Introduction

1.1 History of polymer science

Much of human history has been influenced by the availability of mater-
ials. In fact, history is divided into eras named after the primary materials
used; the Stone Age, the Bronze Age, and the Iron Age. Similarly, we can
assert that in the twentieth century we entered the Polymer Age.

Humans have used naturally occurring polymers, called biopolymers,
for centuries without realizing that they were dealing with macro-
molecules. A prime example is caoutchouc, or natural rubber, that comes
from Hevea brasiliensis, the rubber-tree plant. Natural rubber was used for
many centuries before it was identified as polymeric.

Chemists started polymerizing synthetic macromolecules in the middle
of the nineteenth century, but they did not believe that they were creating
very large molecules. The standard point of view in the beginning of
the twentieth century was that these materials were colloids—physically
associated clusters of small molecules, with mysterious non-covalent bonds
holding the clusters together. Many scientists actually measured high molar
masses for these materials (of order 10* gmol ' or even 10> gmol ™ Y, but
rejected their own measurements because the values changed system-
atically with concentration. We now understand such changes with con-
centration, and the true molar mass, obtained by extrapolation to zero
concentration, would have been even larger.

In 1920, Staudinger proposed the macromolecular hypothesis: polymers
are molecules made of covalently bonded elementary units, called mono-
mers. In this view, the colloidal properties of polymers were attributed
entirely to the sizes of these large molecules, called macromolecules or
polymers. In contrast to colloids, macromolecules exhibit colloidal proper-
ties in all solvents in which they dissolve, strongly suggesting that covalent
bonds hold polymers together. Although this hypothesis initially met with
strong resistance, its gradual acceptance during the 1920s allowed for
substantial progress in the field in subsequent years. By 1929, Carothers
had synthesized a variety of polymers with well-defined structures, and the
Polymer Age was born.

During the following 30 years (1930-60), the main concepts of polymer
science were established. Polymer synthesis tools were developed and
refined during this period. Also, most of the foundations of polymer
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physics that are discussed in this textbook were introduced during this
time period. These include the work of Kuhn on macromolecular sizes
(Chapter 2), the work of Flory on swelling a single chain in a good solvent
(Chapter 3), the work of Huggins and Flory on thermodynamics
(Chapter 4), the work of Flory and Stockmayer on gelation {Chapter 6)
and the work of Kuhn, James, and Guth on rubber elasticity (Chapter 7).
The single-molecule models of polymer dynamics, were also developed
during this period by Rouse and Zimm (Chapter 8).

In the subsequent 20 years (1960-80), the main principles of modern
polymer physics were developed. These include the Edwards model of the
polymer chain and its confining tube (Chapters 7 and 9), the modern view
of semidilute solutions established by des Cloizeaux and de Gennes
{Chapter 5}, and the reptation theory of chain diffusion developed by de
Gennes (Chapter 9) that led to the Doi-Edwards theory for the flow
properties of polymer melts.

There are of course, many facets of polymers for which our under-
standing is far from complete. Polymers with associating groups bonded to
their chains, polymer crystallization, liquid crystalline polymers and
charged polymers are examples of areas of active research in polymer
physics. These four particular examples are also very pertinent to
understanding the functions of important biopolymers, such as DNA,
RNA, proteins, and polysaccharides. By learning the fundamentals
of chain conformations, thermodynamics, elasticity, and mobility, the
readers of this book should be ready to consider these more challenging
facets.

1.2 Polymer microstructure

The word (poly)-(mer) means (many)-(parts} and refers to molecules
consisting of many elementary units, called monomers.! Monomers are
structural repeating units of a polymer that are connected to each other by
covalent bonds. Since ‘monomer’ can mean anything that repeats along the
chain, it is by definition ambiguons. In this book, two types of monomers
are important. Chemical monomers are the repeating unit that corres-
ponds to the small molecules that were linked together to make the
polymer chain. The repeating unit that will be most important for our
discussions is a longer section of chain called the Kuhn monomer, that will
be defined in Chapter 2. Here we focus on the chemical monomer.

The entire structure of a polymer is generated during pelymerization, the
process by which elementary units (chemical monomers} are covalently
bonded together. The number of monomers in a polymer molecule is called
its degree of polymerization V. The molar mass M of a polymer is equal to

! Chemists use the term “moncmer’ to indicate an unreacted small molecule that is capable
of polymerizing. Since this book is concerned with polymers, we often use ‘monomer’ to
describe the repeating unit in a polymer chain, essentially a short form of ‘reacted monomer’,
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its degree of polymerization N times the molar mass Moo, of its chemical
monomer:

M = NMa. (1.1)

Consider, for example, the general structure of vinyl monomers and
polymers shown in Fig. 1.1, where R represents different possible chemical
moieties.

If the R group in Fig. 1.1 is hydrogen, the polymer is polyethylene. The
repeating unit is -CH,~CH,— and the polymer is called polyethylene
because polymers are traditionally named after the monomers used in their
synthesis (in this case ethylene, CH,=CHy), even though polymethylene
with repeating unit -CHs-~ has an identical structure. To avoid potential
complications arising from different monomers creating the same polymer,
we often discuss the number # of backbone bonds instead of the degree of
polymerization N, which is the number of monomers in the chain. If the R
group in Fig. 1.1 is chiorine the polymer is poly(vinyl chloride), with
repeating unit ~CH,-CHCl-, prepared from polymerization of vinyl
chloride (CH,=CHC]). If the R group in Fig. 1.1 is a benzene ring, the
polymer is polystyrene.

The conventional way to describe the mass of a polymer chain is the
molar mass: the mass of one mole (equal to Avogadros number A 4y
6.02 x 10> molecules mol™') of these molecules. For example, a poly-
ethylene molecule consisting of & =1000 chemical monomers, each with
molar mass M., = 28 gmol~", hasa molar mass M = 28 000 gmol™". This
means that A, such molecules weigh 28 000 g or one molecule weighs

M/N = 28000gmol ' /{6.02 x 10* molecules mol ")
2 4.65 x 1072 gmolecule™

It is more convenient and therefore, customary to report the mass of such a
polymer as M =28000g mol™" rather than 4.65 x 107’ g molecule™". A
related measure of the mass is the polymer molecular weight, with units
of Daltons (Da) defined as 12 times the ratio of the polymer molar mass
and the molar mass of '*C. Hence, in the above example, the molecular
weight is 28 000 Da.

The chemical identity of monomers is one of the main factors deter-
mining the properties of polymeric systems. Another major factor is the
polymer’s microstructure, which is the organization of atoms along the
chain that is fixed during the polymerization process. In Fig. 1.1, once
the double bond polymerizes, a variety of different isomers are possible for
the repeating units along the chain. Polymer microstructure cannot be
changed without breaking covalent chain bonds. Below we describe three

2 End monomers typically have slightly differsnt molar masses M., . and M,

" on- Therefore
M= Muon(N =2} + M, + M. However, the dpprommation Me=M,,N is usually

very g,ood for large degrees of po]ymenzdtlon For example, in polyethylene M oq=
28 gmol” =M =29gmol™" and the error for N =100 is 0.07%.
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Fig. 1.1
Polymerization of vinyl monomers.



Fig. 1.2
The two sequence isomers of
polypropylene.

Fig. 1.3
The three structural isomers of
polybutadiene.
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different categories of isomers: sequence, structural, and stereo isomerism.
Examples of sequence isomerism are shown in Fig. 1.2 for polypropylene.
In the head-to-head isomer, two adjacent monomers have their CH;
groups attached to adjacent carbons along the chain’s backbone, whereas
the head-to -tail isomer has a CH, in the backbone between the CH; groups
of adjacent monomers. Head-to-tail is the more common microstructure,
but the properties change significantly with the fraction of head-to-head
isomers present.

Polymers that contain a double bond in their backbone (that cannot
rotate) can exhibit structural isomerism. Such polymers have distinct struc-
tural isomers, such as cis-, trans-, and vinyl-polybutadiene shown in
Fig. 1.3. These isomers result from the different ways that dienes, such as
butadiene, can polymerize and many synthetic polymers have mixtures of
cis and trans structural isomers along their chains. A particular mixture
reflects the probabilities of various ways that monomers add to the
growing chain.

Another isomeric variation that is locked-in during polymerization of
vinyl monomers is stereoisomerism. The four single bonds, emanating from
a carbon atom, have a tetragonal structure, If all backbone carbon atoms
of a polymer are arranged n a zig-zag conformation along the same plane,
adjacent monomers can either have their R group on the same or different
sides of this plane, as shown in Fig. 1.4. This type of stereoisomeric var-
iation is described by the polymer’s tacticity. If all of the R groups of a vinyl
polymer are on the same side of the chain, the polymer is isotactic. On the
other hand, if the R groups alternate regularly, the polymer is syndiotactic.
Another possibility is that the placement of the R groups is completely
random and such polymers are atactic. Vinyl polymers always have single
C-C bonds along their backbone that allow rotations, but these rotations
never change the locked-in nature of the polymer’s tacticity. Many syn-
thetic vinyl polymers do not correspond to one of the simple tacticities
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shown in Fig. 1.4. A more general case is described by a probability p, for a
monomer to add to the growing chain with its R group on the same side as
the previous monomer (and probability 1 — py, that the monomer adds
with its R group on the opposite side). Often polymers have py, near 1/2,
for example if R is Cl, commercial poly(vinyl chloride) has p, 2 0.45 and
if R is benzene, commercial polystyrene has py, = 0.50. Isotactic polymers
correspond to pm =1, syndiotactic macromolecules have p,=0, and
atactic ones have p,=1/2, but any probability 0 < p,, <1 is possible.
Different polymerization schemes for a given monomer often result in a
different p,,. Isomeric variations. such as sequence isomerism, structural
isomerism and stereoisomerism are typically measured using NMR
spectroscopy.

Physical properties of polymeric systems are strongly affected by chain
microstructure. For example, it is much easier to crystallize isotactic and
syndiotactic polymers than atactic ones.

1.3 Homopolymers and heteropolymers

Ly

Macromolecules that contain monomers of only one type are called
homopolymers.

ciimdeA-A-A=A-A-A-A-A-A-A-A-- - -

Homopolymers are made from the same monomer, but may differ by their
microstructure, degree of polymerization or architecture. Examples of
different microstructure of homopolymers such as tacticity, structural or
sequence isomerisms were described in Section 1.2.

Throughout this book we demonstrate that the degree of polymerization
N (or the number of backbone bonds ») of macromolecuies is a major
factor determining many properties of polymeric systems. If a molecule
consists of only a small number of monomers (generally, less than 20} it is
called an oligomer. Lincar polymers contain between 20 and 10 billion (for
the longest known chromosome) monomers. As monomers are linked
together, the physical properties of molecules change. Both the boiling
point and the melting point increase rapidly with the number of backbone

Fig. 1.4

Tacticities of vinyl polymers, illustrated
with all backbone carbonsin the plane of
the page and with H and R groups
pointing either into or out from the page.



Fig. 1.5

Examples of polymer architectures:
(a) linear; (b) ring; (c} star; (d) H
(e) comb: (7) ladder; (g) dendrimer;
(h} randomly branched.

e

Fig. 1.6

Schematic architecture of a polymer
network, with the dots indicating
crosslinks.
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Table 1.1 Properties and applications of alkane hydrocarhous (following Speriing)

Number of C atoms  State at 25°C Example Uses

-4 Simple gas Propane Gaseous luels

5-15 Low-viscosity Hquid Gasoline Liguid fuels and solvents
16-25 High-viscosity liquid ~ Motor oil Oils and greases

20-50 Simple soft solid Paraffin wax ~ Candles and coatings
>1000 Tough plastic solid Polyethylene Bottles and toys

e G

bonds, resulting in different uses of these molecules, as shown in Table 1.1
for alkane hydrocarbons.

