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25.1 Introduction

25.1.1 Historical development

The study of the friction of materials is based on the two classical ‘laws’ of friction,
probably understood by Leonardo da Vinci, but rediscovered by Amontons in 1699.
These laws state that the frictional force is independent of the area of contact between
the two surfaces and is proportional to the normal force between them. They were
verified by Coulomb in 1781. He also pointed out the distinction between static
friction, the force that must be overcome in order to start sliding, and kinetic friction,
the force resisting continued sliding. He observed that kinetic friction was independent
of the speed of sliding; this is sometimes called the third law of friction. Mathematically,
Amontons’ law is expressed as:

F = µ N (25.1)

where F = frictional force acting parallel to the surface in a direction opposing
relative movement. µ = coefficient of friction and N = force normal to the surfaces
in contact.

When a yarn passes round a guide, as shown in Fig. 25.1, its tension must be
increased by an amount necessary to overcome the frictional resistance. It follows
from Amontons’ law1 that:

T2 = T1 exp (µθ) (25.2)

25
Fibre friction

1Note devations from equation (25.2) due to bending, discussed in Section 25.2.2.

25.1 Values of T2/T1 = eµθ.

T1 T2

θ r
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Physical properties of textile fibres710

where T2 = leaving tension, T1 = incoming tension and θ = angle of contact.
In reality, these are not universal laws. The study of fibre friction has largely been

the experimental observation of departures from the laws, the reasons for such departures,
and their consequences. One of the earliest records is of the discovery by Monge in
1790 that the friction of wool depended on the direction in which the fibres were
sliding.

25.1.2 Technological effects

The dualistic nature of the influence of friction on textile processing is illustrated by
W. L. Balls’s paradox: ‘up to the front mule roller, cotton must be slippery; afterwards
it must be sticky’ [1]. Friction is the force that holds together the fibres in a spun yarn
and the interlacing threads in a fabric. If the friction is too low, the yarn strength will
fall, and the dimensional stability of cloth will be reduced. Here high friction is an
advantage, enabling a greater proportion of the strength of the individual fibres to be
utilised.

In many other places, however, fibre friction is a nuisance. If a yarn passes over
a number of guides, the angle θ in equation (25.2) becomes the sum of the individual
angles of contact. The figures in Table 25.1 show how rapidly the tension may
increase in these circumstances. If excessive breaks are to be avoided, and the yarn
is not to be permanently damaged by overstraining, it is essential to maintain the
frictional resistance at as low a value as possible.

In the stitching of fabrics, high friction causes trouble for two reasons: the needle
may become red-hot, and the threads will not slide over one another in order to allow
the needle to pass between them. This causes many more threads to be broken; for
example, in a particular unlubricated mineral khaki dyed cloth, there were nearly 20
cut threads per 100 needle punctures, but after lubrication the number of cut threads
was insignificant [2].

Apart from these examples, where friction is clearly an advantage or a disadvantage,
there are many other aspects of textile technology that are influenced by the frictional
characteristics of the fibres: the handle and wear resistance of fabrics; the behaviour
of fibres during drafting; and, especially in wool, the process of felting.

25.2 Measurement of fibre friction

25.2.1 Methods for fundamental studies

The apparatus developed by Bowden and Leben [3] is the best general method for the
fundamental study of friction. Figure 25.2(a) illustrates its mode of operation. A

Table 25.1 Values of T2/T1 = eµθ

θ = π/2 θ = π θ = 2π θ = 4π

µ = 0.2 1.4 1.9 3.5 12.3
µ = 0.5 2.2 6.0 22.9 525
µ = 1.0 6.0 22.9 525 270 000
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slider, under a load N, presses on a lower plate, which is moving past it at a constant
velocity. The force of friction drags the slider along with the lower plate until the
force S exerted by a spring fixed to the slider just balances the frictional force F. The
extension of the spring is thus a measure of F. In practice, static friction Fs, the force
opposing the start of slippage, is usually greater than kinetic friction Fk. Hence, once
the slider has started to slip, it will be accelerated back until the tension in the spring
has been reduced from a value equal to the force of static friction to that of the force
of kinetic friction. The slider will continue to slip back for a further distance before
it has decelerated and come to rest. It then moves forward again with the lower plate
under the force of static friction. A record of the extension of the spring will give the
‘stick–slip’ trace shown in Fig. 25.2(b). If the damping is small, it can be shown that
the force of kinetic friction is equal to the mean force exerted by the spring during the
slip. Consequently, values of both Fs and Fk can be calculated when the characteristics
of the spring are known.

In one practical form of this instrument [4, 5], suitable for loads between 5 mg and
100 g, the spring is a stiff wire beam, deflected horizontally by the movement of the
slider, and deflected vertically to apply the load. The slider is carried on a turntable.
For heavier loads [4, 5] of up to several kilograms, another form of the apparatus is
used, with spring loading of the specimen and with the force opposing the drag of the
specimen being applied by means of the rotation of a loaded bifilar suspension.

