will also influence recovery behaviour, as described for acrylic fibres
by Beevers and Heap [8]. Ford [9] lists the elastic recoveries, wet and dry, at 20 °C
and 95 °C, for many types of fibre. Figure 15.12 shows values for continuous filament
nylon 66 and polyester fibres, both of which have tenacities of about 0.45 N tex and
breaking extensions of 20%. Polyester fibres show better recovery than nylon at low
stresses, but fall off more at high stresses. For glass fibres the elastic recovery was
85% for all conditions and strains.

A comparative set of work recovery values from a comprehensive study of recovery
reported by du Pont [10] is given in Table 15.3. The comparatively poor work recovery
of nylon is due to ‘creep’ and ‘creep recovery’, which leads to substantial hysteresis.
Polyester shows better recovery from small strains than nylon, but poorer from large
strains.

15.5 Change of properties as a result of straining:

mechanical conditioning

Stretching a fibre far enough to leave it with a permanent set causes other changes in
the properties of the fibre. This is illustrated in the idealised model of Fig. 15.13.
When the fibre is first strained, the stress–strain curve OA is followed, but, on
removal of the load, recovery takes place along AB, the permanent extension OB
being left. If the fibre is again stressed, the curve BAC is followed. Re-plotting this
as a new stress–strain curve (Fig 15.13(b)), we see that the effect of the first straining
has been to raise the yield stress and reduce the breaking extension (and consequently
the work of rupture). This has practical implications, since it means that the properties
of fibres may be changed by high forces during processing. It also means that if a
structure is highly strained in use, even though it is not broken, its properties will be
altered, and it may no longer serve its proper function.

The rise in the yield stress means that the application of a given stress to a fibre
for some time usually results in almost perfect recovery from subsequent stresses
below this value. This treatment is known as mechanical conditioning. Table 15.4
gives values of elastic recovery from near the breaking point before and after mechanical
conditioning at 80% of the breaking elongation. It will be seen that there is little
permanent deformation in the tests after mechanical conditioning, even though this
is taken to a greater extension.

Averett et al. [12] studied a partially oriented nylon fibre (draw ratio of 2.5×),
which shows a large plastic extension beyond the yield point. Figure 15.14 shows its
response to cyclic loading at increasing loads. The initial modulus is appreciably
lower than in the initial elongation. Figure 15.15 shows the division between elastic
and plastic extension.

If a fibre is repeatedly taken through a given cycle of stress, the loading and
unloading curves in successive cycles will gradually come closer together until they
form a continuously repeated loop. This is illustrated in Fig. 15.16. The area within
the loop will be a measure of the energy dissipated in each cycle.
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15.12 Elastic recovery under various conditions. S, as received tested at 65% r.h., 20 °C; ST, 65% r.h., 20 °C after water at 95 °C;
W20, in water at 20 °C; W95, in water at 95 °C: (a), (b) nylon 66; (c), (d) polyester. (a) and (c) From given stress; (b) and (d) from
given strain.
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15.6 Swelling recovery

For fibres that absorb water, the ‘permanent’ (plastic) extension as defined in Figs
15.3 and 15.5 is partly recovered on immersion in water or treatment in steam. The
fibre will revert almost to its original form on subsequent drying. When a fibre is
wetted, it usually extends owing to swelling, but the swelling recovery may cause a
net contraction. Swelling recovery may be useful as a means of restoring the original
fibre properties, but it also means that fibres that have been stretched in processing
will shrink on wetting. Table 15.5 shows values of swelling recovery obtained by
Leaderman [14]. Viscose rayon shows almost complete recovery in water, as does
silk in steam, but acetate shows only partial recovery.

Immersion of ‘permanently’ strained wool fibres in water for 24 hours serves to
restore their properties to a standard state. This procedure was used by Feughelman
[15] to make repeated tests on the same wool fibres.

Table 15.3 Percentage work-recovery values [10]

Acetate Polyester Nylon Acrylic Rayon Wool
fibre fibre

From 1% extension 60 81 51 55 32 80
3% extension 32 34 42 28 18 43
5% extension 17 22 47 14 13 27
15% extension 7 19 43 10 11 15

At 8% r.h 42 38 38 31 22 50
92% r.h. 21 28 78 26 16 58

In water at 21 °C 20 41 73 22 58 43
76 °C 7 21 95 13 80 61

at 50 °C
In air at – 70 °C 55 57 45 56 25 68

177 °C 5 33 54 29 12 25
After holding 1 s 47 49 60 40 27 66

900 s 13 23 24 10 8 25

Standard conditions (except as indicated above): 21 °C, 65% r.h.; 3% extension; 30 s holding
time.

Cotton had a work recover of 67% under standard conditions.
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15.13 Change in fibre properties on straining.
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15.7 Simple recovery models

15.7.1 Idealised fibre stress–strain relations

In dealing with other materials, ideal elasticity (Hooke’s Law) or ideal plasticity (a
Hooke’s Law region leading to a constant plastic-yield stress) is often assumed.
Neither of these is very suitable for representing fibre behaviour. Instead, a form that
gives a reasonable approximation to the behaviour of many fibres is shown in Fig.
15.17. It is often helpful to use this form in studying the response of fibres to
complicated loading sequences, though some fibres, of which wool is a notable
example, deviate markedly from the idealised behaviour. The idealised model is
characterised by four parameters: two slopes, yield strain and breaking strain.

Table 15.4 Effect of mechanical conditioning on elastic recovery [11]

Material Elastic recovery % near breaking point

Before mechanical After mechanical
Conditioning conditioning

Cotton yarn 56 80
Fortisan (stretched cellulose) 72 94
Acetate 30 92
Silk 36 93
Viscose rayon 39 74
Dacron polyester fibre 55 92
Orlon acrylic fibre 58 92
Vicara (zein protein) 43 97
Casein 39 80
Nylon 72 92
Wool 59 88
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15.14 Cyclic responses of a partially orientated, 33 µm diameter nylon fibre at
increasing loads. Gauge length of 25.4 mm means that 10 mm elongation =
40% extension. From Averett et al. [12].
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15.7.2 Recovery, work of rupture and durability

In use, fibres are frequently subjected to shocks of given energy, well below their
work of rupture. Failure does not occur initially, but a succession of repeated shocks
can lead up the stress–strain curve to the point of break, as shown in Fig. 15.18.
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15.15 Elastic energy UE and plastic energy UP after load-cycling for the
partially oriented nylon fibre. From Averett et al. [12].
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15.16 Load – elongation curves for acetate under repeated stressing to 90% of
breaking load. After Hamburger [13].

Table 15.5 Swelling recovery [14]

Material Permanent extension Permanent extension (%)
(%) after recovery in:

Water Steam

Viscose rayon 1.7 0.08 –
Silk 1.2 0.7 (–0.02)
Acetate 4.1 3.3 1.6
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If the imposed shock has an energy w, and if the work recovery in a given cycle is
r, then the amount of energy used up in the cycle is w(1 – r). If the additional elastic
energy in the final cycle is ignored, it follows that failure will occur when the total
energy used up equals the work of rupture W of the fibre. This means that the life of
the fibres, expressed in terms of the number N of shocks that it will resist, is given by:

Σ
1

 (1 –  ) = 
N

w r W (15.1)

If, to show up the nature of the relation more clearly, we take w and r as constants,
we find that:

N W
r w

 = 
(1 –  )

(15.2)

Long life therefore results, rather obviously, from gentle use, giving a low value of
w, and more importantly, from the use of fibres with high work of rupture W and good
recovery properties, namely, values of r close to 1.

15.7.3 A simple model of cyclic testing

Hearle and Plonsker [16] have explained some of the features of cumulative-extension
and other forms of cyclic testing on the basis of a simple model of recovery behaviour
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15.17 Simple idealised fibre stress–strain curve.
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15.18 Behaviour of idealised fibre subject to repeated shocks of energy (w).

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres352

with the essential features shown in the stress–strain curve, Fig. 15.19, which is not
quite as restricted as Fig. 15.17. The assumptions are as follows:

• The stress–strain curve in simple extension is ABE. If a specimen is strained to
any point B and allowed to recover to C, it is assumed that, on re-straining, the
original stress–strain curve will be rejoined at B and then followed towards E.

• It is assumed that, on first reaching any strain level, such as B, the elastic
recovery r, defined as the ratio of elastic strain R to total strain ε, will be a
function only of strain ε. In particular, r will be independent of the previous
history at lower strain levels.

These are the two basic assumptions, but we can add three others, as follows:

• Repeated application of the same level of strain B does not lead to any change in
the elastic-recovery value.

• Viscoelastic time-dependent effects are ignored.
• Break occurs at the same point E irrespective of the previous history, so that any

true ‘fatigue’ effects are not taken into account.

We can now note the behaviour in simple cycling procedures. Simple extension-
cycling between fixed limits of imposed strain without the removal of slack is shown
in Fig. 15.20(a). Initially, the stress–strain curve is followed from A to B; recovery to
zero strain goes along BCA; and then re-straining to B reverses the path ACB. The
strain level B cannot be exceeded, and the path BCACB is followed in all succeeding
cycles. It will be noted that the return path from C to B has been shown here as
different from the path from B to C: this, while it is avoided in the simpler model
shown in Figure 15.19, is not incompatible with the basic assumptions.

Simple load-cycling, as in Figure 15.20(b) between the levels A and B, is almost
identical, except that there is an immediate reversal at C, without traversing the
region of slack fibre back to the original length at A.

Figure 15.21 illustrates the behaviour of the basic model in cumulative-extension
cycling. An imposed strain ε1 is applied to the material and then released; the material
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15.19 Idealised model of recovery behaviour.
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has a permanent strain P1 after this first cycle. The slack P1 is removed, and then the
imposed strain ε1 is again applied. The strain on the material in the second cycle is
now ε2 = P1 + ε1; after the second cycle, the permanent strain is P2, and this is
removed before applying ε1; and so on. The gradual increase of strain is given by
noting that, in the (n – 1)th cycle:

permanent strain = Pn–1 = (1 – rn–1)εn–1 (15.3)

in the nth cycle:

total strain = εn = Pn–1 + ε1 = (1 – rn–1) εn–1 + ε1 (15.4)

permanent strain = (1 – rn) εn (15.5)

in the (n + 1)th cycle:

total strain = εn+1 = Pn + ε1 = (1 – rn) εn + ε1 (15.6)
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15.20 Model in (a) simple extension-cycling and (b) load-cycling.
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15.21 Model in cumulative extension-cycling.
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The strain will have reached a limiting value when the total strain in successive
cycles remains unaltered, that is, when:

εn = εn + 1 (15.7)

εn = (1 – rn) εn + ε1 (15.8)

εnrn = ε1 (15.9)

In general, the condition for the limiting extension is thus:

εr = ε1 (15.10)

where ε1 is the constant strain imposed in each cycle. This condition states that, at the
limit, the strain recovered after a cycle just equals the imposed strain, so that there is
no additional straining in the next cycle.