Another important feature controlling the properties of polymeric sys-
tems is polymer architecture. Types of polymer architectures include linear,
ring, star-branched, H-branched, comb, ladder, dendrimer, or randemly
branched as sketched in Fig. 1.5. Random branching that leads to struc-
tures like Fig. 1.5(h) has particular industrial importance, for example in
bottles and film for packaging. A high degree of crosslinking can lead to a
macroscopic molecule, called a polymer network, sketched in Fig. 1.6.
Randomly branched polymers and thg formation of network polymers will
be discussed in Chapter 6. The properties of networks that make them
useful as soft solids (erasers, tires) will be discussed in Chapter 7.

Combining several different types of monomers into a single chain leads
to new macromolecules, called heteropolymers, with unique properties. The
properties of heteropolymers depend both on composition (the fraction of
each type of monomers present) and on the sequence in which these dif-
ferent monomers are combined into the chain. Macromolecules containing
two different monomers are called copolymers. Copolymers can be alter-
nating, random, block, or groft depending on the sequence in which their
monomers are bonded together, as shown in Fig. 1.7. Polymers containing
two blocks are called diblock copolymers. Chains with three blocks are
called triblock copolymers. Polymers with many alternating blocks are
called multiblock copolymers (Fig. 1.7).

Polymers containing three types of monomers are called terpolymers
(Fig. 1.8). Examples of random terpolymers are polyampholytes containing
positive, negative and neutral monomers. An example of block terpoly-
mers are ABC triblocks shown in Fig. 1.8,

2%
hze
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Many biopolymers are heteropolymers. DNA is a heteropolymer con-
sisting of four different types of monomers (nucleotides), while natural
proteins are heteropolymers commonly consisting of 20 different types of
monomers (amino acids).

1.4 Fractal nature of polymer conformations

The polymer characteristics, described above—microstructure, architeg-
ture, degree of polymerization, chemical composition of heteropolymers—
are all fixed during polymerization and cannot be changed without
breaking covalent chemical bonds. However, after polymerization, a single
flexible macromolecule can adopt many different conformations. A con-
formation is the spatial structure of a polymer determined by the refative
locations of its monomers. Thus, a conformation can be specified by a set
of n bond vectors between neighbouring backbone atoms. The conforma-
tion that a polymer adopts depends on three characteristics: flexibility of
the chain, interactions between monomers on the chain, and interactions
with surroundings. The inherent flexibility of the chain plays a vital role.
Some chains are stiff like a piano wire, while others are quite flexible like a
silk thread. There can be either attractive or repulsive interactions between
monomers on the chain. The monomers also interact with their sur-
roundings (either other chains or solvent) and the relative strengths of these
various interactions can change with temperature. By tuning these effects,
chain conformations change drastically, as will be explained in detail in
Chapters 2-5.

Fig.1.7
Types of copolymers.

Fig.1.8
Exarnples of terpolymers.



Fig.1.9

A polymer's conlormation is dictated by
its interactions, here illustrated using a
chain with 10*° monomers of size 1 cm
and four types of interaction between
monomers. (a) Attractive interaction—
the chain fits in a classroom, (b) Zero
effective interaction—the chain is the
size of a campus. (c) Short-range
replilsion—the chain is the size of a city.
{(d) Long-range repulsion—the size of a
chain is a quarter of the distance to the
Moon.
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To illustrate the magnitude of variations in chain dimensions, consider a
chain of 7 = 10'° bonds (one of the largest DNA molecules). The size of a
bond is of the order of Angstroms and therefore, the contour length along
the entire DNA molecule is of the order of meters. In order to get a better
feeling for the range of scales involved, we magnify all lengths by the factor
10° to bring individual bond lengths onto a familiar size scale /= | cm.
With strong attraction between monomers, the conformation of the
polymer is a dense object, called a collapsed globule, occupying volume

Ve nl® =10'°cm® ~ 10* m? and densely filling a large classroom of typical

linear dimension R~ V'3 an'1~20m (see Fig. 1.9). If there are no
interactions between monomers, in Chapter 2 it will be shown that the
chain conformation is.a random walk with size R ~n'?]~ 1 km, a typical
campus dimension, Conformations of a polymer with excluded volume
repulsions (to be described in detail in Chapter 3) are those of a self-
avoiding walk with Ra2n*~ 10km, a typical city dimension. A polymer
with long-range (such as electrostatic) repulsions adopts an extended
conformation with size R ~=nl/== 10° km, of the order of the distance to the

(@)
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Moon! These astronomical variations of chain sizes make polymers a
unique class of materials.

Another special feature of polymer conformations is that most of them
are self-similar (Fractal) over a wide range of length scales. In order to
explain this important concept, we start with familiar objects, such as a
solid ball of radius R. The volume ¥ of this ball is approximately equal to
the cube of its radius and proportional to its mass:

V= 4?“123 =~ 42R* ~ R® ~ mass. (1.2)

Throughout this book we will use the sign ‘=" to indicate a numerical
approximation (i.e. 4m/324.2) and the sign ‘=~ to indicate that two
quantities are proportional to each other up to a dimensionless prefactor of
order unity (47/3 in the example above). We will also use the notation * ~*
to indicate that the two quantities are proportional to each other up to a
dimensional constant. The units of mass and volume are different. The
meaning of proportionality * ~ * is that if the radius of the ball increases by
a factor of 2, its mass increases by the factor 2° =8. The exponent in
Eq. (1.2) is the dimension of the ball, 4=3. Most of the objects we are
familiar with are 3-dimensional. Relations similar to Eq. {1.2) are valid not
only for the whole object, but for smaller parts of it as well. Indeed, con-
sider cutting a small sphere of radius  out of this ball (Fig. 1.10). The mass
m of this smaller ball is also proportional to the cube of its radius:

mer {1.3)

Other dimensions we are familiar withared =2and d =1. Anexample of
an almost two-dimensional object is a sheet of paper with uniform thick-
ness and density (see Fig. 1.10). The mass m of the circle cut out of the piece
of paper is proportional to the square of the radius r of this circle:

me i (1.4)

Note that we have dropped all prefactors (both dimensiomless and
dimensional) in Eqs (1.3) and (1.4). A long wire is an example of an almost
one-dimensional object (Fig. 1.11). The mass m of a piece of a wire is

Three-dimensicnal
ball

Two-cimensional
shect of paper

Fig.1.10
Examples of regular objects.

Fig.1.11

Mass m of the part of the wire inside a
sphere of radius r. Both axes have
logarithmic scales.
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Fig. 1.12
Construction of a triadic Koch curve.
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proportional to the length 2+ of this piece (if the diameter and density are
uniform):

me . (1.5)

In order to explain what we mean by the word ‘almost’, imagine a sphere of
radius r around the wire. As long as the radius of the sphere r is much larger
than the diameter H of the wire, the mass of material inside such an ima-
ginary sphere would follow Eq. (1.5). But as soon as the radius of the sphere
becomes smaller than the diameter H of the wire, its three-dimensional
nature becomes important and the mass of the piece of wire inside the sphere
changes proportionally to the cube of its radius [Eq. (1.3)]. The dependence
ol mass m of the part of the wire inside a sphere of radius r on the size of this
sphere for a wire of diameter H is sketched in Fig. 1.11. Thus, we can say
that the wire is one-dimensional on length scales much larger than its
diameter 3 H and three-dimensional on smaller length scales r < H.

As the first example of a self-similar object, consider a regular fractal,
called a triadic Koch curve (Fig. 1.12). We start from a section of straight
line and divide it into three equal subsections (hence the name triadic)
[Fig. 1.12(a}]. On the top of the middle subsection we draw an equilateral
triangle and erase its bottom side (the original middle subsection of the
line). Thus, we end up with four segments of equal length instead of the
three original ones [Fig. 1.12(b)]. We repeat the above procedure for each
of these four segments—divide each of them into three equal subsections
and replace the middle subsections with the two opposite sides of equi-
lateral triangles. At the end of the second step, we obtain a line with each of
the four sections consisting of four smaller subsections [Fig. 1.12{(c)]. This
process can continue as long as your patience allows [Fig. 1.12(d) and (e}].
It is usually limited by the resolution of the computer screen or of the
printer.

In order to calculate the dependence of the mass of the triadic Koch
curve on the length scale, let us draw circles of diameter 2¢ equal to the
lengths of the segments of two consecutive generations [Fig. 1.12(f)]. As we
compare circles drawn around the segments of the consecutive generations
of the curve, the radius of the circles changes by the factor of 3 (r; = 3r2),
while the mass m of the section of the curve inside these circles changes by
the factor of 4 (m, =4m,). We are looking for an exponent D defined by
the relation

me P, {1.6)
similar to Egs (1.3)~(1.5) above. This exponent D in Eq. (1.6) is called
the fractal dimension. The fractal dimension for a triadic Koch curve can
be determined from the fact that we have two ways to calculate m in
terms of rs,

m = Arl = A(3r2)D, (1.7)
my = dmy = 44r7, (1.8)
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where A is the proportionality constant in Eq. (1.6). Equations (1.7} and
(1.8) require

(3r))" = 42, (1.9)
which can be solved for the fractal dimension of the triadic Koch curve.

=@E 1.26. (1.10}

log 3
Identical reasoning can be applied to any two consecutive generations of
the Koch curve, making the exponent D [Eq. (1.10)] valid on all length
scales. The self-similar nature of the Koch curve is clear from the fact thatif
a small piece of the curve is magnified, it looks exactly like the larger piece.
Another example of a regular fractal is a Sierpinski gasket shown in
Fig. 1.13. Start with a filled equilateral triangle [Fig. 1.13(a)], draw the
three medians that divide it into four smaller equilateral triangles and cut
out the middle one [Fig. 1.13(b)]. In the second step, repeat the same
procedure with each of the three remaining equilateral triangles, obtaining
nine still smaller ones [Fig. 1.13(c)], and so on [Fig. 1.13(d) and (e)]. The
fractal dimension of this Sierpinski gasket is calculated by the same method
as for the K och curve above [Fig. 1.13(f)]. As the radius of the circle around
a section of the Sierpinski gasket doubles, the number of triangles (the mass

of the gasket inside the circle) triples.

D=5 158 (1.11)

This approach can be applied to any fractal. If the size (the radius of a
sphere) changes by the factor C,

r = Cora, (1.12)

LY

while the mass inside this sphere changes by the factor C,,,
m = Cpma, (1.13)
the fractal dimension is the ratio of the logarithms of these factors.

~log G

= . 1.14
log C; (114

There are many beautiful examples of regular fractals described and drawn
in numerous books on this subject.

Polymers are random fractals, quite different from Koch curves and
Sierpinski gaskets, which are examples of regular fractals. Consider, for
example, a single conformation of an ideal chain, shown in Fig. 1.14. As
will be discussed in detail in Chapter 2, the mean-square end-to-end dis-
tance of an ideal chain is proportional to its degree of polymerization.

N~ {R%). (1.15)
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Fig.1.13
Construction of a Sierpinski gasket.

