## BIOPHARMACEUTICS MODELING AND SIMULATIONS

## BIOPHARMACEUTICS MODELING AND SIMULATIONS

Theory, Practice, Methods, and Applications

#### **KIYOHIKO SUGANO**

Asahi Kasei Pharma Corp. Shizuoka, Japan



Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

#### Library of Congress Cataloging-in-Publication Data:

Sugano, Kiyohiko.
Biopharmaceutics modeling and simulations : theory, practice, methods, and applications / Kiyohiko Sugano.
p. ; cm.
Includes bibliographical references and index.
ISBN 978-1-118-02868-1 (cloth)
I. Title.
[DNLM: 1. Biopharmaceutics-methods. 2. Computer Simulation. 3. Drug
Compounding-methods. 4. Models, Theoretical. QV 38]

615.7-dc23

2012007296

Printed in the United States of America

ISBN: 9781118028681

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$ 

To Hitomi

## CONTENTS

|   | EFACI<br>T OF / | E<br>ABBREVIATIONS                                                   | xxv<br>xxix |
|---|-----------------|----------------------------------------------------------------------|-------------|
| 1 | INTF            | ODUCTION                                                             | 1           |
|   | 1.1             | An Illustrative Description of Oral Drug Absorption: The Whole Story | 1           |
|   | 1.2             | Three Regimes of Oral Drug Absorption                                | 2           |
|   | 1.3             | Physiology of the Stomach, Small Intestine, and Colon                | 5           |
|   | 1.4             | Drug and API Form                                                    | 6           |
|   |                 | 1.4.1 Undissociable and Free Acid Drugs                              | 6           |
|   |                 | 1.4.2 Free Base Drugs                                                | 6           |
|   |                 | 1.4.3 Salt Form Cases                                                | 6           |
|   | 1.5             | The Concept of Mechanistic Modeling                                  | 7           |
|   |                 | References                                                           | 8           |
| 2 | THE             | ORETICAL FRAMEWORK I: SOLUBILITY                                     | 10          |
|   | 2.1             | Definition of Concentration                                          | 10          |
|   |                 | 2.1.1 Total Concentration                                            | 11          |
|   |                 | 2.1.2 Dissolved Drug Concentration                                   | 11          |
|   |                 | 2.1.3 Effective Concentration                                        | 12          |
|   | 2.2             | Acid-Base and Bile-Micelle-Binding Equilibriums                      | 13          |
|   |                 |                                                                      | vii         |

|   |     | 2.2.1   | Monoprotic Acid and Base                                                            | 14 |
|---|-----|---------|-------------------------------------------------------------------------------------|----|
|   |     | 2.2.2   | Multivalent Cases                                                                   | 16 |
|   |     | 2.2.3   | Bile-Micelle Partitioning                                                           | 17 |
|   |     | 2.2.4   | Modified Henderson-Hasselbalch Equation                                             | 18 |
|   |     | 2.2.5   | $K_{\rm bm}$ from Log $P_{\rm oct}$                                                 | 19 |
|   | 2.3 | Equilib | rium Solubility                                                                     | 19 |
|   |     | 2.3.1   | Definition of Equilibrium Solubility                                                | 19 |
|   |     | 2.3.2   | pH-Solubility Profile (pH-Controlled Region)                                        | 21 |
|   |     | 2.3.3   | Solubility in a Biorelevant Media with Bile<br>Micelles (pH-Controlled Region)      | 23 |
|   |     | 2.3.4   | Estimation of Unbound Fraction from the Solubilities with and without Bile Micelles | 25 |
|   |     | 2.3.5   | Common Ionic Effect                                                                 | 25 |
|   |     | 2.3.6   | Important Conclusion from the pH–Equilibrium Solubility Profile Theory              | 27 |
|   |     | 2.3.7   | Yalkowsky's General Solubility Equation                                             | 27 |
|   |     | 2.3.8   | Solubility Increase by Converting to an Amorphous Form                              | 29 |
|   |     | 2.3.9   | Solubility Increase by Particle Size Reduction (Nanoparticles)                      | 30 |
|   |     | 2.3.10  | Cocrystal                                                                           | 31 |
|   |     | Referen | -                                                                                   | 31 |
| • |     |         |                                                                                     |    |
| 3 | THE | ORETIC  | AL FRAMEWORK II: DISSOLUTION                                                        | 33 |
|   | 3.1 | Diffusi | on Coefficient                                                                      | 34 |
|   |     | 3.1.1   | Monomer                                                                             | 34 |
|   |     | 3.1.2   | Bile Micelles                                                                       | 35 |
|   |     | 3.1.3   | Effective Diffusion Coefficient                                                     | 36 |
|   | 3.2 |         | ation and Particle Growth                                                           | 36 |
|   |     | 3.2.1   | Mass Transfer Equations: Pharmaceutical Science<br>Versus Fluid Dynamics            | 37 |
|   |     | 3.2.2   | Dissolution Equation with a Lump Sum                                                |    |
|   |     |         | Dissolution Rate Coefficient $(k_{diss})$                                           | 38 |
|   |     | 3.2.3   | Particle Size and Surface Area                                                      | 39 |
|   |     |         | 3.2.3.1 Monodispersed Particles                                                     | 39 |
|   |     |         | 3.2.3.2 Polydispersed Particles                                                     | 41 |
|   |     | 3.2.4   | Diffusion Layer Thickness I: Fluid Dynamic Model                                    | 41 |
|   |     |         | 3.2.4.1 Reynolds and Sherwood Numbers                                               | 42 |
|   |     |         | 3.2.4.2 Disk (Levich Equation)                                                      | 45 |
|   |     |         | 3.2.4.3 Tube (Graetz Problem)                                                       | 45 |

|     |          | 3.2.4.4    | Particle Fixed to Space (Ranz–Marshall  |    |
|-----|----------|------------|-----------------------------------------|----|
|     |          |            | Equation)                               | 46 |
|     |          | 3.2.4.5    | Floating Particle                       | 47 |
|     |          | 3.2.4.6    | Nonspherical Particle                   | 49 |
|     |          | 3.2.4.7    | Minimum Agitation Speed for Complete    |    |
|     |          |            | Suspension                              | 51 |
|     |          |            | Other Factors                           | 52 |
|     | 3.2.5    |            | Layer Thickness II: Empirical Models    |    |
|     |          | for Partic |                                         | 52 |
|     | 3.2.6    |            | face pH and Solubility                  | 53 |
| 3.3 | Nuclea   |            |                                         | 56 |
|     | 3.3.1    |            | Description of Nucleation and           |    |
|     |          | 1          | tion Process                            | 56 |
|     | 3.3.2    |            | Nucleation Theory                       | 57 |
|     |          |            | Concept of Classical Nucleation Theory  | 58 |
|     |          |            | Mathematical Expressions                | 58 |
|     | 3.3.3    | 11         | on of a Nucleation Theory for           |    |
|     |          | -          | naceutical Modeling                     | 61 |
|     | Referen  | nces       |                                         | 61 |
|     |          |            |                                         |    |
| THE | ORETIC   | AL FRAM    | IEWORK III: BIOLOGICAL                  |    |
| MEN | IBRANE   | E PERME    | ATION                                   | 64 |
| 4.1 | Overall  | Scheme     |                                         | 64 |
| 4.2 | Genera   | l Permeati | on Equation                             | 66 |
| 4.3 | Permea   | tion Rate  | Constant, Permeation Clearance, and     |    |
|     | Permea   | bility     |                                         | 66 |
| 4.4 | Intestin | al Tube Fl | atness and Permeation Parameters        | 68 |
| 4.5 | Effectiv | ve Concent | tration for Intestinal Membrane         |    |
|     | Permea   | bility     |                                         | 70 |
|     | 4.5.1    |            | Concentration for Unstirred Water Layer |    |
|     |          | Permeation |                                         | 70 |
|     | 4.5.2    |            | Concentration for Epithelial Membrane   |    |
|     |          |            | on: the Free Fraction Theory            | 70 |
| 4.6 |          | -          | ansion by Plicate and Villi             | 71 |
| 4.7 |          |            | Layer Permeability                      | 73 |
|     | 4.7.1    | Basic Ca   |                                         | 73 |
|     | 4.7.2    | Particles  | in the UWL (Particle Drifting Effect)   | 74 |