If elastic-recovery values are known as a function of ε1, then equations (15.3) to
(15.6) can be used to compute the total elastic and permanent strains in each successive
cycle.

Three different types of behaviour are predicted during cumulative extension cycling:
(1) if the limiting extension is less than the breaking extension, the specimen will
steadily increase in length until it reaches the stable limiting value; (2) if the limiting
extension is greater than the breaking extension, the specimen will fail before it
reaches the limit; and (3) there may be no limiting extension, and hence the specimen
will extend indefinitely and finally fail by breaking. The distinction between (2) and
(3) is, in a way, artificial, since both describe a steady increase in extension up to the
breaking point. However, in some instances, extrapolated recovery curves would
lead to a limit, whereas in other instances they lead away from a limit. In using the
recovery values for nylon, there is a rather sharp change at a level of imposed
extension of 10.7% from a stable limit to an indefinite increase in length.

15.7.4 Experimental behaviour in cyclic testing

For comparison with the predictions given in Fig. 15.20, Fig. 15.22 shows the behaviour
of an acetate fibre in simple extension and load cycling. Contrary to the behaviour of
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15.22 Behaviour of 2.5 tex acetate in (a) simple extension-cycling and (b)
load-cycling.
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the model, there is a gradual reduction of peak stress and increase of permanent
extension (decrease of elastic recovery) in successive cycles of simple extension
cycling; and there is a corresponding increase of total and permanent extension in
load cycling. These effects correspond to the occurrence of some secondary creep
(non-recoverable time-dependent extension) as the test proceeds.

In cumulative-extension cycling, the experimental results as illustrated in
Fig. 15.23 for acetate and nylon do show that, at low imposed strains, a limiting
extension is reached, whereas at high imposed strains the extension continues until
break occurs. The computed values based on recovery values predict appreciably less
permanent extension than is observed in practice, which is due to deviation of the
behaviour of real fibres from that of the simple model. Time-dependent aspects of
cumulative-extension are discussed in Section 16.2.5 and in relation to fatigue in
Section 19.3.
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16.1 The study of time dependence

So far, we have been discussing the mechanical properties of fibres, with only a brief
mention of one of the main characters: time. The extension caused by a given applied
force, or the stress resulting from a given strain in the fibre, depends on how long the
force or the strain has been present and on the earlier mechanical history of the fibre.

On the application of a load to a fibre, it will, after an instantaneous extension,
continue to extend as time goes on. On removal of the load, the recovery will not be
limited to the instantaneous recovery but will continue to take place. This behaviour
is illustrated in Fig. 16.1(a) and is known as creep and creep recovery. It may continue
for a very long time, as illustrated in Fig. 16.2. Creep is extension with time under an
applied load: the complementary effect is stress relaxation, the reduction of tension
with time under a given extension. This is illustrated in Fig. 16.1(b): when the fibre
is stretched, an instantaneous stress is set up, but this gradually decreases as time
passes.

The continued deformation and possible rupture of the specimen when a load is
applied for some time have important consequences in the testing of mechanical
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16.1 (a) Creep under constant load and recovery under zero load, showing
instantaneous extension, A–B and D–E; total creep, B–C; primary creep, E–F;
and secondary creep, G–H. (b) Relaxation of stress under constant extension.
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properties, since it means that the results of a test, for example the stress–strain curve
obtained, will depend on the timing. This in turn creates interest in the high-speed
properties of fibres, the study of which needs special experimental techniques, since
conventional methods of testing have time-scales that cannot be shorter than a few
seconds. With very rapid tests, there is the further complication that they may be
more nearly adiabatic than isothermal.

An alternative means of studying time dependence is to subject the fibre to an
oscillating load: dynamic testing.

The four methods suggested are the simplest of the infinite variety of time sequences
of stress and strain that a fibre might experience. Between them, they conveniently
cover a wide range of times. The timescales for which the methods are easily used are
as follows:

• creep: long times, from 1 minute to 1 month
• stress relaxation: medium to long times, from 1 second to 1 hour
• stress–strain curves, including impact methods: short to medium times, from 1/

100 second to 10 minutes
• dynamic testing: short times, from 0.1 millisecond to 1 second.

These time ranges can be increased somewhat by more elaborate or difficult experimental
methods.

Effects in the processing or use of fibres are liable to cover all the time ranges and
to involve more complicated variations of stress and strain with time. One aim of the
development of the academic subject of fibre rheology should be to provide means
of predicting behaviour in real situations.

16.2 Creep

16.2.1 Primary and secondary creep

Figure 16.1(a) indicates the effect of applying a constant load to a fibre for a given
time and then removing it. The instantaneous extension is followed by creep. The
removal of load gives rise to an instantaneous recovery, usually equal to the instantaneous
extension, followed by a further partial recovery with time, which still leaves some
unrecovered extension. The total extension may therefore be divided into three parts:
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16.2 Creep of 16.5 den (1.8 tex) nylon under a load of 30 gf (0.29 N)
continuing for one year [1].
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the immediate elastic deformation, which is instantaneous and recoverable; the primary
creep, which is recoverable in time; and the secondary creep, which is non-recoverable.
The mechanisms of creep will be discussed in Chapter 20, but it is worth noting here
that there are two main effects. At low stress, creep is due to localised molecular
rearrangement, which may or may not be recoverable. At high stress, molecules slide
past one another in non-recoverable deformation.

O’Shaughnessy [2] has studied the division of the total extension of viscose rayon
yarn into its three parts. He measured the creep under a constant load and the recovery
after various times of loading. Figure 16.3 gives examples of his results plotted on a
logarithmic scale, and it will be seen that the secondary creep continues after the
primary creep has ceased.

Figure 16.4 shows results calculated from experiments by Press [3] at longer
times. In these experiments, recovery was measured only after the full time for creep,
and the division between primary and secondary creep depends on the assumption,
derived from the superposition principle (see Section 20.7.7), that the time-dependent
part of the recovery curve is identical with the primary creep curve.

If, after recovery, the same load is applied again, the rate of creep is less than that
in the first test on the specimen. The primary creep takes place at its initial rate, as
before, but the secondary resumes at the rate at which it left off. The mechanical
conditioning effect is a special case of this, since it means that if the load has been
applied for long enough for the rate of secondary creep to become negligible, then
there will not be any appreciable secondary creep in later experiments unless the load
is further increased. The recovery will therefore be complete. The use of logarithmic
timescales may cause some confusion here. The important practical point in mechanical
conditioning is that there should be negligible secondary creep on the timescale of
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16.3 Primary and secondary creep of viscose rayon at 60% r.h. [2].
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the experiments; this may be so even when a plot on a logarithmic scale shows that
secondary creep has not ceased, and this is illustrated in Fig. 16.5.

The secondary creep gives rise to the major part of the permanent extension of a
fibre and is usually negligible below the yield point. Thus a comparison of the
amounts of secondary creep that occur in various fibres after particular loading
histories is given by the figures for inelastic extension in Chapter 15.

16.2.2 Leaderman’s experiments on primary creep

Leaderman [4] carried out a classical investigation of primary creep in viscose rayon,
acetate, silk and nylon. In his experiments, 280 mm (11 in.) specimens were mounted
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on one arm of a balance. At zero time, the other arm of the balance was released so
that a given load was applied to the filament, whose extension was followed by a
cathetometer. Measurements were made every 15 seconds for the first minute and
thereafter at longer intervals up to 24 hours after the application of the load. Most of
Leaderman’s tests were made at 65% r.h. and 21 °C, but there were also arrangements
for testing dry fibres over a range of temperatures.

To ensure that only primary creep was involved, the stresses employed were small
and the specimen was first mechanically conditioned, since it was found that the first
application of a load resulted in some permanent deformation but that subsequent
applications showed perfect recovery.

When extension is plotted against time, curves such as the one in Fig. 16.6 are
obtained. To show the behaviour over a long time, it is more useful to plot the results
on a logarithmic scale of time. This is done in Fig. 16.7, which shows the results
obtained by Leaderman for various fibres. It is clear from these graphs that the
amount of extension occurring as primary creep is comparable to that occurring
instantaneously.

In viscose rayon and acetate, the recovery curves are identical with the creep
curves inverted, as is shown in Fig. 16.8(b). In silk, the recovery curves are the same
shape as the creep curves but lie slightly higher than those in Figure 16.8(b). This
means that the instantaneous contraction on removing the load is less than the
instantaneous extension found on applying it.

In nylon at low loads, the recovery curve is the same as the creep curve, but at high
loads the behaviour is that shown in Fig. 16.8(c). It will be seen that the instantaneous
contraction is less than the instantaneous extension, but the rate of recovery is greater
than the rate of creep, so that after a long time recovery is complete. The rate of
recovery is, in fact, found to be the same for all loads above a certain level.
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16.6 Primary creep of viscose rayon [4].
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The shape of the creep curves appears to be different for the different fibres. This
is largely a result of the limits on the times for which tests can be made. It is not
possible to make measurements at very short time intervals, and it is not practicable
to make them at very long time intervals. If this could be done, we should expect all
the curves to be sigmoidal, as in Fig. 16.9. It will be seen from this diagram that the
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shape of curve found experimentally depends on which portion of the curve lies
within the experimental time range. The effect of time may be summarised by a
function Ψ(t), which equals the ratio of the primary creep (excluding the instantaneous
extension) at a time t to the primary creep occurring between 1 and 90 min under the
same load. Values obtained from Leaderman’s data are plotted in Fig. 16.10.

The effect of load may be summarised by the quantity x(90), which equals the
extension occurring between 1 and 90 min. Values are given in Fig. 16.11, which is
analogous to a stress–strain diagram. One notable feature is that for nylon at high
loads the amount of creep becomes independent of the load.

It follows from the application of the superposition principle, which is discussed
later in Section 20.7.7, and is confirmed by Leaderman’s experiments, that the total
extension xt occurring after a time t is then given by:
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16.10 Values of Ψ(t), calculated from Leaderman’s data [4], plotted against
time. The value of instantaneous extension has been estimated, so that
intercepts of graphs are approximate. Slopes that give creep during a given
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xt = x0 + x(90) · Ψ(t) (16.1)

where x0 = instantaneous extension. This means that, in addition to its special definition
(which refers to its absolute magnitude), x(90) gives the relative amount of primary
creep at different loads after the same time, in the same way that Ψ(t) gives the
relative amount of primary creep at different times under the same load. An interesting
result of Leaderman’s work, confirmed by many later studies, is the very high level
of primary creep in nylon. This has important technical consequences.