1
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Fig.1.14

Fractal structure of an ideal chain with
fractal dimension I = 2 obtained by
computer simulation (courtesy of

Q. Liao}.
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The brackets refer to averages over different possible conformations of the
ideal chain. This relation should not be taken hterally to be valid for each
possible conformation, but rather on average for a distnibution of con-
formations of a given type. A similar relation holds for any subsection of
the ideal chain with g monomers and size r:

g ~ (). (1.16)

Therefore, the fractal dimension of an ideal chain is D = 2. The ideal chain
is a self-similar object because if its smaller sections are magnified, they
look like the whole chain (see Fig. 1.14). Unlike the regular fractals, such as
the Koch curve, the magnified sections do not look exactly like the whole
chain, but only on average (they have the same statistical properties, as will
be explained in Chapter 2). Another distinction between regular fractals,
such as the Sierpinski gasket, and polymeric fractals is that regular fractals
are self-similar on a/l length scales. Polymeric fractals are self-similar on a
finite, though possibly quite large, range of length scales. There is a natural
cutoff of self-similarity on small length scales—-the length / of the bond—
and on large scales—the size R of the polymer. Thus, Eq. (1.16} is valid for
! <r< R. The fractal dimension D of any polymer is defined through the
relation between the number of monomers g in any section of this polymer
and the root-mean-square size /{r?) of this section:

e~ (Vi) (117)

In Chapters 2, 3, 5, and 6, the fractal dimension D of polymers will be
derived in different conditions. Examples of the fractal dimensions of
polymers are shown in Table 1.2,

Table 1.2 Fractal dimensions of polymers

Architecture Interactions Space dimension o D
Linear None Any 2
Linear Short-range repulsion d=12 4/3
Linear Short-range repulsion d=3 1.7
Randomly branched None Any 4
Randomly branched Short-range repulsion d=2 8/5
Randomly branched Short-range repulsion d=3 2.0
Incipient gel Partially screened repulsion d=2 91/48
Incipient gel Partially screened repulsion d=3 25

1.5 Types of polymeric substances
1.51  Polymerliquids

There are two types of polymer liquids: polymer melts and polymer solu-
tions. Polymer solutions can be obtained by dissolving a polymer in a
solvent. Examples of polymer sohitions are wood protectants (varnish and
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polyurethane coatings) and floor shines. Polymer solutions are classified
as dilute or semidilute (Fig. 1.15) depending on the polymer mass con-
centration ¢, the ratio of the total mass of polymer dissolved in a solution
and the volume of the solution. An alternative measure of concentration is
the volume fraction ¢, the ratio of occupied volume of the polymer in the
solution and the volume of the solution. These two concentrations are
related through the polymer density p:

¢ = < _ CvmonNAv

1.18
P Minon ( )

We used the fact that the polymer density is the ratio of monomer molar
mass Mo, and monomer molar volume VuyonN Ay (Vimon i8 the occupied
volume of a single chemical monomer).

Mmon
— Tmon 1.19
o {1.19)

A typical monomer volume is Vion~ 100 A’ and the corresponding
monomer molar volume is VoA av &= 60 cm®.

The pervaded volume ¥ is the volume of solution spanned by the poly-
mer chain

v R, (1.20)

where R is the size of the chain. This volume is typically orders of mag-
nitude larger than the occupied volume of the chain vmy,qq /N (see Fig. 1.14).
The fractal nature of polymers (N ~ RP) with typical fractal dimension
D < 3, means most of the pervaded volume is filled with solvent or other
chains. The volume fraction of a single molecule inside its pervaded volume
is called the overlap volume frackion ¢* or the corresponding overlap con-
centration ¢*: .

~ Nvmon o — PNVmon

v - (1.21)

Cb*
If the volume fraction ¢ of the polymer solution is equal to the overlap
volume fraction ¢*, the pervaded volumes of macromolecules densely fill
space and chains are just at overlap (¢ = ¢*) (see Fig. 1.15).°
If the polymer volume fraction ¢ in solution is below the overlap volume
fraction ¢*, the solution is called dilute (< ¢*). The average distance
between chains in dilute solutions is larger than their size. Therefore,
polymer coils in dilute solutions are far from each other swimming happily
in surrounding solvent. Most properties of dilute solutions are very similar
to pure solvent with slight modifications due to the presence of the
polymer.

3 In the definition of the overlap volume fraction ¢*, the pervaded volume Vis taken at ¢*,
since polymer size and hence its pervaded volume may change with concentration.
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Solutions are called semidilute at polymer volume fractions above
overlap (for ¢ > ¢*) (Fig. 1.15). This name comes from the fact that the
actual values of volume fractions in these solutions are very low (¢ < 1).
Most of the volume of a semidilute solution 1s occupied by the solvent.
However, polymer coils overlap and dominate most of the physical
properties of semidilute solutions (such as viscosity), Thus, adding a very
small amount of polymer to a solvent can create a liquid with drastically
different properties than the solvent. This unique feature of polymer
overlap is due to their open conformations. Linear polymers in solution are
fractals with fractal dimension D < 3. In semidilute solutions, both solvent
and other chains are found in the pervaded volume of a given cotl. The
averlop parameter P is the average number of chains in a pervaded volume
that i1s randomly placed in the solution:

oV
P= . .
F— {1.22)

At the overlap volume fraction (for ¢ = ¢*) P= 1, and as the concentration
of linear chains is increased P steadily grows, reflecting the presence of
additional chains inside the pervaded volume of each molecule. Notice that
the overlap parameter counts the number of whole chains that share
the pervaded volume. In reality, small parts of numerous chains are within
each chain’s pervaded volume in semidilute solution, and the overlap
parameter counts these parts as though they were connected together into
chains of N monomers. Use of Eq. (1.22) in semidilute solutions requires
care because the chain size and hence, the pervaded volume ¥ may change
with concentration, as will be discussed in Chapter 5. The pervaded volume
of a chain is not defined precisely, which makes ideas about overlap rather
vague, meaning that both P and ¢* are somewhat imprecise. In practice
this ambiguity is necessary becausg polymer overlap occurs over a range of
concentrations.

In the absence of solvent, macromolecules can form a bulk liquid state,
called a palymer melt. Polymer melts are neat polymeric liquids above their
glass transition and melting temperatures. A macroscopic piece of a
polymer melt remembers its shape and has elasticity on short time scales,
but exhibits liquid flow (with a high viscosity} at long times. Such time-
dependent mechanical properties are termed viscoelastic because of the
combination of viscous flow at long times and elastic response at short
times (viscoelasticity will be discussed in Chapters 8 and 9). A familiar
example of a polymer melt is Silly Putty®. On short time scales (of order
seconds), a sphere of Silly Putty resembles a soft elastic solid that bounces
when dropped on the floor. However, if left on a table top for an hour, Silly
Putty flows into a puddle like a liquid. In a polymer melt the overlap
parameter is large (P 3> 1) and the strong overlap with neighbouring chains
leads to entanglement that greatly slows the motion of polymers. However,
individual chains in a polymer melt do move over large distances on long
time scales, a property characteristic of fluids.
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1.5.2  Polymersolids

There are several different types of polymeric solids. If a polymer melt is
cooled, it can either transform into a semicrystalline soltd below its melting
temperature 7, or into a polymeric glass below its glass transition tem-
perature T,. Semicrystalline solids consist of crystalline regions, called
lamellae, in Wthh sections of chains are packed parallel to each other, and
of amorphous regions between these lamellae (see Fig. 1.16). This multi-
phase nature makes semicrystalline polymers opaque, but also deformable
and tough, when used at temperatures above the T, of the amorphous
phase (such as for polyethylene and polypropylene at room temperature).
Macromolecules with regular configurations, such as isotactic and syn-
diotactic homopolymers often crystallize easily. Macromolecules with
more random configurations, such as atactic homopolymers and random
copolymers, tend to transform upon cooling into a transparent yet brittle
glassy state (such as polymethylmethacrylate and polystyrene). However,
there are technologically important exceptions to this rule. Polycarbonate,
for example, is a tough glassy polymer at room temperature, making it the
polymer of choice for transparent structural applications such as green-
houses and skylights.

If the chains of a polymer melt are reacted with each other to form
covalent crosslinks between chains, a polymer network can be formed
(Fig. 1.6). Polymer networks are solids and have a preferred shape deter-
mined during their preparation by crosslinking. Above their 7}, the chains
between crosslinks in a polymer network can move locally, but not glob-
ally. Therefore, polymer networks above Ty are called soft solids. Rubbers
or elastomers are crosslinked polymer networks with T, below room
temperature. Examples are vulcanized natural rubber (crosslinked poly-
isoprene) and silicone caulks (crosslinked polydimethylsifoxane). A poly-
mer gel is a polymer network that is swollen in a solvent. The gel becomes
progressively softer as more solvent is added, but always remains a solid
owing to the permanent bonds that connect the chains. Examples of
common polymer gels are Jello®, which is a mixture of water and gelatin
(a denatured form of the protem collagen collagen), and superabsorbers
derived [rom poly(acrylic acid) used in disposable diapers.

1.5.3 Liquid crystal polymers

A variety of states with order intermediate between crystalline solids and
amorphous liquids are also possible for polymers that contain sufficiently
rigid rodlike monomers, known as mesogens. These mesogens can be
attached to chemical monomers as a side group (the R group in Fig. 1.1) or
they may be incorporated within the backbone of the polymer. Polymers
with exclusively rigid rod-like mesogens as their monomers are usually
intractable because they start to decompose below their crystalline melting
points. However, alternating copolymers (Fig. 1.7) of rigid rodlike meso-
gens and flexible segments often are able to be melt processed and have
interesting properties. In particular, in a temperature range between their
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Crystallization of polymer melts creates
semicrystalline material consisting of
folded chains in Jamellae packed into a
larger spherulitic structure, coexisting
with amorphous regions.
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melting point and the temperature at which they become isotropic liquids,
these polymers can exhibit any of a number of phases with intermediate
order.

A nematic phase, where the mesogens preferentially align in the same
direction locally, is the least ordered and most common liquid crystalline
phase. Often the alignment of the mesogens allows the molecules to slide
past one another more easily, making the viscosity of the nematic phase
lower than the isotropic liquid viscosity. A variety of smectic phases are
also possible, where the mesogens form layered structures. These aniso-
tropic liquid crystalline phases can occur in melts, solutions and networks.
The physical properties of hiquid crystal polymers are anisotropic as a
result of the order. Additionally, electric fields, magnetic fields, and flow
fields can be used to align this class of materials, It is important to realize
that the polymer liquids and solids discussed in the remainder of this book
are always assumed to be isotropic.

1.6 Molar mass distributions

One distinguishing feature of most synthetic polymers is that they are
polydisperse, The entire polymer sample is made up of individual molecules
that have a distribution of degrees of polymerization, determined by the
particular synthesis method used. If all polymers in a given sample have the
same number of monomers, the sample 13 monodisperse. There are many
examples of natural polymers (such as proteins) that are perfectly mono-
disperse, but such perfection i1s very rare in synthetic polymers. The molar
mass of a monodisperse polymer with degree of polymerization N is given
by Eq. {1.1).

The polydispersity of a sample is described by its melar mass distribution.
Polydisperse and monodisperse distributions are sketched in Fig. 1.17.
A distribution is shown as ny, the number fraction {or mole fraction) of
molecules containing N monomeys each, plotted as a function of molar
mass My = M..N of the molecules.

In practice, it is often more convenient to deal with the weight fraction
wy of molecules with molar mass Mz

nyMy nyN
w - = . 1.23
i ZnNMN EHNN ( )
N N

The summation > is a shorthand notation for a sum over all

N oG

possible values of N (i.e. Y ). The weight fraction wy is related to the mass
N=1

concentrations of various species (¢ is the mass of molecules with degree

of polymerization N per unit volume)

wN:%N, (1.24)

where ¢ is the total mass concentration.
It is convenient to define the kth moment of the number fraction dis-
tribution as the sum of the products of the number fraction 7, of molecules
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with degree of polymerization N and their molar mass raised to the kth
power:

mp = ZnNMNk. (125)
N

The zeroth (k = 0) moment is equal to unity because the number fraction
distribution is normalized:

mg =Y ny=1 (1.26)
N

In order to characterize the molar mass distribution, several average
molar masses are defined that emphasize different parts of this distribu-
tion. The number-average molar mass M, is defined as the ratio of the first
(k =1} to zeroth (k = 0} moments of the number fraction distribution:

my SonwMy
My=—"=" = nyMy. 1.27
n o EnN § NN ( )
N

The number-average is the common average used, for example, to deter-
mine the average denomination of the coins in your pocket. The number
fraction of each type of coin (ny) is multiplied by its denomination (M y}.

Substituting Eq. (1.27) into Eq. (1.23) shows that the ratio of the molar
mass of a polymer with ¥ monomers and the number-average molar mass
M, relates the number fraction and weight fraction of molecules:

My N
= = —~np. 1.28
Wy M. Ay No Ry ( )

The final relation was obtained by introducing the number-average degrge
of polymerization N, =M,/ Muy.,. The number-average is the quantity
that is directly controlled by polymerization chemistry. The total number
density of chains is the sum of the number density of all species:

CNAV _ CNNAV
0 _§ T (1.29)

Solving for M,, gives an alternative expression for calculating the number-
average molar mass:

A ¢ 1

n:‘;CN/MN:%WN/MN. (130)

The final relation was obtained using Eq. (1.24). For strictly linear poly-
mers, each chain has exactly two ends, so the number-average molar mass
can be measured by counting end groups using spectroscopy. However,
many polymer properties are controlled by the longer chains in the molar
mass distribution, making higher-order averages useful.