4

#### 4.8 Epithelial Membrane Permeability (Passive Processes)

4.8.1Passive Transcellular Membrane Permeability: pH<br/>Partition Theory76

|      | 4.8.2   | Intrinsic Passive Transcellular Permeability                                | 77  |
|------|---------|-----------------------------------------------------------------------------|-----|
|      |         | 4.8.2.1 Solubility–Diffusion Model                                          | 77  |
|      |         | 4.8.2.2 Flip-Flop Model                                                     | 79  |
|      |         | 4.8.2.3 Relationship between $P_{\text{trans},0}$ and $\log P_{\text{oct}}$ | 80  |
|      | 4.8.3   | Paracellular Pathway                                                        | 83  |
|      | 4.8.4   | Relationship between log $D_{\rm oct}$ , MW, and Fa%                        | 84  |
| 4.9  | Enteric | Cell Model                                                                  | 84  |
|      | 4.9.1   | Definition of $P_{app}$                                                     | 86  |
|      | 4.9.2   |                                                                             | 87  |
|      | 4.9.3   | First-Order Case 1: No Transporter and Metabolic                            |     |
|      |         | Enzymes                                                                     | 88  |
|      | 4.9.4   | First-Order Case 2: Efflux Transporter in Apical                            |     |
|      |         | Membrane                                                                    | 91  |
|      | 4.9.5   | i iii iiida                                                                 | 95  |
|      | 4.9.6   | Apical Influx Transporter with $K_{\rm m}$ and $V_{\rm max}$                | 100 |
|      | 4.9.7   | UWL and Transporter                                                         | 100 |
|      |         | 4.9.7.1 No Transporter                                                      | 101 |
|      |         | 4.9.7.2 Influx Transporter and UWL                                          | 101 |
|      |         | 4.9.7.3 Efflux Transporter                                                  | 101 |
| 4.10 | Gut Wa  | all Metabolism                                                              | 103 |
|      | 4.10.1  | The $Q_{gut}$ Model                                                         | 104 |
|      | 4.10.2  | Simple Fg Models                                                            | 104 |
|      | 4.10.3  | Theoretical Consideration on Fg                                             | 104 |
|      |         | 4.10.3.1 Derivation of the Fg Models                                        | 105 |
|      |         | 4.10.3.2 Derivation of the Anatomical Fg Model                              | 107 |
|      | 4.10.4  | Interplay between CYP3A4 and P-gp                                           | 108 |
| 4.11 | Hepatic | e Metabolism and Excretion                                                  | 114 |
|      | Referen | nces                                                                        | 115 |
|      |         |                                                                             |     |

#### 5 THEORETICAL FRAMEWORK IV: GASTROINTESTINAL TRANSIT MODELS AND INTEGRATION

| RANSIT MODELS AND INTEGRATION |         |                                         | 122 |
|-------------------------------|---------|-----------------------------------------|-----|
| 5.1                           | GI Trai | nsit Models                             | 122 |
|                               | 5.1.1   | One-Compartment Model/Plug Flow Model   | 122 |
|                               | 5.1.2   | Plug Flow Model                         | 123 |
|                               | 5.1.3   | Three-Compartment Model                 | 124 |
|                               | 5.1.4   | S1I7CX ( $X = 1-4$ ) Compartment Models | 124 |
|                               | 5.1.5   | Convection-Dispersion Model             | 126 |
|                               | 5.1.6   | Tapered Tube Model                      | 126 |

| 5.2 | Time-D  | Dependent Changes of Physiological Parameters                            | 127 |
|-----|---------|--------------------------------------------------------------------------|-----|
|     | 5.2.1   | Gastric Emptying                                                         | 127 |
|     | 5.2.2   | Water Mass Balance                                                       | 128 |
|     | 5.2.3   | Bile Concentration                                                       | 129 |
| 5.3 | Integra | tion 1: Analytical Solutions                                             | 129 |
|     | 5.3.1   | Dissolution Under Sink Condition                                         | 130 |
|     |         | 5.3.1.1 Monodispersed Particles                                          | 130 |
|     |         | 5.3.1.2 Polydispersed Particles                                          | 131 |
|     | 5.3.2   | Fraction of a Dose Absorbed (Fa%)                                        | 132 |
|     | 5.3.3   |                                                                          |     |
|     |         | Case-by-Case Solution                                                    | 133 |
|     |         | 5.3.3.1 Permeability-Limited Case                                        | 134 |
|     |         | 5.3.3.2 Solubility-Permeability-Limited Case                             | 135 |
|     |         | 5.3.3.3 Dissolution-Rate-Limited Case                                    | 137 |
|     | 5.3.4   | Approximate Fa% Analytical Solutions 2:                                  | 107 |
|     |         | Semi-General Equations                                                   | 137 |
|     |         | 5.3.4.1 Sequential First-Order Kinetics of<br>Dissolution and Permeation | 137 |
|     |         | 5.3.4.2 Minimum Fa% Model                                                | 137 |
|     | 5.3.5   |                                                                          | 130 |
|     | 5.5.5   | Equation                                                                 | 139 |
|     |         | 5.3.5.1 Application Range                                                | 140 |
|     |         | 5.3.5.2 Derivation of Fa Number Equation                                 | 140 |
|     |         | 5.3.5.3 Refinement of the Fass Equation                                  | 141 |
|     |         | 5.3.5.4 Advantage of Fa <sub>SS</sub> Equation                           | 146 |
|     |         | 5.3.5.5 Limitation of $Fa_{SS}$ Equation                                 | 146 |
|     | 5.3.6   | - 55 -                                                                   | 146 |
|     | 5.3.7   | Approximate Analytical Solution for Oral PK                              |     |
|     |         | Model                                                                    | 147 |
| 5.4 | Integra | tion 2: Numerical Integration                                            | 147 |
|     | 5.4.1   | Virtual Particle Bins                                                    | 149 |
|     | 5.4.2   | The Mass Balance of Dissolved Drug Amount in                             |     |
|     |         | Each GI Position                                                         | 149 |
|     | 5.4.3   | Controlled Release of Virtual Particle Bin                               | 150 |
| 5.5 | In Vivo | FA From PK Data                                                          | 150 |
|     | 5.5.1   | Absolute Bioavailability and Fa                                          | 151 |
|     | 5.5.2   | Relative Bioavailability Between Solid and                               |     |
|     |         | Solution Formulations                                                    | 151 |
|     | 5.5.3   | Relative Bioavailability Between Low and High                            | 150 |
|     |         | Dose                                                                     | 152 |

|     | 5.5.4                       | 5.4 Convolution and Deconvolution |               | 152 |
|-----|-----------------------------|-----------------------------------|---------------|-----|
|     |                             | 5.5.4.1                           | Convolution   | 153 |
|     |                             | 5.5.4.2                           | Deconvolution | 154 |
| 5.6 | Other Administration Routes |                                   |               | 156 |
|     | 5.6.1                       | Skin                              |               | 156 |
|     | Referen                     | ices                              |               | 157 |
|     |                             |                                   |               |     |

#### 6 PHYSIOLOGY OF GASTROINTESTINAL TRACT AND OTHER ADMINISTRATION SITES IN HUMANS AND ANIMALS

| 6.1 | Morphe  | ology of G  | astrointestinal Tract                           | 160 |
|-----|---------|-------------|-------------------------------------------------|-----|
|     | 6.1.1   | Length a    | nd Tube Radius                                  | 160 |
|     | 6.1.2   | Surface A   | Area                                            | 161 |
|     |         | 6.1.2.1     | Small Intestine                                 | 161 |
|     |         | 6.1.2.2     | Colon                                           | 163 |
|     | 6.1.3   | Degree o    | f Flatness                                      | 164 |
|     |         | 6.1.3.1     | Small Intestine                                 | 164 |
|     |         | 6.1.3.2     | Colon                                           | 164 |
|     | 6.1.4   | Epithelia   | l Cells                                         | 165 |
|     |         | 6.1.4.1     | Apical and Basolateral Lipid Bilayer            |     |
|     |         |             | Membranes                                       | 165 |
|     |         | 6.1.4.2     | Tight Junction                                  | 168 |
|     |         | 6.1.4.3     | Mucous Layer                                    | 168 |
| 6.2 | Movem   | nent of the | Gastrointestinal Tract                          | 170 |
|     | 6.2.1   | Transit T   | ime                                             | 170 |
|     |         | 6.2.1.1     | Gastric Emptying Time (GET)                     | 170 |
|     |         | 6.2.1.2     | Small Intestinal Transit Time                   | 170 |
|     |         | 6.2.1.3     | Colon Transit Time                              | 171 |
|     | 6.2.2   | Migrating   | g Motor Complex                                 | 171 |
|     | 6.2.3   | Agitation   |                                                 | 173 |
|     |         | 6.2.3.1     | Mixing Pattern                                  | 173 |
|     |         | 6.2.3.2     | Agitation Strength                              | 175 |
|     |         | 6.2.3.3     | Unstirred Water Layer on the Intestinal<br>Wall | 176 |
| 6.3 | Fluid C | Character o | f the Gastrointestinal Tract                    | 178 |
|     | 6.3.1   | Volume      |                                                 | 178 |
|     |         | 6.3.1.1     | Stomach                                         | 178 |
|     |         | 6.3.1.2     | Small Intestine                                 | 178 |
|     |         | 6.3.1.3     | Colon                                           | 179 |