With these forms of apparatus, measurements of the friction of pads of fibres
rubbing against solid surfaces may be made, and polymeric materials, of which fibres
are made, may also be investigated, but for work on single fibres modifications are
needed. The fibres may be mounted on frames under light tension and then pressed
against one another, as is shown in Fig. 25.3. One fibre with its frame is then
traversed along, and, in one form of the apparatus, the movement of the other is
restrained by a leaf spring. The deflection of the spring may be recorded graphically
with a stylus, or photographically by reflection from a mirror mounted on the spring,
and gives a stick–slip trace from which the static and kinetic friction can be calculated.
This method has been used by Mercer and Makinson [7]. In the similar instrument
illustrated in Fig. 25.3 and used by Guthrie and Oliver [6], the ‘stationary’ fibre is
suspended in a frame on a torsion wire, which rotates until the force is sufficient to
cause slippage.

An ingenious development of this method for use with very light loads has been
described by Pascoe and Tabor [8]. In their apparatus, shown in Fig. 25.4, the sliding
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25.2 (a) Basic principle of Bowden and Leben’s apparatus [3]. (b) Record of
trace.
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fibre is mounted at one end only. The other end rests on the second fibre, which can
be traversed along in a frame. The upper fibre acts as a cantilever. Its displacement
in the vertical plane gives the load, and its displacement in the horizontal plane gives
the force opposing the frictional drag. The displacements are determined by
microscopical observation of the free end of the fibre.

The principles of these methods are still applicable for fundamental studies of
fibre friction, but advances in transducers and detectors will lead to differences in
detail.

25.2.2 Rapid methods

Whereas the above methods are the most suitable for fundamental investigations,
they are less convenient for the rapid technical evaluation of frictional resistance. For

25.3 Essential features of Guthrie and Oliver’s apparatus [6].
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25.4 Measurement of fibre friction under very low loads [8].
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this purpose, there are advantages in the capstan method, which involves measurement
of the excess tension needed to pull yarn over a guide. The basic feature of the
apparatus is that shown in Fig. 25.1, and the coefficient of friction, assumed to be
constant, can be calculated from the relation: T2/T1 = exp(µθ). A static form of the
method is illustrated in Fig. 25.5(a). A loop of fibre is placed over the guide and a
small load placed on one side. The load on the other side is then decreased until
slippage commences. Alternatively, a dynamic method may be used, with the yarn
running continuously over the guide. Abbott and Grosberg [9] have described a
version of the method suitable for use with an Instron Tensile Tester. Buckle and
Pollitt [10] invented a mechanical tester in which the tensions operate in such a way
that the coefficient of friction can be directly indicated by a pointer on a scale.
However, this has been displaced by advances in electronic tension meters.

A typical modern instrument will have a means of pulling yarn over a guide, with
tension meters on either side, as indicated schematically in Fig. 25.5(b). The springs
are, in reality, stiff force transducers connected to a computer.

The simple derivation of equation (25.2) assumes that the yarn is perfectly flexible
and does not take account of bending stiffness. As discussed in Section 19.5.4 in
relation to flex fatigue testing, the form shown in Fig. 25.1 would have a discontinuity
in bending moment at the point where it leaves the pin. In reality there will be a zone
of changing curvature. An analysis by Jung et al. [11] also shows that the forces in
the contact region are influenced by fibre stiffness. Equation (25.2) is a good
approximation when the yarn or fibre radius is small compared with the pin radius,
but Jung et al. [11] show that there are appreciable differences when a yarn passes
over a guide at an angle. In a typical example, the value of T2/T1 increased by 20%
in going from zero deviation to a 45° inclination. Another error in equation (25.2)
results from bending hysteresis. Energy is dissipated not only in overcoming friction
but also in the cycle of bending and unbending, which is undergone by each portion
of material. The work done to provide this energy will appear to be a frictional loss
and will cause the measured friction to be too large. Grosberg and Plate [12] have
discussed the problem and shown that the error may be as high as 2.5%. The contribution

(a) (b)

T1

T1

T1 T2

T2

T2

25.5 (a) Static capstan method. (b) Dynamic capstan method.
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to the frictional force is found to equal ∆M/r, where ∆M is the difference in bending
moment in bending and recovery and r is the radius of curvature of the capstan. The
error may therefore be made negligible by using large cylinders.

For the measurement of inter-fibre friction, Lindberg and Gralén [13] introduced
a method in which the two fibres are twisted together as shown in Fig. 25.6. If the
difference between the tensions applied to the opposite ends of each fibre is increased,
the fibres will eventually slip over one another. It is shown that:

µ π β = log
/

e
2 1T T
n

(25.3)

where T2 and T1 are the tensions in the fibres, n is the number of turns of twist and
β is the angle between the fibre axes and the axis of the twisted element.

The yarn-on-yarn abrasion tester shown in Fig. 25.7 can be adapted to measure
friction in this way by adding tension meters or, as shown in Fig. 25.8, measurements
can be made on a running yarn. Another variant of the method was used by Gupta and
coworkers [14] to measure friction of sutures and hair [15]. This was adapted by
Moghazy and Gupta [16] for testing in liquid.

Another technique that has been used to investigate fibre friction is the measurement
of the force necessary to remove a single fibre from a mass of fibres under pressure
[17], or to pull apart two interlocking fringes of fibres [18]. A convenient version of
the latter method in which one fringe of fibres is pulled over another on an apparatus
fitted to an Instron Tensile Tester is described by Hearle and Husain [19]. These
measurements will be related to the practical behaviour of fibres in drafting and in
yarns. Moghazy and Broughton [20] describe a method of using an Instron tester to
pull a beard of cotton fibres from between metal plates.

