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17.1 Introduction

The last four chapters have been concerned with tensile properties, the extension of
fibres under loads applied along the fibre axis. The influence of forces in other
directions is also interesting and of practical importance. The bending and twisting of
fibres influence the behaviour of bulked yarn filaments and the drape and handle of
fabrics. Recovery from bending is a factor in creasing. Twisting and bending both
play a part in the arrangement of fibres in a yarn, and transverse compressive forces
are involved when tension is applied to a twisted yarn. Bending strength and shear
strength may be important in wear. It is these properties that will be considered in this
chapter.

17.2 Bending of fibres

17.2.1 Flexural rigidity for small curvature

The flexural rigidity (or stiffness) of a fibre is defined as the couple required to bend
the fibre to unit curvature. Curvature is the reciprocal of radius of curvature. By this
definition, the direct effect of the length of the specimen is eliminated. The flexural
rigidity may be calculated in terms of other fibre properties. The problem is similar
to that of the bending of beams. Suppose we have a specimen of length l, bent
through an angle θ to a radius of curvature r, as shown in Fig. 17.1. Its outer layers
will be extended and its inner layers compressed, but a plane in the centre, known as
the neutral plane, will be unchanged in length. As a result of the extension and
compression, stresses will be set up that give an internal couple to balance the
applied couple.

Consider an element of area of cross-section δA, at a perpendicular distance x
from the neutral plane:

elongation of element = x θ = xl
r

(17.1)

tension in element 
xl r

lE A
/

 δ (17.2)

where E = Young’s modulus,

17
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the moment about an axis in the neutral plane

=     =   2x
r

E A x E
r

x Aδ δ (17.3)

total internal couple =   (  ) = 2
2E

r
x A

E Ak
r

Σ δ (17.4)

where A = ∑ δA = area of cross-section and k2 = ∑ (x2 δA)/∑ δA. (17.5)

E A k2 is often referred to as EI, where I is the moment of inertia of the cross-
section. The parameter k is analogous to a radius of gyration, taken about the neutral
plane. It may be related to a shape factor η, which is 1 for a circular fibre, by the
expression:

k A2  = 1
4

 π η (17.6)

Since A c = ρ (17.7)

where ρ = density and c = linear density of filament,

and E = ρEs (17.8)

where Es = specific modulus

total couple = 1
4

 s
2

π
η

ρ
E c
r

(17.9)

flexural rigidity1 = 1
4

 s
2

π
η

ρ
E c

(17.10)

1It should be noted that this equation is in a consistent set of units. In SI: Es in N/kg m; c in kg/m;
ρ in kg/m3; and flexural rigidity in N m2. In likely practical units, with Es in N/tex, c in tex, and ρ
in g/cm3, the equation becomes: flexural rigidity = (1/4π) (η Es c

2)/ρ × 10–3 N mm2.

l

r

θ

θ

x

δA

17.1 Bending of a fibre.
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It follows from this relation that the flexibility of a fibre depends on its shape, its
tensile modulus, its density and, most of all, its thickness.

The densities of the ordinary textile fibres range only between 1.1 and 1.6 g/cm3,
so that this is not a very large factor. Values of the modulus obtained in tensile tests
have been given in Chapter 13. They range from over 200 N/tex for HM–HT fibres to
about 10 N/tex for polyester fibre and as low as 2 N/tex for wool The shape factor
becomes greater, and the rigidity increases, the more distant the material is from the
centre. This is illustrated in Fig. 17.2. It will be seen that with an asymmetrical shape
there may be a difference according to the direction of bending. In practice, the fibres
will usually twist so as to bend about the easiest direction. For simple shapes, values
of η may be obtained by integration from a relation derived from equations (17.5)
and (17.6). For more complicated shapes, either numerical computation or experiment
will be necessary. Table 17.1 gives some typical values.

Since the fineness comes in as a squared term, and in view of the range of values
occurring in practice, from around 0.01 tex for microfibres and smaller for nanofibres
to 1 tex for a coarse wool and higher for some hair fibres and manufactured monofils,
it will be the most important factor in determining the flexural rigidity. The choice of
fibre linear density is thus important in deciding flexibility.

In order to compare material properties, it is convenient to introduce a quantity
that is independent of the fineness of the specimen. We may call this quantity the

Shape factor

increasing

17.2 Shape factors.

Table 17.1 Flexural rigidity (after Finlayson [1])

Fibre Shape Specific flexural rigidity R1

factor η (mN mm2/tex2)

Viscose 0.74 0.19
Acetate 0.67 0.08
Wool 0.80 0.20
Silk 0.59 0.19
Nylon 0.91 0.14
Glass 1.0 0.89
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specific flexural rigidity Rf, which is the flexural rigidity of a fibre of unit linear
density2. It equals (couple/curvature)/(linear density)2 and is given by:

R
E

f
s = 1

4
 π
η
ρ (17.11)

Values of Rf obtained by using values of the modulus obtained in tensile tests are
given in Table 17.1. They show the great flexibility of acetate filaments and the
stiffness of glass.

The above analysis assumes that the fibre modulus E (or Es) is constant. In reality,
fibre stress–strain curves are mostly non-linear, so that the analysis applies only to
small strains, namely to the relation between the initial flexural rigidity and the initial
tensile modulus. For a neutral plane in the centre of the fibre, the maximum tensile
strain, which will be positive on the outside and negative on the inside of the bend,
equals r/R in a circular fibre, where r = fibre radius and R = radius of curvature of
bend. Since fibres are so fine, quite small values of R (high curvature) result in fairly
small strains, so that, in many practical situations, though not in severe creasing, it is
only the initial flexural rigidity that is relevant.

17.2.2 Non-linearity at large curvatures

For more severe bending, the behaviour is represented by a moment–curvature relation.
Non-linearity of stress–strain relations must then be taken into account. For most
fibres, yield occurs at a lower stress in compression than in tension. This means that
resistance to deformation will be less on the inside of a bend than on the outside.
Consequently, in order to minimise strain energy, the neutral plane will move towards
the outside. If the fibre shape and the stress–strain curves in tension and compression
are known, the position of the neutral axis and the resistance to bending can be
calculated.

A common procedure is to calculate an effective bending modulus EB

(or EBs) from the above equations. The difference from the modulus measured in
tension gives an indication of the difference between compressive and extensional
resistance.

Chapman [2] developed this approach by presenting his results as bending ‘stress–
strain’ curves. This is a convenient way of normalising the information to eliminate
the direct effect of fibre dimensions. He defined the bending strain as b/R, where b
is half the thickness in the plane of bending. If the neutral plane is in the mid-way
position, this is the maximum strain in the fibre. However, there will be lower strains
in other parts of the fibre, with a complicated distribution if the fibre is irregular in
shape. If the neutral plane shifts from the mid-position, the maximum strain (at the
greater distance from the neutral plane) will be larger.

Equation (17.4) may be written as:

2The consistent SI units for specific flexural rigidity are N m × m/(kg m–1)2 or N m4
 kg–2. If E is in

N/tex and ρ in g/cm3, then Rf  = (1/4 π) (η Es/ρ) × 10–3 N mm2/tex2.
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moment =  =   or  = 
2

2M
E Ak

b
b
R

Mb
Ak
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b
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 (17.12)

This equation is analogous to Hooke’s law, and (Mb/Ak2) has the dimensions of
stress. Chapman therefore terms it the ‘bending stress’ and uses it in the more general
non-linear situation.

Lee [3] has modified the standard analysis and derived the bending moment versus
curvature relation for rectangular, elliptical and hollow cross-sections with a power
law relation for the stress–strain properties of the material. In a later paper [4], he
treats a greater variety of cross-sections. Jung and Kang [5] also analyse the large
deflection of fibres with non-linear elastic properties. He and Wang [6] treat the
buckling of fibres with irregular cross-sections.

17.2.3 Measurement of bending

The flexural rigidity of coarse monofilaments may be measured by supporting the
specimen at either end and finding the deformation due to a load at the centre. A
tensile tester may be modified as shown in Fig. 17.3 [7].

Peirce [8] suggested studying the deformation of loops under an applied load.
Carlene [9] used this method for viscose rayon filaments. A circular ring was suspended
and loaded by a rider, as shown in Fig. 17.4. Peirce showed that:

flexural rigidity = 0·0047mg(2πr)2 cos 
tan 

θ
θ (17.13)

where mg = weight of rider, r = radius of ring, θ = 493d/2πr and d = deflection of
lower end of ring.

Guthrie et al. [10], following a method devised by Khayatt and Chamberlain [11],
measured the deflection of short lengths (from a fraction of 1 mm to 2.5 mm) of
filaments clamped at one end and loaded at the other. The loading was applied by
pressing the specimen against a razor edge attached to the arm of a torsion-balance.
The deflection could be measured by a microscope with a micrometer eyepiece. If the
deflection was small, it could be shown that:

17.3 Adaptation of tensile tester for measurement of flexural rigidity of coarse
fibres.
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flexural rigidity = 
Fl

d

3

3
(17.14)

where F = force applied to specimen, l = length of specimen from clamp to razor-
edge and d = deflection of specimen.

The flexural rigidity may also be measured dynamically [12, 13]. One end of a
specimen is vibrated transversely, and the frequency is varied until the position of
resonance, at which the amplitude of vibration of the specimen is a maximum, is
reached. At least 0.5 cm of straight fibre is required for a test, and it may be observed
with a microscope. The method may be used at frequencies between about 20 Hz and
10 kHz. The air damping may usually be neglected, and the rigidity is then given by:

flexural rigidity = 
4 2 4 2

4

π ρA l f

h
(17.15)

where A = area of cross-section of specimen, ρ = density of specimen, l = length of
specimen, f = resonant frequency and m depends on the harmonic that is being
excited and is a solution of the equation cos h × cosh h = –1 (for the fundamental m
= 1.8751).

The loss modulus or tan δ may be determined from the width of the resonance
peak, as described in Section 16.5.3.

Yu and Liu [14] used a buckling test shown in Fig. 17.5(a) to measure bending
resistance. Figure 17.5(b) shows the variation of displacement with axial compressive
force. The force rises to a maximum, which is the critical value at which buckling
occurs. Yu and Liu solve the differential equations for the bending mechanics and
show that the effective bending modulus can be determined from the linear plot of
critical stress against (D4/L2), where D = fibre diameter and L = fibre length.

There are three experimental difficulties in measuring the full bending moment
versus curvature relations: the manipulation of fine fibres at small radii of curvature;
the measurement of small moments; and the maintenance of a uniform curvature in
the specimen (most simple methods of bending lead to a variable curvature, as is
apparent for example, from Figs 17.3, 17.4 and 17.5). Chapman [15] has described

r

d

mg

17.4 Measurement of flexural rigidity by a loop.
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an apparatus that overcomes these difficulties. It is based on a principle introduced in
a fabric-bending test by Livesey and Owen [16]. The essential features of Chapman’s
method are shown in Fig. 17.6. Curvature is applied by rotation of one fibre mount,
and the couple is determined by using a sensitive electronic microbalance to measure
the force on a lever arm attached to the other mount. Provided that the lever arm is
long, the errors due to non-uniform curvature are negligible.

17.2.4 Experimental results

Table 17.2 gives examples of the results of experiments on bending obtained by
Owen [17], using a double-pendulum method. If the fibre is non-uniform, one would
expect a difference between the moduli found in bending tests and those found in
tensile tests, since the outer layers play a larger part in bending than do the centres

17.5 (a) Axial buckling test. (b) Force displacement plots with critical condition
circled. From Yu and Liu [14].

Rotation

Force
transducer

17.6 Principle of Chapman’s fibre-bending tester [15].
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Table 17.2 Flexural and torsional properties of fibres 65% r.h.20 °C [18]

Fibre Specific flexural Modulus GPa Specific torsional Shear modulus
rigidity —————————————— rigidity (kN/mm2)
(mN mm2/tex2) bending tension (mN mm2/tex2)

Cotton 0.53 7.7 0.16
Viscose rayon

Fibro (staple) 0.35 10 8.7 0.058–0.083 0.84–1.2
Vincel (high wet modulus) 0.69 20 0.097 1.4

Secondary acetate 0.25 4.2 0.064
Triacetate 0.25 3.8 0.091
Wool 0.24 3.9 5.2 0.12 1.3
Silk 0.60 14 0.16
Casein

Fibrolane 0.18 2.3 0.11
Nylon 6.6 (3 types) 0.15–0.22 2.5–3.6 1.9–3.8 0.041–0.060 0.033–0.48
Polyester fibre

Terylene 0.30 7.7 6.2 0.067 0.85
Acrylic fibre (3 types) 0.33–0.48 6.0–8.1 4.9–7.0 0.12–0.18 1.0–1.6
Polypropylene 0.51 5.2 2.4 0.14 0.75
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of the fibre. In practice, Guthrie et al. [10] found that the modulus in bending tests
was greater than that in tensile tests at similar rates of loading for acrylic, polyamide
and polyester fibres. Kärrholm and Schröder [19] obtained the same results for viscose
rayon, but Khayatt and Chamberlain [11] found the bending moduli in wool to be
lower than the tensile moduli. Yu and Liu [14], using the buckling test, found bending
moduli of 1.47 GPa for wool, 2.15 for alpaca and 4.58 for silk.

In dynamic tests, Guthrie et al. [10] found that the modulus of viscose rayon was
constant between 40 Hz and 7 kHz; but Horio et al. [20] observed a drop in the
modulus near 20 Hz. This is shown in Fig. 17.7, together with values of E″ and η (see
Section 16.5.2). This suggests that there is a peak in the absorption and a drop in the
modulus at a low frequency.

Meredith [18] reported dynamic-bending measurements of tan δ, as shown in Fig.
17.8 for four synthetic fibres, with peaks in the important range between 0 and
150 °C. He also reported rather complicated results for cellulosic and protein fibres.
Other results have been given by Meredith and Hsu [13].

Elder [21] reported on the effect of temperature and humidity on the bending
modulus of some synthetic monofilaments. It is interesting to note that nylon 6 and
6.6, polyethylene, and polypropylene are on the lower part of a sigmoidal curve
between 20 and 80 °C, but polyester fibres are on the upper part. For example, at 65%
r.h., the bending modulus of nylon 6 falls from 3 GPa at 15 °C to 1.3 GPa at 40 °C but
then changes less, whereas Terylene polyester fibre is close to 13 GPa between 20 and
40 °C but falls to 10.3 GPa at 80 °C. A change in relative humidity of from 30 to 85%
at 20 °C causes the bending modulus of nylon to fall from 5.5 to 1.5 GPa.

Experimentally, for viscose rayon, the flexural rigidity has been found to be
proportional to (tex)n, where the index n is slightly less than the theoretical value of
2. Guthrie et al. [10] found n = 1.96 for Fibro staple fibre, and Carlene [9] found
n = 1.80 and 1.82 for other specimens of viscose rayon.
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17.7 Values of E, E″ and η in in bending of two viscose rayon monofils [20].
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Skelton [22] reported that the bending recovery of 15 denier (1.67 tex) nylon fell
steadily from close to 100 % for small curvature to about 20 % at high curvature.

17.2.5 Bending stress–strain relations

Love [23] showed from elasticity theory that a modulus defined as the ratio of
bending stress to bending strain is identical with the tensile modulus for a uniform,
transversely isotropic beam. In the absence of other complications, the bending and
tensile stress–strain curves should coincide near the origin.

If the fibres being tested are elliptical, with semi-axis a perpendicular to the plane
of bending and semi-axis b in the plane of bending, then the bending strain is (b/R)
as defined above, and the bending stress is (4M/πb2a).