|     | 6.3.2     | Bulk Fluic  | l pH and Buffer Concentration                                | 179               |
|-----|-----------|-------------|--------------------------------------------------------------|-------------------|
|     |           | 6.3.2.1     | Stomach                                                      | 181               |
|     |           | 6.3.2.2     | Small Intestine                                              | 181               |
|     |           | 6.3.2.3     | Colon                                                        | 181               |
|     | 6.3.3     | Microclim   | ate pH                                                       | 181               |
|     |           | 6.3.3.1     | Small Intestine                                              | 181               |
|     |           | 6.3.3.2     | Colon                                                        | 182               |
|     | 6.3.4     | Bile Mice   | lles                                                         | 182               |
|     |           | 6.3.4.1     | Stomach                                                      | 183               |
|     |           | 6.3.4.2     | Small Intestine                                              | 183               |
|     |           | 6.3.4.3     | Colon                                                        | 185               |
|     | 6.3.5     | Enzymes a   | and Bacteria                                                 | 185               |
|     |           | •           | Osmolality, and Surface Tension                              | 185               |
| 6.4 |           |             | Drug-Metabolizing Enzymes in the                             |                   |
|     | Intestin  |             |                                                              | 186               |
|     | 6.4.1     | -           | e Drug Transporters                                          | 186               |
|     |           | 6.4.1.1     |                                                              | 186               |
|     |           | 6.4.1.2     |                                                              | 186               |
|     | 6.4.2     |             | ng Transporters                                              | 186               |
|     |           | 6.4.2.1     |                                                              | 186               |
|     | 6.4.3     | e           | abolizing Enzymes                                            | 186               |
|     |           | 6.4.3.1     |                                                              | 186               |
|     |           |             | Glucuronyl Transferase and                                   | 100               |
| 6.5 | Intection |             | <i>Sulfotransferase</i><br>r Blood Flow                      | <i>188</i><br>188 |
| 0.5 | 6.5.1     |             |                                                              | 188               |
|     |           | 1           | n Sites Connected to Portal Vein<br>ood Flow ( $Q_{villi}$ ) | 188               |
|     | 6.5.2     |             | 1                                                            | 188               |
| 6.6 |           | -           | lood Flow $(Q_h)$<br>l to Enterohepatic Recirculation        | 189               |
| 0.0 | -         | Bile Secre  | -                                                            | 189               |
|     | 6.6.2     |             | asfer into/from the Hepatocyte                               | 190               |
|     | 0.0.2     |             | Sinusoidal Membrane (Blood to                                | 170               |
|     |           |             | Hepatocyte)                                                  | 190               |
|     |           |             | Canalicular Membrane (Hepatocyte to                          |                   |
|     |           |             | Bile Duct)                                                   | 191               |
| 6.7 | Nasal     |             |                                                              | 191               |
| 6.8 | Pulmon    | ary         |                                                              | 193               |
|     | 6.8.1     | Fluid in th | ne Lung                                                      | 193               |
|     | 6.8.2     |             | ry Clearance                                                 | 193               |
|     | 6.8.3     | Absorption  | n into the Circulation                                       | 194               |

| 6.9 | Skin       | 194 |
|-----|------------|-----|
|     | References | 196 |

| DRUG PARAMETERS |                                |              |                                         | 206 |  |
|-----------------|--------------------------------|--------------|-----------------------------------------|-----|--|
| 7.1             | Dissociation Constant $(pK_a)$ |              |                                         |     |  |
|                 | 7.1.1                          | pH Titrat    | ion                                     | 207 |  |
|                 | 7.1.2                          | pH-UV        | Shift                                   | 207 |  |
|                 | 7.1.3                          | Capillary    | Electrophoresis                         | 207 |  |
|                 | 7.1.4                          | pH-Solu      | bility Profile                          | 208 |  |
|                 | 7.1.5                          | Calculati    | on from Chemical Structure              | 208 |  |
|                 | 7.1.6                          | Recomm       | endation                                | 208 |  |
| 7.2             | Octano                         | l-Water P    | artition Coefficient                    | 208 |  |
|                 | 7.2.1                          | Shake Fl     | ask Method                              | 209 |  |
|                 | 7.2.2                          | HPLC M       | ethod                                   | 210 |  |
|                 | 7.2.3                          | Two-Pha      | se Titration Method                     | 210 |  |
|                 | 7.2.4                          | PAMPA-       | Based Method                            | 210 |  |
|                 | 7.2.5                          | In Silico    | Method                                  | 210 |  |
|                 | 7.2.6                          | Recomm       | endation                                | 210 |  |
| 7.3             | Bile M                         | icelle Parti | tion Coefficient $(K_{\rm bm})$         | 211 |  |
|                 | 7.3.1                          | Calculati    | on from Solubility in Biorelevant Media | 211 |  |
|                 | 7.3.2                          | Spectroso    | copic Method                            | 212 |  |
|                 | 7.3.3                          | Recomm       | endations                               | 212 |  |
| 7.4             |                                | e Size and   | -                                       | 212 |  |
|                 |                                | Microsco     | -                                       | 213 |  |
|                 |                                | Laser Di     |                                         | 215 |  |
|                 | 7.4.3                          | •            | Laser Scattering (DLS)                  | 215 |  |
|                 | 7.4.4                          |              | endations                               | 215 |  |
| 7.5             | Solid F                        |              |                                         | 215 |  |
|                 | 7.5.1                          | Nomencl      |                                         | 215 |  |
|                 |                                |              | Crystalline and Amorphous               | 215 |  |
|                 |                                |              | Salts, Cocrystals, and Solvates         | 216 |  |
|                 |                                |              | Hydrate                                 | 217 |  |
|                 | 7.5.2                          | •            | Polymorph                               | 217 |  |
|                 |                                | 7.5.2.1      |                                         | 217 |  |
|                 |                                |              | Kinetic Resolution versus Stable Form   | 217 |  |
|                 |                                | 7.5.2.3      |                                         | 210 |  |
|                 |                                | 7524         | Stable Forms                            | 218 |  |
|                 |                                | 1.3.2.4      | Enantiotropy                            | 218 |  |

|     | 7.5.3   | Solid For   | rm Characterization                         | 219 |
|-----|---------|-------------|---------------------------------------------|-----|
|     |         | 7.5.3.1     | Polarized Light Microscopy (PLM)            | 219 |
|     |         | 7.5.3.2     | Powder X-Ray Diffraction (PXRD)             | 219 |
|     |         | 7.5.3.3     | Differential Scanning Calorimeter (DSC)     |     |
|     |         |             | and Thermal Gravity (TG)                    | 220 |
|     |         | 7.5.3.4     | High Throughput Solid Form Screening        | 221 |
|     | 7.5.4   | Wettabili   | ty and Surface Free Energy                  | 222 |
|     | 7.5.5   | True Den    | isity                                       | 222 |
| 7.6 | Solubil | ity         |                                             | 223 |
|     | 7.6.1   | Terminol    | ogy                                         | 223 |
|     |         | 7.6.1.1     | Definition of Solubility                    | 223 |
|     |         | 7.6.1.2     | Intrinsic Solubility                        | 223 |
|     |         | 7.6.1.3     | Solubility in Media                         | 223 |
|     |         | 7.6.1.4     | Initial pH and Final pH                     | 224 |
|     |         | 7.6.1.5     | Supersaturable API                          | 224 |
|     |         | 7.6.1.6     | Critical Supersaturation Concentration      |     |
|     |         |             | and Induction Time                          | 224 |
|     |         | 7.6.1.7     | Dissolution Rate and Dissolution Profile    | 225 |
|     | 7.6.2   | Media       |                                             | 225 |
|     |         | 7.6.2.1     | Artificial Stomach Fluids                   | 225 |
|     |         | 7.6.2.2     | Artificial Small Intestinal Fluids          | 225 |
|     | 7.6.3   | Solubility  | / Measurement                               | 225 |
|     |         | 7.6.3.1     | Standard Shake Flask Method                 | 225 |
|     |         | 7.6.3.2     | Measurement from DMSO Sample Stock Solution | 227 |
|     |         | 7.6.3.3     | Solid Surface Solubility                    | 228 |
|     |         | 7.6.3.4     | Method for Nanoparticles                    | 228 |
|     | 7.6.4   | Recomm      | endation                                    | 228 |
|     |         | 7.6.4.1     | Early Drug Discovery Stage (HTS to          |     |
|     |         |             | Early Lead Optimization)                    | 229 |
|     |         | 7.6.4.2     | Late Lead Optimization Stage                | 229 |
|     |         | 7.6.4.3     | Transition Stage between Discovery and      |     |
|     |         |             | Development                                 | 229 |
| 7.7 | Dissolu | ition Rate/ | Release Rate                                | 230 |
|     | 7.7.1   | Intrinsic   | Dissolution Rate                            | 230 |
|     | 7.7.2   | Paddle M    | Iethod                                      | 230 |
|     |         | 7.7.2.1     | Apparatus                                   | 231 |
|     |         | 7.7.2.2     | Fluid Condition                             | 231 |
|     |         | 7.7.2.3     | Agitation                                   | 232 |