T2 T1

T2
T1

β

25.6 Measurement of inter-fibre friction [13].
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A very simple means of measuring friction is the inclined plane method [21].
Several turns of yarn are wound as a bow over a bridge and rested on a horizontal
plate of the other material. This plate is gradually inclined. The coefficient of friction
is equal to the tangent of the angle of inclination at which slippage starts. Howell and
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Gear motor
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25.7 Yarn-on-yarn abrasion tester.
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25.8 Measurement of yarn-on-yarn friction on a running yarn.
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Mazur [22] have used a similar method for studying the friction between single
fibres. A lightly loaded loop of fibre is allowed to rest on another stretched fibre,
which is mounted in a frame. The frame is initially horizontal and is then rotated until
the loop of fibre just begins to slide down.

25.3 Empirical results

25.3.1 Friction, load and area of contact

The ratio of frictional force F to normal load N for fibres is found to decrease as the
load is increased. In other words, Amontons’ law is not obeyed. Some typical examples
are given in Fig. 25.9. Among the various mathematical relations that have been used
to fit the experimental data are the following:

F = µ0N + αS (25.4)

F
N

A B N =  –  log (25.5)

F = aN + bNc (25.6)

where S = area of contact, and µ0, α, A, B, a, b and c are constants. The most
successful relation has, however, been:

F = aNn (25.7)

where a and n are constants. This is a form of equation previously found by Bowden
and Young [23] to apply to some non-metals: it was first applied to fibres by Lincoln
[24] and by Howell and Mazur [22]. The value of the index n generally lies between
2/3 and 1, some typical values being given in Table 25.2.

If this relation holds, we can work out the effect of the areas of surfaces in

25.9 Variation of coefficient of friction of fibres with load (D = fibre diameter)
[8].
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contact2. For a load N on an area A1, the frictional force is F1 = aNn. For the same load
on an area A2, equal to xA1, we may consider the total frictional force F2 to be made
up of the sum of the individual frictional forces f on x portions, each of area A1, under
loads N/x. But, from equation (25.7), it follows that:

f = a(N/X)n (25.8)

Therefore:

F2 = ∑f = xa(N/x)n (25.9)

F
F

xa N x
aN

x
A
A

n

n
n

n
2

1

(1– ) 2

1

(1– )

 = 
( / )

 = = 

 (25.10)

The two classical laws of friction are thus replaced by the relations: F = aNn, for
constant apparent surface area in contact and F = bA(1–n), for constant load, where a

2The more detailed understanding of the nature of frictional force (discussed in Section 25.4.2)
shows that the real determining factor is the number of points of true contact between the surfaces.
For extensive apparent areas of contact, this number will be proportional to the overall geometric
area of contact. This will not hold, however, for crossed fibres making a single-point contact, or for
parallel fibres making contact along a line. It also follows that the friction is influenced by the
roughness of the surface.

Table 25.2 Values of n

(a) Results by Mazur [25] for single fibres crossed at right angles (fibre in vertical column
sliding on fibre in horizontal column)

Acetate Nylon Viscose Terylene Wool*
rayon polyester fibre

Acetate 0.94 0.89 0.90 0.86 0.92
Nylon 0.86 0.81
Viscose rayon 0.89 0.88 0.91 0.88 0.87
Polyester fibre Terylene 0.88
Wool* 0.88 0.86 0.92 0.86 0.90

*Mean values, ‘with’ and ‘against’ scales.

(b) Other results

n

Nylon monofil pulled over glass cylinder [26] 0.91
Acetate yarn pulled over chromium-plated cylinder [27] 0.8
Wool pulled over serge cylinder [28, 29] 0.75
Viscose rayon fibres crossed at right angles [30]

static friction – normal finish 0.80–1.02†
– extracted 0.75–0.98

kinetic friction – normal finish 0.77–0.94
– extracted 0.64–0.99

† Value varying with filament linear density.
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and b are constants, dependent on the area and load, respectively. It should be noted
that a and b are not dimensionless and will thus vary with the units used. The
parameter n should be a fundamental property of the materials, independent of geometry,
although Guthrie and Oliver [30] have found an indication that it increases with
filament linear density in staple-fibre rayon. The classical laws of friction will occur
as the special case: n = 1.

Viswanathan [31] found experimentally that the parameter a is correlated with n
to a fairly high degree over a wide range of fibres, and even better within a given
fibre type. The values of a decrease approximately linearly from about 3 for n = 0.6
to 0.5 at n = 0.9. However, it must be remembered that a has the dimensions of
(force)(1–n), so that the results would look different in other units. There are theories
that suggest reasons, and even equations, for the correlation.

Howell [29] has shown that, if equation (25.7) holds, then equation (25.2), relating
the tensions in a yarn or fibre passing round a guide, is modified and becomes:

T T n a rn n n
2
(1– )

1
(1– ) (1– )= + (1 –  ) θ (25.11)

where r is the radius of the cylinder. In the limit, as n approaches 1, this equation
reduces to:

T T a r T n

2 1
( / ) = e 1

(1– )θ (25.12)

This form obviously reduces to the classical form when n = 1. Figure 25.10 shows a
check of equation (25.11) for varying initial tensions and cylinder radii.