17
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The weight-average molar mass A, is the ratio of the second and the
first moments of the number fraction distribution:
Z HNMJZV Z HNM%V
i) N N

My=—= = =) wyMy
m D nyMy M, XN:

N
=Y Py (1.31)
N C

The last set of relations was obtained using the connection between weight
and number fractions [Eqs (1.28) and (1.24)]. The weight-average is the
molar mass obtained by randomly choosing the monomer. For example,
consider a mixture of different length strings in a box. The weight-average
length of the strings can be measured by reaching into the box (with eyes
closed), pulling out one of the strings, measuring its length (with eyes
open), putting it back into the box, mixing the strings and repeating the
procedure many times. The probability of pulling a particular string out of
the box is proportional to that string’s length, since each section of string
has the same probability of being selected.

In Section 1.7.2, we will see that the weight-average molar mass can
be measured by light scattering from a dilute polymer solution. The visc-
osity of polymer liquids correlates well with the weight-average molar
mass.

The polydispersity index is defined as the ratio of the weight-average
and number-average molar masses M,/M, . Monodisperse samples with
M, =M, have polydispersity index M, /M, =1. Larger polydispersity
indices correspond to samples with broader molar mass distributions.

The z-average malar mass M. is defined as the ratio of the third to the
second moments of the number fraction distribution:

%HNM?V %WNM%V %CN%

M,=—= ~ = = . 1.32
: 2 SonnM3  YowvMy Y exMy (1.32)
N N N

3

Similarly, the (z+ 1)-average molar mass is the ratio of the fourth to the
third moments of the number fraction distribution:

ZHNMTV ZWNM%: ZCNM?V
MZ+1 E@: N - N = N . (1.33)
my S ayMi,  SwyMiy Y ovM3
N N N

In general, the (z + k)-average molar mass is defined as
Z nNM'I;V-H Z WNMK'+2 Z CNMD';VJrZ
~ N N

Tk = = juad = .
Ty oM MY Y en M
N N N

(1.34)

Higher-order molar mass averages, such as M. and M., emphasize the
high molar mass tail of the molar mass distribution. Molecular theories of
polymer dynamics predict these higher-order averages are important, but
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currently available characterization methods for measuring them have
insufficient precision to be useful.

Political example. In order to better understand the difference between
the number- and weight-averages, let us calculate the average population
of a state in the USA. One possible way of obtaining an average is to ask
¢ach US senator for a population of their respective state (there are two
senators {rom each of the 50 states) and average these 100 answers. The
result would be the number-average population of a state. If, instead of
getting answers from senators, who are too busy, we ask congressmen and
average their answers, we would obtain the weight-average state popula-
rion. The reason is that the number of congressmen from each state is
proportional to the population of the corresponding state. In 2001, the
number-average population of each state is 6 x 10° people per state and
the weight-average state population is 12 x 10° people per state, making
the polydispersity index 2.

1.61 Binary distributions

In this section, two examples of binary mixtyres of two different mono-
disperse chain lengths are used to better understand the various molar mass
averages.

Example 1
Consider a mixture containing number fraction n, = 1/2 of the protein
gelatin with molar mass My=10° gmol'l and number fraction np=
| —na=1/2 of gelatin dimers with molar mass Mg=2x 10° gmol .,
What are the number- and weight-average molar masses of this sample
and its polydispersity index?

The number-average molar mass of the sample is

My=my =Y nyMy=nMp+ngMp=15x10°gmol ' (1.38)
N

The second moment of the distribution is calculated in a similar fashion:

my = Z nyM% = na M | npMy, (1.36)
N

The weight-average molar mass is the ratio of the second and first
moments:

o naMa + np M3,

M., = =
¥ my naMa +ngMy

=~ 1,67 x 10° gmol . (1.37)

The polydispersity index of this binary mixture is the ratio of M,
and M,

M,  naMi +ngMy 10
- = (1.38)
M, [ﬂAMA +nBMB] 9
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Notice that even though the chain lengths in the binary mixture differ by a
factor of 2, the polydispersity index M,,/M, =10/9221.11 is only slightly
larger than its monodisperse value of M, /M, =1,

Example 2
Consider an example similar to the one above, but with the binary mixture
containing weight fraction wa =1/2 (rather than number fraction) of
gelatin molecules with molar mass M, = 10° gmol™! and weight fraction
wg =1 — wa = 1/2 of gelatin dimers with molar mass My =2 x 10° gmol ™.
What are the number- and weight-average molar masses of this sample and
its polydispersity index?

Eqgs (1.30) and (1.31) can be used to calculate number-average molar
mass

1 1

= o 5 m -1 .
%;WN/MN T (wa/Ma) + (wp/Mg) 1.33x10° gmol™  (1.39)

My =

and weight-average molar mass

My =Y wyMy=waMa +wpMp=15x10°gmol™".  (1.40)
N

The polydispersity index of this binary mixture is the ratio of M, and M,;;

M,
M,

w 9
[WAMA+WBMB](M M];) —g. (1.41)

This polydispersity index is larger than for the binary mixture in Example 1.
Note that the arithmetic average of M, and Mg (1.5 x 10° gmol™'} is the
number-average molar mass A, for Example 1 with equal number frac-
tions and is the weight-average molar mass M, for Example 2 with equal
weight fractions.

1.6.2 Linear condensation polymers

Consider linear condensation polymerization of monomers AB. An
unreacted A group of any monomer is capable of forming a bond with any
unreacted B group of any other monomer. Thus, an unreacted B group at
the end monomer of an N-mer (molecule containing ¥ monomers) can
react with an unreacted A group at the end monomer of a K-mer, forming
an (N + K)-mer:

(AB)y + (AB)g — (AB)y & (1.42)

The ratio of the number of formed bonds to the maximum possible number
of bonds in a reaction is called the extent of reaction p. If we select any
group (A or B) randomly, p is the probability that the group has reacted. In
linear condensation polymerization, each chain has one unreacted A group
at one end of the chain and one unreacted B group at the other end. Flory
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showed long ago that the reactivity of these groups is independent of chain
length. Therefore, every A group of the original AB monomers has the
same probability p to be reacted with some B group.

Next, we estimate the probability of a given A group to be at the end of
an N-mer. To be at the end of the N-mer, this A group must be unreacted,
with probability 1 —p. The probability that the B group of this end
monomer has reacted and formed a bond with the A group of the second
monomer is p. There are N — 1 such polymerization bonds between mono-
mers in any N-mer. The probability of forming these N — 1 independent
bonds is "~ '. The probability that the B group at the other end of the N-
mer is unreacted is | — p. Therefore, the probability that a given A groupis
at the end of an N-mer with N — 1 polymerization bonds and two unreacted
groups at its ends is given by the product:

n(p, Ny =p"~' (1= p)* (1.43)
This probability is the number of N-mers per monomer: the number of
N-mers in the sample at extent of reaction p divided by the total number
of monomers in the system. The number of N-mers per monomer #{p, N)is
the ratio of the number density of N-mers cyN ay/(MmonN) and the
number density of all monomers eA ay/ Mmen int the sample

en(p) _ walp)

- = 1.44
n(pN)=—5 N (1.44)
where c( p) is the mass concentration of N-mers at extent of reaction p and
wa{ p) is their weight fraction [Eq. (1.24)].

It is important to clarify the difference between the number of N-mers
per monomer a(p, N} and the number fraction nap{p} of N-mers (the
number of N-mers per polymer chain) at extent of reaction p. The number
fraction (or mole fraction) of N-mers was discussed in detail in the previous
section. If we reach into the polymerization reactor at extent of reaction p
and randomly select a chain, the probability that it has degree of poly-
merization N is the number fraction of N-mers:

h 3
ma(2) = PN = () (145
> n(p,N)
N=1
The sum in the denominator is equal to the total number of molecules per
monomer and hence, is the reciprocal of the number-average degree of
polymerization 1/N,, thereby providing the final result in Eq. (1.45)
1 1
Nn — = = = = l
2 _ 2
>on(p,N) (1—py 2 p (1-p)
N=1 N=1

(1.46)
Pk

I

The last equality was obtained by defining k=N — 1. The sum of the

geometric series
20

SF=l4p+p+p+ (1.47)
k=0

21
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can be determined by multiplying it by p

pY P=p+p+p+ (1.48)
k=0

leading to the equation

S -pd F=1 (1.49)
k=0 k=0
with solution
2 1
o= (1.50)
k=0 1 4

Therefore, the number-average degree of polymerization has a simple
form:

1
Nam = . (1.51)

SapN) 1T
N=1

Substituting this result into Eq. (1.45)} we obtain the number fraction
distribution for linear condensation polymers:

nip) = AL gy, (152)

> n{p,N)

N=1

This number fraction distribution [Eq. (1.52)] is shown as dashed line in
Fig. 1.18 for the extent of reaction p =0.991.
The weight fraction of ¥-mers is determined from Eqs (1.23) and (1.28):

LY

wn(p) = 2n(p) = Np*~'(1 = ) (1.53)

If we reach into the polymerization reactor at extent of reaction p and
randomly select a monomer, the weight fraction distribution wx(p) is the
probability that the randomly chosen monomer is part of a chain with
degree of polymerization N. Note that in general, the k-moment of the
number fraction distribution is related to the (k — 1}-moment of the weight
fraction distribution (see Problem 1.31):

S Ml = My > waMiT (1.54)
N N

Equations (1.52) and (1.53) are expressions of the number and weight
fractions for the most-probable distribution of molecules expected for linear
condensation polymerization. The most-probable weight fraction dis-
tribution wx(p) is compared with experimental data in Fig. 1.18. While the
number fraction for the most-probable distribution is a monotonic func-
tion, the weight fraction has a maximum. The position of the maximum in
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the most-probable weight fraction distribution [Eq. (1.53} and the solid
curve in Fig. 1.18)]1s close to the number-average degree of polymerization

Np = My /Myen = 1/{1 —p), (1.55)
No=111 for p=0.991.
The number- and the weight-average molar masses are calculated from

the moments of the molar mass distribution. The first moment of the
number fraction distribution is the number-average molar mass M,:

o =
My =m1=Muon > Nnn(p) = Maon(1-p) > Np*'. (1.56)
N=1 N=1

The summation can be carried out as follows;

- N-1 d o N d S N
ZNP "t "B ZP -1
N=0

M=l dp 74
=d( ! ): L (1.57)
dp\1=-p/ (1-p)
This leads to the number-average molar mass
M, =m =»Afﬂ’°—“, (1.58)
l—p

in agreement with the number-average degree of polymerization N,
[Egs (1.51) and (1.55)]. The number-average molar mass M, is larger than
the monomer molar mass M., and as p approaches unity (where all
monomers are in a single chain) M,, gets extremely large (see Fig. 1.19).
The second moment of the number fraction distribution is obtained

from Eq. (1.25) with k=2 and Eq. (1.52): .
o0 X
my = Mho, > Nonn(p) = My, (1-p) Y Np* (1.59)
N=1 N=1
h T T l N T T 1
100
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Fig.1.19

Number-average (solid curve) and
weight-average (dashed curve) degrees
of polymerization as functions of extent
of reaction for linear condensation
polymerization.
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The summation can be done by a procedure similar to Eq. (1.57):

= o 4 4 al p 1+p
Nl = [p P =— } = . (1.60)
; dp dp;::, dp |(1-p)] (1-p)

Therefore, the second moment of the distribution is

1+p
" = Ml?non (1 7p)29

(1.61)

and the weight-average molar mass for linear condensation polymers is the
ratio of Eqs (1.61) and (1.58):

My =2 = Moy . (1.62)
1

The weight-average molar mass for linear condensation polymers also
diverges as the extent of reaction p — 1 (see Fig. 1.19). The polydispersity
index of the linear condensation polymers,

M,
M,

=1+p, (1.63)

approaches M.,/ M, = 2 for samples with high conversion ( — 1) and high
molar mass. Linear polymers prepared by condensation chemistry typic-
ally have M, /M, =2 with a most-probable distribution of chain lengths.