|      | 7.7.3   | Flow-Thr   | ough Method                                                            | 233 |
|------|---------|------------|------------------------------------------------------------------------|-----|
|      | 7.7.4   | Multicom   | partment Dissolution System                                            | 233 |
|      | 7.7.5   | Dissolutio | on Permeation System                                                   | 233 |
|      | 7.7.6   | Recomme    | endation                                                               | 235 |
| 7.8  | Precipi | tation     |                                                                        | 235 |
|      | 7.8.1   | Kinetic p  | H Titration Method                                                     | 235 |
|      | 7.8.2   | Serial Dil | ution Method                                                           | 236 |
|      | 7.8.3   | Two-Cha    | mber Transfer System                                                   | 236 |
|      | 7.8.4   | Nonsink    | Dissolution Test                                                       | 236 |
| 7.9  | Epithel | ial Membra | ane Permeability                                                       | 240 |
|      | 7.9.1   | Back-Esti  | mation from Fa%                                                        | 241 |
|      | 7.9.2   | In Situ Si | ngle-Pass Intestinal Perfusion                                         | 241 |
|      | 7.9.3   | Cultured   | Cell Lines (Caco-2, MDCK, etc.)                                        | 243 |
|      | 7.9.4   | PAMPA      |                                                                        | 244 |
|      | 7.9.5   |            | n of $P_{\text{trans},0}$ from Experimental Apparent<br>e Permeability | 246 |
|      | 7.9.6   |            | n of $P_{\text{trans},0}$ from Experimental log $P_{\text{oct}}$       | 247 |
|      | 7.9.7   |            | tic Investigation                                                      | 247 |
|      | 7.9.8   |            | n of Membrane Permeation Assays                                        | 247 |
|      |         |            | UWL Adjacent to the Membrane                                           | 249 |
|      |         |            | Membrane Binding                                                       | 250 |
|      |         |            | Low Solubility                                                         | 250 |
|      |         |            | Differences in Paracellular Pathway                                    | 251 |
|      |         |            | Laboratory to Laboratory Variation                                     | 251 |
|      |         | 7.9.8.6    |                                                                        |     |
|      |         |            | Carrier-Mediated Membrane Transport                                    | 251 |
|      | 7.9.9   | Recomme    | endation for $P_{ep}$ and $P_{eff}$ Estimation                         | 251 |
|      |         | 7.9.9.1    | Hydrophilic Drugs                                                      | 251 |
|      |         | 7.9.9.2    | Lipophilic Drugs                                                       | 252 |
|      |         | 7.9.9.3    | Drugs with Medium Lipophilicity                                        | 252 |
| 7.10 | In Vivo | Experimen  | nts                                                                    | 252 |
|      | 7.10.1  | P.O        |                                                                        | 252 |
|      | 7.10.2  | I.V        |                                                                        | 253 |
|      | 7.10.3  | Animal S   | pecies                                                                 | 253 |
|      | 7.10.4  | Analysis   |                                                                        | 254 |
|      | Referen | nces       |                                                                        | 254 |
| VALI | DATION  |            | HANISTIC MODELS                                                        | 266 |

| 8.1 Concerns Related to Model Validation Using <i>In Vivo</i> Data 26 | 8.1 | Concerns Related | to Model | Validation I | Using In | <i>Vivo</i> Data | 267 |
|-----------------------------------------------------------------------|-----|------------------|----------|--------------|----------|------------------|-----|
|-----------------------------------------------------------------------|-----|------------------|----------|--------------|----------|------------------|-----|

| 8.2 | 0       | y for Transparent and Robust Validation of                                             |     |  |  |  |
|-----|---------|----------------------------------------------------------------------------------------|-----|--|--|--|
|     | Biopha  | Biopharmaceutical Modeling                                                             |     |  |  |  |
| 8.3 | Predict | ion Steps                                                                              |     |  |  |  |
| 8.4 | Validat | ion for Permeability-Limited Cases                                                     | 279 |  |  |  |
|     | 8.4.1   | Correlation Between Fa% and $P_{\rm eff}$ Data for                                     |     |  |  |  |
|     |         | Humans (Epithelial Membrane                                                            |     |  |  |  |
|     |         | Permeability-Limited Cases PL-E)                                                       | 279 |  |  |  |
|     | 8.4.2   | Correlation Between <i>In Vitro</i> Permeability and $P_{eff}$ and/or Fa% (PL-E Cases) | 283 |  |  |  |
|     |         | 8.4.2.1 Caco-2                                                                         | 283 |  |  |  |
|     |         | 8.4.2.2 PAMPA                                                                          | 285 |  |  |  |
|     |         | 8.4.2.3 Experimental log $P_{oct}$ and $pK_a$                                          | 285 |  |  |  |
|     | 8.4.3   |                                                                                        | 287 |  |  |  |
|     | 8.4.4   | Chemical Structure to $P_{\rm eff}$ , Fa%, and Caco-2                                  |     |  |  |  |
|     |         | Permeability                                                                           | 288 |  |  |  |
| 8.5 |         | ion for Dissolution-Rate and                                                           |     |  |  |  |
|     |         | ity-Permeability-Limited Cases (without the                                            | 200 |  |  |  |
|     |         | h Effect)                                                                              | 290 |  |  |  |
|     |         | Fa% Prediction Using <i>In Vitro</i> Dissolution Data                                  | 290 |  |  |  |
|     | 8.5.2   | Fa% Prediction Using <i>In Vitro</i> Solubility and Permeability Data                  | 292 |  |  |  |
| 8.6 | Validat | ion for Dissolution-Rate and                                                           | 2)2 |  |  |  |
| 0.0 |         | ity-Permeability-Limited Cases (with the Stomach                                       |     |  |  |  |
|     | Effect) | •                                                                                      | 305 |  |  |  |
|     | 8.6.1   | Difference Between Free Base and Salts                                                 | 305 |  |  |  |
|     | 8.6.2   | Simulation Model for Free Base                                                         | 305 |  |  |  |
|     | 8.6.3   | Simulation Results                                                                     | 307 |  |  |  |
| 8.7 | Salts   |                                                                                        | 307 |  |  |  |
| 8.8 | Reliabi | lity of Biopharmaceutical Modeling                                                     | 311 |  |  |  |
|     | Referen | nces                                                                                   | 311 |  |  |  |
|     |         |                                                                                        |     |  |  |  |
|     |         | LENCE AND BIOPHARMACEUTICAL                                                            |     |  |  |  |
| CLA | SSIFICA | TION SYSTEM                                                                            | 322 |  |  |  |
| 9.1 | Bioequ  | ivalence                                                                               | 322 |  |  |  |
| 9.2 | The Hi  | story of BCS                                                                           | 324 |  |  |  |
| 9.3 | Regula  | tory Biowaiver Scheme and BCS                                                          | 326 |  |  |  |
|     | 9.3.1   | Elucidation of BCS Criteria in Regulatory                                              |     |  |  |  |
|     |         | Biowaiver Scheme                                                                       | 327 |  |  |  |
|     |         | 9.3.1.1 Congruent Condition of Bioequivalence                                          | 328 |  |  |  |
|     |         | 9.3.1.2 Equivalence of Dose Number (Do)                                                | 329 |  |  |  |

|    |      |          | 9.3.1.3 Eqi                    | vivalence of Permeation Number (Pn)                                       | 329 |
|----|------|----------|--------------------------------|---------------------------------------------------------------------------|-----|
|    |      |          | 9.3.1.4 Eqi                    | uivalence of Dissolution Number (Dn)                                      | 329 |
|    |      | 9.3.2    | Possible Exter                 | nsion of the Biowaiver Scheme                                             | 331 |
|    |      |          | 9.3.2.1 Dos                    | se Number Criteria                                                        | 331 |
|    |      |          | 9.3.2.2 Per                    | meability Criteria                                                        | 332 |
|    |      | 9.3.3    | Another Inter                  | pretation of the Theory                                                   | 332 |
|    |      |          | 9.3.3.1 And<br>Test            | other Assumption about Dissolution                                        | 332 |
|    |      |          |                                | essment of Suitability of Dissolution<br>t Based on Rate-Limiting Process | 333 |
|    |      | 9.3.4    | Validation of Data             | Biowaiver Scheme by Clinical BE                                           | 333 |
|    |      | 9.3.5    | Summary for                    | Regulatory BCS Biowaiver Scheme                                           | 334 |
|    | 9.4  | Explora  | tory BCS                       |                                                                           | 335 |
|    | 9.5  | In Vitro | -In Vivo Corre                 | lation                                                                    | 335 |
|    |      | 9.5.1    | Levels of IVI                  | VC                                                                        | 335 |
|    |      | 9.5.2    | Judgment of S<br>(f2 Function) | Similarity Between Two Formulations                                       | 336 |
|    |      | 9.5.3    |                                | Relationship Between f2 and                                               |     |
|    |      |          | Bioequivalenc                  |                                                                           | 336 |
|    |      | 9.5.4    | Point-to-Point                 | IVIVC                                                                     | 337 |
|    |      | Referen  | ces                            |                                                                           | 338 |
| 10 | DOS  | E AND I  | PARTICLE SI                    | ZE DEPENDENCY                                                             | 340 |
|    | 10.1 | Definiti | ons and Cause                  | s of Dose Nonproportionality                                              | 340 |
|    | 10.2 | Estimat  | ion of the Dos                 | e and Particle Size Effects                                               | 341 |
|    |      | 10.2.1   | Permeability-l                 | Limited Cases (PL)                                                        | 341 |
|    |      | 10.2.2   | Dissolution-R                  | ate-Limited (DRL) Cases                                                   | 341 |
|    |      | 10.2.3   |                                | ithelial Membrane Permeability                                            |     |
|    |      |          | Limited (SL-H                  |                                                                           | 342 |
|    |      | 10.2.4   | •                              | /L-Permeability-Limited Cases                                             | 344 |
|    | 10.3 |          | of Transporters                |                                                                           | 344 |
|    | 10.4 | •        | s of <i>In Vivo</i> Da         | ita                                                                       | 345 |
|    |      | Referen  | ces                            |                                                                           | 346 |
| 11 | ENA  | BLING F  | ORMULATIO                      | INS                                                                       | 347 |
|    | 11.1 | Salts ar | d Cocrystals: S                | Supersaturating API                                                       | 347 |
|    |      | 11.1.1   | •                              | Dral Absorption of Salt                                                   | 349 |
|    |      | 11.1.2   | Examples                       | -                                                                         | 350 |
|    |      |          |                                |                                                                           |     |