25.3.2 Static and kinetic friction: speed of sliding

The kinetic friction µk is usually less than the static friction µs. Some typical examples
are given in Table 25.3. The difference affects the feel of the material. If it is large,
the material is ‘scroopy’, that is, it will have a coarse, crunchy feel and will give a
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25.10 Check of equation (25.11) for (a) varying initial tension and (b) varying
cylinder radius. The lines are the theoretical curves, and the points are
experimental values for acetate yarn. For curve (a), n = 0.8, a = 1.18; for curve
(b) n = 0.8, a = 1.15 [27].
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fabric that rustles like silk, owing to the marked ‘stick–slip’ motion. This tendency
will be reduced by any finish or lubricant that reduces the differences between µs and
µk. The handle will then be softer.

At low speeds, going from 2 to 90 cm/min, Röder [33] noted a decrease in the
friction, but at much higher speeds other workers have found that the friction increases
as the speed increases. A typical result is shown in Fig. 25.11. It therefore seems
likely that the frictional force passes through a minimum at around 1 m/min, due to
mechanisms shown later in Fig. 25.25. The variation of friction with speed will have
a considerable influence on the behaviour of fibres in drafting.

Cotton is exceptional in that even at low speeds the coefficient of friction increases
with the speed of sliding. For example, Merkel [34] found that the coefficient of
friction of single cotton fibres against cotton-covered cylinders increased steadily

Table 25.3 Static and kinetic friction [32]

Static Kinetic
µs µk

Rayon on rayon 0.35 0.26

Nylon on nylon 0.47 0.40

Wool on wool
with scales 0.13 0.11
against scales 0.61 0.38
fibres in same direction 0.21 0.15

Wool on rayon
with scales 0.11 0.09
against scales 0.39 0.35

Wool on nylon
with scales 0.26 0.21
against scales 0.43 0.35

Rayon on rayon [30] 0.22 0.14
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25.11 Variation of final tension after acetate yarn has passed over a guide at
varying speeds [27] (50 g wt = 0.49 N).
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with speed. Under medium-load conditions, the coefficient of friction was 0.23 at
3.6 cm/min, but it increased to 0.25 at 200 cm/min and to 0.39 at 4500 cm/min. One
consequence of this is that the slippage of cotton, for example, in the deformation of
needled fabrics, occurs more smoothly without the stick–slip effect characteristic of
other fibres.

25.3.3 The state of the surface

The frictional force is changed if the surface is lubricated, either naturally, e.g. by
waxes in cotton, or artificially, or by contamination with dirt or impurities. Figure
25.12 shows that, for acetate yarn with more than 1% of oil applied, the frictional
force increases both as the oil content is increased and as the viscosity of the oil
increases. However, fibres from which all traces of lubricant have been removed
show high values of friction; thus, in one experiment [2], raw cotton on steel gave µ
= 0.25, whereas scoured cotton on steel gave µ = 0.7, and lubricated scoured cotton
on steel gave values of µ ranging from 0.14 to 0.35.

Bradbury and Reicher [35] have found that extremely high values of friction are
obtained between flat continuous-filament yarns and glass if excessive precautions
are taken to ensure the cleanliness of both surfaces. With nylon, the value of µ was
at least 8, and a 50 gram weight could be supported on a short length of yarn looped
over a glass rod, as shown in Fig. 25.13. This high value of friction was not found if
the yarns were twisted, or if the glass surface was roughened by grinding: this
suggests that the effect is associated with a high true area of contact (see Section
25.4.2). A similar effect was observed by King [36], who found a reduction in the
friction of wool fibres on various materials when the surface was roughened. Values
obtained are given in Table 25.4. The dependence on the physical state of the surface
is also shown by the results in Table 25.5 for moulded and machined nylon. The
newly moulded surface shows the highest coefficient of friction. Taylor and Pollet
[38] have investigated the low force friction of several fabrics against engineering
surfaces.
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25.12 Variation of final tension after passage of acetate yarn over guide, for
(a) varying amounts of oil on yarn and (b) varying viscosity of oil [25].
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25.13 Demonstration of very high friction with clean nylon and glass [35].

Table 25.4 Effect of surface roughness: Values of µ for wool rubbed on various
materials [36]

Material Polished surface Rough surface

With Against With Against
scales scales scales scales

Casein 0.58 0.59 0.47 0.57
Ebonite 0.60 0.62 0.50 0.61
Sheep’s horn 0.62 0.63 0.52 0.63
Cow’s horn 0.49 0.54 0.42 0.53

Table 25.5 Values of µ for moulded nylon [37]

As received Aged 30 min Aged 5 months
at 170 °C at 20 °C

Cold-moulded 0.70 0.45 0.55
Hot-moulded 0.65 0.45 0.55
Machined 0.45 0.40 0.45
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25.3.4 Effect of water

The frictional force usually increases as the regain of the fibres is raised. Typical
results are given in Fig. 25.14. Moghazy and Gupta [16] found that friction was
higher in wet polypropylene and acrylic yarns than in dry ones.

25.3.5 Typical values of µ = F/N

Although fibres do not have a true, constant coefficient of friction, it is useful to
quote values of µ = F/N to express the magnitude of the friction under particular
conditions. However, because this value of µ varies with so many of the experimental
conditions (load, speed, area and geometry of contact, humidity, etc.) and because it
is so dependent on the exact state of the surface, only typical values found in particular
experiments can be quoted. Some examples are given in Table 25.6. They cannot be
expected to have validity in other circumstances.