A comparison of bending stress–strain curves with tensile stress–strain curves is
shown in Fig. 17.9. Generally similar results were found by Chapman with finer
fibres, though it was not possible to carry the tests to such large bending strains.

In all the manufactured fibres, the bending stress–strain curves lay below the
tensile curves and indicated that yield in bending, due to yield on the compression
side of the bend, occurred more easily than yield in tension. This was accompanied
by the development of kink-bands on the inside of the bend. Observations of these
kink-bands were described by Bosley [24] and Jariwala [25, 26]. Typical examples
are shown in Fig. 17.10. Application of tension after a single bend removes the
visible kink-bands and there is no loss of strength. The occurrence of kink-bands
depends on test conditions. In polyester fibres, kink-bands develop in a single bend
at 20 °C but not at 100 °C, whereas in nylon they appear at 100 °C but not at 20 °C.
The development of kink-bands into flex fatigue failure, including the effect of
temperature and humidity, is discussed in Section 19.5.2.
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17.8 Tan δ measured in dynamic bending of fibres at 0% r.h at frequencies of
200–300 Hz: A polypropylene; B, acrylic fibre; C; nylon; D polyester fibre.
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However, in horsehair (and wool), the bending curve is higher. If the yield behaviour
were the same in compression as in tension, Chapman showed that the bending yield
stress would be about 1.7 times as great as the yield stress in a tensile test. In fact, the
bending yield stress in horsehair is twice the tensile value, and this indicates that the
yield stress in compression is larger than the yield stress in tension. In this situation,
the neutral plane will move towards the outside of the bend, whereas in the synthetic
fibres it will move towards the inside.

Chapman [2] also studied the influence of ambient conditions in bending modulus
and found, as would be expected, a decrease in stiffness with increase in temperature
and humidity. In another paper, Chapman [27] described studies of bending-stress
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17.9 Bending (B) and tensile (T) stress–strain curves from Chapman [2]: (a)
nylon 6 fishing line; (b) high-tenacity polyester fibre filament; (c)
polypropylene monofil; (d) horse hair.
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relaxation and recovery. Whereas wool and nylon usually did show complete recovery
in time, polyester fibres were left with a permanent set, probably as a result of the
compressive yielding.

17.2.6 Loop strength and knot strength

If a filament is loaded in a bent state, it will break more easily than when it is straight.
This is due to the initiation of breakage by the high extension of the outside layers.
The reduction in strength, of which some values are given in Table 17.3, is greatest
in fibres with the lowest elongation at break. A similar effect is observed when there
is a knot in the filament, and values for the decrease in strength due to this cause are
also given in Table 17.3.

200 µm
(a) (b)

100 µm

7.10 Kink-bands in bent polyester fibres: (a) shown by polarised light
microscopy; (b) visible on the surface in scanning electron microscopy.

Table 17.3 Loop and knot strengths

Fibre
  

Loop strength
Tensile strength

  100×
  

Knot strength
Tensile strength

  100×

Cotton 91
Viscose rayon 58 90
High-tenacity viscose 96.5 63

rayon
Acetate 95
Wool 85
Silk 88
Nylon 82.5 86 98,88
Orlon acrylic fibre 80.9
Dacron polyester fibre 72.8
Fibreglas 8.4 5

(from Coplan [28]) (from Bohringer (from Berry
and Schieber [29]) [30])
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17.2.7 Compression and bending in high-performance fibres

There is a major difference between different types of HM–HT fibres in their resistance
to bending, which is related to their resistance to axial compressive stresses. Yielding
in compression with the formation of kink-bands, which is described above for nylon
and polyester fibres, is a more severe problem in highly oriented linear-polymer
fibres. Yielding occurs by internal buckling of cylindrical elements. This is really a
manifestation of the Euler buckling of a column, which occurs under a low stress
when the aspect ratio L/D of the element is long. The simple Euler treatment is for a
single element, but analogous effects occur in multiple assemblies provided that the
interaction between the elements is not so high that shear between elements is prevented.
For single rods or bundles without any lateral cohesion, the buckling will be into a
smooth bending curve; but, where there is some interaction between neighbouring
elements, it is more likely to occur as sharp kinks of the form indicated in Fig. 17.11.
Details of the occurrence of kink-bands in aramid fibre filaments have been discussed
by van der Zwaag et al. [31]. Such effects can occur at any structural level: fibres in
a yarn or a composite; fibrils or other elements within a fibre; or the linear molecules
themselves. Sometimes, the forms may be biased by particular structural features,
such as crystal twinning or particular molecular conformations; but this is essentially
a secondary effect and merely reflects that the yield will occur in the easiest of
various possible ways.

It is, of course, difficult to study single fibres in compression because, except at
impossibly short test lengths, they buckle as a whole before the internal yielding
occurs. However, the formation of kink-bands in compression can be demonstrated
by the dynamic effects of snap-back after breakage. Quantitative estimates of
compressive strength can be obtained from tensile recoil measurements [32], and
some experimental results are listed in Table 17.4. Values of compressive strength
can also be inferred from loop tests, and van der Zwaag and Kampschoer [33] found
that the compressive strength of aramid fibres ranged from 0.5 GPa for a low-
modulus type to 0.9 GPa for a high-modulus type. The values for HMPE were much
lower. Compressive yield can also be shown in composites. For example, although
the initial moduli in tension and compression of a Kevlar 49/epoxy unidirectional
composite are almost the same, there is yield in compression at a strain of about 0.3%
at a stress of about one-fifth of the tensile breaking stress. The yield determines the

17.11 Compressive deformation to a kink-band.

© Woodhead Publishing Limited, 2008



Directional effects 427

maximum stress that an oriented linear polymer fibre can sustain. Consequently, the
compressive strength is the same low value as the compressive yield stress.

Kawabata [34] developed a microcomposite method for measuring axial compression
of fibres. A fibre bundle, which has been dipped in liquid epoxy resin is pulled into
a Teflon tube with an inner diameter of 1 mm. After curing, the composite, which has
a fibre volume fraction of 0.8 to 0.85, is extracted and cut into 5 mm lengths.
Compression forces up to 2 kN are applied through a steel plunger giving deformations
of less than 2  µm, which can be measured on an LDVT. The fibre stress is calculated
from a simple mixture law. Figure 17.12, which includes axial extension, shows the
low yield stress in axial compression. Results for a number of fibres are shown in
Figure 17.13. HMPE and polyester fibres have a lower compressive yield stress than
aramids. Another way of presenting the data by plotting the tangent modulus against
strain is shown in Fig. 17.14. The low compressive modulus of the Kevlar fibres
corresponds to the approach to the minima in Fig. 17.13. Glass shows a constant
modulus, indicating linearity in extension and compression. The ceramic fibre Tyranno
is also linear in extension and compression. The carbon fibre shows an increasing
modulus, indicating a constant upward curvature in the stress–strain curve from
compression to extension.

Table 17.4 Comparison of tensile strength and compressive strength
measured in recoil [32]

Fibre Tensile strength Compressive strength
(GPa) (GPa)

Kevlar 29,49 3.4 0.37
Polyethylene, gel-spun 2.7 0.07
Carbon, Magnamite AS4 3.6 1.4

Thornel P-55 2.1 0.4
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17.12 Aramid (Kevlar 29) fibre in axial extension and compression. From
Kawabata [35].
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In contrast to the easy compressive yield of the one-dimensional structures, the
three-dimensional bonding in ceramic and glass fibres allows no mechanism for
compressive yield. If there is a high degree of three-dimensional interlocking in
carbon fibres, there will be no mechanism for yield in compression, and the compressive
strength will be high. But, in more perfect graphitic structures, the compressive
strength will be lower.

The counterpart to the low compressive strength of the oriented linear polymer
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17.13 Axial compression behaviour of aramid fibres compared with HMPE
and polyester. From Kawabata [34].
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17.14 Longitudinal modulus as a function of strain. From Kawabata [34].

© Woodhead Publishing Limited, 2008



Directional effects 429

fibres is that they can suffer severe bending without breaking, whereas the three-
dimensionally bonded fibres cannot do so.

Materials such as carbon, glass and ceramic fibres, which are linear elastic in
tension and compression, follow the classical behaviour in bending, as shown in Fig.
17.1. The neutral plane remains central and leads to equal and opposite tensile and
compressive strains on the outside and inside of the bend. If the radius of curvature
of the bend is R and the fibre radius is r, the maximum strain present is r/R, and, when
this equals the breaking strain, rupture will occur. Consequently, DuPont’s alumina
FP fibre with a breaking extension of 0.4% cannot be bent into a curvature tighter
than 250 fibre diameters without breaking.

In contrast to this, when there is yield in compression, the neutral plane will move
out to allow most of the deformation to occur by the easier compression mode. The
situation is illustrated in Fig. 17.15. Mathematically, equation (17.2) has to be modified
because the compressive force on an element on the inside of the bend, beyond the
small region of elastic deformation, will be given by fyδA, instead of (x/R) YδA,
where fy is the yield stress and Y is Young’s modulus. The division of area between
the tension side, δAt, and the compression side, δAc, will be given by a minimisation
of the deformation energy, Ub, where:

Ub = ∑1/2(x/r)2YδAt + ∑fy(x/r)δAc (17.16)

Schoppee and Skelton [36] have developed the bending–breakage test shown in
Fig. 17.16, and this confirms that Kevlar fibres can be bent back on themselves
without breaking. If the neutral plane had remained central, this would have implied
a tensile strain of 100%. Values for various fibres are shown in Table 17.5. The fibres
that do not yield in compression break at curvature levels close to those that would
be predicted from the tensile breaking extensions. It is reasonable that the breaking
strains calculated from bending tests should be larger than those from tensile tests,
since they are effectively made on a very short test length, comparable with the fibre
diameter.

17.15 (a) Stress–strain relations for Hookean material (H) and material
yielding in compression (Y). (b) Bending response: H, neutral plane central; Y,
neutral plane moving out.

Stress

Strain
Y

H

H Y

(a) (b)
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17.3 Twisting of fibres and the shear modulus

17.3.1 Torsional rigidity

The torsional rigidity of a fibre, its resistance to twisting, is defined as the couple
needed to put in unit twist, that is, unit angular deflection between the ends of a
specimen of unit length. The shear modulus is defined as the ratio of shear stress to
shear strain, the shear strain being measured in radians.

The torsional rigidity can be obtained in terms of the shear modulus (or modulus
of rigidity) in the same way that the flexural rigidity can be obtained in terms of the
tensile modulus, since twisting bears the same relation to shearing as bending does
to stretching.

We consider the twisting of a cylinder of length l, as shown in Fig. 17.17. After it
has been twisted through an angle θ, a line AB has been sheared through an angle φ
to the new position AC. The shear stresses set up give an internal couple opposed to
the applied torque. The shear angle, which is zero at the centre, increases in proportion
to the distance from the centre, x. Consider an element of area δA at a distance x from
the centre:

shearing force = vφδA = v(θx/l)δA (17.17)

where v = shear modulus (force/unit area). Therefore:

moment about the centre line = v(θx/l)δA · x = vθx2δA/l (17.18)

total torque = (v θ/ l ) ∑x2δA = vAk2θ/l (17.19)

where Ak2 = ∑x2δA (17.20)

Table 17.5 Rupture in bending [36]

Fibre Breaking strain Maximum apparent
in tensile test (%) strain in bending (%)

Glass 6.2 7.3
Graphite HM-S 0.8 1.4

HT-S 1.4 2.8
Kevlar 49 3.0 100

17.16 The bending test developed by Schoppee and Skelton [36].
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We can define a shape factor, ε, by the relation:

k
A2 = 

2
ε
π (17.21)

This gives ε = 1 for a circular fibre. The shape factor ε is different from η in bending,
since, in equation (17.19), x is the distance from the centre line, whereas in equation
(17.5), x is the distance from the neutral plane.

When equation (17.18) is converted to a relation involving specific shear modulus
n, linear density c, density ρ and twist per unit length τ, it becomes:

total torque = 
2ε

ρ τnc





(17.22)

The torsional rigidity may be defined either as the torque to produce unit twist in
radians per unit length, when it will equal (εnc2/2πρ), or as the torque to produce one
turn per unit length, when it will equal (εnc2/ρ). The expression shows the effect of
shape, density, modulus and fineness on the torsional rigidity of a fibre. As in bending,
since fineness comes in as a squared term, it is the most important factor. It is
convenient to introduce a quantity, the torsional rigidity of a specimen of unit linear
density (in tex), independent of the fineness of the particular specimen, and this may
be called the specific torsional rigidity3, Rt. It is given by:

R
n

t = 
ε
ρ





 (17.23)

We have no direct values of the shear modulus, since these are found by torsional
measurements, as described in the next section.

B  C

l

A
A

Φ

Φ

θ δA
x

B C

17.17 Twisting of a fibre.

3See footnotes 1 and 2 on pages 415 and 417 for notes on units.
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The determination of shape factor has been discussed by Meredith [37]. For simple
shapes, the value of the shape factor may be obtained theoretically by integration, no
measurement on the fibre being necessary. For slightly more complicated shapes,
there are expressions for the shape factor that require the substitution of certain
parameters of the fibre cross-section, for example, the major and minor axes of
elliptic cross-section, or the relative areas of wall and void in hollow fibres.

For very complicated shapes, such as that of rayon, an experimental analogy may
be used. If a membrane is formed across a hole having the same shape as the cross-
section of the fibre and is then distended by air pressure, the shape factor will be
proportional to the volume between the film and the plane of the plate containing the
hole. This analogy depends on the fact that both problems are governed by equations
of the same form. The experiment may be carried out by having a burette communicating
with a vessel fitted with two plates, one having a hole of circular cross-section and
the other a hole of the shape of the cross-section that is being investigated. The holes
are covered with a soap film, and the volume needed to raise the circular membrane
to a given height (and thus to a given air pressure) is measured first with both soap
films being distended, and then with the irregular hole sealed off. Thus the volumes
contained under the two membranes can be determined. The areas of the holes are
also measured, and the shape factor is given by:

ε =  1

2

2

1

2V
V

A
A











 (17.24)

where V1 and A1 are the volume and area for the irregular hole, and V2 and A2 are the
volume and area for the circular hole.

Table 17.6 gives expressions for the shape factor for various cross-sections and
shows the values given by Meredith [37]. Lee [38] provides a more detailed analysis
of the torsional rigidity of fibres with a generalised elliptical cross-section.

The above analysis is only valid for small twist. In Figure 17.17, AC = AB sec φ,
which causes a tensile strain of (sec φ – 1), increasing from the centre to the outside,
where ϕ equals the twist angle α. Table 17.7 compares the shear strain, equal to tan
α, with the tensile strain. At low twists, tensile strain can be neglected, but it must be
taken into account at high twists, particularly as tensile modulus is greater than shear
modulus. The tensile strains will be strongest for twisting at constant length. Figure
17.18 shows the development of torque and tension in a nylon monofilament twisted
at constant length. At zero tension, the fibre will contract on twisting, reducing the
tensile strain at the outside but giving a compressive strain at the centre.