|      |                                   | 11.1.2.1                             | Example 1: Salt of Basic Drugs                   | 350 |  |
|------|-----------------------------------|--------------------------------------|--------------------------------------------------|-----|--|
|      |                                   | 11.1.2.2                             | Example 2: Salt of Acid Drugs                    | 352 |  |
|      |                                   | 11.1.2.3                             | Example 3: Other Supersaturable API              |     |  |
|      |                                   |                                      | Forms                                            | 353 |  |
|      | 11.1.3                            | Suitable                             | Drug for Salts                                   | 353 |  |
|      |                                   | 11.1.3.1                             | pK <sub>a</sub> Range                            | 353 |  |
|      |                                   | 11.1.3.2                             | Supersaturability of Drugs                       | 355 |  |
|      | 11.1.4                            |                                      | naceutical Modeling of Supersaturable            |     |  |
|      |                                   | API Forr                             |                                                  | 357 |  |
| 11.2 |                                   | illed API                            |                                                  | 358 |  |
| 11.3 |                                   |                                      | Drug Delivery Systems                            |     |  |
|      |                                   |                                      | n Solubilization)                                | 360 |  |
| 11.4 |                                   | Dispersion                           |                                                  | 363 |  |
| 11.5 | -                                 |                                      | ormulations                                      | 364 |  |
| 11.6 |                                   | -                                    | ase Solubility                                   | 365 |  |
| 11.7 | Prodrugs to Increase Permeability |                                      |                                                  | 365 |  |
|      | 11.7.1                            | Increasin                            | g Passive Permeation                             | 366 |  |
|      | 11.7.2                            | Hitchhik                             | ing the Carrier                                  | 366 |  |
| 11.8 | Controlled Release                |                                      |                                                  |     |  |
|      | 11.8.1                            | Fundame                              | entals of CR Modeling                            | 367 |  |
|      | 11.8.2                            | Simple C                             | Convolution Method                               | 368 |  |
|      | 11.8.3                            | Advanced Controlled-Release Modeling |                                                  |     |  |
|      | 11.8.4                            | Controlled-Release Function          |                                                  |     |  |
|      | 11.8.5                            | Sustained Release                    |                                                  |     |  |
|      |                                   | 11.8.5.1                             | Objectives to Develop a                          |     |  |
|      |                                   |                                      | Sustained-Release Formulation                    | 368 |  |
|      |                                   | 11.8.5.2                             | Suitable Drug Character for Sustained<br>Release | 369 |  |
|      |                                   | 11.8.5.3                             | Gastroretentive Formulation                      | 369 |  |
|      | 11.8.6                            | Triggered                            | d Release                                        | 369 |  |
|      |                                   |                                      | Time-Triggered Release                           | 369 |  |
|      |                                   |                                      | pH-Triggered Release                             | 369 |  |
|      |                                   |                                      | Position-Triggered Release                       | 371 |  |
| 11.9 | Comm                              |                                      | with Therapeutic Project Team                    | 371 |  |
|      | Referen                           |                                      | <b>I</b>                                         | 373 |  |
|      |                                   |                                      |                                                  |     |  |

# 12FOOD EFFECT37912.1Physiological Changes Caused by Food37912.1.1Food Component380

|      | 12.1.2                                           | Fruit Juic | e Components                                | 380         |  |
|------|--------------------------------------------------|------------|---------------------------------------------|-------------|--|
|      | 12.1.3                                           | Alcohol    |                                             | 382         |  |
| 12.2 | Types of Food Effects and Relevant Parameters in |            |                                             |             |  |
|      |                                                  |            | l Modeling                                  | 382         |  |
|      | 12.2.1                                           | Delay in   | $T_{\rm max}$ and Decrease in $C_{\rm max}$ | 382         |  |
|      | 12.2.2                                           | Positive I | Food Effect                                 | 383         |  |
|      |                                                  | 12.2.2.1   | Bile Micelle Solubilization                 | 383         |  |
|      |                                                  | 12.2.2.2   | Increase in Hepatic Blood Flow              | 388         |  |
|      |                                                  | 12.2.2.3   | Increase in Intestinal Blood Flow           | 388         |  |
|      |                                                  | 12.2.2.4   | Inhibition of Efflux Transporter and Gut    |             |  |
|      |                                                  |            | Wall Metabolism                             | 389         |  |
|      |                                                  | 12.2.2.5   | Desaturation of Influx Transporter          | 391         |  |
|      | 12.2.3                                           | Negative   | Food Effect                                 | 391         |  |
|      |                                                  | 12.2.3.1   | Bile Micelle Binding/Food Component         |             |  |
|      |                                                  |            | Binding                                     | 391         |  |
|      |                                                  | 12.2.3.2   | Inhibition of Uptake Transporter            | 392         |  |
|      |                                                  | 12.2.3.3   | Desaturation of First-Pass Metabolism       |             |  |
|      |                                                  |            | and Efflux Transport                        | 394         |  |
|      |                                                  | 12.2.3.4   | Viscosity                                   | <i>39</i> 8 |  |
|      |                                                  | 12.2.3.5   | pH Change in the Stomach                    | 398         |  |
|      |                                                  | 12.2.3.6   | pH Change in the Small Intestine            | <i>39</i> 8 |  |
| 12.3 | Effect                                           | of Food Ty | pe                                          | 398         |  |
| 12.4 | Biopha                                           | rmaceutica | l Modeling of Food Effect                   | 401         |  |
|      | 12.4.1                                           | Simple F   | lowchart and Semiquantitative Prediction    | 401         |  |
|      | 12.4.2                                           | More Con   | mplicated Cases                             | 402         |  |
|      | References                                       |            |                                             | 403         |  |

#### 13 BIOPHARMACEUTICAL MODELING FOR MISCELLANEOUS CASES

| 13.1 | Stomac   | ch pH Effect on Solubility and Dissolution Rate | 412 |
|------|----------|-------------------------------------------------|-----|
|      | 13.1.1   | Free Bases                                      | 413 |
|      | 13.1.2   | Free Acids and Undissociable Drugs              | 413 |
|      | 13.1.3   | Salts                                           | 413 |
|      | 13.1.4   | Chemical and Enzymatic Degradation in the       |     |
|      |          | Stomach and Intestine                           | 413 |
| 13.2 | Intestin | al First-Pass Metabolism                        | 414 |
| 13.3 | Transit  | Time Effect                                     | 415 |
|      | 13.3.1   | Gastric Emptying Time                           | 415 |
|      | 13.3.2   | Intestinal Transit Time                         | 415 |
|      |          |                                                 |     |

|    | 13.4 | Other C  | Chemical a        | nd Physical Drug-Drug Interactions                      | 415 |
|----|------|----------|-------------------|---------------------------------------------------------|-----|
|    |      | 13.4.1   | Metal Ior         | 15                                                      | 415 |
|    |      | 13.4.2   | Cationic          | Resins                                                  | 416 |
|    | 13.5 | Species  | Differenc         | e                                                       | 417 |
|    |      | 13.5.1   | Permeabi          | lity                                                    | 417 |
|    |      | 13.5.2   | Solubility        | v/Dissolution                                           | 418 |
|    |      | 13.5.3   | First-Pass        | s Metabolism                                            | 419 |
|    | 13.6 | Validati | ion of GI S       | Site-Specific Absorption Models                         | 421 |
|    |      | 13.6.1   | Stomach           |                                                         | 421 |
|    |      | 13.6.2   | Colon             |                                                         | 422 |
|    |      | 13.6.3   | Regional<br>Myth? | Difference in the Small Intestine: Fact or              | 422 |
|    |      |          | 13.6.3.1          | Transporter                                             | 422 |
|    |      |          | 13.6.3.2          | Bile-Micelle Binding and Bimodal Peak                   |     |
|    |      |          |                   | Phenomena                                               | 422 |
|    |      | Referen  | nces              |                                                         | 426 |
| 14 | INTE | STINAL   | . TRANSF          | PORTERS                                                 | 430 |
|    | 14.1 | Apical   | Influx Trai       | nsporters                                               | 431 |
|    |      | 14.1.1   | Case Exa          | mple 1: Antibiotics                                     | 431 |
|    |      | 14.1.2   | Case Exa          | mple 2: Valacyclovir                                    | 433 |
|    |      | 14.1.3   | Case Exa          | mple: Gabapentin                                        | 434 |
|    | 14.2 | Efflux 7 | Transporter       | rs                                                      | 435 |
|    |      | 14.2.1   | Effect of         | P-gp                                                    | 435 |
|    |      | 14.2.2   | Drug-Dr           | ug Interaction (DDI) via P-gp                           | 437 |
|    | 14.3 | Dual Su  | ubstrates         |                                                         | 438 |
|    |      | 14.3.1   | Talinolol         |                                                         | 438 |
|    |      | 14.3.2   | Fexofena          | dine                                                    | 441 |
|    | 14.4 | Difficul | lties in Sin      | nulating Carrier-Mediated Transport                     | 442 |
|    |      | 14.4.1   | Absorptiv         | ve Transporters                                         | 442 |
|    |      |          | 14.4.1.1          | Discrepancies Between In Vitro and In Vivo $K_m$ Values | 442 |
|    |      |          | 14412             | Contribution of Other Pathways                          | 443 |
|    |      | 14.4.2   |                   | ansporters                                              | 443 |
|    | 14.5 | Summa    |                   |                                                         | 445 |
|    | 11.5 | Referen  | •                 |                                                         | 446 |
| 15 | STR/ | ATEGY    | IN DRUG           | DISCOVERY AND DEVELOPMENT                               | 452 |
|    | 15.1 | Library  | Design            |                                                         | 452 |