16.2.3 Generalised creep curves

O’Shaughnessy [2] showed that the creep of viscose rayon at various loads showed
a certain regularity when the elongation divided by the stress was plotted against the
time, as shown in Fig. 16.12. It will be seen that, at long and short times, the results
for all the loads appear to come together, though for many of the loads this would be
at times beyond the experimental range. Thus the creep curves can be regarded as
lying between two loci, crossing from one to the other with a characteristic sigmoidal
curve (when plotted on a logarithmic time scale) at times that depend on the load.

In a later paper concerned with the creep of nylon, Catsiff et al. [5] carried the
generalisation of the curves a stage further. The creep curves obtained at various
loads, shown in Fig. 16.13, have been fitted to a single master curve by vertical and
lateral shift and by multiplying the elongation scale by an appropriate factor. The

16.11 Values of x(90), calculated from Leaderman’s data, plotted against stress
[4].
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experimental results for the various loads group closely round the master curve, and
thus, in view of the considerable overlap, it would appear that the agreement is
something more than an inevitable result of the procedure for obtaining the master
curve.

16.2.4 Influence of various factors on creep

Steinberger [6] found that the creep of acetate increased with the humidity, as is
shown in Fig. 16.14. The change was small below 40% r.h. but was considerable at
higher humidities. With cuprammonium rayon, Steinberger found that the creep
increased at high humidities, but at low humidities he obtained irregular results.
Catsiff et al. [5] found a similar irregular behaviour in the effect of humidity on the
primary and secondary creep of nylon over the whole range of moisture conditions,
although the instantaneous elongation increased regularly with humidity.

Leaderman [4] found that the creep of acetate fibre increased as the temperature
increased. This was also observed by Feughelman [7], who measured the creep of
wool fibres in water at various loads and temperatures, with the results shown in Fig.
16.15. His results were found to fit relations of the form:

1  =  + ε t

a
t

b (16.2)

where εt is the strain at time t, and a and b are constants at constant temperature and
load.

Ripa and Speakman [8] found a wide variation in creep rates in individual wool
fibres, with a few fibres showing an abnormally high rate of creep. A fibre with a high
rate of creep follows a normal creep curve for the first 60 min and then turns steeply
upwards to give the rapid creep, which suggests that some primary resistance to
extension has been broken down. Ripa and Speakman showed that the fibres with a
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high rate of creep had a low sulphur content, which suggested that the high rate was
associated with a breakdown of cystine crosslinks.

16.2.5 A cumulative-extension test

A set of experiments that involves secondary creep is the cumulative-extension test
used by Meredith and Peirce [9]. This test is also interesting as an example of a type
involving a cycle of stresses and strains, and to some extent it simulates the repeated
loading of fibres in use. This may show up behaviour different from that under a
constant or steadily increasing stress or strain. As is indicated in Section 15.7.3, a
pure recovery model would indicate a rapid approach either to break or to a limiting
extension. The continuing effects are due to the viscoelastic behaviour of the fibre.

The method used was to apply cyclically to the specimen a simple harmonic
extension followed by a period of dwell, during which any permanent extension was
taken up. The time sequence is shown in Fig. 16.16. The extension was controlled by
an eccentric cam and the dwell period with take-up of slack by the release of pawls
on a ratchet. Because of the taking-up of the permanent extension, the stress would
increase in each cycle, so that mechanical conditioning would not be effective.

The cumulative extension En after n cycles was defined by the relation

E
l
ln
n = 100 log 
0

(16.3)

where l0 = initial length and ln = length after n cycles. The advantage of this definition
is that it is additive, for we have:
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For small strains, En is approximately equal to the simple strain, 100(ln – l0)/l0%.
The samples tested were cords of 2000–20 000 den (222–2222 tex). Although they
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were fibre bundles, they indicated comparative fibre behaviour. The tests were made
at 65% r.h. and 21 °C. It was found that the residual tension had a considerable effect,
since it determined the part of the stress–strain curve at which the test was operating.
The standard value used was 10 mN/tex. The cumulative extension decreases as the
frequency is increased; the standard tests were made at l cycle/second (1 Hz).

In expressing the results, one could give the cumulative-extension (1) after a given
number of cycles of a certain imposed extension, (2) after a number of cycles of the
same stress pattern, or (3) after the same amount of energy has been imposed in a
given number of cycles. Each of these has some significance, and the difference
between them is analogous to the difference between breaking extension, breaking
load and work of rupture.

Table 16.1 gives examples of the results obtained in these tests. Fibres showing a
high value of the cumulative-extension are those which suffer most permanent
deformation as a result of repeated straining. Nylon and linen show the least cumulative-
extension, though their properties differ in that linen breaks at a lower extension than
does nylon. Wool stands up well to extension but extends permanently for large
inputs of energy. Casein and viscose rayon show the largest cumulative-extensions.

The type of information given by tests such as this should be added to that given
by simpler tests so that a ‘personality’ for each fibre can be built up.

Some of the fatigue testing described in Chapter 19 has used cumulative-extension
testing; the simple recovery aspects of the problem are discussed in Sections 15.7.3
and 15.7.4.

16.2.6 Comparative creep behaviour

Except when cumulative-extension keeps imposing higher strains, creep is comparatively
small in cellulosic and protein fibres, except at high loads. In nylon, primary creep is
higher. The creep of nylon is also shown when it is used as a matrix in composites
[10]. Table 16.2 shows results of tests made on yarns used in high-performance
ropes. Polyester and aramid fibres show a small amount of creep. The creep of Kevlar
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is due to the removal of misorientation at low stresses. Other liquid-crystal fibres,
Vectran (melt-spun aromatic copolyester), PBO and M5, have little or no creep.
Creep of HMPE fibres is covered in the next section.

16.2.7 Creep of high-modulus polyethylene (HMPE) fibres

The high creep of HMPE is a factor that has to be taken into account in using the
fibre. It is not a problem for ballistic protection but would be for mooring oil-rigs for

Table 16.1 Cumulative-extension results [9]

Material Imposed extension of 2% Cumulative-extension
(%) after imposed

En – E1 Stress in nth cycle Cycles energy per unit mass of:
(mN/tex) to break 0.1 J/g 1 J/g

in 100  in 1000
n = 10 n = 1000 n = 10 n = 1000 cycles cycles

Cotton 1.98 — 68 — 331 5.2 breaks
Linen 0.66* — 263 — 75* 1.0 1.1
Viscose 1.79 10..8 51 80 1420 11.7 16.0
rayon
Durafil† 1.14 — 177 — 224 1.8 1.9
Acetate 0.35 2.48 37 49 >5000 18.5 breaks
Silk 0.36 1.92 108 144 >5000 1.0 1.6
Nylon 0.28 1.03 51 63 >5000 1.0 1.4
Wool 0.48 1.44 25 29 >2000 5.1 9.2
Casein 1.33 7.12 21 26 >2000 breaks breaks

*Imposed extension of 11/2%.
†Lilienfeld rayon, from 1948.

Table 16.2 Creep in one decade of log-time as quoted in Deepwater Moorings: An
Engineer’s Guide, TTI and Noble Denton [11]

15% break load 30% break load

1–10 days 10–100 days 1–10 days 10–100 days

Polyester
Diolen 855TN 0.240% 0.166% 0.093% 0.034%
Trevira 785 0.119% 0.069% 0.165% 0.009%

Aramid
Kevlar 29 0.023% 0.066% 0.046% 0.021%
Kevlar 49 0.011% 0.030% 0.041% 0.009%

HMPE
Spectra 900 1.7% 13% broken broken

7/182 days* 0.7/4 days*
Spectra 1000 1.1% 6.3% 8% broken

11/321 days* 1/28 days*
Dyneema SK60 0.16% 0.47% 0.98% 8%

70/>354 days* 7/123 days*

*The figures in days for HMPE fibres are (time to start of rapid creep)/(time to break).
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long periods. The amount of creep varies with the type of HMPE fibre. The first
commercial HMPE fibre, Spectra 900, had very severe creep as shown in Table 16.2.
Adoption of a second heat treatment under tension in Spectra 1000 and Dyneema
SK60 reduced the creep, and it was further reduced in Dyneema SK65 and SK75.
Alternatively Dyneema SK76 is optimised for ballistic protection with high energy
absorption.

Extensive studies of creep of HMPE fibres have been reported by Govaert [12] and
Jacobs [13]. The creep follows three regimes, as shown in Fig. 16.17: I creep rate
decreasing with time (primary creep); II creep rate nearly constant (secondary creep);
III increasing creep rate leading to fracture (tertiary creep). Creep increases under
increasing load (Fig. 16.18(a)), and increasing temperature (Fig. 16.18(b)). Two
other ways of showing creep data are given in Fig. 16.19. Plotting creep compliance
(strain/stress) in Fig. 16.19(a) shows the extensibility increasing with time, stress and
temperature. A Sherby-Dorn graph, introduced by Wilding and Ward [15, 16], is a
log–log plot of creep rate against elongation. Figure 16.19(b) shows creep rate falling
to a constant value at high elongations. Measurements of creep recovery by Govaert
et al. [17] indicated that the creep could be divided into reversible and irreversible
elongations (Fig. 16.20). Linearity of the log–log plot shows that each from can be
represented by a power law, ε(t) ∝ tn.

Jacobs [13] gives additional information on the effects of molecular weight and
draw-ratio on creep of HMPE fibres. Increasing either will reduce creep, but makes
fibre production processes more difficult. Creep can be reduced by using branched
polyethylene or by crosslinking, but both have other disadvantages.

16.3 Stress relaxation

When a fibre is held stretched, its stress gradually decays. It may drop to a limiting
value or may disappear completely. This phenomenon is known as relaxation.

Meredith [18] described an experimental procedure for investigating this. Attached
to one end of the specimen, which was usually 20 cm long, was a strong spring. On
the release of a catch, the spring extended the specimen to a stop fixed at a known
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16.17 Three regimes in creep of HMPE fibre [13].
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extension. The extension of the specimen took less than 10 milliseconds, and thus the
relaxation of the stress, indicated by a cantilever and mirror system, could be recorded
from very short times up to a day.

Figure 16.21 shows a typical result for stress plotted against time. From this it
appears that, after a rapid initial decay of stress, the rate of decay drops to zero. In
fact, on plotting on a logarithmic scale, as in Fig. 16.22, it becomes clear that the
stress is still decreasing after 24 hours. Meredith stated that the stress had not reached
a constant value after 2 weeks. It will be seen that, between 1/10 and 105 s, the
decrease in stress is of the order of 50%, the exact percentage varying with the fibre
and the extension.