The most-probable weight fraction distribution [Eq. (1.53)] can be
approximated for large number-average degree of polymerization N, by an
exponential representation, utilizing the expansion of the logarithm for
p near unity Inp=p — 1 and Eq. (1.55) for Ny

-

pY=exp(Ninp)=exp(-N(1-p)) = exp(—%). (1.64)

Thus, the most-probable weight fraction distribution can be approximated
by a linear function with an exponential cutoff

N N
wh(p) = Np¥ (1 - p)? Eﬁexp(—m), (1.65)

for large extents of reaction p— 1 (N, > 1). The most-probable number
fraction distribution [Eq. (1.52)] for linear condensation polymers can also
be approximated by an exponential form for large Ny:

mn(p) = 2wn(p) = Ninexp(f%)- (1.66)

This is the first of many examples where the molar mass distributions are
products of simple functions and exponential cutoffs.
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1.6.3 Linear addition polymers

In addition polymerization, monomers are added one at a time toa growing
chain by propagation of a free radical through a liquid of monomers:

+A +A +A +A +A
A—>A2 —>A3-——>---—'AN_] —Ap.

In the case of addition polymerization without termination, the number
fraction distribution function (the probability that a given chain has degree
of polymerization N} is given by the Poisson distribution function:

B (Nn _ I)N_l
nN—Wexp(l —Nn). (167)
The weight fraction distribution function for addition polymerization
without termination is determined using Eq. (1.28):

N N(Na - )M
=—ny=—r——"—— 1 - Np). 1.68
Ry NH(N71)| exp( 11) ( )
The polydispersity index for the Poisson distribution is quite narrow, since
there is no termination (see Problem 1.37):

Ny 1 1
N, = 1 +Nn N2 (1.69)
Many addition polymerization reactions with very low concentrations of
impurities have propagation rates much faster than initiation rates and
have essentially no termination. Such reactions produce narrow molar
mass distributions that can be approximated by the Poisson distribution.
Comparison of the polydispersity index of anionically polymerized buta-
diene with Eq. (1.69) is shown in Fig. 1.20.

The experimental data lie above the prediction of Eq. (1.69) because the
experimental determination of polydispersity index by size exclusion
chromatography (Section 1.7.4) systematically overestimates A ,/M,,. The
low molar mass polydispersity index does follow the trend expected by
Eq. (1.69). The prediction of Eq. (1.69) that M,/M, =1 for chains with
N, 2 1000 (or M, = 10%) is never realized in practice because real polymer-
ization reactions always have some impurities present.

Many addition polymerizations that involve free radicals at chain ends
have termination reactions when two growing chain ends meet, and more
generally termination can occur when a growing chain end meets an
impurity. For addition polymerization with termination the Shultz

distribution is used,
1 LIAN SN
= _— - X7 1'
"N Ny (N) CXP( Nn)’ 7
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Fig.1.20

Polydispersity index for polybutadienes
polymerized using s-buty] lithium
initiator in cyclohexane. The curve

is the Poisson distribution prediction
[Eq. (1.69)]. The ordinate data appear
discretized because M, /M, can only be
determined to three significant figures.
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where I'(s) is the Gamma function.® Note that for s = 1 the most-probable
distribution is recovered [compare with Eq. (1.65)]. The polydispersity
index of the Shultz distribution [Eq. (1.70)] is

No s+l
N, s’

(1.71)

which leads to N, /N,=2 for the most-probable distribution, but allows
for broader (N,/N, > 2 for s < 1) and narrower (1 < Ny/Ny <2 for s> 1)
distributions.

1.7 Molar mass measurements

There are a variety of experimental methods available for determining
different average molar masses and molar mass distributions. These
methods utilize dilute solutions, and often require measurements at several
concentrations so that an extrapolation to the limit of zero concentration
can be made. Different methods are applicable to different ranges of
polymer molar masses. Table 1.3 summarizes common characterization
methods. Here we discuss only the four most common methods in detail.

Table 1.3 Molar mass measurement methods

Method Absolute Relative M, M, A; Range(gmol™})
End group analysis x X M, < 10000
Vapor pressure % X x M, < 30000
osmometry
Cryoscopy X X x M, < 30000
Ebulliometry X X x M, < 30000
Membrane osmometry X X x 20000 < M,
Light scattering (LS) x * x % 10*< M, <107
Intrinsic viscosity (IV) x M<10®
SEC® with ¢ detector X X X 102 < M <107
SEC® with ¢ and LS detectors  x X 10° < M <107
SEC® with ¢ and TV detectors X X X 102 < M < 10°
MALD[-TOF-MS” x x X M < 10000

“SEC, size exclusion chromatography. MALDI-TOF-MS, matrix-assisted laser desorption/
ionization time-of-flight mass spectroscopy.

1.71  Measuring M, by osmotic pressure

Number-average molar mass can be determined directly by end group
analysis, typically using infrared or nuclear magnetic resonance spectro-
scopies, Colligative solution properties (sensitive to the number of polymets

* The Gamma function is defined as T'(a) = f;* e™*x*"! dx. Gamma functions of different
arguments are related by I'(e+ 1) =al'(e). For integer values of @, the Gamma function is
simply a factorial T'(g + ) =al.
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present) also determine Af;, from dilute solutions of the polymer. These
include osmotic pressure, lowering of solvent vapor pressure, ebulliometry
(elevation of boiling point), or cryoscopy (depression of freezing point).
The most common method to measure M, is osmotic pressure.

Osmahic pressure is a thermodynamic colligative property that measures
the free energy difference between a polymer sclution and a pure solvent
[see Eq. (4.62) for the proper definition of osmotic pressure]. In practice,
the two are separated by a membrane that allows solvent to pass through
easily, but restricts polymer to stay on one side, as shown schematically in
Fig.1.21.

There is a free energy gain in mixing polymer with solvent (discussed in
detail in Chapter 4) that makes more solvent flow into the solution with the
polymer. This solvent flow continues until a pressure difference across the
membrane balances the chemical potential of solvent on the two sides of
the membrane. This pressure difference is the osmotic pressure, II. In the
limit of very dilute solutions, individual polymer coils do not interact with
each other, and the osmotic pressure in sufficiently dilute solutions is
equivalent to thg pressure of an ideal gas. Polymer molecules cannot pass
through the membrane and impose pressure on it similar to the pressure
on the walls of the container by the molecules of an ideal gas. In both
cases the pressure is equal to the thermal energy AT (k=138 x 1072 JK !
is the Boltzmann constant and Tis absolute temperature) times the number
density of molecules. For a monodisperse polymeric sample, the number
density of chains is cA s, /M, leading to the van't Hoff Law:

LI Nso RT
=k =20 (172)

R = kN, =8.314 Tmol ' K~! is the gas constant. Since osmotic pres-
sure is a colligative property, it is simply proportional to the number
density of solute molecules that cannot cross the membrane, regardless of
the length of the chains. For a polydisperse sample, the contribution to the
osmotic pressure from polymers with different molar masses M, and
concentrations c; are simply added:

II RT ¢ RT
lim—=——% =" 1,
clAl-"I(l)C c 7 JM,' M, ( 73)

The final relation was obtained using Eq. (1.30). Hence, dilute osmotic
pressure measurements give the number-average molar mass of a polydisperse
polymer sample.

In order to obtain the number-average molar mass of a particular
sample, asmotic coefficient (IT/c) data, measured at various low concentra-
tions, must be extrapolated to the zero concentration limit. In addition to
the ideal gas contribution [Eq. (1.73)] that arises from individual polymers,
the osmotic pressure also has a contribution from polymer—polymer
interactions. The contribution to osmotic pressure from interaction
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Fig. 1.21

Schematic representation of a
membrane osmometer. The osmotic
pressure is determined from the height
difference h as IT = pgh, where p is the
solvent density and g is the gravitational
acceleration,
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Fig.1.22

Concentration dependence of

osmotic coefficient for three
poly(a-methylstyrene) samples in
tolueng at 25°C. The data
corresponding to dilute solutions for
these three samples are shown, with
lines fit to the lowest concentration data.
Data over wider ranges of concentration
and chain length are shown in Fig. 5.7
[data from [. Noda, N. Kato, T. Kitano
and M. Nagasawa, Macromolecules

16, 668 (1981)].
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between species i and j is represented by A;eic/RT, where Ay is called the
second virial coefficient between species { and ;. The total contribution from
pairwise interactions to the osmotic pressure is the sum over all pairs of
species i and J:

= RT(ML+ ZZAQC,-CJH—-“)
n A

= ’R,T(i_’_ Az,wcz + .- ) .

A (1.74)

The coefficient 4;,, in front of the ¢ term is the weight-average second
virial coefficient (to be discussed in Chapter 3):

1
Az,w = -EEZ ; A,‘jC,‘Cj = Z ; Az‘jwiwj=

where w; is a weight fraction of species i (w; = ¢,/c). The subscript w is often
dropped and the second virial coefficient is usually denoted by 4. The sign
of the second virial coefficient 4, indicates repulsion or attraction between
chains. Positive values of A4, result in increased osmotic pressure and
correspond to repulsion between polymers. Conversely, negative values
{45 <0} correspond to attraction between chains. Strong attraction
between chains may lead to phase separation. Molar masses of polymers
cannot be obtained from osmotic pressure measurements in a phase separ-
ated sample.

By plotting II/¢R T against concentration (Fig. 1.22) the number-aver-
age molar mass is determined as the reciprocal of the intercept and the
weight-average second virial coefficient is the slope:

H —
cRT

(1.75)

1
Lo (1.76)
n

LY

At higher concentrations, the higher-order virial terms have to be taken
into account and extrapolation to zero concentration becomes more
difficult.
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1.7.2 Measuring M,, by scattering

Weight-average molar mass can be measured by scattering and by ultra-
centrifugation. Recent developments in photodetector technology have
allowed light scattering to completely displace the ultracentrifuge as the
method of choice for determining M. This section will focus on the
scattering of visible light, although the same basic principles apply to
scattering of other forms of radiation, Other forms of radiation used for
studying polymers include X-rays {(where the scattering contrast arises from
electron density differences) and neutrons (where the scattering contrast
comes from differences in atomic nuclei). Light scattering, on the other
hand, relies on differences in refractive index » for scattering contrast
tpolarization of electron clouds). To measure the molar mass of a polymer
chain, a dilute solution is prepared in a solvent with sufficiently different
refractive index than the polymer. Usually a solvent can be found with
refractive index differing (rom the polymer by Anz0.1, making the
refractive index increment dn/de 0.1 ml g_l.

1.7.2.1 Scatter‘mg from gases
In order to understand the principle of light scattering, consider a gas of
N.o; relatively small (compared to the wavelength of light A) non-inter-
acting molecules in a scattering volume V. The scattering volume is the
portion of the sample that 1s illuminated by the incident beam and seen by
the detector. In the simplest scattering geometry, the light source, the
sample and the detector are all aligned in the horizontal yz plane (Fig. 1.23).
An incident wave (a vertically polarized laser beam) travels from left to
nght along the z-axis. Light scattered by an angle & in the horizontal yz
plane is analysed by a detector.