17.3.2 Experimental methods

A method used by Morton and Permanyer [40] for measuring torque–twist relations
is indicated in Fig. 17.19. The specimen is mounted between a rotating head A and
a torsion-wire of known properties, which is connected to another rotating head C.
The principle of the method is that, as the specimen is twisted by the rotation of A,
the other head, C, is rotated so as to maintain the pointer B freely in a constant
position, marked by the indicating pointer D. Owing to the absence of rotation of B,
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Table 17.6 Shape factors for torsion (after Meredith [37])

Cross-section Expression for shape Fibres approximating Shape factor ε
factor ε to the cross-section

Circular 1 Cuprammonium rayon, 1
nylon, casein, Ardil,
Terylene, Saran, glass,
polythene, etc.

Elliptical, l = b/a
    

2
 + 1/e e

Wool >0.977

Thin elliptical tube of constant thickness
    

(2  – 1 + ) (1 + )
2(  + ) (1 – )

2 2

3

e x x
e x x

Kapok 5.07 (mean of
a/a1 = x, b1/a1 = e 10 values)

Thick tube, constant wall thickness Approximately 
    

4
( – )

m

o i

πA l
A A l

Cotton 0.71
Flax 0.96, 0.92
Ramie 0.77 (mean values)

b
a

b1

a1
b

a

t

Area A0

Area Am

Area Ai

Mid-way line,
length l
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0.95
Irregular, determined by soap-film method

Viscose
  

    

Fibro

Tenasco
viscose rayon






0.93Rayon
0.94

Fortisan 0.97

Acetate  
  

Celanese
Seraceta





0.73

0.69

Race-rack, e = c/2r
    

3(4  + )

[3 (1 + 2 ) + 8 ( + 3)]

2

2 2

e

e e e

π
π π

Orlon 0.57
Vinylon 0.66
Vinyon 0.67

Rectangular, e = b/a
    

2 (1 – 0.63 )
3

πe e Tussah silk 0.35
Calcium alginate 0.51

Quadrant of circle 0.84 Silk 0.84

Table 17.6 (Continued)

Cross-section Expression for shape Fibres approximating Shape factor ε
factor ε to the cross-section

c

r

a

b
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the twist in the specimen is given by the number of turns taken by A, which may be
rotated at a constant rate. The torque is obtained from the twist of the torsion wire,
which is calculated from the angle turned through by C. Values are noted at intervals
as the test is in progress. The same apparatus can be used for measuring the relaxation
of torque. With sensitive transducers, the method could be automated [41].

A torque transducer suitable for fibres is described by Sikorski [42, 43] as part of
the flexible thermomechanical analyser (FTMA) described in Section 18.5.2. It
incorporates semiconductor strain gauges in a commercially available flexible pivot.
Twist is directly inserted. The instrument is computer controlled to give programmed
changes in two independent variables selected from tension, torque, elongation and
twist together with temperature control. Another sensitive torsion tester is described
by Kawabata [44].

Table 17.7 Comparison of shear and tensile strains at surface of a circular fibre

Twist angle α Shear strain (%) tan α Tensile strain (%) sec α – 1

1° 0.17 0.015
5° 8.7 0.4
10° 18 1.5
45° 100 41
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17.18 Development of tension and torque in an 80 µm diameter nylon
monofilament twisted at 5 turns/second. From Sikorski et al. [39].
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Values of the torsional rigidity can also be found dynamically, by observing the
oscillations of a torsion pendulum, which consists of a bar suspended by the fibre. It
may be shown that:

torsional rigidity of fibre = 8 3

2
π Il
t

(17.25)

where I = moment of inertia of the bar about the fibre axis, l = length of fibre and t
= period of the oscillation, corrected, if necessary, for the damping.

Meredith [37] used 1.5 cm lengths of fibre with light-alloy inertia-bars, ranging in
mass from 16 to 110 mg and in length from 1.3 to 2.6 cm. By a suitable choice of bar,
the tension on the filament could be kept between 0.49 and 1.96 mN/tex, and the
period of oscillation between 4 and 10 s. Under these conditions, the damping was
negligible. Owen [17] used a double-pendulum method.

17.3.3 Results of torsional experiments

Figure 17.20 shows torque-twist relations obtained by Morton and Permanyer [41].
They are similar to tensile stress–strain curves. Table 17.2 includes values of the
specific torsional rigidity and shear modulus of fibres determined in Owen’s dynamic
tests [17], in which the strain was small. The results are directly comparable with
Owen’s bending results in Table 17.2. The specific torsional rigidities range from
0.05 to 2 mN mm2/tex2.

Meredith [37] found a very low value for specific torsional rigidity of polyethylene
(0.054 mN mm2/tex2) and high values for glass (6.4 mN mm2/tex2), as expected from
its material properties, and kapok (73 mN mm2/tex2), due to its hollow form. Shear
moduli are typically five to ten times lower than tensile moduli, but in the ratio is

C

Torsion
wire

Fibre

B D

Drive for
rotation

A

17.19 Measurement of torque–twist relation [40].
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greater in highly oriented fibres, such as flax and Tenasco (28). Muraki et al. [45]
found shear moduli of 1.28 to 1.42 GPa for wool compared with tensile moduli of
3.55 to 3.73 GPa.

Table 17.8 gives values of tensile and shear moduli of fibres measured with a
torsion pendulum by Zeronian et al. [46]. Values of the shear moduli cover a three-
fold range from 0.5 to 1.6 GPa, but the tensile moduli cover a 50-fold range, reflecting
the much higher orientation of the HM–HT fibres.

Torsional rigidity is very much affected by moisture, fibres being easier to twist as
their regain increases. This is shown by the results in Fig. 17.21, in which the
torsional rigidity, compared to a value of 1 when dry, is plotted against the relative
humidity. Clayton and Peirce [48] found that the rigidity of cotton fibres decreased
as the temperature increased; the temperature coefficient was 0.28% per °C in the dry
state, rising to 1.48% per °C at 8.3% regain.

17.20 Torque–twist relations for various fibres at 65% r.h. and 20 °C [41].

Table 17.8 Tensile and torsional properties. From Zeronian et al. [46]

Fibre Tensile Torsional E/ν Breaking
modulus– (shear) twist
E (GPa) modulus– angle (°)

ν (GPa)

Polyester (PET) experimental filament 9.01 0.85 10.5 44
Polyester (PET) high-speed spun (POY) 1.98 0.65 3.05 77
Polyester (PET) drawn POY 8.81 0.85 10.4 32
Nylon 6 filament 3.41 0.49 6.96 48
Polypropylene filament 2.09 0.57 3.67 60
Gel-spun polyethylene (HMPE) 93.7 0.84 111 22
Polybenzimidizole (PBI) staple fibre 6.78 1.37 4.95 25
Aramid (PPTA) Kevlar 49 filament 94.2 1.60 58.9 17
Polyplhenylenesulphide (PPS) staple 4.62 1.39 3.32 46
Vectran M filament 62.2 0.56 111 18
Vectran HS heat-set filament 69.5 0.56 124 20
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Meredith [37] found that the torsional rigidity was independent of tension for the
acrylic fibre Orlon between 0.98 and 9.80 mN/tex, increased slightly for nylon; and
increased by 1.3% for an increase of tension of 0.98 mN/tex in crimpy wool, where
the configuration of the fibre would be altered.

Guthrie et al. [10] found that the torsional rigidity of viscose staple Fibro was
proportional to (tex)1·9. The difference from the theoretical index of 2 can be accounted
for by a difference of shape in fibres of different fineness.

Chamberlain and Khera [49] found that the specific torsional rigidity increased as
the outer layers of viscose rayon filaments were removed. Meredith [18] found that
the average coefficient of variation of shear modulus was 22% for cellulosic fibres,
15% for protein fibres, and 12 for synthetic fibres.

Skelton [50] reported that the torsional recovery of nylon falls from 100% for low
strains to 60% for high strains. Figure 17.22 shows torque–twist and recovery response
of a polypropylene fibre.

17.3.4 Torsion and time

Creep and relaxation will occur in twisting just as they do in extension. Fig. 17.23
gives examples of the relaxation of torque found by Permanyer [47]. When log(torque)
is plotted against log(time), straight lines are found. At low twists, there is a change
of slope at about 30 minutes. Figure 17.24 shows stress relaxation and inverse relaxation
after recovery in a nylon monofilament.

If determined in tests made over a wide frequency range, the dynamic modulus
would also be expected to vary, but Meredith [37] found no change in nylon for
periods of oscillation between 5 and 16 seconds. He also found that the damping of
the oscillations was very small when the period of oscillation was long.

Kawabata et al. [51] found torsional creep compliance of Kevlar 29 to be about
300 times greater than the longitudinal compliance.
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17.21 Variation of torsional rigidity with humidity [47].
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17.3.5 Breaking twist

If a fibre is twisted far enough, it will eventually rupture. The twist for which this
occurs may be called the breaking twist. It has been confirmed experimentally by
Schwab [52] and Koch [53] that, as would be expected theoretically, the number of
turns to rupture is inversely proportional to the fibre diameter. To obtain a characteristic

17.22 Torque–twist and recovery of 0.54 tex polypropylene fibre. From Sikorski
et al. [39].

0 1 2 3
Log (time, min)

5 turns/cm

70 turns/cm

Lo
g

 (
re

la
ti

ve
 t

o
rq

u
e)

2.4

2.1

1.8

1.5

17.23 Relaxation of torque [47].
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property of the fibre material, one may use the breaking twist angle α. This is the
angle through which the outer layers are sheared and is given by:

tan α = πdτb (17.26)

where d = diameter of fibre and τb = breaking twist in turns per unit length.
Typical values of breaking twist angles found by Koch [53] are given in Table

17.9. The general pattern of the results is the same as that for breaking extensions.
The effects of some changes of testing conditions are given in Table 17.10.

Table 17.8 includes breaking twist angles measured at constant length by Zeronian
et al. [46] using an apparatus described by Ellison et al [55]. The breaking twist
angles correlate with break extensions, which reflects the fact that break is triggered
by the elongation at the fibre surface.

17.4 Shear strength

It would be difficult to measure directly the relation between shear stress and shear
strain. Finlayson [56] made direct measurements of shear strength by using a bundle
of fibres placed in a hole passing through both jaws of the apparatus. The jaws are
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17.24 Torque–twist behaviour for a 75 µm diameter nylon monofilament,
followed by stress relaxation, recovery and inverse relaxation. From Sikorski
et al. [39].
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then pulled apart and the force required to break the bundle is measured. Breakage
must occur through shear. It was found that the breaking load was proportional to the
total count of the bundle, which indicated that any composite specimen effect was
small. The tensile strength was measured on the same specimens, and the results are
given in Table 17.11. It will be seen that shear strength is less than tensile strength,
the difference being particularly great in a stretched rayon.

17.5 General elastic deformation

17.5.1 Elastic constants

For small strains, the properties of a homogeneous, perfectly elastic, but anisotropic
material may be expressed in terms of a number of elastic constants [23, 57–59]. As
indicated in Fig. 17.25, there are three tensile stresses, perpendicular to each face of
a cube, and three shear stresses, paired together in two perpendicular directions in the
plane of each face. These are related to six possible strains, extension in three mutually

Table 17.9 Breaking twist angle [53]

Fibre Range of α°

Casein 58
  

1
2

–62
Polyamide fibre, staple 56–63

Polyamide fibre, continuous-filament 47
  

1
2

–55
  

1
2

Polyester fibre, staple 59
Polyester fibre, continuous-filament 42–50

Acetate 40
  

1
2

–46

Wool 38
  

1
2

–41
  

1
2

Silk 39

Viscose rayon, normal 39
  

1
2

–35
  

1
2

Cotton 37–34

Polyacrylonitrile fibre 33–34
  

1
2

Viscose rayon, high-tenacity 31
  

1
2

–33
  

1
2

Flax 29
  

1
2

–21
  

1
2

Viscose rayon, very high-tenacity 23

Glass fibre 2 1
2

–5

Test conditions 65% r.h.; room temperature; 1 cm lengths;
tensile stress of 10 N/mm2; 240 turns/min.

Table 17.10 Effect of conditions on breaking twist angle [54]

Change in breaking twist angle

Change in condition Viscose rayon Acetate

Test length, 5 → 60 mm 25.2 → 28.7° —
Rate of twisting, 30 → 565 turns/min Negligible Negligible
Humidity, 65% r.h. → wet None 28 → 36°
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perpendicular directions and shear about three mutually perpendicular axes.
Consequently, there are 36 elastic constants in the stress–strain matrix. However, the
matrix is symmetrical, so that the number reduces to 21 for the most asymmetric
structure. As the symmetry of the material increases, the number of constants decreases,
until, in a completely isotropic material, only four constants (Young’s modulus,
Poisson ratio, shear modulus and bulk modulus), of which only two are independent,
are usually considered.

It is rare for fibres to be isotropic, and the simplest assumption, which is likely to
hold reasonably well for many fibres, is that there is no difference in properties
between different directions at right angles to the fibre axis, although these are
different from the properties parallel to the fibre axis. Under these conditions, which

Table 17.11 Shear strength [29]

Shear tenacity Tensile tenacity
(mN/tex) (mN/tex)

Fibre 65% r.h. Wet 65% r.h. Wet

HIghly oriented cellulose 104.0 94.2 706 589
Nylon 111.8 95.2 392 353
Flax 81.4 73.6 255 284
Vinyon 98.1 94.2 275 245
Viscose rayon 63.8 31.4 177 69
Silk 115.8 88.3 314 245
Cotton 84.4 76.5 235 216
Acetate 57.9 50.0 118 78
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17.25 Direction of principal stresses.
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may be called transversely isotropic, the number of common constants may be reduced
to seven: two Young’s moduli, YL and YT; two shear moduli, nLT and nTT; and three
Poisson ratios, σLT, σTL and σTT. Their directions are illustrated in Fig. 17.26. Of
these, YL is the modulus measured in tensile or bending tests and nLT the shear
modulus involved in torsional rigidity. The number of independent constants is reduced
to five by the relations:

n
Y

Y YL
TT

T

TT

LT TL

T
= 

2(1 + )
  = σ
σ σ

(17.27)

For this system, the bulk modulus, k, that is, the ratio of a hydrostatic stress to the
resulting volume strain, is given by:

k
Y

 = 
2 + ( / ) –  2 ( + 2 )

T

TL LT TT TLσ σ σ σ (17.28)

In a fibre with radial symmetry, as illustrated in Fig. 17.27, all that is justified is
the orthotropic system with three mutually perpendicular axes of symmetry. With

nTT

YL

σ LT

nLT

σTL σTT

YT

17.26 Elastic constants of a transversely isotropic fibre.

L

R

T

17.27 Directions of principal axes in a fibre with radial symmetry.
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orthogonal curvilinear coordinates, the directions are taken as longitudinal, radial
and tangential. There are 12 constants

YL, YR, YT; nLR, nRT, nTL; σLR, σRT, σTL; σRL, σTR, σLT

with three relations between them:

σ σLR

L

RL

R
 = 

Y Y

σ σRT

R

TR

T
 = 

Y Y

σ σTL

T

LT

L
 = 

Y Y
(17.29)

A detailed account of orthotropic elasticity is given by Jayne [60].
In fibres, particularly natural fibres, with an internal structure, a simple model is

not a true representation. Transversely isotropic or orthogonal symmetry may apply
locally but the elastic constants vary from place to place. This gives rise to complicating
effects. For example, in cotton the helical orientation of the molecules leads to an
untwisting, namely a shearing, of the fibre under axial tension. In wool the properties
will differ in ortho- and para-cortex and in the cuticle (and in meso-cortex and
medulla, if present). However, for experiments on whole fibres, it may be convenient
to present results as if the simple model was valid.