The curious behaviour of acetate yarn, in which the stress in the first part of the
test decays more rapidly at the higher extensions, so that after 1 s the stress is greater
for a 2% extension than it is for larger extensions, is believed to be due to a temperature
effect. A rapid extension beyond the yield point, with a large energy loss, causes a

16.18 (a) Creep of Dyneema SK66 at 30 °C under various loads. (b) Creep of
Dyneema SK75 under 0.6 GPa at various temperatures [12].
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rise in temperature of the order of 11 °C for a 20% extension. It takes several seconds
for the excess heat to be lost from the specimen, so that the initial part of the
relaxation curve could be considerably affected.

Figure 16.23 illustrates the relaxation of wool fibres in water at various temperatures
by plotting the ratio of the stress at a given time to the stress after 1 h against time on
a logarithmic scale. There is considerable scatter in the results obtained on different
fibres. The rate of relaxation increases as the temperature increases.

Feughelman [20] has pointed out that the effective initial modulus lies between
high and low values, depending on the amount of time allowed for relaxation. The
limiting values are the same for all humidities, but the relaxation time is about 500 min
at 0% r.h., 100 min at 65% r.h 40 min at 90 r.h., and less than 1 min at 100% r.h.

16.19 (a) Creep compliance of Dyneema SK66 at different temperatures and
stresses. • 0.25 GPa; � 0.4 GPa; � 0.5 GPa; � 0.75 GPa; � 1 GPa. From Jacobs
[13] replotted from [14]. (b) Sherby-Dorn plot for creep of Dyneema SK66 in
Figure 16.18 (a). From Jacobs [13] replotted from [14].
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16.20 Recoverable and non-recoverable creep of HMPE fibres. From Jacobs
[13].

16.21 Stress relaxation in viscose rayon [18].

16.22 Stress relaxation in viscose rayon plotted against time on a logarithmic
scale [18].
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Figure 16.24 is an example of the relaxation behaviour of human hair in water, as
studied by Wood [21]. It will be seen that the curves have a rather complicated shape,
with two points of inflection –one between 1 and 10 s, and one between 1000 and
10 000 s.

The stress relaxation of nylon and polyester fibres at a range of temperatures and
humidities has been studied by Meredith and Hsu [22]. The data for the polyester
fibre relaxing at different strain levels may be presented as a composite sigmoidal
curve as shown in Fig. 16.25. The curve as drawn is correct for relaxation at 1%
extension, but for other extension values it must be shifted along the time-axis by an
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16.23 Relaxation of wool fibres in water with 15% extension at various
temperatures [11] (f/f1 is the ratio of the stress after the given time to the
stress after 1 h).

16.24 Relaxation of human hair in water at 35 °C [21].
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amount (∆ log t) shown in the inset graph. Superposition was not possible in this way
for the nylon data, but Murayama et al. [23] were able to superpose stress relaxation
curves for nylon for a constant extension of 2% at different temperatures. Both
Murayama et al. [24] and Pinnock and Ward [25] have used time–temperature
superposition on polyester fibre data. Figure 16.26 shows stress relaxation of nylon
6 [26]. A fast rate of elongation was used, so that measurement started at 0.1 seconds
and continued for 1 day. The percentage decrease in stress is almost constant from
different starting stresses and is almost the same for stress relaxation in water.

Figure 16.27 shows stress relaxation on polyester (PET) and nylon 6 fibres reported
by van Miltenburg [27]. At various imposed elongations, stresses were monitored at
1 second intervals over 100 minutes and are shown as percentages of the stress at the
start of the relaxation. In both fibres, the rate of stress relaxation increases rapidly to
a maximum value (minimum in the residual stress plot) at around 2% extension. The
changes correlate with values of the tangent moduli shown in the lower plots. A
similar correlation was found for viscose rayon. Plots of the stress relaxation of
HMPE and aramid fibres are shown in Figure 16.28. There was no correlation with
tangent modulus, but these fibres have a different structure so that different mechanisms
can be expected.

As described in Section 13.5.6 and shown in Fig. 13.29 and others, the stress–
strain curves of nylon and polyester fibres may or may not show a minimum in the
tangent modulus, depending on the prior treatment of the fibre. The nylon 6 fibre in
Figure 16.26 has an almost constant tangent modulus, which would correlate with the
lack of change of stress relaxation with starting stress.
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16.25 Composite stress–relaxation curve for a mechanically conditioned
150 den (17 tex) Terylene polyester fibre yarn at 65% r.h. and 25 °C. The
separate points are for tests for relaxation from different extensions. From
Meredith and Hsu [22].
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As demonstrated in Fig. 16.29, when a fibre is extended (OA) and immediately
retracted (A→B→…..→G→H→I) at the same rate, it may show inverse relaxation.
When retraction is stopped between A to P, the stress decreases as usual in stress
relaxation. From P to Q, the stress first increases and then decreases. Beyond Q, there
is only inverse relaxation. In the final section from G back to the original length at
I, the fibre will buckle under zero tension. Nachane and Sundaram [28, 29] report on
relaxation and inverse relaxation in polyester fibres and represent the behaviour by
empirical equations with exponential terms. Whereas in extension the molecular
structure is pulled into a less favourable state, from which it can relax towards
equilibrium at a lower stress state, in substantial retraction it goes back beyond the
equilibrium state and so the stress increases in inverse relaxation. The actual molecular
mechanisms may be quite complicated.

16.4 Time and tensile testing

16.4.1 High-speed tests

At low speeds, that is, for tests lasting more than a few seconds, the conventional
methods described in Chapter 13 can be used. At higher speeds, other methods must
be adopted.

One way is to use an impact test. In this method, a moving large mass is engaged
with one end of the specimen, while the other end is held fixed and connected to a
load-measuring device. There must be appropriate mechanical arrangements to ensure
that the free jaw is engaged only after the mass has attained its required speed. The
moving mass may be a rotating flywheel [30], the bob of a pendulum [31], a falling
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16.26 Stress relaxation of nylon 6 in air at 65% r.h., 20 °C. From 0.96 cN/dtex
�; 2.25 cN/dtex �; 2.99 cN/dtex �; 4.13 cN/dtex. After Selden and Dartman
[26].
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16.27 Upper diagrams: stress relaxation plotted against elongation and time to 100 minutes. Lower diagrams: tangent modulus
plotted against elongation: (a) polyester (PET) yarn; (b) nylon 6 yarn. From van Miltenburg [27].
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16.28 Stress relaxation plots over 100 minutes for: (a) gel-spun HMPE fibre; (b) aramid fibre. Note the scale difference: HMPE
drops to a low of 40%, but aramid only to 85%. From van Miltenburg [27].
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weight [32] or a rifle bullet [33–36]. In the past, the load measurement could be by
means of a cantilever arm and mirror, recording on photographic paper, or by a
resistance strain-gauge, a capacitive or inductive pick-up, or a piezo-electric crystal,
connected through an appropriate circuit to an oscilloscope. Nowadays, digital recording
would be used. If the weight is massive, its speed will not change on breaking the
specimen, and thus there will be a constant rate of extension. If the recorder or
oscilloscope has a linear time-base, it will record the load–elongation curve directly.
In this way, rates of extension of from 10 to 3000% per second can be obtained.

At still higher rates of straining, the velocity of transmission of the strain along the
specimen becomes important, and more complicated experimental arrangements are
necessary. Schiefer and his colleagues [37–40] have been able to work out stress–
strain curves at rates of straining of 1000–15 000% per second from successive
photographs of the configurations of a clamped length of yarn subjected to a transverse
impact. They had made earlier investigations at similar rates of straining by determining
the lowest velocity of impact at which a yarn would break when one end was impacted,
the other end being either free or attached to a small free mass.

Mi [41] adapted a catapult method, originally developed by Stevens and coworkers
[42, 43] for heavy duty testing, for a study of wave propagation in twisted yarns. The
essential principles of the method, which could be used to determine stress–strain
relations, are shown in Fig. 16.30. A driving member (Kevlar cord), which is highly
stretched, is joined to the test specimen by a clamped connector. When the clamp is
released, the driving member rapidly contracts, thus extending the test specimen at a
high rate. Force and displacement are recorded. The elongation velocity can be
varied by altering the pre-strain of the driving member, but is limited by the mass of
the connector. The deformation of the much lighter test specimen has little effect on
the rate. The typical time for the connector to reach the stop was 1 millisecond. The
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16.29 Inverse relaxation of polyester. From Nachane and Sundaram [28].
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initial rise in force and elongation is followed by a damped oscillation due to the
impact of the clamp on the stop. If the stop was not present, elongation could proceed
to break, but safety precautions would be needed.

16.4.2 Temperature and time: isothermal and adiabatic changes

In an imperfectly elastic material, energy will be dissipated in internal friction when
the material is extended. This energy is represented by the area inside a hysteresis
loop and is turned into heat. In a slow test, this heat will be given off to the surroundings
and there will be no appreciable change of temperature of the specimen, but in a rapid
test there will be less opportunity for loss of heat and the specimen will rise in
temperature. Experiments thus range between two limiting cases: the isothermal,
with no change of temperature, and the adiabatic, with no loss of heat. Since the
properties of a fibre vary with temperature, the results obtained in the two types of
test will be different, and this must be remembered in interpreting the effect of time.

An interesting example of adiabatic (or nearly adiabatic) conditions occurs in the
drawing of fibres. Marshall and Thompson [44] have shown that it offers an explanation
of the occurrence of characteristic draw-ratios. The process is illustrated in Fig.
16.31. Any attempt to alter the draw-ratio by changing the relative speeds of the
rollers merely results in the neck’s moving backwards or forwards, the actual draw-
ratio remaining constant. If the neck reaches the back roller, the filament breaks, and,
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Flag

4 1 7 5 3 2 6

16.30 Catapult test method. 1, driving member; 2, test specimen; 3, connector;
4, stretching device; 5, quick release clamp; 6, force transducer; 7, stop
device; 8, displacement detector (optical switches); 9, charge amplifier; 10,
oscilloscope. From Mi [41].
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16.31 Drawing of synthetic fibre.
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if it reaches the front roller, intermittent portions of undrawn material pass through.
In either case, the technical consequences are serious.

Figure 16.32 shows the isothermal stress–strain curves for (undrawn) polyester
fibre. If extension takes place adiabatically, however, the temperature rises and the
path OABC should be followed. But, under actual drawing conditions, a decreasing
load is an unstable condition, so that the line AC is followed. It is this sudden
increase in length past the unstable region ABC that results in the formation of a neck
and determines the characteristic draw-ratio. If the whole process is slowed down,
there will be some loss of heat, the temperature rise will be smaller, and thus the
draw-ratio will be reduced. This is found in practice. The draw-ratio is also affected
by the mean temperature at which the drawing is carried out.