In general, values of µ for fibres and plastics range between 0.1 and 0.8, although,
under extremely clean conditions, as described in Section 25.3.3, much higher values
of fibre friction are found. Another exception is PTFE (known as Teflon in fibre
form), which has an extremely low coefficient of friction, often less than 0.05, except
at the very low loads shown in Fig. 25.9.

Table 25.7 gives values of coefficient of friction of yarns used in high-performance
ropes [40]. High-modulus polyethylene (HMPE) fibres have an inherently low
coefficient of friction, but the others will have special marine finishes, which reduce
inter-fibre abrasion.

Behary et al. [41] studied the tribology of sized glass fibres and found wide
variations in friction. One fibre had a unimodal distribution for µ ranging from 0.1 to
10 with scattered values up to 15, a peak at 3.5, a mean of 5 and a standard deviation

µ
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25.14 Change of coefficient of friction with regain for nylon on nylon, wool on
horn [36] and cotton on steel [39].
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Table 25.6 Typical values of µ (a) between fibres; (b) for yarns passing over guides [10]

(a)

Crossed fibres [6] Parallel fibres [32]

Nylon 0.14–0.6 0.47
Silk 0.26 0.52
Viscose rayon 0.19 0.43
Acetate 0.29 0.56
Cotton 0.29, 0.57 0.22
Glass 0.13 –
Jute – 0.46
Casein – 0.46
Saran – 0.55
Terylene polyester fibre – 0.58
Wool, with scales 0.20–0.25 0.11
Wool, against scale 0.38–0.49 0.14

(b)

Hard steel Porcelain Fibre pulley Ceramic

Viscose rayon 0.39 0.43 0.36 0.30
Acetate, bright 0.38 0.38 0.19 0.20
Acetate, dull 0.30 0.29 0.20 0.22
Grey cotton 0.29 0.32 0.23 0.24
Nylon 0.32 0.43 0.20 0.19
Linen 0.27 0.29 0.19 –

Table 25.7 Yarn-on-yarn friction results. From Noble Denton and National Engineering
Laboratory (40]

Load range (g) Coefficient of friction µ

Mean sliding Mean static Maximum

Aramid
Kevlar 29 (961) 100–1600 0.157 0.167
Kevlar 29 (960) 100–1500 0.137 0.150
Twaron 1000 100–1200 0.165 0.180
Twaron 1020 100–2500 0.131 0.138
Technora 100–2200 0.117

LCP
Vectran 100–2700 0.144 0.151

HMPE
Spectra 1000 200–4500 0.058 0063
Dyneema SK60 2000–6000 0.061 0.064

Polyester
Diolen 855TN 100–1500 0.092 0.099
Trevira 785 100–2500 0.060 0.064
Seagard IW81 100–1900 0.02 0.096
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of 1.7. Another fibre with a different finish had a biomodal distribution with peaks at
1.25 and 6.25 and values from 0.25 to 9. They used atomic force microscopy to
observe the fibre surfaces and related the frictional behaviour to the nature of the
contacts between fibres. In another paper [42], they report on stick–slip behaviour.

Moghazy and Gupta [16] found that triangular and trilobal polypropylene
monofilament shad lower friction that circular monofilaments.

25.3.6 Surface damage on rubbed fibres

The nature of the damage to the surface of fibres when they are subject to friction is
of intrinsic interest and also leads to an understanding of the nature of the frictional
force. Figure 25.15 shows a nylon filament that has been rubbed with a platinum

25.15 Effect of friction by platinum slider on nylon monofilament [43]: (a) low
load, 0.39 N; (b) high load, 2.8 N.

(a)

(b)
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25.16 Acetate fibre abraded by passing over a ceramic guide at 300 m/min.
Damage is due to fibre sticking to a guide and then breaking away [4].

25.17 Particles of acetate left on glass rod, after rubbing with acetate fibre
[35].

slider under various loads, viewed by reflection electron microscopy. At low loads,
there is a narrow track in which the fibre is slightly flattened, but at higher loads there
is a marked deformation, and severe tearing of the surface occurs at the centre of the
track. The concave shape of the track is probably due to reduced elastic recovery in
the centre, where the deformation is greatest. Other examples of surface damage are
shown in the electron micrographs of the surface of acetate fibres that have passed
over guides (Fig. 25.16).

There is other evidence that material may be plucked out of the fibre surface
during rubbing. Figure 25.17 shows particles of acetate (after dyeing) that were left
on a glass rod rubbed with an acetate fibre, under the excessively clean conditions
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described in Section 25.3.3. Similar deposits were observed with nylon and polyester
fibres, but not with viscose rayon or silk fibres. The reverse effect is shown in Fig.
25.18, which is an autoradiograph of radioactive silver that has been transferred to a
PVC surface after a silver slider has passed over it.

25.4 The nature of friction

25.4.1 General theory

Over the centuries, many explanations of friction have been proposed. Amontons
suggested that it was due to the force needed to lift one surface over the irregularities
in the other; others have suggested that it is due to attractive forces between the
atoms on the two surfaces, or to electrostatic forces. These theories all assume that
the surfaces remain separate and, although they may sometimes play some part, the
work of Bowden and Tabor [5, 44] showed that the predominant effects are usually
an actual union, or welding, of the two surfaces at points of real contact, and the
breaking of these junctions when sliding starts.