It may also be noted that the particular elastic constants mentioned are not the only
ones that could be defined. It is quite common to use compliances, ratio of strain to
stress, instead of moduli. The transverse deformation may be given by the ratio of
transverse strain to axial stress instead of by the Poisson ratio, which is the ratio of
transverse strain to axial strain. Moduli could be defined as at zero transverse strain,
with another constant to give transverse stress developed, instead of at zero transverse
stress, and so on. The constants also serve as surrogates for full stress–strain relations.

17.5.2 Measured properties

Tensile tests account for the overwhelming majority of studies of the mechanical
properties of fibres. In addition, as already described, there have been a number of
studies of torsional behaviour. Thus the only moduli (or more generally the stress–
strain relations) for which information is easily available are YL and nLT.

Bending, as described earlier, also involves YL, but, while tensile behaviour is
averaged over the whole fibre, bending is influenced more by outer layers. Comparison
of the two gives information on variations in modulus, particularly between skin and
core. Bending also gives information on behaviour in compression. Marlow [61]
reports that the initial moduli in tension and compression are equal: indeed, a
discontinuity at the origin would be highly improbable. This result was confirmed by
Elder [62], who examined various synthetic fibre monofilaments in tension, compression,
and bending up to 1% strain. However, Chapman’s results in Section 17.2.5 show
that at larger strains the yielding behaviour is different.
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Direct studies of axial compression have been made by cutting sections of fibres
or monofils and compressing them between plates. Miles [63] found that, although
nylon bristle shows the same modulus in tension and compression, the compressive
stress–strain curve deviates markedly from the tensile stress–strain curve at strains
greater than 1.5%. Whereas the tensile stress–strain curve is approximately linear up
to a stress of 0.2 N/tex and a strain of 15%, the compression curve bends over to
reach a stress level of 0.04 N/tex, which is substantially constant above 5% compression.

Compression between plates may also be used to study the transverse properties
and obtain information on YT. Figure 17.28 shows the principles of the test.

The Poisson ratio σLT (transverse contraction for imposed extension) can be studied,
with some difficulty, by several methods: direct microscopical examination; diffraction
methods [65]; and methods involving the insertion of a fibre in a tube and noting the
change in electrical conductance [66] or fluid flow. Values of about 0.39 have been
reported for nylon. Banky and Slen [67] found values between 0.42 and 0.63 for
wool.

A complete study of elastic constants was made by Hadley et al. [68], who obtained
values of the five independent elastic constants for several manufactured fibre
monofilaments, with diameters of 100–300 µm. The experimental methods used were
as follows:

• axial extension, by applying loads and measuring length changes with a travelling
microscope, 1 minute after loading, to obtain the axial modulus YL;

• axial Poisson ratio σLT by measuring the change of diameter of monofilament by
means of a microscope with a calibrated eyepiece;

• transverse compression to give thickness of contact between monofilament and
plates and change in diameter parallel to plane of contact (the former is mainly
dependent on the transverse modulus YT; the latter is related to the transverse
Poisson ratio σTT by an extension of Hertzian contact theory);

• torsion measurements with a vibration pendulum, giving the shear modulus nLT.

By calculation from these observations, the values of all the constants can be obtained.
Figure 17.29 shows how the three moduli vary with the draw-ratio. In general, the

tensile modulus changes most rapidly in the range of draw-ratio values that are

17.28 Principle of method of measurement of transverse moduli [64].
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commonly found. Consequently, the ratio of tensile to shear modulus, which plays an
important part in the buckling of filaments in bulked yarns, can be varied considerably.
Table 17.12 collects a set of values, including all the usual constants, together with
values of the moduli obtained by Morris [64] under wet and dry conditions.

In spruce wood, which has orthotropic symmetry, Barkas [57] found the values
given in Table 17.13. The wood had a density of 0.5 g/cm3 and a regain of 12%. It
will be noted that YT << YL, nTT << nLT, and σTL << σLT or σTT, as would be expected
for a material that is highly oriented along the fibre axis.

In the highly oriented HM–HT fibres, such as aramids HMPE and PBO, the weak
bonding between the molecules will give low values of the transverse modulus, YT,
both shear moduli, nLT and nTT, and the Poisson ratio, σTL. The PIPD ‘M5’ fibre has
the somewhat higher shear modulus of 7 GPa due to the hydrogen bonding.

In perfect graphite, there is a very high degree of anisotropy, as shown by Fig.
17.30. The maximum Young’s modulus, for extension within the planes of atoms, is
estimated to be 1060 GPa, but across the planes it is only about 37 GPa [69]. The
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17.29 Variation of moduli with draw-ratio: a, nylon; b, polyester fibre; c,
polypropylene fibre [68].
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shear modulus between planes is estimated to be 4 GPa, but that within planes,
180 GPa and, through planes is estimated as 15 GPa. These properties must be reflected
in carbon fibres, though the exact effect will depend on the extent of disorder,
disorientation, and interconnection between the planes. Good orientation of planes
parallel to the fibre axis implies that the shear modulus (nLT in Fig. 17.26), which
determines torsional rigidity, will be low. If the overall arrangement of planes is such
that the fibre is transversely isotropic, the transverse modulus YT and the shear
modulus nTT will be an average of high and low values; but, if the structure is
layered, as in Fig. 17.31, which approximates to the form of pitch fibres, there will
be substantial transverse anisotropy.

Glass and ceramic fibres are isotropic, so their Young’s modulus Y will be the
same in all directions. Poisson ratios σ have typical values of around 0.3, and, since
there are only two independent elastic constants in an isotropic material, the shear
modulus n will equal Y/2(1 + σ), namely about 40% of the tensile modulus. There
will be no directions of particular weakness in the structure.

Table 17.12 Elastic constant data for drawn nylon and drawn and undrawn polyester fibre
[68] and for three other fibres [64]

Constant* Nylon Undrawn Polyester fibre Polyester fibre
polyester fibre A† B‡

YL 3.45 2.27 9.09 14.08
YT 1.37 2.50 1.12 0.62
nLT 0.61 0.93 0.74 0.74
nTT 0.54 0.89 0.39 0.23
σLT 0.48 — 0.43 0.44
σTL 0.19 — 0.05 0.02
σTT 0.27 0.38 0.44 0.37

Constant* Nylon Courtelle acrylic fibre Viscose rayon

YL dry 2.50 2.80 2.85
wet 0.95 2.77 0.15
YT dry 0.91 0.21 0.14
wet 0.74 0.20 0.0075

*Values of Y and n are expressed in GPa.
†Drawn to a birefringence of 0.153.
‡Drawn to a birefringence of 0.187.

Table 17.13 Elastic constants of spruce wood [57]

Moduli (kN/mm2) and Poisson ratios

Young’s moduli YL YL = 16.6 YT YR = 0.85; YT = 0.69
Shear moduli nLT nLT = 0.84; nLR = 0.63 nTT nRT = 0.037
Poisson ratios σLT σLR = 0.36; σLT = 0.52 σTT σRT = 0.43; σTR = 0.33

σTL σRL = 0.018; σTL = 0.023
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17.5.3 Transverse compression

Kawabata [70] developed the instrument shown in Fig. 17.32(a) for measuring transverse
compression on single fibres. As indicated in Fig. 17.32(b) and (c), the fibre is
compressed between a top plane, 0.2 × 0.2 mm2, and a bottom plane. Both surfaces
are mirror finished steel. Other features of the instrument are the driver, force transducer,
LDVT for deformation, and provision for heating and wetting. The displacement
resolution is 0.05 µm, which is adequate for testing fibres with a diameter of 5 µm or
more. Figure 17.32(d) shows the deformation geometry for a fibre of radius R (diameter
D) for a contraction U under a force F per unit length. Kawabata modifies the
analysis used by Ward et al. [71, 72] to give the following equations between measures
of stress f = F/D and strain u = U/D:
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17.30 Variation of modulus of perfect graphite crystal with direction [7].

17.31 Carbon fibre oriented in layers across the fibre.
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If ( σLT
2 /EL) << (1/ET), i.e. when longitudinal modulus >> transverse modulus, the

equations simplify to:
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A finite element computation showed good agreement with predictions of the
equations used by Kawabata [70]. The sinh–1 term causes little divergence from
linearity except for small values of f. The experimental results for Kevlar 48 diverged
from the relation between f and u at low stresses, probably due to an artefact of
mounting the specimen, and at high stresses, which would be a change in material
properties. Calculated moduli were obtained from intervals along the linear part of
the experimental curve.

Figure 17.33 shows force/deformation plots for aramid fibres in transverse squashing
and recovery and Fig. 17.34 shows the much larger resistance to deformation in
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17.32 (a) Transverse compression instrument. (b) Section through
compression zone. (c) Plan of compression zone. (d) Compression geometry.
From Kawabata [70].
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17.33 Deformation and recovery of aramid fibres in transverse compression.
From Kawabata [70].
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17.34 Inorganic fibres in transverse compression, with Kevlar for comparison.
Tyranno is a silica fibre. PRD-166 is an alumina/zirconia fibre (not
commercialised), CF 1400 is a carbon fibre. From Kawabata [70].
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inorganic fibres. The log–log plot of axial and transverse moduli in Fig. 17.35 shows
a comparatively small difference between the moduli in nylon, which is in agreement
with earlier data. There are only small increases in transverse modulus in going to
polyester and HM–HT fibres, but the axial modulus increases greatly. In the glass
fibre, the moduli are almost equal, but other inorganic fibres show anisotropy with
the axial moduli increasing and the transverse moduli decreasing. This is to be
expected in carbon fibres where the graphitic planes are axially oriented, but is
surprising in the ceramic fibres. Table 17.14 gives values of transverse and axial
moduli and strengths. Transverse creep compliance was about 600 times greater than
axial compliance [51].
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17.35 Comparison of transverse moduli ET and axial moduli EL. Britlle type: •
carbon (PAN), � carbon (pitch), � ceramic, � glass. Yielding type: � PET, �
nylon 6,  nylon 66, � kevlar, � HMPE From Kawabata [70].

Table 17.14 Elastic moduli measured by Kawabata [45, 70]

Fibre type Transverse Axial Transverse Axial
modulus modulus strength strength
(GPa) (GPa) (GPa) (GPa)

PAN-based carbon 6.03–10.08 235–343 0.95–3.34 3.08–5.19
Pitch-based carbon 3.08–9.95 126–379 0.079–0.64 2.35–4.73
Alumina 12.7 341 2.34 1.34
Silica 26.5 160 6.73 3.34
Aramid 1.59–2.59 63.4–179 0.042–0.077 2.18–3.57
Wool 0.97–1.01 3.55–3.73
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17.5.4 Interactions of stresses

For small stresses and strains, it is assumed in elasticity theory that the effect of each
stress is independent and that the total effect of a complex stress situation can be
obtained by summing the separate effects of all the stresses. Thus the initial tensile
modulus of a fibre would be unaffected by slight twisting. But, when the strains
become large, there will be an interaction between the effects.

Dent and Hearle [73] examined the tensile properties of twisted single fibres. The
experiments were performed in two ways: with constant length during twisting and
with a constant low tension during twisting. Twist values are given as the twist factor
τ√c (tex1/2cm–1), where τ is the twist in turns/cm and c is the linear density in tex.
This is related to the twist angle α by the relation:

σ√c = 1/2√(105/πv) tan α (17.34)

where v is the fibre specific volume in cm3/g.
Figure 17.36 illustrates the effect of twist on the stress–strain curves, with constant

length twisting. The tendency to contract during twisting displaces the start of the
curve up the stress axis. The initial moduli become less at high twists, and the
breaking point occurs much earlier when the twist factor becomes large. A comparison
of results obtained in constant tension twisting is given in Fig. 17.37. In most fibres,
though not in cotton and wool, the strength is fairly constant up to twist factors of
between 30 and 50 tex1/2/cm but then decreases rapidly. Failure due to twist alone
occurs at twist factors between 50 and 120 tex1/2/cm.
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17.36 Stress–strain curves of nylon fibre twisted to various levels at constant
length [73].
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17.37 (a) Change of tenacity, based on linear density before extension, of
fibres twisted at constant tension [73]. (b) Change of breaking extension,
based on length in twisted state before extension, and of contraction, based
on length before twisting, of fibres twisted at constant tension: 1, nylon; 2
Terylene polymer; 3, cotton, 4, viscose rayon; 5, acetate; 6 Acrilan acrylic; 7,
wool [73].
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Hearle and Zhou [74] have reported a study of the effect of combined torque and
tension on Kevlar. The effects are generally similar, except that, in constant-length
twisting, the strength of Kevlar falls to zero at a twist factor of 30 tex1/2/cm, which
is about half the value found in nylon and polyester fibres.

Table 17.15 Compression of fibre mass [76]

Fibre Initial height, in., 15 min recovery
under 1-gf load* (%)

Saran 0.80 100
Nylon 1.00 90
Wool 1.00 31
Casein 0.50 24
Orlon acrylic fibre 1.20 17
Dacron polyester fibre 1.10 14
Acetate 0.84 11
Viscose rayon 1.30 8

*1 gf = 9.81 mN; 1 in. = 2.54 cm.

(a)

(b)

17.38 Recovery of compressed rayon staple on wetting: (a) immediately after
immersion; (b) 30 s later After Kolb et al. [76].
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Another example of the application of combined stresses is in the observation by
Wilson [75] of a change in the breaking extension of nylon under combined axial and
transverse stress.

17.6 Compression stresses on fibre masses

One other type of stress that has been studied is the application of a compressive
stress to a mass of staple fibres. Kolb et al. [76] placed 0.3 g of fibres in a cylinder
of 13 mm (1/2 in). diameter, measured the height under a load of 1 gf, and then
compressed it under a pressure of 689 MN/mm2  (100 000 lbf/in2) for 1 min. Table
17.15 shows values of the initial height and of the recovery after 15 min. It will be
noted that fibres that show good tensile recovery also show high recovery after
compression. The fibres showed a crushed appearance where they crossed one another.
By contrast, the nylon is seen to be little affected. The synthetic fibres recovered
better in hot air, and viscose rayon recovered 100% in water. The photographs in Fig.
17.38 show the effect of water on the rayon staple.
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18.1 Introduction

18.1.1 Changes of state in polymers

Most materials are characterised by transitions between three states: solid, liquid and
gas. Melting and boiling occur so sharply that they can define the limits of temperature
scales or be used to identify chemical substances. Polymers behave differently. Firstly,
the molecules are so large that decomposition occurs before there could be any
possibility of vaporisation. In many polymers, such as cellulose and aramids,
decomposition occurs before melting can take place. Secondly, when it occurs, melting
is not sharp. There is a gradual softening before a viscous melt forms. The flow
properties change strongly with temperature, so that melt-spinning conditions must
be carefully chosen. Thirdly, there are important transitions in the solid state. Different
allotropic crystal forms are also found in many materials and are of minor importance
for fibre behaviour. Transitions within amorphous regions and more subtle effects in
crystalline regions play a major role in the processing and use of fibres.

Simple amorphous polymers show one important transition in the solid state. At
low temperatures, they are glassy solids; at high temperatures, they are elastomeric.
In natural and synthetic rubbers, the transition occurs below room temperature. In
plastics, such as polystyrene or polyvinyl chloride, the transition is above room
temperature. There are complications. Firstly, the transitions are time dependent as
well as temperature dependent. Secondly, unless the polymer molecules are very
long and entangled or are lightly crosslinked, the rubbery state merges into viscous
flow. There are two other polymeric states. At high degrees of crosslinking, the
materials are rigid thermoset resins. Regular polymers can form crystals. All of these
features are involved in thermal transitions of fibres, many of which combine crystalline
and amorphous material.