Godfrey [45] examined the effect of heat dissipation during plastic deformation,
taking account of heat transfer to the surroundings. The model assumes that the fibre
behaves in the idealised elastic/plastic way shown in Fig. 16.33, with the plastic
stress line decreasing linearly with increase of temperature. Figure 16.34(a) shows
that, for a 7.2 dtex nylon fibre, the deformation is close to isothermal at a rate of
extension of 10% per second and close to adiabatic at 500% per second. Figure
16.34(b) shows the reduction in tension as the specimen heats up. Godfrey’s numerical
data is expressed in terms of a dimensionless temperature rise, ∆T/T, and a dimensionless
time, t*, which is proportional to imposed strain and depends on fibre dimensions,
thermal and mechanical properties, and ambient conditions. For a thick (195 tex)
nylon yarn, there is appreciable heating at a strain rate of 10% per second.

There may also be a difference, analogous to the difference between adiabatic and
isothermal changes, due to the influence of moisture. As was discussed in Section
12.3.2, the equilibrium regain of a fibre at a given vapour pressure depends on the
stress in the fibre. On the application of a tension to a fibre, its equilibrium regain
increases. Consequently, there will be a difference between tests made rapidly, which
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16.32 Isothermal and adiabatic load–extension curves of Terylene polyester
fibre. Isothermals: a, 20 °C; b, 30 °C; c, 40 °C; d, 50 °C; e, 60 °C; f, 70 °C; g,
80 °C; h, 100 °C; i, 140 °C. Adiabatic: (A) from 20 °C. (Dotted portions obtained
by interpolation).
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16.33 Idealised fibre stress–strain curve with yield stress decreasing linearly
with temperature.

will be at constant regain, and those made slowly, which will be at constant vapour
pressure. Since the change in regain with tension is very small, the difference between
the two will be small in tensile tests. A loss of moisture due to adiabatic heating
would have a larger effect.

16.4.3 Influence of rate of loading on breakage

The breaking load of a fibre depends on the rate at which the load is applied. As a first
approximation, we can say that the breaking extension is independent of the rate of
loading. If we apply a constant load to a fibre, we get the behaviour shown in Fig.
16.35, that is, instantaneous extension followed by creep and then, when the critical
extension is reached, breakage. The time for this to happen will be shorter the greater
the load. Thus the time to break decreases with increasing load.

There is a similar effect in testing when the load is increased throughout the test.
If the rate of increase of load is slow, there is more time for creep to occur, and
consequently the breaking extension is reached at a lower load. The breaking load
therefore increases as the rate of loading increases.

Meredith [30] tested yarns over a millionfold range of rates of extension and
found that the relation between tenacity and rate of extension was approximately
linear (actually slightly concave to the tenacity axis) for most fibres. For breaking
times ranging between a second and an hour, the following formula may be used
without much error:

F1 – F2 = kF1log10(t2/t1) (16.5)

where F1 is breaking load in a time t1, F2 is breaking load in a time t2, and k is the
strength–time coefficient.

Values of the strength–time coefficient are given in Table 16.3. They show that the
strength of these textile fibres increases by 6–9% for each tenfold increase of rate of
extension. Meredith stated that the same formula applies to constant rate of loading
and constant rate of extension tests.

Some values of tenacity and other tensile properties obtained in Schiefer’s very

© Woodhead Publishing Limited, 2008



Rheology 383

high-speed tests are given in Table 16.4, together with comparative values obtained
in ordinary tests. The increase in strength and modulus means that performance in
ballistic testing is better than expected from low-speed tests, though the reduction in
breaking extension will act in the opposite way. The counterpart to this is that
performance will be worse for long-term loading as in mooring oil-rigs. Table 16.5
shows expected time to break under various percentages of the 1 minute break load.
It is estimated that k is less than 0.05 for aramid yarns and slightly more for polyester.
Since safety factors are below 50%, creep rupture is not significant for this application.
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16.34 Simulated response of 7.2 dtex nylon fibre extended at various strain
rates. Adapted from Godfrey [45].
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16.35 Breakage of fibre under various loads.

Table 16.3 Strength–time coefficients [46]

Material k

Cotton 0.088
Viscose rayon 0.083
Acetate 0.060
Flax 0.079
Silk 0.079
Nylon 0.080
Wool 0.073

Table 16.4 Results of high-speed tests [32]

Material Rate of Tenacity Breaking Initial
straining (N/tex) extension modulus
(% per second) (%) (N/tex)

High-tenacity nylon 1/60 0.55 16.7 3
5000 0.67 14.7 5

Fortisan (highly oriented) 1/60 0.56 5.4 14
cellulose) 2000 0.80 5.2 22
Fiberglas 1/60 0.42 2.8 22

1000 0.54 1.8 28

Table 16.5 Creep rupture. From TTI and Noble Denton [11]

Time to fail at percentage of 1 minute break load

k 20% 30% 50% 80%

0.05 2 × 1010 years 2 × 108 years 2 × 105 years 200 hours
0.08 2 × 104 years 1000 years 3 years 5 hours
0.1 200 years 19 years 60 days 100 minutes
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In a fatigue test, when some fibres in an assembly have broken, the increased stress
on the remaining fibres leads to creep rupture as the final failure mechanism. For
nylon, the loss of strength is marginal.

HMPE fibres do not follow equation (16.5), but fail more rapidly than a value of
k = 0.1 would indicate. Creep rupture in long-term loading is a serious concern.
Figure 16.36 shows how the strength of HMPE fibres at 21 °C has a tenfold decrease
in strength between normal testing speeds and a rate of strain of 10–7% per second,
which corresponds to a time to break of about 1 year. Figure 16.36 also shows the
large influence of temperature. At lower temperatures in the sea, break would take
longer, but in warm conditions it would occur sooner. Schwartz et al. [48] found that
the strength of Spectra 900 increased from 2.13 GPa at a strain rate of 0.4% per
minute to 3.34 GPa at 100% per minute. They express the results by a Weibull
distributions associated with a power law breakdown rule.

The rate of extension affects the breaking extension in different ways for different
fibres. Thus, in an acetate yarn, the breaking extension, which was about 30%, varied
by less than 0.5% for rates of extension between 0001 and 1000% per second, but in
a viscose rayon yarn the breaking extension increased from 20.6 to 26.6%, and in a
silk yarn it increased from 15.3 to 23.1%, over the same range. In a nylon yarn, the
breaking extension increased from 15.9% at 0.0013% per second to 20.7% at 22%
per second and then decreased to 14.5% at 1096% per second. Where the strength
increases with the rate of extension and the breaking extension is constant or increases,
then the work of rupture will be greater in the more rapid breaks, but, in nylon at high
speeds, the decrease in the breaking extension has a greater effect than the increase
in breaking load, and the work of rupture decreases. This must be considered where
fibres are used under impact conditions.

16.4.4 Stress–strain curves

Stress–strain tests take some time, and consequently there is an opportunity for creep
to occur. The slower the test, the more time there is available, and thus the greater the

16.36 Effect of strain rate and temperature on breakage of HMPE (Dyneema)
yarn. From van Dingenen [47].
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extension at a given load. This is illustrated in Fig. 16.37, which shows results for
viscose rayon, acetate, silk and nylon. Because of creep, the slower curves are nearer
to the strain axis than the faster curves. This effect is particularly marked at the
higher loads. There are two reasons for this. Near the end of the test, there has been
more time for creep, and above the yield point the rate of creep is greater.

If the stress–strain curves are non-linear, there will also be a difference between
constant rate of loading and constant rate of extension tests, owing to the different
proportions of time spent on different parts of the curves. For a stress–strain curve
that bends towards the strain axis, as in Fig. 16.38(a), we see that a greater proportion
of the time is spent on the part of the curve at high loads in a constant rate of
extension test than is the case in a constant rate of loading test. In the example shown,
three-quarters of the time is spent above the point A and one-quarter below it, compared

16.37 Stress–strain curves at various rates of extension [30]: (a) viscose rayon;
(b) acetate; (c) silk; (d) nylon. The figures against the curves refer to the
percentage rates of extension per second.
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with the reverse proportions in a constant rate of loading test. The result of this is
that, in a constant rate of extension test, whereas there will be slightly less creep in
the early stages, there will be a greater total amount of creep at the end of the test,
since the rate of creep is greater at high loads. The two curves will therefore differ as
shown in Fig. 16.38(b).

The stress–strain curves obtained for a fibre thus depend on the time taken in the
test and on the way in which the time is distributed. There will be consequent effects
on the quantities, such as modulus and yield point, derived from the curve. An
example of the change in Young’s modulus (up to 1% extension) of wet wool with
rate of extension is shown in Fig. 16.39. Meredith [30] also found that the initial
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modulus increased almost linearly with log (rate of extension). Values of the initial
modulus obtained by Schiefer et al. [32] are included in Table 16.4. In viscose rayon
and acetate, the yield points occur at increasingly higher stresses as the rate of
extension increases, but the parts of the curves beyond the yield point are almost
parallel.

Hall [35] found that it was possible to express the stress–strain curves of rayon,
nylon, polyester, acrylic and polypropylene fibres, at 12 rates of strain between 10–2

and 50 000% per second, by equations of the form:

σ
ε

ε
ε = 

( ) + ( )
( )

2

1

f f t
f

(16.6)

where σ, ε and t are stress, strain and time, respectively. Hall’s experimental results
[50] for polyester and acrylic fibres are shown in Fig. 16.40.
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16.38 (a) Stress–strain curve showing equal intervals of time at constant rate
of loading (CRL) and constant rate of elongation (CRE). (b) Difference between
CRL and CRE curves.
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Determinations of stress–strain curves at high rates have also been reported by
Holden [36], Smith et al. [34, 51] and Skelton et al. [52]. Smith et al. [51] found that,
at a rate of extension of 4100% per second, polyester fibre yarn broke at 8% extension,
without any yield region and at a higher strength level than in the fracture at low
speed with breakage at 20% extension. The change in mode of fracture of nylon and
polyester fibres is described in Section 19.2.1.
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16.39 Change of modulus of wet wool with rate of extension [49]: note that
x-axis is for decreasing rate.

16.40 Stress–strain curves at various rates [50]: (a) polyester fibre: A, 23 000;
B, 6400; C, 120; D, 7.7; E, 1.3; F, 0.018 % per second; (b) acrylic fibre: A, 60
000; B, 7500; C, 420; D, 7.7; E, 0.99; F, 0.001 % per second.
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16.5 Dynamic tests

16.5.1 Static and dynamic testing

In the conventional methods of testing described in Section 13.4 and most of the
high-speed tests described in Section 16.4.1, although the time of application has
influenced the result, it has been possible to observe directly the stress–strain relation
without considering the equation of motion of the system. Consequently, these tests
may be described as static (or quasi-static) tests. There are, however, other tests in
which the equation of motion must be considered, and these are one type of dynamic
test. However, if there is a monotonic increase of stress, they are considered with the
static tests. The high-speed impact tests described in Section 16.4.5 are examples of
this situation. It is necessary to take account of the dynamic effects when the inertia,
either of part of the apparatus or of the specimen, cannot be neglected. Thus the
inertia effects involved in old-fashioned pendulum testers or in inclined-plane testers
(Section 13.4.3) are examples of the occurrence of dynamic effects as sources of
error in what are intended to be static tests. The dynamic tests dealt with in this
section are of two types: (1) cyclic loading and (2) tests in such a short time that the
propagation of the stress wave means that the stress cannot be regarded as constant
along the specimen.