|    | 15.2  | Lead Optimization                          | 453 |
|----|-------|--------------------------------------------|-----|
|    | 15.3  | Compound Selection                         | 455 |
|    | 15.4  | API Form Selection                         | 455 |
|    | 15.5  | Formulation Selection                      | 455 |
|    | 15.6  | Strategy to Predict Human Fa%              | 456 |
|    |       | References                                 | 457 |
| 16 | -     | TEMOLOGY OF BIOPHARMACEUTICAL MODELING     |     |
|    | AND   | GOOD SIMULATION PRACTICE                   | 459 |
|    | 16.1  | Can Simulation be so Perfect?              | 459 |
|    | 16.2  | Parameter Fitting                          | 460 |
|    | 16.3  | Good Simulation Practice                   | 461 |
|    |       | 16.3.1 Completeness                        | 461 |
|    |       | 16.3.2 Comprehensiveness                   | 462 |
|    |       | References                                 | 463 |
| AP | PENDI | IX A GENERAL TERMINOLOGY                   | 464 |
|    | A.1   | Biopharmaceutic                            | 464 |
|    | A.2   | Bioavailability (BA% or F)                 | 464 |
|    | A.3   | Drug Disposition                           | 465 |
|    | A.4   | Fraction of a Dose Absorbed (Fa)           | 465 |
|    | A.5   | Modeling/Simulation/In Silico              | 465 |
|    | A.6   | Active Pharmaceutical Ingredient (API)     | 465 |
|    | A.7   | Drug Product                               | 465 |
|    | A.8   | Lipophilicity                              | 465 |
|    | A.9   | Acid and Base                              | 466 |
|    | A.10  | Solubility                                 | 466 |
|    | A.11  | Molecular Weight (MW)                      | 466 |
|    | A.12  | Permeability of a Drug                     | 466 |
| AP | PENDI | IX B FLUID DYNAMICS                        | 468 |
|    | B.1   | Navier-Stokes Equation and Reynolds Number | 468 |
|    | B.2   | Boundary Layer Approximation               | 469 |
|    | B.3   | The Boundary Layer and Mass Transfer       | 470 |
|    | B.4   | The Thickness of the Boundary Layer        | 470 |
|    |       | B.4.1 99% of Main Flow Speed               | 471 |
|    |       | B.4.2 Displacement Thickness               | 471 |
|    |       | B.4.3 Momentum Thickness                   | 471 |
|    | B.5   | Sherwood Number                            | 471 |

#### - 1

| INDEX |                              | 477 |
|-------|------------------------------|-----|
|       | References                   | 476 |
| B.8   | Computational Fluid Dynamics | 474 |
| B.7   | Formation of Eddies          | 474 |
| B.6   | Turbulence                   | 473 |
|       |                              |     |

### PREFACE

"Science is built of facts the way a house is built of bricks; but an accumulation of facts is no more science than a pile of bricks is a house."

-Henry Poincare

The aim of this book is to provide a systematic understanding of biopharmaceutical modeling. Probably, this is the first book challenging this difficult task.

Biopharmaceutical modeling demands a wide range of knowledge. We need to understand the physical theories, the physiology of the gastrointestinal tract, and the meaning of drug parameters. This book covers the wide range of scientific topics required to appropriately perform and evaluate biopharmaceutical modeling. In this book, oral absorption of a drug is mainly discussed. However, the same scientific framework is applicable for other administration routes such as nasal and pulmonary administrations.

Oral absorption of a drug is a complex process that consists of dissolution, precipitation, intestinal wall permeation, and gastrointestinal transit. In addition, drug metabolism can also occur in the intestinal wall and the liver before drug molecules enter into systemic circulation.

Historically, a reductionist approach has been taken to understand the oral absorption of a drug. Each process of oral absorption was reduced to its subprocesses up to the molecular level. However, understanding each piece of the puzzle is insufficient in understanding the whole picture of oral absorption. It is critically important to reconstruct the whole process of oral absorption and understand the interrelationship between each piece that comprises oral absorption of a drug.

In the field of biology, computational systems biology has been emerging since the millennium [1]. In systems biology, the interactions between biological molecules are investigated in both reductionist and constitutive approaches to

understand the quantitative relationship between a disease state and each molecular process. In this book, a similar approach is applied for the oral absorption of a drug.

In the first section of this book, the whole picture of oral absorption is discussed. As the central dogma of oral drug absorption, the interplay of dissolution rate, solubility, and permeability of a drug is discussed in a comprehensive manner without using mathematics. Even though the discussion in the first section is only a conceptual and qualitative outline, correct understanding of this central dogma will be of great benefit for drug discovery and development. The central dogma of oral drug absorption is the basis of the biopharmaceutical classification system (BCS), which is widely used in drug discovery and development [2].

We then move forward to each theory that comprises the entire oral absorption model. In this book, the entire mathematical framework is called the "gastrointestinal unified theoretical framework (GUT framework)." The concept of "concentration" is first discussed in detail, as it is critically important for understanding biopharmaceutical modeling. Then, theories of solubility, dissolution, precipitation, membrane permeation, and drug metabolisms are discussed. Each theory is described based on the unified definition of drug concentration and then incorporated into the GUT framework.

We then move forward to the physiological and drug property data that is used for biopharmaceutical modeling. The quality of biopharmaceutical modeling heavily relies on the quality of input data. The input data are roughly categorized into drug property and physiological parameters. These data are reviewed from the viewpoint of their use in biopharmaceutical modeling.

Before moving on to the discussions about practical applications of biopharmaceutical modeling in drug research, the validity of biopharmaceutical modeling is critically reviewed. A step-by-step approach has been taken to validate the biopharmaceutical modeling employing Occam's razor as a leading principle.

As the applications of biopharmaceutical modeling in drug research, biopharmaceutical classification system, dose/particle size dependency prediction, selection of solid form and enabling formulation, food effect prediction, etc. are then discussed.

Next, the strategy to use biopharmaceutical modeling in drug research and regulatory application is discussed. Introduction of good simulation practice for biopharmaceutical modeling would be an emergent issue for regulatory application.

Many figures and tables are provided to make it easy to understand biopharmaceutical modeling. In addition, more than 900 references are cited. I hope that readers will enjoy reading this book and that this book will be a helpful reference for biopharmaceutical modeling.

I would like to thank Mr. Jonathan Rose of John Wiley & Sons, Inc. for giving me this opportunity to write a book about biopharmaceutical modeling.

I would like to thank Dr. Takashi Mano and Dr. Ravi Shanker for carefully reading my manuscript and giving me valuable advice. They also supported the investigation of biopharmaceutical modeling at Pfizer. I also thank Dr. Brian Henry, Dr. Mark McAllister, and Ms. Nicola Clear for their kind support at Pfizer. The scientific discussion with the Pfizer biopharmaceutics group members improved my understanding of this subject. The suggestions from Prof. Steve Sutton, Dr. Kazuko Sagawa, and Ms. Kelly Jones about *in vivo* physiology are greatly appreciated. Ms. Joanne Bennett kindly lectured me about the cell culture models. I would like to thank Dr. Claudia da Costa Mathews, Dr. Hannah Pearce, Dr. Sue Mei Wong, Mr. Simon Pegg, Mr. Neil Flanagan, Mr. Mike Cram, Mr. Unai Vivanco, Ms. Sonia Patel, and Mr. Richard Manley for investigating the enabling formulations and physchem screening. I would like to thank the Pfizer Pharmaceutical Science members for supporting and inspiring me to pursue the sciences and practical drug research work. I would like to thank Dr. Tomomi Mastuura for her instructions about pharmacokinetics. I would like to thank Dr. Stefan Steyn for implementation of biopharmaceutical modeling in early drug discovery.

Thanks also goes to the Pfizer Nagoya Pharm R&D members. Mr. Shohei Sugimoto, Dr. Toshiyuki Niwa, Dr. Naofumi Hashimoto, Mr. Akinori Ito, Dr. Takashi Kojima, Mr. Omura Atsushi, and Mr. Morimichi Sato kindly taught me solid-state chemistry and enabling formulations. I would like to thank Mr Arimich Okazaki, Mr. Yohei Kawabata, Ms. Keiko Kako, Dr. Sumitra Tavornvipas, Ms. Akiko Suzuki, Ms. Tomoko Matsuda, and Ms. Shiho Torii for kindly working together toward progress of the science at the Nagoya site.

I would like to thank Dr. Ryusuke Takano of Chugai Pharm. for his excellent works on biopharmaceutical sciences. I also would like to thank the Chugai physicochemical and pharmacokinetics group members, especially Mr. Hirokazu Hamada, Dr. Noriyuki Takata, Dr. Akiko Koga, Mr. Ken Goshi, Dr. Kazuya Nakagomi, Mr. Ro Irisawa, Ms. Harumi Onoda, Dr. Hidetoshi Ushio, Dr. Yoshiki Hayashi, Dr. Yoshiaki Nabuchi, Dr. Minoru Machida, and Dr. Ryoichi Saito. They brought me up as an industrial scientist. I would like to thank Dr. Ken-ichi Sakai and Mr. Kouki Obata for working with me toward progress of the sciences at Chugai.