Figure 18.1 illustrates the above effects. Below –20 °C, natural rubber (Fig. 18.1(a)),
is a hard solid with a shear modulus over 1 GPa. It then falls sharply to a value over
a thousand times smaller. If there is no crosslinking, the viscoelastic modulus continues
to fall as temperature rises. However a moderate degree of vulcanisation forms cross-
links through sulphur bridges and the material has good rubbery properties from –20
°C to 150 °C. With more crosslinks, the transition from the glassy to the rubbery state
moves to higher temperatures. In polystyrene (Fig. 18.1(b)), the transition from glass

18
Thermomechanical responses

© Woodhead Publishing Limited, 2008



Thermomechanical responses 459

to rubber occurs at around 100 °C. The influence of rheology is shown by the change
in transition temperature and the change to rubbery flow according to the time available.
For large changes in rate, from milliseconds to years, the changes in transition
temperature will be much larger. The sigmoidal creep curves in Fig. 18.2 could
represent the behaviour of a given polymer at different temperatures.

18.1.2 The nature of transitions

Melting of crystals and boiling of liquids are first-order transitions. The structure
changes from the regular packing in crystals to the mobile disorder in a liquid and
then to the dispersion into the available volume for a vapour. In addition to the
transformation of mechanical state, they are characterised by latent heats and changes
of volume.

A thermodynamic second-order transition involves no change of molecular
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arrangement. Snapshots of the molecular arrangement above and below the transition
would be virtually the same. But there is a change in response of the structure, shown
up by changes in the second-order quantities, namely the rate of thermal expansion
(dV/dT), the specific heat (dH/dT), and so on. The difference between first- and
second-order transitions is shown graphically in Fig. 18.3.

The change in amorphous polymers from the glassy to the rubbery state has many
of the characteristics of a second-order transition, but is not as sharp and is time
dependent. The transition would not be obvious to anyone merely watching a polymer
such as polystyrene being heated (in contrast to the clear indication of the melting of
wax). It would be apparent if the material were allowed to deform, since it suddenly
becomes flexible.

There is a distinction between sharp and broad transitions. This may be, and often
is in polymer materials, merely a reflection of local variations in structure, for example,
in crystal size or perfection or in local packing, so that the observed effect is really
a collection of sharp transitions spread over a range of temperatures. Even in a
uniform system, transitions vary in sharpness depending on the extent to which they
are cooperative. A highly cooperative transition with a large total energy change,
such as the change from crystal lattice to liquid disorder, will be sharp. It makes no
sense to say that a crystal is half-melted (except in terms of a molten region progressively
spreading over the crystal with sharp boundaries between the regions), since the only
way of defining the crystal is by saying that a large number of neighbouring molecules
are packed regularly together. However, at the other extreme, the dissociation of a
molecule into two parts (e.g. H2 → H + H) is not at all cooperative: each molecule
splits independently of the rest and the degree of dissociation can change steadily
from 0 to 100% over a broad transition range of temperature. Some of the transitions
in fibres lie between these two extremes.

18.1.3 Observation of transitions

Melting can be directly observed, for example by putting a fibre on the hot stage of
a microscope and noting when it flows. However, the change may not be very sharp.
Softening of the material, which leads to fibres sticking together, gives an impression
of melting. Values of melting points for a given fibre vary. For example, in earlier
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18.3 Changes occurring in first- and second-order transitions.
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accounts the melting point of nylon 66 is given as 250 °C but later to values between
255 and 265 °C.

More information can be obtained from thermo-analytical techniques using
commercial instruments. In differential scanning calorimetry (DSC), the heat required
to increase the temperature of a sample is compared with a reference. The heat flow
is controlled to maintain a constant heating rate and to keep both temperatures the
same. A plot of heat flow against temperature would indicate the value of the specific
heat1. Since latent heat is ideally taken up at a constant temperature, it should show
as an infinite negative spike. Experimental limitations would spread the spike to a
limited extent, but in a typical fibre test as shown in Fig. 18.4 the spread is much
larger, indicating the range over which melting occurs. The positive spike at about
120 °C indicates some additional crystallisation or increased crystal perfection. The
broad peak above 50 °C may be due to some rearrangement of the structure to a lower
energy state. The initial rapid decrease is an artefact of the start of heating. The heat
flow rate between peaks and troughs gives values of specific heat and integration of
the peak or trough gives values of latent heat of crystallisation or melting.

An alternative to DSC is differential thermal analysis (DTA) in which heat flow is
maintained constant. Differences in temperature between sample and reference give
similar information to DSC and enable specific and latent heats to be computed.
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Comment: N2

1For a given heating rate, heat flow in J/s (watt) can be converted to J/°C, and knowing the mass
of the sample to specific heat in J/°C/g.

18.4 A typical print-out from a DSC scan of a polyester fibre melting around
260 °C. Courtesy of Du Pont.
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Measurements of volume or other dimensional changes with temperature are not
very convenient for fibres. The most instructive way of studying the secondary
transitions in the solid state is by measurement of dynamic mechanical analysis
(DMA), as described in Section 16.5.3, with the typical plot in Fig. 18.5 showing the
decrease in the modulus E′ and paer in the modulus E″ in the transition region.
Measurements of dielectric constant and dielectric loss can be made, but while these
are good for polymer films or blocks, they are not well suited to fibres. Changes of
dielectric properties with frequency and temperature are included in Chapter 21.

Thermomechanical analysis (TMA) measures changes in length at constant tension
or vice versa and has been less used on fibres than DMA. The other common thermal
measurement, thermogravimetric analysis (TGA), measures chemical decomposition
through loss of weight and is not relevant to this book.

18.2 Melting

18.2.1 Characteristic features

Melting is an obvious phenomenon. The fibre loses its identity and contracts to a
molten globule. In bulk, the molten material is a viscous liquid, quite different from
a collection of solid fibres. Melting can also be detected in other ways, though
different experimental methods do give slightly different values of melting point,
particularly if the heating rate changes. The fibre loses strength, so that, at the
melting point, a small weight suspended by the fibre will fall. At the melting point,
the fibre becomes sticky. And on melting, the material takes up its latent heat, detectable
as an endotherm peak in calorimetry, as described above.
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18.5 Real and imaginary dynamic moduli of nylon 6.6 fibres: plotted on a
logarithmic scale. From Murayama et al. [3].
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The melting of textile fibres is an essentially irreversible process. To some extent,
this is true of all materials: a wax statuette cannot be reformed without the mould.
But in fibres, it is not only the external form but also the fine structure that cannot be
reproduced without repeating the manufacturing sequence of extrusion, drawing and
other treatments. Typical values of fibre melting points are given in Table 18.1.

Apart from differences attributed to experimental error, there are differences between
different specimens of the same type of fibre as a result of structural differences. A
major source of difference is the size and perfection of crystalline regions.
Thermodynamically, the melting point is the temperature at which the values of the
free energy F in the crystalline and molten states are the same, so that they are in
equilibrium together. We therefore have:

∆F = ∆U – Tm∆S = 0 (18.1)

T U
Sm = ∆

∆ (18.2)

where ∆ refers to the difference between the states, U is the internal energy, S is the
entropy and Tm is the melting point.

The situation is shown graphically in Fig. 18.6. In a small or imperfect crystal,
which forms on initial crystallisation, the internal energy is not as low as in large
perfect crystals, owing to the surface or defect energy contributions. The melting
point is therefore low, but increases as crystals grow and defects are eliminated on
annealing. An example of this effect is shown in Fig. 18.7, in which the variation of
melting point with the thickness of polyethylene single crystal lamellae is plotted. It
may be noted that a value of about 140 °C is usually quoted for bulk linear polyethylene,
with values of about 110 °C for branched polyethylene, where the crystals are necessarily
less perfect. The extrapolated value for large perfect crystals is 146 °C.

The dependence of melting point on crystal size and perfection is important in
melt-spun synthetic fibres, because, as a result of their formation by rapid quenching
and drawing, they will contain many small imperfect crystals. Annealing, by exposure
to temperatures approaching the quoted melting point, will serve to melt the smallest
and least perfect crystals and allow larger, more perfect ones to grow or, more
generally, will allow a molecular rearrangement, with a removal of defects, which
leads to bigger and better crystalline regions. There will also be some increase in
total crystallinity, although this will be relatively small, since, to a considerable

Table 18.1 Fibre melting points (approximate values)

Polyethylene – low density 120 °C
 – high density 135 °C

Polypropylene 170 °C
Secondary acetate 250 °C
Cellulose triacetate 300 °C
Nylon 6 215 °C
Nylon 6.6 260 °C
Polyester fibre 260 °C
(Cellulosic and protein fibres decompose before melting)
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degree, an increase in ordering in one region of a structure of long chains can only
be achieved by accumulating disorder in other regions.

Another well-known phenomenon is the depression of the melting point in the
presence of impurities. This shows up in fibres as a lowering of the melting point in
the presence of water, as is shown experimentally by observing the melting of fibres
enclosed in a glass capsule full of water. In nylon, the wet melting point is 80 °C
lower than the dry melting point, and even in polyester fibres it is 35 °C lower [5].
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18.6 Classical free energy diagram for melting and annealing.
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18.7 Variation of melting point of polyethylene single crystals with lamellar
thickness. From Bair et al. [4].
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A situation that is specific to polymers is the strong dependence of melting point,
particularly the internal melting during annealing, on the state of stress on the system.
The cause of this is the existence of the tie-molecules that link the crystalline regions.
If these are under tension, then the melting of part of the chain will relieve the tension
in the tie-segment and allow its entropy to increase. There is thus not only the usual
contribution to ∆S from the portion transferring from crystal to melt but also a
contribution from the change in the linked segment. The latter part will be greater if
the chains are under tension. Looking at it another way, one can say that stress from
the tie-molecules will help to break up the smaller crystals.

18.2.2 Multiple melting phenomena

Nylon and polyester fibres, among other polymeric materials, show interesting effects
of multiple melting in differential calorimetry. When a fibre sample is heated, a
negative peak is indicative of the absorption of latent heat and thus of melting. Figure
18.8 shows such data for undrawn nylon yarn as received and after annealing at
220 °C. In the untreated yarn, the peak is at 256 °C, but on annealing a second peak
appears below 240 °C. With further annealing this becomes more prominent and rises
in temperature level, to reach 260 °C eventually. This suggests that there are two
structures with different melting behaviour. Bell [6] calls the first, produced by rapid
melting, form I and the second, given by annealing, form II. There is a point at which
both give a peak at 256 °C, but the two can be distinguished by seeing if annealing

18.8 DSC data for undrawn nylon 6.6 yarn after annealing at 220 °C for
various times. From Bell et al. [6].

240 250 260 °C 240 250 260 °C
No treatment 1 hour

240 250 260 °C 240 250 260 °C
16 Hours 792 Hours
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causes the second peak to appear or not. The change from form I to form II also
occurs on cold drawing, as shown in Fig. 18.9. Similar effects are found for polyester
(PET), (Fig. 18.10). Even after a day’s annealing, form II melting has only reached
about 240 °C, whereas the drawn fibre in Fig. 18.4 has an endotherm at 260 °C.
Presumably the higher stiffness of the polyester molecule hinders the growth of
larger perfect crystals except in an oriented structure where the molecules are more
nearly parallel.
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18.9 Change in areas of melting endotherms with draw ratio for nylon 66.
From Bell and Murayama [7].
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18.10 Effect of annealing time at 220 °C on DTA plots for polyester (PET) that
had been crystallised for 0.5 h at 110 °C: 1, no annealing; 2, 0.25 h; 3 2 h; 4,
6.5 h; 5, 23.5 h. From Bell and Murayama [7].
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The experimental evidence on the subject was reviewed by Hearle and Greer [8].
They suggested that form II consists of crystalline micelles, as in Figs 1.16 and
18.11, which become larger on annealing, whereas form I is another state of the solid
polymer in which many individual chain repeat units will be in register with neighbouring
units, but interspersed with disorder so that there are no separate crystalline and non-
crystalline regions, as in Fig. 1.18(c). Although there are problems in applying
thermodynamics to metastable states, they explained the effects in terms of changes
in free-energy, F = (U – TS). Hearle [10] took the argument further, as shown in Fig.
18.12. As temperature increases, (–TS) becomes numerically greater leading to a

(a) (b)

18.11 (a) A fringed micellar model proposed by Hearle and Greer [9]. (b) An
alternative form, from Hearle [10].

18.12 Free energy of various forms. From Hearle [10].

F
GlassI

Small
II

Large

II

I
Melt

T
Tm(I)

Tm(II)

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres468

decrease in free energy along the glass→liquid line. The lines for form II correspond
to the effect of annealing with the melting point increasing as crystals grow and
become more nearly perfect, as shown in Fig. 18.6. There is nothing remarkable in
this. The question is where form I fits in. Hearle [10] made the controversial suggestion
that form I is a dynamic crystalline gel. Figure 18.13(a) is a schematic view of a form
I structure in unoriented polymer, which anneals to form II shown in Fig. 18.13(b).
The dynamics are as follows. In a liquid near the melting point (Fig. 18.14(a)),
molecules are locally in crystallographic register but are continually changing position
in a state of dynamic equilibrium. In the polymer form II (Fig. 18.14(b)), the locally

(a) (b)

18.13 Schematic of possible structures of (a) form I and (b) form II in
unoriented polymer. For clarity, the packing is much more open than in
reality. From Hearle [10].

(a) (b)

B

C

A

E

D

18.14 (a) Molecules locally in crystallographic register in a liquid. (b) Chain
segments locally in register in form I. From Hearle [10].
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linked segments would also be in a state of dynamic equilibrium. However, when the
segments (A) separated, the neighbours (B, C, D, E) would still be linked. This would
be happening all over the material with links breaking and re-forming, but always
maintaining the continuity of a solid. The entropy of this form would be greater than
the static structure of form II, so that the slope of the free energy diagram would be
steeper, as shown in Fig. 18.12 and would intersect with the liquid line to give the
melting point of form I. However, annealing would allow the material to fall through
the energy barriers to form II with small imperfect crystals having a lower melting
point. Further annealing would give larger and better crystals with a higher melting
point, eventually passing that of form I. The changes between the several structures
in various circumstances are shown in Fig. 18.15(a), with the thermodynamic
justification in Fig. 18.15(b).

Whether or not the above explanations are correct, the important practical point is
to note the complexity of melting behaviour and the difference in forms that can
occur. Commercial fibre samples may be in either form I or form II, depending on
their thermomechanical history.

18.2.3 Sticking and bonding

At temperatures below the melting point as defined above, thermoplastic fibres stick
together. For example, in early studies of false-twist texturing, Burnip et al. [11]
found that nylon yarn would pass through the heater at 255 °C but emerged as solid
rod. The filaments had not become liquid but they had merged together. The sticking
temperature is sometimes referred to as the meting point, since it implies a degree of
molecular mobility that is not normally found in a solid.

This property of fibres is utilised in thermal bonding of nonwovens. Mukhopadhyay
et al. [12] used the flexible thermomechanical analyser described in Section 18.5.2 to
measure the strength of thermal bonds. Figure 18.16 shows the experimental
arrangement. Fibre loops are held together at specified tension, temperature and time.