16.5.2 Characterisation of viscoelastic behaviour

It is now necessary to consider how the results of dynamic tests may be expressed. Let
stress = f and strain = e at time t. If we apply a sinusoidal extension to the fibre (the
converse argument will apply for sinusoidal loading), starting at time t = 0, we have:

e = em sin ωt for t ≥ 0 (16.7)

where em is the strain amplitude, and ω is the angular frequency in radians/second
(equal to 2π × frequency in Hz).

In general, the fibre will respond so that the stress f shows (1) an initial transient
response; and (2) an ultimate ‘steady-state’ response, which may have a complex
shape and which may change slowly with time owing to the effects of creep and
stress relaxation.

The steady-state stress variation will certainly have an amplitude and be related in
phase to the imposed extension. In the simplest situation, we can therefore put:

f = fm sin (ωt + δ) (16.8)

where fm is the stress amplitude and δ is the angular phase difference.
Equation (16.8) is only strictly valid for materials that obey the laws of linear

viscoelasticity. For these materials, the interrelations between the various parameters
discussed below will apply correctly, but for non-linear materials, including most
fibres except at very small strain, the relations will be only approximately true. It is
common practice to interpret the data from dynamic tests as if equation (16.8) were
valid, the more complicated functional relation between stress and time being ignored.
The differences are indicated in Fig. 16.41.
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Another simplification is to separate the static and dynamic components of the
stress and strain. Thus, when a sinusoidal extension is imposed on a constant extension,
we have:

e = e0 + em sin ωt (16.9)

f = f0 + fm sin (ωt + δ) (16.10)

In the consideration of dynamic behaviour, the constant parts e0 and f0 can be ignored
and equations (16.7) and (16.8) used instead of equations (16.9) and (16. 10). This is
particularly important in fibres, where the whole nature of the deformation changes
owing to buckling if the stress f becomes negative. The dynamic variation must
therefore always be superimposed on a static loading.

The subject is complicated by the number of ways in which the dynamic behaviour
can be represented. We note that, with the above simplification, the response will be
given by two parameters, but there are several possible pairs.

Representation (1):

The most direct method of expressing experimentally observed results is by quoting:

modulus from ratio of amplitudes = fm/em

e

f

f

δ
(a)

(b)

(c)

0
  

2π
ω  

4π
ω   

6π
ω

Time increment

16.41 Dynamic structures and steady-state response: (a) imposed sinusoidal
strain variation; (b) stress variation for linear viscoelastic material; (c) stress
variation for a non-linear material, showing also a longer-term trend.
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phase angle or loss angle = δ

However, these quantities are less convenient in other ways.
The phase lag is shown up as a hysteresis loop in the stress–strain relation.

Representation (2)

Equation (16.8) transforms to:

f = fm (cos δ sin ωt + sin δ cos ωt) (16.11)

Thus the stress response can be regarded as the addition of a component fm cos δ, in-
phase with the strain, and a component fm sin δ, which is 90° out of phase.

This leads to a definition of the two quantities:

‘in-phase’ modulus (usually termed dynamic modulus)

= 
in-phase stress amplitude

strain amplitude
 = 

cos 
 = m

m

f
e

E
δ

(16.12)

ratio of out-of-phase stress amplitude to in-phase stress amplitude
(usually termed loss factor or dissipation factor)

= sin 
cos 

 = tan δ
δ δ (16.13)

We may note that, in the analogous situation in alternating-current electricity, the
quantity usually used is power factor = cos φ = sin δ, where φ = (π/2) – δ.

Representation (3):  Voight model

A system that obeys equations (16.7) and (16.8) can be physically represented at any
given frequency by an ideal (Hookean) spring, with stress proportional to strain, in
parallel with an ideal (Newtonian) dashpot, with stress proportional to rate of strain,
as shown in Fig. 16.42. The stress is given additively as:

Ep ηp

f

16.42 Parallel combination of spring and dashpot (Voigt model).
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f E
e
t

 = + 
d
dp pη (16.14)

where Ep is the spring modulus and ηp is the viscous coefficient of the dashpot.
Substitution from equation (16.7) gives:

f = Epem sin ωt + ηpωem cos ωt
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

(16.15)

We see that this is the sum of in-phase and out-of-phase components and is similar
in form to equation (16.11), which thus proves the equivalence of the representation.
The relations between the quantities are:

f E em p
2

p
2 2 1/2

m= ( + )  η ω (16.16)

tan  = 
p

p
δ

η ω
E

(16.17)

Ep = E (16.18)

The parameter ηpω is often used as an alternative to tan δ to express the loss properties.
It may be noted that in a creep test, with constant f0, the basic equation (16.14) of

the parallel model has the solution by integration:

e
f
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E t f
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η τ (16.19)

where τp = ηp/Ep = creep time constant. There is thus a link between this expression
of the dynamic properties and exponential creep behaviour, illustrated in Fig. 16.43.

It must be remembered, however, that this will apply in this simple form if the
parallel model is a complete representation of the system at all frequencies. But the
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16.43 Behaviour of ideal specimen under constant load.
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model was introduced here only to represent behaviour at a particular frequency. In
general, the parameters Ep and η will vary with frequency.

Representation (4): Maxwell model

The behaviour at any given frequency can also be represented by an ideal spring in
series with an ideal dashpot, as in Fig. 16.44. The basic equation of this model is
given by the addition of strains in an infinitesimal increment of time:

d
d

 = 1  
d
d

 + 
s s

e
t E

f
t

f
η (16.20)

Substitution of equation (16.7) and rearrangement lead once again to an expression
that is similar in form to equation (16.11). The parameters are related by the equations:

Es = Esec2δ (16.21)

tan δ = Es/ηsω (16.22)

These quantities are less simply related to the other parameters and so are less
useful. They do, however, provide a link to stress–relaxation behaviour because, with
constant strain τ0, the solution of equation (16.20) is:

f = (Ese0) exp (–Est/ηs) = (Ese0) exp (–t/τs) (16.23)

where τs = ηs/Es = relaxation time constant. But it must again be stressed that, in a
real system, the parameters Es and ηs would vary with frequency, so that the simple
relations would not apply.

Representation (5)

In a single cycle, the energy loss per unit volume (or per unit mass, if f is a specific
stress and the moduli are in corresponding units) is given, with the notation of
equation (16.15), by:

Es

ηs

f

16.44 Series combination of spring and dashpot (Maxwell model).
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The expression may be rearranged to give alternative forms

(energy loss/radian) per unit volume

= /   = /  
(  + )

1
2 m

2
p

1
2 m

2 p

P
2

P
2 2e f

E
η ω

η ω
η ω

 = 1/2fmem sin δ (16.25)

This indicates why δ is referred to as a loss angle. The representation in this form is
important because it shows that, when the out-of-phase component is large (high
values of tan δ or ηpω), then there will be considerable energy dissipation, with
consequent heating, if the material is subject to cyclic loading.

Representation (6)

For further mathematical development of the subject, the use of complex number
notation is useful, just as it is in alternating current electricity.

With i = (–1) , we can put:

e = em exp(iωt) = em(cos ωt + i sin ωt) (16.26)

Our earlier basic relation, e = em sin ωt, thus corresponds to the imaginary part of the
above expression. If we follow through the analysis, and, at the end, take the imaginary
part, this will therefore represent the behaviour of the system1.

We now introduce a complex modulus E with a real part E′ and an imaginary part
E″: E = E′ + i E″. By the usual definition of a modulus, we have:

f = Ee = (E′ + iE″) em exp (iωt)

= em(E′ cos ωt – E″ sin ωt) + iem(E′ sin ωt + E″ cos ωt) (16.27)

The imaginary part of this expression, em(E′ sin ωt + E″ cos ωt), is identical in form
to the expression for f in equations (16.11) and (16.15), so that the equivalence of the
representation is proved. The parameters of this representation, which is very widely
used, are:

1For this representation, though not for the others, it would have been simpler to shift the time
origin, which is immaterial in the steady-state situation, and to use e = em cos ωt. The real part of
the complex quantities would then correspond to the actual (‘real’) behaviour. But, since the
exp(iωt) factor is dropped anyway in analysis, there is no great harm in the other notation.
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real part of modulus (often termed real modulus)

= E′ = Ep = E as defined above (16.28)

imaginary part of modulus (often termed imaginary modulus or loss modulus)

= E″ = ηpω = E′ tan δ (16.29)

The advantage of this approach for mathematical purposes is that the factor exp
(iωt) can be omitted and the analysis performed with the modulus in either the vector
or the complex form:

F = Ee = (E′ + i E″)e (16.30)

At the end of the analysis, the real part gives the in-phase component and the imaginary
part the out-of-phase component. This is particularly valuable in dealing with composite
systems or complex geometries. The same rules apply as in Hookean elasticity.

Summary of representations

The interrelations of the various representations are conveniently summarised by the
vector diagram (Fig. 16.45). We note the identity of E, Ep and E′, which are often
referred to as the storage modulis because they define energy stored and recovered,
and the identity of E″ and ηpω, referred to as the loss modulis representing dissipated
energy, and their close relation to tan δ. One extreme situation occurs when there is
ideal elasticity, ηpω = 0; the stress is in phase with strain, and there is no energy loss.
The other extreme occurs with pure viscosity, with Ep = 0, the stress 90° out of phase,
and a large energy loss. The relations, together with the intermediate situation, are
illustrated in Fig. 16.46.

The use of more complicated spring and dashpot models in an attempt to represent
the complete behaviour of fibres, as distinct from a response at a single frequency, is
discussed in Section 20.7.1.

Es

16.45 Summary of representations of linear viscoelasticity.
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16.5.3 Methods of dynamic testing

A variety of methods may be used in dynamic testing. The frequencies for which the
methods described below have been used are given in Table 16.6.

Direct observation of stress–strain loop

At low frequencies (up to about 10 Hz), the methods described in Section 13.4 may
be adapted to impose cyclic loading or extension and to record the stress–strain loop

16.46 Representation of perfectly elastic, purely viscous and viscoelastic
materials: (a) relations between sinusoidal stress and strain; (b) vector
diagram; (c) stress–strain curve.