The incident light produces oscillating electric and magnetic fields in the
transverse direction {in the xy plane} at every point along the beam. In a
tvpical case of a vertically polarized laser light, the electric field oscillates

A
p—"— Sample
EiI/_\ incident /‘\\ i
B wave,
light /

oS
Sou ¥

".
HJ

EC,
t detector

1/v
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Fig.1.23

Schematic geometry of Rayleigh
scattering. Insert: oscillations in time of
the electric field, F(0, 1), felt by a
molecule at the origin.
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along the vertical x axis, while the magnetic field oscillates along the y axis.
The electric field at location z at time ¢ along the wave 1s sinusoidal:

E(z,f) = E; cos [h(m - ;)] (1.77)

The oscillations of this electric field have amplitude E; and frequency ..
The wavelength A is the period of the wave in space. It is related to the
period of oscillations in time 1/v through the speed of light
€222.998 x 10¥ ms™":
c
V=7 (1.78)

The same relation is valid in a dielectric medium, such as a polymer
solution, where both the speed ¢/n and the wavelength A/r of light are
reduced by the refractive index » of the medium.

Consider a molecule, located at the origin. [t experiences time oscilla-
tions of the electric field from the beam (see insert in Fig. 1.23)

¢
g . — . 1 .
E(0,1) = E; cos (2 5 z) (1.79)
This field causes the electrons in the molecule to oscillate, resuiting in an
induced dipole moment p proportional to the applied field:*

p =k = oE, cos(27r§r). (1.80)

Here o is the polarizability of the molecule. An oscillating dipole emits
electromagnetic waves in all directions with electric field proportional to
the acceleration of charges (dzp/dtz} and decaying reciprocally with the
distance r from the molecule. For a detector located in the horizontal yz
plane at distance r = /)2 + z2 from the origin (see Fig. 1.23) the scattered
wave has electric field

-

11 d%p 4t ¢ r
= —_—— — = — — : 2 — —_—— R
Es 27 di rtrle 2 ch;cos[ LY (.t c)]’ (1.81)

where the delay r/c is the time it takes the wave to travel from the
oscillating dipole at the origin to the detector.

The intensity I, of the wave scattered by a single molecule is proportional
to the mean-square average of the field and is therefore related to the
intensity 7, of the incident wave:

167%
IszATrzain. (1.82)
The inverse fourth power dependence of the scattered intensity f; on the
wavelength A was first understood by Lord Rayleigh. It explains the blue

color of the sky since molecules in the Earth’s atmosphere scatter the solar

5 Our discussion of electromagnetic radiation uses the cgs system of units.
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light of shorter wavelengths (blue) with greater intensity than the longer
wavelengths.

The intensity of light scattered by all N/ V' =cN a, /M molecules in a
unit volume is the sum of intensities from each individual molecule,

_ ¢ ot

1:%%@3&1&, {1.83)
where ¢ is the mass concentration and A is the molar mass of the mole-
cules. This simple addition of intensities is valid because there is no
coherence between light scattered by non-interacting molecules. If we also
assume that the distance r from all scattering particles to the detector is
approximately the same, then the measured intensity is the product of the
scattering volume ¥ and the intensity scattered per unit scattering volume
I In practice, this assumption is improved by moving the detector further
from the sample or by making the scattering volume smaller, but either
choice decreases the scattered intensity.

1.7.2.2 Scattering from dilute polymer solutions

The above results can be generalized (o scattering from solutions, as long as
there is contrast (difference in refractive indices) between solute and sol-
vent. However, polymers can only be treated as point source scatterers in
the limit of small scattering angles.® Adding molecules with smail number
density cNa,/M < 1/a to a solvent with refractive index ry leads to a
linear change in dielectric constant, and hence a linear change in the square
of the refractive index # of the solution:’

2 2 CNAV
= . 1.84
n" = ny + 4w v (1.84)

Differentiating both sides of Eq. (1.84) with respect to concentration c,
provides the expression for the molecular polarizability (with units of
volume):
_ndn M

Y= orde Nay’
Substituting this expression for the molecular polarizability a into
Eq. (1.83) gives the intensity per unit scattering volume of vertically
polarized light scattered in the horizontal plane:
4i’n® (dn\? cM
/\4?’2 de N Av
The scattered intensity per unit scattering volume I normalized by the
incident intensity % and corrected for the 1 /r* distance dependence is called
the Rayleigh ratio.”

(1.85)

i= 1. (1.86)

f2
Rgg% (1.87)

¢ Precisely how small the scattering angle must be is discussed in Section 2.8.

7 The square of the refractive index is the dielectric constant of the medium.

® The puresolvent always has some small scattering intensity due to density fluctuations. In
practice, this solvent background scattering is subtracted from the Rayleigh ratio.
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The unit of the Rayleigh ratio is inverse length (m ") since I is the incident
intensity and [is the scattered intensity per unit volume. The Rayleigh ratio
describes the attenuation of the incident beam upon passing through a
medium. The Rayleigh ratio for vertically polarized light scattered in the
horizontal plane is

It amin? fdn\* eM
4 I-l /\4 ( ) NAV cM, ( )
where we have defined an optical constant
di’n? [(dn\’
——1=1}. 1.89
MN Av (dc) ( )

Expression (1.88) is valid for very low concentrations {¢ < ¢*) or for non-
interacting molecules. In a polydisperse solution, each species j with molar
mass M; contributes K¢, M, to the Rayleigh ratio. Therefore, the total
Rayleigh ratio for a polydisperse system is given by the sum

Ry = K> oM; =K cM,,. (1.90)
i

The final relation was obtained using Eq. (1.31). Hence, dilute scattering
measurements give the weight-average molar mass of a polydisperse polymer
sample.

At low concentrations, polymer interactions make a contribution to the
scattering proportional to the second virial coefficient, just asin the case of
osmotic pressure [see Eq. (1.74}]. The contrast required for scattering from
polymer solutions primarily comes from concentration fluctuations, which
are controlled by the rate of change of osmotic pressure with concentra-
tion. For wavelengths much larger than the molecules, the scattering
intensity is related to the osmatic compressibility (¢9I1/dc).

Kc 1 /oIl 1
e () == 24+ - 1.91
Rs RT(&:)T 7R (190
The Rayleigh ratio for monodisperse samples can then be rewritten as:
KeM
Rym—nm—— 92
P T 24 M + - (1.92)

In a polydisperse sample there are contributions to scattering from all
species, which can be rewritten using the fact that 1/(1 +x)=1 —x for
small x:

KZIHZA,JCJMJr NKZCI-M,-(12;A,}-CJ-MJ-)
K(ZC;'M;'—2ZZAgC[M;Cij+"')
; raliar

i

2

= K|eMy — 240, (eMo) + | = KeMy (1 - 24z My, = --)
(1.93)
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% cMy,
1 +2A45.eM, +---°

o

(1.94)

where 4 ;is the second virial coefficient between species i and /, discussed in
Section 1.7.1. We have already demonstrated [see Eq. (1.90)] that in scat-
tering the weight-average molar mass, My, is measured in polydisperse
samples at low concentrations. It is a higher moment of the distribution
than the number-average molar mass measured by osmotic pressure.
Similarly, the z-average second virial coefficient A, ., measured by light
scattering,

Sod djeiMieMy 73T AyeiMiM;
i g i j

(M) (DM

1
= WZ > AgwiMpn M, (1.95)
W K

is a higher moment than the weight-average second virial coefficient
A4+, measured by osmotic pressure [Eq. (1.75)]. Measurement of scat-
tered intensity at different dilute concentrations allows determination
of the weight-average molar mass M, and the z-average second virial
coefficient 4, .

AQ.Z

I;—Z—A;V—FZALZCJP-- (1.96)
This procedure is analogous to determination of the number-average
molar mass M, and weight-average second virial coefficient 42 o from the
measurements of osmotic pressure IT at different concentrations [Eq. (1.76})
and Fig. 1.22].

It is important to stress that the above treatment is only valid if the
wavelength of light A is much larger than the size of the molecules.
Otherwise the angular dependence of the scattered light f{f) contains a
contribution from the coherent scattering between different parts of the
same molecule {called the form factor). In this case, 2 more sophisticated
method of analysis is used, called a Zimm plot, that allows not only deter-
mination of the molar mass, but also the size of the molecules. The angular
dependence of light scattering is discussed in Section 2.8. Equation (1.96) is
recovered only in the small-angle limit.

1.7.3 Intrinsic viscosity

Each polymer coil in a solution contributes to viscosity. In very dilute
solutions, the contribution from different coils is additive and solution
viscosity 7 increases above the solvent viscosity 7, linearly with polymer
concentration ¢, The effective ‘virial expansion” for viscosity at low con-
centration is of the same form as Eq. (1.76) for osmotic pressure and
Eq. (1.96) for light scattering:

n=ns(1 + [ne + kulgle? + . (1.97)
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The term that is linear in concentration contains the intrinsic viscosity [7]
and the quadratic term includes the Huggins coefficient £y, which plays the
role of the second virial coefficient for viscosity. Intrinsic viscosity [n] is the
initial slope of a plot of relative viscosity n/n, against concentration. Since
relative viscosity is dimensionless, the intrinsic viscosity has units of reci-
procal concentration. It is proportional to the reciprocal concentration of
monomers in a chain’s pervaded volume ¥ [Eq. (1.21)]:
1 vV R

[n]N?N“A}NM' (1.98)
Intrinsic viscosity is related to the linear size of the coil R and the molar
mass M by the Fox—Flery equation:

M ~ ¥ ~ R, (1.99)

This equation will be derived in Chapter & Dilute selution viscosity
measurements are important characterization tools for polymers because
the Fox—Flory relation shows that the product [5]M is proportional to the
pervaded volume of the polymer coil.” Since polymers are fractals, their
molar mass and their size are related by a power law (M ~ R”), leading to
the Mark=Houwink equation:

g = KM (1.100)

K and a are tabulated for nearly all linear polymers in various solvents,
which means that intrinsic viscosity provides a simple effective measure of
molar mass. From Eq. (1.98) it is clear that the Mark-Houwink exponent
a=(3/D)— 1. Representative values of Mark—-Houwink coefficients and
Huggins coefficients are shown in Table 1.4.

Table 1.4 Representative Mark-Houwink and Huggins coefficients of linear polymers

Polymer Solvent K[(dLg "molg™ ], a ku
Polybutadiene  Tetrahydrofuran* at 23°C 288 x 1074 0.726
Polybutadiene  Dioxane' at 26.5°C 1.78 x 1072 0.50
Polystyrene Tetrahydrofuran* at 25°C 1.10 % 1074 0.725 0.35
Polystyrene Cyc:]ohcxanet at 34.5°C 8.46 % 1073 0.50 0.5-0.8
Polyethylene Xylene at 81°C 1.05 % 10~3 0.63 0.38
Polypropylene  Xylene at 85°C 9.6x107* 0.63

*Good solvents typically have 0.7 < a < 0.8 and 0.3 < ky < 0.4. T6—solvents have ¢=0.5 and have
ky increasing with molar mass with 0.5 <ky < 1.5.

In practice, dilute solution viscosity is measured at multiple concentra-
tions and two different forms of Eq. (1.97) are used to extrapolate to zero
concentration. One form is the Huggins equation

T = ]+ klgfPe+ oo, (1.101)
34

¥ The appropriate volume appears to be a combination of static and dynamic coit sizes, as
will be discussed in Chapter 8.
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where (n — n.) /nsc is plotted against mass concentration c. The intercept of
the Huggins plot (at ¢ =0) is the intrinsic viscosity and the slope is kg [n]2 .
Solving for #/n, and taking the natural logarithm allows the Huggins
equation to be gewritten as :

In{n/n) = In(1 + Inle + kuln*c* + )
= [nle+ (ku —3) WfPc? + -+

The second result was obtained from expansion of the logarithm
Nn(l + x + kgx?) = x + (ky — 1/2)x for small x]. Dividing this last result by
¢ gives the second extrapolation form, known as the Kraemer equation,
having the same intercept but a different slope:

RO (ko 5) e v (1102)

Figure 1.24 shows experimental determinations of the intrinsic viscosity.
When both the Huggins and K raemer equations provide the same intrinsic
viscosity and Huggins coefficient, the higher-order terms in these equations
can be safely ignored. On the other hand, if the Huggins and Kraemer plots
are curved and do not give the same intercept, viscosity measurements need
to be made at lower concentrations.