The surfaces of most materials are irregular if studied on a small enough scale:
only in exceptional cases (for example, the cleavage planes of a crystal of mica) will
they be smooth on the molecular scale. Bringing two surfaces into contact is therefore

25.18 Radioactive silver left on polyvinyl chloride surface after rubbing [43].
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like ‘turning Switzerland upside down and putting it on top of Austria. Contact only
occurs at the tips of the peaks’ [44]. If a load is applied, the pressure at the few points
of real contact is very great, and they squash down until the area in contact is
adequate to support the load.

The nature and extent of the deformation will depend on the mechanical properties
of the materials. Metals flow plastically under high loads, and the flow will continue
until the pressure at the points of contact is reduced to the yield pressure, when it will
support the load without further deformation. The condition for equilibrium is shown
graphically in Fig. 25.19. If A is the total area of real contact, we have:

py = N/A (25.13)

A = N/py (25.14)

where N = applied load and py = yield pressure.
Thus the area of real contact is proportional to the applied load. Under the intense

pressure, and an accompanying temperature rise, the junctions weld together, as
illustrated in Fig. 25.20. In order to allow sliding, these junctions must be broken by
shearing. The resistance to this, which is the frictional force F, will be given by:

F = SA (25.15)

where S = shear strength of the weaker material. But, on substituting from equation
(25.13), this gives:

F S
p

N N =   = 
y

µ (25.16)

Since S and py are both constants, being mechanical properties of the materials,
this is Amontons’ law with µ = S/py. As the relation between load and contact area is
linear, the total area in real contact will be independent of the number of points of
contact. This explains the classical law that friction is independent of the overall area

Area in contact A
0

P
re

ss
u

re
 p

A B C D E F

25.19 Deformation of metal contacts. The full line represents the load-
deformation curve of the metal, with a elastic region, OA, and a region of
plastic flow, AF. The dotted lines are pressure–area curves for constant loads.
Equilibrium occurs at the intersections, B, C, D, E, of the full and dotted lines.
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of contact. Bowden and his colleagues have produced a great deal of evidence in
support of this theory in its application to metals: the values of µ agree with the above
expression; the damage to the surface, the portions of metal plucked up, the metal
transferred from one surface to the other, the evidence of strains below the surface,
and the form of the track left after sliding show that welding and shearing must have
occurred. They have found that, if one surface is much harder than the other, an
additional force is needed to plough out a track in the soft metal for the asperities on
the hard surface. This force will also contribute to the friction.

They have applied similar theories to non-metals. For brittle solids, such as rock
salt, Amontons’ law is obeyed, and the behaviour is similar to that in metals, but, in
solids that are either very hard, such as diamond, or have a very large elastic deformation,
such as rubber, the behaviour is different. With these materials, the deformation
within the elastic range is sufficient to give support to the load. This is illustrated in
Fig. 25.21. In neither case is the yield pressure reached. The relation between load

W

Plastic
flow

Elastic Elastic Deformation

Plastic
flow

25.20 Deformation at points of real contact, showing welded junctions. After
Bowden and Tabor [44].
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25.21 Deformation of elastic and viscoelastic materials. OB is the line for a
hard elastic material, such as diamond; OE is the line for a soft elastic
material, rubber; and OI is the curve for a viscoelastic material. Equilibrium
occurs at the points of intersection with the pressure–area curves (dotted).
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and area of real contact under conditions of elastic deformation depends on the
geometry of the contacts and has been studied by Hertz [45].

For spheres in contact, A ∝ N2/3. Since we should still have F = SA, this would give
F ∝ N2/3, a result that agrees with experimental results for diamond and rubber. This
condition would be expected to apply approximately to the contact between asperities
on an extended surface. However, the number of points of contact will affect the
proportion of the load borne by each contact, and, since the relation between load and
area is non-linear, this will affect the total area of contact. Thus the magnitude of the
frictional force will depend on the roughness of the surface and on the overall area
of contact.

For two cylinders at right angles, the Hertz formulae give A ∝ N2/3, and for two
cylinders in contact along a line they give A ∝ N1/2.

25.4.2 Application to fibres

The damage to the surfaces of fibres and plastics during sliding shows that there has
been a marked deformation of the surface and welding together at points of contact.
The essential mechanism of friction is thus the same as that for the other materials
discussed in the last section. The friction will depend on the force needed to shear the
junctions, and, in general, calculations of shear strength of plastics from friction
measurements, by means of equation (25.15), have shown reasonable agreement with
bulk measurements of shear strength.

Experimentally, the frictional force is given by F ∝ Nn, where the index n is less
than 1 but is usually greater than that to be expected from a purely elastic deformation.
The index will depend on the viscoelastic properties of the material, which determine
the shape of the curve relating deformation to pressure. Figure 25.21 includes an
example of a curve, not unlike typical fibre stress–strain curves, that would give
values intermediate between the elastic deformation, also shown in Fig. 25.21, and
the plastic flow of Fig. 25.19.