Table 16.6 Frequency range of dynamic tests

Method Frequency range

Direct observation of stress–strain  loop up to 10 Hz
Free vibrations 1–50 Hz
Forced resonant vibration 1–300 Hz
Direct observation of forced vibrations 1–200 Hz
Flexural resonance of specimen (see Section 17.2.3) 20 Hz–10 kHz
Velocity of sound waves – continuous 500 Hz–30 kHz
Pulse velocity 10–100 kHz

f

e

f

e

f

e

f

f

f

Perfect
elasticity

f = Ee

Viscoelastic

    
f Ee

e
t

 =  +  
d
d

η

Pure viscosity

    
f

e
t

 =  
d
d

η

  

π
2

δ

0   π 2π 3π
Radians

(a)
(b) (c)

ηω

δ
E

ηω

E

e

e

e

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres398

directly. The values of fm, em and the energy loss are simply found from the loop as
shown in Fig. 16.47, and hence the other parameters can be calculated. As has been
stated, this is really a quasi-static method.

Free vibrations

A truly dynamic method available over much the same frequency range is the study
of the free vibrations of a mass suspended by a filament. Figure 16.48 illustrates the
method used by Ballou and Smith [53]. The vibrations of the mass modulate the
amount of light received by the photocell, and thus the frequency and damping of the
oscillation may be followed on the recorder. A linear variable differential transformer
(LVDT) or laser measurement of displacement could now be used in this method.

If A is the area of cross-section, l the length of the specimen and x its extension
beyond its rest position, the restoring force will be given by substituting x = el in
equation (16.14) and multiplying the stress f by A. The equation of motion of the
system is therefore:

em

fm

Area = energy loss/cycle

16.47 Hysteresis loop obtained in stress–strain test.

Specimen
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Lens

Lamp
Amplifier

Recorder

16.48 Oscillations of a free mass attached to a fibre.
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where m is the suspended mass.
This is a damped simple harmonic motion, which will have a frequency given by:

ω
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(16.32)

and a logarithmic decrement2 given by

λ
πη
ω

 = 
p A

ml
(16.33)

From these expressions, Ep and ηp can be calculated. If the damping is small, the
following approximate relations hold:

E
ml
Ap

2=  ω (16.34)

η
ω λ

p = 
ml
A

(16.35)

In a similar method, Lincoln [54] recorded photographically the oscillations of an
out-of-balance beam, one arm of which was connected to the specimen.

Van der Meer [55, 56] has used the free vibration of a torsion pendulum restrained
by a pair of yarns, as illustrated in Fig. 16.49, to measure dynamic properties in air
and water. At any instant, two yarn sections are extending and two are contracting, so
that they are subject to a dynamic tensile loading.

Forced resonant vibrations

Alternatively, the specimen may be subjected to forced oscillations by means of an
electromagnetic drive, as illustrated in Fig. 16.50. The equation of motion will then be:

m x
t

A
l

x
t

E A x
l

F t d
d

 –   1 
d
d

 –   =  cos 
2

2 p pη ω (16.36)

where F = amplitude of the applied force and ω = frequency of the forced vibration.
If the amplitude of the vibration is plotted against the frequency, it will give a

resonance curve. The resonant frequency is given by:

ω 0
2 p

 = 
E A

ml
(16.37)

and the width of the resonance curve, when the amplitude of the vibration is 1/√2
times its maximum value, by:

2If x1 and x2 are successive maxima of the vibration in the same direction, the logarithmic decrement
is defined by the relation x1/x2 = eλ.
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∆ω
η

 = 
2

p A

ml
(16.38)

Thus the parameters Ep and ηp can be calculated. If the damping is large, slightly
more complicated expressions must be used to find Ep and ηp.

A method suitable for use with single filaments between 1 and 100 Hz has been
described in detail by Dunell and Dillon [57], and a similar method has been used by
Tipton [58].

The vibrator consists of a solenoid of fine wire wound on a paper core and mounted
in a magnetic field. Dunell and Dillon also discussed the corrections needed to take
account of the frictional resistance and elastic reaction of parts of the vibrator itself.
The use of this method is limited to conditions in which the length of the specimen
is much less than the wavelength of the propagated wave. At high frequencies, the
specimen must be short.

16.49 Torsion pendulum as used for tensile dynamic oscillation by van der
Meer [55, 56].

Specimen S

S

N

16.50 Forced oscillations with electromagnetic drive.
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Direct observation of forced vibrations

Probably the most widely used method is the direct observation of forced vibrations
by means of the apparatus developed by Takayanagi [59, 60] (marketed as the Rheovibron
tester) or similar procedures with newer transducers and digital recording and analsyis.
These instruments are often referred to as dynamic mechanical analysers (DMA).
The Universal Fibre Tester [61, 62], which was derived from a fatigue tester described
in Section 19.3, is an instrument that can be used in the same way.

The principle of the method is illustrated in Fig. 16.51. An oscillator, which can be
set at various frequencies, typically 110 Hz, excites a vibrator, which subjects the
fibre to a cyclic strain. A transducer at the other end of the fibre detects the resulting
tension variation. The outputs from the load transducer and a strain transducer are fed
to appropriate electronic circuits; and the values of the ratio of load to elongation and
of tan δ are directly indicated or recorded. Means of varying temperature are incorporated
in the Rheovibron tester.

Velocity of sound: continuous transmission

At higher frequencies, the inertia of the specimen itself cannot be neglected, and the
methods used must take account of this. The problem is essentially one of measuring
the velocity of longitudinal (sound) waves in the specimen. The method was first
applied by Lotmar [63], who excited the specimen by friction and matched the note
produced with that of a standard specimen. Later, Ballou and Silverman [64] investigated
the standing waves set up for certain positions of a reflecting pickup when one end
of a filament was excited with a known frequency.

Probably the best method is the interference method adopted by Ballou and Smith
[53], which could now be modified by analogue to digital conversion and signal
processing. As illustrated in Fig. 16.52, one end of the specimen is excited
electromagnetically, and consequently sound waves travel along the specimen and
can be picked up by a piezo-electric crystal detector. The signal from the detector is
amplified and filtered and fed into a cathode-ray oscilloscope (CRO), together with

Oscillator
circuits

Strain
transducer

Vibrator Fibre

Stress
transducer

Measurement
and computing

circuits

Output
recorders

16.51 Principle of Rheovibron tester.
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a signal direct from the generator. The resultant trace on the oscilloscope will depend
on the difference in phase of the two signals and will be a maximum whenever the
two are in phase. Thus, as the pick-up is moved along the specimen, an interference
pattern of maxima and minima will be observed. The time taken for the waves to
travel the distance between successive maxima must be equal to the period of the
oscillation. Therefore:

c L =  
2
ω
π





 (16.39)

where c = velocity of sound waves in cm/s, L = distance moved by pick-up between
successive maxima and (ω/2π) = frequency in Hz.

If the damping is small, the velocity of sound in a medium is given by:

c E2  = ρ (16.40)

where ρ = density. Thus the value of the dynamic modulus may be calculated. The
specific modulus is equal to c2.

From the attenuation of sound along the specimen, which will be given by the
reduction in amplitude of the interference pattern on the oscilloscope, we get:

η
ρα
ω

 = 
2 3

2

c
(16.41)

where α = attenuation in nepers/cm.3

If the damping is appreciable, these expressions must be modified. Corrections
must also be included for the effect of standing waves owing to reflection from the
end of the specimen. The full expressions are given in the paper by Ballou and Smith
[53].

A similar method was used by Hillier and Kolsky [65, 66], but they compared the
transmitter and receiver signals connected to separate beams of a double-beam
oscilloscope.

Generator

Drive

CRO

Pick-up

Specimen

Filter

Amplifier

16.52 Interference method for finding velocity of sound waves.

3Neper (Np) = loge (x1/x2), where x1 and x2 are successive values of amplitude (in this case at 1 cm
intervals).  The neper is analogous to the decibel, which is based on log10.  1 Np = 8.686 decibel.
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Pulse-velocity methods

Instead of exciting the whole specimen into continuous vibration, one may measure
the velocity of a train of waves of known frequency by determining the time taken for
a short pulse to travel along the specimen. This method has been used by Chaikin and
Chamberlain [67] at 100 kHz. The circuit arrangements indicated in Fig. 16.53 illustrate
the basic principles, but later instruments use other transducers, electronics and
information technology.

A brief pulse of the required frequency is transmitted along the specimen from a
crystal of Rochelle salt and eventually arrives at the receiver, which is a condenser
microphone. The time of travel is measured by a method similar to that used in
recording echo pulses in radar systems. At the instant that the pulse is transmitted, the
two beams of a cathode-ray oscilloscope are released and start to travel at constant
speed across the screen. The receiver is connected to one of the beams and a mark
appears on the trace at the instant at which the pulse arrives. A timing unit is connected
to the other beam to give a series of time marks. Thus the time taken for the pulse to
travel can be found from a photograph of the traces.

In order to avoid errors due to delays in the circuit, the time taken for travel along
specimens of varying length is determined. The slope of the graph of time against
length, determined by the method of least squares, then gives the velocity of travel
of the pulse. Young’s modulus is given by equation (16.40): E = ρc2. The method is
not suited to the measurement of attenuation, so the viscous parameter η cannot be
found.

Another apparatus, incorporating two transducers, transmitter and receiver, that
touch the specimen and an electronic circuit to measure the time interval for the pulse
to travel from one to the other, has been described by Hamburger [68] and used by
Moseley [69, 70]. It is commercially available as a pulse propagation meter (PPM).
Some care is needed in the interpretation of results of pulse propagation tests, since
at 10 kHz, as used by Moseley, and a typical recorded sonic velocity of 1 km/s, the
wavelength will be 10 cm. This is about the distance apart of the transducers, so that

Specimen

Receiver

Pulse
generator

unit
Crystal

transmitter

Beam release

Time
signal

2beam
CRO

Camera

Amplifier

16.53 Pulse-velocity method.
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the measurement is one not of a short pulse of waves travelling along the specimen,
but of the times between the triggering of the transducers by the transient at the
beginning of the pulse. This is a complex situation, which makes the true test frequency
unknown and can lead to error if the pulse changes in shape during transmission. At
higher frequencies, as used by Chaikin and Chamberlain [67], the error will be less.
Mi [41] modified the PPM to have receivers at different distances on either side of
the transmitter, which eliminated any errors associated with time detection differences
at transmitter and receiver and allowed attenuation to be determined.