Owing to the superb precision of viscosity measurements, the intrinsic
viscosity can easily be measured to three significant figures, which makes it
by far the most precise polymer characterization method. However, care
must be taken to control the temperature precisely, and polymers with
large molar mass (M 10°gmol™") can shear thin in conventional capil-
lary viscometers.

1.7.4  Size-exclusion chromatography

The entire molar mass distribution, including the higher-order average
molar masses, such as M., M. i, etc. can be measured by either size-
exclusion chromatography (SEC) or ultracentrifuge sedimentation. Owing
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Fig. 1.24

Determination of the intrinsic viscosity
for three different polybutadiene
samples in tetrahydrofuran at 25°C.
Each sample exhibits Iinear Huggins
(filled symbols} and Kraemer (open
symbols) plots that extrapolate to the
intrinsic viscosity at zero concentration.
All three polymers have Huggins
coefficients of 0.37.
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Fig. 1.25
Schematic view of size exclusion
chromatography.
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to the development of excellent chromatographic columns for SEC, it has
completely displaced the ultracentrifuge for characterization of molar
mass distribution. Furthermore, modern SEC is highly automated and
reasonably precise, making it the most popular method of polymer
characterization.

Size exclusion chromatography, also called gel permeation chromato-
graphy (GPC) continually pumps solvent through a series of columns filled
with porous beads (see Fig. 1.25). Often, the beads are polymer gels swollen
with solvent. The beads are intentionally made with a variety of pore sizes
that span the range of the sizes of macromolecules to be separated. A dilute
polymer solution in the same solvent is injected into a small volume of the
flowing solvent stream entering the columns. As the polymer solution
passes through the columns, the largest polymers are excluded from all but
the largest pores, and elute from the columns first, Progressively smaller
polymers can explore progressively smaller pores and therefore, larger
volumes of the column, and consequently elute later. Thus the separation
of molecules in SEC occurs by polymer size rather than by polymer mass.

After separation, the solution passes through a variety of detectors,
depending on the information needed for a particular sample. Common
detectors include a differential refractometer (for measuring concentra-
tion), absorption spectrophotometric detection (such as ultraviolet and
infrared ), light scattering photometer (for measuring M., of each eluent),
and viscometer (for measuring [] of each eluent). With proper calibration
using narrow molar mass distribution standards, SEC can in principle
determine the full molar mass distribution, including higher-order aver-
ages. However, practical limitations make determination of averages that
are higher-order than M, unreliable. In the best of circumstances with
modern SEC equipment and a full compliment of detectors, M, is deter-
mined to +10%, whereas M, can be determined to +35% from light
scattering.

As an analogy describing the SEC process, consider an art museum with
an entry on one side and an exit on the other side of the building. On a
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sunny Sunday morning the museum opens at 10:00 AM and different
groups of tourists enter the museum. Some of them come in big buses on 5h
ity tours. These large groups stop at a couple of major paintings and exit
the museum less than an hour later. Smaller groups come in vans on special
tours of city museums. They visit all the floors of the museum and spend a
couple of hours in it. But there are many individual art lovers who visit all
of the rooms in the museum and spend a long time in front of many
paintings and leave the museum late in the afterncon.

Size exclusion chromatography separates polymers by their size in
solution. A given polymer coil can only enter the pores of the column that
are larger than the coil. This idea led Benoit to propose a scheme for
universal calibration of SEC involving the pervaded volume of the coil. The
volume within the columns that is accessible to a polymer determines how
long the polymer stays in the columns. The amount of solvent that exits the
columns between the time the polymer is injected and when it exits the
columns is termed the elution volume. Benoit’s idea is simply that thereis a
unique relation between the pervaded volume of the coil and it’s elution
volume, for a gjven set of SEC columns. Hence, both polystyrene and
poly(vinyl chloride) with the same pervaded volume will elute from the
SEC at the same elution volume. Most modern SEC columns are designed
to give a linear relation between the logarithm of pervaded volume
[experimentally measured as {n]M, see Eq. (1.99)] plotted against elution
volume over a wide range, as shown in Fig. 1.26. For both very short chains
and very long chains, Fig. 1.26 shows departures from the roughly linear
calibration curve. When chains are too short, their pervaded volume is
smaller than all of the pores in the columns and the SEC no longer separ-
ates such short chains because they experience all of the available volume
of the columns, This is the downturn in Fig. 1.26 at large elution volume,
Similarly, chains that are too long have a pervaded volume that is larger
than any of the pores in the column. These long chains pass through the
column in the interstitial spaces between beads and hence are also not
separated (the upturn at small elution volume 1n Fig. 1.26).

For strictly linear chains, universal calibration is extremely useful
because the Mark—Houwink coefficients have been tabulated for all
common linear polymers. The calibration curve allows [n]M to be deter-
mined from the elution volume. The Mark-Houwink equation [Eq. (1.100)]
then allows the SEC measure of [n]M to determine the molar mass of
the polymer:

t/(a+1}

M =KM*1 = M= (L?_?J%{) : (1.103)
In practice, SEC columns are often calibrated using linear monodisperse
polystyrene standards, generating a calibration curve like Fig. 1.26. Then
any linear polymer that is soluble in the same solvent, for which a Mark-
Houwink equation is known, can have its molar mass determined by
this calibrated SEC experiment. The elution volume of the polymer
determines [n]M from the calibration curve and the Mark-Houwink
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Fig. 1.26

Universal calibration curve for size
exclusion chromatography. Data points
are polybutadienesin tetrahydrofuran at
25°C in crosslinked polystyrene
columns. There is a reasonably linear
region of the calibration curve spanning
the data (solid line) but the linear region
has 1ts limits (dotted curves).
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equation subsequently determines the molar mass from []M. For bran-
ched polymers, universal calibration still works. A branched polymer will
elute at the same elution volume as a linear polymer with the same per-
vaded volume. However, unless the Mark-Houwink relation for the
branched polymer is known (which is rare} there is no means to convert
[n]M into a molar mass.

For branched polymers and for linear polymers that do not have an
established Mark-Houwink equation, SEC is typically used in conjunction
with light scattering and viscosity detectors. These detectors measure the
weight-average molar mass and viscosity of each elution volume. In
principle, this experiment directly determines both A, and [5] for any
polymer that is soluble in the SEC solvent, but in practice the M,, deter-
mination also requires that the polymer have an appreciable difference in
refractive index from the solvent so that in Eq. (1.88), dr/dcz0.05mL g "
Often a new polymerization is not understood sufficiently to know for
certain whether the polymer produced will have branched chains present or
not, and SEC with multiple detectors is the method of choice for char-
acterizing such polymers. Multiple-detector SEC provides an enormous
amount of information in an automated fashion. The weight-average
molar mass and intrinsic viscosity of each individual elution volume are
determined quite precisely because the concentrations are low enough that
second virial and Huggins coefficient terms make negligible contributions.

It is very important to realize that the size separation in SEC is far from
perfect. If a perfectly monodisperse sample were instantaneously injected
into the columns, the sample would #or all elute in the same elution volume.
This is because the polymer diffuses randomly in the solvent while the
solution proceeds through the column. This broadening always makes the
polydispersity index measured by SEC larger than the real polydispersity
index of the sample, thereby accounting for the discrepancy between
theory and experiment at low molar masses in Fig. 1.20.

LY

1.8 Summary

Polymers are formed by repetitive covalent bonding of chemical monomers.
The number of monomers in a macromolecule N is its degree of poly-
merization. Some polymer characteristics, such as degree of polymeriza-
tion, microstructure, architecture and chemical composition are fixed
during polymerization. These characteristics control many important
properties of polymeric materials.

A macromolecule can adopt many conformations, defined by relative
locations of its monomers in space. Polymer conformations are often self-
similar (fractal) with pervaded volume ¥ much larger than their occupied
volume Nvg,, where v, is the monomer volume. The overlap volume
fraction

* Nvmon

¢ v

, (1.104)
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is much less than unity. The overlap parameter P is the average number of
chains in a pervaded volume that is randomly placed in the solution.
At volume fractions below overlap (¢ < ¢*) the solution is called dilute
and the overlap parameter is less than unity (P < ). At volume fractions
above overlap (¢ > ¢*} the solution is called semidilite and the overlap
parameter P > 1.

Synthetic polymers are often polydisperse, containing a mixture of
molecules with different molar masses. This mixture is described by a
distribution—number fraction (or mole fraction) sy of molecules with
molar mass A . The distribution is characterized by its moments, with the
kth moment of the number fraction distribution function defined as a sum
over the distribution:

me =Y nyMY,. (1.105)
N
Different molar mass averages are defined as ratios of consecutive
moments of the molar mass distribution. The number-average molar mass
is the ratio of the first to zeroth moment of the number fraction distribution
function (which s equal to the first moment because the normalization of
the number fraction distribution makes the zeroth moment unity):
My="0 =3 nyMy. (1.106)
Mg I
The weight-average molar mass is the ratio of the second to the first
moment of the number fraction distribution function and is equal to the
first moment of the weight fraction distribution function:

%nNMi;
Myz ~t==——= Wy M. 1.107
%”NMN ZN: nMy (1.107)

The polydispersity index is defined as the ratio of the weight- to number-
average molar masses M, /M,. The polydispersity index is equal to unity
for monodisperse polymers (samples with only one molar mass). A larger
value of the polydispersity index corresponds to polymeric systems with
broader molar mass distributions. Linear condensation polymers typically
have M, /M, =2, while linear addition polymers can have virtually any
polydispersity index, depending on the relative rates of polymerization and
termination.

Molar masses and molar mass distributions are usually measured in
dilute solutions. Osmotic pressure measurements determine M, and light
scattering measurements determine M,,. The entire molar mass distribu-
tion can be measured using properly calibrated SEC.

Problems
Section1.2

1.1 Consider a ‘true macromolecule’—a chunk of polybutadiene network of mass
100 g. How many monomers all covalently bonded together does it contain if
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Fig.1.27
A Koch curve based on squares.

(@) (b)

(@

Fig.1.28

Sierpinski carpet construction:

Start with a square (a), divideit into nine
equal squares and remove the center one
(b). With each of the remaining eight
squares, repeat the process (c) and

so on (d).

Fig.1.29
Menger sponge.

Introduction

the molar mass of a monomer is Mo, =54gmol ™ '? What is the molar
mass of this macromolecule?

Section1.3

1.2

If two different monomers A and B prefer to react with each other than react
with their own kind, explain how you would synthesize the following
copolymers:

(i} alternating copolymer
(ii) diblock copolymer
(iii) triblock copolymer

Section1.4

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.11

1.12

Consider a dense globule of polyethylene with molar mass M = 10°g mol !
in a non-solvent. What is the radius of the globule if the density inside the
globule is p=0.784 gem *?

Consider an ideal polyethylene chain with molar mass M = 19°gmol ", Its
mean-square end-to-end distance is given by

{R*) = CI’N,

where the monomer length is b= 2.5 A and the coefficient € = 5.5. Estimate
its Toot-mean-square end-to-end distance +/{R?} if the molar mass of the
monomer is Mo, = 28 gmol .

What is the maximum length

Rmax = b

of a polyethylene chain with molar mass M= 10%gmol ™" and monomer
length b =2.5 A?

Calculate the fractal dimension of the Koch curve in Fig. 1.27 with the
center third of each segment replaced by three sides of a square (instead of
two sides of a triangle as discussed in Section 1.4).

Determine the fractal dimension of a Sierpinski carpet (see Fig. 1.28), con-
structed by dividing solid squares into 3 % 3 arrays and removing their
centers.

Calculate the fractal dimension of a Menger sponge (see Fig. 1.29), a three-
dimensional version of the Sierpinski carpet. A solid cube is divided into
3 % 3 % 3 cubes and the body-center cube along with the six face-center cubes
are removed. The same procedure is repeated for each of the remaining 20
cubes, etc.

A polymer in a melt is in its ideal state, which is a fractal with fractal
dimension D =2. Consider two such chains, a longer one with degree of
polymerization N, = 1000 and a shorter one with degree of polymerization
Ny =250. What is the ratio of their sizes Ry/R,?