The relations will also depend on the geometry of the system. Pascoe and Tabor
[8] have investigated the effect of the diameter of crossed fibres that make contact at
a single point and deform as shown in Fig. 25.22. Working on a large scale with

d

D
D

d

(a)
Section

(b)
Plan

25.22 Deformation of crossed fibres under load.
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Perspex cylinders 1 cm in diameter, they found that the diameter d of the circle of
contact fitted the following relation over a wide load range:

N ∝ d2.7 (25.17)

Similar results were obtained with steel spheres pressed on various polymers.
The only parameter defining the shape of the deformation is the ratio d/D, where

D is the diameter of the cylinder. This parameter will determine the distribution of
strains, and hence of stresses, in the cylinders. Consequently, the mean pressure must
be a function of d/D, that is:

N
d

f
d
Dπ 2 /4

 = 



 (25.18)

If the function is assumed to be a power function, we can put:

N
d

K
d
D

x

2  = 



 (25.19)

N K
d
D

x

x = 
2+

(25.20)

Comparison with the experimental results given by the relation (25.17) shows that x
= 0.7, so that we have:

ND0.7 = Kd2.7 (25.21)

This equation fits the experimental results on cylinders of different diameters.
The frictional force is given by:

F = S A = S (πd2/4) (25.22)

But from the general relation, equation (25.20), we see that:

d
N D

K

x x
2

2/(2+ )

 = 






(25.23)

Therefore, in general:

F = kN2/(2+x)D2x/(2+x) (25.24)

In the special case, with x = 0 7, this gives:

F = kN0.74 D0.52 (25.25)

µ =  = –0.26 0.52F
N

kN D (25.26)

Figure 25.23 shows that this relation fits the experimental results for nylon.
The dependence of friction on the force needed to shear the material in the region

of welded junctions does not apply when the strength of the weld is itself very low.
This happens with the inert material PTFE, which shows very poor adhesion to other
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surfaces, and is the cause of its low coefficient of friction.
Gupta and Moghazy [46] have made a detailed study of the interaction of asperities

on fibre surfaces. They derive the following expression for the empirical equation
(25.7) with specific shear strength appearing as in equation (25.16):

F = S [CM K–n m1–n] Nn (25.27)

where CM depends on the distribution of normal load in the contact area, K is related
to the hardness of the areas in contact, given by the relation between pressure P and
area A, P = K A(1–n)/n and m = number of asperities in contact. The index n depends
on the deformation behaviour of the material as discussed above. This model has
been applied to the frictional behaviour of polypropylene, acrylic and cotton fibres
[16, 20].

25.4.3 Lubricated conditions

Compared with its effect on metals, where it may reduce the value of µ from 1 to
0.05, lubrication has comparatively little effect on the friction of fibres and will not
usually reduce the value of µ below about 0.2. The behaviour is usually thought of
as boundary lubrication in which the layer of lubricant is not sufficiently thick to
mask the asperities on the surface. Under these conditions, a good lubricant acts by
forming monolayers on the surface and preventing the adhesion of the two surfaces
at points of contact. There are then very few contacts between the materials, and most
of the friction results from the force needed to shear the lubricant film itself.

If greater quantities of lubricant are present, then we may have conditions of
hydrodynamic lubrication, in which there is a comparatively thick film of fluid
between the surfaces and the friction results from the viscous resistance to flow. In
conventional bearing lubrication under hydrodynamic conditions, the coefficient of
friction is found to be a single-valued function of ZN/P, where Z is the viscosity of
the oil, N is the angular velocity of the journal and P is the nominal pressure on the
bearing. The analogous quantity for a yarn passing over a guide is ZV/W, where V is
the yarn velocity and W is the load on the guide. Hansen and Tabor [47] have
analysed Lyne’s data [27], and more of their own, and found, as shown in Fig. 25.24,

10–6 10–4 10–2 1 102 104

n (gwt)

µ/
D

0.
52

10

1.0

0.1

25.23 Check of equation (25.25) for nylon in the form of fibre, bristles and
spheres [8], µ/D 0.52 being plotted against N on logarithmic coordinates. The
straight line has a slope of –0.26 (1 g wt = 9.81 m N).
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that the coefficient of friction is a single-valued function of ZV/W. They conclude
that, for moderately high values of ZV/W (high speed, low loads), hydrodynamic
lubrication is the dominant factor.

At low speeds (or high loads), an oil film would not be maintained between the
surfaces, and rubbing friction would be dominant. This decreases with increased
speed. Consequently, a combination of rubbing friction at low speeds and hydrodynamic
friction at high speeds would give a minimum in the friction, as is shown in Fig.
25.25. This is in agreement with the experimental results.

25.5 The friction of wool

25.5.1 Experimental

The friction of the wool fibre depends on the direction in which it is pulled: the
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25.24 Effective coefficient of friction plotted against ZV/W for acetate yarn and
nylon yarn on steel, lubricated with white mineral oils. The point cover
variations in speed, pin radius, pre-tension and oil viscosity.
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25.25 Combination of rubbing friction and hydrodynamic friction.
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resistance is greater when it is pulled against the scales than when it is pulled with
them. This is known as the directional frictional effect (DFE), and the various
combinations that can occur are illustrated in Fig. 25.26. This effect has important
technical consequences, since it means that, in a mass of wool, individual fibres will
show preferential movement in one direction and will continually entangle themselves
with the remaining fibres: this is the process of felting.