After cooling to room temperature, two arms are then cut and the force required
to break the bond is measured. Table 18.2 shows measurements of bond strengths of
four polypropylene fibre types and one copolyester. Except for the low bond strength
for PP4, where an SEM picture shows that the material has become too nearly
molten, the bond strengths correlate with commercial bonding performance. For
optimum bonding, it is clearly necessary to choose the right fibre and the right
bonding conditions. In a later paper, Mukhopadhyay [13] showed that pre-wetting
polypropylene fibres gave good bonding at a lower temperature.

Kim et al. [14] present computaonal analysis of thermal bonding in bicomponent
fibres.

18.3 Dynamic mechanical responses

18.3.1 Dynamic moduli

As described in Section 16.5.2, the real (storage) modulus depends on the elastic part
of the deformation, and the imaginary (loss) modulus or tan δ depends on the time-
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dependent part. Above and below the transition region, the elastic deformation, with
high or low modulus, is dominant. In the transition, the structural response is sluggish,
so that there is substantial energy absorption, which gives the peak in loss modulus
and the phase difference between stress and strain given by the peak in tan δ.
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18.3.2 Observed behaviour

The dynamic and loss moduli of various polymers as measured by Takayanagi [15]
are shown in Fig. 18.17. For the simplest semicrystalline polymer, polyethylene, a
glass transition is shown by a sharp drop in modulus E′ and peak in E″ (also shown
in tan δ) around –120 °C. This can be attributed to the onset of freedom of rotation
around —CH2— bonds. There is then a reduction of slope of the modulus plot, which
is clearer in data by Kawaguchi [17], and a trough in tan δ before a steeper fall in
modulus and increase in tan δ over a long temperature range towards melting. In
polystyrene, which is too stiff at room temperature to be useful as a textile fibre, there
is a single transition at around 100 °C in plots that show the major influence of
crystallisation.

Polypropylene has a single transition near room temperature, which is also shown
by the peak in tanδ in dynamic bending in Fig. 18.18. This accounts for the sluggishness
of its response. Any cyclic deformation is damped by the large energy absorption.
The transition will be due to the onset of bond rotation, occurring at a higher temperature
than in polyethylene because of the bulky side group.

Table 18.2 Thermal bonding of four polypropylene fibres and a copolyester. 10 mN tension
gives 17 mN/tex on each arm. From Mukhopadhyay et al. [12]

Bonding conditions Fibre properties

Temperature (°C) 160 100 150 150 20 150 Commercial
Time (seconds) 60 60 60 60 thermobonding
Tension (mN) 10 20 10 20 performance

Fibre type Bond strength mN/tex Fibre strength
mN/tex

PP1 96 391 125 Very poor
PP2 124 355 113 Poor
PP3 240 134 191 308 113 Good
PP4 161 168 224 255 101 Very good
Co-polyester 103, 132 Fibre 122 70 Good

broke

(a) (b) (c)

18.16 Testing bond strength: (a) fibres as mounted; (b) in heated chamber
under controlled tension; (c) ready to measure bond strength. From
Mukhopadhyay et al. [12].
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Nylon 6 shows two low-temperature peaks in E″, which correspond to the peak in
polyethylene but reflect bonds becoming free at different temperatures. Similar peaks
in tanδ are reported by Kawaguchi [17] and, in nylon 66, by Bell and Murayama [7]
film at slightly lower temperatures, though this may be due to different test conditions.
In rapidly quenched film, referred to in the above discussion of multiple melting as
form I, the low-temperature transition was split between two peaks, but in slowly
cooled film, form II, the whole transition was in the higher of the two peaks. Polyester
shows a single peak in the low-temperature region.

The low-temperature peaks are of academic interest, but the peak at about 70 °C
in nylon and 120 °C in polyester has great practical relevance to the behaviour of the
fibres in processing and use. The transition curves are influenced by crystallinity and
orientation, as shown by the results for polyester fibre in Fig. 18.19. The variation of
the transition temperature (as indicated by a maximum in tan δ) with draw-ratio in
polyester fibres is shown in Fig. 18.20 Davis [21] found that there was a change with
time in polyester held at 150 °C at a stress of 5.5 mN/tex. The storage modulus
increased and tan δ decreased by about 10%, approaching equilibrium after 30 minutes.
He also showed that the storage modulus was about 30% higher in an annealed fibre
than in a direct spun fibre. In a paper on the relation between the transition and dye
diffusion, Davis [22] showed that both storage and loss moduli are higher for nylon
66 in glycerol than in water and decrease as the amount of water in a glycerol/water
mixture increases.

In addition to the fairly large transitions shown up by large peaks in the loss
modulus, there may be minor transitions, causing small peaks or shoulders. These
may be due to other deformation mechanisms, though Moseley [23] attributed a large
collection of small peaks at large strain amplitudes to non-linearity of response, and
Dumbleton and Murayama [24] showed that lack of uniformity in a fibre could cause

18.18 Tan δ measured in dynamic bending of fibres at 0% r.h. at frequencies
of 200–300 Hz: A polypropylene; B acrylic fibre; C nylon 6.6; D polyester fibre.
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the appearance of extra peaks. Kveder and Rijavec [25] report dynamic modulus and
loss data for partially oriented and drawn nylon 66 yarns.

The two transitions are also shown in dielectric properties of polyester film as
described in Section 21.6, which includes the combined influence of temperature and
frequency.

18.19 Dynamic modulus and tan δ of PET as measured by Kawaguchi [18] at
about 100 Hz: A, undrawn, 2% crystallinity; B, undrawn, 50% crystallinity; C,
drawn 5×, 25% crystallinity.
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18.20 Effects of draw-ratio on temperature of maximum tan δ for polyester
fibres, from data by Meredith [19] and Kondo et al. [20].
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The influence of water on the transitions is shown by the work of van der Meer
[26, 27], as illustrated in Fig. 18.21. In dry viscose rayon, there appears to be a
transition somewhere above 200 °C, but in wet rayon it shifts to below 0 °C. In
nylon 6, the transition falls from about 80 to 10 °C; and there is a slight effect even
in polyester fibres. The change in the position of the tan δ peak of nylon 6.6 with
relative humidity is shown in Fig. 18.22.

Figure 18.23 demonstrates how the peak in tan δ can be traversed by varying
relative humidity, instead of temperature or time. The acrylic fibre has a large transition
near 100 °C, which is shown in Fig. 18.18. The large decrease in stiffness is shown
by the dramatic changes in stress–strain curves in Fig. 18.24. Experimental
demonstration of the transition just below 100 °C was given by Rosenbaum [28],
who found sharp changes in axial thermal expansion, breaking extension and creep
rate. In this material, the mobility is mainly restricted by the intermolecular forces
caused by the strong electric dipoles in the —C≡≡N groups, and the transition occurs
when freedom of relative movement of chains in less-ordered regions becomes possible.
Another transition, at a slightly higher temperature, will be due to a similar effect in
the ordered regions. However, the individual chains still remain stiff enough for the
fibre to be solid, and a further increase in mobility occurs at a considerably higher
temperature when the chain changes from its regularly coiled, cylindrical, rod-like
form to a more flexible, random coil. Results for some natural polymer fibres are
shown in Fig. 18.25.

The low modulus and high extensibility of elastomeric fibres depend on their glass
transition temperature being below the working temperature. Measurements of dynamic
mechanical properties by Houston and Meredith [30], illustrated in Fig. 18.26, show
a rather sharp transition for natural rubber between –50 and –20 °C but a more
spread-out transition for the spandex fibre Lycra from about –80 to + 20 °C.

18.3.3 A comparison of temperature effects

Hearle [31] suggested that an ideal set of transitions for a fibre material was of the
type shown in Fig. 18.27. The low-temperature transition (A) gives some freedom to
the non-crystalline regions, and thus gives moderate extensibility and high toughness
to the fibre, without making it too soft and extensible. The working region near room
temperature is free of transitions. The greater freedom required to allow crystallisation
to occur appears at the higher transition (B). Then the melting point (C) is higher still
but well below the temperature of chemical degradation.

These properties are shown, in considerable measure, by nylon and polyester
fibres, except that the higher transition in wet nylon does come down to room
temperature, and chemical degradation impinges on the melting point. The latter
effect means that the material must not be kept in the molten state, certainly in the
presence of oxygen, for any length of time. Even appreciably below the melting
point, prolonged exposure can cause a loss of strength, as indicated by the results in
Table 18.3.

Where there is a single glass-to-rubber transition, the fibres are too soft if the
transition is below room temperature, as in polyethylene, or too stiff and brittle if
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18.21 Variation of E′ and tan δ with temperature wet and dry: (a) viscose
rayon; (b) nylon 6; (c) polyester fibre.
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the transition is above room temperature, as in polystyrene. If the transition
straddles room temperature, as in polypropylene, the properties are acceptable but
not ideal.

In fibres that are not melt-spun, the above requirements are not as critical, although
in one way or another there must be some freedom in the structure at room temperatures
and a greater freedom at higher temperatures. Moisture often plays a part in this.

All the fibres made from linear polymers are fundamentally thermoplastic (as
distinct from crosslinked polymers, which are not), but in some, such as cellulose,
the thermoplastic character cannot be exhibited because chemical decomposition,
leading to charring or burning, sets in first. Acrylic fibres and wool are on the
borderline, where both effects occur at similar temperatures.
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18.22 Effect of temperature on tan δ for nylon at various humidities. From
Meredith [19].

18.23 Effect of relative humidity at 20 °C on tan δ: A, viscose rayon; B, nylon
6.6; C, nylon 6; D, Acrilan acrylic fibre.
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18.4 Transitions in keratin fibres

As can be expected from their complex multilevel structure, the transitions in wool
and other keratin fibres are complicated. There are three defined transitions, which
are reviewed by Wortmann [33]. All are strongly dependent on regain as well as
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18.24 Stress–strain curves of Courtelle acrylic fibre. S, 65% r.h., 20 °C as
received; ST, 65% r.h., 20 °C, after water at 95 °C; W20, in water at 20 °C, as
received; W95, in water at 95 °C, as received.
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wool. From Meredith [29].
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temperature. In increasing temperature, these are referred to as β, α1 and denaturation
transitions. The α-transition is also called the glass transition, but it is more instructive
to regard the glass-to-rubber transition as occurring in two stages at the β and α
transitions.
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18.26 Dynamic mechanical response of elastometric fibres: (a) dynamic
modulus; (b) tan δ [30].
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18.27 Transitions in an ‘ideal’ fibre. From Hearle [31].

1Not to be confused with the mechanically induced α ↔ β transition in helical crystals.

Table 18.3 Loss of strength on prolonged exposure of high temperatures [32]

Percentage strength retained

After 20 days After 80 days

Fibre At 100 °C At 130 °C At 100 °C At 130 °C

Viscose rayon 90 44 62 32
Cotton 92 38 68 10
Linen 70 24 41 12
Glass 100 100 100 100
Silk 73 — 39 —
Nylon 82 21 43 13
Polyester, Terylene 100 95 96 75
Acrylic, Orlon 100 91 100 55
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18.28 (a) Tan δ for low-temperature transition in horsehair at 110 Hz at
different regains. (b) Modulus and tan δ for rhinoceros horn: 1a and 1b cut
parallel to growth; 2a and 2b cut perpendicular to growth. From Druhala and
Feughelman [34].

Druhala and Feughelman [34, 35] investigated the β-transition by cyclic tensile
testing and found a peak in tan δ at about –40 °C in horsehair in a fairly dry state
(2.4% regain), dropping to about –90 °C at 13.7% regain, (Fig. 18.28(a)). This is
similar to the low-temperature transition in nylon, which, as indicated in Fig. 20.15,
is associated with freedom of rotation around covalent bonds. In proteins both main
chain and side chain bonds are immobile below the transition region. A comparable
measurement on rhinoceros horn, Fig. 18.28(b), shows the decrease in modulus at the
transition. The variation in the transition temperature is shown by the lower curve in
Fig. 18.29.

Wortmann et al. [37] investigated the α-transition by measuring the recovery from
cohesive torsional set as mobility was induced. They found the transition at 175 °C
in dry wool decreasing with increasing moisture content as shown by the upper curve
in Fig. 18.29. The behaviour is similar to that of nylon, which has a transition going
from around 100 °C when dry to near 0 °C when wet. Phillips [38] and Kure et al.
[39] studied the transition by DSC. As shown in Fig. 18.30, a sample of wool,
referred to as aged, has an endothermic peak at 50 °C, which presumably reflects the
release of some temporary set in the amorphous matrix. This is followed by an
increase in the heat flow rate, namely an increase in specific heat, between 75 and
125 °C, which is interpreted as a glass transition. If the sample is heated to the final
temperature and then cooled, the endotherm at 50 °C is no longer present in a subsequent
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DSC trace, but the heat flow at the glass transition is still present. In wool, the
temperatures are higher in the dry material, and run into the temperatures of denaturation.
Phillips [38] found that an endotherm at 60 °C was present in a fibre aged for 52 days
at 20 °C, disappeared after rapid cooling, and reappeared in a trace after 15 days at
20 °C.

Wortmann et al. [33, 37, 40] has shown that for both wool and human hair the β
and α transition temperatures Tt vary with moisture content according to the simple
mixture equation proposed by Fox [41] as shown in Fig. 18.29:
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where m1 and m2 are the mass fractions and Tt1 and Tt2 relate to dry and wet wool.
By fitting and extrapolating the experimental data, the α-transition in wool has Tα1

= 174 °C, which is in agreement with torsional data by Menefee and Yen [42], and
Tα2 = – 148 °C, which agrees with values found for ice and glassy water (m1 = 0 and
m1 = 1) [43, 44]. For the β-transition, Tβ1 = – 49 °C and Tβ2 = – 210 °C.

The highest temperature transition can be studied by high-pressure DSC in order
to maintain water in the material. Wortmann and Deutz [45, 46] report measurements
on eight keratinous materials. Figure 18.31 shows a single endotherm peak at 143 °C
in mohair and double peaks in wool at 138 and 143 °C. The transition is interpreted
as a ‘melting’ of the helical crystalline fibrils, though it is influenced by restraints
from the amorphous matrix. It is called denaturation, since it is an irreversible process.
The enthalpy ∆H = 17.1 J/g. If heating is stopped just past the first peak in wool and
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enthalpy From Wortmann and Deutz [45].
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the fibre is then rapidly cooled, a tightly crimped coil is formed. This indicates that
the first transition occurs in the ortho-cortex, which has super-contracted, and the
second transition occurs in the para-cortex, which has a higher cystine content.
Differences in denaturation temperatures in different keratins are attributed to the
varying cystine concentrations in the matrix.

The denaturation temperature decreases from 210 °C in the dry state to 150 °C at
a moisture content of 25% [47, 48]. Wortmann [33] considers various explanations
for the effect of water, but concludes that there is a gap in understanding that requires
further investigation.

18.5 Thermomechanical responses

18.5.1 Thermomechanical analysis

TMA is another way of studying thermal changes in materials. Specimens are held
under constant tension and the length changes monitored. Commercial instruments,
such as the Mettler Thermomechanical Analyser, have attachments for fibre testing.
The simplest response gives a measure of the coefficient of thermal expansion. With
fibres, the interest is more in reversible or irreversible shrinkage and in the step
changes at transitions, though these are not as clear as the peaks in DMA. Buchanan
[49] gives an extensive account of the dependence of thermal shrinkage on the prior
history of nylon and polyester fibres.

Figure 18.32 is a typical TMA trace in a paper on the structural characterisation
and properties of polyvinyl chloride (PVC) fibres [50]. The rise between 80 and
90 °C is a second-order transition, which is followed above 130 °C by an elastomeric
thermal shrinkage as the structure loosens up. The trace terminates with a slight
lengthening, which is due to the fibre extending under the applied tension as it
becomes softer in the approach to melting.