I would like to thank Dr. Alex Avdeef for finding a young scientist at a rural countryside in Japan and introducing him to the world. I greatly appreciate the kind support from the UK physicochemical scientist community, especially, Dr. John Comer, Dr. Karl Box, Dr. Alan Hill, Dr. Nicola Colclough, Dr. Toni Llinas, Dr. Darren Edwards, and other scientists. Their kind support made my UK life enjoyable and fruitful. I would also like to thank Prof. Amin Rostami-hochaghan, Dr. David Turner, Dr. Sibylle Neuhoff, and Dr. Jamai Masoud of SimCYP. I would like to thank Prof. Per Artursson, Dr. Manfred Kansy, Dr. Bernard Faller, Dr. Edward Kerns, and Dr. Li Di for discussions about PAMPA. I would like to thank Dr. Lennart Lindfors for constructive discussions.

I greatly appreciate the mentorship of Prof. Katsuhide Terada and Prof. Shinji Yamashita. I also would like to thank Dr. Makoto Kataoka and Dr. Yoshie Masaoka for the collaboration works. Finally, I would like to express my greatest thanks to my wife, Hitomi. Without her dedicated support, I could not have gone through the tough task of writing a book like this. I sincerely dedicate this book to her.

Kiyo Sugano

#### REFERENCES

- 1. Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J.R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of *in vitro* drug product dissolution and *in vivo* bioavailability. *Pharm. Res.*, 12, 413–420.
- 2. Kitano, H. (2002). Computational systems biology. Nature, 420, 206-210.

## LIST OF ABBREVIATIONS

| API           | Active pharmaceutical ingredient               |
|---------------|------------------------------------------------|
| A to B        | Apical-to-basal                                |
| BA            | Absolute bioavailability                       |
| BCS           | Biopharmaceutical classification system        |
| B to A        | Basal-to-apical                                |
| CER           | Ceramide                                       |
| CFD           | Computational fluid dynamics                   |
| СНО           | Cholesterol                                    |
| СМ            | Carrier mediated                               |
| CNT           | Classical nucleation theory                    |
| CSSR          | Critical supersaturation ratio                 |
| DDI           | Drug-drug interaction                          |
| DRL           | Dissolution-rate limited                       |
| DSC           | Differential scanning calorimeter              |
| DTA           | Differential thermal analysis                  |
| FFA           | Free fatty acid                                |
| FaSSIF        | Fasted stated simulated intestinal fluid       |
| FeSSIF        | Fed stated simulated intestinal fluid          |
| FIH           | First in human                                 |
| GET           | Gastric emptying time                          |
| GI            | Gastrointestinal                               |
| GUT framework | Gastrointestinal unified theoretical framework |
| HH            | Henderson-Hasselbalch                          |
| IVIVC         | In vitro (dissolution)-in vivo correlation     |
| LCT           | Long-chain triglyceride                        |
| LHS           | Left-hand side                                 |
|               |                                                |

| MCT                         | Medium chain triglyceride                                |
|-----------------------------|----------------------------------------------------------|
| MMC                         | Migrating motor complex                                  |
| NBE                         | Nernst–Brunner equation                                  |
| NS                          | Navier–Stokes                                            |
| PAMPA                       | Parallel artificial membrane permeation assay            |
| PC                          | Phosphatidylcholine                                      |
| PDE                         | Particle drifting effect                                 |
| PE                          | Phosphatidylethanolamine                                 |
| PG                          | Phosphatidylglycerol                                     |
| PI                          | Phosphatidylinositol                                     |
| PK                          | Pharmacokinetics                                         |
| PL                          | Permeability limited                                     |
| PLM                         | Polarized light microscopy                               |
| PPS                         | Prediction process step                                  |
| PS                          | Phosphatidylserine                                       |
| PXRD                        | Powder X-ray diffraction                                 |
| RHS                         | Right-hand side                                          |
| RPM                         | Revolution per minute                                    |
| SC                          | Stratum corneum                                          |
| SEDDS                       | Self-emulsifying drug delivery system                    |
| SITT                        | Small intestinal transit time                            |
| SL-E                        | Solubility-epithelial membrane permeability limited      |
| SL-U                        | Solubility–UWL permeability limited                      |
| SPIP                        | Single-pass intestinal perfusion                         |
| TC                          | Taurocholic acid                                         |
| TG                          | Thermal gravity                                          |
| USP                         | United state pharmacopeia                                |
| UWL                         | Unstirred water layer                                    |
| $A_{\mathrm{H}}$            | Hydrogen-donor strength                                  |
| AUC                         | Area under the curve (subscript indicates administration |
|                             | route, etc.)                                             |
| A <sub>blood vessel</sub>   | Surface area of the blood vessel in the villi            |
| Acc                         | Accessibility to villi surface                           |
| $C_{\rm D}$                 | resistance coefficient                                   |
| CF <sub>SSR</sub>           | Steady-state reduction correction factor                 |
| CL <sub>h</sub>             | Hepatic clearance                                        |
| CL <sub>h,int</sub>         | Intrinsic hepatic clearance                              |
| CL <sub>perm</sub>          | Permeation clearance                                     |
| CL <sub>subepithelial</sub> | Permeation clearance of subepithelial space              |
| CL <sub>tot</sub>           | Total clearance                                          |
| CR                          | Controlled-release function                              |
| C <sub>active</sub>         | Effective concentration for active transport             |
| $C_{\rm bile}$              | Concentration of bile acid                               |
| $C_{\rm bm}$                | Concentration of bile-micelle bound drug                 |
| 2                           | C C                                                      |

| $C_{\rm dissolv}$          | Dissolved drug concentration                                                    |
|----------------------------|---------------------------------------------------------------------------------|
| $C_{\rm dissolv,ss}$       | Steady-state concentration                                                      |
| $C_{\rm nc}$               | Number of critical cluster per volume                                           |
| $C_{\rm p}$                | Plasma concentration                                                            |
|                            | Particle-drifting coefficient                                                   |
| $C_{\rm pd}$               | -                                                                               |
| C <sub>subepithelial</sub> | Concentration of drug in subepithelial space                                    |
| $C_{\rm tot}$              | Total drug concentration                                                        |
| $C_{u,z}$                  | Concentration of unbound drug with charge $z$                                   |
| C <sub>water</sub>         | Concentration of water (55.6 M)                                                 |
| DF                         | Degree of flatness of intestinal tube                                           |
| D <sub>albumin</sub>       | Diffusion coefficient of albumin-bound drug                                     |
| $D_{\rm bm}$               | Diffusion coefficient of bile-micelle-bound drug                                |
| $D_{\rm eff}$              | Effective diffusion coefficient                                                 |
| Disp                       | Dispersion coefficient for GI transit                                           |
| $D_{\rm m}(x)$             | Local diffusion coefficient at position $x$ in membrane                         |
| $D_{\rm mono}$             | Diffusion coefficient of monomer drug                                           |
| Dn                         | Dissolution number                                                              |
| Do                         | Dose number                                                                     |
| D <sub>oct</sub>           | Octanol-water distribution coefficient                                          |
| Dose                       | Dose amount (subscript indicates administration route, etc.)                    |
| $D_{\text{paddle}}$        | Paddle diameter                                                                 |
| $D_{\text{vessel}}$        | Diameter of vessel                                                              |
| F                          | Absolute bioavailability                                                        |
| Fa                         | Fraction of a dose absorbed (subscript indicates                                |
| E.                         | administration route, etc.)                                                     |
| Fa <sub>DRL</sub>          | Fa for the dissolution-rate-limited cases                                       |
| Fa <sub>NI</sub>           | Fa calculated by numerical integration using the S1I7C1 model                   |
| Fa <sub>PL</sub>           | Fa for the permeability-limited cases                                           |
| Fa <sub>SL</sub>           | Fa for the solubility-permeability-limited cases                                |
| Fa <sub>SS</sub>           | Fa calculated with steady-state approximation                                   |
| Fa <sub>min. limit</sub>   | Minimum value of Fa <sub>PL</sub> , Fa <sub>SL</sub> , and Fa <sub>DRL</sub>    |
| Fa <sub>sfo</sub>          | Fa calculated as sequential first-order processes of dissolution and permeation |
| F <sub>cn</sub>            | Frequency of addition of another molecule to critical cluster                   |
| Fg                         | Fraction not metabolized in intestinal epithelial cells                         |
| Fh                         | Fraction not metabolized in hepatic first pass                                  |
| GIP                        | Position in GI tract                                                            |
| Gz                         | Graetz number                                                                   |
| $H_{\text{paddle}}$        | Height of paddle from vessel bottom                                             |
| H <sub>viili</sub>         | Height of villi                                                                 |
| $J_{\rm max}$              | Maximum flux by carrier-mediated transport                                      |
| $J_{\rm nc}$               | Primary nucleation rate per volume per time                                     |
| J <sub>perm</sub>          | Permeation flux                                                                 |
| perm                       |                                                                                 |