16.5.4 Cyclic dynamic modulus

The fact that the dynamic storage and loss moduli are not the constant values of the
simple model is shown in studies by Bosman [71]. Figure 16.54(a) shows cyclic
loading plots at different positions on the load–elongation curve of a high-tenacity
polyester yarn. The continuing shift of the hysteresis loops is due to creep. Other tests
were carried out a constant strain amplitudes. Figure 16.54(b) shows that the moduli
change with number of cycles, the storage modulus increasing and the loss factor (tan
δ) decreasing. Figure 16.55(a) shows that the dynamic modulus E′ increases with
increasing mean load and decreases with increasing strain amplitude. Figure 16.55(b)
shows that the loss modulus E″ is independent of mean load but increases with strain
amplitude. The latter effect has important consequences for heating when large fibre
assemblies, such as ropes, are cyclically loaded. Not only is there a direct effect of
the increased amplitude but the rise in E″, which is also shown in a plot of tan δ,
means that a larger fraction of the input energy is dissipated as heat. Tan δ increases
from 0.006 at 0.25% strain amplitude to 0.15 at 2%, a 25-fold increase.

Selden and Dartman [26] report the values for nylon 6 given in Table 16.7. The
most consistent effects are an increase in both E′ and E″ with pre-load, a decrease in
E′ and an increase in E″ with dynamic strain. Values of tan δ are only slightly higher
at the higher dynamic strain.

16.5.5 Values of dynamic modulus

The relation of the dynamic modulus (sonic modulus) to the moduli determined by
a stress–strain test is illustrated by the results of Charch and Moseley [69], shown in
Fig. 16.56. For an Orlon acrylic fibre yarn, the dynamic modulus, measured with a
10 kHz pulse, had a value of 14.7 N/tex, which was somewhat larger than the value
of 12.4 N/tex observed for the initial modulus in a stress–strain test at 1700% per
second, and considerably larger than the value of 7.9 N/tex found at 1/60% per
second (1% per minute). Similar results were obtained for other fibres.

In continuing extension, the incremental modulus given by the slope of the curve
decreases markedly at the yield point. By contrast, the dynamic modulus, which
shows up the response to a superimposed oscillation, usually increases. Even up to
strains as small as 1%, Chaikin and Chamberlain [67] found a small but significant
increase in the dynamic modulus of nylon, though the values for wool and hair were
constant.
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Figure 16.57 shows results obtained by de Vries [72] for a variety of regenerated-
cellulose fibres. The variation of dynamic modulus with extension falls into two
parts: up to a critical strain, ec, the modulus is constant, with a value E, but above this
value it increases linearly with strain. The critical values for the various fibres fall on
a curve given by:
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16.55 Change in (a) dynamic modulus E′ and (b) loss modulus E″ of high-
tenacity polyester yarn after 10 000 cycles at various mean loads and strain
amplitudes.
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Table 16.7 Dynamic moduli of nylon 6 fibres. Based on Selden and Dartman [26]

Pre-load E′ (GPa) E″ (GPa) tanδ
(mN/tex) 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz

Dynamic strain = ± 1%
27 1.39 1.69 1.97 0.32 0.37 0.34 0.23 0.22 0.17
45 2.56 2.71 3.14 0.54 0.64 0.58 0.21 0.24 0.18
91 2.58 3.55 4.14 0.82 0.77 0.59 0.32 0.22 0.14
182 5.14 7.28 8.19 1.15 0.96 0.75 0.22 0.12 0.09

Dynamic strain = ± 2%
27 1.08 1.56 1.78 0.27 0.40 0.40 0.25 0.26 0.22
45 1.45 2.00 2.25 0.37 0.51 0.49 0.26 0.26 0.22
91 1.77 2.63 3.08 0.58 0.54 0.51 0.33 0.19 0.11
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16.56 Stress–strain curves of Orlon acrylic fibre yarn at rates of strain of: A,
1700; B, 1.7; C, 0.017% per second, showing relation of initial slope to
dynamic modulus [69].

16.57 Dynamic modulus of cellulose fibres. AB is locus of ec. CD is locus of
breaking extensions in tensile tests. F, saponified acetate; L, Lilienfield rayon;
M, model filament; remainder are viscose rayon [72].
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E ecc
0.63 ⋅  = 1.73 kN/mm2 (16.42)

The critical strain ec is found to be more nearly equal to the yield point given by
recovery experiments than to that given by the shape of the stress–strain curve. De
Vries also found that, during relaxation of stress at constant extension, the dynamic
modulus changed very little, and not at all after the first 30 s, even though the stress
decreased by as much as 30%. Measurements of dynamic modulus during load–
extension tests carried out at various rates also indicate that the dynamic modulus
reaches equilibrium in less than a minute as a single-valued function of the strain.
This value is independent both of the particular stress-history of the specimen leading
to the given strain and of the value of the stress in the specimen at the time of
measurement. It was, however, found that only values of E above the critical strain
were reversible; once a specimen had been extended into the range of increasing E,
the initial constant portion of the curve was not repeated.

Figure 16.58 shows values obtained by Tipton [58] for a variety of textile yarns.
He also found that the dynamic modulus fell slightly and that the loss factor increased
as the amplitude of the dynamic strain was increased.

The orientation and crystallinity of the specimen will have a considerable influence
on the dynamic modulus. Table 16.8 shows the various types of regenerated-cellulose
filaments studied by de Vries, together with the values of the dynamic modulus at
low strain. The modulus is much greater in the more highly oriented specimens. The
effects of both crystallinity and orientation in Dacron polyester are shown in Table
16.9, which presents data obtained by Ballou and Smith [53]. Other values, obtained
by the pulse propagation technique, have been reported by Dumbleton [73].

If other factors are unchanged, the dynamic modulus can be used as a measure of
orientation; but care must be taken, since many treatments, for example, the effect of
annealing or hot stretching of synthetic fibres, change the structure in other ways,
which also influence the modulus. It must be remembered that all one is measuring

16.58 Dynamic modulus with static strain for various textile yarns [58].
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in determining the dynamic modulus is the response of the fibre as a whole to a rapid
cyclic extension.

16.5.6 Transitions in dynamic moduli

There are many mechanisms by which a fibre can deform. Some of these, such as the
stretching of atomic bonds, are characterised by large stresses and small strains but
occur at very high speed; others, such as the uncoiling of chains, lead to large strains
under low stresses but take a long time owing to viscous drag. The typical effect of
one of these mechanisms on the dynamic moduli is illustrated by the simple model
shown in Fig. 16.59(a). At high frequencies, only the stiff mechanism operates and
the modulus is high, but at low frequencies the soft mechanism can operate and the
modulus is low. At the extremes, there is little energy loss: at high frequencies, there
is little viscous displacement; at low frequencies, there is little viscous resistance.
But near the transition, when the structure is just becoming mobile, the viscous
resistance is very important in causing a large energy loss, or, what comes to the
same, in causing a large phase lag. The ‘loss’ quantities (E″, ηpω, tan δ) will therefore
go through a maximum, as shown in Fig. 16.59(b). With a variety of mechanisms, a
sequence of drops in E′ and peaks in E″ can be expected. Unfortunately, there are no
studies of fibres over a wide enough range of frequencies to enable one to plot
experimental data analogous to Fig. 16.59(b). However, it is found that the modulus
increases with frequency; for example, Chaikin and Chamberlain [67] obtained the
comparative values given in Table 16.10. This table also includes some data from
other sources.

Table 16.8 Dynamic modulus of regenerated-cellulose filaments at 8.8 kHz [72]

Material Ec (GPa)

Nearly isotropic model filaments 5.4
Stretched model filaments 5.4–23
Viscose rayons of low, medium and high tenacity 8–20
Very high-tenacity viscose rayon 20–30
Lilienfeld rayon 35
Fortisan 40

Table 16.9 Viscoelastic constants of poly(ethylene terephthalate) [53]

Frequency Orientation Crystallinity E (GPa) η (N s/mm2) τ = η/E (µs)

8 Hz None None 2.3 1.11 480
8 Hz None High 0.95 0.53 560
8 Hz High None 11.4 4.67 410
8 Hz High Low 12.0 6.48 540
8 kHz High Low 15.3 0.020 1.3

12 kHz High Low 15.3 0.012 0.8
16 kHz High Low 15.3 0.008 0.55
34 kHz High Low 16.3 0.007 0.45
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It is possible, however, to observe the transitions by causing the structure to loosen
up, to become mobile, for oscillations of a given frequency. This can be achieved by
raising the temperature, so that thermal vibrations become more effective, or by
plasticising the structure, most easily with water, so that the intermolecular forces are
reduced.

The thermal transitions will be discussed in detail in Chapter 18, but one example
is given here. Figure 16.60 shows the changes in the real and imaginary (loss)
modulus of nylon 6.6 fibres with a transition at about 90 °C.

The transitions in dynamic properties can also be studied in bending or torsion, as
will be described in the next chapter.

16.5.7 Strain-wave propagation: limiting impact velocity

At very high rates of extension, or impact, the tension wave (or stress wave) and the
associated strain wave take a significant time to travel along the fibre. Smith et al.

Table 16.10 Dynamic modulus values

E′ (GPa) E″ (GPa)

Fibre Static 1.5–100 Hz 10 kHz 100 kHz 1.5–100 Hz

[67] [57] [68] [67] [57]

Viscose rayon 4.2 10.6 17.1 19.5 0.48
Wool 3.1 8.6
Nylon 2.9 5.8 8.5 7.0 0.38
Steel 1.93 1.98

16.59 (a) Simple model of viscoelastic behaviour. (b) Real and imaginary
moduli of model.
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[33] have studied the propagation of strain waves along yarns. The theory and the
interpretation of data are complicated, but the order of magnitude of the effects can
be indicated by noting that the strain wave front velocity is about 3900 m/s in a
polyester fibre yarn and 2800 m/s in a nylon yarn. A comparison of experimental
results with a theoretical prediction suggested that appreciable creep and stress relaxation
occurred within 50 µs of impact but that there was no creep or stress relaxation
between 50 and 300 µs. The very rapid effects will, of course, be due to different
mechanisms from the slow creep and relaxation discussed previously. Mi [41], using
the PPM found similar values for the wave velocity in polyester and nylon and
7500 m/s in aramid (Kevlar). Attenuation of the signal was as exp(–ηL), where η is
the attenuation coefficient and L is the length travelled, so that there is a decrease of
0.37 times in a length 1/η. The values of 1/η were: nylon, 2.3 m; polyester, 3.4 m;
aramid 20 m.

As the speed of impact is increased, a point is reached at which the material is
unable to accommodate the rapid displacement of the end of the specimen by propagating
strain along the specimen. There is thus a critical velocity at which the specimen
breaks on impact. Smith et al. [74] have shown how the critical velocity may be
estimated from stress–strain curves. The estimated values lie between 100 and
300 m/s for different yarns and are generally greater in fibres with an appreciable
region of low modulus at the high level of extension before break.
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