The tendency to contraction, but not expansion, can be studied by the alternative
procedure of measuring tension changes at constant length. Figure 18.33(a) shows
shrinkage force measurements for a polyester (PET) yarn [51]. From a low pre-
tension, the shrinkage force increases over the lower transition range from 75 to
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18.32 TMA trace of drawn PVC fibre. From Kim and Gilbert [50].
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150 °C and then falls as the fibre softens. Pre-treatment at 180 °C almost eliminates
the shrinkage tension. The tension has dropped to almost zero at 250 °C, which can
be taken as one measure of the melting point. A stepwise approach to the equilibrium
shrinkage force (Fig. 18.33(b)), shows a maximum at 60 °C, which is attributed to a
‘classically defined glass transition’.
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18.33 Shrinkage force measurement of a polyester (PET) yarn (15 tex, 48
filaments). (a) Heated at 25 °C/min from pre-tensions of 0.5 mN/tex and
50 mN/tex for yarn as made � and for yarn pre-treated at 180 °C for 20 s at
5 mN/tex �. (b) For fibre as received: A and B are standard shrinkage force
tests; C is equilibrium shrinkage force. From Berndt and Heidemann [51].
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18.5.2 A flexible thermomechanical analyser for fibres

Sikorski and coworkers [52–54] describes a thermomechanical analyser that was
specially developed for fibres and incorporates twisting as well as tensile changes.
There were later enhancements, particularly in software for computer control, data
retrieval and data processing [55]. The fibre specimen is clamped between jaws that
are contained within a heating chamber and connected by rods to external functions.
Temperature is controlled and can be rapidly changed by mixing streams of hot and
cold air through a valve controlled by a stepper motor. Two more stepper motors
control specimen length and twist. Tension is measured by a piezoelectric transducers
for fast response and a strain-gauge transducer for quasi-static measurements. Torque
measurement by the new transducer was described in Section 17.3.2. Twist was
measured by an optical encoder and extension by an LDVT. With this tester, a great
variety of test sequences can be studied.

18.5.3 Irreversible shrinkage

In addition to the reversible changes of dimensions with temperature, which occur in
all materials, many fibres show an irreversible contraction or sometimes an irreversible
expansion on heating. What happens depends on the prior process history of the
fibre, so that manufacturers can supply nylon and polyester fibre in high- or low-
shrinkage variants.

Figure 18.34 shows the irreversible changes in length of typical nylon fibres with
increasing temperature. In order to achieve the same effect, the temperatures must be
about 70 °C greater dry than in steam. In nylon fibres as produced, the shrinkage in
boiling water is usually about 10%, but the value is very sensitive to subsequent heat
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18.34 Irreversible shrinkage of nylon on heating [56].
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treatments, and examples of the range of values are shown in Table 18.4. Similar
effects are observed in polyester fibres, and spontaneously extensible fibres can be
made by appropriate thermomechanical treatments. The more rapid shrinkage that
occurs as the melting point of nylon is approached is shown in Fig. 18.35.

As an alternative to measuring shrinkage, the increase in tension on heating fibres
at constant length may be observed. Some examples of studies on nylon 6 are shown
in Fig. 18.36. The unset fibre shows a rapid build-up in tension. Corresponding to the
tendency to irreversible shrinkage there is an irreversible build-up of tension, so that
subsequent lines lie at a higher level. The positive slope of these lines corresponds to
the reversible contraction, and is another manifestation of the occurrence of rubber
elasticity in nylon. However, the results are also remarkable for the fact that successive
setting treatments, wet at 120 °C and dry at 170 °C for 30 min, cause the lines to shift
to progressively higher tension levels, the values always being highest when the final
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18.35 Length changes in the experiments of Dismore and Statton [58] on
annealing nylon 6.6.

Table 18.4 Shrinkage of 7.8 tex nylon 6.6 yarn in boiling water [57]

Treatment Tension (N) Shrinkage % in boiling water

As received 9
Dry heat (°C)

200 0 0
200 0.1 2
200 0.3 7
200 0.5 6
200 0.75 8
160 0.1 5
240 0.1 4
160 0.5 9
240 0.5 5
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treatment was wet. This demonstrates that complicated and continuing structural
changes can occur in repeated treatments.

Mukhopadhyay and Hearle [60] report tests with the flexible thermomechanical
analyser, which show that it is necessary to avoid artefacts due to expansion and
contraction of the rods linked to the jaws. With a modified procedure, Fig. 18.37
shows shrinkage tension measurements of polyester (PET) and nylon 6. The general
pattern is a rapid rise in tension followed by some stress relaxation. The fall in
tension on cooling corresponds to a reversible contraction on heating. The residual
tension corresponds to the irreversible shrinkage. Figure 18.38 shows that the high
spike in the curve in Fig. 18.37(a) is due to the shrinkage tension in unset polyester
peaking at 180 °C during the rise in temperature.

Acrylic fibres that have been stretched, for example, by stretch-breaking, and left
with a ‘permanent’ extension, will contract severely on heating. This is the analogue
of swelling recovery in rayon, which was discussed in Section 15.6. The plastic
deformation of the structure is released when it is freed at the higher temperature.
High-shrinkage fibres of this type are used in combination with non-contracting (or
already contracted) fibres in high-bulk yarns.

The main mechanisms giving rise to an irreversible shrinkage are probably the
following.
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• Oriented non-crystalline material, resulting from the original drawing of the
fibre or from mechanical hysteresis or from heating under tension, will revert to
an unoriented or less oriented state when it is loosened by heating.

• The annealing of crystalline regions may reduce their length, as indicated in Fig.
18.39. This will certainly be true if the chain molecules fold in order to crystallise
better, but it may also be true when they move relatively so as to come into better
register.

• Small crystallites may melt, with the chains shrinking axially to a random coil.
Recrystallisation elsewhere will tend to stabilise the shortened form.

18.5.4 Other property changes

Accompanying the thermal shrinkage, there are many other changes in properties,
and a full account of the effects in synthetic fibres has been given by Statton [62].

Figure 18.40, which comes from the same experimental series as Fig. 18.35,
shows that, up to about 190 °C in nylon 6.6, there is little change in strength but an
increase in breaking elongation, which can be accounted for as being due to the
addition of the thermal shrinkage to the breaking extension. But the more rapid
shrinkage above 190 °C is accompanied by a loss in strength and a corresponding
reduction in breaking elongation.

The dyeing behaviour of fibres is altered in complicated ways by heat treatments.

(a)

(b)

18.39 Length changes that may occur on annealing of crystalline regions with
(a) chain-folding and (b) rearrangement of chains.
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Thus, in some experiments on nylon 6, exposure at about 120 °C causes an increase
in dye uptake, but for temperatures above 190 °C there is a decrease: the rates of dye
diffusion also change. This connection shows the need for great uniformity of heat
treatments if dye faults are to be avoided.

The structural changes observed by Dismore and Statton [58] in the nylon samples
for which observations are shown in Figs 18.35 and 18.40 included some increase in
crystallinity (as indicated by the X-ray orientation index) but a reduction in dynamic
modulus, an increased intensity of small-angle X-ray diffraction and an increase in
long-period diffraction, and more fluid-like mobility as indicated by nuclear magnetic
resonance (NMR) results. These results suggest that the crystalline regions are becoming
larger and more perfect, while remaining oriented, with the non-crystalline material
becoming less oriented and more mobile.

Gupta [63] summarises a number of papers on the effect of heat-setting polyester
(PET) yarns at various temperatures both free to shrink and at constant length. The
fibres were structurally characterised by wide- and narrow-angle X-ray diffraction,
polarising optical microscopy, infrared spectroscopy and electron microscopy. The
properties reported on are density, sonic modulus, boiling water shrinkage, tensile
stress–strain response, recovery from elongation and uptake of disperse dye.

18.6 Setting

18.6.1 Technical importance and characteristic features

The ability to set fibres, namely to stabilise their state either in an existing form or
after deformation, has major effects in processing and use. Traditionally, this was
carried out on natural fibres by ironing, which combines pressure, heat and, most
importantly, drying. The advent of synthetic fibres, which could be heat-set,
revolutionised the technology. Fabrics could be heat set, either in a smooth form or
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18.40 Changes in strength and breaking extension in the experiments of
Dismore and Statton on annealing nylon 6.6 [58].
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in sharp creases or pleats. To a considerable degree, the set was held during use and
laundering, which gave ‘non-iron’, ‘drip-dry’ and ‘wash-and-wear’. Processing
continuous filament yarns to give bulk, stretch and texture was the most important of
new fibre processing operations. The ‘ease-of-care’ features of synthetic fibres stimulated
the natural fibre community to develop setting procedures in order to compete with
synthetics.

Setting can be characterised as either temporary or permanent, though the terms
are somewhat loosely used. Temporary set is commonly lost in use and certainly by
going back into the setting conditions and re-setting in a new form. Permanent set
cannot be undone except by going to more severe conditions, if this is possible.

Setting can also be characterised by how it is achieved. This may be by chemical
action. In cotton, rayon and other cellulosic fibres, chemical crosslinks between the
molecules are introduced by treatment with resins. In wool, the natural cystine crosslinks
are broken and re-formed in new positions. These chemical setting treatments are
outside the scope of this book, except insofar as they influence physical properties.
In moisture-absorbing fibres, hydrogen bonds are broken on wetting and can re-form
in new positions on drying to give a temporary set. Setting on drying is seen on
drying of cotton, wool or hair. It is interesting to note that Kärrholm et al. [64] found
that a more severe wrinkling in wool fabrics occurred when the relative humidity was
changed while the material was in the deformed state. Finally there are the thermal
transitions, which have been described in this chapter. The observation of heat setting
and its interaction with moisture raises important scientific and technical questions.
The whole subject of setting was discussed in detail in the book edited by Hearle and
Miles [65], but important research has been done since this was published.

Any thermal transition that causes a peak in the loss modulus must give rise to a
setting effect, since it implies that part of a structure that is rigid below the transition
is mobile above it. If the fibre is cooled through the transition in a deformed state,
than it will become rigid and be set in the new form. The secondary transitions cause
temporary setting effects, since the structure is not changed. A reference state can
always be reproduced by taking the fibre above the transition and cooling it free of
any restraint. The transitions below room temperature are of little practical importance
for setting, but the ones above room temperature do give important temporary set to
fibres. At higher temperatures, but well below the melting point (around 200 °C for
nylon 66 and polyester), a permanent set is achieved. Successive setting can be
achieved by successive treatments under conditions that will disturb the structure
once again. In nylon, industrial experience in false-twist texturing indicates that it is
necessary to go to more severe conditions of temperature or stress to re-set the fibre.
In polyester, second-stage heating, which gives yarns with high bulk but low stretch,
is carried out at lower temperatures than in the first heater where the yarn is set in the
twist state prior to untwisting. The definition of permanent set appears to be weaker
in polyester than in nylon.

It must be remembered that any thermal treatment severe enough to cause a
permanent heat-set will also cause the mechanism of temporary set to operate. A
subsequent less severe treatment, for example, in boiling water, will release the
temporary set but not the permanent set. Fibres set under tension will therefore show
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a shrinkage when later heated. The temporary set may also act as the material cools
down. On first unwinding a textured yarn from a package, it will not show any
texture, but on exposure to heat, the temporary set will be released and the bulk will
develop. The texture can also be developed by ‘milking’ the yarn, namely by repeated
tensioning.

18.6.2 Heat setting of polyester and nylon

An important series of experiments on the heat setting of polyester (PET) monofilaments
was reported by Salem [66] and Buckley and Salem [67, 68]. The monofilaments had
been melt-extruded in the laboratory and drawn 5× to give a diameter of 51 µm
(27 dtex). Any pre-setting was carried out with the fibre taut at constant length. The
setting sequence is shown in Fig. 18.41. For torsional experiments, after releasing
any initial twist, specimens were clamped and twisted at constant length, transferred
to heating in oil or air, then removed to room temperature and released from the
clamps to allow recovery. The fractional recovery f, which is a measure of the degree
of set, is defined as recovered twist/imposed twist. Thus f = 1 indicates no setting and
f = 0 indicates complete set. The quoted strain value is the shear strain at the surface
of the monofilament. For bending experiments, specimens were wound round Tufnol
or glass rods and clamped for the heat-setting sequence. The quoted strain value is
r/R, where r is fibre radius and R is rod diameter.

Figure 18.42 shows the interaction of two setting effects. If the material is tested
as produced, the setting is apparently complete in the range of 50–120 °C. Although
the recovery hardly changes, a temperature around 200 °C gives some added stability,

γr

0 tA tS tB tC tD Time

Temperature

Ts

T0

Strain

γ0

Stress

18.41 Heat setting sequence starting from zero stress at room temperature,
through imposed changes in strain and temperature with time (with assumed
stress change), followed by recovery at zero stress and room temperature
where T0 is the initial temperature, Ts is the setting temperature, ts is the
setting time and tA, tB tC and tD are times at each stage. γ0 is the imposed
shear strain on the outside of the twisted monofilament and γr is this strain
after release. From Buckley and Salem [68].
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which is suggested by the slight overshoot to negative values of f above 180 °C. The
clear evidence comes from re-setting. A specimen that has been pre-set at 200 °C has
only half the recovery in the range of 50–120 °C. The setting is completed in the
range of 180–220 °C. The 50–120 °C set is associated with the transition shown in
Section 18.3.2, e.g. in Fig. 18.21 or the ‘major transition’ in Fig. 18.27. It is a
temporary set, which is overcome by re-heating. The ‘permanent set’, which is used
in texturing and other processes, is in the 180–220 °C range. The unavoidable imposition
of temporary set on any permanent setting sequence must be taken into account in
interpreting the results of setting tests.

Figure 18.43 shows that the high-temperature set is moved to higher temperatures
as the pre-setting temperature is increased. However, the setting starts below the pre-
set temperature. Figure 18.44 shows that setting is time-dependent. A fibre pre-set at
200 °C for 35 minutes is almost fully re-set in 1 second at 220 °C, but takes one day
to reach the same set at 200 °C. Re-setting occurs at 175 °C, but is much slower and
still continuing after 1 day. Figure 18.45 shows that setting in bending is similar to
setting in torsion. Figure 18.46 shows that setting becomes more complete as the
level of deformation increases.

Mukhopadhyay [61] found a difference in clockwise and anti-clockwise heat setting
of a polyester monofilament.

A more limited set of tests on nylon 66 were reported by Hearle et al. [69]. Figure
18.47(a) shows similar behaviour to that in Figs 18.42 and 18.43 for polyester, with
a low-temperature set around 40 °C and a high-temperature set which can start at
140 °C and is complete at 180–240 °C with higher temperatures needed to overcome
the pre-set. Figure 18.47(b) shows a marked difference from polyester. There is time
dependence in the low-temperature set, but none in the high-temperature set. This
was confirmed in tests at other setting temperatures. Some uncertainty then appears
in the report. A set of tests on a different sample of nylon 66 shows time dependence
in setting temperatures from 150 to 200 °C, which is similar to that of polyester.

0 50 100 150 200 250
Ts(°C)

f

1.0

0.8

0.6

0.4

0.2

0

A

B

18.42 Fractional recovery of polyester monofilament in torsion plotted against
setting temperature: A, pre-set at 200 °C; B, as produced. Setting time = 120 s.
From Buckley and Salem [67].