| Ka                     | Dissociation constant                                                |
|------------------------|----------------------------------------------------------------------|
| $K_{\rm bm}$           | Bile micelles–water partition coefficient                            |
| K <sub>m</sub>         | Michaelis–Menten constant                                            |
| $K_{\rm org}(x)$       | Local partition coefficient at position $x$ in membrane              |
| -                      | Partition coefficient into stratum corneum                           |
| K <sub>sc</sub>        |                                                                      |
| K <sub>sp</sub>        | Solubility product                                                   |
| K <sub>w</sub>         | Ionic product for water                                              |
| K <sub>transit,k</sub> | First-order transition kinetic constant                              |
| L                      | Representative length                                                |
| L <sub>GI</sub>        | Length of GI tract                                                   |
| N <sub>A</sub>         | Avogadro number                                                      |
| $N_{\rm API,GI,k}$     | Number of API particle bins in GI position k                         |
| N <sub>n</sub>         | Number of nuclei                                                     |
| N <sub>p</sub>         | Number of particles in one dose                                      |
| P <sub>CM</sub>        | Carrier-mediated transcellular permeability                          |
| PE                     | Plicate expansion                                                    |
| $P_{\rm UWL}$          | UWL permeability in the GI tract                                     |
| $P_{\rm WC}$           | Permeability by water conveyance                                     |
| P <sub>app</sub>       | Apparent permeability of in vitro membrane permeation                |
|                        | assay                                                                |
| $P_{\rm eff}$          | Effective intestinal membrane permeability                           |
| P <sub>ep</sub>        | Epithelial membrane permeability                                     |
| P <sub>oct</sub>       | Octanol-water partition coefficient                                  |
| P <sub>para</sub>      | Paracellular pathway permeability                                    |
| P <sub>plicate</sub>   | Plicate surface permeability                                         |
| P <sub>trans</sub>     | Transcellular pathway permeability                                   |
| $P_{\text{trans},0}$   | Intrinsic transcellular pathway permeability of undissociated        |
| duns,0                 | species                                                              |
| $Q_{ m GI}$            | Flow rate along small intestine                                      |
| $Q_{\rm h}$            | Hepatic blood flow                                                   |
| $Q_{\rm villi}$        | Villi blood flow                                                     |
| $Q_{\rm in}$           | Infusion rate                                                        |
| R <sub>GI</sub>        | Radius of GI tract                                                   |
| RK                     | Renkin function                                                      |
| <i>R</i> <sub>MW</sub> | Apparent pore radius of paracellular pathway based on MW selectivity |
| RPM <sub>min</sub>     | Minimum agitation speed                                              |
| R <sub>SA</sub>        | Ratio of drug particle surface area in UWL and villi surface area    |
| Re                     | Reynolds number                                                      |
| R <sub>mucus</sub>     | Nominal pore radius of mucus layer                                   |
| R <sub>para</sub>      | Apparent pore radius of the paracellular pathway                     |
| $S_0$                  | Intrinsic solubility of undissociated drug                           |
| S <sub>0,rp</sub>      | Solubility of particles with radius $r_p$                            |
| 0,1P                   | P                                                                    |

| $S_{0,\infty}$                        | Solubility of particles with infinitely large particle size |
|---------------------------------------|-------------------------------------------------------------|
| $SO_{0,\infty}$<br>$SA_{API}$         | Particle surface area of API                                |
| SA <sub>GI</sub>                      | GI surface area for absorption (based on smooth tube)       |
| SA <sub>p</sub>                       | Surface area for one particle                               |
| SRn                                   | Steady state reduction number                               |
|                                       |                                                             |
| S <sub>blank</sub>                    | Solubility in a blank buffer (without micelles)             |
| Sc                                    | Schmitt number                                              |
| S <sub>cocrystal</sub>                | Intrinsic solubility of cocrystal                           |
| $S_{ m dissolv}$                      | Solubility in a biorelevant media (unbound + micelle bound) |
| Sh                                    | Sherwood number                                             |
| Sh <sub>disk</sub>                    | Sherwood number for rotating disk                           |
| Sh <sub>p</sub>                       | Sherwood number for particle                                |
| $Sh_{tube}$                           | Sherwood number for tube                                    |
| $\operatorname{Sn}_{T_{\mathrm{si}}}$ | Saturation number at time $T_{si}$                          |
| Sn <sub>ini</sub>                     | Initial saturation number (Sn <sub>ini</sub> )              |
| $S_{\rm salt}$                        | Intrinsic solubility of salt                                |
| S <sub>surface</sub>                  | Solubility at solid surface                                 |
| $T_{\rm DO1}$                         | Time when drug amount remaining in small intestine gives    |
| 201                                   | Do = 1                                                      |
| $T_{\rm m}$                           | Melting point (Kelvin)                                      |
| Tn <sub>exss</sub>                    | Extended steady-state duration number                       |
| U                                     | Flow speed                                                  |
| $U_{\rm e}$                           | Microeddy effect velocity                                   |
| Ur                                    | Urinary excretion fraction                                  |
| $U_{\rm rel,tot}$                     | Relative flow velocity                                      |
| $U_{\rm t}$                           | Terminal sedimentation velocity                             |
| VĚ                                    | Villi expansion                                             |
| $V_{\mathrm{GI}}$                     | GI fluid volume                                             |
| Vc                                    | Velocity of intestinal fluid                                |
| $V_{\rm me}$                          | Velocity representing microeddy effect                      |
| $V_{\rm p}$                           | Volume of one particle                                      |
| $\hat{V_{\rm rel}}$                   | Relative velocity between fluid and particle                |
| $V_{\mathrm{t}}$                      | Terminal (sedimentation) slip velocity                      |
| Vx                                    | McGowans molecular volume                                   |
| W <sub>channel</sub>                  | Width of channel between villi                              |
| $W_{ m villi}$                        | Width of villi                                              |
| $X_{\rm bm}$                          | Bile-micelle-bound drug amount                              |
| $X_{ m dissolv}$                      | Dissolved drug amount                                       |
| $X_{\rm u,z}$                         | Amount of unbound drug with charge $z$                      |
| $Z_{\rm ch}$                          | Zel'dovich number                                           |
| $Z_{\text{para}}$                     | Paracellular pathway charge                                 |
| $d_{ m disk}$                         | Disk diameter                                               |
| $d_{\rm p}$                           | Particle diameter                                           |
| £                                     |                                                             |

| $d_{\text{tube}}$          | Tube diameter                                                  |
|----------------------------|----------------------------------------------------------------|
| f <sub>PSB</sub>           | Volume percentage of each particle size bin in one dose        |
| $f_{\rm bm}$               | Fraction of bile-micelle-bound molecule                        |
| $f_{\rm n}, f_0$           | Fraction of undissociated species                              |
| $f_{\text{subepithelial}}$ | Unbound fraction of drug in subepithelial space                |
| $f_{\rm u}$                | Bile-micelle-unbound fraction                                  |
|                            | Plasma unbound fraction                                        |
| $f_{up}$                   | Fraction of charged species                                    |
| $f_{z}$                    | Gravitational acceleration constant                            |
| g<br>h                     | Unstirred water layer thickness                                |
|                            | Criteria value for Hintz–Johnson model                         |
| $h_{ m HJ}$                | Unstirred water layer thickness in the intestine               |
| $h_{ m UWL}$               | •                                                              |
| $h_{\rm WF}$               | Criteria value for Wang–Flanagan model                         |
| h <sub>fam</sub>           | Thickness of firmly adhered mucus layer                        |
| $h_{\rm UWLvitro}$         | UWL thickness in <i>in vitro</i> permeability assay            |
| $h_{\text{subepithelial}}$ | Thickness of subepithelial space                               |
| k <sub>B</sub>             | Boltzmann constant                                             |
| k <sub>abs</sub>           | Absorption rate coefficient                                    |
| k <sub>deg</sub>           | Degradation rate constant                                      |
| k <sub>diss</sub>          | Dissolution rate coefficient                                   |
| k <sub>el</sub>            | Elimination rate                                               |
| $k_{\rm mass}$             | Mass transfer coefficient                                      |
| k <sub>perm</sub>          | Permeation rate coefficient                                    |
| l <sub>tube</sub>          | Tube length                                                    |
| m.p.                       | Melting point (Celsius)                                        |
| m <sub>atom</sub>          | Number of atoms in molecule                                    |
| r <sub>mono</sub>          | Molecular radius                                               |
| r <sub>p</sub>             | Particle radius (at time $t$ )                                 |
| r <sub>p,PSB</sub>         | Particle radius for particle size bin                          |
| r <sub>p,ini</sub>         | Initial particle radius                                        |
| $r_{\rm p,ini,PSB}$        | Initial particle radius for particle size bin                  |
| $r_{\rm p,nc}$             | Critical radius of nuclei                                      |
| V <sub>atom</sub>          | Relative volume of atom                                        |
| v <sub>m</sub>             | Molecular volume                                               |
| z.                         | Molecular charge                                               |
| $\Delta C$                 | Concentration gradient                                         |
| $\Delta G_{\rm nc}$        | Energy barrier for nucleation                                  |
| $\Delta H_{\rm m}$         | Enthalpy of melting                                            |
| $\Delta S_{\rm f}$         | Entropy of fusion                                              |
| $\Delta S_{\rm m}$         | Entropy of melting                                             |
| $\Pi$                      | Particle shape factor                                          |
| β                          | Lump constant ( $\beta$ ) of foreign particle number, sticking |
| ٣                          | provability, etc                                               |
| γ                          | Interfacial tension between solid surface and fluid            |
| 1                          | interfactor tension between sond burface and huld              |

| ε                           | Agitation strength (Energy input per time)                       |
|-----------------------------|------------------------------------------------------------------|
| η                           | Kolmogorov's minimum eddy scale                                  |
| $\lambda_{disso}$           | Dissociation resistance from solid surface (in length dimension) |
| $\lambda_{nc}$              | Interfacial attachment resistance (in length dimension)          |
| $\mu$                       | Viscosity of fluid                                               |
| ν                           | Kinematic viscosity of fluid                                     |
| $ ho_{ m f}$                | Density of fluid                                                 |
| $ ho_{ m p}$                | True density of drug                                             |
| $ ho_{ m p} \ \psi_{ m cn}$ | Interfacial reaction rate correction factor                      |