Some experimental values for the directional frictional effects of wool are given
in Table 25.8. It has been shown that the effect persists, though to a reduced extent,
when the fibres are lubricated or coated with thin films of gold or silver [48]. In

Tip
Root

(a)

(b) (d)

(c) (e)

Table 25.8 Directional friction in wool

Value of µ

With Against
scales scales

Dry wool (twisted fibres) 13 0.11 0.14
Wool in water (twisted fibres) 13 0.15 0.32
Wool unswollen on ebonite swollen in benzene [36] 0.58 0.79
Wool swollen in water on ebonite unswollen [36] 0.62 0.72
Wool swollen in water on ebonite swollen in benzene [36] 0.65 0.88
Wool on horn, dry [41] 0.3 0.5
Wool on horn, wet pH 4.0 [49]

untreated 0.3 0.6
chlorine-treated 0.1 0.1
alcoholic-caustic-potash-treated 0.4 0.6
sulphuryl-chloride-treated 0.6 0.7

Other values are included in Tables 25.3, 25.4 and 25.6.

25.26 Directional friction in wool: (a) between fibres placed in same direction;
(b) between fibres against scales; (c) between fibres with scales; (d) on plane
surface, against scales; (e) on plane surface, with scales.
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water, or other swelling agents, the difference in the coefficients of friction is greater
than it is in air. On the other hand, the difference is less after mechanical abrasion or
chemical treatments, designed to reduce shrinkage, which attack the outer layer of
the wool fibre.

25.5.2 Theory of the directional frictional effect

The occurrence of directional friction has almost invariably been ascribed to the
geometric form of the scales. Other explanations, such as Martin’s view [50] that
there was an asymmetrical molecular field at the surface of the fibre, appear far-
fetched and are not supported by the experimental evidence. The various theories
have been reviewed by Makinson [51].

The simplest geometrical theory is that the wool fibre acts as a ratchet, with the
scales interlocking with one another or catching against asperities on another surface.
Motion against the scales would be strongly resisted, since it would involve rupture
or deformation of the scales. Makinson [51] regards this as an effective explanation,
and indicates that a ploughing mechanism would also be effective. Lincoln [52] has
given a more sophisticated geometrical theory, which applies the general idea that
friction is due to the shearing of real areas of contact.

Figure 25.27 shows the contact between an idealised wool scale structure and
asperities on another surface. The scale surfaces are assumed to be inclined at an
angle α, so that a tangent through the point of contact between an asperity and the
scale surface makes an angle α with a line parallel to the axis of the wool fibre.
Contact may also occur between an asperity and the scale edge, with the tangent at
the contact making an angle β with the fibre axis. For slippage to occur, there must
be shearing parallel to the tangents at each point of contact. We must therefore
consider the relations between the forces when contact occurs at an angle, as shown
in Fig. 25.28.

The resultant force R acting at the contact may be resolved either into components
W and F acting perpendicular and parallel to the direction of motion, or into components
N and P acting perpendicular and parallel to the tangent at the contact. If the angle
between these directions is θ, we must have:

N = W cos θ + F sin θ (25.28)

P = F cos θ – W sin θ (25.29)

W W

α
β

β α

25.27 Contact between scale structure and asperities on a surface.
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For slippage to occur, the junction must be sheared. The force necessary to do this
will be given by the general frictional relation P = aNn.

Substituting from equations (25.28 and 25.29), we have

F cos θ – W sin θ = a(W cos θ + F sin θ)n (25.30)

Lincoln gives a graphical solution of this equation, showing values of F for various
values of a and θ, when n = 2/3. This value of n is applicable to elastic deformation
at the junction. Figure 25.29 is taken from this graph and shows the variation of F
with θ. The resistance to motion decreases as the value of θ decreases. When θ is
positive, there will be resistance to motion even if a = 0, that is, if the friction is zero.
It should be noted that negative values of θ correspond to motion in the reverse
direction to that shown in Fig. 25.28.

We can now consider the application of this result to the contact between two
surfaces. If the asperities on the surfaces are completely random, then large and
small, positive and negative, values of θ will be equally likely for motion in any
direction and there will be no directional effect.

In wool, however, there is a regular arrangement of asperities, the scale structure.
Figure 25.27 shows that, for motion against the scales, the two types of contact will

Motion

θ

W
N

R
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25.28 Geometry of contact.
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25.29 Variation of F with θ, with n = 2/3 (after Lincoln [52]).
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have values of θ equal to +β and –α, whereas for motion with the scales the values
will be –β and +α. From the combination of these values, shown in Fig. 25.30, it
would appear obvious that the frictional force would be greater against the scales.

There are, however, complications, which have the effect that the frictional force
is not a simple mean of the two values of F. Firstly, there are more α contacts than
β contacts, since there is a greater length of scale surface than of scale edge. Secondly,
the geometry of the contacts will be different and will influence the value of α and
the distribution of the load. Thirdly, the values of α depend on the range of values of
the scale angle, and the values of β may range up to π/2, depending on the position
of the contact round the scale edge, though the effective negative values of β will be
limited by the condition: F ≥ 0. These factors will reduce the difference in the friction
by causing the net force to be nearer that given by the β contacts than that given by
the α contacts. In principle, it may even cause a reversal of the directional effect, but
the detailed analysis given by Lincoln, considering the three-dimensional view of
fibre contacts, shows that this would not happen.
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