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres494

An abundance of technological experience shows that steam setting of nylon occurs
at a temperature about 80 °C below that in the dry state, corresponding to the lower
melting point. Most fabric setting is carried out in superheated steam at temperatures
around 120 °C compared to 200 °C for dry setting. Appreciably lower temperatures
are used for nylon 6, reflecting its lower melting point.

150 200 250
Ts(°C)

Tp = 150 °C 175 200 220 240

f

0.5
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0.1

0

–0.1

100 101 102 103 104 105
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200

Ts = 150 °C Tp = 200 °C tp = 2.1 × 103 s

f
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0.3

0.2

0.1

0

18.43 Fractional recovery of polyester monofilament in torsion plotted against
setting temperature at various pre-setting temperature Tp. Pre-setting time
35 mins; setting time = 120 s. From Buckley and Salem [67].

18.44 Fractional recovery of polyester monofilament in torsion plotted against
setting time at various setting temperatures. Pre-set at 200 °C; setting time of
35 mins. From Salem [66].

220
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18.6.3 Overtwisting

There is a brief mention above of the occurrence of negative values of f, which
implies that the set has overtwisted to a value greater than the imposed twist. This
anomaly was reported by Arghyros and Backer [70] in their research on twist-texturing.

0 50 100 150 200 0 50 100 150 200
Ts (°C)

Tp = 200 °C

Tp = 150 °C

Torsion Tp = 200 °C

Tp = 150 °C

Bending

f

1.0

0.5

0

18.45 Fractional recovery of polyester monofilament plotted against setting
temperature in torsion and bending at two pre-setting temperatures. Pre-set
at 200 °C; setting time of 35 mins. From Buckley and Salem [68].

Torsion, pre-set

Bending,
pre-set

Torsion, not pre-set

0.02 0.06 0.10 0.14
γ0 (torsion) or ε0 (bending)

f

0.5

0.4

0.3

0.2

0.1

0

18.46 Strain dependence of fractional recovery in torsion and bending for
polyester monofilament heat-set at 150 °C for 2 mins after pre-set at 200 °C
and (in torsion) without pre-set. From Buckley and Salem [68].
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Figure 18.48 shows a sequence of changes in twisting, heating, cooling and releasing
at constant tension by Buckley et al. [71]. Note the contraction in length on both
twisting and heating and some length recovery on release. The data were reported in
terms of tangents of the shear angle α at the surface during setting and of an angle γ,
which is the difference between α and the shear angle after release, namely the shear
angle associated with the overtwist ∆φ in Fig. 18.48. As shown in Fig. 18.49, there
is a positive overtwist given by tan γ for setting above about 150 °C, and a negative
value of tan γ, which implies incomplete setting, for lower temperatures. The overtwist
increases with increased imposed twist. Similar results were found with other samples
of polyester and nylon. The overtwist decreased with increased tension and tan γ
became negative at higher tensions. Overtwist was decreased by pre-setting. Repetition
of the setting sequence, by clamping, heating, cooling and releasing, shows twist-
climbing with the overtwist increasing without more twist being inserted.

40 60 80 100 120 140 160 180 200 220 240
Ts(°C)

(a)

Tp = 150 °C
Tp = 200 °C Tp = 240 °CNot per-set

f
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0
–0.1

18.47 Fractional recovery in heat-setting of nylon 66. (a) Plotted against
setting temperature for various pre-set temperatures. Pre-set of 2100 s; set
time of 120 s. (b) Plotted against setting temperature for set times of 180 and
2100 s. Pre-set at 150 °C for 2100 s.
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18.48 Sequence of changes in test of overtwisting. T, φ and F are independent
variables; Q and L are dependent variables; ∆φ is the overtwist. From Buckley
et al. [71].
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18.49 Overtwist of polyester monofilament plotted against imposed twist for
various setting temperatures. α is shear angle at surface during setting; γ is
difference from α after recovery (corresponding to ∆φ in Fig. 18.48).
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Buckley et al. [71] show that the phenomenon of overtwisting can be explained by
the length changes and thermo-elasticity of an oriented polymer. A quantitative analysis
follows a treatment of the thermoviscoelasticity of a twisted yarn [72].

18.6.4 Phenomenological treatment of heat setting

A simplistic treatment of heat setting illuminates some of the features of an extremely
complex subject. It is presented in terms of a model of force and length changes in
temporary set, but other modes such as torque and twist or bending moment and
curvature could be substituted. Normalised quantities, namely stress and strain, could
also be used. The treatment, which predicts degree of set, is a simplification of the
viscoelastic model of Buckley and Salem [67]. Other enhancements could be added
to the model to take account of secondary effects, but the simple model brings out the
primary features of setting.

Figure 18.50 shows a typical heat setting sequence: elongating, heating and cooling
at constant length, and releasing. The terminology is as follows. F = total force; L =

T0 T0 T T0 T0

Deform Heat Cool Release

LI

L L L
LR0

0
Initial

F
Fs

Fc 0

Set
Setting

Temperature

Length

Elongation

Force

18.50 Typical heat-setting sequence. F = total force, L = total length, L = total
elongation. A zero subscript indicates the stress-free state, S = setting state, R
= state after release.

18.51 (a) Simple model for heat-setting. (b) Expanded version showing forces
and lengths.

E1 E1

TL F1

L1

L2

L

FT

E2

F2

E2

F
F

(a) (b)

TL
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total length; l = total elongation. Subscript [0] is for stress-free state; subscript [S] is
for setting state; subscript [c] is for cooled stake; subscript [R] is for state after
release. The degree of set is defined as set length/setting length = lR / lS.

The simple model, Fig. 18.51, consists of two springs, with spring constants E1

and E2, in series with a thermal lock TL, which can open or close. F1,2, L1,2, l1,2 are
forces, lengths, and elongations for springs 1 and 2. The combined spring constant
with TL open is Ex. For a series system, E E Ex

–1
1
–1

2
–1= ( + ) . The basic assumption of

the model is that setting is due to a single change between a more rigid state below
a transition temperature, when TL is closed, and a more mobile state above the
transition temperature, when TL is open. Setting is by release of restraint on heating
and application of restraint on cooling, while the material is held at constant length.
Linearity, absence of reversible expansion and contraction, time dependence, combined
modes of deformation, and change in moduli except at transition are secondary
features that are neglected.

Force–elongation plots are shown in Fig. 18.52. There is a reference state at O,
which is always reached if TL is opened above the transition temperature and both
springs drop to zero force. With TL closed at ambient temperature, deformation
would follow the line OA, or the dotted line IJ if the fibre had been set at another
state. With TL open above the transition temperature, the line OP would always be
followed.

A setting sequence from the reference state is shown in Fig. 18.53(a). The temperature
T0 is below the transition temperature and T1 is above. The fibre is first extended at
T0 (1→2), and then heated to T1 (2→3), with a consequent drop in force. (Any
approach to (3) would give the same final result.) The specimen is then cooled to T0

and released. Since TL is closed at T0, the recovery will be along a line with the slope
E1. The fibre is left in the set state (4). With TL open at (3) the force is in both springs
is (Ex lS). When the fibre is cooled and released with TL closed, spring 2 is clamped
and cannot retract, but spring 1 can recover by (Ex lS/E1). Hence:

set length =  = –  = 1 – R S
s

1
s

x

1
l l

E l
E

l
E
E

x

















(18.3)

18.52 Force–elongation relations. Lines from O are for initial state at
temperature T0 with TL open. Line IJ is with TL closed at intermediate state.
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(18.4)

The effectiveness of a setting operation on this simple model is determined by the
ration of the modulus above the transition temperature to the modulus below the
transition temperature.

Setting from a previously set state is shown by the sequence (1→2→3→4) in Fig.
18.53(b) and finished at the same set state. The sequence (1→5→6) shows the effect
of holding the specimen at its initial state, heating to T1, cooling and releasing.
Geometric modelling, which could be programmed for computing, would be the way

�
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18.53 (a) Heat-setting sequence from initial state of model. (b) Sequences
from an initial set state.
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to follow complicated sequences. Some experimental data [73] indicates that setting
of nylon and polyester monofils followed the predictions for temperatures up to
190 °C provided some stress relaxation was added to the model.

Although the model is highly simplified, it does indicate that the degree of set can
be estimated from the ratio of deformability at the cool temperature to deformability
at the setting temperature. For permanent setting, the model could be applied to an
initial set, but the structure would then be changed and it is the deformability of the
cooled structure that would be relevant. Heating again, unless it was to a higher
temperature that gave full mobility, and releasing would lead back to a new reference
state.

18.6.5 Setting mechanisms

Setting in cotton by introducing new bonds between molecules and in wool by
switching the position of cystine bonds are clear chemical mechanisms for permanent
setting of fibres in new forms, which are not changed in use. Setting by wetting and
drying, with hydrogen bonds being broken and re-formed in new positions, is a clear
mechanism for temporary set. The low-temperature effect in nylon and polyester
fibres at c. 100 °C is a temporary set that can also be explained by the changed
positions of hydrogen bonds or mutual attractions of benzene rings, as discussed in
Section 1.1.2. The mechanism for the high-temperature ‘permanent’ setting is difficult
to explain because there are so many possibilities. It is likely that various mechanisms
act together, with their relative importance varying according to the type of fibre and
its previous thermomechanical history. Possible mechanisms are reviewed below.

It should be re-stated that the permanent setting sequence will have the temporary
set superimposed and that reversible thermal expansion or contraction will also be
superimposed. Thermodynamically, permanent set must result from a transfer from
one free energy minimum to another at a lower level, which is made possible by
thermal vibrations. Such changes are almost always time dependent, certainly for
small systems, which is another complication. It must also be remembered that it is
not clear whether the high-temperature set of nylon and polyester is permanent or
temporary, albeit not being overcome in normal use.

• Larger and better crystals. The simplest explanation is that heating leads to
annealing, namely the melting of small or imperfect crystals and the growth of
larger, more perfect crystals. The mechanism is illustrated in Fig. 18.54, which
also shows the effect of lower melting points of wet fibres. At the start, there is
a distribution of crystal sizes and perfections, which give a range of melting
points. At a given temperature, the smallest crystals will melt and larger ones
will be formed. The process can be repeated at successively higher temperatures,
but cannot be reversed. This happens in metals, where the small crystal grains
butt on to larger ones. It is more difficult to see how it would work with a
distribution of polymer crystallites separated from one another without melting
of the whole material. Once a fine structure of crystalline and amorphous regions
is established, the pattern tends to remain. Furthermore the setting temperatures
are appreciably lower than the melting temperatures.
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• Defect mobility. In metals, defects can move to the surface of crystals and disappear.
This may well be a setting mechanism in polyethylene, where defects due to
mis–packing of —CH2— units occur and are a cause of imperfect crystallinity.
It may possibly also apply to polypropylene and other polymers with short repeats.
However, as discussed in Section 1.3.2, defect models are not sensible for polymers
with the long repeats found in nylon 6 or 66 and polyesters.

• Multiple melting. For rapidly quenched fibres, the change from form I to form II,
discussed in Section 18.2.2, would certainly provide a setting mechanism. However,
form II can be set, so that this cannot be a complete explanation.

• Crystallite mobility. A variant included in the discussion on multiple melting is
that, owing to thermal vibrations, individual crystalline micelles might be able to
melt and then recrystallise, as indicated in Fig. 18.55. Rather like molecules
moving between liquid and vapour, most micelles would be crystalline, thus
maintaining the integrity of the fibre, but a changing population would be molten.
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18.54 Distributions of melting points of crystals with different sizes.

18.55 Flipping between crystalline and locally molten states.
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Berry [74] has shown that small clusters of argon atoms can act in this way,
flipping between the two states over a certain temperature range. If the material
was deformed, the recrystallisation would take place in a slightly different form,
which stabilised a new state.

• Quantum superposition. Hearle [75] has suggested a more speculative variant
that at the setting temperature, there is a quantum superposition of ordered and
disordered states. Even though the molten state was at a higher energy, the
greater number of energy levels would encourage movement between the two
states.

• Movement through crystals. Molecules passing through a crystallite will be under
variable tension. The simplest case to consider is where one end is linked to the
network and the other is a free end. Above a certain temperature, it is possible
that thermal vibrations will give a high enough tension to pull the molecule
through the crystallite. The reverse would not occur, so that a new state would be
set. This effect is more likely if the fibre as a whole is under stress, though the
discussion in Section 20.3.2 indicates that tie-molecules are tensioned even when
there is no externally applied stress. Variants would apply if both ends are linked
to the network, but in different ways, or if there is chain folding.

• Plastic crystals. There are more extreme options for mechanically driven setting.
If a crystallite is subject to shear, layers of molecule would move relative to one
another if the yield stress in shear was exceeded.

• Drawing. The drawing of unoriented fibres into oriented forms is a form of set
induced by plastic yielding of the fine structure with rupture and re-formation of
crystallites. This mechanism is obviously not applicable to drawn fibres, but it
will be playing a part when partially oriented yarns are subject to draw-texturing.

• Kink-band formation. Another form of severe mechanical deformation is the
development of kink-bands in bending or shear (see Section 17.2.5). Heating
may lead to an annealing of the deformation and stabilisation in a new form.

All the above explanations relate to physical effects in the crystalline regions, with
some also involving molecular segments from amorphous regions. However, there
are two possible explanations that do not involve crystalline regions:

• Entanglement reptation. Buckley and Salem [67], citing a low molecular weight
commercial polymer, propose the structure in Fig. 18.56 for polyester (PET).
Some crystallites are linked together by tie-molecules to form blocks. Between
the blocks, there are only entangled chain ends. It is argued that the blocks can
move relative to another by viscous flow by a reptation mechanism in which
molecular segments progressively move through entanglements. This is accepted
behaviour for wholly amorphous polymers, and provides a simple explanation of
the time dependence of setting. The explanation is plausible if there is a high
degree of chain folding, as implied by the limited number of molecular segments
emerging from the crystallites in Fig. 18.56. Alternatively, it is possible that,
even if all crystallites are tied together, there could be reptation through
entanglements in the amorphous region between crystallites.

• Transesterification. It is possible that there is chain scission and re-formation,
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which can occur in the two ways shown in Fig. 18.57. This is most likely on
polyesters, where it is known as transesterification, but there would be an analogous
effect in polyamides. Fakirov [76] has reviewed the solid-state reactions that
would be relevant. One way of investigating the effects is by bonding together of
polymer films. Quantitative information comes from studies by Kugler et al. [77]
of the changes in length of deuterated segments of PET as measured by SANS
(small-angle neutron scattering). Based on extrapolations of their data, calculations
by Hearle [73] indictate that the rates of transesterification offer a plausible
mechanism for heat setting of polyester.

All the mechanisms involved in heat setting of nylon 66 and polyester (PET) in the
180–220 °C region should be reflected in studies of thermal transitions. Unfortunately
reported thermomechanical studies stop at about 180 °C, so that no direct observations
are available. The dielectric measurements of polyester film in Fig. 18.58 do show
the start of a rapid rise in tan δ at 160 °C at low frequency. This may lead to an energy
loss peak.

18.56 Structural model for polyester (PET) showing crystallites linked in
blocks by tie-molecules (T), possibly plus entanglements (E). Separate blocks
linked solely by entanglements. From Buckley and Salem [67].
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18.57 Two ways for changing links between crystals: (a) exchange of free end;
(b) break and re-formation of tie-molecules.
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18.58 Influence of temperature and frequency on dielectric properties of
Terylene film (after Reddish [78]: (a) relative-permittivity solid model, (b)
dissipation-factor solid model.
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