A linear polymer in a good solvent is a fractal with fractal dimension D22 1.7,
What fraction of a chain has size (average distance between its two end
monomers) equal to half of the average distance between two ends of the
whole chain?

An ideal randomly branched polymer is a fractal object with fractal
dimension P =4. In Chapter 6, we will learn how this polymer can fit into
three-dimensional space. What is the ratio of molar masses Af;/M; of two
ideal randomly branched polymers if the ratio of their sizes is Ry/R,= 37
In Chapter 3, we will learn that a linear polymer confined to an air-water
interface is a fractal object with fractal dimension D = 4/3. What is the ratio
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Problems

of sizes R}/R, of two linear polymers at the air—water interface if the ratio of
their molar masses is M;/M,=16?
Give additional examples of: (i) regular fractals; (ii) fractals in nature,

Section1.5

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

The density of a 1,4-polybutadiene melt at 298 K is p=0.895 gem . What
is the monomer volume wy., if the mass of the monomer is
Mopon=54gmol ™1

Consider a pelystyrene solution with concentration ¢ =1gL™" in a solvent
with density p=0.9 gcm . Estimate the volume of a polystyrene monomer
in this solution if the density of bulk polystyrene is p=1 gem > and the mass
of the monomer is M0 =104 gmol ™!, What is the volume fraction of
polystyrene in this solution?

What is the volume fraction of 1 mgmL ™ poly(vinyl chloride) in solution if
the volume of each monomer is vme, = 75A° and the molar mass of each
monomer i8 Mon =62 gmol™ fy

Calculate the overlap volume fraction ¢* of a polymer with degree of
polymerization ¥ = 10* and monomer volume tiyen = 100 A®, if its pervaded
volume is a sphere with radius 200 A.

Consider a solution of rod pelymers with degree of polymerization N =100
and end-to-end distance L= Nbd with monomer length h=355A and
monomer mass Mo, =75 gmol ™",

(i) What is the pervaded volume of this polymer?
(i) Is a solution with concentration 10~* gcm™ dilute or semidilute?

Consider a polymer solution with degree of polymerization ¥ = 300, volume
fraction ¢=10"7, monomer volume Ve, =90A° and pervaded volume
10° nm®. What is the overlap parameter P of this solution?

Censider a 10mL solution obtained by mixing 20mg of dry polymer with
solvent. The bulk density of the dry polymer is p=0.8 gem™". What is the
volume fraction of polymer in this solution? Assume no change of volume
upon mixing.

A polymer with molar mass M = 10° %mol’l is at overlap in a solution with
concentration ¢* =1.67 % 10" gem . What is the pervaded volume ¥ of
each polymer chain?

Estimate the overlap parameter P for polymers with fractal dimension D in
the melt (¢ =1) if the degree of polymerization is N. Estimate the overlap
parameter for an ideal chain (with D=2) in a melt with ¥ = 10* monomer
segments.

Section 1.6

1.23

1.24

Consider five textbooks from the polymer bookshelf; by P. I, Flory con-
sisting of 672 pages, by P. G. de Gennes consisting of 324 pages, by M. Doi
and S. F. Edwards consisting of 391 pages, by A. Yu. Grosberg and A. R.
Khokhlov consisting of 350 pages and by J. des Cloizeaux and G. Jannink
consisting of 896 pages.

(i) What is the number-average number of pages per textbook?
(ii) What is the weight-average number of pages per textbook?
(iii) What is the polydispersity index?
|4

Science Fiction: Three Planets.

(i) On the planet Demos, all major decisions are made by votes of
all inhabitants. All votes are counted with equal weight. What kind of
average decision is achieved on the planet Demos?
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1.25

1.26

1.27

1.28

1.29

1.30

1.31
1.32

(ii) On the planet Fatos all major decisions are also made by votes of all
inhabitants. Votes on Fatos are counted proportional to the weight of
the corresponding inhabitamt, What kind of average decision is
achieved by this weighted voting on the planet Fatos?

(iii) On the planet Thinos all major decisions are also made by votes of all
inhabitants. Votes on Thinos are counted inversely proportional to the
weight of the corresponding inhabitant. What kind of average decision
is achieved by this weighted voting on the planet Thinos?

Consider a system consisting of one elephant with mass M, = 10*kg and
nine mosquitoes riding on its back with mass M, =0.1 g each.

(i) Calculate the number-average molar mass M, of this system.
(i) Calculate the weight-average molar mass M., of this system.
(iii) Calculate the polydispersity index of this system.
(iv) Which average is appropriate for calculating the damage to your Land
Rover in a collision with this system?

Consider the following distribution of polymer chains:

10 chains with degree of polymerization 100
100 chains with degree of polymerization 1000
10 chains with degree of polymerization 10000

(i) Calculate the number-average degree of polymerization N, of this
distribution.
(ii) What is the weight-average degree of polymerization N, of this
distribution?
(iii} What is the polydispersity index of this distribution?

Consider a blend obtained by mixing 1 g of a polymer with molar mass
Ma=1x10°gmol~! and 2 g of the same type of polymer with molar mass
Mp=2x10°gmol .

(i) Calculate the number-average molar mass Af,, of this blend.
(if) What is the weight-average molar mass M., of this blend?
(iii) What is the polydispersity index of this polymer blend?

A protein sample consists of 80% by weight material with M=
5x 10*gmol~" and 20% by weight of dimer with molar mass 10° gmol ™.
Calculate M,,, M,,, and polydispersity index. .

(i) Is it possible for a number fraction sy of a chain of N monomers to be
larger than the weight fraction wy of this species? What can you state
about the molar mass My of this species?

(i) Is it possible for a number fraction ny of a chain of ¥ monomers in a
polydisperse sample to be equal to its weight fraction w,? What can
you state about the molar mass M of this species?

The number fraction (or mole fraction) of a protein with molar mass

Ma=10°gmol™" in an unknown mixture of different protein species is

na =0.1. The weight fraction of this protein in the same mixture is wa = 0.2,

(i) What is the number-average molar mass M, of the mixture?
(i) What is the weight-average molar mass M,, of this mixture?

Show that the k-moment of the number fraction distribution ny is related to
the (k — 1)-moment of the weight fraction distribution w, [derive Eq. (1.54)].
Consider the condensation polymerization of aminocaproic acid to make
nylon 6:

nH;N{CH,),COOH — [(CH,)sCONH], + #H;0

(i) What is the number-average molar mass M, at the extent of reaction
p=0997
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(i) What is the weight-average molar mass M, and polydispersity index at
the same extent of reaction p=0.99?

1.33 At what extent of reaction p is the polydispersity index of a linear con-
densation polymerization sample equal to M,/ M, = 1.5?

1.34* Prove that the weight-average molar mass is never smaller than the
number-average molar mass and therefore the polydispersity index is never
less than unity:

szl_

n

1.35 Calculate the degree of polymerization Npy,a(p) corresponding to the max-
imum of the most-probable weight fraction w(p) [Eq. (1.53)] at the extent of
reaction p. Is this value Np.«( ) better approximated for small (1 — p) by the
number-average N, or by the weight-average &, degree of polymerization?
Hint: Expand the logarithm for small (1 — p).

1.36* Consider condensation polymerization of f-arm stars. Each star molecule
contains one multifunctional monomer B, and & — | bifunctional mono-
mers AB with condensation reaction possible only between unreacted A and
B groups. Arms of the star are polydisperse with each of farms containing
between 0 and N — 1 monomers AB.

(i) Demdnstrate that the number fraction distribution function of

N-mers is
(N+f=230

where & is the total degree of polymerization of all arms of the star.
(i) Show that the number-average degree of polymerization is

(f=lir+1
l—-p
(iii) Calculate the weight-average degree of polymerization and show that

as extent of reaction p — 1, the polydispersity index decreases with the
number of arms as

Ny =

112

1+

Z|#
~ -

1.37* Addition polymerization

(i) Calculate the weight-fraction distribution function wy for addition
polymerization without termination from the Poisson number fraction
distribution function ny [Eq. (1.67)] using

Nny

x

z N}TN
N=I

(i} Prove that the number-average degree of polymerization of the Poisson
distribution is N,

(i) Calculate the weight-average degree of polymerization &, and poly-
dispersity index for addition polymerization without termination.
Does N,/ N, increase or decrease as the reaction proceeds?

{iv) The number-average degree of polymerization of an addition poly-
merization sample is &,, = 100. What is the polydispersity index of this
sample?

Wy —

* Throughout this book. problems marked with an asterisk are mere challenging than
those that are not,
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1.38

1.39

Prove that the Shultz distribution wy [Eq. (1.70)] has a maximum at N = N,
for any value of 5 > 0.

List the necessary conditions for formation of a narrow molar mass dis-
tribution in addition polymerization.

Section1.7

1.40

1.41

1.42*

The osmotic pressure of a polymer solution at temperature 7'=23°C was
measured at several concentrations and is reported in the table below.

¢ (gem™) 2x107%  4x107° 6x10"* gx103 1072
I {dyncm™> 508 1L04x10°  158xI0°  215x10° 2.74x10°

Determine the number-average molar mass M, of the polymer and the
second virial coefficient of the solution A;.

Light scattering measurements at scattering angle § =3° were performed
on a dilute polymer solution using a laser with a wavelength A=5500 A.
The refractive index of the solvent is ny=1.4 and the refractive index
increment of the solution is dn/de =0.1 cm® g~!. The following data for the
Rayleigh ratio were obtained:

clgem %  5x10°¢ -3 15x10°% 2x107%  25x1077
Retem™)  49x107* 84x107% 11xi07% 13x107% 15x107?

(i} What is the value of the optical constant K if one can assume that in
dilute solutions » = ny?

(iiy Plot X¢/Ry as a function of the concentration ¢ and determine the
weight-average molar mass M., and the second virial coefficient A4,.

Modern light scattering uses a polarized laser, but since much of the older
literature used unpolarized light sources, it is nseful to understand them.
Unpolarized light can be represented as a combination of a vertically and
horizontally polarized waves—the first one with electric field oscillating
along the vertical x axis and the seccond one—along the horizontal y axis,
The intensities of these two parts of the incident light are 7, = I, = f/2. The
intensity per unit scattering volume of the vertically potarized scattered
wave is Lopa/2.

(i) Show that the intensity at scattering angle #, per unit scattering volume
of the herizontally polarized scattered wave, is (1,014r/2) cos 8.

(ii) Show that the intensity of the scattered light per unit scattering volume
using an unpolarized light source valid for any radial position of the
detector with scattering angle 8 is

- 2n?i? dm\* eM
Bungolar = =77 (1 + cos” ) (&) ml;. {1.108)

(iii) Demonstrate that the Rayleigh ratio from an unpolarized light source
[Eq. (1.87)] is equal to

I P 2wt fde\? M

Runpo]ar = unpolar _ hdd 1 2 2

] T A \de NAV( oos™ )
1 +cos*@

= KeM ———, (1.109)

where K is the optical ratio defined in Eq. (1.89).
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1.43 The intensity of the incident beam decreases due to scattering following
Beer’s Law:

L(z) = Iy expl—(z — 20)], {1.110)

where 7 is the turbidity of the sample and z — z; is the length of the path of
the incident beam between the entry into the sample zy (with intensity 7y at
zp) and the point with coordinate z. Turbidity can be obtained from the
Rayleigh ratio by integrating the radiated energy over all scattering direc-
tions, Using the Rayleigh ratio for an unpolarized light source [Eq. {1.109)],
show that the turbidity is

8
rz?ﬂ-KcM. (L1113

1.44 Size exclusion chromatography
A fraction of a polystyrene sample elutes in tetrahydrofuran at 25°C at
483 mE. Estimate the molar mass of this fraction using the universal cali-
bration for this set of columns presented in Fig. 1.26 and the Mark—Hou-
wink coefficients listed in Table 1.4.
1.45 Determine the moment of the molar mass distribution measured by intrinsic
viscosity of a polydisperse sample.
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